Science.gov

Sample records for acid gaba release

  1. Acid Stimulation (Sour Taste) Elicits GABA and Serotonin Release from Mouse Taste Cells

    PubMed Central

    Huang, Yijen A.; Pereira, Elizabeth; Roper, Stephen D.

    2011-01-01

    Several transmitter candidates including serotonin (5-HT), ATP, and norepinephrine (NE) have been identified in taste buds. Recently, γ-aminobutyric acid (GABA) as well as the associated synthetic enzymes and receptors have also been identified in taste cells. GABA reduces taste-evoked ATP secretion from Receptor cells and is considered to be an inhibitory transmitter in taste buds. However, to date, the identity of GABAergic taste cells and the specific stimulus for GABA release are not well understood. In the present study, we used genetically-engineered Chinese hamster ovary (CHO) cells stably co-expressing GABAB receptors and Gαqo5 proteins to measure GABA release from isolated taste buds. We recorded robust responses from GABA biosensors when they were positioned against taste buds isolated from mouse circumvallate papillae and the buds were depolarized with KCl or a stimulated with an acid (sour) taste. In contrast, a mixture of sweet and bitter taste stimuli did not trigger GABA release. KCl- or acid-evoked GABA secretion from taste buds was Ca2+-dependent; removing Ca2+ from the bathing medium eliminated GABA secretion. Finally, we isolated individual taste cells to identify the origin of GABA secretion. GABA was released only from Presynaptic (Type III) cells and not from Receptor (Type II) cells. Previously, we reported that 5-HT released from Presynaptic cells inhibits taste-evoked ATP secretion. Combined with the recent findings that GABA depresses taste-evoked ATP secretion [1], the present results indicate that GABA and 5-HT are inhibitory transmitters in mouse taste buds and both likely play an important role in modulating taste responses. PMID:22028776

  2. GABA release by hippocampal astrocytes

    PubMed Central

    Le Meur, Karim; Mendizabal-Zubiaga, Juan; Grandes, Pedro; Audinat, Etienne

    2012-01-01

    Astrocytes can directly influence neuronal activity through the release of various transmitters acting on membrane receptors expressed by neurons. However, in contrast to glutamate and ATP for instance, the release of GABA (γ-amino-butyric acid) by astrocytes is still poorly documented. Here, we used whole-cell recordings in rat acute brain slices and electron microscopy to test whether hippocampal astrocytes release the inhibitory transmitter GABA. We observed that slow transient inhibitory currents due to the activation of GABAA receptors occur spontaneously in principal neurons of the three main hippocampal fields (CA1, CA3, and dentate gyrus). These currents share characteristics with the slow NMDA receptor-mediated currents previously shown to result from astrocytic glutamate release: they occur in the absence of synaptic transmission and have variable kinetics and amplitudes as well as low frequencies. Osmotic pressure reduction, known to enhance transmitter release from astrocytes, similarly increased the frequency of non-synaptic GABA and glutamate currents. Simultaneous occurrence of slow inhibitory and excitatory currents was extremely rare. Yet, electron microscopy examination of immunostained hippocampal sections shows that about 80% of hippocampal astrocytes [positive for glial fibrillary acidic protein (GFAP)] were immunostained for GABA. Our results provide quantitative characteristics of the astrocyte-to-neuron GABAergic signaling. They also suggest that all principal neurons of the hippocampal network are under a dual, excitatory and inhibitory, influence of astrocytes. The relevance of the astrocytic release of GABA, and glutamate, on the physiopathology of the hippocampus remains to be established. PMID:22912614

  3. Lesions of nucleus accumbens affect morphine-induced release of ascorbic acid and GABA but not of glutamate in rats.

    PubMed

    Sun, Ji Y; Yang, Jing Y; Wang, Fang; Wang, Jian Y; Song, Wu; Su, Guang Y; Dong, Ying X; Wu, Chun F

    2011-10-01

    Our previous studies have shown that local perfusion of morphine causes an increase of extracellular ascorbic acid (AA) levels in nucleus accumbens (NAc) of freely moving rats. Lines of evidence showed that glutamatergic and GABAergic were associated with morphine-induced effects on the neurotransmission of the brain, especially on the release of AA. In the present study, the effects of morphine on the release of extracellular AA, γ-aminobutyric acid (GABA) and glutamate (Glu) in the NAc following bilateral NAc lesions induced by kainic acid (KA) were studied by using the microdialysis technique, coupled to high performance liquid chromatography with electrochemical detection (HPLC-ECD) and fluorescent detection (HPLC-FD). The results showed that local perfusion of morphine (100 µM, 1 mM) in NAc dose-dependently increased AA and GABA release, while attenuated Glu release in the NAc. Naloxone (0.4 mM) pretreated by local perfusion to the NAc, significantly blocked the effects of morphine. After NAc lesion by KA (1 µg), morphine-induced increase in AA and GABA were markedly eliminated, while decrease in Glu was not affected. The loss effect of morphine on AA and GABA release after KA lesion could be recovered by GABA agonist, musimol. These results indicate that morphine-induced AA release may be mediated at least by µ-opioid receptor. Moreover, this effect of morphine possibly depend less on the glutamatergic afferents, but more on the GABAergic circuits within this nucleus. Finally, AA release induced by local perfusion of morphine may be GABA-receptor mediated and synaptically localized in the NAc. PMID:20731632

  4. Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): modifying serotonin's downstream effects on glutamate and GABA (gamma amino butyric acid) release.

    PubMed

    Stahl, Stephen M

    2015-08-01

    Vortioxetine is an antidepressant with multiple pharmacologic modes of action at targets where serotonin neurons connect with other neurons. These actions modify the release of both glutamate and GABA (gamma amino butyric acid) within various brain circuits. PMID:26062900

  5. Synaptic GABA release prevents GABA transporter type-1 reversal during excessive network activity

    PubMed Central

    Savtchenko, Leonid; Megalogeni, Maria; Rusakov, Dmitri A.; Walker, Matthew C.; Pavlov, Ivan

    2015-01-01

    GABA transporters control extracellular GABA, which regulates the key aspects of neuronal and network behaviour. A prevailing view is that modest neuronal depolarization results in GABA transporter type-1 (GAT-1) reversal causing non-vesicular GABA release into the extracellular space during intense network activity. This has important implications for GABA uptake-targeting therapies. Here we combined a realistic kinetic model of GAT-1 with experimental measurements of tonic GABAA receptor currents in ex vivo hippocampal slices to examine GAT-1 operation under varying network conditions. Our simulations predict that synaptic GABA release during network activity robustly prevents GAT-1 reversal. We test this in the 0 Mg2+ model of epileptiform discharges using slices from healthy and chronically epileptic rats and find that epileptiform activity is associated with increased synaptic GABA release and is not accompanied by GAT-1 reversal. We conclude that sustained efflux of GABA through GAT-1 is unlikely to occur during physiological or pathological network activity. PMID:25798861

  6. Dopaminergic neurons inhibit striatal output via non-canonical release of GABA

    PubMed Central

    Tritsch, Nicolas X.; Ding, Jun B.; Sabatini, Bernardo L.

    2012-01-01

    The substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) contain the two largest populations of dopamine (DA)-releasing neurons in the mammalian brain. These neurons extend elaborate projections in striatum, a large subcortical structure implicated in motor planning and reward-based learning. Phasic activation of dopaminergic neurons in response to salient or reward-predicting stimuli is thought to modulate striatal output via the release of DA to promote and reinforce motor action1–4. Here we show that activation of DA neurons in striatal slices rapidly inhibits action potential firing in both direct-and indirect-pathway striatal projection neurons (SPNs) through vesicular release of the inhibitory transmitter γ-aminobutyric acid (GABA). GABA is released directly from dopaminergic axons but in a manner that is independent of the vesicular GABA transporter VGAT. Instead GABA release requires activity of the vesicular monoamine transporter VMAT2, which is the vesicular transporter for DA. Furthermore, VMAT2 expression in GABAergic neurons lacking VGAT is sufficient to sustain GABA release. Thus, these findings expand the repertoire of synaptic mechanisms employed by DA neurons to influence basal ganglia circuits, reveal a novel substrate whose transport is dependent on VMAT2, and demonstrate that GABA can function as a bona fide co-transmitter in monoaminergic neurons. PMID:23034651

  7. Production of gaba (γ - Aminobutyric acid) by microorganisms: a review.

    PubMed

    Dhakal, Radhika; Bajpai, Vivek K; Baek, Kwang-Hyun

    2012-10-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods. PMID:24031948

  8. Inhibition of GABA release from slices prepared from several brain regions of rats at various times following a convulsion.

    PubMed Central

    Green, A. R.; Minchin, M. C.; Vincent, N. D.

    1987-01-01

    1 A method is described for the measurement of the K+-evoked release of endogenous gamma-aminobutyric acid (GABA) from slices of rat cortex, hippocampus and striatum. 2 In tissue prepared 30 min following an electroconvulsive shock, K+-evoked GABA release (above basal release) was inhibited by 45% in cortex, 50% in hippocampus and 75% in striatum. A similar inhibition of release was observed with slices prepared from rats in which a convulsion had been induced by flurothyl. There was no change in spontaneous (basal) release following either procedure. 3 An inhibition of K+-evoked endogenous GABA release was also seen in tissue prepared 4 min postictally but not 2 h after the seizure. 4 No difference was observed in the release of [3H]-GABA from preloaded cortical slices prepared from rats given a single electroconvulsive shock. 5 It is proposed that a convulsion results in an inhibition of GABA release and that this inhibition may in turn inhibit GABA synthesis as described in the preceding paper. 6 It is also proposed that changes in the endogenous releasable pool of GABA may not be detected by preloading slices with [3H]-GABA. PMID:3664084

  9. Effect of pressure on (/sup 3/H)GABA release by synaptosomes isolated from cerebral cortex

    SciTech Connect

    Gilman, S.C.; Colton, J.S.; Hallenbeck, J.M.

    1986-12-01

    High hydrostatic pressure has been shown to produce neurological changes in humans which manifest, in part, as tremor, myoclonic jerks, electroencephalographic changes, and convulsions. This clinical pattern has been termed high-pressure nervous syndrome (HPNS). These symptoms may represent an alteration in synaptic transmission in the central nervous system with the inhibitory neural pathways being affected in particular. Since gamma-aminobutyric acid (GABA) transmission has been implicated in other seizure disorders, it was of interest to study GABAergic function at high pressure. Isolated synaptosomes were used to follow GABA release at 67.7 ATA of pressure. The major observation was a 33% depression in total (/sup 3/H)GABA efflux from depolarized cerebrocortical synaptosomes at 67.7 ATA. The Ca2+-dependent component of release was found to be completely blocked during the 1st min of (/sup 3/H)GABA efflux with a slow rise over the subsequent 3 min. These findings lead us to conclude that high pressure interferes with the intraterminal cascade for Ca2+-dependent release of GABA.

  10. Fine Tuning of Synaptic Plasticity and Filtering by GABA Released from Hippocampal Autaptic Granule Cells.

    PubMed

    Valente, Pierluigi; Orlando, Marta; Raimondi, Andrea; Benfenati, Fabio; Baldelli, Pietro

    2016-03-01

    The functional consequence of γ-aminobutyric acid (GABA) release at mossy fiber terminals is still a debated topic. Here, we provide multiple evidence of GABA release in cultured autaptic hippocampal granule cells. In ∼50% of the excitatory autaptic neurons, GABA, VGAT, or GAD67 colocalized with vesicular glutamate transporter 1-positive puncta, where both GABAB and GABAA receptors (Rs) were present. Patch-clamp recordings showed a clear enhancement of autaptic excitatory postsynaptic currents in response to the application of the GABABR antagonist CGP58845 only in neurons positive to the selective granule cell marker Prox1, and expressing low levels of GAD67. Indeed, GCP non-responsive excitatory autaptic neurons were both Prox1- and GAD67-negative. Although the amount of released GABA was not sufficient to activate functional postsynaptic GABAARs, it effectively activated presynaptic GABABRs that maintain a tonic "brake" on the probability of release and on the size of the readily releasable pool and contributed to resting potential hyperpolarization possibly through extrasynaptic GABAAR activation. The autocrine inhibition exerted by GABABRs on glutamate release enhanced both paired-pulse facilitation and post-tetanic potentiation. Such GABABR-mediated changes in short-term plasticity confer to immature granule cells the capability to modulate their filtering properties in an activity-dependent fashion, with remarkable consequences on the dynamic behavior of neural circuits. PMID:25576534

  11. Increased probability of GABA release during withdrawal from morphine.

    PubMed

    Bonci, A; Williams, J T

    1997-01-15

    Opioid receptors located on interneurons in the ventral tegmental area (VTA) inhibit GABA(A)-mediated synaptic transmission to dopamine projection neurons. The resulting disinhibition of dopamine cells in the VTA is thought to play a pivotal role in drug abuse; however, little is known about how this GABAA synapse is affected after chronic morphine treatment. The regulation of GABA release during acute withdrawal from morphine was studied in slices from animals treated for 6-7 d with morphine. Slices containing the VTA were prepared and maintained in morphine-free solutions, and GABAA IPSCs were recorded from dopamine cells. The amplitude of evoked IPSCs and the frequency of spontaneous miniature IPSCs measured in slices from morphine-treated guinea pigs were greater than placebo-treated controls. In addition, activation of adenylyl cyclase, with forskolin, and cAMP-dependent protein kinase, with Sp-cAMPS, caused a larger increase in IPSCs in slices from morphine-treated animals. Conversely, the kinase inhibitors staurosporine and Rp-CPT-cAMPS decreased GABA IPSCs to a greater extent after drug treatment. The results indicate that the probability of GABA release was increased during withdrawal from chronic morphine treatment and that this effect resulted from an upregulation of the cAMP-dependent cascade. Increased transmitter release from opioid-sensitive synapses during acute withdrawal may be one adaptive mechanism that results from prolonged morphine treatment. PMID:8987801

  12. A novel GABA-mediated corticotropin-releasing hormone secretory mechanism in the median eminence

    PubMed Central

    Kakizawa, Keisuke; Watanabe, Miho; Mutoh, Hiroki; Okawa, Yuta; Yamashita, Miho; Yanagawa, Yuchio; Itoi, Keiichi; Suda, Takafumi; Oki, Yutaka; Fukuda, Atsuo

    2016-01-01

    Corticotropin-releasing hormone (CRH), which is synthesized in the paraventricular nucleus (PVN) of the hypothalamus, plays an important role in the endocrine stress response. The excitability of CRH neurons is regulated by γ-aminobutyric acid (GABA)–containing neurons projecting to the PVN. We investigated the role of GABA in the regulation of CRH release. The release of CRH was impaired, accumulating in the cell bodies of CRH neurons in heterozygous GAD67-GFP (green fluorescent protein) knock-in mice (GAD67+/GFP), which exhibited decreased GABA content. The GABAA receptor (GABAAR) and the Na+-K+-2Cl− cotransporter (NKCC1), but not the K+-Cl− cotransporter (KCC2), were expressed in the terminals of the CRH neurons at the median eminence (ME). In contrast, CRH neuronal somata were enriched with KCC2 but not with NKCC1. Thus, intracellular Cl− concentrations ([Cl−]i) may be increased at the terminals of CRH neurons compared with concentrations in the cell body. Moreover, GABAergic terminals projecting from the arcuate nucleus were present in close proximity to CRH-positive nerve terminals. Furthermore, a GABAAR agonist increased the intracellular calcium (Ca2+) levels in the CRH neuron terminals but decreased the Ca2+ levels in their somata. In addition, the increases in Ca2+ concentrations were prevented by an NKCC1 inhibitor. We propose a novel mechanism by which the excitatory action of GABA maintains a steady-state CRH release from axon terminals in the ME. PMID:27540587

  13. A novel GABA-mediated corticotropin-releasing hormone secretory mechanism in the median eminence.

    PubMed

    Kakizawa, Keisuke; Watanabe, Miho; Mutoh, Hiroki; Okawa, Yuta; Yamashita, Miho; Yanagawa, Yuchio; Itoi, Keiichi; Suda, Takafumi; Oki, Yutaka; Fukuda, Atsuo

    2016-08-01

    Corticotropin-releasing hormone (CRH), which is synthesized in the paraventricular nucleus (PVN) of the hypothalamus, plays an important role in the endocrine stress response. The excitability of CRH neurons is regulated by γ-aminobutyric acid (GABA)-containing neurons projecting to the PVN. We investigated the role of GABA in the regulation of CRH release. The release of CRH was impaired, accumulating in the cell bodies of CRH neurons in heterozygous GAD67-GFP (green fluorescent protein) knock-in mice (GAD67(+/GFP)), which exhibited decreased GABA content. The GABAA receptor (GABAAR) and the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1), but not the K(+)-Cl(-) cotransporter (KCC2), were expressed in the terminals of the CRH neurons at the median eminence (ME). In contrast, CRH neuronal somata were enriched with KCC2 but not with NKCC1. Thus, intracellular Cl(-) concentrations ([Cl(-)]i) may be increased at the terminals of CRH neurons compared with concentrations in the cell body. Moreover, GABAergic terminals projecting from the arcuate nucleus were present in close proximity to CRH-positive nerve terminals. Furthermore, a GABAAR agonist increased the intracellular calcium (Ca(2+)) levels in the CRH neuron terminals but decreased the Ca(2+) levels in their somata. In addition, the increases in Ca(2+) concentrations were prevented by an NKCC1 inhibitor. We propose a novel mechanism by which the excitatory action of GABA maintains a steady-state CRH release from axon terminals in the ME. PMID:27540587

  14. Striatal cholinergic interneurons drive GABA release from dopamine terminals

    PubMed Central

    Nelson, Alexandra B.; Hammack, Nora; Yang, Cindy F.; Shah, Nirao M.; Seal, Rebecca P.; Kreitzer, Anatol C.

    2014-01-01

    Summary Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Using optogenetics and whole-cell recordings in brain slices, we find that a large component of these inhibitory responses derive from action-potential-independent disynaptic neurotransmission mediated by nicotinic receptors. Cholinergically-driven IPSCs were not affected by ablation of striatal fast-spiking interneurons, but were greatly reduced after acute treatment with vesicular monoamine transport inhibitors or selective destruction of dopamine terminals with 6-hydroxydopamine, indicating that GABA release originated from dopamine terminals. These results delineate a mechanism in which striatal cholinergic interneurons can co-opt dopamine terminals to drive GABA release and rapidly inhibit striatal output neurons. PMID:24613418

  15. Single rodent mesohabenular axons release glutamate and GABA

    PubMed Central

    Root, David H.; Mejias-Aponte, Carlos; Zhang, Shiliang; Wang, Huiling; Hoffman, Alexander F.; Lupica, Carl R.; Morales, Marisela

    2016-01-01

    The lateral habenula (LHb) is involved in reward, aversion, addiction, and depression, through descending interactions with several brain structures, including the ventral tegmental area (VTA). VTA provides reciprocal inputs to LHb, but their actions are unclear. Here we show that the majority of rat and mouse VTA neurons innervating LHb co-express markers for both glutamate-signaling (vesicular glutamate transporter 2, VGluT2) and GABA-signaling (glutamate decarboxylase, GAD; and vesicular GABA transporter, VGaT). A single axon from these mesohabenular neurons co-expresses VGluT2-protein and VGaT-protein, and surprisingly establishes symmetric and asymmetric synapses on LHb neurons. In LHb slices, light activation of mesohabenular fibers expressing channelrhodopsin-2 (ChR2) driven by VGluT2 or VGaT promoters elicits release of both glutamate and GABA onto single LHb neurons. In vivo light-activation of mesohabenular terminals inhibits or excites LHb neurons. Our findings reveal an unanticipated type of VTA neuron that co-transmits glutamate and GABA, and provides the majority of mesohabenular inputs. PMID:25242304

  16. GABA as a rising gliotransmitter

    PubMed Central

    Yoon, Bo-Eun; Lee, C. Justin

    2014-01-01

    Gamma-amino butyric acid (GABA) is the major inhibitory neurotransmitter that is known to be synthesized and released from GABAergic neurons in the brain. However, recent studies have shown that not only neurons but also astrocytes contain a considerable amount of GABA that can be released and activate GABA receptors in neighboring neurons. These exciting new findings for glial GABA raise further interesting questions about the source of GABA, its mechanism of release and regulation and the functional role of glial GABA. In this review, we highlight recent studies that identify the presence and release of GABA in glial cells, we show several proposed potential pathways for accumulation and modulation of glial intracellular and extracellular GABA content, and finally we discuss functional roles for glial GABA in the brain. PMID:25565970

  17. Neocortical GABA release at high intracellular sodium and low extracellular calcium: an anti-seizure mechanism.

    PubMed

    Rassner, Michael P; Moser, Andreas; Follo, Marie; Joseph, Kevin; van Velthoven-Wurster, Vera; Feuerstein, Thomas J

    2016-04-01

    In epilepsy, the GABA and glutamate balance may be disrupted and a transient decrease in extracellular calcium occurs before and during a seizure. Flow Cytometry based fluorescence activated particle sorting experiments quantified synaptosomes from human neocortical tissue, from both epileptic and non-epileptic patients (27.7% vs. 36.9% GABAergic synaptosomes, respectively). Transporter-mediated release of GABA in human and rat neocortical synaptosomes was measured using the superfusion technique for the measurement of endogenous GABA. GABA release was evoked by either a sodium channel activator or a sodium/potassium-ATPase inhibitor when exocytosis was possible or prevented, and when the sodium/calcium exchanger was active or inhibited. The transporter-mediated release of GABA is because of elevated intracellular sodium. A reduction in the extracellular calcium increased this release (in both non-epileptic and epileptic, except Rasmussen encephalitis, synaptosomes). The inverse was seen during calcium doubling. In humans, GABA release was not affected by exocytosis inhibition, that is, it was solely transporter-mediated. However, in rat synaptosomes, an increase in GABA release at zero calcium was only exhibited when the exocytosis was prevented. The absence of calcium amplified the sodium/calcium exchanger activity, leading to elevated intracellular sodium, which, together with the stimulation-evoked intracellular sodium increment, enhanced GABA transporter reversal. Sodium/calcium exchange inhibitors diminished GABA release. Thus, an important seizure-induced extracellular calcium reduction might trigger a transporter- and sodium/calcium exchanger-related anti-seizure mechanism by augmenting transporter-mediated GABA release, a mechanism absent in rats. Uniquely, the additional increase in GABA release because of calcium-withdrawal dwindled during the course of illness in Rasmussen encephalitis. Seizures cause high Na(+) influx through action potentials. A

  18. Acute Immobilization Stress Modulate GABA Release from Rat Olfactory Bulb: Involvement of Endocannabinoids—Cannabinoids and Acute Stress Modulate GABA Release

    PubMed Central

    Delgado, Alejandra; Jaffé, Erica H.

    2011-01-01

    We studied the effects of cannabinoids and acute immobilization stress on the regulation of GABA release in the olfactory bulb. Glutamate-stimulated 3H-GABA release was measured in superfused slices. We report that cannabinoids as WIN55, 212-2, methanandamide, and 2-arachidonoylglycerol were able to inhibit glutamate- and KCl-stimulated 3H-GABA release. This effect was blocked by the CB1 antagonist AM281. On the other hand, acute stress was able per se to increase endocannabinoid activity. This effect was evident since the inhibition of stimulated GABA release by acute stress was reversed with AM281 and tetrahydrolipstatin. Inhibition of the endocannabinoid transport or its catabolism showed reduction of GABA release, antagonized by AM281 in control and stressed animals. These results point to endocannabinoids as inhibitory modulators of GABA release in the olfactory bulb acting through an autocrine mechanism. Apparently, stress increases the endocannabinoid system, modulating GABAergic synaptic function in a primary sensory organ. PMID:21785597

  19. Allosteric modulation of retinal GABA receptors by ascorbic acid

    PubMed Central

    Calero, Cecilia I.; Vickers, Evan; Moraga Cid, Gustavo; Aguayo, Luis G.; von Gersdorff, Henrique; Calvo, Daniel J.

    2011-01-01

    Summary Ionotropic γ-aminobutyric acid receptors (GABAA and GABAC) belong to the cys-loop receptor family of ligand-gated ion channels. GABAC receptors are highly expressed in the retina, mainly localized at the axon terminals of bipolar cells. Ascorbic acid, an endogenous redox agent, modulates the function of diverse proteins, and basal levels of ascorbic acid in the retina are very high. However, the effect of ascorbic acid on retinal GABA receptors has not been studied. Here we show that the function of GABAC and GABAA receptors is regulated by ascorbic acid. Patch-clamp recordings from bipolar cell terminals in goldfish retinal slices revealed that GABAC receptor-mediated currents activated by tonic background levels of extracellular GABA, and GABAC currents elicited by local GABA puffs, are both significantly enhanced by ascorbic acid. In addition, a significant rundown of GABA-puff evoked currents was observed in the absence of ascorbic acid. GABA-evoked Cl- currents mediated by homomeric ρ1 GABAC receptors expressed in Xenopus laevis oocytes were also potentiated by ascorbic acid in a concentration-dependent, stereospecific, reversible, and voltage-independent manner. Studies involving the chemical modification of sulfhydryl groups showed that the two cys-loop cysteines and histidine 141, all located in the ρ1 subunit extracellular domain, each play a key role in the modulation of GABAC receptors by ascorbic acid. Additionally, we show that retinal GABAA IPSCs and heterologously expressed GABAA receptor currents are similarly augmented by ascorbic acid. Our results suggest that ascorbic acid may act as an endogenous agent capable of potentiating GABAergic neurotransmission in the CNS. PMID:21715633

  20. Regulation of GABA-modulin phosphorylation and GABA receptor binding by excitatory amino acids

    SciTech Connect

    Vaccarino, F.; Guidotti, A.

    1987-05-01

    Primary cultures of cerebellar granule cells phosphorylate numerous proteins including GABA-modulin (GM), which is a putative allosteric modulator of GABA receptors. Cell depolarization and treatment with dicarboxylic excitatory amino acids, which activate PI turnover, Ca/sup 2 +/ influx and guanylate cyclase in granule cells increase the phosphorylation of specific proteins. To determine GM phosphorylation by endogenous protein kinases in living granule cell cultures, GM was isolated by immunoprecipitation and reverse-phase HPLC. High K/sup +/, veratridine, glutamate and NMDA treatment stimulated GM phosphorylation over 2-fold. This increase was abolished by the absence of extracellular Ca/sup 2 +/ and was antagonized by Mg/sup 2 +/ ions and by AVP. The excitatory amino acid action was mimicked by phorbol esters but not by forskolin or by cGMP, and thus may be mediated by an activation of protein kinase C (PKC). Moreover, excitatory amino acids increase /sup 3/H-labelled phorbol ester binding sites in granule cell membrane. The same cultures, treated with glutamate or kainate, showed a 50-fold greater efficacy of muscimol for the stimulation of benzodiazepine (BZ) binding. These data-suggest that excitatory amino acid stimulation of neurons triggers PKC translocation and the activated enzyme phosphorylates GM. The extent of GM phosphorylation may regulate the coupling between GABA and BZ binding sites.

  1. Modulation of GABA-augmented norepinephrine release in female rat brain slices by opioids and adenosine.

    PubMed

    Fiber, J M; Etgen, A M

    2001-07-01

    GABAA receptor activation augments electrically-stimulated release of norepinephrine (NE) from rat brain slices. Because this effect is not observed in synaptoneurosomes, GABA probably acts on inhibitory interneurons to disinhibit NE release. To determine whether opioids or adenosine influence GABA-augmented NE release, hypothalamic and cortical slices from female rats were superfused with GABA or vehicle in the presence and absence of 10 microM morphine or 100 microM adenosine. GABA augments [3H]NE release in the cortex and hypothalamus. Morphine alone has no effect on [3H]NE release, but attenuates GABA augmentation of [3H]NE release in both brain regions. Adenosine alone modestly inhibits [3H]NE release in the cortex, but not in the hypothalamus. Adenosine inhibits GABA-augmented [3H]NE release in both brain regions. The general protein kinase inhibitor H-7, augments [3H]NE release in both brain regions and may have additive effects with GABA in cortical slices. These results implicate opioid and adenosine interneurons and possibly protein kinases in regulating GABAergic influences on NE transmission. PMID:11565619

  2. Co-release of acetylcholine and gamma-aminobutyric acid by a retinal neuron

    SciTech Connect

    O'Malley, D.M.; Masland, R.H.

    1989-05-01

    Rabbit retinas were vitally stained with 4',6-diamidino-2-phenylindole (DAPI), a fluorescent compound that selectively accumulates within the cholinergic amacrine cells. The retinas were then incubated in vitro in the presence of radioactive gamma-aminobutyric acid (GABA) and autoradiographed. The cells that accumulated DAPI were found to accumulate GABA, confirming immunohistochemical evidence that the cholinergic amacrine cells contain GABA. Incubation of retinas in the presence of elevated concentrations of K+ caused them to release acetylcholine and GABA, and autoradiography showed depletion of radioactive GABA from the cholinergic amacrine cells. This indicates that the cholinergic amacrine cells can secrete acetylcholine and GABA. Retinas were double-labeled with (14C)GABA and (3H)acetylcholine, allowing simultaneous measurement of their release. The release of (14C)GABA was found to be independent of extracellular Ca2+. Radioactive GABA synthesized endogenously from (14C)glutamate behaved the same way as radioactive GABA accumulated from the medium. In the same experiments the simultaneously measured release of (3H)acetylcholine was strongly Ca2+-dependent, indicating that the releases of acetylcholine and GABA are controlled by different mechanisms. Synaptic vesicles immunologically isolated from double-labeled retinas contained much (3H)acetylcholine and little or no (14C)GABA. These results suggest that the cholinergic amacrine cells release acetylcholine primarily by vesicle exocytosis and release GABA primarily by means of a carrier.

  3. GABA release in the medial preoptic area of cyclic female rats.

    PubMed

    Mitsushima, D; Shwe, T-T-W; Funabashi, T; Shinohara, K; Kimura, F

    2002-01-01

    GABA is a potent regulator of gonadotropin-releasing hormone neurons in the hypothalamus. To determine the profile of GABA release in the medial preoptic area where the gonadotropin surge generator resides, an in vivo microdialysis study was performed in cyclic female rats. The microdialysis samples were collected and sequential blood samples (150 microl each) were also obtained, at 1-h intervals. During estrus and diestrus 1, GABA release in the medial preoptic area was relatively low. A small increase in the GABA release began in the afternoon of diestrus 1 and attained its peak in the morning of diestrus 2, but declined in the afternoon of that day. The GABA release markedly increased from late in the night of diestrus 2 through the morning of proestrus, when it attained its peak, and thereafter it declined sharply until the critical period of proestrus. A distinct preovulatory luteinizing hormone surge was observed in the afternoon of proestrus in all proestrous rats. From these results we suggest that the preovulatory elevation of the GABA release from the night through to the morning of proestrus, followed by a sharp decline, is closely associated with the onset of the preovulatory luteinizing hormone surge in cyclic female rats. The present study is the first to report the 4-day profile of GABA release in the medial preoptic area during the estrous cycle. PMID:12123689

  4. SYSTEMIC ADMINISTRATION OF KAINIC ACID INCREASES GABA LEVELS IN PERFUSATE FROM THE HIPPOCAMPUS OF RATS IN VIVO

    EPA Science Inventory

    The ventral hippocampi of male, Fischer-344 rats were implanted with microdialysis probes and the effects of systemically administered kainic acid (KA) (8 mg/kg, s.c.) on the in vivo release of amino acids were measured for four hours after administration. n order to measure GABA...

  5. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment

    PubMed Central

    Shabel, Steven J.; Proulx, Christophe D.; Piriz, Joaquin; Malinow, Roberto

    2015-01-01

    The lateral habenula (LHb), a key regulator of monoaminergic brain regions, is activated by negatively-valenced events. Its hyperactivity is associated with depression. While enhanced excitatory input to the LHb has been linked to depression, little is known about inhibitory transmission. We discovered that GABA is co-released with its functional opponent, glutamate, from long-range basal ganglia inputs (which signal negative events) to limit LHb activity in rodents. At this synapse, the balance of GABA/glutamate signaling is shifted towards reduced GABA in a model of depression and increased GABA by antidepressant treatment. GABA and glutamate co-release therefore controls LHb activity, and regulation of this remarkable form of transmission may be important for determining the impact of negative life events on mood and behavior. PMID:25237099

  6. Production of gaba (γ – Aminobutyric acid) by microorganisms: a review

    PubMed Central

    Dhakal, Radhika; Bajpai, Vivek K.; Baek, Kwang-Hyun

    2012-01-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods. PMID:24031948

  7. Competing pathways in the photo-Favorskii rearrangement and release of esters: Studies on fluorinated p-hydroxyphenacyl GABA and glutamate phototriggers

    PubMed Central

    Stensrud, Kenneth; Noh, Jihyun; Kandler, Karl; Wirz, Jakob; Heger, Dominik

    2012-01-01

    Three new trifluoromethylated p-hydroxyphenacyl (pHP) caged γ-aminobutyric acid (GABA) and glutamate (Glu) derivatives have been examined for their efficacy as photoremovable protecting groups in aqueous solution. By replacing hydrogen with fluorine, e.g., a m-trifluoromethyl or a m-trifluoromethoxy vs. m-methoxy substituents on the pHP chromophore, modest increases in the quantum yields for release of the amino acids GABA and glutamate were realized as well as improved lipophilicity. The pHP triplet undergoes a photo-Favorskii rearrangement with concomitant release of the amino acid substrate. Deprotonation competes with the rearrangement from the triplet excited state and yields the pHP conjugate base that, upon reprotonation, regenerate the starting ketoester, a chemically unproductive or “energy wasting” process. Employing picosecond pump–probe spectroscopy, GABA derivatives 2 – 5 are characterized by short triplet lifetimes, a manifestation of their rapid release of GABA. The bioavailability of released GABA at the GABAA receptor improved when the release took place from m-OCF3 (2) but decreased for m-CF3 (3) when compared with the parent pHP derivative. These studies demonstrate that pKa and lipophilicity exert significant but sometimes opposing influences on the photochemistry and biological activity of pHP phototriggers. PMID:19572582

  8. Co-Localization of GABA Shunt Enzymes for the Efficient Production of Gamma-Aminobutyric Acid via GABA Shunt Pathway in Escherichia coli.

    PubMed

    Pham, Van Dung; Somasundaram, Sivachandiran; Park, Si Jae; Lee, Seung Hwan; Hong, Soon Ho

    2016-04-28

    Gamma-aminobutyric acid (GABA) is a non-protein amino acid, which is an important inhibitor of neurotransmission in the human brain. GABA is also used as the precursor of biopolymer Nylon-4 production. In this study, the carbon flux from the tricarboxylic acid cycle was directed to the GABA shunt pathway for the production of GABA from glucose. The GABA shunt enzymes succinate-semialdehyde dehydrogenase (GabD) and GABA aminotransferase (GabT) were co-localized along with the GABA transporter (GadC) by using a synthetic scaffold complex. The co-localized enzyme scaffold complex produced 0.71 g/l of GABA from 10 g/l of glucose. Inactivation of competing metabolic pathways in mutant E. coli strains XBM1 and XBM6 increased GABA production 13% to reach 0.80 g/l GABA by the enzymes co-localized and expressed in the mutant strains. The recombinant E. coli system developed in this study demonstrated the possibility of the pathway of the GABA shunt as a novel GABA production pathway. PMID:26838342

  9. Synthesis and Proton NMR Spectroscopy of Intra-Vesicular Gamma-Aminobutyric Acid (GABA)*

    PubMed Central

    Wang, Luke Y.-J.; Tong, Rong; Kohane, Daniel S.

    2014-01-01

    We report the synthesis of vesicles containing gamma-aminobutyric acid (GABA), and their proton nuclear magnetic resonance (1H NMR) spectra. These vesicles were constructed to more closely mimic the intracellular environment wherein GABA exists. For this study, these GABA-containing vesicles were examined under 1H NMR as a potential platform for future studies on the differences between aqueous phantoms, ex vivo brain extracts, and in vivo magnetic resonance spectroscopy results. We found that intra-vesicular GABA faithfully yielded the chemical shifts and J-coupling constants of free aqueous GABA, alongside the chemical shift signals of the vesicle wall. PMID:24109882

  10. Distinct modes of dopamine and GABA release in a dual transmitter neuron

    PubMed Central

    Borisovska, Maria; Bensen, AeSoon; Chong, Gene; Westbrook, Gary L.

    2013-01-01

    We now know of a surprising number of cases where single neurons contain multiple neurotransmitters. Neurons that contain a fast-acting neurotransmitter such as glutamate or GABA, and a modulatory transmitter such as dopamine are a particularly interesting case because they presumably serve dual signaling functions. The olfactory bulb contains a large population of GABA and dopamine-containing neurons, which have been implicated in normal olfaction as well as in Parkinson’s disease. Yet, they have been classified as non-exocytotic catecholamine neurons because of the apparent lack of vesicular monoamine transporters. Thus we examined how dopamine is stored and released from tyrosine-hydroxylase-positive-GFP (TH+-GFP) mouse periglomerular neurons in vitro. TH+ cells expressed both VMAT2 and VGAT, consistent with vesicular storage of both dopamine and GABA. Carbon fiber amperometry revealed that release of dopamine was quantal and calcium-dependent, but quantal size was much less than expected for large dense core vesicles, suggesting that release originated from EM-identified small clear vesicles. A single action potential in a TH+ neuron evoked a brief GABA synaptic current whereas evoked dopamine release was asynchronous, lasting for tens of seconds. Our data suggests that dopamine and GABA serve temporally distinct roles in these dual transmitter neurons. PMID:23365218

  11. Multiple Forms of Endocannabinoid and Endovanilloid Signaling Regulate the Tonic Control of GABA Release

    PubMed Central

    Lee, Sang-Hun; Ledri, Marco; Tóth, Blanka; Marchionni, Ivan; Henstridge, Christopher M.; Dudok, Barna; Kenesei, Kata; Barna, László; Szabó, Szilárd I.; Renkecz, Tibor; Oberoi, Michelle; Watanabe, Masahiko; Limoli, Charles L.; Horvai, George; Soltesz, Ivan

    2015-01-01

    Persistent CB1 cannabinoid receptor activity limits neurotransmitter release at various synapses throughout the brain. However, it is not fully understood how constitutively active CB1 receptors, tonic endocannabinoid signaling, and its regulation by multiple serine hydrolases contribute to the synapse-specific calibration of neurotransmitter release probability. To address this question at perisomatic and dendritic GABAergic synapses in the mouse hippocampus, we used a combination of paired whole-cell patch-clamp recording, liquid chromatography/tandem mass spectrometry, stochastic optical reconstruction microscopy super-resolution imaging, and immunogold electron microscopy. Unexpectedly, application of the CB1 antagonist and inverse agonist AM251 [N-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide], but not the neutral antagonist NESS0327 [8-chloro-1-(2,4-dichlorophenyl)-N-piperidin-1-yl-5,6-dihydro-4H-benzo[2,3]cyclohepta[2,4-b]pyrazole-3-carboxamine], significantly increased synaptic transmission between CB1-positive perisomatic interneurons and CA1 pyramidal neurons. JZL184 (4-nitrophenyl 4-[bis(1,3-benzodioxol-5-yl)(hydroxy)methyl]piperidine-1-carboxylate), a selective inhibitor of monoacylglycerol lipase (MGL), the presynaptic degrading enzyme of the endocannabinoid 2-arachidonoylglycerol (2-AG), elicited a robust increase in 2-AG levels and concomitantly decreased GABAergic transmission. In contrast, inhibition of fatty acid amide hydrolase (FAAH) by PF3845 (N-pyridin-3-yl-4-[[3-[5-(trifluoromethyl)pyridin-2-yl]oxyphenyl]methyl]piperidine-1-carboxamide) elevated endocannabinoid/endovanilloid anandamide levels but did not change GABAergic synaptic activity. However, FAAH inhibitors attenuated tonic 2-AG increase and also decreased its synaptic effects. This antagonistic interaction required the activation of the transient receptor potential vanilloid receptor TRPV1, which was concentrated on postsynaptic

  12. An analysis of [3H]gamma-aminobutyric acid (GABA) binding in the human brain.

    PubMed

    Lloyd, K G; Dreksler, S

    1979-03-01

    The binding of [3H]GABA to membranes prepared from human brains obtained post morten was examined. This binding was independent of patient sex, age (16--80 years), postmortem interval (4--33 h) or storage time when frozen (0-64 months). In preparations from cerebellar cortex various compounds displaced [3H]GABA binding with the following order of potency: muscimol greater than 3-aminopropanesulfonic acid greater than GABA greater than imidazoleacet acid greater than delta-amino-n-valeric acid greater than 3-hydroxyGABA greater than bicuculline. Other compounds active 'in vitro' included strychnine, homocarnosine and some (e.g. clozapine, thioridazine, pimozide) but not all (chlorpromazine, haloperiodol) neuroleptics. Compounds inactive 'in vitro' included aminooxyacetic acid, baclofen, picrotoxin, anticholinergics, metrazole, anticonvulsants and naloxone. Triton X-100 augmented the [3H]GABA binding (25 nM) by about 10--20-fold in most brain regions. [3H]GABA binding (IC50) was altered in Huntington's chorea and Reye's syndrome, but not in schizophrenics (4-neuroleptic-treated patients) or sudden infant death syndrome. The data presented strongly support the proposal that the measurement of [3H]GABA binding in postmortem human brain offers a reflection of the state of the physiologically relevant GABA receptor. PMID:218679

  13. HSF1 transcriptional activity mediates alcohol induction of Vamp2 expression and GABA release.

    PubMed

    Varodayan, Florence P; Harrison, Neil L

    2013-01-01

    Many central synapses are highly sensitive to alcohol, and it is now accepted that short-term alterations in synaptic function may lead to longer-term changes in circuit function. The regulation of postsynaptic receptors by alcohol has been well studied, but the mechanisms underlying the effects of alcohol on the presynaptic terminal are relatively unexplored. To identify a pathway by which alcohol regulates neurotransmitter release, we recently investigated the mechanism by which ethanol induces Vamp2, but not Vamp1, in mouse primary cortical cultures. These two genes encode isoforms of synaptobrevin, a vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein required for synaptic vesicle fusion. We found that alcohol activates the transcription factor heat shock factor 1 (HSF1) to induce Vamp2 expression, while Vamp1 mRNA levels remain unaffected. As the Vamp2 gene encodes a SNARE protein, we then investigated whether ethanol exposure and HSF1 transcriptional activity alter neurotransmitter release using electrophysiology. We found that alcohol increased the frequency of γ-aminobutyric acid (GABA)-mediated miniature IPSCs via HSF1, but had no effect on mEPSCs. Overall, these data indicate that alcohol induces HSF1 transcriptional activity to trigger a specific coordinated adaptation in GABAergic presynaptic terminals. This mechanism could explain some of the changes in synaptic function that occur soon after alcohol exposure, and may underlie some of the more enduring effects of chronic alcohol intake on local circuit function. PMID:24376402

  14. HSF1 transcriptional activity mediates alcohol induction of Vamp2 expression and GABA release

    PubMed Central

    Varodayan, Florence P.; Harrison, Neil L.

    2013-01-01

    Many central synapses are highly sensitive to alcohol, and it is now accepted that short-term alterations in synaptic function may lead to longer-term changes in circuit function. The regulation of postsynaptic receptors by alcohol has been well studied, but the mechanisms underlying the effects of alcohol on the presynaptic terminal are relatively unexplored. To identify a pathway by which alcohol regulates neurotransmitter release, we recently investigated the mechanism by which ethanol induces Vamp2, but not Vamp1, in mouse primary cortical cultures. These two genes encode isoforms of synaptobrevin, a vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein required for synaptic vesicle fusion. We found that alcohol activates the transcription factor heat shock factor 1 (HSF1) to induce Vamp2 expression, while Vamp1 mRNA levels remain unaffected. As the Vamp2 gene encodes a SNARE protein, we then investigated whether ethanol exposure and HSF1 transcriptional activity alter neurotransmitter release using electrophysiology. We found that alcohol increased the frequency of γ-aminobutyric acid (GABA)-mediated miniature IPSCs via HSF1, but had no effect on mEPSCs. Overall, these data indicate that alcohol induces HSF1 transcriptional activity to trigger a specific coordinated adaptation in GABAergic presynaptic terminals. This mechanism could explain some of the changes in synaptic function that occur soon after alcohol exposure, and may underlie some of the more enduring effects of chronic alcohol intake on local circuit function. PMID:24376402

  15. Serotonin-2C Receptor Agonists Decrease Potassium-Stimulated GABA Release In the Nucleus Accumbens

    PubMed Central

    Kasper, James M; Booth, Raymond G; Peris, Joanna

    2014-01-01

    The serotonin 5-HT2C receptor has shown promise in vivo as a pharmacotherapeutic target for alcoholism. For example, recently, a novel 4-phenyl-2-N,N-dimethylaminotetralin (PAT) drug candidate, that demonstrates 5-HT2C receptor agonist activity together with 5-HT2A/2B receptor inverse agonist activity, was shown to reduce operant responding for ethanol after peripheral administration to rats. Previous studies have shown that the 5-HT2C receptor is found throughout the mesoaccumbens pathway and that 5-HT2C receptor agonism causes activation of ventral tegmental area (VTA) GABA neurons. It is unknown what effect 5-HT2C receptor modulation has on GABA release in the nucleus accumbens core (NAcc). To this end, microdialysis coupled to capillary electrophoresis with laser-induced fluorescence was used to quantify extracellular neurotransmitter concentrations in the NAcc under basal and after potassium stimulation conditions, in response to PAT analogs and other 5-HT2C receptor modulators administered by reverse dialysis to rats. 5-HT2C receptor agonists specifically attenuated stimulated GABA release in the NAcc while 5-HT2C antagonists or inverse agonists had no effect. Agents with activity at 5-HT2A receptors had no effect on GABA release. Thus, in contrast to results reported for the VTA, current results suggest 5-HT2C receptor agonists decrease stimulated GABA release in the NAcc, and provide a possible mechanism of action for 5HT2C-mediated negative modulation of ethanol self-administration. PMID:25382408

  16. A functional role for both γ-aminobutyric acid (GABA) transporter-1 and GABA transporter-3 in the modulation of extracellular GABA and GABAergic tonic conductances in the rat hippocampus

    PubMed Central

    Kersanté, Flavie; Rowley, Samuel C S; Pavlov, Ivan; Gutièrrez-Mecinas, María; Semyanov, Alexey; Reul, Johannes M H M; Walker, Matthew C; Linthorst, Astrid C E

    2013-01-01

    Tonic γ-aminobutyric acid (GABA)A receptor-mediated signalling controls neuronal network excitability in the hippocampus. Although the extracellular concentration of GABA (e[GABA]) is critical in determining tonic conductances, knowledge on how e[GABA] is regulated by different GABA transporters (GATs) in vivo is limited. Therefore, we studied the role of GATs in the regulation of hippocampal e[GABA] using in vivo microdialysis in freely moving rats. Here we show that GAT-1, which is predominantly presynaptically located, is the major GABA transporter under baseline, quiescent conditions. Furthermore, a significant contribution of GAT-3 in regulating e[GABA] was revealed by administration of the GAT-3 inhibitor SNAP-5114 during simultaneous blockade of GAT-1 by NNC-711. Thus, the GABA transporting activity of GAT-3 (the expression of which is confined to astrocytes) is apparent under conditions in which GAT-1 is blocked. However, sustained neuronal activation by K+-induced depolarization caused a profound spillover of GABA into the extrasynaptic space and this increase in e[GABA] was significantly potentiated by sole blockade of GAT-3 (i.e. even when uptake of GAT-1 is intact). Furthermore, experiments using tetrodotoxin to block action potentials revealed that GAT-3 regulates extrasynaptic GABA levels from action potential-independent sources when GAT-1 is blocked. Importantly, changes in e[GABA] resulting from both GAT-1 and GAT-3 inhibition directly precipitate changes in tonic conductances in dentate granule cells as measured by whole-cell patch-clamp recording. Thus, astrocytic GAT-3 contributes to the regulation of e[GABA] in the hippocampus in vivo and may play an important role in controlling the excitability of hippocampal cells when network activity is increased. PMID:23381899

  17. A fluorescence-coupled assay for gamma aminobutyric acid (GABA) reveals metabolic stress-induced modulation of GABA content in neuroendocrine cancer.

    PubMed

    Ippolito, Joseph E; Piwnica-Worms, David

    2014-01-01

    Pathways involved in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA) have been implicated in the pathogenesis of high grade neuroendocrine (NE) neoplasms as well as neoplasms from a non-NE lineage. Using The Cancer Genome Atlas, overexpression of the GABA synthetic enzyme, glutamate decarboxylase 1 (GAD1), was found to be associated with decreased disease free-survival in prostate adenocarcinoma and decreased overall survival in clear cell renal cell carcinomas. Furthermore, GAD1 was found to be expressed in castrate-resistant prostate cancer cell lines, but not androgen-responsive cell lines. Using a novel fluorescence-coupled enzymatic microplate assay for GABA mediated through reduction of resazurin in a prostate neuroendocrine carcinoma (PNEC) cell line, acid microenvironment-induced stress increased GABA levels while alkaline microenvironment-induced stress decreased GABA through modulation of GAD1 and glutamine synthetase (GLUL) activities. Moreover, glutamine but not glucose deprivation decreased GABA through modulation of GLUL. Consistent with evidence in prokaryotic and eukaryotic organisms that GABA synthesis mediated through GAD1 may play a crucial role in surviving stress, GABA may be an important mediator of stress survival in neoplasms. These findings identify GABA synthesis and metabolism as a potentially important pathway for regulating cancer cell stress response as well as a potential target for therapeutic strategies. PMID:24551133

  18. A tonoplast Glu/Asp/GABA exchanger that affects tomato fruit amino acid composition.

    PubMed

    Snowden, Christopher J; Thomas, Benjamin; Baxter, Charles J; Smith, J Andrew C; Sweetlove, Lee J

    2015-03-01

    Vacuolar accumulation of acidic metabolites is an important aspect of tomato fruit flavour and nutritional quality. The amino acids Asp and Glu accumulate to high concentrations during ripening, while γ-aminobutyrate (GABA) shows an approximately stoichiometric decline. Given that GABA can be catabolised to form Glu and subsequently Asp, and the requirement for the fruit to maintain osmotic homeostasis during ripening, we hypothesised the existence of a tonoplast transporter that exports GABA from the vacuole in exchange for import of either Asp or Glu. We show here that the tomato vacuolar membrane possesses such a transport property: transport of Glu across isolated tonoplast vesicle membranes was trans-stimulated in counterexchange mode by GABA, Glu and Asp. We identified SlCAT9 as a candidate protein for this exchanger using quantitative proteomics of a tonoplast-enriched membrane fraction. Transient expression of a SlCAT9-YFP fusion in tobacco confirmed a tonoplast localisation. The function of the protein was examined by overexpression of SlCAT9 in transgenic tomato plants. Tonoplast vesicles isolated from transgenic plants showed higher rates of Glu and GABA transport than wild-type (WT) only when assayed in counterexchange mode with Glu, Asp, or GABA. Moreover, there were substantial increases in the content of all three cognate amino acids in ripe fruit from the transgenic plants. We conclude that SlCAT9 is a tonoplast Glu/Asp/GABA exchanger that strongly influences the accumulation of these amino acids during fruit development. PMID:25602029

  19. Modulation of the release of norepinephrine by gamma-aminobutyric acid and morphine in the frontal cerebral cortex of the rat

    SciTech Connect

    Peoples, R.W.

    1989-01-01

    Agents that enhance gamma-aminobutyric acid, or GABA, neurotransmission modulate certain effects of opioids, such as analgesia. Opioid analgesia is mediated in part by norepinephrine in the forebrain. In this study, the interactions between morphine and GABAergic agents on release of ({sup 3}H) norepinephrine from rat frontal cerebral cortical slices were examined. GABA, 5 {times} 10{sup {minus}5}-10{sup {minus}3} M, enhanced potassium stimulated ({sup 3}H) norepinephrine release and reversed the inhibitory effect of morphine in a noncompetitive manner. GABA did not enhance release of ({sup 3}H) norepinephrine stimulated by the calcium ionophore A23187. The effect of GABA was reduced by the GABA{sub A} receptor antagonists bicuculline methiodide or picrotoxin, and by the selective inhibitor of GABA uptake SKF 89976A, but was blocked completely only when bicuculline methiodide and SKF 89976A were used in combination. The GABA{sub A} agonist muscimol, 10{sup {minus}4} M, mimicked the effect of GABA, but the GABA{sub B} agonist ({plus minus})baclofen, 10{sup {minus}4} M, did not affect the release of ({sup 3}H) norepinephrine in the absence or the presence of morphine. Thus GABA appears to produce this effect by stimulating GABA uptake and GABA{sub A}, but not GABA{sub B}, receptors. In contrast to the results that would be predicted for an event involving GABA{sub A} receptors, however, the effect of GABA did not desensitize, and benzodiazepine agonists did not enhance the effect of GABA at any concentration tested between 10{sup {minus}8} and 10{sup {minus}4} M. Thus these receptors may constitute a subclass of GABA{sub A} receptors. These results support a role of GABA uptake and GABA{sub A} receptors in enhancing the release of norepinephrine and modulating its inhibition by opioids in the frontal cortex of the rat.

  20. Reduction of Phosphorylated Synapsin I (Ser-553) Leads to Spatial Memory Impairment by Attenuating GABA Release after Microwave Exposure in Wistar Rats

    PubMed Central

    Qiao, Simo; Peng, Ruiyun; Yan, Haitao; Gao, Yabing; Wang, Changzhen; Wang, Shuiming; Zou, Yong; Xu, Xinping; Zhao, Li; Dong, Ji; Su, Zhentao; Feng, Xinxin; Wang, Lifeng; Hu, Xiangjun

    2014-01-01

    Background Abnormal release of neurotransmitters after microwave exposure can cause learning and memory deficits. This study investigated the mechanism of this effect by exploring the potential role of phosphorylated synapsin I (p-Syn I). Methods Wistar rats, rat hippocampal synaptosomes, and differentiated (neuronal) PC12 cells were exposed to microwave radiation for 5 min at a mean power density of 30 mW/cm2. Sham group rats, synaptosomes, and cells were otherwise identically treated and acted as controls for all of the following post-exposure analyses. Spatial learning and memory in rats was assessed using the Morris Water Maze (MWM) navigation task. The protein expression and presynaptic distribution of p-Syn I and neurotransmitter transporters were examined via western blotting and immunoelectron microscopy, respectively. Levels amino acid neurotransmitter release from rat hippocampal synaptosomes and PC12 cells were measured using high performance liquid chromatograph (HPLC) at 6 hours after exposure, with or without synapsin I silencing via shRNA transfection. Results In the rat experiments, there was a decrease in spatial memory performance after microwave exposure. The expression of p-Syn I (ser-553) was decreased at 3 days post-exposure and elevated at later time points. Vesicular GABA transporter (VGAT) was significantly elevated after exposure. The GABA release from synaptosomes was attenuated and p-Syn I (ser-553) and VGAT were both enriched in small clear synaptic vesicles, which abnormally assembled in the presynaptic terminal after exposure. In the PC12 cell experiments, the expression of p-Syn I (ser-553) and GABA release were both attenuated at 6 hours after exposure. Both microwave exposure and p-Syn I silencing reduced GABA release and maximal reduction was found for the combination of the two, indicating a synergetic effect. Conclusion p-Syn I (ser-553) was found to play a key role in the impaired GABA release and cognitive dysfunction that was

  1. Presynaptic GABAB Autoreceptor Regulation of Nicotinic Acetylcholine Receptor Mediated [3H]-GABA Release from Mouse Synaptosomes

    PubMed Central

    McClure-Begley, Tristan D.; Grady, Sharon R.; Marks, Michael J.; Collins, Allan C.; Stitzel, Jerry A.

    2014-01-01

    Activation of nicotinic acetylcholine receptors (nAChRs) can elicit neurotransmitter release from presynaptic nerve terminals. Mechanisms contributing to cell-and-terminal specific regulation of nAChR-mediated neurotransmitter exocytosis are not fully understood. The experiments discussed here examine how activation of GABAB auto- and hetero-receptors suppress nAChR-mediated release of [3H]-GABA and [3H]-dopamine (3H-DA) from mouse striatal synaptosomes. Activation of presynaptic GABAB receptors with (R)-baclofen decreased both [3H]-GABA and [3H]-DA release evoked by potassium depolarization. However, when nAChRs were activated with ACh to evoke neurotransmitter release, (R)-baclofen had no effect on [3H]-DA release, but potently inhibited ACh-evoked [3H]-GABA release. Inhibition of nAChR-evoked [3H]-GABA release by (R)-baclofen was time sensitive and the effect was lost after prolonged exposure to the GABAB agonist. The early inhibitory effect of GABA activation on ACh-evoked [3H]-GABA release was partially attenuated by antagonists of the phosphatase, calcineurin. Furthermore, antagonists of protein kinase C (PKC) prevented the time-dependent loss of the inhibitory (R)-baclofen effect on [3H]-GABA release. These results suggest that α4β2*-nAChRs present on GABAergic nerve terminals in the striatum are subject to functional regulation by GABAB autoreceptors that is apparently cell-type specific, since it is absent from DAergic striatal nerve terminals. In addition, the functional modulation of α4β2*-type nAChRs on striatal GABAergic nerve terminals by GABAB autoreceptor activation is time-sensitive and appears to involve opposing actions of calcineurin and PKC. PMID:24953818

  2. Contents of Neo-flavored Tea (GABA Kintaro) Containing γ-Aminobutyric Acid

    NASA Astrophysics Data System (ADS)

    Shiraki, Yoshiya

    The contents of γ-aminobutyric acid (GABA), catechins, theaflavins, caffeine and pheophorbide-a in neo-flavored tea (GABA Kintaro tea) were analyzed. 1)The amounts of GABA were increased over 1.5mg/g by means of infrared ray irradiation with agitation treatment. 2)There was a tendency for the amount of catechins to be decreased by this treatment, whereas the amount of theaflavins tended to increase with the same treatment. The composition of these contents in this GABA Kintaro tea was almost the same as that of black tea. 3)There was a tendency for the amount of caffeine to be decreased by this treatment. 4)There was a tendency for the amount of pheophorbide-a to be increased by this treatment. 5)The result of this study showed that the amounts of GABA and theaflavins in this GABA Kintaro tea were higher than ordinary green tea but contained few catechins.It became clear that the amount of pheophorbide-a in this GABA Kintaro tea was less than the standard value established in processed chlorella.

  3. γ-Aminobutyric acid (GABA) homeostasis regulates pollen germination and polarized growth in Picea wilsonii.

    PubMed

    Ling, Yu; Chen, Tong; Jing, Yanping; Fan, Lusheng; Wan, Yinglang; Lin, Jinxing

    2013-11-01

    γ-Aminobutyric acid (GABA) is a four-carbon non-protein amino acid found in a wide range of organisms. Recently, GABA accumulation has been shown to play a role in the stress response and cell growth in angiosperms. However, the effect of GABA deficiency on pollen tube development remains unclear. Here, we demonstrated that specific concentrations of exogenous GABA stimulated pollen tube growth in Picea wilsonii, while an overdose suppressed pollen tube elongation. The germination percentage of pollen grains and morphological variations in pollen tubes responded in a dose-dependent manner to treatment with 3-mercaptopropionic acid (3-MP), a glutamate decarboxylase inhibitor, while the inhibitory effects could be recovered in calcium-containing medium supplemented with GABA. Using immunofluorescence labeling, we found that the actin cables were disorganized in 3-MP treated cells, followed by the transition of endo/exocytosis activating sites from the apex to the whole tube shank. In addition, variations in the deposition of cell wall components were detected upon labeling with JIM5, JIM7, and aniline blue. Our results demonstrated that calcium-dependent GABA signaling regulates pollen germination and polarized tube growth in P. wilsonii by affecting actin filament patterns, vesicle trafficking, and the configuration and distribution of cell wall components. PMID:23900837

  4. Effects of traditionally used anxiolytic botanicals on enzymes of the gamma-aminobutyric acid (GABA) system.

    PubMed

    Awad, R; Levac, D; Cybulska, P; Merali, Z; Trudeau, V L; Arnason, J T

    2007-09-01

    In Canada, the use of botanical natural health products (NHPs) for anxiety disorders is on the rise, and a critical evaluation of their safety and efficacy is required. The purpose of this study was to determine whether commercially available botanicals directly affect the primary brain enzymes responsible for gamma-aminobutyric acid (GABA) metabolism. Anxiolytic plants may interact with either glutamic acid decarboxylase (GAD) or GABA transaminase (GABA-T) and ultimately influence brain GABA levels and neurotransmission. Two in vitro rat brain homogenate assays were developed to determine the inhibitory concentrations (IC50) of aqueous and ethanolic plant extracts. Approximately 70% of all extracts that were tested showed little or no inhibitory effect (IC50 values greater than 1 mg/mL) and are therefore unlikely to affect GABA metabolism as tested. The aqueous extract of Melissa officinalis (lemon balm) exhibited the greatest inhibition of GABA-T activity (IC50 = 0.35 mg/mL). Extracts from Centella asiatica (gotu kola) and Valeriana officinalis (valerian) stimulated GAD activity by over 40% at a dose of 1 mg/mL. On the other hand, both Matricaria recutita (German chamomile) and Humulus lupulus (hops) showed significant inhibition of GAD activity (0.11-0.65 mg/mL). Several of these species may therefore warrant further pharmacological investigation. The relation between enzyme activity and possible in vivo mode of action is discussed. PMID:18066140

  5. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera)

    PubMed Central

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-01-01

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis. PMID:27455877

  6. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera).

    PubMed

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-01-01

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis. PMID:27455877

  7. GABA, 5-HT and amino acids in the rotifers Brachionus plicatilis and Brachionus rotundiformis.

    PubMed

    Gallardo, W G; Hagiwara, A; Hara, K; Soyano, K; Snell, T W

    2000-11-01

    gamma-Aminobutyric acid (GABA) and 5-hydroxytryptamine (5-HT) have been shown to increase the reproduction of the Brachionus plicatilis (NH3L strain). In the present study, the endogenous presence of GABA and 5-HT in the rotifers B. plicatilis (NH3L and Kamiura strains) and Brachionus rotundiformis (Langkawi strain) were confirmed by dot blot immunoassay and high-performance liquid chromatography (HPLC). HPLC showed that GABA and 5-HT concentrations in the three rotifer strains range from 71 to 188 pmol/mg and from 12 to 64 pmol/mg, respectively. A total of 33 amino acids were also detected in B. plicatilis and B. rotundiformis, with glutamic acid, serine, glycine, taurine, threonine, alanine, arginine, proline, valine and isoleucine in high concentrations relative to other amino acids. PMID:11118940

  8. Presynaptic Kainate Receptor Activation Preserves Asynchronous GABA Release Despite the Reduction in Synchronous Release from Hippocampal CCK Interneurons

    PubMed Central

    Daw, Michael I.; Pelkey, Kenneth A.; Chittajallu, Ramesh; McBain, Chris J.

    2010-01-01

    Inhibitory synaptic transmission in the hippocampus in mediated by a wide variety of different interneuron classes which are assumed to play different roles in network activity. Activation of presynaptic kainate receptors (KARs) has been shown to reduce inhibitory transmission but the interneuron class(es) at which they act is only recently beginning to emerge. Using paired recordings we show that KAR activation causes a decrease in presynaptic release from CCK- but not PV-containing interneurons and that this decrease is observed when pyramidal cells, but not interneurons, are the postsynaptic target. We also show that although the synchronous release component is reduced, the barrage of asynchronous GABA release from CCK interneurons during sustained firing is unaffected by KAR activation. This indicates that presynaptic KARs preserve and act in concert with asynchronous release to switch CCK interneurons from a phasic inhibition mode to produce prolonged inhibition during periods of intense activity. PMID:20720128

  9. Neuronal gamma-aminobutyric acid (GABA) type A receptors undergo cognate ligand chaperoning in the endoplasmic reticulum by endogenous GABA

    PubMed Central

    Wang, Ping; Eshaq, Randa S.; Meshul, Charles K.; Moore, Cynthia; Hood, Rebecca L.; Leidenheimer, Nancy J.

    2015-01-01

    GABAA receptors mediate fast inhibitory neurotransmission in the brain. Dysfunction of these receptors is associated with various psychiatric/neurological disorders and drugs targeting this receptor are widely used therapeutic agents. Both the efficacy and plasticity of GABAA receptor-mediated neurotransmission depends on the number of surface GABAA receptors. An understudied aspect of receptor cell surface expression is the post-translational regulation of receptor biogenesis within the endoplasmic reticulum (ER). We have previously shown that exogenous GABA can act as a ligand chaperone of recombinant GABAA receptors in the early secretory pathway leading us to now investigate whether endogenous GABA facilitates the biogenesis of GABAA receptors in primary cerebral cortical cultures. In immunofluorescence labeling experiments, we have determined that neurons expressing surface GABAA receptors contain both GABA and its degradative enzyme GABA transaminase (GABA-T). Treatment of neurons with GABA-T inhibitors, a treatment known to increase intracellular GABA levels, decreases the interaction of the receptor with the ER quality control protein calnexin, concomittantly increasing receptor forward-trafficking and plasma membrane insertion. The effect of GABA-T inhibition on the receptor/calnexin interaction is not due to the activation of surface GABAA or GABAB receptors. Consistent with our hypothesis that GABA acts as a cognate ligand chaperone in the ER, immunogold-labeling of rodent brain slices reveals the presence of GABA within the rough ER. The density of this labeling is similar to that present in mitochondria, the organelle in which GABA is degraded. Lastly, the effect of GABA-T inhibition on the receptor/calnexin interaction was prevented by pretreatment with a GABA transporter inhibitor. Together, these data indicate that endogenous GABA acts in the rough ER as a cognate ligand chaperone to facilitate the biogenesis of neuronal GABAA receptors. PMID

  10. An arylaminopyridazine derivative of gamma-aminobutyric acid (GABA) is a selective and competitive antagonist at the GABAA receptor site.

    PubMed Central

    Chambon, J P; Feltz, P; Heaulme, M; Restle, S; Schlichter, R; Biziere, K; Wermuth, C G

    1985-01-01

    In view of finding a new gamma-aminobutyric acid (GABA) receptor ligand we synthesized an arylaminopyridazine derivative of GABA, SR 95103 [2-(carboxy-3'-propyl)-3-amino-4-methyl-6-phenylpyridazinium chloride]. SR 95103 displaced [3H]GABA from rat brain membranes with an apparent Ki of 2.2 microM and a Hill number near 1.0. SR 95103 (1-100 microM) antagonized the GABA-mediated enhancement of [3H]diazepam binding in a concentration-dependent manner without affecting [3H]diazepam binding per se. SR 95103 competitively antagonized GABA-induced membrane depolarization in rat spinal ganglia. In all these experiments, the potency of SR 95103 was close to that of bicuculline. SR 95103 (100 microM) did not interact with a variety of central receptors--in particular the GABAB, the strychnine, and the glutamate receptors--did not inhibit Na+-dependent synaptosomal GABA uptake, and did not affect GABA-transaminase and glutamic acid decarboxylase activities. Intraperitoneally administered SR 95103 elicited clonicotonic seizures in mice (ED50 = 180 mg/kg). On the basis of these results it is postulated that St 95103 is a competitive antagonist of GABA at the GABAA receptor site. In addition to being an interesting lead structure for the search of GABA ligands, SR 95103 could also be a useful tool to investigate GABA receptor subtypes because it is freely soluble in water and chemically stable. Images PMID:2984669

  11. Adenosine inhibition of gamma-aminobutyric acid release from slices of rat cerebral cortex.

    PubMed Central

    Hollins, C.; Stone, T. W.

    1980-01-01

    1 The effect of purine compounds on the potassium-evoked release of 14C-labelled gamma-aminobutyric acid (GABA) has been studied in 400 micrometers slices of rat cerebral cortex in vitro. 2 Adenosine and adenosine 5' monophosphate (AMP) inhibited the release of GABA at 10(-5) to 10(-3) M. Adenosine triphosphate (ATP) produced a significant inhibition of release only at 10(-3) M. 3 Theophylline 10(-4) or 10(-3) M reduced the inhibitory effect of adenosine, but did not change basal release of GABA. 4 Dipyridamole 10(-5) M itself reduced evoked GABA release, but did not prevent the inhibitory effect of adenosine, implying that adenosine was acting at an extracellularly directed receptor. 5 Calcium removal or antagonism by verapamil reduced the evoked release of GABA, but adenosine did not produce any further reduction of the calcium-independent release. This may indicate that the inhibitory effect of adenosine on GABA release results from interference with calcium influx or availability within the terminals. PMID:7378648

  12. GABA induces functionally active low-affinity GABA receptors on cultured cerebellar granule cells.

    PubMed

    Meier, E; Drejer, J; Schousboe, A

    1984-12-01

    The effect of gamma-aminobutyric acid (GABA) and its agonists muscimol and 4,5,6,7-tetrahydroisoxazolo[5-4-c]pyridin-3-ol (THIP) on the development of GABA receptors on cerebellar granule cells was studied by cultivation of the cells in media containing these substances. It was found that the presence of 50 microM GABA in the culture media led to the induction of low-affinity GABA receptors (KD 546 +/- 117 nM) in addition to the high-affinity receptors (KD 7 +/- 0.5 nM) which were present regardless of the presence of GABA in the culture media. The functional activity of the GABA receptors was tested by investigating the ability of GABA to modulate evoked glutamate release from the cells. It was found that GABA could inhibit evoked glutamate release (ED50 10 +/- 3 microM) only when the cells had been cultured in the presence of 50 microM GABA, 50 microM muscimol, or 150 microM THIP, i.e., under conditions where low-affinity GABA receptors were present on the cells. This inhibitory effect of GABA could be blocked by 120 microM bicuculline and mimicked by 50 microM muscimol or 150 microM THIP whereas 150 microM (-)-baclofen had no effect. It is concluded that GABA acting extracellularly induces formation of low-affinity receptors on cerebellar granule cells and that these receptors are necessary for mediating an inhibitory effect of GABA on evoked glutamate release. The pharmacological properties of these GABA receptors indicate that they belong to the so-called GABAA receptors. PMID:6149269

  13. γ-Aminobutyric acid (GABA) concentration inversely correlates with basal perfusion in human occipital lobe.

    PubMed

    Donahue, Manus J; Rane, Swati; Hussey, Erin; Mason, Emily; Pradhan, Subechhya; Waddell, Kevin W; Ally, Brandon A

    2014-03-01

    Commonly used neuroimaging approaches in humans exploit hemodynamic or metabolic indicators of brain function. However, fundamental gaps remain in our ability to relate such hemo-metabolic reactivity to neurotransmission, with recent reports providing paradoxical information regarding the relationship among basal perfusion, functional imaging contrast, and neurotransmission in awake humans. Here, sequential magnetic resonance spectroscopy (MRS) measurements of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA+macromolecules normalized by the complex N-acetyl aspartate-N-acetyl aspartyl glutamic acid: [GABA(+)]/[NAA-NAAG]), and magnetic resonance imaging (MRI) measurements of perfusion, fractional gray-matter volume, and arterial arrival time (AAT) are recorded in human visual cortex from a controlled cohort of young adult male volunteers with neurocognitive battery-confirmed comparable cognitive capacity (3 T; n=16; age=23±3 years). Regression analyses reveal an inverse correlation between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.46; P=0.037), yet no relationship between AAT and [GABA(+)]/[NAA-NAAG] (R=-0.12; P=0.33). Perfusion measurements that do not control for AAT variations reveal reduced correlations between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.13; P=0.32). These findings largely reconcile contradictory reports between perfusion and inhibitory tone, and underscore the physiologic origins of the growing literature relating functional imaging signals, hemodynamics, and neurotransmission. PMID:24398941

  14. Postsynaptic Depolarization Enhances GABA Drive to Dorsomedial Hypothalamic Neurons through Somatodendritic Cholecystokinin Release.

    PubMed

    Crosby, Karen M; Baimoukhametova, Dinara V; Bains, Jaideep S; Pittman, Quentin J

    2015-09-23

    Somatodendritically released peptides alter synaptic function through a variety of mechanisms, including autocrine actions that liberate retrograde transmitters. Cholecystokinin (CCK) is a neuropeptide expressed in neurons in the dorsomedial hypothalamic nucleus (DMH), a region implicated in satiety and stress. There are clear demonstrations that exogenous CCK modulates food intake and neuropeptide expression in the DMH, but there is no information on how endogenous CCK alters synaptic properties. Here, we provide the first report of somatodendritic release of CCK in the brain in male Sprague Dawley rats. CCK is released from DMH neurons in response to repeated postsynaptic depolarizations, and acts in an autocrine fashion on CCK2 receptors to enhance postsynaptic NMDA receptor function and liberate the retrograde transmitter, nitric oxide (NO). NO subsequently acts presynaptically to enhance GABA release through a soluble guanylate cyclase-mediated pathway. These data provide the first demonstration of synaptic actions of somatodendritically released CCK in the hypothalamus and reveal a new form of retrograde plasticity, depolarization-induced potentiation of inhibition. Significance statement: Somatodendritic signaling using endocannabinoids or nitric oxide to alter the efficacy of afferent transmission is well established. Despite early convincing evidence for somatodendritic release of neurohypophysial peptides in the hypothalamus, there is only limited evidence for this mode of release for other peptides. Here, we provide the first evidence for somatodendritic release of the satiety peptide cholecystokinin (CCK) in the brain. We also reveal a new form of synaptic plasticity in which postsynaptic depolarization results in enhancement of inhibition through the somatodendritic release of CCK. PMID:26400945

  15. Cloning of the gamma-aminobutyric acid (GABA) rho 1 cDNA: a GABA receptor subunit highly expressed in the retina.

    PubMed Central

    Cutting, G R; Lu, L; O'Hara, B F; Kasch, L M; Montrose-Rafizadeh, C; Donovan, D M; Shimada, S; Antonarakis, S E; Guggino, W B; Uhl, G R

    1991-01-01

    Type A gamma-aminobutyric acid (GABAA) receptors are a family of ligand-gated chloride channels that are the major inhibitory neurotransmitter receptors in the nervous system. Molecular cloning has revealed diversity in the subunits that compose this heterooligomeric receptor, but each previously elucidated subunit displays amino acid similarity in conserved structural elements. We have used these highly conserved regions to identify additional members of this family by using the polymerase chain reaction (PCR). One PCR product was used to isolate a full-length cDNA from a human retina cDNA library. The mature protein predicted from this cDNA sequence in 458 amino acids long and displays between 30 and 38% amino acid similarity to the previously identified GABAA subunits. This gene is expressed primarily in the retina but transcripts are also detected in the brain, lung, and thymus. Injection of Xenopus oocytes with RNA transcribed in vitro produces a GABA-responsive chloride conductance and expression of the cDNA in COS cells yields GABA-displaceable muscimol binding. These features are consistent with our identification of a GABA subunit, GABA rho 1, with prominent retinal expression that increases the diversity and tissue specificity of this ligand-gated ion-channel receptor family. Images PMID:1849271

  16. Neuropeptide co-release with GABA may explain functional non-monotonic uncertainty responses in dopamine neurons.

    PubMed

    Tan, Can Ozan; Bullock, Daniel

    2008-01-17

    Co-release of the inhibitory neurotransmitter GABA and the neuropeptide substance-P (SP) from single axons is a conspicuous feature of the basal ganglia, yet its computational role, if any, has not been resolved. In a new learning model, co-release of GABA and SP from axons of striatal projection neurons emerges as a highly efficient way to compute the uncertainty responses that are exhibited by dopamine (DA) neurons when animals adapt to probabilistic contingencies between rewards and the stimuli that predict their delivery. Such uncertainty-related dopamine release appears to be an adaptive phenotype, because it promotes behavioral switching at opportune times. Understanding the computational linkages between SP and DA in the basal ganglia is important, because Huntington's disease is characterized by massive SP depletion, whereas Parkinson's disease is characterized by massive DA depletion. PMID:18053647

  17. GABA Regulates Corticotropin Releasing Hormone Levels in the Paraventricular Nucleus of the Hypothalamus in Newborn Mice

    PubMed Central

    Stratton, Matthew S.; Searcy, Brian T.; Tobet, Stuart A.

    2011-01-01

    The paraventricular nucleus of the hypothalamus (PVN) is a major regulator of stress responses via release of Corticotropin Releasing Hormone (CRH) to the pituitary gland. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is characteristic of individuals with Major Depressive Disorder (MDD). Postmortem data from individuals diagnosed with MDD show increased levels of CRH mRNA and CRH immunoreactive neurons in the PVN. In the current study, an immunohistochemical (IHC) analysis revealed increased levels of CRH in the PVN of newborn mice lacking functional GABAB receptors. There was no difference in the total number of CRH immunoreactive cells. By contrast, there was a significant increase in the amount of CRH immunoreactivity per cell. Interestingly, this increase in CRH levels in the GABAB receptor R1 subunit knockout was limited to the rostral PVN. While GABAergic regulation of the HPA axis has been previously reported in adult animals, this study provides evidence of region-specific GABA modulation of immunoreactive CRH in newborns. PMID:21236282

  18. Selective antagonism of the GABA(A) receptor by ciprofloxacin and biphenylacetic acid.

    PubMed

    Green, M A; Halliwell, R F

    1997-10-01

    1. Previous studies have shown that ciprofloxacin and biphenylacetic acid (BPAA) synergistically inhibit y-aminobutyric acid (GABA)A receptors. In the present study, we have investigated the actions of these two drugs on other neuronal ligand-gated ion channels. 2. Agonist-evoked depolarizations were recorded from rat vagus and optic nerves in vitro by use of an extracellular recording technique. 3. GABA (50 microM)-evoked responses, in the vagus nerve in vitro, were inhibited by bicuculline (0.3-10 microM) and picrotoxin (0.3-10 microM), with IC50 values and 95% confidence intervals (CI) of 1.2 microM (1.1-1.4) and 3.6 microM (3.0-4.3), respectively, and were potentiated by sodium pentobarbitone (30 microM) and diazepam (1 microM) to (mean+/-s.e.mean) 168+/-18% and 117+/-4% of control, respectively. 5-Hydroxytryptamine (5-HT; 0.5 microM)-evoked responses were inhibited by MDL 72222 (1 microM) to 10+/-4% of control; DMPP (10 microM)-evoked responses were inhibited by hexamethonium (100 microM) to 12+/-5% of control, and alphabetaMeATP (30 microM)-evoked responses were inhibited by PPADS (10 microM) to 21+/-5% of control. Together, these data are consistent with activation of GABA(A), 5-HT3, nicotinic ACh and P2X receptors, respectively. 4 Ciprofloxacin (10-3000 microM) inhibited GABA(A)-mediated responses in the vagus nerve with an IC50 (and 95% CI) of 202 microM (148-275). BPAA (1-1000 microM) had little or no effect on the GABA(A)-mediated response but concentration-dependently potentiated the effects of ciprofloxacin by up to 33,000 times. 5. Responses mediated by 5-HT3, nicotinic ACh and P2X receptors in the vagus nerve and strychnine-sensitive glycine receptors in the optic nerve were little or unaffected by ciprofloxacin (100 microM), BPAA (100 microM) or the combination of these drugs (both at 100 microM). 6. GABA (1 mM)-evoked responses in the optic nerve were inhibited by bicuculline with an IC50 of 3.6 microM (2.8-4.5), a value not significantly different

  19. The inhibitory role of γ-aminobutyric acid (GABA) on immunomodulation of Pacific oyster Crassostrea gigas.

    PubMed

    Li, Meijia; Qiu, Limei; Wang, Lingling; Wang, Weilin; Xin, Lusheng; Li, Yiqun; Liu, Zhaoqun; Song, Linsheng

    2016-05-01

    γ-aminobutyric acid (GABA) is an inhibitory neurotransmitter to suppress the immune-mediated pro-inflammatory reactions, and it has been used in the treatment of many inflammation-related diseases in vertebrates, while its immunomodulatory role in invertebrates has never been reported. In the present study, GABA was found to exist in the hemolymph of Pacific oyster Crassostrea gigas, and its concentration decreased slightly from 8.00 ± 0.37 μmol L(-1) at normal condition to 7.73 ± 0.15 μmol L(-1) at 6 h after LPS stimulation, and then increased to 9.34 ± 0.15 μmol L(-1), 8.86 ± 0.68 μmol L(-1) at 12 h and 48 h, respectively. After LPS stimulation, the mRNA expressions of pro-inflammatory cytokines (CgIL-17 and CgTNF) and immune effectors (CgSOD and CgBPI), and the protein expression of NOS increased significantly, and these increased trends were remarkably inhibited by GABA stimulation. At the same time, the phagocytosis rate and apoptosis rate of immunocytes also increased obviously after LPS stimulation, whereas the increase was repressed with the addition of GABA. The results collectively demonstrated that GABA was an indispensable inhibitory agent for both humoral and cellular immune response, which mainly functioned at the late phase of immune response to avoid the excess immune reactions and maintain the immune homeostasis. PMID:26975413

  20. Guanidino acids act as rho1 GABA(C) receptor antagonists.

    PubMed

    Chebib, Mary; Gavande, Navnath; Wong, Kit Yee; Park, Anna; Premoli, Isabella; Mewett, Kenneth N; Allan, Robin D; Duke, Rujee K; Johnston, Graham A R; Hanrahan, Jane R

    2009-10-01

    GABA(C) receptors play a role in myopia, memory-related disorders and circadian rhythms signifying a need to develop potent and selective agents for this class of receptors. Guanidino analogs related to glycine, beta-alanine and taurine were evaluated at human rho(1)GABA(C) receptors expressed in Xenopus oocytes using 2-electrode voltage clamp methods. Of the 12 analogs tested, 8 analogs were active as antagonists and the remaining were inactive. (S)-2-guanidinopropionic acid (IC(50) = 2.2 microM) and guanidinoacetic acid (IC(50) = 5.4 microM; K (B) = 7.75 microM [pK (B) = 5.11 +/- 0.06]) were the most potent being competitive antagonists at this receptor. In contrast, the beta-alanine and GABA guanidino analogs showed reduced activity, indicating the distance between the carboxyl carbon and terminal nitrogen of the guanidino group is critical for activity. Substituting the C2-position of guanidinoacetic acid with various alkyl groups reduced activity indicating that steric effects may impact on activity. The results of this study contribute to the structure-activity-relationship profile required in developing novel therapeutic agents. PMID:19387831

  1. Acetylcholine induces GABA release onto rod bipolar cells through heteromeric nicotinic receptors expressed in A17 amacrine cells

    PubMed Central

    Elgueta, Claudio; Vielma, Alex H.; Palacios, Adrian G.; Schmachtenberg, Oliver

    2015-01-01

    Acetylcholine (ACh) is a major retinal neurotransmitter that modulates visual processing through a large repertoire of cholinergic receptors expressed on different retinal cell types. ACh is released from starburst amacrine cells (SACs) under scotopic conditions, but its effects on cells of the rod pathway have not been investigated. Using whole-cell patch clamp recordings in slices of rat retina, we found that ACh application triggers GABA release onto rod bipolar (RB) cells. GABA was released from A17 amacrine cells and activated postsynaptic GABAA and GABAC receptors in RB cells. The sensitivity of ACh-induced currents to nicotinic ACh receptor (nAChR) antagonists (TMPH ~ mecamylamine > erysodine > DhβE > MLA) together with the differential potency of specific agonists to mimic ACh responses (cytisine >> RJR2403 ~ choline), suggest that A17 cells express heteromeric nAChRs containing the β4 subunit. Activation of nAChRs induced GABA release after Ca2+ accumulation in A17 cell dendrites and varicosities mediated by L-type voltage-gated calcium channels (VGCCs) and intracellular Ca2+ stores. Inhibition of acetylcholinesterase depolarized A17 cells and increased spontaneous inhibitory postsynaptic currents in RB cells, indicating that endogenous ACh enhances GABAergic inhibition of RB cells. Moreover, injection of neostigmine or cytisine reduced the b-wave of the scotopic flash electroretinogram (ERG), suggesting that cholinergic modulation of GABA release controls RB cell activity in vivo. These results describe a novel regulatory mechanism of RB cell inhibition and complement our understanding of the neuromodulatory control of retinal signal processing. PMID:25709566

  2. Depolarization-induced release of amino acids from the vestibular nuclear complex.

    PubMed

    Godfrey, Donald A; Sun, Yizhe; Frisch, Christopher; Godfrey, Matthew A; Rubin, Allan M

    2012-04-01

    There is evidence from immunohistochemistry, quantitative microchemistry, and pharmacology for several amino acids as neurotransmitters in the vestibular nuclear complex (VNC), including glutamate, γ-aminobutyrate (GABA), and glycine. However, evidence from measurements of release has been limited. The purpose of this study was to measure depolarization-stimulated calcium-dependent release of amino acids from the VNC in brain slices. Coronal slices containing predominantly the VNC were prepared from rats and perfused with artificial cerebrospinal fluid (ACSF) in an interface chamber. Fluid was collected from the chamber just downstream from the VNC using a microsiphon. Depolarization was induced by 50 mM potassium in either control calcium and magnesium concentrations or reduced calcium and elevated magnesium. Amino acid concentrations in effluent fluid were measured by high performance liquid chromatography. Glutamate release increased fivefold during depolarization in control calcium concentration and twofold in low calcium/high magnesium. These same ratios were 6 and 1.5 for GABA, 2 and 1.3 for glycine, and 2 and 1.5 for aspartate. Differences between release in control and low calcium/high magnesium ACSF were statistically significant for glutamate, GABA, and glycine. Glutamine release decreased during and after depolarization, and taurine release slowly increased. No evidence for calcium-dependent release was found for serine, glutamine, alanine, threonine, arginine, taurine, or tyrosine. Our results support glutamate and GABA as major neurotransmitters in the VNC. They also support glycine as a neurotransmitter and some function for taurine. PMID:22147284

  3. Modulation of Presynaptic GABA Release by Oxidative Stress in Mechanically-isolated Rat Cerebral Cortical Neurons

    PubMed Central

    Hahm, Eu-Teum; Seo, Jung-Woo; Hur, Jinyoung

    2010-01-01

    Reactive oxygen species (ROS), which include hydrogen peroxide (H2O2), the superoxide anion (O2-·), and the hydroxyl radical (OH·), are generated as by-products of oxidative metabolism in cells. The cerebral cortex has been found to be particularly vulnerable to production of ROS associated with conditions such as ischemia-reperfusion, Parkinson's disease, and aging. To investigate the effect of ROS on inhibitory GABAergic synaptic transmission, we examined the electrophysiological mechanisms of the modulatory effect of H2O2 on GABAergic miniature inhibitory postsynaptic current (mIPSCs) in mechanically isolated rat cerebral cortical neurons retaining intact synaptic boutons. The membrane potential was voltage-clamped at -60 mV and mIPSCs were recorded and analyzed. Superfusion of 1-mM H2O2 gradually potentiated mIPSCs. This potentiating effect of H2O2 was blocked by the pretreatment with either 10,000-unit/mL catalase or 300-µM N-acetyl-cysteine. The potentiating effect of H2O2 was occluded by an adenylate cyclase activator, forskolin, and was blocked by a protein kinase A inhibitor, N-(2-[p-bromocinnamylamino] ethyl)-5-isoquinolinesulfonamide hydrochloride. This study indicates that oxidative stress may potentiate presynaptic GABA release through the mechanism of cAMP-dependent protein kinase A (PKA)-dependent pathways, which may result in the inhibition of the cerebral cortex neuronal activity. PMID:20631883

  4. Effect of diphenylhydantoin on gamma aminobutyric acid (GABA) and succinate activity in rat Purkinje cells.

    PubMed Central

    Hitchcock, E; Gabra-Sanders, T

    1977-01-01

    A study has been made of the effect of diphenylhydantoin (DPH) upon the levels of gamma aminobutyric acid (GABA) and succinic dehydrogenase in rat Purkinje cells. DPH was administered over 26 days in chronic experiments using controls receiving the same injection vehicle without DPH. Animals in this group received daily 1.25 mg/kg body weight, 12.5 mg/kg body weight, and 50 mg/kg body weight DPH. Acute experiments were carried out over the course of not more than four days, three groups of animals receiving 75 mg/kg body weight, 87.5 mg/kg body weight, and 100 mg/kg body weight DPH. No effect upon succinic dehydrogenase could be demonstrated at any dose level. There was a significant progressive loss of GABA with increasing dosage of DPH. Images PMID:903771

  5. Influence of exposure period on in vivo hippocampal glutamate and GABA release in rats chronically exposed to lead.

    PubMed

    Lasley, S M; Green, M C; Gilbert, M E

    1999-08-01

    Previous work has demonstrated that continual exposure to 0.2% lead (Pb) beginning at birth diminishes depolarization-induced hippocampal glutamate (GLU) and GABA release in vivo. The present study sought to extend these findings by examining Pb-induced changes as a function of exposure period. Rats were continually exposed to 0.2% Pb in the drinking water beginning at conception (Gestational-Life, GL) or two weeks after weaning (Wean-Life, WL), while exposure in a third group was begun at conception but terminated at weaning (Gestational-Wean, GW). Hippocampal transmitter release was induced in adult animals by perfusion of 150 mM K+ in the presence of Ca+2 (total release) through a microdialysis probe in one test session, followed by perfusion through a contralateral probe in the absence of Ca+2 (Ca+2-independent release) in the second session. Decreases in total GLU and GABA release were observed in the GL and WL groups compared to controls over the first 20-min after initiation of high K+, decrements that could be attributed to exposure-induced reductions in Ca+2-dependent release. The pattern of Pb-induced changes in the GL group is similar to that observed previously in a group continuously exposed from birth, indicating that gestational exposure did not further enhance the impact of Pb beginning at birth when exposure in both groups extends into adulthood. Similar responses were also found in the WL group, indicating that exposure during early development is not a requirement to induce changes in GLU and GABA release. Pb-induced decreases in response were also seen in the GW group: a decrease in Ca+2-dependent GLU release was observed, while decrements in total and Ca+2-dependent GABA release were similar to those in the GL and WL groups. Thus, exposure limited to early development is also sufficient to produce deficits in evoked transmitter release. In addition, the exposure-induced decreases in GLU responses correspond to Pb-induced impairments in long

  6. Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter.

    PubMed

    Dung Pham, Van; Somasundaram, Sivachandiran; Lee, Seung Hwan; Park, Si Jae; Hong, Soon Ho

    2016-01-01

    Gamma-aminobutyric acid (GABA) is an important bio-product, which is used in pharmaceutical formulations, nutritional supplements, and biopolymer monomer. The traditional GABA process involves the decarboxylation of glutamate. However, the direct production of GABA from glucose is a more efficient process. To construct the recombinant strains of Escherichia coli, a novel synthetic scaffold was introduced. By carrying out the co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter, we redirected the TCA cycle flux to GABA pathway. The genetically engineered E. coli strain produced 1.08 g/L of GABA from 10 g/L of initial glucose. Thus, with the introduction of a synthetic scaffold, we increased GABA production by 2.2-fold. The final GABA concentration was increased by 21.8% by inactivating competing pathways. PMID:26620318

  7. Tonic endocannabinoid-mediated modulation of GABA release is independent of the CB1 content of axon terminals

    PubMed Central

    Lenkey, Nora; Kirizs, Tekla; Holderith, Noemi; Máté, Zoltán; Szabó, Gábor; Vizi, E. Sylvester; Hájos, Norbert; Nusser, Zoltan

    2015-01-01

    The release of GABA from cholecystokinin-containing interneurons is modulated by type-1 cannabinoid receptors (CB1). Here we tested the hypothesis that the strength of CB1-mediated modulation of GABA release is related to the CB1 content of axon terminals. Basket cell boutons have on average 78% higher CB1 content than those of dendritic-layer-innervating (DLI) cells, a consequence of larger bouton surface and higher CB1 density. The CB1 antagonist AM251 caused a 54% increase in action potential-evoked [Ca2+] in boutons of basket cells, but not in DLI cells. However, the effect of AM251 did not correlate with CB1 immunoreactivity of individual boutons. Moreover, a CB1 agonist decreased [Ca2+] in a cell type- and CB1-content-independent manner. Replica immunogold labelling demonstrated the colocalization of CB1 with the Cav2.2 Ca2+ channel subunit. Our data suggest that only a subpopulation of CB1s, within nanometre distances from their target Cav2.2 channels, are responsible for endocannabinoid-mediated modulation of GABA release. PMID:25891347

  8. Trans-synaptic (GABA-dopamine) modulation of cocaine induced dopamine release: A potential therapeutic strategy for cocaine abuse

    SciTech Connect

    Dewey, S.L.; Straughter-Moore, R.; Chen, R.

    1995-05-01

    We recently developed a new experimental strategy for measuring interactions between functionally-linked neurotransmitter systems in the primate and human brain with PET. As part of this research, we demonstrated that increases in endogenous GABA concentrations significantly reduced striatal dopamine concentrations in the primate brain. We report here the application of the neurotransmitter interaction paradigm with PET and with microdialysis to the investigation of a novel therapeutic strategy for treating cocaine abuse based on the ability of GABA to inhibit cocaine induced increases in striatal dopamine. Using gamma-vinyl GABA (GVG, a suicide inhibitor of GABA transaminase), we performed a series of PET studies where animals received a baseline PET scan with labeled raclopride injection, animals received cocaine (2.0 mg/kg). Normally, a cocaine challenge significantly reduces the striatal binding of {sup 11}C-raclopride. However, in animals pretreated with GVG, {sup 11}C-raclopride binding was less affected by a cocaine challenge compared to control studies. Furthermore, microdialysis studies in freely moving rats demonstrate that GVG (300 mg/kg) significantly inhibited cocaine-induced increases in extracellular dopamine release. GVG also attenuated cocaine-induced increases in locomotor activity. However, at a dose of 100 mg/kg, GVG had no effect. Similar findings were obtained with alcohol. Alcohol pretreatment dose dependantly (1-4 g/kg) inhibited cocaine-induced increases in extracellular dopamine concentrations in freely moving rats. Taken together, these studies suggest that therapeutic strategies targeted at increasing central GABA concentrations may be beneficial for the treatment of cocaine abuse.

  9. Release of brain amino acids during hyposmolar stress and energy deprivation.

    PubMed

    Haugstad, T S; Langmoen, I A

    1996-04-01

    The release of 10 amino acids from rat hippocampal slices during exposure to hyposmotic stress or energy deprivation was measured by high-performance liquid chromatography. Exposing the slices to hyposmotic stress by lowering extracellular NaCl caused a 10-fold release of taurine (p < 0.01) and over a twofold increase of gamma-aminobutyric acid (GABA) and glutamate (p < 0.01). These changes were reversed by mannitol. Exposure to combined glucose and oxygen deprivation (energy deprivation) caused a 50-fold increase in the release of GABA, a 40-fold increase in glutamate release (p < 0.01), and a twofold to sixfold increase in taurine, aspartate, glycine, asparagine, serine, and alanine release (p < 0.05) but no change in glutamine. Energy deprivation increased the water content by 21%. Mannitol blocked this increase and further enhanced the release of glutamate and aspartate (p < 0.01) but not of GABA. The permissivity of the amino acids was plotted against the pI (pH at isoelectric point) and hydropathy indexes. Energy deprivation increased the permissivity in the following order: acidic > neutral > basic. Among neutral amino acids, permissivity increased with increasing hydrophobicity. These results indicate that the mechanisms of amino acid release are different during cerebral ischemia and hyposmotic stress. PMID:8829565

  10. Pharmacology of GABA.

    PubMed

    Meldrum, B

    1982-01-01

    GABA-ergic systems are involved in all the main functions of the brain. In most brain regions impairment of this system produces epileptic activity. GABA-mediated inhibitory function can be enhanced by drugs of at least seven different types. They act on the metabolism or synaptic release of GABA, or its reuptake into neurones of glia, or on various components of the GABA receptor complex (GABA recognition site, "benzodiazepine" receptor or chloride ionophore). Among such compounds, those which act most specifically and potently on GABA receptors remain primarily research tools. Among compounds in clinical use, valproate, benzodiazepines, and anticonvulsant barbiturates al enhance GABA-mediated inhibition. In the future, new inhibitors of GABA uptake, new GABA agonists and potent inhibitors of GABA-transaminase are likely to become available. Trials of drugs enhancing GABA-ergic function have been made in a wide variety of neurological disorders. In most forms of epilepsy a therapeutic effect is evident. Real benefit from GABA therapies has not been demonstrated in the principal disorders of movement (Huntington's chorea, Parkinson's disease, dystonias), except in so far as they have a myoclonic or paroxysmal component. Among psychiatric disorders the acute symptoms of schizophrenia are exacerbated by enhanced GABA-ergic function. Abstinence syndromes (alcohol, barbiturate or narcotic withdrawal) are ameliorated by drugs enhancing GABA-ergic function, and there is some evidence for a beneficial action in anxiety states and mania. Attempts to relate the molecular neurobiology of GABA with clinical pharmacology are of very recent origin. Improved understanding of the variety of GABA receptor mechanisms will provide the key to the more selective pharmacological manipulations that are required for therapeutic success. PMID:6214305

  11. Mutations in y-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas syringae pv. tomato DC3000 is a bacterial pathogen of Arabidopsis and tomato that grows in the apoplast. The non-protein amino acid '-amino butyric acid (GABA) is produced by Arabidopsis and tomato and is the most abundant amino acid in the apoplastic fluid of tomato. The DC3000 genome h...

  12. Effects of NaCl Replacement with Gamma-Aminobutyric acid (GABA) on the Quality Characteristics and Sensorial Properties of Model Meat Products

    PubMed Central

    Chun, Ji-Yeon; Cho, Hyung-Yong; Min, Sang-Gi

    2014-01-01

    This study investigated the effects of γ-aminobutylic acid (GABA) on the quality and sensorial properties of both the GABA/NaCl complex and model meat products. GABA/NaCl complex was prepared by spray-drying, and the surface dimensions, morphology, rheology, and saltiness were characterized. For model meat products, pork patties were prepared by replacing NaCl with GABA. For characteristics of the complex, increasing GABA concentration increased the surface dimensions of the complex. However, GABA did not affect the rheological properties of solutions containing the complex. The addition of 2% GABA exhibited significantly higher saltiness than the control (no GABA treatment). In the case of pork patties, sensory testing indicated that the addition of GABA decreased the saltiness intensity. Both the intensity of juiciness and tenderness of patties containing GABA also scored lower than the control, based on the NaCl reduction. These results were consistent with the quality characteristics (cooking loss and texture profile analysis). Nevertheless, overall acceptability of the pork patties showed that up to 1.5%, patties containing GABA did not significantly differ from the control. Consequently, the results indicated that GABA has a potential application in meat products, but also manifested a deterioration of quality by the NaCl reduction, which warrants further exploration. PMID:26761294

  13. Effect of GABA on oxidative stress in the skeletal muscles and plasma free amino acids in mice fed high-fat diet.

    PubMed

    Xie, Z X; Xia, S F; Qiao, Y; Shi, Y H; Le, G W

    2015-06-01

    Increased levels of plasma free amino acids (pFAAs) can disturb the blood glucose levels in patients with obesity, diabetes mellitus and metabolic syndrome (MS) and are associated with enhanced protein oxidation. Oxidation of proteins, especially in the muscles, can promote protein degradation and elevate the levels of pFAAs. Gamma-aminobutyric acid (GABA), a food additive, can reduce high-fat diet (HFD)-induced hyperglycaemia; however, the mechanisms remain unclear. The aim of this study was to evaluate the effects of GABA on protein oxidation and pFAAs changes. One hundred male C57BL/6 mice were randomly divided into five groups that were fed with control diet, HFD and HFD supplied with 0.2%, 0.12% and 0.06% GABA in drinking water for 20 weeks respectively. HFD feeding led to muscular oxidative stress, protein oxidation, pFAA disorders, hyperglycaemia and augmented plasma GABA levels. Treatment with GABA restored normally fasting blood glucose level and dose-dependently inhibited body weight gains, muscular oxidation and protein degradation. While medium and low doses of GABA mitigated HFD-induced pFAA disorders, the high dose of GABA deteriorated the pFAA disorders. Medium dose of GABA increased the levels of GABA, but high dose of GABA reduced the levels of plasma GABA and increased the activity of succinic semialdehyde dehydrogenase in the liver. Therefore, treatment with GABA mitigated HFD-induced hyperglycaemia probably by repairing HFD-induced muscular oxidative stress and pFAA disorders in mice. Our data also suggest that an optimal dose of GABA is crucial for the prevention of excess GABA-related decrease in the levels of pFAA and GABA as well as obesity. PMID:25266692

  14. Identification of amino acids involved in histamine potentiation of GABA A receptors.

    PubMed

    Thiel, Ulrike; Platt, Sarah J; Wolf, Steffen; Hatt, Hanns; Gisselmann, Günter

    2015-01-01

    Histamine is a neurotransmitter involved in a number of physiological and neuronal functions. In mammals, such as humans, and rodents, the histaminergic neurons found in the tuberomamillary nucleus project widely throughout the central nervous system. Histamine acts as positive modulator of GABAA receptors (GABAARs) and, in high concentrations (10 mM), as negative modulator of the strychnine-sensitive glycine receptor. However, the exact molecular mechanisms by which histamine acts on GABAARs are unknown. In our study, we aimed to identify amino acids potentially involved in the modulatory effect of histamine on GABAARs. We expressed GABAARs with 12 different point mutations in Xenopus laevis oocytes and characterized the effect of histamine on GABA-induced currents using the two-electrode voltage clamp technique. Our data demonstrate that the amino acid residues β2(N265) and β2(M286), which are important for modulation by propofol, are not involved in the action of histamine. However, we found that histamine modulation is dependent on the amino acid residues α1(R120), β2(Y157), β2(D163), β3(V175), and β3(Q185). We showed that the amino acid residues β2(Y157) and β3(Q185) mediate the positive modulatory effect of histamine on GABA-induced currents, whereas α1(R120) and β2(D163) form a potential histamine interaction site in GABAARs. PMID:26074818

  15. γ-Aminobutyric acid type A (GABA(A)) receptor subtype inverse agonists as therapeutic agents in cognition.

    PubMed

    Gabriella, Guerrini; Giovanna, Ciciani

    2010-01-01

    The gabaergic system has been identified as a relevant regulator of cognitive and emotional processing. In fact, the discovery that negative allosteric regulators (or inverse agonists) at GABA(A) (γ-aminobutyric acid) α5 subtype receptors improve learning and memory tasks, has further validated this concept. The localization of these extrasynaptic subtype receptors, mainly in the hippocampus, has suggested that they play a key role in the three stages of memory: acquisition, consolidation, and retrieval. The "α5 inverse agonist" binds to an allosteric site at GABA(A) receptor, provoking a reduction of chlorine current, but to elicit this effect, the necessary condition is the binding of agonist neurotransmitter (γ-amino butyric acid) at its orthosteric site. In this case, the GABA(A) receptor is not a "constitutively active receptor" and, however, the presence of spontaneous opening channels for native GABA(A) receptors is rare. Here, we present various classes of nonselective and α5 selective GABA(A) receptor ligands, and the in vitro and in vivo tests to elucidate their affinity and activity. The study of the GABA(A) α5 inverse agonists is one of the important tools, although not the only one, for the development of clinical strategies for treatment of Alzheimer disease and mild cognitive impairment. PMID:21050918

  16. Glial GABA, synthesized by monoamine oxidase B, mediates tonic inhibition.

    PubMed

    Yoon, Bo-Eun; Woo, Junsung; Chun, Ye-Eun; Chun, Heejung; Jo, Seonmi; Bae, Jin Young; An, Heeyoung; Min, Joo Ok; Oh, Soo-Jin; Han, Kyung-Seok; Kim, Hye Yun; Kim, Taekeun; Kim, Young Soo; Bae, Yong Chul; Lee, C Justin

    2014-11-15

    GABA is the major inhibitory transmitter in the brain and is released not only from a subset of neurons but also from glia. Although neuronal GABA is well known to be synthesized by glutamic acid decarboxylase (GAD), the source of glial GABA is unknown. After estimating the concentration of GABA in Bergmann glia to be around 5-10 mM by immunogold electron microscopy, we demonstrate that GABA production in glia requires MAOB, a key enzyme in the putrescine degradation pathway. In cultured cerebellar glia, both Ca(2+)-induced and tonic GABA release are significantly reduced by both gene silencing of MAOB and the MAOB inhibitor selegiline. In the cerebellum and striatum of adult mice, general gene silencing, knock out of MAOB or selegiline treatment resulted in elimination of tonic GABA currents recorded from granule neurons and medium spiny neurons. Glial-specific rescue of MAOB resulted in complete rescue of tonic GABA currents. Our results identify MAOB as a key synthesizing enzyme of glial GABA, which is released via bestrophin 1 (Best1) channel to mediate tonic inhibition in the brain. PMID:25239459

  17. A novel α-conotoxin MII-sensitive nicotinic acetylcholine receptor modulates [(3) H]-GABA release in the superficial layers of the mouse superior colliculus.

    PubMed

    McClure-Begley, Tristan D; Wageman, Charles R; Grady, Sharon R; Marks, Michael J; McIntosh, J Michael; Collins, Allan C; Whiteaker, Paul

    2012-07-01

    Mouse superficial superior colliculus (SuSC) contains dense GABAergic innervation and diverse nicotinic acetylcholine receptor subtypes. Pharmacological and genetic approaches were used to investigate the subunit compositions of nicotinic acetylcholine receptors (nAChR) expressed on mouse SuSC GABAergic terminals. [(125) I]-Epibatidine competition-binding studies revealed that the α3β2* and α6β2* nicotinic subtype-selective peptide α-conotoxin MII-blocked binding to 40 ± 5% of SuSC nAChRs. Acetylcholine-evoked [(3) H]-GABA release from SuSC crude synaptosomal preparations is calcium dependent, blocked by the voltage-sensitive calcium channel blocker, cadmium, and the nAChR antagonist mecamylamine, but is unaffected by muscarinic, glutamatergic, P2X and 5-HT3 receptor antagonists. Approximately 50% of nAChR-mediated SuSC [(3) H]-GABA release is inhibited by α-conotoxin MII. However, the highly α6β2*-subtype-selective α-conotoxin PIA did not affect [(3) H]-GABA release. Nicotinic subunit-null mutant mouse experiments revealed that ACh-stimulated SuSC [(3) H]-GABA release is entirely β2 subunit-dependent. α4 subunit deletion decreased total function by >90%, and eliminated α-conotoxin MII-resistant release. ACh-stimulated SuSC [(3) H]-GABA release was unaffected by β3, α5 or α6 nicotinic subunit deletions. Together, these data suggest that a significant proportion of mouse SuSC nicotinic agonist-evoked GABA-release is mediated by a novel, α-conotoxin MII-sensitive α3α4β2 nAChR. The remaining α-conotoxin MII-resistant, nAChR agonist-evoked SuSC GABA release appears to be mediated via α4β2* subtype nAChRs. PMID:22506481

  18. GABA shunt and polyamine degradation pathway on γ-aminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia.

    PubMed

    Yang, Runqiang; Guo, Qianghui; Gu, Zhenxin

    2013-01-01

    GABA shunt and polyamine degradation pathway on γ-aminobutyric acid (GABA) accumulation in germinating fava bean under hypoxia was investigated. GABA content, GAD and DAO activity were significantly increased under hypoxia treatment. Glu and polyamine contents enhanced largely and thus supplied as sufficient substrates for GABA formation. In contrast, GABA content decreased, mainly in the embryo, after removing the hypoxia stress. DAO activity, Glu and polyamines contents decreased, while an increment of GAD activity was observed. This indicated that GAD activity can be not only regulated by hypoxia, but by the rapid growth of embryo after the recovery from hypoxia stress. When treated with AG, DAO activity was almost inhibited completely, and the GABA content decreased by 32.96% and 32.07% after treated for 3 and 5 days, respectively. Hence, it can be inferred that about 30% of GABA formed in germinating fava bean under hypoxia was supplied by polyamine degradation pathway. PMID:23017406

  19. Exogenous γ-aminobutyric Acid (GABA) Application Improved Early Growth, Net Photosynthesis, and Associated Physio-Biochemical Events in Maize.

    PubMed

    Li, Wu; Liu, Jianhua; Ashraf, Umair; Li, Gaoke; Li, Yuliang; Lu, Wenjia; Gao, Lei; Han, Fuguang; Hu, Jianguang

    2016-01-01

    γ-aminobutyric acid (GABA) is an endogenous signaling molecule and involved in growth regulations and plant development, however, a little information is available on the consequences of exogenous GABA application on growth, development, and associated physio-biochemical processes in maize. The present study examined the GABA-induced regulations in early growth, net photosynthetic rate, gas exchange, osmoregulation, and enzymatic activities in three maize cultivars, i.e., Yuecainuo 6, Zhengtian 68, and Yuecainuo 2. Two levels of GABA, i.e., 0 mg L(-1) and 50 mg L(-1), in solution form, with total application volume of 100 ml per pot containing 15 maize seedlings were exogenously applied. Results revealed that exogenous GABA application improved seedling growth in terms of seedling length and biomass accumulation in all maize cultivars at both 3 and 7 days after treatment (DAT). It also promoted net photosynthesis and variably affected gas exchange attributes, i.e., stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr), as well as leaves SPAD value. Furthermore, lipid peroxidation [in terms of malondialdehyde (MDA)] under GABA treated maize seedlings were also remained variable; however, osmolyte accumulation (protein and proline) and activities of anti-oxidants enzymes, i.e., super-oxide dismutase and peroxidase were also affected differently at both 3 and 7 DAT in all maize cultivars. Furthermore, enzymes involved in nitrogen metabolism, e.g., nitrate reductase and glutamine synthetase were improved. These results suggest the involvement of GABA in various physio-metablical mechanisms which might lead to improvement in morphological growth of maize. In future, research is still needed at molecular and genetic levels to unravel the involvement of GABA-mediated regulations in growth and its associated physio-biochemical mechanisms. PMID:27446149

  20. Exogenous γ-aminobutyric Acid (GABA) Application Improved Early Growth, Net Photosynthesis, and Associated Physio-Biochemical Events in Maize

    PubMed Central

    Li, Wu; Liu, Jianhua; Ashraf, Umair; Li, Gaoke; Li, Yuliang; Lu, Wenjia; Gao, Lei; Han, Fuguang; Hu, Jianguang

    2016-01-01

    γ-aminobutyric acid (GABA) is an endogenous signaling molecule and involved in growth regulations and plant development, however, a little information is available on the consequences of exogenous GABA application on growth, development, and associated physio-biochemical processes in maize. The present study examined the GABA-induced regulations in early growth, net photosynthetic rate, gas exchange, osmoregulation, and enzymatic activities in three maize cultivars, i.e., Yuecainuo 6, Zhengtian 68, and Yuecainuo 2. Two levels of GABA, i.e., 0 mg L-1 and 50 mg L-1, in solution form, with total application volume of 100 ml per pot containing 15 maize seedlings were exogenously applied. Results revealed that exogenous GABA application improved seedling growth in terms of seedling length and biomass accumulation in all maize cultivars at both 3 and 7 days after treatment (DAT). It also promoted net photosynthesis and variably affected gas exchange attributes, i.e., stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr), as well as leaves SPAD value. Furthermore, lipid peroxidation [in terms of malondialdehyde (MDA)] under GABA treated maize seedlings were also remained variable; however, osmolyte accumulation (protein and proline) and activities of anti-oxidants enzymes, i.e., super-oxide dismutase and peroxidase were also affected differently at both 3 and 7 DAT in all maize cultivars. Furthermore, enzymes involved in nitrogen metabolism, e.g., nitrate reductase and glutamine synthetase were improved. These results suggest the involvement of GABA in various physio-metablical mechanisms which might lead to improvement in morphological growth of maize. In future, research is still needed at molecular and genetic levels to unravel the involvement of GABA-mediated regulations in growth and its associated physio-biochemical mechanisms. PMID:27446149

  1. Determination of γ-Aminobutyric Acid (GABA) in Rambutan Fruit cv. Rongrian by HPLC-ELSD and Separation of GABA from Rambutan Fruit Using Dowex 50W-X8 Column.

    PubMed

    Meeploy, Maneerat; Deewatthanawong, Rujira

    2016-03-01

    A high-performance liquid chromatography method coupled with an evaporative light scattering detector (ELSD) was validated for the determination of γ-aminobutyric acid (GABA) in rambutan fruit without any sample pretreatment or derivatization. In the concentration range of 0.05-1.0 mg/mL GABA, the ELSD response was linear with a correlation coefficient (r) >0.999. Limit of detection and limit of quantitation were found to be 0.7 and 2.0 µg/mL, respectively. The method enabled the complete separation of GABA in the aqueous extract of rambutan flesh from the impurity peaks at 45.7 min. The recoveries of sample added GABA were obtained in the range of 92.0-99.3%. Intraday and interday relative standard deviations were <5.3%. Repeatability of the extraction process showed the acceptable precision. From the analysis of GABA content in rambutan flesh, 0.71 ± 0.23 mg of GABA was found in 1 g fresh weight. The recovery of GABA after passing through the Dowex 50W-X8 column was 96.65%. The analytical methodology could be potentially applied to the detection and quantification of GABA in other fruits and complex matrices when a sufficient quantity is available. PMID:26590236

  2. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0

    NASA Astrophysics Data System (ADS)

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-05-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes.

  3. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0

    PubMed Central

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-01-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes. PMID:27212081

  4. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0.

    PubMed

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-01-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes. PMID:27212081

  5. Shifted pallidal co-release of GABA and glutamate in habenula drives cocaine withdrawal and relapse.

    PubMed

    Meye, Frank J; Soiza-Reilly, Mariano; Smit, Tamar; Diana, Marco A; Schwarz, Martin K; Mameli, Manuel

    2016-08-01

    Cocaine withdrawal produces aversive states and vulnerability to relapse, hallmarks of addiction. The lateral habenula (LHb) encodes negative stimuli and contributes to aversive withdrawal symptoms. However, it remains unclear which inputs to LHb promote this and what the consequences are for relapse susceptibility. We report, using rabies-based retrolabeling and optogenetic mapping, that the entopeduncular nucleus (EPN, the mouse equivalent of the globus pallidus interna) projects to an LHb neuronal subset innervating aversion-encoding midbrain GABA neurons. EPN-to-LHb excitatory signaling is limited by GABAergic cotransmission. This inhibitory component decreases during cocaine withdrawal as a result of reduced presynaptic vesicular GABA transporter (VGAT). This shifts the EPN-to-LHb GABA/glutamate balance, disinhibiting EPN-driven LHb activity. Selective virally mediated VGAT overexpression at EPN-to-LHb terminals during withdrawal normalizes GABAergic neurotransmission. This intervention rescues cocaine-evoked aversive states and prevents stress-induced reinstatement, used to model relapse. This identifies diminished inhibitory transmission at EPN-to-LHb GABA/glutamate synapses as a mechanism contributing to the relapsing feature of addictive behavior. PMID:27348214

  6. Olfactory bulb short axon cell release of GABA and dopamine produces a temporally biphasic inhibition-excitation response in external tufted cells

    PubMed Central

    Liu, Shaolin; Plachez, Celine; Shao, Zuoyi; Puche, Adam; Shipley, Michael T.

    2013-01-01

    Evidence for co-expression of two or more classic neurotransmitters in neurons has increased but less is known about co-transmission. Ventral tegmental area (VTA) neurons, co-release dopamine (DA), the excitatory transmitter glutamate and the inhibitory transmitter GABA onto target cells in the striatum. Olfactory bulb (OB) short axon cells (SACs) form interglomerular connections and co-express markers for dopamine (DA) and GABA. Using an optogenetic approach we provide evidence that mouse OB SACs release both GABA and DA onto external tufted cells (ETCs) in other glomeruli. Optical activation of channelrhodopsin specifically expressed in DAergic SACs produced a GABAA receptor-mediated monosynaptic inhibitory response followed by DA-D1-like receptor-mediated excitatory response in ETCs. The GABAA receptor-mediated hyperpolarization activates Ih current in ETCs; synaptically released DA increases Ih, which enhances post-inhibitory rebound spiking. Thus, the opposing actions of synaptically released GABA and DA are functionally integrated by Ih to generate an inhibition-to-excitation “switch” in ETCs. Consistent with the established role of Ih in ETC burst firing, we show that endogenous DA release increases ETC spontaneous bursting frequency. ETCs transmit sensory signals to mitral/tufted output neurons and drive intraglomerular inhibition to shape glomerulus output to downstream olfactory networks. GABA and DA co-transmission from SACs to ETCs may play a key role in regulating output coding across the glomerular array. PMID:23407950

  7. Rat hippocampal glutamate and GABA release exhibit biphasic effects as a function of chronic lead exposure level.

    PubMed

    Lasley, S M; Gilbert, M E

    2002-03-01

    Previous work has suggested that the lead (Pb) exposure-induced decrease in K(+)-evoked hippocampal glutamate (GLU) release is an important factor in the elevated threshold and diminished magnitude reported for hippocampal long-term potentiation (LTP) in exposed animals. In addition, complex dose-effect relationships between Pb exposure level and LTP have been reported. This investigation was conducted to determine the effects of Pb on hippocampal GLU and GABA release as a function of exposure level. Rats were continuously exposed to 0.1, 0.2, 0.5, or 1.0% Pb in the drinking water beginning at gestational day 15-16. Hippocampal transmitter release was induced in adult males by perfusion of 150 mM K(+) in the presence of Ca(+2) (total release) through a microdialysis probe in one test session, followed by perfusion through a contralateral probe in the absence of Ca(+2) (Ca(+2)-independent release) in the second session. Chronic exposure produced decreases in total K(+)-stimulated hippocampal GLU and GABA release at exposure levels of 0.1-0.5% Pb. Maximal effects were seen in the 0.2% group (blood Pb = 40 microg/100 ml), and changes in total release could be directly traced to alterations in the Ca(+2)-dependent component. However, these effects were less evident in the 0.5% group and were no longer present in the 1.0% Pb group, thus defining U-shaped dose-effect relationships. Moreover, in the absence of Ca(+2) in the dialysis perfusate, K(+)-induced release was elevated in the 2 highest exposure groups, suggesting a Pb(+2)-induced enhancement in evoked release. This pattern of results indicates the presence of 2 actions of Pb on in vivo transmitter release: a more potent suppression of stimulated release seen at lower exposure levels (27-62 microg/100 ml) combined with Ca+2-mimetic actions to independently induce exocytosis that is exhibited at higher exposure levels (> or =62 microg/100 ml). Furthermore, significant similarities in the dose-effect relationships

  8. Aldehyde Dehydrogenase 1a1 Mediates a GABA Synthesis Pathway in Midbrain Dopaminergic Neurons

    PubMed Central

    Kim, Jae-Ick; Ganesan, Subhashree; Luo, Sarah X.; Wu, Yu-Wei; Park, Esther; Huang, Eric J.; Chen, Lu; Ding, Jun B.

    2016-01-01

    Midbrain dopamine neurons are an essential component of the basal ganglia circuitry, playing key roles in the control of fine movement and reward. Recently, it has been demonstrated that γ-aminobutyric acid (GABA), the chief inhibitory neurotransmitter, is co-released by dopamine neurons. Here we show that GABA corelease in dopamine neurons does not utilize the conventional GABA synthesizing enzymes, glutamate decarboxylases GAD65 and GAD67. Our experiments reveal an evolutionarily conserved GABA synthesis pathway mediated by aldehyde dehydrogenase 1a1 (ALDH1a1). Moreover, GABA co-release is modulated by ethanol at binge drinking blood alcohol concentrations and diminished ALDH1a1 leads to enhanced alcohol consumption and preference. These findings provide insights into the functional role of GABA co-release in midbrain dopamine neurons, which may be essential for reward-based behavior and addiction. PMID:26430123

  9. Impact of Precooling and Controlled-Atmosphere Storage on γ-Aminobutyric Acid (GABA) Accumulation in Longan (Dimocarpus longan Lour.) Fruit.

    PubMed

    Zhou, Molin; Ndeurumio, Kessy H; Zhao, Lei; Hu, Zhuoyan

    2016-08-24

    Longan (Dimocarpus longan Lour.) fruit cultivars 'Chuliang' and 'Shixia' were analyzed for γ-aminobutyric acid (GABA) accumulation after precooling and in controlled-atmosphere storage. Fruit were exposed to 5% O2 plus 3%, 5%, or 10% CO2 at 4 °C, and GABA and associated enzymes, aril firmness, and pericarp color were measured. Aril softening and pericarp browning were delayed by 5% CO2 + 5% O2. GABA concentrations and glutamate decarboxylase (GAD; EC 4.1.1.15) activities declined during storage at the higher-CO2 treatments. However, GABA aminotransferase (GABA-T; EC 2.6.1.19) activities in elevated CO2-treated fruit fluctuated during storage. GABA concentrations increased after precooling treatments. GAD activity and GABA-T activity were different between cultivars after precooling. GABA concentrations in fruit increased after 3 days of 10% CO2 + 5% O2 treatment and then declined as storage time increased. GABA accumulation was associated with stimulation of GAD activity rather than inhibition of GABA-T activity. PMID:27412947

  10. Synthesis of 4-substituted nipecotic acid derivatives and their evaluation as potential GABA uptake inhibitors.

    PubMed

    Hellenbrand, Tim; Höfner, Georg; Wein, Thomas; Wanner, Klaus T

    2016-05-01

    In this study, we disclose the design and synthesis of novel 4-susbtituted nipecotic acid derivatives as inhibitors of the GABA transporter mGAT1. Based on molecular modeling studies the compounds are assumed to adopt a binding pose similar to that of the potent mGAT1 inhibitor nipecotic acid. As substitution in 4-position should not cause an energetically unfavorable orientation of nipecotic acid as it is the case for N-substituted derivatives this is expected to lead to highly potent binders. For the synthesis of novel 4-substituted nipecotic acid derivatives a linear synthetic strategy was employed. As a key step, palladium catalyzed cross coupling reactions were used to attach the required biaryl moieties to the ω-position of the alkenyl- or alkynyl spacers of varying length in the 4-position of the nipecotic acid scaffold. The resulting amino acids were characterized with respect to their binding affinities and inhibitory potencies at mGAT1. Though the biological activities found were generally insignificant to poor, two compounds, one of which possesses a reasonable binding affinity for mGAT1, rac-57, the other a notable inhibitory potency at mGAT4, rac-84, both displaying a slight subtype selectivity for the individual transporters, could be identified. PMID:27039250

  11. Variance analysis of gamma-aminobutyric acid (GABA)-ergic inhibitory postsynaptic currents from melanotropes of Xenopus laevis.

    PubMed Central

    Borst, J G; Kits, K S; Bier, M

    1994-01-01

    We have studied the variance in the decay of large spontaneous gamma-aminobutyric acid (GABA)-ergic inhibitory postsynaptic currents (IPSCs) in melanotropes of Xenopus laevis to obtain information about the number of GABAA receptor channels that bind GABA during the IPSCs. The average decay of the IPSCs is well described by the sum of two exponential functions. This suggests that a three-state Markov model is sufficient to describe the decay phase, with one of the three states being an absorbing state, entered when GABA dissociates from the GABAA receptor. We have compared the variance in the decay of large spontaneous IPSCs with the variance calculated for two different three-state models: a model with one open state, one closed state, and one absorbing state (I), and a model with two open states and one absorbing state (II). The data were better described by the more efficient model II. This suggests that the efficacy of GABA at synaptic GABAA receptor channels is high and that only a small number of channels are involved in generating the GABA-ergic IPSCs. PMID:7918986

  12. Regulation of luteinizing hormone-releasing hormone and luteinizing hormone secretion by hypothalamic amino acids.

    PubMed

    Donoso, A O; Seltzer, A M; Navarro, C E; Cabrera, R J; López, F J; Negro-Vilar, A

    1994-04-01

    1. The present review discusses the proposed roles of the amino acids glutamate and GABA in the central regulation of luteinizing hormone-releasing hormone (LHRH) and in luteinizing hormone (LH) secretion. 2. Descriptions of the mechanisms of action of these neurotransmitters have focused on two diencephalic areas, namely, the preoptic-anterior hypothalamic area where the cell bodies of LHRH neurons are located, and the medial basal hypothalamus which contains the nerve endings of the LHRH system. Increasing endogenous GABA concentration by drugs, GABA agonists, or blockade of glutamatergic neurotransmission by selective antagonists in rats and non-human primates prevents ovulation and pulsatile LH release, and blunts the LH surges induced by estrogen or an estrogen-progesterone combination. In contrast, glutamate and different glutamate agonists such as NMDA, AMPA and kainate, can increase LHRH/LH secretion. 3. The simultaneous enhancement of glutamatergic activity and a decrease of GABAergic tone may positively influence the maturation of the pituitary-gonadal system in rats and non-human primates. Administration of glutamate receptor agonists has been shown to significantly advance the onset of puberty. Conversely, glutamate antagonists or increased endogenous GABA levels may delay the onset of puberty. The physiological regulation of LHRH/LH secretion may thus involve a GABA-glutamate interaction and a cooperative action of the various types of ionotropic glutamate receptors. 4. The inhibitory actions of GABA on LH release and ovulation may be exerted at the level of afferent nerve terminals that regulate LHRH secretion. A likely candidate is noradrenaline, as suggested by the synaptic connections between noradrenergic nerve terminals and GABAergic interneurons in the preoptic area. Recent experiments have provided complementary evidence for the physiological balance between inhibitory and excitatory transmission resulting in modulation of the action of

  13. Loss of UBE3A from TH-expressing neurons suppresses GABA co-release and enhances VTA-NAc optical self-stimulation

    PubMed Central

    Berrios, Janet; Stamatakis, Alice M.; Kantak, Pranish A.; McElligott, Zoe A.; Judson, Matthew C.; Aita, Megumi; Rougie, Marie; Stuber, Garret D.; Philpot, Benjamin D.

    2016-01-01

    Motivated reward-seeking behaviours are governed by dopaminergic ventral tegmental area projections to the nucleus accumbens. In addition to dopamine, these mesoaccumbal terminals co-release other neurotransmitters including glutamate and GABA, whose roles in regulating motivated behaviours are currently being investigated. Here we demonstrate that loss of the E3-ubiquitin ligase, UBE3A, from tyrosine hydroxylase-expressing neurons impairs mesoaccumbal, non-canonical GABA co-release and enhances reward-seeking behaviour measured by optical self-stimulation. PMID:26869263

  14. Reactive oxygen species induced by presynaptic glutamate receptor activation is involved in [(3)H]GABA release from rat brain cortical nerve terminals.

    PubMed

    Tarasenko, A; Krupko, O; Himmelreich, N

    2012-12-01

    We investigated the production of reactive oxygen species (ROS) as a response to presynaptic glutamate receptor activation, and the role of ROS in neurotransmitter (GABA) release. Experiments were performed with rat brain cortical synaptosomes using glutamate, NMDA and kainate as agonists of glutamate receptors. ROS production was evaluated with the fluorogenic compound dichlorodihydrofluorescein diacetate (H(2)DCF-DA), and GABA release was studied using synaptosomes loaded with [(3)H]GABA. All agonists were found to stimulate ROS production, and specific antagonists of NMDA and kainate/AMPA receptors, dizocilpine hydrogen maleate (MK-801) and 6-cyano-7-nitroquinoxaline-2,3-done (CNQX), significantly inhibited the ROS increase. Spontaneous as well as agonist-evoked ROS production was effectively attenuated by diphenyleneiodonium (DPI), a commonly used potent inhibitor of NADPH oxidase activity, that suggests a high contribution of NADPH-oxidase to this process. The replacement of glucose with pyruvate or the simultaneous presence of both substrates in the medium led to the decrease in spontaneous and NMDA-evoked ROS production, but to the increase in ROS production induced by kainate. Scavenging of agonist-evoked ROS production by a potent antioxidant N-acetylcysteine was tightly correlated with the inhibition of agonist-evoked GABA release. Together, these findings show that the activation of presynaptic glutamate receptors induces an increase in ROS production, and there is a tight correlation between ROS production and GABA secretion. The pivotal role of kainate/AMPA receptors in ROS production is under discussion. PMID:22864357

  15. The role of GABA in the regulation of GnRH neurons

    PubMed Central

    Watanabe, Miho; Fukuda, Atsuo; Nabekura, Junichi

    2014-01-01

    Gonadotropin-releasing hormone (GnRH) neurons form the final common pathway for the central regulation of reproduction. Gamma-amino butyric acid (GABA) has long been implicated as one of the major players in the regulation of GnRH neurons. Although GABA is typically an inhibitory neurotransmitter in the mature adult central nervous system, most mature GnRH neurons show the unusual characteristic of being excited by GABA. While many reports have provided much insight into the contribution of GABA to the activity of GnRH neurons, the precise physiological role of the excitatory action of GABA on GnRH neurons remains elusive. This brief review presents the current knowledge of the role of GABA signaling in GnRH neuronal activity. We also discuss the modulation of GABA signaling by neurotransmitters and neuromodulators and the functional consequence of GABAergic inputs to GnRH neurons in both the physiology and pathology of reproduction. PMID:25506316

  16. The effects of anaesthetics on the uptake and release of amino acid neurotransmitters in thalamic slices.

    PubMed Central

    Kendall, T. J.; Minchin, M. C.

    1982-01-01

    1 The effect of thiopentone, methohexitone, urethane and ketamine on the uptake and release of gamma-aminobutyric acid (GABA) and D-aspartate by rat thalamic slices has been investigated. 2 A high, supra-anaesthetic concentration of methohexitone increased the uptake of both D-aspartate and GABA. 3 None of the anaesthetics used had any detectable effect upon the spontaneous release of either amino acid. 4 Urethane and ketamine had no effect upon the K+-stimulated release of either amino acid. 5 Methohexitone and thiopentone produced a biphasic dose-response on the K+-stimulated release of both amino acids; low concentrations enhanced release, high concentrations depressed release. 6 Bicuculline hydrochloride and picrotoxin both significantly reduced the barbiturate-induced enhancement of K+-stimulated amino acid release, but did not significantly alter the depression of K+-stimulated release at higher barbiturate concentrations. 7 Baclofen, either alone (1 microM to 1 mM), or tested against the barbiturates, had no detectable effect. PMID:6122480

  17. Guinea Pig Horizontal Cells Express GABA, the GABA-Synthesizing Enzyme GAD65, and the GABA Vesicular Transporter

    PubMed Central

    Guo, Chenying; Hirano, Arlene A.; Stella, Salvatore L.; Bitzer, Michaela; Brecha, Nicholas C.

    2013-01-01

    γ-Aminobutyric acid (GABA) is likely expressed in horizontal cells of all species, although conflicting physiological findings have led to considerable controversy regarding its role as a transmitter in the outer retina. This study has evaluated key components of the GABA system in the outer retina of guinea pig, an emerging retinal model system. The presence of GABA, its rate-limiting synthetic enzyme glutamic acid decarboxylase (GAD65 and GAD67 isoforms), the plasma membrane GABA transporters (GAT-1 and GAT-3), and the vesicular GABA transporter (VGAT) was evaluated by using immunohistochemistry with well-characterized antibodies. The presence of GAD65 mRNA was also evaluated by using laser capture microdissection and reverse transcriptase-polymerase chain reaction. Specific GABA, GAD65, and VGAT immunostaining was localized to horizontal cell bodies, as well as to their processes and tips in the outer plexiform layer. Furthermore, immunostaining of retinal whole mounts and acutely dissociated retinas showed GAD65 and VGAT immunoreactivity in both A-type and B-type horizontal cells. However, these cells did not contain GAD67, GAT-1, or GAT-3 immunoreactivity. GAD65 mRNA was detected in horizontal cells, and sequencing of the amplified GAD65 fragment showed approximately 85% identity with other mammalian GAD65 mRNAs. These studies demonstrate the presence of GABA, GAD65, and VGAT in horizontal cells of the guinea pig retina, and support the idea that GABA is synthesized from GAD65, taken up into synaptic vesicles by VGAT, and likely released by a vesicular mechanism from horizontal cells. PMID:20235161

  18. Asynchronous GABA Release Is a Key Determinant of Tonic Inhibition and Controls Neuronal Excitability: A Study in the Synapsin II−/− Mouse

    PubMed Central

    Medrihan, Lucian; Ferrea, Enrico; Greco, Barbara; Baldelli, Pietro; Benfenati, Fabio

    2015-01-01

    Idiopathic epilepsies have frequently been linked to mutations in voltage-gated channels (channelopathies); recently, mutations in several genes encoding presynaptic proteins have been shown to cause epilepsy in humans and mice, indicating that epilepsy can also be considered a synaptopathy. However, the functional mechanisms by which presynaptic dysfunctions lead to hyperexcitability and seizures are not well understood. We show that deletion of synapsin II (Syn II), a presynaptic protein contributing to epilepsy predisposition in humans, leads to a loss of tonic inhibition in mouse hippocampal slices due to a dramatic decrease in presynaptic asynchronous GABA release. We also show that the asynchronous GABA release reduces postsynaptic cell firing, and the parallel impairment of asynchronous GABA release and tonic inhibition results in an increased excitability at both single-neuron and network levels. Restoring tonic inhibition with THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; gaboxadol), a selective agonist of δ subunit-containing GABAA receptors, fully rescues the SynII−/− epileptic phenotype both ex vivo and in vivo. The results demonstrate a causal relationship between the dynamics of GABA release and the generation of tonic inhibition, and identify a novel mechanism of epileptogenesis generated by dysfunctions in the dynamics of release that can be effectively targeted by novel antiepileptic strategies. PMID:24962993

  19. Modulation of GABA release from the thalamic reticular nucleus by cocaine and caffeine: role of serotonin receptors.

    PubMed

    Goitia, Belén; Rivero-Echeto, María Celeste; Weisstaub, Noelia V; Gingrich, Jay A; Garcia-Rill, Edgar; Bisagno, Verónica; Urbano, Francisco J

    2016-02-01

    Serotonin receptors are targets of drug therapies for a variety of neuropsychiatric and neurodegenerative disorders. Cocaine inhibits the re-uptake of serotonin (5-HT), dopamine, and noradrenaline, whereas caffeine blocks adenosine receptors and opens ryanodine receptors in the endoplasmic reticulum. We studied how 5-HT and adenosine affected spontaneous GABAergic transmission from thalamic reticular nucleus. We combined whole-cell patch clamp recordings of miniature inhibitory post-synaptic currents (mIPSCs) in ventrobasal thalamic neurons during local (puff) application of 5-HT in wild type (WT) or knockout mice lacking 5-HT2A receptors (5-HT2A -/-). Inhibition of mIPSCs frequency by low (10 μM) and high (100 μM) 5-HT concentrations was observed in ventrobasal neurons from 5-HT2A -/- mice. In WT mice, only 100 μM 5-HT significantly reduced mIPSCs frequency. In 5-HT2A -/- mice, NAN-190, a specific 5-HT1A antagonist, prevented the 100 μM 5-HT inhibition while blocking H-currents that prolonged inhibition during post-puff periods. The inhibitory effects of 100 μM 5-HT were enhanced in cocaine binge-treated 5-HT2A -/- mice. Caffeine binge treatment did not affect 5-HT-mediated inhibition. Our findings suggest that both 5-HT1A and 5-HT2A receptors are present in pre-synaptic thalamic reticular nucleus terminals. Serotonergic-mediated inhibition of GABA release could underlie aberrant thalamocortical physiology described after repetitive consumption of cocaine. Our findings suggest that both 5-HT1A , 5-HT2A and A1 receptors are present in pre-synaptic TRN terminals. 5-HT1A and A1 receptors would down-regulate adenylate cyclase, whereas 5-HT1A would also increase the probability of the opening of G-protein-activated inwardly rectifying K(+) channels (GIRK). Sustained opening of GIRK channels would hyperpolarize pre-synaptic terminals activating H-currents, resulting in less GABA release. 5-HT2A -would activate PLC and IP3 , increasing intracellular [Ca(2+) ] and

  20. Biphenylacetic acid enhances the antagonistic action of fluoroquinolones on the GABA(A)-mediated responses of the isolated guinea-pig ileum.

    PubMed

    Koutsoviti-Papadopoulou, M; Nikolaidis, E; Kounenis, G

    2001-09-01

    This paper examines the effect of biphenylacetic acid on the antagonistic action of norfloxacin and enoxacin on the GABA(A)-mediated responses of the isolated guinea-pig ileum. GABA produced transient contractions followed by relaxation. The contractile effect of exogenously applied GABA was concentration-dependent with EC(50)= 9.8 x 10(-6) M. This contractile effect was not significantly modified by biphenylacetic acid, and the EC(50) value for GABA in the presence of 10(-5) M biphenylacetic acid was 1.15 x 10(-5) M. The GABA contractile effect was inhibited, dose-dependently, by either norfloxacin or enoxacin, but only at concentrations higher than 10(-5) M. The response of the ileum to GABA (at EC(50)) was reduced to 35 and 36% by pretreatment with 10(-5) M norfloxacin or enoxacin, respectively. However, in the presence of 10(-5) M biphenylacetic acid, the response of the ileum to GABA was reduced to 2.2% by pretreatment with 10(-5) M enoxacin, while it was completely abolished by pretreatment with 10(-5) M norfloxacin and the IC(50) values were 5.5 x 10(-7) and 1.5 x 10(-6) M for norfloxacin and enoxacin, respectively. These data show that biphenylacetic acid whilst having no effect at the GABA(A)-mediated contractile response of the guinea-pig ileum, enhances the antagonistic effect of both enoxacin and norfloxacin. This suggests that combined administration of fluoroquinolones and biphenylacetic acid synergistically inhibits GABA(A)-receptors at the intestinal level. PMID:11529690

  1. Valproic acid: brain and plasma levels of the drug and its metabolites, anticonvulsant effects and gamma-aminobutyric acid (GABA) metabolism in the mouse.

    PubMed

    Nau, H; Löscher, W

    1982-03-01

    The slow onset and carry-over effect of valproic acid (VPA) therapy observed in some clinical as well as experimental animal studies have been examined by parallel pharmacokinetic and pharmacological investigations in a mouse model. VPA was rapidly transferred into brain and was cleared from that tissue with rates which exceeded plasma clearance rates. Of several VPA metabolites present in plasma, only one could be found in the brain: 2-propyl-2-pentenoic acid. This metabolite was cleared from plasma and from brain slower than the parent drug. gamma-Aminobutyric acid (GABA) concentrations were increased within 15 min after VPA injection and remained significantly elevated for at least 8 h. A similar time course was found in regard to the increase of the electroconvulsive threshold (maximal seizures) induced by VPA administration. The activity of glutamic acid decarboxylase rose parallel to the elevation of brain GABA levels, whereas the activity of GABA aminotransferase was not affected. Whereas the rapid onset of the effect on electroconvulsive threshold and on GABA metabolism can be explained by the rapid entrance of VPA into brain, the carry-over effects observed correlated with the kinetics of the metabolite 2-propyl-2-pentenoic acid better than with those of VPA due to the persistence of this metabolite in brain. PMID:6801254

  2. γ-Amino-butyric acid (GABA) receptor subunit and transporter expression in the gonad and liver of the fathead minnow (Pimephales promelas).

    PubMed

    Biggs, Katie; Seidel, Jason S; Wilson, Alex; Martyniuk, Christopher J

    2013-09-01

    γ-Amino-butyric acid (GABA) is the major inhibitory neurotransmitter in the vertebrate central nervous system. GABA receptors and synthesizing enzymes have also been localized to peripheral tissues including the liver, oviduct, uterus and ovary of mammals but the distribution and role of GABA in peripheral tissues of fish has not been fully investigated. The objectives of this study were to (1) determine if mRNA encoding GABA synthesizing enzymes (glutamic acid decarboxylase 65 and 67; gad65 and gad67), GABA transporters, and GABAA receptor subunits are localized to liver and gonad of fathead minnow (Pimephales promelas) (FHM) (2) investigate the effects of GABA on ovarian 17β-estradiol (E2) production, and (3) measure transcript responses in the ovary after in vitro incubation to GABA. Real-time PCR assays were developed for gad65, gad67, vesicular GABA transporter (vgat) and GABA transporter 1 (gat1), and select GABAA receptor subunits (gabra1, gabra5, gabrb1, gabrb2, gabrg1, gabrg2). All transcripts were localized to the brain as expected; however transcripts were also detected in the liver, ovary, and testis of FHMs. In the female liver, gad65 mRNA was significantly higher in expression compared to the male liver. Transcripts for gad67 were the highest in the brain>gonad>liver and in the gonads, gad67 was significantly higher in expression than gad65 mRNA. In the liver and gonad, the relative abundance of the subunits followed a general trend of gabrb1>gabrb2=gabrg1=gabrg2>gabra1=gabra5. To explore the effects of GABA in the ovary, tissue explants from reproductive female FHMs were treated with GABA (10(-10), 10(-8) and 10(-6)M) for 12h. GABA had no significant effect on 17β-estradiol production or on mRNA abundance for genes involved in ovarian steroidogenesis (e.g., 11βhsd, cyp17, cyp19a). There was a significant decrease in estrogen receptor 2a (esr2a) mRNA with 10(-10)M GABA. This study begins to investigate the GABA system in non-neural tissues of

  3. Expression of the γ-Aminobutyric Acid (GABA) Plasma Membrane Transporter-1 in Monkey and Human Retina

    PubMed Central

    Casini, Giovanni; Rickman, Dennis W.; Brecha, Nicholas C.

    2010-01-01

    Purpose To determine the expression pattern of the predominant γ-aminobutyric acid (GABA) plasma membrane transporter GAT-1 in Old World monkey (Macaca mulatta) and human retina. Methods GAT-1 was localized in retinal sections by using immunohistochemical techniques with fluorescence and confocal microscopy. Double-labeling studies were performed with the GAT-1 antibody using antibodies to GABA, vasoactive intestinal polypeptide (VIP), tyrosine hydroxylase (TH), and the bipolar cell marker Mab115A10. Results The pattern of GAT-1 immunostaining was similar in human and monkey retinas. Numerous small immunoreactive somata were in the inner nuclear layer (INL) and were present rarely in the inner plexiform layer (IPL) of all retinal regions. Medium GAT-1 somata were in the ganglion cell layer in the parafoveal and peripheral retinal regions. GAT-1 fibers were densely distributed throughout the IPL. Varicose processes, originating from both the IPL and somata in the INL, arborized in the outer plexiform layer (OPL), forming a sparse network in all retinal regions, except the fovea. Sparsely occurring GAT-1 processes were in the nerve fiber layer in parafoveal regions and near the optic nerve head but not in the optic nerve. In the INL, 99% of the GAT-1 somata contained GABA, and 66% of the GABA immunoreactive somata expressed GAT-1. GAT-1 immunoreactivity was in all VIP-containing cells, but it was absent in TH-immunoreactive amacrine cells and in Mab115A10 immunoreactive bipolar cells. Conclusions GAT-1 in primate retinas is expressed by amacrine and displaced amacrine cells. The predominant expression of GAT-1 in the inner retina is consistent with the idea that GABA transporters influence neurotransmission and thus participate in visual information processing in the retina. PMID:16565409

  4. New effects of GABAB receptor allosteric modulator rac-BHFF on ambient GABA, uptake/release, Em and synaptic vesicle acidification in nerve terminals.

    PubMed

    Pozdnyakova, N; Dudarenko, M; Borisova, T

    2015-09-24

    Positive allosteric modulators of GABAB receptors have great therapeutic potential for medications of anxiety, depression, etc. The effects of recently discovered modulator rac-BHFF on the key characteristics of GABAergic neurotransmission were investigated in cortical and hippocampal presynaptic nerve terminals of rats (synaptosomes). The ambient level of [(3)H]GABA that is a balance between release and uptake of the neurotransmitter increased significantly in the presence of rac-BHFF (at concentrations 10-30μM). The initial velocity of synaptosomal [(3)H]GABA uptake was suppressed by the modulator. In the presence of GABA transporter blocker NO-711, it was shown that rac-BHFF increased tonic release of [(3)H]GABA from synaptosomes (at concentrations 3-30μM). Rac-BHFF within the concentration range of 0.3-30μM did not enhance inhibiting effect of (±)-baclofen on depolarization-induced exocytotic release of [(3)H]GABA. Rac-BHFF (0.3-30μM) caused dose-dependent depolarization of the plasma membrane and dissipation of the proton gradient of synaptic vesicles in synaptosomes that was shown in the absence/presence of GABAB receptor antagonist saclofen using fluorescent dyes rhodamine 6G and acridine orange, respectively, and so, the above effects of rac-BHFF were not associated with the modulation of presynaptic GABAB receptors. Therefore, drug development strategy of positive allosteric modulation of GABAB receptors is to eliminate the above side effects of rac-BHFF in presynapse, and vice versa, these new properties of rac-BHFF may be exploited appropriately. PMID:26197223

  5. Dual effects of slightly acidic electrolyzed water (SAEW) treatment on the accumulation of γ-aminobutyric acid (GABA) and rutin in germinated buckwheat.

    PubMed

    Hao, Jianxiong; Wu, Tongjiao; Li, Huiying; Wang, Wei; Liu, Haijie

    2016-06-15

    In the present study, the dual effects of slightly acidic electrolyzed water (SAEW) treatment on γ-aminobutyric acid (GABA) and rutin accumulation of germinated buckwheat were evaluated during germination. The results showed that SAEW treatment (pH 5.83, ACC of 20.3 mg/L) could promote the accumulation of GABA and rutin in germinated buckwheat. The GABA and rutin contents of SAEW-germinated buckwheat reached 143.20 and 739.9 mg/100 g respectively, which is significantly higher than those of control (P<0.05). Moreover, SAEW treatment could increase the activity of glutamic acid decarboxylase (GAD) and phenylalanine ammonialyase (PAL) and thus result in the GABA and rutin accumulation of germinated buckwheat. The results suggested that SAEW treatment could promote the rutin accumulation of germinated buckwheat by influencing phenylpropanoid secondary metabolic pathway instead of the inhibition of rutin degrading enzyme (RDE) activity. In addition, SAEW treatment had no adverse impact on the sprouts growth and could reduce the microbial populations of germinated buckwheat during germination. PMID:26868552

  6. Design, synthesis and SAR studies of GABA uptake inhibitors derived from 2-substituted pyrrolidine-2-yl-acetic acids.

    PubMed

    Steffan, Tobias; Renukappa-Gutke, Thejavathi; Höfner, Georg; Wanner, Klaus T

    2015-03-15

    In this paper, we disclose the design and synthesis of a series of 2-substituted pyrrolidine-2-yl-acetic acid as core structures and the N-arylalkyl derivatives thereof as potential GABA transport inhibitors. The 2-position in the side chain of pyrrolidine-2-yl-acetic acid derivatives was substituted with alkyl, hydroxy and amino groups to modulate the activity and selectivity to mGAT1 and mGAT4 proteins. SAR studies of the compounds performed for the four mouse GABA transporter proteins (mGAT1-mGAT4) implied significant potencies and subtype selectivities for 2-hydroxy-2-pyrrolidine-2-yl-acetic acid derivatives. The racemate rac-(u)-13c exhibited the highest potency (pIC50 5.67) at and selectivity for mGAT1 in GABA uptake assays. In fact, the potency of rac-(u)-13c at hGAT-1 (pIC50 6.14) was even higher than its potency at mGAT1. These uptake results for rac-(u)-13c are in line with the binding affinities to the aforesaid proteins mGAT1 (pKi 6.99) and hGAT-1 (pKi 7.18) determined by MS Binding Assay based on NO711 as marker quantified by LC-ESI-MS-MS analysis. Interestingly, the 2-hydroxy-2-pyrrolidine-2-yl-acetic acid rac-(u)-13d containing 2-{[tris(4-methoxyphenyl)]methoxy} ethyl group at the nitrogen atom of the pyrrolidine ring showed high potency at mGAT4 and a comparatively better selectivity for this protein (>15 against mGAT3) than the well known mGAT4 uptake inhibitor (S)-SNAP-5114. PMID:25698617

  7. Determination of theanine, GABA, and other amino acids in green, oolong, black, and Pu-erh teas with dabsylation and high-performance liquid chromatography.

    PubMed

    Syu, Kai-Yang; Lin, Chih-Li; Huang, Hsiu-Chen; Lin, Jen-Kun

    2008-09-10

    Dabsyl chloride (dimethylaminoazobenzene sulfonyl chloride), a useful chromophoric labeling reagent for amino acids and amines, was developed in this laboratory in 1975. Although several methods have been developed to determine various types of amino acids, a quick and easy method of determining theanine, GABA, and other amino acids has not been developed in one HPLC system. In this paper are analyzed the free amino acid contents of theanine and GABA in different teas (green tea, black tea, oolong tea, Pu-erh tea, and GABA tea) with a dabsylation and reverse phase high-performance liquid chromatography (HPLC) system coupled with a detector at 425 nm absorbance. Two reverse phase columns, Hypersil GOLD and Zorbax ODS, were used and gave different resolutions of dabsyl amino acids in the gradient elution program. The data suggest that the tea source or the steps of tea-making may contribute to the theanine contents variations. High theanine contents of high-mountain tea were observed in both green tea and oolong tea. Furthermore, the raw (natural fermented) Pu-erh tea contained more theanine than ripe (wet fermented) Pu-erh tea, and the GABA contents in normal teas were generally lower than that in GABA tea. PMID:18652476

  8. Gestational changes of GABA levels and GABA binding in the human uterus

    SciTech Connect

    Erdoe, S.L.; Villanyi, P.; Laszlo, A.

    1989-01-01

    The concentrations of gamma-aminobutyric acid (GABA), the activities of L-glutamate decarboxylase and GABA-transaminase, and the nature of the sodium-independent binding of GABA were examined in uterine tissue pieces obtained surgically from pregnant and non-pregnant women. GABA concentrations were reduced, while the activity of GABA-transaminase and the specific binding of (/sup 3/H)GABA significantly increased in specimens from pregnant subjects. These findings suggest some gestation-related functional role for the GABA system in the human uterus.

  9. Stable isotope dilution HILIC-MS/MS method for accurate quantification of glutamic acid, glutamine, pyroglutamic acid, GABA and theanine in mouse brain tissues.

    PubMed

    Inoue, Koichi; Miyazaki, Yasuto; Unno, Keiko; Min, Jun Zhe; Todoroki, Kenichiro; Toyo'oka, Toshimasa

    2016-01-01

    In this study, we developed the stable isotope dilution hydrophilic interaction liquid chromatography with tandem mass spectrometry (HILIC-MS/MS) technique for the accurate, reasonable and simultaneous quantification of glutamic acid (Glu), glutamine (Gln), pyroglutamic acid (pGlu), γ-aminobutyric acid (GABA) and theanine in mouse brain tissues. The quantification of these analytes was accomplished using stable isotope internal standards and the HILIC separating mode to fully correct the intramolecular cyclization during the electrospray ionization. It was shown that linear calibrations were available with high coefficients of correlation (r(2)  > 0.999, range from 10 pmol/mL to 50 mol/mL). For application of the theanine intake, the determination of Glu, Gln, pGlu, GABA and theanine in the hippocampus and central cortex tissues was performed based on our developed method. In the region of the hippocampus, the concentration levels of Glu and pGlu were significantly reduced during reality-based theanine intake. Conversely, the concentration level of GABA increased. This result showed that transited theanine has an effect on the metabolic balance of Glu analogs in the hippocampus. PMID:26033549

  10. A Role for GAT-1 in Presynaptic GABA Homeostasis?

    PubMed Central

    Conti, Fiorenzo; Melone, Marcello; Fattorini, Giorgia; Bragina, Luca; Ciappelloni, Silvia

    2011-01-01

    In monoamine-releasing terminals, neurotransmitter transporters – in addition to terminating synaptic transmission by clearing released transmitters from the extracellular space – are the primary mechanism for replenishing transmitter stores and thus regulate presynaptic homeostasis. Here, we analyze whether GAT-1, the main plasma membrane GABA transporter, plays a similar role in GABAergic terminals. Re-examination of existing literature and recent data gathered in our laboratory show that GABA homeostasis in GABAergic terminals is dominated by the activity of the GABA synthesizing enzyme and that GAT-1-mediated GABA transport contributes to cytosolic GABA levels. However, analysis of GAT-1 KO, besides demonstrating the effects of reduced clearance, reveals the existence of changes compatible with an impaired presynaptic function, as miniature IPSCs frequency is reduced by one-third and glutamic acid decarboxylases and phosphate-activated glutaminase levels are significantly up-regulated. Although the changes observed are less robust than those reported in mice with impaired dopamine, noradrenaline, and serotonin plasma membrane transporters, they suggest that in GABAergic terminals GAT-1 impacts on presynaptic GABA homeostasis, and may contribute to the activity-dependent regulation of inhibitory efficacy. PMID:21503156

  11. Oxytocin depolarizes fast-spiking hilar interneurons and induces GABA release onto mossy cells of the rat dentate gyrus.

    PubMed

    Harden, Scott W; Frazier, Charles J

    2016-09-01

    Delivery of exogenous oxytocin (OXT) to central oxytocin receptors (OXT-Rs) is currently being investigated as a potential treatment for conditions such as post-traumatic stress disorder (PTSD), depression, social anxiety, and autism spectrum disorder (ASD). Despite significant research implicating central OXT signaling in modulation of mood, affect, social behavior, and stress response, relatively little is known about the cellular and synaptic mechanisms underlying these complex actions, particularly in brain regions which express the OXT-R but lie outside of the hypothalamus (where OXT-synthesizing neurons reside). We report that bath application of low concentrations of the selective OXT-R agonist Thr4,Gly7-OXT (TGOT) reliably and robustly drives GABA release in the dentate gyrus in an action potential dependent manner. Additional experiments led to identification of a small subset of small hilar interneurons that are directly depolarized by acute application of TGOT. From a physiological perspective, TGOT-responsive hilar interneurons have high input resistance, rapid repolarization velocity during an action potential, and a robust afterhyperpolarization. Further, they fire irregularly (or stutter) in response to moderate depolarization, and fire quickly with minimal spike frequency accommodation in response to large current injections. From an anatomical perspective, TGOT responsive hilar interneurons have dense axonal arborizations in the hilus that were found in close proximity with mossy cell somata and/or proximal dendrites, and also invade the granule cell layer. Further, they have primary dendrites that always extend into the granule cell layer, and sometimes have clear arborizations in the molecular layer. Overall, these data reveal a novel site of action for OXT in an important limbic circuit, and represent a significant step towards better understanding how endogenous OXT may modulate flow of information in hippocampal networks. © 2016 Wiley

  12. A Missense Mutation of the Gene Encoding Synaptic Vesicle Glycoprotein 2A (SV2A) Confers Seizure Susceptibility by Disrupting Amygdalar Synaptic GABA Release.

    PubMed

    Tokudome, Kentaro; Okumura, Takahiro; Terada, Ryo; Shimizu, Saki; Kunisawa, Naofumi; Mashimo, Tomoji; Serikawa, Tadao; Sasa, Masashi; Ohno, Yukihiro

    2016-01-01

    Synaptic vesicle glycoprotein 2A (SV2A) is specifically expressed in the membranes of synaptic vesicles and modulates action potential-dependent neurotransmitter release. To explore the role of SV2A in the pathogenesis of epileptic disorders, we recently generated a novel rat model (Sv2a(L174Q) rat) carrying a missense mutation of the Sv2a gene and showed that the Sv2a(L174Q) rats were hypersensitive to kindling development (Tokudome et al., 2016). Here, we further conducted behavioral and neurochemical studies to clarify the pathophysiological mechanisms underlying the seizure vulnerability in Sv2a(L174Q) rats. Sv2a(L174Q) rats were highly susceptible to pentylenetetrazole (PTZ)-induced seizures, yielding a significantly higher seizure scores and seizure incidence than the control animals. Brain mapping analysis of Fos expression, a biological marker of neural excitation, revealed that the seizure threshold level of PTZ region-specifically elevated Fos expression in the amygdala in Sv2a(L174Q) rats. In vivo microdialysis study showed that the Sv2a(L174Q) mutation preferentially reduced high K(+) (depolarization)-evoked GABA release, but not glutamate release, in the amygdala. In addition, specific control of GABA release by SV2A was supported by its predominant expression in GABAergic neurons, which were co-stained with antibodies against SV2A and glutamate decarboxylase 1. The present results suggest that dysfunction of SV2A by the missense mutation elevates seizure susceptibility in rats by preferentially disrupting synaptic GABA release in the amygdala, illustrating the crucial role of amygdalar SV2A-GABAergic system in epileptogenesis. PMID:27471467

  13. A Missense Mutation of the Gene Encoding Synaptic Vesicle Glycoprotein 2A (SV2A) Confers Seizure Susceptibility by Disrupting Amygdalar Synaptic GABA Release

    PubMed Central

    Tokudome, Kentaro; Okumura, Takahiro; Terada, Ryo; Shimizu, Saki; Kunisawa, Naofumi; Mashimo, Tomoji; Serikawa, Tadao; Sasa, Masashi; Ohno, Yukihiro

    2016-01-01

    Synaptic vesicle glycoprotein 2A (SV2A) is specifically expressed in the membranes of synaptic vesicles and modulates action potential-dependent neurotransmitter release. To explore the role of SV2A in the pathogenesis of epileptic disorders, we recently generated a novel rat model (Sv2aL174Q rat) carrying a missense mutation of the Sv2a gene and showed that the Sv2aL174Q rats were hypersensitive to kindling development (Tokudome et al., 2016). Here, we further conducted behavioral and neurochemical studies to clarify the pathophysiological mechanisms underlying the seizure vulnerability in Sv2aL174Q rats. Sv2aL174Q rats were highly susceptible to pentylenetetrazole (PTZ)-induced seizures, yielding a significantly higher seizure scores and seizure incidence than the control animals. Brain mapping analysis of Fos expression, a biological marker of neural excitation, revealed that the seizure threshold level of PTZ region-specifically elevated Fos expression in the amygdala in Sv2aL174Q rats. In vivo microdialysis study showed that the Sv2aL174Q mutation preferentially reduced high K+ (depolarization)-evoked GABA release, but not glutamate release, in the amygdala. In addition, specific control of GABA release by SV2A was supported by its predominant expression in GABAergic neurons, which were co-stained with antibodies against SV2A and glutamate decarboxylase 1. The present results suggest that dysfunction of SV2A by the missense mutation elevates seizure susceptibility in rats by preferentially disrupting synaptic GABA release in the amygdala, illustrating the crucial role of amygdalar SV2A-GABAergic system in epileptogenesis. PMID:27471467

  14. Role of a gamma-aminobutryic acid (GABA) receptor mutation in the evolution and spread of Diabrotica virgifera virgifera resistance to cyclodiene insecticides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An alanine to serine amino acid substitution within the Rdl subunit of the gamma-aminobutyric acid (GABA) receptor confers resistance to cyclodiene insecticides in many species. The corn rootworm, Diabrotica virgifera virgifera, is a damaging pest of cultivated corn that was partially controlled by ...

  15. Enhancing Contents of γ-Aminobutyric Acid (GABA) and Other Micronutrients in Dehulled Rice during Germination under Normoxic and Hypoxic Conditions.

    PubMed

    Ding, Junzhou; Yang, Tewu; Feng, Hao; Dong, Mengyi; Slavin, Margaret; Xiong, Shanbai; Zhao, Siming

    2016-02-10

    Biofortification of staple grains with high contents of essential micronutrients is an important strategy to overcome micronutrient malnutrition. However, few attempts have targeted at γ-aminobutyric acid (GABA), a functional nutrient for aging populations. In this study, two rice cultivars, Heinuo and Xianhui 207, were used to investigate changes in GABA and other nutritional compounds of dehulled rice after germination under normoxic and hypoxic conditions. Forty-one metabolites were identified in both cultivars treated by normoxic germination, whereas the germinated dehulled rice of Heinuo and Xianhui 207 under hypoxic treatment had 43 and 41 metabolites identified, respectively. GABA increased in dehulled rice after germination, especially under hypoxia. Meanwhile, a number of other health-beneficial and/or flavor-related compounds such as lysine and d-mannose increased after the hypoxic treatment. The accumulation of GABA exhibited genotype-specific modes in both normoxic and hypoxic treatments. With regard to GABA production, Xianhui 207 was more responsive to the germination process than Heinuo, whereas Heinuo was more responsive to hypoxia than Xianhui 207. This study provides a promising approach to biofortify dehulled rice with increased GABA and other nutrients through metabolomic-based regulation. PMID:26765954

  16. Blocking GABA-A receptors in the medial septum enhances hippocampal acetylcholine release and behavior in a rat model of diencephalic amnesia.

    PubMed

    Roland, Jessica J; Savage, Lisa M

    2009-05-01

    Wernicke-Korsakoff syndrome (WKS), a form of diencephalic amnesia caused by thiamine deficiency, results in severe anterograde memory loss. Pyrithiamine-induced thiamine deficiency (PTD), an animal model of WKS, produces cholinergic abnormalities including decreased functional hippocampal acetylcholine (ACh) release and poor spatial memory. Increasing hippocampal ACh levels has increased performance in PTD animals. Intraseptal bicuculline (GABA(A) antagonist) augments hippocampal ACh release in normal animals and we found it (0.50 microg/microl and 0.75 microg/microl) also increased in-vivo hippocampal ACh release in PTD animals. However, the 0.75 microg/microl dose produced a greater change in hippocampal ACh release in control animals. The 0.50 microg/microl dose of bicuculline was then selected to determine if it could enhance spontaneous alternation performance in PTD animals. This dose of bicuculline significantly increased hippocampal ACh levels above baseline in both PTD and control rats and resulted in complete behavioral recovery in PTD animals, without altering performance in control rats. This suggests that balancing ACh-GABA interactions in the septohippocampal circuit may be an effective therapeutic approach in certain amnestic syndromes. PMID:19463263

  17. Imbalance between Glutamate and GABA in Fmr1 Knockout Astrocytes Influences Neuronal Development

    PubMed Central

    Wang, Lu; Wang, Yan; Zhou, Shimeng; Yang, Liukun; Shi, Qixin; Li, Yujiao; Zhang, Kun; Yang, Le; Zhao, Minggao; Yang, Qi

    2016-01-01

    Fragile X syndrome (FXS) is a form of inherited mental retardation that results from the absence of the fragile X mental retardation protein (FMRP), the product of the Fmr1 gene. Numerous studies have shown that FMRP expression in astrocytes is important in the development of FXS. Although astrocytes affect neuronal dendrite development in Fmr1 knockout (KO) mice, the factors released by astrocytes are still unclear. We cultured wild type (WT) cortical neurons in astrocyte-conditioned medium (ACM) from WT or Fmr1 KO mice. Immunocytochemistry and Western blotting were performed to detect the dendritic growth of both WT and KO neurons. We determined glutamate and γ-aminobutyric acid (GABA) levels using high-performance liquid chromatography (HPLC). The total neuronal dendritic length was reduced when cultured in the Fmr1 KO ACM. This neurotoxicity was triggered by an imbalanced release of glutamate and GABA from Fmr1 KO astrocytes. We found increased glutaminase and GABA transaminase (GABA-T) expression and decreased monoamine oxidase B expression in Fmr1 KO astrocytes. The elevated levels of glutamate contributed to oxidative stress in the cultured neurons. Vigabatrin (VGB), a GABA-T inhibitor, reversed the changes caused by glutamate and GABA release in Fmr1 KO astrocytes and the abnormal behaviors in Fmr1 KO mice. Our results indicate that the imbalance in the astrocytic glutamate and GABA release may be involved in the neuropathology and the underlying symptoms of FXS, and provides a therapeutic target for treatment. PMID:27517961

  18. Cannabinoid agonists stimulate [3H]GABA release in the globus pallidus of the rat when G(i) protein-receptor coupling is restricted: role of dopamine D2 receptors.

    PubMed

    Gonzalez, Brenda; Paz, Francisco; Florán, Leonor; Aceves, Jorge; Erlij, David; Florán, Benjamín

    2009-03-01

    The motor effects of cannabinoids in the globus pallidus appear to be caused by increases in interstitial GABA. To elucidate the mechanism of this response, we investigated the effect of the selective cannabinoid type 1 receptor (CB1) cannabinoid agonist arachidonyl-2-chloroethylamide (ACEA) on [(3)H]GABA release in slices of the rat globus pallidus. ACEA had two effects: concentrations between 10(-8) and 10(-6) M stimulated release, whereas higher concentrations (IC(50) approximately 10(-6) M) inhibited it. Another cannabinoid agonist, WIN-55,212-2, also had bimodal effects on release. Studies of cAMP production indicate that under conditions of low G(i/o), availability the coupling of CB1 receptors with G(i/o) proteins can be changed into CB1:G(s/olf) coupling; therefore, we determined the effects of conditions that limit G(i/o) availability on [(3)H]GABA release. Blockers of G(i/o) protein interactions, pertussis toxin and N-ethylmaleimide, transformed the inhibitory effects of ACEA on GABA release into stimulation. It also has been suggested that stimulation of D2 receptors can reduce G(i/o) availability. Blocking D2 receptors with sulpiride [(S)-5-aminosulfonyl-N-[(1-ethyl-2-pyrrolidinyl)methyl]-2-methoxybenzamidersqb] or depleting dopamine with reserpine inhibited the ACEA-induced stimulation of release. Thus, the D2 dependence of stimulation is consistent with the proposal that D2 receptors reduce G(i/o) proteins available for binding to the CB1 receptor. In summary, CB1 receptor activation has dual effects on GABA release in the globus pallidus. Low concentrations stimulate release through a process that depends on activation of dopamine D2 receptors that may limit G(i/o) protein availability. Higher concentrations of cannabinoid inhibit GABA release through mechanisms that are independent of D2 receptor activation. PMID:19106171

  19. Adenosine-to-inosine RNA editing affects trafficking of the gamma-aminobutyric acid type A (GABA(A)) receptor.

    PubMed

    Daniel, Chammiran; Wahlstedt, Helene; Ohlson, Johan; Björk, Petra; Ohman, Marie

    2011-01-21

    Recoding by adenosine-to-inosine RNA editing plays an important role in diversifying proteins involved in neurotransmission. We have previously shown that the Gabra-3 transcript, coding for the α3 subunit of the GABA(A) receptor is edited in mouse, causing an isoleucine to methionine (I/M) change. Here we show that this editing event is evolutionarily conserved from human to chicken. Analyzing recombinant GABA(A) receptor subunits expressed in HEK293 cells, our results suggest that editing at the I/M site in α3 has functional consequences on receptor expression. We demonstrate that I/M editing reduces the cell surface and the total number of α3 subunits. The reduction in cell surface levels is independent of the subunit combination as it is observed for α3 in combination with either the β2 or the β3 subunit. Further, an amino acid substitution at the corresponding I/M site in the α1 subunit has a similar effect on cell surface presentation, indicating the importance of this site for receptor trafficking. We show that the I/M editing during brain development is inversely related to the α3 protein abundance. Our results suggest that editing controls trafficking of α3-containing receptors and may therefore facilitate the switch of subunit compositions during development as well as the subcellular distribution of α subunits in the adult brain. PMID:21030585

  20. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae.

    PubMed

    Kim, Sujin; Lee, Kyusung; Bae, Sang-Jeong; Hahn, Ji-Sook

    2015-03-01

    A wide range of promoters with different strengths and regulatory mechanisms are valuable tools in metabolic engineering and synthetic biology. While there are many constitutive promoters available, the number of inducible promoters is still limited for pathway engineering in Saccharomyces cerevisiae. Here, we constructed aromatic amino-acid-inducible promoters based on the binding sites of Aro80 transcription factor, which is involved in the catabolism of aromatic amino acids through transcriptional activation of ARO9 and ARO10 genes in response to aromatic amino acids. A dynamic range of tryptophan-inducible promoter strengths can be obtained by modulating the number of Aro80 binding sites, plasmid copy numbers, and tryptophan concentrations. Using low and high copy number plasmid vectors and different tryptophan concentrations, a 29-fold range of fluorescence intensities of enhanced green fluorescent protein (EGFP) reporter could be achieved from a synthetic U4C ARO9 promoter, which is composed of four repeats of Aro80 binding half site (CCG) and ARO9 core promoter element. The U4C ARO9 promoter was applied to express alsS and alsD genes from Bacillus subtilis for acetoin production in S. cerevisiae, resulting in a gradual increase in acetoin titers depending on tryptophan concentrations. Furthermore, we demonstrated that γ-aminobutyrate (GABA)-inducible UGA4 promoter, regulated by Uga3, can also be used in metabolic engineering as a dose-dependent inducible promoter. The wide range of controllable expression levels provided by these tryptophan- and GABA-inducible promoters might contribute to fine-tuning gene expression levels and timing for the optimization of pathways in metabolic engineering. PMID:25573467

  1. gamma-Aminobutyric acid (GABA)-induced currents of skate Muller (glial) cells are mediated by neuronal-like GABAA receptors.

    PubMed Central

    Malchow, R P; Qian, H H; Ripps, H

    1989-01-01

    Radial glia (Muller cells) of the vertebrate retina appear to be intimately involved in regulating the actions of amino acid neurotransmitters. One of the amino acids thought to be important in mediating retinal information flow is gamma-aminobutyric acid (GABA). The findings of this study indicate that enzymatically isolated skate Muller cells are depolarized by GABA and the GABAA agonist muscimol and that the actions of these agents are reduced by bicuculline and picrotoxin. Membrane currents induced by GABA under voltage clamp were dose dependent, were associated with an increase in membrane conductance, and showed marked desensitization when the concentration of GABA exceeded 2.5 microM. The responses had a reversal potential close to that calculated for chloride, indicating that the currents were generated by ions passing through channels. These data support the view that skate Muller cells possess functional GABAA receptors. The presence of such receptors on retinal glia may have important implications for the role of Muller cells in maintaining the constancy of the extracellular milieu, for neuron-glia interactions within the retina, and for theories concerning the generation of the electroretinogram. Images PMID:2567001

  2. Disorders of GABA metabolism: SSADH and GABA-transaminase deficiencies

    PubMed Central

    Parviz, Mahsa; Vogel, Kara; Gibson, K. Michael; Pearl, Phillip L.

    2014-01-01

    Clinical disorders known to affect inherited gamma-amino butyric acid (GABA) metabolism are autosomal recessively inherited succinic semialdehyde dehydrogenase and GABA-transaminase deficiency. The clinical presentation of succinic semialdehyde dehydrogenase deficiency includes intellectual disability, ataxia, obsessive-compulsive disorder and epilepsy with a nonprogressive course in typical cases, although a progressive form in early childhood as well as deterioration in adulthood with worsening epilepsy are reported. GABA-transaminase deficiency is associated with a severe neonatal-infantile epileptic encephalopathy. PMID:25485164

  3. Imidase catalyzing desymmetric imide hydrolysis forming optically active 3-substituted glutaric acid monoamides for the synthesis of gamma-aminobutyric acid (GABA) analogs.

    PubMed

    Nojiri, Masutoshi; Hibi, Makoto; Shizawa, Hiroaki; Horinouchi, Nobuyuki; Yasohara, Yoshihiko; Takahashi, Satomi; Ogawa, Jun

    2015-12-01

    The recent use of optically active 3-substituted gamma-aminobutyric acid (GABA) analogs in human therapeutics has identified a need for an efficient, stereoselective method of their synthesis. Here, bacterial strains were screened for enzymes capable of stereospecific hydrolysis of 3-substituted glutarimides to generate (R)-3-substituted glutaric acid monoamides. The bacteria Alcaligenes faecalis NBRC13111 and Burkholderia phytofirmans DSM17436 were discovered to hydrolyze 3-(4-chlorophenyl) glutarimide (CGI) to (R)-3-(4-chlorophenyl) glutaric acid monoamide (CGM) with 98.1% enantiomeric excess (e.e.) and 97.5% e.e., respectively. B. phytofirmans DSM17436 could also hydrolyze 3-isobutyl glutarimide (IBI) to produce (R)-3-isobutyl glutaric acid monoamide (IBM) with 94.9% e.e. BpIH, an imidase, was purified from B. phytofirmans DSM17436 and found to generate (R)-CGM from CGI with specific activity of 0.95 U/mg. The amino acid sequence of BpIH had a 75% sequence identity to that of allantoinase from A. faecalis NBRC13111 (AfIH). The purified recombinant BpIH and AfIH catalyzed (R)-selective hydrolysis of CGI and IBI. In addition, a preliminary investigation of the enzymatic properties of BpIH and AfIH revealed that both enzymes were stable in the range of pH 6-10, with an optimal pH of 9.0, stable at temperatures below 40 °C, and were not metalloproteins. These results indicate that the use of this class of hydrolase to generate optically active 3-substituted glutaric acid monoamide could simplify the production of specific chiral GABA analogs for drug therapeutics. PMID:26205522

  4. Hydroxy-1,2,5-oxadiazolyl moiety as bioisoster of the carboxy function. A computational study on gamma-aminobutyric acid (GABA) related compounds.

    PubMed

    Tosco, Paolo; Lolli, Marco L

    2008-04-01

    Recently, our research group has proposed the hydroxyfurazanyl (4-hydroxy-1,2,5-oxadiazole-3-yl) moiety as a new non-classical isoster of the carboxy function in the design of gamma-aminobutyric acid (GABA) analogues. Some compounds showed significant activity at the GABA(A) receptor, representing the only examples of pentatomic heterocycles bearing an omega-aminoalkyl flexible side chain in the position vicinal to the hydroxy group displaying agonist activity at this receptor subtype. In this work, an ab initio analysis of the structural and electronic features of furazan-3-ol is presented, in order to provide a theoretical basis to the claimed bioisosterism with the carboxy function. An ab initio conformational study with the C-PCM implicit solvent model was carried out to elucidate the reasons of the peculiar behaviour of the furazan models. Alongside, another conformational search through molecular dynamics in explicit solvent was accomplished, in order to validate the first method. The electronic features of the 4-hydroxy-1,2,5-oxadiazole-3-yl substructure seem to account for a marked stabilising effect of the putative bioactive conformation at the GABA(A) receptor subtype. The 1,2,5-thiadiazole analogue, which shares the same conformational preference of its oxygenated counterpart, was identified as a potential candidate for synthesis and pharmacological testing. Figure 4-(omega-aminoalkyl)-1,2,5-oxadiazole-3-ol analogues of GABA. PMID:18247067

  5. Retinoic Acid, GABA-ergic, and TGF-β Signaling Systems Are Involved in Human Cleft Palate Fibroblast Phenotype

    PubMed Central

    Baroni, Tiziano; Bellucci, Catia; Lilli, Cinzia; Pezzetti, Furio; Carinci, Francesco; Becchetti, Ennio; Carinci, Paolo; Stabellini, Giordano; Calvitti, Mario; Lumare, Eleonora; Bodo, Maria

    2006-01-01

    During embryogenesis, a complex interplay between extracellular matrix (ECM) molecules, regulatory molecules, and growth factors mediates morphogenetic processes involved in palatogenesis. Transforming growth factor-β (TGF-β), retinoic acid (RA), and γ-aminobutyric acid (GABA)ergic signaling systems are also potentially involved. Using [3H]glucosamine and [35S]methionine incorporation, anion exchange chromatography, semiquantitative radioactive RT-PCR, and a TGF-β binding assay, we aimed to verify the presence of phenotypic differences between primary cultures of secondary palate (SP) fibroblasts from 2-year-old subjects with familial nonsyndromic cleft lip and/or palate (CLP-SP fibroblasts) and age-matched normal SP (N-SP) fibroblasts. The effects of RA—which, at pharmacologic doses, induces cleft palate in newborns of many species—were also studied. We found an altered ECM production in CLP-SP fibroblasts that synthesized and secreted more glycosaminoglycans (GAGs) and fibronectin (FN) compared with N-SP cells. In CLP-SP cells, TGF-β3 mRNA expression and TGF-β receptor number were higher and RA receptor-α (RARA) gene expression was increased. Moreover, we demonstrated for the first time that GABA receptor (GABRB3) mRNA expression was upregulated in human CLP-SP fibroblasts. In N-SP and CLP-SP fibroblasts, RA decreased GAG and FN secretion and increased TGF-β3 mRNA expression but reduced the number of TGF-β receptors. TGF-β receptor type I mRNA expression was decreased, TGF-β receptor type II was increased, and TGF-β receptor type III was not affected. RA treatment increased RARA gene expression in both cell populations but upregulated GABRB3 mRNA expression only in N-SP cells. These results show that CLP-SP fibroblasts compared with N-SP fibroblasts exhibit an abnormal phenotype in vitro and respond differently to RA treatment, and suggest that altered crosstalk between RA, GABAergic, and TGF-β signaling systems could be involved in human cleft

  6. Unexpected Photo-instability of 2,6-Sulfonamide-Substituted BODIPYs and Its Application to Caged GABA.

    PubMed

    Takeda, Aoi; Komatsu, Toru; Nomura, Hiroshi; Naka, Masamitsu; Matsuki, Norio; Ikegaya, Yuji; Terai, Takuya; Ueno, Tasuku; Hanaoka, Kenjiro; Nagano, Tetsuo; Urano, Yasuteru

    2016-07-01

    Investigation of the unexpected photo-instability of 2,6-sulfonamide-substituted derivatives of the boron dipyrromethene (BODIPY) fluorophore led to the discovery of a photoreaction accompanied by multiple bond scissions. We characterized the photoproducts and utilized the photoreaction to design a caged γ-aminobutyric acid (GABA) derivative that can release GABA upon irradiation in the visible range (>450 nm). This allowed us to stimulate neural cells in mouse brain slices. PMID:27038199

  7. Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined?

    PubMed Central

    Michaeli, Simon; Fromm, Hillel

    2015-01-01

    γ-Aminobutyric acid (GABA) is a non-proteinogenic amino acid that is found in uni- and multi-cellular organisms and is involved in many aspects of plant life cycle. GABA metabolism occurs by the action of evolutionary conserved enzymes that constitute the GABA shunt, bypassing two steps of the TCA cycle. The central position of GABA in the interface between plant carbon and nitrogen metabolism is well established. In parallel, there is evidence to support a role for GABA as a signaling molecule in plants. Here we cover some of the recent findings on GABA metabolism and signaling in plants and further suggest that the metabolic and signaling aspects of GABA may actually be inseparable. PMID:26106401

  8. Transcranial focal electrical stimulation reduces the convulsive expression and amino acid release in the hippocampus during pilocarpine-induced status epilepticus in rats.

    PubMed

    Santana-Gómez, César E; Alcántara-González, David; Luna-Munguía, Hiram; Bañuelos-Cabrera, Ivette; Magdaleno-Madrigal, Víctor; Fernández-Mas, Rodrigo; Besio, Walter; Rocha, Luisa

    2015-08-01

    The aim of the present study was to evaluate the effects of transcranial focal electrical stimulation (TFS) on γ-aminobutyric acid (GABA) and glutamate release in the hippocampus under basal conditions and during pilocarpine-induced status epilepticus (SE). Animals were previously implanted with a guide cannula attached to a bipolar electrode into the right ventral hippocampus and a concentric ring electrode placed on the skull surface. The first microdialysis experiment was designed to determine, under basal conditions, the effects of TFS (300 Hz, 200 μs biphasic square pulses, for 30 min) on afterdischarge threshold (ADT) and the release of GABA and glutamate in the hippocampus. The results obtained indicate that at low current intensities (<2800 μA), TFS enhances and decreases the basal extracellular levels of GABA and glutamate, respectively. However, TFS did not modify the ADT. During the second microdialysis experiment, a group of animals was subjected to SE induced by pilocarpine administration (300 mg/kg, i.p.; SE group). The SE was associated with a significant rise of GABA and glutamate release (up to 120 and 182% respectively, 5h after pilocarpine injection) and the prevalence of high-voltage rhythmic spikes and increased spectral potency of delta, gamma, and theta bands. A group of animals (SE-TFS group) received TFS continuously during 2h at 100 μA, 5 min after the establishment of SE. This group showed a significant decrease in the expression of the convulsive activity and spectral potency in gamma and theta bands. The extracellular levels of GABA and glutamate in the hippocampus remained at basal conditions. These results suggest that TFS induces anticonvulsant effects when applied during the SE, an effect associated with lower amino acid release. This article is part of a Special Issue entitled "Status Epilepticus". PMID:26006058

  9. GABA(B) receptors and synaptic modulation.

    PubMed

    Kornau, Hans-Christian

    2006-11-01

    GABA(B) receptors modulate transmitter release and postsynaptic membrane potential at various types of central synapses. They function as heterodimers of two related seven-transmembrane domain receptor subunits. Trafficking, activation and signalling of GABA(B) receptors are regulated both by allosteric interactions between the subunits and by the binding of additional proteins. Recent studies have shed light on the roles of GABA(B) receptors in plasticity processes at excitatory synapses. This review summarizes our knowledge of the localization, structure and function of GABA(B) receptors in the central nervous system and their use as drug targets for neurological and psychiatric disorders. PMID:16932937

  10. GABA-mediated inhibition of the anaphylactic response in the guinea-pig trachea.

    PubMed Central

    Gentilini, G.; Franchi-Micheli, S.; Mugnai, S.; Bindi, D.; Zilletti, L.

    1995-01-01

    1. In sensitized guinea-pigs, the effects of gamma-aminobutyric acid (GABA) and GABAmimetic drugs have been investigated on tracheal segments contracted by cumulative application of an allergen (ovoalbumin, OA) and on serosal mast cells. The same drugs have also been tested on activation of alveolar macrophages isolated from unsensitized guinea-pigs. 2. Superfusion with GABA (1-1000 microM) reduced the contraction intensity of tracheal strips. The effect of GABA (100 microM) was not affected by the carrier blockers, nipecotic acid and beta-alanine (300 microM each). It was mimicked by the GABAB agonist (-)-baclofen (100 microM) but not 3-aminopropanephosphinic acid (100 microM, 3-APA). The GABAA agonist, isoguvacine (100 microM) did not exert any effect. GABA (10 microM)-induced inhibition of tracheal contractions was reduced by the GABAB antagonist, 2-hydroxysaclofen (100 microM, 2-HS), but not by the GABAA antagonist, bicuculline (30 microM). 3. The reduction in contraction intensity induced by GABA (100 microM) was prevented by a 40 min preincubation of tracheal strips with capsaicin (10 microM), but not tetrodotoxin (TTX, 0.3 microM). The effect of GABA (1000 microM) was absent after preincubation with indomethacin (2.8 microM) but unmodified when nordihydroguaiaretic acid (NDGA, 3.3 microM) was used. Finally, removal of the epithelium prevented the GABA effect. 4. Anaphylactic histamine release from serosal mast cells isolated from sensitized animals was not affected either by GABA (10-1000 microM) or the selective receptor agonists (-)-baclofen (0.1-1000 microM) and isoguvacine (10-1000 microM).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7582447

  11. GABA interaction with lipids in organic medium

    SciTech Connect

    Beltramo, D.; Kivatinitz, S.; Lassaga, E.; Arce, A.

    1987-08-10

    The interaction of TH-GABA and UC-glutamate with lipids in an aqueous organic partition system was studied. With this partition system TH-GABA and UC-glutamate were able to interact with sphingomyelin, sulfatide, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine and phosphatidic acid but not with cholesterol or ceramide. In an homogeneous aqueous medium the authors could not demonstrate any interaction between TH-GABA-lipids. The apparent dissociation constants (K/sub d/) for TH-GABA-lipids or UC-glutamate-lipids interactions inorganic medium were in the millimolar range and maximal charge between 3 and 7 moles of GABA or glutamate by mole of lipid. Amino acids such as glutamic acid, US -alanine and glycine displaced TH-GABA with the same potency as GABA itself; thus these results show that the interaction lacks pharmacological specificity. To detect this interaction lipid concentrations higher than 2 M were required and in the partition system TH-GABA and lipid phosphorus were both concentrated at the interface. Therefore, lipids tested with a biphasic partition system do not fulfill the classical criteria for a neurotransmitter receptor at least not for GABA and glutamate. 15 references, 1 figure, 3 tables.

  12. Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of gamma-aminobutyric acid (GABA).

    PubMed

    Coda, Rossana; Rizzello, Carlo Giuseppe; Gobbetti, Marco

    2010-02-28

    Lactobacillus plantarum C48 and Lactococcus lactis subsp. lactis PU1, previously selected for the biosynthesis of gamma-aminobutyric acid (GABA), were used for sourdough fermentation of cereal, pseudo-cereal and leguminous flours. Chickpea, amaranth, quinoa and buckwheat were the flours most suitable to be enriched of GABA. The parameters of sourdough fermentation were optimized. Addition of 0.1mM pyridoxal phosphate, dough yield of 160, inoculum of 5 x 10(7)CFU/g of starter bacteria and fermentation for 24h at 30 degrees C were found to be the optimal conditions. A blend of buckwheat, amaranth, chickpea and quinoa flours (ratio 1:1:5.3:1) was selected and fermented with baker's yeast (non-conventional flour bread, NCB) or with Lb. plantarum C48 sourdough (non-conventional flour sourdough bread, NCSB) and compared to baker's yeast started wheat flour bread (WFB). NCSB had the highest concentration of free amino acids and GABA (ca. 4467 and 504 mg/kg, respectively). The concentration of phenolic compounds and antioxidant activity of NCSB bread was the highest, as well as the rate of in vitro starch hydrolysis was the lowest. Texture analysis showed that sourdough fermentation enhances several characteristics of NCSB with respect to NCB, thus approaching the features of WFB. Sensory analysis showed that sourdough fermentation allowed to get good palatability and overall taste appreciation. PMID:20071045

  13. Dopamine D2-like receptors selectively block N-type Ca2+ channels to reduce GABA release onto rat striatal cholinergic interneurones

    PubMed Central

    Momiyama, Toshihiko; Koga, Eiko

    2001-01-01

    The modulatory roles of dopamine (DA) in inhibitory transmission onto striatal large cholinergic interneurones were investigated in rat brain slices using patch-clamp recording. Pharmacologically isolated GABAA receptor-mediated IPSCs were recorded by focal stimulation within the striatum. Bath application of DA reversibly suppressed the amplitude of evoked IPSCs in a concentration-dependent manner (IC50, 10.0 μm). A D2-like receptor agonist, quinpirole (3–30 μm), also suppressed the IPSCs, whereas a D1-like receptor agonist, SKF 81297, did not affect IPSCs. Sulpiride, a D2-like receptor antagonist, blocked the DA-induced suppression of IPSCs (apparent dissociation constant (KB), 0.36 μm), while a D1-like receptor antagonist, SCH 23390 (10 μm), had no effect. DA (30 μm) reduced the frequency of spontaneous miniature IPSCs (mIPSCs) without changing their amplitude distribution, suggesting that GABA release was inhibited, whereas the sensitivity of postsynaptic GABAA receptors was not affected. The effect of DA on the frequency of mIPSCs was diminished when extracellular Ca2+ was replaced by Mg2+ (5 mm), indicating that DA affected the Ca2+ entry into the presynaptic terminal. An N-type Ca2+ channel selective blocker, ω-conotoxin GVIA (ω-CgTX, 3 μm), suppressed IPSCs by 65.4%, whereas a P/Q-type Ca2+ channel selective blocker, ω-agatoxin IVA (ω-Aga-IVA, 200 nm), suppressed IPSCs by 78.4%. Simultaneous application of both blockers suppressed IPSCs by 95.9%. Assuming a 3rd power relationship between Ca2+ concentration and transmitter release, the contribution of N-, P/Q- and other types of Ca2+ channels to presynaptic Ca2+ entry is estimated to be, respectively, 29.8, 40.0 and 34.5% at this synapse. After the application of ω-CgTX, DA (30 μm) no longer affected IPSCs. In contrast, ω-Aga-IVA did not alter the level of suppression by DA, suggesting that the action of DA was selective for N-type Ca2+ channels. A G protein alkylating agent, N

  14. Wavelength-Selective One- and Two-Photon Uncaging of GABA

    PubMed Central

    2013-01-01

    We have synthesized photolabile 7-diethylamino coumarin (DEAC) derivatives of γ-aminobutyric acid (GABA). These caged neurotransmitters efficiently release GABA using linear or nonlinear excitation. We used a new DEAC-based caging chromophore that has a vinyl acrylate substituent at the 3-position that shifts the absorption maximum of DEAC to about 450 nm and thus is named “DEAC450”. DEAC450-caged GABA is photolyzed with a quantum yield of 0.39 and is highly soluble and stable in physiological buffer. We found that DEAC450-caged GABA is relatively inactive toward two-photon excitation at 720 nm, so when paired with a nitroaromatic caged glutamate that is efficiently excited at such wavelengths, we could photorelease glutamate and GABA around single spine heads on neurons in brain slices with excellent wavelength selectivity using two- and one-photon photolysis, respectively. Furthermore, we found that DEAC450-caged GABA could be effectively released using two-photon excitation at 900 nm with spatial resolution of about 3 μm. Taken together, our experiments show that the DEAC450 caging chromophore holds great promise for the development of new caged compounds that will enable wavelength-selective, two-color interrogation of neuronal signaling with excellent subcellular resolution. PMID:24304264

  15. The Uptake of GABA in Trypanosoma cruzi.

    PubMed

    Galvez Rojas, Robert L; Ahn, Il-Young; Suárez Mantilla, Brian; Sant'Anna, Celso; Pral, Elizabeth Mieko Furusho; Silber, Ariel Mariano

    2015-01-01

    Gamma aminobutyric acid (GABA) is widely known as a neurotransmitter and signal transduction molecule found in vertebrates, plants, and some protozoan organisms. However, the presence of GABA and its role in trypanosomatids is unknown. Here, we report the presence of intracellular GABA and the biochemical characterization of its uptake in Trypanosoma cruzi, the etiological agent of Chagas' disease. Kinetic parameters indicated that GABA is taken up by a single transport system in pathogenic and nonpathogenic forms. Temperature dependence assays showed a profile similar to glutamate transport, but the effect of extracellular cations Na(+) , K(+) , and H(+) on GABA uptake differed, suggesting a different uptake mechanism. In contrast to reports for other amino acid transporters in T. cruzi, GABA uptake was Na(+) dependent and increased with pH, with a maximum activity at pH 8.5. The sensitivity to oligomycin showed that GABA uptake is dependent on ATP synthesis. These data point to a secondary active Na(+) /GABA symporter energized by Na(+) -exporting ATPase. Finally, we show that GABA occurs in the parasite's cytoplasm under normal culture conditions, indicating that it is regularly taken up from the culture medium or synthesized through an still undescribed metabolic pathway. PMID:25851259

  16. Long-term depression of glutamate-induced gamma-aminobutyric acid release in cerebellum by insulin-like growth factor I.

    PubMed Central

    Castro-Alamancos, M A; Torres-Aleman, I

    1993-01-01

    We tested the possibility that insulin-like growth factor I (IGF-I) acts as a neuromodulator in the adult cerebellar cortex since previous observations indicated that IGF-I is located in the olivo-cerebellar system encompassing the inferior olive and Purkinje cells. We found that conjoint administration of IGF-I and glutamate through a microdialysis probe stereotaxically implanted into the cerebellar cortex and deep cerebellar nuclei greatly depressed the release of gamma-aminobutyric acid (GABA), which normally follows a glutamate pulse. This inhibition was dose-dependent and long-lasting. Moreover, the effect was specific for glutamate since KCl-induced GABA release was not modified by IGF-I. Basic fibroblast growth factor, another growth-related peptide present in the cerebellum, did not alter the response of GABA to glutamate stimulation. In addition, electrical stimulation of the inferior olivary complex significantly raised IGF-I levels in the cerebellar cortex. Interestingly, when the inferior olive was stimulated in conjunction with glutamate administration, GABA release by cerebellar cells in response to subsequent glutamate pulses was depressed in a manner reminiscent of that seen after IGF-I. These findings indicate that IGF-I produces a long-lasting depression of GABA release by Purkinje cells in response to glutamate. IGF-I might be present in climbing fiber terminals and/or cells within the cerebellar cortex and thereby might affect Purkinje cell function. Whether this IGF-I-induced impairment of glutamate stimulation of Purkinje cells underlies functionally plastic processes such as long-term depression is open to question. Images Fig. 1 PMID:8346260

  17. Gamma-aminobutyric acid (GABA) and neuropeptides in neural areas mediating motion-induced emesis

    NASA Technical Reports Server (NTRS)

    Damelio, F.; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    Immunocytochemical methods were employed to localize the neurotransmitter amino acid gamma-aminobutyric acid and the neuropeptides substance P and Met-enkephalin in the area postrema (AP), area subpostrema (ASP), nucleus of the tractus solitarius (NTS), dorsal motor nucleus of the vagus nerve (DMNV), and lateral vestibular nucleus (LVN). Glutamic acid decarboxylase immunoreactive (GAD-IR) terminals and fibers were observed in the AP and particularly in the ASP. A gradual decrease in the density of terminals was seen towards the solitary complex. The DMNV revealed irregularly scattered GAD-IR terminals within the neuropil or closely surrounding neuronal cell bodies. The LVN, particularly the dorsal division, showed numerous axon terminals which were mostly localize around large neurons and their proximal dendrites. Substance P immunoreactive (SP-IR) terminals and fibers showed high density in the solitary complex, in particular within the lateral division. The ASP showed medium to low density of SP-IR fibers and terminals. The AP exhibited a small number of fibers and terminals irregularly distributed. The DMNV revealed a high density of SP-IR terminals and fibers that were mainly concentrated in the periphery. Very few terminals were detected in the LVN. Met-enkephalin immunoreactive (Met-Enk-IR) fibers and terminals showed high density and uniform distribution in the DMNV. Scattered terminals and fibers were observed in the AP, ASP, and NTS (particularly the lateral division). The very few fibers were observed in the LVN surrounded the neuronal cell bodies. The present report is part of a study designed to investigate the interaction between neuropeptides and conventional neurotransmitters under conditions producing motion sickness and in the process of sensory-motor adaptation.

  18. L-DOPA Reverses the Increased Free Amino Acids Tissue Levels Induced by Dopamine Depletion and Rises GABA and Tyrosine in the Striatum.

    PubMed

    Solís, Oscar; García-Sanz, Patricia; Herranz, Antonio S; Asensio, María-José; Moratalla, Rosario

    2016-07-01

    Perturbations in the cerebral levels of various amino acids are associated with neurological disorders, and previous studies have suggested that such alterations have a role in the motor and non-motor symptoms of Parkinson's disease. However, the direct effects of chronic L-DOPA treatment, that produces dyskinesia, on neural tissue amino acid concentrations have not been explored in detail. To evaluate whether striatal amino acid concentrations are altered in peak dose dyskinesia, 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian mice were treated chronically with L-DOPA and tissue amino acid concentrations were assessed by HPLC analysis. These experiments revealed that neither 6-OHDA nor L-DOPA treatment are able to alter glutamate in the striatum. However, glutamine increases after 6-OHDA and returns back to normal levels with L-DOPA treatment, suggesting increased striatal glutamatergic transmission with lack of dopamine. In addition, glycine and taurine levels are increased following dopamine denervation and restored to normal levels by L-DOPA. Interestingly, dyskinetic animals showed increased levels of GABA and tyrosine, while aspartate striatal tissue levels are not altered. Overall, our results indicate that chronic L-DOPA treatment, besides normalizing the altered levels of some amino acids after 6-OHDA, robustly increases striatal GABA and tyrosine levels which may in turn contribute to the development of L-DOPA-induced dyskinesia. PMID:26966009

  19. Role for pro-inflammatory cytokines in regulating expression of GABA transporter type 1 and 3 in specific brain regions of kainic acid-induced status epilepticus.

    PubMed

    Su, Jing; Yin, Jian; Qin, Wei; Sha, Suxu; Xu, Jun; Jiang, Changbin

    2015-03-01

    In general, pro-inflammatory cytokines (PICs) contribute to regulation of epilepsy-associated pathophysiological processes in the central nerve system. In this report, we examined the specific activation of PICs, namely IL-1β, IL-6 and TNF-α in rat brain after kainic acid (KA)-induced status epilepticus (SE). Also, we examined the role played by PICs in regulating expression of GABA transporter type 1 and 3 (GAT-1 and GAT-3, respectively), which are the two important subtypes of GATs responsible for the regulation of extracellular GABA levels in the brain. Our results show that IL-1β, IL-6 and TNF-α were significantly increased in the parietal cortex, hippocampus and amygdala of KA-rats as compared with sham control animals (P < 0.05, KA rats vs. control rats). KA-induced SE also significantly increased (P < 0.05 vs. controls) the protein expression of GAT-1 and GAT-3 in those brain regions. In addition, central administration of antagonists to IL-1β and TNF-α receptors significantly attenuated amplified GAT-1 and GAT-3 (P < 0.05 vs. vehicle control for each antagonist group). However, antagonist to IL-6 receptor failed to attenuate enhancement in expression of GAT-1 and GAT-3 induced by KA-induced SE. Overall, our data demonstrate that PIC pathways are activated in the specific brain regions during SE which thereby selectively leads to upregulation of GABA transporters. As a result, it is likely that de-inhibition of GABA system is increased in the brain. This support a role for PICs in engagement of the adaptive mechanisms associated with epileptic activity, and has pharmacological implications to target specific PICs for neuronal dysfunction and vulnerability related to epilepsy. PMID:25708016

  20. GABA and GAD expression in the X-organ sinus gland system of the Procambarus clarkii crayfish: inhibition mediated by GABA between X-organ neurons.

    PubMed

    Pérez-Polanco, Paola; Garduño, Julieta; Cebada, Jorge; Zarco, Natanael; Segovia, José; Lamas, Mónica; García, Ubaldo

    2011-09-01

    In crustaceans, the X-organ-sinus gland (XO-SG) neurosecretory system is formed of distinct populations of neurons that produce two families of neuropeptides: crustacean hyperglycemic hormone and adipokinetic hormone/red pigment-concentrating hormone. On the basis of electrophysiological evidence, it has been proposed that γ-aminobutyric acid (GABA) regulates both electrical and secretory activity of the XO-SG system. In this work we observed that depolarizing current pulses to neurons located in the external rim of the X-organ induced repetitive firing that suppressed the spontaneous firing of previously active X-organ neurons. Picrotoxin reversibly blocked this inhibitory effect suggesting that the GABA released from the stimulated neuron inhibited neighboring cells. Immunoperoxidase in X-organ serial sections showed co-localization of GABA and glutamic acid decarboxylase (GAD) including the aforementioned neurons. Immunofluorescence in whole mount preparations showed that two subpopulations of crustacean hyperglycemic hormone-containing neurons colocalized with GABA. The expression of GAD mRNA was determined in crayfish tissue and X-organ single cells by RT-PCR. Bioinformatics analysis shows, within the amplified region, 90.4% consensus and 41.9% identity at the amino acid level compared with Drosophila melanogaster and Caenorhabditis elegans. We suggest that crustacean hyperglycemic hormone-GABA-containing neurons can regulate the excitability of other X-organ neurons that produce different neurohormones. PMID:21626307

  1. [GABA-ergic system in defense against excitatory kynurenines].

    PubMed

    Lapin, I P

    1997-01-01

    Protection against the excitatory action of L-kynurenine and quinolinic acid in mice is related to the activation of GABA-B and dopamine receptors of the brain and to much lesser degree to the activation of GABA-A receptors. It is hardly believable that the anticonvulsant effect of phenibut (beta-phenyl-GABA), baclofen (CL-phenibut), sodium hydroxybutyrate and taurine against seizures induced by these two kynurenines is determined by alterations in metabolism of GABA. PMID:9503572

  2. Inherited disorders of GABA metabolism

    PubMed Central

    Pearl, Phillip L; Hartka, Thomas R; Cabalza, Jessica L; Taylor, Jacob; Gibson, Michael K

    2013-01-01

    The inherited disorders of γ-amino butyric acid (GABA) metabolism require an increased index of clinical suspicion. The known genetic disorders are GABA-transaminase deficiency, succinic semialdehyde dehydrogenase (SSADH) deficiency and homocarnosinosis. A recent link has also been made between impaired GABA synthesis and nonsyndromic cleft lip, with or without cleft palate. SSADH deficiency is the most commonly occurring of the inherited disorders of neurotransmitters. The disorder has a nonspecific phenotype with myriad neurological and psychiatric manifestations, and usually has a nonprogressive temporal course. Diagnosis is made by the detection of γ-hydroxybutyrate excretion on urine organic acid testing. The most consistent magnetic resonance imaging abnormality is an increased signal in the globus pallidus. Magnetic resonance spectroscopy has demonstrated the first example of increased endogenous GABA in human brain parenchyma in this disorder. GABA-transaminase deficiency and homocarnosinosis appear to be very rare, but require cerebrospinal fluid for detection, thus allowing for the possibility that these entities, as in the other inherited neurotransmitter disorders, are under-recognized. PMID:23842532

  3. Dopamine/Tyrosine Hydroxylase Neurons of the Hypothalamic Arcuate Nucleus Release GABA, Communicate with Dopaminergic and Other Arcuate Neurons, and Respond to Dynorphin, Met-Enkephalin, and Oxytocin

    PubMed Central

    Zhang, Xiaobing

    2015-01-01

    rats, the mechanism underlying bursting was not dependent on gap junctions but required T-type calcium and A-type potassium channel activation. Neuropeptides dynorphin and met-enkephalin inhibited dopamine neurons, whereas oxytocin excited them. Most ventrolateral ARC TH cells did not contain dopamine and did not show bursting electrical activity. TH-containing neurons appeared to release synaptic GABA within the ARC onto dopamine neurons and unidentified neurons, suggesting that the cells not only control pituitary hormones but also may modulate nearby neurons. PMID:26558770

  4. GABA[subscript A] Receptor Downregulation in Brains of Subjects with Autism

    ERIC Educational Resources Information Center

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Thuras, Paul D.

    2009-01-01

    Gamma-aminobutyric acid A (GABA[subscript A]) receptors are ligand-gated ion channels responsible for mediation of fast inhibitory action of GABA in the brain. Preliminary reports have demonstrated altered expression of GABA receptors in the brains of subjects with autism suggesting GABA/glutamate system dysregulation. We investigated the…

  5. Targeting γ-aminobutyric acid (GABA) carriers to the brain: potential relevance as antiepileptic pro-drugs.

    PubMed

    Semreen, Mohammad H; El-Shorbagi, Abdel-Nasser; Al-Tel, Taleb H; Alsalahat, Izzeddin M M

    2010-05-01

    The search for antiepileptic compounds with more selective activity continues to be an area of intensive investigation in medicinal chemistry. 3,5-Disubstituted tetrahydro-2H-1,3,5-thiadiazine-2-thione (THTT) derivatives, 3a-g, potential prodrugs incorporating the neurotransmitter GABA were synthesized and studied for crossing the blood-brain barrier (BBB). Compounds were prepared from primary amines and carbon disulfide to give dithiocarbamates 2a-g which upon reaction in situ with formaldehyde provided the intermediates Ia-g. Addition of Ia-g onto GABA furnished the title compounds 3a-g. The structures were verified by spectral data and the amounts of the compounds in the brain were investigated by using HPLC. The concentration profiles of the tested compounds in mice brain were determined and the in vivo anticonvulsant activity was measured. PMID:20632978

  6. Role of a γ-aminobutryic acid (GABA) receptor mutation in the evolution and spread of Diabrotica virgifera virgifera resistance to cyclodiene insecticides.

    PubMed

    Wang, H; Coates, B S; Chen, H; Sappington, T W; Guillemaud, T; Siegfried, B D

    2013-10-01

    The western corn rootworm, Diabrotica virgifera virgifera, is a damaging pest of cultivated corn that was controlled by applications of cyclodiene insecticides from the late 1940s until resistance evolved ∼10 years later. Range expansion from the western plains into eastern USA coincides with resistance development. An alanine to serine amino acid substitution within the Rdl subunit of the gamma-aminobutyric acid (GABA) receptor confers resistance to cyclodiene insecticides in many species. We found that the non-synonymous single nucleotide polymorphism (SNP) G/T at the GABA receptor cDNA position 838 (G/T(838)) of D. v. virgifera resulted in the alanine to serine change, and the codominant SNP allele T(838) was genetically linked to survival of beetles in aldrin bioassays. A phenotypic gradient of decreasing susceptibility from west to east was correlated with higher frequencies of the resistance-conferring T(838) allele in the eastern-most populations. This pattern exists in opposition to perceived selective pressures since the more eastern and most resistant populations probably experienced reduced exposure. The reasons for the observed distribution are uncertain, but historical records of the range expansion combined with the distribution of susceptible and resistant phenotypes and genotypes provide an opportunity to better understand factors affecting the species' range expansion. PMID:23841833

  7. Release characteristics of polyurethane tablets containing dicarboxylic acids as release modifiers - a case study with diprophylline.

    PubMed

    Claeys, Bart; De Bruyn, Sander; Hansen, Laurent; De Beer, Thomas; Remon, Jean Paul; Vervaet, Chris

    2014-12-30

    The influence of several dicarboxylic acids on the release characteristics of polyurethane tablets with a high drug load was investigated. Mixtures of diprophylline (Dyph) and thermoplastic polyurethane (TPUR) (ratio: 50/50, 65/35 and 75/25 wt.%) were hot-melt extruded and injection molded with the addition of 1, 2.5, 5 and 10% wt.% dicarboxylic acid as release modifier. Incorporating malonic, succinic, maleic and glutaric acid in the TPUR matrices enhanced drug release, proportional to the dicarboxylic acid concentration in the formulation. No correlation was found between the water solubility, melting point, logP and pKa of the acids and their drug release modifying capacity. Succinic and maleic acid had the highest drug release modifying capacity which was linked to more intense molecular interactions with Dyph. A structural fit between the primary and secondary alcohol of Dyph and both carboxylic groups of the acids was at the origin of this enhanced interaction. PMID:25445517

  8. GABA transporters control GABAergic neurotransmission in the mouse subplate.

    PubMed

    Unichenko, P; Kirischuk, S; Luhmann, H J

    2015-09-24

    The subplate is a transient layer between the cortical plate and intermediate zone in the developing cortex. Thalamo-cortical axons form temporary synapses on subplate neurons (SPns) before invading the cortical plate. Neuronal activity within the subplate is of critical importance for the development of neocortical circuits and architecture. Although both glutamatergic and GABAergic inputs on SPns were reported, short-term plasticity of GABAergic transmission has not been investigated yet. GABAergic postsynaptic currents (GPSCs) were recorded from SPns in coronal neocortical slices prepared from postnatal day 3-4 mice using whole-cell patch-clamp technique. Evoked GPSCs (eGPSCs) elicited by electrical paired-pulse stimulation demonstrated paired-pulse depression at all interstimulus intervals tested. Baclofen, a specific GABAB receptor (GABABR) agonist, reduced eGPSC amplitudes and increased paired-pulse ratio (PPR), suggesting presynaptic location of functional GABABRs. Baclofen-induced effects were alleviated by (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid (CGP55845), a selective GABABR blocker. Moreover, CGP55845 increased eGPSC amplitudes and decreased PPR even under control conditions, indicating that GABABRs are tonically activated by ambient GABA. Because extracellular GABA concentration is mainly regulated by GABA transporters (GATs), we asked whether GATs release GABA. 1,2,5,6-tetrahydro-1-[2-[[(diphenylmethylene)amino]oxy]ethyl]-3-pyridinecarboxylic acid (NNC-711) (10μM), a selective GAT-1 blocker, increased eGPSC decay time, decreased eGPSC amplitudes and PPR. The two last effects but not the first one were blocked by CGP55845, indicating that GAT-1 blockade causes an elevation of extracellular GABA concentration and in turn activation of extrasynaptic GABAARs and presynaptic GABABRs. 1-[2-[tris(4-methoxyphenyl)methoxy]ethyl]-(S)-3-piperidinecarboxylic acid (SNAP-5114), a specific GAT-2/3 blocker, failed

  9. Linking Metabolism to Membrane Signaling: The GABA-Malate Connection.

    PubMed

    Gilliham, Matthew; Tyerman, Stephen D

    2016-04-01

    γ-Aminobutyric acid (GABA) concentration increases rapidly in tissues when plants encounter abiotic or biotic stress, and GABA manipulation affects growth. This, coupled to GABA's well-described role as a neurotransmitter in mammals, led to over a decade of speculation that GABA is a signal in plants. The discovery of GABA-regulated anion channels in plants provides compelling mechanistic proof that GABA is a legitimate plant-signaling molecule. Here we examine research avenues unlocked by this finding and propose that these plant 'GABA receptors' possess novel properties ideally suited to translating changes in metabolic status into physiological responses. Specifically, we suggest they have a role in signaling altered cycling of tricarboxylic acid (TCA) intermediates during stress via eliciting changes in electrical potential differences across membranes. PMID:26723562

  10. Brain-derived neurotrophic factor enhances GABA release probability and nonuniform distribution of N- and P/Q-type channels on release sites of hippocampal inhibitory synapses.

    PubMed

    Baldelli, Pietro; Hernandez-Guijo, Jesus-Miguel; Carabelli, Valentina; Carbone, Emilio

    2005-03-30

    Long-lasting exposures to brain-derived neurotrophic factor (BDNF) accelerate the functional maturation of GABAergic transmission in embryonic hippocampal neurons, but the molecular bases of this phenomenon are still debated. Evidence in favor of a postsynaptic site of action has been accumulated, but most of the data support a presynaptic site effect. A crucial issue is whether the enhancement of evoked IPSCs (eIPSCs) induced by BDNF is attributable to an increase in any of the elementary parameters controlling neurosecretion, namely the probability of release, the number of release sites, the readily releasable pool (RRP), and the quantal size. Here, using peak-scaled variance analysis of miniature IPSCs, multiple probability fluctuation analysis, and cumulative amplitude analysis of action potential-evoked postsynaptic currents, we show that BDNF increases release probability and vesicle replenishment with little or no effect on the quantal size, the number of release sites, the RRP, and the Ca2+ dependence of eIPSCs. BDNF treatment changes markedly the distribution of Ca2+ channels controlling neurotransmitter release. It enhances markedly the contribution of N- and P/Q-type channels, which summed to >100% ("supra-additivity"), and deletes the contribution of R-type channels. BDNF accelerates the switch of presynaptic Ca2+ channel distribution from "segregated" to "nonuniform" distribution. This maturation effect was accompanied by an uncovered increased control of N-type channels on paired-pulse depression, otherwise dominated by P/Q-type channels in untreated neurons. Nevertheless, BDNF preserved the fast recovery from depression associated with N-type channels. These novel presynaptic BDNF actions derive mostly from an enhanced overlapping and better colocalization of N- and P/Q-type channels to vesicle release sites. PMID:15800191

  11. Serotonin 5-HT1B receptor-mediated calcium influx-independent presynaptic inhibition of GABA release onto rat basal forebrain cholinergic neurons.

    PubMed

    Nishijo, Takuma; Momiyama, Toshihiko

    2016-07-01

    Modulatory roles of serotonin (5-HT) in GABAergic transmission onto basal forebrain cholinergic neurons were investigated, using whole-cell patch-clamp technique in the rat brain slices. GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) were evoked by focal stimulation. Bath application of 5-HT (0.1-300 μm) reversibly suppressed the amplitude of evoked IPSCs in a concentration-dependent manner. Application of a 5-HT1B receptor agonist, CP93129, also suppressed the evoked IPSCs, whereas a 5-HT1A receptor agonist, 8-OH-DPAT had little effect on the evoked IPSCs amplitude. In the presence of NAS-181, a 5-HT1B receptor antagonist, 5-HT-induced suppression of evoked IPSCs was antagonised, whereas NAN-190, a 5-HT1A receptor antagonist did not antagonise the 5-HT-induced suppression of evoked IPSCs. Bath application of 5-HT reduced the frequency of spontaneous miniature IPSCs without changing their amplitude distribution. The effect of 5-HT on miniature IPSCs remained unchanged when extracellular Ca(2+) was replaced by Mg(2+) . The paired-pulse ratio was increased by CP93129. In the presence of ω-CgTX, the N-type Ca(2+) channel blocker, ω-Aga-TK, the P/Q-type Ca(2+) channel blocker, or SNX-482, the R-type Ca(2+) channel blocker, 5-HT could still inhibit the evoked IPSCs. 4-AP, a K(+) channel blocker, enhanced the evoked IPSCs, and CP93129 had no longer inhibitory effect in the presence of 4-AP. CP93129 increased the number of action potentials elicited by depolarising current pulses. These results suggest that activation of presynaptic 5-HT1B receptors on the terminals of GABAergic afferents to basal forebrain cholinergic neurons inhibits GABA release in Ca(2+) influx-independent manner by modulation of K(+) channels, leading to enhancement of neuronal activities. PMID:27177433

  12. Propofol differentially inhibits the release of glutamate, γ-aminobutyric acid and glycine in the spinal dorsal horn of rats

    PubMed Central

    Yang, Jing; Wang, Wei; Yong, Zheng; Mi, Weidong; Zhang, Hong

    2015-01-01

    Objective(s): Propofol (2, 6-diisopropylphenol) is an intravenous anesthetic that is commonly used for the general anesthesia. It is well known that the spinal cord is one of the working targets of general anesthesia including propofol. However, there is a lack of investigation of the effects of propofol on spinal dorsal horn which is important for the sensory transmission of nociceptive signals. The objective of this study was to investigate the effects of increasing dosage of propofol on the release of glutamate (Glu), γ-aminobutyric acid (GABA) and glycine (Gly) in the spinal dorsal horn. Materials and Methods: The efflux of Glu, GABA or Gly in the spinal dorsal horn of rats was detected using transverse spinal microdialysis under an awake condition and various depths of propofol anesthesia. The infusion rates of propofol were, in order, 400 µg/(kg·min), 600 µg/(kg·min) and 800 µg/(kg·min), with a 20 min infusion period being maintained at each infusion rate. Results: Propofol decreased the glutamate efflux within spinal dorsal horn in a dose-dependent manner, and the maximum decrease was 56.8 ± 6.0% at high-dose propofol infusion producing immobility. The inhibitory GABA and Gly efflux was also decreased about 15–20% at low-dose propofol infusion only producing sedation, but did not continue to drop with higher doses of propofol. Conclusion: Propofol decreased both excitatory and inhibitory amino acids efflux in spinal dorsal horn, and the preferential suppression of the excitatory amino acid might be associated with the analgesic effect of propofol. PMID:26557972

  13. Brain regional distribution of GABA(A) receptors exhibiting atypical GABA agonism: roles of receptor subunits.

    PubMed

    Halonen, Lauri M; Sinkkonen, Saku T; Chandra, Dev; Homanics, Gregg E; Korpi, Esa R

    2009-11-01

    The major inhibitory neurotransmitter in the brain, gamma-aminobutyric acid (GABA), has only partial efficacy at certain subtypes of GABA(A) receptors. To characterize these minor receptor populations in rat and mouse brains, we used autoradiographic imaging of t-butylbicyclophosphoro[(35)S]thionate ([(35)S]TBPS) binding to GABA(A) receptors in brain sections and compared the displacing capacities of 10mM GABA and 1mM 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), a competitive GABA-site agonist. Brains from GABA(A) receptor alpha1, alpha4, delta, and alpha4+delta subunit knockout (KO) mouse lines were used to understand the contribution of these particular receptor subunits to "GABA-insensitive" (GIS) [(35)S]TBPS binding. THIP displaced more [(35)S]TBPS binding than GABA in several brain regions, indicating that THIP also inhibited GIS-binding. In these regions, GABA prevented the effect of THIP on GIS-binding. GIS-binding was increased in the cerebellar granule cell layer of delta KO and alpha4+delta KO mice, being only slightly diminished in that of alpha1 KO mice. In the thalamus and some other forebrain regions of wild-type mice, a significant amount of GIS-binding was detected. This GIS-binding was higher in alpha4 KO mice. However, it was fully abolished in alpha1 KO mice, indicating that the alpha1 subunit was obligatory for the GIS-binding in the forebrain. Our results suggest that native GABA(A) receptors in brain sections showing reduced displacing capacity of [(35)S]TBPS binding by GABA (partial agonism) minimally require the assembly of alpha1 and beta subunits in the forebrain and of alpha6 and beta subunits in the cerebellar granule cell layer. These receptors may function as extrasynaptic GABA(A) receptors. PMID:19397945

  14. Brain γ-aminobutyric acid (GABA) detection in vivo with the J-editing (1) H MRS technique: a comprehensive methodological evaluation of sensitivity enhancement, macromolecule contamination and test-retest reliability.

    PubMed

    Shungu, Dikoma C; Mao, Xiangling; Gonzales, Robyn; Soones, Tacara N; Dyke, Jonathan P; van der Veen, Jan Willem; Kegeles, Lawrence S

    2016-07-01

    Abnormalities in brain γ-aminobutyric acid (GABA) have been implicated in various neuropsychiatric and neurological disorders. However, in vivo GABA detection by (1) H MRS presents significant challenges arising from the low brain concentration, overlap by much stronger resonances and contamination by mobile macromolecule (MM) signals. This study addresses these impediments to reliable brain GABA detection with the J-editing difference technique on a 3-T MR system in healthy human subjects by: (i) assessing the sensitivity gains attainable with an eight-channel phased-array head coil; (ii) determining the magnitude and anatomic variation of the contamination of GABA by MM; and (iii) estimating the test-retest reliability of the measurement of GABA with this method. Sensitivity gains and test-retest reliability were examined in the dorsolateral prefrontal cortex (DLPFC), whereas MM levels were compared across three cortical regions: DLPFC, the medial prefrontal cortex (MPFC) and the occipital cortex (OCC). A three-fold higher GABA detection sensitivity was attained with the eight-channel head coil compared with the standard single-channel head coil in DLPFC. Despite significant anatomical variation in GABA + MM and MM across the three brain regions (p < 0.05), the contribution of MM to GABA + MM was relatively stable across the three voxels, ranging from 41% to 49%, a non-significant regional variation (p = 0.58). The test-retest reliability of GABA measurement, expressed as either the ratio to voxel tissue water (W) or to total creatine, was found to be very high for both the single-channel coil and the eight-channel phased-array coil. For the eight-channel coil, for example, Pearson's correlation coefficient of test vs. retest for GABA/W was 0.98 (R(2)  = 0.96, p = 0.0007), the percentage coefficient of variation (CV) was 1.25% and the intraclass correlation coefficient (ICC) was 0.98. Similar reliability was also found for the co-edited resonance

  15. Effect of γ-Aminobutyric Acid (GABA) Producing Bacteria on In vitro Rumen Fermentation, Biogenic Amine Production and Anti-oxidation Using Corn Meal as Substrate

    PubMed Central

    Ku, Bum Seung; Mamuad, Lovelia L.; Kim, Seon-Ho; Jeong, Chang Dae; Soriano, Alvin P.; Lee, Ho-Il; Nam, Ki-Chang; Ha, Jong K.; Lee, Sang Suk

    2013-01-01

    The effects and significance of γ-amino butyric acid (GABA) producing bacteria (GPB) on in vitro rumen fermentation and reduction of biogenic amines (histamine, methylamine, ethylamine, and tyramine) using corn meal as a substrate were determined. Ruminal samples collected from ruminally fistulated Holstein cows served as inoculum and corn was used as substrate at 2% dry matter (DM). Different inclusion rates of GPB and GABA were evaluated. After incubation, addition of GPB had no significant effect on in vitro fermentation pH and total gas production, but significantly increased the ammonia nitrogen (NH3-N) concentration and reduced the total biogenic amines production (p<0.05). Furthermore, antioxidation activity was improved as indicated by the significantly higher concentration of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) among treated samples when compared to the control (p<0.05). Additionally, 0.2% GPB was established as the optimum inclusion level. Taken together, these results suggest the potential of utilizing GPB as feed additives to improve growth performance in ruminants by reducing biogenic amines and increasing anti-oxidation. PMID:25049853

  16. How and why does tomato accumulate a large amount of GABA in the fruit?

    PubMed Central

    Takayama, Mariko; Ezura, Hiroshi

    2015-01-01

    Gamma-aminobutyric acid (GABA) has received much attention as a health-promoting functional compound, and several GABA-enriched foods have been commercialized. In higher plants, GABA is primarily metabolized via a short pathway called the GABA shunt. The GABA shunt bypasses two steps (the oxidation of α-ketoglutarate to succinate) of the tricarboxylic acid (TCA) cycle via reactions catalyzed by three enzymes: glutamate decarboxylase, GABA transaminase, and succinic semialdehyde dehydrogenase. The GABA shunt plays a major role in primary carbon and nitrogen metabolism and is an integral part of the TCA cycle under stress and non-stress conditions. Tomato is one of the major crops that accumulate a relatively high level of GABA in its fruits. The GABA levels in tomato fruits dramatically change during fruit development; the GABA levels increase from flowering to the mature green stage and then rapidly decrease during the ripening stage. Although GABA constitutes up to 50% of the free amino acids at the mature green stage, the molecular mechanism of GABA accumulation and the physiological function of GABA during tomato fruit development remain unclear. In this review, we summarize recent studies of GABA accumulation in tomato fruits and discuss the potential biological roles of GABA in tomato fruit development. PMID:26322056

  17. Presynaptic Na+-dependent transport and exocytose of GABA and glutamate in brain in hypergravity.

    NASA Astrophysics Data System (ADS)

    Borisova, T.; Pozdnyakova, N.; Krisanova, N.; Himmelreich, N.

    γ-Aminobutyric acid (GABA) and L-glutamate are the most widespread neurotransmitter amino acids in the mammalian central nervous system. GABA is now widely recognized as the major inhibitory neurotransmitter. L-glutamate mediates the most of excitatory synaptic neurotransmission in the brain. They involved in the main aspects of normal brain function. The nerve terminals (synaptosomes) offer several advantages as a model system for the study of general mechanisms of neurosecretion. Our data allowed to conclude that exposure of animals to hypergravity (centrifugation of rats at 10G for 1 hour) had a profound effect on synaptic processes in brain. Comparative analysis of uptake and release of GABA and glutamate have demonstrated that hypergravity loading evokes oppositely directed alterations in inhibitory and excitatory signal transmission. We studied the maximal velocities of [^3H]GABA reuptake and revealed more than twofold enhancement of GABA transporter activity (Vmax rises from 1.4 |pm 0.3 nmol/min/mg of protein in the control group to 3.3 ± 0.59 nmol/min/mg of protein for animals exposed to hypergravity (P ≤ 0.05)). Recently we have also demonstrated the significant lowering of glutamate transporter activity (Vmax of glutamate reuptake decreased from 12.5 ± 3.2 nmol/min/mg of protein in the control group to 5.6 ± 0.9 nmol/min/mg of protein in the group of animals, exposed to the hypergravity stress (P ≤ 0.05)). Significant changes occurred in release of neurotransmitters induced by stimulating exocytosis with the agents, which depolarized nerve terminal plasma membrane. Depolarization-evoked Ca2+-stimulated release was more abundant for GABA (7.2 ± 0.54% and 11,74 ±1,2 % of total accumulated label for control and hypergravity, respectively (P≤0.05)) and was essentially less for glutamate (14.4 ± 0.7% and 6.2 ± 1.9%) after exposure of animals to centrifuge induced artificial gravity. Changes observed in depolarization-evoked exocytotic release

  18. Library screening by means of mass spectrometry (MS) binding assays-exemplarily demonstrated for a pseudostatic library addressing γ-aminobutyric acid (GABA) transporter 1 (GAT1).

    PubMed

    Sindelar, Miriam; Wanner, Klaus T

    2012-09-01

    In the present study, the application of mass spectrometry (MS) binding assays as a tool for library screening is reported. For library generation, dynamic combinatorial chemistry (DCC) was used. These libraries can be screened by means of MS binding assays when appropriate measures are taken to render the libraries pseudostatic. That way, the efficiency of MS binding assays to determine ligand binding in compound screening with the ease of library generation by DCC is combined. The feasibility of this approach is shown for γ-aminobutyric acid (GABA) transporter 1 (GAT1) as a target, representing the most important subtype of the GABA transporters. For the screening, hydrazone libraries were employed that were generated in the presence of the target by reacting various sets of aldehydes with a hydrazine derivative that is delineated from piperidine-3-carboxylic acid (nipecotic acid), a common fragment of known GAT1 inhibitors. To ensure that the library generated is pseudostatic, a large excess of the nipecotic acid derivative is employed. As the library is generated in a buffer system suitable for binding and the target is already present, the mixtures can be directly analyzed by MS binding assays-the process of library generation and screening thus becoming simple to perform. The binding affinities of the hits identified by deconvolution were confirmed in conventional competitive MS binding assays performed with single compounds obtained by separate synthesis. In this way, two nipecotic acid derivatives exhibiting a biaryl moiety, 1-{2-[2'-(1,1'-biphenyl-2-ylmethylidene)hydrazine]ethyl}piperidine-3-carboxylic acid and 1-(2-{2'-[1-(2-thiophenylphenyl)methylidene]hydrazine}ethyl)piperidine-3-carboxylic acid, were found to be potent GAT1 ligands exhibiting pK(i) values of 6.186 ± 0.028 and 6.229 ± 0.039, respectively. This method enables screening of libraries, whether generated by conventional chemistry or DCC, and is applicable to all kinds of targets including

  19. Impact of exogenous GABA treatments on endogenous GABA metabolism in anthurium cut flowers in response to postharvest chilling temperature.

    PubMed

    Aghdam, Morteza Soleimani; Naderi, Roohangiz; Jannatizadeh, Abbasali; Babalar, Mesbah; Sarcheshmeh, Mohammad Ali Askari; Faradonbe, Mojtaba Zamani

    2016-09-01

    Anthurium flowers are susceptible to chilling injury, and the optimum storage temperature is 12.5-20 °C. The γ-aminobutyric acid (GABA) shunt pathway may alleviate chilling stress in horticultural commodities by providing energy (ATP), reducing molecules (NADH), and minimizing accumulation of reactive oxygen species (ROS). In this experiment, the impact of a preharvest spray treatment with 1 mM GABA and postharvest treatment of 5 mM GABA stem-end dipping on GABA shunt pathway activity of anthurium cut flowers (cv. Sirion) in response to cold storage (4 °C for 21 days) was investigated. GABA treatments resulted in lower glutamate decarboxylase (GAD) and higher GABA transaminase (GABA-T) activities in flowers during cold storage, which was associated with lower GABA content and coincided with higher ATP content. GABA treatments also enhanced accumulation of endogenous glycine betaine (GB) in flowers during cold storage, as well as higher spathe relative water content (RWC). These findings suggest that GABA treatments may alleviate chilling injury of anthurium cut flowers by enhancing GABA shunt pathway activity leading to provide sufficient ATP and promoting endogenous GB accumulation. PMID:27135813

  20. Specific targeting of the GABA-A receptor α5 subtype by a selective inverse agonist restores cognitive deficits in Down syndrome mice

    PubMed Central

    Braudeau, J; Delatour, B; Duchon, A; Pereira, P Lopes; Dauphinot, L; de Chaumont, F; Olivo-Marin, J-C; Dodd, RH; Hérault, Y; Potier, M-C

    2011-01-01

    An imbalance between inhibitory and excitatory neurotransmission has been proposed to contribute to altered brain function in individuals with Down syndrome (DS). Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system and accordingly treatment with GABA-A antagonists can efficiently restore cognitive functions of Ts65Dn mice, a genetic model for DS. However, GABA-A antagonists are also convulsant which preclude their use for therapeutic intervention in DS individuals. Here, we have evaluated safer strategies to release GABAergic inhibition using a GABA-A-benzodiazepine receptor inverse agonist selective for the α5-subtype (α5IA). We demonstrate that α5IA restores learning and memory functions of Ts65Dn mice in the novel-object recognition and in the Morris water maze tasks. Furthermore, we show that following behavioural stimulation, α5IA enhances learning-evoked immediate early gene products in specific brain regions involved in cognition. Importantly, acute and chronic treatments with α5IA do not induce any convulsant or anxiogenic effects that are associated with GABA-A antagonists or non-selective inverse agonists of the GABA-A-benzodiazepine receptors. Finally, chronic treatment with α5IA did not induce histological alterations in the brain, liver and kidney of mice. Our results suggest that non-convulsant α5-selective GABA-A inverse agonists could improve learning and memory deficits in DS individuals. PMID:21693554

  1. Capture and release of acid-gasses with acid-gas binding organic compounds

    DOEpatents

    Heldebrant, David J; Yonker, Clement R; Koech, Phillip K

    2015-03-17

    A system and method for acid-gas capture wherein organic acid-gas capture materials form hetero-atom analogs of alkyl-carbonate when contacted with an acid gas. These organic-acid gas capture materials include combinations of a weak acid and a base, or zwitterionic liquids. This invention allows for reversible acid-gas binding to these organic binding materials thus allowing for the capture and release of one or more acid gases. These acid-gas binding organic compounds can be regenerated to release the captured acid gasses and enable these organic acid-gas binding materials to be reused. This enables transport of the liquid capture compounds and the release of the acid gases from the organic liquid with significant energy savings compared to current aqueous systems.

  2. [Autoantibodies to glutamate and GABA in opiate addiction].

    PubMed

    Vetrile, L A; Fomina, V G; Nevidimova, T I; Vetlugina, T P; Batukhtina, E I; Savochkina, D N; Zakharova, I A; Davydova, T V

    2015-01-01

    Blood serum from 129 patients with opium addiction at different stages of the disease and 63 donors (control group) was examined for the presence of autoantibodies to the exciting and inhibitory amino acids glutamate and GABA. It was shown enhanced production of autoantibodies to glutamate and GABA. Dependence of the level and frequency of detec- tion of autoantibodies to glutamate and GABA on the stage of the disease was revealed. PMID:26852594

  3. Effects of prenatal exposure to 2,4-D/2,4,5-T mixture on postnatal changes in rat brain glutamate, GABA protein, and nucleic acid levels

    SciTech Connect

    Mohammad, F.K.; Omer, V.E.V.

    1988-02-01

    The opportunity of maternal exposure to various chemicals in the work place and the general environments have increased, and the fetus and neonate may be at greater risk than the adult. However, the embryotoxic and teratogenic effects of the chlorinated phenoxy herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), the main chemicals in Agent Orange, are well documented only in laboratory animals. The brain of the developing fetus is vulnerable to the toxic effects of the phenoxy herbicides which readily cross the placental barrier and distribute into fetal tissues, including brain. Although the neurochemical basis for the behavioral teratogenicity of the phenoxy herbicides is not know, it was recently reported that non-teratogenic doses of a 1:1 mixture of 2,4-D and 2,4,5-T delayed the ontogeny of dopamine and serotonin in the brain of the developing rate. This communication provides further descriptive information about the ontogeny of rat brain nucleic acid, protein, glutamate and ..gamma..-aminobutyrate (GABA) following in utero exposure to non-teratogenic levels of a 1:1 mixture of 2,4-D/2,4,5-T.

  4. Effects of inescapable shock and conditioned fear on the release of excitatory and inhibitory amino acids in the locus coeruleus.

    PubMed

    Kaehler, S T; Sinner, C; Kouvelas, D; Philippu, A

    2000-02-01

    We investigated the importance of endogenous amino acids in the locus coeruleus in inescapable electric shock and conditioned fear. In naive rats and in rats exposed to noise (N), light (L) and electric shock (S) or to N + L only, the locus coeruleus was superfused with artificial cerebrospinal fluid through a push-pull cannula and the release of GABA, taurine, glutamate, aspartate, serine and glutamine was determined in the superfusate by HPLC after derivatization with o-phthaldialdehyde. Locomotor activity, arterial blood pressure and heart rate were telemetrically monitored. The placement of naive rats or conditioned rats from their home cage to a chamber provided with a grid-floor for shock virtually did not change the release rates of the amino acids in the locus coeruleus. Motility was enhanced in naive and conditioned rats to a similar extent. Blood pressure and heart rate were enhanced in conditioned rats only. Exposure to N + L + S for 5 min greatly enhanced the release rates of all determined amino acids in the locus coeruleus. In conditioned rats the increase in release of most amino acids lasted longer than in naive rats. Electric shock also enhanced motility, blood pressure and heart rate. In conditioned rats, motility and cardiovascular changes were more pronounced and/or lasted longer than in naive rats. Exposure of conditioned rats to the conditioned stimuli N + L for 5 min led to an increased release of taurine and aspartate. The enhanced release of taurine lasted 30 min. Exposure to N + L did not affect the release rates of amino acids in naive rats. N + L did not influence motility but arterial blood pressure and heart rate were elevated in conditioned rats. The findings show that inescapable electric shock enhances the release of several amino acids in the locus coeruleus, while conditioned fear selectively increases the outflow of taurine and aspartate. Moreover, conditioned fear prolongs the response of excitatory and inhibitory amino acids to

  5. Corelease of acetylcholine and GABA by an amacrine cell: Evidence for independent mechanisms

    SciTech Connect

    O'Mally, D.M.

    1989-01-01

    The spatial resolution of the cholinergic cells was measured by illuminating the retina with moving gratings composed of light and dark bars. Retinas that were labelled with {sup 3}H-choline released acetylcholine in response to moving gratings composed of bars as small as 50 {mu}m; 300 to 800 {mu}m wide bars yielded maximal responses. Responses were obtained to gratings moving at speeds from 50 to 6000 {mu}m/sec. Three groups recently reported that the cholinergic cells also contain GABA. To confirm these findings, retinas were double-labeled with {sup 3}H-GABA and DAPI, and processed for autoradiography. The cells that accumulate DAPI were heavily labelled with silver grains due to uptake of {sup 3}H-GABA. Incubation of retinas in the presence of elevated concentrations of K{sup +} caused them to release both acetylcholine and GABA, and autoradiography showed depletion of radioactive GABA, and autoradiography showed depletion of radioactive GABA from the cholinergic amacrine cells. Retinas were double-labeled with {sup 14}C-GABA and {sup 3}H-acetylcholine, allowing simultaneous measurement of their release. The release of {sup 14}C-GABA was independent of extracellular Ca{sup ++}. Radioactive GABA synthesized endogenously from {sup 14}C-glutamate behave the same as radioactive GABA accumulated from the medium. In the same experiments, the simultaneously measured release of {sup 3}H-acetylcholine was strongly Ca{sup ++}-dependent, indicating that acetylcholine and GABA are released by different mechanisms.

  6. Quantitative autoradiographic characterization of GA-BA sub B receptors in mammalian central nervous system

    SciTech Connect

    Chu, D.Chin-Mei.

    1989-01-01

    The inhibitory effects of the amino acid neurotransmitter {gamma}-aminobutyric acid (GABA) within the nervous system appear to be mediated through two distinct classes of receptors: GABA{sub A} and GABA{sub B} receptors. A quantitative autoradiographic method with {sup 3}H-GABA was developed to examine the hypotheses that GABA{sub A} and GABA{sub B} sites have distinct anatomical distributions, pharmacologic properties, and synaptic localizations within the rodent nervous system. The method was also applied to a comparative study of these receptors in postmortem human brain from individuals afflicted with Alzheimer's disease and those without neurologic disease. The results indicated that GABA{sub B} receptors occur in fewer numbers and have a lower affinity for GABA than GABA{sub A} receptors in both rodent and human brain. Within rodent brain, the distribution of these two receptor populations were clearly distinct. GABA{sub B} receptors were enriched in the medial habenula, interpeduncular nucleus, cerebellar molecular layer and olfactory glomerular layer. After selective lesions of postsynaptic neurons of the corticostriatal and perforant pathway, both GABA{sub B} and GABA{sub A} receptors were significantly decreased in number. Lesions of the presynaptic limbs of the perforant but not the corticostriatal pathway resulted in upregulation of both GABA receptors in the area of innervation. GABA{sub B} receptors were also upregulated in CA3 dendritic regions after destruction of dentate granule neurons.

  7. Control of arachidonic acid release in chick muscle cultures

    NASA Technical Reports Server (NTRS)

    Templeton, G. H.; Padalino, M.; Wright, W.

    1985-01-01

    Cultures from thigh muscles of 12 day old embryonic chicks are utilized to examine arachidonic release, prostaglandin (PG) biosynthesis, and protein synthesis. The preparation of the cultures is described. It is observed that exogenous arachidonic acid is formed into photsphatidylethanolamine and phosphatidylcholine, is released by a calcium ionosphere or phospholiphase simulator, and is the substrate for the biosynthesis of PG; the epidermal growth factor and PGF do not stimulate protein synthesis over the basal levels. The relationship between arachidonate release and melittin is studied. The data reveal that a change in intracellular calcium stimulates phospholiphase activity, arachidonate release, and PG synthesis in chick muscle culture.

  8. Dynamic regulation of glycine–GABA co-transmission at spinal inhibitory synapses by neuronal glutamate transporter

    PubMed Central

    Ishibashi, Hitoshi; Yamaguchi, Junya; Nakahata, Yoshihisa; Nabekura, Junichi

    2013-01-01

    Fast inhibitory neurotransmission in the central nervous system is mediated by γ-aminobutyric acid (GABA) and glycine, which are accumulated into synaptic vesicles by a common vesicular inhibitory amino acid transporter (VIAAT) and are then co-released. However, the mechanisms that control the packaging of GABA + glycine into synaptic vesicles are not fully understood. In this study, we demonstrate the dynamic control of the GABA–glycine co-transmission by the neuronal glutamate transporter, using paired whole-cell patch recording from monosynaptically coupled cultured spinal cord neurons derived from VIAAT-Venus transgenic rats. Short step depolarization of presynaptic neurons evoked unitary (cell-to-cell) inhibitory postsynaptic currents (IPSCs). Under normal conditions, the fractional contribution of postsynaptic GABA or glycine receptors to the unitary IPSCs did not change during a 1 h recording. Intracellular loading of GABA or glycine via a patch pipette enhanced the respective components of inhibitory transmission, indicating the importance of the cytoplasmic concentration of inhibitory transmitters. Raised extracellular glutamate levels increased the amplitude of GABAergic IPSCs but reduced glycine release by enhancing glutamate uptake. Similar effects were observed when presynaptic neurons were intracellularly perfused with glutamate. Interestingly, high-frequency trains of stimulation decreased glycinergic IPSCs more than GABAergic IPSCs, and repetitive stimulation occasionally failed to evoke glycinergic but not GABAergic IPSCs. The present results suggest that the enhancement of GABA release by glutamate uptake may be advantageous for rapid vesicular refilling of the inhibitory transmitter at mixed GABA/glycinergic synapses and thus may help prevent hyperexcitability. PMID:23690564

  9. Cocaine disinhibits dopamine neurons in the ventral tegmental area via use-dependent blockade of GABA neuron voltage-sensitive sodium channels

    PubMed Central

    Steffensen, Scott C.; Taylor, Seth R.; Horton, Malia L.; Barber, Elise N.; Lyle, Laura T.; Stobbs, Sarah H.; Allison, David W.

    2010-01-01

    The aim of this study was to evaluate the effects of cocaine on γ-aminobutyric acid (GABA) and dopamine (DA) neurons in the ventral tegmental area (VTA). Utilizing single-unit recordings in vivo, microelectrophoretic administration of DA enhanced the firing rate of VTA GABA neurons via D2/D3 DA receptor activation. Lower doses of intravenous cocaine (0.25–0.5 mg/kg), or the DA transporter (DAT) blocker methamphetamine, enhanced VTA GABA neuron firing rate via D2/D3 receptor activation. Higher doses of cocaine (1.0–2.0 mg/kg) inhibited their firing rate, which was not sensitive to the D2/D3 antagonist eticlopride. The voltage-sensitive sodium channel (VSSC) blocker lidocaine inhibited the firing rate of VTA GABA neurons at all doses tested (0.25–2.0 mg/kg). Cocaine or lidocaine reduced VTA GABA neuron spike discharges induced by stimulation of the internal capsule (ICPSDs) at dose levels 0.25–2 mg/kg (IC50 1.2 mg/kg). There was no effect of DA or methamphetamine on ICPSDs, or of DA antagonists on cocaine inhibition of ICPSDs. In VTA GABA neurons in vitro, cocaine reduced (IC50 13 μm) current-evoked spikes and TTX-sensitive sodium currents in a use-dependent manner. In VTA DA neurons, cocaine reduced IPSCs (IC50 13 μm), increased IPSC paired-pulse facilitation and decreased spontaneous IPSC frequency, without affecting miniature IPSC frequency or amplitude. These findings suggest that cocaine acts on GABA neurons to reduce activity-dependent GABA release on DA neurons in the VTA, and that cocaine's use-dependent blockade of VTA GABA neuron VSSCs may synergize with its DAT inhibiting properties to enhance mesolimbic DA transmission implicated in cocaine reinforcement. PMID:19046384

  10. Excitatory actions of GABA in developing chick vestibular afferents: effects on resting electrical activity.

    PubMed

    Cortes, Celso; Galindo, Fabian; Galicia, Salvador; Cebada, Jorge; Flores, Amira

    2013-07-01

    The aim of this study was to characterize the effect of γ-aminobutyric acid (GABA) in the resting multiunit activity of the vestibular afferents during development using the isolated inner ear of embryonic and postnatal chickens (E15-E21 and P5). GABA (10(-3) to 10(-5) M; n = 133) and muscimol (10(-3) M) elicited an increase in the frequency of the basal discharge of the vestibular afferents. We found that GABA action was dose-dependent and inversely related to animal age. Thus, the largest effect was observed in embryonic ages such as E15 and E17 and decreases in E21 and P5. The GABAA receptor antagonists, bicuculline (10(-5) M; n = 10) and picrotoxin (10(-4) M; n = 10), significantly decreased the excitatory action of GABA and muscimol (10(-3) M). Additionally, CNQX 10(-6) M, MCPG 10(-5) M and 7ClKyn 10(-5) M (n = 5) were co-applied by bath substitution (n = 5). Both the basal discharge and the GABA action significantly decreased in these experimental conditions. The chloride channel blocker 9-AC 0.5 mM produced an important reduction in the effect of GABA 10(-3) (n = 5) and 10(-4) M (n = 5). Thus, our results suggest an excitatory role of GABA in the resting activity of the vestibular afferents that can be explained by changes in the gradient of concentration of Cl(-) during development. We show for the first time that the magnitude of this GABA effect decreases at later stages of embryonic and early postnatal development. Taking into account the results with glutamatergic antagonists, we conclude that GABA has a presynaptic action but is not the neurotransmitter in the vestibular afferent synapses, although it could act as a facilitator of the spontaneous activity and may regulate glutamate release. PMID:23401185

  11. Release of selected amino acids from zinc carriers.

    PubMed

    Dyja, Renata; Dolińska, Barbara; Ryszka, Florian

    2016-06-01

    The paper deals with the results of an investigation of the release of selected amino acids (histidine, tryptophan, tyrosine) from model suspensions prepared by co-precipitation with zinc chloride. It has been proven that the influence of the Zn(II)/amino acid molar ratio on dissolution profiles of the tested amino acids and dissolution half-life (t1/2) of histidine or tryptophan is significant. The amount of amino acid in the dispersed phase (supporting dose) is a determinant of the amino acid release profile. There is a minimal supporting dose (30.0 μmol of histidine or 17.4 μmol of tryptophan) that provides release of similar amounts of amino acid (4.1-4.6 μmol of histidine or 8.7-9.9 μmol of tryptophan) after the same time intervals. The tyrosine release profiles follow first order kinetics since the supporting dose (0.9-11.2 μmol) is limited by the tyrosine low solubility in water. PMID:27279069

  12. Isoflurane modulates excitability in the mouse thalamus via GABA-dependent and GABA-independent mechanisms.

    PubMed

    Ying, Shui-Wang; Werner, David F; Homanics, Gregg E; Harrison, Neil L; Goldstein, Peter A

    2009-02-01

    GABAergic neurons in the reticular thalamic nucleus (RTN) synapse onto thalamocortical neurons in the ventrobasal (VB) thalamus, and this reticulo-thalamocortical pathway is considered an anatomic target for general anesthetic-induced unconsciousness. A mutant mouse was engineered to harbor two amino acid substitutions (S270H, L277A) in the GABA(A) receptor (GABA(A)-R) alpha1 subunit; this mutation abolished sensitivity to the volatile anesthetic isoflurane in recombinant GABA(A)-Rs, and reduced in vivo sensitivity to isoflurane in the loss-of-righting-reflex assay. We examined the effects of the double mutation on GABA(A)-R-mediated synaptic currents and isoflurane sensitivity by recording from thalamic neurons in brain slices. The double mutation accelerated the decay, and decreased the (1/2) width of, evoked inhibitory postsynaptic currents (eIPSCs) in VB neurons and attenuated isoflurane-induced prolongation of the eIPSC. The hypnotic zolpidem, a selective modulator of GABA(A)-Rs containing the alpha1 subunit, prolonged eIPSC duration regardless of genotype, indicating that mutant mice incorporate alpha1 subunit-containing GABA(A)-Rs into synapses. In RTN neurons, which lack the alpha1 subunit, eIPSC duration was longer than in VB, regardless of genotype. Isoflurane reduced the efficacy of GABAergic transmission from RTN to VB, independent of genotype, suggesting a presynaptic action in RTN neurons. Consistent with this observation, isoflurane inhibited both tonic action potential and rebound burst firing in the presence of GABA(A)-R blockade. The suppressed excitability in RTN neurons is likely mediated by isoflurane-enhanced Ba(2+)-sensitive, but 4-aminopyridine-insenstive, potassium conductances. We conclude that isoflurane enhances inhibition of thalamic neurons in VB via GABA(A)-R-dependent, but in RTN via GABA(A)-R-independent, mechanisms. PMID:18948126

  13. Distribution of 3H-GABA uptake sites in the nematode Ascaris

    SciTech Connect

    Guastella, J.; Stretton, A.O. )

    1991-05-22

    The distribution of uptake sites for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in the nematode Ascaris suum was examined by autoradiography of 3H-GABA uptake. Single neural processes in both the ventral and dorsal nerve cords were labeled with 3H-GABA. Serial section analysis identified the cells of origin of these processes as the RMEV-like and RMED-like neurons. These cells belong to a set of four neurons in the nerve ring, all of which are labeled by 3H-GABA. 3H-GABA labeling of at least two other sets of cephalic neurons was seen. One of these pairs consists of medium-sized lateral ganglia neurons, located at the level of the amphid commissure bundle. A second pair is located in the lateral ganglia at the level of the deirid commissure bundle. The position and size of these lateral ganglia cells suggest that they are the GABA-immunoreactive lateral ganglia cells frequently seen in whole-mount immunocytochemical preparations. Four neuronal cell bodies located in the retrovesicular ganglion were also labeled with 3H-GABA. These cells, which are probably cholinergic excitatory motor neurons, do not contain detectable GABA-like immunoreactivity. Heavy labeling of muscle cells was also observed. The ventral and dorsal nerve cord inhibitory motor neurons, which are known to contain GABA-like immunoreactivity, were not labeled above background with 3H-GABA. Together with the experiments reported previously, these results define three classes of GABA-associated neurons in Ascaris: (1) neurons that contain endogenous GABA and possess a GABA uptake system; (2) neurons that contain endogenous GABA, but that either lack a GABA uptake system or possess a GABA uptake system of low activity; (3) neurons that possess a GABA uptake system, but that lack endogenous GABA.

  14. Bioerodible devices for intermittent release of simvastatin acid.

    PubMed

    Jeon, Ju Hyeong; Thomas, Mark V; Puleo, David A

    2007-08-01

    The association polymer system of cellulose acetate phthalate (CAP) and Pluronic F-127 (PF-127) was used to create intermittent release devices for mimicking the daily injection of simvastatin that has been reported to stimulate bone formation. To enhance solubility in water, prodrug simvastatin was modified by lactone ring opening, which converts the molecule to its hydroxyacid form. CAP/PF-127 microspheres incorporating simvastatin acid were prepared by a water-acetone-oil-water (W/A/O/W) triple emulsion process. Devices were then fabricated by pressure-sintering UV-treated blank and drug-loaded microspheres. Using a multilayered fabrication approach, pulsatile release profiles were obtained. Delivery was varied by changing loading, number of layers, blend ratio, and incubation conditions. To determine the cellular effects of intermittent exposure to simvastatin acid, MC3T3-E1 cells were cultured with either alternating or sustained concentrations of simvastatin acid in the medium, and DNA content, alkaline phosphatase activity, and osteocalcin secretion were measured. For all three cell responses, cultures exposed to simvastatin acid showed higher activity than did control cultures. Furthermore, cell activity was greater for cells cultured with intermittent concentrations of simvastatin acid compared to cells that were constantly treated. These results imply that devices intermittently releasing simvastatin acid warrant further study for locally promoting osteogenesis. PMID:17433584

  15. An excitatory GABA loop operating in vivo

    PubMed Central

    Astorga, Guadalupe; Bao, Jin; Marty, Alain; Augustine, George J.; Franconville, Romain; Jalil, Abdelali; Bradley, Jonathan; Llano, Isabel

    2015-01-01

    While it has been proposed that the conventional inhibitory neurotransmitter GABA can be excitatory in the mammalian brain, much remains to be learned concerning the circumstances and the cellular mechanisms governing potential excitatory GABA action. Using a combination of optogenetics and two-photon calcium imaging in vivo, we find that activation of chloride-permeable GABAA receptors in parallel fibers (PFs) of the cerebellar molecular layer of adult mice causes parallel fiber excitation. Stimulation of PFs at submaximal stimulus intensities leads to GABA release from molecular layer interneurons (MLIs), thus creating a positive feedback loop that enhances excitation near the center of an activated PF bundle. Our results imply that elevated chloride concentration can occur in specific intracellular compartments of mature mammalian neurons and suggest an excitatory role for GABAA receptors in the cerebellar cortex of adult mice. PMID:26236197

  16. Synaptic inhibition and γ-aminobutyric acid in the mammalian central nervous system

    PubMed Central

    OBATA, Kunihiko

    2013-01-01

    Signal transmission through synapses connecting two neurons is mediated by release of neurotransmitter from the presynaptic axon terminals and activation of its receptor at the postsynaptic neurons. γ-Aminobutyric acid (GABA), non-protein amino acid formed by decarboxylation of glutamic acid, is a principal neurotransmitter at inhibitory synapses of vertebrate and invertebrate nervous system. On one hand glutamic acid serves as a principal excitatory neurotransmitter. This article reviews GABA researches on; (1) synaptic inhibition by membrane hyperpolarization, (2) exclusive localization in inhibitory neurons, (3) release from inhibitory neurons, (4) excitatory action at developmental stage, (5) phenotype of GABA-deficient mouse produced by gene-targeting, (6) developmental adjustment of neural network and (7) neurological/psychiatric disorder. In the end, GABA functions in simple nervous system and plants, and non-amino acid neurotransmitters were supplemented. PMID:23574805

  17. Hypothalamic oxytocin attenuates CRF expression via GABA(A) receptors in rats.

    PubMed

    Bülbül, Mehmet; Babygirija, Reji; Cerjak, Diana; Yoshimoto, Sazu; Ludwig, Kirk; Takahashi, Toku

    2011-04-28

    Centrally released oxytocin (OXT) has anxiolytic and anti-stress effects. Delayed gastric emptying (GE) induced by acute restraint stress (ARS) for 90 min is completely restored following 5 consecutive days of chronic homotypic restraint stress (CHS), via up-regulating hypothalamic OXT expression in rats. However, the mechanism behind the restoration of delayed GE following CHS remains unclear. Gamma-aminobutyric acid (GABA)-projecting neurons in the paraventricular nucleus (PVN) have been shown to inhibit corticotropin releasing factor (CRF) synthesis via GABA(A) receptors. We hypothesized that GABA(A) receptors are involved in mediating the inhibitory effect of OXT on CRF expression in the PVN, which in turn restores delayed GE following CHS. OXT (0.5 μg) and selective GABA(A) receptor antagonist, bicuculline methiodide (BMI) (100 ng), were administered intracerebroventricularly (icv). Solid GE was measured under non-stressed (NS), ARS and CHS conditions. Expression of CRF mRNA in the PVN was evaluated by real time RT-PCR. Neither OXT nor BMI changed GE and CRF mRNA expression under NS conditions. Delayed GE and increased CRF mRNA expression induced by ARS were restored by icv-injection of OXT. The effects of OXT on delayed GE and increased CRF mRNA expression in ARS were abolished by icv-injection of BMI. Following CHS, delayed GE was completely restored in saline (icv)-injected rats, whereas daily injection of BMI (icv) attenuated the restoration of delayed GE. Daily injection of BMI (icv) significantly increased CRF mRNA expression following CHS. It is suggested that central OXT inhibits ARS-induced CRF mRNA expression via GABA(A) receptors in the PVN. GABAergic system is also involved in OXT-mediated adaptation response of delayed GE under CHS conditions. PMID:21382355

  18. Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain.

    PubMed

    Vazquez-DeRose, Jacqueline; Schwartz, Michael D; Nguyen, Alexander T; Warrier, Deepti R; Gulati, Srishti; Mathew, Thomas K; Neylan, Thomas C; Kilduff, Thomas S

    2016-03-01

    Hypocretin/orexin (HCRT) neurons provide excitatory input to wake-promoting brain regions including the basal forebrain (BF). The dual HCRT receptor antagonist almorexant (ALM) decreases waking and increases sleep. We hypothesized that HCRT antagonists induce sleep, in part, through disfacilitation of BF neurons; consequently, ALM should have reduced efficacy in BF-lesioned (BFx) animals. To test this hypothesis, rats were given bilateral IgG-192-saporin injections, which predominantly targets cholinergic BF neurons. BFx and intact rats were then given oral ALM, the benzodiazepine agonist zolpidem (ZOL) or vehicle (VEH) at lights-out. ALM was less effective than ZOL at inducing sleep in BFx rats compared to controls. BF adenosine (ADO), γ-amino-butyric acid (GABA), and glutamate levels were then determined via microdialysis from intact, freely behaving rats following oral ALM, ZOL or VEH. ALM increased BF ADO and GABA levels during waking and mixed vigilance states, and preserved sleep-associated increases in GABA under low and high sleep pressure conditions. ALM infusion into the BF also enhanced cortical ADO release, demonstrating that HCRT input is critical for ADO signaling in the BF. In contrast, oral ZOL and BF-infused ZOL had no effect on ADO levels in either BF or cortex. ALM increased BF ADO (an endogenous sleep-promoting substance) and GABA (which is increased during normal sleep), and required an intact BF for maximal efficacy, whereas ZOL blocked sleep-associated BF GABA release, and required no functional contribution from the BF to induce sleep. ALM thus induces sleep by facilitating the neural mechanisms underlying the normal transition to sleep. PMID:25431268

  19. Oxytocin regulates changes of extracellular glutamate and GABA levels induced by methamphetamine in the mouse brain.

    PubMed

    Qi, Jia; Han, Wen-Yan; Yang, Jing-Yu; Wang, Li-Hui; Dong, Ying-Xu; Wang, Fang; Song, Ming; Wu, Chun-Fu

    2012-07-01

    Oxytocin (OT), a neurohypophyseal neuropeptide, affects adaptive processes of the central nervous system. In the present study, we investigated the effects of OT on extracellular levels of glutamate (Glu) and γ-aminobutyric acid (GABA) induced by methamphetamine (MAP) in the medial prefrontal cortex (mPFC) and dorsal hippocampus (DHC) of freely moving mice, using in vivo microdialysis coupled to high-performance liquid chromatography and fluorescence detection. The results showed that OT had no effect on basal Glu levels, but attenuated MAP-induced Glu increase in the mPFC and decrease in the DHC. OT increased the basal levels of extracellular GABA in mPFC and DHC of mice, and inhibited the MAP-induced GABA decrease in DHC. Western blot results indicated that OT significantly inhibited the increased glutamatergic receptor (NR1 subunit) levels in the PFC after acute MAP administration, whereas OT further enhanced the elevated levels of glutamatergic transporter (GLT1) induced by MAP in the hippocampus of mice. Atosiban, a selective inhibitor of OT receptor, antagonized the effects of OT. The results provided the first neurochemical evidence that OT, which exerted its action via its receptor, decreased Glu release induced by MAP, and attenuated the changes in glutamatergic neurotransmission partially via regulation of NR1 and GLT1 expression. OT-induced extracellular GABA increase also suggests that OT acts potentially as an inhibitory neuromodulator in mPFC and DHC of mice. PMID:22507692

  20. Biphasic effects of direct, but not indirect, GABA mimetics and antagonists on haloperidol-induced catalepsy.

    PubMed

    Worms, P; Lloyd, K G

    1980-03-01

    At very low doses the GABA agonists SL 76002 and muscimol diminish haloperidol-induced catalepsy. At somewhat higher doses these compounds potentiate catalepsy. Biphasic effects on DA-receptor mediated functions have previously been noted with bicuculline and picrotoxinin. In contrast, manipulation of GABA levels by enzyme inhibition induced only a monophasic effect on dopamine-mediated behaviour. The potentiation of GABA levels by enzyme inhibition induced only a monophasic effect on dopamine-mediated behaviour. The potentiation of haloperidol-induced catalepsy by GABA mimetics is also observed with dipropylacetate, delta-aminovaleric acid and gamma-acetylenic GABA. This GABA-mimetic potentiation of catakepsy was blocked by the coadministration of bicuculline. These results confirm and extend the hypothesis that GABA-neurons influence DA neuron function. Furthermore they suggest that more than one group of GABA receptors influence directly and/or indirectly DA neuronal function, with different resultant effects. PMID:7189827

  1. Agonist pharmacology of two Drosophila GABA receptor splice variants.

    PubMed Central

    Hosie, A. M.; Sattelle, D. B.

    1996-01-01

    1. The Drosophila melanogaster gamma-aminobutyric acid (GABA) receptor subunits, RDLac and DRC 17-1-2, form functional homo-oligomeric receptors when heterologously expressed in Xenopus laevis oocytes. The subunits differ in only 17 amino acids, principally in regions of the N-terminal domain which determine agonist pharmacology in vertebrate ionotropic neurotransmitter receptors. A range of conformationally restricted GABA analogues were tested on the two homo-oligomers and their agonists pharmacology compared with that of insect and vertebrate iontropic GABA receptors. 2. The actions of GABA, isoguvacine and isonipecotic acid on RDLac and DRC 17-1-2 homo-oligomers were compared, by use of two-electrode voltage-clamp. All three compounds were full agonists of both receptors, but were 4-6 fold less potent agonists of DRC 17-1-2 homo-oligomers than of RDLac. However, the relative potencies of these agonists on each receptor were very similar. 3. A more complete agonist profile was established for RDLac homo-oligomers. The most potent agonists of these receptors were GABA, muscimol and trans-aminocrotonic acid (TACA), which were approximately equipotent. RDLac homo-oligomers were fully activated by a range of GABA analogues, with the order of potency: GABA > ZAPA ((Z)-3-[(aminoiminomethyl)thio]prop-2-enoic acid) > isoguvacine > imidazole-4-acetic acid > or = isonipecotic acid > or = cis-aminocrotonic acid (CACA) > beta-alanine. 3-Aminopropane sulphonic acid (3-APS), a partial agonist of RDLac homo-oligomers, was the weakest agonist tested and 100 fold less potent than GABA. 4. SR95531, an antagonist of vertebrate GABAA receptors, competitively inhibited the GABA responses of RDLac homo-oligomers, which have previously been found to insensitive to bicuculline. However, its potency (IC50 500 microM) was much reduced when compared to GABAA receptors. 5. The agonist pharmacology of Drosophila RDLac homo-oligomers exhibits aspects of the characteristic pharmacology of

  2. Ondansetron reverses anti-hypersensitivity from clonidine in rats following peripheral nerve injury: Role of γ-amino butyric acid in α2-adrenoceptor and 5-HT3 serotonin receptor analgesia

    PubMed Central

    Hayashida, Ken-ichiro; Kimura, Masafumi; Yoshizumi, Masaru; Hobo, Shotaro; Obata, Hideaki; Eisenach, James C.

    2012-01-01

    Introduction Monoaminergic pathways, impinging an α2-adrenoceptors and 5-HT3 serotonin receptors, modulate nociceptive transmission, but their mechanisms and interactions after neuropathic injury are unknown. Here we examine these interactions in rodents after nerve injury. Methods Male Sprague-Dawley rats following L5-L6 spinal nerve ligation (SNL) were used for either behavioral testing, in vivo microdialysis for γ-amino butyric acid (GABA) and acetylcholine release, or synaptosome preparation for GABA release. Results Intrathecal administration of the α2-adrenoceptor agonist (clonidine) and 5-HT3 receptor agonist (chlorophenylbiguanide) reduced hypersensitivity in SNL rats via GABA receptor-mediated mechanisms. Clonidine increased GABA and acetylcholine release in vivo in the spinal cord of SNL rats but not in normal rats. Clonidine-induced spinal GABA release in SNL rats was blocked by α2-adrenergic and nicotinic cholinergic antagonists. The 5-HT3 receptor antagonist ondansetron decreased and chlorophenylbiguanide increased spinal GABA release in both normal and SNL rats. In synaptosomes from the spinal dorsal horn of SNL rats, pre-synaptic GABA release was increased by nicotinic agonists and decreased by muscarinic and α2-adrenergic agonists. Spinally administered ondansetron significantly reduced clonidine-induced anti-hypersensitivity and spinal GABA release in SNL rats. Conclusion These results suggest that spinal GABA contributes to anti-hypersensitivity from intrathecal α2-adrenergic and 5-HT3 receptor agonists in the neuropathic pain state, that cholinergic neuroplasticity after nerve injury is critical for α2-adrenoceptor-mediated GABA release, and that blockade of spinal 5-HT3 receptors reduces α2-adrenoceptor-mediated anti-hypersensitivity via reducing total GABA release. PMID:22722575

  3. Astrocytes Release Polyunsaturated Fatty Acids by Lipopolysaccharide Stimuli.

    PubMed

    Aizawa, Fuka; Nishinaka, Takashi; Yamashita, Takuya; Nakamoto, Kazuo; Koyama, Yutaka; Kasuya, Fumiyo; Tokuyama, Shogo

    2016-01-01

    We previously reported that levels of long-chain fatty acids (FAs) including docosahexaenoic acids (DHA) increase in the hypothalamus of inflammatory pain model mice. However, the precise mechanisms underlying the increment of free fatty acids (FFAs) in the brain during inflammation remains unknown. In this study, we characterized FFAs released by inflammatory stimulation in rat primary cultured astrocytes, and tested the involvement of phospholipase A2 (PLA2) on these mechanisms. Lipopolysaccharide (LPS) stimulation significantly increased the levels of several FAs in the astrocytes. Under these conditions, mRNA expression of cytosolic PLA2 (cPLA2) and calcium-independent PLA2 (iPLA2) in LPS-treated group increased compared with the control group. Furthermore, in the culture media, the levels of DHA and arachidonic acid (ARA) significantly increased by LPS stimuli compared with those of a vehicle-treated control group whereas the levels of saturated FAs (SFAs), namely palmitic acid (PAM) and stearic acid (STA), did not change. In summary, our findings suggest that astrocytes specifically release DHA and ARA by inflammatory conditions. Therefore astrocytes might function as a regulatory factor of DHA and ARA in the brain. PMID:27374285

  4. Chronic benzodiazepine treatment and cortical responses to adenosine and GABA.

    PubMed

    Mally, J; Connick, J H; Stone, T W

    1990-10-22

    The effects of chronic treatment of mice with clonazepam have been examined on the responses of neocortical slices to adenosine, 5-hydroxytryptamine (5-HT) and gamma-aminobutyric acid (GABA). Responses to these agonists were measured as changes in the depolarisation induced by N-methyl-D-aspartate (NMDA). Added to the superfusion medium diazepam blocked responses to adenosine but not 5-HT; this effect was not observed with 2-chloroadenosine or in the presence of 2-hydroxynitrobenzylthioguanosine. GABA was inactive in control slices but chronic treatment with clonazepam induced responses to GABA and enhanced responses to adenosine but not 5-HT. It is suggested that the induction of GABA responses may reflect the up-regulation of GABA receptors, but the increase of adenosine responses by clonazepam implies that there is no simple relationship between adenosine receptor binding and functional responses. PMID:1979931

  5. Neurotoxins from snake venoms and α-conotoxin ImI inhibit functionally active ionotropic γ-aminobutyric acid (GABA) receptors.

    PubMed

    Kudryavtsev, Denis S; Shelukhina, Irina V; Son, Lina V; Ojomoko, Lucy O; Kryukova, Elena V; Lyukmanova, Ekaterina N; Zhmak, Maxim N; Dolgikh, Dmitry A; Ivanov, Igor A; Kasheverov, Igor E; Starkov, Vladislav G; Ramerstorfer, Joachim; Sieghart, Werner; Tsetlin, Victor I; Utkin, Yuri N

    2015-09-11

    Ionotropic receptors of γ-aminobutyric acid (GABAAR) regulate neuronal inhibition and are targeted by benzodiazepines and general anesthetics. We show that a fluorescent derivative of α-cobratoxin (α-Ctx), belonging to the family of three-finger toxins from snake venoms, specifically stained the α1β3γ2 receptor; and at 10 μm α-Ctx completely blocked GABA-induced currents in this receptor expressed in Xenopus oocytes (IC50 = 236 nm) and less potently inhibited α1β2γ2 ≈ α2β2γ2 > α5β2γ2 > α2β3γ2 and α1β3δ GABAARs. The α1β3γ2 receptor was also inhibited by some other three-finger toxins, long α-neurotoxin Ls III and nonconventional toxin WTX. α-Conotoxin ImI displayed inhibitory activity as well. Electrophysiology experiments showed mixed competitive and noncompetitive α-Ctx action. Fluorescent α-Ctx, however, could be displaced by muscimol indicating that most of the α-Ctx-binding sites overlap with the orthosteric sites at the β/α subunit interface. Modeling and molecular dynamic studies indicated that α-Ctx or α-bungarotoxin seem to interact with GABAAR in a way similar to their interaction with the acetylcholine-binding protein or the ligand-binding domain of nicotinic receptors. This was supported by mutagenesis studies and experiments with α-conotoxin ImI and a chimeric Naja oxiana α-neurotoxin indicating that the major role in α-Ctx binding to GABAAR is played by the tip of its central loop II accommodating under loop C of the receptors. PMID:26221036

  6. Bis(mesitoyl)phosphinic acid: photo-triggered release of metaphosphorous acid in solution.

    PubMed

    Fast, David E; Zalibera, Michal; Lauer, Andrea; Eibel, Anna; Schweigert, Caroline; Kelterer, Anne-Marie; Spichty, Martin; Neshchadin, Dmytro; Voll, Dominik; Ernst, Hanna; Liang, Yu; Dietliker, Kurt; Unterreiner, Andreas-Neil; Barner-Kowollik, Christopher; Grützmacher, Hansjörg; Gescheidt, Georg

    2016-08-01

    Bis(mesitoyl)phosphinic acid and its sodium salt display a unique photo-induced reactivity: both derivatives stepwise release two mesitoyl radicals and, remarkably, metaphosphorous acid (previously postulated as transient species in the gas phase), providing a new phosphorus-based reagent. PMID:27431207

  7. Electrically induced release of amino acids formed from (U14C) glucose in rat brain cortex slices, studied by a simplified dansylation procedure.

    PubMed

    Orrego, F; Doria de Lorenzo, M C

    1980-05-01

    The nonessential amino acids glutamate, aspartate, glutamine, gamma-aminobutyrate (GABA), alanine, glycine, and proline present in rat thin brain cortex slices were labeled by in vitro incubation of these with [U-14C]glucose, and the efflux of such endogenous radioactive amino acids and of lactate was studied in a superfused system, under control conditions or when the slices were depolarized by varous procedures. When electrical stimuli known to induce selective neurotransmitter release (1 or 1.5 volt, sine wave 60 Hz) were applied for 10 sec to the slices, no significant increase in amino acid efflux was found. When more intense stimuli (4 volt, 60 Hz) were applied for 60 sec, or extracellular potassium was raised to 56 mM, both conditions being known to induce nonselective substance release, the efflux of essentially all amino acids and of lactate was markedly increased. Increases in efflux were proportionately larger for glutamate, aspartate, and gamma-aminobutyrate, and this could be accounted for by their greater intracellular chemical (or electrochemical) potentials, but not because of a selective release mechanism for them. Amino acids were analyzed as their 1-dimethylaminoaphthalene-5-sulfonyl (dansyl) derivatives, by a modification of existing procedures in which the dansyl (DNS) derivatives were efficiently extracted from acidified incubation fluid into an organic phase. This rapidly desalted the derivatives and allowed their concentration and chromatographic separation on thin-layer silica gel sheets with little loss. PMID:7393382

  8. Mechanism of drug release from poly(L-lactic acid) matrix containing acidic or neutral drugs.

    PubMed

    Miyajima, M; Koshika, A; Okada, J; Ikeda, M

    1999-08-01

    The release profiles of acidic and neutral drugs from poly(L-lactic acid) [P(L)LA] matrices were investigated to reveal their release mechanism. Cylindrical matrices (rods; 10 mmx1 mm diameter) were prepared by the heat compression method. The acidic and neutral drugs investigated were dissolved in the P(L)LA rods. It was found that the release profiles consisted of two sequential stages. At the first release stage, P(L)LA remained in an amorphous state and the drugs diffused through the hydrated matrices. At the second release stage, P(L)LA transformed to a semicrystalline state and the drugs diffused through water-filled micropores developed by polymer crystallization. In addition, the drugs were also found to precipitate out as crystals in the rods, resulting in a transformation of the rods into drug-dispersed matrices. On the basis of these findings, we derived a modified diffusion equation for the drug release at the second stage. This equation showed good fits to the release profiles of these drugs. Furthermore, the availability of the derived equation was supported by the acceleration in the fractional drug release rate noted both with decreases in the drug content in the rod and increases in the pH of the medium. PMID:10425326

  9. GABA selectively increases mucin-1 expression in isolated pig jejunum.

    PubMed

    Braun, Hannah-Sophie; Sponder, Gerhard; Pieper, Robert; Aschenbach, Jörg R; Deiner, Carolin

    2015-11-01

    The inhibitory neurotransmitter GABA (γ-aminobutyric acid) is synthesized by glutamic acid decarboxylase, which is expressed in the central nervous system and in various other tissues including the intestine. Moreover, GABA can be ingested in vegetarian diets or produced by bacterial commensals in the gastrointestinal tract. As previous studies in lung have suggested a link between locally increased GABA availability and mucin 5AC production, the present study sought to test whether the presence or lack of GABA (and its precursor glutamine) has an effect on intestinal mucin expression. Porcine jejunum epithelial preparations were incubated with two different amounts of GABA or glutamine on the mucosal side for 4 h, and changes in the relative gene expression of seven different mucins, enzymes involved in mucin shedding, GABA B receptor, enzymes involved in glutamine/GABA metabolism, glutathione peroxidase 2, and interleukin 10 were examined by quantitative PCR (TaqMan(®) assays). Protein expression of mucin-1 (MUC1) was analyzed by Western blot. On the RNA level, only MUC1 was significantly up-regulated by both GABA concentrations compared with the control. Glutamine-treated groups showed the same trend. On the protein level, all treatment groups showed a significantly higher MUC1 expression than the control group. We conclude that GABA selectively increases the expression of MUC1, a cell surface mucin that prevents the adhesion of microorganisms, because of its size and negative charge, and therefore propose that the well-described positive effects of glutamine on enterocytes and intestinal integrity are partly attributable to effects of its metabolite GABA. PMID:26471792

  10. First molecular genotyping of A302S mutation in the gamma aminobutyric acid (GABA) receptor in Aedes albopictus from Malaysia.

    PubMed

    Low, V L; Vinnie-Siow, W Y; Lim Y, A L; Tan, T K; Leong, C S; Chen, C D; Azidah, A A; Sofian-Azirun, M

    2015-09-01

    Given the lack of molecular evidence in altered target-site insecticide resistance mechanism in Aedes albopictus (Skuse) worldwide, the present study aims to detect the presence of A302S mutation in the gene encoding the gamma aminobutyric acid receptor resistant to dieldrin (Rdl) in Ae. albopictus for the first time from its native range of South East Asia, namely Malaysia. World Health Organization (WHO) adult susceptibility bioassay indicated a relatively low level of dieldrin resistance (two-fold) in Ae. albopictus from Petaling Jaya, Selangor. However, PCR-RFLP and direct sequencing methods revealed the presence of the A302S mutation with the predomination of heterozygous genotype (40 out of 82 individuals), followed by the resistant genotype with 11 individuals. This study represents the first field evolved instance of A302S mutation in Malaysian insect species. PMID:26695218

  11. Assignment of the human GABA transporter gene (GABATHG) locus to chromosome 3p24-p25

    SciTech Connect

    Huang, Fang; Fei, Jian; Guo, Li-He

    1995-09-01

    An essential regulatory process of synaptic transmission is the inactivation of released neurotransmitters by the transmitter-specific uptake mechanism, {gamma}-Aminobutyric acid (GABA) is an inhibitory transmitter in the vertebrate central nervous system; its activity is terminated by a high-affinity Na{sup +} and Cl{sup -} -dependent specific GABA transporter (GAT), which carries the neurotransmitter to the presynaptic neuron and/or glial elements surrounding the synaptic cleft. Deficiency of the transporter may cause epilepsy and some other nervous diseases. The human GAT gene (GABATHG), approximately 25 kb in length, has been cloned and sequenced by our colleagues (7). Here the results of the in situ hybridization mapping with the gene are presented. 10 refs., 1 fig.

  12. Desensitization-resistant and -sensitive GPCR-mediated inhibition of GABA release occurs by Ca2+-dependent and -independent mechanisms at a hypothalamic synapse.

    PubMed

    Pennock, Reagan L; Hentges, Shane T

    2016-06-01

    Whereas the activation of Gαi/o-coupled receptors commonly results in postsynaptic responses that show acute desensitization, the presynaptic inhibition of transmitter release caused by many Gαi/o-coupled receptors is maintained during agonist exposure. However, an exception has been noted where GABAB receptor (GABABR)-mediated inhibition of inhibitory postsynaptic currents (IPSCs) recorded in mouse proopiomelanocortin (POMC) neurons exhibit acute desensitization in ∼25% of experiments. To determine whether differential effector coupling confers sensitivity to desensitization, voltage-clamp recordings were made from POMC neurons to compare the mechanism by which μ-opioid receptors (MORs) and GABABRs inhibit transmitter release. Neither MOR- nor GABABR-mediated inhibition of release relied on the activation of presynaptic K(+) channels. Both receptors maintained the ability to inhibit release in the absence of external Ca(2+) or in the presence of ionomycin-induced Ca(2+) influx, indicating that inhibition of release can occur through a Ca(2+)-independent mechanism. Replacing Ca(2+) with Sr(2+) to disrupt G-protein-mediated inhibition of release occurring directly at the release machinery did not alter MOR- or GABAB -mediated inhibition of IPSCs, suggesting that reductions in evoked release can occur through the inhibition of Ca(2+) channels. Additionally, both receptors inhibited evoked IPSCs in the presence of selective blockers of N- or P/Q-type Ca(2+) channels. Altogether, the results show that MORs and GABABRs can inhibit transmitter release through the inhibition of calcium influx and by direct actions at the release machinery. Furthermore, since both the desensitizing and nondesensitizing presynaptic receptors are similarly coupled, differential effector coupling is unlikely responsible for differential desensitization of the inhibition of release. PMID:26912590

  13. Pharmacodynamic effects and possible therapeutic uses of THIP, a specific GABA-agonist.

    PubMed

    Christensen, A V; Svendsen, O; Krogsgaard-Larsen, P

    1982-10-22

    THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) is a potent and specific GABA receptor agonist which does not influence the GABA uptake system or GABA metabolizing enzymes. The specificity for the GABA receptor is also demonstrated by lack of action on monoaminergic, cholinergic, histaminergic or opiate receptors. Since in recent years GABA receptor stimulants-among others THIP--have become available many have speculated as to what clinical indication GABA-ergic stimulation might be an important element. The first suggestion was that GABA-ergic drugs by an inhibitory effect on the dopamine neurons would improve the antischizophrenic effect of neuroleptics and improve tardive dyskinesia. Furthermore, studies on brains of deceased Parkinson and Huntington's chorea patients have demonstrated a low level of GABA and its synthesizing enzyme glutamic acid decarboxylase (GAD) in the basal ganglia. Also in epilepsy and diseases with dementia a deficit in the GABA system has been proposed. Therefore a therapeutic strategy for these diseases may be supplementary treatment with drugs which increase GABA receptor activity. Furthermore, recent results in humans have shown that GABA agonists perhaps also could be of benefit in mania and depressions. When considering the neurophysiological elements of nociception and muscle tone it is also reasonable to suggest that GABA-ergic stimulation may reduce pain perception and muscle tone. PMID:6292818

  14. Microbial community potentially responsible for acid and metal release from an Ostrobothnian acid sulfate soil

    PubMed Central

    Wu, Xiaofen; Lim Wong, Zhen; Sten, Pekka; Engblom, Sten; Österholm, Peter; Dopson, Mark; Nakatsu, Cindy

    2013-01-01

    Soils containing an approximately equal mixture of metastable iron sulfides and pyrite occur in the boreal Ostrobothnian coastal region of Finland, termed ‘potential acid sulfate soil materials’. If the iron sulfides are exposed to air, oxidation reactions result in acid and metal release to the environment that can cause severe damage. Despite that acidophilic microorganisms catalyze acid and metal release from sulfide minerals, the microbiology of acid sulfate soil (ASS) materials has been neglected. The molecular phylogeny of a depth profile through the plough and oxidized ASS layers identified several known acidophilic microorganisms and environmental clones previously identified from acid- and metal-contaminated environments. In addition, several of the 16S rRNA gene sequences were more similar to sequences previously identified from cold environments. Leaching of the metastable iron sulfides and pyrite with an ASS microbial enrichment culture incubated at low pH accelerated metal release, suggesting microorganisms capable of catalyzing metal sulfide oxidation were present. The 16S rRNA gene analysis showed the presence of species similar to Acidocella sp. and other clones identified from acid mine environments. These data support that acid and metal release from ASSs was catalyzed by indigenous microorganisms adapted to low pH. PMID:23369102

  15. Production of ascorbic acid releasing biomaterials for pelvic floor repair

    PubMed Central

    Mangır, Naşide; Bullock, Anthony J.; Roman, Sabiniano; Osman, Nadir; Chapple, Christopher; MacNeil, Sheila

    2016-01-01

    Objective An underlying abnormality in collagen turnover is implied in the occurrence of complications and recurrences after mesh augmented pelvic floor repair surgeries. Ascorbic acid is a potent stimulant of collagen synthesis. The aim of this study is to produce ascorbic acid releasing poly-lactic acid (PLA) scaffolds and evaluate them for their effects on extracellular matrix production and the strength of the materials. Materials and methods Scaffolds which contained either l-ascorbic acid (AA) and Ascorbate-2-Phosphate (A2P) were produced with emulsion electrospinning. The release of both drugs was measured by UV spectrophotometry. Human dermal fibroblasts were seeded on scaffolds and cultured for 2 weeks. Cell attachment, viability and total collagen production were evaluated as well as mechanical properties. Results No significant differences were observed between AA, A2P, Vehicle and PLA scaffolds in terms of fibre diameter and pore size. The encapsulation efficiency and successful release of both AA and A2P were demonstrated. Both AA and A2P containing scaffolds were significantly more hydrophilic and stronger in both dry and wet states compared to PLA scaffolds. Fibroblasts produced more collagen on scaffolds containing either AA or A2P compared to cells grown on control scaffolds. Conclusion This study is the first to directly compare the two ascorbic acid derivatives in a tissue engineered scaffold and shows that both AA and A2P releasing electrospun PLA scaffolds increased collagen production of fibroblasts to similar extents but AA scaffolds seemed to be more hydrophilic and stronger compared to A2P scaffolds. Statement of significance Mesh augmented surgical repair of the pelvic floor currently relies on non-degradable materials which results in severe complications in some patients. There is an unmet and urgent need for better pelvic floor repair materials. Our current understanding suggests that the ideal material should be able to better

  16. The effects of agonists of ionotropic GABA(A) and metabotropic GABA(B) receptors on learning.

    PubMed

    Zyablitseva, Evgeniya A; Kositsyn, Nikolay S; Shul'gina, Galina I

    2009-05-01

    The research described here investigates the role played by inhibitory processes in the discriminations made by the nervous system of humans and animals between familiar and unfamiliar and significant and nonsignificant events. This research compared the effects of two inhibitory mediators of gamma-aminobutyric acid (GABA): 1) phenibut, a nonselective agonist of ionotropic GABA(A) and metabotropic GABA(B) receptors and 2) gaboxadol a selective agonist of ionotropic GABA(A) receptors on the process of developing active defensive and inhibitory conditioned reflexes in alert non-immobilized rabbits. It was found that phenibut, but not gaboxadol, accelerates the development of defensive reflexes at an early stage of conditioning. Both phenibut and gaboxadol facilitate the development of conditioned inhibition, but the effect of gaboxadol occurs at later stages of conditioning and is less stable than that of phenibut. The earlier and more stable effects of phenibut, as compared to gaboxadol, on storage in memory of the inhibitory significance of a stimulus may occur because GABA(B) receptors play the dominant role in the development of internal inhibition during an early stage of conditioning. On the other hand this may occur because the participation of both GABA(A) and GABA(B) receptors are essential to the process. We discuss the polyfunctionality of GABA receptors as a function of their structure and the positions of the relevant neurons in the brain as this factor can affect regulation of various types of psychological processes. PMID:19476215

  17. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin may alter LH release patterns by abolishing sex differences in GABA/glutamate cell number and modifying the transcriptome of the male anteroventral periventricular nucleus.

    PubMed

    Del Pino Sans, Javier; Clements, Kelsey J; Suvorov, Alexander; Krishnan, Sudha; Adams, Hillary L; Petersen, Sandra L

    2016-08-01

    Developmental exposure to arylhydrocarbon receptor (AhR) ligands abolishes sex differences in a wide range of neural structures and functions. A well-studied example is the anteroventral periventricular nucleus (AVPV), a structure that controls sex-specific luteinizing hormone (LH) release. In the male, testosterone (T) secreted by the developing testes defeminizes LH release mechanisms; conversely, perinatal AhR activation by 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD) blocks defeminization. To better understand developmental mechanisms altered by TCDD exposure, we first verified that neonatal TCDD exposure in male rats prevented the loss of AVPV GABA/glutamate neurons that are critical for female-typical LH surge release. We then used whole genome arrays and quantitative real-time polymerase chain reaction (QPCR) to compare AVPV transcriptomes of males treated neonatally with TCDD or vehicle. Our bioinformatics analyses showed that TCDD enriched gene sets important for neuron development, synaptic transmission, ion homeostasis, and cholesterol biosynthesis. In addition, upstream regulatory analysis suggests that both estrogen receptors (ER) and androgen receptors (AR) regulate genes targeted by TCDD. Of the 23 mRNAs found to be changed by TCDD at least 2-fold (p<0.05), most participate in the functions identified in our bioinformatics analyses. Several, including matrix metallopeptidase 9 and SRY-box 11 (Sox11), are known targets of E2. CUG triplet repeat, RNA binding protein 2 (cugbp2) is particularly interesting because it is sex-specific, oppositely regulated by estradiol (E2) and TCDD. Moreover, it regulates the post-transcriptional processing of molecules previously linked to sexual differentiation of the brain. These findings provide new insights into how TCDD may interfere with defeminization of LH release patterns. PMID:27185484

  18. Chemical evolution. XXI - The amino acids released on hydrolysis of HCN oligomers

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Wos, J. D.; Nooner, D. W.; Oro, J.

    1974-01-01

    Major amino acids released by hydrolysis of acidic and basic HCN oligomers are identified by chromatography as Gly, Asp, and diaminosuccinic acid. Smaller amounts of Ala, Ile and alpha-aminoisobutyric acid are also detected. The amino acids released did not change appreciably when the hydrolysis medium was changed from neutral to acidic or basic. The presence of both meso and d, l-diaminosuccinic acids was established by paper chromatography and on an amino acid analyzer.

  19. Role of GABA Deficit in Sensitivity to the Psychotomimetic Effects of Amphetamine.

    PubMed

    Ahn, Kyung-Heup; Sewell, Andrew; Elander, Jacqueline; Pittman, Brian; Ranganathan, Mohini; Gunduz-Bruce, Handan; Krystal, John; D'Souza, Deepak Cyril

    2015-11-01

    Some schizophrenia patients are more sensitive to amphetamine (AMPH)-induced exacerbations in psychosis-an effect that correlates with higher striatal dopamine release. This enhanced vulnerability may be related to gamma-aminobutyric acid (GABA) deficits observed in schizophrenia. We hypothesized that a pharmacologically induced GABA deficit would create vulnerability to the psychotomimetic effects to the 'subthreshold' dose of AMPH in healthy subjects, which by itself would not induce clinically significant increase in positive symptoms. To test this hypothesis, a GABA deficit was induced by intravenous infusion of iomazenil (IOM; 3.7 μg/kg), an antagonist and partial inverse agonist of benzodiazepine receptor. A subthreshold dose of AMPH (0.1 mg/kg) was administered by intravenous infusion. Healthy subjects received placebo IOM followed by placebo AMPH, active IOM followed by placebo AMPH, placebo IOM followed by active AMPH, and active IOM followed by active AMPH in a randomized, double-blind crossover design over 4 test days. Twelve healthy subjects who had a subclinical response to active AMPH alone were included in the analysis. Psychotomimetic effects (Positive and Negative Syndrome Scale (PANSS)), perceptual alterations (Clinician Administered Dissociative Symptoms Scale (CADSS)), and subjective effects (visual analog scale) were captured before and after the administration of drugs. IOM significantly augmented AMPH-induced peak changes in PANSS positive symptom subscale and both subjective and objective CADSS scores. There were no pharmacokinetic interactions. In conclusion, GABA deficits increased vulnerability to amphetamine-induced psychosis-relevant effects in healthy subjects, suggesting that pre-existing GABA deficits may explain why a subgroup of schizophrenia patients are vulnerable to AMPH. PMID:25953357

  20. Roles of forebrain GABA receptors in controlling vasopressin secretion and related phenomena under basal and hyperosmotic circumstances in conscious rats.

    PubMed

    Yamaguchi, Ken'ichi; Yamada, Takaho

    2008-09-01

    Although the anteroventral third ventricular region (AV3V), a forebrain area essential for homeostatic responses, includes receptors for gamma-aminobutyric acid (GABA), the roles of these receptors in controlling vasopressin (AVP) secretion and related phenomena have not been clarified as yet. This study aimed to pursue this problem in conscious rats implanted with indwelling catheters. Cerebral injection sites were determined histologically. Applications of bicuculline, a GABA(A) receptor antagonist, to the AV3V induced prompt and marked augmentations in plasma AVP, osmolality, glucose, arterial pressure and heart rate, without affecting plasma electrolytes. Such phenomena did not occur when phaclofen, a GABA(B) receptor antagonist, was applied to the AV3V. All of the effects of AV3V-administered bicuculline were abolished by preadministration of the GABA(A) receptor agonist muscimol. Preadministration of either MK-801 or NBQX, ionotropic glutamatergic receptor antagonists, was also potent to abolish the AVP response to AV3V bicuculline. When hypertonic saline was infused intravenously, plasma AVP increased progressively, in parallel with rises in plasma osmolality, sodium and arterial pressure. AV3V application of muscimol or baclofen, a GABA(B) receptor agonist, was found to abolish the response of plasma AVP, without inhibiting that of the osmolality or sodium. The response of arterial pressure was also blocked by muscimol treatment, but not by baclofen treatment. Based on these results, we concluded that, under basal conditions, GABA receptors in the AV3V or vicinity may tonically operate to attenuate AVP secretion and cardiovascular functions through mechanisms associated with glutamatergic activity, and that plasma hyperosmolality may cause facilitation of AVP release by decreasing forebrain GABAergic activity. PMID:18639747

  1. Local GABA Concentration Predicts Perceptual Improvements After Repetitive Sensory Stimulation in Humans

    PubMed Central

    Heba, Stefanie; Puts, Nicolaas A. J.; Kalisch, Tobias; Glaubitz, Benjamin; Haag, Lauren M.; Lenz, Melanie; Dinse, Hubert R.; Edden, Richard A. E.; Tegenthoff, Martin; Schmidt-Wilcke, Tobias

    2016-01-01

    Learning mechanisms are based on synaptic plasticity processes. Numerous studies on synaptic plasticity suggest that the regulation of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) plays a central role maintaining the delicate balance of inhibition and excitation. However, in humans, a link between learning outcome and GABA levels has not been shown so far. Using magnetic resonance spectroscopy of GABA prior to and after repetitive tactile stimulation, we show here that baseline GABA+ levels predict changes in perceptual outcome. Although no net changes in GABA+ are observed, the GABA+ concentration prior to intervention explains almost 60% of the variance in learning outcome. Our data suggest that behavioral effects can be predicted by baseline GABA+ levels, which provide new insights into the role of inhibitory mechanisms during perceptual learning. PMID:26637451

  2. GABA(B) receptor subunit 1 binds to proteins affected in 22q11 deletion syndrome.

    PubMed

    Zunner, Dagmar; Deschermeier, Christina; Kornau, Hans-Christian

    2010-03-01

    GABA(B) receptors mediate slow inhibitory effects of the neurotransmitter gamma-aminobutyric acid (GABA) on synaptic transmission in the central nervous system. They function as heterodimeric G-protein-coupled receptors composed of the seven-transmembrane domain proteins GABA(B1) and GABA(B2), which are linked through a coiled-coil interaction. The ligand-binding subunit GABA(B1) is at first retained in the endoplasmic reticulum and is transported to the cell surface only upon assembly with GABA(B2). Here, we report that GABA(B1), via the coiled-coil domain, can also bind to soluble proteins of unknown function, that are affected in 22q11 deletion/DiGeorge syndrome and are therefore referred to as DiGeorge critical region 6 (DGCR6). In transfected neurons the GABA(B1)-DGCR6 association resulted in a redistribution of both proteins into intracellular clusters. Furthermore, the C-terminus of GABA(B2) interfered with the novel interaction, consistent with heterodimer formation overriding transient DGCR6-binding to GABA(B1). Thus, sequential coiled-coil interactions may direct GABA(B1) into functional receptors. PMID:20036641

  3. Fast detection of extrasynaptic GABA with a whole-cell sniffer

    PubMed Central

    Christensen, Rasmus K.; Petersen, Anders V.; Schmitt, Nicole; Perrier, Jean-François

    2014-01-01

    Gamma-amino-butyric acid (GABA) is the main inhibitory transmitter of the brain. It operates by binding to specific receptors located both inside and outside synapses. The extrasynaptic receptors are activated by spillover from GABAergic synapses and by ambient GABA in the extracellular space. Ambient GABA is essential for adjusting the excitability of neurons. However, due to the lack of suitable methods, little is known about its dynamics. Here we describe a new technique that allows detection of GABA transients and measurement of the steady state GABA concentration with high spatial and temporal resolution. We used a human embryonic kidney (HEK) cell line that stably expresses GABAA receptors composed of α1, β2, and γ2 subunits. We recorded from such a HEK cell with the whole-cell patch-clamp technique. The presence of GABA near the HEK cell generated a measurable electric current whose magnitude increased with concentration. A fraction of the current did not inactivate during prolonged exposition to GABA. This technique, which we refer to as a “sniffer” allows the measurement of ambient GABA concentration inside nervous tissue with a resolution of few tens of nanomolars. In addition, the sniffer detects variations in the extrasynaptic GABA concentration with millisecond time resolution. Pilot experiments demonstrate that the sniffer is able to report spillover of GABA induced by synaptic activation in real time. This is the first report on a GABA sensor that combines the ability to detect fast transients and to measure steady concentrations. PMID:24860433

  4. Bioactivity-guided isolation of GABA(A) receptor modulating constituents from the rhizomes of Actaea racemosa.

    PubMed

    Cicek, Serhat S; Khom, Sophia; Taferner, Barbara; Hering, Steffen; Stuppner, Hermann

    2010-12-27

    Black cohosh (Actaea racemosa) is a frequently used herbal remedy for the treatment of mild climacteric symptoms. In the present study, the modulation of γ-aminobutryic acid (GABA)-induced chloride currents (I(GABA)) through GABA type A (GABA(A)) receptors by black cohosh extracts and isolated compounds was investigated. GABA(A) receptors, consisting of α(1), β(2), and γ(2S) subunits, were expressed in Xenopus laevis oocytes, and potentiation of I(GABA) was measured using the two-microelectrode voltage clamp technique. In a bioactivity-guided isolation procedure the positive modulation of I(GABA) could be restricted to the plant terpenoid fractions, resulting in the isolation of 11 cycloartane glycosides, of which four significantly (p < 0.05) enhanced I(GABA). The most efficient effect was observed for 23-O-acetylshengmanol 3-O-β-d-xylopyranoside (4, 100 μM), enhancing I(GABA) by 1692 ± 201%, while actein (1), cimigenol 3-O-β-d-xylopyranoside (6), and 25-O-acetylcimigenol 3-O-α-l-arabinopyranoside (8) were significantly less active. In the absence of GABA, only 4 induced small (not exceeding 1% of I(GABA-max)) chloride inward currents through GABA(A) receptors. It is hypothesized that the established positive allosteric modulation of GABA(A) receptors may contribute to beneficial effects of black cohosh extracts in the treatment of climacteric symptoms. PMID:21082802

  5. An Electrostatic Funnel in the GABA-Binding Pathway

    PubMed Central

    Lightstone, Felice C.

    2016-01-01

    The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a ‘funnel’ that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site. PMID:27119953

  6. An Electrostatic Funnel in the GABA-Binding Pathway.

    PubMed

    Carpenter, Timothy S; Lightstone, Felice C

    2016-04-01

    The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a 'funnel' that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site. PMID:27119953

  7. Development of a controlled release of salicylic acid loaded stearic acid-oleic acid nanoparticles in cream for topical delivery.

    PubMed

    Woo, J O; Misran, M; Lee, P F; Tan, L P

    2014-01-01

    Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs) with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release. PMID:24578624

  8. Development of a Controlled Release of Salicylic Acid Loaded Stearic Acid-Oleic Acid Nanoparticles in Cream for Topical Delivery

    PubMed Central

    Woo, J. O.; Misran, M.; Lee, P. F.; Tan, L. P.

    2014-01-01

    Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs) with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release. PMID:24578624

  9. GABA and GABA receptors in the gastrointestinal tract: from motility to inflammation.

    PubMed

    Auteri, Michelangelo; Zizzo, Maria Grazia; Serio, Rosa

    2015-03-01

    Although an extensive body of literature confirmed γ-aminobutyric acid (GABA) as mediator within the enteric nervous system (ENS) controlling gastrointestinal (GI) function, the true significance of GABAergic signalling in the gut is still a matter of debate. GABAergic cells in the bowel include neuronal and endocrine-like cells, suggesting GABA as modulator of both motor and secretory GI activity. GABA effects in the GI tract depend on the activation of ionotropic GABAA and GABAC receptors and metabotropic GABAB receptors, resulting in a potential noteworthy regulation of both the excitatory and inhibitory signalling in the ENS. However, the preservation of GABAergic signalling in the gut could not be limited to the maintenance of physiologic intestinal activity. Indeed, a series of interesting studies have suggested a potential key role of GABA in the promising field of neuroimmune interaction, being involved in the modulation of immune cell activity associated with different systemic and enteric inflammatory conditions. Given the urgency of novel therapeutic strategies against chronic immunity-related pathologies, i.e. multiple sclerosis and Inflammatory Bowel Disease, an in-depth comprehension of the enteric GABAergic system in health and disease could provide the basis for new clinical application of nerve-driven immunity. Hence, in the attempt to drive novel researches addressing both the physiological and pathological importance of the GABAergic signalling in the gut, we summarized current evidence on GABA and GABA receptor function in the different parts of the GI tract, with particular focus on the potential involvement in the modulation of GI motility and inflammation. PMID:25526825

  10. Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea).

    PubMed

    Yoon, Young-Eun; Kuppusamy, Saranya; Cho, Kye Man; Kim, Pil Joo; Kwack, Yong-Bum; Lee, Yong Bok

    2017-01-15

    The contents of soluble sugars (sucrose, fructose, glucose, maltose and raffinose), vitamin C and free amino acids (34 compounds, essential and non-essential) were quantified in open-field and greenhouse-grown spinaches in response to cold stress using liquid chromatography. In general, greenhouse cultivation produced nutritionally high value spinach in a shorter growing period, where the soluble sugars, vitamin C and total amino acids concentrations, including essential were in larger amounts compared to those grown in open-field scenarios. Further, low temperature exposure of spinach during a shorter growth period resulted in the production of spinach with high sucrose, ascorbate, proline, gamma-aminobutyric acid, valine and leucine content, and these constitute the most important energy/nutrient sources. In conclusion, cultivation of spinach in greenhouse at a low temperature (4-7°C) and exposure for a shorter period (7-21days) before harvest is recommended. This strategy will produce a high quality product that people can eat. PMID:27542466

  11. GABA Signaling and Neuroactive Steroids in Adrenal Medullary Chromaffin Cells

    PubMed Central

    Harada, Keita; Matsuoka, Hidetada; Fujihara, Hiroaki; Ueta, Yoichi; Yanagawa, Yuchio; Inoue, Masumi

    2016-01-01

    Gamma-aminobutyric acid (GABA) is produced not only in the brain, but also in endocrine cells by the two isoforms of glutamic acid decarboxylase (GAD), GAD65 and GAD67. In rat adrenal medullary chromaffin cells only GAD67 is expressed, and GABA is stored in large dense core vesicles (LDCVs), but not synaptic-like microvesicles (SLMVs). The α3β2/3γ2 complex represents the majority of GABAA receptors expressed in rat and guinea pig chromaffin cells, whereas PC12 cells, an immortalized rat chromaffin cell line, express the α1 subunit as well as the α3. The expression of α3, but not α1, in PC12 cells is enhanced by glucocorticoid activity, which may be mediated by both the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). GABA has two actions mediated by GABAA receptors in chromaffin cells: it induces catecholamine secretion by itself and produces an inhibition of synaptically evoked secretion by a shunt effect. Allopregnanolone, a neuroactive steroid which is secreted from the adrenal cortex, produces a marked facilitation of GABAA receptor channel activity. Since there are no GABAergic nerve fibers in the adrenal medulla, GABA may function as a para/autocrine factor in the chromaffin cells. This function of GABA may be facilitated by expression of the immature isoforms of GAD and GABAA receptors and the lack of expression of plasma membrane GABA transporters (GATs). In this review, we will consider how the para/autocrine function of GABA is achieved, focusing on the structural and molecular mechanisms for GABA signaling. PMID:27147972

  12. GABA Signaling and Neuroactive Steroids in Adrenal Medullary Chromaffin Cells.

    PubMed

    Harada, Keita; Matsuoka, Hidetada; Fujihara, Hiroaki; Ueta, Yoichi; Yanagawa, Yuchio; Inoue, Masumi

    2016-01-01

    Gamma-aminobutyric acid (GABA) is produced not only in the brain, but also in endocrine cells by the two isoforms of glutamic acid decarboxylase (GAD), GAD65 and GAD67. In rat adrenal medullary chromaffin cells only GAD67 is expressed, and GABA is stored in large dense core vesicles (LDCVs), but not synaptic-like microvesicles (SLMVs). The α3β2/3γ2 complex represents the majority of GABAA receptors expressed in rat and guinea pig chromaffin cells, whereas PC12 cells, an immortalized rat chromaffin cell line, express the α1 subunit as well as the α3. The expression of α3, but not α1, in PC12 cells is enhanced by glucocorticoid activity, which may be mediated by both the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). GABA has two actions mediated by GABAA receptors in chromaffin cells: it induces catecholamine secretion by itself and produces an inhibition of synaptically evoked secretion by a shunt effect. Allopregnanolone, a neuroactive steroid which is secreted from the adrenal cortex, produces a marked facilitation of GABAA receptor channel activity. Since there are no GABAergic nerve fibers in the adrenal medulla, GABA may function as a para/autocrine factor in the chromaffin cells. This function of GABA may be facilitated by expression of the immature isoforms of GAD and GABAA receptors and the lack of expression of plasma membrane GABA transporters (GATs). In this review, we will consider how the para/autocrine function of GABA is achieved, focusing on the structural and molecular mechanisms for GABA signaling. PMID:27147972

  13. Effects of gamma-aminobutyric acid on skate retinal horizontal cells: evidence for an electrogenic uptake mechanism.

    PubMed Central

    Malchow, R P; Ripps, H

    1990-01-01

    In the retinae of many vertebrates, there are classes of horizontal cell that probably utilize gamma-aminobutyric acid (GABA) as a neurotransmitter. As with other amino acid transmitter agents, the postsynaptic action of GABA is thought to be terminated by uptake into neurons and glia surrounding the release site. The present study examined whether an uptake system for GABA could be detected in isolated skate horizontal cells by means of electrophysiological methods. Pressure ejection of GABA onto voltage-clamped horizontal cells produced an inward current that showed no sign of desensitization regardless of the GABA concentration. The dose-response relationship followed simple Michaelis-Menten kinetics, with a half-maximal response elicited at approximately 110 microM. Nipecotic acid produced a similar current and reduced the responses to GABA when introduced in the bath solution prior to the GABA pulse. On the other hand, application of 500 microM muscimol or 1 mM baclofen, GABAA and GABAB receptor agonists, respectively, were completely without effect. The GABA-induced current was not blocked by superfusion with 500 microM bicuculline, 500 microM picrotoxin, or 500 microM phaclofen. However, the responses to GABA were abolished when the cells were superfused in Ringer's solution in which choline or lithium had been substituted for sodium, and were reduced when the extracellular chloride concentration was decreased from 266 mM to 16 mM. Current-voltage data showed a maximal response to GABA when the cells were held at or below their resting potential. At more depolarized levels, the inward current became progressively smaller until, near +50 mV, it could no longer be detected; over the range tested (-90 to +50 mV), the response never reversed into an outward current. These findings suggest that the GABA-induced currents in skate horizontal cells are mediated by an electrogenic uptake mechanism. PMID:2247470

  14. Hormonal Regulation of Organic and Phosphoric Acid Release by Barley Aleurone Layers and Scutella.

    PubMed Central

    Drozdowicz, Y. M.; Jones, R. L.

    1995-01-01

    The release of acid from the aleurone layer and scutellum of barley (Hordeum vulgare L. cv Himalaya) was investigated. Aleurone layers isolated from mature barley grains acidify the external medium by releasing organic and phosphoric acids. Gibberellic acid and abscisic acid stimulate acid release 2-fold over control tissue incubated in 10 mM CACl2. Gibberellic acid causes medium acidification by stimulating the release of phosphoric and citric acids, whereas abscisic acid stimulates the release of malic acid. The accumulation of these acids in the incubation medium buffers the medium against changes in pH, particularly between pH 4 and 5. The amounts of amino acids that accumulate in the medium are low (2-12 nmol/layer) compared to other organic and phosphoric acids (100-500 nmol/layer). The scutellum does not play a major role in medium acidification but participates in the uptake of organic acids. The organic acid composition of the starchy endosperm changes after 3 d of imbibition; malic, succinic, and lactic acids decrease, whereas citric and phosphoric acids remain unchanged or increase. These results indicate that during postgerminative growth, the acidity of the starchy endosperm is maintained by acid production by the aleurone layer. PMID:12228509

  15. GABA-independent GABAA Receptor Openings Maintain Tonic Currents

    PubMed Central

    Wlodarczyk, Agnieszka I.; Sylantyev, Sergiy; Herd, Murray B.; Kersanté, Flavie; Lambert, Jeremy J.; Rusakov, Dmitri A.; Linthorst, Astrid C.E.; Semyanov, Alexey; Belelli, Delia; Pavlov, Ivan; Walker, Matthew C.

    2013-01-01

    Activation of GABAA receptors (GABAARs) produces two forms of inhibition: ‘phasic’ inhibition generated by the rapid, transient activation of synaptic GABAARs by presynaptic GABA release, and tonic inhibition generated by the persistent activation of peri- or extrasynaptic GABAARs which can detect extracellular GABA. Such tonic GABAAR-mediated currents are particularly evident in dentate granule cells in which they play a major role in regulating cell excitability. Here we show that in rat dentate granule cells in ex-vivo hippocampal slices, tonic currents are predominantly generated by GABA-independent GABAA receptor openings. This tonic GABAAR conductance is resistant to the competitive GABAAR antagonist SR95531, which at high concentrations acts as a partial agonist, but can be blocked by an open channel blocker picrotoxin. When slices are perfused with 200 nM GABA, a concentration that is comparable to cerebrospinal fluid concentrations but is twice that measured by us in the hippocampus in vivo using zero-net-flux microdialysis, negligible GABA is detected by dentate granule cells. Spontaneously opening GABAARs, therefore, maintain dentate granule cell tonic currents in the face of low extracellular GABA concentrations. PMID:23447601

  16. Metal release from fly ash upon leaching with sulfuric acid or acid mine drainage

    SciTech Connect

    Skousen, J.; Bhumbla, D.K.

    1998-12-31

    Generation of electricity by coal-fired power plants produces large quantities of bottom ash and fly ash. New power plants commonly use fluidized bed combustion (FBC) boilers, which create ashes with high neutralization potential (NP). These ashes, due to their alkaline nature, are often used in surface mine reclamation to neutralize acidity and reduce hydraulic conductivity of disturbed overburdens. Conventional fly ashes from older power plants exhibit a range of pH and NP, with some ashes having neutral or acidic pH and low NP values, and may not be good candidates for supplying alkalinity in reclamation projects. In this study, the authors used two acidic solutions to leach a low NP fly ash (LNP ash) and two FBC ashes (FBC1 and FBC2). After passing 78 pore volumes of sulfuric acid and 129 pore volumes of acid mine drainage (AMD) through these ash materials several trace elements were found at high levels in the leachates. LNP fly ash leachates had high arsenic and selenium concentrations with sulfuric acid leaching, but showed low arsenic and selenium concentrations after leaching with AMD. Leaching with AMD caused the iron and aluminum inherent in AMD to complex these elements and make them unavailable for leaching. Lead, cadmium, and barium concentrations in fly ash leachates were not high enough to cause water pollution problems with either leaching solution. For both leaching solutions, manganese was released from LNP ash at a constant level, FBC1 ash did not release manganese, and FBC2 ash released manganese only after the NP had been exhausted by >60 pore volumes of leaching.

  17. Risk of hydrocyanic acid release in the electroplating industry.

    PubMed

    Piccinini, N; Ruggiero, G N; Baldi, G; Robotto, A

    2000-01-01

    This paper suggests assessing the consequences of hydrocyanic acid (HCN) release into the air by aqueous cyanide solutions in abnormal situations such as the accidental introduction of an acid, or the insertion of a cyanide in a pickling bath. It provides a well-defined source model and its resolution by methods peculiar to mass transport phenomena. The procedure consists of four stages: calculation of the liquid phase concentration, estimate of the HCN liquid-vapour equilibrium, determination of the mass transfer coefficient at the liquid-vapour interface, evaluation of the air concentration of HCN and of the damage distances. The results show that small baths operating at high temperatures are the major sources of risk. The building up of lethal air concentrations, on the other hand, is governed by the values of the mass transfer coefficient, which is itself determined by the flow dynamics and bath geometry. Concerning the magnitude of the risk, the fallout for external emergency planning is slight in all the cases investigated. PMID:10677671

  18. A GABA-activated chloride-conductance not blocked by picrotoxin on spiny lobster neuromuscular preparations.

    PubMed Central

    Albert, J.; Lingle, C. J.; Marder, E.; O'Neil, M. B.

    1986-01-01

    Conductance increases to gamma-aminobutyric acid (GABA) were recorded in the gm6b and opener muscle of the spiny lobsters, Panulirus interruptus and P. argus. GABA-evoked responses were insensitive to picrotoxin at concentrations as high as 5 X 10(-5) M. Some blockade by picrotoxin was observed at higher concentrations. In normal physiological saline, the reversal potential of the Panulirus GABA-induced response was near the resting potential. The reversal potential was unaffected by reductions in sodium and calcium. Reduction of chloride by 50% resulted in a greater than 10 mV shift in the reversal potential of the GABA-induced response. Muscimol was able to mimic the action of GABA while baclofen was without effect. Bicuculline was a weak blocker. Avermectin B1a irreversibly increased the chloride permeability of the gm6b membrane. This conductance increase was blocked by picrotoxin over a range of concentrations similar to those required for blockade of the GABA-induced response. GABA-induced responses of the gm6b muscle of Homarus americanus were blocked almost completely by picrotoxin 10(-6) M. Sensitivity to picrotoxin is not invariably associated with GABA-activated chloride-mediated conductance increases. It is suggested that alteration in the binding-site for picrotoxin on the GABA-activated chloride-ion channel does not change other functional characteristics of the GABA-induced response. PMID:3708210

  19. Proliferation-dependent changes in release of arachidonic acid from endothelial cells.

    PubMed Central

    Whatley, R E; Satoh, K; Zimmerman, G A; McIntyre, T M; Prescott, S M

    1994-01-01

    Stimulation of endothelial cells resulted in release of arachidonic acid from phospholipids. The magnitude of this response decreased as the cells became confluent and the change coincided with a decrease in the percentage of cells in growth phases (G2+M); this was not a consequence of time in culture or a factor in the growth medium. Preconfluent cells released approximately 30% of arachidonic acid; confluent cells released only 6%. The decreasing release of arachidonic acid was demonstrated using metabolic labeling, mass measurements of arachidonic acid, and measurement of PGI2. The decrease was not due to a changing pool of arachidonic acid, and mass measurements showed no depletion of arachidonic acid. Release from each phospholipid and from each phospholipid class decreased with confluence. Conversion of confluent cells to the proliferative phenotype by mechanical wounding of the monolayer caused increased release of arachidonic acid. Potential mechanisms for these changes were investigated using assays of phospholipase activity. Phospholipase A2 activity changed in concert with the alteration in release, a consequence of changes in phosphorylation of the enzyme. The increased release of arachidonic acid from preconfluent, actively dividing cells may have important physiologic implications and may help elucidate mechanisms regulating release of arachidonic acid. Images PMID:7962534

  20. Extent of colocalization of serotonin and GABA in neurons of the ventral medulla oblongata in rat.

    PubMed

    Millhorn, D E; Hökfelt, T; Seroogy, K; Verhofstad, A A

    1988-09-27

    The colocalization of serotonin (5-hydroxytryptamine; 5-HT) and gamma-aminobutyric acid (GABA) in the ventral aspect of the rat medulla oblongata was studied using antibodies directed against 5-HT and GABA. Although 5-HT- and GABA-immunoreactive cell bodies were observed over the entire rostral-caudal extent of the ventral medulla, the colocalization of these two classical neurotransmitters in single cells was, for the most part, limited to a region that corresponds anatomically to nucleus raphe magnus/nucleus paragigantocellularis. Schematic drawings showing the distribution of 5-HT/GABA cell bodies in the ventral medulla are provided. PMID:3066433

  1. Ionic Mechanisms of Neuronal Excitation by Inhibitory GABA_A Receptors

    NASA Astrophysics Data System (ADS)

    Staley, Kevin J.; Soldo, Brandi L.; Proctor, William R.

    1995-08-01

    Gamma-aminobutyric acid A (GABA_A) receptors are the principal mediators of synaptic inhibition, and yet when intensely activated, dendritic GABA_A receptors excite rather than inhibit neurons. The membrane depolarization mediated by GABA_A receptors is a result of the differential, activity-dependent collapse of the opposing concentration gradients of chloride and bicarbonate, the anions that permeate the GABA_A ionophore. Because this depolarization diminishes the voltage-dependent block of the N-methyl-D-aspartate (NMDA) receptor by magnesium, the activity-dependent depolarization mediated by GABA is sufficient to account for frequency modulation of synaptic NMDA receptor activation. Anionic gradient shifts may represent a mechanism whereby the rate and coherence of synaptic activity determine whether dendritic GABA_A receptor activation is excitatory or inhibitory.

  2. In vivo measurements of glutamate, GABA, and NAAG in schizophrenia.

    PubMed

    Rowland, Laura M; Kontson, Kimberly; West, Jeffrey; Edden, Richard A; Zhu, He; Wijtenburg, S Andrea; Holcomb, Henry H; Barker, Peter B

    2013-09-01

    The major excitatory and inhibitory neurotransmitters, glutamate (Glu) and gamma-aminobutyric acid (GABA), respectively, are implicated in the pathophysiology of schizophrenia. N-acetyl-aspartyl-glutamate (NAAG), a neuropeptide that modulates the Glu system, may also be altered in schizophrenia. This study investigated GABA, Glu + glutamine (Glx), and NAAG levels in younger and older subjects with schizophrenia. Forty-one subjects, 21 with chronic schizophrenia and 20 healthy controls, participated in this study. Proton magnetic resonance spectroscopy ((1)H-MRS) was used to measure GABA, Glx, and NAAG levels in the anterior cingulate (AC) and centrum semiovale (CSO) regions. NAAG in the CSO was higher in younger schizophrenia subjects compared with younger control subjects. The opposite pattern was observed in the older groups. Glx was reduced in the schizophrenia group irrespective of age group and brain region. There was a trend for reduced AC GABA in older schizophrenia subjects compared with older control subjects. Poor attention performance was correlated to lower AC GABA levels in both groups. Higher levels of CSO NAAG were associated with greater negative symptom severity in schizophrenia. These results provide support for altered glutamatergic and GABAergic function associated with illness course and cognitive and negative symptoms in schizophrenia. The study also highlights the importance of studies that combine MRS measurements of NAAG, GABA, and Glu for a more comprehensive neurochemical characterization of schizophrenia. PMID:23081992

  3. Changes in transmitter release patterns in vitro induced by tremorgenic mycotoxins.

    PubMed

    Bradford, H F; Norris, P J; Smith, C C

    1990-01-01

    The neurochemical effects of the tremorgenic mycotoxins Verruculogen and Penitrem A, which produce a neurotoxic syndrome characterized by sustained tremors, were studied using sheep and rat synaptosomes. The toxins were administered in vivo, either by chronic feeding (sheep) or ip injection 45 min prior to sacrifice (rat). Synaptosomes were subsequently prepared from cerebrocortical and spinal cord/medullary regions of rat, and corpus striatum of sheep. Penitrem A (400 mg mycelium/kg) increased the spontaneous release of endogenous glutamate, GABA, and aspartate by 213%, 455%, and 227%, respectively, from cerebrocortical synaptosomes. Verruculogen (400 mg mycelium/kg) increased the spontaneous release of glutamate and aspartate by 1,300% and 1,200% respectively, but not that of GABA, from cerebrocortical synaptosomes. The spontaneous release of the transmitter amino acids or other amino acids was not increased by the tremorgens in spinal cord/medullary synaptosomes. Penitrem A pretreatment reduced the Veratrine (75 microM) stimulated release of glutamate, aspartate and GABA from cerebrocortical synaptosomes by 33%, 46%, and 11% respectively, and the stimulated release of glycine and GABA from spinal cord/medulla synaptosomes by 67% and 32%, respectively. Verruculogen pretreatment did not alter the Veratrine-induced release of transmitter amino acids from cerebrocortex and spinal cord/medulla synaptosomes. Penitrem A pretreatment increased the spontaneous release of aspartate, glutamate and GABA by 68%, 62%, and 100%, respectively, from sheep corpus striatum synaptosomes but did not alter the synthesis and release of dopamine in this tissue. Verruculogen was shown to cause a substantial increase (300-400%) in the miniature-end-plate potential frequency at the locust neuromuscular junction. The response was detectable within 1 min, rose to a maximum within 5-7 min, and declined to the control rate over a similar period. No change in the amplitude of the m.e.p.p.s was

  4. Parkinson's Disease and Neurodegeneration: GABA-Collapse Hypothesis

    PubMed Central

    Błaszczyk, Janusz W.

    2016-01-01

    Neurodegenerative diseases constitute a heterogeneous group of age-related disorders that are characterized by a slow but irreversible deterioration of brain functions. Evidence accumulated over more than two decades has implicated calcium-related homeostatic mechanisms, giving rise to the Ca2+ hypothesis of brain aging and, ultimately, cell death. Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter within the central (CNS), peripheral and enteric nervous systems. It appears to be involved in a wide variety of physiological functions within and outside the nervous system, that are maintained through a complex interaction between GABA and calcium-dependent neurotransmission and cellular metabolic functions. Within CNS the Ca2+/GABA mechanism stabilizes neuronal activity both at cellular and systemic levels. Decline in the Ca2+/GABA control initiates several cascading processes leading to both weakened protective barriers (in particular the blood-brain barrier) and accumulations of intracellular deposits of calcium and Lewy bodies. Linking such a vital mechanism of synaptic transmission with metabolism (both at cellular and tissue level) by means of a common reciprocal Ca2+/GABA inhibition results in a fragile balance, which is prone to destabilization and auto-destruction. The GABA decline etiology proposed here appears to apply to all human neurodegenerative processes initiated by abnormal intracellular calcium levels. Therefore, the original description of Parkinson's disease (PD) as due to the selective damage of dopaminergic neurons in the mesencephalon should be updated into the concept of a severe multisystemic neurodegenerative disorder of the nervous system, whose clinical symptoms reflect the localization and progression of the most advanced GABA pathology. A future and more complete therapeutic approach to PD should be aimed first at slowing (or stopping) the progression of Ca2+/GABA functional decline. PMID:27375426

  5. Parkinson's Disease and Neurodegeneration: GABA-Collapse Hypothesis.

    PubMed

    Błaszczyk, Janusz W

    2016-01-01

    Neurodegenerative diseases constitute a heterogeneous group of age-related disorders that are characterized by a slow but irreversible deterioration of brain functions. Evidence accumulated over more than two decades has implicated calcium-related homeostatic mechanisms, giving rise to the Ca(2+) hypothesis of brain aging and, ultimately, cell death. Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter within the central (CNS), peripheral and enteric nervous systems. It appears to be involved in a wide variety of physiological functions within and outside the nervous system, that are maintained through a complex interaction between GABA and calcium-dependent neurotransmission and cellular metabolic functions. Within CNS the Ca(2+)/GABA mechanism stabilizes neuronal activity both at cellular and systemic levels. Decline in the Ca(2+)/GABA control initiates several cascading processes leading to both weakened protective barriers (in particular the blood-brain barrier) and accumulations of intracellular deposits of calcium and Lewy bodies. Linking such a vital mechanism of synaptic transmission with metabolism (both at cellular and tissue level) by means of a common reciprocal Ca(2+)/GABA inhibition results in a fragile balance, which is prone to destabilization and auto-destruction. The GABA decline etiology proposed here appears to apply to all human neurodegenerative processes initiated by abnormal intracellular calcium levels. Therefore, the original description of Parkinson's disease (PD) as due to the selective damage of dopaminergic neurons in the mesencephalon should be updated into the concept of a severe multisystemic neurodegenerative disorder of the nervous system, whose clinical symptoms reflect the localization and progression of the most advanced GABA pathology. A future and more complete therapeutic approach to PD should be aimed first at slowing (or stopping) the progression of Ca(2+)/GABA functional decline. PMID:27375426

  6. Influence of Organic Acids on Diltiazem HCl Release Kinetics from Hydroxypropyl Methyl Cellulose Matrix Tablets.

    PubMed

    Sateesha, Sb; Rajamma, Aj; Narode, Mk; Vyas, Bd

    2010-07-01

    The matrix tablets of diltiazem hydrochloride were prepared by direct compression using hydroxypropyl methyl cellulose (HPMC) and various amounts (2.5%, 5.0%, 10% and 20%) of citric acid, malic acid and succinic acid. The characterization of physical mixture of drug and organic acids was performed by Infra-red spectroscopy. An organic acid was incorporated to set up a system bringing about gradual release of this drug. The influence of organic acids on the release rate were described by the Peppas equation: M (t) /M(∞) = Kt (n) and Higuchi's equation: Q (t) = K(1)t(1/2). The addition of organic acids and the pH value of medium could notably influence the dissolution behavior and mechanism of drug-release from matrices. Increasing amounts of organic acid produced an increase in drug release rate, which showed a good linear relationship between contents of organic acid and drug accumulate release (%) in phosphate buffer, pH 7.4. The drug release increased significantly (P < 0.05) with use of succinic acid in tablet formulation. Increasing amounts of succinic acid above 10% produced decreasing values of n and increasing values of k, in a linear relationship, which indicated there was a burst release of drug from the matrix. Optimized formulations are found to be stable upon 3-month study. PMID:21042476

  7. Influence of Organic Acids on Diltiazem HCl Release Kinetics from Hydroxypropyl Methyl Cellulose Matrix Tablets

    PubMed Central

    Sateesha, SB; Rajamma, AJ; Narode, MK; Vyas, BD

    2010-01-01

    The matrix tablets of diltiazem hydrochloride were prepared by direct compression using hydroxypropyl methyl cellulose (HPMC) and various amounts (2.5%, 5.0%, 10% and 20%) of citric acid, malic acid and succinic acid. The characterization of physical mixture of drug and organic acids was performed by Infra-red spectroscopy. An organic acid was incorporated to set up a system bringing about gradual release of this drug. The influence of organic acids on the release rate were described by the Peppas equation: M t /M∞ = Kt n and Higuchi’s equation: Q t = K1t1/2. The addition of organic acids and the pH value of medium could notably influence the dissolution behavior and mechanism of drug-release from matrices. Increasing amounts of organic acid produced an increase in drug release rate, which showed a good linear relationship between contents of organic acid and drug accumulate release (%) in phosphate buffer, pH 7.4. The drug release increased significantly (P < 0.05) with use of succinic acid in tablet formulation. Increasing amounts of succinic acid above 10% produced decreasing values of n and increasing values of k, in a linear relationship, which indicated there was a burst release of drug from the matrix. Optimized formulations are found to be stable upon 3-month study. PMID:21042476

  8. Activation and regulation of arachidonic acid release in rabbit peritoneal neutrophils

    SciTech Connect

    Tao, W.

    1988-01-01

    Arachidonic acid release in rabbit neutrophils can be enhanced by the addition of chemotactic fMet-Leu-Phe, platelet-activating factor, PAF, or the calcium ionophore A23187. Over 80% of the release ({sup 3}H)arachidonic acid comes from phosphatidylcholine and phosphatidylinositol. The release is dose-dependent and increases with increasing concentration of the stimulus. The A23187-induced release increases with increasing time of the stimulation. ({sup 3}H)arachidonic acid release, but not the rise in the concentration of intracellular calcium, is inhibited in pertussis toxin-treated neutrophils stimulated with PAF. The ({sup 3}H)arachidonic acid released by A23187 is potentiated while that release by fMET-Leu-Phe or PAF is inhibited in phorbol 12-myristate 13-acetate, PMA, treated rabbit neutrophils. The protein kinase C inhibitor 1-(5-isoquinoline sulfonyl)-2-methylpiperazine, H-7, has no effect on the potentiation by PMA of the A23187-induced release, it prevents the inhibition by PMA of the release produced by PAF or fMet-Leu-Phe. In addition, PMA increases arachidonic acid release in H-7-treated cells stimulated with fMet-Leu-Phe. The diacylglycerol kinase inhibitor R59022 increases the level of diacylglycerol in neutrophils stimulated with fMet-Leu-Phe. Furthermore, R59022 potentiates ({sup 3}H) arachidonic acid release produced by fMet-Leu-Phe. This potentiation is not inhibited by H-7, in fact, it is increased in H-7-treated neutrophils.

  9. GABA shapes the dynamics of bistable perception.

    PubMed

    van Loon, Anouk M; Knapen, Tomas; Scholte, H Steven; St John-Saaltink, Elexa; Donner, Tobias H; Lamme, Victor A F

    2013-05-01

    Sometimes, perception fluctuates spontaneously between two distinct interpretations of a constant sensory input. These bistable perceptual phenomena provide a unique window into the neural mechanisms that create the contents of conscious perception. Models of bistable perception posit that mutual inhibition between stimulus-selective neural populations in visual cortex plays a key role in these spontaneous perceptual fluctuations. However, a direct link between neural inhibition and bistable perception has not yet been established experimentally. Here, we link perceptual dynamics in three distinct bistable visual illusions (binocular rivalry, motion-induced blindness, and structure from motion) to measurements of gamma-aminobutyric acid (GABA) concentrations in human visual cortex (as measured with magnetic resonance spectroscopy) and to pharmacological stimulation of the GABAA receptor by means of lorazepam. As predicted by a model of neural interactions underlying bistability, both higher GABA concentrations in visual cortex and lorazepam administration induced slower perceptual dynamics, as reflected in a reduced number of perceptual switches and a lengthening of percept durations. Thus, we show that GABA, the main inhibitory neurotransmitter, shapes the dynamics of bistable perception. These results pave the way for future studies into the competitive neural interactions across the visual cortical hierarchy that elicit conscious perception. PMID:23602476

  10. Downregulation of GABA[Subscript A] Receptor Protein Subunits a6, ß2, d, e, ?2, ?, and ?2 in Superior Frontal Cortex of Subjects with Autism

    ERIC Educational Resources Information Center

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rustan, Oyvind G.; Rooney, Robert J.; Thuras, Paul D.

    2014-01-01

    We measured protein and mRNA levels for nine gamma-aminobutyric acid A (GABA[subscript A]) receptor subunits in three brain regions (cerebellum, superior frontal cortex, and parietal cortex) in subjects with autism versus matched controls. We observed changes in mRNA for a number of GABA[subscript A] and GABA[subscript B] subunits and overall…

  11. Colocalization of gamma-aminobutyric acid and acetylcholine in neurons in the laterodorsal and pedunculopontine tegmental nuclei in the cat: a light and electron microscopic study.

    PubMed

    Jia, Hong-Ge; Yamuy, Jack; Sampogna, Sharon; Morales, Francisco R; Chase, Michael H

    2003-12-01

    Cholinergic and gamma-aminobutyric acid (GABA) mechanisms in the dorsolateral pontomesencephalic tegmentum have been implicated in the control of active (REM) sleep and wakefulness. To determine the relationships between neurons that contain these neurotransmitters in this region of the brainstem in adult cats, combined light and electron microscopic immunocytochemical procedures were employed. Light microscopic analyses revealed that choline acetyltransferase (ChAT) and GABA immunoreactive neurons were distributed throughout the laterodorsal and pedunculopontine tegmental nuclei (LDT and PPT). Surprisingly, approximately 50% of the ChAT immunoreactive neurons in these nuclei also contained GABA. Using electron microscopic pre-embedding immunocytochemistry, GABA immunoreactivity was observed in somas, dendrites and axon terminals in both the LDT and PPT. Most of the GABA immunoreactive terminals formed symmetrical synapses with non-immunolabeled dendrites. Electron microscopic double-immunolabeling techniques revealed that ChAT and GABA were colocalized in axon terminals in the LDT/PPT. Approximately 30% of the ChAT immunoreactive terminals were also GABA immunoreactive, whereas only 6-8% of the GABA immunoreactive terminals were ChAT immunoreactive. Most of the ChAT/GABA immunoreactive terminals formed symmetrical synapses with non-immunolabeled dendrites; however, ChAT/GABA immunoreactive terminals were also observed that contacted ChAT immunoreactive dendrites. With respect to ChAT immunoreactive postsynaptic profiles, approximately 40% of the somas and 50% of the dendrites received synaptic contact from GABA immunoreactive terminals in both the LDT and PPT. These findings (a) indicate that there are fundamental interactions between cholinergic and GABAergic neurons within the LDT/PPT that play an important role in the control of active sleep and wakefulness and (b) provide an anatomical basis for the intriguing possibility that a mechanism of acetylcholine and

  12. Mechanism of Inactivation of γ-Aminobutyric Acid Aminotransferase by (1S ,3S)-3-Amino-4-difluoromethylene-1-cyclopentanoic Acid (CPP-115)

    DOE PAGESBeta

    Lee, Hyunbeom; Doud, Emma H.; Wu, Rui; Sanishvili, Ruslan; Juncosa, Jose I.; Liu, Dali; Kelleher, Neil L.; Silverman, Richard B.

    2015-01-23

    γ-Aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that degrades GABA, the principal inhibitory neurotransmitter in mammalian cells. When the concentration of GABA falls below a threshold level, convulsions can occur. Inhibition of GABA-AT raises GABA levels in the brain, which can terminate seizures as well as have potential therapeutic applications in treating other neurological disorders, including drug addiction. Among the analogues that we previously developed, (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115) showed 187 times greater potency than that of vigabatrin, a known inactivator of GABA-AT and approved drug (Sabril) for the treatment of infantile spasms and refractory adult epilepsy. Recently,more » CPP-115 was shown to have no adverse effects in a Phase I clinical trial. Here we report a novel inactivation mechanism for CPP-115, a mechanism-based inactivator that undergoes GABA-AT-catalyzed hydrolysis of the difluoromethylene group to a carboxylic acid with concomitant loss of two fluoride ions and coenzyme conversion to pyridoxamine 5'-phosphate (PMP). The partition ratio for CPP-115 with GABA-AT is about 2000, releasing cyclopentanone-2,4-dicarboxylate (22) and two other precursors of this compound (20 and 21). Time-dependent inactivation occurs by a conformational change induced by the formation of the aldimine of 4-aminocyclopentane-1,3-dicarboxylic acid and PMP (20), which disrupts an electrostatic interaction between Glu270 and Arg445 to form an electrostatic interaction between Arg445 and the newly formed carboxylate produced by hydrolysis of the difluoromethylene group in CPP-115, resulting in a noncovalent, tightly bound complex. Ultimately, this represents a novel mechanism for inactivation of GABA-AT and a new approach for the design of mechanism-based inactivators in general.« less

  13. Mechanism of Inactivation of γ-Aminobutyric Acid Aminotransferase by (1S,3S)-3-Amino-4-difluoromethylene-1-cyclopentanoic Acid (CPP-115)

    PubMed Central

    2016-01-01

    γ-Aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5′-phosphate (PLP)-dependent enzyme that degrades GABA, the principal inhibitory neurotransmitter in mammalian cells. When the concentration of GABA falls below a threshold level, convulsions can occur. Inhibition of GABA-AT raises GABA levels in the brain, which can terminate seizures as well as have potential therapeutic applications in treating other neurological disorders, including drug addiction. Among the analogues that we previously developed, (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115) showed 187 times greater potency than that of vigabatrin, a known inactivator of GABA-AT and approved drug (Sabril) for the treatment of infantile spasms and refractory adult epilepsy. Recently, CPP-115 was shown to have no adverse effects in a Phase I clinical trial. Here we report a novel inactivation mechanism for CPP-115, a mechanism-based inactivator that undergoes GABA-AT-catalyzed hydrolysis of the difluoromethylene group to a carboxylic acid with concomitant loss of two fluoride ions and coenzyme conversion to pyridoxamine 5′-phosphate (PMP). The partition ratio for CPP-115 with GABA-AT is about 2000, releasing cyclopentanone-2,4-dicarboxylate (22) and two other precursors of this compound (20 and 21). Time-dependent inactivation occurs by a conformational change induced by the formation of the aldimine of 4-aminocyclopentane-1,3-dicarboxylic acid and PMP (20), which disrupts an electrostatic interaction between Glu270 and Arg445 to form an electrostatic interaction between Arg445 and the newly formed carboxylate produced by hydrolysis of the difluoromethylene group in CPP-115, resulting in a noncovalent, tightly bound complex. This represents a novel mechanism for inactivation of GABA-AT and a new approach for the design of mechanism-based inactivators in general. PMID:25616005

  14. Synthesis and release of fatty acids by human trophoblast cells in culture

    SciTech Connect

    Coleman, R.A.; Haynes, E.B.

    1987-11-01

    In order to determine whether placental cells can synthesize and release fatty acids, trophoblast cells from term human placentas were established in monolayer culture. The cells continued to secrete placental lactogen and progesterone and maintained specific activities of critical enzymes of triacylglycerol and phosphatidylcholine biosynthesis for 24 to 72 hr in culture. Fatty acid was rapidly synthesized from (/sup 14/C)acetate and released by the cells. Palmitoleic, palmitic, and oleic acids were the major fatty acids synthesized from (/sup 14/C)acetate and released. Small amounts of lauric, myristic, and stearic acids were also identified. (/sup 14/C)acetate was also incorporated into cellular triacylglycerol, phospholipid, and cholesterol, but radiolabeled free fatty acid did not accumulate intracellularly. In a pulse-chase experiment, cellular glycerolipids were labeled with (1-/sup 14/C)oleate; trophoblast cells then released /sup 14/C-labeled fatty acid into the media as the cellular content of labeled phospholipid and triacylglycerol decreased without intracellular accumulation of free fatty acid. Twenty percent of the /sup 14/C-label lost from cellular glycerolipid could not be recovered as a chloroform-extractable product, suggesting that some of the hydrolyzed fatty acid had been oxidized. These data indicate that cultured placenta trophoblast cells can release fatty acids that have either been synthesized de novo or that have been hydrolyzed from cellular glycerolipids. Trophoblast cells in monolayer culture should provide an excellent model for molecular studies of placental fatty acid metabolism and release.

  15. Endogenous gamma-aminobutyric acid (GABA)(A) receptor active neurosteroids and the sedative/hypnotic action of gamma-hydroxybutyric acid (GHB): a study in GHB-S (sensitive) and GHB-R (resistant) rat lines.

    PubMed

    Barbaccia, Maria Luisa; Carai, Mauro A M; Colombo, Giancarlo; Lobina, Carla; Purdy, Robert H; Gessa, Gian Luigi

    2005-07-01

    In the rat brain, gamma-hydroxybutyric-acid (GHB) increases the concentrations of 3alpha-hydroxy,5alpha-pregnan-20-one (allopregnanolone, 3alpha,5alpha-THP) and 3alpha,21-dihydroxy,5alpha-pregnan-20-one (allotetrahydrodeoxycorticosterone/3alpha,5alphaTHDOC), two neurosteroids acting as positive allosteric modulators of gamma-aminobutyric acid (GABA)(A) receptors. This study was aimed at assessing whether neurosteroids play a role in GHB-induced loss of righting reflex (LORR). Basal and GHB-stimulated brain concentrations of endogenous 3alpha,5alpha-THP and 3alpha,5alpha-THDOC were analyzed in two rat lines, GHB-sensitive (GHB-S) and GHB-resistant (GHB-R), selectively bred for opposite sensitivity to GHB-induced sedation/hypnosis. Basal neurosteroid concentrations were similar in brain cortex of the two rat lines. However, in male GHB-S rats, administration of GHB (1000 mg/kg, i.p., 30 min) increased brain cortical concentrations of 3alpha,5alpha-THP and 3alpha,5alpha-THDOC 7- and 2.5-fold, respectively, whilst male GHB-R animals displayed only a 4- and 2-fold increase, respectively. In GHB-S rats this increase lasted up to 90 min and declined 180 min following GHB administration, a time course that matches LORR onset and duration. In contrast, in GHB-R rats, which failed to show GHB-induced LORR, brain cortical 3alpha,5alpha-THP and 3alpha,5alpha-THDOC had returned to control values within 90 min. At onset of LORR, a similar increase in brain cortical levels of 3alpha,5alpha-THP and 3alpha,5alpha-THDOC (2-3-fold) was observed in GHB-S female rats and in the few female GHB-R rats that lost the righting reflex after GHB administration, but not in female GHB-R rats failing to show LORR. Sub-hypnotic doses (7.5 and 12.5 mg/kg, i.p.) of pregnanolone, administered 10 min before GHB, dose-dependently facilitated the expression of GHB-induced LORR in GHB-R male rats. These results suggest that the GHB-induced increases of brain 3alpha,5alpha-THP and 3alpha,5alpha

  16. Neurotransmitters as food supplements: the effects of GABA on brain and behavior

    PubMed Central

    Boonstra, Evert; de Kleijn, Roy; Colzato, Lorenza S.; Alkemade, Anneke; Forstmann, Birte U.; Nieuwenhuis, Sander

    2015-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the human cortex. The food supplement version of GABA is widely available online. Although many consumers claim that they experience benefits from the use of these products, it is unclear whether these supplements confer benefits beyond a placebo effect. Currently, the mechanism of action behind these products is unknown. It has long been thought that GABA is unable to cross the blood–brain barrier (BBB), but the studies that have assessed this issue are often contradictory and range widely in their employed methods. Accordingly, future research needs to establish the effects of oral GABA administration on GABA levels in the human brain, for example using magnetic resonance spectroscopy. There is some evidence in favor of a calming effect of GABA food supplements, but most of this evidence was reported by researchers with a potential conflict of interest. We suggest that any veridical effects of GABA food supplements on brain and cognition might be exerted through BBB passage or, more indirectly, via an effect on the enteric nervous system. We conclude that the mechanism of action of GABA food supplements is far from clear, and that further work is needed to establish the behavioral effects of GABA. PMID:26500584

  17. GABA-mediated regulation of the activity-dependent olfactory bulb dopaminergic phenotype

    PubMed Central

    Akiba, Yosuke; Sasaki, Hayato; Huerta, Patricio T.; Estevez, Alvaro G.; Baker, Harriet; Cave, John W.

    2009-01-01

    Gamma-amino-butyric acid (GABA) regulates the proliferation and migration of olfactory bulb (OB) interneuron progenitors derived from the subventricular zone (SVZ), but the role of GABA in the differentiation of these progenitors has been largely unexplored. This study examined the role of GABA in the differentiation of OB dopaminergic interneurons using neonatal forebrain organotypic slice cultures prepared from transgenic mice expressing GFP under the control of the tyrosine hydroxylase (Th) gene promoter (ThGFP). KCl-mediated depolarization of the slices induced ThGFP expression. The addition of GABA to the depolarized slices further increased GFP fluorescence by inducing ThGFP expression in an additional set of periglomerular cells. These findings showed that GABA promoted differentiation of SVZ-derived OB dopaminergic interneurons and suggested that GABA indirectly regulated Th expression and OB dopaminergic neuron differentiation through an acceleration of the maturation rate for the dopaminergic progenitors. Additional studies revealed that the effect of GABA on ThGFP expression required activation of L- and P/Q-type Ca+2 channels as well as GABAA and GABAB receptors. These voltage-gated Ca+2 channels and GABA receptors have previously been shown to be required for the co-expressed GABAergic phenotype in the OB interneurons. Together, these findings suggest that Th expression and the differentiation of OB dopaminergic interneurons are coupled to the co-expressed GABAergic phenotype, and demonstrate a novel role for GABA in neurogenesis. PMID:19301430

  18. Neurotransmitters as food supplements: the effects of GABA on brain and behavior.

    PubMed

    Boonstra, Evert; de Kleijn, Roy; Colzato, Lorenza S; Alkemade, Anneke; Forstmann, Birte U; Nieuwenhuis, Sander

    2015-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the human cortex. The food supplement version of GABA is widely available online. Although many consumers claim that they experience benefits from the use of these products, it is unclear whether these supplements confer benefits beyond a placebo effect. Currently, the mechanism of action behind these products is unknown. It has long been thought that GABA is unable to cross the blood-brain barrier (BBB), but the studies that have assessed this issue are often contradictory and range widely in their employed methods. Accordingly, future research needs to establish the effects of oral GABA administration on GABA levels in the human brain, for example using magnetic resonance spectroscopy. There is some evidence in favor of a calming effect of GABA food supplements, but most of this evidence was reported by researchers with a potential conflict of interest. We suggest that any veridical effects of GABA food supplements on brain and cognition might be exerted through BBB passage or, more indirectly, via an effect on the enteric nervous system. We conclude that the mechanism of action of GABA food supplements is far from clear, and that further work is needed to establish the behavioral effects of GABA. PMID:26500584

  19. Comparative Mapping of GABA-Immunoreactive Neurons in the Buccal Ganglia of Nudipleura Molluscs.

    PubMed

    Gunaratne, Charuni A; Katz, Paul S

    2016-04-15

    Phylogenetic comparisons of neurotransmitter distribution are important for understanding the ground plan organization of nervous systems. This study describes the γ-aminobutyric acid (GABA)-immunoreactive (GABA-ir) neurons in the buccal ganglia of six sea slug species (Mollusca, Gastropoda, Euthyneura, Nudipleura). In the nudibranch species, Hermissenda crassicornis, Tritonia diomedea, Tochuina tetraquetra, and Dendronotus iris, the number of GABA-ir neurons was highly consistent. Another nudibranch, Melibe leonina, however, contained approximately half the number of GABA-ir neurons. This may relate to its loss of a radula and its unique feeding behavior. The GABA immunoreactivity in a sister group to the nudibranchs, Pleurobranchaea californica, differed drastically from that of the nudibranchs. Not only did it have significantly more GABA-ir neurons but it also had a unique GABA distribution pattern. Furthermore, unlike the nudibranchs, the Pleurobranchaea GABA distribution was also different from that of other, more distantly related, euopisthobranch and panpulmonate snails and slugs. This suggests that the Pleurobranchaea GABA distribution may be a derived feature, unique to this lineage. The majority of GABA-ir axons and neuropil in the Nudipleura were restricted to the buccal ganglia, commissures, and connectives. However, in Tritonia and Pleurobranchaea, we detected a few GABA-ir fibers in buccal nerves that innervate feeding muscles. Although the specific functions of the GABA-ir neurons in the species in this study are not known, the innervation pattern suggests these neurons may play an integrative or regulatory role in bilaterally coordinated behaviors in the Nudipleura. PMID:26355705

  20. Stimulation of TM3 Leydig cell proliferation via GABAA receptors: A new role for testicular GABA

    PubMed Central

    Geigerseder, Christof; Doepner, Richard FG; Thalhammer, Andrea; Krieger, Annette; Mayerhofer, Artur

    2004-01-01

    The neurotransmitter gamma-aminobutyric acid (GABA) and subtypes of GABA receptors were recently identified in adult testes. Since adult Leydig cells possess both the GABA biosynthetic enzyme glutamate decarboxylase (GAD), as well as GABAA and GABAB receptors, it is possible that GABA may act as auto-/paracrine molecule to regulate Leydig cell function. The present study was aimed to examine effects of GABA, which may include trophic action. This assumption is based on reports pinpointing GABA as regulator of proliferation and differentiation of developing neurons via GABAA receptors. Assuming such a role for the developing testis, we studied whether GABA synthesis and GABA receptors are already present in the postnatal testis, where fetal Leydig cells and, to a much greater extend, cells of the adult Leydig cell lineage proliferate. Immunohistochemistry, RT-PCR, Western blotting and a radioactive enzymatic GAD assay evidenced that fetal Leydig cells of five-six days old rats possess active GAD protein, and that both fetal Leydig cells and cells of the adult Leydig cell lineage possess GABAA receptor subunits. TM3 cells, a proliferating mouse Leydig cell line, which we showed to possess GABAA receptor subunits by RT-PCR, served to study effects of GABA on proliferation. Using a colorimetric proliferation assay and Western Blotting for proliferating cell nuclear antigen (PCNA) we demonstrated that GABA or the GABAA agonist isoguvacine significantly increased TM3 cell number and PCNA content in TM3 cells. These effects were blocked by the GABAA antagonist bicuculline, implying a role for GABAA receptors. In conclusion, GABA increases proliferation of TM3 Leydig cells via GABAA receptor activation and proliferating Leydig cells in the postnatal rodent testis bear a GABAergic system. Thus testicular GABA may play an as yet unrecognized role in the development of Leydig cells during the differentiation of the testicular interstitial compartment. PMID:15040802

  1. GABA transport and calcium dynamics in horizontal cells from the skate retina.

    PubMed Central

    Haugh-Scheidt, L; Malchow, R P; Ripps, H

    1995-01-01

    1. Changes in intracellular calcium concentration [Ca2+]i in response to extracellularly applied gamma-aminobutyric acid (GABA) were studied in isolated horizontal cells from the all-rod skate retina. 2. Calcium measurements were made using fura-2 AM, both with and without whole-cell voltage clamp. Superfusion with GABA, in the absence of voltage clamp, resulted in an increase in [Ca2+]i; the threshold for detection was approximately 50 microM GABA, and a maximal response was elicited by 500 microM GABA. 3. The rise in [Ca2+]i was not mimicked by baclofen nor was it blocked by phaclofen, picrotoxin or bicuculline. However, the GABA-induced [Ca2+]i increase was completely abolished when extracellular sodium was replaced with N-methyl-D-glucamine. 4. With the horizontal cell voltage clamped at -70 mV, GABA evoked a large inward current, but there was no concomitant change in [Ca2+]i. Nifedipine, which blocks L-type voltage-gated Ca2+ channels, suppressed the GABA-induced increase in [Ca2+]i. These findings suggest that the calcium response was initiated by GABA activation of sodium dependent electrogenic transport, and that the resultant depolarization led to the opening of voltage-gated Ca2+ channels, and a rise in [Ca2+]i. 5. The GABA-induced influx of calcium appears not to have been the sole source of the calcium increase. The GABA-induced rise in [Ca2+]i was reduced by dantrolene, indicating that internal Ca2+ stores contributed to the GABA-mediated Ca2+ response. 6. These observations demonstrate that activation of the GABA transporter induces changes in [Ca2+]i which may have important implications for the functional properties of horizontal cells. PMID:8576848

  2. Novel amino acids: synthesis of furoxan and sydnonimine containing amino acids and peptides as potential nitric oxide releasing motifs.

    PubMed

    Nortcliffe, Andrew; Botting, Nigel P; O'Hagan, David

    2013-07-28

    The incorporation of furoxan and sydnonimine ring systems into amino acid side chains is demonstrated with the preparation of four novel amino acids which carry these nitric oxide-releasing motifs. N-((4-Nitrophenoxy)carbonyl)-3-phenylsydnonimine 9 and bis(phenylsulfonyl)furoxan 10 are the key intermediates for introducing the heterocycle side chains onto appropriate amine and alcohol functionalities respectively. Furoxan 5 and 7 both displayed NO release based on determination of nitrite production. Orthogonal amino acid protecting group strategies were deployed to demonstrate that the amino acids could be incorporated into peptide frameworks. By way of demonstration the amino acids were placed centrally into several tripeptide motifs. Griess test assays showed that these amino acids released NO in the presence of γ-glutathione (GST). PMID:23753002

  3. Amiloride and GMQ Allosteric Modulation of the GABA-A ρ1 Receptor: Influences of the Intersubunit Site

    PubMed Central

    Snell, Heather D.

    2015-01-01

    Amiloride, a diuretic used in the treatment of hypertension and congestive heart failure, and 2-guanidine-4-methylquinazoline (GMQ) are guanidine compounds that modulate acid-sensing ion channels. Both compounds have demonstrated affinity for a variety of membrane proteins, including members of the Cys-loop family of ligand-gated ion channels, such as the heteromeric GABA-A αβγ receptors. The actions of these guanidine compounds on the homomeric GABA-A ρ1 receptor remains unclear, especially in light of how many GABA-A αβγ receptor modulators have different effects in the GABA-A ρ1 receptors. We sought to characterize the influence of amiloride and GMQ on the human GABA-A ρ1 receptors using whole-cell patch-clamp electrophysiology. The diuretic amiloride potentiated the human GABA-A ρ1 GABA-mediated current, whereas GMQ antagonized the receptor. Furthermore, a GABA-A second transmembrane domain site, the intersubunit site, responsible for allosteric modulation in the heteromeric GABA-A receptors mediated amiloride’s positive allosteric actions. In contrast, the mutation did not remove GMQ antagonism but only changed the guanidine compound’s potency within the human GABA-A ρ1 receptor. Through modeling and introduction of point mutations, we propose that the GABA-A ρ1 intersubunit site plays a role in mediating the allosteric effects of amiloride and GMQ. PMID:25829529

  4. Spinal GABA-B receptor modulates neutrophil recruitment to the knee joint in zymosan-induced arthritis.

    PubMed

    Bassi, Gabriel S; do C Malvar, David; Cunha, Thiago M; Cunha, Fernando Q; Kanashiro, Alexandre

    2016-08-01

    Recent studies have demonstrated that the central nervous system controls inflammatory responses by activating complex efferent neuroimmune pathways. The present study was designed to evaluate the role that central gamma-aminobutyric acid type B (GABA-B) receptor plays in neutrophil migration in a murine model of zymosan-induced arthritis by using different pharmacological tools. We observed that intrathecal administration of baclofen, a selective GABA-B agonist, exacerbated the inflammatory response in the knee after zymosan administration characterized by an increase in the neutrophil recruitment and knee joint edema, whereas saclofen, a GABA-B antagonist, exerted the opposite effect. Intrathecal pretreatment of the animals with SB203580 (an inhibitor of p38 mitogen-activated protein kinase) blocked the pro-inflammatory effect of baclofen. On the other hand, systemic administration of guanethidine, a sympatholytic drug that inhibits catecholamine release, and nadolol, a beta-adrenergic receptor antagonist, reversed the effect of saclofen. Moreover, saclofen suppressed the release of the pro-inflammatory cytokines into the knee joint (ELISA) and pain-related behaviors (open field test). Since the anti-inflammatory effect of saclofen depends on the sympathetic nervous system integrity, we observed that isoproterenol, a beta-adrenergic receptor agonist, mimics the central GABA-B blockade decreasing knee joint neutrophil recruitment. Together, these results demonstrate that the pharmacological manipulation of spinal GABAergic transmission aids control of neutrophil migration to the inflamed joint by modulating the activation of the knee joint-innervating sympathetic terminal fibers through a mechanism dependent on peripheral beta-adrenergic receptors and central components, such as p38 MAPK. PMID:27106212

  5. Inherently antioxidant and antimicrobial tannic acid release from poly(tannic acid) nanoparticles with controllable degradability.

    PubMed

    Sahiner, Nurettin; Sagbas, Selin; Aktas, Nahit; Silan, Coskun

    2016-06-01

    From a natural polyphenol, Tannic acid (TA), poly(TA) nanoparticles were readily prepared using a single step approach with three different biocompatible crosslinkers; trimethylolpropane triglycidyl ether (TMPGDE), poly(ethylene glycol) diglycidyl ether (PEGGE), and trisodium trimetaphosphate (STMP). P(TA) particles were obtained with controllable diameters between 400 to 800nm with -25mV surface charge. The effect of synthesis conditions, such as the emulsion medium, pH values of TA solution, and the type of crosslinker, on the shape, size, dispersity, yield, and degradability of poly(Tannic Acid) (p(TA)) nanoparticles was systematically investigated. The hydrolytic degradation amount in physiological pH conditions of 5.4, 7.4, and 9.0 at 37.5°C were found to be in the order TMPGDEreleasing media. The highest TA release, 600mg/g, was obtained for TMPGDE-crosslinked p(TA) particles in intestinal pH conditions (pH 9) over 3 days; whereas, a slow and linear TA release profile over almost 30 days was obtained by using PEGGE-crosslinked p(TA) in body fluid pH conditions (pH 7.4). The total phenol content of p(TA) particles was calculated as 70±1μgmL(-1) for 170μgmL(-1) p(TA), and the trolox equivalent antioxidant capacity was found to be 2027±104mM trolox equivalent g(-1). Moreover, p(TA) nanoparticles demonstrated strong antimicrobial effects against common bacterial strains. More interestingly, with a higher concentration of p(TA) particles, higher blood clotting indices were obtained. PMID:26970821

  6. Potentiation of the ionotropic GABA receptor response by whiskey fragrance.

    PubMed

    Hossain, Sheikh Julfikar; Aoshima, Hitoshi; Koda, Hirofumi; Kiso, Yoshinobu

    2002-11-01

    It is well-known that the target of most mood-defining compounds is an ionotropic gamma-aminobutyric acid receptor (GABA(A) receptor). The potentiation of the response of these inhibitory neurotransmitter receptors induces anxiolytic, sedative, and anesthetic activity in the human brain. To study the effects of whiskey fragrance on the GABA(A) receptor-mediated response, GABA(A) receptors were expressed in Xenopus oocyte by injecting rat whole brain mRNA or cRNA prepared from the cloned cDNA for the alpha(1) and beta(1) subunits of the bovine receptors. Most whiskey components such as phenol, ethoxy, and lactone derivatives potentiated the electrical responses of GABA(A) receptors, especially ethyl phenylpropanoate (EPP), which strongly potentiated the response. When this compound was applied to mice through respiration, the convulsions induced by pentetrazole were delayed, suggesting that EPP was absorbed by the brain, where it could potentiate the GABA(A) receptor responses. The extract of other alcoholic drinks such as wine, sake, brandy, and shochu also potentiated the responses to varying degrees. Although these fragrant components are present in alcoholic drinks at low concentrations (extremely small quantities compared with ethanol), they may also modulate the mood or consciousness of the human through the potentiation of the GABA(A) receptor response after absorption into the brain, because these hydrophobic fragrant compounds are easily absorbed into the brain through the blood-brain barrier and are several thousands times as potent as ethanol in the potentiation of the GABA(A) receptor-mediated response. PMID:12405783

  7. Effect of different polyphenol sources on the efficiency of ellagic acid release by Aspergillus niger.

    PubMed

    Sepúlveda, Leonardo; de la Cruz, Reynaldo; Buenrostro, José Juan; Ascacio-Valdés, Juan Alberto; Aguilera-Carbó, Antonio Francisco; Prado, Arely; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal Noé

    2016-01-01

    Fungal hydrolysis of ellagitannins produces hexahydroxydiphenic acid, which is considered an intermediate molecule in ellagic acid release. Ellagic acid has important and desirable beneficial health properties. The aim of this work was to identify the effect of different sources of ellagitannins on the efficiency of ellagic acid release by Aspergillus niger. Three strains of A. niger (GH1, PSH and HT4) were assessed for ellagic acid release from different polyphenol sources: cranberry, creosote bush, and pomegranate used as substrate. Polyurethane foam was used as support for solid-state culture in column reactors. Ellagitannase activity was measured for each of the treatments. Ellagic acid was quantified by high performance liquid chromatography. When pomegranate polyphenols were used, a maximum value of ellagic acid (350.21 mg/g) was reached with A. niger HT4 in solid-state culture. The highest amount of ellagitannase (5176.81 U/l) was obtained at 8h of culture when cranberry polyphenols and strain A. niger PSH were used. Results demonstrated the effect of different polyphenol sources and A. niger strains on ellagic acid release. It was observed that the best source for releasing ellagic acid was pomegranate polyphenols and A. niger HT4 strain, which has the ability to degrade these compounds for obtaining a potent bioactive molecule such as ellagic acid. PMID:26916811

  8. Attenuated inhibition by levofloxacin, l-isomer of ofloxacin, on GABA response in the dissociated rat hippocampal neurons.

    PubMed

    Imanishi, T; Akahane, K; Akaike, N

    1995-06-30

    The effects of ofloxacin (OFLX) and its isomers, levofloxacin (LVFX) and DR-3354, on the gamma-aminobutyric acid (GABA)-induced Cl- current in acutely dissociated rat hippocampal CA1 neurons were investigated using nystatin perforated patch recording configuration under voltage-clamp conditions. At 10(-5) M these 3 compounds themselves did not affect the GABA response. Biphenylacetic acid (BPA) at 10(-5) M also had no effect on the GABA response, but BPA greatly suppressed the GABA response in combination with these 3 compounds without affecting the reversal potential of GABA response. The inhibitory effects of OFLX and DR-3354 on the GABA response were stronger than that of LVFX. LVFX inhibited the response in a competitive and voltage-independent manner. The results suggest that LVFX has lower CNS adverse effects, such as convulsions, compared to OFLX. PMID:7478164

  9. Role of proline and GABA in sexual reproduction of angiosperms.

    PubMed

    Biancucci, Marco; Mattioli, Roberto; Forlani, Giuseppe; Funck, Dietmar; Costantino, Paolo; Trovato, Maurizio

    2015-01-01

    Two glutamate derivatives, proline and γ-aminobutyric acid (GABA), appear to play pivotal roles in different aspects of sexual reproduction in angiosperms, although their precise function in plant reproduction and the molecular basis of their action are not yet fully understood. Proline and GABA have long been regarded as pivotal amino acids in pollen vitality and fertility. Proline may constitute up to 70% of the free amino acid pool in pollen grains and it has been recently shown that Arabidopsis mutants affected in the first and rate-limiting step in proline synthesis produce aberrant and infertile pollen grains, indicating that proline synthesis is required for pollen development and fertility. Concerning GABA, a large body of evidence points to this glutamate derivative as a key determinant of post-pollination fertilization. Intriguingly, proline has also been associated with pollination, another aspect of sexual reproduction, since honeybees were reported to show a strong preference for proline-enriched nectars. In this review, we survey current knowledge on the roles of proline and GABA in plant fertility, and discuss future perspectives potentially capable to improve our understanding on the functions of these amino acids in pollen development, pollination, and pollen tube guidance. PMID:26388884

  10. Role of proline and GABA in sexual reproduction of angiosperms

    PubMed Central

    Biancucci, Marco; Mattioli, Roberto; Forlani, Giuseppe; Funck, Dietmar; Costantino, Paolo; Trovato, Maurizio

    2015-01-01

    Two glutamate derivatives, proline and γ-aminobutyric acid (GABA), appear to play pivotal roles in different aspects of sexual reproduction in angiosperms, although their precise function in plant reproduction and the molecular basis of their action are not yet fully understood. Proline and GABA have long been regarded as pivotal amino acids in pollen vitality and fertility. Proline may constitute up to 70% of the free amino acid pool in pollen grains and it has been recently shown that Arabidopsis mutants affected in the first and rate-limiting step in proline synthesis produce aberrant and infertile pollen grains, indicating that proline synthesis is required for pollen development and fertility. Concerning GABA, a large body of evidence points to this glutamate derivative as a key determinant of post-pollination fertilization. Intriguingly, proline has also been associated with pollination, another aspect of sexual reproduction, since honeybees were reported to show a strong preference for proline-enriched nectars. In this review, we survey current knowledge on the roles of proline and GABA in plant fertility, and discuss future perspectives potentially capable to improve our understanding on the functions of these amino acids in pollen development, pollination, and pollen tube guidance. PMID:26388884

  11. Actions of insecticides on the insect GABA receptor complex

    SciTech Connect

    Bermudez, I.; Hawkins, C.A.; Taylor, A.M.; Beadle, D.J. )

    1991-01-01

    The actions of insecticides on the insect gamma-aminobutyric acid (GABA) receptor were investigated using (35S)t-butylbicyclophosphorothionate (( 35S)TBPS) binding and voltage-clamp techniques. Specific binding of (35S)TBPS to a membrane homogenate derived from the brain of Locusta migratoria locusts is characterised by a Kd value of 79.3 {plus minus} 2.9 nM and a Bmax value of 1770 {plus minus} 40 fmol/mg protein. (35S)TBPS binding is inhibited by mM concentrations of barbiturates and benzodiazepines. In contrast dieldrin, ivermectin, lindane, picrotoxin and TBPS are inhibitors of (35S)TBPS binding at the nanomolar range. Bicuculline, baclofen and pyrethroid insecticides have no effect on (35S)TBPS binding. These results are similar to those obtained in electrophysiological studies of the current elicited by GABA in both Locusta and Periplaneta americana central neurones. Noise analysis of the effects of lindane, TBPS, dieldrin and picrotoxin on the cockroach GABA responses reveals that these compounds decrease the variance of the GABA-induced current but have no effect on its mean open time. All these compounds, with the exception of dieldrin, significantly decrease the conductance of GABA-evoked single current.

  12. GABA accumulation causes cell elongation defects and a decrease in expression of genes encoding secreted and cell wall-related proteins in Arabidopsis thaliana.

    PubMed

    Renault, Hugues; El Amrani, Abdelhak; Palanivelu, Ravishankar; Updegraff, Emily P; Yu, Agnès; Renou, Jean-Pierre; Preuss, Daphne; Bouchereau, Alain; Deleu, Carole

    2011-05-01

    GABA (γ-aminobutyric acid), a non-protein amino acid, is a signaling factor in many organisms. In plants, GABA is known to accumulate under a variety of stresses. However, the consequence of GABA accumulation, especially in vegetative tissues, remains poorly understood. Moreover, gene expression changes as a consequence of GABA accumulation in plants are largely unknown. The pop2 mutant, which is defective in GABA catabolism and accumulates GABA, is a good model to examine the effects of GABA accumulation on plant development. Here, we show that the pop2 mutants have pollen tube elongation defects in the transmitting tract of pistils. Additionally, we observed growth inhibition of primary root and dark-grown hypocotyl, at least in part due to cell elongation defects, upon exposure to exogenous GABA. Microarray analysis of pop2-1 seedlings grown in GABA-supplemented medium revealed that 60% of genes whose expression decreased encode secreted proteins. Besides, functional classification of genes with decreased expression in the pop2-1 mutant showed that cell wall-related genes were significantly enriched in the microarray data set, consistent with the cell elongation defects observed in pop2 mutants. Our study identifies cell elongation defects caused by GABA accumulation in both reproductive and vegetative tissues. Additionally, our results show that genes that encode secreted and cell wall-related proteins may mediate some of the effects of GABA accumulation. The potential function of GABA as a growth control factor under stressful conditions is discussed. PMID:21471118

  13. Insect Herbivory-Elicited GABA Accumulation in Plants is a Wound-Induced, Direct, Systemic, and Jasmonate-Independent Defense Response

    PubMed Central

    Scholz, Sandra S.; Reichelt, Michael; Mekonnen, Dereje W.; Ludewig, Frank; Mithöfer, Axel

    2015-01-01

    The non-proteinogenic amino acid γ-aminobutyric acid (GABA) is present in all organisms analyzed so far. In invertebrates GABA acts as a neurotransmitter; in plants different functions are under discussion. Among others, its involvement in abiotic stress reactions and as a defensive compound against feeding insects is suggested. GABA is synthesized from glutamate by glutamate decarboxylases and degraded by GABA-transaminases. Here, in Arabidopsis thaliana, gad1/2 double mutants showing reduced GABA concentrations as well as GABA-enriched triple mutants (gad1/2 x pop2-5) were generated and employed for a systematic study of GABA induction, accumulation and related effects in Arabidopsis leaves upon herbivory. The results demonstrate that GABA accumulation is stimulated by insect feeding-like wounding by a robotic caterpillar, MecWorm, as well as by real insect (Spodoptera littoralis) herbivory. Higher GABA levels in both plant tissue and artificial dietary supplements in turn affect the performance of feeding larvae. GABA enrichment occurs not only in the challenged but also in adjacent leaf. This induced response is neither dependent on herbivore defense-related phytohormones, jasmonates, nor is jasmonate induction dependent on the presence of GABA. Thus, in Arabidopsis the rapid accumulation of GABA very likely represents a general, direct and systemic defense reaction against insect herbivores. PMID:26734035

  14. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters

    PubMed Central

    Ramesh, Sunita A.; Tyerman, Stephen D.; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A.; Ryan, Peter R.; Gillham, Matthew

    2015-01-01

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms. PMID:26219411

  15. Mechanism of Inactivation of γ-Aminobutyric Acid Aminotransferase by (1S ,3S)-3-Amino-4-difluoromethylene-1-cyclopentanoic Acid (CPP-115)

    SciTech Connect

    Lee, Hyunbeom; Doud, Emma H.; Wu, Rui; Sanishvili, Ruslan; Juncosa, Jose I.; Liu, Dali; Kelleher, Neil L.; Silverman, Richard B.

    2015-01-23

    γ-Aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that degrades GABA, the principal inhibitory neurotransmitter in mammalian cells. When the concentration of GABA falls below a threshold level, convulsions can occur. Inhibition of GABA-AT raises GABA levels in the brain, which can terminate seizures as well as have potential therapeutic applications in treating other neurological disorders, including drug addiction. Among the analogues that we previously developed, (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115) showed 187 times greater potency than that of vigabatrin, a known inactivator of GABA-AT and approved drug (Sabril) for the treatment of infantile spasms and refractory adult epilepsy. Recently, CPP-115 was shown to have no adverse effects in a Phase I clinical trial. Here we report a novel inactivation mechanism for CPP-115, a mechanism-based inactivator that undergoes GABA-AT-catalyzed hydrolysis of the difluoromethylene group to a carboxylic acid with concomitant loss of two fluoride ions and coenzyme conversion to pyridoxamine 5'-phosphate (PMP). The partition ratio for CPP-115 with GABA-AT is about 2000, releasing cyclopentanone-2,4-dicarboxylate (22) and two other precursors of this compound (20 and 21). Time-dependent inactivation occurs by a conformational change induced by the formation of the aldimine of 4-aminocyclopentane-1,3-dicarboxylic acid and PMP (20), which disrupts an electrostatic interaction between Glu270 and Arg445 to form an electrostatic interaction between Arg445 and the newly formed carboxylate produced by hydrolysis of the difluoromethylene group in CPP-115, resulting in a noncovalent, tightly bound complex. Ultimately, this represents a novel mechanism for inactivation of GABA-AT and a new approach for the design of mechanism-based inactivators in general.

  16. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-01-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion. PMID:25915115

  17. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-01-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion. PMID:25915115

  18. EPA releases study describing potential acid rain damage

    SciTech Connect

    Not Available

    1989-11-01

    The U.S. Environmental Protection Agency's acid rain researchers on August 24 offered evidence that if sulfur emissions are not reduced in the future, aquatic systems in the South will suffer damage from acid rain. Evidence also indicates that reductions in sulfur emissions could improve the health of damaged lakes in the Northeast. The study Future Effects of Long-Term Sulfur Deposition on Surface Water Chemistry: The Direct/Delayed Response Project, developed 50-year projections of watershed quality under three plausible acidic deposition, or acid rain, scenarios. Three areas were studied - the Northeast, comprising all of New England and parts of New York and Pennsylvania; the Mid-Appalachian Region, covering much of Pennsylvania, Maryland, Virginia, and West Virginia; and the Southern Blue Ridge Province, an area covering parts of North Carolina, Tennessee, South Carolina and Georgia. The study is a key element in the closing months of the 10-year National Acid Precipitation Assessment Program.

  19. Pharmacological modulation of brain levels of glutamate and GABA in rats exposed to total sleep deprivation

    PubMed Central

    Kamal, Sahar Mohamed

    2010-01-01

    Modulation of gamma-aminobutyric acid (GABA) and glutamate by selected antidepressants and anticonvulsants could play a beneficial role in total sleep deprivation (TSD) caused by depressed mood. In the present study, albino rats were exposed to TSD for five days. On the sixth day, the brains were removed, and GABA and glutamate levels were measured in the prefrontal cortex and thalamus to identify TSD-induced changes in untreated rats and in rats treated with carbamazepine 40 mg/kg intraperitoneally (IP), fluoxetine 20 mg/kg IP, or desipramine 10 mg/kg IP. Carbamazepine and fluoxetine significantly increased GABA and reduced glutamate levels in both brain areas. Desipramine administration did not affect GABA or glutamate concentrations in the tested brain areas; levels were comparable with those induced by TSD without treatment. These results suggest that administration of carbamazepine or fluoxetine could have a beneficial effect by increasing GABA levels during TSD.

  20. Poly (lactic-co-glycolic acid) controlled release systems: experimental and modeling insights

    PubMed Central

    Hines, Daniel J.; Kaplan, David L.

    2013-01-01

    Poly-lactic-co-glycolic acid (PLGA) has been the most successful polymeric biomaterial for use in controlled drug delivery systems. There are several different chemical and physical properties of PLGA that impact the release behavior of drugs from PLGA delivery devices. These properties must be considered and optimized in drug release device formulation. Mathematical modeling is a useful tool for identifying, characterizing, and predicting the mechanisms of controlled release. The advantages and limitations of poly (lactic-co-glycolic acid) for controlled release are reviewed, followed by a review of current approaches in controlled release technology that utilize PLGA. Mathematical modeling applied towards controlled release rates from PLGA-based devices will also be discussed to provide a complete picture of state of the art understanding of the control achievable with this polymeric system, as well as the limitations. PMID:23614648

  1. Segregation of Acetylcholine and GABA in the Rat Superior Cervical Ganglia: Functional Correlation.

    PubMed

    Elinos, Diana; Rodríguez, Raúl; Martínez, Luis Andres; Zetina, María Elena; Cifuentes, Fredy; Morales, Miguel Angel

    2016-01-01

    Sympathetic neurons have the capability to segregate their neurotransmitters (NTs) and co-transmitters to separate varicosities of single axons; furthermore, in culture, these neurons can even segregate classical transmitters. In vivo sympathetic neurons employ acetylcholine (ACh) and other classical NTs such as gamma aminobutyric acid (GABA). Herein, we explore whether these neurons in vivo segregate these classical NTs in the superior cervical ganglia of the rat. We determined the topographical distribution of GABAergic varicosities, somatic GABAA receptor, as well as the regional distribution of the segregation of ACh and GABA. We evaluated possible regional differences in efficacy of ganglionic synaptic transmission, in the sensitivity of GABAA receptor to GABA and to the competitive antagonist picrotoxin (PTX). We found that sympathetic preganglionic neurons in vivo do segregate ACh and GABA. GABAergic varicosities and GABAA receptor expression showed a rostro-caudal gradient along ganglia; in contrast, segregation exhibited a caudo-rostral gradient. These uneven regional distributions in expression of GABA, GABAA receptors, and level of segregation correlate with stronger synaptic transmission found in the caudal region. Accordingly, GABAA receptors of rostral region showed larger sensitivity to GABA and PTX. These results suggest the presence of different types of GABAA receptors in each region that result in a different regional levels of endogenous GABA inhibition. Finally, we discuss a possible correlation of these different levels of GABA modulation and the function of the target organs innervated by rostral and caudal ganglionic neurons. PMID:27092054

  2. Effect of GABA, a bacterial metabolite, on Pseudomonas fluorescens surface properties and cytotoxicity.

    PubMed

    Dagorn, Audrey; Chapalain, Annelise; Mijouin, Lily; Hillion, Mélanie; Duclairoir-Poc, Cécile; Chevalier, Sylvie; Taupin, Laure; Orange, Nicole; Feuilloley, Marc G J

    2013-01-01

    Different bacterial species and, particularly Pseudomonas fluorescens, can produce gamma-aminobutyric acid (GABA) and express GABA-binding proteins. In this study, we investigated the effect of GABA on the virulence and biofilm formation activity of different strains of P. fluorescens. Exposure of a psychotropic strain of P. fluorescens (MF37) to GABA (10-5 M) increased its necrotic-like activity on eukaryotic (glial) cells, but reduced its apoptotic effect. Conversely, muscimol and bicuculline, the selective agonist and antagonist of eukaryote GABAA receptors, respectively, were ineffective. P. fluorescens MF37 did not produce biosurfactants, and its caseinase, esterase, amylase, hemolytic activity or pyoverdine productions were unchanged. In contrast, the effect of GABA was associated to rearrangements of the lipopolysaccharide (LPS) structure, particularly in the lipid A region. The surface hydrophobicity of MF37 was marginally modified, and GABA reduced its biofilm formation activity on PVC, but not on glass, although the initial adhesion was increased. Five other P. fluorescens strains were studied, and only one, MFP05, a strain isolated from human skin, showed structural differences of biofilm maturation after exposure to GABA. These results reveal that GABA can regulate the LPS structure and cytotoxicity of P. fluorescens, but that this property is specific to some strains. PMID:23743829

  3. Effect of GABA, a Bacterial Metabolite, on Pseudomonas fluorescens Surface Properties and Cytotoxicity

    PubMed Central

    Dagorn, Audrey; Chapalain, Annelise; Mijouin, Lily; Hillion, Mélanie; Duclairoir-Poc, Cécile; Chevalier, Sylvie; Taupin, Laure; Orange, Nicole; Feuilloley, Marc G. J.

    2013-01-01

    Different bacterial species and, particularly Pseudomonas fluorescens, can produce gamma-aminobutyric acid (GABA) and express GABA-binding proteins. In this study, we investigated the effect of GABA on the virulence and biofilm formation activity of different strains of P. fluorescens. Exposure of a psychotropic strain of P. fluorescens (MF37) to GABA (10−5 M) increased its necrotic-like activity on eukaryotic (glial) cells, but reduced its apoptotic effect. Conversely, muscimol and bicuculline, the selective agonist and antagonist of eukaryote GABAA receptors, respectively, were ineffective. P. fluorescens MF37 did not produce biosurfactants, and its caseinase, esterase, amylase, hemolytic activity or pyoverdine productions were unchanged. In contrast, the effect of GABA was associated to rearrangements of the lipopolysaccharide (LPS) structure, particularly in the lipid A region. The surface hydrophobicity of MF37 was marginally modified, and GABA reduced its biofilm formation activity on PVC, but not on glass, although the initial adhesion was increased. Five other P. fluorescens strains were studied, and only one, MFP05, a strain isolated from human skin, showed structural differences of biofilm maturation after exposure to GABA. These results reveal that GABA can regulate the LPS structure and cytotoxicity of P. fluorescens, but that this property is specific to some strains. PMID:23743829

  4. Immunocytochemistry of GABA in the brain and suboesophageal ganglion of Manduca sexta.

    PubMed

    Homberg, U; Kingan, T G; Hildebrand, J G

    1987-04-01

    We have used specific antisera against protein-conjugated gamma-aminobutyric acid (GABA) in immunocytochemical preparations to investigate the distribution of putatively GABAergic neurons in the brain and suboesophageal ganglion of the sphinx moth Manduca sexta. About 20,000 neurons per brain hemisphere exhibit GABA-immunoreactivity. Most of these are optic-lobe interneurons, especially morphologically centrifugal neurons of the lamina and tangential neurons that innervate the medulla or the lobula complex. Many GABA-immunoreactive neurons, among them giant fibers of the lobula plate, project into the median protocerebrum. Among prominent GABA-immunoreactive neurons of the median protocerebrum are about 150 putatively negative-feedback fibers of the mushroom body, innervating both the calyces and lobes, and a group of large, fan-shaped neurons of the lower division of the central body. Several commissures in the supra- and suboesophageal ganglion exhibit GABA-like immunoreactivity. In the suboesophageal ganglion, a group of contralaterally descending neurons shows GABA-like immunoreactivity. The frontal ganglion is innervated by immunoreactive processes from the tritocerebrum but does not contain GABA-immunoreactive somata. With few exceptions the brain nerves do not contain GABA-immunoreactive fibers. PMID:3552234

  5. Segregation of Acetylcholine and GABA in the Rat Superior Cervical Ganglia: Functional Correlation

    PubMed Central

    Elinos, Diana; Rodríguez, Raúl; Martínez, Luis Andres; Zetina, María Elena; Cifuentes, Fredy; Morales, Miguel Angel

    2016-01-01

    Sympathetic neurons have the capability to segregate their neurotransmitters (NTs) and co-transmitters to separate varicosities of single axons; furthermore, in culture, these neurons can even segregate classical transmitters. In vivo sympathetic neurons employ acetylcholine (ACh) and other classical NTs such as gamma aminobutyric acid (GABA). Herein, we explore whether these neurons in vivo segregate these classical NTs in the superior cervical ganglia of the rat. We determined the topographical distribution of GABAergic varicosities, somatic GABAA receptor, as well as the regional distribution of the segregation of ACh and GABA. We evaluated possible regional differences in efficacy of ganglionic synaptic transmission, in the sensitivity of GABAA receptor to GABA and to the competitive antagonist picrotoxin (PTX). We found that sympathetic preganglionic neurons in vivo do segregate ACh and GABA. GABAergic varicosities and GABAA receptor expression showed a rostro-caudal gradient along ganglia; in contrast, segregation exhibited a caudo-rostral gradient. These uneven regional distributions in expression of GABA, GABAA receptors, and level of segregation correlate with stronger synaptic transmission found in the caudal region. Accordingly, GABAA receptors of rostral region showed larger sensitivity to GABA and PTX. These results suggest the presence of different types of GABAA receptors in each region that result in a different regional levels of endogenous GABA inhibition. Finally, we discuss a possible correlation of these different levels of GABA modulation and the function of the target organs innervated by rostral and caudal ganglionic neurons. PMID:27092054

  6. Temperature dependence and GABA modulation of (TH)triazolam binding in the rat brain

    SciTech Connect

    Earle, M.E.; Concas, A.; Wamsley, J.K.; Yamamura, H.I.

    1987-07-27

    The hypnotic triazolam (TZ), a triazolobenzodiazepine displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. The authors major objectives were the direct measurement of the temperature dependence and the gamma-aminobutyric acid (GABA) effect of (TH)TZ binding in the rat brain. Saturation studies showed a shift to lower affinity with increasing temperatures (K/sub d/ = 0.27 +/- 08 nM at 0C; K/sub d/ = 1.96 +/- 0.85 nM at 37C) while the B/sub max/ values remained unchanged (1220 +/- 176 fmoles/mg protein at 0C and 1160 +/- 383 fmoles/mg protein at 37C). Saturation studies of (TH)TZ binding in the presence or absence of GABA (100 M) showed a GABA-shift. At 0C the K/sub d/ values were (K/sub d/ = 0.24 +/- 0.03 nM/-GABA; K/sub d/ = 0.16 +/- 0.04/+GABA) and at 37C the K/sub d/ values were (K/sub d/ = 1.84 +/- 0.44 nM/-GABA; K/sub d/ = 0.95 +/- 0.29 nM/+GABA). In contrast to reported literature, the authors findings show that TZ interacts with benzodiazepine receptors with a temperature dependence and GABA-shift consistent with predicted behavior for benzodiazepine agonists. 20 references, 3 tables.

  7. GABA-shunt enzymes activity in GH3 cells with reduced level of PMCA2 or PMCA3 isoform

    SciTech Connect

    Kowalski, Antoni

    2011-08-12

    Highlights: {yields} Suppression of PMCA2 or PMCA3 slows down proliferation of GH3 cells. {yields} PMCA2 suppression lowers the activity of GABA-shunt enzymes. {yields} PMCA3 suppression increases the expression of glutamate decarboxylase 65. {yields} PMCA2 and PMCA3 function appears to be linked to regulation of GABA metabolism. -- Abstract: GABA ({gamma}-aminobutyric acid) is important neurotransmitter and regulator of endocrine functions. Its metabolism involves three enzymes: glutamate decarboxylase (GAD65 and GAD67), GABA aminotransferase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). As many cellular processes GABA turnover can depend on calcium homeostasis, which is maintained by plasma membrane calcium ATPases (PMCAs). In excitable cells PMCA2 and PMCA3 isoforms are particularly important. In this study we focused on GABA-metabolizing enzymes expression and activity in rat anterior pituitary GH3 cells with suppressed expression of PMCA2 or PMCA3. We observed that PMCA3-reduced cells have increased GAD65 expression. Suppression of PMCA2 caused a decrease in total GAD and GABA-T activity. These results indicate that PMCA2 and PMCA3 presence may be an important regulatory factor in GABA metabolism. Results suggest that PMCA2 and PMCA3 function is rather related to regulation of GABA synthesis and degradation than supplying cells with metabolites, which can be potentially energetic source.

  8. Actions of tremorgenic fungal toxins on neurotransmitter release.

    PubMed

    Norris, P J; Smith, C C; De Belleroche, J; Bradford, H F; Mantle, P G; Thomas, A J; Penny, R H

    1980-01-01

    The neurochemical effects of the tremorgenic mycotoxins Verruculogen and Penitrem A, which produce a neurotoxic syndrome characterised by sustained tremors, were studied using sheep and rat synaptosomes. The toxins were administered in vivo, either by chronic feeding (sheep) or intraperitoneal injection 45 min prior to killing (rat), and synaptosomes were subsequently prepared from cerebrocortical and spinal cord/medullary regions of rat, and corpus striatum of sheep. Penitrem A (400 mg mycelium/kg) increased the spontaneous release of endogenous glutamate, GABA (gamma-aminobutyric acid), and aspartate by 213%, 455%, and 277%, respectively, from cerebrocortical synaptosomes. Verruculogen (400 mg mycelium/kg) increased the spontaneous release of glutamate and aspartate by 1300% and 1200%, respectively, but not that of GABA from cerebrocortical synaptosomes. The spontaneous release of the transmitter amino acids or other amino acids was not increased by the tremorgens in spinal cord/medullary synaptosomes. Penitrem A pretreatment reduced the veratrine (75 microM) stimulated release of glutamate, aspartate, and GABA from cerebrocortical synaptosomes by 33%, 46%, and 11%, respectively, and the stimulated release of glycine and GABA from spinal cord/medulla synaptosomes by 67% and 32% respectively. Verruculogen pretreatment did not alter the veratrine-induced release of transmitter amino acids from cerebrocortex and spinal cord/medulla synaptosomes. Penitrem A pretreatment increased the spontaneous release of aspartate, glutamate, and GABA by 68%, 62%, and 100%, respectively, from sheep corpus striatum synaptosomes but did not alter the synthesis and release of dopamine in this tissue. Verruculogen was shown to cause a substantial increase (300-400%) in the miniature-end-plate potential (m.e.p.p.) frequency at the locust neuromuscular junction. The response was detectable within 1 min, rose to a maximum within 5-7 min, and declined to the control rate over a similar

  9. Development of a high-affinity GABA uptake system in embryonic amphibian spinal neurons.

    PubMed

    Lamborghini, J E; Iles, A

    1985-11-01

    High-affinity uptake systems for amino acid neurotransmitter precursors have been highly correlated with the use of the particular amino acid or its derivative as a transmitter. We have found interneurons in the Xenopus embryo spinal cord which accumulate GABA by a high-affinity uptake system. They originate near the end of gastrulation and their ability to accumulate GABA first appears at the early tail bud stage. By position and appearance they are comparable to some of the embryonic interneurons described by A. Roberts and J. D. W. Clarke (1982, Phil. Trans. R. Soc. London Ser. B 296, 195-212). GABA-accumulating neurons also develop in dissociated cell cultures made from the presumptive spinal cord of neural plate stage Xenopus embryos. GABA accumulation in cultured neurons, as in cells in vivo, occurs via a high-affinity uptake system; GABA-accumulating cells have the same time of origin as the cells in vivo, and the ability to accumulate GABA in the population of cultured neurons appears at a time equivalent to that observed in intact sibling embryos. Thus it seems likely that the population of GABA-accumulating neurons developing in cell culture corresponds to the GABA-accumulating interneurons in vivo. The development of these neurons in dissociated cell cultures permits perturbation experiments that would be difficult to perform in vivo. We have examined the development of high-affinity GABA uptake in conditions that permit no electrical impulse activity in the cultures. The onset and extent of development of GABA accumulation in the neuronal population are normal under these conditions. PMID:3932109

  10. [Effect of cholinomimetics on L-glutamic acid release and uptake in the neostriatum of rats].

    PubMed

    Godukhin, O V; Budantsev, A Iu; Selifonova, O V; Agapova, V N

    1983-12-01

    The effects of cholinomimetics on release and uptake of exogenic glutamic acid in the rat brain neostriatum in vivo and in vitro were studied. Carbocholine and nicotin were shown to inhibit the release, carbocholine acting directly on the presynaptic receptors whereas nicotin acting indirectly through the interneurons of neostriatum. PMID:6141074

  11. Vasopressin induces release of arachidonic acid from vascular smooth muscle cells

    SciTech Connect

    Grillone, L.R.; Clark, M.A.; Heckman, G.; Schmidt, D.; Stassen, F.L.; Crooke, S.T.

    1986-05-01

    Cultured smooth muscle cells (A-10), derived from rat thoracic aorta, have vascular (V/sub 1/) vasopressin receptors. They have previously shown that these receptors mediate phosphatidylinositol turnover, Ca/sup 2 +/ efflux, and inhibition of isoproterenol-induced increases in cAMP. Here they studied the effect of vasopressin on arachidonic acid metabolism of A-10 cells. Cells were incubated for 18-20 hr with (/sup 3/H)-arachidonic acid (80 Ci/mmol). Vasopressin stimulated release of arachidonic acid in a time- and dose-dependent manner. Significant release of arachidonic acid was observed after 4 min with 10/sup -9/ M vasopressin. Maximum release was reached 4 min after addition of 10/sup -7/ M vasopressin (1100 dpm/10/sup 6/ cells). About 800 dmp were released after 1 and 4 min with 10/sup -7/ M and 10/sup -8/ M vasopressin, respectively. The vasopressin-stimulated release of arachidonic acid was blocked by the specific V/sub 1//V/sub 2/ vasopressin antagonist d(CH2)5D-Tyr(Et)VAVP. These data indicate that vascular smooth muscle cells increase arachidonic acid release in response to vasopressin. This response is likely mediated by V/sub 1/ receptors.

  12. Capture and release of mixed acid gasses with binding organic liquids

    DOEpatents

    Heldebrant, David J.; Yonker, Clement R.

    2010-09-21

    Reversible acid-gas binding organic liquid systems that permit separation and capture of one or more of several acid gases from a mixed gas stream, transport of the liquid, release of the acid gases from the ionic liquid and reuse of the liquid to bind more acid gas with significant energy savings compared to current aqueous systems. These systems utilize acid gas capture compounds made up of strong bases and weak acids that form salts when reacted with a selected acid gas, and which release these gases when a preselected triggering event occurs. The various new materials that make up this system can also be included in various other applications such as chemical sensors, chemical reactants, scrubbers, and separators that allow for the specific and separate removal of desired materials from a gas stream such as flue gas.

  13. A molecular characterization of the agonist binding site of a nematode cys-loop GABA receptor

    PubMed Central

    Kaji, Mark D; Kwaka, Ariel; Callanan, Micah K; Nusrat, Humza; Desaulniers, Jean-Paul; Forrester, Sean G

    2015-01-01

    Background and Purpose Cys-loop GABA receptors represent important targets for human chemotherapeutics and insecticides and are potential targets for novel anthelmintics (nematicides). However, compared with insect and mammalian receptors, little is known regarding the pharmacological characteristics of nematode Cys-loop GABA receptors. Here we have investigated the agonist binding site of the Cys-loop GABA receptor UNC-49 (Hco-UNC-49) from the parasitic nematode Haemonchus contortus. Experimental Approach We used two-electrode voltage-clamp electrophysiology to measure channel activation by classical GABA receptor agonists on Hco-UNC-49 expressed in Xenopus laevis oocytes, along with site-directed mutagenesis and in silico homology modelling. Key Results The sulphonated molecules P4S and taurine had no effect on Hco-UNC-49. Other classical Cys-loop GABAA receptor agonists tested on the Hco-UNC-49B/C heteromeric channel had a rank order efficacy of GABA > trans-4-aminocrotonic acid > isoguvacine > imidazole-4-acetic acid (IMA) > (R)-(−)-4-amino-3-hydroxybutyric acid [R(−)-GABOB] > (S)-(+)-4-amino-3-hydroxybutyric acid [S(+)-GABOB] > guanidinoacetic acid > isonipecotic acid > 5-aminovaleric acid (DAVA) (partial agonist) > β-alanine (partial agonist). In silico ligand docking revealed some variation in binding between agonists. Mutagenesis of a key serine residue in binding loop C to threonine had minimal effects on GABA and IMA but significantly increased the maximal response to DAVA and decreased twofold the EC50 for R(−)- and S(+)-GABOB. Conclusions and Implications The pharmacological profile of Hco-UNC-49 differed from that of vertebrate Cys-loop GABA receptors and insect resistance to dieldrin receptors, suggesting differences in the agonist binding pocket. These findings could be exploited to develop new drugs that specifically target GABA receptors of parasitic nematodes. PMID:25850584

  14. A comparative density functional theory study of electronic structure and optical properties of γ-aminobutyric acid and its cocrystals with oxalic and benzoic acid

    NASA Astrophysics Data System (ADS)

    da Silva Filho, J. G.; Freire, V. N.; Caetano, E. W. S.; Ladeira, L. O.; Fulco, U. L.; Albuquerque, E. L.

    2013-11-01

    In this letter, we study the electronic structure and optical properties of the active medicinal component γ-aminobutyric acid (GABA) and its cocrystals with oxalic (OXA) and benzoic (BZA) acid by means of the density functional theory formalism. It is shown that the cocrystallization strongly weakens the zwitterionic character of the GABA molecule leading to striking differences among the electronic band structures and optical absorption spectra of the GABA crystal and GABA:OXA, GABA:BZA cocrystals, originating from distinct sets of hydrogen bonds. Calculated band widths and Δ-sol band gap estimates indicate that both GABA and GABA:OXA, GABA:BZA cocrystals are indirect gap insulators.

  15. Fabrication of the Optical Fiber GABA Sensor Based on the NADP+ -Functionalized Quantum Dots.

    PubMed

    Zhao, Fei; Yoo, Jeongha; Kim, Jongsung

    2016-02-01

    A novel quantum dots (QDs)-based optical fiber biosensor has been developed to detect gamma-amino butyric acid (GABA) directly, via QD fluorescence quenching and recovery. QDs were immobilized on the surface of an optical-fiber through the EDC/Sulfo-NHS coupling reaction. The QDs were functionalized by 3-aminophenyl boronic acid and then by NADP+. The fluorescence of the NADP+ -functionalized QDs was quenched by electron transfer from QDs to NADP+. However, by the metabolic conversion of GABA to succinic acid by GABase, NADP+ was reduced to NADPH, which hindered the electron transfer. As a result, the fluorescence of the QDs could recover. The recovery rate of the fluorescence intensity of QDs depended on the concentration of GABA. This shows the possibility of detection of low concentrations of GABA via measurement of the fluorescence intensity. PMID:27433599

  16. Non-neuronal, slow GABA signalling in the ventrobasal thalamus targets δ-subunit-containing GABAA receptors

    PubMed Central

    Jiménez-González, Cristina; Pirttimaki, Tiina; Cope, David W; Parri, H R

    2011-01-01

    The rodent ventrobasal (VB) thalamus contains a relatively uniform population of thalamocortical (TC) neurons that receive glutamatergic input from the vibrissae and the somatosensory cortex, and inhibitory input from the nucleus reticularis thalami (nRT). In this study we describe γ-aminobutyric acid (GABA)A receptor-dependent slow outward currents (SOCs) in TC neurons that are distinct from fast inhibitory postsynaptic currents (IPSCs) and tonic currents. SOCs occurred spontaneously or could be evoked by hypo-osmotic stimulus, and were not blocked by tetrodotoxin, removal of extracellular Ca2+ or bafilomycin A1, indicating a non-synaptic, non-vesicular GABA origin. SOCs were more common in TC neurons of the VB compared with the dorsal lateral geniculate nucleus, and were rarely observed in nRT neurons, whilst SOC frequency in the VB increased with age. Application of THIP, a selective agonist at δ-subunit-containing GABAA receptors, occluded SOCs, whereas the benzodiazepine site inverse agonist β-CCB had no effect, but did inhibit spontaneous and evoked IPSCs. In addition, the occurrence of SOCs was reduced in mice lacking the δ-subunit, and their kinetics were also altered. The anti-epileptic drug vigabatrin increased SOC frequency in a time-dependent manner, but this effect was not due to reversal of GABA transporters. Together, these data indicate that SOCs in TC neurons arise from astrocytic GABA release, and are mediated by δ-subunit-containing GABAA receptors. Furthermore, these findings suggest that the therapeutic action of vigabatrin may occur through the augmentation of this astrocyte–neuron interaction, and highlight the importance of glial cells in CNS (patho) physiology. PMID:21395866

  17. GABA levels in the ventromedial prefrontal cortex during the viewing of appetitive and disgusting food images.

    PubMed

    Padulo, Caterina; Delli Pizzi, Stefano; Bonanni, Laura; Edden, Richard A E; Ferretti, Antonio; Marzoli, Daniele; Franciotti, Raffaella; Manippa, Valerio; Onofrj, Marco; Sepede, Gianna; Tartaro, Armando; Tommasi, Luca; Puglisi-Allegra, Stefano; Brancucci, Alfredo

    2016-10-01

    Characterizing how the brain appraises the psychological dimensions of reward is one of the central topics of neuroscience. It has become clear that dopamine neurons are implicated in the transmission of both rewarding information and aversive and alerting events through two different neuronal populations involved in encoding the motivational value and the motivational salience of stimuli, respectively. Nonetheless, there is less agreement on the role of the ventromedial prefrontal cortex (vmPFC) and the related neurotransmitter release during the processing of biologically relevant stimuli. To address this issue, we employed magnetic resonance spectroscopy (MRS), a non-invasive methodology that allows detection of some metabolites in the human brain in vivo, in order to assess the role of the vmPFC in encoding stimulus value rather than stimulus salience. Specifically, we measured gamma-aminobutyric acid (GABA) and, with control purposes, Glx levels in healthy subjects during the observation of appetitive and disgusting food images. We observed a decrease of GABA and no changes in Glx concentration in the vmPFC in both conditions. Furthermore, a comparatively smaller GABA reduction during the observation of appetitive food images than during the observation of disgusting food images was positively correlated with the scores obtained to the body image concerns sub-scale of Body Uneasiness Test (BUT). These results are consistent with the idea that the vmPFC plays a crucial role in processing both rewarding and aversive stimuli, possibly by encoding stimulus salience through glutamatergic and/or noradrenergic projections to deeper mesencephalic and limbic areas. PMID:27436536

  18. Influence of the Surface Acidity of the Alumina on the Sustained Release of Ketoprofen.

    PubMed

    San Roman, Soledad; Gullón, Jesús; Del Arco, Margarita; Martín, Cristina

    2016-07-01

    This work reports the immobilization of ketoprofen into mesoporous alumina, prepared in different way, to assess their possible applications as a matrix for controlled drug release. The acids' surface properties of the aluminas and their effect on the drug content and release rate were also analyzed. The systems have been characterized by powder X-ray diffractometry, Fourier transformer infrared spectroscopy (FT-IR), N2 adsorption desorption, transmission electron microscopy, and FT-IR of pyridine adsorption. The results show that the drug is incorporated inside the pores of mesoporous alumina, and the content and release rate depend of surface acidity, when increase the surface acidity decrease the drug content and increase the release rate. PMID:27287518

  19. GABA Production in Lactococcus lactis Is Enhanced by Arginine and Co-addition of Malate.

    PubMed

    Laroute, Valérie; Yasaro, Chonthicha; Narin, Waranya; Mazzoli, Roberto; Pessione, Enrica; Cocaign-Bousquet, Muriel; Loubière, Pascal

    2016-01-01

    Lactococcus lactis NCDO 2118 was previously selected for its ability to decarboxylate glutamate to γ-aminobutyric acid (GABA), an interesting nutritional supplement able to improve mood and relaxation. Amino acid decarboxylation is generally considered as among the biochemical systems allowing lactic acid bacteria to counteracting acidic stress and obtaining metabolic energy. These strategies also include arginine deiminase pathway and malolactic fermentation but little is known about their possible interactions of with GABA production. In the present study, the effects of glutamate, arginine, and malate (i.e., the substrates of these acid-resistance pathways) on L. lactis NCDO 2118 growth and GABA production performances were analyzed. Both malate and arginine supplementation resulted in an efficient reduction of acidity and improvement of bacterial biomass compared to glutamate supplementation. Glutamate decarboxylation was limited to narrow environmental conditions (pH < 5.1) and physiological state (stationary phase). However, some conditions were able to improve GABA production or activate glutamate decarboxylation system even outside of this compass. Arginine clearly stimulated glutamate decarboxylation: the highest GABA production (8.6 mM) was observed in cultures supplemented with both arginine and glutamate. The simultaneous addition of arginine, malate, and glutamate enabled earlier GABA production (i.e., during exponential growth) at relatively high pH (6.5). As far as we know, no previous study has reported GABA production in such conditions. Although further studies are needed to understand the molecular basis of these phenomena, these results represent important keys suitable of application in GABA production processes. PMID:27458444

  20. GABA Production in Lactococcus lactis Is Enhanced by Arginine and Co-addition of Malate

    PubMed Central

    Laroute, Valérie; Yasaro, Chonthicha; Narin, Waranya; Mazzoli, Roberto; Pessione, Enrica; Cocaign-Bousquet, Muriel; Loubière, Pascal

    2016-01-01

    Lactococcus lactis NCDO 2118 was previously selected for its ability to decarboxylate glutamate to γ-aminobutyric acid (GABA), an interesting nutritional supplement able to improve mood and relaxation. Amino acid decarboxylation is generally considered as among the biochemical systems allowing lactic acid bacteria to counteracting acidic stress and obtaining metabolic energy. These strategies also include arginine deiminase pathway and malolactic fermentation but little is known about their possible interactions of with GABA production. In the present study, the effects of glutamate, arginine, and malate (i.e., the substrates of these acid-resistance pathways) on L. lactis NCDO 2118 growth and GABA production performances were analyzed. Both malate and arginine supplementation resulted in an efficient reduction of acidity and improvement of bacterial biomass compared to glutamate supplementation. Glutamate decarboxylation was limited to narrow environmental conditions (pH < 5.1) and physiological state (stationary phase). However, some conditions were able to improve GABA production or activate glutamate decarboxylation system even outside of this compass. Arginine clearly stimulated glutamate decarboxylation: the highest GABA production (8.6 mM) was observed in cultures supplemented with both arginine and glutamate. The simultaneous addition of arginine, malate, and glutamate enabled earlier GABA production (i.e., during exponential growth) at relatively high pH (6.5). As far as we know, no previous study has reported GABA production in such conditions. Although further studies are needed to understand the molecular basis of these phenomena, these results represent important keys suitable of application in GABA production processes. PMID:27458444

  1. Influence of enteric citric acid on the release profile of 4-aminopyridine from HPMC matrix tablets.

    PubMed

    Martínez González, Ilona; Villafuerte Robles, Leopoldo

    2003-01-30

    A weakly basic experimental drug, 4-aminopyridine (4-AP), was taken as a model to study the influence of enteric citric acid (ECA) on the release profile from hydroxypropyl methylcellulose (HPMC) matrices, to set up a system bringing about gradual release of the drug. For this purpose, powder mixtures were wet granulated with water and compressed with a hydraulic press at 55 MPa. Dissolution studies were made using first 900 ml HCl 0.1 N, and then phosphate buffer pH 7.4. Dissolution curves were described by M(t)/M(inf)=kt(n). As physically expected, increasing proportions (2-9%) of the in acid insoluble ECA decreased the release rate. In an acid medium, ECA acts as a physical barrier obstructing the diffusion path, dissolving after the pH change to 7.4. Both circumstances flattening the release profile. Apparent zero order release was observed at ECA concentrations of about 10%. The presence of ECA compensates the effect of decreased solubility of 4-AP at pH 7.4. Unexpectedly, higher ECA proportions (10-50%) act increasing the dissolution rate. This is attributed to a void space formation around the insoluble ECA, after HPMC hydration, which percolates after a critical ECA proportion of approximately 10%. Moreover, decreasing release constant values (k) show a logarithmic relationship with increasing values of the exponent (n). This indicates that an apparent zero-order release can be obtained at a given release constant. PMID:12527188

  2. In vitro release of arachidonic acid and in vivo responses to respirable fractions of cotton dust

    SciTech Connect

    Thomson, T.A.; Edwards, J.H.; Al-Zubaidy, T.S.; Brown, R.C.; Poole, A.; Nicholls, P.J.

    1986-04-01

    It was considered that the fall in lung function seen after exposure to cotton dust may be attributable in part to the activity of arachidonic acid metabolites, such as leucotrienes as well as to the more established release of histamine by cotton dust. However, we found that cotton and barley dusts elicited poor release of arachidonic acid from an established macrophage like cell line compared with that observed with other organic dusts. In the experimental animal, pulmonary cellular responses to both cotton and barley dust were similar to those evoked by moldy hay and pigeon dropping dusts, although after multiple doses a more severe response was seen to cotton and barley. Since both moldy hay and pigeon droppings elicit a greater arachidonic acid release than cotton or barley, a role for arachidonic acid in inducing the cellular response is less likely than other factors. There are limitations to our conclusions using this system, i.e., the arachidonic acid may be released in a nonmetabolized form, although it is noted that the two dusts with the greatest arachidonic acid release produce their clinical responses in humans largely by hypersensitivity mechanisms.

  3. Focal Uncaging of GABA Reveals a Temporally Defined Role for GABAergic Inhibition during Appetitive Associative Olfactory Conditioning in Honeybees

    ERIC Educational Resources Information Center

    Raccuglia, Davide; Mueller, Uli

    2013-01-01

    Throughout the animal kingdom, the inhibitory neurotransmitter ?-aminobutyric acid (GABA) is a key modulator of physiological processes including learning. With respect to associative learning, the exact time in which GABA interferes with the molecular events of learning has not yet been clearly defined. To address this issue, we used two…

  4. The Memory-Impairing Effects of Septal GABA Receptor Activation Involve GABAergic Septo-Hippocampal Projection Neurons

    ERIC Educational Resources Information Center

    Krebs-Kraft, Desiree L.; Wheeler, Marina G.; Parent, Marise B.

    2007-01-01

    Septal infusions of the [gamma]-aminobutyric acid (GABA)[subscript A] agonist muscimol impair memory, and the effect likely involves the hippocampus. GABA[subscript A] receptors are present on the perikarya of cholinergic and GABAergic septo-hippocampal (SH) projections. The current experiments determined whether GABAergic SH projections are…

  5. Ethyl cellulose microcapsules for protecting and controlled release of folic acid.

    PubMed

    Prasertmanakit, Satit; Praphairaksit, Nalena; Chiangthong, Worawadee; Muangsin, Nongnuj

    2009-01-01

    Ethyl cellulose microcapsules were developed for use as a drug-delivery device for protecting folic acid from release and degradation in the undesirable environmental conditions of the stomach, whilst allowing its release in the intestinal tract to make it available for absorption. The controlled release folic acid-loaded ethyl cellulose microcapsules were prepared by oil-in-oil emulsion solvent evaporation using a mixed solvent system, consisting of a 9:1 (v/v) ratio of acetone:methanol and light liquid paraffin as the dispersed and continuous phase. Span 80 was used as the surfactant to stabilize the emulsion. Scanning electron microscopy revealed that the microcapsules had a spherical shape. However, the particulate properties and in vitro release profile depended on the concentrations of the ethyl cellulose, Span 80 emulsifier, sucrose (pore inducer), and folic acid. The average diameter of the microcapsules increased from 300 to 448 microm, whilst the folic acid release rate decreased from 52% to 40%, as the ethyl cellulose concentration was increased from 2.5% to 7.5% (w/v). Increasing the Span 80 concentration from 1% to 4% (v/v) decreased the average diameter of microcapsules from 300 to 141 microm and increased the folic acid release rate from 52% to 79%. The addition of 2.5-7.5% (w/v) of sucrose improved the folic acid release from the microcapsules. The entrapment efficiency was improved from 64% to 88% when the initial folic acid concentration was increased from 1 to 3 mg/ml. PMID:19763838

  6. GABA System in Schizophrenia and Mood Disorders: A Mini Review on Third-Generation Imaging Studies.

    PubMed

    Chiapponi, Chiara; Piras, Federica; Piras, Fabrizio; Caltagirone, Carlo; Spalletta, Gianfranco

    2016-01-01

    Third-generation neuroimaging research has been enriched by advances in magnetic resonance spectroscopy (MRS) measuring the concentration of important neurotrasmitters, such as the inhibitory amino acid GABA. Here, we performed a systematic mini-review on brain MRS studies measuring GABA concentration in patients affected by schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD). We wondered whether multimodal investigations could overcome intrinsic technical limits of MRS giving a broader view of mental disorders pathogenesis. In SZ, unimodal studies gave mixed results, as increased, decreased, or unaltered GABA levels were reported depending on region, disease phase, and treatment. Conversely, multimodal results showed reduced level of glutamate, but not of GABA, in patients mirrored by in vitro biochemical findings revealing hippocampal reduction in glutamate signaling in SZ, and no deficits in GABA synthesis. Moreover, a mouse model confirmed the unique pathological characteristic of glutamate function in SZ. Unimodal studies in BD revealed again, inconsistent results, while no multimodal investigations including MRS on GABA exist. In MDD, unimodal studies could not differentiate patients from controls nor characterize high-risk subjects and remitted patients. However, a multimodal study combining functional magnetic resonance imaging and MRS revealed that cingulate cortex activity is related to glutamate, N-acetylaspartate levels and anhedonia in patients, and to GABA concentration in healthy subjects, improving the distinction between MDD and physiology. Overall, our results show that unimodal studies do not indicate GABA as a biomarker for the psychiatric disorders considered. Conversely, multimodal studies can widen the understanding of the link between psychopathology, genetics, neuroanatomy, and functional-biochemical brain activity in mental disorders. Although scarce, multimodal approaches seem promising for moving from GABA MRS

  7. GABA System in Schizophrenia and Mood Disorders: A Mini Review on Third-Generation Imaging Studies

    PubMed Central

    Chiapponi, Chiara; Piras, Federica; Piras, Fabrizio; Caltagirone, Carlo; Spalletta, Gianfranco

    2016-01-01

    Third-generation neuroimaging research has been enriched by advances in magnetic resonance spectroscopy (MRS) measuring the concentration of important neurotrasmitters, such as the inhibitory amino acid GABA. Here, we performed a systematic mini-review on brain MRS studies measuring GABA concentration in patients affected by schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD). We wondered whether multimodal investigations could overcome intrinsic technical limits of MRS giving a broader view of mental disorders pathogenesis. In SZ, unimodal studies gave mixed results, as increased, decreased, or unaltered GABA levels were reported depending on region, disease phase, and treatment. Conversely, multimodal results showed reduced level of glutamate, but not of GABA, in patients mirrored by in vitro biochemical findings revealing hippocampal reduction in glutamate signaling in SZ, and no deficits in GABA synthesis. Moreover, a mouse model confirmed the unique pathological characteristic of glutamate function in SZ. Unimodal studies in BD revealed again, inconsistent results, while no multimodal investigations including MRS on GABA exist. In MDD, unimodal studies could not differentiate patients from controls nor characterize high-risk subjects and remitted patients. However, a multimodal study combining functional magnetic resonance imaging and MRS revealed that cingulate cortex activity is related to glutamate, N-acetylaspartate levels and anhedonia in patients, and to GABA concentration in healthy subjects, improving the distinction between MDD and physiology. Overall, our results show that unimodal studies do not indicate GABA as a biomarker for the psychiatric disorders considered. Conversely, multimodal studies can widen the understanding of the link between psychopathology, genetics, neuroanatomy, and functional–biochemical brain activity in mental disorders. Although scarce, multimodal approaches seem promising for moving from GABA

  8. A study on the involvement of GABA-transaminase in MCT induced pulmonary hypertension.

    PubMed

    Lingeshwar, Poorella; Kaur, Gurpreet; Singh, Neetu; Singh, Seema; Mishra, Akanksha; Shukla, Shubha; Ramakrishna, Rachumallu; Laxman, Tulsankar Sachin; Bhatta, Rabi Sankar; Siddiqui, Hefazat H; Hanif, Kashif

    2016-02-01

    Increased sympathetic nervous system (SNS) activity is associated with cardiovascular diseases but its role has not been completely explored in pulmonary hypertension (PH). Increased SNS activity is distinguished by elevated level of norepinephrine (NE) and activity of γ-Amino butyric acid Transminase (GABA-T) which degrades GABA, an inhibitory neurotransmitter within the central and peripheral nervous system. Therefore, we hypothesized that GABA-T may contribute in pathophysiology of PH by modulating level of GABA and NE. The effect of daily oral administration of GABA-T inhibitor, Vigabatrin (GVG, 50 and 75 mg/kg/day, 35 days) was studied following a single subcutaneous administration of monocrotaline (MCT, 60 mg/kg) in male SD rats. The pressure and hypertrophy of right ventricle (RV), oxidative stress, inflammation, pulmonary vascular remodelling were assessed after 35 days in MCT treated rats. The expression of GABA-T and HIF-1α was studied in lung tissue. The levels of plasma NE (by High performance liquid chromatography coupled with electrochemical detector; HPLC-ECD) and lung GABA (by liquid chromatography-mass spectrometry) were also estimated. GVG at both doses significantly attenuated increased in pressure (35.82 ± 4.80 mm Hg, p < 0.001; 28.37 ± 3.32 mm Hg, p < 0.001 respectively) and hypertrophy of RV, pulmonary vascular remodelling, oxidative stress and inflammation in lungs of MCT exposed rats. GVG also reduced the expression of GABA-T and HIF-1α in MCT treated rats. Increased NE level and decreased GABA level was also reversed by GVG in MCT exposed rats. GABA-T plays an important role in PH by modulating SNS activity and may be considered as a therapeutic target in PH. PMID:26608704

  9. pH-Triggered release from surface-modified poly(lactic-co-glycolic acid) nanoparticles

    PubMed Central

    Häuser, Manuel; Langer, Klaus

    2015-01-01

    Summary Nanoparticles (NP) of poly(lactic-co-glycolic acid) (PLGA) represent a promising biodegradable drug delivery system. We suggest here a two-step release system of PLGA nanoparticles with a pH-tunable polymeric shell, providing an initial pH-triggered step, releasing a membrane-toxic cationic compound. PLGA nanoparticles are coated by polyelectrolytes using the layer-by-layer self-assembly technique, employing poly(acrylic acid) (PAA) as a pH-sensitive component and poly(diallyldimethylammonium chloride) (PDADMAC) as the releasable polycation. The pH during multilayer deposition plays a major role and influences the titration curve of the layer system. The pH-tunability of PAA is intensively investigated with regard to the pH region, in which the particle system becomes uncharged. The isoelectric point can be shifted by employing suitable deposition pH values. The release is investigated by quantitative 1H NMR, yielding a pH-dependent release curve. A release of PDADMAC is initiated by a decrease of the pH value. The released amount of polymer, as quantified by 1H NMR analysis, clearly depends on the pH value and thus on the state of deprotonation of the pH-sensitive PAA layer. Subsequent incubation of the nanoparticles with high concentrations of sodium chloride shows no further release and thus demonstrates the pH-driven release to be quantitative. PMID:26885463

  10. Liquid-Phase Heat-Release Rates of the Systems Hydrazine-Nitric Acid and Unsymmetrical Dimethylhydrazine-Nitric Acid

    NASA Technical Reports Server (NTRS)

    Somogyi, Dezso; Feiler, Charles E.

    1960-01-01

    The initial rates of heat release produced by the reactions of hydrazine and unsymmetrical dimethylhydrazine with nitric acid were determined in a bomb calorimeter under conditions of forced mixing. Fuel-oxidant weight ratio and injection velocity were varied. The rate of heat release apparently depended on the interfacial area between the propellants. Above a narrow range of injection velocities representing a critical amount of interfacial area, the rates reached a maximum and were almost constant with injection velocity. The maximum rate for hydrazine was about 70 percent greater than that for unsymmetrical dimethylhydrazine. The total heat released did not vary with mixture ratio over the range studied.

  11. NAAG peptidase inhibitor increases dialysate NAAG and reduces glutamate, aspartate and GABA levels in the dorsal hippocampus following fluid percussion injury in the rat.

    PubMed

    Zhong, Chunlong; Zhao, Xueren; Van, Ken C; Bzdega, Tomasz; Smyth, Aoife; Zhou, Jia; Kozikowski, Alan P; Jiang, Jiyao; O'Connor, William T; Berman, Robert F; Neale, Joseph H; Lyeth, Bruce G

    2006-05-01

    Traumatic brain injury (TBI) produces a rapid and excessive elevation in extracellular glutamate that induces excitotoxic brain cell death. The peptide neurotransmitter N-acetylaspartylglutamate (NAAG) is reported to suppress neurotransmitter release through selective activation of presynaptic group II metabotropic glutamate receptors. Therefore, strategies to elevate levels of NAAG following brain injury could reduce excessive glutamate release associated with TBI. We hypothesized that the NAAG peptidase inhibitor, ZJ-43 would elevate extracellular NAAG levels and reduce extracellular levels of amino acid neurotransmitters following TBI by a group II metabotropic glutamate receptor (mGluR)-mediated mechanism. Dialysate levels of NAAG, glutamate, aspartate and GABA from the dorsal hippocampus were elevated after TBI as measured by in vivo microdialysis. Dialysate levels of NAAG were higher and remained elevated in the ZJ-43 treated group (50 mg/kg, i.p.) compared with control. ZJ-43 treatment also reduced the rise of dialysate glutamate, aspartate, and GABA levels. Co-administration of the group II mGluR antagonist, LY341495 (1 mg/kg, i.p.) partially blocked the effects of ZJ-43 on dialysate glutamate and GABA, suggesting that NAAG effects are mediated through mGluR activation. The results are consistent with the hypothesis that inhibition of NAAG peptidase may reduce excitotoxic events associated with TBI. PMID:16606367

  12. Trial of Zolpidem, Eszopiclone, and Other GABA Agonists in a Patient with Progressive Supranuclear Palsy

    PubMed Central

    Chang, Andrew Young; Weirich, Erica

    2014-01-01

    Progressive supranuclear palsy (PSP) is a progressive, debilitating neurodegenerative disease of the Parkinson-plus family of syndromes. Unfortunately, there are no pharmacologic treatments for this condition, as most sufferers of the classic variant respond poorly to Parkinson medications such as levodopa. Zolpidem, a gamma aminobutyric acid (GABA) agonist specific to the α-1 receptor subtype, has been reported to show improvements in symptoms of PSP patients, including motor dysfunction, dysarthria, and ocular disturbances. We observed a 73-year-old woman with a six-year history of PSP, who, upon administration of a single 12.5 mg dose of sustained-release zolpidem, exhibited marked enhancements in speech, facial expressions, and fine motor skills for five hours. These results were reproduced upon subsequent clinic visits. In an effort to find a sustainable medication that maximized these beneficial effects while minimizing side effects and addressing some of her comorbid neuropsychological conditions, a trial of five other GABA receptor agonists was performed with the patient's consent, while she and her caregivers were blinded to the specific medications. She and her caretakers subsequently reported improvements, especially visual, while on eszopiclone, and, to a lesser degree, temazepam and flurazepam. PMID:25371679

  13. GABA's Control of Stem and Cancer Cell Proliferation in Adult Neural and Peripheral Niches

    PubMed Central

    Young, Stephanie Z.; Bordey, Angélique

    2010-01-01

    Aside from traditional neurotransmission and regulation of secretion, γ-amino butyric acid (GABA) through GABAA receptors negatively regulates proliferation of pluripotent and neural stem cells in embryonic and adult tissue. There has also been evidence that GABAergic signaling and its control over proliferation is not only limited to the nervous system, but is widespread through peripheral organs containing adult stem cells. GABA has emerged as a tumor signaling molecule in the periphery that controls the proliferation of tumor cells and perhaps tumor stem cells. Here, we will discuss GABA's presence as a near-universal signal that may be altered in tumor cells resulting in modified mitotic activity. PMID:19509127

  14. Development and validation of dissolution testings in acidic media for rabeprazole sodium delayed-release capsules.

    PubMed

    Tan, Yinhe; Si, Xiaoqing; Zhong, Lulu; Feng, Xin; Yang, Xinmin; Huang, Min; Wu, Chuanbin

    2016-10-01

    Rabeprazole sodium (RAB) dissolved in acidic media is accompanied by its degradation in the course of dissolution testing. To develop and establish the accumulative release profiles of ACIPHEX(®) Sprinkle (RAB) delayed-release capsules (ACIPHEX(®) Sprinkle) in acidic media using USP apparatus 2 (paddle apparatus) as a dissolution tester, the issues of determination of accumulative release amount of RAB in these acidic media and interference of hydroxypropylmethyl cellulose phthalate were solved by adding appropriate hydrochloric acid (HCl) into dissolution samples coupled with centrifugation so as to remove the interference and form a solution of degradation products of RAB, which is of a considerably stable ultraviolet (UV) absorbance at the wavelength of 298 nm within 2.0 h. Therefore, the accumulative release amount of RAB in dissolution samples at each sample time points could be determined by UV-spectrophotometry, and the accumulative release profiles of ACIPHEX(®) Sprinkle in the media of pH 1.0, pH 6.0, and pH 6.8 could be established. The method was validated per as the ICH Q2 (R1) guidelines and demonstrated to be adequate for quality control of ACIPHEX(®) Sprinkle and the accumulative release profiles can be used as a tool to guide the formulation development and quality control of a generic drug for ACIPHEX(®) Sprinkle. PMID:27066697

  15. Adsorption and release of ofloxacin from acid- and heat-treated halloysite.

    PubMed

    Wang, Qin; Zhang, Junping; Zheng, Yue; Wang, Aiqin

    2014-01-01

    Halloysite nanotube is an ideal vehicle of the controlled release of drugs. In this study, we systematically investigated the effects of acid- and heat-treatments on the physicochemical properties, structure and morphology of halloysite by XRD, FTIR, SEM and TEM. Afterwards, the adsorption and in vitro release properties of halloysite for cationic ofloxacin (OFL) were evaluated. The results indicate that HCl treatment has no influence on the crystal structure of halloysite, whereas it becomes amorphous after calcined at temperature higher than 500 °C. Both acid- and heat-treatments have no evident influence on the tubular structure of halloysite. OFL was adsorbed onto halloysite via electrostatic interaction between protonated OFL and negative halloysite surface, cation exchange as well as electrostatic interaction between the OFL-Al(3+) complexes and the negative halloysite surface. Acid-treatment facilitates the release of the adsorbed OFL compared with the natural halloysite in spite of a slight decrease of adsorption capacity. However, heat-treatment results in a sharp decrease of adsorption capacity for OFL owning to the OFL-promoted dissolution of aluminum and the disappearance of the porous structure. Although heat-treatment also facilitates release of the adsorbed OFL, the amount of OFL released is in fact less than the natural halloysite owing to the very low adsorption capacity. Thus, acid-activation is an effective protocol to improve the adsorption and release of halloysite for cationic drug molecules. PMID:24060930

  16. Development and validation of dissolution testings in acidic media for rabeprazole sodium delayed-release capsules

    PubMed Central

    Tan, Yinhe; Si, Xiaoqing; Zhong, Lulu; Feng, Xin; Yang, Xinmin; Huang, Min; Wu, Chuanbin

    2016-01-01

    Abstract Rabeprazole sodium (RAB) dissolved in acidic media is accompanied by its degradation in the course of dissolution testing. To develop and establish the accumulative release profiles of ACIPHEX® Sprinkle (RAB) delayed-release capsules (ACIPHEX® Sprinkle) in acidic media using USP apparatus 2 (paddle apparatus) as a dissolution tester, the issues of determination of accumulative release amount of RAB in these acidic media and interference of hydroxypropylmethyl cellulose phthalate were solved by adding appropriate hydrochloric acid (HCl) into dissolution samples coupled with centrifugation so as to remove the interference and form a solution of degradation products of RAB, which is of a considerably stable ultraviolet (UV) absorbance at the wavelength of 298 nm within 2.0 h. Therefore, the accumulative release amount of RAB in dissolution samples at each sample time points could be determined by UV-spectrophotometry, and the accumulative release profiles of ACIPHEX® Sprinkle in the media of pH 1.0, pH 6.0, and pH 6.8 could be established. The method was validated per as the ICH Q2 (R1) guidelines and demonstrated to be adequate for quality control of ACIPHEX® Sprinkle and the accumulative release profiles can be used as a tool to guide the formulation development and quality control of a generic drug for ACIPHEX® Sprinkle. PMID:27066697

  17. Active food packaging based on molecularly imprinted polymers: study of the release kinetics of ferulic acid.

    PubMed

    Otero-Pazos, Pablo; Rodríguez-Bernaldo de Quirós, Ana; Sendón, Raquel; Benito-Peña, Elena; González-Vallejo, Victoria; Moreno-Bondi, M Cruz; Angulo, Immaculada; Paseiro-Losada, Perfecto

    2014-11-19

    A novel active packaging based on molecularly imprinted polymer (MIP) was developed for the controlled release of ferulic acid. The release kinetics of ferulic acid from the active system to food simulants (10, 20, and 50% ethanol (v/v), 3% acetic acid (w/v), and vegetable oil), substitutes (95% ethanol (v/v) and isooctane), and real food samples at different temperatures were studied. The key parameters of the diffusion process were calculated by using a mathematical modeling based on Fick's second law. The ferulic acid release was affected by the temperature as well as the percentage of ethanol of the simulant. The fastest release occurred in 95% ethanol (v/v) at 20 °C. The diffusion coefficients (D) obtained ranged between 1.8 × 10(-11) and 4.2 × 10(-9) cm(2)/s. A very good correlation between experimental and estimated data was obtained, and consequently the model could be used to predict the release of ferulic acid into food simulants and real food samples. PMID:25369799

  18. Biochemical characterization of polyunsaturated fatty acid synthesis in Schizochytrium: release of the products as free fatty acids.

    PubMed

    Metz, James G; Kuner, Jerry; Rosenzweig, Bradley; Lippmeier, James C; Roessler, Paul; Zirkle, Ross

    2009-06-01

    In marine bacteria and some thraustochytrids (marine stramenopiles) long-chain polyunsaturated fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are produced de novo by PUFA synthases. These large, multi-domain enzymes carry out the multitude of individual reactions required for conversion of malonyl-CoA to the final LC-PUFA products. Here we report on the release of fatty acids from the PUFA synthase found in Schizochytrium, a thraustochytrid that has been developed as a commercial source for DHA-enriched biomass and oil. Data from in vitro activity assays indicate that the PUFAs are released from the enzyme as free fatty acids (FFAs). Addition of ATP and Mg(2+) to in vitro assays facilitates appearance of radiolabel from (14)C-malonyl-CoA in a triacylglycerol fraction, suggesting the involvement of acyl-CoA synthetases (ACS). Furthermore, addition of triascin C, an inhibitor of ACSs, to the assays blocks this conversion. When the Schizochytrium PUFA synthase is expressed in Escherichia coli, the products of the enzyme accumulate as FFAs, suggesting that the thioesterase activity required for fatty acid release is an integral part of the PUFA synthase. PMID:19272783

  19. Release of Water Soluble Drugs from Dynamically Swelling POLY(2-HYDROXYETHYL Methacrylate - CO - Methacrylic Acid) Hydrogels.

    NASA Astrophysics Data System (ADS)

    Kou, Jim Hwai-Cher

    In this study, ionizable copolymers of HEMA and methacrylic acid (MA) are investigated for their potential use in developing pH dependent oral delivery systems. Because of the MA units, these gels swell extensively at high pH. Since solute diffusion in the hydrophilic polymers depends highly on the water content of the matrix, it is anticipated that the release rate will be modulated by this pH induced swelling. From a practical point of view, the advantage of the present system is that one can minimize drug loss in the stomach and achieve a programmed release in intestine. This approach is expected to improve delivery of acid labile drugs or drugs that cause severe gastrointestinal side effects. This work mainly focuses on the basic understanding of the mechanism involved in drug release from the poly(HEMA -co- MA) gels, especially under dynamic swelling conditions. Equilibrium swelling is first characterized since water content is the major determinant of transport properties in these gels. Phenylpropanolamine (PPA) is chosen as the model drug for the release study and its diffusion characteristics in the gel matrix determined. The data obtained show that the PPA diffusivity follows the free volume theory of Yasuda, which explains the accelerating effect of swelling on drug release. A mathematical model based on a diffusion mechanism has been developed to describe PPA release from the swelling gels. Based on this model, several significant conclusions can be drawn. First, the release rate can be modulated by the aspect ratio of the cylindrical geometry, and this has a practical implication in dosage form design. Second, the release rate can be lowered quite considerably if the dimensional increase due to swelling is significant. Consequently, it is the balance between the drug diffusivity increase and the gel dimensional growth that determines the release rate from the swelling matrix. Third, quasi-steady release kinetics, which are characteristic of swelling

  20. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    SciTech Connect

    Kamei, Yuka; Tamura, Takayuki; Yoshida, Ryo; Ohta, Shinji; Fukusaki, Eiichiro; Mukai, Yukio

    2011-04-01

    Highlights: {yields}We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. {yields} Deletion of the UGA1 or GAD1 genes extends replicative lifespan. {yields} Addition of GABA to wild-type cultures has no effect on lifespan. {yields} Intracellular GABA levels do not differ in longevity mutants and wild-type cells. {yields} Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for {gamma}-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The {Delta}uga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for {Delta}uga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of {sup 1}H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan

  1. Novel functions of GABA signaling in adult neurogenesis.

    PubMed

    Pontes, Adalto; Zhang, Yonggang; Hu, Wenhui

    2013-10-01

    Neurotransmitter gamma-aminobutiric acid (GABA) through ionotropic GABAA and metabotropic GABAB receptors plays key roles in modulating the development, plasticity and function of neuronal networks. GABA is inhibitory in mature neurons but excitatory in immature neurons, neuroblasts and neural stem/progenitor cells (NSCs/NPCs). The switch from excitatory to inhibitory occurs following the development of glutamatergic synaptic input and results from the dynamic changes in the expression of Na(+)/K(+)/2Cl(-) co-transporter NKCC1 driving Cl(-) influx and neuron-specific K(+)/Cl(-) co-transporter KCC2 driving Cl(-) efflux. The developmental transition of KCC2 expression is regulated by Disrupted-in-Schizophrenia 1 (DISC1) and brain-derived neurotrophic factor (BDNF) signaling. The excitatory GABA signaling during early neurogenesis is important to the activity/experience-induced regulation of NSC quiescence, NPC proliferation, neuroblast migration and newborn neuronal maturation/functional integration. The inhibitory GABA signaling allows for the sparse and static functional networking essential for learning/memory development and maintenance. PMID:24285940

  2. Novel functions of GABA signaling in adult neurogenesis

    PubMed Central

    PONTES, Adalto; ZHANG, Yonggang; HU, Wenhui

    2013-01-01

    Neurotransmitter gamma-aminobutiric acid (GABA) through ionotropic GABAA and metabotropic GABAB receptors plays key roles in modulating the development, plasticity and function of neuronal networks. GABA is inhibitory in mature neurons but excitatory in immature neurons, neuroblasts and neural stem/progenitor cells (NSCs/NPCs). The switch from excitatory to inhibitory occurs following the development of glutamatergic synaptic input and results from the dynamic changes in the expression of Na+/K+/2Cl− co-transporter NKCC1 driving Cl− influx and neuron-specific K+/Cl− co-transporter KCC2 driving Cl− efflux. The developmental transition of KCC2 expression is regulated by Disrupted-in-Schizophrenia 1 (DISC1) and brain-derived neurotrophic factor (BDNF) signaling. The excitatory GABA signaling during early neurogenesis is important to the activity/experience-induced regulation of NSC quiescence, NPC proliferation, neuroblast migration and newborn neuronal maturation/functional integration. The inhibitory GABA signaling allows for the sparse and static functional networking essential for learning/memory development and maintenance. PMID:24285940

  3. Action of tremorgenic mycotoxins on GABA/sub A/ receptor

    SciTech Connect

    Gant, D.B.; Cole, R.J.; Valdes, J.J.; Eldefrawi, M.E.; Eldefrawi, A.T.

    1987-11-09

    The effects of four tremorgenic and one nontremorgenic mycotoxins were studied on ..gamma..-aminobutyric acid (GABA/sub A/) receptor binding and function in rat brain and on binding of a voltage-operated Cl/sup -/ channel in Torpedo electric organ. None of the mycotoxins had significant effect on (/sup 3/H)muscimol or (/sup 3/H)flunitrazepam binding to the GAMA/sup A/ receptor. However, only the four tremorgenic mycotoxins inhibited GABA-induced /sup 36/Cl/sup -/ influx and (/sup 35/S)t-butylbicyclophosphorothionate ((/sup 35/S)TBPS) binding in rate brain membranes, while the nontremorgenic verruculotoxin had no effect. Inhibition of (/sup 35/S)TBPS binding by paspalinine was non-competitive. This suggests that tremorgenic mycotoxins inhibit GABA/sub A/ receptor function by binding close to the receptor's Cl/sup -/ channel. On the voltage-operated Cl/sup -/ channel, only high concentrations of verruculogen and verruculotoxin caused significant inhibition of the channel's binding of (/sup 35/S)TBPS. The data suggest that the tremorgenic action of these mycotoxins may be due in part to their inhibition of GABA/sub A/ receptor function. 21 references, 4 figures, 2 tables.

  4. Arachidonic acid release and prostaglandin synthesis in a macrophage-like cell line exposed to asbestos.

    PubMed

    Brown, R C; Poole, A

    1984-10-01

    A macrophage-like cell line (P388D1) has been treated with asbestos and the release of arachidonic acid and its metabolites has been studied using two methods. In the first monolayer cultures of the cells were labelled with tritiated arachidonic acid and the release of label into the medium was quantified: secondly the synthesis and release of prostaglandins E2 and F2 alpha were followed using radioimmune assay. Crocidolite asbestos caused the greatest release of tritium while the medium from chrysotile-treated cultures contained more of both prostaglandins. Both of the fibrous dusts were significantly more active in both test systems than were the two 'inert' materials--titanium dioxide and milled sample of crocidolite. It is suggested that these phenomena are due to the effect of mineral dusts on phospholipase activity and that differences in this activity are associated with differences in the pathogenicity of various mineral dusts. PMID:6098173

  5. [The radioprotective effect of GABA-tropic substances, gamma-hydroxybutyrate and piracetam].

    PubMed

    Kulinskiĭ, V I; Klimova, A D

    1993-01-01

    From experiments in mice, it is shown that with a radiation dose of 8 Gy (LD96) the radioprotective effect was exerted by gamma-aminobutyric acid (GABA), substances that increase its concentration in tissues (progabide and valproate), and synthetic agonists of both receptor types, particularly baclofen, a GABA-receptor agonist. The radioprotective effect is also exerted by gamma-hydroxybutyrate, not piracetam. PMID:8469734

  6. GABA(A) receptor downregulation in brains of subjects with autism.

    PubMed

    Fatemi, S Hossein; Reutiman, Teri J; Folsom, Timothy D; Thuras, Paul D

    2009-02-01

    Gamma-aminobutyric acid A (GABA(A)) receptors are ligand-gated ion channels responsible for mediation of fast inhibitory action of GABA in the brain. Preliminary reports have demonstrated altered expression of GABA receptors in the brains of subjects with autism suggesting GABA/glutamate system dysregulation. We investigated the expression of four GABA(A) receptor subunits and observed significant reductions in GABRA1, GABRA2, GABRA3, and GABRB3 in parietal cortex (Brodmann's Area 40 (BA40)), while GABRA1 and GABRB3 were significantly altered in cerebellum, and GABRA1 was significantly altered in superior frontal cortex (BA9). The presence of seizure disorder did not have a significant impact on GABA(A) receptor subunit expression in the three brain areas. Our results demonstrate that GABA(A) receptors are reduced in three brain regions that have previously been implicated in the pathogenesis of autism, suggesting widespread GABAergic dysfunction in the brains of subjects with autism. PMID:18821008

  7. Differential effects of GABA in modulating nociceptive vs. non-nociceptive synapses.

    PubMed

    Wang, Y; Summers, T; Peterson, W; Miiller, E; Burrell, B D

    2015-07-01

    GABA (γ-amino-butyric acid) -mediated signaling is normally associated with synaptic inhibition due to ionotropic GABA receptors that gate an inward Cl(-) current, hyperpolarizing the membrane potential. However, there are also situations where ionotropic GABA receptors trigger a Cl(-) efflux that results in depolarization. The well-characterized central nervous system of the medicinal leech was used to study the functional significance of opposing effects of GABA at the synaptic circuit level. Specifically, we focused on synapses made by the nociceptive N cell and the non-nociceptive P (pressure) cell that converge onto a common postsynaptic target. It is already known that GABA hyperpolarizes the P cell, but depolarizes the N cell and that inhibition of ionotropic GABA receptors by bicuculline (BIC) has opposing effects on the synapses made by these two inputs; enhancing P cell synaptic transmission, but depressing N cell synapses. The goal of the present study was to determine whether the opposing effects of GABA were due to differences in Cl(-) homeostasis between the two presynaptic neurons. VU 0240551 (VU), an inhibitor of the Cl(-) exporter K-Cl co-transporter isoform 2 (KCC2), attenuated GABA-mediated hyperpolarization of the non-nociceptive afferent while bumetanide (BUM), an inhibitor of the Cl(-) importer Na-K-Cl co-transporter isoform 1 (NKCC1), reduced GABA-mediated depolarization of the nociceptive neuron. VU treatment also enhanced P cell synaptic signaling, similar to the previously observed effects of BIC and consistent with the idea that GABA inhibits synaptic signaling at the presynaptic level. BUM treatment depressed N cell synapses, again similar to what is observed following BIC treatment and suggests that GABA has an excitatory effect on these synapses. The opposing effects of GABA could also be observed at the behavioral level with BIC and VU increasing responsiveness to non-nociceptive stimulation while BIC and BUM decreased responsiveness

  8. Epoxyeicosatrienoic Acids (EETs) are Endogenous Regulators of Vasoactive Neuropeptide Release from Trigeminal Ganglion Neurons

    PubMed Central

    Iliff, Jeffrey J.; Fairbanks, Stacy L.; Balkowiec, Agnieszka; Alkayed, Nabil J.

    2010-01-01

    Epoxyeicosatrienoic acids (EETs) are bioactive eicosanoids produced from arachidonic acid by cytochrome P450 epoxygenases. We previously described the expression of CYP-2J epoxygenase in rat trigeminal ganglion neurons and that EETs signaling is involved in cerebrovascular dilation resulting from perivascular nerve stimulation. Herein we evaluate the presence of the EETs signaling pathway in trigeminal ganglion neurons and their role in modulating the release of calcitonin gene-related peptide (CGRP) by trigeminal ganglion neurons. Liquid chromatography tandem mass spectrometry identified the presence of each of the four EETs regio-isomers within primary trigeminal ganglion neurons. Stimulation for one hour with the transient receptor potential vanilloid-1 channel agonist capsaicin (100 nmol/L) or depolarizing K+ (60 mmol/L) increased CGRP release as measured by ELISA. Stimulation-evoked CGRP release was attenuated by 30 min pre-treatment with the EETs antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, 10 μmol/L). K+ stimulation elevated CGRP release 2.9 ± 0.3-fold above control levels, while in the presence of 14,15-EEZE K+-evoked CGRP release was significantly reduced to 1.1 ± 0.2-fold above control release (p<0.01 ANOVA, n=6). 14,15-EEZE likewise attenuated capsaicin-evoked CGRP release from trigeminal ganglion neurons (p<0.05 ANOVA, n=6). Similarly, pre-treatment with the CYP epoxygenase inhibitor attenuated stimulation-evoked CGRP release. These data demonstrate that EETs are endogenous constituents of rat trigeminal ganglion neurons and suggest that they may act as intracellular regulators of neuropeptide release, which may have important clinical implications for treatment of migraine, stroke and vasospasm after subarachnoid hemorrhage. PMID:20950340

  9. Epoxyeicosatrienoic acids are endogenous regulators of vasoactive neuropeptide release from trigeminal ganglion neurons.

    PubMed

    Iliff, Jeffrey J; Fairbanks, Stacy L; Balkowiec, Agnieszka; Alkayed, Nabil J

    2010-12-01

    Epoxyeicosatrienoic acids (EETs) are bioactive eicosanoids produced from arachidonic acid by cytochrome P450 epoxygenases. We previously described the expression of cytochrome P450-2J epoxygenase in rat trigeminal ganglion neurons and that EETs signaling is involved in cerebrovascular dilation resulting from perivascular nerve stimulation. In this study, we evaluate the presence of the EETs signaling pathway in trigeminal ganglion neurons and their role in modulating the release of calcitonin gene-related peptide (CGRP) by trigeminal ganglion neurons. Liquid chromatography tandem mass spectrometry identified the presence of each of the four EETs regio-isomers within primary trigeminal ganglion neurons. Stimulation for 1 h with the transient receptor potential vanilloid-1 channel agonist capsaicin (100 nmol/L) or depolarizing K(+) (60 mmol/L) increased CGRP release as measured by ELISA. Stimulation-evoked CGRP release was attenuated by 30 min pre-treatment with the EETs antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, 10 μmol/L). K(+) stimulation elevated CGRP release 2.9 ± 0.3-fold above control levels, whereas in the presence of 14,15-EEZE K(+)-evoked CGRP release was significantly reduced to 1.1 ± 0.2-fold above control release (p < 0.01 anova, n = 6). 14,15-EEZE likewise attenuated capsaicin-evoked CGRP release from trigeminal ganglion neurons (p < 0.05 anova, n = 6). Similarly, pre-treatment with the cytochrome P450 epoxygenase inhibitor attenuated stimulation-evoked CGRP release. These data demonstrate that EETs are endogenous constituents of rat trigeminal ganglion neurons and suggest that they may act as intracellular regulators of neuropeptide release, which may have important clinical implications for treatment of migraine, stroke and vasospasm after subarachnoid hemorrhage. PMID:20950340

  10. Controlled release properties of zein-fatty acid blend films for multiple bioactive compounds.

    PubMed

    Arcan, Iskender; Yemenicioğlu, Ahmet

    2014-08-13

    To develop edible films having controlled release properties for multiple bioactive compounds, hydrophobicity and morphology of zein films were modified by blending zein with oleic (C18:1)Δ⁹, linoleic (C18:2)Δ(9,12), or lauric (C₁₂) acids in the presence of lecithin. The blend zein films showed 2-8.5- and 1.6-2.9-fold lower initial release rates for the model active compounds, lysozyme (LYS) and (+)-catechin (CAT), than the zein control films, respectively. The change of fatty acid chain length affected both CAT and LYS release rates while the change of fatty acid double bond number affected only the CAT release rate. The film morphologies suggested that the blend films owe their controlled release properties mainly to the microspheres formed within their matrix and encapsulation of active compounds. The blend films showed antilisterial activity and antioxidant activity up to 81 μmol Trolox/cm². The controlled release of multiple bioactive compounds from a single film showed the possibility of combining application of active and bioactive packaging technologies and improving not only safety and quality but also health benefits of packed food. PMID:25025594

  11. Comparison of taurine, GABA, Glu, and Asp as scavengers of malondialdehyde in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Deng, Yan; Wang, Wei; Yu, Pingfeng; Xi, Zhijiang; Xu, Lijian; Li, Xiaolong; He, Nongyue

    2013-04-01

    The purpose of this study is to determine if amino acid neurotransmitters such as gamma-aminobutyric acid (GABA), taurine, glutamate (Glu), and aspartate (Asp) can scavenge activated carbonyl toxicants. In vitro, direct reaction between malondialdehyde (MDA) and amino acids was researched using different analytical methods. The results indicated that scavenging activated carbonyl function of taurine and GABA is very strong and that of Glu and Asp is very weak in pathophysiological situations. The results provided perspective into the reaction mechanism of taurine and GABA as targets of activated carbonyl such as MDA in protecting nerve terminals. In vivo, we studied the effect of taurine and GABA as antioxidants by detecting MDA concentration and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities. It was shown that MDA concentration was decreased significantly, and the activities of SOD and GSH-Px were increased significantly in the cerebral cortex and hippocampus of acute epileptic state rats, after the administration of taurine and GABA. The results indicated that the peripherally administered taurine and GABA can scavenge free radicals and protect the tissue against activated carbonyl in vivo and in vitro.

  12. Correlation between the enhancement of flunitrazepam binding by GABA and seizure susceptibility in mice

    SciTech Connect

    Marley, R.J.; Wehner, J.M.

    1987-06-08

    Various populations of mice exhibit differential sensitivity to seizure-inducing agents. The relationship of seizure susceptibility to alterations in the GABA receptor complex was investigated in six different populations of mice consisting of four inbred strains (C57BL, DBA, C3H, and BALB) and two selected lines (long sleep and short sleep). Seizure activity was induced by intraperitoneal administration of the GAD inhibitor, 3-mercaptopropionic acid, and latencies to seizure onset and tonus were measured. In naive mice of the same populations, GABA enhancement of TH-flunitrazepam binding was measured in extensively washed whole brain membranes at several GABA concentrations. Both differential seizure sensitivity to 3-mercaptopropionic acid and differential enhancement of TH-flunitrazepam binding by GABA were observed in these six populations of mice. Correlational analyses indicated a positive correlation between the degree of GABA enhancement of TH-flunitrazepam binding and resistance to the seizure-inducing properties of 3-mercaptopropionic acid. These data suggest that genetic differences in sensitivity to seizure-inducing agents that disrupt the GABAergic system may be related to differences in coupling between the various receptors associated with the GABA receptor complex.

  13. Sleep-promoting effects of the GABA/5-HTP mixture in vertebrate models.

    PubMed

    Hong, Ki-Bae; Park, Yooheon; Suh, Hyung Joo

    2016-09-01

    The aim of this study was to investigate the sleep-promoting effect of combined γ-aminobutyric acid (GABA) and 5-hydroxytryptophan (5-HTP) on sleep quality and quantity in vertebrate models. Pentobarbital-induced sleep test and electroencephalogram (EEG) analysis were applied to investigate sleep latency, duration, total sleeping time and sleep quality of two amino acids and GABA/5-HTP mixture. In addition, real-time PCR and HPLC analysis were applied to analyze the signaling pathway. The GABA/5-HTP mixture significantly regulated the sleep latency, duration (p<0.005), and also increased the sleep quality than single administration of the amino acids (p<0.000). Long-term administration increased the transcript levels of GABAA receptor (1.37-fold, p<0.000) and also increased the GABA content compared with the control group 12h after administration (1.43-fold, p<0.000). Our available evidence suggests that the GABA/5-HTP mixture modulates both GABAergic and serotonergic signaling. Moreover, the sleep architecture can be controlled by the regulation of GABAA receptor and GABA content with 5-HTP. PMID:27150227

  14. Controlled protein release from polyethyleneimine-coated poly(L-lactic acid)/pluronic blend matrices.

    PubMed

    Park, T G; Cohen, S; Langer, R

    1992-01-01

    Protein release from degradable polymer matrices, composed of poly(L-lactic acid) and its blends with Pluronic surfactant, was investigated with and without the aqueous coating of an adsorptive water-soluble polymer, polyethyleneimine (PEI). PEI is a highly branched cationic polymer containing primary, secondary, and tertiary amino groups in its backbone. The treatment of PEI for PLA/Pluronic blend films exhibited a remarkable decrease in the "burst" release of protein at an initial stage and a significant extension in the protein release period. Protein release profiles could be controlled by varying PEI treatment time and its concentration. Our results suggest that PEI diffuses into the polymer matrices and crosslinks protein molecules by ionic interactions. Such a PEI-protein network near the surface region of matrix may act as a diffusional barrier for further release of protein molecules. PMID:1589407

  15. Photoreactivation of ultraviolet radiation-induced release of arachidonic acid from marsupial cells.

    PubMed

    Kaleta, E W; Applegate, L A; Ley, R D

    1991-11-01

    Exposure of an established marsupial cell line, PtK2 (Potorous tridactylus), to ultraviolet radiation (UVR) from an FS-40 sunlamp (280-400 nm) resulted in a fluence-dependent release of radiolabeled arachidonic acid (AA) from cell membranes. Post-UVR, but not pre-UVR, exposure to photoreactivating light reversed UVR-induced pyrimidine dimers in DNA and suppressed the UVR-induced release of AA. These data indicate that DNA damage contributes to the release of AA from membrane phospholipids. PMID:1665911

  16. Polymer length of teichuronic acid released from cell walls of Micrococcus luteus.

    PubMed Central

    Wolters, P J; Hildebrandt, K M; Dickie, J P; Anderson, J S

    1990-01-01

    Teichuronic acid released from its phosphodiester linkage to peptidoglycan in the cell walls of Micrococcus luteus by mild acid treatment is resolved into a ladderlike series of bands by electrophoresis on polyacrylamide gels in the presence of borate. Each band of the ladder differs from its nearest neighbor by one disaccharide repeat unit, ----4)-2-acetamido-2-deoxy-beta-D-mannopyranuronosyl-(1----6)- alpha-D-glucopyranosyl-(1-. Acid-fragmented teichuronic acid, after conversion to the phenylamine derivative, was fractionated by preparative-scale molecular sieve column chromatography, which produced a series of elution peaks. Fast-atom-bombardment mass spectrometry of the smallest member of the series determined its molecular weight and established its identity as the phenylamine derivative of one disaccharide repeat unit of teichuronic acid. Homologous fractions of the same series were used to index the ladder of bands obtained by polyacrylamide gel electrophoresis from samples containing a more extensive distribution of polymer lengths. Nearly native teichuronic acid consists of polymers with a broad range of molecular sizes ranging from 20 to 55 disaccharide units. The most abundant species are those which have 25 to 40 repeat units. Prolonged treatment of teichuronic acid with the acid conditions used to release it from peptidoglycan causes gradual fragmentation of the teichuronic acid. Images PMID:2394683

  17. Synthesis of new fluorinated analogs of GABA, Pregabalin bioisosteres, and their effects on [(3)H]GABA uptake by rat brain nerve terminals.

    PubMed

    Borisova, T; Pozdnyakova, N; Shaitanova, E; Gerus, I; Dudarenko, M; Mironets, R; Haufe, G; Kukhar, V

    2015-08-01

    Fluorinated analogs of natural substances take an essential place in the design of new biologically active compounds. New fluorinated analogs of γ-aminobutyric acid, that is, β-polyfluoroalkyl-GABAs (FGABAs), were synthesized with substituents: β-CF3-β-OH (1), β-CF3 (2); β-CF2CF2H (3). FGABAs are bioisosteres of Pregabalin (Lyrica®, Pfizer's blockbuster drug, β-i-Bu-GABA), and have lipophilicity close to this medicine. The effects of synthesized FGABAs on [(3)H]GABA uptake by isolated rat brain nerve terminals (synaptosomes) were assessed and compared with those of Pregabalin. FGABAs 1-3 (100μM) did not influence the initial velocity of [(3)H]GABA uptake when applied acutely, whereas an increase in this parameter was found after preliminary incubation of FGABAs with synaptosomes. Pregabalin after preliminary incubation with synaptosomes caused unidirectional changes in the initial velocity of [(3)H]GABA uptake. Using specific inhibitors of GAT1 and GAT3, NO-711 and SNAP5114, respectively, the ability of FGABAs 1-3 to influence non-GAT1 and non-GAT3 uptake activity of nerve terminals was analyzed, but no specificity was found. Therefore, new synthesized FGABAs are structural but not functional analogs of GABA (because they did not inhibit synaptosomal [(3)H]GABA uptake). Moreover, FGABAs are able to increase the initial velocity of [(3)H]GABA uptake by synaptosomes, and this effect is higher than that of Pregabalin. PMID:26138193

  18. The transporter GAT1 plays an important role in GABA-mediated carbon-nitrogen interactions in Arabidopsis

    PubMed Central

    Batushansky, Albert; Kirma, Menny; Grillich, Nicole; Pham, Phuong A.; Rentsch, Doris; Galili, Gad; Fernie, Alisdair R.; Fait, Aaron

    2015-01-01

    Glutamate derived γ-aminobutyric acid (GABA) is synthetized in the cytosol prior to delivery to the mitochondria where it is catabolized via the TCA cycle. GABA accumulates under various environmental conditions, but an increasing number of studies show its involvement at the crossroad between C and N metabolism. To assess the role of GABA in modulating cellular metabolism, we exposed seedlings of A. thaliana GABA transporter gat1 mutant to full nutrition medium and media deficient in C and N combined with feeding of different concentrations (0.5 and 1 mM) of exogenous GABA. GC-MS based metabolite profiling showed an expected effect of medium composition on the seedlings metabolism of mutant and wild type alike. That being said, a significant interaction between GAT1 deficiency and medium composition was determined with respect to magnitude of change in relative amino acid levels. The effect of exogenous GABA treatment on metabolism was contingent on both the medium and the genotype, leading for instance to a drop in asparagine under full nutrition and low C conditions and glucose under all tested media, but not to changes in GABA content. We additionally assessed the effect of GAT1 deficiency on the expression of glutamate metabolism related genes and genes involved in abiotic stress responses. These results suggest a role for GAT1 in GABA-mediated metabolic alterations in the context of the C-N equilibrium of plant cells. PMID:26483804

  19. Microtransplantation of cellular membranes from squid stellate ganglion reveals ionotropic GABA receptors.

    PubMed

    Conti, Luca; Limon, Agenor; Palma, Eleonora; Miledi, Ricardo

    2013-02-01

    The squid has been the most studied cephalopod, and it has served as a very useful model for investigating the events associated with nerve impulse generation and synaptic transmission. While the physiology of squid giant axons has been extensively studied, very little is known about the distribution and function of the neurotransmitters and receptors that mediate inhibitory transmission at the synapses. In this study we investigated whether γ-aminobutyric acid (GABA) activates neurotransmitter receptors in stellate ganglia membranes. To overcome the low abundance of GABA-like mRNAs in invertebrates and the low expression of GABA in cephalopods, we used a two-electrode voltage clamp technique to determine if Xenopus laevis oocytes injected with cell membranes from squid stellate ganglia responded to GABA. Using this method, membrane patches containing proteins and ion channels from the squid's stellate ganglion were incorporated into the surface of oocytes. We demonstrated that GABA activates membrane receptors in cellular membranes isolated from squid stellate ganglia. Using the same approach, we were able to record native glutamate-evoked currents. The squid's GABA receptors showed an EC(50) of 98 μmol l(-1) to GABA and were inhibited by zinc (IC(50) = 356 μmol l(-1)). Interestingly, GABA receptors from the squid were only partially blocked by bicuculline. These results indicate that the microtransplantation of native cell membranes is useful to identify and characterize scarce membrane proteins. Moreover, our data also support the role of GABA as an ionotropic neurotransmitter in cephalopods, acting through chloride-permeable membrane receptors. PMID:23493508

  20. Aging of whiskey increases the potentiation of GABA(A) receptor response.

    PubMed

    Koda, Hirofumi; Hossain, Sheikh Julfikar; Kiso, Yoshinobu; Aoshima, Hitoshi

    2003-08-27

    It is known that the target of most mood-defining compounds such as ethanol is an ionotropic gamma-aminobutyric acid receptor (GABA(A) receptor). The potentiation of the response of these inhibitory neurotransmitter receptors induces anxiolytic, sedative, and anesthetic activities in the human brain. Because both extracts of whiskey by pentane and fragrant components in whiskey potentiate the GABA(A) receptor-mediated response, GABA(A) receptors were expressed in Xenopus oocyte by injecting cRNAs prepared from the cloned cDNA for the alpha(1) and beta(1) subunits of the bovine receptors in order to study the effects of whiskey itself on the GABA(A) receptor-mediated response. Whiskey itself also potentiated the electrical responses of GABA(A) receptors generally more than ethanol at the same concentration as that of the whiskey. The potentiation of the GABA(A) receptor-mediated response increased with the aging period of the whiskey. Inhalation of whiskey to mice increased the sleeping time induced by pentobarbital more than that of the same concentration of ethanol as the whiskey. These results suggest that not only ethanol but also minor components in whiskey play an important role in the potentiation of GABA(A) receptor-mediated response and possibly the sedative effect of whiskey. Although the minor components are present in extremely small quantities compared with ethanol in alcoholic beverages, they may modulate the mood or consciousness of humans through the potentiation of the GABA(A) receptor response after absorption into the brain, because these hydrophobic compounds are easily absorbed into the brain across the blood-brain barrier and are several thousands times as potent as ethanol in the potentiation of the GABA(A) receptor-mediated response. PMID:12926865

  1. The effect of humic acids on the element release from high level waste glass

    SciTech Connect

    Wei, J.; Van Iseghem, P.

    1997-12-31

    Eu and Am doped glasses were interacted with synthetic interstitial clay water (SiC) and corresponding reference leachant, humic acids free interstitial solution (IS) to investigate the influence of humic acids on the leaching behavior of the waste glass. Static leach tests were carried out at 40 C and 90 C. The release of the lanthanide Eu and the actinide Am from the glass was obviously enhanced by the presence of humic acids. The leaching of transition elements, Fe and Ti strongly depends on the humic acids concentration. The leaching of glass matrix components, Al and B was also influenced by the concentrations of humic acids. However, humic acids have little effect on the leaching of glass matrix element Si.

  2. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids

    SciTech Connect

    Saxena, U.; Witte, L.D.; Goldberg, I.J.

    1989-03-15

    Lipoprotein lipase (LPL) bound to the lumenal surface of vascular endothelial cells is responsible for the hydrolysis of triglycerides in plasma lipoproteins. Studies were performed to investigate whether human plasma lipoproteins and/or free fatty acids would release LPL which was bound to endothelial cells. Purified bovine milk LPL was incubated with cultured porcine aortic endothelial cells resulting in the association of enzyme activity with the cells. When the cells were then incubated with media containing chylomicrons or very low density lipoproteins (VLDL), a concentration-dependent decrease in the cell-associated LPL enzymatic activity was observed. In contrast, incubation with media containing low density lipoproteins or high density lipoproteins produced a much smaller decrease in the cell-associated enzymatic activity. The addition of increasing molar ratios of oleic acid:bovine serum albumin to the media also reduced enzyme activity associated with the endothelial cells. To determine whether the decrease in LPL activity was due to release of the enzyme from the cells or inactivation of the enzyme, studies were performed utilizing radioiodinated bovine LPL. Radiolabeled LPL protein was released from endothelial cells by chylomicrons, VLDL, and by free fatty acids (i.e. oleic acid bound to bovine serum albumin). The release of radiolabeled LPL by VLDL correlated with the generation of free fatty acids from the hydrolysis of VLDL triglyceride by LPL bound to the cells. Inhibition of LPL enzymatic activity by use of a specific monoclonal antibody, reduced the extent of release of /sup 125/I-LPL from the endothelial cells by the added VLDL. These results demonstrated that LPL enzymatic activity and protein were removed from endothelial cells by triglyceride-rich lipoproteins (chylomicrons and VLDL) and oleic acid.

  3. Release Kinetic in Yogurt from Gallic Acid Microparticles with Chemically Modified Inulin.

    PubMed

    García, Paula; Vergara, Cristina; Robert, Paz

    2015-10-01

    Gallic acid (GA) was encapsulated with native (NIn), cross-linked (CIn) and acetylated (AIn) inulin by spray-drying. Inulin microparticles were characterized by encapsulation efficiency (EE) and their release profile in yogurt. The EE was significantly higher for GA-CIn (98%) compared with GA-NIn (81%) and GA-AIn (77%) microparticles, showing the effect of the modification of inulin on interaction of GA-polymer. GA release profile data in yogurt for GA-CIn, GA-NIn and GA-AIn were fitted to Peppas and Higuchi models in order to obtain the GA release rate constant. Although the GA release rate constants were significantly different among systems, these differences were slight and the GA release was fast (80% < 2 h) in the three systems, showing that inulin-systems did not control GA release in yogurt. The mechanism of GA release followed a Fickian diffusion and relaxation of chains for all microparticles. According to the release profile, these microparticles would be best suited for use in instant foods. PMID:26305430

  4. Erosive effects of different acids on bovine enamel: release of calcium and phosphate in vitro.

    PubMed

    Hannig, Christian; Hamkens, Arne; Becker, Klaus; Attin, Rengin; Attin, Thomas

    2005-06-01

    The present study intended to investigate minimal erosive effects of different acids on enamel during short time incubation via determination of calcium and phosphate dissolution. Bovine enamel specimens were eroded for 1-5 min with eight different acids of pH 2, 2.3 and 3 (citric (CA), maleic (MA), lactic (LA), tartaric (TA), phosphoric (PA), oxalic (OA), acetic (AA) and hydrochloric acid (HCl)). Calcium (Ca) and phosphate (P) release were determined photometrically using arsenazo III (calcium) and malachite green (phosphate) as substrates. Each subgroup contained eight enamel specimens. Amount of titratable acid was determined for all acidic solutions. MA, LA, TA, AA and HCl caused linear release of Ca and P, PA of Ca, CA of P. For CA, MA, LA, TA, AA, PA and HCl mineral loss was shown to be pH-dependent. Ca dissolution varied between 28.6+/-4.4 (LA, pH 2) and 2.4+/-0.7 nmol mm(-2)min(-1) (HCl, pH 3), P dissolution ranged between 17.2+/-2.6 (LA, pH 2) and 1.4+/-0.4 nmol mm(-2)min(-1) (HCl, pH 3). LA was one of the most erosive acids. AA was very erosive at pH 3. HCl and MA were shown to have the lowest erosive effects. There was only a weak correlation (r=0.28) between P and Ca release and the amount of titratable acid. The method of the present study allows investigation of minimal erosive effects via direct determination of P and Ca dissolution. During short time exposition at constant pH level, erosive effects mainly depend on pH and type of acid but not on amount of titratable acid. PMID:15848147

  5. Disruption of Adenovirus Type 7 by Lithium Iodide Resulting in the Release of Viral Deoxyribonucleic Acid

    PubMed Central

    Neurath, A. Robert; Stasny, John T.; Rubin, Benjamin A.

    1970-01-01

    Adenovirus type 7 exposed to solutions of LiI was progressively converted into slower sedimenting deoxyribonucleic acid (DNA)-containing particles, and, ultimately, under proper conditions, DNA free or almost free from protein was released from the virus. The degree of viral degradation was dependent on the time of treatment, on the temperature, and on the concentration of the reagent. PMID:4988267

  6. Release and consumption of D-amino acids during growth of marine prokaryotes.

    PubMed

    Azúa, Iñigo; Goiriena, Itziar; Baña, Zuriñe; Iriberri, Juan; Unanue, Marian

    2014-01-01

    Analysis of the composition of the marine-dissolved organic matter has highlighted the importance of D-amino acids, whose origin is attributed mainly to the remains of bacterial peptidoglycan released as a result of grazing or viral lysis. However, very few studies have focused on the active release of D-amino acids by bacteria. With this purpose, we measured the concentration of dissolved amino acids in both enantiomeric forms with two levels of complexity: axenic cultures of Vibrio furnissii and Vibrio alginolyticus and microcosms created from marine microbial assemblages (Biscay Bay, Cantabrian Sea) with and without heterotrophic nanoflagellates (HNFs). Axenic cultures showed that only D-Ala was significantly released and accumulated in the medium up to a concentration of 120 nM, probably as a consequence of the rearrangement of peptidoglycan. The marine microbial assemblages showed that only two D-amino acids significantly accumulated in the environment, D-Ala and D-aspartic acid (Asp), in both the absence and presence of HNFs. The D/L ratio increased during the incubation and reached maximum values of 3.0 to 4.3 for Ala and 0.4 to 10.6 for Asp and correlated with prokaryotic and HNF abundance as well as the rate of prokaryotic thymidine and leucine incorporation. Prokaryotes preferentially consumed L-amino acids, but the relative uptake rates of D-Ala significantly increased in the growth phase. These results demonstrate that bacteria can release and consume D-amino acids at high rates during growth, even in the absence of viruses and grazers, highlighting the importance of bacteria as producers of dissolved organic matter (DOM) in the sea. PMID:24057323

  7. Gamma-aminobutyric acid esters. 1. Synthesis, brain uptake, and pharmacological studies of aliphatic and steroid esters of gamma-aminobutyric acid

    SciTech Connect

    Shashoua, V.E.; Jacob, J.N.; Ridge, R.; Campbell, A.; Baldessarini, R.J.

    1984-05-01

    Labeled and unlabeled aliphatic and steroid esters of gamma-amino(U-/sup 14/C)butyric acid (GABA) were synthesized and tested for their capacity to penetrate the blood-brain barrier and for evidence of central neuropharmacological activity in rodents. The uptake of the labeled 9,12,15-octadecatrienyl (linolenyl), 3-cholesteryl, 1-butyl, and the 9-fluoro-11 beta,17-dihydroxy-16 alpha-methyl-3,20-dioxopregna -1,4-dien-21-yl (dexamethasone) esters of GABA into mouse brain increased 2-, 25-, 74-, and 81-fold over GABA, respectively. The cholesteryl ester of GABA depressed the general motor activity of mice and rats in a dose-dependent manner, whereas the 1-butyl, linolenyl, and dexamethasone esters were inactive by this test. Studies of the rates of hydrolysis, GABA receptor binding capacity, and octanol/water partition coefficients indicated that pharmacological activity of the esters after entry into the central nervous system (CNS) was dependent on their capacity to release GABA by enzymatic hydrolysis and their lipid solubility.

  8. Decreased Phosphorylated Protein Kinase B (Akt) in Individuals with Autism Associated with High Epidermal Growth Factor Receptor (EGFR) and Low Gamma-Aminobutyric Acid (GABA)

    PubMed Central

    Russo, Anthony J

    2015-01-01

    Dysregulation of the PI3K/AKT/mammalian target of rapamycin (mTOR) pathway could contribute to the pathogenesis of autism spectrum disorders. In this study, phosphorylated Akt concentration was measured in 37 autistic children and 12, gender and age similar neurotypical, controls using an enzyme-linked immunosorbent assay. Akt levels were compared to biomarkers known to be associated with epidermal growth factor receptor (EGFR) and c-Met (hepatocyte growth factor (HGF) receptor) pathways and severity levels of 19 autism-related symptoms. We found phosphorylated Akt levels significantly lower in autistic children and low Akt levels correlated with high EGFR and HGF and low gamma-aminobutyric acid, but not other biomarkers. Low Akt levels also correlated significantly with increased severity of receptive language, conversational language, hypotonia, rocking and pacing, and stimming, These results suggest a relationship between decreased phosphorylated Akt and selected symptom severity in autistic children and support the suggestion that the AKT pathways may be associated with the etiology of autism. PMID:26508828

  9. The Arabidopsis her1 mutant implicates GABA in E-2-hexenal responsiveness.

    PubMed

    Mirabella, Rossana; Rauwerda, Han; Struys, Eduard A; Jakobs, Cornelis; Triantaphylidès, Christian; Haring, Michel A; Schuurink, Robert C

    2008-01-01

    When wounded or attacked by herbivores or pathogens, plants produce a blend of six-carbon alcohols, aldehydes and esters, known as C6-volatiles. Undamaged plants, when exposed to C6-volatiles, respond by inducing defense-related genes and secondary metabolites, suggesting that C6-volatiles can act as signaling molecules regulating plant defense responses. However, to date, the molecular mechanisms by which plants perceive and respond to these volatiles are unknown. To elucidate such mechanisms, we decided to isolate Arabidopsis thaliana mutants in which responses to C6-volatiles were altered. We observed that treatment of Arabidopsis seedlings with the C6-volatile E-2-hexenal inhibits root elongation. Among C6-volatiles this response is specific to E-2-hexenal, and is not dependent on ethylene, jasmonic and salicylic acid. Using this bioassay, we isolated 18 E-2-hexenal-response (her) mutants that showed sustained root growth after E-2-hexenal treatment. Here, we focused on the molecular characterization of one of these mutants, her1. Microarray and map-based cloning revealed that her1 encodes a gamma-amino butyric acid transaminase (GABA-TP), an enzyme that degrades GABA. As a consequence of the mutation, her1 plants accumulate high GABA levels in all their organs. Based on the observation that E-2-hexenal treatment induces GABA accumulation, and that high GABA levels confer resistance to E-2-hexenal, we propose a role for GABA in mediating E-2-hexenal responses. PMID:17971036

  10. Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells

    PubMed Central

    Li, Wen; Wei, Mingming; Wu, Junjun; Rui, Xin

    2016-01-01

    In this study, novel fermented chickpea milk with high γ -aminobutyric acid (GABA) content and potential neuroprotective activity was developed. Fermentation starter that can produce GABA was selected from 377 strains of lactic acid bacteria isolated from traditional Chinese fermented foods. Among the screened strains, strain M-6 showed the highest GABA-producing capacity in De Man–Rogosa and Sharp (MRS) broth and chickpea milk. M-6 was identified as Lactobacillus plantarum based on Gram staining, API carbohydrate fermentation pattern testing, and 16s rDNA sequencing. The complete gene encoding glutamate decarboxylase was cloned to confirm the presence of the gene in L. plantarum M-6. The fermentation condition was optimized by response surface methodology. Results demonstrated that L. plantarum M-6 produced the highest GABA content of 537.23 mg/L. The optimal condition included an inoculum concentration of 7%, presence of 0.2% (m/v) monosodium glutamate and 55 µ M pyridoxal-5-phosphate, incubation temperature of 39 °C and fermentation time of 48 h . GABA-enriched chickpea milk exerted protective effects on PC12 cells against MnCl2 -induced injury. GABA-enriched chickpea milk improved cell viability and markedly attenuated the release of lactate dehydrogenase compared with the impaired cells. PMID:27602272

  11. Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells.

    PubMed

    Li, Wen; Wei, Mingming; Wu, Junjun; Rui, Xin; Dong, Mingsheng

    2016-01-01

    In this study, novel fermented chickpea milk with high γ -aminobutyric acid (GABA) content and potential neuroprotective activity was developed. Fermentation starter that can produce GABA was selected from 377 strains of lactic acid bacteria isolated from traditional Chinese fermented foods. Among the screened strains, strain M-6 showed the highest GABA-producing capacity in De Man-Rogosa and Sharp (MRS) broth and chickpea milk. M-6 was identified as Lactobacillus plantarum based on Gram staining, API carbohydrate fermentation pattern testing, and 16s rDNA sequencing. The complete gene encoding glutamate decarboxylase was cloned to confirm the presence of the gene in L. plantarum M-6. The fermentation condition was optimized by response surface methodology. Results demonstrated that L. plantarum M-6 produced the highest GABA content of 537.23 mg/L. The optimal condition included an inoculum concentration of 7%, presence of 0.2% (m/v) monosodium glutamate and 55 µ M pyridoxal-5-phosphate, incubation temperature of 39 °C and fermentation time of 48 h . GABA-enriched chickpea milk exerted protective effects on PC12 cells against MnCl2 -induced injury. GABA-enriched chickpea milk improved cell viability and markedly attenuated the release of lactate dehydrogenase compared with the impaired cells. PMID:27602272

  12. Effect of THIP and SL 76002, two clinically experimented GABA-mimetic compounds, on anterior pituitary GABA receptors and prolactin secretion in the rat

    SciTech Connect

    Apud, J.A.; Masotto, C.; Racagni, G.

    1987-03-02

    In the present study, the ability of three direct GABA agonists, muscimol, THIP and SL 76002 to displace /sup 3/H-GABA binding from anterior pituitary and medio-basal hypothalamus membranes was evaluated. Further, the effect of both THIP and SL 76002 on baseline prolactin levels or after stimulation of hormone release with haloperidol has been also studied. Either muscimol, THIP or SL 76002 have shown to posses 7-, 7- and 3-fold higher affinity, respectively, for the central nervous system than for the anterior pituitary /sup 3/H-GABA binding sites. Moreover, THIP and SL 76002 have demonstrated to be respectively, 25- and 1000- fold less potent than muscimol in inhibiting /sup 3/H- GABA binding at the level of the anterior pituitary and about 25- and 2700-fold less potent at the level of the medio-basal hypothalamus. Under basal conditions, either THIP or SL 76002 were ineffective to reduce prolactin release. However, after stimulation of prolactin secretion through blockade of the dopaminergic neurotransmission with haloperidol (0.1 mg/kg), both THIP (10 mg/kg) and SL 76002 (200 mg/kg) significantly counteracted the neuroleptic-induced prolactin rise with a potency which is in line with their ability to inhibit /sup 3/H-GABA binding in the anterior pituitary. The present results indicate that both compounds inhibit prolactin release under specific experimental situations probably through a GABAergic mechanism. In view of the endocrine effects of these GABA-mimetic compounds, the possibility arises for an application of these type of drugs in clinical neuroendocrinology. 35 references, 3 figures, 2 tables.

  13. Omega 3 fatty acids increase spontaneous release of cytosolic components from tumor cells

    SciTech Connect

    Jenski, L.J.; Sturdevant, L.K.; Ehringer, W.D.; Stillwell, W. )

    1991-05-01

    Mice fed menhaden (fish) oil or coconut oil-rich diets were inoculated intraperitoneally with a rapidly growing leukemia, T27A. After one week, the tumor cells were harvested, and 51Cr was used to label intracellular molecules. Spontaneous release of 51Cr was used as a measure of plasma membrane permeability. Compared to cells from mice fed coconut oil (rich in saturated fatty acids), tumor cells from mice fed menhaden oil (rich in long chain polyunsaturated omega 3 fatty acids) showed an increased level of spontaneous 51Cr release, which was exacerbated by increased temperature and reduced by extracellular protein. At physiological salt concentrations, the released 51Cr was detected in particles of approximately 2700 daltons. Enhanced permeability correlated with the incorporation of dietary (fish oil) omega 3 polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic acid into the tumor cells. The results demonstrate that omega 3 fatty acids are incorporated into cellular constituents of tumor cells and change properties associated with the plasma membrane. This result suggests that dietary manipulation may be used to enhance tumor cell permeability and contribute to tumor eradication.

  14. In Vitro Investigation of Self-Assembled Nanoparticles Based on Hyaluronic Acid-Deoxycholic Acid Conjugates for Controlled Release Doxorubicin: Effect of Degree of Substitution of Deoxycholic Acid

    PubMed Central

    Wei, Wen-Hao; Dong, Xue-Meng; Liu, Chen-Guang

    2015-01-01

    Self-assembled nanoparticles based on a hyaluronic acid-deoxycholic acid (HD) chemical conjugate with different degree of substitution (DS) of deoxycholic acid (DOCA) were prepared. The degree of substitution (DS) was determined by titration method. The nanoparticles were loaded with doxorubicin (DOX) as the model drug. The human cervical cancer (HeLa) cell line was utilized for in vitro studies and cell cytotoxicity of DOX incorporated in the HD nanoparticles was accessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, cellular uptake of fluorescently labeled nanoparticles was also investigated. An increase in the degree of deoxycholic acid substitution reduced the size of the nanoparticles and also enhanced their drug encapsulation efficiency (EE), which increased with the increase of DS. A higher degree of deoxycholic acid substitution also lead to a lower release rate and an initial burst release of doxorubicin from the nanoparticles. In summary, the degree of substitution allows the modulation of the particle size, drug encapsulation efficiency, drug release rate, and cell uptake efficiency of the nanoparticles. The herein developed hyaluronic acid-deoxycholic acid conjugates are a good candidate for drug delivery and could potentiate therapeutic formulations for doxorubicin–mediated cancer therapy. PMID:25837468

  15. Release of rosmarinic acid from semisolid formulations and its penetration through human skin ex vivo.

    PubMed

    Stelmakienė, Ada; Ramanauskienė, Kristina; Briedis, Vitalis

    2015-06-01

    The aim of this study was to evaluate the release of rosmarinic acid (RA) from the experimental topical formulations with the Melissa officinalis L. extract and to evaluate its penetration through undamaged human skin ex vivo. The results of the in vitro release study showed that higher amounts of RA were released from the emulsion vehicle when lemon balm extract was added in its dry form. An inverse correlation was detected between the released amount of RA and the consistency index of the formulation. Different penetration of RA into the skin may be influenced by the characteristics of the vehicle as well as by the form of the extract. The results of penetration assessment showed that the intensity of RA penetration was influenced by its lipophilic properties: RA was accumulating in the epidermis, while the dermis served as a barrier, impeding its deeper penetration. PMID:26011936

  16. Golden age of RyR and GABA-R diamide and isoxazoline insecticides: common genesis, serendipity, surprises, selectivity, and safety.

    PubMed

    Casida, John E

    2015-04-20

    The serendipitous observation of the insecticidal activity of a candidate herbicide was the first in a series of surprises that changed the course of insecticide research and opened the "Golden Age of Diamide and Isoxazoline Insecticides" which have a common genesis. Two novel modes of action were discovered, one involving the γ-aminobutyric acid (GABA) receptor of the chloride channel and the other the ryanodine receptor (RyR) of the calcium-activated calcium channel. These are old insecticide targets, but physiological assays and radioligand binding studies reveal that the new diamides and isoxazolines act at previously unrecognized sites without cross-resistance to other chemotypes and more important differing between insects and mammals resulting in selective toxicity and mechanistically based safety. The phthalic diamide flubendiamide and anthranilic diamides chlorantraniliprole and cyantraniliprole act at an allosteric site of the RyR to activate calcium release in insects but not mammals. They are the most important insecticide introductions of the past decade. Isoxazoline and meta-diamide insecticides and their previously unrecognized GABA-R target are more recent discoveries. Isoxazolines are currently important in flea and tick control in dogs and cats, and meta-diamides show promise for pest management and crop protection. These 21st century RyR and GABA-R diamides and isoxazolines were serendipitous discoveries and developments showing the importance of mechanism studies in maintaining the arsenal of safe and effective insecticides. PMID:25688713

  17. mRNA and Protein Levels for GABA[subscript A][alpha]4, [alpha]5, [beta]1 and GABA[subscript B]R1 Receptors are Altered in Brains from Subjects with Autism

    ERIC Educational Resources Information Center

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rooney, Robert J.; Patel, Diven H.; Thuras, Paul D.

    2010-01-01

    We have shown altered expression of gamma-aminobutyric acid A (GABA[subscript A]) and gamma-aminobutyric acid B (GABA[subscript B]) receptors in the brains of subjects with autism. In the current study, we sought to verify our western blotting data for GABBR1 via qRT-PCR and to expand our previous work to measure mRNA and protein levels of 3…

  18. Timolol maleate release from hyaluronic acid-containing model silicone hydrogel contact lens materials.

    PubMed

    Korogiannaki, Myrto; Guidi, Giuliano; Jones, Lyndon; Sheardown, Heather

    2015-09-01

    This study was designed to assess the impact of a releasable wetting agent, such as hyaluronic acid (HA), on the release profile of timolol maleate (TM) from model silicone hydrogel contact lens materials. Polyvinylpyrrolidone (PVP) was used as an alternative wetting agent for comparison. The model lenses consisted of a hydrophilic monomer, either 2-hydroxyethyl methacrylate or N,N-dimethylacrylamide and a hydrophobic silicone monomer of methacryloxypropyltris (trimethylsiloxy) silane. The loading of the wetting and the therapeutic agent occurred during the synthesis of the silicone hydrogels through the method of direct entrapment. The developed materials were characterized by minimal changes in the water uptake, while lower molecular weight of HA improved their surface wettability. The transparency of the examined silicone hydrogels was found to be affected by the miscibility of the wetting agent in the prepolymer mixture as well as the composition of the developed silicone hydrogels. Sustained release of TM from 4 to 14 days was observed, with the drug transport occurring presumably through the hydrophilic domains of the silicone hydrogels. The release profile was strongly dependent on the hydrophilic monomer composition, the distribution of hydrophobic (silane) domains, and the affinity of the therapeutic agent for the silicone hydrogel matrix. Noncovalent entrapment of the wetting agent did not change the in vitro release duration and kinetics of TM, however the drug release profile was found to be controlled by the simultaneous release of TM and HA or PVP. In the case of HA, depending on the HA:drug ratio, the release rate was decreased and controlled by the release of HA, likely due to electrostatic interactions between protonated TM and anionic HA. Overall, partitioning of the drug within the hydrophilic domains of the silicone hydrogels as well as interactions with the wetting agent determined the drug release profile. PMID:25887216

  19. Enhanced histamine release from lung mast cells of guinea pigs exposed to sulfuric acid aerosols

    SciTech Connect

    Fujimaki, Hidekazu ); Katayama, Noboru; Wakamori, Kazuo )

    1992-06-01

    To clarify the relationship between air pollution and mast cell response, the effects of sulfuric acid aerosols on histamine release from lung mast cells of guinea pigs were investigated. Guinea pigs were exposed to 0.3, 1.0 and 3.2 mg/m{sup 3} sulfuric acid (H{sub 2}SO{sub 4}) aerosols or 4 ppm nitrogen dioxide (NO{sub 2}) for 2 and 4 weeks. After the exposure, lung mast cell suspensions were isolated by collagenase treatment and antigen- or A23187-induced histamine release was measured. Antigen-induced histamine release from mast cells was significantly enhanced by the exposure to 1.0 and 3.2 mg/m{sup 3} H{sub 2}SO{sub 4} for 2 weeks, but exposure to H{sub 2}SO{sub 4} for 4 weeks did not show the enhancement of antigen-induced histamine release. A23187-induced histamine release was significantly enhanced by the exposure to 1.0 mg/m{sup 3} H{sub 2}SO{sub 4} or 4 ppm NO{sub 2} for 2 weeks, but suppression of histamine release from lung mast cells stimulated with A23187 was observed by the exposure to 3.2 mg/m{sup 3} H{sub 2}So{sub 4} for 4 weeks. The exposure to 0.3 mg/m{sup 3} H{sub 2}So{sub 4} showed no changes in antigen- and A23187-induced histamine release. The combination of 1.0 mg/m{sup 3} H{sub 2}So{sub 4} with 4 ppm NO{sub 2} for 2 weeks resulted in no changes in antigen- and A23187-induced histamine release. These results suggested that functional properties of lung mast cells may be altered by a low concentration of H{sub 2}So{sub 4} aerosol exposure.

  20. C. elegans Punctin Clusters GABA(A) Receptors via Neuroligin Binding and UNC-40/DCC Recruitment.

    PubMed

    Tu, Haijun; Pinan-Lucarré, Bérangère; Ji, Tingting; Jospin, Maelle; Bessereau, Jean-Louis

    2015-06-17

    Positioning type A GABA receptors (GABA(A)Rs) in front of GABA release sites sets the strength of inhibitory synapses. The evolutionarily conserved Ce-Punctin/MADD-4 is an anterograde synaptic organizer that specifies GABAergic versus cholinergic identity of postsynaptic domains at the C. elegans neuromuscular junctions (NMJs). Here we show that the Ce-Punctin secreted by GABAergic motor neurons controls the clustering of GABA(A)Rs through the synaptic adhesion molecule neuroligin (NLG-1) and the netrin receptor UNC-40/DCC. The short isoform of Ce-Punctin binds and clusters NLG-1 postsynaptically at GABAergic NMJs. NLG-1 disruption causes a strong reduction of GABA(A)R content at GABAergic synapses. Ce-Punctin also binds and localizes UNC-40 receptors in the postsynaptic membrane of NMJs, which promotes the recruitment of GABA(A)Rs by NLG-1. Since the mammalian orthologs of these genes are expressed in the central nervous system and their mutations are implicated in neuropsychiatric diseases, this molecular pathway might have been evolutionarily conserved. PMID:26028575

  1. Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during Clostridium difficile Spore Germination

    PubMed Central

    Francis, Michael B.; Allen, Charlotte A.

    2015-01-01

    ABSTRACT Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis. In B. subtilis, the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released during stage I. Thus, DPA release precedes cortex hydrolysis during B. subtilis spore germination. Here, we investigated the timing of DPA release and cortex hydrolysis during Clostridium difficile spore germination and found that cortex hydrolysis precedes DPA release. Inactivation of either the bile acid germinant receptor, cspC, or the cortex hydrolase, sleC, prevented both cortex hydrolysis and DPA release. Because both cortex hydrolysis and DPA release during C. difficile spore germination are dependent on the presence of the germinant receptor and the cortex hydrolase, the release of DPA from the core may rely on the osmotic swelling of the core upon cortex hydrolysis. These results have implications for the hypothesized glycine receptor and suggest that the initiation of germinant receptor-mediated C. difficile spore germination proceeds through a novel germination pathway. IMPORTANCE Clostridium difficile infects antibiotic-treated hosts and spreads between hosts as a dormant spore. In a host, spores germinate to the vegetative form that produces the toxins necessary for disease. C. difficile spore germination is stimulated by certain bile acids and glycine. We recently identified the bile acid germinant receptor as the germination-specific, protease-like CspC. CspC is likely cortex localized, where it can transmit the bile acid signal to the cortex hydrolase, SleC. Due to the differences in location of CspC compared to the Bacillus subtilis germinant

  2. Acacia-gelatin microencapsulated liposomes: preparation, stability, and release of acetylsalicylic acid.

    PubMed

    Dong, C; Rogers, J A

    1993-01-01

    Liposomes of dipalmitoylphosphatidylcholine (DPPC) containing acetylsalicylic acid (ASA) have been microencapsulated by acacia-gelatin using the complex coacervation technique as a potential oral drug delivery system. The encapsulation efficiency of ASA was unaltered by the microencapsulation process. The stability of the microencapsulated liposomes in sodium cholate solutions at pH 5.6 was much greater than the corresponding liposomes. The optimum composition and conditions for stability and ASA release were 3.0% acacia-gelatin and a 1- to 2-hr formaldehyde hardening time. Approximately 25% ASA was released in the first 6 hr from microencapsulated liposomes at 23 degrees C and the kinetics followed matrix-controlled release (Q varies; is directly proportional to t1/2). At 37 degrees C, this increased to 75% released in 30 min followed by a slow constant release, likely due to lowering of the phase transition temperature of DPPC by the acacia-gelatin to near 37 degrees C. At both temperatures, the release from control liposomes was even more rapid. Hardening times of 4 hr and an acacia-gelatin concentration of 5% resulted in a lower stability of liposomes and a faster release of ASA. It is concluded that under appropriate conditions the microencapsulation of liposomes by acacia-gelatin may increase their potential as an oral drug delivery system. PMID:8430052

  3. Effect of gamma-aminobutyric acid on neurally mediated contraction of guinea pig trachealis smooth muscle.

    PubMed

    Tamaoki, J; Graf, P D; Nadel, J A

    1987-10-01

    To determine whether gamma-aminobutyric acid (GABA) affects the contractile properties of airway smooth muscle and, if so, what the mechanism of action is, the authors studied guinea pig tracheal rings under isometric conditions in vitro. GABA and related substances, baclofen and muscimol, had no effect on the resting tension but reversibly depressed contractions induced by electrical field stimulation in a dose-dependent fashion, IC50 values (mean +/- S.E.) being 5.6 +/- 1.4 X 10(-6) M, 6.8 +/- 0.9 X 10(-6) M and 8.5 +/- 1.5 X 10(-5) M, respectively. In contrast, GABA did not alter the response to exogenous acetylcholine or the nonadrenergic noncholinergic inhibitory component. Pretreatment of tissues with bicuculline antagonized the inhibitory effect of GABA as well as that of baclofen. This inhibitory effect was not modified by propranolol, phentolamine, hemicholinium-3 or naloxone, but it was blocked by the Cl channel blocker furosemide and by the substitution of external Cl. These results suggest that GABA decreases the contractile response of airway smooth muscle to cholinergic nerve stimulation by inhibiting the evoked release of acetylcholine and that this effect is exerted by activating Cl-dependent, bicuculline-sensitive GABA receptors. PMID:3668869

  4. Controlled release of insulin through hydrogels of (acrylic acid)/trimethylolpropane triacrylate

    NASA Astrophysics Data System (ADS)

    Raymundi, Vanessa C.; Aguiar, Leandro G.; Souza, Esmar F.; Sato, Ana C.; Giudici, Reinaldo

    2015-12-01

    Hydrogels of poly(acrylic acid) crosslinked with trimethylolpropane triacrylate (TMPTA) were produced through solution polymerization. After these hydrogels were loaded with insulin solution, they evidenced swelling. Experiments of controlled release of insulin through the hydrogels were performed in acidic and basic media in order to evaluate the rates of release of this protein provided by the referred copolymer. Additionally, a mathematical description of the system based on differential mass balance was made and simulated in MATLAB. The model consists of a system of differential equations which was solved numerically. As expected, the values of swelling index at the equilibrium and the rates of insulin release were inversely proportional to the degree of crosslinking. The mathematical model provided reliable predictions of release profiles with fitted values of diffusivity of insulin through the hydrogels in the range of 6.0 × 10-7-1.3 × 10-6 cm2/s. The fitted and experimental values of partition coefficients of insulin between the hydrogel and the medium were lower for basic media, pointing out good affinity of insulin for these media in comparison to the acidic solutions.

  5. Sustained release formulation of erythropoietin using hyaluronic acid hydrogels crosslinked by Michael addition.

    PubMed

    Hahn, Sei Kwang; Oh, Eun Ju; Miyamoto, Hajime; Shimobouji, Tsuyoshi

    2006-09-28

    A novel sustained release formulation of erythropoietin (EPO) was successfully developed using hyaluronic acid (HA) hydrogels crosslinked by Michael addition. Adipic acid dihydrazide grafted HA (HA-ADH) was prepared and then modified into methacrylated HA (HA-MA). (1)H NMR analysis showed that the degrees of HA-ADH and HA-MA modification were 69 and 29 mol%, respectively. Using the specific crosslinkers of dithiothreitol (DTT) and peptide linker, EPO was loaded during HA-MA hydrogel preparation by Michael addition chemistry between thiol and methacrylate groups. The amount of EPO recovered from both hydrogels after degradation with hyaluronidase SD (HAse SD) was about 90%. The crosslinking reaction with peptide linker (GCYKNRDCG) was faster than that with DTT. The gelation time was about 30 min for peptide linker and 180 min for DTT. In vitro release test of EPO from HA-MA hydrogel at 37 degrees C showed that EPO was released rapidly for 2 days and then slowly up to 7 days from HA-MA hydrogels. The released EPO appeared to be intact from the analysis with RP-HPLC. According to in vivo release test of EPO from HA-MA hydrogels crosslinked with the peptide linker in Sprague-Dawley (SD) rats, elevated plasma concentration of EPO was maintained up to 7 days. There was no adverse effect during and after the in vivo tests. PMID:16781096

  6. Release behavior of tetracycline hydrochloride loaded chitosan/poly(lactic acid) antimicrobial nanofibrous membranes.

    PubMed

    Jiang, Suwei; Lv, Jian; Ding, Man; Li, Yanan; Wang, Hualin; Jiang, Shaotong

    2016-02-01

    The present work aimed to evaluate the release behavior of tetracycline hydrochloride loaded chitosan/poly(lactic acid) (Tet-CS/PLA) antimicrobial nanofibrous membranes fabricated via electrospinning technique. The electrospinning solution was a blend of Tet, CS formic acid solution and PLA chloroform/ethanol solution. The interaction between CS and PLA in CS/PLA nanofibers was confirmed to be hydrogen bond. The incorporation of Tet caused a slight decrease in the diameter of nanofibers with Tet content below 30%. Tet-CS/PLA nanofibrous membrane showed a slight initial burst within the first 4h before a gradual increase in cumulative release, and the release percentage increased with increasing Tet contents. Tet release (Mt/M∞<0.6) from the medicated nanofibers could be described by Fickian diffusion model and the release profiles showed two sequential stages. Tet-CS/PLA nanofibrous membranes exhibited an effective and sustainable inhabitance on the growth of Staphylococcus aureus, and the antimicrobial activity increased rapidly with increasing Tet contents below 20%. Furthermore, the incorporation of Tet promoted the degradation of nanofibrous membranes. PMID:26652352

  7. Lipoxygenase Pathway in Islet Endocrine Cells. OXIDATIVE METABOLISM OF ARACHIDONIC ACID PROMOTES INSULIN RELEASE

    PubMed Central

    Metz, Stewart; VanRollins, Michael; Strife, Robert; Fujimoto, Wilfred; Robertson, R. Paul

    1983-01-01

    Metabolism of arachidonic acid (AA) via the cyclooxygenase pathway reduces glucose-stimulated insulin release. However, metabolism of AA by the lipoxygenase pathway and the consequent effects on insulin secretion have not been simultaneously assessed in the endocrine islet. Both dispersed endocrine cell-enriched pancreatic cells of the neonatal rat, as well as intact islets of the adult rat, metabolized [3H]AA not only to cyclooxygenase products (prostaglandins E2, F2α, and prostacyclin) but also to the lipoxygenase product 12-hydroxyeicosatetraenoic acid (12-HETE). 12-HETE was identified by coelution with authentic tritiated or unlabeled 12-HETE using four high performance liquid chromatographic systems under eight mobile-phase conditions and its identity was confirmed by gas chromatography/mass spectrometry using selected ion monitoring. The predominant effect of exogenous AA (5 μg/ml) was to stimulate insulin release from pancreatic cells grown in monolayer. This effect was concentration- and time-dependent, and reversible. The effect of AA upon insulin release was potentiated by a cyclooxygenase inhibitor (indomethacin) and was prevented by either of two lipoxygenase inhibitors (5,8,11,14-eicosatetraynoic acid [ETYA] and BW755c). In addition, glucose, as well as two structurally dissimilar agents (the calcium ionophore A23187 and bradykinin), which activate phospholipase(s) and thereby release endogenous AA in several cell systems, also stimulated insulin secretion. The effects of glucose, glucagon, bradykinin and high concentrations of A23187 (5 μg/ml) to augment insulin release were blocked or considerably reduced by lipoxygenase inhibitors. However, a lower concentration of the ionophore (0.25 μg/ml), which did not appear to activate phospholipase, was resistant to blockade. Exogenous 12-HETE (up to 2,000 ng/ml) did not alter glucose-induced insulin release. However, the labile intermediate 12-hydroperoxy-ETE increased insulin release. Furthermore

  8. Inhibition by somatostatin (growth-hormone release-inhibiting hormone, GH-RIH) of gastric acid and pepsin and G-cell release of gastrin.

    PubMed Central

    Barros D'sa, A A; Bloom, S R; Baron, J H

    1978-01-01

    Somatostatin (cyclic growth-hormone release-inhibiting hormone--GH-RIH) was infused into dogs with gastric fistulae. Somatostatin inhibited gastric acid response to four gastric stimulants--insulin, food, histamine, and pentagastrin. Histamine- and pentagastrin-stimulated pepsins were inhibited similarly to inhibition of acid. Somatostatin inhibited the gastrin response to insulin and food. PMID:348581

  9. OX1 orexin/hypocretin receptor signaling through arachidonic acid and endocannabinoid release.

    PubMed

    Turunen, Pauli M; Jäntti, Maria H; Kukkonen, Jyrki P

    2012-08-01

    We showed previously that OX(1) orexin receptor stimulation produced a strong (3)H overflow response from [(3)H]arachidonic acid (AA)-labeled cells. Here we addressed this issue with a novel set of tools and methods, to distinguish the enzyme pathways responsible for this response. CHO-K1 cells heterologously expressing human OX(1) receptors were used as a model system. By using selective pharmacological inhibitors, we showed that, in orexin-A-stimulated cells, the AA-derived radioactivity was released as two distinct components, i.e., free AA and the endocannabinoid 2-arachidonoyl glycerol (2-AG). Two orexin-activated enzymatic cascades are responsible for this response: cytosolic phospholipase A(2) (cPLA(2)) and diacylglycerol lipase; the former cascade is responsible for part of the AA release, whereas the latter is responsible for all of the 2-AG release and part of the AA release. Essentially only diacylglycerol released by phospholipase C but not by phospholipase D was implicated as a substrate for 2-AG production, although both phospholipases were strongly activated. The 2-AG released acted as a potent paracrine messenger through cannabinoid CB(1) receptors in an artificial cell-cell communication assay that was developed. The cPLA(2) cascade, in contrast, was involved in the activation of orexin receptor-operated Ca(2+) influx. 2-AG was also released upon OX(1) receptor stimulation in recombinant HEK-293 and neuro-2a cells. The results directly show, for the first time, that orexin receptors are able to generate potent endocannabinoid signals in addition to arachidonic acid signals, which may explain the proposed orexin-cannabinoid interactions (e.g., in neurons). PMID:22550093

  10. Cortical GABA Levels in Primary Insomnia

    PubMed Central

    Morgan, Peter T.; Pace-Schott, Edward F.; Mason, Graeme F.; Forselius, Erica; Fasula, Madonna; Valentine, Gerald W.; Sanacora, Gerard

    2012-01-01

    Study Objectives: GABA is increasingly recognized as an important neurotransmitter for the initiation and maintenance of sleep. We sought to measure cortical GABA content through proton magnetic resonance spectroscopy (MRS) in persons with and without primary insomnia, and relate brain GABA levels to polysomnographic sleep measures. Design: Two-group comparison study. Setting: Outpatient study at a university research clinic. Participants: Non-medicated persons with primary insomnia (N = 16) and no sleep complaints (N = 17). Interventions: Participants kept sleep diaries and a regular time-in-bed schedule for 9 days, culminating in 2 consecutive nights of ambulatory polysomnography and a single proton MRS session. The main outcome measure was occipital GABA/creatine ratios; secondary measures included sleep measurements and relationship between polysomnographically measured time awake after sleep onset and occipital GABA content. Measurements and Results: The primary insomnia group was distinguished from persons with no sleep complaints on self-reported and polysomnographically measured sleep. The two groups did not differ in age, sex, body mass index, habitual bed- and wake-times, napping, use of caffeine, or use of cigarettes. Mean occipital GABA level was 12% higher in persons with insomnia than in persons without sleep complaints (P < 0.05). In both groups, GABA levels correlated negatively with polysomnographically measured time awake after sleep onset (P < 0.05). Conclusions: Increased GABA levels in persons with insomnia may reflect an allostatic response to chronic hyperarousal. The preserved, negative relationship between GABA and time awake after sleep onset supports this notion, indicating that the possible allostatic response is adaptive. Citation: Morgan PT; Pace-Schott EF; Mason GF; Forselius E; Fasula M; Valentine GW; Sanacora G. Cortical GABA levels in primary insomnia. SLEEP 2012;35(6):807-814. PMID:22654200

  11. Adsorption and release of amino acids mixture onto apatitic calcium phosphates analogous to bone mineral

    NASA Astrophysics Data System (ADS)

    El Rhilassi, A.; Mourabet, M.; El Boujaady, H.; Bennani-Ziatni, M.; Hamri, R. El; Taitai, A.

    2012-10-01

    Study focused on the interaction of adsorbate with poorly crystalline apatitic calcium phosphates analogous to bone mineral. Calcium phosphates prepared in water-ethanol medium at physiological temperature (37 °C) and neutral pH, their Ca/P ratio was between 1.33 and 1.67. Adsorbate used in this paper takes the mixture form of two essential amino acids L-lysine and DL-leucine which have respectively a character hydrophilic and hydrophobic. Adsorption and release are investigated experimentally; they are dependent on the phosphate type and on the nature of adsorbate L-lysine, DL-leucine and their mixture. Adsorption of mixture of amino acids on the apatitic calcium phosphates is influenced by the competition between the two amino acids: L-lysine and DL-leucine which exist in the medium reaction. The adsorption kinetics is very fast while the release kinetics is slow. The chemical composition of apatite has an influence on both adsorption and release. The interactions adsorbate-adsorbent are electrostatic type. Adsorption and release reactions of the amino acid mixture are explained by the existence of the hydrated surface layer of calcium phosphate apatite. The charged sbnd COOsbnd and sbnd NH3+ of adsorbates are the strongest groups that interact with the surface of apatites, the adsorption is mainly due to the electrostatic interaction between the groups sbnd COOsbnd of amino acids and calcium Ca2+ ions of the apatite. Comparative study of interactions between adsorbates (L-lysine, DL-leucine and their mixture) and apatitic calcium phosphates is carried out in vitro by using UV-vis and infrared spectroscopy IR techniques.

  12. Role of arachidonic acid metabolism on corticotropin-releasing factor (CRF)-release induced by interleukin-1 from superfused rat hypothalami.

    PubMed

    Cambronero, J C; Rivas, F J; Borrell, J; Guaza, C

    1992-07-01

    The present work shows that the corticotropin-releasing factor (CRF)-releasing activity of interleukin-1 (IL-1) is partially inhibited by a phospholipase A2 (mepacrine) or a cyclooxygenase (indomethacin) inhibitor, but is not affected by inhibition of the lypoxygenase pathway with norhydroguaiaretic acid. These results indicate that the metabolism of arachidonic acid plays an important role as mediator of the effects of IL-1 on CRF release. It is also shown that products of the cyclooxygenase activity such as prostaglandins can stimulate CRF secretion by a direct action on the hypothalamus. Whereas PGE2 failed to induce increases on CRF release, PGF2 alpha stimulated in a dose-dependent manner (21-340 nM), the CRF release from continuous perifused hypothalami. It is suggested that PGF2 alpha could be involved as a messenger in the hypothalamic CRF secretion induced by IL-1. PMID:1619039

  13. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors.

    PubMed

    Brighton, Cheryl A; Rievaj, Juraj; Kuhre, Rune E; Glass, Leslie L; Schoonjans, Kristina; Holst, Jens J; Gribble, Fiona M; Reimann, Frank

    2015-11-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein-coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium-coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1-secreting L-cells from the apical or basolateral compartment. Using transgenic mice expressing fluorescent sensors specifically in L-cells, we observed that taurodeoxycholate (TDCA) and taurolithocholate (TLCA) increased intracellular cAMP and Ca(2+). In primary intestinal cultures, TDCA was a more potent GLP-1 secretagogue than taurocholate (TCA) and TLCA, correlating with a stronger Ca(2+) response to TDCA. Using small-volume Ussing chambers optimized for measuring GLP-1 secretion, we found that both a GPBAR1 agonist and TDCA stimulated GLP-1 release better when applied from the basolateral than from the luminal direction and that luminal TDCA was ineffective when intestinal tissue was pretreated with an ASBT inhibitor. ASBT inhibition had no significant effect in nonpolarized primary cultures. Studies in the perfused rat gut confirmed that vascularly administered TDCA was more effective than luminal TDCA. Intestinal primary cultures and Ussing chamber-mounted tissues from GPBAR1-knockout mice did not secrete GLP-1 in response to either TLCA or TDCA. We conclude that the action of bile acids on GLP-1 secretion is predominantly mediated by GPBAR1 located on the basolateral L-cell membrane, suggesting that stimulation of gut hormone secretion may include postabsorptive mechanisms. PMID:26280129

  14. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein–Coupled Bile Acid Receptors

    PubMed Central

    Brighton, Cheryl A.; Rievaj, Juraj; Kuhre, Rune E.; Glass, Leslie L.; Schoonjans, Kristina; Holst, Jens J.

    2015-01-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein–coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium-coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1–secreting L-cells from the apical or basolateral compartment. Using transgenic mice expressing fluorescent sensors specifically in L-cells, we observed that taurodeoxycholate (TDCA) and taurolithocholate (TLCA) increased intracellular cAMP and Ca2+. In primary intestinal cultures, TDCA was a more potent GLP-1 secretagogue than taurocholate (TCA) and TLCA, correlating with a stronger Ca2+ response to TDCA. Using small-volume Ussing chambers optimized for measuring GLP-1 secretion, we found that both a GPBAR1 agonist and TDCA stimulated GLP-1 release better when applied from the basolateral than from the luminal direction and that luminal TDCA was ineffective when intestinal tissue was pretreated with an ASBT inhibitor. ASBT inhibition had no significant effect in nonpolarized primary cultures. Studies in the perfused rat gut confirmed that vascularly administered TDCA was more effective than luminal TDCA. Intestinal primary cultures and Ussing chamber–mounted tissues from GPBAR1-knockout mice did not secrete GLP-1 in response to either TLCA or TDCA. We conclude that the action of bile acids on GLP-1 secretion is predominantly mediated by GPBAR1 located on the basolateral L-cell membrane, suggesting that stimulation of gut hormone secretion may include postabsorptive mechanisms. PMID:26280129

  15. Layered double hydroxides as supports for the slow release of acid herbicides.

    PubMed

    Cardoso, Lucelena P; Celis, Rafael; Cornejo, Juan; Valim, João B

    2006-08-01

    A Mg/Al layered double hydroxide (LDH) was intercalated with the anionic herbicides 2,4-D, MCPA, and picloram by using three different methodologies: (i) direct synthesis (DS), (ii) regeneration (RE), and (iii) ion exchange (IE). The resulting complexes were characterized and assayed by batch release and column leaching tests, aiming at the controlled release of these herbicides. All the tested LDH-herbicide complexes displayed similar slow herbicide release properties in water, although the IE method seemed to result in complexes with a greater fraction of herbicide in a readily available form. Apparently, the LDH-herbicide complexes released most of the active ingredient present in the complexes at the end of the batch release experiment. This was attributed to the replacement of the intercalated herbicide by carbonate and hydroxyl anions from the aqueous solution. Compared to the free herbicides, the application of the three LDH-herbicide complexes (RE) to soil columns resulted in reduction in the maximum herbicide concentration in leachates and led to the retardation of herbicide leaching through the soil. All LDH-herbicide complexes presented an herbicidal efficacy similar to that of the free (technical) herbicides. Our results indicated the potential applicability of LDHs as supports for the preparation of slow release formulations of acid herbicides such as 2,4-D, MCPA, or picloram. PMID:16881703

  16. Structural characterization of lyotropic liquid crystals containing a dendrimer for solubilization and release of gallic acid.

    PubMed

    Bitan-Cherbakovsky, Liron; Aserin, Abraham; Garti, Nissim

    2013-12-01

    The role of 2nd generation polypropyleneimine (PPIG2) dendrimer in controlling the release of gallic acid (GA) as a model drug from lyotropic liquid crystal was explored. GA (0.2wt%) was solubilized in three types of mesophases: lamellar (Lα), cubic (space group of Ia3d, Q(G)), and reverse hexagonal (HII), composed of GMO and water (and d-α-tocopherol, or tricaprylin in the case of HII mesophases). Small angle X-ray scattering (SAXS) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) along with UV spectrophotometry were utilized to elucidate the structure modifications and release resulting from the cosolubilization of GA and PPIG2. Solubilization of PPIG2 into Lα and Q(G) phases caused transformation of both structures to HII. The diffusion of GA out of the mesophases was found to be dependent on water content and PPIG2 concentration. Rapid release from Lα+PPIG2 and Q(G)+PPIG2 mesophases was recorded. The release from both HII mixtures (with d-α-tocopherol and tricaprylin) was shown to be dependent on the type of oil. Release studies conducted for 72h showed that GA release can be modulated and sustained by the presence of PPIG2, supposedly due to the electrostatic interactions between the dendrimer and the drug molecule. PMID:23973908

  17. Intracellular release of rapamycin from poly (lactic acid) nanospheres modifies autophagy.

    PubMed

    Nagata, Junpei; Matsui, Makoto; Tabata, Yasuhiko

    2016-09-01

    The objective of this study is to investigate the autophagy activity of cells by the intracellular release of rapamycin (Rapa) of an autophagy inducer. Rapa was incorporated into nanospheres of poly (lactic-co-glycolic acid) (PLGA) for the controlled release of Rapa. Rapa was released from the PLGA nanospheres incorporating rapamycin (Rapa-PLGA-NS) with time while the Rapa-PLGA-NS were hydrolytically degraded. When human hepatocellular carcinoma (HepG2) cells were incubated with the Rapa-PLGA-NS, the Rapa-PLGA-NS were internalized, and the intracellular concentration was maintained over four days, indicating the intracellular Rapa release. The microtubule-associated protein 1 light chain (LC3) of an autophagy marker was significantly high for the Rapa-PLGA-NS group compared with the free Rapa group even after four days incubation. In addition, intracellular harmful ubiquitinated proteins were degraded by the intracellular release of Rapa even after four days incubation in contrast to free Rapa. It is concluded that the intracellular Rapa release is effective in modulating the autophagy activity over a longer time period. PMID:27320771

  18. In vitro release of organophosphorus acid anhydrolase from functionalized mesoporous silica against nerve agents.

    SciTech Connect

    Chen, Baowei; Shah, Saumil S.; Shin, Yongsoon; Lei, Chenghong; Liu, Jun

    2011-10-02

    We report here that under different physiological conditions, biomolecular drugs can be stockpiled in a nanoporous support and afterward can be instantly released when needed for acute responses, and the biomolecular drug molecules can also be gradually released from the nanoporous support over a long time for a complete recovery. Organophosphorus acid anhydrolase (OPAA) was spontaneously and largely entrapped in functionalized mesoporous silica (FMS) due to the dominant electrostatic interaction. The OPAA-FMS composite exhibited a burst release in a pH 9.0 NaHCO(3)-Na(2)CO(3) buffer system and a gradual release in pH 7.4 simulated body fluid. The binding of OPAA to NH(2)-FMS can result in less tyrosinyl and tryptophanyl exposure OPAA molecules to aqueous environment. The bound OPAA in FMS displayed lower activity than the free OPAA in solution prior to the enzyme entrapment. However, the released enzyme maintained the native conformational structure and the same high enzymatic activity as that prior to the enzyme entrapment. The in vitro results in the rabbit serum demonstrate that both OPAA-FMS and the released OPAA may be used as a medical countermeasure against the organophosphorus nerve agents.

  19. Blockade of capsaicin-induced reduction of GABA-immunoreactivity by spantide in cat spinal superficial dorsal horn.

    PubMed

    Wei, F; Zhao, Z Q

    1996-03-01

    In our previous study, perineural application of capsaicin not only produced release and depletion of substance P from primary nociceptive afferent terminals, but also reduced GABA immunoreactivity in the superficial dorsal horn. The aim of the present study was to determine whether the release of GABA is triggered by substance P released from primary nociceptive afferent terminals by capsaican. GABA and substance P immunoreactivity in the lumbar dorsal horn was examined in two groups: in the first group the tibial nerve was treated with 3% capsaicin, and in the second group the dorsal surface of the lumbar cord was infused with spantide (50 nM), a substance P receptor antagonist, before application of capsaicin to the tibial nerve. Following perineural treatment of capsaicin for 30 min, both the GABA-immunostaining density and the number of GABA immunoreactive neurons were reduced significantly in the ipsilateral laminae I-II at L5 through L7. GABA immunoreactivity was reduced by 54.12%, 44.46% and 31.0% in the medial, central and lateral parts of the ipsilateral laminae I-II at L7, respectively. With pre-application of spantide to the spinal cord, GABA immunoreactivity was reduced only to 14.4%, 16.4% and 10.16%, respectively, in the medial, central and lateral parts of laminae I-II at L7 and no reduction of GABA immunoreactive neurons was observed. Additionally, capsaicin-induced reduction of substance P immunoreactivity was partially blocked by spantide. These results suggest that capsaicin produces substance P release from primary nociceptive afferent terminals, and that substance P, in turn, activates the second-order GABAergic interneurons in the dorsal horn. The functional significance of capsaicin-induced activation of GABAergic neurons in modulation of spinal nociception is discussed. PMID:8834409

  20. The use of bone cement for the localized, controlled release of the antibiotics vancomycin, linezolid, or fusidic acid: effect of additives on drug release rates and mechanical strength.

    PubMed

    Jackson, John; Leung, Fay; Duncan, Clive; Mugabe, Clement; Burt, Helen

    2011-04-01

    Bone cement containing antibiotics is commonly used to treat orthopedic related infections. However, effective treatment (especially of resistant bacteria, methacillin-resistant Staphylococcus aureus (MRSA)) is compromised by very low levels of drug release so that typically less than 10% of loaded drug is released over a 6-week period. The objective of this study was to investigate the effect of incorporation of water soluble excipients (polyethylene glycol, sodium chloride, or dextran) into antibiotic-loaded cement on mechanical strength and drug release properties. Poly(methyl methylacrylate) cement implants containing various amounts of drug (vancomycin, linezolid or fusidic acid (all MRSA active)) and excipients were cast in the form of beads or films and characterized using differential scanning calorimetry. Mechanical strength as assessed by Young's modulus was determined by thermo-mechanical analysis. Drug release was measured by incubation in phosphate buffered saline with analysis by HPLC methods. The inclusion of sodium chloride up to 20% w/w caused only minor reductions in Young's modulus. Vancomycin and linezolid released very slowly from unmodified bone cement beads (less than 3% released by 4 weeks) whereas fusidic acid released more quickly (approximately 8% released by 4 weeks). The inclusion of sodium chloride or dextran in bone cement resulted in major increases in the release rate of vancomycin, linezolid and fusidic acid. These studies support the inclusion of sodium chloride and dextran in bone cement to increase the release rate of vancomycin, linezolid, or fusidic acid without compromising the mechanical strength of the composite material. PMID:25788111

  1. Defects in GABA metabolism affect selective autophagy pathways and are alleviated by mTOR inhibition.

    PubMed

    Lakhani, Ronak; Vogel, Kara R; Till, Andreas; Liu, Jingjing; Burnett, Sarah F; Gibson, K Michael; Subramani, Suresh

    2014-04-01

    In addition to key roles in embryonic neurogenesis and myelinogenesis, γ-aminobutyric acid (GABA) serves as the primary inhibitory mammalian neurotransmitter. In yeast, we have identified a new role for GABA that augments activity of the pivotal kinase, Tor1. GABA inhibits the selective autophagy pathways, mitophagy and pexophagy, through Sch9, the homolog of the mammalian kinase, S6K1, leading to oxidative stress, all of which can be mitigated by the Tor1 inhibitor, rapamycin. To confirm these processes in mammals, we examined the succinic semialdehyde dehydrogenase (SSADH)-deficient mouse model that accumulates supraphysiological GABA in the central nervous system and other tissues. Mutant mice displayed increased mitochondrial numbers in the brain and liver, expected with a defect in mitophagy, and morphologically abnormal mitochondria. Administration of rapamycin to these mice reduced mTOR activity, reduced the elevated mitochondrial numbers, and normalized aberrant antioxidant levels. These results confirm a novel role for GABA in cell signaling and highlight potential pathomechanisms and treatments in various human pathologies, including SSADH deficiency, as well as other diseases characterized by elevated levels of GABA. PMID:24578415

  2. Treatment of GABA from Fermented Rice Germ Ameliorates Caffeine-Induced Sleep Disturbance in Mice

    PubMed Central

    Mabunga, Darine Froy N.; Gonzales, Edson Luck T.; Kim, Hee Jin; Choung, Se Young

    2015-01-01

    γ-Aminobutyric acid (GABA), a major inhibitory neurotransmitter in the mammalian central nervous system, is involved in sleep physiology. Caffeine is widely used psychoactive substance known to induce wakefulness and insomnia to its consumers. This study was performed to examine whether GABA extracts from fermented rice germ ameliorates caffeine-induced sleep disturbance in mice, without affecting spontaneous locomotor activity and motor coordination. Indeed, caffeine (10 mg/kg, i.p.) delayed sleep onset and reduced sleep duration of mice. Conversely, rice germ ferment extracts-GABA treatment (10, 30, or 100 mg/kg, p.o.), especially at 100 mg/kg, normalized the sleep disturbance induced by caffeine. In locomotor tests, rice germ ferment extracts-GABA slightly but not significantly reduced the caffeine-induced increase in locomotor activity without affecting motor coordination. Additionally, rice germ ferment extracts-GABA per se did not affect the spontaneous locomotor activity and motor coordination of mice. In conclusion, rice germ ferment extracts-GABA supplementation can counter the sleep disturbance induced by caffeine, without affecting the general locomotor activities of mice. PMID:25995826

  3. Treatment of GABA from Fermented Rice Germ Ameliorates Caffeine-Induced Sleep Disturbance in Mice.

    PubMed

    Mabunga, Darine Froy N; Gonzales, Edson Luck T; Kim, Hee Jin; Choung, Se Young

    2015-05-01

    γ-Aminobutyric acid (GABA), a major inhibitory neurotransmitter in the mammalian central nervous system, is involved in sleep physiology. Caffeine is widely used psychoactive substance known to induce wakefulness and insomnia to its consumers. This study was performed to examine whether GABA extracts from fermented rice germ ameliorates caffeine-induced sleep disturbance in mice, without affecting spontaneous locomotor activity and motor coordination. Indeed, caffeine (10 mg/kg, i.p.) delayed sleep onset and reduced sleep duration of mice. Conversely, rice germ ferment extracts-GABA treatment (10, 30, or 100 mg/kg, p.o.), especially at 100 mg/kg, normalized the sleep disturbance induced by caffeine. In locomotor tests, rice germ ferment extracts-GABA slightly but not significantly reduced the caffeine-induced increase in locomotor activity without affecting motor coordination. Additionally, rice germ ferment extracts-GABA per se did not affect the spontaneous locomotor activity and motor coordination of mice. In conclusion, rice germ ferment extracts-GABA supplementation can counter the sleep disturbance induced by caffeine, without affecting the general locomotor activities of mice. PMID:25995826

  4. GABA regulates synaptic integration of newly generated neurons in the adult brain

    NASA Astrophysics Data System (ADS)

    Ge, Shaoyu; Goh, Eyleen L. K.; Sailor, Kurt A.; Kitabatake, Yasuji; Ming, Guo-Li; Song, Hongjun

    2006-02-01

    Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (γ-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.

  5. Defects in GABA metabolism affect selective autophagy pathways and are alleviated by mTOR inhibition

    PubMed Central

    Lakhani, Ronak; Vogel, Kara R; Till, Andreas; Liu, Jingjing; Burnett, Sarah F; Gibson, K Michael; Subramani, Suresh

    2014-01-01

    In addition to key roles in embryonic neurogenesis and myelinogenesis, γ-aminobutyric acid (GABA) serves as the primary inhibitory mammalian neurotransmitter. In yeast, we have identified a new role for GABA that augments activity of the pivotal kinase, Tor1. GABA inhibits the selective autophagy pathways, mitophagy and pexophagy, through Sch9, the homolog of the mammalian kinase, S6K1, leading to oxidative stress, all of which can be mitigated by the Tor1 inhibitor, rapamycin. To confirm these processes in mammals, we examined the succinic semialdehyde dehydrogenase (SSADH)-deficient mouse model that accumulates supraphysiological GABA in the central nervous system and other tissues. Mutant mice displayed increased mitochondrial numbers in the brain and liver, expected with a defect in mitophagy, and morphologically abnormal mitochondria. Administration of rapamycin to these mice reduced mTOR activity, reduced the elevated mitochondrial numbers, and normalized aberrant antioxidant levels. These results confirm a novel role for GABA in cell signaling and highlight potential pathomechanisms and treatments in various human pathologies, including SSADH deficiency, as well as other diseases characterized by elevated levels of GABA. PMID:24578415

  6. Valproic acid potentiates both typical and atypical antipsychotic-induced prefrontal cortical dopamine release.

    PubMed

    Ichikawa, Junji; Chung, Young-Chul; Dai, Jin; Meltzer, Herbert Y

    2005-08-01

    Antipsychotic drugs (APD)s and anticonvulsant mood-stabilizers are now frequently used in combination with one another in treating both schizophrenia and bipolar disorder. We have recently reported that the atypical APDs, e.g. clozapine and risperidone, as well as the anticonvulsant mood-stabilizers, valproic acid (VPA), zonisamide, and carbamazepine, but not the typical APD haloperidol, increase dopamine (DA) release in rat medial prefrontal cortex (mPFC). The increased DA release was partially (atypical APDs) or completely (mood-stabilizers) blocked by the serotonin (5-HT)1A receptor antagonist WAY100635. Diminished prefrontal cortical DA activity may contribute to cognitive impairment in virtually all the patients with schizophrenia and, perhaps, bipolar disorder. Thus, the enhanced release of cortical DA by these agents may be beneficial in this regard. It is, therefore, of considerable interest to determine whether combined administration of these agents augments prefrontal cortical DA release, and if so, whether the increase is dependent upon 5-HT1A receptor activation. VPA (50 mg/kg), which was insufficient by itself to increase prefrontal cortical DA release, potentiated the ability of clozapine (20 mg/kg) and risperidone (1 mg/kg) to increase DA release in the mPFC, but not in the nucleus accumbens (NAC). VPA (50 mg/kg) also potentiated haloperidol (0.5 mg/kg)-induced DA release in the mPFC; this increase was completely abolished by WAY100635 (0.2 mg/kg). These results suggest that, in combination with VPA, both typical and atypical APDs produce greater increases in prefrontal cortical DA release than either type of drug alone via a mechanism dependent upon 5-HT(1A) receptor activation. Furthermore, they provide a strong rationale for testing for possible clinical synergism of an APD and anticonvulsant mood-stabilizer in improving the cognitive deficits present in patients with schizophrenia and bipolar disorder. PMID:16061211

  7. Modulation of leukotriene release from human polymorphonuclear leucocytes by PMA and arachidonic acid.

    PubMed Central

    Raulf, M; König, W

    1988-01-01

    Stimulation of human neutrophils (PMN) with Ca ionophore A23187, opsonized zymosan and formyl-L-methionyl-L-leucyl-phenylalanine (FMLP) led to a time- and dose-dependent release of LTB4, 20-OH-LTB4, 20-COOH-LTB4, 6-trans-LTB4, 12-epi-6-trans LTB4 and LTC4, as detected by reverse-phase HPLC. Preincubation of the PMN suspension in the presence of Ca2+ and Mg2+ with phorbol-12-myristate-13-acetate (PMA) did not release leukotrienes by itself, but modulated the subsequent Ca ionophore-induced leukotriene release. The release of LTC4, 20-OH-LTB4 and 20-COOH-LTB4 was significantly decreased. Lesser effects were observed for the release of LTB4 and the non-enzymatic LTB4 isomers. In contrast, opsonized zymosan and FMLP enhanced the release of LTB4 and LTB4-omega-oxidation products from cells pretreated with PMA. With arachidonic acid as prestimulus, the amounts of the LTB4 isomers (6-trans-LTB4 and 12-epi-6-trans-LTB4) were enhanced significantly on subsequent stimulation with Ca ionophore. Prestimulation of lymphocytes, monocytes and basophilic granulocytes (LMB) with PMA had no significant effects on the ionophore-induced release of LTC4 and LTB4. PMN, but not LMB, suspensions prestimulated with PMA convert exogenously added LTC4 to LTB4 isomers and LTC4 sulphoxide. Our data suggest that preincubation of human granulocytes with PMA modified leukotriene release by activation or inhibition of different metabolic pathways for LTC4 and LTB4. PMID:2838420

  8. Anticancer drug release from poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels

    NASA Astrophysics Data System (ADS)

    Taşdelen, B.; Kayaman-Apohan, N.; Güven, O.; Baysal, B. M.

    2005-08-01

    The drug uptake and release of anticancer drug from N-isopropylacrylamide/itaconic acid copolymeric hydrogels containing 0-3 mol% of itaconic acid irradiated at 48 kGy have been investigated. 5-Fluorouracil (5-FU) is used as a model anticancer drug. The effect of 5-FU solution on swelling characteristics of PNIPAAm and P(NIPAAm/IA) copolymeric hydrogels have also been studied. The percent swelling, equilibrium swelling, equilibrium water/5-FU content and diffusion constant values are evaluated for poly(N-isopropylacrylamide) (PNIPAAm) and poly(N-isopropylacrylamide/itaconic) (P(NIPAAm/IA)) hydrogels at 130 ppm of 5-FU solution at room temperature. Diffusion of 5-FU solution into the hydrogels has been found to be the non-Fickian type. Finally, the kinetics of drug release from the hydrogels are examined.

  9. Signaling between periglomerular cells reveals a bimodal role for GABA in modulating glomerular microcircuitry in the olfactory bulb

    PubMed Central

    Parsa, Pirooz Victor; D’Souza, Rinaldo David; Vijayaraghavan, Sukumar

    2015-01-01

    In the mouse olfactory bulb glomerulus, the GABAergic periglomerular (PG) cells provide a major inhibitory drive within the microcircuit. Here we examine GABAergic synapses between these interneurons. At these synapses, GABA is depolarizing and exerts a bimodal control on excitability. In quiescent cells, activation of GABAA receptors can induce the cells to fire, thereby providing a means for amplification of GABA release in the glomerular microcircuit via GABA-induced GABA release. In contrast, GABA is inhibitory in neurons that are induced to fire tonically. PG–PG interactions are modulated by nicotinic acetylcholine receptors (nAChRs), and our data suggest that changes in intracellular calcium concentrations triggered by nAChR activation can be amplified by GABA release. Our results suggest that bidirectional control of inhibition in PG neurons can allow for modulatory inputs, like the cholinergic inputs from the basal forebrain, to determine threshold set points for filtering out weak olfactory inputs in the glomerular layer of the olfactory bulb via the activation of nAChRs. PMID:26170298

  10. Effect of different carboxylic acids in cyclodextrin functionalization of cellulose nanocrystals for prolonged release of carvacrol.

    PubMed

    Castro, D O; Tabary, N; Martel, B; Gandini, A; Belgacem, N; Bras, J

    2016-12-01

    Current investigations deal with new surface functionalization strategy of nanocrystalline cellulose-based substrates to impart active molecule release properties. In this study, cellulose nanocrystals (CNC) were surface-functionalized with β-cyclodextrin (β-CD) using succinic acid (SA) and fumaric acid (FA) as bridging agents. The main objective of this surface modification performed only in aqueous media was to obtain new active materials able to release antibacterial molecules over a prolonged period of time. The reactions were conducted by immersing the CNC film into a solution composed of β-CD, SA and FA, leading to CNC grafting. The materials were characterized by infrared spectroscopy (FT-IR), Quartz crystal microbalance-dissipation (QCM-D), AFM and phenolphthalein (PhP) was used to determine the efficiency of CNC grafting with β-CD. The results indicated that β-CD was successfully attached to the CNC backbone through the formation of ester bonds. Furthermore, carvacrol was entrapped by the attached β-CD and a prolonged release was confirmed. In particular, CNC grafted to β-CD in the presence of FA was selected as the best solution. The antibacterial activity and the controlled release were studied for this sample. Considerably longer bacterial activity against B. subtilis was observed for CNC grafted to β-CD compared to CNC and CNC-FA, confirming the promising impact of the present strategy. PMID:27612798

  11. Stimuli responsive charge-switchable lipids: Capture and release of nucleic acids.

    PubMed

    Hersey, Joseph S; LaManna, Caroline M; Lusic, Hrvoje; Grinstaff, Mark W

    2016-03-01

    Stimuli responsive lipids, which enable control over the formation, transformation, and disruption of supramolecular assemblies, are of interest for biosensing, diagnostics, drug delivery, and basic transmembrane protein studies. In particular, spatiotemporal control over a supramolecular structure can be achieved using light activated compounds to induce significant supramolecular rearrangements. As such, a family of cationic lipids are described which undergo a permanent switch in charge upon exposure to 365 nm ultraviolet (UV) light to enable the capture of negatively charged nucleic acids within the self-assembled supramolecular structure of the lipids and subsequent release of these macromolecules upon exposure to UV light and disruption of the assemblies. The lipids are composed of either two different tripeptide head groups, Lysine-Glycine-Glycine (KGG) and Glycine-Glycine-Glycine (GGG) and three different hydrocarbon chain lengths (C6, C10, or C14) terminated by a UV light responsive 1-(2-nitrophenyl)ethanol (NPE) protected carboxylic acid. The photolysis of the NPE protected lipid is measured as a function of time, and the resulting changes in net molecular charge are observed using zeta potential analysis for each head group and chain length combination. A proof of concept study for the capture and release of both linear DNA (calf thymus) and siRNA is presented using an ethidium bromide quenching assay where a balance between binding affinity and supramolecular stability are found to be the key to optimal nucleic acid capture and release. PMID:26896839

  12. {gamma}-aminobutyric acid{sub A} (GABA{sub A}) receptor regulates ERK1/2 phosphorylation in rat hippocampus in high doses of Methyl Tert-Butyl Ether (MTBE)-induced impairment of spatial memory

    SciTech Connect

    Zheng Gang; Zhang Wenbin; Zhang Yun; Chen Yaoming; Liu Mingchao; Yao Ting; Yang Yanxia; Zhao Fang; Li Jingxia; Huang Chuanshu; Luo Wenjing Chen Jingyuan

    2009-04-15

    Experimental and occupational exposure to Methyl Tert-Butyl Ether (MTBE) has been reported to induce neurotoxicological and neurobehavioral effects, such as headache, nausea, dizziness, and disorientation, etc. However, the molecular mechanisms involved in MTBE-induced neurotoxicity are still not well understood. In the present study, we investigated the effects of MTBE on spatial memory and the expression and function of GABA{sub A} receptor in the hippocampus. Our results demonstrated that intraventricular injection of MTBE impaired the performance of the rats in a Morris water maze task, and significantly increased the expression of GABA{sub A} receptor {alpha}1 subunit in the hippocampus. The phosphorylation of ERK1/2 decreased after the MTBE injection. Furthermore, the decreased ability of learning and the reduction of phosphorylated ERK1/2 level of the MTBE-treated rats was partly reversed by bicuculline injected 30 min before the training. These results suggested that MTBE exposure could result in impaired spatial memory. GABA{sub A} receptor may play an important role in the MTBE-induced impairment of learning and memory by regulating the phosphorylation of ERK in the hippocampus.

  13. Comparison between the modes of action of novel meta-diamide and macrocyclic lactone insecticides on the RDL GABA receptor.

    PubMed

    Nakao, Toshifumi; Banba, Shinichi; Hirase, Kangetsu

    2015-05-01

    Macrocyclic lactones, avermectins, and milbemycins are widely used to control arthropods, nematodes, and endo- and ectoparasites in livestock and pets. Their main targets are glutamate-gated chloride channels. Furthermore, macrocyclic lactones reportedly interact with insect RDL γ-aminobutyric acid (GABA) receptors, but their modes of action on insect RDL GABA receptors remain unknown. In this study, we attempted to better understand the modes of action of macrocyclic lactones on RDL GABA receptors. We observed that ivermectin and milbemectin behaved as allosteric agonists of the Drosophila RDL GABA receptor. G336A, G336S, and G336T mutations had profound effects on the activities of ivermectin and milbemectin, and a G336M mutation abolished the allosteric agonist and antagonist activities of these macrocyclic lactones. These results suggest that G336 in TM3 of the Drosophila RDL GABA receptor is important for the binding of macrocyclic lactones. Recently, it has been suggested that a novel RDL GABA receptor antagonist, 3-benzamido-N-(2-bromo-4-perfluoroisopropyl-6-(trifluoromethyl)phenyl)-2-fluorobenzamide (meta-diamide 7), binds to the transmembrane intersubunit pocket near G336 in the Drosophila RDL GABA receptor. Thus, we compared the effects of mutations around G336 and A302 mutations in TM2 on the activities of macrocyclic lactone and meta-diamide 7. The effects of L281C, V340Q, V340N, A302S, and A302N mutations on the activity of meta-diamide 7 differed from those on ivermectin and milbemectin. Molecular modeling studies showed that macrocyclic lactones docked in the intersubunit pocket near G336 in the Drosophila RDL GABA receptor in the open state. In contrast, meta-diamide 7 docked into the Drosophila RDL GABA receptor in the closed state. This suggests that the modes of action of macrocyclic lactone binding to the wild-type Drosophila RDL GABA receptor differ from those of meta-diamide binding. PMID:25987227

  14. The GABA transaminase, ABAT, is essential for mitochondrial nucleoside metabolism

    PubMed Central

    Besse, Arnaud; Wu, Ping; Bruni, Francesco; Donti, Taraka; Graham, Brett H.; Craigen, William J.; McFarland, Robert; Moretti, Paolo; Lalani, Seema; Scott, Kenneth L.; Taylor, Robert W.; Bonnen, Penelope E.

    2015-01-01

    Summary ABAT is a key enzyme responsible for catabolism of principal inhibitory neurotransmitter gamma-aminobutyric acid (GABA). We report an essential role for ABAT in a seemingly unrelated pathway, mitochondrial nucleoside salvage, and demonstrate that mutations in this enzyme cause an autosomal recessive neurometabolic disorder and mtDNA depletion syndrome (MDS). We describe a family with encephalomyopathic MDS caused by a homozygous missense mutation in ABAT that results in elevated GABA in subjects’ brains as well as decreased mtDNA levels in subjects’ fibroblasts. Nucleoside rescue and co-IP experiments pinpoint that ABAT functions in the mitochondrial nucleoside salvage pathway to facilitate conversion of dNDPs to dNTPs. Pharmacological inhibition of ABAT through the irreversible inhibitor Vigabatrin caused depletion of mtDNA in photoreceptor cells that was prevented through addition of dNTPs in cell culture media. This work reveals ABAT as a connection between GABA metabolism and nucleoside metabolism and defines a neurometabolic disorder that includes MDS. PMID:25738457

  15. Phenotyping GABA transaminase deficiency: a case description and literature review.

    PubMed

    Louro, Pedro; Ramos, Lina; Robalo, Conceição; Cancelinha, Cândida; Dinis, Alexandra; Veiga, Ricardo; Pina, Raquel; Rebelo, Olinda; Pop, Ana; Diogo, Luísa; Salomons, Gajja S; Garcia, Paula

    2016-09-01

    Gamma-aminobutyric acid transaminase (GABA-T) deficiency is an autosomal recessive disorder reported in only three unrelated families. It is caused by mutations in the ABAT gene, which encodes 4-aminobutyrate transaminase, an enzyme of GABA catabolism and mitochondrial nucleoside salvage. We report the case of a boy, deceased at 12 months of age, with early-onset epileptic encephalopathy, severe psychomotor retardation, hypotonia, lower-limb hyporeflexia, central hypoventilation, and rapid increase in weight and, to a lesser rate, length and head circumference. He presented signs of premature pubarche, thermal instability, and water-electrolyte imbalance. Serum total testosterone was elevated (43.3 ng/dl; normal range <16), as well as serum growth hormone (7.7 ng/ml; normal range <1). Brain magnetic resonance imaging (MRI) showed decreased myelination and generalized brain atrophy, later confirmed by post-mortem examination. ABAT gene sequencing was performed post-mortem, identifying a homozygous variant c.888G > T (p.Gln296His),not previously described. In vitro analysis concluded that this variant is pathogenic. The clinical features of this patient are similar to those reported so far in GABA-T deficiency. However, distinct mutations may have a different effect on enzymatic activity, which potentially could lead to a variable clinical outcome. Clinical investigation aiming for a diagnosis should not end with the patient's death, as it may allow a more precise genetic counselling for the family. PMID:27376954

  16. Phenibut (beta-phenyl-GABA): a tranquilizer and nootropic drug.

    PubMed

    Lapin, I

    2001-01-01

    Phenibut (beta-phenyl-gamma-aminobutyric acid HCl) is a neuropsychotropic drug that was discovered and introduced into clinical practice in Russia in the 1960s. It has anxiolytic and nootropic (cognition enhancing) effects. It acts as a GABA-mimetic, primarily at GABA(B) and, to some extent, at GABA(A) receptors. It also stimulates dopamine receptors and antagonizes beta-phenethylamine (PEA), a putative endogenous anxiogenic. The psychopharmacological activity of phenibut is similar to that of baclofen, a p-Cl-derivative of phenibut. This article reviews the structure-activity relationship of phenibut and its derivatives. Emphasis is placed on the importance of the position of the phenyl ring, the role of the carboxyl group, and the activity of optical isomers. Comparison of phenibut with piracetam and diazepam reveals similarities and differences in their pharmacological and clinical effects. Phenibut is widely used in Russia to relieve tension, anxiety, and fear, to improve sleep in psychosomatic or neurotic patients; as well as a pre- or post-operative medication. It is also used in the therapy of disorders characterized by asthenia and depression, as well as in post-traumatic stress, stuttering and vestibular disorders. PMID:11830761

  17. Photon-Manipulated Drug Release from Mesoporous Nanocontainer Controlled by Azobenzene-Modified Nucleic Acid

    PubMed Central

    Yuan, Quan; Zhang, Yunfei; Chen, Tao; Lu, Danqing; Zhao, Zilong; Zhang, Xiaobing; Li, Zhenxing; Yan, Chun-Hua; Tan, Weihong

    2012-01-01

    Herein a photon manipulated mesoporous release system was constructed based on azobenzene-modified nucleic acids. In this system, the azobenzene-incorporated DNA double strands were immobilized at the pore mouth of meso-porous silica nanoparticles. The photo-isomerization of azobenzene induced dehybridization/hybridization switch of complementary DNA, causing uncapping/capping of pore gates of mesoporous silica. This nanoplatform permits holding of guest molecules within the nanopores under visible light but release them when light wavelength turns to UV range. These DNA/mesoporous silica hybrid nanostructures were exploited as carriers for cancer cell chemotherapy drug doxorubicin (DOX) due to its stimuli-responsive property as well as good biocompatibility via MTT assay. It is found that the drug release behavior is light wavelength sensitive. Switching of the light from visible to UV range uncapped the pores causes the release of DOX from the mesoporous silica nanospheres and an obvious cytotoxic effect on cancer cells. We envision that this photo-controlled drug release system could find potential applications in cancer therapy. PMID:22670595

  18. Effects of processing on the release profiles of matrix systems containing 5-aminosalicylic acid.

    PubMed

    Korbely, Anita; Kelemen, András; Kása, Péter; Pintye-Hódi, Klára

    2012-12-01

    The aim of this study was to investigate the influence of different processing methods on the profiles of 5-aminosalicylic acid dissolution from controlled-release matrix systems based on Eudragit® RL and Eudragit® RS water-insoluble polymers. The pure polymers and their mixtures were studied as matrix formers using different processing methods, i.e., direct compression, wet granulation of the active ingredient with the addition of polymer(s) to the external phase, wet granulation with water, and wet granulation with aqueous dispersions. In comparison with the directly compressed tablets, tablets made by wet granulation with water demonstrated a 6-19% increase in final drug dissolution, whereas when polymers were applied in the external phase during compression, a 0-13% decrease was observed in the amount of drug released. Wet granulation with aqueous polymer dispersions delayed the release of the drug; this was especially marked (a 54-56% decrease in drug release) in compositions, which contained a high amount of Eudragit RL 30D. The release profiles were mostly described by the Korsmeyer-Peppas model or the Hopfenberg model. PMID:23054987

  19. Release of arachidonic acid from oligodendrocytes by terminal complement proteins, C5b-C9

    SciTech Connect

    Shirazi, Y.; Imagawa, D.K.; Shin, M.L.

    1986-03-01

    Activation of C5b-C9 on monocytes, macrophages, platelets and neutrophils induces membrane lipid hydrolysis and generates arachidonic acid (AA) and its oxygenated derivatives. Additionally, activation of C5b-C9 and myelin lipid hydrolysis has been observed in demyelination. The authors have investigated the modulatory effect of C5b-9 on membrane lipid hydrolysis of oligodendrocytes (OLG), the myelin producing cells in the central nervous system. Antibody-sensitized rat OLG, prelabeled with /sup 14/C AA were treated with excess C6-deficient rabbit serum reconstituted with limiting doses of C6. Qualitative analysis of the supernatants by HPLC revealed the presence of both cyclooxygenase and lipooxygenase products. Prostaglandin E/sub 2/, leukotriene (LT) E/sub 4/, LTB/sub 4/ and free AA were the major radiolabeled products. The kinetics and dose response of LTB/sub 4/ release with respect to the cytolytic dose of C5b-9 were quantitated by radioimmunoassay. LTB/sub 4/ release approached maximum in 1 hr and higher amounts were detected with fewer C5b-9 channels. Addition of C8 to OLG bearing C5b-7 intermediates induced maximum LTB/sub 4/ release without further enhancement by C9 in contrast to the absolute requirement of C9 in mediator release from rat neutrophils. Thus, the requirement of C5b-8 or C5b-9 in mediator release appears to be cell-type dependent.

  20. Ionotropic GABA and Glutamate Receptor Mutations and Human Neurologic Diseases

    PubMed Central

    Yuan, Hongjie; Low, Chian-Ming; Moody, Olivia A.; Jenkins, Andrew

    2015-01-01

    The advent of whole exome/genome sequencing and the technology-driven reduction in the cost of next-generation sequencing as well as the introduction of diagnostic-targeted sequencing chips have resulted in an unprecedented volume of data directly linking patient genomic variability to disorders of the brain. This information has the potential to transform our understanding of neurologic disorders by improving diagnoses, illuminating the molecular heterogeneity underlying diseases, and identifying new targets for therapeutic treatment. There is a strong history of mutations in GABA receptor genes being involved in neurologic diseases, particularly the epilepsies. In addition, a substantial number of variants and mutations have been found in GABA receptor genes in patients with autism, schizophrenia, and addiction, suggesting potential links between the GABA receptors and these conditions. A new and unexpected outcome from sequencing efforts has been the surprising number of mutations found in glutamate receptor subunits, with the GRIN2A gene encoding the GluN2A N-methyl-d-aspartate receptor subunit being most often affected. These mutations are associated with multiple neurologic conditions, for which seizure disorders comprise the largest group. The GluN2A subunit appears to be a locus for epilepsy, which holds important therapeutic implications. Virtually all α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor mutations, most of which occur within GRIA3, are from patients with intellectual disabilities, suggesting a link to this condition. Similarly, the most common phenotype for kainate receptor variants is intellectual disability. Herein, we summarize the current understanding of disease-associated mutations in ionotropic GABA and glutamate receptor families, and discuss implications regarding the identification of human mutations and treatment of neurologic diseases. PMID:25904555

  1. An evaluation of trace element release associated with acid mine drainage

    NASA Astrophysics Data System (ADS)

    Sullivan, Patrick J.; Yelton, Jennifer L.

    1988-12-01

    The determination of trace element release from geologic materials, such as oil shale and coal overburden, is important for proper solid waste management planning. The objective of this study was to determine a correlation between trace element residency and concentration to trace element release using the following methods: (1) sequential selective dissolution for determining trace element residencies, (2) toxicity characteristic leaching procedure (TCLP), and (3) humidity cell weathering study simulating maximum trace element release. Two eastern oil shales were used, a New albany shale that contains 4.6 percent pyrite, and a Chattanooga shale that contains 1.5 percent pyrite. Each shale was analyzed for elemental concentrations by soluble, adsorbed, organic, carbonate, and sulfide phases. All leachates were analyzed to determine total trace element concentrations. The results of the selective dissolution studies show that each trace element has a unique distribution between the various phases. Thus, it is possible to predict trace element release based on trace element residency. The TCLP results show that this method is suitable for assessing soluble trace element release but does not realistically assess potential hazards. The results of the humidity cell studies do demonstrate a more reasonable method for predicting trace element release and potential water quality hazards. The humidity cell methods, however, require months to obtain the required data with a large number of analytical measurements. When the selective dissolution data are compared to the trace element concentrations in the TCLP and humidity cell leachates, it is shown that leachate concentrations are predicted by the selective dissolution data. Therefore, selective dissolution may represent a rapid method to assess trace element release associated with acid mine drainage.

  2. The impact of GABA in harpin-elicited biotic stress responses in Nicotiana tabaccum.

    PubMed

    Dimlioğlu, Gizem; Daş, Zeycan Akcan; Bor, Melike; Özdemir, Filiz; Türkan, İsmail

    2015-09-01

    Harpin is a bacterial elicitor protein that was first isolated from Erwinia amylovora. Infiltration of this elicitor into the leaves of plants activates systemic acquired resistance against a variety of plant pathogens via the salicyclic acid defense pathway. The non-protein amino acid, neurotransmission inhibitor molecule of mammals-GABA- is found in all organisms and is known to be an important component of stress responses in plants. We hypothesized a possible interaction between harpin-induced defense responses and GABA shunt. Therefore, we conducted experiments on harpin-infiltrated tobacco and analyzed the components of GABA shunt in relation to growth, photosynthesis and H2O2 levels. RGR, RWC and photosynthetic efficiency were all affected in harpin-infiltrated tobacco leaves, but the rate of decline was more remarkable on RGR. H2O2 levels showed significant difference on 7 days after harpin infiltration when the necrotic lesions were also visible. GABA accumulation was increased and glutamate levels were decreased parallel to the differences in GDH and GAD enzyme activities, especially on days 5 and 7 of harpin infiltration. Transcript abundance of GDH and GAD encoding genes were differentially regulated in harpin-infiltrated leaves as compared to that of control and mock groups. In the present study, for the first time we showed a relationship between harpin-elicited responses and GABA in tobacco that was not mediated by H2O2 accumulation. Harpin infiltration significantly induced the first components of the GABA shunt such as GDH, GAD, glutamate and GABA in tobacco. PMID:26432406

  3. Influence of admixed citric acid on the release profile of pelanserin hydrochloride from HPMC matrix tablets.

    PubMed

    Espinoza, R; Hong, E; Villafuerte, L

    2000-05-25

    Pelanserin is a weakly basic experimental drug with a short half-life and a prolonged release formulation was developed using hydroxypropyl methylcellulose (HPMC) and citric acid to set up a system bringing about gradual release of this drug. For this purpose powder mixtures were wet granulated with water and compressed with a hydraulic press at 55 MPa. Dissolution studies were made using 900 ml HCl 0.1 N, the first 3 h, and phosphate buffer pH 7.4, h 3-8. Dissolution curves were described by M(t)/M(inf)=kt(n), applied separately for each dissolution medium. The dissolution mechanism involved a coupled diffusion/relaxation with a trend favoring the diffusion mechanism with increasing citric acid concentrations. Increasing concentrations of citric acid produced increasing values of the kinetic constants, in a cubic relationship. Higher HPMC proportions produced slower dissolution rates but with a citric acid compensating more clearly a decreased solubility of pelanserin at pH 7.4. Individually calculated dissolution curves showed experimental 8 h pelanserin dissolution in a range of 65-99% for matrices with 100 mg HPMC/tab., while those with 200 mg HPMC/tab. were in the range 57-73%. PMID:10878323

  4. Arachidonate metabolism, 5-hydroxytryptamine release and aggregation in human platelets activated by palmitaldehyde acetal phosphatidic acid.

    PubMed Central

    Brammer, J. P.; Maguire, M. H.

    1984-01-01

    Palmitaldehyde acetal phosphatidic acid ( PGAP ) caused dose-dependent aggregation of human platelets resuspended in modified Tyrode medium, with a threshold concentration of 0.5-1 microM and an EC50 of 4 microM. Concentrations of PGAP which elicited biphasic irreversible aggregation concomitantly induced formation of 1.02 +/- 0.029 nmol (mean +/- s.e. mean) of malondialdehyde (MDA) per 10(9) platelets and caused release of 58 +/- 2.8% of platelet [14C]-5-hydroxytryptamine ([14C]-5-HT) from prelabelled platelets; no MDA formation or [14C]-5-HT release occurred at lower doses of PGAP which elicited only monophasic reversible aggregation. Adenosine 5'-pyrophosphate (ADP)-induced platelet activation resulted in formation of 0.344 +/- 0.004 nmol of MDA per 10(9) platelets in association with irreversible aggregation and 49.1 +/- 1% release of [14C]-5-HT. Mepacrine, a phospholipase A2 inhibitor, at 2.5 microM reduced PGAP -induced MDA formation and [14C]-5-HT release by the resuspended platelets without affecting irreversible aggregation; higher concentrations of mepacrine abolished all three responses. Chlorpromazine, a calmodulin antagonist, similarly inhibited PGAP -induced MDA formation and irreversible aggregation, and at 100 microM abolished monophasic aggregation. The cyclo-oxygenase inhibitor indomethacin caused a concentration-dependent reduction of PGAP -induced MDA formation by resuspended human platelets without significantly inhibiting [14C]-5-HT release or irreversible aggregation; concentrations (greater than or equal to 1.75 microM) which inhibited MDA formation by more than 94% abolished [14C]-5-HT release, and converted second phase irreversible aggregation to an extensive reversible response. 2-Methylthioadenosine 5'-phosphate (2 methylthio-AMP), an ADP antagonist, inhibited PGAP -induced MDA formation, [14C]-5-HT release and second phase aggregation in the human platelet suspensions in a parallel, concentration-dependent manner; at 9.4 microM 2

  5. The alpha 1-adrenergic transduction system in hamster brown adipocytes. Release of arachidonic acid accompanies activation of phospholipase C.

    PubMed Central

    Schimmel, R J

    1988-01-01

    Previous studies of brown adipocytes identified an increased breakdown of phosphoinositides after selective alpha 1-adrenergic-receptor activation. The present paper reports that this response, elicited with phenylephrine in the presence of propranolol and measured as the accumulation of [3H]inositol phosphates, is accompanied by increased release of [3H]arachidonic acid from cells prelabelled with [3H]arachidonic acid. Differences between stimulated arachidonic acid release and formation of inositol phosphates included a requirement for extracellular Ca2+ for stimulated release of arachidonic acid but not for the formation of inositol phosphates and the preferential inhibition of inositol phosphate formation by phorbol 12-myristate 13-acetate. The release of arachidonic acid in response to phenylephrine was associated with an accumulation of [3H]arachidonic acid-labelled diacylglycerol, and this response was not dependent on extracellular Ca2+ but was partially prevented by treatment with the phorbol ester. The release of arachidonic acid was also stimulated by melittin, which increases the activity of phospholipase A2, by ionophore A23187, by lipolytic stimulation with forskolin and by exogenous phospholipase C. The arachidonic acid response to phospholipase C was completely blocked by RHC 80267, an inhibitor of diacylglycerol lipase, but this inhibitor had no effect on release stimulated with melittin or A23187 and inhibited phenylephrine-stimulated release by only 40%. The arachidonate response to forskolin was additive with the responses to either phenylephrine or exogenous phospholipase C. These data indicate that brown adipocytes are capable of releasing arachidonic acid from neutral lipids via triacylglycerol lipolysis, and from phospholipids via phospholipase A2 or by the sequential activities of phospholipase C and diacylglycerol lipase. Our findings also suggest that the action of phenylephrine to promote the liberation of arachidonic acid utilizes both

  6. Selectively crosslinked hyaluronic acid hydrogels for sustained release formulation of erythropoietin.

    PubMed

    Motokawa, Keiko; Hahn, Sei Kwang; Nakamura, Teruo; Miyamoto, Hajime; Shimoboji, Tsuyoshi

    2006-09-01

    A novel sustained release formulation of erythropoietin (EPO) was developed using hyaluronic acid (HA) hydrogels. For the preparation of HA hydrogels, adipic acid dihydrazide grafted HA (HA-ADH) was synthesized and analyzed with (1)H NMR. The degree of HA-ADH modification was about 69%. EPO was in situ encapsulated into HA-ADH hydrogels through a selective cross-linking reaction of bis(sulfosuccinimidyl) suberate (BS(3)) to hydrazide group (pK(a) = 3.0) of HA-ADH rather than to amine group (pK(a) > 9) of EPO. The denaturation of EPO during HA-ADH hydrogel synthesis was drastically reduced with decreasing pH from 7.4 to 4.8. The specific reactivity of BS(3) to hydrazide at pH = 4.8 might be due to its low pK(a) compared with that of amine. In vitro release of EPO in phosphate buffered saline at 37 degrees C showed that EPO was released rapidly for 2 days and then slowly up to 4 days from HA-ADH hydrogels. When the hydrogels were dried at 37 degrees C for a day, however, longer release of EPO up to 3 weeks could be demonstrated. According to in vivo release test of EPO from HA-ADH hydrogels in SD rats, elevated EPO concentration higher than 0.1 ng/mL could be maintained from 7 days up to 18 days depending on the preparation methods of HA-ADH hydrogels. There was no adverse effect during and after HA-ADH hydrogel implantation. PMID:16721757

  7. Serotonin as a Modulator of Glutamate- and GABA-Mediated Neurotransmission: Implications in Physiological Functions and in Pathology

    PubMed Central

    Ciranna, L

    2006-01-01

    The neurotransmitter serotonin (5-HT), widely distributed in the central nervous system (CNS), is involved in a large variety of physiological functions. In several brain regions 5-HT is diffusely released by volume transmission and behaves as a neuromodulator rather than as a “classical” neurotransmitter. In some cases 5-HT is co-localized in the same nerve terminal with other neurotransmitters and reciprocal interactions take place. This review will focus on the modulatory action of 5-HT on the effects of glutamate and γ-amino-butyric acid (GABA), which are the principal neurotransmitters mediating respectively excitatory and inhibitory signals in the CNS. Examples of interaction at pre-and/or post-synaptic levels will be illustrated, as well as the receptors involved and their mechanisms of action. Finally, the physiological meaning of neuromodulatory effects of 5-HT will be briefly discussed with respect to pathologies deriving from malfunctioning of serotonin system. PMID:18615128

  8. Evidence That GABA Mediates Dopaminergic and Serotonergic Pathways Associated with Locomotor Activity in Juvenile Chinook Salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Clements, S.; Schreck, C.B.

    2004-01-01

    The authors examined the control of locomotor activity in juvenile salmon (Oncorhynchus tshawytscha) by manipulating 3 neurotransmitter systems-gamma-amino-n-butyric acid (GABA), dopamine, and serotonin-as well as the neuropeptide corticotropin releasing hormone (CRH). Intracerebroventricular (ICV) injections of CRH and the GABAAagonist muscimol stimulated locomotor activity. The effect of muscimol was attenuated by administration of a dopamine receptor antagonist, haloperidol. Conversely, the administration of a dopamine uptake inhibitor (4???,4??? -difluoro-3-alpha-[diphenylmethoxy] tropane hydrochloride [DUI]) potentiated the effect of muscimol. They found no evidence that CRH-induced hyperactivity is mediated by dopaminergic systems following concurrent injections of haloperidol or DUI with CRH. Administration of muscimol either had no effect or attenuated the locomotor response to concurrent injections of CRH and fluoxetine, whereas the GABAA antagonist bicuculline methiodide potentiated the effect of CRH and fluoxetine.

  9. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase.

    PubMed

    Sahonero-Canavesi, Diana X; Sohlenkamp, Christian; Sandoval-Calderón, Mario; Lamsa, Anne; Pogliano, Kit; López-Lara, Isabel M; Geiger, Otto

    2015-09-01

    Phospholipids are well known for their membrane-forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth. PMID:25711932

  10. Cathepsin B-sensitive polymers for compartment-specific degradation and nucleic acid release

    PubMed Central

    Chu, David S.H.; Johnson, Russell N.; Pun, Suzie H.

    2011-01-01

    Degradable cationic polymers are desirable for in vivo nucleic acid delivery because they offer significantly decreased toxicity over non-degradable counterparts. Peptide linkers provide chemical stability and high specificity for particular endopeptidases but have not been extensively studied for nucleic acid delivery applications. In this work, enzymatically degradable peptide-HPMA copolymers were synthesized by RAFT polymerization of HPMA with methacrylated peptide macromonomers, resulting in polymers with low polydispersity and near quantitative incorporation of peptides. Three peptide-HPMA copolymers were evaluated: (i) pHCathK10, containing peptides composed of the linker phe-lys-phe-leu (FKFL), a substrate of the endosomal/lysosomal endopeptidase cathepsin B, connected to oligo-(l)-lysine for nucleic acid binding, (ii) pHCath(d)K10, containing the FKFL linker with oligo-(d)-lysine, and (iii) pH(d)Cath(d)K10, containing all (d) amino acids. Cathepsin B degraded copolymers pHCathK10 and pHCath(d)K10 within one hour while no degradation of pH(d)Cath(d)K10 was observed. Polyplexes formed with pHCathK10 copolymers show DNA release by 4 hrs of treatment with cathepsin B; comparatively, polyplexes formed with pHCath(d)K10 and pH(d)Cath(d)K10 show no DNA release within 8 hrs. Transfection efficiency in HeLa and NIH/3T3 cells were comparable between the copolymers but pHCathK10 was less toxic. This work demonstrates the successful application of peptide linkers for degradable cationic polymers and DNA release. PMID:22036879

  11. Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells.

    PubMed

    Kulikova, Veronika; Shabalin, Konstantin; Nerinovski, Kirill; Dölle, Christian; Niere, Marc; Yakimov, Alexander; Redpath, Philip; Khodorkovskiy, Mikhail; Migaud, Marie E; Ziegler, Mathias; Nikiforov, Andrey

    2015-11-01

    NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5'-nucleotidases (5'-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5'-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5'-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors. PMID:26385918

  12. Release of nitrous acid and nitrogen dioxide from nitrate photolysis in acidic aqueous solutions.

    PubMed

    Scharko, Nicole K; Berke, Andrew E; Raff, Jonathan D

    2014-10-21

    Nitrate (NO3(-)) is an abundant component of aerosols, boundary layer surface films, and surface water. Photolysis of NO3(-) leads to NO2 and HONO, both of which play important roles in tropospheric ozone and OH production. Field and laboratory studies suggest that NO3¯ photochemistry is a more important source of HONO than once thought, although a mechanistic understanding of the variables controlling this process is lacking. We present results of cavity-enhanced absorption spectroscopy measurements of NO2 and HONO emitted during photodegradation of aqueous NO3(-) under acidic conditions. Nitrous acid is formed in higher quantities at pH 2-4 than expected based on consideration of primary photochemical channels alone. Both experimental and modeled results indicate that the additional HONO is not due to enhanced NO3(-) absorption cross sections or effective quantum yields, but rather to secondary reactions of NO2 in solution. We find that NO2 is more efficiently hydrolyzed in solution when it is generated in situ during NO3(-) photolysis than for the heterogeneous system where mass transfer of gaseous NO2 into bulk solution is prohibitively slow. The presence of nonchromophoric OH scavengers that are naturally present in the environment increases HONO production 4-fold, and therefore play an important role in enhancing daytime HONO formation from NO3(-) photochemistry. PMID:25271384

  13. Opioid systems in the lateral hypothalamus regulate feeding behavior through orexin and GABA neurons.

    PubMed

    Ardianto, C; Yonemochi, N; Yamamoto, S; Yang, L; Takenoya, F; Shioda, S; Nagase, H; Ikeda, H; Kamei, J

    2016-04-21

    The hypothalamus controls feeding behavior. Since central opioid systems may regulate feeding behavior, we examined the role of μ-, δ- and κ-opioid receptors in the lateral hypothalamus (LH), the hunger center, in feeding behavior of mice. Non-selective (naloxone; 3 mg/kg, s.c.) and selective μ- (β-funaltrexamine, β-FNA; 10 mg/kg, s.c.), δ- (naltrindole; 3 mg/kg, s.c.) and κ- (norbinaltorphimine, norBNI; 20 mg/kg, s.c.) opioid receptor antagonists significantly decreased food intake in food-deprived mice. The injection of naloxone (20 μg/side) into the LH significantly decreased food intake whereas the injection of naloxone (20 μg/side) outside of the LH did not affect food intake. The injection of β-FNA (2 μg/side), naltrindole (1 μg/side) or norBNI (2 μg/side) into the LH significantly decreased food intake. Furthermore, all these antagonists significantly decreased the mRNA level of preproorexin, but not those of other hypothalamic neuropeptides. In addition, the injection of the GABAA receptor agonist muscimol (5 μg/side) into the LH significantly decreased food intake, and this effect was abolished by the GABAA receptor antagonist bicuculline (50 μg/side). Muscimol (1mg/kg, i.p.) decreased the mRNA level of preproorexin in the hypothalamus. Naloxone (3mg/kg, s.c.) significantly increased the GABA level in the LH and both bicuculline and the GABA release inhibitor 3-mercaptopropionic acid (3-MP, 5 μg/side) attenuated the inhibitory effect of naloxone on feeding behavior. 3-MP also attenuated the effects of β-FNA and norBNI, but not that of naltrindole. These results show that opioid systems in the LH regulate feeding behavior through orexin neurons. Moreover, μ- and κ-, but not δ-, opioid receptor antagonists inhibit feeding behavior by activating GABA neurons in the LH. PMID:26855191

  14. GABA and glycine in the developing brain.

    PubMed

    Ito, Susumu

    2016-09-01

    GABA and glycine are major inhibitory neurotransmitters in the CNS and act on receptors coupled to chloride channels. During early developmental periods, both GABA and glycine depolarize membrane potentials due to the relatively high intracellular Cl(-) concentration. Therefore, they can act as excitatory neurotransmitters. GABA and glycine are involved in spontaneous neural network activities in the immature CNS such as giant depolarizing potentials (GDPs) in neonatal hippocampal neurons, which are generated by the synchronous activity of GABAergic interneurons and glutamatergic principal neurons. GDPs and GDP-like activities in the developing brains are thought to be important for the activity-dependent functiogenesis through Ca(2+) influx and/or other intracellular signaling pathways activated by depolarization or stimulation of metabotropic receptors. However, if GABA and glycine do not shift from excitatory to inhibitory neurotransmitters at the birth and in maturation, it may result in neural disorders including autism spectrum disorders. PMID:26951057

  15. Controlled release of tyrosol and ferulic acid encapsulated in chitosan-gelatin films after electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Benbettaïeb, Nasreddine; Assifaoui, Ali; Karbowiak, Thomas; Debeaufort, Frédéric; Chambin, Odile

    2016-01-01

    This work deals with the study of the release kinetics of antioxidants (ferulic acid and tyrosol) incorporated into chitosan-gelatin edible films after irradiation processes. The aim was to determine the influence of electron beam irradiation (at 60 kGy) on the retention of antioxidants in the film, their release in water (pH=7) at 25 °C, in relation with the barrier and mechanical properties of biopolymer films. The film preparation process coupled to the irradiation induced a loss of about 20% of tyrosol but did not affect the ferulic acid content. However, 27% of the ferulic acid remained entrapped in the biopolymer network during the release experiments whereas all tyrosol was released. Irradiation induced a reduction of the release rate for both compounds, revealing that cross-linking occurred during irradiation. This was confirmed by the mechanical properties enhancement which tensile strength value significantly increased and by the reduction of permeabilities. Although molecular weights, molar volume and molecular radius of the two compounds are very similar, the effective diffusivity of tyrosol was 40 times greater than that of ferulic acid. The much lower effective diffusion coefficient of ferulic acid as determined from the release kinetics was explained by the interactions settled between ferulic acid molecules and the gelatin-chitosan matrix. As expected, the electron beam irradiation allowed modulating the retention and then the release of antioxidants encapsulated.

  16. Properties and mechanisms of drug release from matrix tablets containing poly(ethylene oxide) and poly(acrylic acid) as release retardants.

    PubMed

    Zhang, Feng; Meng, Fan; Lubach, Joseph; Koleng, Joseph; Watson, N A

    2016-08-01

    The interactions between poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) in aqueous medium at pH 6.8 were investigated in the current study. We have also studied the effect of interpolymer interactions and various formulation variables, including the molecular weight of PEO, the ratio between PEO and PAA, the crystallinity of PEO, and the presence of an acidifying agent, on the release of theophylline from matrix tablets containing both PEO and PAA as release retardants. At pH 6.8, the synergy in solution viscosity between PEO and PAA as the result of ion-dipole interaction was observed in this study. The release of theophylline from the matrix tablets containing physical mixtures of PEO and PAA was found to be a function of dissolution medium pH because of the pH-dependent interactions between these two polymers. Because of the formation of water insoluble interpolymer complex between PEO and PAA in aqueous medium at pH below 4.0, the release of theophylline was independent of PEO molecular weight and was controlled by Fickian diffusion mechanism in 0.01N hydrochloric acid solution. In comparison, the drug release was a function of PEO molecular weight and followed the anomalous transport mechanism in phosphate buffer pH 6.8. The presence of PAA exerted opposite effects on the release of theophylline in phosphate buffer pH 6.8. In one aspect, theophylline release was accelerated because the erosion of PAA was much faster than that of PEO at pH6.8. On the opposite aspect, theophylline release was slowed down because of the formation of insoluble complex inside the gel layer as the result of the acidic microenvironment induced by PAA, and the increase in the viscosity of the gel layer as the result of the synergy between PEO and PAA. These two opposite effects offset each other. As a result, the release of theophylline remained statistically the same even when 75% PEO in the formulation was replaced with PAA. In phosphate buffer pH 6.8, the release of

  17. Corynebacterium accolens Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols

    PubMed Central

    Bomar, Lindsey; Brugger, Silvio D.; Yost, Brian H.; Davies, Sean S.

    2016-01-01

    ABSTRACT Bacterial interspecies interactions play clinically important roles in shaping microbial community composition. We observed that Corynebacterium spp. are overrepresented in children free of Streptococcus pneumoniae (pneumococcus), a common pediatric nasal colonizer and an important infectious agent. Corynebacterium accolens, a benign lipid-requiring species, inhibits pneumococcal growth during in vitro cocultivation on medium supplemented with human skin surface triacylglycerols (TAGs) that are likely present in the nostrils. This inhibition depends on LipS1, a TAG lipase necessary for C. accolens growth on TAGs such as triolein. We determined that C. accolens hydrolysis of triolein releases oleic acid, which inhibits pneumococcus, as do other free fatty acids (FFAs) that might be released by LipS1 from human skin surface TAGs. Our results support a model in which C. accolens hydrolyzes skin surface TAGS in vivo releasing antipneumococcal FFAs. These data indicate that C. accolens may play a beneficial role in sculpting the human microbiome. PMID:26733066

  18. Controlled release of anti-diabetic drug Gliclazide from poly(caprolactone)/poly(acrylic acid) hydrogels.

    PubMed

    Bajpai, S K; Chand, Navin; Soni, Shweta

    2015-01-01

    Drug Gliclazide (Glz) has limited solubility and low bioavailability. In order to obtain a controlled release of this drug and to improve its bioavailability, the drug has been loaded into poly(caprolactone) (PCL)/poly(acrylic acid) (PAAc) hydrogels, prepared by free radical polymerization of acrylic acid in the presence of poly(caprolactone) in acetone medium using azo-isobutyronitrile as initiator and N,N' methylene bisacrylamide as cross-linking agent. The swelling behaviour of these hydrogels has been investigated in the physiological gastric and intestinal fluids to obtain an optimum composition suitable for delivery of a biologically active compound. The gels were loaded with anti-diabetic drug Glz and a detailed investigation of release of drug has been carried out. Various kinetic models have been applied on the release data. Finally, the Albino wistar rats were treated for Streptozotocin plus nicotinamide - induced diabetes using a Glz-loaded PCL/PAAc hydrogel. The results indicated a fair reduction in the glucose level of rats. PMID:26135033

  19. The cysteine releasing pattern of some antioxidant thiazolidine-4-carboxylic acids.

    PubMed

    Önen Bayram, F Esra; Sipahi, Hande; Acar, Ebru Türköz; Kahveci Ulugöl, Reyhan; Buran, Kerem; Akgün, Hülya

    2016-05-23

    Oxidative stress that corresponds to a significant increase in free radical concentration in cells can cause considerable damage to crucial biological macromolecules if not prevented by cellular defense mechanisms. The low-molecular-weight thiol glutathione (GSH) constitutes one of the main intracellular antioxidants. It is synthesized via cysteine, an amino acid found only in limited amounts in cells because of its neurotoxicity. Thus, to ensure an efficient GSH synthesis in case of an oxidative stress, cysteine should be provided extracellularly. Yet, given its nucleophilic properties and its rapid conversion into cystine, its corresponding disulfide, cysteine presents some toxicity and therefore is usually supplemented in a prodrug approach. Here, some thiazolidine-4-carboxylic acids were synthesized and evaluated for their antioxidant properties via the DDPH and CUPRAC assays. Then, the cysteine releasing capacity of the obtained compounds was investigated in aqueous and organic medium in order to correlate the relevant antioxidant properties of the molecules with their cysteine releasing pattern. As a result, the structures' antioxidative properties were not only attributed to cysteine release but also to the thiazolidine cycle itself. PMID:27017266

  20. Effect of lactobionic acid on the acidification, rheological properties and aroma release of dairy gels.

    PubMed

    Ribeiro, Jéssica C Bigaski; Granato, Daniel; Masson, Maria Lucia; Andriot, Isabelle; Mosca, Ana Carolina; Salles, Christian; Guichard, Elisabeth

    2016-09-15

    The food industry is investigating new technological applications of lactobionic acid (LBA). In the current work, the effect of lactobionic acid on the acidification of dairy gels (pH 5.5 and 6.2), rheological properties using a double compression test, sodium mobility using (23)Na NMR technique and aroma release using headspace GC-FID were studied. Our results showed that it is possible to use LBA as an alternative to glucono-δ-lactone (GDL) for the production of dairy gels with a controlled pH value. Small differences in the rheological properties and in the amount of aroma volatile organic compounds that were released in the vapour phase, but no significant difference in the sodium ion mobility were obtained. The gels produced with LBA were less firm and released less volatile aroma compounds than the gels produced with GDL. The gels at pH 6.2 were firmer than those at pH 5.5 and had a more organised structure around the sodium ions. PMID:27080885

  1. Nitric oxide-releasing poly(lactic-co-glycolic acid)-polyethylenimine nanoparticles for prolonged nitric oxide release, antibacterial efficacy, and in vivo wound healing activity.

    PubMed

    Nurhasni, Hasan; Cao, Jiafu; Choi, Moonjeong; Kim, Il; Lee, Bok Luel; Jung, Yunjin; Yoo, Jin-Wook

    2015-01-01

    Nitric oxide (NO)-releasing nanoparticles (NPs) have emerged as a wound healing enhancer and a novel antibacterial agent that can circumvent antibiotic resistance. However, the NO release from NPs over extended periods of time is still inadequate for clinical application. In this study, we developed NO-releasing poly(lactic-co-glycolic acid)-polyethylenimine (PEI) NPs (NO/PPNPs) composed of poly(lactic-co-glycolic acid) and PEI/diazeniumdiolate (PEI/NONOate) for prolonged NO release, antibacterial efficacy, and wound healing activity. Successful preparation of PEI/NONOate was confirmed by proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, and ultraviolet/visible spectrophotometry. NO/PPNPs were characterized by particle size, surface charge, and NO loading. The NO/PPNPs showed a prolonged NO release profile over 6 days without any burst release. The NO/PPNPs exhibited potent bactericidal efficacy against methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa concentration-dependently and showed the ability to bind on the surface of the bacteria. We also found that the NO released from the NO/PPNPs mediates bactericidal efficacy and is not toxic to healthy fibroblast cells. Furthermore, NO/PPNPs accelerated wound healing and epithelialization in a mouse model of a MRSA-infected wound. Therefore, our results suggest that the NO/PPNPs presented in this study could be a suitable approach for treating wounds and various skin infections. PMID:25960648

  2. Nitric oxide-releasing poly(lactic-co-glycolic acid)-polyethylenimine nanoparticles for prolonged nitric oxide release, antibacterial efficacy, and in vivo wound healing activity

    PubMed Central

    Nurhasni, Hasan; Cao, Jiafu; Choi, Moonjeong; Kim, Il; Lee, Bok Luel; Jung, Yunjin; Yoo, Jin-Wook

    2015-01-01

    Nitric oxide (NO)-releasing nanoparticles (NPs) have emerged as a wound healing enhancer and a novel antibacterial agent that can circumvent antibiotic resistance. However, the NO release from NPs over extended periods of time is still inadequate for clinical application. In this study, we developed NO-releasing poly(lactic-co-glycolic acid)-polyethylenimine (PEI) NPs (NO/PPNPs) composed of poly(lactic-co-glycolic acid) and PEI/diazeniumdiolate (PEI/NONOate) for prolonged NO release, antibacterial efficacy, and wound healing activity. Successful preparation of PEI/NONOate was confirmed by proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, and ultraviolet/visible spectrophotometry. NO/PPNPs were characterized by particle size, surface charge, and NO loading. The NO/PPNPs showed a prolonged NO release profile over 6 days without any burst release. The NO/PPNPs exhibited potent bactericidal efficacy against methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa concentration-dependently and showed the ability to bind on the surface of the bacteria. We also found that the NO released from the NO/PPNPs mediates bactericidal efficacy and is not toxic to healthy fibroblast cells. Furthermore, NO/PPNPs accelerated wound healing and epithelialization in a mouse model of a MRSA-infected wound. Therefore, our results suggest that the NO/PPNPs presented in this study could be a suitable approach for treating wounds and various skin infections. PMID:25960648

  3. A selective defect in arachidonic acid release from macrophage membranes in high potassium media.

    PubMed

    Aderem, A A; Scott, W A; Cohn, Z A

    1984-10-01

    Murine peritoneal macrophages cultured in minimal essential medium (alpha-MEM; 118 mM Na+, 5 mM K+) released arachidonic acid (20:4) from phospholipids on encountering a phagocytic stimulus of unopsonized zymosan. In high concentrations of extracellular K+ (118 mM), 3H release from cells prelabeled with [3H]20:4 was inhibited 80% with minimal reduction (18%) in phagocytosis. The inhibitory effect of K+ on 20:4 release was fully reversed on returning cells to medium containing Na+ (118 mM). Preingestion of zymosan particles by macrophages maintained in high K+ medium resulted in cells being "primed" for 20:4 release, which was only effected (without the further addition of particles) by changing the medium to one containing Na+. In contrast, 20:4 release from cells stimulated with the calcium ionophore A23187 was unimpaired by the elevated K+ medium, suggesting no direct effect of high K+ on the phospholipase. Macrophages stimulated with zymosan in alpha-MEM metabolized the released 20:4 to prostacyclin, prostaglandin E2 (PGE2), and leukotriene C (LTC). The smaller quantity of released 20:4 in high K+ medium was recovered as 6-Keto-PGF1 alpha, the breakdown product of prostacyclin, and PGE2. No LTC was synthesized. In high K+, resting (no zymosan) macrophages synthesized hydroxyeicosatetraenoic acids from exogeneously supplied 20:4 in proportions similar to cells maintained in alpha-MEM. These findings and the similarity of products (including LTC) produced by A23187 stimulated cells in alpha-MEM and high K+ medium indicated that the cyclooxygenase and lipoxygenase pathway enzymes were not directly inhibited by high extracellular K+. We conclude that high concentrations of extracellular K+ uncouple phagocytosis of unopsonized zymosan from the induction of the phospholipase responsible for the 20:4 cascade and suggest that the lesion is at the level of signal transduction between the receptor-ligand complex and the phospholipase. PMID:6434547

  4. Enhanced Nitrogen Availability in Karst Ecosystems by Oxalic Acid Release in the Rhizosphere.

    PubMed

    Pan, Fujing; Liang, Yueming; Zhang, Wei; Zhao, Jie; Wang, Kelin

    2016-01-01

    In karst ecosystems, a high level of CaCO3 enhances the stabilization of soil organic matter (SOM) and causes nitrogen (N) and/or phosphorus (P) limitation in plants. Oxalic acid has been suggested to be involved in the nutrient-acquisition strategy of plants because its addition can temporarily relieve nutrient limitation. Therefore, understanding how oxalic acid drives N availability may help support successful vegetation restoration in the karst ecosystems of southwest China. We tested a model suggested by Clarholm et al. (2015) where oxalate reacts with Ca bridges in SOM, thus exposing previously protected areas to enzymatic attacks in a way that releases N for local uptake. We studied the effects of oxalic acid, microbial biomass carbon (MBC), and β-1,4-N-acetylglucosaminidase (NAG) on potential N mineralization rates in rhizosphere soils of four plant species (two shrubs and two trees) in karst areas. The results showed that rhizosphere soils of shrubs grown on formerly deforested land had significantly lower oxalic acid concentrations and NAG activity than that of trees in a 200-year-old forest. The levels of MBC in rhizosphere soils of shrubs were significantly lower than those of trees in the growing season, but the measure of shrubs and trees were similar in the non-growing season; the potential N mineralization rates showed a reverse pattern. Positive relationships were found among oxalic acid, MBC, NAG activity, and potential N mineralization rates for both shrubs and trees. This indicated that oxalic acid, microbes, and NAG may enhance N availability for acquisition by plants. Path analysis showed that oxalic acid enhanced potential N mineralization rates indirectly through inducing microbes and NAG activities. We found that the exudation of oxalic acid clearly provides an important mechanism that allows plants to enhance nutrient acquisition in karst ecosystems. PMID:27252713

  5. Enhanced Nitrogen Availability in Karst Ecosystems by Oxalic Acid Release in the Rhizosphere

    PubMed Central

    Pan, Fujing; Liang, Yueming; Zhang, Wei; Zhao, Jie; Wang, Kelin

    2016-01-01

    In karst ecosystems, a high level of CaCO3 enhances the stabilization of soil organic matter (SOM) and causes nitrogen (N) and/or phosphorus (P) limitation in plants. Oxalic acid has been suggested to be involved in the nutrient-acquisition strategy of plants because its addition can temporarily relieve nutrient limitation. Therefore, understanding how oxalic acid drives N availability may help support successful vegetation restoration in the karst ecosystems of southwest China. We tested a model suggested by Clarholm et al. (2015) where oxalate reacts with Ca bridges in SOM, thus exposing previously protected areas to enzymatic attacks in a way that releases N for local uptake. We studied the effects of oxalic acid, microbial biomass carbon (MBC), and β-1,4-N-acetylglucosaminidase (NAG) on potential N mineralization rates in rhizosphere soils of four plant species (two shrubs and two trees) in karst areas. The results showed that rhizosphere soils of shrubs grown on formerly deforested land had significantly lower oxalic acid concentrations and NAG activity than that of trees in a 200-year-old forest. The levels of MBC in rhizosphere soils of shrubs were significantly lower than those of trees in the growing season, but the measure of shrubs and trees were similar in the non-growing season; the potential N mineralization rates showed a reverse pattern. Positive relationships were found among oxalic acid, MBC, NAG activity, and potential N mineralization rates for both shrubs and trees. This indicated that oxalic acid, microbes, and NAG may enhance N availability for acquisition by plants. Path analysis showed that oxalic acid enhanced potential N mineralization rates indirectly through inducing microbes and NAG activities. We found that the exudation of oxalic acid clearly provides an important mechanism that allows plants to enhance nutrient acquisition in karst ecosystems. PMID:27252713

  6. The glutamine-glutamate/GABA cycle: function, regional differences in glutamate and GABA production and effects of interference with GABA metabolism.

    PubMed

    Walls, Anne B; Waagepetersen, Helle S; Bak, Lasse K; Schousboe, Arne; Sonnewald, Ursula

    2015-02-01

    The operation of a glutamine-glutamate/GABA cycle in the brain consisting of the transfer of glutamine from astrocytes to neurons and neurotransmitter glutamate or GABA from neurons to astrocytes is a well-known concept. In neurons, glutamine is not only used for energy production and protein synthesis, as in other cells, but is also an essential precursor for biosynthesis of amino acid neurotransmitters. An excellent tool for the study of glutamine transfer from astrocytes to neurons is [(14)C]acetate or [(13)C]acetate and the glial specific enzyme inhibitors, i.e. the glutamine synthetase inhibitor methionine sulfoximine and the tricarboxylic acid cycle (aconitase) inhibitors fluoro-acetate and -citrate. Acetate is metabolized exclusively by glial cells, and [(13)C]acetate is thus capable when used in combination with magnetic resonance spectroscopy or mass spectrometry, to provide information about glutamine transfer. The present review will give information about glutamine trafficking and the tools used to map it as exemplified by discussions of published work employing brain cell cultures as well as intact animals. It will be documented that considerably more glutamine is transferred from astrocytes to glutamatergic than to GABAergic neurons. However, glutamine does have an important role in GABAergic neurons despite their capability of re-utilizing their neurotransmitter by re-uptake. PMID:25380696

  7. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin

    NASA Astrophysics Data System (ADS)

    Li, Fengxia; Li, Xiaoli; Li, Bin

    2011-11-01

    In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 μm. Magnetic Fe 3O 4 was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h.

  8. Release properties of tannic acid from hydrogen bond driven antioxidative cellulose nanofibrous films.

    PubMed

    Zhou, Bin; Hu, Xiaoqian; Zhu, Jinjin; Wang, Zhenzhen; Wang, Xichang; Wang, Mingfu

    2016-10-01

    Layer-by-layer (LBL) assembled films have been exploited for surface-mediated bioactive compound delivery. Here, an antioxidative hydrogen-bonded multilayer electrospun nanofibrous film was fabricated from tannic acid (TA), acting as a polyphenolic antioxidant, and poly(ethylene glycol) (PEG) via layer-by-layer assembly. It overcame the burst release behavior of nanofibrous carrier, due to the reversible/dynamic nature of hydrogen bond, which was responded to external stimuli. The PEG/TA nanofibrous films disassembled gradually and released TA to the media, when soaked in aqueous solutions. The release rate of TA increased with increasing bilayer number, pH and temperature, but decreased with enhancing ionic strength. The surface morphology of the nanofibrous mats was observed by scanning electron microscopy (SEM). The following antioxidant activity assay revealed that it could scavenge DPPH free radicals and ABTS(+) cation radicals, a major biological activity of polyphenols. This technology can be used to fabricate other phenolic-containing slowly releasing antioxidative nanofibrous films. PMID:27234492

  9. Study of the release of a microencapsulated acid dye in polyamide dyeing using mixed cationic liposomes.

    PubMed

    de Sousa, Isabel S C; Castanheira, Elisabete M S; Rocha Gomes, Jaime I N; Real Oliveira, M Elisabete C D

    2011-06-01

    The main objective of this work was to increase the retarding effect of the acid dye Telon(®) Blue RR (C.I. Acid Blue 62; DyStar, Frankfurt, Germany) release on polyamide fibres dyeing by encapsulation of the dye in liposomes as an alternative to synthetic auxiliaries, in order to reduce effluent pollution. The retarding effect achieved with the use of mixed cationic liposomes of dioctadecyldimethylammonium bromide (DODAB)/soybean lecithin (containing a 10% molar fraction of DODAB) was better in comparison with either pure soybean lecithin liposomes or synthetic auxiliaries. The retarding effect of liposomes on the dye release was analysed through changes in the absorption and fluorescence spectra of the acid dye at different conditions. The effect of temperature (in the range of 25 °C - 70 °C) on the spectroscopic behaviour of the dye in the absence and in presence of polyamide was also studied, in order to simulate the dyeing conditions. Exhaustion curves obtained in dyeing experiments showed that, below 45 °C, the retarding effect of the mixed liposomes (lecithin/DODAB (9:1)) was similar to that of the auxiliaries, but better than the one of pure lecithin liposomes. At higher temperatures (above 45 °C), the system lecithin/DODAB presents a better performance, achieving a higher final exhaustion level when compared with the commercial leveling agent without losing the smoothing effect of lecithin. PMID:20550462

  10. Muscarinic control of rostromedial tegmental nucleus GABA neurons and morphine-induced locomotion.

    PubMed

    Wasserman, David I; Tan, Joel M J; Kim, Jun Chul; Yeomans, John S

    2016-07-01

    Opioids induce rewarding and locomotor effects by inhibiting rostromedial tegmental GABA neurons that express μ-opioid and nociceptin receptors. These GABA neurons then strongly inhibit dopamine neurons. Opioid-induced reward, locomotion and dopamine release also depend on pedunculopontine and laterodorsal tegmental cholinergic and glutamate neurons, many of which project to and activate ventral tegmental area dopamine neurons. Here we show that laterodorsal tegmental and pedunculopontine cholinergic neurons project to both rostromedial tegmental nucleus and ventral tegmental area, and that M4 muscarinic receptors are co-localized with μ-opioid receptors associated with rostromedial tegmental GABA neurons. To inhibit or excite rostromedial tegmental GABA neurons, we utilized adeno-associated viral vectors and DREADDs to express designed muscarinic receptors (M4D or M3D respectively) in GAD2::Cre mice. In M4D-expressing mice, clozapine-N-oxide increased morphine-induced, but not vehicle-induced, locomotion. In M3D-expressing mice, clozapine-N-oxide blocked morphine-induced, but not vehicle-induced, locomotion. We propose that cholinergic inhibition of rostromedial tegmental GABA neurons via M4 muscarinic receptors facilitates opioid inhibition of the same neurons. This model explains how mesopontine cholinergic systems and muscarinic receptors in the rostromedial tegmental nucleus and ventral tegmental area are important for dopamine-dependent and dopamine-independent opioid-induced rewards and locomotion. PMID:26990801

  11. Clozapine and GABA transmission in schizophrenia disease models: establishing principles to guide treatments.

    PubMed

    O'Connor, William T; O'Shea, Sean D

    2015-06-01

    Schizophrenia disease models are necessary to elucidate underlying changes and to establish new therapeutic strategies towards a stage where drug efficacy in schizophrenia (against all classes of symptoms) can be predicted. Here we summarise the evidence for a GABA dysfunction in schizophrenia and review the functional neuroanatomy of five pathways implicated in schizophrenia, namely the mesocortical, mesolimbic, ventral striopallidal, dorsal striopallidal and perforant pathways including the role of local GABA transmission and we describe the effect of clozapine on local neurotransmitter release. This review also evaluates psychotropic drug-induced, neurodevelopmental and environmental disease models including their compatibility with brain microdialysis. The validity of disease models including face, construct, etiological and predictive validity and how these models constitute theories about this illness is also addressed. A disease model based on the effect of the abrupt withdrawal of clozapine on GABA release is also described. The review concludes that while no single animal model is entirely successful in reproducing schizophreniform symptomatology, a disease model based on an ability to prevent and/or reverse the abrupt clozapine discontinuation-induced changes in GABA release in brain regions implicated in schizophrenia may be useful for hypothesis testing and for in vivo screening of novel ligands not limited to a single pharmacological class. PMID:25585121

  12. Novel fatty acid gentamicin salts as slow-release drug carrier systems for anti-infective protection of vascular biomaterials.

    PubMed

    Obermeier, A; Matl, F D; Schwabe, J; Zimmermann, A; Kühn, K D; Lakemeier, S; von Eisenhart-Rothe, R; Stemberger, A; Burgkart, R

    2012-07-01

    Infections of vascular prostheses are still a major risk in surgery. The current work presents an in vitro evaluation of novel slow release antibiotic coatings based on new gentamicin fatty acid salts for polytetrafluoroethylene grafts. These grafts were coated with gentamicin sodium dodecyl sulfate, gentamicin laurate and gentamicin palmitate. Drug release kinetics, anti-infective characteristics, biocompatibility and haemocompatibility of developed coatings were compared to commercially available gelatin sealed PTFE grafts (SEALPTFE™) and knitted silver coated Dacron(®) grafts (InterGard(®)). Each gentamicin fatty acid coating showed a continuous drug release in the first eight hours followed by a low continuous release. Grafts coated with gentamicin fatty acids reduced bacterial growth even beyond pathologically relevant high concentrations. Cytotoxicity levels depending on drug formulation bringing up gentamicin palmitate as the most promising biocompatible coating. Thrombelastography studies, ELISA assays and an amidolytic substrate assay confirmed haemocompatibility of developed gentamicin fatty acid coatings comparable to commercially available grafts. PMID:22476651

  13. Facile method to prepare silk fibroin/hyaluronic acid films for vascular endothelial growth factor release.

    PubMed

    Zhou, Juan; Zhang, Bin; Liu, Xunwei; Shi, Lijun; Zhu, Jun; Wei, Daixu; Zhong, Jian; Sun, Gang; He, Dannong

    2016-06-01

    A facile approach was proposed to prepare silk fibroin (SF) and hyaluronic acid (HA) composite films from aqueous solution without crosslinking or any post treatment. Only by controlling the HA content and film formation temperature during the film casting, the HA/SF films with different composition were prepared. The films were then characterized by structural characteristics, thermal stability, morphology, water stability, water absorption, mechanical properties. After immersing in water for 24h, all of the films showed good structural integrity. The degradation rate of the HA/SF films in protease XIV can be controlled by changing the film formation temperature and HA content. Decreasing the temperature and adding HA resulted in the rapid release of VEGF (vascular endothelial growth factor) from the HA/SF films. Overall, the 5% HA/SF films formed at 37°C with more rapid VEGF release exhibited great potential in drug delivery, especially when the rapid vascularization was needed. PMID:27083373

  14. Controlled release of acetylsalicylic acid from polythiophene/carrageenan hydrogel via electrical stimulation.

    PubMed

    Pairatwachapun, Sanita; Paradee, Nophawan; Sirivat, Anuvat

    2016-02-10

    Blends between polythiophene (PTh) and a carrageenan hydrogel were fabricated as the matrix for the electric field assisted drug release. The pristine carrageenan and the blend films were prepared by the solution casting using acetylsalicylic acid (ASA) as the anionic model drug and Mg(2+), Ca(2+), and Ba(2+) as the crosslinking agents. The ASA was released by the Fickian diffusion mechanism. The diffusion coefficient decreased with increasing crosslinking ratio or decreasing crosslinking ionic radii. The diffusion coefficients were greater with the applied electrical potentials by an order of magnitude relative to those without electric field. Moreover, the diffusion coefficients with PTh as the drug carrier were higher than those without PTh. Thus, the presence of the conductive polymer in the hydrogel blend coupled with applied electric field is shown here to drastically enhance the drug delivery rate. PMID:26686123

  15. Acid neutralization mechanisms and metal release in mine tailings: a laboratory column experiment

    NASA Astrophysics Data System (ADS)

    Jurjovec, Jasna; Ptacek, Carol J.; Blowes, David W.

    2002-05-01

    Mining and milling of base metal ore deposits can result in the release of metals to the environment. When sulfide minerals contained in mine tailings are exposed to oxygen and water, they oxidize and dissolve. Two principal antagonistic geochemical processes affect the migration of dissolved metals in tailings impoundments: sulfide oxidation and acid neutralization. This study focuses on acid neutralization reactions occurring in the saturated zone of tailings impoundments. To simulate conditions prevailing in many tailings impoundments, 0.1 mol/L sulfuric acid was passed continuously through columns containing fresh, unoxidized tailings, collected at Kidd Creek metallurgical site. The results of this column experiment represent a detailed temporal observation of pH, Eh, and metal concentrations. The results are consistent with previous field observations, which suggest that a series of mineral dissolution-precipitation reactions control pH and metal mobility. Typically, the series consists of carbonate minerals, Al and Fe(III) hydroxides, and aluminosilicates. In the case of Kidd Creek tailings, the dissolution series consists of ankerite-dolomite, siderite, gibbsite, and aluminosilicates. In the column experiment, three distinct pH plateaus were observed: 5.7, 4.0, and 1.3. The releases of trace elements such as Cd, Co, Cr, Cu, Li, Ni, Pb, V, and Zn were observed to be related to the pH buffering zones. High concentrations of Zn, Ni, and Co were observed at the first pH plateau (pH 5.7), whereas Cd, Cr, Pb, As, V, and Al were released as the pH of the pore water decreased to 4.0 or less.

  16. Single-crystalline ceramic whisker-reinforced carboxylic acid-resin composites with fluoride release.

    PubMed

    Xu, H H; Eichmiller, F C; Antonucci, J M; Flaim, G M

    2000-01-01

    Currently available glass-ionomer, resin-modified glass-ionomer, and compomer materials have relatively low strength and toughness and, therefore, are inadequate for use in large stress-bearing posterior restorations. In the present study, ceramic single-crystalline whiskers were mixed with fluorosilicate glass particles and used as fillers to reinforce experimental carboxylic acid-resin composites. The carboxylic acid was a monofunctional methacryloxyethyl phthalate (MEP). Five mass fractions of whisker/(whisker + fluorosilicate glass), and corresponding resin (resin + MEP), were evaluated. Four control materials were also tested for comparison: a glass ionomer, a resin-modified glass ionomer, a compomer, and a hybrid composite resin. Flexural specimens were fabricated to measure the flexural strength, elastic modulus, and work-of-fracture (an indication of toughness). Fluoride release was measured by using a fluoride ion selective electrode. The properties of whisker composites depended on the whisker/(whisker + fluorosilicate glass) mass fraction. At a mass fraction of 0.8, the whisker composite had a flexural strength in MPa (mean +/- sd; n = 6) of 150 +/- 16, significantly higher than that of a glass ionomer (15 +/- 7) or a compomer control (89 +/- 18) (Tukey's multiple comparison test; family confidence coefficient = 0.95). Depending on the ratio of whisker:fluorosilicate glass, the whisker composites had a cumulative fluoride release up to 60% of that of a traditional glass ionomer. To conclude, combining ceramic whiskers and fluorosilicate glass in a carboxylic acid-resin matrix can result in fluoride-releasing composites with significantly improved mechanical properties. PMID:11203805

  17. Comparative mapping of GABA-immunoreactive neurons in the central nervous systems of nudibranch molluscs.

    PubMed

    Gunaratne, Charuni A; Sakurai, Akira; Katz, Paul S

    2014-03-01

    The relative simplicity of certain invertebrate nervous systems, such as those of gastropod molluscs, allows behaviors to be dissected at the level of small neural circuits composed of individually identifiable neurons. Elucidating the neurotransmitter phenotype of neurons in neural circuits is important for understanding how those neural circuits function. In this study, we examined the distribution of γ-aminobutyric-acid;-immunoreactive (GABA-ir) neurons in four species of sea slugs (Mollusca, Gastropoda, Opisthobranchia, Nudibranchia): Tritonia diomedea, Melibe leonina, Dendronotus iris, and Hermissenda crassicornis. We found consistent patterns of GABA immunoreactivity in the pedal and cerebral-pleural ganglia across species. In particular, there were bilateral clusters in the lateral and medial regions of the dorsal surface of the cerebral ganglia as well as a cluster on the ventral surface of the pedal ganglia. There were also individual GABA-ir neurons that were recognizable across species. The invariant presence of these individual neurons and clusters suggests that they are homologous, although there were interspecies differences in the numbers of neurons in the clusters. The GABAergic system was largely restricted to the central nervous system, with the majority of axons confined to ganglionic connectives and commissures, suggesting a central, integrative role for GABA. GABA was a candidate inhibitory neurotransmitter for neurons in central pattern generator (CPG) circuits underlying swimming behaviors in these species, however none of the known swim CPG neurons were GABA-ir. Although the functions of these GABA-ir neurons are not known, it is clear that their presence has been strongly conserved across nudibranchs. PMID:24638845

  18. Meroterpenoid Chrodrimanins Are Selective and Potent Blockers of Insect GABA-Gated Chloride Channels

    PubMed Central

    Ihara, Makoto; Ling, Yun; Yang, Xinling; Kai, Kenji; Hayashi, Hideo; Matsuda, Kazuhiko

    2015-01-01

    Meroterpenoid chrodrimanins, produced from Talaromyces sp. YO-2, are known to paralyze silkworm (Bombyx mori) larvae, but their target is unknown. We have investigated the actions of chrodrimanin B on ligand-gated ion channels of silkworm larval neurons using patch-clamp electrophysiology. Chrodrimanin B had no effect on membrane currents when tested alone at 1 μM. However, it completely blocked the γ-aminobutyric acid (GABA)-induced current and showed less pronounced actions on acetylcholine- and L-glutamate-induced currents, when delivered at 1 μM for 1 min prior to co-application with transmitter GABA. Thus, chrodrimanins were also tested on a wild-type isoform of the B. mori GABA receptor (GABAR) RDL using two-electrode voltage-clamp electrophysiology. Chrodrimanin B attenuated the peak current amplitude of the GABA response of RDL with an IC50 of 1.66 nM. The order of the GABAR-blocking potency of chrodrimanins B > D > A was in accordance with their reported insecticidal potency. Chrodrimanin B had no open channel blocking action when tested at 3 nM on the GABA response of RDL. Co-application with 3 nM chrodrimanin B shifted the GABA concentration response curve to a higher concentration and further increase of chrodrimanin B concentration to10 nM; it reduced maximum current amplitude of the GABA response, pointing to a high-affinity competitive action and a lower affinity non-competitive action. The A282S;T286V double mutation of RDL, which impairs the actions of fipronil, hardly affected the blocking action of chrodrimanin B, indicating a binding site of chrodrimanin B distinct from that of fipronil. Chrodrimanin B showed approximately 1,000-fold lower blocking action on human α1β2γ2 GABAR compared to RDL and thus is a selective blocker of insect GABARs. PMID:25902139

  19. Meroterpenoid Chrodrimanins Are Selective and Potent Blockers of Insect GABA-Gated Chloride Channels.

    PubMed

    Xu, Yan; Furutani, Shogo; Ihara, Makoto; Ling, Yun; Yang, Xinling; Kai, Kenji; Hayashi, Hideo; Matsuda, Kazuhiko

    2015-01-01

    Meroterpenoid chrodrimanins, produced from Talaromyces sp. YO-2, are known to paralyze silkworm (Bombyx mori) larvae, but their target is unknown. We have investigated the actions of chrodrimanin B on ligand-gated ion channels of silkworm larval neurons using patch-clamp electrophysiology. Chrodrimanin B had no effect on membrane currents when tested alone at 1 μM. However, it completely blocked the γ-aminobutyric acid (GABA)-induced current and showed less pronounced actions on acetylcholine- and L-glutamate-induced currents, when delivered at 1 μM for 1 min prior to co-application with transmitter GABA. Thus, chrodrimanins were also tested on a wild-type isoform of the B. mori GABA receptor (GABAR) RDL using two-electrode voltage-clamp electrophysiology. Chrodrimanin B attenuated the peak current amplitude of the GABA response of RDL with an IC50 of 1.66 nM. The order of the GABAR-blocking potency of chrodrimanins B > D > A was in accordance with their reported insecticidal potency. Chrodrimanin B had no open channel blocking action when tested at 3 nM on the GABA response of RDL. Co-application with 3 nM chrodrimanin B shifted the GABA concentration response curve to a higher concentration and further increase of chrodrimanin B concentration to 10 nM; it reduced maximum current amplitude of the GABA response, pointing to a high-affinity competitive action and a lower affinity non-competitive action. The A282S;T286V double mutation of RDL, which impairs the actions of fipronil, hardly affected the blocking action of chrodrimanin B, indicating a binding site of chrodrimanin B distinct from that of fipronil. Chrodrimanin B showed approximately 1,000-fold lower blocking action on human α1β2γ2 GABAR compared to RDL and thus is a selective blocker of insect GABARs. PMID:25902139

  20. Brain regional distribution of GABAA receptors exhibiting atypical GABA agonism: roles of receptor subunits

    PubMed Central

    Halonen, Lauri M.; Sinkkonen, Saku T.; Chandra, Dev; Homanics, Gregg E.; Korpi, Esa R.

    2009-01-01

    The major inhibitory neurotransmitter in the brain, γ-aminobutyric acid (GABA), has only partial efficacy at certain subtypes of GABAA receptors. To characterize these minor receptor populations in rat and mouse brains, we used autoradiographic imaging of t-butylbicyclophosphoro[35S]thionate ([35S]TBPS) binding to GABAA receptors in brain sections and compared the displacing capacities of 10 mM GABA and 1 mM 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), a competitive GABA-site agonist. Brains from GABAA receptor α1, α4, δ, and α4 + δ subunit knockout (KO) mouse lines were used to understand the contribution of these particular receptor subunits to “GABA-insensitive” (GIS) [35S]TBPS binding. THIP displaced more [35S]TBPS binding than GABA in several brain regions, indicating that THIP also inhibited GIS-binding. In these regions, GABA prevented the effect of THIP on GIS-binding. GIS-binding was increased in the cerebellar granule cell layer of δ KO and α4 + δ KO mice, being only slightly diminished in that of α1 KO mice. In the thalamus and some other forebrain regions of wild-type mice, a significant amount of GIS-binding was detected. This GIS-binding was higher in α4 KO mice. However, it was fully abolished in α1 KO mice, indicating that the α1 subunit was obligatory for the GIS-binding in the forebrain. Our results suggest that native GABAA receptors in brain sections showing reduced displacing capacity of [35S]TBPS binding by GABA (partial agonism) minimally require the assembly of α1 and β subunits in the forebrain and of α6 and β subunits in the cerebellar granule cell layer. These receptors may function as extrasynaptic GABAA receptors. PMID:19397945

  1. p-Coumaric Acid Attenuates UVB-Induced Release of Stratifin from Keratinocytes and Indirectly Regulates Matrix Metalloproteinase 1 Release from Fibroblasts

    PubMed Central

    Seok, Jin Kyung

    2015-01-01

    Ultraviolet (UV) radiation-induced loss of dermal extracellular matrix is associated with skin photoaging. Recent studies demonstrated that keratinocyte-releasable stratifin (SFN) plays a critical role in skin collagen metabolism by inducing matrix metalloproteinase 1 (MMP1) expression in target fibroblasts. In the present study, we examined whether SFN released from UVB-irradiated epidermal keratinocytes increases MMP1 release from dermal fibroblasts, and whether these events are affected by p-coumaric acid (p-CA), a natural phenolic compound with UVB-shielding and antioxidant properties. HaCaT cells were exposed to UVB in the absence and presence of p-CA, and the conditioned medium was used to stimulate fibroblasts in medium transfer experiments. The cells and media were analyzed to determine the expressions/releases of SFN and MMP1. UVB exposure increased SFN release from keratinocytes into the medium. The conditioned medium of UVB-irradiated keratinocytes increased MMP1 release from fibroblasts. The depletion of SFN using a siRNA rendered the conditioned medium of UVB-irradiated keratinocytes ineffective at stimulating fibroblasts to release MMP1. p-CA mitigated UVB-induced SFN expression in keratinocytes, and attenuated the MMP1 release by fibroblasts in medium transfer experiments. In conclusion, the present study demonstrated that the use of UV absorbers such as p-CA would reduce UV-induced SFN-centered signaling events involved in skin photoaging. PMID:25954129

  2. THE COMBINATION OF α-LIPOIC ACID INTAKE WITH ECCENTRIC EXERCISE MODULATES ERYTHROPOIETIN RELEASE

    PubMed Central

    Morawin, B.; Turowski, D.; Naczk, M.; Siatkowski, I.

    2014-01-01

    The generation of reactive nitrogen/oxygen species (RN/OS) represents an important mechanism in erythropoietin (EPO) expression and skeletal muscle adaptation to physical and metabolic stress. RN/OS generation can be modulated by intense exercise and nutrition supplements such as α-lipoic acid, which demonstrates both anti- and pro-oxidative action. The study was designed to show the changes in the haematological response through the combination of α-lipoic acid intake with running eccentric exercise. Sixteen healthy young males participated in the randomised and placebo-controlled study. The exercise trial involved a 90-min run followed by a 15-min eccentric phase at 65% VO2max (-10% gradient). It significantly increased serum concentrations of nitric oxide (NO), hydrogen peroxide (H2O2) and pro-oxidative products such as 8-isoprostanes (8-iso), lipid peroxides (LPO) and protein carbonyls (PC). α-Lipoic acid intake (Thiogamma: 1200 mg daily for 10 days prior to exercise) resulted in a 2-fold elevation of serum H2O2 concentration before exercise, but it prevented the generation of NO, 8-iso, LPO and PC at 20 min, 24 h, and 48 h after exercise. α-Lipoic acid also elevated serum EPO level, which highly correlated with NO/H2O2 ratio (r = 0.718, P < 0.01). Serum total creatine kinase (CK) activity, as a marker of muscle damage, reached a peak at 24 h after exercise (placebo 732 ± 207 IU · L-1, α-lipoic acid 481 ± 103 IU · L-1), and correlated with EPO (r = 0.478, P < 0.01) in the α-lipoic acid group. In conclusion, the intake of high α-lipoic acid modulates RN/OS generation, enhances EPO release and reduces muscle damage after running eccentric exercise. PMID:25177095

  3. Influence of fatty acid oxidation rate on glycerol release from cardiac myocytes

    SciTech Connect

    Larsen, T.S.; Severson, D.L.

    1986-03-05

    Quiescent cardiac myocytes are characterized by low rates of fatty acid oxidation due to the reduced energy demand compared with beating hearts. The accumulation of intracellular fatty acid metabolites may, therefore, result in feed-back inhibition of the cardiac lipase responsible for the mobilization of triacylglycerols (lipolysis). The objective of this study was to examine if interventions that increase fatty acid oxidation rates in myocytes have an effect on lipolysis. Addition of 100 ..mu..M dinitrophenol (DNP) to calcium-tolerant rat ventricular myocytes caused an increase in the rate of /sup 14/C-oleic acid oxidation from 1.11 +/- 0.06 to 2.38 +/- 0.17 nmol /sup 14/CO/sub 2//10/sup 6/ cells/min (115% stimulation; mean +/- S.D., n = 3). In parallel incubations, DNP increased the rate of lipolysis from 4.4 +/- 1.7 to 13.6 +/- 3.2 nmol glycerol/10/sup 6/ cells/30 min (215% stimulation). The addition of 1 mM barium to a modified Ringer's incubation medium produced an increase in the contractile activity of the myocytes, and increased the rates of oleic acid oxidation from 0.62 +/- 0.16 to 0.88 +/- 0.23 nmol/10/sup 6/ cells/min (42% stimulation; n = 6) and lipolysis from 13.1 +/- 6.5 to 22.2 +/- 6.4 nmol/10/sup 6/ cells/30 min (70% stimulation). These data show that stimulation of fatty acid oxidation in myocardial myocytes is accompanied by increased lipolytic rates, the latter probably due to release of feed-back inhibition of cardiac lipases by accumulated fatty acid metabolites.

  4. Performance of optimized noncanonical amino acid mutagenesis systems in the absence of release factor 1.

    PubMed

    Zheng, Yunan; Lajoie, Marc J; Italia, James S; Chin, Melissa A; Church, George M; Chatterjee, Abhishek

    2016-05-24

    Site-specific incorporation of noncanonical amino acids (ncAAs) into proteins expressed in E. coli using UAG-suppression competes with termination mediated by release factor 1 (RF1). Recently, unconditional deletion of RF1 was achieved in a genomically recoded E. coli (C321), devoid of all endogenous UAG stop codons. Here we evaluate the efficiency of ncAA incorporation in this strain using optimized suppression vectors. Even though the absence of RF1 does not benefit the suppression efficiency of a single UAG codon, multi-site incorporation of a series of chemically distinct ncAAs was significantly improved. PMID:27027374

  5. Positive cooperativity between the thrombin and bradykinin B2 receptors enhances arachidonic acid release

    PubMed Central

    Hecquet, Claudie; Biyashev, Dauren; Tan, Fulong; Erdös, Ervin G.

    2006-01-01

    Bradykinin (BK) or kallikreins activate B2 receptors (R) which couple Gαi and Gαq proteins to release arachidonic acid (AA) and elevate [Ca2+]i. Thrombin cleaves the protease-activated-receptor-1 (PAR1) that couples Gαi, Gαq and Gα12/13 proteins. In CHO cells stably transfected with human B2R, thrombin liberated little AA, but it significantly potentiated AA release by B2R agonists. We explored mechanisms of cooperativity between constitutively expressed PAR1 and B2R. We also examined human endothelial cells expressing both Rs constitutively. The PAR1 agonist hexapeptide (TRAP) was as effective as thrombin. Inhibitors of components of Gαi, Gαq and Gα12/13 signaling pathways, and a PKCα inhibitor, Gö6976 blocked potentiation while phorbol, an activator, enhanced it. Several inhibitors, including a RhoA kinase inhibitor, a [Ca2+]i antagonist, and an inositol-(1,3,4)-trisphosphate R antagonist, reduced mobilization of [Ca2+]i by thrombin and blocked potentiation of AA release by B2R agonists. Because either a non-selective inhibitor (isotetrandrine) of phospholipase A2 (PLA2) or a Ca2+-dependent PLA2 inhibitor abolished potentiation of AA release by thrombin, while a Ca2+-independent PLA2 inhibitor did not, we concluded that the mechanism involves Ca2+-dependent PLA2 activation. Both thrombin and TRAP modified activation and phosphorylation of the B2R induced by BK. In lower concentrations they enhanced it, while higher concentrations inhibited phosphorylation and diminished B2R activation. Protection of the N-terminal Ser1-Phe2 bond of TRAP by an aminopeptidase inhibitor made this peptide much more active than the unprotected agonist. Thus, PAR1 activation enhances AA release by B2R agonists through signal transduction pathway. PMID:16183725

  6. The spatiotemporal segregation of GAD forms defines distinct GABA signaling functions in the developing mouse olfactory system and provides novel insights into the origin and migration of GnRH neurons.

    PubMed

    Vastagh, Csaba; Schwirtlich, Marija; Kwakowsky, Andrea; Erdélyi, Ferenc; Margolis, Frank L; Yanagawa, Yuchio; Katarova, Zoya; Szabó, Gábor

    2015-03-01

    Gamma-aminobutyric acid (GABA) has a dual role as an inhibitory neurotransmitter in the adult central nervous system (CNS) and as a signaling molecule exerting largely excitatory actions during development. The rate-limiting step of GABA synthesis is catalyzed by two glutamic acid decarboxylase isoforms GAD65 and GAD67 coexpressed in the GABAergic neurons of the CNS. Here we report that the two GADs show virtually nonoverlapping expression patterns consistent with distinct roles in the developing peripheral olfactory system. GAD65 is expressed exclusively in undifferentiated neuronal progenitors confined to the proliferative zones of the sensory vomeronasal and olfactory epithelia In contrast GAD67 is expressed in a subregion of the nonsensory epithelium/vomeronasal organ epithelium containing the putative Gonadotropin-releasing hormone (GnRH) progenitors and GnRH neurons migrating from this region through the frontonasal mesenchyme into the basal forebrain. Only GAD67+, but not GAD65+ cells accumulate detectable GABA. We further demonstrate that GAD67 and its embryonic splice variant embryonic GAD (EGAD) concomitant with GnRH are dynamically regulated during GnRH neuronal migration in vivo and in two immortalized cell lines representing migratory (GN11) and postmigratory (GT1-7) stage GnRH neurons, respectively. Analysis of GAD65/67 single and double knock-out embryos revealed that the two GADs play complementary (inhibitory) roles in GnRH migration ultimately modulating the speed and/or direction of GnRH migration. Our results also suggest that GAD65 and GAD67/EGAD characterized by distinct subcellular localization and kinetics have disparate functions during olfactory system development mediating proliferative and migratory responses putatively through specific subcellular GABA pools. PMID:25125027

  7. Ferulic acid release and 4-vinylguaiacol formation during brewing and fermentation: indications for feruloyl esterase activity in Saccharomyces cerevisiae.

    PubMed

    Coghe, Stefan; Benoot, Koen; Delvaux, Filip; Vanderhaegen, Bart; Delvaux, Freddy R

    2004-02-11

    The release of ferulic acid and the subsequent thermal or enzymatic decarboxylation to 4-vinylguaiacol are inherent to the beer production process. Phenolic, medicinal, or clove-like flavors originating from 4-vinylguaiacol frequently occur in beer made with wheat or wheat malt. To evaluate the release of ferulic acid and the transformation to 4-vinylguaiacol, beer was brewed with different proportions of barley malt, wheat, and wheat malt. Ferulic acid as well as 4-vinylguaiacol levels were determined by HPLC at several stages of the beer production process. During brewing, ferulic acid was released at the initial mashing phase, whereas moderate levels of 4-vinylguaiacol were formed by wort boiling. Higher levels of the phenolic flavor compound were produced during fermentations with brewery yeast strains of the Pof(+) phenotype. In beer made with barley malt, ferulic acid was mainly released during the brewing process. Conversely, 60-90% of ferulic acid in wheat or wheat malt beer was hydrolyzed during fermentation, causing higher 4-vinylguaiacol levels in these beers. As cereal enzymes are most likely inactivated during wort boiling, the additional release of ferulic acid during fermentation suggests the activity of feruloyl esterases produced by brewer's yeast. PMID:14759156

  8. Tracking of Drug Release and Material Fate for Naturally Derived Omega-3 Fatty Acid Biomaterials.

    PubMed

    Faucher, Keith M; Artzi, Natalie; Beck, Moshe; Beckerman, Rita; Moodie, Geoff; Albergo, Theresa; Conroy, Suzanne; Dale, Alicia; Corbeil, Scott; Martakos, Paul; Edelman, Elazer R

    2016-03-01

    In vitro and in vivo studies were conducted on omega-3 fatty acid-derived biomaterials to determine their utility as an implantable material for adhesion prevention following soft tissue hernia repair and as a means to allow for the local delivery of antimicrobial or antibiofilm agents. Naturally derived biomaterials offer several advantages over synthetic materials in the field of medical device development. These advantages include enhanced biocompatibility, elimination of risks posed by the presence of toxic catalysts and chemical crosslinking agents, and derivation from renewable resources. Omega-3 fatty acids are readily available from fish and plant sources and can be used to create implantable biomaterials either as a stand-alone device or as a device coating that can be utilized in local drug delivery applications. In-depth characterization of material erosion degradation over time using non-destructive imaging and chemical characterization techniques provided mechanistic insight into material structure: function relationship. This in turn guided rational tailoring of the material based on varying fatty acid composition to control material residence time and hence drug release. These studies demonstrate the utility of omega-3 fatty acid derived biomaterials as an absorbable material for soft tissue hernia repair and drug delivery applications. PMID:26502170

  9. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy

    PubMed Central

    2013-01-01

    Silicon (Si) is the most abundant element present in the Earth's crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4), as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K), the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel), silica gel (amorphous silicon dioxide), and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4) in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation)-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources. PMID:23298332

  10. Hypoxia and GABA shunt activation in the pathogenesis of Alzheimer's disease.

    PubMed

    Salminen, Antero; Jouhten, Paula; Sarajärvi, Timo; Haapasalo, Annakaisa; Hiltunen, Mikko

    2016-01-01

    We have previously observed that the conversion of mild cognitive impairment to definitive Alzheimer's disease (AD) is associated with a significant increase in the serum level of 2,4-dihydroxybutyrate (2,4-DHBA). The metabolic generation of 2,4-DHBA is linked to the activation of the γ-aminobutyric acid (GABA) shunt, an alternative energy production pathway activated during cellular stress, when the function of Krebs cycle is compromised. The GABA shunt can be triggered by local hypoperfusion and subsequent hypoxia in AD brains caused by cerebral amyloid angiopathy. Succinic semialdehyde dehydrogenase (SSADH) is a key enzyme in the GABA shunt, converting succinic semialdehyde (SSA) into succinate, a Krebs cycle intermediate. A deficiency of SSADH activity stimulates the conversion of SSA into γ-hydroxybutyrate (GHB), an alternative route from the GABA shunt. GHB can exert not only acute neuroprotective activities but unfortunately also chronic detrimental effects which may lead to cognitive impairment. Subsequently, GHB can be metabolized to 2,4-DHBA and secreted from the brain. Thus, the activation of the GABA shunt and the generation of GHB and 2,4-DHBA can have an important role in the early phase of AD pathogenesis. PMID:26617286

  11. The role of the GABA system in amphetamine-type stimulant use disorders

    PubMed Central

    Jiao, Dongliang; liu, Yao; Li, Xiaohong; liu, Jinggen; Zhao, Min

    2015-01-01

    Abuse of amphetamine-type stimulants (ATS) has become a global public health problem. ATS causes severe neurotoxicity, which could lead to addiction and could induce psychotic disorders or cognitive dysfunctions. However, until now, there has been a lack of effective medicines for treating ATS-related problems. Findings from recent studies indicate that in addition to the traditional dopamine-ergic system, the GABA (gamma-aminobutyric acid)-ergic system plays an important role in ATS abuse. However, the exact mechanisms of the GABA-ergic system in amphetamine-type stimulant use disorders are not fully understood. This review discusses the role of the GABA-ergic system in ATS use disorders, including ATS induced psychotic disorders and cognitive dysfunctions. We conclude that the GABA-ergic system are importantly involved in the development of ATS use disorders through multiple pathways, and that therapies or medicines that target specific members of the GABA-ergic system may be novel effective interventions for the treatment of ATS use disorders. PMID:25999814

  12. GABA/benzodiazepine receptor complex in long-sleep and short-sleep mice

    SciTech Connect

    Marley, R.J.

    1987-01-01

    LS mice are more sensitive to benzodiazepine-induced anesthesia; however, the two lines do not differ in their hypothermic response to flurazepam. SS mice are more resistant to 3-mercaptopropionic acid-induced seizures and more sensitive to the anticonvulsant effects of benzodiazepines. The various correlates of GABA and benzodiazepine actions probably are the results of different mechanisms of action and/or differential regional control. Bicuculline competition for /sup 3/H-GABA binding sites is greater in SS cerebellar tissue and /sup 3/H-flunitrazepam binding is greater in the mid-brain region of LS mice. GABA enhancement of /sup 3/H-flunitrazepma binding is greater in SS mice. Ethanol also enhances /sup 3/H-flunitrazepam binding and increases the levels of /sup 3/H-flunitrazepam binding above those observed for GABA. Using correlational techniques on data from LS and SS mice and several inbred mouse strains, it was demonstrated that a positive relationship exists between the degree of receptor coupling within the GABA receptor complex and the degree of resistance to seizures.

  13. “Brain MR spectroscopy in autism spectrum disorder—the GABA excitatory/inhibitory imbalance theory revisited”

    PubMed Central

    Brix, Maiken K.; Ersland, Lars; Hugdahl, Kenneth; Grüner, Renate; Posserud, Maj-Britt; Hammar, Åsa; Craven, Alexander R.; Noeske, Ralph; Evans, C. John; Walker, Hanne B.; Midtvedt, Tore; Beyer, Mona K.

    2015-01-01

    Magnetic resonance spectroscopy (MRS) from voxels placed in the left anterior cingulate cortex (ACC) was measured from 14 boys with Autism Spectrum Disorder (ASD) and 24 gender and age-matched typically developing (TD) control group. Our main aims were to compare the concentration of γ-aminobutyric acid (GABA) between the two groups, and to investigate the relationship between brain metabolites and autism symptom severity in the ASD group. We did find a significant negative correlation in the ASD group between Autism Spectrum Screening Questionnaire (ASSQ) and GABA+/Cr, which may imply that severity of symptoms in ASD is associated with differences in the level of GABA in the brain, supporting the excitatory/inhibitory (E/I) imbalance theory. However we did not find a significant difference between the two groups in GABA levels. PMID:26157380

  14. Contribution of polyamines metabolism and GABA shunt to chilling tolerance induced by nitric oxide in cold-stored banana fruit.

    PubMed

    Wang, Yansheng; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-04-15

    Effect of exogenous nitric oxide (NO) on polyamines (PAs) catabolism, γ-aminobutyric acid (GABA) shunt, proline accumulation and chilling injury of banana fruit under cold storage was investigated. Banana fruit treated with NO sustained lower chilling injury index than the control. Notably elevated nitric oxide synthetase activity and endogenous NO level were observed in NO-treated banana fruit. PAs contents in treated fruit were significantly higher than control fruit, due to the elevated activities of arginine decarboxylase and ornithine decarboxylase. NO treatment increased the activities of diamine oxidase, polyamine oxidase and glutamate decarboxylase, while reduced GABA transaminase activity to lower levels compared with control fruit, which resulted the accumulation of GABA. Besides, NO treatment upregulated proline content and significantly enhanced the ornithine aminotransferase activity. These results indicated that the chilling tolerance induced by NO treatment might be ascribed to the enhanced catabolism of PAs, GABA and proline. PMID:26616957

  15. Multifunctional Environmental Smart Fertilizer Based on l-Aspartic Acid for Sustained Nutrient Release.

    PubMed

    Lü, Shaoyu; Feng, Chen; Gao, Chunmei; Wang, Xinggang; Xu, Xiubin; Bai, Xiao; Gao, Nannan; Liu, Mingzhu

    2016-06-22

    Fertilizer is one of the most important elements of modern agriculture. However, conventional fertilizer, when applied to crops, is vulnerable to losses through volatilization, leaching, nitrification, or other means. Such a loss limits crop yields and pollutes the environment. In an effort to enhance nutrient use efficiency and reduce environmental pollution, an environmental smart fertilizer was reported in the current study. Poly(aspartic acid) and a degradable macro-cross-linker based on l-aspartic acid were synthesized and introduced into the fertilizer as a superabsorbent to improve the fertilizer degradability and soil moisture-retention capacity. Sustained release behavior of the fertilizer was achieved in soil. Cumulative release of nitrogen and phosphorus was 79.8% and 64.4% after 30 days, respectively. The water-holding and water-retention capacities of soil with the superabsorbent are obviously higher than those of the control soil without superabsorbent. For the sample of 200 g of soil with 1.5 g of superabsorbent, the water-holding capacity is 81.8%, and the water-retention capacity remains 22.6% after 23 days. All of the current results in this study indicated that the as-prepared fertilizer has a promising application in sustainable modern agriculture. PMID:27244106

  16. Effect of ca2+ to salicylic acid release in pectin based controlled drug delivery system

    NASA Astrophysics Data System (ADS)

    Kistriyani, L.; Wirawan, S. K.; Sediawan, W. B.

    2016-01-01

    Wastes from orange peel are potentially be utilized to produce pectin, which are currently an import commodity. Pectin can be used in making edible film. Edible films are potentially used as a drug delivery system membrane after a tooth extraction. Drug which is used in the drug delivery system is salicylic acid. It is an antiseptic. In order to control the drug release rate, crosslinking process is added in the manufacturing of membrane with CaCl2.2H2O as crosslinker. Pectin was diluted in water and mixed with a plasticizer and CaCl2.2H2O solution at 66°C to make edible film. Then the mixture was dried in an oven at 50 °C. After edible film was formed, it was coated using plasticizer and CaCl2.2H2O solution with various concentration 0, 0.015, 0.03 and 0.05g/mL. This study showed that the more concentration of crosslinker added, the slower release of salicylic acid would be. This was indicated by the value of diffusivites were getting smaller respectively. The addition of crosslinker also caused smaller gels swelling value,which made the membrane is mechanically stronger

  17. Concurrent release of admixed antimicrobials and salicylic acid from salicylate-based poly(anhydride-esters)

    PubMed Central

    Johnson, Michelle L.; Uhrich, Kathryn E.

    2008-01-01

    A polymer blend consisting of antimicrobials (chlorhexidine, clindamycin, and minocycline) physically admixed at 10% by weight into a salicylic acid-based poly (anhydride-ester) (SA-based PAE) was developed as an adjunct treatment for periodontal disease. The SA-based PAE/antimicrobial blends were characterized by multiple methods, including contact angle measurements and differential scanning calorimetry. Static contact angle measurements showed no significant differences in hydrophobicity between the polymer and antimicrobial matrix surfaces. Notable decreases in the polymer glass transition temperature (Tg) and the antimicrobials' melting points (Tm) were observed indicating that the antimicrobials act as plasticizers within the polymer matrix. In vitro drug release of salicylic acid from the polymer matrix and for each physically admixed antimicrobial was concurrently monitored by high pressure liquid chromatography during the course of polymer degradation and erosion. Although the polymer/antimicrobial blends were immiscible, the initial 24 h of drug release correlated to the erosion profiles. The SA-based PAE/antimicrobial blends are being investigated as an improvement on current localized drug therapies used to treat periodontal disease. PMID:19180627

  18. Mutations in the GABA Transporter SLC6A1 Cause Epilepsy with Myoclonic-Atonic Seizures

    PubMed Central

    Carvill, Gemma L.; McMahon, Jacinta M.; Schneider, Amy; Zemel, Matthew; Myers, Candace T.; Saykally, Julia; Nguyen, John; Robbiano, Angela; Zara, Federico; Specchio, Nicola; Mecarelli, Oriano; Smith, Robert L.; Leventer, Richard J.; Møller, Rikke S.; Nikanorova, Marina; Dimova, Petia; Jordanova, Albena; Petrou, Steven; Helbig, Ingo; Striano, Pasquale; Weckhuysen, Sarah; Berkovic, Samuel F.; Scheffer, Ingrid E.; Mefford, Heather C.

    2015-01-01

    GAT-1, encoded by SLC6A1, is one of the major gamma-aminobutyric acid (GABA) transporters in the brain and is responsible for re-uptake of GABA from the synapse. In this study, targeted resequencing of 644 individuals with epileptic encephalopathies led to the identification of six SLC6A1 mutations in seven individuals, all of whom have epilepsy with myoclonic-atonic seizures (MAE). We describe two truncations and four missense alterations, all of which most likely lead to loss of function of GAT-1 and thus reduced GABA re-uptake from the synapse. These individuals share many of the electrophysiological properties of Gat1-deficient mice, including spontaneous spike-wave discharges. Overall, pathogenic mutations occurred in 6/160 individuals with MAE, accounting for ∼4% of unsolved MAE cases. PMID:25865495

  19. Ornithine aminotransferase vs. GABA aminotransferase. Implications for the design of new anticancer drugs

    PubMed Central

    Lee, Hyunbeom; Juncosa, Jose I.; Silverman, Richard B.

    2015-01-01

    Ornithine aminotransferase (OAT) and γ-aminobutyric acid aminotransferase (GABA-AT) are classified under the same evolutionary subgroup and share a large portion of structural, functional, and mechanistic features. Therefore, it is not surprising that many molecules that bind to GABA-AT also bind well to OAT. Unlike GABA-AT, OAT had not been viewed as a potential therapeutic target until recently; consequently, the number of therapeutically viable molecules that target OAT is very limited. In this review the two enzymes are compared with respect to their active site structures, catalytic and inactivation mechanisms, and selective inhibitors. Insight is offered that could aid in the design and development of new selective inhibitors of OAT for the treatment of cancer. PMID:25145640

  20. Genetic differences in the ethanol sensitivity of GABA sub A receptors expressed in Xenopus oocytes

    SciTech Connect

    Wafford, K.A.; Burnett, D.M.; Dunwiddie, T.V.; Harris, R.A. )

    1990-07-20

    Animal lines selected for differences in drug sensitivity can be used to help determine the molecular basis of drug action. Long-sleep (LS) and short-sleep (SS) mice differ markedly in their genetic sensitivity to ethanol. To investigate the molecular basis for this difference, mRNA from brains of LS and SS mice was expressed in Xenopus oocytes and the ethanol sensitivity of gamma-aminobutyric acid A (GABA{sub A})- and N-methyl D-aspartate (NMDA) - activated ion channels was tested. Ethanol facilitated GABA responses in oocytes injected with mRNA from LS mice but antagonized responses in oocytes injected with mRNA from SS animals. Ethanol inhibited NMDA responses equally in the two lines. Thus, genes coding for the GABA{sub A} receptor or associated proteins may be critical determinants of individual differences in ethanol sensitivity.

  1. Controlled drug release from cross-linked κ-carrageenan/hyaluronic acid membranes.

    PubMed

    El-Aassar, M R; El Fawal, G F; Kamoun, Elbadawy A; Fouda, Moustafa M G

    2015-01-01

    In this work, hydrogel membrane composed of; kappa carrageenan (κC) and hyaluronic acid (HA) crosslinked with epichlorohydrine is produced. The optimum condition has been established based on their water absorption properties. Tensile strength (TS) and elongation (E%) for the formed films are evaluated. The obtained films were characterized by FTIR, scanning electron microscopy (SEM) and thermal analysis. All membranes were loaded with l-carnosine as a drug model. The swelling properties and kinetics of the release of the model drug from the crosslinked hydrogel membrane were monitored in buffer medium at 37°C. The equilibrium swelling of films showed fair dependency on the high presence of HA in the hydrogel. Moreover, the cumulative release profile increased significantly and ranged from 28% to 93%, as HA increases. SEM explored that, the porosity increased by increasing HA content; consequently, drug release into the pores and channels of the membranes is facilitated. In addition, water uptake % increased as well. A slight change in TS