Science.gov

Sample records for acid gaba shunt

  1. Co-Localization of GABA Shunt Enzymes for the Efficient Production of Gamma-Aminobutyric Acid via GABA Shunt Pathway in Escherichia coli.

    PubMed

    Pham, Van Dung; Somasundaram, Sivachandiran; Park, Si Jae; Lee, Seung Hwan; Hong, Soon Ho

    2016-04-28

    Gamma-aminobutyric acid (GABA) is a non-protein amino acid, which is an important inhibitor of neurotransmission in the human brain. GABA is also used as the precursor of biopolymer Nylon-4 production. In this study, the carbon flux from the tricarboxylic acid cycle was directed to the GABA shunt pathway for the production of GABA from glucose. The GABA shunt enzymes succinate-semialdehyde dehydrogenase (GabD) and GABA aminotransferase (GabT) were co-localized along with the GABA transporter (GadC) by using a synthetic scaffold complex. The co-localized enzyme scaffold complex produced 0.71 g/l of GABA from 10 g/l of glucose. Inactivation of competing metabolic pathways in mutant E. coli strains XBM1 and XBM6 increased GABA production 13% to reach 0.80 g/l GABA by the enzymes co-localized and expressed in the mutant strains. The recombinant E. coli system developed in this study demonstrated the possibility of the pathway of the GABA shunt as a novel GABA production pathway. PMID:26838342

  2. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0

    NASA Astrophysics Data System (ADS)

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-05-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes.

  3. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0

    PubMed Central

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-01-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes. PMID:27212081

  4. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0.

    PubMed

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-01-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes. PMID:27212081

  5. GABA shunt and polyamine degradation pathway on γ-aminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia.

    PubMed

    Yang, Runqiang; Guo, Qianghui; Gu, Zhenxin

    2013-01-01

    GABA shunt and polyamine degradation pathway on γ-aminobutyric acid (GABA) accumulation in germinating fava bean under hypoxia was investigated. GABA content, GAD and DAO activity were significantly increased under hypoxia treatment. Glu and polyamine contents enhanced largely and thus supplied as sufficient substrates for GABA formation. In contrast, GABA content decreased, mainly in the embryo, after removing the hypoxia stress. DAO activity, Glu and polyamines contents decreased, while an increment of GAD activity was observed. This indicated that GAD activity can be not only regulated by hypoxia, but by the rapid growth of embryo after the recovery from hypoxia stress. When treated with AG, DAO activity was almost inhibited completely, and the GABA content decreased by 32.96% and 32.07% after treated for 3 and 5 days, respectively. Hence, it can be inferred that about 30% of GABA formed in germinating fava bean under hypoxia was supplied by polyamine degradation pathway. PMID:23017406

  6. Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined?

    PubMed Central

    Michaeli, Simon; Fromm, Hillel

    2015-01-01

    γ-Aminobutyric acid (GABA) is a non-proteinogenic amino acid that is found in uni- and multi-cellular organisms and is involved in many aspects of plant life cycle. GABA metabolism occurs by the action of evolutionary conserved enzymes that constitute the GABA shunt, bypassing two steps of the TCA cycle. The central position of GABA in the interface between plant carbon and nitrogen metabolism is well established. In parallel, there is evidence to support a role for GABA as a signaling molecule in plants. Here we cover some of the recent findings on GABA metabolism and signaling in plants and further suggest that the metabolic and signaling aspects of GABA may actually be inseparable. PMID:26106401

  7. Hypoxia and GABA shunt activation in the pathogenesis of Alzheimer's disease.

    PubMed

    Salminen, Antero; Jouhten, Paula; Sarajärvi, Timo; Haapasalo, Annakaisa; Hiltunen, Mikko

    2016-01-01

    We have previously observed that the conversion of mild cognitive impairment to definitive Alzheimer's disease (AD) is associated with a significant increase in the serum level of 2,4-dihydroxybutyrate (2,4-DHBA). The metabolic generation of 2,4-DHBA is linked to the activation of the γ-aminobutyric acid (GABA) shunt, an alternative energy production pathway activated during cellular stress, when the function of Krebs cycle is compromised. The GABA shunt can be triggered by local hypoperfusion and subsequent hypoxia in AD brains caused by cerebral amyloid angiopathy. Succinic semialdehyde dehydrogenase (SSADH) is a key enzyme in the GABA shunt, converting succinic semialdehyde (SSA) into succinate, a Krebs cycle intermediate. A deficiency of SSADH activity stimulates the conversion of SSA into γ-hydroxybutyrate (GHB), an alternative route from the GABA shunt. GHB can exert not only acute neuroprotective activities but unfortunately also chronic detrimental effects which may lead to cognitive impairment. Subsequently, GHB can be metabolized to 2,4-DHBA and secreted from the brain. Thus, the activation of the GABA shunt and the generation of GHB and 2,4-DHBA can have an important role in the early phase of AD pathogenesis. PMID:26617286

  8. GABA-shunt enzymes activity in GH3 cells with reduced level of PMCA2 or PMCA3 isoform

    SciTech Connect

    Kowalski, Antoni

    2011-08-12

    Highlights: {yields} Suppression of PMCA2 or PMCA3 slows down proliferation of GH3 cells. {yields} PMCA2 suppression lowers the activity of GABA-shunt enzymes. {yields} PMCA3 suppression increases the expression of glutamate decarboxylase 65. {yields} PMCA2 and PMCA3 function appears to be linked to regulation of GABA metabolism. -- Abstract: GABA ({gamma}-aminobutyric acid) is important neurotransmitter and regulator of endocrine functions. Its metabolism involves three enzymes: glutamate decarboxylase (GAD65 and GAD67), GABA aminotransferase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). As many cellular processes GABA turnover can depend on calcium homeostasis, which is maintained by plasma membrane calcium ATPases (PMCAs). In excitable cells PMCA2 and PMCA3 isoforms are particularly important. In this study we focused on GABA-metabolizing enzymes expression and activity in rat anterior pituitary GH3 cells with suppressed expression of PMCA2 or PMCA3. We observed that PMCA3-reduced cells have increased GAD65 expression. Suppression of PMCA2 caused a decrease in total GAD and GABA-T activity. These results indicate that PMCA2 and PMCA3 presence may be an important regulatory factor in GABA metabolism. Results suggest that PMCA2 and PMCA3 function is rather related to regulation of GABA synthesis and degradation than supplying cells with metabolites, which can be potentially energetic source.

  9. Contribution of polyamines metabolism and GABA shunt to chilling tolerance induced by nitric oxide in cold-stored banana fruit.

    PubMed

    Wang, Yansheng; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-04-15

    Effect of exogenous nitric oxide (NO) on polyamines (PAs) catabolism, γ-aminobutyric acid (GABA) shunt, proline accumulation and chilling injury of banana fruit under cold storage was investigated. Banana fruit treated with NO sustained lower chilling injury index than the control. Notably elevated nitric oxide synthetase activity and endogenous NO level were observed in NO-treated banana fruit. PAs contents in treated fruit were significantly higher than control fruit, due to the elevated activities of arginine decarboxylase and ornithine decarboxylase. NO treatment increased the activities of diamine oxidase, polyamine oxidase and glutamate decarboxylase, while reduced GABA transaminase activity to lower levels compared with control fruit, which resulted the accumulation of GABA. Besides, NO treatment upregulated proline content and significantly enhanced the ornithine aminotransferase activity. These results indicated that the chilling tolerance induced by NO treatment might be ascribed to the enhanced catabolism of PAs, GABA and proline. PMID:26616957

  10. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera)

    PubMed Central

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-01-01

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis. PMID:27455877

  11. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera).

    PubMed

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-01-01

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis. PMID:27455877

  12. Production of gaba (γ - Aminobutyric acid) by microorganisms: a review.

    PubMed

    Dhakal, Radhika; Bajpai, Vivek K; Baek, Kwang-Hyun

    2012-10-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods. PMID:24031948

  13. Allosteric modulation of retinal GABA receptors by ascorbic acid

    PubMed Central

    Calero, Cecilia I.; Vickers, Evan; Moraga Cid, Gustavo; Aguayo, Luis G.; von Gersdorff, Henrique; Calvo, Daniel J.

    2011-01-01

    Summary Ionotropic γ-aminobutyric acid receptors (GABAA and GABAC) belong to the cys-loop receptor family of ligand-gated ion channels. GABAC receptors are highly expressed in the retina, mainly localized at the axon terminals of bipolar cells. Ascorbic acid, an endogenous redox agent, modulates the function of diverse proteins, and basal levels of ascorbic acid in the retina are very high. However, the effect of ascorbic acid on retinal GABA receptors has not been studied. Here we show that the function of GABAC and GABAA receptors is regulated by ascorbic acid. Patch-clamp recordings from bipolar cell terminals in goldfish retinal slices revealed that GABAC receptor-mediated currents activated by tonic background levels of extracellular GABA, and GABAC currents elicited by local GABA puffs, are both significantly enhanced by ascorbic acid. In addition, a significant rundown of GABA-puff evoked currents was observed in the absence of ascorbic acid. GABA-evoked Cl- currents mediated by homomeric ρ1 GABAC receptors expressed in Xenopus laevis oocytes were also potentiated by ascorbic acid in a concentration-dependent, stereospecific, reversible, and voltage-independent manner. Studies involving the chemical modification of sulfhydryl groups showed that the two cys-loop cysteines and histidine 141, all located in the ρ1 subunit extracellular domain, each play a key role in the modulation of GABAC receptors by ascorbic acid. Additionally, we show that retinal GABAA IPSCs and heterologously expressed GABAA receptor currents are similarly augmented by ascorbic acid. Our results suggest that ascorbic acid may act as an endogenous agent capable of potentiating GABAergic neurotransmission in the CNS. PMID:21715633

  14. Regulation of GABA-modulin phosphorylation and GABA receptor binding by excitatory amino acids

    SciTech Connect

    Vaccarino, F.; Guidotti, A.

    1987-05-01

    Primary cultures of cerebellar granule cells phosphorylate numerous proteins including GABA-modulin (GM), which is a putative allosteric modulator of GABA receptors. Cell depolarization and treatment with dicarboxylic excitatory amino acids, which activate PI turnover, Ca/sup 2 +/ influx and guanylate cyclase in granule cells increase the phosphorylation of specific proteins. To determine GM phosphorylation by endogenous protein kinases in living granule cell cultures, GM was isolated by immunoprecipitation and reverse-phase HPLC. High K/sup +/, veratridine, glutamate and NMDA treatment stimulated GM phosphorylation over 2-fold. This increase was abolished by the absence of extracellular Ca/sup 2 +/ and was antagonized by Mg/sup 2 +/ ions and by AVP. The excitatory amino acid action was mimicked by phorbol esters but not by forskolin or by cGMP, and thus may be mediated by an activation of protein kinase C (PKC). Moreover, excitatory amino acids increase /sup 3/H-labelled phorbol ester binding sites in granule cell membrane. The same cultures, treated with glutamate or kainate, showed a 50-fold greater efficacy of muscimol for the stimulation of benzodiazepine (BZ) binding. These data-suggest that excitatory amino acid stimulation of neurons triggers PKC translocation and the activated enzyme phosphorylates GM. The extent of GM phosphorylation may regulate the coupling between GABA and BZ binding sites.

  15. How and why does tomato accumulate a large amount of GABA in the fruit?

    PubMed Central

    Takayama, Mariko; Ezura, Hiroshi

    2015-01-01

    Gamma-aminobutyric acid (GABA) has received much attention as a health-promoting functional compound, and several GABA-enriched foods have been commercialized. In higher plants, GABA is primarily metabolized via a short pathway called the GABA shunt. The GABA shunt bypasses two steps (the oxidation of α-ketoglutarate to succinate) of the tricarboxylic acid (TCA) cycle via reactions catalyzed by three enzymes: glutamate decarboxylase, GABA transaminase, and succinic semialdehyde dehydrogenase. The GABA shunt plays a major role in primary carbon and nitrogen metabolism and is an integral part of the TCA cycle under stress and non-stress conditions. Tomato is one of the major crops that accumulate a relatively high level of GABA in its fruits. The GABA levels in tomato fruits dramatically change during fruit development; the GABA levels increase from flowering to the mature green stage and then rapidly decrease during the ripening stage. Although GABA constitutes up to 50% of the free amino acids at the mature green stage, the molecular mechanism of GABA accumulation and the physiological function of GABA during tomato fruit development remain unclear. In this review, we summarize recent studies of GABA accumulation in tomato fruits and discuss the potential biological roles of GABA in tomato fruit development. PMID:26322056

  16. Production of gaba (γ – Aminobutyric acid) by microorganisms: a review

    PubMed Central

    Dhakal, Radhika; Bajpai, Vivek K.; Baek, Kwang-Hyun

    2012-01-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods. PMID:24031948

  17. Impact of exogenous GABA treatments on endogenous GABA metabolism in anthurium cut flowers in response to postharvest chilling temperature.

    PubMed

    Aghdam, Morteza Soleimani; Naderi, Roohangiz; Jannatizadeh, Abbasali; Babalar, Mesbah; Sarcheshmeh, Mohammad Ali Askari; Faradonbe, Mojtaba Zamani

    2016-09-01

    Anthurium flowers are susceptible to chilling injury, and the optimum storage temperature is 12.5-20 °C. The γ-aminobutyric acid (GABA) shunt pathway may alleviate chilling stress in horticultural commodities by providing energy (ATP), reducing molecules (NADH), and minimizing accumulation of reactive oxygen species (ROS). In this experiment, the impact of a preharvest spray treatment with 1 mM GABA and postharvest treatment of 5 mM GABA stem-end dipping on GABA shunt pathway activity of anthurium cut flowers (cv. Sirion) in response to cold storage (4 °C for 21 days) was investigated. GABA treatments resulted in lower glutamate decarboxylase (GAD) and higher GABA transaminase (GABA-T) activities in flowers during cold storage, which was associated with lower GABA content and coincided with higher ATP content. GABA treatments also enhanced accumulation of endogenous glycine betaine (GB) in flowers during cold storage, as well as higher spathe relative water content (RWC). These findings suggest that GABA treatments may alleviate chilling injury of anthurium cut flowers by enhancing GABA shunt pathway activity leading to provide sufficient ATP and promoting endogenous GB accumulation. PMID:27135813

  18. Synthesis and Proton NMR Spectroscopy of Intra-Vesicular Gamma-Aminobutyric Acid (GABA)*

    PubMed Central

    Wang, Luke Y.-J.; Tong, Rong; Kohane, Daniel S.

    2014-01-01

    We report the synthesis of vesicles containing gamma-aminobutyric acid (GABA), and their proton nuclear magnetic resonance (1H NMR) spectra. These vesicles were constructed to more closely mimic the intracellular environment wherein GABA exists. For this study, these GABA-containing vesicles were examined under 1H NMR as a potential platform for future studies on the differences between aqueous phantoms, ex vivo brain extracts, and in vivo magnetic resonance spectroscopy results. We found that intra-vesicular GABA faithfully yielded the chemical shifts and J-coupling constants of free aqueous GABA, alongside the chemical shift signals of the vesicle wall. PMID:24109882

  19. Acid Stimulation (Sour Taste) Elicits GABA and Serotonin Release from Mouse Taste Cells

    PubMed Central

    Huang, Yijen A.; Pereira, Elizabeth; Roper, Stephen D.

    2011-01-01

    Several transmitter candidates including serotonin (5-HT), ATP, and norepinephrine (NE) have been identified in taste buds. Recently, γ-aminobutyric acid (GABA) as well as the associated synthetic enzymes and receptors have also been identified in taste cells. GABA reduces taste-evoked ATP secretion from Receptor cells and is considered to be an inhibitory transmitter in taste buds. However, to date, the identity of GABAergic taste cells and the specific stimulus for GABA release are not well understood. In the present study, we used genetically-engineered Chinese hamster ovary (CHO) cells stably co-expressing GABAB receptors and Gαqo5 proteins to measure GABA release from isolated taste buds. We recorded robust responses from GABA biosensors when they were positioned against taste buds isolated from mouse circumvallate papillae and the buds were depolarized with KCl or a stimulated with an acid (sour) taste. In contrast, a mixture of sweet and bitter taste stimuli did not trigger GABA release. KCl- or acid-evoked GABA secretion from taste buds was Ca2+-dependent; removing Ca2+ from the bathing medium eliminated GABA secretion. Finally, we isolated individual taste cells to identify the origin of GABA secretion. GABA was released only from Presynaptic (Type III) cells and not from Receptor (Type II) cells. Previously, we reported that 5-HT released from Presynaptic cells inhibits taste-evoked ATP secretion. Combined with the recent findings that GABA depresses taste-evoked ATP secretion [1], the present results indicate that GABA and 5-HT are inhibitory transmitters in mouse taste buds and both likely play an important role in modulating taste responses. PMID:22028776

  20. An analysis of [3H]gamma-aminobutyric acid (GABA) binding in the human brain.

    PubMed

    Lloyd, K G; Dreksler, S

    1979-03-01

    The binding of [3H]GABA to membranes prepared from human brains obtained post morten was examined. This binding was independent of patient sex, age (16--80 years), postmortem interval (4--33 h) or storage time when frozen (0-64 months). In preparations from cerebellar cortex various compounds displaced [3H]GABA binding with the following order of potency: muscimol greater than 3-aminopropanesulfonic acid greater than GABA greater than imidazoleacet acid greater than delta-amino-n-valeric acid greater than 3-hydroxyGABA greater than bicuculline. Other compounds active 'in vitro' included strychnine, homocarnosine and some (e.g. clozapine, thioridazine, pimozide) but not all (chlorpromazine, haloperiodol) neuroleptics. Compounds inactive 'in vitro' included aminooxyacetic acid, baclofen, picrotoxin, anticholinergics, metrazole, anticonvulsants and naloxone. Triton X-100 augmented the [3H]GABA binding (25 nM) by about 10--20-fold in most brain regions. [3H]GABA binding (IC50) was altered in Huntington's chorea and Reye's syndrome, but not in schizophrenics (4-neuroleptic-treated patients) or sudden infant death syndrome. The data presented strongly support the proposal that the measurement of [3H]GABA binding in postmortem human brain offers a reflection of the state of the physiologically relevant GABA receptor. PMID:218679

  1. A functional role for both γ-aminobutyric acid (GABA) transporter-1 and GABA transporter-3 in the modulation of extracellular GABA and GABAergic tonic conductances in the rat hippocampus

    PubMed Central

    Kersanté, Flavie; Rowley, Samuel C S; Pavlov, Ivan; Gutièrrez-Mecinas, María; Semyanov, Alexey; Reul, Johannes M H M; Walker, Matthew C; Linthorst, Astrid C E

    2013-01-01

    Tonic γ-aminobutyric acid (GABA)A receptor-mediated signalling controls neuronal network excitability in the hippocampus. Although the extracellular concentration of GABA (e[GABA]) is critical in determining tonic conductances, knowledge on how e[GABA] is regulated by different GABA transporters (GATs) in vivo is limited. Therefore, we studied the role of GATs in the regulation of hippocampal e[GABA] using in vivo microdialysis in freely moving rats. Here we show that GAT-1, which is predominantly presynaptically located, is the major GABA transporter under baseline, quiescent conditions. Furthermore, a significant contribution of GAT-3 in regulating e[GABA] was revealed by administration of the GAT-3 inhibitor SNAP-5114 during simultaneous blockade of GAT-1 by NNC-711. Thus, the GABA transporting activity of GAT-3 (the expression of which is confined to astrocytes) is apparent under conditions in which GAT-1 is blocked. However, sustained neuronal activation by K+-induced depolarization caused a profound spillover of GABA into the extrasynaptic space and this increase in e[GABA] was significantly potentiated by sole blockade of GAT-3 (i.e. even when uptake of GAT-1 is intact). Furthermore, experiments using tetrodotoxin to block action potentials revealed that GAT-3 regulates extrasynaptic GABA levels from action potential-independent sources when GAT-1 is blocked. Importantly, changes in e[GABA] resulting from both GAT-1 and GAT-3 inhibition directly precipitate changes in tonic conductances in dentate granule cells as measured by whole-cell patch-clamp recording. Thus, astrocytic GAT-3 contributes to the regulation of e[GABA] in the hippocampus in vivo and may play an important role in controlling the excitability of hippocampal cells when network activity is increased. PMID:23381899

  2. A fluorescence-coupled assay for gamma aminobutyric acid (GABA) reveals metabolic stress-induced modulation of GABA content in neuroendocrine cancer.

    PubMed

    Ippolito, Joseph E; Piwnica-Worms, David

    2014-01-01

    Pathways involved in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA) have been implicated in the pathogenesis of high grade neuroendocrine (NE) neoplasms as well as neoplasms from a non-NE lineage. Using The Cancer Genome Atlas, overexpression of the GABA synthetic enzyme, glutamate decarboxylase 1 (GAD1), was found to be associated with decreased disease free-survival in prostate adenocarcinoma and decreased overall survival in clear cell renal cell carcinomas. Furthermore, GAD1 was found to be expressed in castrate-resistant prostate cancer cell lines, but not androgen-responsive cell lines. Using a novel fluorescence-coupled enzymatic microplate assay for GABA mediated through reduction of resazurin in a prostate neuroendocrine carcinoma (PNEC) cell line, acid microenvironment-induced stress increased GABA levels while alkaline microenvironment-induced stress decreased GABA through modulation of GAD1 and glutamine synthetase (GLUL) activities. Moreover, glutamine but not glucose deprivation decreased GABA through modulation of GLUL. Consistent with evidence in prokaryotic and eukaryotic organisms that GABA synthesis mediated through GAD1 may play a crucial role in surviving stress, GABA may be an important mediator of stress survival in neoplasms. These findings identify GABA synthesis and metabolism as a potentially important pathway for regulating cancer cell stress response as well as a potential target for therapeutic strategies. PMID:24551133

  3. A tonoplast Glu/Asp/GABA exchanger that affects tomato fruit amino acid composition.

    PubMed

    Snowden, Christopher J; Thomas, Benjamin; Baxter, Charles J; Smith, J Andrew C; Sweetlove, Lee J

    2015-03-01

    Vacuolar accumulation of acidic metabolites is an important aspect of tomato fruit flavour and nutritional quality. The amino acids Asp and Glu accumulate to high concentrations during ripening, while γ-aminobutyrate (GABA) shows an approximately stoichiometric decline. Given that GABA can be catabolised to form Glu and subsequently Asp, and the requirement for the fruit to maintain osmotic homeostasis during ripening, we hypothesised the existence of a tonoplast transporter that exports GABA from the vacuole in exchange for import of either Asp or Glu. We show here that the tomato vacuolar membrane possesses such a transport property: transport of Glu across isolated tonoplast vesicle membranes was trans-stimulated in counterexchange mode by GABA, Glu and Asp. We identified SlCAT9 as a candidate protein for this exchanger using quantitative proteomics of a tonoplast-enriched membrane fraction. Transient expression of a SlCAT9-YFP fusion in tobacco confirmed a tonoplast localisation. The function of the protein was examined by overexpression of SlCAT9 in transgenic tomato plants. Tonoplast vesicles isolated from transgenic plants showed higher rates of Glu and GABA transport than wild-type (WT) only when assayed in counterexchange mode with Glu, Asp, or GABA. Moreover, there were substantial increases in the content of all three cognate amino acids in ripe fruit from the transgenic plants. We conclude that SlCAT9 is a tonoplast Glu/Asp/GABA exchanger that strongly influences the accumulation of these amino acids during fruit development. PMID:25602029

  4. Contents of Neo-flavored Tea (GABA Kintaro) Containing γ-Aminobutyric Acid

    NASA Astrophysics Data System (ADS)

    Shiraki, Yoshiya

    The contents of γ-aminobutyric acid (GABA), catechins, theaflavins, caffeine and pheophorbide-a in neo-flavored tea (GABA Kintaro tea) were analyzed. 1)The amounts of GABA were increased over 1.5mg/g by means of infrared ray irradiation with agitation treatment. 2)There was a tendency for the amount of catechins to be decreased by this treatment, whereas the amount of theaflavins tended to increase with the same treatment. The composition of these contents in this GABA Kintaro tea was almost the same as that of black tea. 3)There was a tendency for the amount of caffeine to be decreased by this treatment. 4)There was a tendency for the amount of pheophorbide-a to be increased by this treatment. 5)The result of this study showed that the amounts of GABA and theaflavins in this GABA Kintaro tea were higher than ordinary green tea but contained few catechins.It became clear that the amount of pheophorbide-a in this GABA Kintaro tea was less than the standard value established in processed chlorella.

  5. γ-Aminobutyric acid (GABA) homeostasis regulates pollen germination and polarized growth in Picea wilsonii.

    PubMed

    Ling, Yu; Chen, Tong; Jing, Yanping; Fan, Lusheng; Wan, Yinglang; Lin, Jinxing

    2013-11-01

    γ-Aminobutyric acid (GABA) is a four-carbon non-protein amino acid found in a wide range of organisms. Recently, GABA accumulation has been shown to play a role in the stress response and cell growth in angiosperms. However, the effect of GABA deficiency on pollen tube development remains unclear. Here, we demonstrated that specific concentrations of exogenous GABA stimulated pollen tube growth in Picea wilsonii, while an overdose suppressed pollen tube elongation. The germination percentage of pollen grains and morphological variations in pollen tubes responded in a dose-dependent manner to treatment with 3-mercaptopropionic acid (3-MP), a glutamate decarboxylase inhibitor, while the inhibitory effects could be recovered in calcium-containing medium supplemented with GABA. Using immunofluorescence labeling, we found that the actin cables were disorganized in 3-MP treated cells, followed by the transition of endo/exocytosis activating sites from the apex to the whole tube shank. In addition, variations in the deposition of cell wall components were detected upon labeling with JIM5, JIM7, and aniline blue. Our results demonstrated that calcium-dependent GABA signaling regulates pollen germination and polarized tube growth in P. wilsonii by affecting actin filament patterns, vesicle trafficking, and the configuration and distribution of cell wall components. PMID:23900837

  6. Effects of traditionally used anxiolytic botanicals on enzymes of the gamma-aminobutyric acid (GABA) system.

    PubMed

    Awad, R; Levac, D; Cybulska, P; Merali, Z; Trudeau, V L; Arnason, J T

    2007-09-01

    In Canada, the use of botanical natural health products (NHPs) for anxiety disorders is on the rise, and a critical evaluation of their safety and efficacy is required. The purpose of this study was to determine whether commercially available botanicals directly affect the primary brain enzymes responsible for gamma-aminobutyric acid (GABA) metabolism. Anxiolytic plants may interact with either glutamic acid decarboxylase (GAD) or GABA transaminase (GABA-T) and ultimately influence brain GABA levels and neurotransmission. Two in vitro rat brain homogenate assays were developed to determine the inhibitory concentrations (IC50) of aqueous and ethanolic plant extracts. Approximately 70% of all extracts that were tested showed little or no inhibitory effect (IC50 values greater than 1 mg/mL) and are therefore unlikely to affect GABA metabolism as tested. The aqueous extract of Melissa officinalis (lemon balm) exhibited the greatest inhibition of GABA-T activity (IC50 = 0.35 mg/mL). Extracts from Centella asiatica (gotu kola) and Valeriana officinalis (valerian) stimulated GAD activity by over 40% at a dose of 1 mg/mL. On the other hand, both Matricaria recutita (German chamomile) and Humulus lupulus (hops) showed significant inhibition of GAD activity (0.11-0.65 mg/mL). Several of these species may therefore warrant further pharmacological investigation. The relation between enzyme activity and possible in vivo mode of action is discussed. PMID:18066140

  7. GABA, 5-HT and amino acids in the rotifers Brachionus plicatilis and Brachionus rotundiformis.

    PubMed

    Gallardo, W G; Hagiwara, A; Hara, K; Soyano, K; Snell, T W

    2000-11-01

    gamma-Aminobutyric acid (GABA) and 5-hydroxytryptamine (5-HT) have been shown to increase the reproduction of the Brachionus plicatilis (NH3L strain). In the present study, the endogenous presence of GABA and 5-HT in the rotifers B. plicatilis (NH3L and Kamiura strains) and Brachionus rotundiformis (Langkawi strain) were confirmed by dot blot immunoassay and high-performance liquid chromatography (HPLC). HPLC showed that GABA and 5-HT concentrations in the three rotifer strains range from 71 to 188 pmol/mg and from 12 to 64 pmol/mg, respectively. A total of 33 amino acids were also detected in B. plicatilis and B. rotundiformis, with glutamic acid, serine, glycine, taurine, threonine, alanine, arginine, proline, valine and isoleucine in high concentrations relative to other amino acids. PMID:11118940

  8. Neuronal gamma-aminobutyric acid (GABA) type A receptors undergo cognate ligand chaperoning in the endoplasmic reticulum by endogenous GABA

    PubMed Central

    Wang, Ping; Eshaq, Randa S.; Meshul, Charles K.; Moore, Cynthia; Hood, Rebecca L.; Leidenheimer, Nancy J.

    2015-01-01

    GABAA receptors mediate fast inhibitory neurotransmission in the brain. Dysfunction of these receptors is associated with various psychiatric/neurological disorders and drugs targeting this receptor are widely used therapeutic agents. Both the efficacy and plasticity of GABAA receptor-mediated neurotransmission depends on the number of surface GABAA receptors. An understudied aspect of receptor cell surface expression is the post-translational regulation of receptor biogenesis within the endoplasmic reticulum (ER). We have previously shown that exogenous GABA can act as a ligand chaperone of recombinant GABAA receptors in the early secretory pathway leading us to now investigate whether endogenous GABA facilitates the biogenesis of GABAA receptors in primary cerebral cortical cultures. In immunofluorescence labeling experiments, we have determined that neurons expressing surface GABAA receptors contain both GABA and its degradative enzyme GABA transaminase (GABA-T). Treatment of neurons with GABA-T inhibitors, a treatment known to increase intracellular GABA levels, decreases the interaction of the receptor with the ER quality control protein calnexin, concomittantly increasing receptor forward-trafficking and plasma membrane insertion. The effect of GABA-T inhibition on the receptor/calnexin interaction is not due to the activation of surface GABAA or GABAB receptors. Consistent with our hypothesis that GABA acts as a cognate ligand chaperone in the ER, immunogold-labeling of rodent brain slices reveals the presence of GABA within the rough ER. The density of this labeling is similar to that present in mitochondria, the organelle in which GABA is degraded. Lastly, the effect of GABA-T inhibition on the receptor/calnexin interaction was prevented by pretreatment with a GABA transporter inhibitor. Together, these data indicate that endogenous GABA acts in the rough ER as a cognate ligand chaperone to facilitate the biogenesis of neuronal GABAA receptors. PMID

  9. An arylaminopyridazine derivative of gamma-aminobutyric acid (GABA) is a selective and competitive antagonist at the GABAA receptor site.

    PubMed Central

    Chambon, J P; Feltz, P; Heaulme, M; Restle, S; Schlichter, R; Biziere, K; Wermuth, C G

    1985-01-01

    In view of finding a new gamma-aminobutyric acid (GABA) receptor ligand we synthesized an arylaminopyridazine derivative of GABA, SR 95103 [2-(carboxy-3'-propyl)-3-amino-4-methyl-6-phenylpyridazinium chloride]. SR 95103 displaced [3H]GABA from rat brain membranes with an apparent Ki of 2.2 microM and a Hill number near 1.0. SR 95103 (1-100 microM) antagonized the GABA-mediated enhancement of [3H]diazepam binding in a concentration-dependent manner without affecting [3H]diazepam binding per se. SR 95103 competitively antagonized GABA-induced membrane depolarization in rat spinal ganglia. In all these experiments, the potency of SR 95103 was close to that of bicuculline. SR 95103 (100 microM) did not interact with a variety of central receptors--in particular the GABAB, the strychnine, and the glutamate receptors--did not inhibit Na+-dependent synaptosomal GABA uptake, and did not affect GABA-transaminase and glutamic acid decarboxylase activities. Intraperitoneally administered SR 95103 elicited clonicotonic seizures in mice (ED50 = 180 mg/kg). On the basis of these results it is postulated that St 95103 is a competitive antagonist of GABA at the GABAA receptor site. In addition to being an interesting lead structure for the search of GABA ligands, SR 95103 could also be a useful tool to investigate GABA receptor subtypes because it is freely soluble in water and chemically stable. Images PMID:2984669

  10. γ-Aminobutyric acid (GABA) concentration inversely correlates with basal perfusion in human occipital lobe.

    PubMed

    Donahue, Manus J; Rane, Swati; Hussey, Erin; Mason, Emily; Pradhan, Subechhya; Waddell, Kevin W; Ally, Brandon A

    2014-03-01

    Commonly used neuroimaging approaches in humans exploit hemodynamic or metabolic indicators of brain function. However, fundamental gaps remain in our ability to relate such hemo-metabolic reactivity to neurotransmission, with recent reports providing paradoxical information regarding the relationship among basal perfusion, functional imaging contrast, and neurotransmission in awake humans. Here, sequential magnetic resonance spectroscopy (MRS) measurements of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA+macromolecules normalized by the complex N-acetyl aspartate-N-acetyl aspartyl glutamic acid: [GABA(+)]/[NAA-NAAG]), and magnetic resonance imaging (MRI) measurements of perfusion, fractional gray-matter volume, and arterial arrival time (AAT) are recorded in human visual cortex from a controlled cohort of young adult male volunteers with neurocognitive battery-confirmed comparable cognitive capacity (3 T; n=16; age=23±3 years). Regression analyses reveal an inverse correlation between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.46; P=0.037), yet no relationship between AAT and [GABA(+)]/[NAA-NAAG] (R=-0.12; P=0.33). Perfusion measurements that do not control for AAT variations reveal reduced correlations between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.13; P=0.32). These findings largely reconcile contradictory reports between perfusion and inhibitory tone, and underscore the physiologic origins of the growing literature relating functional imaging signals, hemodynamics, and neurotransmission. PMID:24398941

  11. Cloning of the gamma-aminobutyric acid (GABA) rho 1 cDNA: a GABA receptor subunit highly expressed in the retina.

    PubMed Central

    Cutting, G R; Lu, L; O'Hara, B F; Kasch, L M; Montrose-Rafizadeh, C; Donovan, D M; Shimada, S; Antonarakis, S E; Guggino, W B; Uhl, G R

    1991-01-01

    Type A gamma-aminobutyric acid (GABAA) receptors are a family of ligand-gated chloride channels that are the major inhibitory neurotransmitter receptors in the nervous system. Molecular cloning has revealed diversity in the subunits that compose this heterooligomeric receptor, but each previously elucidated subunit displays amino acid similarity in conserved structural elements. We have used these highly conserved regions to identify additional members of this family by using the polymerase chain reaction (PCR). One PCR product was used to isolate a full-length cDNA from a human retina cDNA library. The mature protein predicted from this cDNA sequence in 458 amino acids long and displays between 30 and 38% amino acid similarity to the previously identified GABAA subunits. This gene is expressed primarily in the retina but transcripts are also detected in the brain, lung, and thymus. Injection of Xenopus oocytes with RNA transcribed in vitro produces a GABA-responsive chloride conductance and expression of the cDNA in COS cells yields GABA-displaceable muscimol binding. These features are consistent with our identification of a GABA subunit, GABA rho 1, with prominent retinal expression that increases the diversity and tissue specificity of this ligand-gated ion-channel receptor family. Images PMID:1849271

  12. Selective antagonism of the GABA(A) receptor by ciprofloxacin and biphenylacetic acid.

    PubMed

    Green, M A; Halliwell, R F

    1997-10-01

    1. Previous studies have shown that ciprofloxacin and biphenylacetic acid (BPAA) synergistically inhibit y-aminobutyric acid (GABA)A receptors. In the present study, we have investigated the actions of these two drugs on other neuronal ligand-gated ion channels. 2. Agonist-evoked depolarizations were recorded from rat vagus and optic nerves in vitro by use of an extracellular recording technique. 3. GABA (50 microM)-evoked responses, in the vagus nerve in vitro, were inhibited by bicuculline (0.3-10 microM) and picrotoxin (0.3-10 microM), with IC50 values and 95% confidence intervals (CI) of 1.2 microM (1.1-1.4) and 3.6 microM (3.0-4.3), respectively, and were potentiated by sodium pentobarbitone (30 microM) and diazepam (1 microM) to (mean+/-s.e.mean) 168+/-18% and 117+/-4% of control, respectively. 5-Hydroxytryptamine (5-HT; 0.5 microM)-evoked responses were inhibited by MDL 72222 (1 microM) to 10+/-4% of control; DMPP (10 microM)-evoked responses were inhibited by hexamethonium (100 microM) to 12+/-5% of control, and alphabetaMeATP (30 microM)-evoked responses were inhibited by PPADS (10 microM) to 21+/-5% of control. Together, these data are consistent with activation of GABA(A), 5-HT3, nicotinic ACh and P2X receptors, respectively. 4 Ciprofloxacin (10-3000 microM) inhibited GABA(A)-mediated responses in the vagus nerve with an IC50 (and 95% CI) of 202 microM (148-275). BPAA (1-1000 microM) had little or no effect on the GABA(A)-mediated response but concentration-dependently potentiated the effects of ciprofloxacin by up to 33,000 times. 5. Responses mediated by 5-HT3, nicotinic ACh and P2X receptors in the vagus nerve and strychnine-sensitive glycine receptors in the optic nerve were little or unaffected by ciprofloxacin (100 microM), BPAA (100 microM) or the combination of these drugs (both at 100 microM). 6. GABA (1 mM)-evoked responses in the optic nerve were inhibited by bicuculline with an IC50 of 3.6 microM (2.8-4.5), a value not significantly different

  13. The inhibitory role of γ-aminobutyric acid (GABA) on immunomodulation of Pacific oyster Crassostrea gigas.

    PubMed

    Li, Meijia; Qiu, Limei; Wang, Lingling; Wang, Weilin; Xin, Lusheng; Li, Yiqun; Liu, Zhaoqun; Song, Linsheng

    2016-05-01

    γ-aminobutyric acid (GABA) is an inhibitory neurotransmitter to suppress the immune-mediated pro-inflammatory reactions, and it has been used in the treatment of many inflammation-related diseases in vertebrates, while its immunomodulatory role in invertebrates has never been reported. In the present study, GABA was found to exist in the hemolymph of Pacific oyster Crassostrea gigas, and its concentration decreased slightly from 8.00 ± 0.37 μmol L(-1) at normal condition to 7.73 ± 0.15 μmol L(-1) at 6 h after LPS stimulation, and then increased to 9.34 ± 0.15 μmol L(-1), 8.86 ± 0.68 μmol L(-1) at 12 h and 48 h, respectively. After LPS stimulation, the mRNA expressions of pro-inflammatory cytokines (CgIL-17 and CgTNF) and immune effectors (CgSOD and CgBPI), and the protein expression of NOS increased significantly, and these increased trends were remarkably inhibited by GABA stimulation. At the same time, the phagocytosis rate and apoptosis rate of immunocytes also increased obviously after LPS stimulation, whereas the increase was repressed with the addition of GABA. The results collectively demonstrated that GABA was an indispensable inhibitory agent for both humoral and cellular immune response, which mainly functioned at the late phase of immune response to avoid the excess immune reactions and maintain the immune homeostasis. PMID:26975413

  14. Guanidino acids act as rho1 GABA(C) receptor antagonists.

    PubMed

    Chebib, Mary; Gavande, Navnath; Wong, Kit Yee; Park, Anna; Premoli, Isabella; Mewett, Kenneth N; Allan, Robin D; Duke, Rujee K; Johnston, Graham A R; Hanrahan, Jane R

    2009-10-01

    GABA(C) receptors play a role in myopia, memory-related disorders and circadian rhythms signifying a need to develop potent and selective agents for this class of receptors. Guanidino analogs related to glycine, beta-alanine and taurine were evaluated at human rho(1)GABA(C) receptors expressed in Xenopus oocytes using 2-electrode voltage clamp methods. Of the 12 analogs tested, 8 analogs were active as antagonists and the remaining were inactive. (S)-2-guanidinopropionic acid (IC(50) = 2.2 microM) and guanidinoacetic acid (IC(50) = 5.4 microM; K (B) = 7.75 microM [pK (B) = 5.11 +/- 0.06]) were the most potent being competitive antagonists at this receptor. In contrast, the beta-alanine and GABA guanidino analogs showed reduced activity, indicating the distance between the carboxyl carbon and terminal nitrogen of the guanidino group is critical for activity. Substituting the C2-position of guanidinoacetic acid with various alkyl groups reduced activity indicating that steric effects may impact on activity. The results of this study contribute to the structure-activity-relationship profile required in developing novel therapeutic agents. PMID:19387831

  15. Effect of diphenylhydantoin on gamma aminobutyric acid (GABA) and succinate activity in rat Purkinje cells.

    PubMed Central

    Hitchcock, E; Gabra-Sanders, T

    1977-01-01

    A study has been made of the effect of diphenylhydantoin (DPH) upon the levels of gamma aminobutyric acid (GABA) and succinic dehydrogenase in rat Purkinje cells. DPH was administered over 26 days in chronic experiments using controls receiving the same injection vehicle without DPH. Animals in this group received daily 1.25 mg/kg body weight, 12.5 mg/kg body weight, and 50 mg/kg body weight DPH. Acute experiments were carried out over the course of not more than four days, three groups of animals receiving 75 mg/kg body weight, 87.5 mg/kg body weight, and 100 mg/kg body weight DPH. No effect upon succinic dehydrogenase could be demonstrated at any dose level. There was a significant progressive loss of GABA with increasing dosage of DPH. Images PMID:903771

  16. Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter.

    PubMed

    Dung Pham, Van; Somasundaram, Sivachandiran; Lee, Seung Hwan; Park, Si Jae; Hong, Soon Ho

    2016-01-01

    Gamma-aminobutyric acid (GABA) is an important bio-product, which is used in pharmaceutical formulations, nutritional supplements, and biopolymer monomer. The traditional GABA process involves the decarboxylation of glutamate. However, the direct production of GABA from glucose is a more efficient process. To construct the recombinant strains of Escherichia coli, a novel synthetic scaffold was introduced. By carrying out the co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter, we redirected the TCA cycle flux to GABA pathway. The genetically engineered E. coli strain produced 1.08 g/L of GABA from 10 g/L of initial glucose. Thus, with the introduction of a synthetic scaffold, we increased GABA production by 2.2-fold. The final GABA concentration was increased by 21.8% by inactivating competing pathways. PMID:26620318

  17. Low-dose acetylsalicylic acid and bleeding risks with ventriculoperitoneal shunt placement.

    PubMed

    Kamenova, Maria; Croci, Davide; Guzman, Raphael; Mariani, Luigi; Soleman, Jehuda

    2016-09-01

    OBJECTIVE Ventriculoperitoneal (VP) shunt placement is a common procedure for the treatment of hydrocephalus following diverse neurosurgical conditions. Most of the patients present with other comorbidities and receive antiplatelet therapy, usually acetylsalicylic acid (ASA). Despite its clinical relevance, the perioperative management of these patients has not been sufficiently investigated. The aim of this study was to compare the peri- and postoperative bleeding complication rates associated with ASA intake in patients undergoing VP shunt placement. METHODS Of 172 consecutive patients undergoing VP shunt placement between June 2009 and December 2015, 40 (23.3%) patients were receiving low-dose ASA treatment. The primary outcome measure was bleeding events in ASA users versus nonusers, whereas secondary outcome measures were postoperative cardiovascular events, hematological findings, morbidity, and mortality. A subgroup analysis was conducted in patients who discontinued ASA treatment for < 7 days (n = 4, ASA Group 1) and for ≥ 7 days (n = 36, ASA Group 2). RESULTS No statistically significant difference for bleeding events was observed between ASA users and nonusers (p = 0.30). Cardiovascular complications, surgical morbidity, and mortality did not differ significantly between the groups either. Moreover, there was no association between ASA discontinuation regimens (< 7 days and ≥ 7 days) and hemorrhagic events. CONCLUSIONS Given the lack of guidelines regarding perioperative management of neurosurgical patients with antiplatelet therapy, these findings elucidate one issue, showing comparable bleeding rates in ASA users and nonusers undergoing VP shunt placement. PMID:27581316

  18. Mutations in y-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas syringae pv. tomato DC3000 is a bacterial pathogen of Arabidopsis and tomato that grows in the apoplast. The non-protein amino acid '-amino butyric acid (GABA) is produced by Arabidopsis and tomato and is the most abundant amino acid in the apoplastic fluid of tomato. The DC3000 genome h...

  19. Effects of NaCl Replacement with Gamma-Aminobutyric acid (GABA) on the Quality Characteristics and Sensorial Properties of Model Meat Products

    PubMed Central

    Chun, Ji-Yeon; Cho, Hyung-Yong; Min, Sang-Gi

    2014-01-01

    This study investigated the effects of γ-aminobutylic acid (GABA) on the quality and sensorial properties of both the GABA/NaCl complex and model meat products. GABA/NaCl complex was prepared by spray-drying, and the surface dimensions, morphology, rheology, and saltiness were characterized. For model meat products, pork patties were prepared by replacing NaCl with GABA. For characteristics of the complex, increasing GABA concentration increased the surface dimensions of the complex. However, GABA did not affect the rheological properties of solutions containing the complex. The addition of 2% GABA exhibited significantly higher saltiness than the control (no GABA treatment). In the case of pork patties, sensory testing indicated that the addition of GABA decreased the saltiness intensity. Both the intensity of juiciness and tenderness of patties containing GABA also scored lower than the control, based on the NaCl reduction. These results were consistent with the quality characteristics (cooking loss and texture profile analysis). Nevertheless, overall acceptability of the pork patties showed that up to 1.5%, patties containing GABA did not significantly differ from the control. Consequently, the results indicated that GABA has a potential application in meat products, but also manifested a deterioration of quality by the NaCl reduction, which warrants further exploration. PMID:26761294

  20. Effect of GABA on oxidative stress in the skeletal muscles and plasma free amino acids in mice fed high-fat diet.

    PubMed

    Xie, Z X; Xia, S F; Qiao, Y; Shi, Y H; Le, G W

    2015-06-01

    Increased levels of plasma free amino acids (pFAAs) can disturb the blood glucose levels in patients with obesity, diabetes mellitus and metabolic syndrome (MS) and are associated with enhanced protein oxidation. Oxidation of proteins, especially in the muscles, can promote protein degradation and elevate the levels of pFAAs. Gamma-aminobutyric acid (GABA), a food additive, can reduce high-fat diet (HFD)-induced hyperglycaemia; however, the mechanisms remain unclear. The aim of this study was to evaluate the effects of GABA on protein oxidation and pFAAs changes. One hundred male C57BL/6 mice were randomly divided into five groups that were fed with control diet, HFD and HFD supplied with 0.2%, 0.12% and 0.06% GABA in drinking water for 20 weeks respectively. HFD feeding led to muscular oxidative stress, protein oxidation, pFAA disorders, hyperglycaemia and augmented plasma GABA levels. Treatment with GABA restored normally fasting blood glucose level and dose-dependently inhibited body weight gains, muscular oxidation and protein degradation. While medium and low doses of GABA mitigated HFD-induced pFAA disorders, the high dose of GABA deteriorated the pFAA disorders. Medium dose of GABA increased the levels of GABA, but high dose of GABA reduced the levels of plasma GABA and increased the activity of succinic semialdehyde dehydrogenase in the liver. Therefore, treatment with GABA mitigated HFD-induced hyperglycaemia probably by repairing HFD-induced muscular oxidative stress and pFAA disorders in mice. Our data also suggest that an optimal dose of GABA is crucial for the prevention of excess GABA-related decrease in the levels of pFAA and GABA as well as obesity. PMID:25266692

  1. Identification of amino acids involved in histamine potentiation of GABA A receptors.

    PubMed

    Thiel, Ulrike; Platt, Sarah J; Wolf, Steffen; Hatt, Hanns; Gisselmann, Günter

    2015-01-01

    Histamine is a neurotransmitter involved in a number of physiological and neuronal functions. In mammals, such as humans, and rodents, the histaminergic neurons found in the tuberomamillary nucleus project widely throughout the central nervous system. Histamine acts as positive modulator of GABAA receptors (GABAARs) and, in high concentrations (10 mM), as negative modulator of the strychnine-sensitive glycine receptor. However, the exact molecular mechanisms by which histamine acts on GABAARs are unknown. In our study, we aimed to identify amino acids potentially involved in the modulatory effect of histamine on GABAARs. We expressed GABAARs with 12 different point mutations in Xenopus laevis oocytes and characterized the effect of histamine on GABA-induced currents using the two-electrode voltage clamp technique. Our data demonstrate that the amino acid residues β2(N265) and β2(M286), which are important for modulation by propofol, are not involved in the action of histamine. However, we found that histamine modulation is dependent on the amino acid residues α1(R120), β2(Y157), β2(D163), β3(V175), and β3(Q185). We showed that the amino acid residues β2(Y157) and β3(Q185) mediate the positive modulatory effect of histamine on GABA-induced currents, whereas α1(R120) and β2(D163) form a potential histamine interaction site in GABAARs. PMID:26074818

  2. γ-Aminobutyric acid type A (GABA(A)) receptor subtype inverse agonists as therapeutic agents in cognition.

    PubMed

    Gabriella, Guerrini; Giovanna, Ciciani

    2010-01-01

    The gabaergic system has been identified as a relevant regulator of cognitive and emotional processing. In fact, the discovery that negative allosteric regulators (or inverse agonists) at GABA(A) (γ-aminobutyric acid) α5 subtype receptors improve learning and memory tasks, has further validated this concept. The localization of these extrasynaptic subtype receptors, mainly in the hippocampus, has suggested that they play a key role in the three stages of memory: acquisition, consolidation, and retrieval. The "α5 inverse agonist" binds to an allosteric site at GABA(A) receptor, provoking a reduction of chlorine current, but to elicit this effect, the necessary condition is the binding of agonist neurotransmitter (γ-amino butyric acid) at its orthosteric site. In this case, the GABA(A) receptor is not a "constitutively active receptor" and, however, the presence of spontaneous opening channels for native GABA(A) receptors is rare. Here, we present various classes of nonselective and α5 selective GABA(A) receptor ligands, and the in vitro and in vivo tests to elucidate their affinity and activity. The study of the GABA(A) α5 inverse agonists is one of the important tools, although not the only one, for the development of clinical strategies for treatment of Alzheimer disease and mild cognitive impairment. PMID:21050918

  3. SYSTEMIC ADMINISTRATION OF KAINIC ACID INCREASES GABA LEVELS IN PERFUSATE FROM THE HIPPOCAMPUS OF RATS IN VIVO

    EPA Science Inventory

    The ventral hippocampi of male, Fischer-344 rats were implanted with microdialysis probes and the effects of systemically administered kainic acid (KA) (8 mg/kg, s.c.) on the in vivo release of amino acids were measured for four hours after administration. n order to measure GABA...

  4. Exogenous γ-aminobutyric Acid (GABA) Application Improved Early Growth, Net Photosynthesis, and Associated Physio-Biochemical Events in Maize.

    PubMed

    Li, Wu; Liu, Jianhua; Ashraf, Umair; Li, Gaoke; Li, Yuliang; Lu, Wenjia; Gao, Lei; Han, Fuguang; Hu, Jianguang

    2016-01-01

    γ-aminobutyric acid (GABA) is an endogenous signaling molecule and involved in growth regulations and plant development, however, a little information is available on the consequences of exogenous GABA application on growth, development, and associated physio-biochemical processes in maize. The present study examined the GABA-induced regulations in early growth, net photosynthetic rate, gas exchange, osmoregulation, and enzymatic activities in three maize cultivars, i.e., Yuecainuo 6, Zhengtian 68, and Yuecainuo 2. Two levels of GABA, i.e., 0 mg L(-1) and 50 mg L(-1), in solution form, with total application volume of 100 ml per pot containing 15 maize seedlings were exogenously applied. Results revealed that exogenous GABA application improved seedling growth in terms of seedling length and biomass accumulation in all maize cultivars at both 3 and 7 days after treatment (DAT). It also promoted net photosynthesis and variably affected gas exchange attributes, i.e., stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr), as well as leaves SPAD value. Furthermore, lipid peroxidation [in terms of malondialdehyde (MDA)] under GABA treated maize seedlings were also remained variable; however, osmolyte accumulation (protein and proline) and activities of anti-oxidants enzymes, i.e., super-oxide dismutase and peroxidase were also affected differently at both 3 and 7 DAT in all maize cultivars. Furthermore, enzymes involved in nitrogen metabolism, e.g., nitrate reductase and glutamine synthetase were improved. These results suggest the involvement of GABA in various physio-metablical mechanisms which might lead to improvement in morphological growth of maize. In future, research is still needed at molecular and genetic levels to unravel the involvement of GABA-mediated regulations in growth and its associated physio-biochemical mechanisms. PMID:27446149

  5. Exogenous γ-aminobutyric Acid (GABA) Application Improved Early Growth, Net Photosynthesis, and Associated Physio-Biochemical Events in Maize

    PubMed Central

    Li, Wu; Liu, Jianhua; Ashraf, Umair; Li, Gaoke; Li, Yuliang; Lu, Wenjia; Gao, Lei; Han, Fuguang; Hu, Jianguang

    2016-01-01

    γ-aminobutyric acid (GABA) is an endogenous signaling molecule and involved in growth regulations and plant development, however, a little information is available on the consequences of exogenous GABA application on growth, development, and associated physio-biochemical processes in maize. The present study examined the GABA-induced regulations in early growth, net photosynthetic rate, gas exchange, osmoregulation, and enzymatic activities in three maize cultivars, i.e., Yuecainuo 6, Zhengtian 68, and Yuecainuo 2. Two levels of GABA, i.e., 0 mg L-1 and 50 mg L-1, in solution form, with total application volume of 100 ml per pot containing 15 maize seedlings were exogenously applied. Results revealed that exogenous GABA application improved seedling growth in terms of seedling length and biomass accumulation in all maize cultivars at both 3 and 7 days after treatment (DAT). It also promoted net photosynthesis and variably affected gas exchange attributes, i.e., stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr), as well as leaves SPAD value. Furthermore, lipid peroxidation [in terms of malondialdehyde (MDA)] under GABA treated maize seedlings were also remained variable; however, osmolyte accumulation (protein and proline) and activities of anti-oxidants enzymes, i.e., super-oxide dismutase and peroxidase were also affected differently at both 3 and 7 DAT in all maize cultivars. Furthermore, enzymes involved in nitrogen metabolism, e.g., nitrate reductase and glutamine synthetase were improved. These results suggest the involvement of GABA in various physio-metablical mechanisms which might lead to improvement in morphological growth of maize. In future, research is still needed at molecular and genetic levels to unravel the involvement of GABA-mediated regulations in growth and its associated physio-biochemical mechanisms. PMID:27446149

  6. The gamma-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp PCC 6803

    SciTech Connect

    Xiong, W; Brune, D; Vermaas, WFJ

    2014-07-16

    A traditional 2-oxoglutarate dehydrogenase complex is missing in the cyanobacterial tricarboxylic acid cycle. To determine pathways that convert 2-oxoglutarate into succinate in the cyanobacterium Synechocystis sp. PCC 6803, a series of mutant strains, Delta sll1981, Delta slr0370, Delta slr1022 and combinations thereof, deficient in 2-oxoglutarate decarboxylase (Sll1981), succinate semialdehyde dehydrogenase (Slr0370), and/or in gamma-aminobutyrate metabolism (Slr1022) were constructed. Like in Pseudomonas aeruginosa, N-acetylornithine aminotransferase, encoded by slr1022, was shown to also function as gamma-aminobutyrate aminotransferase, catalysing gamma-aminobutyrate conversion to succinic semialdehyde. As succinic semialdehyde dehydrogenase converts succinic semialdehyde to succinate, an intact gamma-aminobutyrate shunt is present in Synechocystis. The Delta sll1981 strain, lacking 2-oxoglutarate decarboxylase, exhibited a succinate level that was 60% of that in wild type. However, the succinate level in the Delta slr1022 and Delta slr0370 strains and the Delta sll1981/Delta slr1022 and Delta sll1981/Delta slr0370 double mutants was reduced to 20-40% of that in wild type, suggesting that the gamma-aminobutyrate shunt has a larger impact on metabolite flux to succinate than the pathway via 2-oxoglutarate decarboxylase. C-13-stable isotope analysis indicated that the gamma-aminobutyrate shunt catalysed conversion of glutamate to succinate. Independent of the 2-oxoglutarate decarboxylase bypass, the gamma-aminobutyrate shunt is a major contributor to flux from 2-oxoglutarate and glutamate to succinate in Synechocystis sp. PCC 6803.

  7. Determination of γ-Aminobutyric Acid (GABA) in Rambutan Fruit cv. Rongrian by HPLC-ELSD and Separation of GABA from Rambutan Fruit Using Dowex 50W-X8 Column.

    PubMed

    Meeploy, Maneerat; Deewatthanawong, Rujira

    2016-03-01

    A high-performance liquid chromatography method coupled with an evaporative light scattering detector (ELSD) was validated for the determination of γ-aminobutyric acid (GABA) in rambutan fruit without any sample pretreatment or derivatization. In the concentration range of 0.05-1.0 mg/mL GABA, the ELSD response was linear with a correlation coefficient (r) >0.999. Limit of detection and limit of quantitation were found to be 0.7 and 2.0 µg/mL, respectively. The method enabled the complete separation of GABA in the aqueous extract of rambutan flesh from the impurity peaks at 45.7 min. The recoveries of sample added GABA were obtained in the range of 92.0-99.3%. Intraday and interday relative standard deviations were <5.3%. Repeatability of the extraction process showed the acceptable precision. From the analysis of GABA content in rambutan flesh, 0.71 ± 0.23 mg of GABA was found in 1 g fresh weight. The recovery of GABA after passing through the Dowex 50W-X8 column was 96.65%. The analytical methodology could be potentially applied to the detection and quantification of GABA in other fruits and complex matrices when a sufficient quantity is available. PMID:26590236

  8. Redirection of Metabolic Flux into Novel Gamma-Aminobutyric Acid Production Pathway by Introduction of Synthetic Scaffolds Strategy in Escherichia Coli.

    PubMed

    Pham, Van Dung; Somasundaram, Sivachandiran; Lee, Seung Hwan; Park, Si Jae; Hong, Soon Ho

    2016-04-01

    In general, gamma-aminobutyric acid (GABA) pathway involves the decarboxylation of glutamate, which is produced from sugar by Corynebacterium fermentation. GABA can be used for the production of pharmaceuticals and functional foods. Due to the increasing demand of GABA, it is essential to create an effective alternative pathway for the GABA production. In this study, Escherichia coli were engineered to produce GABA from glucose via GABA shunt, which consists of succinate dehydrogenase, succinate-semialdehyde dehydrogenase, and GABA aminotransferase. The three enzymes were physically attached to each other through a synthetic scaffold, and the Krebs cycle flux was redirected to the GABA pathway. By introduction of synthetic scaffold, 0.75 g/l of GABA was produced from 10 g/l of glucose at 30 °C and pH 6.5. The inactivation of competing metabolic pathways provided 15.4 % increase in the final GABA concentration. PMID:26667817

  9. Lesions of nucleus accumbens affect morphine-induced release of ascorbic acid and GABA but not of glutamate in rats.

    PubMed

    Sun, Ji Y; Yang, Jing Y; Wang, Fang; Wang, Jian Y; Song, Wu; Su, Guang Y; Dong, Ying X; Wu, Chun F

    2011-10-01

    Our previous studies have shown that local perfusion of morphine causes an increase of extracellular ascorbic acid (AA) levels in nucleus accumbens (NAc) of freely moving rats. Lines of evidence showed that glutamatergic and GABAergic were associated with morphine-induced effects on the neurotransmission of the brain, especially on the release of AA. In the present study, the effects of morphine on the release of extracellular AA, γ-aminobutyric acid (GABA) and glutamate (Glu) in the NAc following bilateral NAc lesions induced by kainic acid (KA) were studied by using the microdialysis technique, coupled to high performance liquid chromatography with electrochemical detection (HPLC-ECD) and fluorescent detection (HPLC-FD). The results showed that local perfusion of morphine (100 µM, 1 mM) in NAc dose-dependently increased AA and GABA release, while attenuated Glu release in the NAc. Naloxone (0.4 mM) pretreated by local perfusion to the NAc, significantly blocked the effects of morphine. After NAc lesion by KA (1 µg), morphine-induced increase in AA and GABA were markedly eliminated, while decrease in Glu was not affected. The loss effect of morphine on AA and GABA release after KA lesion could be recovered by GABA agonist, musimol. These results indicate that morphine-induced AA release may be mediated at least by µ-opioid receptor. Moreover, this effect of morphine possibly depend less on the glutamatergic afferents, but more on the GABAergic circuits within this nucleus. Finally, AA release induced by local perfusion of morphine may be GABA-receptor mediated and synaptically localized in the NAc. PMID:20731632

  10. Impact of Precooling and Controlled-Atmosphere Storage on γ-Aminobutyric Acid (GABA) Accumulation in Longan (Dimocarpus longan Lour.) Fruit.

    PubMed

    Zhou, Molin; Ndeurumio, Kessy H; Zhao, Lei; Hu, Zhuoyan

    2016-08-24

    Longan (Dimocarpus longan Lour.) fruit cultivars 'Chuliang' and 'Shixia' were analyzed for γ-aminobutyric acid (GABA) accumulation after precooling and in controlled-atmosphere storage. Fruit were exposed to 5% O2 plus 3%, 5%, or 10% CO2 at 4 °C, and GABA and associated enzymes, aril firmness, and pericarp color were measured. Aril softening and pericarp browning were delayed by 5% CO2 + 5% O2. GABA concentrations and glutamate decarboxylase (GAD; EC 4.1.1.15) activities declined during storage at the higher-CO2 treatments. However, GABA aminotransferase (GABA-T; EC 2.6.1.19) activities in elevated CO2-treated fruit fluctuated during storage. GABA concentrations increased after precooling treatments. GAD activity and GABA-T activity were different between cultivars after precooling. GABA concentrations in fruit increased after 3 days of 10% CO2 + 5% O2 treatment and then declined as storage time increased. GABA accumulation was associated with stimulation of GAD activity rather than inhibition of GABA-T activity. PMID:27412947

  11. GABA Signaling and Neuroactive Steroids in Adrenal Medullary Chromaffin Cells

    PubMed Central

    Harada, Keita; Matsuoka, Hidetada; Fujihara, Hiroaki; Ueta, Yoichi; Yanagawa, Yuchio; Inoue, Masumi

    2016-01-01

    Gamma-aminobutyric acid (GABA) is produced not only in the brain, but also in endocrine cells by the two isoforms of glutamic acid decarboxylase (GAD), GAD65 and GAD67. In rat adrenal medullary chromaffin cells only GAD67 is expressed, and GABA is stored in large dense core vesicles (LDCVs), but not synaptic-like microvesicles (SLMVs). The α3β2/3γ2 complex represents the majority of GABAA receptors expressed in rat and guinea pig chromaffin cells, whereas PC12 cells, an immortalized rat chromaffin cell line, express the α1 subunit as well as the α3. The expression of α3, but not α1, in PC12 cells is enhanced by glucocorticoid activity, which may be mediated by both the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). GABA has two actions mediated by GABAA receptors in chromaffin cells: it induces catecholamine secretion by itself and produces an inhibition of synaptically evoked secretion by a shunt effect. Allopregnanolone, a neuroactive steroid which is secreted from the adrenal cortex, produces a marked facilitation of GABAA receptor channel activity. Since there are no GABAergic nerve fibers in the adrenal medulla, GABA may function as a para/autocrine factor in the chromaffin cells. This function of GABA may be facilitated by expression of the immature isoforms of GAD and GABAA receptors and the lack of expression of plasma membrane GABA transporters (GATs). In this review, we will consider how the para/autocrine function of GABA is achieved, focusing on the structural and molecular mechanisms for GABA signaling. PMID:27147972

  12. GABA Signaling and Neuroactive Steroids in Adrenal Medullary Chromaffin Cells.

    PubMed

    Harada, Keita; Matsuoka, Hidetada; Fujihara, Hiroaki; Ueta, Yoichi; Yanagawa, Yuchio; Inoue, Masumi

    2016-01-01

    Gamma-aminobutyric acid (GABA) is produced not only in the brain, but also in endocrine cells by the two isoforms of glutamic acid decarboxylase (GAD), GAD65 and GAD67. In rat adrenal medullary chromaffin cells only GAD67 is expressed, and GABA is stored in large dense core vesicles (LDCVs), but not synaptic-like microvesicles (SLMVs). The α3β2/3γ2 complex represents the majority of GABAA receptors expressed in rat and guinea pig chromaffin cells, whereas PC12 cells, an immortalized rat chromaffin cell line, express the α1 subunit as well as the α3. The expression of α3, but not α1, in PC12 cells is enhanced by glucocorticoid activity, which may be mediated by both the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). GABA has two actions mediated by GABAA receptors in chromaffin cells: it induces catecholamine secretion by itself and produces an inhibition of synaptically evoked secretion by a shunt effect. Allopregnanolone, a neuroactive steroid which is secreted from the adrenal cortex, produces a marked facilitation of GABAA receptor channel activity. Since there are no GABAergic nerve fibers in the adrenal medulla, GABA may function as a para/autocrine factor in the chromaffin cells. This function of GABA may be facilitated by expression of the immature isoforms of GAD and GABAA receptors and the lack of expression of plasma membrane GABA transporters (GATs). In this review, we will consider how the para/autocrine function of GABA is achieved, focusing on the structural and molecular mechanisms for GABA signaling. PMID:27147972

  13. The impact of GABA in harpin-elicited biotic stress responses in Nicotiana tabaccum.

    PubMed

    Dimlioğlu, Gizem; Daş, Zeycan Akcan; Bor, Melike; Özdemir, Filiz; Türkan, İsmail

    2015-09-01

    Harpin is a bacterial elicitor protein that was first isolated from Erwinia amylovora. Infiltration of this elicitor into the leaves of plants activates systemic acquired resistance against a variety of plant pathogens via the salicyclic acid defense pathway. The non-protein amino acid, neurotransmission inhibitor molecule of mammals-GABA- is found in all organisms and is known to be an important component of stress responses in plants. We hypothesized a possible interaction between harpin-induced defense responses and GABA shunt. Therefore, we conducted experiments on harpin-infiltrated tobacco and analyzed the components of GABA shunt in relation to growth, photosynthesis and H2O2 levels. RGR, RWC and photosynthetic efficiency were all affected in harpin-infiltrated tobacco leaves, but the rate of decline was more remarkable on RGR. H2O2 levels showed significant difference on 7 days after harpin infiltration when the necrotic lesions were also visible. GABA accumulation was increased and glutamate levels were decreased parallel to the differences in GDH and GAD enzyme activities, especially on days 5 and 7 of harpin infiltration. Transcript abundance of GDH and GAD encoding genes were differentially regulated in harpin-infiltrated leaves as compared to that of control and mock groups. In the present study, for the first time we showed a relationship between harpin-elicited responses and GABA in tobacco that was not mediated by H2O2 accumulation. Harpin infiltration significantly induced the first components of the GABA shunt such as GDH, GAD, glutamate and GABA in tobacco. PMID:26432406

  14. Synthesis of 4-substituted nipecotic acid derivatives and their evaluation as potential GABA uptake inhibitors.

    PubMed

    Hellenbrand, Tim; Höfner, Georg; Wein, Thomas; Wanner, Klaus T

    2016-05-01

    In this study, we disclose the design and synthesis of novel 4-susbtituted nipecotic acid derivatives as inhibitors of the GABA transporter mGAT1. Based on molecular modeling studies the compounds are assumed to adopt a binding pose similar to that of the potent mGAT1 inhibitor nipecotic acid. As substitution in 4-position should not cause an energetically unfavorable orientation of nipecotic acid as it is the case for N-substituted derivatives this is expected to lead to highly potent binders. For the synthesis of novel 4-substituted nipecotic acid derivatives a linear synthetic strategy was employed. As a key step, palladium catalyzed cross coupling reactions were used to attach the required biaryl moieties to the ω-position of the alkenyl- or alkynyl spacers of varying length in the 4-position of the nipecotic acid scaffold. The resulting amino acids were characterized with respect to their binding affinities and inhibitory potencies at mGAT1. Though the biological activities found were generally insignificant to poor, two compounds, one of which possesses a reasonable binding affinity for mGAT1, rac-57, the other a notable inhibitory potency at mGAT4, rac-84, both displaying a slight subtype selectivity for the individual transporters, could be identified. PMID:27039250

  15. GABA as a rising gliotransmitter

    PubMed Central

    Yoon, Bo-Eun; Lee, C. Justin

    2014-01-01

    Gamma-amino butyric acid (GABA) is the major inhibitory neurotransmitter that is known to be synthesized and released from GABAergic neurons in the brain. However, recent studies have shown that not only neurons but also astrocytes contain a considerable amount of GABA that can be released and activate GABA receptors in neighboring neurons. These exciting new findings for glial GABA raise further interesting questions about the source of GABA, its mechanism of release and regulation and the functional role of glial GABA. In this review, we highlight recent studies that identify the presence and release of GABA in glial cells, we show several proposed potential pathways for accumulation and modulation of glial intracellular and extracellular GABA content, and finally we discuss functional roles for glial GABA in the brain. PMID:25565970

  16. Variance analysis of gamma-aminobutyric acid (GABA)-ergic inhibitory postsynaptic currents from melanotropes of Xenopus laevis.

    PubMed Central

    Borst, J G; Kits, K S; Bier, M

    1994-01-01

    We have studied the variance in the decay of large spontaneous gamma-aminobutyric acid (GABA)-ergic inhibitory postsynaptic currents (IPSCs) in melanotropes of Xenopus laevis to obtain information about the number of GABAA receptor channels that bind GABA during the IPSCs. The average decay of the IPSCs is well described by the sum of two exponential functions. This suggests that a three-state Markov model is sufficient to describe the decay phase, with one of the three states being an absorbing state, entered when GABA dissociates from the GABAA receptor. We have compared the variance in the decay of large spontaneous IPSCs with the variance calculated for two different three-state models: a model with one open state, one closed state, and one absorbing state (I), and a model with two open states and one absorbing state (II). The data were better described by the more efficient model II. This suggests that the efficacy of GABA at synaptic GABAA receptor channels is high and that only a small number of channels are involved in generating the GABA-ergic IPSCs. PMID:7918986

  17. Biphenylacetic acid enhances the antagonistic action of fluoroquinolones on the GABA(A)-mediated responses of the isolated guinea-pig ileum.

    PubMed

    Koutsoviti-Papadopoulou, M; Nikolaidis, E; Kounenis, G

    2001-09-01

    This paper examines the effect of biphenylacetic acid on the antagonistic action of norfloxacin and enoxacin on the GABA(A)-mediated responses of the isolated guinea-pig ileum. GABA produced transient contractions followed by relaxation. The contractile effect of exogenously applied GABA was concentration-dependent with EC(50)= 9.8 x 10(-6) M. This contractile effect was not significantly modified by biphenylacetic acid, and the EC(50) value for GABA in the presence of 10(-5) M biphenylacetic acid was 1.15 x 10(-5) M. The GABA contractile effect was inhibited, dose-dependently, by either norfloxacin or enoxacin, but only at concentrations higher than 10(-5) M. The response of the ileum to GABA (at EC(50)) was reduced to 35 and 36% by pretreatment with 10(-5) M norfloxacin or enoxacin, respectively. However, in the presence of 10(-5) M biphenylacetic acid, the response of the ileum to GABA was reduced to 2.2% by pretreatment with 10(-5) M enoxacin, while it was completely abolished by pretreatment with 10(-5) M norfloxacin and the IC(50) values were 5.5 x 10(-7) and 1.5 x 10(-6) M for norfloxacin and enoxacin, respectively. These data show that biphenylacetic acid whilst having no effect at the GABA(A)-mediated contractile response of the guinea-pig ileum, enhances the antagonistic effect of both enoxacin and norfloxacin. This suggests that combined administration of fluoroquinolones and biphenylacetic acid synergistically inhibits GABA(A)-receptors at the intestinal level. PMID:11529690

  18. Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): modifying serotonin's downstream effects on glutamate and GABA (gamma amino butyric acid) release.

    PubMed

    Stahl, Stephen M

    2015-08-01

    Vortioxetine is an antidepressant with multiple pharmacologic modes of action at targets where serotonin neurons connect with other neurons. These actions modify the release of both glutamate and GABA (gamma amino butyric acid) within various brain circuits. PMID:26062900

  19. Valproic acid: brain and plasma levels of the drug and its metabolites, anticonvulsant effects and gamma-aminobutyric acid (GABA) metabolism in the mouse.

    PubMed

    Nau, H; Löscher, W

    1982-03-01

    The slow onset and carry-over effect of valproic acid (VPA) therapy observed in some clinical as well as experimental animal studies have been examined by parallel pharmacokinetic and pharmacological investigations in a mouse model. VPA was rapidly transferred into brain and was cleared from that tissue with rates which exceeded plasma clearance rates. Of several VPA metabolites present in plasma, only one could be found in the brain: 2-propyl-2-pentenoic acid. This metabolite was cleared from plasma and from brain slower than the parent drug. gamma-Aminobutyric acid (GABA) concentrations were increased within 15 min after VPA injection and remained significantly elevated for at least 8 h. A similar time course was found in regard to the increase of the electroconvulsive threshold (maximal seizures) induced by VPA administration. The activity of glutamic acid decarboxylase rose parallel to the elevation of brain GABA levels, whereas the activity of GABA aminotransferase was not affected. Whereas the rapid onset of the effect on electroconvulsive threshold and on GABA metabolism can be explained by the rapid entrance of VPA into brain, the carry-over effects observed correlated with the kinetics of the metabolite 2-propyl-2-pentenoic acid better than with those of VPA due to the persistence of this metabolite in brain. PMID:6801254

  20. Virus-induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by γ-aminobutyric acid metabolic pathway.

    PubMed

    Bao, Hexigeduleng; Chen, Xianyang; Lv, Sulian; Jiang, Ping; Feng, Juanjuan; Fan, Pengxiang; Nie, Lingling; Li, Yinxin

    2015-03-01

    γ-Aminobutyric acid (GABA) accumulates in many plant species in response to environmental stress. However, the physiological function of GABA or its metabolic pathway (GABA shunt) in plants remains largely unclear. Here, the genes, including glutamate decarboxylases (SlGADs), GABA transaminases (SlGABA-Ts) and succinic semialdehyde dehydrogenase (SlSSADH), controlling three steps of the metabolic pathway of GABA, were studied through virus-induced gene silencing approach in tomato. Silencing of SlGADs (GABA biosynthetic genes) and SlGABA-Ts (GABA catabolic genes) led to increased accumulation of reactive oxygen species (ROS) as well as salt sensitivity under 200 mm NaCl treatment. Targeted quantitative analysis of metabolites revealed that GABA decreased and increased in the SlGADs- and SlGABA-Ts-silenced plants, respectively, whereas succinate (the final product of GABA metabolism) decreased in both silenced plants. Contrarily, SlSSADH-silenced plants, also defective in GABA degradation process, showed dwarf phenotype, curled leaves and enhanced accumulation of ROS in normal conditions, suggesting the involvement of a bypath for succinic semialdehyde catabolism to γ-hydroxybutyrate as reported previously in Arabidopsis, were less sensitive to salt stress. These results suggest that GABA shunt is involved in salt tolerance of tomato, probably by affecting the homeostasis of metabolites such as succinate and γ-hydroxybutyrate and subsequent ROS accumulation under salt stress. PMID:25074245

  1. γ-Amino-butyric acid (GABA) receptor subunit and transporter expression in the gonad and liver of the fathead minnow (Pimephales promelas).

    PubMed

    Biggs, Katie; Seidel, Jason S; Wilson, Alex; Martyniuk, Christopher J

    2013-09-01

    γ-Amino-butyric acid (GABA) is the major inhibitory neurotransmitter in the vertebrate central nervous system. GABA receptors and synthesizing enzymes have also been localized to peripheral tissues including the liver, oviduct, uterus and ovary of mammals but the distribution and role of GABA in peripheral tissues of fish has not been fully investigated. The objectives of this study were to (1) determine if mRNA encoding GABA synthesizing enzymes (glutamic acid decarboxylase 65 and 67; gad65 and gad67), GABA transporters, and GABAA receptor subunits are localized to liver and gonad of fathead minnow (Pimephales promelas) (FHM) (2) investigate the effects of GABA on ovarian 17β-estradiol (E2) production, and (3) measure transcript responses in the ovary after in vitro incubation to GABA. Real-time PCR assays were developed for gad65, gad67, vesicular GABA transporter (vgat) and GABA transporter 1 (gat1), and select GABAA receptor subunits (gabra1, gabra5, gabrb1, gabrb2, gabrg1, gabrg2). All transcripts were localized to the brain as expected; however transcripts were also detected in the liver, ovary, and testis of FHMs. In the female liver, gad65 mRNA was significantly higher in expression compared to the male liver. Transcripts for gad67 were the highest in the brain>gonad>liver and in the gonads, gad67 was significantly higher in expression than gad65 mRNA. In the liver and gonad, the relative abundance of the subunits followed a general trend of gabrb1>gabrb2=gabrg1=gabrg2>gabra1=gabra5. To explore the effects of GABA in the ovary, tissue explants from reproductive female FHMs were treated with GABA (10(-10), 10(-8) and 10(-6)M) for 12h. GABA had no significant effect on 17β-estradiol production or on mRNA abundance for genes involved in ovarian steroidogenesis (e.g., 11βhsd, cyp17, cyp19a). There was a significant decrease in estrogen receptor 2a (esr2a) mRNA with 10(-10)M GABA. This study begins to investigate the GABA system in non-neural tissues of

  2. Expression of the γ-Aminobutyric Acid (GABA) Plasma Membrane Transporter-1 in Monkey and Human Retina

    PubMed Central

    Casini, Giovanni; Rickman, Dennis W.; Brecha, Nicholas C.

    2010-01-01

    Purpose To determine the expression pattern of the predominant γ-aminobutyric acid (GABA) plasma membrane transporter GAT-1 in Old World monkey (Macaca mulatta) and human retina. Methods GAT-1 was localized in retinal sections by using immunohistochemical techniques with fluorescence and confocal microscopy. Double-labeling studies were performed with the GAT-1 antibody using antibodies to GABA, vasoactive intestinal polypeptide (VIP), tyrosine hydroxylase (TH), and the bipolar cell marker Mab115A10. Results The pattern of GAT-1 immunostaining was similar in human and monkey retinas. Numerous small immunoreactive somata were in the inner nuclear layer (INL) and were present rarely in the inner plexiform layer (IPL) of all retinal regions. Medium GAT-1 somata were in the ganglion cell layer in the parafoveal and peripheral retinal regions. GAT-1 fibers were densely distributed throughout the IPL. Varicose processes, originating from both the IPL and somata in the INL, arborized in the outer plexiform layer (OPL), forming a sparse network in all retinal regions, except the fovea. Sparsely occurring GAT-1 processes were in the nerve fiber layer in parafoveal regions and near the optic nerve head but not in the optic nerve. In the INL, 99% of the GAT-1 somata contained GABA, and 66% of the GABA immunoreactive somata expressed GAT-1. GAT-1 immunoreactivity was in all VIP-containing cells, but it was absent in TH-immunoreactive amacrine cells and in Mab115A10 immunoreactive bipolar cells. Conclusions GAT-1 in primate retinas is expressed by amacrine and displaced amacrine cells. The predominant expression of GAT-1 in the inner retina is consistent with the idea that GABA transporters influence neurotransmission and thus participate in visual information processing in the retina. PMID:16565409

  3. Dual effects of slightly acidic electrolyzed water (SAEW) treatment on the accumulation of γ-aminobutyric acid (GABA) and rutin in germinated buckwheat.

    PubMed

    Hao, Jianxiong; Wu, Tongjiao; Li, Huiying; Wang, Wei; Liu, Haijie

    2016-06-15

    In the present study, the dual effects of slightly acidic electrolyzed water (SAEW) treatment on γ-aminobutyric acid (GABA) and rutin accumulation of germinated buckwheat were evaluated during germination. The results showed that SAEW treatment (pH 5.83, ACC of 20.3 mg/L) could promote the accumulation of GABA and rutin in germinated buckwheat. The GABA and rutin contents of SAEW-germinated buckwheat reached 143.20 and 739.9 mg/100 g respectively, which is significantly higher than those of control (P<0.05). Moreover, SAEW treatment could increase the activity of glutamic acid decarboxylase (GAD) and phenylalanine ammonialyase (PAL) and thus result in the GABA and rutin accumulation of germinated buckwheat. The results suggested that SAEW treatment could promote the rutin accumulation of germinated buckwheat by influencing phenylpropanoid secondary metabolic pathway instead of the inhibition of rutin degrading enzyme (RDE) activity. In addition, SAEW treatment had no adverse impact on the sprouts growth and could reduce the microbial populations of germinated buckwheat during germination. PMID:26868552

  4. Temperature-Sensitive Plant Cells with Shunted Indole-3-Acetic Acid Conjugation.

    PubMed Central

    Oetiker, J. H.; Aeschbacher, G.

    1997-01-01

    Cells of henbane (Hyoscyamus muticus L.) grow indefinitely in culture without exogenous auxin. Cells of its temperature-sensitive variant XIIB2 grow like the wild type at 26[deg]C but die rapidly at 33[deg]C unless auxin is added to the medium. Despite this temperature-sensitive auxin auxotrophy, XIIB2 produces wild-type amounts of indole-3-acetic acid (IAA). IAA is the predominant auxin and is important for plant growth and development. Since the IAA production of the variant is functional, we investigated whether the synthesis or degradation of IAA metabolites, possibly active auxins themselves, is altered. The IAA metabolites were IAA-aspartate (IAAsp) and IAA-glucose. The wild type converted IAA mainly to IAAsp, whereas the variant produced mainly IAA-glucose. Exogenous auxin corrected the shunted IAA metabolism of the variant. The half-life of labeled IAAsp in the variant was reduced 21-fold, but in the presence of exogenous auxin it was not different from the wild type. The temperature sensitivity of XIIB2 was also corrected by supplying IAAsp. Pulse-chase experiments revealed that henbane rapidly metabolizes IAAsp to compounds not identical to IAA. The data show that the variant XIIB2 is a useful tool to study the function of IAA conjugates to challenge the popular hypothesis that IAA conjugates are merely slow-release storage forms of IAA. PMID:12223777

  5. Design, synthesis and SAR studies of GABA uptake inhibitors derived from 2-substituted pyrrolidine-2-yl-acetic acids.

    PubMed

    Steffan, Tobias; Renukappa-Gutke, Thejavathi; Höfner, Georg; Wanner, Klaus T

    2015-03-15

    In this paper, we disclose the design and synthesis of a series of 2-substituted pyrrolidine-2-yl-acetic acid as core structures and the N-arylalkyl derivatives thereof as potential GABA transport inhibitors. The 2-position in the side chain of pyrrolidine-2-yl-acetic acid derivatives was substituted with alkyl, hydroxy and amino groups to modulate the activity and selectivity to mGAT1 and mGAT4 proteins. SAR studies of the compounds performed for the four mouse GABA transporter proteins (mGAT1-mGAT4) implied significant potencies and subtype selectivities for 2-hydroxy-2-pyrrolidine-2-yl-acetic acid derivatives. The racemate rac-(u)-13c exhibited the highest potency (pIC50 5.67) at and selectivity for mGAT1 in GABA uptake assays. In fact, the potency of rac-(u)-13c at hGAT-1 (pIC50 6.14) was even higher than its potency at mGAT1. These uptake results for rac-(u)-13c are in line with the binding affinities to the aforesaid proteins mGAT1 (pKi 6.99) and hGAT-1 (pKi 7.18) determined by MS Binding Assay based on NO711 as marker quantified by LC-ESI-MS-MS analysis. Interestingly, the 2-hydroxy-2-pyrrolidine-2-yl-acetic acid rac-(u)-13d containing 2-{[tris(4-methoxyphenyl)]methoxy} ethyl group at the nitrogen atom of the pyrrolidine ring showed high potency at mGAT4 and a comparatively better selectivity for this protein (>15 against mGAT3) than the well known mGAT4 uptake inhibitor (S)-SNAP-5114. PMID:25698617

  6. Determination of theanine, GABA, and other amino acids in green, oolong, black, and Pu-erh teas with dabsylation and high-performance liquid chromatography.

    PubMed

    Syu, Kai-Yang; Lin, Chih-Li; Huang, Hsiu-Chen; Lin, Jen-Kun

    2008-09-10

    Dabsyl chloride (dimethylaminoazobenzene sulfonyl chloride), a useful chromophoric labeling reagent for amino acids and amines, was developed in this laboratory in 1975. Although several methods have been developed to determine various types of amino acids, a quick and easy method of determining theanine, GABA, and other amino acids has not been developed in one HPLC system. In this paper are analyzed the free amino acid contents of theanine and GABA in different teas (green tea, black tea, oolong tea, Pu-erh tea, and GABA tea) with a dabsylation and reverse phase high-performance liquid chromatography (HPLC) system coupled with a detector at 425 nm absorbance. Two reverse phase columns, Hypersil GOLD and Zorbax ODS, were used and gave different resolutions of dabsyl amino acids in the gradient elution program. The data suggest that the tea source or the steps of tea-making may contribute to the theanine contents variations. High theanine contents of high-mountain tea were observed in both green tea and oolong tea. Furthermore, the raw (natural fermented) Pu-erh tea contained more theanine than ripe (wet fermented) Pu-erh tea, and the GABA contents in normal teas were generally lower than that in GABA tea. PMID:18652476

  7. Gestational changes of GABA levels and GABA binding in the human uterus

    SciTech Connect

    Erdoe, S.L.; Villanyi, P.; Laszlo, A.

    1989-01-01

    The concentrations of gamma-aminobutyric acid (GABA), the activities of L-glutamate decarboxylase and GABA-transaminase, and the nature of the sodium-independent binding of GABA were examined in uterine tissue pieces obtained surgically from pregnant and non-pregnant women. GABA concentrations were reduced, while the activity of GABA-transaminase and the specific binding of (/sup 3/H)GABA significantly increased in specimens from pregnant subjects. These findings suggest some gestation-related functional role for the GABA system in the human uterus.

  8. Stable isotope dilution HILIC-MS/MS method for accurate quantification of glutamic acid, glutamine, pyroglutamic acid, GABA and theanine in mouse brain tissues.

    PubMed

    Inoue, Koichi; Miyazaki, Yasuto; Unno, Keiko; Min, Jun Zhe; Todoroki, Kenichiro; Toyo'oka, Toshimasa

    2016-01-01

    In this study, we developed the stable isotope dilution hydrophilic interaction liquid chromatography with tandem mass spectrometry (HILIC-MS/MS) technique for the accurate, reasonable and simultaneous quantification of glutamic acid (Glu), glutamine (Gln), pyroglutamic acid (pGlu), γ-aminobutyric acid (GABA) and theanine in mouse brain tissues. The quantification of these analytes was accomplished using stable isotope internal standards and the HILIC separating mode to fully correct the intramolecular cyclization during the electrospray ionization. It was shown that linear calibrations were available with high coefficients of correlation (r(2)  > 0.999, range from 10 pmol/mL to 50 mol/mL). For application of the theanine intake, the determination of Glu, Gln, pGlu, GABA and theanine in the hippocampus and central cortex tissues was performed based on our developed method. In the region of the hippocampus, the concentration levels of Glu and pGlu were significantly reduced during reality-based theanine intake. Conversely, the concentration level of GABA increased. This result showed that transited theanine has an effect on the metabolic balance of Glu analogs in the hippocampus. PMID:26033549

  9. Role of a gamma-aminobutryic acid (GABA) receptor mutation in the evolution and spread of Diabrotica virgifera virgifera resistance to cyclodiene insecticides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An alanine to serine amino acid substitution within the Rdl subunit of the gamma-aminobutyric acid (GABA) receptor confers resistance to cyclodiene insecticides in many species. The corn rootworm, Diabrotica virgifera virgifera, is a damaging pest of cultivated corn that was partially controlled by ...

  10. Decreased carbon shunting from glucose toward oxidative metabolism in diet-induced ketotic rat brain.

    PubMed

    Zhang, Yifan; Zhang, Shenghui; Marin-Valencia, Isaac; Puchowicz, Michelle A

    2015-02-01

    The mechanistic link of ketosis to neuroprotection under certain pathological conditions continues to be explored. We investigated whether chronic ketosis induced by ketogenic diet results in the partitioning of ketone bodies toward oxidative metabolism in brain. We hypothesized that diet-induced ketosis results in increased shunting of ketone bodies toward citric acid cycle and amino acids with decreased carbon shunting from glucose. Rats were fed standard (STD) or ketogenic (KG) diets for 3.5 weeks and then infused with [U-(13) C]glucose or [U-(13) C]acetoacetate tracers. Concentrations and (13) C-labeling pattern of citric acid cycle intermediates and amino acids were analyzed from brain homogenates using stable isotopomer mass spectrometry analysis. The contribution of [U-(13) C]glucose to acetyl-CoA and amino acids decreased by ~ 30% in the KG group versus STD, whereas [U-(13) C]acetoacetate contributions were more than two-fold higher. The concentration of GABA remained constant across groups; however, the (13) C labeling of GABA was markedly increased in the KG group infused with [U-(13) C]acetoacetate compared to STD. This study reveals that there is a significant contribution of ketone bodies to oxidative metabolism and GABA in diet-induced ketosis. We propose that this represents a fundamental mechanism of neuroprotection under pathological conditions. PMID:25314677

  11. Enhancing Contents of γ-Aminobutyric Acid (GABA) and Other Micronutrients in Dehulled Rice during Germination under Normoxic and Hypoxic Conditions.

    PubMed

    Ding, Junzhou; Yang, Tewu; Feng, Hao; Dong, Mengyi; Slavin, Margaret; Xiong, Shanbai; Zhao, Siming

    2016-02-10

    Biofortification of staple grains with high contents of essential micronutrients is an important strategy to overcome micronutrient malnutrition. However, few attempts have targeted at γ-aminobutyric acid (GABA), a functional nutrient for aging populations. In this study, two rice cultivars, Heinuo and Xianhui 207, were used to investigate changes in GABA and other nutritional compounds of dehulled rice after germination under normoxic and hypoxic conditions. Forty-one metabolites were identified in both cultivars treated by normoxic germination, whereas the germinated dehulled rice of Heinuo and Xianhui 207 under hypoxic treatment had 43 and 41 metabolites identified, respectively. GABA increased in dehulled rice after germination, especially under hypoxia. Meanwhile, a number of other health-beneficial and/or flavor-related compounds such as lysine and d-mannose increased after the hypoxic treatment. The accumulation of GABA exhibited genotype-specific modes in both normoxic and hypoxic treatments. With regard to GABA production, Xianhui 207 was more responsive to the germination process than Heinuo, whereas Heinuo was more responsive to hypoxia than Xianhui 207. This study provides a promising approach to biofortify dehulled rice with increased GABA and other nutrients through metabolomic-based regulation. PMID:26765954

  12. Decreased carbon shunting from glucose towards oxidative metabolism in diet-induced ketotic rat brain

    PubMed Central

    Zhang, Yifan; Zhang, Shenghui; Marin-Valencia, Isaac; Puchowicz, Michelle A.

    2014-01-01

    The mechanistic link of ketosis to neuroprotection under certain pathological conditions continues to be explored. We investigated whether chronic ketosis induced by ketogenic diet results in the partitioning of ketone bodies towards oxidative metabolism in brain. We hypothesized that diet-induced ketosis results in increased shunting of ketone bodies towards citric acid cycle (CAC) and amino acids with decreased carbon shunting from glucose. Rats were fed standard (STD) or ketogenic (KG) diets for 3.5 weeks and then infused with [U-13C]glucose or [U-13C]acetoacetate tracers. Concentrations and 13C-labeling pattern of CAC intermediates and amino acids were analyzed from brain homogenates using stable isotopomer mass spectrometry analysis. The contribution of [U-13C]glucose to acetyl-CoA and amino acids decreased by ~30% in the KG group vs STD, whereas [U-13C]acetoacetate contributions were more than 2-fold higher. The concentration of GABA remained constant across all groups; however, the 13C-labeling of GABA was markedly increased in the KG group infused with [U-13C]acetoacetate compared to STD. This study reveals that there is a significant contribution of ketone bodies to oxidative metabolism and GABA in diet-induced ketosis. We propose that this represents a fundamental mechanism of neuroprotection under pathological conditions. PMID:25314677

  13. Adenosine-to-inosine RNA editing affects trafficking of the gamma-aminobutyric acid type A (GABA(A)) receptor.

    PubMed

    Daniel, Chammiran; Wahlstedt, Helene; Ohlson, Johan; Björk, Petra; Ohman, Marie

    2011-01-21

    Recoding by adenosine-to-inosine RNA editing plays an important role in diversifying proteins involved in neurotransmission. We have previously shown that the Gabra-3 transcript, coding for the α3 subunit of the GABA(A) receptor is edited in mouse, causing an isoleucine to methionine (I/M) change. Here we show that this editing event is evolutionarily conserved from human to chicken. Analyzing recombinant GABA(A) receptor subunits expressed in HEK293 cells, our results suggest that editing at the I/M site in α3 has functional consequences on receptor expression. We demonstrate that I/M editing reduces the cell surface and the total number of α3 subunits. The reduction in cell surface levels is independent of the subunit combination as it is observed for α3 in combination with either the β2 or the β3 subunit. Further, an amino acid substitution at the corresponding I/M site in the α1 subunit has a similar effect on cell surface presentation, indicating the importance of this site for receptor trafficking. We show that the I/M editing during brain development is inversely related to the α3 protein abundance. Our results suggest that editing controls trafficking of α3-containing receptors and may therefore facilitate the switch of subunit compositions during development as well as the subcellular distribution of α subunits in the adult brain. PMID:21030585

  14. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae.

    PubMed

    Kim, Sujin; Lee, Kyusung; Bae, Sang-Jeong; Hahn, Ji-Sook

    2015-03-01

    A wide range of promoters with different strengths and regulatory mechanisms are valuable tools in metabolic engineering and synthetic biology. While there are many constitutive promoters available, the number of inducible promoters is still limited for pathway engineering in Saccharomyces cerevisiae. Here, we constructed aromatic amino-acid-inducible promoters based on the binding sites of Aro80 transcription factor, which is involved in the catabolism of aromatic amino acids through transcriptional activation of ARO9 and ARO10 genes in response to aromatic amino acids. A dynamic range of tryptophan-inducible promoter strengths can be obtained by modulating the number of Aro80 binding sites, plasmid copy numbers, and tryptophan concentrations. Using low and high copy number plasmid vectors and different tryptophan concentrations, a 29-fold range of fluorescence intensities of enhanced green fluorescent protein (EGFP) reporter could be achieved from a synthetic U4C ARO9 promoter, which is composed of four repeats of Aro80 binding half site (CCG) and ARO9 core promoter element. The U4C ARO9 promoter was applied to express alsS and alsD genes from Bacillus subtilis for acetoin production in S. cerevisiae, resulting in a gradual increase in acetoin titers depending on tryptophan concentrations. Furthermore, we demonstrated that γ-aminobutyrate (GABA)-inducible UGA4 promoter, regulated by Uga3, can also be used in metabolic engineering as a dose-dependent inducible promoter. The wide range of controllable expression levels provided by these tryptophan- and GABA-inducible promoters might contribute to fine-tuning gene expression levels and timing for the optimization of pathways in metabolic engineering. PMID:25573467

  15. gamma-Aminobutyric acid (GABA)-induced currents of skate Muller (glial) cells are mediated by neuronal-like GABAA receptors.

    PubMed Central

    Malchow, R P; Qian, H H; Ripps, H

    1989-01-01

    Radial glia (Muller cells) of the vertebrate retina appear to be intimately involved in regulating the actions of amino acid neurotransmitters. One of the amino acids thought to be important in mediating retinal information flow is gamma-aminobutyric acid (GABA). The findings of this study indicate that enzymatically isolated skate Muller cells are depolarized by GABA and the GABAA agonist muscimol and that the actions of these agents are reduced by bicuculline and picrotoxin. Membrane currents induced by GABA under voltage clamp were dose dependent, were associated with an increase in membrane conductance, and showed marked desensitization when the concentration of GABA exceeded 2.5 microM. The responses had a reversal potential close to that calculated for chloride, indicating that the currents were generated by ions passing through channels. These data support the view that skate Muller cells possess functional GABAA receptors. The presence of such receptors on retinal glia may have important implications for the role of Muller cells in maintaining the constancy of the extracellular milieu, for neuron-glia interactions within the retina, and for theories concerning the generation of the electroretinogram. Images PMID:2567001

  16. Disorders of GABA metabolism: SSADH and GABA-transaminase deficiencies

    PubMed Central

    Parviz, Mahsa; Vogel, Kara; Gibson, K. Michael; Pearl, Phillip L.

    2014-01-01

    Clinical disorders known to affect inherited gamma-amino butyric acid (GABA) metabolism are autosomal recessively inherited succinic semialdehyde dehydrogenase and GABA-transaminase deficiency. The clinical presentation of succinic semialdehyde dehydrogenase deficiency includes intellectual disability, ataxia, obsessive-compulsive disorder and epilepsy with a nonprogressive course in typical cases, although a progressive form in early childhood as well as deterioration in adulthood with worsening epilepsy are reported. GABA-transaminase deficiency is associated with a severe neonatal-infantile epileptic encephalopathy. PMID:25485164

  17. Imidase catalyzing desymmetric imide hydrolysis forming optically active 3-substituted glutaric acid monoamides for the synthesis of gamma-aminobutyric acid (GABA) analogs.

    PubMed

    Nojiri, Masutoshi; Hibi, Makoto; Shizawa, Hiroaki; Horinouchi, Nobuyuki; Yasohara, Yoshihiko; Takahashi, Satomi; Ogawa, Jun

    2015-12-01

    The recent use of optically active 3-substituted gamma-aminobutyric acid (GABA) analogs in human therapeutics has identified a need for an efficient, stereoselective method of their synthesis. Here, bacterial strains were screened for enzymes capable of stereospecific hydrolysis of 3-substituted glutarimides to generate (R)-3-substituted glutaric acid monoamides. The bacteria Alcaligenes faecalis NBRC13111 and Burkholderia phytofirmans DSM17436 were discovered to hydrolyze 3-(4-chlorophenyl) glutarimide (CGI) to (R)-3-(4-chlorophenyl) glutaric acid monoamide (CGM) with 98.1% enantiomeric excess (e.e.) and 97.5% e.e., respectively. B. phytofirmans DSM17436 could also hydrolyze 3-isobutyl glutarimide (IBI) to produce (R)-3-isobutyl glutaric acid monoamide (IBM) with 94.9% e.e. BpIH, an imidase, was purified from B. phytofirmans DSM17436 and found to generate (R)-CGM from CGI with specific activity of 0.95 U/mg. The amino acid sequence of BpIH had a 75% sequence identity to that of allantoinase from A. faecalis NBRC13111 (AfIH). The purified recombinant BpIH and AfIH catalyzed (R)-selective hydrolysis of CGI and IBI. In addition, a preliminary investigation of the enzymatic properties of BpIH and AfIH revealed that both enzymes were stable in the range of pH 6-10, with an optimal pH of 9.0, stable at temperatures below 40 °C, and were not metalloproteins. These results indicate that the use of this class of hydrolase to generate optically active 3-substituted glutaric acid monoamide could simplify the production of specific chiral GABA analogs for drug therapeutics. PMID:26205522

  18. Hydroxy-1,2,5-oxadiazolyl moiety as bioisoster of the carboxy function. A computational study on gamma-aminobutyric acid (GABA) related compounds.

    PubMed

    Tosco, Paolo; Lolli, Marco L

    2008-04-01

    Recently, our research group has proposed the hydroxyfurazanyl (4-hydroxy-1,2,5-oxadiazole-3-yl) moiety as a new non-classical isoster of the carboxy function in the design of gamma-aminobutyric acid (GABA) analogues. Some compounds showed significant activity at the GABA(A) receptor, representing the only examples of pentatomic heterocycles bearing an omega-aminoalkyl flexible side chain in the position vicinal to the hydroxy group displaying agonist activity at this receptor subtype. In this work, an ab initio analysis of the structural and electronic features of furazan-3-ol is presented, in order to provide a theoretical basis to the claimed bioisosterism with the carboxy function. An ab initio conformational study with the C-PCM implicit solvent model was carried out to elucidate the reasons of the peculiar behaviour of the furazan models. Alongside, another conformational search through molecular dynamics in explicit solvent was accomplished, in order to validate the first method. The electronic features of the 4-hydroxy-1,2,5-oxadiazole-3-yl substructure seem to account for a marked stabilising effect of the putative bioactive conformation at the GABA(A) receptor subtype. The 1,2,5-thiadiazole analogue, which shares the same conformational preference of its oxygenated counterpart, was identified as a potential candidate for synthesis and pharmacological testing. Figure 4-(omega-aminoalkyl)-1,2,5-oxadiazole-3-ol analogues of GABA. PMID:18247067

  19. Retinoic Acid, GABA-ergic, and TGF-β Signaling Systems Are Involved in Human Cleft Palate Fibroblast Phenotype

    PubMed Central

    Baroni, Tiziano; Bellucci, Catia; Lilli, Cinzia; Pezzetti, Furio; Carinci, Francesco; Becchetti, Ennio; Carinci, Paolo; Stabellini, Giordano; Calvitti, Mario; Lumare, Eleonora; Bodo, Maria

    2006-01-01

    During embryogenesis, a complex interplay between extracellular matrix (ECM) molecules, regulatory molecules, and growth factors mediates morphogenetic processes involved in palatogenesis. Transforming growth factor-β (TGF-β), retinoic acid (RA), and γ-aminobutyric acid (GABA)ergic signaling systems are also potentially involved. Using [3H]glucosamine and [35S]methionine incorporation, anion exchange chromatography, semiquantitative radioactive RT-PCR, and a TGF-β binding assay, we aimed to verify the presence of phenotypic differences between primary cultures of secondary palate (SP) fibroblasts from 2-year-old subjects with familial nonsyndromic cleft lip and/or palate (CLP-SP fibroblasts) and age-matched normal SP (N-SP) fibroblasts. The effects of RA—which, at pharmacologic doses, induces cleft palate in newborns of many species—were also studied. We found an altered ECM production in CLP-SP fibroblasts that synthesized and secreted more glycosaminoglycans (GAGs) and fibronectin (FN) compared with N-SP cells. In CLP-SP cells, TGF-β3 mRNA expression and TGF-β receptor number were higher and RA receptor-α (RARA) gene expression was increased. Moreover, we demonstrated for the first time that GABA receptor (GABRB3) mRNA expression was upregulated in human CLP-SP fibroblasts. In N-SP and CLP-SP fibroblasts, RA decreased GAG and FN secretion and increased TGF-β3 mRNA expression but reduced the number of TGF-β receptors. TGF-β receptor type I mRNA expression was decreased, TGF-β receptor type II was increased, and TGF-β receptor type III was not affected. RA treatment increased RARA gene expression in both cell populations but upregulated GABRB3 mRNA expression only in N-SP cells. These results show that CLP-SP fibroblasts compared with N-SP fibroblasts exhibit an abnormal phenotype in vitro and respond differently to RA treatment, and suggest that altered crosstalk between RA, GABAergic, and TGF-β signaling systems could be involved in human cleft

  20. Independent Effects of γ-Aminobutyric Acid Transaminase (GABAT) on Metabolic and Sleep Homeostasis*

    PubMed Central

    Maguire, Sarah E.; Rhoades, Seth; Chen, Wen-Feng; Sengupta, Arjun; Yue, Zhifeng; Lim, Jason C.; Mitchell, Claire H.; Weljie, Aalim M.; Sehgal, Amita

    2015-01-01

    Breakdown of the major sleep-promoting neurotransmitter, γ-aminobutyric acid (GABA), in the GABA shunt generates catabolites that may enter the tricarboxylic acid cycle, but it is unknown whether catabolic by-products of the GABA shunt actually support metabolic homeostasis. In Drosophila, the loss of the specific enzyme that degrades GABA, GABA transaminase (GABAT), increases sleep, and we show here that it also affects metabolism such that flies lacking GABAT fail to survive on carbohydrate media. Expression of GABAT in neurons or glia rescues this phenotype, indicating a general metabolic function for this enzyme in the brain. As GABA degradation produces two catabolic products, glutamate and succinic semialdehyde, we sought to determine which was responsible for the metabolic phenotype. Through genetic and pharmacological experiments, we determined that glutamate, rather than succinic semialdehyde, accounts for the metabolic phenotype of gabat mutants. This is supported by biochemical measurements of catabolites in wild-type and mutant animals. Using in vitro labeling assays, we found that inhibition of GABAT affects energetic pathways. Interestingly, we also observed that gaba mutants display a general disruption in bioenergetics as measured by altered levels of tricarboxylic acid cycle intermediates, NAD+/NADH, and ATP levels. Finally, we report that the effects of GABAT on sleep do not depend upon glutamate, indicating that GABAT regulates metabolic and sleep homeostasis through independent mechanisms. These data indicate a role of the GABA shunt in the development of metabolic risk and suggest that neurological disorders caused by altered glutamate or GABA may be associated with metabolic disruption. PMID:26124278

  1. GABA interaction with lipids in organic medium

    SciTech Connect

    Beltramo, D.; Kivatinitz, S.; Lassaga, E.; Arce, A.

    1987-08-10

    The interaction of TH-GABA and UC-glutamate with lipids in an aqueous organic partition system was studied. With this partition system TH-GABA and UC-glutamate were able to interact with sphingomyelin, sulfatide, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine and phosphatidic acid but not with cholesterol or ceramide. In an homogeneous aqueous medium the authors could not demonstrate any interaction between TH-GABA-lipids. The apparent dissociation constants (K/sub d/) for TH-GABA-lipids or UC-glutamate-lipids interactions inorganic medium were in the millimolar range and maximal charge between 3 and 7 moles of GABA or glutamate by mole of lipid. Amino acids such as glutamic acid, US -alanine and glycine displaced TH-GABA with the same potency as GABA itself; thus these results show that the interaction lacks pharmacological specificity. To detect this interaction lipid concentrations higher than 2 M were required and in the partition system TH-GABA and lipid phosphorus were both concentrated at the interface. Therefore, lipids tested with a biphasic partition system do not fulfill the classical criteria for a neurotransmitter receptor at least not for GABA and glutamate. 15 references, 1 figure, 3 tables.

  2. Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of gamma-aminobutyric acid (GABA).

    PubMed

    Coda, Rossana; Rizzello, Carlo Giuseppe; Gobbetti, Marco

    2010-02-28

    Lactobacillus plantarum C48 and Lactococcus lactis subsp. lactis PU1, previously selected for the biosynthesis of gamma-aminobutyric acid (GABA), were used for sourdough fermentation of cereal, pseudo-cereal and leguminous flours. Chickpea, amaranth, quinoa and buckwheat were the flours most suitable to be enriched of GABA. The parameters of sourdough fermentation were optimized. Addition of 0.1mM pyridoxal phosphate, dough yield of 160, inoculum of 5 x 10(7)CFU/g of starter bacteria and fermentation for 24h at 30 degrees C were found to be the optimal conditions. A blend of buckwheat, amaranth, chickpea and quinoa flours (ratio 1:1:5.3:1) was selected and fermented with baker's yeast (non-conventional flour bread, NCB) or with Lb. plantarum C48 sourdough (non-conventional flour sourdough bread, NCSB) and compared to baker's yeast started wheat flour bread (WFB). NCSB had the highest concentration of free amino acids and GABA (ca. 4467 and 504 mg/kg, respectively). The concentration of phenolic compounds and antioxidant activity of NCSB bread was the highest, as well as the rate of in vitro starch hydrolysis was the lowest. Texture analysis showed that sourdough fermentation enhances several characteristics of NCSB with respect to NCB, thus approaching the features of WFB. Sensory analysis showed that sourdough fermentation allowed to get good palatability and overall taste appreciation. PMID:20071045

  3. A Novel Muconic Acid Biosynthesis Approach by Shunting Tryptophan Biosynthesis via Anthranilate

    PubMed Central

    Sun, Xinxiao; Lin, Yuheng; Huang, Qin; Yuan, Qipeng

    2013-01-01

    Muconic acid is the synthetic precursor of adipic acid, and the latter is an important platform chemical that can be used for the production of nylon-6,6 and polyurethane. Currently, the production of adipic acid relies mainly on chemical processes utilizing petrochemicals, such as benzene, which are generally considered environmentally unfriendly and nonrenewable, as starting materials. Microbial synthesis from renewable carbon sources provides a promising alternative under the circumstance of petroleum depletion and environment deterioration. Here we devised a novel artificial pathway in Escherichia coli for the biosynthesis of muconic acid, in which anthranilate, the first intermediate in the tryptophan biosynthetic branch, was converted to catechol and muconic acid by anthranilate 1,2-dioxygenase (ADO) and catechol 1,2-dioxygenase (CDO), sequentially and respectively. First, screening for efficient ADO and CDO from different microbial species enabled the production of gram-per-liter level muconic acid from supplemented anthranilate in 5 h. To further achieve the biosynthesis of muconic acid from simple carbon sources, anthranilate overproducers were constructed by overexpressing the key enzymes in the shikimate pathway and blocking tryptophan biosynthesis. In addition, we found that introduction of a strengthened glutamine regeneration system by overexpressing glutamine synthase significantly improved anthranilate production. Finally, the engineered E. coli strain carrying the full pathway produced 389.96 ± 12.46 mg/liter muconic acid from simple carbon sources in shake flask experiments, a result which demonstrates scale-up potential for microbial production of muconic acid. PMID:23603682

  4. Exogenous γ-aminobutyric acid treatment affects citrate and amino acid accumulation to improve fruit quality and storage performance of postharvest citrus fruit.

    PubMed

    Sheng, Ling; Shen, Dandan; Luo, Yi; Sun, Xiaohua; Wang, Jinqiu; Luo, Tao; Zeng, Yunliu; Xu, Juan; Deng, Xiuxin; Cheng, Yunjiang

    2017-02-01

    The loss of organic acids during postharvest storage is one of the major factors that reduces the fruit quality and economic value of citrus. Citrate is the most important organic acid in citrus fruits. Molecular evidence has proved that γ-aminobutyric acid (GABA) shunt plays a key role in citrate metabolism. Here, we investigated the effects of exogenous GABA treatment on citrate metabolism and storage quality of postharvest citrus fruit. The content of citrate was significantly increased, which was primarily attributed to the inhibition of the expression of glutamate decarboxylase (GAD). Amino acids, including glutamate, alanine, serine, aspartate and proline, were also increased. Moreover, GABA treatment decreased the fruit rot rate. The activities of antioxidant enzymes and the content of energy source ATP were affected by the treatment. Our results indicate that GABA treatment is a very effective approach for postharvest quality maintenance and improvement of storage performance in citrus production. PMID:27596402

  5. The Uptake of GABA in Trypanosoma cruzi.

    PubMed

    Galvez Rojas, Robert L; Ahn, Il-Young; Suárez Mantilla, Brian; Sant'Anna, Celso; Pral, Elizabeth Mieko Furusho; Silber, Ariel Mariano

    2015-01-01

    Gamma aminobutyric acid (GABA) is widely known as a neurotransmitter and signal transduction molecule found in vertebrates, plants, and some protozoan organisms. However, the presence of GABA and its role in trypanosomatids is unknown. Here, we report the presence of intracellular GABA and the biochemical characterization of its uptake in Trypanosoma cruzi, the etiological agent of Chagas' disease. Kinetic parameters indicated that GABA is taken up by a single transport system in pathogenic and nonpathogenic forms. Temperature dependence assays showed a profile similar to glutamate transport, but the effect of extracellular cations Na(+) , K(+) , and H(+) on GABA uptake differed, suggesting a different uptake mechanism. In contrast to reports for other amino acid transporters in T. cruzi, GABA uptake was Na(+) dependent and increased with pH, with a maximum activity at pH 8.5. The sensitivity to oligomycin showed that GABA uptake is dependent on ATP synthesis. These data point to a secondary active Na(+) /GABA symporter energized by Na(+) -exporting ATPase. Finally, we show that GABA occurs in the parasite's cytoplasm under normal culture conditions, indicating that it is regularly taken up from the culture medium or synthesized through an still undescribed metabolic pathway. PMID:25851259

  6. Gamma-aminobutyric acid (GABA) and neuropeptides in neural areas mediating motion-induced emesis

    NASA Technical Reports Server (NTRS)

    Damelio, F.; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    Immunocytochemical methods were employed to localize the neurotransmitter amino acid gamma-aminobutyric acid and the neuropeptides substance P and Met-enkephalin in the area postrema (AP), area subpostrema (ASP), nucleus of the tractus solitarius (NTS), dorsal motor nucleus of the vagus nerve (DMNV), and lateral vestibular nucleus (LVN). Glutamic acid decarboxylase immunoreactive (GAD-IR) terminals and fibers were observed in the AP and particularly in the ASP. A gradual decrease in the density of terminals was seen towards the solitary complex. The DMNV revealed irregularly scattered GAD-IR terminals within the neuropil or closely surrounding neuronal cell bodies. The LVN, particularly the dorsal division, showed numerous axon terminals which were mostly localize around large neurons and their proximal dendrites. Substance P immunoreactive (SP-IR) terminals and fibers showed high density in the solitary complex, in particular within the lateral division. The ASP showed medium to low density of SP-IR fibers and terminals. The AP exhibited a small number of fibers and terminals irregularly distributed. The DMNV revealed a high density of SP-IR terminals and fibers that were mainly concentrated in the periphery. Very few terminals were detected in the LVN. Met-enkephalin immunoreactive (Met-Enk-IR) fibers and terminals showed high density and uniform distribution in the DMNV. Scattered terminals and fibers were observed in the AP, ASP, and NTS (particularly the lateral division). The very few fibers were observed in the LVN surrounded the neuronal cell bodies. The present report is part of a study designed to investigate the interaction between neuropeptides and conventional neurotransmitters under conditions producing motion sickness and in the process of sensory-motor adaptation.

  7. L-DOPA Reverses the Increased Free Amino Acids Tissue Levels Induced by Dopamine Depletion and Rises GABA and Tyrosine in the Striatum.

    PubMed

    Solís, Oscar; García-Sanz, Patricia; Herranz, Antonio S; Asensio, María-José; Moratalla, Rosario

    2016-07-01

    Perturbations in the cerebral levels of various amino acids are associated with neurological disorders, and previous studies have suggested that such alterations have a role in the motor and non-motor symptoms of Parkinson's disease. However, the direct effects of chronic L-DOPA treatment, that produces dyskinesia, on neural tissue amino acid concentrations have not been explored in detail. To evaluate whether striatal amino acid concentrations are altered in peak dose dyskinesia, 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian mice were treated chronically with L-DOPA and tissue amino acid concentrations were assessed by HPLC analysis. These experiments revealed that neither 6-OHDA nor L-DOPA treatment are able to alter glutamate in the striatum. However, glutamine increases after 6-OHDA and returns back to normal levels with L-DOPA treatment, suggesting increased striatal glutamatergic transmission with lack of dopamine. In addition, glycine and taurine levels are increased following dopamine denervation and restored to normal levels by L-DOPA. Interestingly, dyskinetic animals showed increased levels of GABA and tyrosine, while aspartate striatal tissue levels are not altered. Overall, our results indicate that chronic L-DOPA treatment, besides normalizing the altered levels of some amino acids after 6-OHDA, robustly increases striatal GABA and tyrosine levels which may in turn contribute to the development of L-DOPA-induced dyskinesia. PMID:26966009

  8. Role for pro-inflammatory cytokines in regulating expression of GABA transporter type 1 and 3 in specific brain regions of kainic acid-induced status epilepticus.

    PubMed

    Su, Jing; Yin, Jian; Qin, Wei; Sha, Suxu; Xu, Jun; Jiang, Changbin

    2015-03-01

    In general, pro-inflammatory cytokines (PICs) contribute to regulation of epilepsy-associated pathophysiological processes in the central nerve system. In this report, we examined the specific activation of PICs, namely IL-1β, IL-6 and TNF-α in rat brain after kainic acid (KA)-induced status epilepticus (SE). Also, we examined the role played by PICs in regulating expression of GABA transporter type 1 and 3 (GAT-1 and GAT-3, respectively), which are the two important subtypes of GATs responsible for the regulation of extracellular GABA levels in the brain. Our results show that IL-1β, IL-6 and TNF-α were significantly increased in the parietal cortex, hippocampus and amygdala of KA-rats as compared with sham control animals (P < 0.05, KA rats vs. control rats). KA-induced SE also significantly increased (P < 0.05 vs. controls) the protein expression of GAT-1 and GAT-3 in those brain regions. In addition, central administration of antagonists to IL-1β and TNF-α receptors significantly attenuated amplified GAT-1 and GAT-3 (P < 0.05 vs. vehicle control for each antagonist group). However, antagonist to IL-6 receptor failed to attenuate enhancement in expression of GAT-1 and GAT-3 induced by KA-induced SE. Overall, our data demonstrate that PIC pathways are activated in the specific brain regions during SE which thereby selectively leads to upregulation of GABA transporters. As a result, it is likely that de-inhibition of GABA system is increased in the brain. This support a role for PICs in engagement of the adaptive mechanisms associated with epileptic activity, and has pharmacological implications to target specific PICs for neuronal dysfunction and vulnerability related to epilepsy. PMID:25708016

  9. Distal splenorenal shunt

    MedlinePlus

    ... shunt procedure; Renal - splenic venous shunt; Warren shunt; Cirrhosis - distal splenorenal; Liver failure - distal splenorenal ... hepatitis Blood clots Certain congenital disorders Primary biliary cirrhosis When blood cannot flow normally through the portal ...

  10. [GABA-ergic system in defense against excitatory kynurenines].

    PubMed

    Lapin, I P

    1997-01-01

    Protection against the excitatory action of L-kynurenine and quinolinic acid in mice is related to the activation of GABA-B and dopamine receptors of the brain and to much lesser degree to the activation of GABA-A receptors. It is hardly believable that the anticonvulsant effect of phenibut (beta-phenyl-GABA), baclofen (CL-phenibut), sodium hydroxybutyrate and taurine against seizures induced by these two kynurenines is determined by alterations in metabolism of GABA. PMID:9503572

  11. Contribution of the tricarboxylic acid (TCA) cycle and the glyoxylate shunt in Saccharomyces cerevisiae to succinic acid production during dough fermentation.

    PubMed

    Rezaei, Mohammad N; Aslankoohi, Elham; Verstrepen, Kevin J; Courtin, Christophe M

    2015-07-01

    Succinic acid produced by yeast during bread dough fermentation can significantly affect the rheological properties of the dough. By introducing mutations in the model S288C yeast strain, we show that the oxidative pathway of the TCA cycle and the glyoxylate shunt contribute significantly to succinic acid production during dough fermentation. More specifically, deletion of ACO1 and double deletion of ACO1 and ICL1 resulted in a 36 and 77% decrease in succinic acid levels in fermented dough, respectively. Similarly, double deletion of IDH1 and IDP1 decreased succinic acid production by 85%, while also affecting the fermentation rate. By contrast, double deletion of SDH1 and SDH2 resulted in a two-fold higher succinic acid accumulation compared to the wild-type. Deletion of fumarate reductase activity (FRD1 and OSM1) in the reductive pathway of the TCA cycle did not affect the fermentation rate and succinic acid production. The changes in the levels of succinic acid produced by mutants Δidh1Δidp1 (low level) and Δsdh1Δsdh2 (high level) in fermented dough only resulted in small pH differences, reflecting the buffering capacity of dough at a pH of around 5.1. Moreover, Rheofermentometer analysis using these mutants revealed no difference in maximum dough height and gas retention capacity with the dough prepared with S288C. The impact of the changed succinic acid profile on the organoleptic or antimicrobial properties of bread remains to be demonstrated. PMID:25828707

  12. GABA induces functionally active low-affinity GABA receptors on cultured cerebellar granule cells.

    PubMed

    Meier, E; Drejer, J; Schousboe, A

    1984-12-01

    The effect of gamma-aminobutyric acid (GABA) and its agonists muscimol and 4,5,6,7-tetrahydroisoxazolo[5-4-c]pyridin-3-ol (THIP) on the development of GABA receptors on cerebellar granule cells was studied by cultivation of the cells in media containing these substances. It was found that the presence of 50 microM GABA in the culture media led to the induction of low-affinity GABA receptors (KD 546 +/- 117 nM) in addition to the high-affinity receptors (KD 7 +/- 0.5 nM) which were present regardless of the presence of GABA in the culture media. The functional activity of the GABA receptors was tested by investigating the ability of GABA to modulate evoked glutamate release from the cells. It was found that GABA could inhibit evoked glutamate release (ED50 10 +/- 3 microM) only when the cells had been cultured in the presence of 50 microM GABA, 50 microM muscimol, or 150 microM THIP, i.e., under conditions where low-affinity GABA receptors were present on the cells. This inhibitory effect of GABA could be blocked by 120 microM bicuculline and mimicked by 50 microM muscimol or 150 microM THIP whereas 150 microM (-)-baclofen had no effect. It is concluded that GABA acting extracellularly induces formation of low-affinity receptors on cerebellar granule cells and that these receptors are necessary for mediating an inhibitory effect of GABA on evoked glutamate release. The pharmacological properties of these GABA receptors indicate that they belong to the so-called GABAA receptors. PMID:6149269

  13. GABA release by hippocampal astrocytes

    PubMed Central

    Le Meur, Karim; Mendizabal-Zubiaga, Juan; Grandes, Pedro; Audinat, Etienne

    2012-01-01

    Astrocytes can directly influence neuronal activity through the release of various transmitters acting on membrane receptors expressed by neurons. However, in contrast to glutamate and ATP for instance, the release of GABA (γ-amino-butyric acid) by astrocytes is still poorly documented. Here, we used whole-cell recordings in rat acute brain slices and electron microscopy to test whether hippocampal astrocytes release the inhibitory transmitter GABA. We observed that slow transient inhibitory currents due to the activation of GABAA receptors occur spontaneously in principal neurons of the three main hippocampal fields (CA1, CA3, and dentate gyrus). These currents share characteristics with the slow NMDA receptor-mediated currents previously shown to result from astrocytic glutamate release: they occur in the absence of synaptic transmission and have variable kinetics and amplitudes as well as low frequencies. Osmotic pressure reduction, known to enhance transmitter release from astrocytes, similarly increased the frequency of non-synaptic GABA and glutamate currents. Simultaneous occurrence of slow inhibitory and excitatory currents was extremely rare. Yet, electron microscopy examination of immunostained hippocampal sections shows that about 80% of hippocampal astrocytes [positive for glial fibrillary acidic protein (GFAP)] were immunostained for GABA. Our results provide quantitative characteristics of the astrocyte-to-neuron GABAergic signaling. They also suggest that all principal neurons of the hippocampal network are under a dual, excitatory and inhibitory, influence of astrocytes. The relevance of the astrocytic release of GABA, and glutamate, on the physiopathology of the hippocampus remains to be established. PMID:22912614

  14. Inherited disorders of GABA metabolism

    PubMed Central

    Pearl, Phillip L; Hartka, Thomas R; Cabalza, Jessica L; Taylor, Jacob; Gibson, Michael K

    2013-01-01

    The inherited disorders of γ-amino butyric acid (GABA) metabolism require an increased index of clinical suspicion. The known genetic disorders are GABA-transaminase deficiency, succinic semialdehyde dehydrogenase (SSADH) deficiency and homocarnosinosis. A recent link has also been made between impaired GABA synthesis and nonsyndromic cleft lip, with or without cleft palate. SSADH deficiency is the most commonly occurring of the inherited disorders of neurotransmitters. The disorder has a nonspecific phenotype with myriad neurological and psychiatric manifestations, and usually has a nonprogressive temporal course. Diagnosis is made by the detection of γ-hydroxybutyrate excretion on urine organic acid testing. The most consistent magnetic resonance imaging abnormality is an increased signal in the globus pallidus. Magnetic resonance spectroscopy has demonstrated the first example of increased endogenous GABA in human brain parenchyma in this disorder. GABA-transaminase deficiency and homocarnosinosis appear to be very rare, but require cerebrospinal fluid for detection, thus allowing for the possibility that these entities, as in the other inherited neurotransmitter disorders, are under-recognized. PMID:23842532

  15. GABA[subscript A] Receptor Downregulation in Brains of Subjects with Autism

    ERIC Educational Resources Information Center

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Thuras, Paul D.

    2009-01-01

    Gamma-aminobutyric acid A (GABA[subscript A]) receptors are ligand-gated ion channels responsible for mediation of fast inhibitory action of GABA in the brain. Preliminary reports have demonstrated altered expression of GABA receptors in the brains of subjects with autism suggesting GABA/glutamate system dysregulation. We investigated the…

  16. Targeting γ-aminobutyric acid (GABA) carriers to the brain: potential relevance as antiepileptic pro-drugs.

    PubMed

    Semreen, Mohammad H; El-Shorbagi, Abdel-Nasser; Al-Tel, Taleb H; Alsalahat, Izzeddin M M

    2010-05-01

    The search for antiepileptic compounds with more selective activity continues to be an area of intensive investigation in medicinal chemistry. 3,5-Disubstituted tetrahydro-2H-1,3,5-thiadiazine-2-thione (THTT) derivatives, 3a-g, potential prodrugs incorporating the neurotransmitter GABA were synthesized and studied for crossing the blood-brain barrier (BBB). Compounds were prepared from primary amines and carbon disulfide to give dithiocarbamates 2a-g which upon reaction in situ with formaldehyde provided the intermediates Ia-g. Addition of Ia-g onto GABA furnished the title compounds 3a-g. The structures were verified by spectral data and the amounts of the compounds in the brain were investigated by using HPLC. The concentration profiles of the tested compounds in mice brain were determined and the in vivo anticonvulsant activity was measured. PMID:20632978

  17. Role of a γ-aminobutryic acid (GABA) receptor mutation in the evolution and spread of Diabrotica virgifera virgifera resistance to cyclodiene insecticides.

    PubMed

    Wang, H; Coates, B S; Chen, H; Sappington, T W; Guillemaud, T; Siegfried, B D

    2013-10-01

    The western corn rootworm, Diabrotica virgifera virgifera, is a damaging pest of cultivated corn that was controlled by applications of cyclodiene insecticides from the late 1940s until resistance evolved ∼10 years later. Range expansion from the western plains into eastern USA coincides with resistance development. An alanine to serine amino acid substitution within the Rdl subunit of the gamma-aminobutyric acid (GABA) receptor confers resistance to cyclodiene insecticides in many species. We found that the non-synonymous single nucleotide polymorphism (SNP) G/T at the GABA receptor cDNA position 838 (G/T(838)) of D. v. virgifera resulted in the alanine to serine change, and the codominant SNP allele T(838) was genetically linked to survival of beetles in aldrin bioassays. A phenotypic gradient of decreasing susceptibility from west to east was correlated with higher frequencies of the resistance-conferring T(838) allele in the eastern-most populations. This pattern exists in opposition to perceived selective pressures since the more eastern and most resistant populations probably experienced reduced exposure. The reasons for the observed distribution are uncertain, but historical records of the range expansion combined with the distribution of susceptible and resistant phenotypes and genotypes provide an opportunity to better understand factors affecting the species' range expansion. PMID:23841833

  18. Pharmacology of GABA.

    PubMed

    Meldrum, B

    1982-01-01

    GABA-ergic systems are involved in all the main functions of the brain. In most brain regions impairment of this system produces epileptic activity. GABA-mediated inhibitory function can be enhanced by drugs of at least seven different types. They act on the metabolism or synaptic release of GABA, or its reuptake into neurones of glia, or on various components of the GABA receptor complex (GABA recognition site, "benzodiazepine" receptor or chloride ionophore). Among such compounds, those which act most specifically and potently on GABA receptors remain primarily research tools. Among compounds in clinical use, valproate, benzodiazepines, and anticonvulsant barbiturates al enhance GABA-mediated inhibition. In the future, new inhibitors of GABA uptake, new GABA agonists and potent inhibitors of GABA-transaminase are likely to become available. Trials of drugs enhancing GABA-ergic function have been made in a wide variety of neurological disorders. In most forms of epilepsy a therapeutic effect is evident. Real benefit from GABA therapies has not been demonstrated in the principal disorders of movement (Huntington's chorea, Parkinson's disease, dystonias), except in so far as they have a myoclonic or paroxysmal component. Among psychiatric disorders the acute symptoms of schizophrenia are exacerbated by enhanced GABA-ergic function. Abstinence syndromes (alcohol, barbiturate or narcotic withdrawal) are ameliorated by drugs enhancing GABA-ergic function, and there is some evidence for a beneficial action in anxiety states and mania. Attempts to relate the molecular neurobiology of GABA with clinical pharmacology are of very recent origin. Improved understanding of the variety of GABA receptor mechanisms will provide the key to the more selective pharmacological manipulations that are required for therapeutic success. PMID:6214305

  19. Linking Metabolism to Membrane Signaling: The GABA-Malate Connection.

    PubMed

    Gilliham, Matthew; Tyerman, Stephen D

    2016-04-01

    γ-Aminobutyric acid (GABA) concentration increases rapidly in tissues when plants encounter abiotic or biotic stress, and GABA manipulation affects growth. This, coupled to GABA's well-described role as a neurotransmitter in mammals, led to over a decade of speculation that GABA is a signal in plants. The discovery of GABA-regulated anion channels in plants provides compelling mechanistic proof that GABA is a legitimate plant-signaling molecule. Here we examine research avenues unlocked by this finding and propose that these plant 'GABA receptors' possess novel properties ideally suited to translating changes in metabolic status into physiological responses. Specifically, we suggest they have a role in signaling altered cycling of tricarboxylic acid (TCA) intermediates during stress via eliciting changes in electrical potential differences across membranes. PMID:26723562

  20. Brain regional distribution of GABA(A) receptors exhibiting atypical GABA agonism: roles of receptor subunits.

    PubMed

    Halonen, Lauri M; Sinkkonen, Saku T; Chandra, Dev; Homanics, Gregg E; Korpi, Esa R

    2009-11-01

    The major inhibitory neurotransmitter in the brain, gamma-aminobutyric acid (GABA), has only partial efficacy at certain subtypes of GABA(A) receptors. To characterize these minor receptor populations in rat and mouse brains, we used autoradiographic imaging of t-butylbicyclophosphoro[(35)S]thionate ([(35)S]TBPS) binding to GABA(A) receptors in brain sections and compared the displacing capacities of 10mM GABA and 1mM 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), a competitive GABA-site agonist. Brains from GABA(A) receptor alpha1, alpha4, delta, and alpha4+delta subunit knockout (KO) mouse lines were used to understand the contribution of these particular receptor subunits to "GABA-insensitive" (GIS) [(35)S]TBPS binding. THIP displaced more [(35)S]TBPS binding than GABA in several brain regions, indicating that THIP also inhibited GIS-binding. In these regions, GABA prevented the effect of THIP on GIS-binding. GIS-binding was increased in the cerebellar granule cell layer of delta KO and alpha4+delta KO mice, being only slightly diminished in that of alpha1 KO mice. In the thalamus and some other forebrain regions of wild-type mice, a significant amount of GIS-binding was detected. This GIS-binding was higher in alpha4 KO mice. However, it was fully abolished in alpha1 KO mice, indicating that the alpha1 subunit was obligatory for the GIS-binding in the forebrain. Our results suggest that native GABA(A) receptors in brain sections showing reduced displacing capacity of [(35)S]TBPS binding by GABA (partial agonism) minimally require the assembly of alpha1 and beta subunits in the forebrain and of alpha6 and beta subunits in the cerebellar granule cell layer. These receptors may function as extrasynaptic GABA(A) receptors. PMID:19397945

  1. Brain γ-aminobutyric acid (GABA) detection in vivo with the J-editing (1) H MRS technique: a comprehensive methodological evaluation of sensitivity enhancement, macromolecule contamination and test-retest reliability.

    PubMed

    Shungu, Dikoma C; Mao, Xiangling; Gonzales, Robyn; Soones, Tacara N; Dyke, Jonathan P; van der Veen, Jan Willem; Kegeles, Lawrence S

    2016-07-01

    Abnormalities in brain γ-aminobutyric acid (GABA) have been implicated in various neuropsychiatric and neurological disorders. However, in vivo GABA detection by (1) H MRS presents significant challenges arising from the low brain concentration, overlap by much stronger resonances and contamination by mobile macromolecule (MM) signals. This study addresses these impediments to reliable brain GABA detection with the J-editing difference technique on a 3-T MR system in healthy human subjects by: (i) assessing the sensitivity gains attainable with an eight-channel phased-array head coil; (ii) determining the magnitude and anatomic variation of the contamination of GABA by MM; and (iii) estimating the test-retest reliability of the measurement of GABA with this method. Sensitivity gains and test-retest reliability were examined in the dorsolateral prefrontal cortex (DLPFC), whereas MM levels were compared across three cortical regions: DLPFC, the medial prefrontal cortex (MPFC) and the occipital cortex (OCC). A three-fold higher GABA detection sensitivity was attained with the eight-channel head coil compared with the standard single-channel head coil in DLPFC. Despite significant anatomical variation in GABA + MM and MM across the three brain regions (p < 0.05), the contribution of MM to GABA + MM was relatively stable across the three voxels, ranging from 41% to 49%, a non-significant regional variation (p = 0.58). The test-retest reliability of GABA measurement, expressed as either the ratio to voxel tissue water (W) or to total creatine, was found to be very high for both the single-channel coil and the eight-channel phased-array coil. For the eight-channel coil, for example, Pearson's correlation coefficient of test vs. retest for GABA/W was 0.98 (R(2)  = 0.96, p = 0.0007), the percentage coefficient of variation (CV) was 1.25% and the intraclass correlation coefficient (ICC) was 0.98. Similar reliability was also found for the co-edited resonance

  2. Effect of γ-Aminobutyric Acid (GABA) Producing Bacteria on In vitro Rumen Fermentation, Biogenic Amine Production and Anti-oxidation Using Corn Meal as Substrate

    PubMed Central

    Ku, Bum Seung; Mamuad, Lovelia L.; Kim, Seon-Ho; Jeong, Chang Dae; Soriano, Alvin P.; Lee, Ho-Il; Nam, Ki-Chang; Ha, Jong K.; Lee, Sang Suk

    2013-01-01

    The effects and significance of γ-amino butyric acid (GABA) producing bacteria (GPB) on in vitro rumen fermentation and reduction of biogenic amines (histamine, methylamine, ethylamine, and tyramine) using corn meal as a substrate were determined. Ruminal samples collected from ruminally fistulated Holstein cows served as inoculum and corn was used as substrate at 2% dry matter (DM). Different inclusion rates of GPB and GABA were evaluated. After incubation, addition of GPB had no significant effect on in vitro fermentation pH and total gas production, but significantly increased the ammonia nitrogen (NH3-N) concentration and reduced the total biogenic amines production (p<0.05). Furthermore, antioxidation activity was improved as indicated by the significantly higher concentration of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) among treated samples when compared to the control (p<0.05). Additionally, 0.2% GPB was established as the optimum inclusion level. Taken together, these results suggest the potential of utilizing GPB as feed additives to improve growth performance in ruminants by reducing biogenic amines and increasing anti-oxidation. PMID:25049853

  3. Ventriculomammary shunt: an unusual ventriculoperitoneal shunt complication.

    PubMed

    Chaudhry, Nauman S; Johnson, Jeremiah N; Morcos, Jacques J

    2015-02-01

    Ventriculoperitoneal (VP) shunt malfunctions are common and can result in significant consequences for patients. Despite the prevalence of breast augmentation surgery and breast surgery for other pathologies, few breast related VP shunt complications have been reported. A 54-year-old woman with hydrocephalus post-subarachnoid hemorrhage returned 1 month after VP shunt placement complaining of painful unilateral breast enlargement. After investigation, it was determined that the distal VP shunt catheter had migrated from the peritoneal cavity into the breast and wrapped around her breast implant. The breast enlargement was the result of cerebrospinal fluid retention. We detail this unusual case and review all breast related VP shunt complications reported in the literature. To avoid breast related complications related to VP shunt procedures, it is important to illicit pre-procedural history regarding breast implants, evade indwelling implants during catheter tunneling and carefully securing the abdominal catheter to prevent retrograde catheter migration to the breast. PMID:25127261

  4. Complications of denver shunt.

    PubMed

    Perera, Eranga; Bhatt, Shweta; Dogra, Vikram S

    2011-01-01

    Hepatic hydrothorax secondary to transdiaphragmatic spread of peritoneal fluid can cause respiratory discomfort to the patient. Draining of hydrothorax helps relieve these symptoms. Pleurovenous shunt (Denver shunt) is a relatively non-invasive method of shunting the pleural fluid to the central venous system. Reported complications of pleurovenous shunts are shunt failure, pulmonary edema, post shunt coagulopathy, deep vein thrombosis, and infection. We report a rare case of a leak at the venous end of the catheter that was placed within the right internal jugular vein, resulting in a large collection in the neck. PMID:21915387

  5. Library screening by means of mass spectrometry (MS) binding assays-exemplarily demonstrated for a pseudostatic library addressing γ-aminobutyric acid (GABA) transporter 1 (GAT1).

    PubMed

    Sindelar, Miriam; Wanner, Klaus T

    2012-09-01

    In the present study, the application of mass spectrometry (MS) binding assays as a tool for library screening is reported. For library generation, dynamic combinatorial chemistry (DCC) was used. These libraries can be screened by means of MS binding assays when appropriate measures are taken to render the libraries pseudostatic. That way, the efficiency of MS binding assays to determine ligand binding in compound screening with the ease of library generation by DCC is combined. The feasibility of this approach is shown for γ-aminobutyric acid (GABA) transporter 1 (GAT1) as a target, representing the most important subtype of the GABA transporters. For the screening, hydrazone libraries were employed that were generated in the presence of the target by reacting various sets of aldehydes with a hydrazine derivative that is delineated from piperidine-3-carboxylic acid (nipecotic acid), a common fragment of known GAT1 inhibitors. To ensure that the library generated is pseudostatic, a large excess of the nipecotic acid derivative is employed. As the library is generated in a buffer system suitable for binding and the target is already present, the mixtures can be directly analyzed by MS binding assays-the process of library generation and screening thus becoming simple to perform. The binding affinities of the hits identified by deconvolution were confirmed in conventional competitive MS binding assays performed with single compounds obtained by separate synthesis. In this way, two nipecotic acid derivatives exhibiting a biaryl moiety, 1-{2-[2'-(1,1'-biphenyl-2-ylmethylidene)hydrazine]ethyl}piperidine-3-carboxylic acid and 1-(2-{2'-[1-(2-thiophenylphenyl)methylidene]hydrazine}ethyl)piperidine-3-carboxylic acid, were found to be potent GAT1 ligands exhibiting pK(i) values of 6.186 ± 0.028 and 6.229 ± 0.039, respectively. This method enables screening of libraries, whether generated by conventional chemistry or DCC, and is applicable to all kinds of targets including

  6. Ventriculoperitoneal shunt - discharge

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000149.htm Ventriculoperitoneal shunt - discharge To use the sharing features on this ... JavaScript. Your child has hydrocephalus and needed a shunt placed to drain excess fluid and relieve pressure ...

  7. Guinea Pig Horizontal Cells Express GABA, the GABA-Synthesizing Enzyme GAD65, and the GABA Vesicular Transporter

    PubMed Central

    Guo, Chenying; Hirano, Arlene A.; Stella, Salvatore L.; Bitzer, Michaela; Brecha, Nicholas C.

    2013-01-01

    γ-Aminobutyric acid (GABA) is likely expressed in horizontal cells of all species, although conflicting physiological findings have led to considerable controversy regarding its role as a transmitter in the outer retina. This study has evaluated key components of the GABA system in the outer retina of guinea pig, an emerging retinal model system. The presence of GABA, its rate-limiting synthetic enzyme glutamic acid decarboxylase (GAD65 and GAD67 isoforms), the plasma membrane GABA transporters (GAT-1 and GAT-3), and the vesicular GABA transporter (VGAT) was evaluated by using immunohistochemistry with well-characterized antibodies. The presence of GAD65 mRNA was also evaluated by using laser capture microdissection and reverse transcriptase-polymerase chain reaction. Specific GABA, GAD65, and VGAT immunostaining was localized to horizontal cell bodies, as well as to their processes and tips in the outer plexiform layer. Furthermore, immunostaining of retinal whole mounts and acutely dissociated retinas showed GAD65 and VGAT immunoreactivity in both A-type and B-type horizontal cells. However, these cells did not contain GAD67, GAT-1, or GAT-3 immunoreactivity. GAD65 mRNA was detected in horizontal cells, and sequencing of the amplified GAD65 fragment showed approximately 85% identity with other mammalian GAD65 mRNAs. These studies demonstrate the presence of GABA, GAD65, and VGAT in horizontal cells of the guinea pig retina, and support the idea that GABA is synthesized from GAD65, taken up into synaptic vesicles by VGAT, and likely released by a vesicular mechanism from horizontal cells. PMID:20235161

  8. [Autoantibodies to glutamate and GABA in opiate addiction].

    PubMed

    Vetrile, L A; Fomina, V G; Nevidimova, T I; Vetlugina, T P; Batukhtina, E I; Savochkina, D N; Zakharova, I A; Davydova, T V

    2015-01-01

    Blood serum from 129 patients with opium addiction at different stages of the disease and 63 donors (control group) was examined for the presence of autoantibodies to the exciting and inhibitory amino acids glutamate and GABA. It was shown enhanced production of autoantibodies to glutamate and GABA. Dependence of the level and frequency of detec- tion of autoantibodies to glutamate and GABA on the stage of the disease was revealed. PMID:26852594

  9. Effects of prenatal exposure to 2,4-D/2,4,5-T mixture on postnatal changes in rat brain glutamate, GABA protein, and nucleic acid levels

    SciTech Connect

    Mohammad, F.K.; Omer, V.E.V.

    1988-02-01

    The opportunity of maternal exposure to various chemicals in the work place and the general environments have increased, and the fetus and neonate may be at greater risk than the adult. However, the embryotoxic and teratogenic effects of the chlorinated phenoxy herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), the main chemicals in Agent Orange, are well documented only in laboratory animals. The brain of the developing fetus is vulnerable to the toxic effects of the phenoxy herbicides which readily cross the placental barrier and distribute into fetal tissues, including brain. Although the neurochemical basis for the behavioral teratogenicity of the phenoxy herbicides is not know, it was recently reported that non-teratogenic doses of a 1:1 mixture of 2,4-D and 2,4,5-T delayed the ontogeny of dopamine and serotonin in the brain of the developing rate. This communication provides further descriptive information about the ontogeny of rat brain nucleic acid, protein, glutamate and ..gamma..-aminobutyrate (GABA) following in utero exposure to non-teratogenic levels of a 1:1 mixture of 2,4-D/2,4,5-T.

  10. Quantitative autoradiographic characterization of GA-BA sub B receptors in mammalian central nervous system

    SciTech Connect

    Chu, D.Chin-Mei.

    1989-01-01

    The inhibitory effects of the amino acid neurotransmitter {gamma}-aminobutyric acid (GABA) within the nervous system appear to be mediated through two distinct classes of receptors: GABA{sub A} and GABA{sub B} receptors. A quantitative autoradiographic method with {sup 3}H-GABA was developed to examine the hypotheses that GABA{sub A} and GABA{sub B} sites have distinct anatomical distributions, pharmacologic properties, and synaptic localizations within the rodent nervous system. The method was also applied to a comparative study of these receptors in postmortem human brain from individuals afflicted with Alzheimer's disease and those without neurologic disease. The results indicated that GABA{sub B} receptors occur in fewer numbers and have a lower affinity for GABA than GABA{sub A} receptors in both rodent and human brain. Within rodent brain, the distribution of these two receptor populations were clearly distinct. GABA{sub B} receptors were enriched in the medial habenula, interpeduncular nucleus, cerebellar molecular layer and olfactory glomerular layer. After selective lesions of postsynaptic neurons of the corticostriatal and perforant pathway, both GABA{sub B} and GABA{sub A} receptors were significantly decreased in number. Lesions of the presynaptic limbs of the perforant but not the corticostriatal pathway resulted in upregulation of both GABA receptors in the area of innervation. GABA{sub B} receptors were also upregulated in CA3 dendritic regions after destruction of dentate granule neurons.

  11. [Shunt and short circuit].

    PubMed

    Rangel-Abundis, Alberto

    2006-01-01

    Shunt and short circuit are antonyms. In French, the term shunt has been adopted to denote the alternative pathway of blood flow. However, in French, as well as in Spanish, the word short circuit (court-circuit and cortocircuito) is synonymous with shunt, giving rise to a linguistic and scientific inconsistency. Scientific because shunt and short circuit made reference to a phenomenon that occurs in the field of the physics. Because shunt and short circuit are antonyms, it is necessary to clarify that shunt is an alternative pathway of flow from a net of high resistance to a net of low resistance, maintaining the stream. Short circuit is the interruption of the flow, because a high resistance impeaches the flood. This concept is applied to electrical and cardiovascular physiology, as well as to the metabolic pathways. PMID:17257492

  12. Gamma amino butyric acid accumulation in medicinal plants without stress

    PubMed Central

    Anju, P.; Moothedath, Ismail; Rema Shree, Azhimala Bhaskaranpillai

    2014-01-01

    Introduction: Gamma amino butyric acid (GABA) is an important ubiquitous four carbon nonprotein amino acid with an amino group attached to gamma carbon instead of beta carbon. It exists in different organisms including bacteria, plants, and animals and plays a crucial role in humans by regulating neuronal excitability throughout the nervous system. It is directly responsible for the regulation of muscle tone and also effective in lowering stress, blood pressure, and hypertension. Aim and Objective: The aim of the study was to develop the fingerprint profile of selected medicinally and economically important plants having central nervous system (CNS) activity and to determine the quantity of GABA in the selected plants grown under natural conditions without any added stress. Materials and Methods: The high-performance thin layer chromatography analysis was performed on precoated silica gel plate 60F–254 plate (20 cm × 10 cm) in the form of bands with width 8 mm using Hamilton syringe (100 μl) using n-butanol, acetic acid, and water in the proportion 5:2:2 as mobile phase in a CAMAG chamber which was previously saturated for 30 min. CAMAG TLC scanner 3 was used for the densitometric scanning at 550 nm. Specific marker compounds were used for the quantification. Results and Conclusion: Among the screened medicinal plants, Zingiber officinale and Solanum torvum were found to have GABA. The percentage of GABA present in Z. officinale and S. torvum were found to be 0.0114% and 0.0119%, respectively. The present work confirmed that among the selected CNS active medicinal plants, only two plants contain GABA. We found a negative correlation with plant having CNS activity and accumulation of GABA. The GABA shunt is a conserved pathway in eukaryotes and prokaryotes but, although the role of GABA as a neurotransmitter in mammals is clearly established, its role in plants is still vague. PMID:25861139

  13. Isoflurane modulates excitability in the mouse thalamus via GABA-dependent and GABA-independent mechanisms.

    PubMed

    Ying, Shui-Wang; Werner, David F; Homanics, Gregg E; Harrison, Neil L; Goldstein, Peter A

    2009-02-01

    GABAergic neurons in the reticular thalamic nucleus (RTN) synapse onto thalamocortical neurons in the ventrobasal (VB) thalamus, and this reticulo-thalamocortical pathway is considered an anatomic target for general anesthetic-induced unconsciousness. A mutant mouse was engineered to harbor two amino acid substitutions (S270H, L277A) in the GABA(A) receptor (GABA(A)-R) alpha1 subunit; this mutation abolished sensitivity to the volatile anesthetic isoflurane in recombinant GABA(A)-Rs, and reduced in vivo sensitivity to isoflurane in the loss-of-righting-reflex assay. We examined the effects of the double mutation on GABA(A)-R-mediated synaptic currents and isoflurane sensitivity by recording from thalamic neurons in brain slices. The double mutation accelerated the decay, and decreased the (1/2) width of, evoked inhibitory postsynaptic currents (eIPSCs) in VB neurons and attenuated isoflurane-induced prolongation of the eIPSC. The hypnotic zolpidem, a selective modulator of GABA(A)-Rs containing the alpha1 subunit, prolonged eIPSC duration regardless of genotype, indicating that mutant mice incorporate alpha1 subunit-containing GABA(A)-Rs into synapses. In RTN neurons, which lack the alpha1 subunit, eIPSC duration was longer than in VB, regardless of genotype. Isoflurane reduced the efficacy of GABAergic transmission from RTN to VB, independent of genotype, suggesting a presynaptic action in RTN neurons. Consistent with this observation, isoflurane inhibited both tonic action potential and rebound burst firing in the presence of GABA(A)-R blockade. The suppressed excitability in RTN neurons is likely mediated by isoflurane-enhanced Ba(2+)-sensitive, but 4-aminopyridine-insenstive, potassium conductances. We conclude that isoflurane enhances inhibition of thalamic neurons in VB via GABA(A)-R-dependent, but in RTN via GABA(A)-R-independent, mechanisms. PMID:18948126

  14. Distribution of 3H-GABA uptake sites in the nematode Ascaris

    SciTech Connect

    Guastella, J.; Stretton, A.O. )

    1991-05-22

    The distribution of uptake sites for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in the nematode Ascaris suum was examined by autoradiography of 3H-GABA uptake. Single neural processes in both the ventral and dorsal nerve cords were labeled with 3H-GABA. Serial section analysis identified the cells of origin of these processes as the RMEV-like and RMED-like neurons. These cells belong to a set of four neurons in the nerve ring, all of which are labeled by 3H-GABA. 3H-GABA labeling of at least two other sets of cephalic neurons was seen. One of these pairs consists of medium-sized lateral ganglia neurons, located at the level of the amphid commissure bundle. A second pair is located in the lateral ganglia at the level of the deirid commissure bundle. The position and size of these lateral ganglia cells suggest that they are the GABA-immunoreactive lateral ganglia cells frequently seen in whole-mount immunocytochemical preparations. Four neuronal cell bodies located in the retrovesicular ganglion were also labeled with 3H-GABA. These cells, which are probably cholinergic excitatory motor neurons, do not contain detectable GABA-like immunoreactivity. Heavy labeling of muscle cells was also observed. The ventral and dorsal nerve cord inhibitory motor neurons, which are known to contain GABA-like immunoreactivity, were not labeled above background with 3H-GABA. Together with the experiments reported previously, these results define three classes of GABA-associated neurons in Ascaris: (1) neurons that contain endogenous GABA and possess a GABA uptake system; (2) neurons that contain endogenous GABA, but that either lack a GABA uptake system or possess a GABA uptake system of low activity; (3) neurons that possess a GABA uptake system, but that lack endogenous GABA.

  15. Glial GABA, synthesized by monoamine oxidase B, mediates tonic inhibition.

    PubMed

    Yoon, Bo-Eun; Woo, Junsung; Chun, Ye-Eun; Chun, Heejung; Jo, Seonmi; Bae, Jin Young; An, Heeyoung; Min, Joo Ok; Oh, Soo-Jin; Han, Kyung-Seok; Kim, Hye Yun; Kim, Taekeun; Kim, Young Soo; Bae, Yong Chul; Lee, C Justin

    2014-11-15

    GABA is the major inhibitory transmitter in the brain and is released not only from a subset of neurons but also from glia. Although neuronal GABA is well known to be synthesized by glutamic acid decarboxylase (GAD), the source of glial GABA is unknown. After estimating the concentration of GABA in Bergmann glia to be around 5-10 mM by immunogold electron microscopy, we demonstrate that GABA production in glia requires MAOB, a key enzyme in the putrescine degradation pathway. In cultured cerebellar glia, both Ca(2+)-induced and tonic GABA release are significantly reduced by both gene silencing of MAOB and the MAOB inhibitor selegiline. In the cerebellum and striatum of adult mice, general gene silencing, knock out of MAOB or selegiline treatment resulted in elimination of tonic GABA currents recorded from granule neurons and medium spiny neurons. Glial-specific rescue of MAOB resulted in complete rescue of tonic GABA currents. Our results identify MAOB as a key synthesizing enzyme of glial GABA, which is released via bestrophin 1 (Best1) channel to mediate tonic inhibition in the brain. PMID:25239459

  16. Biphasic effects of direct, but not indirect, GABA mimetics and antagonists on haloperidol-induced catalepsy.

    PubMed

    Worms, P; Lloyd, K G

    1980-03-01

    At very low doses the GABA agonists SL 76002 and muscimol diminish haloperidol-induced catalepsy. At somewhat higher doses these compounds potentiate catalepsy. Biphasic effects on DA-receptor mediated functions have previously been noted with bicuculline and picrotoxinin. In contrast, manipulation of GABA levels by enzyme inhibition induced only a monophasic effect on dopamine-mediated behaviour. The potentiation of GABA levels by enzyme inhibition induced only a monophasic effect on dopamine-mediated behaviour. The potentiation of haloperidol-induced catalepsy by GABA mimetics is also observed with dipropylacetate, delta-aminovaleric acid and gamma-acetylenic GABA. This GABA-mimetic potentiation of catakepsy was blocked by the coadministration of bicuculline. These results confirm and extend the hypothesis that GABA-neurons influence DA neuron function. Furthermore they suggest that more than one group of GABA receptors influence directly and/or indirectly DA neuronal function, with different resultant effects. PMID:7189827

  17. Agonist pharmacology of two Drosophila GABA receptor splice variants.

    PubMed Central

    Hosie, A. M.; Sattelle, D. B.

    1996-01-01

    1. The Drosophila melanogaster gamma-aminobutyric acid (GABA) receptor subunits, RDLac and DRC 17-1-2, form functional homo-oligomeric receptors when heterologously expressed in Xenopus laevis oocytes. The subunits differ in only 17 amino acids, principally in regions of the N-terminal domain which determine agonist pharmacology in vertebrate ionotropic neurotransmitter receptors. A range of conformationally restricted GABA analogues were tested on the two homo-oligomers and their agonists pharmacology compared with that of insect and vertebrate iontropic GABA receptors. 2. The actions of GABA, isoguvacine and isonipecotic acid on RDLac and DRC 17-1-2 homo-oligomers were compared, by use of two-electrode voltage-clamp. All three compounds were full agonists of both receptors, but were 4-6 fold less potent agonists of DRC 17-1-2 homo-oligomers than of RDLac. However, the relative potencies of these agonists on each receptor were very similar. 3. A more complete agonist profile was established for RDLac homo-oligomers. The most potent agonists of these receptors were GABA, muscimol and trans-aminocrotonic acid (TACA), which were approximately equipotent. RDLac homo-oligomers were fully activated by a range of GABA analogues, with the order of potency: GABA > ZAPA ((Z)-3-[(aminoiminomethyl)thio]prop-2-enoic acid) > isoguvacine > imidazole-4-acetic acid > or = isonipecotic acid > or = cis-aminocrotonic acid (CACA) > beta-alanine. 3-Aminopropane sulphonic acid (3-APS), a partial agonist of RDLac homo-oligomers, was the weakest agonist tested and 100 fold less potent than GABA. 4. SR95531, an antagonist of vertebrate GABAA receptors, competitively inhibited the GABA responses of RDLac homo-oligomers, which have previously been found to insensitive to bicuculline. However, its potency (IC50 500 microM) was much reduced when compared to GABAA receptors. 5. The agonist pharmacology of Drosophila RDLac homo-oligomers exhibits aspects of the characteristic pharmacology of

  18. Temporary arterial shunts to maintain limb perfusion after arterial injury: an animal study

    NASA Technical Reports Server (NTRS)

    Dawson, D. L.; Putnam, A. T.; Light, J. T.; Ihnat, D. M.; Kissinger, D. P.; Rasmussen, T. E.; Bradley, D. V. Jr

    1999-01-01

    BACKGROUND: Temporary shunt placement can quickly restore perfusion after extremity arterial injury. This study examined the adequacy of limb blood flow with shunt use, non-heparin-bonded shunt patency over prolonged periods, and the safety of this technique. METHODS: Common iliac arteries were divided and 4.0-mm Silastic Sundt shunts placed in 16 anesthetized pigs. Eight (group I) had shunts placed immediately; eight others (group II) were shunted after an hour of limb ischemia and hemorrhagic shock. Physiologic parameters and femoral artery blood flow in both hindlimbs were continuously monitored. Limb lactic acid generation, oxygen utilization, and hematologic and metabolic effects were serially evaluated for 24 hours. RESULTS: Shunts remained patent in 13 of 16 pigs. Shunts thrombosed in two group I animals because of technical errors, but functioned well after thrombectomy and repositioning. Patency could not be maintained in one animal that died from shock. Flow in group I shunted limbs was 57 (+/-11 SD) % of control. For group II animals in shock, shunted limb flow initially averaged 46 +/- 15% of control, but 4 hours after shunt placement, the mean limb blood flow was the same as in group I. Increased oxygen extraction compensated for the lower flow. Lactic acid production was not increased in comparison to control limbs. CONCLUSION: Shunts provided adequate flow in this model of extremity trauma. Correctly placed shunts stayed patent for 24 hours, without anticoagulation, if shunt placement followed resuscitation.

  19. Chronic benzodiazepine treatment and cortical responses to adenosine and GABA.

    PubMed

    Mally, J; Connick, J H; Stone, T W

    1990-10-22

    The effects of chronic treatment of mice with clonazepam have been examined on the responses of neocortical slices to adenosine, 5-hydroxytryptamine (5-HT) and gamma-aminobutyric acid (GABA). Responses to these agonists were measured as changes in the depolarisation induced by N-methyl-D-aspartate (NMDA). Added to the superfusion medium diazepam blocked responses to adenosine but not 5-HT; this effect was not observed with 2-chloroadenosine or in the presence of 2-hydroxynitrobenzylthioguanosine. GABA was inactive in control slices but chronic treatment with clonazepam induced responses to GABA and enhanced responses to adenosine but not 5-HT. It is suggested that the induction of GABA responses may reflect the up-regulation of GABA receptors, but the increase of adenosine responses by clonazepam implies that there is no simple relationship between adenosine receptor binding and functional responses. PMID:1979931

  20. Neurotoxins from snake venoms and α-conotoxin ImI inhibit functionally active ionotropic γ-aminobutyric acid (GABA) receptors.

    PubMed

    Kudryavtsev, Denis S; Shelukhina, Irina V; Son, Lina V; Ojomoko, Lucy O; Kryukova, Elena V; Lyukmanova, Ekaterina N; Zhmak, Maxim N; Dolgikh, Dmitry A; Ivanov, Igor A; Kasheverov, Igor E; Starkov, Vladislav G; Ramerstorfer, Joachim; Sieghart, Werner; Tsetlin, Victor I; Utkin, Yuri N

    2015-09-11

    Ionotropic receptors of γ-aminobutyric acid (GABAAR) regulate neuronal inhibition and are targeted by benzodiazepines and general anesthetics. We show that a fluorescent derivative of α-cobratoxin (α-Ctx), belonging to the family of three-finger toxins from snake venoms, specifically stained the α1β3γ2 receptor; and at 10 μm α-Ctx completely blocked GABA-induced currents in this receptor expressed in Xenopus oocytes (IC50 = 236 nm) and less potently inhibited α1β2γ2 ≈ α2β2γ2 > α5β2γ2 > α2β3γ2 and α1β3δ GABAARs. The α1β3γ2 receptor was also inhibited by some other three-finger toxins, long α-neurotoxin Ls III and nonconventional toxin WTX. α-Conotoxin ImI displayed inhibitory activity as well. Electrophysiology experiments showed mixed competitive and noncompetitive α-Ctx action. Fluorescent α-Ctx, however, could be displaced by muscimol indicating that most of the α-Ctx-binding sites overlap with the orthosteric sites at the β/α subunit interface. Modeling and molecular dynamic studies indicated that α-Ctx or α-bungarotoxin seem to interact with GABAAR in a way similar to their interaction with the acetylcholine-binding protein or the ligand-binding domain of nicotinic receptors. This was supported by mutagenesis studies and experiments with α-conotoxin ImI and a chimeric Naja oxiana α-neurotoxin indicating that the major role in α-Ctx binding to GABAAR is played by the tip of its central loop II accommodating under loop C of the receptors. PMID:26221036

  1. Distal splenorenal shunt

    MedlinePlus

    ... transjugular intrahepatic portal systematic shunt for variceal bleeding: a randomized trial. Gastroenterology. 2006;130(6):1643-51. Sicklick JK, D'Angelica M, Fong Y. The liver. In: Townsend CM Jr, Beauchamp RD, Evers BM, Mattox KL, ...

  2. Hydrocephalus and Shunts

    MedlinePlus

    ... or anesthesia. When ventricles start to get too big, it is a strong sign that the shunt is not working right. It is important to know that some people (between 5 and 15 percent) with Spina Bilda may have ...

  3. GABA selectively increases mucin-1 expression in isolated pig jejunum.

    PubMed

    Braun, Hannah-Sophie; Sponder, Gerhard; Pieper, Robert; Aschenbach, Jörg R; Deiner, Carolin

    2015-11-01

    The inhibitory neurotransmitter GABA (γ-aminobutyric acid) is synthesized by glutamic acid decarboxylase, which is expressed in the central nervous system and in various other tissues including the intestine. Moreover, GABA can be ingested in vegetarian diets or produced by bacterial commensals in the gastrointestinal tract. As previous studies in lung have suggested a link between locally increased GABA availability and mucin 5AC production, the present study sought to test whether the presence or lack of GABA (and its precursor glutamine) has an effect on intestinal mucin expression. Porcine jejunum epithelial preparations were incubated with two different amounts of GABA or glutamine on the mucosal side for 4 h, and changes in the relative gene expression of seven different mucins, enzymes involved in mucin shedding, GABA B receptor, enzymes involved in glutamine/GABA metabolism, glutathione peroxidase 2, and interleukin 10 were examined by quantitative PCR (TaqMan(®) assays). Protein expression of mucin-1 (MUC1) was analyzed by Western blot. On the RNA level, only MUC1 was significantly up-regulated by both GABA concentrations compared with the control. Glutamine-treated groups showed the same trend. On the protein level, all treatment groups showed a significantly higher MUC1 expression than the control group. We conclude that GABA selectively increases the expression of MUC1, a cell surface mucin that prevents the adhesion of microorganisms, because of its size and negative charge, and therefore propose that the well-described positive effects of glutamine on enterocytes and intestinal integrity are partly attributable to effects of its metabolite GABA. PMID:26471792

  4. First molecular genotyping of A302S mutation in the gamma aminobutyric acid (GABA) receptor in Aedes albopictus from Malaysia.

    PubMed

    Low, V L; Vinnie-Siow, W Y; Lim Y, A L; Tan, T K; Leong, C S; Chen, C D; Azidah, A A; Sofian-Azirun, M

    2015-09-01

    Given the lack of molecular evidence in altered target-site insecticide resistance mechanism in Aedes albopictus (Skuse) worldwide, the present study aims to detect the presence of A302S mutation in the gene encoding the gamma aminobutyric acid receptor resistant to dieldrin (Rdl) in Ae. albopictus for the first time from its native range of South East Asia, namely Malaysia. World Health Organization (WHO) adult susceptibility bioassay indicated a relatively low level of dieldrin resistance (two-fold) in Ae. albopictus from Petaling Jaya, Selangor. However, PCR-RFLP and direct sequencing methods revealed the presence of the A302S mutation with the predomination of heterozygous genotype (40 out of 82 individuals), followed by the resistant genotype with 11 individuals. This study represents the first field evolved instance of A302S mutation in Malaysian insect species. PMID:26695218

  5. Pharmacodynamic effects and possible therapeutic uses of THIP, a specific GABA-agonist.

    PubMed

    Christensen, A V; Svendsen, O; Krogsgaard-Larsen, P

    1982-10-22

    THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) is a potent and specific GABA receptor agonist which does not influence the GABA uptake system or GABA metabolizing enzymes. The specificity for the GABA receptor is also demonstrated by lack of action on monoaminergic, cholinergic, histaminergic or opiate receptors. Since in recent years GABA receptor stimulants-among others THIP--have become available many have speculated as to what clinical indication GABA-ergic stimulation might be an important element. The first suggestion was that GABA-ergic drugs by an inhibitory effect on the dopamine neurons would improve the antischizophrenic effect of neuroleptics and improve tardive dyskinesia. Furthermore, studies on brains of deceased Parkinson and Huntington's chorea patients have demonstrated a low level of GABA and its synthesizing enzyme glutamic acid decarboxylase (GAD) in the basal ganglia. Also in epilepsy and diseases with dementia a deficit in the GABA system has been proposed. Therefore a therapeutic strategy for these diseases may be supplementary treatment with drugs which increase GABA receptor activity. Furthermore, recent results in humans have shown that GABA agonists perhaps also could be of benefit in mania and depressions. When considering the neurophysiological elements of nociception and muscle tone it is also reasonable to suggest that GABA-ergic stimulation may reduce pain perception and muscle tone. PMID:6292818

  6. The effects of agonists of ionotropic GABA(A) and metabotropic GABA(B) receptors on learning.

    PubMed

    Zyablitseva, Evgeniya A; Kositsyn, Nikolay S; Shul'gina, Galina I

    2009-05-01

    The research described here investigates the role played by inhibitory processes in the discriminations made by the nervous system of humans and animals between familiar and unfamiliar and significant and nonsignificant events. This research compared the effects of two inhibitory mediators of gamma-aminobutyric acid (GABA): 1) phenibut, a nonselective agonist of ionotropic GABA(A) and metabotropic GABA(B) receptors and 2) gaboxadol a selective agonist of ionotropic GABA(A) receptors on the process of developing active defensive and inhibitory conditioned reflexes in alert non-immobilized rabbits. It was found that phenibut, but not gaboxadol, accelerates the development of defensive reflexes at an early stage of conditioning. Both phenibut and gaboxadol facilitate the development of conditioned inhibition, but the effect of gaboxadol occurs at later stages of conditioning and is less stable than that of phenibut. The earlier and more stable effects of phenibut, as compared to gaboxadol, on storage in memory of the inhibitory significance of a stimulus may occur because GABA(B) receptors play the dominant role in the development of internal inhibition during an early stage of conditioning. On the other hand this may occur because the participation of both GABA(A) and GABA(B) receptors are essential to the process. We discuss the polyfunctionality of GABA receptors as a function of their structure and the positions of the relevant neurons in the brain as this factor can affect regulation of various types of psychological processes. PMID:19476215

  7. Shunt tube calcification as a late complication of ventriculoperitoneal shunting.

    PubMed

    Salim, Abubakr Darrag; Elzain, Mohammed Awad; Mohamed, Haddab Ahmed; Ibrahim Zayan, Baha Eldin Mohamed

    2015-01-01

    Shunt calcification is a rare complication of ventriculoperitoneal shunting that occurs years later after the initial operation this condition is rarely reported in literature. Two patients with shunt calcifications were described. The first patient was 17-year-old lady who had congenital hydrocephalus and shunted in the early infancy, she was presented recently complaining of itching of the skin along the shunt track and limitation of neck movement. The patient was then operated with removal of the old peritoneal catheter and replacing it with a new one. The second patient was 17-year-old boy originally was a case of posterior fossa pilocytic astrocytoma associated with obstructive hydrocephalus, he was operated with both shunting for the hydrocephalus and tumor removal, 6 years later he presented with shunt exposure. Calcification of the shunt tube was discovered intraoperatively upon shunt removal. Shunt calcification has been observed mainly in barium-impregnated catheters. Introducing plain silicone-coated shunt tubing may reduce the rate of this condition. The usual complaints of the patients suffering from this condition are pain in the neck and chest wall along the shunt pathway and limitation of the neck movement due to shunt tube tethering, but features of shunt dysfunction and skin irritation above the shunt may be present. In this review, plain X-ray and operative findings showed that the most extensive calcification is present in the neck, where the catheters were subject to heavy mechanical stress. Disturbed calcium and phosphate metabolisms may be involved in this condition. Shunt calcification is a rare condition that occurs due to material aging presenting with features of shunt tethering, dysfunction or overlying skin irritation. Plain X-ray is needed to detect calcification while shunt removal, replacement or endoscopic third ventriculostomy may carry solution for this condition. PMID:26396620

  8. Aqueous shunts for glaucoma

    PubMed Central

    Minckler, Don; Vedula, Satyanarayana S; Li, Tianjing; Mathew, Milan; Ayyala, Ramesh; Francis, Brian

    2014-01-01

    Background Aqueous shunts are employed for intraocular pressure (IOP) control in primary and secondary glaucomas that fail medical, laser, and other surgical therapies. Objectives This review compares aqueous shunts for IOP control and safety. Search strategy We searched CENTRAL, MEDLINE, PubMed, EMBASE, NRR in January 2006, LILACS to February 2004 and reference lists of included trials. Selection criteria We included all randomized and quasi-randomized trials in which one arm of the study involved shunts. Data collection and analysis Two authors independently extracted data for included studies and a third adjudicated discrepancies. We contacted investigators for missing information. We used fixed-effect models and summarized continuous outcomes using mean differences. Main results We included fifteen trials with a total of 1153 participants with mixed diagnoses. Five studies reported details sufficient to verify the method of randomization but only two had adequate allocation concealment. Data collection and follow-up times were variable. Meta-analysis of two trials comparing Ahmed implant with trabeculectomy found trabeculectomy resulted in lower mean IOPs 11 to 13 months later (mean difference 3.81 mm Hg, 95% CI 1.94 to 5.69 mm Hg). Meta-analysis of two trials comparing double-plate Molteno implant with the Schocket shunt was not done due to substantial heterogeneity. One study comparing ridged with standard double-plate Molteno implants found no clinically significant differences in outcome. Two trials investigating the effectiveness of adjunctive mitomycin (MMC) with the Molteno and Ahmed implants found no evidence of benefit with MMC. Two trials that investigated surgical technique variations with the Ahmed found no benefit with partial tube ligation or excision of Tenon's capsule. One study concluded there were outcome advantages with a double versus a single-plate Molteno implant and one trial comparing the 350 mm2 and 500 mm2 Baerveldt shunts found no

  9. Local GABA Concentration Predicts Perceptual Improvements After Repetitive Sensory Stimulation in Humans

    PubMed Central

    Heba, Stefanie; Puts, Nicolaas A. J.; Kalisch, Tobias; Glaubitz, Benjamin; Haag, Lauren M.; Lenz, Melanie; Dinse, Hubert R.; Edden, Richard A. E.; Tegenthoff, Martin; Schmidt-Wilcke, Tobias

    2016-01-01

    Learning mechanisms are based on synaptic plasticity processes. Numerous studies on synaptic plasticity suggest that the regulation of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) plays a central role maintaining the delicate balance of inhibition and excitation. However, in humans, a link between learning outcome and GABA levels has not been shown so far. Using magnetic resonance spectroscopy of GABA prior to and after repetitive tactile stimulation, we show here that baseline GABA+ levels predict changes in perceptual outcome. Although no net changes in GABA+ are observed, the GABA+ concentration prior to intervention explains almost 60% of the variance in learning outcome. Our data suggest that behavioral effects can be predicted by baseline GABA+ levels, which provide new insights into the role of inhibitory mechanisms during perceptual learning. PMID:26637451

  10. The role of GABA in the regulation of GnRH neurons

    PubMed Central

    Watanabe, Miho; Fukuda, Atsuo; Nabekura, Junichi

    2014-01-01

    Gonadotropin-releasing hormone (GnRH) neurons form the final common pathway for the central regulation of reproduction. Gamma-amino butyric acid (GABA) has long been implicated as one of the major players in the regulation of GnRH neurons. Although GABA is typically an inhibitory neurotransmitter in the mature adult central nervous system, most mature GnRH neurons show the unusual characteristic of being excited by GABA. While many reports have provided much insight into the contribution of GABA to the activity of GnRH neurons, the precise physiological role of the excitatory action of GABA on GnRH neurons remains elusive. This brief review presents the current knowledge of the role of GABA signaling in GnRH neuronal activity. We also discuss the modulation of GABA signaling by neurotransmitters and neuromodulators and the functional consequence of GABAergic inputs to GnRH neurons in both the physiology and pathology of reproduction. PMID:25506316

  11. Transjugular intrahepatic portosystemic shunt (TIPS)

    MedlinePlus

    ... gov/ency/article/007210.htm Transjugular intrahepatic portosystemic shunt (TIPS) To use the sharing features on this page, please enable JavaScript. Transjugular intrahepatic portosystemic shunt (TIPS) is a procedure to create new connections ...

  12. Transjugular intrahepatic portosystemic shunt.

    PubMed

    Patidar, Kavish R; Sydnor, Malcolm; Sanyal, Arun J

    2014-11-01

    Transjugular intrahepatic portosystemic shunt (TIPS) is an established procedure for the complications of portal hypertension. The largest body of evidence for its use has been supported for recurrent or refractory variceal bleeding and refractory ascites. Its use has also been advocated for acute variceal bleed, hepatic hydrothorax, and hepatorenal syndrome. With the replacement of bare metal stents with polytetrafluoroethylene-covered stents, shunt patency has improved dramatically, thus, improving outcomes. Therefore, reassessment of its utility, management of its complications, and understanding of various TIPS techniques is important. PMID:25438287

  13. GABA(B) receptor subunit 1 binds to proteins affected in 22q11 deletion syndrome.

    PubMed

    Zunner, Dagmar; Deschermeier, Christina; Kornau, Hans-Christian

    2010-03-01

    GABA(B) receptors mediate slow inhibitory effects of the neurotransmitter gamma-aminobutyric acid (GABA) on synaptic transmission in the central nervous system. They function as heterodimeric G-protein-coupled receptors composed of the seven-transmembrane domain proteins GABA(B1) and GABA(B2), which are linked through a coiled-coil interaction. The ligand-binding subunit GABA(B1) is at first retained in the endoplasmic reticulum and is transported to the cell surface only upon assembly with GABA(B2). Here, we report that GABA(B1), via the coiled-coil domain, can also bind to soluble proteins of unknown function, that are affected in 22q11 deletion/DiGeorge syndrome and are therefore referred to as DiGeorge critical region 6 (DGCR6). In transfected neurons the GABA(B1)-DGCR6 association resulted in a redistribution of both proteins into intracellular clusters. Furthermore, the C-terminus of GABA(B2) interfered with the novel interaction, consistent with heterodimer formation overriding transient DGCR6-binding to GABA(B1). Thus, sequential coiled-coil interactions may direct GABA(B1) into functional receptors. PMID:20036641

  14. Fast detection of extrasynaptic GABA with a whole-cell sniffer

    PubMed Central

    Christensen, Rasmus K.; Petersen, Anders V.; Schmitt, Nicole; Perrier, Jean-François

    2014-01-01

    Gamma-amino-butyric acid (GABA) is the main inhibitory transmitter of the brain. It operates by binding to specific receptors located both inside and outside synapses. The extrasynaptic receptors are activated by spillover from GABAergic synapses and by ambient GABA in the extracellular space. Ambient GABA is essential for adjusting the excitability of neurons. However, due to the lack of suitable methods, little is known about its dynamics. Here we describe a new technique that allows detection of GABA transients and measurement of the steady state GABA concentration with high spatial and temporal resolution. We used a human embryonic kidney (HEK) cell line that stably expresses GABAA receptors composed of α1, β2, and γ2 subunits. We recorded from such a HEK cell with the whole-cell patch-clamp technique. The presence of GABA near the HEK cell generated a measurable electric current whose magnitude increased with concentration. A fraction of the current did not inactivate during prolonged exposition to GABA. This technique, which we refer to as a “sniffer” allows the measurement of ambient GABA concentration inside nervous tissue with a resolution of few tens of nanomolars. In addition, the sniffer detects variations in the extrasynaptic GABA concentration with millisecond time resolution. Pilot experiments demonstrate that the sniffer is able to report spillover of GABA induced by synaptic activation in real time. This is the first report on a GABA sensor that combines the ability to detect fast transients and to measure steady concentrations. PMID:24860433

  15. Bioactivity-guided isolation of GABA(A) receptor modulating constituents from the rhizomes of Actaea racemosa.

    PubMed

    Cicek, Serhat S; Khom, Sophia; Taferner, Barbara; Hering, Steffen; Stuppner, Hermann

    2010-12-27

    Black cohosh (Actaea racemosa) is a frequently used herbal remedy for the treatment of mild climacteric symptoms. In the present study, the modulation of γ-aminobutryic acid (GABA)-induced chloride currents (I(GABA)) through GABA type A (GABA(A)) receptors by black cohosh extracts and isolated compounds was investigated. GABA(A) receptors, consisting of α(1), β(2), and γ(2S) subunits, were expressed in Xenopus laevis oocytes, and potentiation of I(GABA) was measured using the two-microelectrode voltage clamp technique. In a bioactivity-guided isolation procedure the positive modulation of I(GABA) could be restricted to the plant terpenoid fractions, resulting in the isolation of 11 cycloartane glycosides, of which four significantly (p < 0.05) enhanced I(GABA). The most efficient effect was observed for 23-O-acetylshengmanol 3-O-β-d-xylopyranoside (4, 100 μM), enhancing I(GABA) by 1692 ± 201%, while actein (1), cimigenol 3-O-β-d-xylopyranoside (6), and 25-O-acetylcimigenol 3-O-α-l-arabinopyranoside (8) were significantly less active. In the absence of GABA, only 4 induced small (not exceeding 1% of I(GABA-max)) chloride inward currents through GABA(A) receptors. It is hypothesized that the established positive allosteric modulation of GABA(A) receptors may contribute to beneficial effects of black cohosh extracts in the treatment of climacteric symptoms. PMID:21082802

  16. An Electrostatic Funnel in the GABA-Binding Pathway

    PubMed Central

    Lightstone, Felice C.

    2016-01-01

    The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a ‘funnel’ that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site. PMID:27119953

  17. An Electrostatic Funnel in the GABA-Binding Pathway.

    PubMed

    Carpenter, Timothy S; Lightstone, Felice C

    2016-04-01

    The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a 'funnel' that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site. PMID:27119953

  18. Transjugular intrahepatic portosystemic shunt.

    PubMed

    Ochs, Andreas

    2005-01-01

    The transjugular intrahepatic portosystemic shunt (TIPS) is an interventional treatment resulting in decompression of the portal system by creation of a side-to-side portosystemic anastomosis. Since its introduction 16 years ago, more than 1,000 publications have appeared demonstrating broad acceptance and increasing clinical use. This review summarizes our present knowledge about technical aspects and complications, follow-up of patients and indications. A technical success rate near 100% and a low occurrence of complications clearly depend on the skills of the operator. The follow-up of the TIPS patient has to assess shunt patency, liver function, hepatic encephalopathy and the possible development of hepatocellular carcinoma. Shunt patency can best be monitored by duplex sonography and can avoid routine radiological revision. Short-term patency may be improved by anticoagulation, while such a treatment does not influence long-term patency. Stent grafts covered with expanded polytetrafluoroethylene show promising long-term patency comparable with that of surgical shunts. With respect to the indications of TIPS, much is known about treatment of variceal bleeding and refractory ascites. The thirteen randomized studies that are available to date show that survival is comparable in patients receiving TIPS or endoscopic treatment for acute or recurrent variceal bleeding. Another group comprises patients with refractory ascites and related complications, such as hepatorenal syndrome and hepatic hydrothorax. It has been demonstrated that TIPS improves these complications. Five randomized studies comparing TIPS with paracentesis and one study comparing TIPS with the peritoneo-venous shunt showed good response of ascites but controversial results on survival. In addition, TIPS has been successfully applied to patients with Budd-Chiari syndrome, portal vein thrombosis, before liver transplantation, and for the treatment of ectopic variceal bleeding. PMID:15920326

  19. GABA and GABA receptors in the gastrointestinal tract: from motility to inflammation.

    PubMed

    Auteri, Michelangelo; Zizzo, Maria Grazia; Serio, Rosa

    2015-03-01

    Although an extensive body of literature confirmed γ-aminobutyric acid (GABA) as mediator within the enteric nervous system (ENS) controlling gastrointestinal (GI) function, the true significance of GABAergic signalling in the gut is still a matter of debate. GABAergic cells in the bowel include neuronal and endocrine-like cells, suggesting GABA as modulator of both motor and secretory GI activity. GABA effects in the GI tract depend on the activation of ionotropic GABAA and GABAC receptors and metabotropic GABAB receptors, resulting in a potential noteworthy regulation of both the excitatory and inhibitory signalling in the ENS. However, the preservation of GABAergic signalling in the gut could not be limited to the maintenance of physiologic intestinal activity. Indeed, a series of interesting studies have suggested a potential key role of GABA in the promising field of neuroimmune interaction, being involved in the modulation of immune cell activity associated with different systemic and enteric inflammatory conditions. Given the urgency of novel therapeutic strategies against chronic immunity-related pathologies, i.e. multiple sclerosis and Inflammatory Bowel Disease, an in-depth comprehension of the enteric GABAergic system in health and disease could provide the basis for new clinical application of nerve-driven immunity. Hence, in the attempt to drive novel researches addressing both the physiological and pathological importance of the GABAergic signalling in the gut, we summarized current evidence on GABA and GABA receptor function in the different parts of the GI tract, with particular focus on the potential involvement in the modulation of GI motility and inflammation. PMID:25526825

  20. Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea).

    PubMed

    Yoon, Young-Eun; Kuppusamy, Saranya; Cho, Kye Man; Kim, Pil Joo; Kwack, Yong-Bum; Lee, Yong Bok

    2017-01-15

    The contents of soluble sugars (sucrose, fructose, glucose, maltose and raffinose), vitamin C and free amino acids (34 compounds, essential and non-essential) were quantified in open-field and greenhouse-grown spinaches in response to cold stress using liquid chromatography. In general, greenhouse cultivation produced nutritionally high value spinach in a shorter growing period, where the soluble sugars, vitamin C and total amino acids concentrations, including essential were in larger amounts compared to those grown in open-field scenarios. Further, low temperature exposure of spinach during a shorter growth period resulted in the production of spinach with high sucrose, ascorbate, proline, gamma-aminobutyric acid, valine and leucine content, and these constitute the most important energy/nutrient sources. In conclusion, cultivation of spinach in greenhouse at a low temperature (4-7°C) and exposure for a shorter period (7-21days) before harvest is recommended. This strategy will produce a high quality product that people can eat. PMID:27542466

  1. A GABA-activated chloride-conductance not blocked by picrotoxin on spiny lobster neuromuscular preparations.

    PubMed Central

    Albert, J.; Lingle, C. J.; Marder, E.; O'Neil, M. B.

    1986-01-01

    Conductance increases to gamma-aminobutyric acid (GABA) were recorded in the gm6b and opener muscle of the spiny lobsters, Panulirus interruptus and P. argus. GABA-evoked responses were insensitive to picrotoxin at concentrations as high as 5 X 10(-5) M. Some blockade by picrotoxin was observed at higher concentrations. In normal physiological saline, the reversal potential of the Panulirus GABA-induced response was near the resting potential. The reversal potential was unaffected by reductions in sodium and calcium. Reduction of chloride by 50% resulted in a greater than 10 mV shift in the reversal potential of the GABA-induced response. Muscimol was able to mimic the action of GABA while baclofen was without effect. Bicuculline was a weak blocker. Avermectin B1a irreversibly increased the chloride permeability of the gm6b membrane. This conductance increase was blocked by picrotoxin over a range of concentrations similar to those required for blockade of the GABA-induced response. GABA-induced responses of the gm6b muscle of Homarus americanus were blocked almost completely by picrotoxin 10(-6) M. Sensitivity to picrotoxin is not invariably associated with GABA-activated chloride-mediated conductance increases. It is suggested that alteration in the binding-site for picrotoxin on the GABA-activated chloride-ion channel does not change other functional characteristics of the GABA-induced response. PMID:3708210

  2. Extent of colocalization of serotonin and GABA in neurons of the ventral medulla oblongata in rat.

    PubMed

    Millhorn, D E; Hökfelt, T; Seroogy, K; Verhofstad, A A

    1988-09-27

    The colocalization of serotonin (5-hydroxytryptamine; 5-HT) and gamma-aminobutyric acid (GABA) in the ventral aspect of the rat medulla oblongata was studied using antibodies directed against 5-HT and GABA. Although 5-HT- and GABA-immunoreactive cell bodies were observed over the entire rostral-caudal extent of the ventral medulla, the colocalization of these two classical neurotransmitters in single cells was, for the most part, limited to a region that corresponds anatomically to nucleus raphe magnus/nucleus paragigantocellularis. Schematic drawings showing the distribution of 5-HT/GABA cell bodies in the ventral medulla are provided. PMID:3066433

  3. Ionic Mechanisms of Neuronal Excitation by Inhibitory GABA_A Receptors

    NASA Astrophysics Data System (ADS)

    Staley, Kevin J.; Soldo, Brandi L.; Proctor, William R.

    1995-08-01

    Gamma-aminobutyric acid A (GABA_A) receptors are the principal mediators of synaptic inhibition, and yet when intensely activated, dendritic GABA_A receptors excite rather than inhibit neurons. The membrane depolarization mediated by GABA_A receptors is a result of the differential, activity-dependent collapse of the opposing concentration gradients of chloride and bicarbonate, the anions that permeate the GABA_A ionophore. Because this depolarization diminishes the voltage-dependent block of the N-methyl-D-aspartate (NMDA) receptor by magnesium, the activity-dependent depolarization mediated by GABA is sufficient to account for frequency modulation of synaptic NMDA receptor activation. Anionic gradient shifts may represent a mechanism whereby the rate and coherence of synaptic activity determine whether dendritic GABA_A receptor activation is excitatory or inhibitory.

  4. Aldehyde Dehydrogenase 1a1 Mediates a GABA Synthesis Pathway in Midbrain Dopaminergic Neurons

    PubMed Central

    Kim, Jae-Ick; Ganesan, Subhashree; Luo, Sarah X.; Wu, Yu-Wei; Park, Esther; Huang, Eric J.; Chen, Lu; Ding, Jun B.

    2016-01-01

    Midbrain dopamine neurons are an essential component of the basal ganglia circuitry, playing key roles in the control of fine movement and reward. Recently, it has been demonstrated that γ-aminobutyric acid (GABA), the chief inhibitory neurotransmitter, is co-released by dopamine neurons. Here we show that GABA corelease in dopamine neurons does not utilize the conventional GABA synthesizing enzymes, glutamate decarboxylases GAD65 and GAD67. Our experiments reveal an evolutionarily conserved GABA synthesis pathway mediated by aldehyde dehydrogenase 1a1 (ALDH1a1). Moreover, GABA co-release is modulated by ethanol at binge drinking blood alcohol concentrations and diminished ALDH1a1 leads to enhanced alcohol consumption and preference. These findings provide insights into the functional role of GABA co-release in midbrain dopamine neurons, which may be essential for reward-based behavior and addiction. PMID:26430123

  5. A Role for GAT-1 in Presynaptic GABA Homeostasis?

    PubMed Central

    Conti, Fiorenzo; Melone, Marcello; Fattorini, Giorgia; Bragina, Luca; Ciappelloni, Silvia

    2011-01-01

    In monoamine-releasing terminals, neurotransmitter transporters – in addition to terminating synaptic transmission by clearing released transmitters from the extracellular space – are the primary mechanism for replenishing transmitter stores and thus regulate presynaptic homeostasis. Here, we analyze whether GAT-1, the main plasma membrane GABA transporter, plays a similar role in GABAergic terminals. Re-examination of existing literature and recent data gathered in our laboratory show that GABA homeostasis in GABAergic terminals is dominated by the activity of the GABA synthesizing enzyme and that GAT-1-mediated GABA transport contributes to cytosolic GABA levels. However, analysis of GAT-1 KO, besides demonstrating the effects of reduced clearance, reveals the existence of changes compatible with an impaired presynaptic function, as miniature IPSCs frequency is reduced by one-third and glutamic acid decarboxylases and phosphate-activated glutaminase levels are significantly up-regulated. Although the changes observed are less robust than those reported in mice with impaired dopamine, noradrenaline, and serotonin plasma membrane transporters, they suggest that in GABAergic terminals GAT-1 impacts on presynaptic GABA homeostasis, and may contribute to the activity-dependent regulation of inhibitory efficacy. PMID:21503156

  6. In vivo measurements of glutamate, GABA, and NAAG in schizophrenia.

    PubMed

    Rowland, Laura M; Kontson, Kimberly; West, Jeffrey; Edden, Richard A; Zhu, He; Wijtenburg, S Andrea; Holcomb, Henry H; Barker, Peter B

    2013-09-01

    The major excitatory and inhibitory neurotransmitters, glutamate (Glu) and gamma-aminobutyric acid (GABA), respectively, are implicated in the pathophysiology of schizophrenia. N-acetyl-aspartyl-glutamate (NAAG), a neuropeptide that modulates the Glu system, may also be altered in schizophrenia. This study investigated GABA, Glu + glutamine (Glx), and NAAG levels in younger and older subjects with schizophrenia. Forty-one subjects, 21 with chronic schizophrenia and 20 healthy controls, participated in this study. Proton magnetic resonance spectroscopy ((1)H-MRS) was used to measure GABA, Glx, and NAAG levels in the anterior cingulate (AC) and centrum semiovale (CSO) regions. NAAG in the CSO was higher in younger schizophrenia subjects compared with younger control subjects. The opposite pattern was observed in the older groups. Glx was reduced in the schizophrenia group irrespective of age group and brain region. There was a trend for reduced AC GABA in older schizophrenia subjects compared with older control subjects. Poor attention performance was correlated to lower AC GABA levels in both groups. Higher levels of CSO NAAG were associated with greater negative symptom severity in schizophrenia. These results provide support for altered glutamatergic and GABAergic function associated with illness course and cognitive and negative symptoms in schizophrenia. The study also highlights the importance of studies that combine MRS measurements of NAAG, GABA, and Glu for a more comprehensive neurochemical characterization of schizophrenia. PMID:23081992

  7. Parkinson's Disease and Neurodegeneration: GABA-Collapse Hypothesis

    PubMed Central

    Błaszczyk, Janusz W.

    2016-01-01

    Neurodegenerative diseases constitute a heterogeneous group of age-related disorders that are characterized by a slow but irreversible deterioration of brain functions. Evidence accumulated over more than two decades has implicated calcium-related homeostatic mechanisms, giving rise to the Ca2+ hypothesis of brain aging and, ultimately, cell death. Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter within the central (CNS), peripheral and enteric nervous systems. It appears to be involved in a wide variety of physiological functions within and outside the nervous system, that are maintained through a complex interaction between GABA and calcium-dependent neurotransmission and cellular metabolic functions. Within CNS the Ca2+/GABA mechanism stabilizes neuronal activity both at cellular and systemic levels. Decline in the Ca2+/GABA control initiates several cascading processes leading to both weakened protective barriers (in particular the blood-brain barrier) and accumulations of intracellular deposits of calcium and Lewy bodies. Linking such a vital mechanism of synaptic transmission with metabolism (both at cellular and tissue level) by means of a common reciprocal Ca2+/GABA inhibition results in a fragile balance, which is prone to destabilization and auto-destruction. The GABA decline etiology proposed here appears to apply to all human neurodegenerative processes initiated by abnormal intracellular calcium levels. Therefore, the original description of Parkinson's disease (PD) as due to the selective damage of dopaminergic neurons in the mesencephalon should be updated into the concept of a severe multisystemic neurodegenerative disorder of the nervous system, whose clinical symptoms reflect the localization and progression of the most advanced GABA pathology. A future and more complete therapeutic approach to PD should be aimed first at slowing (or stopping) the progression of Ca2+/GABA functional decline. PMID:27375426

  8. Parkinson's Disease and Neurodegeneration: GABA-Collapse Hypothesis.

    PubMed

    Błaszczyk, Janusz W

    2016-01-01

    Neurodegenerative diseases constitute a heterogeneous group of age-related disorders that are characterized by a slow but irreversible deterioration of brain functions. Evidence accumulated over more than two decades has implicated calcium-related homeostatic mechanisms, giving rise to the Ca(2+) hypothesis of brain aging and, ultimately, cell death. Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter within the central (CNS), peripheral and enteric nervous systems. It appears to be involved in a wide variety of physiological functions within and outside the nervous system, that are maintained through a complex interaction between GABA and calcium-dependent neurotransmission and cellular metabolic functions. Within CNS the Ca(2+)/GABA mechanism stabilizes neuronal activity both at cellular and systemic levels. Decline in the Ca(2+)/GABA control initiates several cascading processes leading to both weakened protective barriers (in particular the blood-brain barrier) and accumulations of intracellular deposits of calcium and Lewy bodies. Linking such a vital mechanism of synaptic transmission with metabolism (both at cellular and tissue level) by means of a common reciprocal Ca(2+)/GABA inhibition results in a fragile balance, which is prone to destabilization and auto-destruction. The GABA decline etiology proposed here appears to apply to all human neurodegenerative processes initiated by abnormal intracellular calcium levels. Therefore, the original description of Parkinson's disease (PD) as due to the selective damage of dopaminergic neurons in the mesencephalon should be updated into the concept of a severe multisystemic neurodegenerative disorder of the nervous system, whose clinical symptoms reflect the localization and progression of the most advanced GABA pathology. A future and more complete therapeutic approach to PD should be aimed first at slowing (or stopping) the progression of Ca(2+)/GABA functional decline. PMID:27375426

  9. GABA shapes the dynamics of bistable perception.

    PubMed

    van Loon, Anouk M; Knapen, Tomas; Scholte, H Steven; St John-Saaltink, Elexa; Donner, Tobias H; Lamme, Victor A F

    2013-05-01

    Sometimes, perception fluctuates spontaneously between two distinct interpretations of a constant sensory input. These bistable perceptual phenomena provide a unique window into the neural mechanisms that create the contents of conscious perception. Models of bistable perception posit that mutual inhibition between stimulus-selective neural populations in visual cortex plays a key role in these spontaneous perceptual fluctuations. However, a direct link between neural inhibition and bistable perception has not yet been established experimentally. Here, we link perceptual dynamics in three distinct bistable visual illusions (binocular rivalry, motion-induced blindness, and structure from motion) to measurements of gamma-aminobutyric acid (GABA) concentrations in human visual cortex (as measured with magnetic resonance spectroscopy) and to pharmacological stimulation of the GABAA receptor by means of lorazepam. As predicted by a model of neural interactions underlying bistability, both higher GABA concentrations in visual cortex and lorazepam administration induced slower perceptual dynamics, as reflected in a reduced number of perceptual switches and a lengthening of percept durations. Thus, we show that GABA, the main inhibitory neurotransmitter, shapes the dynamics of bistable perception. These results pave the way for future studies into the competitive neural interactions across the visual cortical hierarchy that elicit conscious perception. PMID:23602476

  10. Downregulation of GABA[Subscript A] Receptor Protein Subunits a6, ß2, d, e, ?2, ?, and ?2 in Superior Frontal Cortex of Subjects with Autism

    ERIC Educational Resources Information Center

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rustan, Oyvind G.; Rooney, Robert J.; Thuras, Paul D.

    2014-01-01

    We measured protein and mRNA levels for nine gamma-aminobutyric acid A (GABA[subscript A]) receptor subunits in three brain regions (cerebellum, superior frontal cortex, and parietal cortex) in subjects with autism versus matched controls. We observed changes in mRNA for a number of GABA[subscript A] and GABA[subscript B] subunits and overall…

  11. Endogenous gamma-aminobutyric acid (GABA)(A) receptor active neurosteroids and the sedative/hypnotic action of gamma-hydroxybutyric acid (GHB): a study in GHB-S (sensitive) and GHB-R (resistant) rat lines.

    PubMed

    Barbaccia, Maria Luisa; Carai, Mauro A M; Colombo, Giancarlo; Lobina, Carla; Purdy, Robert H; Gessa, Gian Luigi

    2005-07-01

    In the rat brain, gamma-hydroxybutyric-acid (GHB) increases the concentrations of 3alpha-hydroxy,5alpha-pregnan-20-one (allopregnanolone, 3alpha,5alpha-THP) and 3alpha,21-dihydroxy,5alpha-pregnan-20-one (allotetrahydrodeoxycorticosterone/3alpha,5alphaTHDOC), two neurosteroids acting as positive allosteric modulators of gamma-aminobutyric acid (GABA)(A) receptors. This study was aimed at assessing whether neurosteroids play a role in GHB-induced loss of righting reflex (LORR). Basal and GHB-stimulated brain concentrations of endogenous 3alpha,5alpha-THP and 3alpha,5alpha-THDOC were analyzed in two rat lines, GHB-sensitive (GHB-S) and GHB-resistant (GHB-R), selectively bred for opposite sensitivity to GHB-induced sedation/hypnosis. Basal neurosteroid concentrations were similar in brain cortex of the two rat lines. However, in male GHB-S rats, administration of GHB (1000 mg/kg, i.p., 30 min) increased brain cortical concentrations of 3alpha,5alpha-THP and 3alpha,5alpha-THDOC 7- and 2.5-fold, respectively, whilst male GHB-R animals displayed only a 4- and 2-fold increase, respectively. In GHB-S rats this increase lasted up to 90 min and declined 180 min following GHB administration, a time course that matches LORR onset and duration. In contrast, in GHB-R rats, which failed to show GHB-induced LORR, brain cortical 3alpha,5alpha-THP and 3alpha,5alpha-THDOC had returned to control values within 90 min. At onset of LORR, a similar increase in brain cortical levels of 3alpha,5alpha-THP and 3alpha,5alpha-THDOC (2-3-fold) was observed in GHB-S female rats and in the few female GHB-R rats that lost the righting reflex after GHB administration, but not in female GHB-R rats failing to show LORR. Sub-hypnotic doses (7.5 and 12.5 mg/kg, i.p.) of pregnanolone, administered 10 min before GHB, dose-dependently facilitated the expression of GHB-induced LORR in GHB-R male rats. These results suggest that the GHB-induced increases of brain 3alpha,5alpha-THP and 3alpha,5alpha

  12. Neurotransmitters as food supplements: the effects of GABA on brain and behavior

    PubMed Central

    Boonstra, Evert; de Kleijn, Roy; Colzato, Lorenza S.; Alkemade, Anneke; Forstmann, Birte U.; Nieuwenhuis, Sander

    2015-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the human cortex. The food supplement version of GABA is widely available online. Although many consumers claim that they experience benefits from the use of these products, it is unclear whether these supplements confer benefits beyond a placebo effect. Currently, the mechanism of action behind these products is unknown. It has long been thought that GABA is unable to cross the blood–brain barrier (BBB), but the studies that have assessed this issue are often contradictory and range widely in their employed methods. Accordingly, future research needs to establish the effects of oral GABA administration on GABA levels in the human brain, for example using magnetic resonance spectroscopy. There is some evidence in favor of a calming effect of GABA food supplements, but most of this evidence was reported by researchers with a potential conflict of interest. We suggest that any veridical effects of GABA food supplements on brain and cognition might be exerted through BBB passage or, more indirectly, via an effect on the enteric nervous system. We conclude that the mechanism of action of GABA food supplements is far from clear, and that further work is needed to establish the behavioral effects of GABA. PMID:26500584

  13. GABA-mediated regulation of the activity-dependent olfactory bulb dopaminergic phenotype

    PubMed Central

    Akiba, Yosuke; Sasaki, Hayato; Huerta, Patricio T.; Estevez, Alvaro G.; Baker, Harriet; Cave, John W.

    2009-01-01

    Gamma-amino-butyric acid (GABA) regulates the proliferation and migration of olfactory bulb (OB) interneuron progenitors derived from the subventricular zone (SVZ), but the role of GABA in the differentiation of these progenitors has been largely unexplored. This study examined the role of GABA in the differentiation of OB dopaminergic interneurons using neonatal forebrain organotypic slice cultures prepared from transgenic mice expressing GFP under the control of the tyrosine hydroxylase (Th) gene promoter (ThGFP). KCl-mediated depolarization of the slices induced ThGFP expression. The addition of GABA to the depolarized slices further increased GFP fluorescence by inducing ThGFP expression in an additional set of periglomerular cells. These findings showed that GABA promoted differentiation of SVZ-derived OB dopaminergic interneurons and suggested that GABA indirectly regulated Th expression and OB dopaminergic neuron differentiation through an acceleration of the maturation rate for the dopaminergic progenitors. Additional studies revealed that the effect of GABA on ThGFP expression required activation of L- and P/Q-type Ca+2 channels as well as GABAA and GABAB receptors. These voltage-gated Ca+2 channels and GABA receptors have previously been shown to be required for the co-expressed GABAergic phenotype in the OB interneurons. Together, these findings suggest that Th expression and the differentiation of OB dopaminergic interneurons are coupled to the co-expressed GABAergic phenotype, and demonstrate a novel role for GABA in neurogenesis. PMID:19301430

  14. Neurotransmitters as food supplements: the effects of GABA on brain and behavior.

    PubMed

    Boonstra, Evert; de Kleijn, Roy; Colzato, Lorenza S; Alkemade, Anneke; Forstmann, Birte U; Nieuwenhuis, Sander

    2015-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the human cortex. The food supplement version of GABA is widely available online. Although many consumers claim that they experience benefits from the use of these products, it is unclear whether these supplements confer benefits beyond a placebo effect. Currently, the mechanism of action behind these products is unknown. It has long been thought that GABA is unable to cross the blood-brain barrier (BBB), but the studies that have assessed this issue are often contradictory and range widely in their employed methods. Accordingly, future research needs to establish the effects of oral GABA administration on GABA levels in the human brain, for example using magnetic resonance spectroscopy. There is some evidence in favor of a calming effect of GABA food supplements, but most of this evidence was reported by researchers with a potential conflict of interest. We suggest that any veridical effects of GABA food supplements on brain and cognition might be exerted through BBB passage or, more indirectly, via an effect on the enteric nervous system. We conclude that the mechanism of action of GABA food supplements is far from clear, and that further work is needed to establish the behavioral effects of GABA. PMID:26500584

  15. Comparative Mapping of GABA-Immunoreactive Neurons in the Buccal Ganglia of Nudipleura Molluscs.

    PubMed

    Gunaratne, Charuni A; Katz, Paul S

    2016-04-15

    Phylogenetic comparisons of neurotransmitter distribution are important for understanding the ground plan organization of nervous systems. This study describes the γ-aminobutyric acid (GABA)-immunoreactive (GABA-ir) neurons in the buccal ganglia of six sea slug species (Mollusca, Gastropoda, Euthyneura, Nudipleura). In the nudibranch species, Hermissenda crassicornis, Tritonia diomedea, Tochuina tetraquetra, and Dendronotus iris, the number of GABA-ir neurons was highly consistent. Another nudibranch, Melibe leonina, however, contained approximately half the number of GABA-ir neurons. This may relate to its loss of a radula and its unique feeding behavior. The GABA immunoreactivity in a sister group to the nudibranchs, Pleurobranchaea californica, differed drastically from that of the nudibranchs. Not only did it have significantly more GABA-ir neurons but it also had a unique GABA distribution pattern. Furthermore, unlike the nudibranchs, the Pleurobranchaea GABA distribution was also different from that of other, more distantly related, euopisthobranch and panpulmonate snails and slugs. This suggests that the Pleurobranchaea GABA distribution may be a derived feature, unique to this lineage. The majority of GABA-ir axons and neuropil in the Nudipleura were restricted to the buccal ganglia, commissures, and connectives. However, in Tritonia and Pleurobranchaea, we detected a few GABA-ir fibers in buccal nerves that innervate feeding muscles. Although the specific functions of the GABA-ir neurons in the species in this study are not known, the innervation pattern suggests these neurons may play an integrative or regulatory role in bilaterally coordinated behaviors in the Nudipleura. PMID:26355705

  16. Stimulation of TM3 Leydig cell proliferation via GABAA receptors: A new role for testicular GABA

    PubMed Central

    Geigerseder, Christof; Doepner, Richard FG; Thalhammer, Andrea; Krieger, Annette; Mayerhofer, Artur

    2004-01-01

    The neurotransmitter gamma-aminobutyric acid (GABA) and subtypes of GABA receptors were recently identified in adult testes. Since adult Leydig cells possess both the GABA biosynthetic enzyme glutamate decarboxylase (GAD), as well as GABAA and GABAB receptors, it is possible that GABA may act as auto-/paracrine molecule to regulate Leydig cell function. The present study was aimed to examine effects of GABA, which may include trophic action. This assumption is based on reports pinpointing GABA as regulator of proliferation and differentiation of developing neurons via GABAA receptors. Assuming such a role for the developing testis, we studied whether GABA synthesis and GABA receptors are already present in the postnatal testis, where fetal Leydig cells and, to a much greater extend, cells of the adult Leydig cell lineage proliferate. Immunohistochemistry, RT-PCR, Western blotting and a radioactive enzymatic GAD assay evidenced that fetal Leydig cells of five-six days old rats possess active GAD protein, and that both fetal Leydig cells and cells of the adult Leydig cell lineage possess GABAA receptor subunits. TM3 cells, a proliferating mouse Leydig cell line, which we showed to possess GABAA receptor subunits by RT-PCR, served to study effects of GABA on proliferation. Using a colorimetric proliferation assay and Western Blotting for proliferating cell nuclear antigen (PCNA) we demonstrated that GABA or the GABAA agonist isoguvacine significantly increased TM3 cell number and PCNA content in TM3 cells. These effects were blocked by the GABAA antagonist bicuculline, implying a role for GABAA receptors. In conclusion, GABA increases proliferation of TM3 Leydig cells via GABAA receptor activation and proliferating Leydig cells in the postnatal rodent testis bear a GABAergic system. Thus testicular GABA may play an as yet unrecognized role in the development of Leydig cells during the differentiation of the testicular interstitial compartment. PMID:15040802

  17. GABA transport and calcium dynamics in horizontal cells from the skate retina.

    PubMed Central

    Haugh-Scheidt, L; Malchow, R P; Ripps, H

    1995-01-01

    1. Changes in intracellular calcium concentration [Ca2+]i in response to extracellularly applied gamma-aminobutyric acid (GABA) were studied in isolated horizontal cells from the all-rod skate retina. 2. Calcium measurements were made using fura-2 AM, both with and without whole-cell voltage clamp. Superfusion with GABA, in the absence of voltage clamp, resulted in an increase in [Ca2+]i; the threshold for detection was approximately 50 microM GABA, and a maximal response was elicited by 500 microM GABA. 3. The rise in [Ca2+]i was not mimicked by baclofen nor was it blocked by phaclofen, picrotoxin or bicuculline. However, the GABA-induced [Ca2+]i increase was completely abolished when extracellular sodium was replaced with N-methyl-D-glucamine. 4. With the horizontal cell voltage clamped at -70 mV, GABA evoked a large inward current, but there was no concomitant change in [Ca2+]i. Nifedipine, which blocks L-type voltage-gated Ca2+ channels, suppressed the GABA-induced increase in [Ca2+]i. These findings suggest that the calcium response was initiated by GABA activation of sodium dependent electrogenic transport, and that the resultant depolarization led to the opening of voltage-gated Ca2+ channels, and a rise in [Ca2+]i. 5. The GABA-induced influx of calcium appears not to have been the sole source of the calcium increase. The GABA-induced rise in [Ca2+]i was reduced by dantrolene, indicating that internal Ca2+ stores contributed to the GABA-mediated Ca2+ response. 6. These observations demonstrate that activation of the GABA transporter induces changes in [Ca2+]i which may have important implications for the functional properties of horizontal cells. PMID:8576848

  18. Amiloride and GMQ Allosteric Modulation of the GABA-A ρ1 Receptor: Influences of the Intersubunit Site

    PubMed Central

    Snell, Heather D.

    2015-01-01

    Amiloride, a diuretic used in the treatment of hypertension and congestive heart failure, and 2-guanidine-4-methylquinazoline (GMQ) are guanidine compounds that modulate acid-sensing ion channels. Both compounds have demonstrated affinity for a variety of membrane proteins, including members of the Cys-loop family of ligand-gated ion channels, such as the heteromeric GABA-A αβγ receptors. The actions of these guanidine compounds on the homomeric GABA-A ρ1 receptor remains unclear, especially in light of how many GABA-A αβγ receptor modulators have different effects in the GABA-A ρ1 receptors. We sought to characterize the influence of amiloride and GMQ on the human GABA-A ρ1 receptors using whole-cell patch-clamp electrophysiology. The diuretic amiloride potentiated the human GABA-A ρ1 GABA-mediated current, whereas GMQ antagonized the receptor. Furthermore, a GABA-A second transmembrane domain site, the intersubunit site, responsible for allosteric modulation in the heteromeric GABA-A receptors mediated amiloride’s positive allosteric actions. In contrast, the mutation did not remove GMQ antagonism but only changed the guanidine compound’s potency within the human GABA-A ρ1 receptor. Through modeling and introduction of point mutations, we propose that the GABA-A ρ1 intersubunit site plays a role in mediating the allosteric effects of amiloride and GMQ. PMID:25829529

  19. Potentiation of the ionotropic GABA receptor response by whiskey fragrance.

    PubMed

    Hossain, Sheikh Julfikar; Aoshima, Hitoshi; Koda, Hirofumi; Kiso, Yoshinobu

    2002-11-01

    It is well-known that the target of most mood-defining compounds is an ionotropic gamma-aminobutyric acid receptor (GABA(A) receptor). The potentiation of the response of these inhibitory neurotransmitter receptors induces anxiolytic, sedative, and anesthetic activity in the human brain. To study the effects of whiskey fragrance on the GABA(A) receptor-mediated response, GABA(A) receptors were expressed in Xenopus oocyte by injecting rat whole brain mRNA or cRNA prepared from the cloned cDNA for the alpha(1) and beta(1) subunits of the bovine receptors. Most whiskey components such as phenol, ethoxy, and lactone derivatives potentiated the electrical responses of GABA(A) receptors, especially ethyl phenylpropanoate (EPP), which strongly potentiated the response. When this compound was applied to mice through respiration, the convulsions induced by pentetrazole were delayed, suggesting that EPP was absorbed by the brain, where it could potentiate the GABA(A) receptor responses. The extract of other alcoholic drinks such as wine, sake, brandy, and shochu also potentiated the responses to varying degrees. Although these fragrant components are present in alcoholic drinks at low concentrations (extremely small quantities compared with ethanol), they may also modulate the mood or consciousness of the human through the potentiation of the GABA(A) receptor response after absorption into the brain, because these hydrophobic fragrant compounds are easily absorbed into the brain through the blood-brain barrier and are several thousands times as potent as ethanol in the potentiation of the GABA(A) receptor-mediated response. PMID:12405783

  20. Attenuated inhibition by levofloxacin, l-isomer of ofloxacin, on GABA response in the dissociated rat hippocampal neurons.

    PubMed

    Imanishi, T; Akahane, K; Akaike, N

    1995-06-30

    The effects of ofloxacin (OFLX) and its isomers, levofloxacin (LVFX) and DR-3354, on the gamma-aminobutyric acid (GABA)-induced Cl- current in acutely dissociated rat hippocampal CA1 neurons were investigated using nystatin perforated patch recording configuration under voltage-clamp conditions. At 10(-5) M these 3 compounds themselves did not affect the GABA response. Biphenylacetic acid (BPA) at 10(-5) M also had no effect on the GABA response, but BPA greatly suppressed the GABA response in combination with these 3 compounds without affecting the reversal potential of GABA response. The inhibitory effects of OFLX and DR-3354 on the GABA response were stronger than that of LVFX. LVFX inhibited the response in a competitive and voltage-independent manner. The results suggest that LVFX has lower CNS adverse effects, such as convulsions, compared to OFLX. PMID:7478164

  1. Role of proline and GABA in sexual reproduction of angiosperms.

    PubMed

    Biancucci, Marco; Mattioli, Roberto; Forlani, Giuseppe; Funck, Dietmar; Costantino, Paolo; Trovato, Maurizio

    2015-01-01

    Two glutamate derivatives, proline and γ-aminobutyric acid (GABA), appear to play pivotal roles in different aspects of sexual reproduction in angiosperms, although their precise function in plant reproduction and the molecular basis of their action are not yet fully understood. Proline and GABA have long been regarded as pivotal amino acids in pollen vitality and fertility. Proline may constitute up to 70% of the free amino acid pool in pollen grains and it has been recently shown that Arabidopsis mutants affected in the first and rate-limiting step in proline synthesis produce aberrant and infertile pollen grains, indicating that proline synthesis is required for pollen development and fertility. Concerning GABA, a large body of evidence points to this glutamate derivative as a key determinant of post-pollination fertilization. Intriguingly, proline has also been associated with pollination, another aspect of sexual reproduction, since honeybees were reported to show a strong preference for proline-enriched nectars. In this review, we survey current knowledge on the roles of proline and GABA in plant fertility, and discuss future perspectives potentially capable to improve our understanding on the functions of these amino acids in pollen development, pollination, and pollen tube guidance. PMID:26388884

  2. Role of proline and GABA in sexual reproduction of angiosperms

    PubMed Central

    Biancucci, Marco; Mattioli, Roberto; Forlani, Giuseppe; Funck, Dietmar; Costantino, Paolo; Trovato, Maurizio

    2015-01-01

    Two glutamate derivatives, proline and γ-aminobutyric acid (GABA), appear to play pivotal roles in different aspects of sexual reproduction in angiosperms, although their precise function in plant reproduction and the molecular basis of their action are not yet fully understood. Proline and GABA have long been regarded as pivotal amino acids in pollen vitality and fertility. Proline may constitute up to 70% of the free amino acid pool in pollen grains and it has been recently shown that Arabidopsis mutants affected in the first and rate-limiting step in proline synthesis produce aberrant and infertile pollen grains, indicating that proline synthesis is required for pollen development and fertility. Concerning GABA, a large body of evidence points to this glutamate derivative as a key determinant of post-pollination fertilization. Intriguingly, proline has also been associated with pollination, another aspect of sexual reproduction, since honeybees were reported to show a strong preference for proline-enriched nectars. In this review, we survey current knowledge on the roles of proline and GABA in plant fertility, and discuss future perspectives potentially capable to improve our understanding on the functions of these amino acids in pollen development, pollination, and pollen tube guidance. PMID:26388884

  3. Actions of insecticides on the insect GABA receptor complex

    SciTech Connect

    Bermudez, I.; Hawkins, C.A.; Taylor, A.M.; Beadle, D.J. )

    1991-01-01

    The actions of insecticides on the insect gamma-aminobutyric acid (GABA) receptor were investigated using (35S)t-butylbicyclophosphorothionate (( 35S)TBPS) binding and voltage-clamp techniques. Specific binding of (35S)TBPS to a membrane homogenate derived from the brain of Locusta migratoria locusts is characterised by a Kd value of 79.3 {plus minus} 2.9 nM and a Bmax value of 1770 {plus minus} 40 fmol/mg protein. (35S)TBPS binding is inhibited by mM concentrations of barbiturates and benzodiazepines. In contrast dieldrin, ivermectin, lindane, picrotoxin and TBPS are inhibitors of (35S)TBPS binding at the nanomolar range. Bicuculline, baclofen and pyrethroid insecticides have no effect on (35S)TBPS binding. These results are similar to those obtained in electrophysiological studies of the current elicited by GABA in both Locusta and Periplaneta americana central neurones. Noise analysis of the effects of lindane, TBPS, dieldrin and picrotoxin on the cockroach GABA responses reveals that these compounds decrease the variance of the GABA-induced current but have no effect on its mean open time. All these compounds, with the exception of dieldrin, significantly decrease the conductance of GABA-evoked single current.

  4. GABA accumulation causes cell elongation defects and a decrease in expression of genes encoding secreted and cell wall-related proteins in Arabidopsis thaliana.

    PubMed

    Renault, Hugues; El Amrani, Abdelhak; Palanivelu, Ravishankar; Updegraff, Emily P; Yu, Agnès; Renou, Jean-Pierre; Preuss, Daphne; Bouchereau, Alain; Deleu, Carole

    2011-05-01

    GABA (γ-aminobutyric acid), a non-protein amino acid, is a signaling factor in many organisms. In plants, GABA is known to accumulate under a variety of stresses. However, the consequence of GABA accumulation, especially in vegetative tissues, remains poorly understood. Moreover, gene expression changes as a consequence of GABA accumulation in plants are largely unknown. The pop2 mutant, which is defective in GABA catabolism and accumulates GABA, is a good model to examine the effects of GABA accumulation on plant development. Here, we show that the pop2 mutants have pollen tube elongation defects in the transmitting tract of pistils. Additionally, we observed growth inhibition of primary root and dark-grown hypocotyl, at least in part due to cell elongation defects, upon exposure to exogenous GABA. Microarray analysis of pop2-1 seedlings grown in GABA-supplemented medium revealed that 60% of genes whose expression decreased encode secreted proteins. Besides, functional classification of genes with decreased expression in the pop2-1 mutant showed that cell wall-related genes were significantly enriched in the microarray data set, consistent with the cell elongation defects observed in pop2 mutants. Our study identifies cell elongation defects caused by GABA accumulation in both reproductive and vegetative tissues. Additionally, our results show that genes that encode secreted and cell wall-related proteins may mediate some of the effects of GABA accumulation. The potential function of GABA as a growth control factor under stressful conditions is discussed. PMID:21471118

  5. Insect Herbivory-Elicited GABA Accumulation in Plants is a Wound-Induced, Direct, Systemic, and Jasmonate-Independent Defense Response

    PubMed Central

    Scholz, Sandra S.; Reichelt, Michael; Mekonnen, Dereje W.; Ludewig, Frank; Mithöfer, Axel

    2015-01-01

    The non-proteinogenic amino acid γ-aminobutyric acid (GABA) is present in all organisms analyzed so far. In invertebrates GABA acts as a neurotransmitter; in plants different functions are under discussion. Among others, its involvement in abiotic stress reactions and as a defensive compound against feeding insects is suggested. GABA is synthesized from glutamate by glutamate decarboxylases and degraded by GABA-transaminases. Here, in Arabidopsis thaliana, gad1/2 double mutants showing reduced GABA concentrations as well as GABA-enriched triple mutants (gad1/2 x pop2-5) were generated and employed for a systematic study of GABA induction, accumulation and related effects in Arabidopsis leaves upon herbivory. The results demonstrate that GABA accumulation is stimulated by insect feeding-like wounding by a robotic caterpillar, MecWorm, as well as by real insect (Spodoptera littoralis) herbivory. Higher GABA levels in both plant tissue and artificial dietary supplements in turn affect the performance of feeding larvae. GABA enrichment occurs not only in the challenged but also in adjacent leaf. This induced response is neither dependent on herbivore defense-related phytohormones, jasmonates, nor is jasmonate induction dependent on the presence of GABA. Thus, in Arabidopsis the rapid accumulation of GABA very likely represents a general, direct and systemic defense reaction against insect herbivores. PMID:26734035

  6. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters

    PubMed Central

    Ramesh, Sunita A.; Tyerman, Stephen D.; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A.; Ryan, Peter R.; Gillham, Matthew

    2015-01-01

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms. PMID:26219411

  7. 30 CFR 56.6401 - Shunting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Shunting. 56.6401 Section 56.6401 Mineral....6401 Shunting. Except during testing— (a) Electric detonators shall be kept shunted until connected to the blasting line or wired into a blasting round; (b) Wired rounds shall be kept shunted...

  8. Outcome analysis of shunt surgery in hydrocephalus

    PubMed Central

    Ahmed, Ashraf; Sandlas, Gursev; Kothari, Paras; Sarda, Dinesh; Gupta, Abhaya; Karkera, Parag; Joshi, Prashant

    2009-01-01

    Aim: To study the clinical outcome of shunt surgeries in children suffering from hydrocephalus. Methods: A prospective study of 50 children with hydrocephalus who underwent a ventriculo-peritoneal shunt insertion over a period of two years. These patients were then followed up for shunt related complications, shunt revisions and outcome. Results: Twenty six of the 50 patients (52%) suffered from complications. The most common complications were shunt blockage (n=7) and shunt infection (n=6). These complications necessitated repeated shunt revisions. Conclusions: Infective complications of hydrocephalus are more likely to leave behind an adverse neurological outcome in the form of delayed milestones and mental retardation. PMID:20376249

  9. To shunt or not to shunt: hydrocephalus and dysraphism.

    PubMed

    Rekate, H L

    1985-01-01

    Objective criteria are available for decision making in children with ventriculomegaly and spina bifida cystica. Figure 29.7 is the evaluation algorithm used in the Hydrocephalus/Myelodysplasia Clinic at Rainbow Babies and Children's Hospital. In children without serious neurosurgical complications such as the Chiari crisis or problems with wound healing, we rely on three reasonably objective measurements for decision making. Head circumference: Measured daily while in hospital and at each visit. If the pattern of head growth crosses multiple percentile lines indicating that the child will be severely megalencephalic, a shunt will be performed. Ultrasonography: Ultrasound determinations are made in the first few days of life, prior to discharge, at 6 weeks of age, and each 6 weeks of age until 6 months. Some measurements of ventricular size (usually CT scan because of a small anterior fontanelle) should be made at age 1 year. Denver Developmental Testing (DDST): These are performed at age 6 weeks and each 6 weeks thereafter. If the child shows significant ventriculomegaly, a shunt is performed. When the results are questionable the decision is delayed and the test repeated in 6 weeks. Whether a shunt is or is not placed in an infant with ventriculomegaly and myelodysplasia, follow-up must remain compulsive. Following shunting, not only should the head circumference stabilize, but the cortical mantle should increase. Often children shunted in this situation fail to show signs of increased intracranial pressure with shunt malfunction and must be followed with serial head circumference measurements as well as ultrasounds and CT scans. If the decision is made not to shunt the child the work of Hall et al. (10) would suggest the possibility that later in life shunts may be needed to prevent scoliosis secondary to hydromyelia. More information is needed as the aggressively treated population become adults. PMID:2415285

  10. Percutaneous Placement and Management of Peritoneovenous Shunts

    PubMed Central

    Martin, Louis G.

    2012-01-01

    Peritoneovenous shunts are used in the treatment of recurrent ascites or recurrent pleural effusions. Generally speaking, the shunts allow passage of ascites or pleural effusions (by either passive or active means) back into the central venous system. The most recent development in peritoneovenous shunts, known as the Denver Shunt, is a modification of a shunt developed for the treatment of hydrocephalus. In recent years, the Denver shunt has been placed by interventional radiologists. It is used to treat both cirrhotic and malignant effusions in the peritoneal and pleural cavities. Reported complications of the shunt are shunt occlusion, infection, post-shunt coagulopathy, deep vein thrombosis, catheter breakage, and leaks. This article discusses the technical aspects related to the percutaneous placement and maintenance of the Denver Shunt. PMID:23729983

  11. Pharmacological modulation of brain levels of glutamate and GABA in rats exposed to total sleep deprivation

    PubMed Central

    Kamal, Sahar Mohamed

    2010-01-01

    Modulation of gamma-aminobutyric acid (GABA) and glutamate by selected antidepressants and anticonvulsants could play a beneficial role in total sleep deprivation (TSD) caused by depressed mood. In the present study, albino rats were exposed to TSD for five days. On the sixth day, the brains were removed, and GABA and glutamate levels were measured in the prefrontal cortex and thalamus to identify TSD-induced changes in untreated rats and in rats treated with carbamazepine 40 mg/kg intraperitoneally (IP), fluoxetine 20 mg/kg IP, or desipramine 10 mg/kg IP. Carbamazepine and fluoxetine significantly increased GABA and reduced glutamate levels in both brain areas. Desipramine administration did not affect GABA or glutamate concentrations in the tested brain areas; levels were comparable with those induced by TSD without treatment. These results suggest that administration of carbamazepine or fluoxetine could have a beneficial effect by increasing GABA levels during TSD.

  12. Segregation of Acetylcholine and GABA in the Rat Superior Cervical Ganglia: Functional Correlation.

    PubMed

    Elinos, Diana; Rodríguez, Raúl; Martínez, Luis Andres; Zetina, María Elena; Cifuentes, Fredy; Morales, Miguel Angel

    2016-01-01

    Sympathetic neurons have the capability to segregate their neurotransmitters (NTs) and co-transmitters to separate varicosities of single axons; furthermore, in culture, these neurons can even segregate classical transmitters. In vivo sympathetic neurons employ acetylcholine (ACh) and other classical NTs such as gamma aminobutyric acid (GABA). Herein, we explore whether these neurons in vivo segregate these classical NTs in the superior cervical ganglia of the rat. We determined the topographical distribution of GABAergic varicosities, somatic GABAA receptor, as well as the regional distribution of the segregation of ACh and GABA. We evaluated possible regional differences in efficacy of ganglionic synaptic transmission, in the sensitivity of GABAA receptor to GABA and to the competitive antagonist picrotoxin (PTX). We found that sympathetic preganglionic neurons in vivo do segregate ACh and GABA. GABAergic varicosities and GABAA receptor expression showed a rostro-caudal gradient along ganglia; in contrast, segregation exhibited a caudo-rostral gradient. These uneven regional distributions in expression of GABA, GABAA receptors, and level of segregation correlate with stronger synaptic transmission found in the caudal region. Accordingly, GABAA receptors of rostral region showed larger sensitivity to GABA and PTX. These results suggest the presence of different types of GABAA receptors in each region that result in a different regional levels of endogenous GABA inhibition. Finally, we discuss a possible correlation of these different levels of GABA modulation and the function of the target organs innervated by rostral and caudal ganglionic neurons. PMID:27092054

  13. Effect of GABA, a bacterial metabolite, on Pseudomonas fluorescens surface properties and cytotoxicity.

    PubMed

    Dagorn, Audrey; Chapalain, Annelise; Mijouin, Lily; Hillion, Mélanie; Duclairoir-Poc, Cécile; Chevalier, Sylvie; Taupin, Laure; Orange, Nicole; Feuilloley, Marc G J

    2013-01-01

    Different bacterial species and, particularly Pseudomonas fluorescens, can produce gamma-aminobutyric acid (GABA) and express GABA-binding proteins. In this study, we investigated the effect of GABA on the virulence and biofilm formation activity of different strains of P. fluorescens. Exposure of a psychotropic strain of P. fluorescens (MF37) to GABA (10-5 M) increased its necrotic-like activity on eukaryotic (glial) cells, but reduced its apoptotic effect. Conversely, muscimol and bicuculline, the selective agonist and antagonist of eukaryote GABAA receptors, respectively, were ineffective. P. fluorescens MF37 did not produce biosurfactants, and its caseinase, esterase, amylase, hemolytic activity or pyoverdine productions were unchanged. In contrast, the effect of GABA was associated to rearrangements of the lipopolysaccharide (LPS) structure, particularly in the lipid A region. The surface hydrophobicity of MF37 was marginally modified, and GABA reduced its biofilm formation activity on PVC, but not on glass, although the initial adhesion was increased. Five other P. fluorescens strains were studied, and only one, MFP05, a strain isolated from human skin, showed structural differences of biofilm maturation after exposure to GABA. These results reveal that GABA can regulate the LPS structure and cytotoxicity of P. fluorescens, but that this property is specific to some strains. PMID:23743829

  14. Effect of GABA, a Bacterial Metabolite, on Pseudomonas fluorescens Surface Properties and Cytotoxicity

    PubMed Central

    Dagorn, Audrey; Chapalain, Annelise; Mijouin, Lily; Hillion, Mélanie; Duclairoir-Poc, Cécile; Chevalier, Sylvie; Taupin, Laure; Orange, Nicole; Feuilloley, Marc G. J.

    2013-01-01

    Different bacterial species and, particularly Pseudomonas fluorescens, can produce gamma-aminobutyric acid (GABA) and express GABA-binding proteins. In this study, we investigated the effect of GABA on the virulence and biofilm formation activity of different strains of P. fluorescens. Exposure of a psychotropic strain of P. fluorescens (MF37) to GABA (10−5 M) increased its necrotic-like activity on eukaryotic (glial) cells, but reduced its apoptotic effect. Conversely, muscimol and bicuculline, the selective agonist and antagonist of eukaryote GABAA receptors, respectively, were ineffective. P. fluorescens MF37 did not produce biosurfactants, and its caseinase, esterase, amylase, hemolytic activity or pyoverdine productions were unchanged. In contrast, the effect of GABA was associated to rearrangements of the lipopolysaccharide (LPS) structure, particularly in the lipid A region. The surface hydrophobicity of MF37 was marginally modified, and GABA reduced its biofilm formation activity on PVC, but not on glass, although the initial adhesion was increased. Five other P. fluorescens strains were studied, and only one, MFP05, a strain isolated from human skin, showed structural differences of biofilm maturation after exposure to GABA. These results reveal that GABA can regulate the LPS structure and cytotoxicity of P. fluorescens, but that this property is specific to some strains. PMID:23743829

  15. Immunocytochemistry of GABA in the brain and suboesophageal ganglion of Manduca sexta.

    PubMed

    Homberg, U; Kingan, T G; Hildebrand, J G

    1987-04-01

    We have used specific antisera against protein-conjugated gamma-aminobutyric acid (GABA) in immunocytochemical preparations to investigate the distribution of putatively GABAergic neurons in the brain and suboesophageal ganglion of the sphinx moth Manduca sexta. About 20,000 neurons per brain hemisphere exhibit GABA-immunoreactivity. Most of these are optic-lobe interneurons, especially morphologically centrifugal neurons of the lamina and tangential neurons that innervate the medulla or the lobula complex. Many GABA-immunoreactive neurons, among them giant fibers of the lobula plate, project into the median protocerebrum. Among prominent GABA-immunoreactive neurons of the median protocerebrum are about 150 putatively negative-feedback fibers of the mushroom body, innervating both the calyces and lobes, and a group of large, fan-shaped neurons of the lower division of the central body. Several commissures in the supra- and suboesophageal ganglion exhibit GABA-like immunoreactivity. In the suboesophageal ganglion, a group of contralaterally descending neurons shows GABA-like immunoreactivity. The frontal ganglion is innervated by immunoreactive processes from the tritocerebrum but does not contain GABA-immunoreactive somata. With few exceptions the brain nerves do not contain GABA-immunoreactive fibers. PMID:3552234

  16. Segregation of Acetylcholine and GABA in the Rat Superior Cervical Ganglia: Functional Correlation

    PubMed Central

    Elinos, Diana; Rodríguez, Raúl; Martínez, Luis Andres; Zetina, María Elena; Cifuentes, Fredy; Morales, Miguel Angel

    2016-01-01

    Sympathetic neurons have the capability to segregate their neurotransmitters (NTs) and co-transmitters to separate varicosities of single axons; furthermore, in culture, these neurons can even segregate classical transmitters. In vivo sympathetic neurons employ acetylcholine (ACh) and other classical NTs such as gamma aminobutyric acid (GABA). Herein, we explore whether these neurons in vivo segregate these classical NTs in the superior cervical ganglia of the rat. We determined the topographical distribution of GABAergic varicosities, somatic GABAA receptor, as well as the regional distribution of the segregation of ACh and GABA. We evaluated possible regional differences in efficacy of ganglionic synaptic transmission, in the sensitivity of GABAA receptor to GABA and to the competitive antagonist picrotoxin (PTX). We found that sympathetic preganglionic neurons in vivo do segregate ACh and GABA. GABAergic varicosities and GABAA receptor expression showed a rostro-caudal gradient along ganglia; in contrast, segregation exhibited a caudo-rostral gradient. These uneven regional distributions in expression of GABA, GABAA receptors, and level of segregation correlate with stronger synaptic transmission found in the caudal region. Accordingly, GABAA receptors of rostral region showed larger sensitivity to GABA and PTX. These results suggest the presence of different types of GABAA receptors in each region that result in a different regional levels of endogenous GABA inhibition. Finally, we discuss a possible correlation of these different levels of GABA modulation and the function of the target organs innervated by rostral and caudal ganglionic neurons. PMID:27092054

  17. Temperature dependence and GABA modulation of (TH)triazolam binding in the rat brain

    SciTech Connect

    Earle, M.E.; Concas, A.; Wamsley, J.K.; Yamamura, H.I.

    1987-07-27

    The hypnotic triazolam (TZ), a triazolobenzodiazepine displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. The authors major objectives were the direct measurement of the temperature dependence and the gamma-aminobutyric acid (GABA) effect of (TH)TZ binding in the rat brain. Saturation studies showed a shift to lower affinity with increasing temperatures (K/sub d/ = 0.27 +/- 08 nM at 0C; K/sub d/ = 1.96 +/- 0.85 nM at 37C) while the B/sub max/ values remained unchanged (1220 +/- 176 fmoles/mg protein at 0C and 1160 +/- 383 fmoles/mg protein at 37C). Saturation studies of (TH)TZ binding in the presence or absence of GABA (100 M) showed a GABA-shift. At 0C the K/sub d/ values were (K/sub d/ = 0.24 +/- 0.03 nM/-GABA; K/sub d/ = 0.16 +/- 0.04/+GABA) and at 37C the K/sub d/ values were (K/sub d/ = 1.84 +/- 0.44 nM/-GABA; K/sub d/ = 0.95 +/- 0.29 nM/+GABA). In contrast to reported literature, the authors findings show that TZ interacts with benzodiazepine receptors with a temperature dependence and GABA-shift consistent with predicted behavior for benzodiazepine agonists. 20 references, 3 tables.

  18. Development of a high-affinity GABA uptake system in embryonic amphibian spinal neurons.

    PubMed

    Lamborghini, J E; Iles, A

    1985-11-01

    High-affinity uptake systems for amino acid neurotransmitter precursors have been highly correlated with the use of the particular amino acid or its derivative as a transmitter. We have found interneurons in the Xenopus embryo spinal cord which accumulate GABA by a high-affinity uptake system. They originate near the end of gastrulation and their ability to accumulate GABA first appears at the early tail bud stage. By position and appearance they are comparable to some of the embryonic interneurons described by A. Roberts and J. D. W. Clarke (1982, Phil. Trans. R. Soc. London Ser. B 296, 195-212). GABA-accumulating neurons also develop in dissociated cell cultures made from the presumptive spinal cord of neural plate stage Xenopus embryos. GABA accumulation in cultured neurons, as in cells in vivo, occurs via a high-affinity uptake system; GABA-accumulating cells have the same time of origin as the cells in vivo, and the ability to accumulate GABA in the population of cultured neurons appears at a time equivalent to that observed in intact sibling embryos. Thus it seems likely that the population of GABA-accumulating neurons developing in cell culture corresponds to the GABA-accumulating interneurons in vivo. The development of these neurons in dissociated cell cultures permits perturbation experiments that would be difficult to perform in vivo. We have examined the development of high-affinity GABA uptake in conditions that permit no electrical impulse activity in the cultures. The onset and extent of development of GABA accumulation in the neuronal population are normal under these conditions. PMID:3932109

  19. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    SciTech Connect

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S.; Santhakumar, Vijayalakshmi

    2013-12-15

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (E{sub GABA}). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (g{sub GABA-extra}) and experimentally identified, seizure-induced changes in g{sub GABA-extra} and E{sub GABA} influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40–100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30–40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing g{sub GABA-extra} reduced the frequency and coherence of FS-BC firing when E{sub GABA} was shunting (−74 mV), but failed to alter average

  20. A molecular characterization of the agonist binding site of a nematode cys-loop GABA receptor

    PubMed Central

    Kaji, Mark D; Kwaka, Ariel; Callanan, Micah K; Nusrat, Humza; Desaulniers, Jean-Paul; Forrester, Sean G

    2015-01-01

    Background and Purpose Cys-loop GABA receptors represent important targets for human chemotherapeutics and insecticides and are potential targets for novel anthelmintics (nematicides). However, compared with insect and mammalian receptors, little is known regarding the pharmacological characteristics of nematode Cys-loop GABA receptors. Here we have investigated the agonist binding site of the Cys-loop GABA receptor UNC-49 (Hco-UNC-49) from the parasitic nematode Haemonchus contortus. Experimental Approach We used two-electrode voltage-clamp electrophysiology to measure channel activation by classical GABA receptor agonists on Hco-UNC-49 expressed in Xenopus laevis oocytes, along with site-directed mutagenesis and in silico homology modelling. Key Results The sulphonated molecules P4S and taurine had no effect on Hco-UNC-49. Other classical Cys-loop GABAA receptor agonists tested on the Hco-UNC-49B/C heteromeric channel had a rank order efficacy of GABA > trans-4-aminocrotonic acid > isoguvacine > imidazole-4-acetic acid (IMA) > (R)-(−)-4-amino-3-hydroxybutyric acid [R(−)-GABOB] > (S)-(+)-4-amino-3-hydroxybutyric acid [S(+)-GABOB] > guanidinoacetic acid > isonipecotic acid > 5-aminovaleric acid (DAVA) (partial agonist) > β-alanine (partial agonist). In silico ligand docking revealed some variation in binding between agonists. Mutagenesis of a key serine residue in binding loop C to threonine had minimal effects on GABA and IMA but significantly increased the maximal response to DAVA and decreased twofold the EC50 for R(−)- and S(+)-GABOB. Conclusions and Implications The pharmacological profile of Hco-UNC-49 differed from that of vertebrate Cys-loop GABA receptors and insect resistance to dieldrin receptors, suggesting differences in the agonist binding pocket. These findings could be exploited to develop new drugs that specifically target GABA receptors of parasitic nematodes. PMID:25850584

  1. A comparative density functional theory study of electronic structure and optical properties of γ-aminobutyric acid and its cocrystals with oxalic and benzoic acid

    NASA Astrophysics Data System (ADS)

    da Silva Filho, J. G.; Freire, V. N.; Caetano, E. W. S.; Ladeira, L. O.; Fulco, U. L.; Albuquerque, E. L.

    2013-11-01

    In this letter, we study the electronic structure and optical properties of the active medicinal component γ-aminobutyric acid (GABA) and its cocrystals with oxalic (OXA) and benzoic (BZA) acid by means of the density functional theory formalism. It is shown that the cocrystallization strongly weakens the zwitterionic character of the GABA molecule leading to striking differences among the electronic band structures and optical absorption spectra of the GABA crystal and GABA:OXA, GABA:BZA cocrystals, originating from distinct sets of hydrogen bonds. Calculated band widths and Δ-sol band gap estimates indicate that both GABA and GABA:OXA, GABA:BZA cocrystals are indirect gap insulators.

  2. Fabrication of the Optical Fiber GABA Sensor Based on the NADP+ -Functionalized Quantum Dots.

    PubMed

    Zhao, Fei; Yoo, Jeongha; Kim, Jongsung

    2016-02-01

    A novel quantum dots (QDs)-based optical fiber biosensor has been developed to detect gamma-amino butyric acid (GABA) directly, via QD fluorescence quenching and recovery. QDs were immobilized on the surface of an optical-fiber through the EDC/Sulfo-NHS coupling reaction. The QDs were functionalized by 3-aminophenyl boronic acid and then by NADP+. The fluorescence of the NADP+ -functionalized QDs was quenched by electron transfer from QDs to NADP+. However, by the metabolic conversion of GABA to succinic acid by GABase, NADP+ was reduced to NADPH, which hindered the electron transfer. As a result, the fluorescence of the QDs could recover. The recovery rate of the fluorescence intensity of QDs depended on the concentration of GABA. This shows the possibility of detection of low concentrations of GABA via measurement of the fluorescence intensity. PMID:27433599

  3. GABA Production in Lactococcus lactis Is Enhanced by Arginine and Co-addition of Malate.

    PubMed

    Laroute, Valérie; Yasaro, Chonthicha; Narin, Waranya; Mazzoli, Roberto; Pessione, Enrica; Cocaign-Bousquet, Muriel; Loubière, Pascal

    2016-01-01

    Lactococcus lactis NCDO 2118 was previously selected for its ability to decarboxylate glutamate to γ-aminobutyric acid (GABA), an interesting nutritional supplement able to improve mood and relaxation. Amino acid decarboxylation is generally considered as among the biochemical systems allowing lactic acid bacteria to counteracting acidic stress and obtaining metabolic energy. These strategies also include arginine deiminase pathway and malolactic fermentation but little is known about their possible interactions of with GABA production. In the present study, the effects of glutamate, arginine, and malate (i.e., the substrates of these acid-resistance pathways) on L. lactis NCDO 2118 growth and GABA production performances were analyzed. Both malate and arginine supplementation resulted in an efficient reduction of acidity and improvement of bacterial biomass compared to glutamate supplementation. Glutamate decarboxylation was limited to narrow environmental conditions (pH < 5.1) and physiological state (stationary phase). However, some conditions were able to improve GABA production or activate glutamate decarboxylation system even outside of this compass. Arginine clearly stimulated glutamate decarboxylation: the highest GABA production (8.6 mM) was observed in cultures supplemented with both arginine and glutamate. The simultaneous addition of arginine, malate, and glutamate enabled earlier GABA production (i.e., during exponential growth) at relatively high pH (6.5). As far as we know, no previous study has reported GABA production in such conditions. Although further studies are needed to understand the molecular basis of these phenomena, these results represent important keys suitable of application in GABA production processes. PMID:27458444

  4. GABA Production in Lactococcus lactis Is Enhanced by Arginine and Co-addition of Malate

    PubMed Central

    Laroute, Valérie; Yasaro, Chonthicha; Narin, Waranya; Mazzoli, Roberto; Pessione, Enrica; Cocaign-Bousquet, Muriel; Loubière, Pascal

    2016-01-01

    Lactococcus lactis NCDO 2118 was previously selected for its ability to decarboxylate glutamate to γ-aminobutyric acid (GABA), an interesting nutritional supplement able to improve mood and relaxation. Amino acid decarboxylation is generally considered as among the biochemical systems allowing lactic acid bacteria to counteracting acidic stress and obtaining metabolic energy. These strategies also include arginine deiminase pathway and malolactic fermentation but little is known about their possible interactions of with GABA production. In the present study, the effects of glutamate, arginine, and malate (i.e., the substrates of these acid-resistance pathways) on L. lactis NCDO 2118 growth and GABA production performances were analyzed. Both malate and arginine supplementation resulted in an efficient reduction of acidity and improvement of bacterial biomass compared to glutamate supplementation. Glutamate decarboxylation was limited to narrow environmental conditions (pH < 5.1) and physiological state (stationary phase). However, some conditions were able to improve GABA production or activate glutamate decarboxylation system even outside of this compass. Arginine clearly stimulated glutamate decarboxylation: the highest GABA production (8.6 mM) was observed in cultures supplemented with both arginine and glutamate. The simultaneous addition of arginine, malate, and glutamate enabled earlier GABA production (i.e., during exponential growth) at relatively high pH (6.5). As far as we know, no previous study has reported GABA production in such conditions. Although further studies are needed to understand the molecular basis of these phenomena, these results represent important keys suitable of application in GABA production processes. PMID:27458444

  5. Focal Uncaging of GABA Reveals a Temporally Defined Role for GABAergic Inhibition during Appetitive Associative Olfactory Conditioning in Honeybees

    ERIC Educational Resources Information Center

    Raccuglia, Davide; Mueller, Uli

    2013-01-01

    Throughout the animal kingdom, the inhibitory neurotransmitter ?-aminobutyric acid (GABA) is a key modulator of physiological processes including learning. With respect to associative learning, the exact time in which GABA interferes with the molecular events of learning has not yet been clearly defined. To address this issue, we used two…

  6. The Memory-Impairing Effects of Septal GABA Receptor Activation Involve GABAergic Septo-Hippocampal Projection Neurons

    ERIC Educational Resources Information Center

    Krebs-Kraft, Desiree L.; Wheeler, Marina G.; Parent, Marise B.

    2007-01-01

    Septal infusions of the [gamma]-aminobutyric acid (GABA)[subscript A] agonist muscimol impair memory, and the effect likely involves the hippocampus. GABA[subscript A] receptors are present on the perikarya of cholinergic and GABAergic septo-hippocampal (SH) projections. The current experiments determined whether GABAergic SH projections are…

  7. GABA System in Schizophrenia and Mood Disorders: A Mini Review on Third-Generation Imaging Studies.

    PubMed

    Chiapponi, Chiara; Piras, Federica; Piras, Fabrizio; Caltagirone, Carlo; Spalletta, Gianfranco

    2016-01-01

    Third-generation neuroimaging research has been enriched by advances in magnetic resonance spectroscopy (MRS) measuring the concentration of important neurotrasmitters, such as the inhibitory amino acid GABA. Here, we performed a systematic mini-review on brain MRS studies measuring GABA concentration in patients affected by schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD). We wondered whether multimodal investigations could overcome intrinsic technical limits of MRS giving a broader view of mental disorders pathogenesis. In SZ, unimodal studies gave mixed results, as increased, decreased, or unaltered GABA levels were reported depending on region, disease phase, and treatment. Conversely, multimodal results showed reduced level of glutamate, but not of GABA, in patients mirrored by in vitro biochemical findings revealing hippocampal reduction in glutamate signaling in SZ, and no deficits in GABA synthesis. Moreover, a mouse model confirmed the unique pathological characteristic of glutamate function in SZ. Unimodal studies in BD revealed again, inconsistent results, while no multimodal investigations including MRS on GABA exist. In MDD, unimodal studies could not differentiate patients from controls nor characterize high-risk subjects and remitted patients. However, a multimodal study combining functional magnetic resonance imaging and MRS revealed that cingulate cortex activity is related to glutamate, N-acetylaspartate levels and anhedonia in patients, and to GABA concentration in healthy subjects, improving the distinction between MDD and physiology. Overall, our results show that unimodal studies do not indicate GABA as a biomarker for the psychiatric disorders considered. Conversely, multimodal studies can widen the understanding of the link between psychopathology, genetics, neuroanatomy, and functional-biochemical brain activity in mental disorders. Although scarce, multimodal approaches seem promising for moving from GABA MRS

  8. GABA System in Schizophrenia and Mood Disorders: A Mini Review on Third-Generation Imaging Studies

    PubMed Central

    Chiapponi, Chiara; Piras, Federica; Piras, Fabrizio; Caltagirone, Carlo; Spalletta, Gianfranco

    2016-01-01

    Third-generation neuroimaging research has been enriched by advances in magnetic resonance spectroscopy (MRS) measuring the concentration of important neurotrasmitters, such as the inhibitory amino acid GABA. Here, we performed a systematic mini-review on brain MRS studies measuring GABA concentration in patients affected by schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD). We wondered whether multimodal investigations could overcome intrinsic technical limits of MRS giving a broader view of mental disorders pathogenesis. In SZ, unimodal studies gave mixed results, as increased, decreased, or unaltered GABA levels were reported depending on region, disease phase, and treatment. Conversely, multimodal results showed reduced level of glutamate, but not of GABA, in patients mirrored by in vitro biochemical findings revealing hippocampal reduction in glutamate signaling in SZ, and no deficits in GABA synthesis. Moreover, a mouse model confirmed the unique pathological characteristic of glutamate function in SZ. Unimodal studies in BD revealed again, inconsistent results, while no multimodal investigations including MRS on GABA exist. In MDD, unimodal studies could not differentiate patients from controls nor characterize high-risk subjects and remitted patients. However, a multimodal study combining functional magnetic resonance imaging and MRS revealed that cingulate cortex activity is related to glutamate, N-acetylaspartate levels and anhedonia in patients, and to GABA concentration in healthy subjects, improving the distinction between MDD and physiology. Overall, our results show that unimodal studies do not indicate GABA as a biomarker for the psychiatric disorders considered. Conversely, multimodal studies can widen the understanding of the link between psychopathology, genetics, neuroanatomy, and functional–biochemical brain activity in mental disorders. Although scarce, multimodal approaches seem promising for moving from GABA

  9. A study on the involvement of GABA-transaminase in MCT induced pulmonary hypertension.

    PubMed

    Lingeshwar, Poorella; Kaur, Gurpreet; Singh, Neetu; Singh, Seema; Mishra, Akanksha; Shukla, Shubha; Ramakrishna, Rachumallu; Laxman, Tulsankar Sachin; Bhatta, Rabi Sankar; Siddiqui, Hefazat H; Hanif, Kashif

    2016-02-01

    Increased sympathetic nervous system (SNS) activity is associated with cardiovascular diseases but its role has not been completely explored in pulmonary hypertension (PH). Increased SNS activity is distinguished by elevated level of norepinephrine (NE) and activity of γ-Amino butyric acid Transminase (GABA-T) which degrades GABA, an inhibitory neurotransmitter within the central and peripheral nervous system. Therefore, we hypothesized that GABA-T may contribute in pathophysiology of PH by modulating level of GABA and NE. The effect of daily oral administration of GABA-T inhibitor, Vigabatrin (GVG, 50 and 75 mg/kg/day, 35 days) was studied following a single subcutaneous administration of monocrotaline (MCT, 60 mg/kg) in male SD rats. The pressure and hypertrophy of right ventricle (RV), oxidative stress, inflammation, pulmonary vascular remodelling were assessed after 35 days in MCT treated rats. The expression of GABA-T and HIF-1α was studied in lung tissue. The levels of plasma NE (by High performance liquid chromatography coupled with electrochemical detector; HPLC-ECD) and lung GABA (by liquid chromatography-mass spectrometry) were also estimated. GVG at both doses significantly attenuated increased in pressure (35.82 ± 4.80 mm Hg, p < 0.001; 28.37 ± 3.32 mm Hg, p < 0.001 respectively) and hypertrophy of RV, pulmonary vascular remodelling, oxidative stress and inflammation in lungs of MCT exposed rats. GVG also reduced the expression of GABA-T and HIF-1α in MCT treated rats. Increased NE level and decreased GABA level was also reversed by GVG in MCT exposed rats. GABA-T plays an important role in PH by modulating SNS activity and may be considered as a therapeutic target in PH. PMID:26608704

  10. GABA's Control of Stem and Cancer Cell Proliferation in Adult Neural and Peripheral Niches

    PubMed Central

    Young, Stephanie Z.; Bordey, Angélique

    2010-01-01

    Aside from traditional neurotransmission and regulation of secretion, γ-amino butyric acid (GABA) through GABAA receptors negatively regulates proliferation of pluripotent and neural stem cells in embryonic and adult tissue. There has also been evidence that GABAergic signaling and its control over proliferation is not only limited to the nervous system, but is widespread through peripheral organs containing adult stem cells. GABA has emerged as a tumor signaling molecule in the periphery that controls the proliferation of tumor cells and perhaps tumor stem cells. Here, we will discuss GABA's presence as a near-universal signal that may be altered in tumor cells resulting in modified mitotic activity. PMID:19509127

  11. Orthopaedic complications of lumboperitoneal shunts.

    PubMed

    McIvor, J; Krajbich, J I; Hoffman, H

    1988-01-01

    Lumboperitoneal (LP) shunts performed for communicating hydrocephalus have been reported to lead to neurologic deficits in the lower limbs and spinal deformities as a result of arachnoiditis. A chart review of 375 children who underwent LP shunts between 1960 and 1981 at The Hospital For Sick Children in Toronto was undertaken. Of the 375 charts reviewed, evidence of shunt-induced neurologic deficits was seen in 63 patients. Thirty-four patients had back pain with or without sciatica, 45 patients had hamstring tightness, and 40 patients had foot deformities. Forty-nine patients had lumbar hyperlordosis, lordoscoliosis, and scoliosis. These deformities are postulated to be the result of arachnoiditis involving the conus medullaris and lower lumbar roots. PMID:3192696

  12. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    SciTech Connect

    Kamei, Yuka; Tamura, Takayuki; Yoshida, Ryo; Ohta, Shinji; Fukusaki, Eiichiro; Mukai, Yukio

    2011-04-01

    Highlights: {yields}We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. {yields} Deletion of the UGA1 or GAD1 genes extends replicative lifespan. {yields} Addition of GABA to wild-type cultures has no effect on lifespan. {yields} Intracellular GABA levels do not differ in longevity mutants and wild-type cells. {yields} Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for {gamma}-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The {Delta}uga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for {Delta}uga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of {sup 1}H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan

  13. Novel functions of GABA signaling in adult neurogenesis.

    PubMed

    Pontes, Adalto; Zhang, Yonggang; Hu, Wenhui

    2013-10-01

    Neurotransmitter gamma-aminobutiric acid (GABA) through ionotropic GABAA and metabotropic GABAB receptors plays key roles in modulating the development, plasticity and function of neuronal networks. GABA is inhibitory in mature neurons but excitatory in immature neurons, neuroblasts and neural stem/progenitor cells (NSCs/NPCs). The switch from excitatory to inhibitory occurs following the development of glutamatergic synaptic input and results from the dynamic changes in the expression of Na(+)/K(+)/2Cl(-) co-transporter NKCC1 driving Cl(-) influx and neuron-specific K(+)/Cl(-) co-transporter KCC2 driving Cl(-) efflux. The developmental transition of KCC2 expression is regulated by Disrupted-in-Schizophrenia 1 (DISC1) and brain-derived neurotrophic factor (BDNF) signaling. The excitatory GABA signaling during early neurogenesis is important to the activity/experience-induced regulation of NSC quiescence, NPC proliferation, neuroblast migration and newborn neuronal maturation/functional integration. The inhibitory GABA signaling allows for the sparse and static functional networking essential for learning/memory development and maintenance. PMID:24285940

  14. Novel functions of GABA signaling in adult neurogenesis

    PubMed Central

    PONTES, Adalto; ZHANG, Yonggang; HU, Wenhui

    2013-01-01

    Neurotransmitter gamma-aminobutiric acid (GABA) through ionotropic GABAA and metabotropic GABAB receptors plays key roles in modulating the development, plasticity and function of neuronal networks. GABA is inhibitory in mature neurons but excitatory in immature neurons, neuroblasts and neural stem/progenitor cells (NSCs/NPCs). The switch from excitatory to inhibitory occurs following the development of glutamatergic synaptic input and results from the dynamic changes in the expression of Na+/K+/2Cl− co-transporter NKCC1 driving Cl− influx and neuron-specific K+/Cl− co-transporter KCC2 driving Cl− efflux. The developmental transition of KCC2 expression is regulated by Disrupted-in-Schizophrenia 1 (DISC1) and brain-derived neurotrophic factor (BDNF) signaling. The excitatory GABA signaling during early neurogenesis is important to the activity/experience-induced regulation of NSC quiescence, NPC proliferation, neuroblast migration and newborn neuronal maturation/functional integration. The inhibitory GABA signaling allows for the sparse and static functional networking essential for learning/memory development and maintenance. PMID:24285940

  15. Action of tremorgenic mycotoxins on GABA/sub A/ receptor

    SciTech Connect

    Gant, D.B.; Cole, R.J.; Valdes, J.J.; Eldefrawi, M.E.; Eldefrawi, A.T.

    1987-11-09

    The effects of four tremorgenic and one nontremorgenic mycotoxins were studied on ..gamma..-aminobutyric acid (GABA/sub A/) receptor binding and function in rat brain and on binding of a voltage-operated Cl/sup -/ channel in Torpedo electric organ. None of the mycotoxins had significant effect on (/sup 3/H)muscimol or (/sup 3/H)flunitrazepam binding to the GAMA/sup A/ receptor. However, only the four tremorgenic mycotoxins inhibited GABA-induced /sup 36/Cl/sup -/ influx and (/sup 35/S)t-butylbicyclophosphorothionate ((/sup 35/S)TBPS) binding in rate brain membranes, while the nontremorgenic verruculotoxin had no effect. Inhibition of (/sup 35/S)TBPS binding by paspalinine was non-competitive. This suggests that tremorgenic mycotoxins inhibit GABA/sub A/ receptor function by binding close to the receptor's Cl/sup -/ channel. On the voltage-operated Cl/sup -/ channel, only high concentrations of verruculogen and verruculotoxin caused significant inhibition of the channel's binding of (/sup 35/S)TBPS. The data suggest that the tremorgenic action of these mycotoxins may be due in part to their inhibition of GABA/sub A/ receptor function. 21 references, 4 figures, 2 tables.

  16. [The radioprotective effect of GABA-tropic substances, gamma-hydroxybutyrate and piracetam].

    PubMed

    Kulinskiĭ, V I; Klimova, A D

    1993-01-01

    From experiments in mice, it is shown that with a radiation dose of 8 Gy (LD96) the radioprotective effect was exerted by gamma-aminobutyric acid (GABA), substances that increase its concentration in tissues (progabide and valproate), and synthetic agonists of both receptor types, particularly baclofen, a GABA-receptor agonist. The radioprotective effect is also exerted by gamma-hydroxybutyrate, not piracetam. PMID:8469734

  17. GABA-mediated inhibition of the anaphylactic response in the guinea-pig trachea.

    PubMed Central

    Gentilini, G.; Franchi-Micheli, S.; Mugnai, S.; Bindi, D.; Zilletti, L.

    1995-01-01

    1. In sensitized guinea-pigs, the effects of gamma-aminobutyric acid (GABA) and GABAmimetic drugs have been investigated on tracheal segments contracted by cumulative application of an allergen (ovoalbumin, OA) and on serosal mast cells. The same drugs have also been tested on activation of alveolar macrophages isolated from unsensitized guinea-pigs. 2. Superfusion with GABA (1-1000 microM) reduced the contraction intensity of tracheal strips. The effect of GABA (100 microM) was not affected by the carrier blockers, nipecotic acid and beta-alanine (300 microM each). It was mimicked by the GABAB agonist (-)-baclofen (100 microM) but not 3-aminopropanephosphinic acid (100 microM, 3-APA). The GABAA agonist, isoguvacine (100 microM) did not exert any effect. GABA (10 microM)-induced inhibition of tracheal contractions was reduced by the GABAB antagonist, 2-hydroxysaclofen (100 microM, 2-HS), but not by the GABAA antagonist, bicuculline (30 microM). 3. The reduction in contraction intensity induced by GABA (100 microM) was prevented by a 40 min preincubation of tracheal strips with capsaicin (10 microM), but not tetrodotoxin (TTX, 0.3 microM). The effect of GABA (1000 microM) was absent after preincubation with indomethacin (2.8 microM) but unmodified when nordihydroguaiaretic acid (NDGA, 3.3 microM) was used. Finally, removal of the epithelium prevented the GABA effect. 4. Anaphylactic histamine release from serosal mast cells isolated from sensitized animals was not affected either by GABA (10-1000 microM) or the selective receptor agonists (-)-baclofen (0.1-1000 microM) and isoguvacine (10-1000 microM).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7582447

  18. GABA(A) receptor downregulation in brains of subjects with autism.

    PubMed

    Fatemi, S Hossein; Reutiman, Teri J; Folsom, Timothy D; Thuras, Paul D

    2009-02-01

    Gamma-aminobutyric acid A (GABA(A)) receptors are ligand-gated ion channels responsible for mediation of fast inhibitory action of GABA in the brain. Preliminary reports have demonstrated altered expression of GABA receptors in the brains of subjects with autism suggesting GABA/glutamate system dysregulation. We investigated the expression of four GABA(A) receptor subunits and observed significant reductions in GABRA1, GABRA2, GABRA3, and GABRB3 in parietal cortex (Brodmann's Area 40 (BA40)), while GABRA1 and GABRB3 were significantly altered in cerebellum, and GABRA1 was significantly altered in superior frontal cortex (BA9). The presence of seizure disorder did not have a significant impact on GABA(A) receptor subunit expression in the three brain areas. Our results demonstrate that GABA(A) receptors are reduced in three brain regions that have previously been implicated in the pathogenesis of autism, suggesting widespread GABAergic dysfunction in the brains of subjects with autism. PMID:18821008

  19. Imbalance between Glutamate and GABA in Fmr1 Knockout Astrocytes Influences Neuronal Development

    PubMed Central

    Wang, Lu; Wang, Yan; Zhou, Shimeng; Yang, Liukun; Shi, Qixin; Li, Yujiao; Zhang, Kun; Yang, Le; Zhao, Minggao; Yang, Qi

    2016-01-01

    Fragile X syndrome (FXS) is a form of inherited mental retardation that results from the absence of the fragile X mental retardation protein (FMRP), the product of the Fmr1 gene. Numerous studies have shown that FMRP expression in astrocytes is important in the development of FXS. Although astrocytes affect neuronal dendrite development in Fmr1 knockout (KO) mice, the factors released by astrocytes are still unclear. We cultured wild type (WT) cortical neurons in astrocyte-conditioned medium (ACM) from WT or Fmr1 KO mice. Immunocytochemistry and Western blotting were performed to detect the dendritic growth of both WT and KO neurons. We determined glutamate and γ-aminobutyric acid (GABA) levels using high-performance liquid chromatography (HPLC). The total neuronal dendritic length was reduced when cultured in the Fmr1 KO ACM. This neurotoxicity was triggered by an imbalanced release of glutamate and GABA from Fmr1 KO astrocytes. We found increased glutaminase and GABA transaminase (GABA-T) expression and decreased monoamine oxidase B expression in Fmr1 KO astrocytes. The elevated levels of glutamate contributed to oxidative stress in the cultured neurons. Vigabatrin (VGB), a GABA-T inhibitor, reversed the changes caused by glutamate and GABA release in Fmr1 KO astrocytes and the abnormal behaviors in Fmr1 KO mice. Our results indicate that the imbalance in the astrocytic glutamate and GABA release may be involved in the neuropathology and the underlying symptoms of FXS, and provides a therapeutic target for treatment. PMID:27517961

  20. Differential effects of GABA in modulating nociceptive vs. non-nociceptive synapses.

    PubMed

    Wang, Y; Summers, T; Peterson, W; Miiller, E; Burrell, B D

    2015-07-01

    GABA (γ-amino-butyric acid) -mediated signaling is normally associated with synaptic inhibition due to ionotropic GABA receptors that gate an inward Cl(-) current, hyperpolarizing the membrane potential. However, there are also situations where ionotropic GABA receptors trigger a Cl(-) efflux that results in depolarization. The well-characterized central nervous system of the medicinal leech was used to study the functional significance of opposing effects of GABA at the synaptic circuit level. Specifically, we focused on synapses made by the nociceptive N cell and the non-nociceptive P (pressure) cell that converge onto a common postsynaptic target. It is already known that GABA hyperpolarizes the P cell, but depolarizes the N cell and that inhibition of ionotropic GABA receptors by bicuculline (BIC) has opposing effects on the synapses made by these two inputs; enhancing P cell synaptic transmission, but depressing N cell synapses. The goal of the present study was to determine whether the opposing effects of GABA were due to differences in Cl(-) homeostasis between the two presynaptic neurons. VU 0240551 (VU), an inhibitor of the Cl(-) exporter K-Cl co-transporter isoform 2 (KCC2), attenuated GABA-mediated hyperpolarization of the non-nociceptive afferent while bumetanide (BUM), an inhibitor of the Cl(-) importer Na-K-Cl co-transporter isoform 1 (NKCC1), reduced GABA-mediated depolarization of the nociceptive neuron. VU treatment also enhanced P cell synaptic signaling, similar to the previously observed effects of BIC and consistent with the idea that GABA inhibits synaptic signaling at the presynaptic level. BUM treatment depressed N cell synapses, again similar to what is observed following BIC treatment and suggests that GABA has an excitatory effect on these synapses. The opposing effects of GABA could also be observed at the behavioral level with BIC and VU increasing responsiveness to non-nociceptive stimulation while BIC and BUM decreased responsiveness

  1. 49 CFR 236.838 - Wire, shunt.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Wire, shunt. 236.838 Section 236.838 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Wire, shunt. A wire forming part of a shunt circuit....

  2. 30 CFR 57.6401 - Shunting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Shunting. 57.6401 Section 57.6401 Mineral...-Surface and Underground § 57.6401 Shunting. Except during testing— (a) Electric detonators shall be kept shunted until connected to the blasting line or wired into a blasting round; (b) Wired rounds shall...

  3. Comparison of taurine, GABA, Glu, and Asp as scavengers of malondialdehyde in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Deng, Yan; Wang, Wei; Yu, Pingfeng; Xi, Zhijiang; Xu, Lijian; Li, Xiaolong; He, Nongyue

    2013-04-01

    The purpose of this study is to determine if amino acid neurotransmitters such as gamma-aminobutyric acid (GABA), taurine, glutamate (Glu), and aspartate (Asp) can scavenge activated carbonyl toxicants. In vitro, direct reaction between malondialdehyde (MDA) and amino acids was researched using different analytical methods. The results indicated that scavenging activated carbonyl function of taurine and GABA is very strong and that of Glu and Asp is very weak in pathophysiological situations. The results provided perspective into the reaction mechanism of taurine and GABA as targets of activated carbonyl such as MDA in protecting nerve terminals. In vivo, we studied the effect of taurine and GABA as antioxidants by detecting MDA concentration and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities. It was shown that MDA concentration was decreased significantly, and the activities of SOD and GSH-Px were increased significantly in the cerebral cortex and hippocampus of acute epileptic state rats, after the administration of taurine and GABA. The results indicated that the peripherally administered taurine and GABA can scavenge free radicals and protect the tissue against activated carbonyl in vivo and in vitro.

  4. Correlation between the enhancement of flunitrazepam binding by GABA and seizure susceptibility in mice

    SciTech Connect

    Marley, R.J.; Wehner, J.M.

    1987-06-08

    Various populations of mice exhibit differential sensitivity to seizure-inducing agents. The relationship of seizure susceptibility to alterations in the GABA receptor complex was investigated in six different populations of mice consisting of four inbred strains (C57BL, DBA, C3H, and BALB) and two selected lines (long sleep and short sleep). Seizure activity was induced by intraperitoneal administration of the GAD inhibitor, 3-mercaptopropionic acid, and latencies to seizure onset and tonus were measured. In naive mice of the same populations, GABA enhancement of TH-flunitrazepam binding was measured in extensively washed whole brain membranes at several GABA concentrations. Both differential seizure sensitivity to 3-mercaptopropionic acid and differential enhancement of TH-flunitrazepam binding by GABA were observed in these six populations of mice. Correlational analyses indicated a positive correlation between the degree of GABA enhancement of TH-flunitrazepam binding and resistance to the seizure-inducing properties of 3-mercaptopropionic acid. These data suggest that genetic differences in sensitivity to seizure-inducing agents that disrupt the GABAergic system may be related to differences in coupling between the various receptors associated with the GABA receptor complex.

  5. Sleep-promoting effects of the GABA/5-HTP mixture in vertebrate models.

    PubMed

    Hong, Ki-Bae; Park, Yooheon; Suh, Hyung Joo

    2016-09-01

    The aim of this study was to investigate the sleep-promoting effect of combined γ-aminobutyric acid (GABA) and 5-hydroxytryptophan (5-HTP) on sleep quality and quantity in vertebrate models. Pentobarbital-induced sleep test and electroencephalogram (EEG) analysis were applied to investigate sleep latency, duration, total sleeping time and sleep quality of two amino acids and GABA/5-HTP mixture. In addition, real-time PCR and HPLC analysis were applied to analyze the signaling pathway. The GABA/5-HTP mixture significantly regulated the sleep latency, duration (p<0.005), and also increased the sleep quality than single administration of the amino acids (p<0.000). Long-term administration increased the transcript levels of GABAA receptor (1.37-fold, p<0.000) and also increased the GABA content compared with the control group 12h after administration (1.43-fold, p<0.000). Our available evidence suggests that the GABA/5-HTP mixture modulates both GABAergic and serotonergic signaling. Moreover, the sleep architecture can be controlled by the regulation of GABAA receptor and GABA content with 5-HTP. PMID:27150227

  6. Scintigraphic evaluation of hepatic blood flow after intrahepatic portosystemic shunt (TIPS).

    PubMed

    Menzel, J; Schober, O; Reimer, P; Domschke, W

    1997-06-01

    In patients with liver cirrhosis a transjugularly placed intrahepatic portocaval shunt (TIPS) is a non-surgical portosystemic device which aims to reduce portal venous pressure. In comparison with Doppler sonography, we evaluated in 28 patients the diagnostic impact of liver perfusion scintigraphy (with technetium-99m diethylene triamine penta-acetic acid) in the assessment of changes in the hepatic blood flow after TIPS shunting. The arterial and portal contributions to hepatic flow were calculated from the areas under the biphasic time-activity curve. In the course of TIPS shunting, patency is threatened by reocclusion. Angiography is the gold standard for TIPS shunt reassessment. However, there is a need for a less invasive diagnostic procedure, such as scintigraphy or Doppler sonography, for the early detection of shunt insufficiency. Scintigraphy demonstrated that prior to TIPS shunting the portal venous contribution to hepatic perfusion was reduced to 29.2%, this reduction being due to portal hypertension. After TIPS placement a significant increase in portal venous perfusion was observed (38.2%; P<0.02). TIPS shunt occlusion was identified in patients by a significant reduction in the scintigraphically measured portal venous contribution to hepatic blood flow. Hepatic perfusion scintigraphy appears to be a valuable method to determine the immediate effect of TIPS on hepatic blood flow. Post-TIPS follow-up studies of hepatic haemodynamics by liver perfusion scintigraphy appear able to contribute to the detection of TIPS shunt occlusion before the clinical consequences of this complication have become apparent. PMID:9169570

  7. Students with Shunts: Program Considerations.

    ERIC Educational Resources Information Center

    French, Ron; And Others

    1997-01-01

    Examines how the medical condition of hydrocephalus can affect physical education students and physical education programs, and stresses the need to provide physical educators with information on students' medical conditions. Describes hydrocephalus and its treatment with ventricular peritoneal shunts, and offers suggestions on modifying…

  8. Synthesis of new fluorinated analogs of GABA, Pregabalin bioisosteres, and their effects on [(3)H]GABA uptake by rat brain nerve terminals.

    PubMed

    Borisova, T; Pozdnyakova, N; Shaitanova, E; Gerus, I; Dudarenko, M; Mironets, R; Haufe, G; Kukhar, V

    2015-08-01

    Fluorinated analogs of natural substances take an essential place in the design of new biologically active compounds. New fluorinated analogs of γ-aminobutyric acid, that is, β-polyfluoroalkyl-GABAs (FGABAs), were synthesized with substituents: β-CF3-β-OH (1), β-CF3 (2); β-CF2CF2H (3). FGABAs are bioisosteres of Pregabalin (Lyrica®, Pfizer's blockbuster drug, β-i-Bu-GABA), and have lipophilicity close to this medicine. The effects of synthesized FGABAs on [(3)H]GABA uptake by isolated rat brain nerve terminals (synaptosomes) were assessed and compared with those of Pregabalin. FGABAs 1-3 (100μM) did not influence the initial velocity of [(3)H]GABA uptake when applied acutely, whereas an increase in this parameter was found after preliminary incubation of FGABAs with synaptosomes. Pregabalin after preliminary incubation with synaptosomes caused unidirectional changes in the initial velocity of [(3)H]GABA uptake. Using specific inhibitors of GAT1 and GAT3, NO-711 and SNAP5114, respectively, the ability of FGABAs 1-3 to influence non-GAT1 and non-GAT3 uptake activity of nerve terminals was analyzed, but no specificity was found. Therefore, new synthesized FGABAs are structural but not functional analogs of GABA (because they did not inhibit synaptosomal [(3)H]GABA uptake). Moreover, FGABAs are able to increase the initial velocity of [(3)H]GABA uptake by synaptosomes, and this effect is higher than that of Pregabalin. PMID:26138193

  9. The transporter GAT1 plays an important role in GABA-mediated carbon-nitrogen interactions in Arabidopsis

    PubMed Central

    Batushansky, Albert; Kirma, Menny; Grillich, Nicole; Pham, Phuong A.; Rentsch, Doris; Galili, Gad; Fernie, Alisdair R.; Fait, Aaron

    2015-01-01

    Glutamate derived γ-aminobutyric acid (GABA) is synthetized in the cytosol prior to delivery to the mitochondria where it is catabolized via the TCA cycle. GABA accumulates under various environmental conditions, but an increasing number of studies show its involvement at the crossroad between C and N metabolism. To assess the role of GABA in modulating cellular metabolism, we exposed seedlings of A. thaliana GABA transporter gat1 mutant to full nutrition medium and media deficient in C and N combined with feeding of different concentrations (0.5 and 1 mM) of exogenous GABA. GC-MS based metabolite profiling showed an expected effect of medium composition on the seedlings metabolism of mutant and wild type alike. That being said, a significant interaction between GAT1 deficiency and medium composition was determined with respect to magnitude of change in relative amino acid levels. The effect of exogenous GABA treatment on metabolism was contingent on both the medium and the genotype, leading for instance to a drop in asparagine under full nutrition and low C conditions and glucose under all tested media, but not to changes in GABA content. We additionally assessed the effect of GAT1 deficiency on the expression of glutamate metabolism related genes and genes involved in abiotic stress responses. These results suggest a role for GAT1 in GABA-mediated metabolic alterations in the context of the C-N equilibrium of plant cells. PMID:26483804

  10. Microtransplantation of cellular membranes from squid stellate ganglion reveals ionotropic GABA receptors.

    PubMed

    Conti, Luca; Limon, Agenor; Palma, Eleonora; Miledi, Ricardo

    2013-02-01

    The squid has been the most studied cephalopod, and it has served as a very useful model for investigating the events associated with nerve impulse generation and synaptic transmission. While the physiology of squid giant axons has been extensively studied, very little is known about the distribution and function of the neurotransmitters and receptors that mediate inhibitory transmission at the synapses. In this study we investigated whether γ-aminobutyric acid (GABA) activates neurotransmitter receptors in stellate ganglia membranes. To overcome the low abundance of GABA-like mRNAs in invertebrates and the low expression of GABA in cephalopods, we used a two-electrode voltage clamp technique to determine if Xenopus laevis oocytes injected with cell membranes from squid stellate ganglia responded to GABA. Using this method, membrane patches containing proteins and ion channels from the squid's stellate ganglion were incorporated into the surface of oocytes. We demonstrated that GABA activates membrane receptors in cellular membranes isolated from squid stellate ganglia. Using the same approach, we were able to record native glutamate-evoked currents. The squid's GABA receptors showed an EC(50) of 98 μmol l(-1) to GABA and were inhibited by zinc (IC(50) = 356 μmol l(-1)). Interestingly, GABA receptors from the squid were only partially blocked by bicuculline. These results indicate that the microtransplantation of native cell membranes is useful to identify and characterize scarce membrane proteins. Moreover, our data also support the role of GABA as an ionotropic neurotransmitter in cephalopods, acting through chloride-permeable membrane receptors. PMID:23493508

  11. Aging of whiskey increases the potentiation of GABA(A) receptor response.

    PubMed

    Koda, Hirofumi; Hossain, Sheikh Julfikar; Kiso, Yoshinobu; Aoshima, Hitoshi

    2003-08-27

    It is known that the target of most mood-defining compounds such as ethanol is an ionotropic gamma-aminobutyric acid receptor (GABA(A) receptor). The potentiation of the response of these inhibitory neurotransmitter receptors induces anxiolytic, sedative, and anesthetic activities in the human brain. Because both extracts of whiskey by pentane and fragrant components in whiskey potentiate the GABA(A) receptor-mediated response, GABA(A) receptors were expressed in Xenopus oocyte by injecting cRNAs prepared from the cloned cDNA for the alpha(1) and beta(1) subunits of the bovine receptors in order to study the effects of whiskey itself on the GABA(A) receptor-mediated response. Whiskey itself also potentiated the electrical responses of GABA(A) receptors generally more than ethanol at the same concentration as that of the whiskey. The potentiation of the GABA(A) receptor-mediated response increased with the aging period of the whiskey. Inhalation of whiskey to mice increased the sleeping time induced by pentobarbital more than that of the same concentration of ethanol as the whiskey. These results suggest that not only ethanol but also minor components in whiskey play an important role in the potentiation of GABA(A) receptor-mediated response and possibly the sedative effect of whiskey. Although the minor components are present in extremely small quantities compared with ethanol in alcoholic beverages, they may modulate the mood or consciousness of humans through the potentiation of the GABA(A) receptor response after absorption into the brain, because these hydrophobic compounds are easily absorbed into the brain across the blood-brain barrier and are several thousands times as potent as ethanol in the potentiation of the GABA(A) receptor-mediated response. PMID:12926865

  12. GABA(B) receptors and synaptic modulation.

    PubMed

    Kornau, Hans-Christian

    2006-11-01

    GABA(B) receptors modulate transmitter release and postsynaptic membrane potential at various types of central synapses. They function as heterodimers of two related seven-transmembrane domain receptor subunits. Trafficking, activation and signalling of GABA(B) receptors are regulated both by allosteric interactions between the subunits and by the binding of additional proteins. Recent studies have shed light on the roles of GABA(B) receptors in plasticity processes at excitatory synapses. This review summarizes our knowledge of the localization, structure and function of GABA(B) receptors in the central nervous system and their use as drug targets for neurological and psychiatric disorders. PMID:16932937

  13. GABA and GAD expression in the X-organ sinus gland system of the Procambarus clarkii crayfish: inhibition mediated by GABA between X-organ neurons.

    PubMed

    Pérez-Polanco, Paola; Garduño, Julieta; Cebada, Jorge; Zarco, Natanael; Segovia, José; Lamas, Mónica; García, Ubaldo

    2011-09-01

    In crustaceans, the X-organ-sinus gland (XO-SG) neurosecretory system is formed of distinct populations of neurons that produce two families of neuropeptides: crustacean hyperglycemic hormone and adipokinetic hormone/red pigment-concentrating hormone. On the basis of electrophysiological evidence, it has been proposed that γ-aminobutyric acid (GABA) regulates both electrical and secretory activity of the XO-SG system. In this work we observed that depolarizing current pulses to neurons located in the external rim of the X-organ induced repetitive firing that suppressed the spontaneous firing of previously active X-organ neurons. Picrotoxin reversibly blocked this inhibitory effect suggesting that the GABA released from the stimulated neuron inhibited neighboring cells. Immunoperoxidase in X-organ serial sections showed co-localization of GABA and glutamic acid decarboxylase (GAD) including the aforementioned neurons. Immunofluorescence in whole mount preparations showed that two subpopulations of crustacean hyperglycemic hormone-containing neurons colocalized with GABA. The expression of GAD mRNA was determined in crayfish tissue and X-organ single cells by RT-PCR. Bioinformatics analysis shows, within the amplified region, 90.4% consensus and 41.9% identity at the amino acid level compared with Drosophila melanogaster and Caenorhabditis elegans. We suggest that crustacean hyperglycemic hormone-GABA-containing neurons can regulate the excitability of other X-organ neurons that produce different neurohormones. PMID:21626307

  14. GABA transporters control GABAergic neurotransmission in the mouse subplate.

    PubMed

    Unichenko, P; Kirischuk, S; Luhmann, H J

    2015-09-24

    The subplate is a transient layer between the cortical plate and intermediate zone in the developing cortex. Thalamo-cortical axons form temporary synapses on subplate neurons (SPns) before invading the cortical plate. Neuronal activity within the subplate is of critical importance for the development of neocortical circuits and architecture. Although both glutamatergic and GABAergic inputs on SPns were reported, short-term plasticity of GABAergic transmission has not been investigated yet. GABAergic postsynaptic currents (GPSCs) were recorded from SPns in coronal neocortical slices prepared from postnatal day 3-4 mice using whole-cell patch-clamp technique. Evoked GPSCs (eGPSCs) elicited by electrical paired-pulse stimulation demonstrated paired-pulse depression at all interstimulus intervals tested. Baclofen, a specific GABAB receptor (GABABR) agonist, reduced eGPSC amplitudes and increased paired-pulse ratio (PPR), suggesting presynaptic location of functional GABABRs. Baclofen-induced effects were alleviated by (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid (CGP55845), a selective GABABR blocker. Moreover, CGP55845 increased eGPSC amplitudes and decreased PPR even under control conditions, indicating that GABABRs are tonically activated by ambient GABA. Because extracellular GABA concentration is mainly regulated by GABA transporters (GATs), we asked whether GATs release GABA. 1,2,5,6-tetrahydro-1-[2-[[(diphenylmethylene)amino]oxy]ethyl]-3-pyridinecarboxylic acid (NNC-711) (10μM), a selective GAT-1 blocker, increased eGPSC decay time, decreased eGPSC amplitudes and PPR. The two last effects but not the first one were blocked by CGP55845, indicating that GAT-1 blockade causes an elevation of extracellular GABA concentration and in turn activation of extrasynaptic GABAARs and presynaptic GABABRs. 1-[2-[tris(4-methoxyphenyl)methoxy]ethyl]-(S)-3-piperidinecarboxylic acid (SNAP-5114), a specific GAT-2/3 blocker, failed

  15. Decreased Phosphorylated Protein Kinase B (Akt) in Individuals with Autism Associated with High Epidermal Growth Factor Receptor (EGFR) and Low Gamma-Aminobutyric Acid (GABA)

    PubMed Central

    Russo, Anthony J

    2015-01-01

    Dysregulation of the PI3K/AKT/mammalian target of rapamycin (mTOR) pathway could contribute to the pathogenesis of autism spectrum disorders. In this study, phosphorylated Akt concentration was measured in 37 autistic children and 12, gender and age similar neurotypical, controls using an enzyme-linked immunosorbent assay. Akt levels were compared to biomarkers known to be associated with epidermal growth factor receptor (EGFR) and c-Met (hepatocyte growth factor (HGF) receptor) pathways and severity levels of 19 autism-related symptoms. We found phosphorylated Akt levels significantly lower in autistic children and low Akt levels correlated with high EGFR and HGF and low gamma-aminobutyric acid, but not other biomarkers. Low Akt levels also correlated significantly with increased severity of receptive language, conversational language, hypotonia, rocking and pacing, and stimming, These results suggest a relationship between decreased phosphorylated Akt and selected symptom severity in autistic children and support the suggestion that the AKT pathways may be associated with the etiology of autism. PMID:26508828

  16. The Arabidopsis her1 mutant implicates GABA in E-2-hexenal responsiveness.

    PubMed

    Mirabella, Rossana; Rauwerda, Han; Struys, Eduard A; Jakobs, Cornelis; Triantaphylidès, Christian; Haring, Michel A; Schuurink, Robert C

    2008-01-01

    When wounded or attacked by herbivores or pathogens, plants produce a blend of six-carbon alcohols, aldehydes and esters, known as C6-volatiles. Undamaged plants, when exposed to C6-volatiles, respond by inducing defense-related genes and secondary metabolites, suggesting that C6-volatiles can act as signaling molecules regulating plant defense responses. However, to date, the molecular mechanisms by which plants perceive and respond to these volatiles are unknown. To elucidate such mechanisms, we decided to isolate Arabidopsis thaliana mutants in which responses to C6-volatiles were altered. We observed that treatment of Arabidopsis seedlings with the C6-volatile E-2-hexenal inhibits root elongation. Among C6-volatiles this response is specific to E-2-hexenal, and is not dependent on ethylene, jasmonic and salicylic acid. Using this bioassay, we isolated 18 E-2-hexenal-response (her) mutants that showed sustained root growth after E-2-hexenal treatment. Here, we focused on the molecular characterization of one of these mutants, her1. Microarray and map-based cloning revealed that her1 encodes a gamma-amino butyric acid transaminase (GABA-TP), an enzyme that degrades GABA. As a consequence of the mutation, her1 plants accumulate high GABA levels in all their organs. Based on the observation that E-2-hexenal treatment induces GABA accumulation, and that high GABA levels confer resistance to E-2-hexenal, we propose a role for GABA in mediating E-2-hexenal responses. PMID:17971036

  17. mRNA and Protein Levels for GABA[subscript A][alpha]4, [alpha]5, [beta]1 and GABA[subscript B]R1 Receptors are Altered in Brains from Subjects with Autism

    ERIC Educational Resources Information Center

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rooney, Robert J.; Patel, Diven H.; Thuras, Paul D.

    2010-01-01

    We have shown altered expression of gamma-aminobutyric acid A (GABA[subscript A]) and gamma-aminobutyric acid B (GABA[subscript B]) receptors in the brains of subjects with autism. In the current study, we sought to verify our western blotting data for GABBR1 via qRT-PCR and to expand our previous work to measure mRNA and protein levels of 3…

  18. Inhibition of aconitase in citrus fruit callus results in a metabolic shift towards amino acid biosynthesis.

    PubMed

    Degu, Asfaw; Hatew, Bayissa; Nunes-Nesi, Adriano; Shlizerman, Ludmila; Zur, Naftali; Katz, Ehud; Fernie, Alisdair R; Blumwald, Eduardo; Sadka, Avi

    2011-09-01

    Citrate, a major determinant of citrus fruit quality, accumulates early in fruit development and declines towards maturation. The isomerization of citrate to isocitrate, catalyzed by aconitase is a key step in acid metabolism. Inhibition of mitochondrial aconitase activity early in fruit development contributes to acid accumulation, whereas increased cytosolic activity of aconitase causes citrate decline. It was previously hypothesized that the block in mitochondrial aconitase activity, inducing acid accumulation, is caused by citramalate. Here, we investigated the effect of citramalate and of another aconitase inhibitor, oxalomalate, on aconitase activity and regulation in callus originated from juice sacs. These compounds significantly increased citrate content and reduced the enzyme's activity, while slightly inducing its protein level. Citramalate inhibited the mitochondrial, but not cytosolic form of the enzyme. Its external application to mandarin fruits resulted in inhibition of aconitase activity, with a transient increase in fruit acidity detected a few weeks later. The endogenous level of citramalate was analyzed in five citrus varieties: its pattern of accumulation challenged the notion of its action as an endogenous inhibitor of mitochondrial aconitase. Metabolite profiling of oxalomalate-treated cells showed significant increases in a few amino acids and organic acids. The activities of alanine transaminase, aspartate transaminase and aspartate kinase, as well as these of two γ-aminobutyrate (GABA)-shunt enzymes, succinic semialdehyde reductase (SSAR) and succinic semialdehyde dehydrogenase (SSAD) were significantly induced in oxalomalate-treated cells. It is suggested that the increase in citrate, caused by aconitase inhibition, induces amino acid synthesis and the GABA shunt, in accordance with the suggested fate of citrate during the acid decline stage in citrus fruit. PMID:21528417

  19. Shunt regulation electric power system

    NASA Technical Reports Server (NTRS)

    Wright, W. H.; Bless, J. J. (Inventor)

    1971-01-01

    A regulated electric power system having load and return bus lines is described. A plurality of solar cells interconnected in a power supplying relationship and having a power shunt tap point electrically spaced from the bus lines is provided. A power dissipator is connected to the shunt tap point and provides for a controllable dissipation of excess energy supplied by the solar cells. A dissipation driver is coupled to the power dissipator and controls its conductance and dissipation and is also connected to the solar cells in a power taping relationship to derive operating power therefrom. An error signal generator is coupled to the load bus and to a reference signal generator to provide an error output signal which is representative of the difference between the electric parameters existing at the load bus and the reference signal generator. An error amplifier is coupled to the error signal generator and the dissipation driver to provide the driver with controlling signals.

  20. Inhibition of GABA release from slices prepared from several brain regions of rats at various times following a convulsion.

    PubMed Central

    Green, A. R.; Minchin, M. C.; Vincent, N. D.

    1987-01-01

    1 A method is described for the measurement of the K+-evoked release of endogenous gamma-aminobutyric acid (GABA) from slices of rat cortex, hippocampus and striatum. 2 In tissue prepared 30 min following an electroconvulsive shock, K+-evoked GABA release (above basal release) was inhibited by 45% in cortex, 50% in hippocampus and 75% in striatum. A similar inhibition of release was observed with slices prepared from rats in which a convulsion had been induced by flurothyl. There was no change in spontaneous (basal) release following either procedure. 3 An inhibition of K+-evoked endogenous GABA release was also seen in tissue prepared 4 min postictally but not 2 h after the seizure. 4 No difference was observed in the release of [3H]-GABA from preloaded cortical slices prepared from rats given a single electroconvulsive shock. 5 It is proposed that a convulsion results in an inhibition of GABA release and that this inhibition may in turn inhibit GABA synthesis as described in the preceding paper. 6 It is also proposed that changes in the endogenous releasable pool of GABA may not be detected by preloading slices with [3H]-GABA. PMID:3664084

  1. Non-growing Rhodopseudomonas palustris Increases the Hydrogen Gas Yield from Acetate by Shifting from the Glyoxylate Shunt to the Tricarboxylic Acid Cycle*

    PubMed Central

    McKinlay, James B.; Oda, Yasuhiro; Rühl, Martin; Posto, Amanda L.; Sauer, Uwe; Harwood, Caroline S.

    2014-01-01

    When starved for nitrogen, non-growing cells of the photosynthetic bacterium Rhodopseudomonas palustris continue to metabolize acetate and produce H2, an important industrial chemical and potential biofuel. The enzyme nitrogenase catalyzes H2 formation. The highest H2 yields are obtained when cells are deprived of N2 and thus use available electrons to synthesize H2 as the exclusive product of nitrogenase. To understand how R. palustris responds metabolically to increase H2 yields when it is starved for N2, and thus not growing, we tracked changes in biomass composition and global transcript levels. In addition to a 3.5-fold higher H2 yield by non-growing cells we also observed an accumulation of polyhydroxybutyrate to over 30% of the dry cell weight. The transcriptome of R. palustris showed down-regulation of biosynthetic processes and up-regulation of nitrogen scavenging mechanisms in response to N2 starvation but gene expression changes did not point to metabolic activities that could generate the reductant necessary to explain the high H2 yield. We therefore tracked 13C-labeled acetate through central metabolic pathways. We found that non-growing cells shifted their metabolism to use the tricarboxylic acid cycle to metabolize acetate in contrast to growing cells, which used the glyoxylate cycle exclusively. This shift enabled cells to more fully oxidize acetate, providing the necessary reducing power to explain the high H2 yield. PMID:24302724

  2. Cortical GABA Levels in Primary Insomnia

    PubMed Central

    Morgan, Peter T.; Pace-Schott, Edward F.; Mason, Graeme F.; Forselius, Erica; Fasula, Madonna; Valentine, Gerald W.; Sanacora, Gerard

    2012-01-01

    Study Objectives: GABA is increasingly recognized as an important neurotransmitter for the initiation and maintenance of sleep. We sought to measure cortical GABA content through proton magnetic resonance spectroscopy (MRS) in persons with and without primary insomnia, and relate brain GABA levels to polysomnographic sleep measures. Design: Two-group comparison study. Setting: Outpatient study at a university research clinic. Participants: Non-medicated persons with primary insomnia (N = 16) and no sleep complaints (N = 17). Interventions: Participants kept sleep diaries and a regular time-in-bed schedule for 9 days, culminating in 2 consecutive nights of ambulatory polysomnography and a single proton MRS session. The main outcome measure was occipital GABA/creatine ratios; secondary measures included sleep measurements and relationship between polysomnographically measured time awake after sleep onset and occipital GABA content. Measurements and Results: The primary insomnia group was distinguished from persons with no sleep complaints on self-reported and polysomnographically measured sleep. The two groups did not differ in age, sex, body mass index, habitual bed- and wake-times, napping, use of caffeine, or use of cigarettes. Mean occipital GABA level was 12% higher in persons with insomnia than in persons without sleep complaints (P < 0.05). In both groups, GABA levels correlated negatively with polysomnographically measured time awake after sleep onset (P < 0.05). Conclusions: Increased GABA levels in persons with insomnia may reflect an allostatic response to chronic hyperarousal. The preserved, negative relationship between GABA and time awake after sleep onset supports this notion, indicating that the possible allostatic response is adaptive. Citation: Morgan PT; Pace-Schott EF; Mason GF; Forselius E; Fasula M; Valentine GW; Sanacora G. Cortical GABA levels in primary insomnia. SLEEP 2012;35(6):807-814. PMID:22654200

  3. Arterioportal shunts on dynamic computed tomography

    SciTech Connect

    Nakayama, T.; Hiyama, Y.; Ohnishi, K.; Tsuchiya, S.; Kohno, K.; Nakajima, Y.; Okuda, K.

    1983-05-01

    Thirty-two patients, 20 with hepatocelluar carcinoma and 12 with liver cirrhosis, were examined by dynamic computed tomography (CT) using intravenous bolus injection of contrast medium and by celiac angiography. Dynamic CT disclosed arterioportal shunting in four cases of hepatocellular carcinoma and in one of cirrhosis. In three of the former, the arterioportal shunt was adjacent to a mass lesion on CT, suggesting tumor invasion into the portal branch. In one with hepatocellular carcinoma, the shunt was remote from the mass. In the case with cirrhosis, there was no mass. In these last two cases, the shunt might have been caused by prior percutaneous needle puncture. In another case of hepatocellular carcinoma, celiac angiography but not CT demonstrated an arterioportal shunt. Thus, dynamic CT was diagnostic in five of six cases of arteriographically demonstrated arterioportal shunts.

  4. Defects in GABA metabolism affect selective autophagy pathways and are alleviated by mTOR inhibition.

    PubMed

    Lakhani, Ronak; Vogel, Kara R; Till, Andreas; Liu, Jingjing; Burnett, Sarah F; Gibson, K Michael; Subramani, Suresh

    2014-04-01

    In addition to key roles in embryonic neurogenesis and myelinogenesis, γ-aminobutyric acid (GABA) serves as the primary inhibitory mammalian neurotransmitter. In yeast, we have identified a new role for GABA that augments activity of the pivotal kinase, Tor1. GABA inhibits the selective autophagy pathways, mitophagy and pexophagy, through Sch9, the homolog of the mammalian kinase, S6K1, leading to oxidative stress, all of which can be mitigated by the Tor1 inhibitor, rapamycin. To confirm these processes in mammals, we examined the succinic semialdehyde dehydrogenase (SSADH)-deficient mouse model that accumulates supraphysiological GABA in the central nervous system and other tissues. Mutant mice displayed increased mitochondrial numbers in the brain and liver, expected with a defect in mitophagy, and morphologically abnormal mitochondria. Administration of rapamycin to these mice reduced mTOR activity, reduced the elevated mitochondrial numbers, and normalized aberrant antioxidant levels. These results confirm a novel role for GABA in cell signaling and highlight potential pathomechanisms and treatments in various human pathologies, including SSADH deficiency, as well as other diseases characterized by elevated levels of GABA. PMID:24578415

  5. Treatment of GABA from Fermented Rice Germ Ameliorates Caffeine-Induced Sleep Disturbance in Mice

    PubMed Central

    Mabunga, Darine Froy N.; Gonzales, Edson Luck T.; Kim, Hee Jin; Choung, Se Young

    2015-01-01

    γ-Aminobutyric acid (GABA), a major inhibitory neurotransmitter in the mammalian central nervous system, is involved in sleep physiology. Caffeine is widely used psychoactive substance known to induce wakefulness and insomnia to its consumers. This study was performed to examine whether GABA extracts from fermented rice germ ameliorates caffeine-induced sleep disturbance in mice, without affecting spontaneous locomotor activity and motor coordination. Indeed, caffeine (10 mg/kg, i.p.) delayed sleep onset and reduced sleep duration of mice. Conversely, rice germ ferment extracts-GABA treatment (10, 30, or 100 mg/kg, p.o.), especially at 100 mg/kg, normalized the sleep disturbance induced by caffeine. In locomotor tests, rice germ ferment extracts-GABA slightly but not significantly reduced the caffeine-induced increase in locomotor activity without affecting motor coordination. Additionally, rice germ ferment extracts-GABA per se did not affect the spontaneous locomotor activity and motor coordination of mice. In conclusion, rice germ ferment extracts-GABA supplementation can counter the sleep disturbance induced by caffeine, without affecting the general locomotor activities of mice. PMID:25995826

  6. Treatment of GABA from Fermented Rice Germ Ameliorates Caffeine-Induced Sleep Disturbance in Mice.

    PubMed

    Mabunga, Darine Froy N; Gonzales, Edson Luck T; Kim, Hee Jin; Choung, Se Young

    2015-05-01

    γ-Aminobutyric acid (GABA), a major inhibitory neurotransmitter in the mammalian central nervous system, is involved in sleep physiology. Caffeine is widely used psychoactive substance known to induce wakefulness and insomnia to its consumers. This study was performed to examine whether GABA extracts from fermented rice germ ameliorates caffeine-induced sleep disturbance in mice, without affecting spontaneous locomotor activity and motor coordination. Indeed, caffeine (10 mg/kg, i.p.) delayed sleep onset and reduced sleep duration of mice. Conversely, rice germ ferment extracts-GABA treatment (10, 30, or 100 mg/kg, p.o.), especially at 100 mg/kg, normalized the sleep disturbance induced by caffeine. In locomotor tests, rice germ ferment extracts-GABA slightly but not significantly reduced the caffeine-induced increase in locomotor activity without affecting motor coordination. Additionally, rice germ ferment extracts-GABA per se did not affect the spontaneous locomotor activity and motor coordination of mice. In conclusion, rice germ ferment extracts-GABA supplementation can counter the sleep disturbance induced by caffeine, without affecting the general locomotor activities of mice. PMID:25995826

  7. GABA regulates synaptic integration of newly generated neurons in the adult brain

    NASA Astrophysics Data System (ADS)

    Ge, Shaoyu; Goh, Eyleen L. K.; Sailor, Kurt A.; Kitabatake, Yasuji; Ming, Guo-Li; Song, Hongjun

    2006-02-01

    Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (γ-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.

  8. Wavelength-Selective One- and Two-Photon Uncaging of GABA

    PubMed Central

    2013-01-01

    We have synthesized photolabile 7-diethylamino coumarin (DEAC) derivatives of γ-aminobutyric acid (GABA). These caged neurotransmitters efficiently release GABA using linear or nonlinear excitation. We used a new DEAC-based caging chromophore that has a vinyl acrylate substituent at the 3-position that shifts the absorption maximum of DEAC to about 450 nm and thus is named “DEAC450”. DEAC450-caged GABA is photolyzed with a quantum yield of 0.39 and is highly soluble and stable in physiological buffer. We found that DEAC450-caged GABA is relatively inactive toward two-photon excitation at 720 nm, so when paired with a nitroaromatic caged glutamate that is efficiently excited at such wavelengths, we could photorelease glutamate and GABA around single spine heads on neurons in brain slices with excellent wavelength selectivity using two- and one-photon photolysis, respectively. Furthermore, we found that DEAC450-caged GABA could be effectively released using two-photon excitation at 900 nm with spatial resolution of about 3 μm. Taken together, our experiments show that the DEAC450 caging chromophore holds great promise for the development of new caged compounds that will enable wavelength-selective, two-color interrogation of neuronal signaling with excellent subcellular resolution. PMID:24304264

  9. Defects in GABA metabolism affect selective autophagy pathways and are alleviated by mTOR inhibition

    PubMed Central

    Lakhani, Ronak; Vogel, Kara R; Till, Andreas; Liu, Jingjing; Burnett, Sarah F; Gibson, K Michael; Subramani, Suresh

    2014-01-01

    In addition to key roles in embryonic neurogenesis and myelinogenesis, γ-aminobutyric acid (GABA) serves as the primary inhibitory mammalian neurotransmitter. In yeast, we have identified a new role for GABA that augments activity of the pivotal kinase, Tor1. GABA inhibits the selective autophagy pathways, mitophagy and pexophagy, through Sch9, the homolog of the mammalian kinase, S6K1, leading to oxidative stress, all of which can be mitigated by the Tor1 inhibitor, rapamycin. To confirm these processes in mammals, we examined the succinic semialdehyde dehydrogenase (SSADH)-deficient mouse model that accumulates supraphysiological GABA in the central nervous system and other tissues. Mutant mice displayed increased mitochondrial numbers in the brain and liver, expected with a defect in mitophagy, and morphologically abnormal mitochondria. Administration of rapamycin to these mice reduced mTOR activity, reduced the elevated mitochondrial numbers, and normalized aberrant antioxidant levels. These results confirm a novel role for GABA in cell signaling and highlight potential pathomechanisms and treatments in various human pathologies, including SSADH deficiency, as well as other diseases characterized by elevated levels of GABA. PMID:24578415

  10. Dopaminergic neurons inhibit striatal output via non-canonical release of GABA

    PubMed Central

    Tritsch, Nicolas X.; Ding, Jun B.; Sabatini, Bernardo L.

    2012-01-01

    The substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) contain the two largest populations of dopamine (DA)-releasing neurons in the mammalian brain. These neurons extend elaborate projections in striatum, a large subcortical structure implicated in motor planning and reward-based learning. Phasic activation of dopaminergic neurons in response to salient or reward-predicting stimuli is thought to modulate striatal output via the release of DA to promote and reinforce motor action1–4. Here we show that activation of DA neurons in striatal slices rapidly inhibits action potential firing in both direct-and indirect-pathway striatal projection neurons (SPNs) through vesicular release of the inhibitory transmitter γ-aminobutyric acid (GABA). GABA is released directly from dopaminergic axons but in a manner that is independent of the vesicular GABA transporter VGAT. Instead GABA release requires activity of the vesicular monoamine transporter VMAT2, which is the vesicular transporter for DA. Furthermore, VMAT2 expression in GABAergic neurons lacking VGAT is sufficient to sustain GABA release. Thus, these findings expand the repertoire of synaptic mechanisms employed by DA neurons to influence basal ganglia circuits, reveal a novel substrate whose transport is dependent on VMAT2, and demonstrate that GABA can function as a bona fide co-transmitter in monoaminergic neurons. PMID:23034651

  11. 21 CFR 886.3920 - Aqueous shunt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Aqueous shunt. 886.3920 Section 886.3920 Food and... OPHTHALMIC DEVICES Prosthetic Devices § 886.3920 Aqueous shunt. (a) Identification. An aqueous shunt is an... Review Guidance of 2/12/90 (K90-1),” and (3) “Aqueous Shunts—510(k) Submissions.”...

  12. Radiological Insertion and Management of Peritoneovenous Shunt

    SciTech Connect

    Bratby, M. J.; Hussain, F. F. Lopez, A. J.

    2007-06-15

    The purpose of the study was to report our experience of the management of complications following the insertion of a peritoneovenous shunt for intractable malignant ascites. From June 1999 to January 2006, 26 patients underwent insertion of a peritoneovenous shunt for ascites by interventional radiologists. We have used ultrasound and shuntography to assist in the diagnosis of the cause of shunt blockage. Successful techniques for the restoration of the shunt function include port- pumping, stripping of any fibrin sheath, and revision of either the venous or peritoneal catheter. The procedure was initially successful in all patients with continued patency until death in 17. A further four patients are still alive with a functioning shunt. There was one rapid postprocedure death resulting from pulmonary edema. Two patients developed pneumothorax, managed successfully with either a chest drain or aspiration. Shunt dysfunction occurred eight times in seven patients. There were five successful revisions in four patients. Overall, shunt patency has been maintained in 80.1% of patients. Shunt dysfunction is seen in a significant number of patients, but successful revision of the shunt can be achieved in the majority.

  13. {gamma}-aminobutyric acid{sub A} (GABA{sub A}) receptor regulates ERK1/2 phosphorylation in rat hippocampus in high doses of Methyl Tert-Butyl Ether (MTBE)-induced impairment of spatial memory

    SciTech Connect

    Zheng Gang; Zhang Wenbin; Zhang Yun; Chen Yaoming; Liu Mingchao; Yao Ting; Yang Yanxia; Zhao Fang; Li Jingxia; Huang Chuanshu; Luo Wenjing Chen Jingyuan

    2009-04-15

    Experimental and occupational exposure to Methyl Tert-Butyl Ether (MTBE) has been reported to induce neurotoxicological and neurobehavioral effects, such as headache, nausea, dizziness, and disorientation, etc. However, the molecular mechanisms involved in MTBE-induced neurotoxicity are still not well understood. In the present study, we investigated the effects of MTBE on spatial memory and the expression and function of GABA{sub A} receptor in the hippocampus. Our results demonstrated that intraventricular injection of MTBE impaired the performance of the rats in a Morris water maze task, and significantly increased the expression of GABA{sub A} receptor {alpha}1 subunit in the hippocampus. The phosphorylation of ERK1/2 decreased after the MTBE injection. Furthermore, the decreased ability of learning and the reduction of phosphorylated ERK1/2 level of the MTBE-treated rats was partly reversed by bicuculline injected 30 min before the training. These results suggested that MTBE exposure could result in impaired spatial memory. GABA{sub A} receptor may play an important role in the MTBE-induced impairment of learning and memory by regulating the phosphorylation of ERK in the hippocampus.

  14. Comparison between the modes of action of novel meta-diamide and macrocyclic lactone insecticides on the RDL GABA receptor.

    PubMed

    Nakao, Toshifumi; Banba, Shinichi; Hirase, Kangetsu

    2015-05-01

    Macrocyclic lactones, avermectins, and milbemycins are widely used to control arthropods, nematodes, and endo- and ectoparasites in livestock and pets. Their main targets are glutamate-gated chloride channels. Furthermore, macrocyclic lactones reportedly interact with insect RDL γ-aminobutyric acid (GABA) receptors, but their modes of action on insect RDL GABA receptors remain unknown. In this study, we attempted to better understand the modes of action of macrocyclic lactones on RDL GABA receptors. We observed that ivermectin and milbemectin behaved as allosteric agonists of the Drosophila RDL GABA receptor. G336A, G336S, and G336T mutations had profound effects on the activities of ivermectin and milbemectin, and a G336M mutation abolished the allosteric agonist and antagonist activities of these macrocyclic lactones. These results suggest that G336 in TM3 of the Drosophila RDL GABA receptor is important for the binding of macrocyclic lactones. Recently, it has been suggested that a novel RDL GABA receptor antagonist, 3-benzamido-N-(2-bromo-4-perfluoroisopropyl-6-(trifluoromethyl)phenyl)-2-fluorobenzamide (meta-diamide 7), binds to the transmembrane intersubunit pocket near G336 in the Drosophila RDL GABA receptor. Thus, we compared the effects of mutations around G336 and A302 mutations in TM2 on the activities of macrocyclic lactone and meta-diamide 7. The effects of L281C, V340Q, V340N, A302S, and A302N mutations on the activity of meta-diamide 7 differed from those on ivermectin and milbemectin. Molecular modeling studies showed that macrocyclic lactones docked in the intersubunit pocket near G336 in the Drosophila RDL GABA receptor in the open state. In contrast, meta-diamide 7 docked into the Drosophila RDL GABA receptor in the closed state. This suggests that the modes of action of macrocyclic lactone binding to the wild-type Drosophila RDL GABA receptor differ from those of meta-diamide binding. PMID:25987227

  15. The GABA transaminase, ABAT, is essential for mitochondrial nucleoside metabolism

    PubMed Central

    Besse, Arnaud; Wu, Ping; Bruni, Francesco; Donti, Taraka; Graham, Brett H.; Craigen, William J.; McFarland, Robert; Moretti, Paolo; Lalani, Seema; Scott, Kenneth L.; Taylor, Robert W.; Bonnen, Penelope E.

    2015-01-01

    Summary ABAT is a key enzyme responsible for catabolism of principal inhibitory neurotransmitter gamma-aminobutyric acid (GABA). We report an essential role for ABAT in a seemingly unrelated pathway, mitochondrial nucleoside salvage, and demonstrate that mutations in this enzyme cause an autosomal recessive neurometabolic disorder and mtDNA depletion syndrome (MDS). We describe a family with encephalomyopathic MDS caused by a homozygous missense mutation in ABAT that results in elevated GABA in subjects’ brains as well as decreased mtDNA levels in subjects’ fibroblasts. Nucleoside rescue and co-IP experiments pinpoint that ABAT functions in the mitochondrial nucleoside salvage pathway to facilitate conversion of dNDPs to dNTPs. Pharmacological inhibition of ABAT through the irreversible inhibitor Vigabatrin caused depletion of mtDNA in photoreceptor cells that was prevented through addition of dNTPs in cell culture media. This work reveals ABAT as a connection between GABA metabolism and nucleoside metabolism and defines a neurometabolic disorder that includes MDS. PMID:25738457

  16. Phenotyping GABA transaminase deficiency: a case description and literature review.

    PubMed

    Louro, Pedro; Ramos, Lina; Robalo, Conceição; Cancelinha, Cândida; Dinis, Alexandra; Veiga, Ricardo; Pina, Raquel; Rebelo, Olinda; Pop, Ana; Diogo, Luísa; Salomons, Gajja S; Garcia, Paula

    2016-09-01

    Gamma-aminobutyric acid transaminase (GABA-T) deficiency is an autosomal recessive disorder reported in only three unrelated families. It is caused by mutations in the ABAT gene, which encodes 4-aminobutyrate transaminase, an enzyme of GABA catabolism and mitochondrial nucleoside salvage. We report the case of a boy, deceased at 12 months of age, with early-onset epileptic encephalopathy, severe psychomotor retardation, hypotonia, lower-limb hyporeflexia, central hypoventilation, and rapid increase in weight and, to a lesser rate, length and head circumference. He presented signs of premature pubarche, thermal instability, and water-electrolyte imbalance. Serum total testosterone was elevated (43.3 ng/dl; normal range <16), as well as serum growth hormone (7.7 ng/ml; normal range <1). Brain magnetic resonance imaging (MRI) showed decreased myelination and generalized brain atrophy, later confirmed by post-mortem examination. ABAT gene sequencing was performed post-mortem, identifying a homozygous variant c.888G > T (p.Gln296His),not previously described. In vitro analysis concluded that this variant is pathogenic. The clinical features of this patient are similar to those reported so far in GABA-T deficiency. However, distinct mutations may have a different effect on enzymatic activity, which potentially could lead to a variable clinical outcome. Clinical investigation aiming for a diagnosis should not end with the patient's death, as it may allow a more precise genetic counselling for the family. PMID:27376954

  17. Phenibut (beta-phenyl-GABA): a tranquilizer and nootropic drug.

    PubMed

    Lapin, I

    2001-01-01

    Phenibut (beta-phenyl-gamma-aminobutyric acid HCl) is a neuropsychotropic drug that was discovered and introduced into clinical practice in Russia in the 1960s. It has anxiolytic and nootropic (cognition enhancing) effects. It acts as a GABA-mimetic, primarily at GABA(B) and, to some extent, at GABA(A) receptors. It also stimulates dopamine receptors and antagonizes beta-phenethylamine (PEA), a putative endogenous anxiogenic. The psychopharmacological activity of phenibut is similar to that of baclofen, a p-Cl-derivative of phenibut. This article reviews the structure-activity relationship of phenibut and its derivatives. Emphasis is placed on the importance of the position of the phenyl ring, the role of the carboxyl group, and the activity of optical isomers. Comparison of phenibut with piracetam and diazepam reveals similarities and differences in their pharmacological and clinical effects. Phenibut is widely used in Russia to relieve tension, anxiety, and fear, to improve sleep in psychosomatic or neurotic patients; as well as a pre- or post-operative medication. It is also used in the therapy of disorders characterized by asthenia and depression, as well as in post-traumatic stress, stuttering and vestibular disorders. PMID:11830761

  18. Ionotropic GABA and Glutamate Receptor Mutations and Human Neurologic Diseases

    PubMed Central

    Yuan, Hongjie; Low, Chian-Ming; Moody, Olivia A.; Jenkins, Andrew

    2015-01-01

    The advent of whole exome/genome sequencing and the technology-driven reduction in the cost of next-generation sequencing as well as the introduction of diagnostic-targeted sequencing chips have resulted in an unprecedented volume of data directly linking patient genomic variability to disorders of the brain. This information has the potential to transform our understanding of neurologic disorders by improving diagnoses, illuminating the molecular heterogeneity underlying diseases, and identifying new targets for therapeutic treatment. There is a strong history of mutations in GABA receptor genes being involved in neurologic diseases, particularly the epilepsies. In addition, a substantial number of variants and mutations have been found in GABA receptor genes in patients with autism, schizophrenia, and addiction, suggesting potential links between the GABA receptors and these conditions. A new and unexpected outcome from sequencing efforts has been the surprising number of mutations found in glutamate receptor subunits, with the GRIN2A gene encoding the GluN2A N-methyl-d-aspartate receptor subunit being most often affected. These mutations are associated with multiple neurologic conditions, for which seizure disorders comprise the largest group. The GluN2A subunit appears to be a locus for epilepsy, which holds important therapeutic implications. Virtually all α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor mutations, most of which occur within GRIA3, are from patients with intellectual disabilities, suggesting a link to this condition. Similarly, the most common phenotype for kainate receptor variants is intellectual disability. Herein, we summarize the current understanding of disease-associated mutations in ionotropic GABA and glutamate receptor families, and discuss implications regarding the identification of human mutations and treatment of neurologic diseases. PMID:25904555

  19. Headaches in patients with shunts.

    PubMed

    Rekate, Harold L; Kranz, Dory

    2009-03-01

    Headache is one of the most common afflictions suffered by humans. Headache in patients with a shunt triggers a series of events that includes utilization of expensive technologies and often potentially dangerous surgical intervention. The purpose of this study was to determine the incidence of headaches in patients with shunts and, hopefully, the relationship of those headache disorders to the treatment of hydrocephalus. The Hydrocephalus Association maintains a self-reporting database recorded from individuals treated for hydrocephalus and their families. This database was mined to determine the incidence of severe headaches requiring treatment and interfering with normal life in patients who have been treated for hydrocephalus. There were 1,242 responders between the ages of 19 months and 45 years of age. Of these, 1,233 answered the question, "Do you or your family member suffer from (does your child complain of) frequent or chronic headaches?" This subset forms the basis of this study. Three groups were defined by age: children (19 months-12 years), adolescents (13 years-19 years), and young adults (20 years-45 years). Most respondents were initially treated during infancy (before 18 months of age); 84% of children and 69% of both adolescents and young adults were treated very early in life. Severe headaches became a more frequent problem as the age of the population treated for hydrocephalus increased. In terms of frequency and severity of headaches, direct comparisons with epidemiologic studies of normal populations are difficult because of the limitations of data available in the database. However, it is likely that this population has a higher incidence of severe headaches than normal populations. The cost of management of headaches in this population is very high, and the patients are at risk throughout life. Early treatment decisions have a significant effect on later quality of life. Strategies that lead to normalization of cerebrospinal fluid dynamics

  20. [Temporary distance shunting of the anastomosis with a probe shunt].

    PubMed

    Abdulzhalilov, M K; Gaĭbatov, S P

    2003-01-01

    The authors present results of using temporary shunting of intestinal anastomosis in combination with selective lavage of the suture line with a curative antiseptic mixture in experiment in 12 dogs and in clinic in 36 patients with a probe of the authors' original construction. The probe consists of a polychlorvenyl tube with the inner diameter 0.8-1.0 cm, having two inflatable rubber cuffs mounted on the distal end at a distance of 15 cm from each other. After inflation of the cuffs a closed isolated cavity is formed in the zone of intestinal sutures, into which the distal end of the tube is opened for the decompression and selective intraluminal lavage of the anastomosis. The using of the temporary shunting of intestinal anastomosis in combination with selective intraluminal lavage with a mixture of broad-spectrum antibiotics and antioxidant 1.5% Reamberin accelerates the process of the intestinal suture healing, results in favorable course of the postoperative period, prevents complications. PMID:14768105

  1. 21 CFR 874.3820 - Endolymphatic shunt.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Endolymphatic shunt. 874.3820 Section 874.3820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3820 Endolymphatic shunt....

  2. 21 CFR 874.3820 - Endolymphatic shunt.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Endolymphatic shunt. 874.3820 Section 874.3820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3820 Endolymphatic shunt....

  3. 21 CFR 874.3820 - Endolymphatic shunt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endolymphatic shunt. 874.3820 Section 874.3820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3820 Endolymphatic shunt....

  4. 21 CFR 874.3820 - Endolymphatic shunt.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Endolymphatic shunt. 874.3820 Section 874.3820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3820 Endolymphatic shunt....

  5. 21 CFR 874.3820 - Endolymphatic shunt.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Endolymphatic shunt. 874.3820 Section 874.3820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3820 Endolymphatic shunt....

  6. Does the Warren Shunt Correct Hypersplenism?

    PubMed Central

    Mavor, Andrew I. D.; Giles, Geoffrey R.

    1990-01-01

    It has been suggested that patients with bleeding varices and hypersplenism will show significant improvements in leucocyte and platelet counts following distal splenorenal (Warren) shunt surgery. Whilst this may be true in the short term, this report shows that in the long term hypersplenism is not relieved, whereas the lienorenal shunt is associated with a return of normal haematological values. PMID:2282329

  7. 49 CFR 236.802 - Shunt.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Shunt. 236.802 Section 236.802 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.802 Shunt. A...

  8. 49 CFR 234.229 - Shunting sensitivity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Shunting sensitivity. 234.229 Section 234.229 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Maintenance Standards § 234.229 Shunting sensitivity. Each highway-rail...

  9. 49 CFR 236.56 - Shunting sensitivity.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Shunting sensitivity. 236.56 Section 236.56 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION...: All Systems Track Circuits § 236.56 Shunting sensitivity. Each track circuit controlling home...

  10. 49 CFR 236.56 - Shunting sensitivity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Shunting sensitivity. 236.56 Section 236.56 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION...: All Systems Track Circuits § 236.56 Shunting sensitivity. Each track circuit controlling home...

  11. 49 CFR 236.56 - Shunting sensitivity.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Shunting sensitivity. 236.56 Section 236.56 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION...: All Systems Track Circuits § 236.56 Shunting sensitivity. Each track circuit controlling home...

  12. 49 CFR 234.229 - Shunting sensitivity.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Shunting sensitivity. 234.229 Section 234.229 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Maintenance Standards § 234.229 Shunting sensitivity. Each highway-rail...

  13. 49 CFR 236.56 - Shunting sensitivity.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Shunting sensitivity. 236.56 Section 236.56 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION...: All Systems Track Circuits § 236.56 Shunting sensitivity. Each track circuit controlling home...

  14. 49 CFR 236.56 - Shunting sensitivity.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Shunting sensitivity. 236.56 Section 236.56 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION...: All Systems Track Circuits § 236.56 Shunting sensitivity. Each track circuit controlling home...

  15. GABA and glycine in the developing brain.

    PubMed

    Ito, Susumu

    2016-09-01

    GABA and glycine are major inhibitory neurotransmitters in the CNS and act on receptors coupled to chloride channels. During early developmental periods, both GABA and glycine depolarize membrane potentials due to the relatively high intracellular Cl(-) concentration. Therefore, they can act as excitatory neurotransmitters. GABA and glycine are involved in spontaneous neural network activities in the immature CNS such as giant depolarizing potentials (GDPs) in neonatal hippocampal neurons, which are generated by the synchronous activity of GABAergic interneurons and glutamatergic principal neurons. GDPs and GDP-like activities in the developing brains are thought to be important for the activity-dependent functiogenesis through Ca(2+) influx and/or other intracellular signaling pathways activated by depolarization or stimulation of metabotropic receptors. However, if GABA and glycine do not shift from excitatory to inhibitory neurotransmitters at the birth and in maturation, it may result in neural disorders including autism spectrum disorders. PMID:26951057

  16. Congenital Portosystemic Shunt: Our Experience

    PubMed Central

    Timpanaro, Tiziana; Passanisi, Stefano; Sauna, Alessandra; Trombatore, Claudia; Pennisi, Monica; Petrillo, Giuseppe; Smilari, Pierluigi; Greco, Filippo

    2015-01-01

    Introduction. Congenital portosystemic venous malformations are rare abnormalities in which the portal blood drains into a systemic vein and which are characterized by extreme clinical variability. Case Presentations. The authors present two case reports of a congenital extrahepatic portosystemic shunt (Type II). In the first patient, apparently nonspecific symptoms, such as headache and fatigue, proved to be secondary to hypoglycemic episodes related to the presence of a portosystemic shunt, later confirmed on imaging. During portal vein angiography, endovascular embolization of the portocaval fistula achieved occlusion of the anomalous venous tract. In the second patient, affected by Down's syndrome, the diagnosis of a portosystemic malformation was made by routine ultrasonography, performed to rule out concurrent congenital anomalies. Because of the absence of symptoms, we chose to observe this patient. Conclusions. These two case reports demonstrate the clinical heterogeneity of this malformation and the need for a multidisciplinary approach. As part of a proper workup, clinical evaluation must always be followed by radiographic diagnosis. PMID:25709849

  17. Unexpected Photo-instability of 2,6-Sulfonamide-Substituted BODIPYs and Its Application to Caged GABA.

    PubMed

    Takeda, Aoi; Komatsu, Toru; Nomura, Hiroshi; Naka, Masamitsu; Matsuki, Norio; Ikegaya, Yuji; Terai, Takuya; Ueno, Tasuku; Hanaoka, Kenjiro; Nagano, Tetsuo; Urano, Yasuteru

    2016-07-01

    Investigation of the unexpected photo-instability of 2,6-sulfonamide-substituted derivatives of the boron dipyrromethene (BODIPY) fluorophore led to the discovery of a photoreaction accompanied by multiple bond scissions. We characterized the photoproducts and utilized the photoreaction to design a caged γ-aminobutyric acid (GABA) derivative that can release GABA upon irradiation in the visible range (>450 nm). This allowed us to stimulate neural cells in mouse brain slices. PMID:27038199

  18. Neurosteroid Structure-Activity Relationships for Functional Activation of Extrasynaptic δGABA(A) Receptors.

    PubMed

    Carver, Chase Matthew; Reddy, Doodipala Samba

    2016-04-01

    Synaptic GABAA receptors are primary mediators of rapid inhibition in the brain and play a key role in the pathophysiology of epilepsy and other neurologic disorders. The δ-subunit GABAA receptors are expressed extrasynaptically in the dentate gyrus and contribute to tonic inhibition, promoting network shunting as well as reducing seizure susceptibility. However, the neurosteroid structure-function relationship at δGABA(A) receptors within the native hippocampus neurons remains unclear. Here we report a structure-activity relationship for neurosteroid modulation of extrasynaptic GABAA receptor-mediated tonic inhibition in the murine dentate gyrus granule cells. We recorded neurosteroid allosteric potentiation of GABA as well as direct activation of tonic currents using a wide array of natural and synthetic neurosteroids. Our results shows that, for all neurosteroids, the C3α-OH group remains obligatory for extrasynaptic receptor functional activity, as C3β-OH epimers were inactive in activating tonic currents. Allopregnanolone and related pregnane analogs exhibited the highest potency and maximal efficacy in promoting tonic currents. Alterations at the C17 or C20 region of the neurosteroid molecule drastically altered the transduction kinetics of tonic current activation. The androstane analogs had the weakest modulatory response among the analogs tested. Neurosteroid potentiation of tonic currents was completely (approximately 95%) diminished in granule cells from δ-knockout mice, suggesting that δ-subunit receptors are essential for neurosteroid activity. The neurosteroid sensitivity of δGABA(A) receptors was confirmed at the systems level using a 6-Hz seizure test. A consensus neurosteroid pharmacophore model at extrasynaptic δGABA(A) receptors is proposed based on a structure-activity relationship for activation of tonic current and seizure protection. PMID:26857959

  19. The glutamine-glutamate/GABA cycle: function, regional differences in glutamate and GABA production and effects of interference with GABA metabolism.

    PubMed

    Walls, Anne B; Waagepetersen, Helle S; Bak, Lasse K; Schousboe, Arne; Sonnewald, Ursula

    2015-02-01

    The operation of a glutamine-glutamate/GABA cycle in the brain consisting of the transfer of glutamine from astrocytes to neurons and neurotransmitter glutamate or GABA from neurons to astrocytes is a well-known concept. In neurons, glutamine is not only used for energy production and protein synthesis, as in other cells, but is also an essential precursor for biosynthesis of amino acid neurotransmitters. An excellent tool for the study of glutamine transfer from astrocytes to neurons is [(14)C]acetate or [(13)C]acetate and the glial specific enzyme inhibitors, i.e. the glutamine synthetase inhibitor methionine sulfoximine and the tricarboxylic acid cycle (aconitase) inhibitors fluoro-acetate and -citrate. Acetate is metabolized exclusively by glial cells, and [(13)C]acetate is thus capable when used in combination with magnetic resonance spectroscopy or mass spectrometry, to provide information about glutamine transfer. The present review will give information about glutamine trafficking and the tools used to map it as exemplified by discussions of published work employing brain cell cultures as well as intact animals. It will be documented that considerably more glutamine is transferred from astrocytes to glutamatergic than to GABAergic neurons. However, glutamine does have an important role in GABAergic neurons despite their capability of re-utilizing their neurotransmitter by re-uptake. PMID:25380696

  20. Comparative mapping of GABA-immunoreactive neurons in the central nervous systems of nudibranch molluscs.

    PubMed

    Gunaratne, Charuni A; Sakurai, Akira; Katz, Paul S

    2014-03-01

    The relative simplicity of certain invertebrate nervous systems, such as those of gastropod molluscs, allows behaviors to be dissected at the level of small neural circuits composed of individually identifiable neurons. Elucidating the neurotransmitter phenotype of neurons in neural circuits is important for understanding how those neural circuits function. In this study, we examined the distribution of γ-aminobutyric-acid;-immunoreactive (GABA-ir) neurons in four species of sea slugs (Mollusca, Gastropoda, Opisthobranchia, Nudibranchia): Tritonia diomedea, Melibe leonina, Dendronotus iris, and Hermissenda crassicornis. We found consistent patterns of GABA immunoreactivity in the pedal and cerebral-pleural ganglia across species. In particular, there were bilateral clusters in the lateral and medial regions of the dorsal surface of the cerebral ganglia as well as a cluster on the ventral surface of the pedal ganglia. There were also individual GABA-ir neurons that were recognizable across species. The invariant presence of these individual neurons and clusters suggests that they are homologous, although there were interspecies differences in the numbers of neurons in the clusters. The GABAergic system was largely restricted to the central nervous system, with the majority of axons confined to ganglionic connectives and commissures, suggesting a central, integrative role for GABA. GABA was a candidate inhibitory neurotransmitter for neurons in central pattern generator (CPG) circuits underlying swimming behaviors in these species, however none of the known swim CPG neurons were GABA-ir. Although the functions of these GABA-ir neurons are not known, it is clear that their presence has been strongly conserved across nudibranchs. PMID:24638845

  1. Meroterpenoid Chrodrimanins Are Selective and Potent Blockers of Insect GABA-Gated Chloride Channels

    PubMed Central

    Ihara, Makoto; Ling, Yun; Yang, Xinling; Kai, Kenji; Hayashi, Hideo; Matsuda, Kazuhiko

    2015-01-01

    Meroterpenoid chrodrimanins, produced from Talaromyces sp. YO-2, are known to paralyze silkworm (Bombyx mori) larvae, but their target is unknown. We have investigated the actions of chrodrimanin B on ligand-gated ion channels of silkworm larval neurons using patch-clamp electrophysiology. Chrodrimanin B had no effect on membrane currents when tested alone at 1 μM. However, it completely blocked the γ-aminobutyric acid (GABA)-induced current and showed less pronounced actions on acetylcholine- and L-glutamate-induced currents, when delivered at 1 μM for 1 min prior to co-application with transmitter GABA. Thus, chrodrimanins were also tested on a wild-type isoform of the B. mori GABA receptor (GABAR) RDL using two-electrode voltage-clamp electrophysiology. Chrodrimanin B attenuated the peak current amplitude of the GABA response of RDL with an IC50 of 1.66 nM. The order of the GABAR-blocking potency of chrodrimanins B > D > A was in accordance with their reported insecticidal potency. Chrodrimanin B had no open channel blocking action when tested at 3 nM on the GABA response of RDL. Co-application with 3 nM chrodrimanin B shifted the GABA concentration response curve to a higher concentration and further increase of chrodrimanin B concentration to10 nM; it reduced maximum current amplitude of the GABA response, pointing to a high-affinity competitive action and a lower affinity non-competitive action. The A282S;T286V double mutation of RDL, which impairs the actions of fipronil, hardly affected the blocking action of chrodrimanin B, indicating a binding site of chrodrimanin B distinct from that of fipronil. Chrodrimanin B showed approximately 1,000-fold lower blocking action on human α1β2γ2 GABAR compared to RDL and thus is a selective blocker of insect GABARs. PMID:25902139

  2. Meroterpenoid Chrodrimanins Are Selective and Potent Blockers of Insect GABA-Gated Chloride Channels.

    PubMed

    Xu, Yan; Furutani, Shogo; Ihara, Makoto; Ling, Yun; Yang, Xinling; Kai, Kenji; Hayashi, Hideo; Matsuda, Kazuhiko

    2015-01-01

    Meroterpenoid chrodrimanins, produced from Talaromyces sp. YO-2, are known to paralyze silkworm (Bombyx mori) larvae, but their target is unknown. We have investigated the actions of chrodrimanin B on ligand-gated ion channels of silkworm larval neurons using patch-clamp electrophysiology. Chrodrimanin B had no effect on membrane currents when tested alone at 1 μM. However, it completely blocked the γ-aminobutyric acid (GABA)-induced current and showed less pronounced actions on acetylcholine- and L-glutamate-induced currents, when delivered at 1 μM for 1 min prior to co-application with transmitter GABA. Thus, chrodrimanins were also tested on a wild-type isoform of the B. mori GABA receptor (GABAR) RDL using two-electrode voltage-clamp electrophysiology. Chrodrimanin B attenuated the peak current amplitude of the GABA response of RDL with an IC50 of 1.66 nM. The order of the GABAR-blocking potency of chrodrimanins B > D > A was in accordance with their reported insecticidal potency. Chrodrimanin B had no open channel blocking action when tested at 3 nM on the GABA response of RDL. Co-application with 3 nM chrodrimanin B shifted the GABA concentration response curve to a higher concentration and further increase of chrodrimanin B concentration to 10 nM; it reduced maximum current amplitude of the GABA response, pointing to a high-affinity competitive action and a lower affinity non-competitive action. The A282S;T286V double mutation of RDL, which impairs the actions of fipronil, hardly affected the blocking action of chrodrimanin B, indicating a binding site of chrodrimanin B distinct from that of fipronil. Chrodrimanin B showed approximately 1,000-fold lower blocking action on human α1β2γ2 GABAR compared to RDL and thus is a selective blocker of insect GABARs. PMID:25902139

  3. Brain regional distribution of GABAA receptors exhibiting atypical GABA agonism: roles of receptor subunits

    PubMed Central

    Halonen, Lauri M.; Sinkkonen, Saku T.; Chandra, Dev; Homanics, Gregg E.; Korpi, Esa R.

    2009-01-01

    The major inhibitory neurotransmitter in the brain, γ-aminobutyric acid (GABA), has only partial efficacy at certain subtypes of GABAA receptors. To characterize these minor receptor populations in rat and mouse brains, we used autoradiographic imaging of t-butylbicyclophosphoro[35S]thionate ([35S]TBPS) binding to GABAA receptors in brain sections and compared the displacing capacities of 10 mM GABA and 1 mM 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), a competitive GABA-site agonist. Brains from GABAA receptor α1, α4, δ, and α4 + δ subunit knockout (KO) mouse lines were used to understand the contribution of these particular receptor subunits to “GABA-insensitive” (GIS) [35S]TBPS binding. THIP displaced more [35S]TBPS binding than GABA in several brain regions, indicating that THIP also inhibited GIS-binding. In these regions, GABA prevented the effect of THIP on GIS-binding. GIS-binding was increased in the cerebellar granule cell layer of δ KO and α4 + δ KO mice, being only slightly diminished in that of α1 KO mice. In the thalamus and some other forebrain regions of wild-type mice, a significant amount of GIS-binding was detected. This GIS-binding was higher in α4 KO mice. However, it was fully abolished in α1 KO mice, indicating that the α1 subunit was obligatory for the GIS-binding in the forebrain. Our results suggest that native GABAA receptors in brain sections showing reduced displacing capacity of [35S]TBPS binding by GABA (partial agonism) minimally require the assembly of α1 and β subunits in the forebrain and of α6 and β subunits in the cerebellar granule cell layer. These receptors may function as extrasynaptic GABAA receptors. PMID:19397945

  4. [Systemic-pulmonary artery shunt using Golaski graft: trial for measurement of the shunt flow].

    PubMed

    Togo, T; Ito, T; Hata, M; Murata, S; Osaka, K; Komatsu, T; Tabayashi, K; Haneda, K; Mohri, T

    1995-03-01

    For the systemic-pulmonary artery shunt operation, the modified Blalock-Taussig shunt was the first choice for procedure in our institution. Since 1990, Golaski knitted Dacron graft (4 or 5 mm in diameter) was used for the prosthesis. Ex-vivo flow calibration of the electromagnetic flow meter (Nihon Koden, MFV-3100) to Golaski graft showed good correlation between the real flow and value measured by the electromagnetic flow meter. Shunt flow was measured in the consecutive clinical fifteen cases. The shunt flow per body surface area of the patient who required additional shunt operation was 721 ml/min/m2 and one patient in whom the congestive heart failure developed after the shunt operation, had the shunt flow of 3,022 ml/min/m2. The adequate shunt flow in these cases was ranged from 745 to 2,820 ml/min/m2 (mean +/- 1 SD, 1,490 +/- 587.8). Therefore we performed the systemic-pulmonary artery shunt operation using Golaski graft to get the shunt flow of 1,000 ml/min/m2 (approximately a third of cardiac index) for the guide of good results. PMID:7897896

  5. Synaptic GABA release prevents GABA transporter type-1 reversal during excessive network activity

    PubMed Central

    Savtchenko, Leonid; Megalogeni, Maria; Rusakov, Dmitri A.; Walker, Matthew C.; Pavlov, Ivan

    2015-01-01

    GABA transporters control extracellular GABA, which regulates the key aspects of neuronal and network behaviour. A prevailing view is that modest neuronal depolarization results in GABA transporter type-1 (GAT-1) reversal causing non-vesicular GABA release into the extracellular space during intense network activity. This has important implications for GABA uptake-targeting therapies. Here we combined a realistic kinetic model of GAT-1 with experimental measurements of tonic GABAA receptor currents in ex vivo hippocampal slices to examine GAT-1 operation under varying network conditions. Our simulations predict that synaptic GABA release during network activity robustly prevents GAT-1 reversal. We test this in the 0 Mg2+ model of epileptiform discharges using slices from healthy and chronically epileptic rats and find that epileptiform activity is associated with increased synaptic GABA release and is not accompanied by GAT-1 reversal. We conclude that sustained efflux of GABA through GAT-1 is unlikely to occur during physiological or pathological network activity. PMID:25798861

  6. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    NASA Astrophysics Data System (ADS)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S.; Santhakumar, Vijayalakshmi

    2013-12-01

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (EGABA). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (gGABA-extra) and experimentally identified, seizure-induced changes in gGABA-extra and EGABA influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40-100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30-40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing gGABA-extra reduced the frequency and coherence of FS-BC firing when EGABA was shunting (-74 mV), but failed to alter average FS-BC frequency when EGABA was depolarizing

  7. The Preventable Shunt Revision Rate: a potential quality metric for pediatric shunt surgery.

    PubMed

    Venable, Garrett T; Rossi, Nicholas B; Morgan Jones, G; Khan, Nickalus R; Smalley, Zachary S; Roberts, Mallory L; Klimo, Paul

    2016-07-01

    OBJECTIVE Shunt surgery consumes a large amount of pediatric neurosurgical health care resources. Although many studies have sought to identify risk factors for shunt failure, there is no consensus within the literature on variables that are predictive or protective. In this era of "quality outcome measures," some authors have proposed various metrics to assess quality outcomes for shunt surgery. In this paper, the Preventable Shunt Revision Rate (PSRR) is proposed as a novel quality metric. METHODS An institutional shunt database was queried to identify all shunt surgeries performed from January 1, 2010, to December 31, 2014, at Le Bonheur Children's Hospital. Patients' records were reviewed for 90 days following each "index" shunt surgery to identify those patients who required a return to the operating room. Clinical, demographic, and radiological factors were reviewed for each index operation, and each failure was analyzed for potentially preventable causes. RESULTS During the study period, there were 927 de novo or revision shunt operations in 525 patients. A return to the operating room occurred 202 times within 90 days of shunt surgery in 927 index surgeries (21.8%). In 67 cases (33% of failures), the revision surgery was due to potentially preventable causes, defined as inaccurate proximal or distal catheter placement, infection, or inadequately secured or assembled shunt apparatus. Comparing cases in which failure was due to preventable causes and those in which it was due to nonpreventable causes showed that in cases in which failure was due to preventable causes, the patients were significantly younger (median 3.1 vs 6.7 years, p = 0.01) and the failure was more likely to occur within 30 days of the index surgery (80.6% vs 64.4% of cases, p = 0.02). The most common causes of preventable shunt failure were inaccurate proximal catheter placement (33 [49.3%] of 67 cases) and infection (28 [41.8%] of 67 cases). No variables were found to be predictive of

  8. 21 CFR 882.4545 - Shunt system implantation instrument.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... implantation instrument. (a) Identification. A shunt system implantation instrument is an instrument used in the implantation of cerebrospinal fluid shunts, and includes tunneling instruments for passing shunt... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Shunt system implantation instrument....

  9. The role of the GABA system in amphetamine-type stimulant use disorders

    PubMed Central

    Jiao, Dongliang; liu, Yao; Li, Xiaohong; liu, Jinggen; Zhao, Min

    2015-01-01

    Abuse of amphetamine-type stimulants (ATS) has become a global public health problem. ATS causes severe neurotoxicity, which could lead to addiction and could induce psychotic disorders or cognitive dysfunctions. However, until now, there has been a lack of effective medicines for treating ATS-related problems. Findings from recent studies indicate that in addition to the traditional dopamine-ergic system, the GABA (gamma-aminobutyric acid)-ergic system plays an important role in ATS abuse. However, the exact mechanisms of the GABA-ergic system in amphetamine-type stimulant use disorders are not fully understood. This review discusses the role of the GABA-ergic system in ATS use disorders, including ATS induced psychotic disorders and cognitive dysfunctions. We conclude that the GABA-ergic system are importantly involved in the development of ATS use disorders through multiple pathways, and that therapies or medicines that target specific members of the GABA-ergic system may be novel effective interventions for the treatment of ATS use disorders. PMID:25999814

  10. Effect of pressure on (/sup 3/H)GABA release by synaptosomes isolated from cerebral cortex

    SciTech Connect

    Gilman, S.C.; Colton, J.S.; Hallenbeck, J.M.

    1986-12-01

    High hydrostatic pressure has been shown to produce neurological changes in humans which manifest, in part, as tremor, myoclonic jerks, electroencephalographic changes, and convulsions. This clinical pattern has been termed high-pressure nervous syndrome (HPNS). These symptoms may represent an alteration in synaptic transmission in the central nervous system with the inhibitory neural pathways being affected in particular. Since gamma-aminobutyric acid (GABA) transmission has been implicated in other seizure disorders, it was of interest to study GABAergic function at high pressure. Isolated synaptosomes were used to follow GABA release at 67.7 ATA of pressure. The major observation was a 33% depression in total (/sup 3/H)GABA efflux from depolarized cerebrocortical synaptosomes at 67.7 ATA. The Ca2+-dependent component of release was found to be completely blocked during the 1st min of (/sup 3/H)GABA efflux with a slow rise over the subsequent 3 min. These findings lead us to conclude that high pressure interferes with the intraterminal cascade for Ca2+-dependent release of GABA.

  11. GABA/benzodiazepine receptor complex in long-sleep and short-sleep mice

    SciTech Connect

    Marley, R.J.

    1987-01-01

    LS mice are more sensitive to benzodiazepine-induced anesthesia; however, the two lines do not differ in their hypothermic response to flurazepam. SS mice are more resistant to 3-mercaptopropionic acid-induced seizures and more sensitive to the anticonvulsant effects of benzodiazepines. The various correlates of GABA and benzodiazepine actions probably are the results of different mechanisms of action and/or differential regional control. Bicuculline competition for /sup 3/H-GABA binding sites is greater in SS cerebellar tissue and /sup 3/H-flunitrazepam binding is greater in the mid-brain region of LS mice. GABA enhancement of /sup 3/H-flunitrazepma binding is greater in SS mice. Ethanol also enhances /sup 3/H-flunitrazepam binding and increases the levels of /sup 3/H-flunitrazepam binding above those observed for GABA. Using correlational techniques on data from LS and SS mice and several inbred mouse strains, it was demonstrated that a positive relationship exists between the degree of receptor coupling within the GABA receptor complex and the degree of resistance to seizures.

  12. Pneumocephalus following ventriculoperitoneal shunt. Case report.

    PubMed

    Pitts, L H; Wilson, C B; Dedo, H H; Weyand, R

    1975-11-01

    The authors describe a case of massive pneumocephalus following ventriculoperitoneal shunting for hydrocephalus. After multiple diagnostic and surgical procedures, congenital defects in the tegmen tympani of both temporal bones were identified as the sources for entry of air. A functioning shunt intermittently established negative intracranial pressure and allowed ingress of air through these abnormalities; when the shunt was occluded, air did not enter the skull, and there was no cerebrospinal fluid leakage. Repair of these middle ear defects prevented further recurrence of pneumocephalus. PMID:1181396

  13. Current concepts in congenital portosystemic shunts.

    PubMed

    Mankin, Kelley M Thieman

    2015-05-01

    Congenital portosystemic shunts (CPSS) are vascular abnormalities that allow portal blood to bypass the liver and join systemic circulation. Laboratory and imaging studies are performed preoperatively to diagnose CPSS and hopefully identify an anatomic location of the shunt. CPSS can be found in different locations in both small and large breed dogs. Most CPSS are best managed surgically. The goal of surgical management of CPSS is to slowly redirect blood from the shunting vessel through the portal vasculature while avoiding portal hypertension. Many surgical management methods are available, including open and less invasive procedures, such as laparoscopy and embolization. PMID:25737000

  14. Canine congenital portosystemic shunts: Disconnections dissected.

    PubMed

    Van den Bossche, L; van Steenbeek, F G

    2016-05-01

    Canine congenital portosystemic shunts (CPSS) are vascular anomalies that connect the portal vein with the systemic circulation, therefore bypassing the hepatic parenchyma. Portosystemic shunts exist in two different subtypes: extrahepatic and intrahepatic. This congenital disorder is also described in mice, cat, sheep and man. Research has been focused on pathophysiology, diagnostics and treatment of CPSS and this has resulted in increased knowledge, although the aetiology of the disease remains unclear. This review focuses on the aetiology and genetic basis of both intra- and extrahepatic shunts. PMID:27061656

  15. Ventriculoperitoneal Shunt Peritoneal Catheter Knot Formation

    PubMed Central

    Ul-Haq, Anwar; Al-Otaibi, Faisal; Alshanafey, Saud; Sabbagh, Mohamed Diya; Al Shail, Essam

    2013-01-01

    The ventriculoperitoneal (VP) shunt is a common procedure in pediatric neurosurgery that carries a risk of complications at cranial and abdominal sites. We report on the case of a child with shunt infection and malfunction. The peritoneal catheter was tethered within the abdominal cavity, precluding its removal. Subsequently, laparoscopic exploration identified a knot at the distal end of the peritoneal catheter around the omentum. A new VP shunt was inserted after the infection was healed. This type of complication occurs rarely, so there are a limited number of case reports in the literature. This report is complemented by a literature review. PMID:24109528

  16. “Brain MR spectroscopy in autism spectrum disorder—the GABA excitatory/inhibitory imbalance theory revisited”

    PubMed Central

    Brix, Maiken K.; Ersland, Lars; Hugdahl, Kenneth; Grüner, Renate; Posserud, Maj-Britt; Hammar, Åsa; Craven, Alexander R.; Noeske, Ralph; Evans, C. John; Walker, Hanne B.; Midtvedt, Tore; Beyer, Mona K.

    2015-01-01

    Magnetic resonance spectroscopy (MRS) from voxels placed in the left anterior cingulate cortex (ACC) was measured from 14 boys with Autism Spectrum Disorder (ASD) and 24 gender and age-matched typically developing (TD) control group. Our main aims were to compare the concentration of γ-aminobutyric acid (GABA) between the two groups, and to investigate the relationship between brain metabolites and autism symptom severity in the ASD group. We did find a significant negative correlation in the ASD group between Autism Spectrum Screening Questionnaire (ASSQ) and GABA+/Cr, which may imply that severity of symptoms in ASD is associated with differences in the level of GABA in the brain, supporting the excitatory/inhibitory (E/I) imbalance theory. However we did not find a significant difference between the two groups in GABA levels. PMID:26157380

  17. Mutations in the GABA Transporter SLC6A1 Cause Epilepsy with Myoclonic-Atonic Seizures

    PubMed Central

    Carvill, Gemma L.; McMahon, Jacinta M.; Schneider, Amy; Zemel, Matthew; Myers, Candace T.; Saykally, Julia; Nguyen, John; Robbiano, Angela; Zara, Federico; Specchio, Nicola; Mecarelli, Oriano; Smith, Robert L.; Leventer, Richard J.; Møller, Rikke S.; Nikanorova, Marina; Dimova, Petia; Jordanova, Albena; Petrou, Steven; Helbig, Ingo; Striano, Pasquale; Weckhuysen, Sarah; Berkovic, Samuel F.; Scheffer, Ingrid E.; Mefford, Heather C.

    2015-01-01

    GAT-1, encoded by SLC6A1, is one of the major gamma-aminobutyric acid (GABA) transporters in the brain and is responsible for re-uptake of GABA from the synapse. In this study, targeted resequencing of 644 individuals with epileptic encephalopathies led to the identification of six SLC6A1 mutations in seven individuals, all of whom have epilepsy with myoclonic-atonic seizures (MAE). We describe two truncations and four missense alterations, all of which most likely lead to loss of function of GAT-1 and thus reduced GABA re-uptake from the synapse. These individuals share many of the electrophysiological properties of Gat1-deficient mice, including spontaneous spike-wave discharges. Overall, pathogenic mutations occurred in 6/160 individuals with MAE, accounting for ∼4% of unsolved MAE cases. PMID:25865495

  18. Ornithine aminotransferase vs. GABA aminotransferase. Implications for the design of new anticancer drugs

    PubMed Central

    Lee, Hyunbeom; Juncosa, Jose I.; Silverman, Richard B.

    2015-01-01

    Ornithine aminotransferase (OAT) and γ-aminobutyric acid aminotransferase (GABA-AT) are classified under the same evolutionary subgroup and share a large portion of structural, functional, and mechanistic features. Therefore, it is not surprising that many molecules that bind to GABA-AT also bind well to OAT. Unlike GABA-AT, OAT had not been viewed as a potential therapeutic target until recently; consequently, the number of therapeutically viable molecules that target OAT is very limited. In this review the two enzymes are compared with respect to their active site structures, catalytic and inactivation mechanisms, and selective inhibitors. Insight is offered that could aid in the design and development of new selective inhibitors of OAT for the treatment of cancer. PMID:25145640

  19. Genetic differences in the ethanol sensitivity of GABA sub A receptors expressed in Xenopus oocytes

    SciTech Connect

    Wafford, K.A.; Burnett, D.M.; Dunwiddie, T.V.; Harris, R.A. )

    1990-07-20

    Animal lines selected for differences in drug sensitivity can be used to help determine the molecular basis of drug action. Long-sleep (LS) and short-sleep (SS) mice differ markedly in their genetic sensitivity to ethanol. To investigate the molecular basis for this difference, mRNA from brains of LS and SS mice was expressed in Xenopus oocytes and the ethanol sensitivity of gamma-aminobutyric acid A (GABA{sub A})- and N-methyl D-aspartate (NMDA) - activated ion channels was tested. Ethanol facilitated GABA responses in oocytes injected with mRNA from LS mice but antagonized responses in oocytes injected with mRNA from SS animals. Ethanol inhibited NMDA responses equally in the two lines. Thus, genes coding for the GABA{sub A} receptor or associated proteins may be critical determinants of individual differences in ethanol sensitivity.

  20. Reversible occlusion shunt for intraventricular chemotherapy in shunt-dependent brain tumor patients.

    PubMed

    Czech, T; Reinprecht, A; Dietrich, W; Hainfellner, J A; Slavc, I

    1997-01-01

    Intraventricular chemotherapy is increasingly used in the treatment of pediatric brain tumors with leptomeningeal seeding. However, some patients are shunt dependent after surgery, probably due to adhesions in the area of surgery. To avoid drug diversion in these patients we connected the reservoir to a reversible occlusion device. Over a 2-year period a shunt value with an on-off device was inserted into the shunt assembly of eight children with various brain tumors with a poor prognosis undergoing intraventricular chemotherapy. All eight patients had tumor cells in the ventricular cerebrospinal fluid (CSF) and/or metastases by magnetic resonance imaging. The number of intraventricular drug applications ranged from 10 to 51. No shunt malfunctions or shunt-related infections occurred. The temporary closure of the shunt after drug delivery was well tolerated. In all six children with tumor cells in the ventricular CSF a negative cytology was achieved over a 3- to 8-week period. PMID:9211542

  1. Influence of GABA and GABA-producing Lactobacillus brevis DPC 6108 on the development of diabetes in a streptozotocin rat model.

    PubMed

    Marques, T M; Patterson, E; Wall, R; O'Sullivan, O; Fitzgerald, G F; Cotter, P D; Dinan, T G; Cryan, J F; Ross, R P; Stanton, C

    2016-06-01

    The aim of this study was to investigate if dietary administration of γ-aminobutyric acid (GABA)-producing Lactobacillus brevis DPC 6108 and pure GABA exert protective effects against the development of diabetes in streptozotocin (STZ)-induced diabetic Sprague Dawley rats. In a first experiment, healthy rats were divided in 3 groups (n=10/group) receiving placebo, 2.6 mg/kg body weight (bw) pure GABA or L. brevis DPC 6108 (~10(9)microorganisms). In a second experiment, rats (n=15/group) were randomised to five groups and four of these received an injection of STZ to induce type 1 diabetes. Diabetic and non-diabetic controls received placebo [4% (w/v) yeast extract in dH2O], while the other three diabetic groups received one of the following dietary supplements: 2.6 mg/kg bw GABA (low GABA), 200 mg/kg bw GABA (high GABA) or ~10(9) L. brevis DPC 6108. L. brevis DPC 6108 supplementation was associated with increased serum insulin levels (P<0.05), but did not alter other metabolic markers in healthy rats. Diabetes induced by STZ injection decreased body weight (P<0.05), increased intestinal length (P<0.05) and stimulated water and food intake. Insulin was decreased (P<0.05), whereas glucose was increased (P<0.001) in all diabetic groups, compared with non-diabetic controls. A decrease (P<0.01) in glucose levels was observed in diabetic rats receiving L. brevis DPC 6108, compared with diabetic-controls. Both the composition and diversity of the intestinal microbiota were affected by diabetes. Microbial diversity in diabetic rats supplemented with low GABA was not reduced (P>0.05), compared with non-diabetic controls while all other diabetic groups displayed reduced diversity (P<0.05). L. brevis DPC 6108 attenuated hyperglycaemia induced by diabetes but additional studies are needed to understand the mechanisms involved in this reduction. PMID:27013462

  2. The Relation Between GABA and L-Arginine Levels With Some Stroke Risk Factors in Acute Ischemic Stroke Patients

    PubMed Central

    Hosinian, Mohsen; Qujeq, Durdi; Ahmadi Ahangar, Alijan

    2016-01-01

    Changes in extra and intracellular neurotransmitter amino acids concentration in the early stage of acute cerebral ischemia have been reported. In this the study, serum level of gamma aminobutyric acid (GABA) and L-Arginine in acute ischemic stroke patients was assessed. 60 patients with acute ischemic stroke and sixthy healthy volunteers as a control group were assessed. Serum GABA was measured with modified enzymatic method and serum L- Arginine was measured by modified Sakaguchi method. Serum GABA level in stroke cases was lower than that of the control group. There was no relationship between GABA level and age or gender. Also, no significant correlation was observed between GABA levels with ischemic stroke risk factors such as smoking, diabetes mellitus, and hypertension. Serum L- Arginine level in patients was slightly increased in comparison with control group. There was a positive relationship between serum L- Arginine level and acute ischemic stroke risk factors. Serum GABA level was reduced in patients and had no correlation with acute ischemic stroke risk factors. PMID:27478806

  3. The Relation Between GABA and L-Arginine Levels With Some Stroke Risk Factors in Acute Ischemic Stroke Patients.

    PubMed

    Hosinian, Mohsen; Qujeq, Durdi; Ahmadi Ahangar, Alijan

    2016-01-01

    Changes in extra and intracellular neurotransmitter amino acids concentration in the early stage of acute cerebral ischemia have been reported. In this the study, serum level of gamma aminobutyric acid (GABA) and L-Arginine in acute ischemic stroke patients was assessed. 60 patients with acute ischemic stroke and sixthy healthy volunteers as a control group were assessed. Serum GABA was measured with modified enzymatic method and serum L- Arginine was measured by modified Sakaguchi method. Serum GABA level in stroke cases was lower than that of the control group. There was no relationship between GABA level and age or gender. Also, no significant correlation was observed between GABA levels with ischemic stroke risk factors such as smoking, diabetes mellitus, and hypertension. Serum L- Arginine level in patients was slightly increased in comparison with control group. There was a positive relationship between serum L- Arginine level and acute ischemic stroke risk factors. Serum GABA level was reduced in patients and had no correlation with acute ischemic stroke risk factors. PMID:27478806

  4. Scintisplenoportography in assessing patency of distal splenorenal shunts

    SciTech Connect

    Teres, J.; Herranz, R.; Visa, J.; Lomena, F.; Pera, C.; Rodes, J.

    1983-06-01

    Scintisplenoportography was performed on 33 occasions in 28 cirrhotic patients who had bled from esophagogastric varices. In 17 cases scintisplenoportography was carried out after a retroperitoneal distal splenorenal shunt procedure and in the remaining 16 instances in patients without any surgical shunt. In four patients scintisplenoportography was performed before and after a surgical shunt procedure, and in one case, before and after the shunt thrombosed. Gammagraphic patterns and spleen-heart times helped determine which patients did not have a surgical shunt, which had a patent shunt, and which patients had a thrombosed shunt. A patent shunt pattern and a thrombosed shunt pattern have been defined. It is concluded that scintisplenoportography is a useful, reproducible, and safe method to assess the patency of distal splenorenal shunts.

  5. Homomeric RDL and heteromeric RDL/LCCH3 GABA receptors in the honeybee antennal lobes: two candidates for inhibitory transmission in olfactory processing.

    PubMed

    Dupuis, Julien Pierre; Bazelot, Michaël; Barbara, Guillaume Stéphane; Paute, Sandrine; Gauthier, Monique; Raymond-Delpech, Valérie

    2010-01-01

    gamma-Aminobutyric acid (GABA)-gated chloride channel receptors are abundant in the CNS, where their physiological role is to mediate fast inhibitory neurotransmission. In insects, this inhibitory transmission plays a crucial role in olfactory information processing. In an effort to understand the nature and properties of the ionotropic receptors involved in these processes in the honeybee Apis mellifera, we performed a pharmacological and molecular characterization of GABA-gated channels in the primary olfactory neuropile of the honeybee brain-the antennal lobe (AL)-using whole cell patch-clamp recordings coupled with single-cell RT-PCR. Application of GABA onto AL cells at -110 mV elicited fast inward currents, demonstrating the existence of ionotropic GABA-gated chloride channels. Molecular analysis of the GABA-responding cells revealed that both subunits RDL and LCCH3 were expressed out of the three orthologs of Drosophila melanogaster GABA-receptor subunits encoded within the honeybee genome (RDL, resistant to dieldrin; GRD, GABA/glycine-like receptor of Drosophila; LCCH3, ligand-gated chloride channel homologue 3), opening the door to possible homo- and/or heteromeric associations. The resulting receptors were activated by insect GABA-receptor agonists muscimol and CACA and blocked by antagonists fipronil, dieldrin, and picrotoxin, but not bicuculline, displaying a typical RDL-like pharmacology. Interestingly, increasing the intracellular calcium concentration potentiated GABA-elicited currents, suggesting a modulating effect of calcium on GABA receptors possibly through phosphorylation processes that remain to be determined. These results indicate that adult honeybee AL cells express typical RDL-like GABA receptors whose properties support a major role in synaptic inhibitory transmission during olfactory information processing. PMID:19906878

  6. Acute increases in synaptic GABA detectable in the living human brain: a [¹¹C]Ro15-4513 PET study.

    PubMed

    Stokes, Paul R A; Myers, Jim F; Kalk, Nicola J; Watson, Ben J; Erritzoe, David; Wilson, Sue J; Cunningham, Vincent J; Riano Barros, Daniela; Hammers, Alexander; Turkheimer, Federico E; Nutt, David J; Lingford-Hughes, Anne R

    2014-10-01

    The inhibitory γ-aminobutyric acid (GABA) neurotransmitter system is associated with the regulation of normal cognitive functions and dysregulation has been reported in a number of neuropsychiatric disorders including anxiety disorders, schizophrenia and addictions. Investigating the role of GABA in both health and disease has been constrained by difficulties in measuring acute changes in synaptic GABA using neurochemical imaging. The aim of this study was to investigate whether acute increases in synaptic GABA are detectable in the living human brain using the inverse agonist GABA-benzodiazepine receptor (GABA-BZR) positron emission tomography (PET) tracer, [(11)C]Ro15-4513. We examined the effect of 15 mg oral tiagabine, which increases synaptic GABA by inhibiting the GAT1 GABA uptake transporter, on [(11)C]Ro15-4513 binding in 12 male participants using a paired, double blind, placebo-controlled protocol. Spectral analysis was used to examine synaptic α1 and extrasynaptic α5 GABA-BZR subtype availability in brain regions with high levels of [(11)C]Ro15-4513 binding. We also examined the test-retest reliability of α1 and a5-specific [(11)C]Ro15-4513 binding in a separate cohort of 4 participants using the same spectral analysis protocol. Tiagabine administration produced significant reductions in hippocampal, parahippocampal, amygdala and anterior cingulate synaptic α1 [(11)C]Ro15-4513 binding, and a trend significance reduction in the nucleus accumbens. These reductions were greater than test-retest reliability, indicating that they are not the result of chance observations. Our results suggest that acute increases in endogenous synaptic GABA are detectable in the living human brain using [(11)C]Ro15-4513 PET. These findings have potentially major implications for the investigation of GABA function in brain disorders and in the development of new treatments targeting this neurotransmitter system. PMID:24844747

  7. Effects of benzodiazepines and non-benzodiazepine compounds on the GABA-induced response in frog isolated sensory neurones.

    PubMed

    Yakushiji, T; Fukuda, T; Oyama, Y; Akaike, N

    1989-11-01

    1. The effects of benzodiazepines and non-benzodiazepine compounds on the gamma-aminobutyric acid (GABA)-induced chloride current (ICl) were studied in frog isolated sensory neurones by use of a concentration-jump (termed 'concentration-clamp') technique, under single-electrode voltage-clamp conditions. The drugs used were classified into four categories as follows: full benzodiazepine receptor agonists (diazepam, clonazepam, nitrazepam, midazolam, clotiazepam and etizolam), partial agonists (CL 218,872, Ro 16-6028, Ro 17-1812 and Ro 23-0364), inverse agonists (Ro 15-3505, FG 7142 and beta-CCE) and a benzodiazepine receptor antagonist, Ro 15-1788 (flumazenil). 2. All full agonists at concentrations of 3 x 10(-6) M or less increased dose-dependently the peak amplitude of ICl elicited by 3 x 10(-6) M GABA to twice to three times larger than the control. However, no further augmentation of the GABA response was observed at concentrations of 1 x 10(-5) M or higher. Partial agonists also showed a dose-dependent augmentation of the GABA response at concentrations ranging from 3 x 10(-8) M to 3 x 10(-5) M, but their efficacies of augmentation of the GABA response were only about half or less of those of full agonists. Of the inverse agonists, beta-CCE had a unique dose-dependent effect on the GABA response. Beta-CCE reduced dose-dependently the GABA response at concentrations of less than 3 x 10(-6) M, but augmented it at concentrations of 3 x 10(-5) M and 6 x 10(-5) M. The inverse agonists reduced dose-dependently the GABA response. The benzodiazepine antagonist, flumazenil, slightly augmented the GABA response at concentrations between 3 x 10 7M and 3 x 10 5 M. 3. These results show clear differences in the effects on the GABA response between these four categories of compounds known to affect the benzodiazepine recognition site of the GABA/ benzodiazepine receptor-chloride channel complex. Our experimental system of frog isolated sensory neurones and a 'concentration

  8. Arne Torkildsen and the ventriculocisternal shunt: the first clinically successful shunt for hydrocephalus.

    PubMed

    Eide, Per Kristian; Lundar, Tryggve

    2016-05-01

    Arne Torkildsen was a pioneering Norwegian neurosurgeon who introduced the ventriculocisternal shunt, the first clinically successful shunt for CSF diversion in hydrocephalus. The procedure, usually referred to as ventriculocisternostomy (VCS), Torkildsen's operation, orTorkildsen's shunt, became internationally recognized as an efficient operation for the treatment of noncommunicating hydrocephalus. The operation gained widespread use in the 1940s and 1950s before the introduction of extracranial shunts. In this paper, the authors look more closely at Torkildsen's development of the VCS and examine how this surgical approach differed from other procedures for treating hydrocephalus before World War II. Long-term results of the VCS are presented. PMID:26339852

  9. Excitatory actions of GABA in developing chick vestibular afferents: effects on resting electrical activity.

    PubMed

    Cortes, Celso; Galindo, Fabian; Galicia, Salvador; Cebada, Jorge; Flores, Amira

    2013-07-01

    The aim of this study was to characterize the effect of γ-aminobutyric acid (GABA) in the resting multiunit activity of the vestibular afferents during development using the isolated inner ear of embryonic and postnatal chickens (E15-E21 and P5). GABA (10(-3) to 10(-5) M; n = 133) and muscimol (10(-3) M) elicited an increase in the frequency of the basal discharge of the vestibular afferents. We found that GABA action was dose-dependent and inversely related to animal age. Thus, the largest effect was observed in embryonic ages such as E15 and E17 and decreases in E21 and P5. The GABAA receptor antagonists, bicuculline (10(-5) M; n = 10) and picrotoxin (10(-4) M; n = 10), significantly decreased the excitatory action of GABA and muscimol (10(-3) M). Additionally, CNQX 10(-6) M, MCPG 10(-5) M and 7ClKyn 10(-5) M (n = 5) were co-applied by bath substitution (n = 5). Both the basal discharge and the GABA action significantly decreased in these experimental conditions. The chloride channel blocker 9-AC 0.5 mM produced an important reduction in the effect of GABA 10(-3) (n = 5) and 10(-4) M (n = 5). Thus, our results suggest an excitatory role of GABA in the resting activity of the vestibular afferents that can be explained by changes in the gradient of concentration of Cl(-) during development. We show for the first time that the magnitude of this GABA effect decreases at later stages of embryonic and early postnatal development. Taking into account the results with glutamatergic antagonists, we conclude that GABA has a presynaptic action but is not the neurotransmitter in the vestibular afferent synapses, although it could act as a facilitator of the spontaneous activity and may regulate glutamate release. PMID:23401185

  10. Severe respiratory failure following ventriculopleural shunt

    PubMed Central

    Alam, Shahzad; Manjunath, Nagaraju M.

    2015-01-01

    Cerebrospinal fluid (CSF) diversion procedure has been used for long to treat hydrocephalus in children. The principle of shunting is to establish a communication between the CSF and a drainage cavity (peritoneum, right atrium, and pleura). Ventriculoperitoneal shunt is used most commonly, followed secondly by ventriculopleural shunt (VPLS). Hydrothorax due to excessive CSF accumulation is a rare complication following both the type of shunts and is more frequently seen with VPLS. We report a case of a 6-year-old female child presenting with massive CSF hydrothorax with respiratory failure following VPLS. The aim of the article is to highlight early recognition of this rare and life-threatening condition, which could easily be missed if proper history is not available. PMID:26730125

  11. Severe respiratory failure following ventriculopleural shunt.

    PubMed

    Alam, Shahzad; Manjunath, Nagaraju M

    2015-11-01

    Cerebrospinal fluid (CSF) diversion procedure has been used for long to treat hydrocephalus in children. The principle of shunting is to establish a communication between the CSF and a drainage cavity (peritoneum, right atrium, and pleura). Ventriculoperitoneal shunt is used most commonly, followed secondly by ventriculopleural shunt (VPLS). Hydrothorax due to excessive CSF accumulation is a rare complication following both the type of shunts and is more frequently seen with VPLS. We report a case of a 6-year-old female child presenting with massive CSF hydrothorax with respiratory failure following VPLS. The aim of the article is to highlight early recognition of this rare and life-threatening condition, which could easily be missed if proper history is not available. PMID:26730125

  12. Syringosubarachnoid shunting using a myringotomy tube

    PubMed Central

    Leschke, Jack M.; Mumert, Michael L.; Kurpad, Shekar N.

    2016-01-01

    Background: Syringomyelia results from obstruction of cerebrospinal fluid (CSF) flow due to a multitude of causes. Often symptoms of pain, weakness, and sensory disturbance are progressive and require surgical treatment. We present here a rare technique for syringosubarachnoid shunting. Case Description: We present the case of a 38-year-old male who suffered a traumatic cervical spinal cord injury due to a motor vehicle accident. With progressive pain and motor decline, a magnetic resonance imaging was obtained and showed a new syrinx extending cervical multiple segments. A unique surgical procedure using a myringotomy tube to shunt CSF into the subarachnoid space was employed in this case. The patient's examination stabilized postoperatively, and at 2 months and 6 months follow-up visits, his strength and sensation continued to improve. Conclusion: We used a myringotomy tube for syringosubarachnoid shunting for the surgical management of a posttraumatic syrinx with good results. This technique minimizes suturing and may minimize shunt-related complications. PMID:26862456

  13. An excitatory GABA loop operating in vivo

    PubMed Central

    Astorga, Guadalupe; Bao, Jin; Marty, Alain; Augustine, George J.; Franconville, Romain; Jalil, Abdelali; Bradley, Jonathan; Llano, Isabel

    2015-01-01

    While it has been proposed that the conventional inhibitory neurotransmitter GABA can be excitatory in the mammalian brain, much remains to be learned concerning the circumstances and the cellular mechanisms governing potential excitatory GABA action. Using a combination of optogenetics and two-photon calcium imaging in vivo, we find that activation of chloride-permeable GABAA receptors in parallel fibers (PFs) of the cerebellar molecular layer of adult mice causes parallel fiber excitation. Stimulation of PFs at submaximal stimulus intensities leads to GABA release from molecular layer interneurons (MLIs), thus creating a positive feedback loop that enhances excitation near the center of an activated PF bundle. Our results imply that elevated chloride concentration can occur in specific intracellular compartments of mature mammalian neurons and suggest an excitatory role for GABAA receptors in the cerebellar cortex of adult mice. PMID:26236197

  14. Cell shunt resistance and photovoltaic module performance

    SciTech Connect

    McMahon, T.J.; Basso, T.S.; Rummel, S.R.

    1996-05-01

    Shunt resistance of cells in photovoltaic modules can affect module power output and could indicate flawed manufacturing processes and reliability problems. The authors describe a two-terminal diagnostic method to directly measure the shunt resistance of individual cells in a series-connected module non-intrusively, without deencapsulation. Peak power efficiency vs. light intensity was measured on a 12-cell, series-connected, single crystalline module having relatively high cell shunt resistances. The module was remeasured with 0.5-, 1-, and 2-ohm resistors attached across each cell to simulate shunt resistances of several emerging technologies. Peak power efficiencies decreased dramatically at lower light levels. Using the PSpice circuit simulator, the authors verified that cell shunt and series resistances can indeed be responsible for the observed peak power efficiency vs. intensity behavior. The authors discuss the effect of basic cell diode parameters, i.e., shunt resistance, series resistance, and recombination losses, on PV module performance as a function of light intensity.

  15. Concentration-dependent effects of GABA on insensitivity to fipronil in the A2'S mutant RDL GABA receptor from fipronil-resistant Oulema oryzae (Coleoptera: Chrysomelidae).

    PubMed

    Nakao, Toshifumi; Naoi, Atsuko; Hama, Masako; Kawahara, Nobuyuki; Hirase, Kangetsu

    2012-10-01

    The beetle Oulema oryzae Kuwayama (Coleoptera: Chrysomelidae), an important pest of rice, has developed fipronil resistance in Japan. Molecular cloning and sequence analysis of O. oryzae RDL gamma-aminobutyric acid (GABA) receptor subunit (OO-RDL) genes from fipronil-susceptible and -resistant O. oryzae identified the A2'S mutation (index number for the M2 membrane-spanning region). To investigate the effect of the A2'S mutation on fipronil resistance, we stably expressed the wild-type and mutant OO-RDL homomers in Drosophila Mel-2 cells. A membrane potential assay exhibited that the IC50 values of fipronil for inhibition of the response to EC80 GABA of the wild-type and A2'S mutant OO-RDL homomers were 0.09 microM and 0.11 microM, respectively. However, the IC50 values of fipronil for inhibition of the response to EC95 GABA of the wild-type and A2'S mutant OO-RDL homomers were 0.11 microM and approximately equal to 5 microM, respectively. These results suggest that the GABA concentration is an important factor affecting fipronil resistance in O. oryzae carrying the A2'S mutation in OO-RDL. PMID:23156177

  16. A novel action of highly specific acaricide; bifenazate as a synergist for a GABA-gated chloride channel of Tetranychus urticae [Acari: Tetranychidae].

    PubMed

    Hiragaki, Susumu; Kobayashi, Takeru; Ochiai, Noriaki; Toshima, Kayoko; Dekeyser, Mark A; Matsuda, Kazuhiko; Takeda, Makio

    2012-06-01

    Bifenazate is a very selective acaricide that controls the spider mite, Tetranychus urticae. Bifenazate is the first example of a carbazate acaricide. Its mode of action remains unclear. Bifenazate and its active metabolite diazene induce paralysis in spider mites, suggesting that they may act on the nervous system. Here we have employed a homologue (TuGABAR) of RDL (Resistance to dieldrin), a subunit of ionotropic γ-aminobutyric acid (GABA) receptor, from T. urticae to investigate the action of bifenazate and its active metabolite diazene on this receptor function. Although neither acaricide showed a GABA agonist action, 30 μM of bifenazate or diazene significantly enhanced the GABA-induced response of TuGABAR in a dose-dependent manner, shifting the EC(50) of GABA from 24.8 μM to 4.83 μM and 10.8 μM, respectively. This action demonstrates a positive allosteric modulator effect of bifenazate on T. urticae GABA receptors. This synergistic action is likely the result of bifenazate binding to a site distinct from that of the GABA binding site causing a conformational change that affects the magnitude of the GABA response. Precisely how the observed GABA synergist action correlates with the acaricidal activity of bifenazate, if at all, has yet to be determined. PMID:22330756

  17. Transjugular Intrahepatic Portosystemic Shunt Versus Surgical Shunting in the Management of Portal Hypertension

    PubMed Central

    Huang, Long; Yu, Qing-Sheng; Zhang, Qi; Liu, Ju-Da; Wang, Zhen

    2015-01-01

    Background: The purpose of this article was to clarify the optimal management concerning transjugular intrahepatic portosystemic shunts (TIPSs) and surgical shunting in treating portal hypertension. Methods: All databases, including CBM, CNKI, WFPD, Medline, EMBASE, PubMed and Cochrane up to February 2014, were searched for randomized controlled trials (RCTs) comparing TIPS with surgical shunting. Four RCTs, which were extracted by two independent investigators and were evaluated in postoperative complications, mortality, 2- and 5-year survival, hospital stay, operating time and hospitalization charges. Results: The morbidity in variceal rehemorrhage was significantly higher in TIPS than in surgical shunts (odds ratio [OR] = 7.45, 95% confidence interval[CI]: (3.93–14.15), P < 0.00001), the same outcomes were seen in shunt stenosis (OR = 20.01, 95% CI: (6.67–59.99), P < 0.000001) and in hepatic encephalopathy (OR = 2.50, 95% CI: (1.63–3.84), P < 0.0001). Significantly better 2-year survival (OR = 0.66; 95% CI: (0.44–0.98), P = 0.04) and 5-year survival (OR = 0.44; 95% CI: (0.30–0.66), P < 0.00001) were seen in patients undergoing surgical shunting compared with TIPS. Conclusions: Compared with TIPS, postoperative complications and survival after surgical shunting were superior for patients with portal hypertension. Application of surgical shunting was recommended for patients rather than TIPS. PMID:25758281

  18. Decreased auditory GABA+ concentrations in presbycusis demonstrated by edited magnetic resonance spectroscopy

    PubMed Central

    Gao, Fei; Wang, Guangbin; Ma, Wen; Ren, Fuxin; Li, Muwei; Dong, Yuling; Liu, Cheng; Liu, Bo; Bai, Xue; Zhao, Bin; Edden, Richard A.E.

    2014-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central auditory system. Altered GABAergic neurotransmission has been found in both the inferior colliculus and the auditory cortex in animal models of presbycusis. Edited magnetic resonance spectroscopy (MRS), using the MEGA-PRESS sequence, is the most widely used technique for detecting GABA in the human brain. However, to date there has been a paucity of studies exploring changes to the GABA concentrations in the auditory region of patients with presbycusis. In this study, sixteen patients with presbycusis (5 males/11 females, mean age 63.1 ± 2.6 years) and twenty healthy controls (6 males/14 females, mean age 62.5 ± 2.3 years) underwent audiological and MRS examinations. Pure tone audiometry from 0.125 to 8 KHz and tympanometry were used to assess the hearing abilities of all subjects. The pure tone average (PTA; the average of hearing thresholds at 0.5, 1, 2, and 4 kHz) was calculated. The MEGA-PRESS sequence was used to measure GABA+ concentrations in 4 × 3 × 3 cm3 volumes centered on the left and right Heschl’s gyri. GABA+ concentrations were significantly lower in the presbycusis group compared to the control group (left auditory regions: p = 0.002, right auditory regions: p = 0.008). Significant negative correlations were observed between PTA and GABA+ concentrations in the presbycusis group (r = −0.57, p = 0.02), while a similar trend was found in the control group (r = −0.40, p = 0.08). These results are consistent with a hypothesis of dysfunctional GABAergic neurotransmission in the central auditory system in presbycusis, and suggest a potential treatment target for presbycusis. PMID:25463460

  19. Valerian inhibits rat hepatocarcinogenesis by activating GABA(A) receptor-mediated signaling.

    PubMed

    Kakehashi, Anna; Kato, Ayumi; Ishii, Naomi; Wei, Min; Morimura, Keiichirou; Fukushima, Shoji; Wanibuchi, Hideki

    2014-01-01

    Valerian is widely used as a traditional medicine to improve the quality of sleep due to interaction of several active components with the γ-aminobutyric acid (GABA) A receptor (GABA(A)R) system. Recently, activation of GABA signaling in stem cells has been reported to suppress cell cycle progression in vivo. Furthermore, possible inhibitory effects of GABA(A)R agonists on hepatocarcinogenesis have been reported. The present study was performed to investigate modulating effects of Valerian on hepatocarcinogenesis using a medium-term rat liver bioassay. Male F344 rats were treated with one of the most powerful Valerian species (Valeriana sitchensis) at doses of 0, 50, 500 and 5000 ppm in their drinking water after initiation of hepatocarcinogenesis with diethylnitrosamine (DEN). Formation of glutathione S-transferase placental form positive (GST-P(+)) foci was significantly inhibited by Valerian at all applied doses compared with DEN initiation control rats. Generation of 8-hydroxy-2'-deoxyguanosine in the rat liver was significantly suppressed by all doses of Valerian, likely due to suppression of Nrf2, CYP7A1 and induction of catalase expression. Cell proliferation was significantly inhibited, while apoptosis was induced in areas of GST-P(+) foci of Valerian groups associated with suppression of c-myc, Mafb, cyclin D1 and induction of p21(Waf1/Cip1), p53 and Bax mRNA expression. Interestingly, expression of the GABA(A)R alpha 1 subunit was observed in GST-P(+) foci of DEN control rats, with significant elevation associated with Valerian treatment. These results indicate that Valerian exhibits inhibitory effects on rat hepatocarcinogenesis by inhibiting oxidative DNA damage, suppressing cell proliferation and inducing apoptosis in GST-P(+) foci by activating GABA(A)R-mediated signaling. PMID:25419570

  20. GABA content within the ventromedial prefrontal cortex is related to trait anxiety.

    PubMed

    Delli Pizzi, Stefano; Padulo, Caterina; Brancucci, Alfredo; Bubbico, Giovanna; Edden, Richard A; Ferretti, Antonio; Franciotti, Raffaella; Manippa, Valerio; Marzoli, Daniele; Onofrj, Marco; Sepede, Gianna; Tartaro, Armando; Tommasi, Luca; Puglisi-Allegra, Stefano; Bonanni, Laura

    2016-05-01

    The ventromedial prefrontal cortex (vmPFC) plays a key role in emotion processing and regulation. vmPFC dysfunction may lead to disinhibition of amygdala causing high anxiety levels. γ-Aminobutyric acid (GABA) inter-neurons within vmPFC shape the information flow to amygdala. Thus, we hypothesize that GABA content within vmPFC could be relevant to trait anxiety. Forty-three healthy volunteers aged between 20 and 88 years were assessed for trait anxiety with the Subscale-2 of the State-Trait-Anxiety Inventory (STAI-Y2) and were studied with proton magnetic resonance spectroscopy to investigate GABA and Glx (glutamate+glutamine) contents within vmPFC. Total creatine (tCr) was used as internal reference. Partial correlations assessed the association between metabolite levels and STAI-Y2 scores, removing the effect of possible nuisance factors including age, educational level, volumes of gray matter and white matter within magnetic resonance spectroscopy voxel. We observed a positive relationship between GABA/tCr and STAI-Y2 scores. No significant relationships were found between Glx/tCr and STAI-Y2 and between tCr/water and STAI-Y2. No differences were found between males and females as regards to age, STAI-Y2, GABA/tCr, Glx/tCr, tCr/water, gray matter and white matter volumes. We suggest a close relationship between GABA content within vmPFC and trait anxiety providing new insights in the physiology of emotional brain. PMID:26722018

  1. Valerian Inhibits Rat Hepatocarcinogenesis by Activating GABA(A) Receptor-Mediated Signaling

    PubMed Central

    Kakehashi, Anna; Kato, Ayumi; Ishii, Naomi; Wei, Min; Morimura, Keiichirou; Fukushima, Shoji; Wanibuchi, Hideki

    2014-01-01

    Valerian is widely used as a traditional medicine to improve the quality of sleep due to interaction of several active components with the γ-aminobutyric acid (GABA) A receptor (GABA(A)R) system. Recently, activation of GABA signaling in stem cells has been reported to suppress cell cycle progression in vivo. Furthermore, possible inhibitory effects of GABA(A)R agonists on hepatocarcinogenesis have been reported. The present study was performed to investigate modulating effects of Valerian on hepatocarcinogenesis using a medium-term rat liver bioassay. Male F344 rats were treated with one of the most powerful Valerian species (Valeriana sitchensis) at doses of 0, 50, 500 and 5000 ppm in their drinking water after initiation of hepatocarcinogenesis with diethylnitrosamine (DEN). Formation of glutathione S-transferase placental form positive (GST-P+) foci was significantly inhibited by Valerian at all applied doses compared with DEN initiation control rats. Generation of 8-hydroxy-2′-deoxyguanosine in the rat liver was significantly suppressed by all doses of Valerian, likely due to suppression of Nrf2, CYP7A1 and induction of catalase expression. Cell proliferation was significantly inhibited, while apoptosis was induced in areas of GST-P+ foci of Valerian groups associated with suppression of c-myc, Mafb, cyclin D1 and induction of p21Waf1/Cip1, p53 and Bax mRNA expression. Interestingly, expression of the GABA(A)R alpha 1 subunit was observed in GST-P+ foci of DEN control rats, with significant elevation associated with Valerian treatment. These results indicate that Valerian exhibits inhibitory effects on rat hepatocarcinogenesis by inhibiting oxidative DNA damage, suppressing cell proliferation and inducing apoptosis in GST-P+ foci by activating GABA(A)R-mediated signaling. PMID:25419570

  2. Effects of benzodiazepines and non-benzodiazepine compounds on the GABA-induced response in frog isolated sensory neurones.

    PubMed Central

    Yakushiji, T.; Fukuda, T.; Oyama, Y.; Akaike, N.

    1989-01-01

    1. The effects of benzodiazepines and non-benzodiazepine compounds on the gamma-aminobutyric acid (GABA)-induced chloride current (ICl) were studied in frog isolated sensory neurones by use of a concentration-jump (termed 'concentration-clamp') technique, under single-electrode voltage-clamp conditions. The drugs used were classified into four categories as follows: full benzodiazepine receptor agonists (diazepam, clonazepam, nitrazepam, midazolam, clotiazepam and etizolam), partial agonists (CL 218,872, Ro 16-6028, Ro 17-1812 and Ro 23-0364), inverse agonists (Ro 15-3505, FG 7142 and beta-CCE) and a benzodiazepine receptor antagonist, Ro 15-1788 (flumazenil). 2. All full agonists at concentrations of 3 x 10(-6) M or less increased dose-dependently the peak amplitude of ICl elicited by 3 x 10(-6) M GABA to twice to three times larger than the control. However, no further augmentation of the GABA response was observed at concentrations of 1 x 10(-5) M or higher. Partial agonists also showed a dose-dependent augmentation of the GABA response at concentrations ranging from 3 x 10(-8) M to 3 x 10(-5) M, but their efficacies of augmentation of the GABA response were only about half or less of those of full agonists. Of the inverse agonists, beta-CCE had a unique dose-dependent effect on the GABA response. Beta-CCE reduced dose-dependently the GABA response at concentrations of less than 3 x 10(-6) M, but augmented it at concentrations of 3 x 10(-5) M and 6 x 10(-5) M. The inverse agonists reduced dose-dependently the GABA response.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2574062

  3. GABA(A) receptors in visual and auditory cortex and neural activity changes during basic visual stimulation.

    PubMed

    Qin, Pengmin; Duncan, Niall W; Wiebking, Christine; Gravel, Paul; Lyttelton, Oliver; Hayes, Dave J; Verhaeghe, Jeroen; Kostikov, Alexey; Schirrmacher, Ralf; Reader, Andrew J; Northoff, Georg

    2012-01-01

    Recent imaging studies have demonstrated that levels of resting γ-aminobutyric acid (GABA) in the visual cortex predict the degree of stimulus-induced activity in the same region. These studies have used the presentation of discrete visual stimulus; the change from closed eyes to open also represents a simple visual stimulus, however, and has been shown to induce changes in local brain activity and in functional connectivity between regions. We thus aimed to investigate the role of the GABA system, specifically GABA(A) receptors, in the changes in brain activity between the eyes closed (EC) and eyes open (EO) state in order to provide detail at the receptor level to complement previous studies of GABA concentrations. We conducted an fMRI study involving two different modes of the change from EC to EO: an EO and EC block design, allowing the modeling of the haemodynamic response, followed by longer periods of EC and EO to allow the measuring of functional connectivity. The same subjects also underwent [(18)F]Flumazenil PET to measure GABA(A) receptor binding potentials. It was demonstrated that the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex predicted the degree of changes in neural activity from EC to EO. This same relationship was also shown in the auditory cortex. Furthermore, the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex also predicted the change in functional connectivity between the visual and auditory cortex from EC to EO. These findings contribute to our understanding of the role of GABA(A) receptors in stimulus-induced neural activity in local regions and in inter-regional functional connectivity. PMID:23293594

  4. Synthesis and Pharmacological Properties of Novel Esters Based on Monocyclic Terpenes and GABA

    PubMed Central

    Nesterkina, Mariia; Kravchenko, Iryna

    2016-01-01

    Novel esters of γ-aminobutyric acid (GABA) with monocyclic terpenes were synthesized via Steglich esterification and characterized by 1H-NMR, IR and mass spectral studies. Their anticonvulsant, analgesic and anti-inflammatory activities were evaluated by a PTZ-induced convulsion model, AITC-induced hyperalgesia and AITC-induced paw edema, respectively. All studied esters, as well as their parent terpenes, were found to produce antinociceptive effects in the AITC-induced model and attenuate acute pain more than the reference drug benzocaine after their topical application. GABA esters of l-menthol and thymol were also shown to exceed the reference drug ibuprofen in their ability to decrease the inflammatory state induced by intraplantar injection of the TRPA1 activator AITC. The present findings indicate that GABA esters of carvacrol and guaiacol are not a classical prodrug and possess their own pharmacological activity. Prolonged antiseizure action of the ester based on the amino acid and guaiacol (200 mg/kg) was revealed at 24 h after oral administration. Furthermore, orally co-administered gidazepam (1 mg/kg) and GABA esters of l-menthol, thymol and carvacrol produce synergistic seizure prevention effects. PMID:27304960

  5. Synthesis and Pharmacological Properties of Novel Esters Based on Monocyclic Terpenes and GABA.

    PubMed

    Nesterkina, Mariia; Kravchenko, Iryna

    2016-01-01

    Novel esters of γ-aminobutyric acid (GABA) with monocyclic terpenes were synthesized via Steglich esterification and characterized by ¹H-NMR, IR and mass spectral studies. Their anticonvulsant, analgesic and anti-inflammatory activities were evaluated by a PTZ-induced convulsion model, AITC-induced hyperalgesia and AITC-induced paw edema, respectively. All studied esters, as well as their parent terpenes, were found to produce antinociceptive effects in the AITC-induced model and attenuate acute pain more than the reference drug benzocaine after their topical application. GABA esters of l-menthol and thymol were also shown to exceed the reference drug ibuprofen in their ability to decrease the inflammatory state induced by intraplantar injection of the TRPA1 activator AITC. The present findings indicate that GABA esters of carvacrol and guaiacol are not a classical prodrug and possess their own pharmacological activity. Prolonged antiseizure action of the ester based on the amino acid and guaiacol (200 mg/kg) was revealed at 24 h after oral administration. Furthermore, orally co-administered gidazepam (1 mg/kg) and GABA esters of l-menthol, thymol and carvacrol produce synergistic seizure prevention effects. PMID:27304960

  6. [Anti-arrhythmic properties of GABA and GABA-ergic system activators].

    PubMed

    Tiurenkov, I N; Perfilova, V N

    2002-01-01

    Clinical and experimental data available in the literature are summarized, which are indicative of the antiarrhythmogenic properties of GABA and substances possessing GABA-positive activity (phenibut, piracetam, sodium hydroxybutyrate, lithium hydroxybutyrate, etc.). The antiarrhythmic effects are manifested in various cases of the heart rhythm violation. The mechanism of this action is related to activation of the central and peripheral retarding GABAergic system, as well as to antihypoxant, antioxidant, and antistressor effects. PMID:12025796

  7. Colocalization of synaptic GABA(C)-receptors with GABA (A)-receptors and glycine-receptors in the rodent central nervous system.

    PubMed

    Frazao, Renata; Nogueira, Maria Ines; Wässle, Heinz

    2007-10-01

    Fast inhibition in the nervous system is preferentially mediated by GABA- and glycine-receptors. Two types of ionotropic GABA-receptor, the GABA(A)-receptor and GABA(C)-receptor, have been identified; they have specific molecular compositions, different sensitivities to GABA, different kinetics, and distinct pharmacological profiles. We have studied, by immunocytochemistry, the synaptic localization of glycine-, GABA(A)-, and GABA(C)-receptors in rodent retina, spinal cord, midbrain, and brain-stem. Antibodies specific for the alpha1 subunit of the glycine-receptor, the gamma2 subunit of the GABA(A)-receptor, and the rho subunits of the GABA(C)-receptor have been applied. Using double-immunolabeling, we have determined whether these receptors are expressed at the same postsynaptic sites. In the retina, no such colocalization was observed. However, in the spinal cord, we found the colocalization of glycine-receptors with GABA(A)- or GABA(C)-receptors and the colocalization of GABA(A)- and GABA(C)-receptors in approximately 25% of the synapses. In the midbrain and brain-stem, GABA(A)- and GABA(C)-receptors were colocalized in 10%-15% of the postsynaptic sites. We discuss the possible expression of heteromeric (hybrid) receptors assembled from GABA(A)- and GABA(C)-receptor subunits. Our results suggest that GABA(A)- and GABA(C)-receptors are colocalized in a minority of synapses of the central nervous system. PMID:17610086

  8. Distribution and ultrastructure of neurons in opossum piriform cortex displaying immunoreactivity to GABA and GAD and high-affinity tritiated GABA uptake

    SciTech Connect

    Haberly, L.B.; Hansen, D.J.; Feig, S.L.; Presto, S.

    1987-12-08

    GABAergic neurons have been identified in the piriform cortex of the opossum at light and electron microscopic levels by immunocytochemical localization of GABA and the GABA-synthesizing enzyme glutamic acid decarboxylase and by autoradiographic visualization of high-affinity /sup 3/H-GABA uptake. Four major neuron populations have been distinguished on the basis of soma size, shape, and segregation at specific depths and locations: large horizontal cells in layer Ia of the anterior piriform cortex, small globular cells with thin dendrites concentrated in layers Ib and II of the posterior piriform cortex, and multipolar and fusiform cells concentrated in the deep part of layer III in anterior and posterior parts of the piriform cortex and the subjacent endopiriform nucleus. All four populations were well visualized with both antisera, but the large layer Ia horizontal cells displayed only very light /sup 3/H-GABA uptake, thus suggesting a lack of local axon collaterals or lack of high-affinity GABA uptake sites. The large, ultrastructurally distinctive somata of layer Ia horizontal cells receive a very small number of symmetrical synapses; the thin, axonlike dendrites of small globular cells are exclusively postsynaptic and receive large numbers of both symmetrical and asymmetrical synapses, in contrast to somata which receive a small number of both types; and the deep multipolar and fusiform cells receive a highly variable number of symmetrical and asymmetrical synapses on somata and proximal dendrites. Labeled puncta of axon terminal dimensions were found in large numbers in the neuropil surrounding pyramidal cell somata in layer II and in the endopiriform nucleus. Moderately large numbers of labeled puncta were found in layer I at the depth of pyramidal cell apical dendrites with greater numbers in layer Ia at the depth of distal apical segments than in layer Ib.

  9. Molecular cloning and expression of a GABA receptor subunit from the crayfish Procambarus clarkii.

    PubMed

    Jiménez-Vázquez, Eric N; Díaz-Velásquez, Clara E; Uribe, R M; Arias, Juan M; García, Ubaldo

    2016-02-01

    Molecular cloning has introduced an unexpected, large diversity of neurotransmitter hetero- oligomeric receptors. Extensive research on the molecular structure of the γ-aminobutyric acid receptor (GABAR) has been of great significance for understanding how the nervous system works in both vertebrates and invertebrates. However, only two examples of functional homo-oligomeric GABA-activated Cl(-) channels have been reported. In the vertebrate retina, the GABAρ1 subunit of various species forms homo-oligomeric receptors; in invertebrates, a cDNA encoding a functional GABA-activated Cl(-) channel has been isolated from a Drosophila melanogaster head cDNA library. When expressed in Xenopus laevis oocytes, these subunits function efficiently as a homo-oligomeric complex. To investigate the structure-function of GABA channels from the crayfish Procambarus clarkii, we cloned a subunit and expressed it in human embryonic kidney cells. Electrophysiological recordings show that this subunit forms a homo-oligomeric ionotropic GABAR that gates a bicuculline-insensitive Cl(-) current. The order of potency of the agonists was GABA > trans-4-amino-crotonic acid = cis-4-aminocrotonic acid > muscimol. These data support the notion that X-organ sinus gland neurons express at least two GABA subunits responsible for the formation of hetero-oligomeric and homo-oligomeric receptors. In addition, by in situ hybridization studies we demonstrate that most X-organ neurons from crayfish eyestalk express the isolated pcGABAA β subunit. This study increases the knowledge of the genetics of the crayfish, furthers the understanding of this important neurotransmitter receptor family, and provides insight into the evolution of these genes among vertebrates and invertebrates. PMID:26577600

  10. Effects of ABA and CaCl₂ on GABA accumulation in fava bean germinating under hypoxia-NaCl stress.

    PubMed

    Yang, Runqiang; Hui, Qianru; Gu, Zhenxin

    2016-01-01

    Effects of exogenous abscisic acid (ABA) and CaCl2 on γ-aminobutyric acid (GABA) accumulation of germinated fava bean under hypoxia-NaCl stress were investigated. Exogenous ABA resulted in the enhancement of glutamate decarboxylase (GAD) and diamine oxidase (DAO) activity as well as GABA content in cotyledon and shoot. CaCl2 increased both enzyme activities in shoot and GABA content in cotyledon and shoot. ABA downregulated GAD expression in cotyledon and radicle, while upregulated that in shoot; it also upregulated DAO expression in each organ. CaCl2 upregulated GAD expression in cotyledon, while downregulated that in radicle. However, it upregulated DAO expression in shoot, downregulated that in radicle. ABA inhibitor fluridon and ethylenediaminetetraacetic acid inhibited GAD and DAO activities significantly so that inhibited GABA accumulation through reducing ABA biosynthesis and chelating Ca(2+), respectively. However, they upregulated GAD and DAO expression in varying degrees. These results indicate that ABA and Ca(2+) participate in GABA biosynthesis in fava bean during germination under hypoxia-NaCl stress. PMID:26644273

  11. GABA binding to an insect GABA receptor: a molecular dynamics and mutagenesis study.

    PubMed

    Ashby, Jamie A; McGonigle, Ian V; Price, Kerry L; Cohen, Netta; Comitani, Federico; Dougherty, Dennis A; Molteni, Carla; Lummis, Sarah C R

    2012-11-21

    RDL receptors are GABA-activated inhibitory Cys-loop receptors found throughout the insect CNS. They are a key target for insecticides. Here, we characterize the GABA binding site in RDL receptors using computational and electrophysiological techniques. A homology model of the extracellular domain of RDL was generated and GABA docked into the binding site. Molecular dynamics simulations predicted critical GABA binding interactions with aromatic residues F206, Y254, and Y109 and hydrophilic residues E204, S176, R111, R166, S176, and T251. These residues were mutated, expressed in Xenopus oocytes, and their functions assessed using electrophysiology. The data support the binding mechanism provided by the simulations, which predict that GABA forms many interactions with binding site residues, the most significant of which are cation-π interactions with F206 and Y254, H-bonds with E204, S205, R111, S176, T251, and ionic interactions with R111 and E204. These findings clarify the roles of a range of residues in binding GABA in the RDL receptor, and also show that molecular dynamics simulations are a useful tool to identify specific interactions in Cys-loop receptors. PMID:23200041

  12. Double isotopic method using dansyl chloride for the determination of GABA in rat C6 astrocytoma cell cultures

    SciTech Connect

    Kohl, R.L.; Quay, W.B.; Perez-Polo, J.R.

    1986-01-01

    Methods are described for the quantitative measurement of GABA in culture. The method can be adapted to any amino acid or dansyl-chloride-reactive species. The sensitivity and selectivity of the procedure result from the double isotopic design in which (/sup 14/C)-labeled internal standard was added to the samples before reaction with (3M)-labeled dansyl chloride. Values obtained by ion-exchange amino acid analysis of cultures agree closely with the values obtained by the double isotopic method. This method is sensitive enough to measure GABA intracellularly and the condition medium.

  13. Vasopressin and splanchnic shunting. A quantitative comparison.

    PubMed Central

    Chandler, J G

    1982-01-01

    To analyze the relationship between the splanchnic and systemic effects of vasopressin and to measure its efficacy in lowering portal pressure relative to what can be accomplished by zero gradient shunting, intraoperative measurements of cardiac output and relevant pressures were made in 30 patients undergoing selective or total shunts. Vasopressin caused a significant increase in systemic vascular resistance and pulmonary capillary wedge pressure, but an insignificant overall reduction in cardiac index (CI). However, in ten patients the decrease in CI exceeded 20%, suggesting a subpopulation of especially susceptible individuals. High initial CI, age, pre-existent heart disease, and severity of cirrhosis did not predict greater vulnerability. Adding an infusion of nitroprusside regularly reverted CI to control levels, regardless of the extent of cardiac output depression. Vasopressin was 38% as effective as a subsequent shunt in reducing splanchnic venous pressure. The portal hypotensive action bore no relationship to CI, but the pressure decrease caused by vasopressin was predictive of the reduction that could be achieved by shunting. The effects of the two types of shunts on systemic hemodynamics were minor and remarkably similar. PMID:7073352

  14. Pleuroperitoneal shunt for recurrent malignant pleural effusions.

    PubMed Central

    Tsang, V; Fernando, H C; Goldstraw, P

    1990-01-01

    The therapeutic options available for the management of malignant pleural effusions associated with a restricting malignant cortex remain unsatisfactory. The efficacy of pleuroperitoneal shunts was evaluated in 16 patients with recurrent malignant effusions. There were no operative deaths; one patient died on the third postoperative day as a result of lymphangitis carcinomatosa. The median hospital stay was five (range 3-21) days. Palliation was obtained in all but one of the other 15 patients. There was no appreciable reaccumulation of pleural fluid as judged by radiography. Two patients developed occlusion of the shunt. In one case this was due to blood clots in the pleural catheter and necessitated insertion of a new shunt. The other shunt was removed because of obstructing infected fibrin debris, and a rib resection was performed. There were eight deaths related to the underlying malignancy after a mean interval of 7.3 (range 1.5-23) months. The other six patients are still alive, with a mean survival of 11.0 (range 5-20) months, and have achieved good symptomatic relief. The insertion of a pleuroperitoneal shunt can offer effective palliation for patients with recurrent malignant pleural effusions. Images PMID:1696401

  15. GABA{sub A} receptor open-state conformation determines non-competitive antagonist binding

    SciTech Connect

    Chen Ligong; Xue Ling; Giacomini, Kathleen M.; Casida, John E.

    2011-02-01

    The {gamma}-aminobutyric acid (GABA) type A receptor (GABA{sub A}R) is one of the most important targets for insecticide action. The human recombinant {beta}3 homomer is the best available model for this binding site and 4-n-[{sup 3}H]propyl-4'-ethynylbicycloorthobenzoate ([{sup 3}H]EBOB) is the preferred non-competitive antagonist (NCA) radioligand. The uniquely high sensitivity of the {beta}3 homomer relative to the much-less-active but structurally very-similar {beta}1 homomer provides an ideal comparison to elucidate structural and functional features important for NCA binding. The {beta}1 and {beta}3 subunits were compared using chimeragenesis and mutagenesis and various combinations with the {alpha}1 subunit and modulators. Chimera {beta}3/{beta}1 with the {beta}3 subunit extracellular domain and the {beta}1 subunit transmembrane helices retained the high [{sup 3}H]EBOB binding level of the {beta}3 homomer while chimera {beta}1/{beta}3 with the {beta}1 subunit extracellular domain and the {beta}3 subunit transmembrane helices had low binding activity similar to the {beta}1 homomer. GABA at 3 {mu}M stimulated heteromers {alpha}1{beta}1 and {alpha}1{beta}3 binding levels more than 2-fold by increasing the open probability of the channel. Addition of the {alpha}1 subunit rescued the inactive {beta}1/{beta}3 chimera close to wildtype {alpha}1{beta}1 activity. EBOB binding was significantly altered by mutations {beta}1S15'N and {beta}3N15'S compared with wildtype {beta}1 and {beta}3, respectively. However, the binding activity of {alpha}1{beta}1S15'N was insensitive to GABA and {alpha}1{beta}3N15'S was stimulated much less than wildtype {alpha}1{beta}3 by GABA. The inhibitory effect of etomidate on NCA binding was reduced more than 5-fold by the mutation {beta}3N15'S. Therefore, the NCA binding site is tightly regulated by the open-state conformation that largely determines GABA{sub A} receptor sensitivity. - Graphical Abstract: Display Omitted Research Highlights

  16. Radionuclide demonstration of intrapulmonary shunting in cirrhosis

    SciTech Connect

    Bank, E.R.; Thrall, J.H.; Dantzker, D.R.

    1983-05-01

    The association of hepatic cirrhosis and severe arterial hypoxemia has been well described. Although alterations in ventilatory function may partially account for the hypoxemia, the principal mechanism is thought to be a microangiopathic change in the pulmonary vasculature resulting in intrapulmonary arteriovenous shunting with resultant systemic desaturation. Whole-body radionuclide scans with technetium-99m macroaggregated albumin labeling have been diagnostic of right-to-left shunting by their demonstration of tracer accumulation within the extrapulmonary circulation. A case of severe pulmonary arteriovenous shunting in an alcoholic patient in whom hepatic disease had not been of apparent clinical significance before radionuclide scanning is reported. He did not have cuntaeous angiomata as have all other patients with alcoholic cirrhosis and hypoxemia.

  17. Radionuclide demonstration of intrapulmonary shunting in cirrhosis

    SciTech Connect

    Bank, E.R.; Thrall, J.H.; Dantzker, D.R.

    1983-05-01

    The association of hepatic cirrhosis and severe arterial hypoxemia has been well described. Although alterations in ventilatory function may partially account for the hypoxemia, the principal mechanism is thought to be a microangiopathic change in the pulmonary arteriovenous shunting with resultant systemic desaturation. Whole-body radionuclide scans with technetium-99m macroaggrregated albumin (/sup 99m/Tc MAA) labeling have been diagnostic of right-to-left shunting by their demonstration of tracer accumulation within the extrapulmonary circulation. A case of severe pulmonary arteriovenous shunting in an alcoholic patient in whom hepatic disease had not been of apparent clinical significance before radionuclide scanning is reported. He did not have cutaneous angiomata as have all other patients with alcoholic cirrhosis and hypoxemia.

  18. A canine model of multiple portosystemic shunting.

    PubMed

    Howe, L M; Boothe, H W; Miller, M W; Boothe, D M

    2000-01-01

    The objective of this study was to develop and describe an experimental canine model of multiple acquired portosystemic shunts (PSS) similar in nature to spontaneously occurring PSS. Sixteen dogs were used and were divided into a control (n = 6) and a diseased group (n = 10). Dogs of the diseased group were administered dimethylnitrosamine (2 mg/kg of body weight, po) twice weekly, and clinicopathologic, ultrasonographic, and hepatic scintigraphic findings were recorded during the development of hepatic disease and PSS. Surgery was then performed to permit visual verification of multiple shunts, catheter placement for portography examination, and biopsy of the liver. All diseased dogs developed severe hepatic disease and multiple PSS as documented visually at surgery and on portography. Based on this study, dimethylnitrosamine-induced portosystemic shunting appears to be an appropriate model for spontaneously occurring multiple PSS secondary to portal hypertension. PMID:10741951

  19. Isothiouronium compounds as gamma-aminobutyric acid agonists.

    PubMed Central

    Allan, R. D.; Dickenson, H. W.; Hiern, B. P.; Johnston, G. A.; Kazlauskas, R.

    1986-01-01

    Analogues of gamma-aminobutyric acid (GABA) incorporating an isothiouronium salt as a replacement for a protonated amino functional group have been investigated for activity on: GABA receptors in the guinea-pig ileum; [3H]-GABA and [3H]-diazepam binding to rat brain membranes; and GABA uptake and transamination. For the homologous series of omega-isothiouronium alkanoic acids, maximum GABA-mimetic activity was found at 3-[(aminoiminomethyl)thio]propanoic acid. Introduction of unsaturation into this compound gave two isomeric conformationally restricted analogues. The trans isomer was inactive at GABA receptors while the cis compound ((Z)-3-[(aminoiminomethyl)thio]prop-2-enoic acid (ZAPA)) was more potent than muscimol and GABA as a GABA agonist with respect to low affinity GABA receptor sites. Both isomers were moderately potent at inhibiting the uptake of [3H]-GABA into rat brain slices. Comparison of possible conformations of the two unsaturated isomers by interactive computer graphics modelling and comparison with muscimol has led to a plausible active conformation of ZAPA, which may be a selective and potent agonist for low affinity GABA binding sites. PMID:3015310

  20. Ventricular shunt infections: Immunopathogenesis and clinical management

    PubMed Central

    Gutierrez-Murgas, Yenis; Snowden, Jessica N.

    2014-01-01

    Ventricular shunts are the most common neurosurgical procedure performed in the United States. This hydrocephalus treatment is often complicated by infection of the device with biofilm-forming bacteria. In this review, we discuss the pathogenesis of shunt infection, as well as the implications of the biofilm formation on treatment and prevention of these infections. Many questions remain, including the contribution of glia and the impact of inflammation on developmental outcomes following infection. Immune responses within the CNS must be carefully regulated to contain infection while minimizing bystander damage; further study is needed to design optimal treatment strategies for these patients. PMID:25156073

  1. Collagen plug occlusion of Molteno tube shunts.

    PubMed

    Stewart, W; Feldman, R M; Gross, R L

    1993-01-01

    We report five patients in whom collagen lacrimal plugs were used to temporarily occlude the lumen of Molteno shunts to prevent early postoperative hypotony. Only one eye, with a double plate, developed hypotony and a flat anterior chamber that required reformation. However, in three patients, the collagen plugs did not dissolve and had to be removed surgically to lower the intraocular pressure. Although the semipermeability of collagen is desirable, its unpredictable degradation renders it unsuitable for temporary occlusion of tube shunts. Other biodegradable materials may be more appropriate for this purpose. PMID:8446334

  2. Inhibitory actions of GABA on rabbit urinary bladder muscle strips: mediation by potassium channels.

    PubMed

    Ferguson, D R; Marchant, J S

    1995-05-01

    1. The actions of gamma-aminobutyric acid (GABA) upon rabbit urinary bladder muscle were investigated to determine whether they were mediated through potassium channels. 2. In vitro experiments were undertaken in which bladder muscle strips were caused to contract with carbachol. Addition of GABA or baclofen reduced the size of such evoked contractions in the case of GABA by 20.7 +/- 3.2%, in the case of baclofen by 22.4 +/- 2.2%. 3. Electrical stimulation of autonomic nerves in bladder wall strips also evoked contractions which were significantly smaller in potassium-free Krebs solution. The size of contractions produced by carbachol on the other hand were unaffected by the absence of potassium in the Krebs solution. 4. The inhibitory actions of GABA and baclofen on carbachol-induced contractions of bladder muscle were detected at much lower concentrations in potassium-free compared with potassium containing solutions. 5. The inhibitory effects of baclofen were completely reversed by tetraethyl ammonium chloride between 1 and 5 mM, caesium chloride between 0.5 and 3 mM and barium chloride between 0.5 and 2.5 mM. The actions of baclofen were only partially reversed by 4-amino-pyridine between 1 and 5 mM. 6. It was concluded that the GABAB receptor-mediated inhibitory actions on rabbit urinary bladder smooth muscle cells were produced by activation of potassium channels. PMID:7647988

  3. Fine Tuning of Synaptic Plasticity and Filtering by GABA Released from Hippocampal Autaptic Granule Cells.

    PubMed

    Valente, Pierluigi; Orlando, Marta; Raimondi, Andrea; Benfenati, Fabio; Baldelli, Pietro

    2016-03-01

    The functional consequence of γ-aminobutyric acid (GABA) release at mossy fiber terminals is still a debated topic. Here, we provide multiple evidence of GABA release in cultured autaptic hippocampal granule cells. In ∼50% of the excitatory autaptic neurons, GABA, VGAT, or GAD67 colocalized with vesicular glutamate transporter 1-positive puncta, where both GABAB and GABAA receptors (Rs) were present. Patch-clamp recordings showed a clear enhancement of autaptic excitatory postsynaptic currents in response to the application of the GABABR antagonist CGP58845 only in neurons positive to the selective granule cell marker Prox1, and expressing low levels of GAD67. Indeed, GCP non-responsive excitatory autaptic neurons were both Prox1- and GAD67-negative. Although the amount of released GABA was not sufficient to activate functional postsynaptic GABAARs, it effectively activated presynaptic GABABRs that maintain a tonic "brake" on the probability of release and on the size of the readily releasable pool and contributed to resting potential hyperpolarization possibly through extrasynaptic GABAAR activation. The autocrine inhibition exerted by GABABRs on glutamate release enhanced both paired-pulse facilitation and post-tetanic potentiation. Such GABABR-mediated changes in short-term plasticity confer to immature granule cells the capability to modulate their filtering properties in an activity-dependent fashion, with remarkable consequences on the dynamic behavior of neural circuits. PMID:25576534

  4. A novel GABA-mediated corticotropin-releasing hormone secretory mechanism in the median eminence

    PubMed Central

    Kakizawa, Keisuke; Watanabe, Miho; Mutoh, Hiroki; Okawa, Yuta; Yamashita, Miho; Yanagawa, Yuchio; Itoi, Keiichi; Suda, Takafumi; Oki, Yutaka; Fukuda, Atsuo

    2016-01-01

    Corticotropin-releasing hormone (CRH), which is synthesized in the paraventricular nucleus (PVN) of the hypothalamus, plays an important role in the endocrine stress response. The excitability of CRH neurons is regulated by γ-aminobutyric acid (GABA)–containing neurons projecting to the PVN. We investigated the role of GABA in the regulation of CRH release. The release of CRH was impaired, accumulating in the cell bodies of CRH neurons in heterozygous GAD67-GFP (green fluorescent protein) knock-in mice (GAD67+/GFP), which exhibited decreased GABA content. The GABAA receptor (GABAAR) and the Na+-K+-2Cl− cotransporter (NKCC1), but not the K+-Cl− cotransporter (KCC2), were expressed in the terminals of the CRH neurons at the median eminence (ME). In contrast, CRH neuronal somata were enriched with KCC2 but not with NKCC1. Thus, intracellular Cl− concentrations ([Cl−]i) may be increased at the terminals of CRH neurons compared with concentrations in the cell body. Moreover, GABAergic terminals projecting from the arcuate nucleus were present in close proximity to CRH-positive nerve terminals. Furthermore, a GABAAR agonist increased the intracellular calcium (Ca2+) levels in the CRH neuron terminals but decreased the Ca2+ levels in their somata. In addition, the increases in Ca2+ concentrations were prevented by an NKCC1 inhibitor. We propose a novel mechanism by which the excitatory action of GABA maintains a steady-state CRH release from axon terminals in the ME. PMID:27540587

  5. Oxytocin regulates changes of extracellular glutamate and GABA levels induced by methamphetamine in the mouse brain.

    PubMed

    Qi, Jia; Han, Wen-Yan; Yang, Jing-Yu; Wang, Li-Hui; Dong, Ying-Xu; Wang, Fang; Song, Ming; Wu, Chun-Fu

    2012-07-01

    Oxytocin (OT), a neurohypophyseal neuropeptide, affects adaptive processes of the central nervous system. In the present study, we investigated the effects of OT on extracellular levels of glutamate (Glu) and γ-aminobutyric acid (GABA) induced by methamphetamine (MAP) in the medial prefrontal cortex (mPFC) and dorsal hippocampus (DHC) of freely moving mice, using in vivo microdialysis coupled to high-performance liquid chromatography and fluorescence detection. The results showed that OT had no effect on basal Glu levels, but attenuated MAP-induced Glu increase in the mPFC and decrease in the DHC. OT increased the basal levels of extracellular GABA in mPFC and DHC of mice, and inhibited the MAP-induced GABA decrease in DHC. Western blot results indicated that OT significantly inhibited the increased glutamatergic receptor (NR1 subunit) levels in the PFC after acute MAP administration, whereas OT further enhanced the elevated levels of glutamatergic transporter (GLT1) induced by MAP in the hippocampus of mice. Atosiban, a selective inhibitor of OT receptor, antagonized the effects of OT. The results provided the first neurochemical evidence that OT, which exerted its action via its receptor, decreased Glu release induced by MAP, and attenuated the changes in glutamatergic neurotransmission partially via regulation of NR1 and GLT1 expression. OT-induced extracellular GABA increase also suggests that OT acts potentially as an inhibitory neuromodulator in mPFC and DHC of mice. PMID:22507692

  6. Contributions of GABA to alcohol responsivity during adolescence: Insights from preclinical and clinical studies

    PubMed Central

    Silveri, Marisa M.

    2015-01-01

    There is a considerable body of literature demonstrating that adolescence is a unique age period, which includes rapid and dramatic maturation of behavioral, cognitive, hormonal and neurobiological systems. Most notably, adolescence is also a period of unique responsiveness to alcohol effects, with both hyposensitivity and hypersensitivity observed to the various effects of alcohol. Multiple neurotransmitter systems are undergoing fine-tuning during this critical period of brain development, including those that contribute to the rewarding effects of drugs of abuse. The role of developmental maturation of the γ-amino-butyric acid (GABA) system, however, has received less attention in contributing to age-specific alcohol sensitivities. This review integrates GABA findings from human magnetic resonance spectroscopy studies as they may translate to understanding adolescent-specific responsiveness to alcohol effects. Better understanding of the vulnerability of the GABA system both during adolescent development, and in psychiatric conditions that include alcohol dependence, could point to a putative mechanism, boosting brain GABA, that may have increased effectiveness for treating alcohol abuse disorders. PMID:24631274

  7. The role of vasopressin, somatostatin and GABA in febrile convulsion in rat pups.

    PubMed

    Nagaki, S; Nagaki, S; Minatogawa, Y; Sadamatsu, M; Kato, N; Osawa, M; Fukuyama, Y

    1996-01-01

    In order to further elucidate a possible role of neuropeptides and GABA in the pathogenesis of febrile convulsions, we studied changes of immunoreactive-arginine vasopressin (IR-AVP), IR-somatostatin (IR-SRIF) and gamma-aminobutyric acid (GABA) in the rat brain after febrile convulsions induced by ultra-red light (UR). Male Wistar rats at 16 days of age irradiated with UR developed generalized convulsions after 4.9 +/- 0.5 min irradiation. Six rats were killed by microwave irradiation 3 min after UR irradiation prior to convulsion development, and 29 rats were killed either 0 min, 2 h, 6 h, 24 h or 48 h after febrile convulsions. Non-irradiated rats served as controls. The rat brain was dissected into 4 regions; amygdala, hypothalamus, cortex and hippocampus, and subjected to radioimmunoassays. IR-AVP levels in hypothalamus were increased 3 min after UR and decreased at 2 h and 6 h after the convulsions. IR-SRIF levels were increased in cortex and hippocampus at 3 min after UR and 0 min after the convulsions. The GABA content increased in all regions tested at 2 h and 6 h after the convulsions. These results suggest that AVP, SRIF and GABA may be involved in the pathogenesis of febrile convulsions in different ways. PMID:8649210

  8. A novel GABA-mediated corticotropin-releasing hormone secretory mechanism in the median eminence.

    PubMed

    Kakizawa, Keisuke; Watanabe, Miho; Mutoh, Hiroki; Okawa, Yuta; Yamashita, Miho; Yanagawa, Yuchio; Itoi, Keiichi; Suda, Takafumi; Oki, Yutaka; Fukuda, Atsuo

    2016-08-01

    Corticotropin-releasing hormone (CRH), which is synthesized in the paraventricular nucleus (PVN) of the hypothalamus, plays an important role in the endocrine stress response. The excitability of CRH neurons is regulated by γ-aminobutyric acid (GABA)-containing neurons projecting to the PVN. We investigated the role of GABA in the regulation of CRH release. The release of CRH was impaired, accumulating in the cell bodies of CRH neurons in heterozygous GAD67-GFP (green fluorescent protein) knock-in mice (GAD67(+/GFP)), which exhibited decreased GABA content. The GABAA receptor (GABAAR) and the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1), but not the K(+)-Cl(-) cotransporter (KCC2), were expressed in the terminals of the CRH neurons at the median eminence (ME). In contrast, CRH neuronal somata were enriched with KCC2 but not with NKCC1. Thus, intracellular Cl(-) concentrations ([Cl(-)]i) may be increased at the terminals of CRH neurons compared with concentrations in the cell body. Moreover, GABAergic terminals projecting from the arcuate nucleus were present in close proximity to CRH-positive nerve terminals. Furthermore, a GABAAR agonist increased the intracellular calcium (Ca(2+)) levels in the CRH neuron terminals but decreased the Ca(2+) levels in their somata. In addition, the increases in Ca(2+) concentrations were prevented by an NKCC1 inhibitor. We propose a novel mechanism by which the excitatory action of GABA maintains a steady-state CRH release from axon terminals in the ME. PMID:27540587

  9. Involvement of GABA in environmental temperature-induced change in body temperature.

    PubMed

    Biswas, S; Poddar, M K

    1988-12-01

    Acute exposure of adult male albino rats (110-120 g) to higher environmental temperature (40 +/- 1 degrees C) increased body temperature (BT). This increase of BT was also dependent on the duration of exposure. Treatment with muscimol (1 mg/kg, i.p.), a GABA agonist, produced hypothermia at room temperature (28 +/- 1 degree C) and resistance to increase the body temperature when exposed to higher temperature (40 +/- 1 degree C). Administration of bicuculline (1 mg/kg, i.p.), a GABA antagonist, on the other hand, enhanced BT more than that observed in control (normal) rat exposed to higher temperature (40 +/- 1 degree C), although at room temperature bicuculline treatment did not show any effect on BT. Pretreatment with ethanolamine-O-sulfate (EOS) (2 g/kg, s.c.), a GABA transaminase inhibitor, to rats exposed to higher temperature increased BT as in control (normal) rat. Inhibition of central GAD activity with mercaptopropionic acid (MPA) (70 mg/kg, i.p.) produced resistance to increase BT during its period of action when rats were exposed to higher environmental temperature (28 +/- 1 degree C). These results thus suggest that central inhibitory neuron, GABA, plays a regulatory role in thermoregulation. PMID:3236943

  10. Lamina-specific alterations in cortical GABA(A) receptor subunit expression in schizophrenia.

    PubMed

    Beneyto, Monica; Abbott, Andrew; Hashimoto, Takanori; Lewis, David A

    2011-05-01

    Dysfunction of the dorsolateral prefrontal cortex (DLPFC) in schizophrenia is associated with lamina-specific alterations in particular subpopulations of interneurons. In pyramidal cells, postsynaptic γ-aminobutyric acid (GABA(A)) receptors containing different α subunits are inserted preferentially in distinct subcellular locations targeted by inputs from specific interneuron subpopulations. We used in situ hybridization to quantify the laminar expression of α1, α2, α3, and α5 subunit, and of β1-3 subunit, mRNAs in the DLFPC of schizophrenia, and matched normal comparison subjects. In subjects with schizophrenia, mean GABA(A) α1 mRNA expression was 17% lower in layers 3 and 4, α2 expression was 14% higher in layer 2, α5 expression was 15% lower in layer 4, and α3 expression did not differ relative to comparison subjects. The mRNA expression of β2, which preferentially assembles with α1 subunits, was also 20% lower in layers 3 and 4, whereas β1 and β3 mRNA levels were not altered in schizophrenia. These expression differences were not attributable to medication effects or other potential confounds. These findings suggest that GABA neurotransmission in the DLPFC is altered at the postsynaptic level in a receptor subunit- and layer-specific manner in subjects with schizophrenia and support the hypothesis that GABA neurotransmission in this illness is predominantly impaired in certain cortical microcircuits. PMID:20843900

  11. Increased GABA concentrations in type 2 diabetes mellitus are related to lower cognitive functioning.

    PubMed

    van Bussel, Frank C G; Backes, Walter H; Hofman, Paul A M; Puts, Nicolaas A J; Edden, Richard A E; van Boxtel, Martin P J; Schram, Miranda T; Stehouwer, Coen D A; Wildberger, Joachim E; Jansen, Jacobus F A

    2016-09-01

    Type 2 diabetes mellitus is associated with accelerated cognitive decline. The underlying pathophysiological mechanisms still remain to be elucidated although it is known that insulin signaling modulates neurotransmitter activity, including inhibitory γ-aminobutyric acid (GABA) and excitatory glutamate (Glu) receptors. Therefore, we examined whether levels of GABA and Glu are related to diabetes status and cognitive performance.Forty-one participants with type 2 diabetes and 39 participants without type 2 diabetes underwent detailed cognitive assessments and 3-Tesla proton MR spectroscopy. The associations of neurotransmitters with type 2 diabetes and cognitive performance were examined using multivariate regression analyses controlling for age, sex, education, BMI, and percentage gray/white matter ratio in spectroscopic voxel.Analysis revealed higher GABA+ levels in participants with type 2 diabetes, in participants with higher fasting blood glucose levels and in participants with higher HbA1c levels, and higher GABA+ levels in participants with both high HbA1c levels and less cognitive performance.To conclude, participants with type 2 diabetes have alterations in the GABAergic neurotransmitter system, which are related to lower cognitive functioning, and hint at the involvement of an underlying metabolic mechanism. PMID:27603392

  12. Presynaptic Na+-dependent transport and exocytose of GABA and glutamate in brain in hypergravity.

    NASA Astrophysics Data System (ADS)

    Borisova, T.; Pozdnyakova, N.; Krisanova, N.; Himmelreich, N.

    γ-Aminobutyric acid (GABA) and L-glutamate are the most widespread neurotransmitter amino acids in the mammalian central nervous system. GABA is now widely recognized as the major inhibitory neurotransmitter. L-glutamate mediates the most of excitatory synaptic neurotransmission in the brain. They involved in the main aspects of normal brain function. The nerve terminals (synaptosomes) offer several advantages as a model system for the study of general mechanisms of neurosecretion. Our data allowed to conclude that exposure of animals to hypergravity (centrifugation of rats at 10G for 1 hour) had a profound effect on synaptic processes in brain. Comparative analysis of uptake and release of GABA and glutamate have demonstrated that hypergravity loading evokes oppositely directed alterations in inhibitory and excitatory signal transmission. We studied the maximal velocities of [^3H]GABA reuptake and revealed more than twofold enhancement of GABA transporter activity (Vmax rises from 1.4 |pm 0.3 nmol/min/mg of protein in the control group to 3.3 ± 0.59 nmol/min/mg of protein for animals exposed to hypergravity (P ≤ 0.05)). Recently we have also demonstrated the significant lowering of glutamate transporter activity (Vmax of glutamate reuptake decreased from 12.5 ± 3.2 nmol/min/mg of protein in the control group to 5.6 ± 0.9 nmol/min/mg of protein in the group of animals, exposed to the hypergravity stress (P ≤ 0.05)). Significant changes occurred in release of neurotransmitters induced by stimulating exocytosis with the agents, which depolarized nerve terminal plasma membrane. Depolarization-evoked Ca2+-stimulated release was more abundant for GABA (7.2 ± 0.54% and 11,74 ±1,2 % of total accumulated label for control and hypergravity, respectively (P≤0.05)) and was essentially less for glutamate (14.4 ± 0.7% and 6.2 ± 1.9%) after exposure of animals to centrifuge induced artificial gravity. Changes observed in depolarization-evoked exocytotic release

  13. 49 CFR 236.57 - Shunt and fouling wires.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Shunt and fouling wires. 236.57 Section 236.57...: All Systems Track Circuits § 236.57 Shunt and fouling wires. (a) Except as provided in paragraph (b) of this section, shunt wires and fouling wires hereafter installed or replaced shall consist of...

  14. 21 CFR 882.4545 - Shunt system implantation instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Shunt system implantation instrument. 882.4545... (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4545 Shunt system implantation instrument. (a) Identification. A shunt system implantation instrument is an instrument used...

  15. 21 CFR 876.5955 - Peritoneo-venous shunt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Peritoneo-venous shunt. 876.5955 Section 876.5955...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5955 Peritoneo-venous shunt. (a) Identification. A peritoneo-venous shunt is an implanted device that consists of a catheter and a...

  16. 49 CFR 236.104 - Shunt fouling circuit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Shunt fouling circuit. 236.104 Section 236.104 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION...: All Systems Inspections and Tests; All Systems § 236.104 Shunt fouling circuit. Shunt fouling...

  17. 49 CFR 236.725 - Circuit, switch shunting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit, switch shunting. 236.725 Section 236.725 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Circuit, switch shunting. A shunting circuit which is closed through contacts of a switch...

  18. Specific targeting of the GABA-A receptor α5 subtype by a selective inverse agonist restores cognitive deficits in Down syndrome mice

    PubMed Central

    Braudeau, J; Delatour, B; Duchon, A; Pereira, P Lopes; Dauphinot, L; de Chaumont, F; Olivo-Marin, J-C; Dodd, RH; Hérault, Y; Potier, M-C

    2011-01-01

    An imbalance between inhibitory and excitatory neurotransmission has been proposed to contribute to altered brain function in individuals with Down syndrome (DS). Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system and accordingly treatment with GABA-A antagonists can efficiently restore cognitive functions of Ts65Dn mice, a genetic model for DS. However, GABA-A antagonists are also convulsant which preclude their use for therapeutic intervention in DS individuals. Here, we have evaluated safer strategies to release GABAergic inhibition using a GABA-A-benzodiazepine receptor inverse agonist selective for the α5-subtype (α5IA). We demonstrate that α5IA restores learning and memory functions of Ts65Dn mice in the novel-object recognition and in the Morris water maze tasks. Furthermore, we show that following behavioural stimulation, α5IA enhances learning-evoked immediate early gene products in specific brain regions involved in cognition. Importantly, acute and chronic treatments with α5IA do not induce any convulsant or anxiogenic effects that are associated with GABA-A antagonists or non-selective inverse agonists of the GABA-A-benzodiazepine receptors. Finally, chronic treatment with α5IA did not induce histological alterations in the brain, liver and kidney of mice. Our results suggest that non-convulsant α5-selective GABA-A inverse agonists could improve learning and memory deficits in DS individuals. PMID:21693554

  19. Identification of gamma-aminobutyric acid and its binding sites in Caenorhabditis elegans

    SciTech Connect

    Schaeffer, J.M.; Bergstrom, A.R.

    1988-01-01

    Gamma-aminobutyric acid (GABA), glutamate decarboxylase and GABA-transaminase were identified in the nematode Caenorhabditis elegans. The concentration of GABA in C. elegans is approximately 10-fold lower than the concentration of GABA in rat brain. Glutamate decarboxylase and GABA-transaminase, the GABA anabolic and catabolic enzymes, are also present in C. elegans. Crude membrane fractions were prepared from C. elegans and used to study specific (/sup 3/H) GABA binding sites. GABA binds to C. elegans membranes with high affinity and low capacity. Muscimol is a competitive inhibitor of specific GABA binding with a K/sub I/ value of 120 nM. None of the other GABA agonists or antagonists inhibited greater than 40% of the specific GABA binding at concentrations up to 10/sup -4/M. Thirteen spider venoms were examined as possible GABA agonists or antagonists, the venom from Calilena agelenidae inhibits specific GABA binding with a K/sub I/ value of 6 nl/ml. These results suggest that GABA has a physiological role as a neurotransmitter in C. elegans.

  20. Vibrational Spectra of γ-Aminobutyric Acid

    NASA Astrophysics Data System (ADS)

    Suresh, D. M.; Sajan, D.; Laladas, K. P.; Joe, I. Hubert; Jayakumar, V. S.

    2008-11-01

    The NIR-FT Raman, FT-IR spectral analysis of γ-Aminobutyric acid (GABA) a simple amino acid is carried out by density functional computations. The vibrational spectra confirm the existence of NH3+ in GABA. Hydroxyl groups H-bonded to the different extents are analysed, supported by computed results.

  1. 49 CFR 234.229 - Shunting sensitivity.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Shunting sensitivity. 234.229 Section 234.229 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... sensitivity. Each highway-rail grade crossing train detection circuit shall detect the application of a...

  2. 49 CFR 234.229 - Shunting sensitivity.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Shunting sensitivity. 234.229 Section 234.229 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... sensitivity. Each highway-rail grade crossing train detection circuit shall detect the application of a...

  3. 49 CFR 234.229 - Shunting sensitivity.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Shunting sensitivity. 234.229 Section 234.229 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... sensitivity. Each highway-rail grade crossing train detection circuit shall detect the application of a...

  4. Muzzle shunt augmentation of conventional railguns

    SciTech Connect

    Parker, J.V.

    1990-01-01

    Augmentation is a well-known technique for reducing the armature current and hence the armature power dissipation in a plasma armature railgun. In spite of the advantages, no large augmented railguns have been built, primarily due to the mechanical and electrical complexity introduce by the extra conductors required. It is possible to achieve some of the benefits of augmentation in conventional railgun by diverting a fraction {phi} of the input current through a shunt path at the muzzle of the railgun. In particular, the relation between force and armature current is the same as that obtained in an n-turn, series connected augmented railgun with n = 1/(1-{phi}). The price of this simplification is a reduction in electrical efficiency and some additional complexity in the external electrical system. Additions to the electrical system are required to establish the shunt current and to control its magnitude during projectile acceleration. The relationship between muzzle shunt augmentation and conventional series augmentation is developed and various techniques is developed and various techniques for establishing and controlling the shunt current are illustrated with a practical example. 5 refs., 8 figs., 2 tabs.

  5. Fabrication of capacitively-shunted superconducting qubits

    NASA Astrophysics Data System (ADS)

    Yoder, Jonilyn L.; Gudmundsen, Theodore J.; Bolkhovsky, Vladimir; Welander, Paul B.; Gustavsson, Simon; Hover, David; Kerman, Andrew J.; Sears, Adam P.; Oliver, William D.

    2014-03-01

    Improvements in superconducting qubit coherence times and reproducibility have been demonstrated using capacitive shunting. In this study, we present methods for the preparation of both capacitively-shunted charge qubits (transmons) and capacitively-shunted flux qubits. Hybrid fabrication techniques were employed to combine high-quality-factor aluminum capacitive shunts with shadow-evaporated Josephson junctions, and the Josephson junctions were prepared using suspended-bridge germanium masks. We also will describe process testing results that were acquired to assess wafer-to-wafer reproducibility of our fabrication protocols. This research was funded in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA); and by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract number FA8721-05-C-0002. All statements of fact, opinion or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of IARPA, the ODNI, or the U.S. Government.

  6. Presynaptic gamma-aminobutyric acid responses in the olfactory cortex.

    PubMed Central

    Pickles, H G

    1979-01-01

    1. Potential changes were recorded from the lateral olfactory tract in slices of rat olfactory cortex in vitro at room temperature. 2. Superfused gamma-aminobutyric acid (GABA) usually produced dose-related depolarization of the lateral olfactory tract. Muscimol and 3-aminopropanesulphonic acid appeared more potent depolarizing agents than GABA, and glycine and taurine appeared less potent. Carbachol and glutamate were virtually ineffective. 3. The GABA responses were at least partially Cl- dependent. 4. (+)-Bicuculline and higher concentrations of strychnine antagonized the GABA but not the glycine-induced depolarizations. Paradoxically, responses to high doses of GABA were sometimes potentiated by both bicuculline and strychnine. 5. It is suggested that GABA receptors could occur as widely on nerve terminals as they do postsynaptically in the CNS, where GABA could be involved in the modulation of transmitter output. PMID:760898

  7. Platypnea-Orthodeoxia Syndrome: To Shunt or Not to Shunt, That is the Question

    PubMed Central

    Kiefer, Todd L.; Velazquez, Eric J.

    2016-01-01

    Platypnea-orthodeoxia syndrome is a rare disease defined by dyspnea and deoxygenation, induced by an upright position, and relieved by recumbency. Causes include shunting through a patent foramen ovale and pulmonary arteriovenous malformations. A 79-year-old woman experienced 2 syncopal episodes at rest and presented at another hospital. In the emergency department, she was hypoxic, needing 6 L/min of oxygen. Her chest radiograph showed nothing unusual. Transthoracic echocardiograms with saline microcavitation evaluation were mildly positive early after agitated-saline administration, suggesting intracardiac shunting. She was then transferred to our center. Right-sided heart catheterization revealed no oximetric evidence of intracardiac shunting while the patient was supine and had a low right atrial pressure. However, her oxygen saturation dropped to 78% when she sat up. Repeat transthoracic echocardiography while sitting revealed a dramatically positive early saline microcavitation-uptake into the left side of the heart. Transesophageal echocardiograms showed a patent foramen ovale, with right-to-left shunting highly dependent upon body position. The patient underwent successful percutaneous patent foramen ovale closure, and her oxygen supplementation was suspended. In patients with unexplained or transient hypoxemia in which a cardiac cause is suspected, it is important to evaluate shunting in both the recumbent and upright positions. In this syndrome, elevated right atrial pressure is not necessary for significant right-to-left shunting. Percutaneous closure, if feasible, is first-line therapy in these patients. PMID:27303248

  8. Platypnea-Orthodeoxia Syndrome: To Shunt or Not to Shunt, That is the Question.

    PubMed

    Klein, Michael R; Kiefer, Todd L; Velazquez, Eric J

    2016-06-01

    Platypnea-orthodeoxia syndrome is a rare disease defined by dyspnea and deoxygenation, induced by an upright position, and relieved by recumbency. Causes include shunting through a patent foramen ovale and pulmonary arteriovenous malformations. A 79-year-old woman experienced 2 syncopal episodes at rest and presented at another hospital. In the emergency department, she was hypoxic, needing 6 L/min of oxygen. Her chest radiograph showed nothing unusual. Transthoracic echocardiograms with saline microcavitation evaluation were mildly positive early after agitated-saline administration, suggesting intracardiac shunting. She was then transferred to our center. Right-sided heart catheterization revealed no oximetric evidence of intracardiac shunting while the patient was supine and had a low right atrial pressure. However, her oxygen saturation dropped to 78% when she sat up. Repeat transthoracic echocardiography while sitting revealed a dramatically positive early saline microcavitation-uptake into the left side of the heart. Transesophageal echocardiograms showed a patent foramen ovale, with right-to-left shunting highly dependent upon body position. The patient underwent successful percutaneous patent foramen ovale closure, and her oxygen supplementation was suspended. In patients with unexplained or transient hypoxemia in which a cardiac cause is suspected, it is important to evaluate shunting in both the recumbent and upright positions. In this syndrome, elevated right atrial pressure is not necessary for significant right-to-left shunting. Percutaneous closure, if feasible, is first-line therapy in these patients. PMID:27303248

  9. Manganese exposure inhibits the clearance of extracellular GABA and influences taurine homeostasis in the striatum of developing rats

    PubMed Central

    Fordahl, Steve C.; Anderson, Joel G.; Cooney, Paula T.; Weaver, Tara L.; Colyer, Christa L.; Erikson, Keith M.

    2010-01-01

    Manganese (Mn) accumulation in the brain has been shown to alter the neurochemistry of the basal ganglia. Mn-induced alterations in dopamine biology are fairly well understood, but recently more evidence has emerged characterizing the role of γ-aminobutyric acid (GABA) in this dysfunction. The purpose of this study was to determine if the previously observed Mn-induced increase in extracellular GABA (GABAEC) was due to altered GABA transporter (GAT) function, and whether Mn perturbs other amino acid neurotransmitters, namely taurine and glycine (known modulators of GABA). Extracellular GABA, taurine, and glycine concentrations were collected from the striatum of control (CN) or Mn-exposed Sprague-Dawley rats using in vivo microdialysis, and the GAT inhibitor nipecotic acid (NA) was used to probe GAT function. Tissue and extracellular Mn levels were significantly increased, and the Fe:Mn ratio was decreased 36-fold in the extracellular space due to Mn exposure. NA led to a 2-fold increase in GABAEC of CNs, a response that was attenuated by Mn. Taurine responded inversely to GABA, and a novel 10-fold increase in taurine was observed after the removal of NA in CNs. Mn blunted this response and nearly abolished extracellular taurine throughout collection. Striatal taurine transporter (Slc6a6) mRNA levels were significantly increased with Mn exposure, and Mn significantly increased 3H-Taurine uptake after 3-minute exposure in primary rat astrocytes. These data suggest that Mn increases GABAEC by inhibiting the function of GAT, and that perturbed taurine homeostasis potentially impacts neural function by jeopardizing the osmoregulatory and neuromodulatory functions of taurine in the brain. PMID:20832424

  10. Robust glycogen shunt activity in astrocytes: Effects of glutamatergic and adrenergic agents.

    PubMed

    Walls, A B; Heimbürger, C M; Bouman, S D; Schousboe, A; Waagepetersen, H S

    2009-01-12

    The significance and functional roles of glycogen shunt activity in the brain are largely unknown. It represents the fraction of metabolized glucose that passes through glycogen molecules prior to entering the glycolytic pathway. The present study was aimed at elucidating this pathway in cultured astrocytes from mouse exposed to agents such as a high [K+], D-aspartate and norepinephrine (NE) known to affect energy metabolism in response to neurotransmission. Glycogen shunt activity was assessed employing [1,6-13C]glucose, and the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) to block glycogen degradation. The label intensity in lactate, reflecting glycolytic activity, was determined by mass spectrometry. In the presence of NE a substantial glycogen shunt activity was observed, accounting for almost 40% of overall glucose metabolism. Moreover, when no metabolic stimulant was applied, a compensatory increase in glycolytic activity was seen when the shunt was inhibited by DAB. Actually the labeling in lactate exceeded that obtained when glycolysis and glycogen shunt both were operational, i.e. supercompensation. A similar phenomenon was seen when astrocytes were exposed to D-aspartate. In addition to glycolysis, tricarboxylic acid (TCA) cycle activity was monitored, analyzing labeling by mass spectrometry in glutamate which equilibrates with alpha-ketoglutarate. Both an elevated [K+] and D-aspartate induced an increased TCA cycle activity, which was altered when glycogen degradation was inhibited. Thus, the present study provides evidence that manipulation of glycogen metabolism affects both glycolysis and TCA cycle metabolism. Altogether, the results reveal a highly complex interaction between glycogenolysis and glycolysis, with the glycogen shunt playing a significant role in astrocytic energy metabolism. PMID:19000744

  11. Hepatic and renal metabolism before and after portasystemic shunts in patients with cirrhosis.

    PubMed Central

    Owen, O E; Mozzoli, M A; Reichle, F A; Kreulen, T H; Owen, R S; Boden, G; Polansky, M

    1985-01-01

    Hepatic cirrhosis with portal hypertension and gastroesophageal hemorrhage is a disease complex that continues to be treated by surgical portasystemic shunts. Whether or not a reduction or diversion of portal blood flow to the liver adversely affects the ability of the liver to maintain fuel homeostasis via gluconeogenesis, glycogenolysis, and ketogenesis is unknown. 11 patients with biopsy-proven severe hepatic cirrhosis were studied before and after distal splenorenal or mesocaval shunts. Hepatic, portal, and renal blood flow rates and glucose, lactate, pyruvate, glycerol, amino acids, ketone bodies, free fatty acids, and triglyceride arteriovenous concentration differences were determined to calculate net precursor-product exchange rates across the liver, gut, and kidney. The study showed that hepatic contribution of glucose and ketone bodies and the caloric equivalents of these fuels delivered to the blood was not adversely affected by either a distal splenorenal or mesocaval shunt. In addition to these general observations, isolated findings emerged. Mesocaval shunts reversed portal venous blood and functionally converted this venous avenue into hepatic venous blood. The ability of the kidney to make a substantial net contribution of ketone bodies to the blood was also observed. PMID:4044831

  12. Episodic ventriculomegaly due to hypernatremia mimicking shunt malfunction: case report.

    PubMed

    Jernigan, Sarah C; Stone, Scellig S D; Aronson, Joshua P; Putman, Melissa; Proctor, Mark R

    2015-10-01

    Patients with shunted hydrocephalus presenting with altered mental status and ventriculomegaly are generally considered to be in shunt failure requiring surgical treatment. The authors describe a case of shunted hydrocephalus secondary to a disseminated neuroectodermal tumor in a pediatric patient in whom rapid fluctuations in sodium levels due to diabetes insipidus repeatedly led to significant changes in ventricle size, with invasively confirmed normal shunt function and low intracranial pressure. This clinical picture exactly mimics shunt malfunction, requires urgent nonsurgical therapy, and underscores the importance of considering serum osmolar abnormalities in the differential diagnosis for ventriculomegaly. PMID:26186358

  13. Cocaine disinhibits dopamine neurons in the ventral tegmental area via use-dependent blockade of GABA neuron voltage-sensitive sodium channels

    PubMed Central

    Steffensen, Scott C.; Taylor, Seth R.; Horton, Malia L.; Barber, Elise N.; Lyle, Laura T.; Stobbs, Sarah H.; Allison, David W.

    2010-01-01

    The aim of this study was to evaluate the effects of cocaine on γ-aminobutyric acid (GABA) and dopamine (DA) neurons in the ventral tegmental area (VTA). Utilizing single-unit recordings in vivo, microelectrophoretic administration of DA enhanced the firing rate of VTA GABA neurons via D2/D3 DA receptor activation. Lower doses of intravenous cocaine (0.25–0.5 mg/kg), or the DA transporter (DAT) blocker methamphetamine, enhanced VTA GABA neuron firing rate via D2/D3 receptor activation. Higher doses of cocaine (1.0–2.0 mg/kg) inhibited their firing rate, which was not sensitive to the D2/D3 antagonist eticlopride. The voltage-sensitive sodium channel (VSSC) blocker lidocaine inhibited the firing rate of VTA GABA neurons at all doses tested (0.25–2.0 mg/kg). Cocaine or lidocaine reduced VTA GABA neuron spike discharges induced by stimulation of the internal capsule (ICPSDs) at dose levels 0.25–2 mg/kg (IC50 1.2 mg/kg). There was no effect of DA or methamphetamine on ICPSDs, or of DA antagonists on cocaine inhibition of ICPSDs. In VTA GABA neurons in vitro, cocaine reduced (IC50 13 μm) current-evoked spikes and TTX-sensitive sodium currents in a use-dependent manner. In VTA DA neurons, cocaine reduced IPSCs (IC50 13 μm), increased IPSC paired-pulse facilitation and decreased spontaneous IPSC frequency, without affecting miniature IPSC frequency or amplitude. These findings suggest that cocaine acts on GABA neurons to reduce activity-dependent GABA release on DA neurons in the VTA, and that cocaine's use-dependent blockade of VTA GABA neuron VSSCs may synergize with its DAT inhibiting properties to enhance mesolimbic DA transmission implicated in cocaine reinforcement. PMID:19046384

  14. Role of GABA Deficit in Sensitivity to the Psychotomimetic Effects of Amphetamine.

    PubMed

    Ahn, Kyung-Heup; Sewell, Andrew; Elander, Jacqueline; Pittman, Brian; Ranganathan, Mohini; Gunduz-Bruce, Handan; Krystal, John; D'Souza, Deepak Cyril

    2015-11-01

    Some schizophrenia patients are more sensitive to amphetamine (AMPH)-induced exacerbations in psychosis-an effect that correlates with higher striatal dopamine release. This enhanced vulnerability may be related to gamma-aminobutyric acid (GABA) deficits observed in schizophrenia. We hypothesized that a pharmacologically induced GABA deficit would create vulnerability to the psychotomimetic effects to the 'subthreshold' dose of AMPH in healthy subjects, which by itself would not induce clinically significant increase in positive symptoms. To test this hypothesis, a GABA deficit was induced by intravenous infusion of iomazenil (IOM; 3.7 μg/kg), an antagonist and partial inverse agonist of benzodiazepine receptor. A subthreshold dose of AMPH (0.1 mg/kg) was administered by intravenous infusion. Healthy subjects received placebo IOM followed by placebo AMPH, active IOM followed by placebo AMPH, placebo IOM followed by active AMPH, and active IOM followed by active AMPH in a randomized, double-blind crossover design over 4 test days. Twelve healthy subjects who had a subclinical response to active AMPH alone were included in the analysis. Psychotomimetic effects (Positive and Negative Syndrome Scale (PANSS)), perceptual alterations (Clinician Administered Dissociative Symptoms Scale (CADSS)), and subjective effects (visual analog scale) were captured before and after the administration of drugs. IOM significantly augmented AMPH-induced peak changes in PANSS positive symptom subscale and both subjective and objective CADSS scores. There were no pharmacokinetic interactions. In conclusion, GABA deficits increased vulnerability to amphetamine-induced psychosis-relevant effects in healthy subjects, suggesting that pre-existing GABA deficits may explain why a subgroup of schizophrenia patients are vulnerable to AMPH. PMID:25953357

  15. Hypothalamic oxytocin attenuates CRF expression via GABA(A) receptors in rats.

    PubMed

    Bülbül, Mehmet; Babygirija, Reji; Cerjak, Diana; Yoshimoto, Sazu; Ludwig, Kirk; Takahashi, Toku

    2011-04-28

    Centrally released oxytocin (OXT) has anxiolytic and anti-stress effects. Delayed gastric emptying (GE) induced by acute restraint stress (ARS) for 90 min is completely restored following 5 consecutive days of chronic homotypic restraint stress (CHS), via up-regulating hypothalamic OXT expression in rats. However, the mechanism behind the restoration of delayed GE following CHS remains unclear. Gamma-aminobutyric acid (GABA)-projecting neurons in the paraventricular nucleus (PVN) have been shown to inhibit corticotropin releasing factor (CRF) synthesis via GABA(A) receptors. We hypothesized that GABA(A) receptors are involved in mediating the inhibitory effect of OXT on CRF expression in the PVN, which in turn restores delayed GE following CHS. OXT (0.5 μg) and selective GABA(A) receptor antagonist, bicuculline methiodide (BMI) (100 ng), were administered intracerebroventricularly (icv). Solid GE was measured under non-stressed (NS), ARS and CHS conditions. Expression of CRF mRNA in the PVN was evaluated by real time RT-PCR. Neither OXT nor BMI changed GE and CRF mRNA expression under NS conditions. Delayed GE and increased CRF mRNA expression induced by ARS were restored by icv-injection of OXT. The effects of OXT on delayed GE and increased CRF mRNA expression in ARS were abolished by icv-injection of BMI. Following CHS, delayed GE was completely restored in saline (icv)-injected rats, whereas daily injection of BMI (icv) attenuated the restoration of delayed GE. Daily injection of BMI (icv) significantly increased CRF mRNA expression following CHS. It is suggested that central OXT inhibits ARS-induced CRF mRNA expression via GABA(A) receptors in the PVN. GABAergic system is also involved in OXT-mediated adaptation response of delayed GE under CHS conditions. PMID:21382355

  16. Increased GABA Contributes to Enhanced Control over Motor Excitability in Tourette Syndrome

    PubMed Central

    Draper, Amelia; Stephenson, Mary C.; Jackson, Georgina M.; Pépés, Sophia; Morgan, Paul S.; Morris, Peter G.; Jackson, Stephen R.

    2014-01-01

    Summary Tourette syndrome (TS) is a developmental neurological disorder characterized by vocal and motor tics [1] and associated with cortical-striatal-thalamic-cortical circuit dysfunction [2, 3], hyperexcitability within cortical motor areas [4], and altered intracortical inhibition [4–7]. TS often follows a developmental time course in which tics become increasingly more controlled during adolescence in many individuals [1], who exhibit enhanced control over their volitional movements [8–11]. Importantly, control over motor outputs appears to be brought about by a reduction in the gain of motor excitability [6, 7, 12, 13]. Here we present a neurochemical basis for a localized gain control mechanism. We used ultra-high-field (7 T) magnetic resonance spectroscopy to investigate in vivo concentrations of γ-aminobutyric acid (GABA) within primary and secondary motor areas of individuals with TS. We demonstrate that GABA concentrations within the supplementary motor area (SMA)—a region strongly associated with the genesis of motor tics in TS [14]—are paradoxically elevated in individuals with TS and inversely related to fMRI blood oxygen level-dependent activation. By contrast, GABA concentrations in control sites do not differ from those of a matched control group. Importantly, we also show that GABA concentrations within the SMA are inversely correlated with cortical excitability in primary motor cortex and are predicted by motor tic severity and white-matter microstructure (FA) within a region of the corpus callosum that projects to the SMA within each hemisphere. Based upon these findings, we propose that extrasynaptic GABA contributes to a form of control, based upon localized tonic inhibition within the SMA, that may lead to the suppression of tics. PMID:25264251

  17. Increased GABA contributes to enhanced control over motor excitability in Tourette syndrome.

    PubMed

    Draper, Amelia; Stephenson, Mary C; Jackson, Georgina M; Pépés, Sophia; Morgan, Paul S; Morris, Peter G; Jackson, Stephen R

    2014-10-01

    Tourette syndrome (TS) is a developmental neurological disorder characterized by vocal and motor tics and associated with cortical-striatal-thalamic-cortical circuit dysfunction, hyperexcitability within cortical motor areas, and altered intracortical inhibition. TS often follows a developmental time course in which tics become increasingly more controlled during adolescence in many individuals, who exhibit enhanced control over their volitional movements. Importantly, control over motor outputs appears to be brought about by a reduction in the gain of motor excitability. Here we present a neurochemical basis for a localized gain control mechanism. We used ultra-high-field (7 T) magnetic resonance spectroscopy to investigate in vivo concentrations of γ-aminobutyric acid (GABA) within primary and secondary motor areas of individuals with TS. We demonstrate that GABA concentrations within the supplementary motor area (SMA)--a region strongly associated with the genesis of motor tics in TS--are paradoxically elevated in individuals with TS and inversely related to fMRI blood oxygen level-dependent activation. By contrast, GABA concentrations in control sites do not differ from those of a matched control group. Importantly, we also show that GABA concentrations within the SMA are inversely correlated with cortical excitability in primary motor cortex and are predicted by motor tic severity and white-matter microstructure (FA) within a region of the corpus callosum that projects to the SMA within each hemisphere. Based upon these findings, we propose that extrasynaptic GABA contributes to a form of control, based upon localized tonic inhibition within the SMA, that may lead to the suppression of tics. PMID:25264251

  18. Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain.

    PubMed

    Vazquez-DeRose, Jacqueline; Schwartz, Michael D; Nguyen, Alexander T; Warrier, Deepti R; Gulati, Srishti; Mathew, Thomas K; Neylan, Thomas C; Kilduff, Thomas S

    2016-03-01

    Hypocretin/orexin (HCRT) neurons provide excitatory input to wake-promoting brain regions including the basal forebrain (BF). The dual HCRT receptor antagonist almorexant (ALM) decreases waking and increases sleep. We hypothesized that HCRT antagonists induce sleep, in part, through disfacilitation of BF neurons; consequently, ALM should have reduced efficacy in BF-lesioned (BFx) animals. To test this hypothesis, rats were given bilateral IgG-192-saporin injections, which predominantly targets cholinergic BF neurons. BFx and intact rats were then given oral ALM, the benzodiazepine agonist zolpidem (ZOL) or vehicle (VEH) at lights-out. ALM was less effective than ZOL at inducing sleep in BFx rats compared to controls. BF adenosine (ADO), γ-amino-butyric acid (GABA), and glutamate levels were then determined via microdialysis from intact, freely behaving rats following oral ALM, ZOL or VEH. ALM increased BF ADO and GABA levels during waking and mixed vigilance states, and preserved sleep-associated increases in GABA under low and high sleep pressure conditions. ALM infusion into the BF also enhanced cortical ADO release, demonstrating that HCRT input is critical for ADO signaling in the BF. In contrast, oral ZOL and BF-infused ZOL had no effect on ADO levels in either BF or cortex. ALM increased BF ADO (an endogenous sleep-promoting substance) and GABA (which is increased during normal sleep), and required an intact BF for maximal efficacy, whereas ZOL blocked sleep-associated BF GABA release, and required no functional contribution from the BF to induce sleep. ALM thus induces sleep by facilitating the neural mechanisms underlying the normal transition to sleep. PMID:25431268

  19. Colocalization of serotonin and GABA in retinal neurons of Ichthyophis kohtaoensis (amphibia; Gymnophiona).

    PubMed

    Dünker, N

    1998-01-01

    Ichthyophis kohtaoensis, a member of the limbless Gymnophiona, has a specialized subterranean burrowing mode of life and a predominantly olfactory-guided orientation. The only visually guided behavior seems to be negative phototaxis. As these animals possess extremely small eyes (only 540 microm in diameter in adults), functional investigations of single retinal cells by electrophysiological methods have so far failed. Therefore, the content and distribution of retinal transmitters have been investigated as indications of a functioning sense organ in an animal that is supposed to be blind. Previous immunohistochemical investigation of the retinal transmitter system revealed immunoreactivity for gamma-aminobutyric acid (GABA), serotonin, dopamine and tyrosine hydroxylase, the rate-limiting enzyme in the catecholamine synthetic pathway. The present studies have been performed in order to determine a possible colocalization of serotonin and GABA in retinal neurons of the caecilian retina. Therefore retinal cryostat sections of various developmental stages have been investigated by the indirect fluorescence method. In single-label preparations, serotonin is localized to cells in the inner nuclear layer and the ganglion cell layer. GABA immunocytochemistry labels a variety of cell types in the inner nuclear layer as well as cell bodies in the ganglion cell layer. In double-label preparations, some of the serotonergic cells are found to express GABA immunoreactivity and some GABAergic neurons also label for serotonin immunocytochemistry. Thus, despite the fact that caecilians mainly rely on olfaction and are believed to have a reduced visual system, their retina exhibits a surprisingly "normal" distribution of neurotransmitters and neuromodulators, also typical of other anamniotes with a well-developed visual system, including the partial colocalization of serotonin and GABA at all developmental stages of I. kohtaoensis. These results indicate that a functional system

  20. Reduced clearance of proteins labeled with diisopropylfluorophosphate in portacaval-shunted rats.

    PubMed

    Dienel, Gerald A; Cruz, Nancy F

    2014-12-01

    Portacaval shunting is a model for hepatic encephalopathy that causes chronic hyperammonemia, disruption of metabolic, signaling, and neurotransmitter systems, and progressive morphological changes. Exposure of cultured cells to ammonia raises intralysosomal pH and inhibits proteolysis, and the present study tested the hypothesis that proteolytic capacity is diminished in portacaval-shunted rats. Proteins were labeled in vivo with tracer doses of diisopropylfluorophosphate (DFP) and clearance of label was assayed. This approach labeled proteins independent of protein synthesis, which is reported to be altered in shunted rats, and avoided complications arising from re-utilization of labeled amino acids that causes underestimation of degradation rate. Characterization of DFP labeling showed that protein labeling was fast, about 50% of the label was released during a 24 h interval, labeling by DFP metabolites was negligible, inhibition of brain acetylcholinesterase was not detectable, and labeling by [(3)H]- and [(14)C]DFP was equivalent. To assay degradative capacity, proteins were first labeled with [(3)H]DFP, followed by labeling with [(14)C]DFP that was given 24 or 72 h later. The (3)H/(14)C ratio in each animal was used as a relative measure of removal of (3)H-labeled proteins. (3)H/(14)C ratios were generally significantly higher in portacaval-shunted rats than in controls, consistent with reduced proteolytic capacity. Assays of amino acid incorporation into brain protein generally replicated literature reports, supporting the conclusion that protein synthesis unlikely to be markedly inhibited and amino acid recycling influences calculated protein synthesis rates in shunted rats. Therapeutic strategies to reduce ammonia level would help normalize lysosomal functions and protein and lipid turnover. PMID:24154686

  1. Electrophysiological evidence for 4-isobutyl-3-isopropylbicyclophosphorothionate as a selective blocker of insect GABA-gated chloride channels.

    PubMed

    Akiyoshi, Yuki; Ju, Xiu-Lian; Furutani, Shogo; Matsuda, Kazuhiko; Ozoe, Yoshihisa

    2013-06-01

    Invertebrate γ-aminobutyric acid (GABA)-gated chloride channels (GABACls) and glutamate-gated chloride channels (GluCls), which function as inhibitory neurotransmitter receptors, are important targets of insecticides and antiparasitic agents. The antagonism of GABACls and GluCls by 4-isobutyl-3-isopropylbicyclophosphorothionate (PS-14) was examined in cultured cockroach and rat neurons using a whole-cell patch-clamp method. The results indicated that PS-14 selectively blocks cockroach GABACls relative to cockroach GluCls and rat GABACls. PS-14 represents a useful probe for the study of insect GABA receptors. PMID:23591113

  2. Passively Shunted Piezoelectric Damping of Centrifugally-Loaded Plates

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Provenza, Andrew J.; Trudell, Jeffrey J.; Min, James B.

    2009-01-01

    Researchers at NASA Glenn Research Center have been investigating shunted piezoelectric circuits as potential damping treatments for turbomachinery rotor blades. This effort seeks to determine the effects of centrifugal loading on passively-shunted piezoelectric - damped plates. Passive shunt circuit parameters are optimized for the plate's third bending mode. Tests are performed both non-spinning and in the Dynamic Spin Facility to verify the analysis, and to determine the effectiveness of the damping under centrifugal loading. Results show that a resistive shunt circuit will reduce resonant vibration for this configuration. However, a tuned shunt circuit will be required to achieve the desired damping level. The analysis and testing address several issues with passive shunt circuit implementation in a rotating system, including piezoelectric material integrity under centrifugal loading, shunt circuit implementation, and tip mode damping.

  3. Late calcification and rupture: a rare complication of ventriculoperitoneal shunting.

    PubMed

    Kural, Cahit; Kirik, Alparslan; Pusat, Serhat; Senturk, Tolga; Izci, Yusuf

    2012-01-01

    A 10-year old boy who had undergone a ventriculoperitoneal (V/P) shunt because of hydrocephalus at 10 days of age was doing well until 20 days ago, when he began to experience headache and seizures. CT scan revealed dilated lateral ventricles and calcification at the shunt site. X-rays showed an unusual calcification pattern around the shunt tube and rupture of the tube between the mastoid bone and clavicle. The patient underwent surgery and the shunt was changed completely. The ventricles became small in the follow-up. Even though V/P shunts may induce fibrous tissue formation and calcification around the tube, there are a few cases of shunt rupture and calcification of shunts in the literature. Possible mechanisms of the rupture and calcification are discussed in this paper. PMID:23208915

  4. A large spontaneous intrahepatic portosystemic shunt in a cirrhotic patient

    PubMed Central

    Qi, Xingshun; Ye, Chun; Hou, Yue; Guo, Xiaozhong

    2016-01-01

    Summary A spontaneous portosystemic shunt is a rare malformation of the vessels supplying the liver. This condition often leads to the development of hepatic encephalopathy due to excessive shunting of blood from the portal vein to the inferior vena cava. Some studies have suggested that the presence of spontaneous portosystemic shunts is inversely associated with the appearance of large esophageal varices. Spontaneous intrahepatic portosystemic shunts (SIPSS) are far less frequently observed than extrahepatic portosystemic shunts, which include spleno-gastric-renal shunts, mesenteric-caval shunts, and a large patent umbilical vein. Reported here is a case of decompensated liver cirrhosis with a large SIPSS without any incidence of overt hepatic encephalopathy. PMID:26989653

  5. Distribution of immunoreactive GABA and glutamate receptors in the gustatory portion of the nucleus of the solitary tract in rat.

    PubMed

    King, Michael S

    2003-05-15

    The distribution of glutamate (GLU) and gamma-aminobutyric acid (GABA) receptors within the gustatory portion of the rat nucleus of the solitary tract (gNST) was investigated using immunohistochemical, histological and neural tract tracing techniques. Numerous somata throughout the gNST were immunoreactive for alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors, while few were labeled for kainate receptors. AMPA and NMDA receptors were particularly abundant in the rostral central (RC) subdivision of the gNST, which receives most of the primary afferent input from the oral cavity and contains most of the gNST neurons that project to the parabrachial nuclei (PBN). This finding supports electrophysiological evidence that AMPA and NMDA receptors are involved in responses to orosensory input and indicates that their action may influence ascending taste signals as well. Compared to the ionotropic GLU receptors, few cell bodies were immunoreactive for metabotropic GLU receptors. Somata immunoreactive for GABA(A) and GABA(B) receptors were located throughout the nucleus. The densest neuropil labeling was for GABA(A) receptors in the ventral (V) subnucleus, the gNST subdivision that sends output to brainstem oromotor centers. The distributions of immunolabeling for GLU and GABA receptors imply that different functional roles may exist for specific receptors within this nucleus. PMID:12754086

  6. Proteolysis and bioconversion of cereal proteins to glutamate and γ-Aminobutyrate (GABA) in Rye malt sourdoughs.

    PubMed

    Stromeck, Achim; Hu, Ying; Chen, Lingyun; Gänzle, Michael G

    2011-02-23

    This study aimed to achieve the conversion of cereal proteins to the alternative end products glutamate or γ-aminobutyrate (GABA). Rye malt, fungal proteases, and lactobacilli were employed to convert wheat gluten or barley proteins. Glutamate and GABA formations were strain-dependent. Lactobacillus reuteri TMW1.106 and Lactobacillus rossiae 34J accumulated glutamate; L. reuteri LTH5448 and LTH5795 accumulated GABA. Glutamate and GABA accumulation by L. reuteri TMW1.106 and LTH5448 increased throughout fermentation time over 96 h, respectively. Peptides rather than amino acids were the main products of proteolysis in all doughs, and barley proteins were more resistant to degradation by rye malt proteases than wheat gluten. However, addition of fungal protease resulted in comparable degradation of both substrates. Glutamate and GABA accumulated to concentrations up to 63 and 90 mmol kg(-1) DM, respectively. Glutamate levels obtained through bioconversion of cereal proteins enable the use of hydrolyzed cereal protein as condiment. PMID:21271723

  7. Selective pyramidal cell reduction of GABA(A) receptor α1 subunit messenger RNA expression in schizophrenia.

    PubMed

    Glausier, Jill R; Lewis, David A

    2011-09-01

    Levels of messenger RNA (mRNA) for the α1 subunit of the GABA(A) receptor, which is present in 60% of cortical GABA(A) receptors, have been reported to be lower in layer 3 of the prefrontal cortex (PFC) in subjects with schizophrenia. This subunit is expressed in both pyramidal cells and interneurons, and thus lower α1 subunit levels in each cell population would have opposite effects on net cortical excitation. We used dual-label in situ hybridization to quantify GABA(A) α1 subunit mRNA expression in calcium/calmodulin-dependent kinase II α (CaMKIIα)-containing pyramidal cells and glutamic acid decarboxylase 65 kDa (GAD65)-containing interneurons in layer 3 of the PFC from matched schizophrenia and healthy comparison subjects. In subjects with schizophrenia, mean GABA(A) α1 subunit mRNA expression was significantly 40% lower in pyramidal cells, but was not altered in interneurons. Lower α1 subunit mRNA expression in pyramidal cells was not attributable to potential confounding factors, and thus appeared to reflect the disease process of schizophrenia. These results suggest that pyramidal cell inhibition is reduced in schizophrenia, whereas inhibition of GABA neurons is maintained. The cell type specificity of these findings may reflect a compensatory response to enhance layer 3 pyramidal cell activity in the face of the diminished excitatory drive associated with the lower dendritic spine density on these neurons. PMID:21677653

  8. Role of Glyoxylate Shunt in Oxidative Stress Response.

    PubMed

    Ahn, Sungeun; Jung, Jaejoon; Jang, In-Ae; Madsen, Eugene L; Park, Woojun

    2016-05-27

    The glyoxylate shunt (GS) is a two-step metabolic pathway (isocitrate lyase, aceA; and malate synthase, glcB) that serves as an alternative to the tricarboxylic acid cycle. The GS bypasses the carbon dioxide-producing steps of the tricarboxylic acid cycle and is essential for acetate and fatty acid metabolism in bacteria. GS can be up-regulated under conditions of oxidative stress, antibiotic stress, and host infection, which implies that it plays important but poorly explored roles in stress defense and pathogenesis. In many bacterial species, including Pseudomonas aeruginosa, aceA and glcB are not in an operon, unlike in Escherichia coli In P. aeruginosa, we explored relationships between GS genes and growth, transcription profiles, and biofilm formation. Contrary to our expectations, deletion of aceA in P. aeruginosa improved cell growth under conditions of oxidative and antibiotic stress. Transcriptome data suggested that aceA mutants underwent a metabolic shift toward aerobic denitrification; this was supported by additional evidence, including up-regulation of denitrification-related genes, decreased oxygen consumption without lowering ATP yield, increased production of denitrification intermediates (NO and N2O), and increased cyanide resistance. The aceA mutants also produced a thicker exopolysaccharide layer; that is, a phenotype consistent with aerobic denitrification. A bioinformatic survey across known bacterial genomes showed that only microorganisms capable of aerobic metabolism possess the glyoxylate shunt. This trend is consistent with the hypothesis that the GS plays a previously unrecognized role in allowing bacteria to tolerate oxidative stress. PMID:27036942

  9. Resistively shunted piezocomposites for passive damping

    NASA Astrophysics Data System (ADS)

    Yarlagadda, Shridhar

    The goal of this work was to theoretically model, fabricate and characterize 3-3 coupled piezocomposite structures, using shunted piezoelectric fibers with integrated resistive shunting. Advantages and disadvantages of the different shunted piezocomposite configurations were examined from both modeling and fabrication points of view. Two configurations of practical interest were chosen for detailed study: (1) piezoelectric whiskers in a resistive matrix, and (2) piezoelectric whiskers in a layer of epoxy and shunted with a thin film resistive coating. Two different models were developed: a "smeared" dynamic model and a finite element model. Composite beam theory was modified to include shunted piezoelectric behavior and governing equations and boundary conditions were formulated. For the finite element model, a shunted piezoelectric element was formulated and the discretized governing equations were converted to state-space form. Modeling results demonstrated the possibility of modal loss factors as high as 10% in a single mode, for an effective piezoelectric volume fraction of 25%, as well the ability to tailor achievable levels of damping. Non-linear potential variation and local effects were successfully modeled. The critical parameters affecting modal damping were piezoelectric whisker volume fraction, shunt resistance, structural geometry and the location of whiskers. Experimental efforts involved fabrication of shunted piezocomposites for both configurations. Using chopped continuous poled PZT-5H fibers; a whisker/resistive matrix composite was successfully fabricated. For the resistive matrix case, matrix conductivity was a function of filler volume fraction and showed the percolation effect. However, the dielectric constant of the matrix also increased significantly (factor of 1000) at the design filler volume fraction, which drastically altered the electrical behavior of the piezocomposite from the designed case. The change in dielectric constant appeared

  10. Accumulation of GABAergic Neurons, Causing a Focal Ambient GABA Gradient, and Downregulation of KCC2 Are Induced During Microgyrus Formation in a Mouse Model of Polymicrogyria

    PubMed Central

    Wang, Tianying; Kumada, Tatsuro; Morishima, Toshitaka; Iwata, Satomi; Kaneko, Takeshi; Yanagawa, Yuchio; Yoshida, Sachiko; Fukuda, Atsuo

    2014-01-01

    Although focal cortical malformations are considered neuronal migration disorders, their formation mechanisms remain unknown. We addressed how the γ-aminobutyric acid (GABA)ergic system affects the GABAergic and glutamatergic neuronal migration underlying such malformations. A focal freeze-lesion (FFL) of the postnatal day zero (P0) glutamic acid decarboxylase–green fluorescent protein knock-in mouse neocortex produced a 3- or 4-layered microgyrus at P7. GABAergic interneurons accumulated around the necrosis including the superficial region during microgyrus formation at P4, whereas E17.5-born, Cux1-positive pyramidal neurons outlined the GABAergic neurons and were absent from the superficial layer, forming cell-dense areas in layer 2 of the P7 microgyrus. GABA imaging showed that an extracellular GABA level temporally increased in the GABAergic neuron-positive area, including the necrotic center, at P4. The expression of the Cl– transporter KCC2 was downregulated in the microgyrus-forming GABAergic and E17.5-born glutamatergic neurons at P4; these cells may need a high intracellular Cl– concentration to induce depolarizing GABA effects. Bicuculline decreased the frequency of spontaneous Ca2+ oscillations in these microgyrus-forming cells. Thus, neonatal FFL causes specific neuronal accumulation, preceded by an increase in ambient GABA during microgyrus formation. This GABA increase induces GABAA receptor-mediated Ca2+ oscillation in KCC2-downregulated microgyrus-forming cells, as seen in migrating cells during early neocortical development. PMID:23246779

  11. Modulation of diazepam-insensitive GABA(A) receptors by micromolar concentrations of thyroxine and related compounds in vitro.

    PubMed

    Ishibashi, Hitoshi; Witt, Michael-Robin; Nabekura, Junichi; Nielsen, Mogens

    2013-01-15

    The effects of thyroxine and its related compounds on the benzodiazepine-insensitive γ-aminobutyric acid type A (GABA(A)) receptors were studied. Thyroxine at micromolar concentrations potentiated the (3)H-Ro15-4513 binding to rat brain membranes in-vitro in the thalamus, striatum, cortex and hippocampus, but not in cerebellum. In the thalamus, the rank order of potency was the following: 3,3',5,5'-tetraiodothyroacetic acid (TETRAC)>L-thyroxine>3,5-diiodo-l-thyronine (3,5-T2). TETRAC induced a slight potentiation of flumazenil binding to diazepam-sensitive GABA(A) receptors in the thalamus and striatum while no effect was found in cortex and hippocampus. Consequently, we examined whether these compounds could exert their modulatory effect on the currents mediated by benzodiazepine-insensitive GABA(A) receptors. The diazepam-insensitive GABA(A) receptor-mediated currents were recorded from acutely isolated rat ventrobasal thalamic neurons by applying low concentrations of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP). TETRAC and thyroxine at low μM concentrations potentiated the THIP-evoked currents, although 3,5-T2 had no effect on the THIP-induced currents. Ethanol had no effect on the enhancing effects of TETRAC. TETRAC itself evoked GABA(A) receptor-mediated currents at high concentrations beyond 30 μM. Although the effects of TETRAC and thyroxine were observed at non-physiological concentrations of hormones, the present results might lead to new lead structures with specificity to diazepam-insensitive GABA(A) receptor subtypes. PMID:23103412

  12. Dynamic regulation of glycine–GABA co-transmission at spinal inhibitory synapses by neuronal glutamate transporter

    PubMed Central

    Ishibashi, Hitoshi; Yamaguchi, Junya; Nakahata, Yoshihisa; Nabekura, Junichi

    2013-01-01

    Fast inhibitory neurotransmission in the central nervous system is mediated by γ-aminobutyric acid (GABA) and glycine, which are accumulated into synaptic vesicles by a common vesicular inhibitory amino acid transporter (VIAAT) and are then co-released. However, the mechanisms that control the packaging of GABA + glycine into synaptic vesicles are not fully understood. In this study, we demonstrate the dynamic control of the GABA–glycine co-transmission by the neuronal glutamate transporter, using paired whole-cell patch recording from monosynaptically coupled cultured spinal cord neurons derived from VIAAT-Venus transgenic rats. Short step depolarization of presynaptic neurons evoked unitary (cell-to-cell) inhibitory postsynaptic currents (IPSCs). Under normal conditions, the fractional contribution of postsynaptic GABA or glycine receptors to the unitary IPSCs did not change during a 1 h recording. Intracellular loading of GABA or glycine via a patch pipette enhanced the respective components of inhibitory transmission, indicating the importance of the cytoplasmic concentration of inhibitory transmitters. Raised extracellular glutamate levels increased the amplitude of GABAergic IPSCs but reduced glycine release by enhancing glutamate uptake. Similar effects were observed when presynaptic neurons were intracellularly perfused with glutamate. Interestingly, high-frequency trains of stimulation decreased glycinergic IPSCs more than GABAergic IPSCs, and repetitive stimulation occasionally failed to evoke glycinergic but not GABAergic IPSCs. The present results suggest that the enhancement of GABA release by glutamate uptake may be advantageous for rapid vesicular refilling of the inhibitory transmitter at mixed GABA/glycinergic synapses and thus may help prevent hyperexcitability. PMID:23690564

  13. Electrophoretic method for the determination of the proportion of gamma-aminobutyric acid in a mixture of labeled neurotransmitter and its catabolites

    SciTech Connect

    Cupello, A.; Rapallino, M.V.; Besio, G.; Mainardi, P.

    1987-01-01

    An electrophoretic method for the separation of gamma-aminobutyric acid (GABA) from its metabolites after GABA-transaminase attack is presented. The method is based on the fact that at neutral pH GABA has no net electrical charge, whereas its major metabolites, succinic acid and Krebs cycle intermediates, are negatively charged. The method appears to be especially suitable for evaluation of true-labeled neurotransmitter within the radioactivity which is found in synaptosomes after labeled GABA-uptake studies.

  14. NSAIDs modulate GABA-activated currents via Ca2+-activated Cl− channels in rat dorsal root ganglion neurons

    PubMed Central

    ZHAO, LEI; LI, LI; MA, KE-TAO; WANG, YANG; LI, JING; SHI, WEN-YAN; ZHU, HE; ZHANG, ZHONG-SHUANG; SI, JUN-QIANG

    2016-01-01

    The ability of non-steroidal anti-inflammatory drugs (NSAIDs) to modulate γ-aminobutyrate (GABA)-activated currents via Ca2+-activated Cl− channels in rat dorsal root ganglion neurons (DRG), was examined in the present study. During the preparation of DRG neurons harvested from Sprague-Dawley rats, the whole-cell recording technique was used to record the effect of NSAIDs on GABA-activated inward currents, and the expression levels of the TMEM16A and TMEM16B subunits were revealed. In the event that DRG neurons were pre-incubated for 20 sec with niflumic acid (NFA) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) prior to the administration of GABA, the GABA-induced inward currents were diminished markedly in the majority of neurons examined (96.3%). The inward currents induced by 100 µmol/l GABA were attenuated by (0±0.09%; neurons = 4), (5.32±3.51%; neurons = 6), (21.3±4.00%; neurons = 5), (33.8±5.20%; neurons = 17), (52.2±5.10%; neurons = 4) and (61.1±4.12%; neurons = 12) by 0.1, 1, 3, 10, 30 and 100 µmol/l NFA, respectively. The inward currents induced by 100 µmol/l GABA were attenuated by (13.8±6%; neurons = 6), (23.2±14.7%; neurons = 6) and (29.7±9.1%; neurons = 9) by 3, 10 and 30 µmol/l NPPB, respectively. NFA and NPPB dose-dependently inhibited GABA-activated currents with half maximal inhibitory concentration (IC50) values of 6.7 and 11 µmol/l, respectively. The inhibitory effect of 100 µmol/l NFA on the GABA-evoked inward current were also strongly inhibited by nitrendipine (NTDP; an L-type calcium channel blocker), 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis (a highly selective calcium chelating reagent), caffeine (a widely available Ca2+ consuming drug) and calcium-free extracellular fluid, in a concentration-dependent manner. Immunofluorescent staining indicated that TMEM16A and TMEM16B expression was widely distributed in DRG neurons. The results suggest that NSAIDs may be able to regulate Ca2

  15. A comparison of gamma-aminobutyric acid and the semi-rigid analogues 4-aminotetrolic acid, 4-aminocrotonic acid and imidazole-4-acetic acid on the isolated superior cervical ganglion of the rat.

    PubMed Central

    Bowery, N G; Jones, G P

    1976-01-01

    1 The rat superior cervical ganglion possesses receptors for gamma-aminobutyric acid (GABA). This can be demonstrated in vitro by recording the changes in ganglionic surface potential which occur after the addition of GABA to the bathing solution. 2 The action of three conformationally-restricted analogues of GABA namely 4-aminotetrolic acid (4-ATA), trans 4-aminocrotonic acid (4-ACA) and imidazole-4-acetic acid (IAA) have been examined for activity at this peripheral receptor. 3 All three analogues depolarized the ganglion in a manner similar to GABA. Their actions were transient and were 'occluded' by GABA; also the dose-response curve in each case was parallel to that of GABA. Molar potencies relative to GABA (= 1) were 4-ACA = 1.48, IAA = 0.100, 4-ATA = 0.0028. 4 The action of each analogue could be blocked by the GABA antagonists bicuculline and tetramethylenedisulphotetramine at doses which had relatively little effect on responses to the cholinomimetic carbachol. 5 4-ACA and IAA (1 mM) significantly reduced the ganglionic accumulation of [3H]-GABA (0.2 muM) by 88% and 58% respectively whereas 4-ATA (1 mM), caused no significant reduction in [3H]-GABA accumulation. PMID:1260178

  16. GABA-A Receptor Modulation and Anticonvulsant, Anxiolytic, and Antidepressant Activities of Constituents from Artemisia indica Linn

    PubMed Central

    Khan, Imran; Karim, Nasiara; Ahmad, Waqar; Abdelhalim, Abeer; Chebib, Mary

    2016-01-01

    Artemisia indica, also known as “Mugwort,” has been widely used in traditional medicines. However, few studies have investigated the effects of nonvolatile components of Artemisia indica on central nervous system's function. Fractionation of Artemisia indica led to the isolation of carnosol, ursolic acid, and oleanolic acid which were evaluated for their effects on GABA-A receptors in electrophysiological studies in Xenopus oocytes and were subsequently investigated in mouse models of acute toxicity, convulsions (pentylenetetrazole induced seizures), depression (tail suspension and forced swim tests), and anxiety (elevated plus maze and light/dark box paradigms). Carnosol, ursolic acid, and oleanolic acid were found to be positive modulators of α1β2γ2L GABA-A receptors and the modulation was antagonized by flumazenil. Carnosol, ursolic acid, and oleanolic acid were found to be devoid of any signs of acute toxicity (50–200 mg/kg) but elicited anticonvulsant, antidepressant, and anxiolytic activities. Thus carnosol, ursolic acid, and oleanolic acid demonstrated CNS activity in mouse models of anticonvulsant, antidepressant, and anxiolysis. The anxiolytic activity of all three compounds was ameliorated by flumazenil suggesting a mode of action via the benzodiazepine binding site of GABA-A receptors. PMID:27143980

  17. Jugular Foramen Arteriovenous Shunt with Subarachnoid Hemorrhage

    PubMed Central

    Rodesch, G.; Comoy, J.; Hurth, M.; Lasjaunias, P.

    1991-01-01

    The authors report the case of a 37-year-old man with an extracerebral arteriovenous fistula at the skull base, revealed by subarachnoid and intraventricular hemorrhage. The malformation was fed by the neuromeningeal trunk of the ascending pharyngeal artery and drained into left laterobulbar veins. Embolization with bucrylate was performed and occluded totally the shunting zone. A 1-year follow-up angiogram confirmed the good stability of the result, the patient being asymptomatic. This case emphasizes the quality of results that can be obtained with bucrylate in arterioverious fistulas presenting with hemorrhage. It confirms that the external carotid artery must be studied when dealing with intracranial hemorrhage. On the other hand, magnetic resonance imaging and angiography may depict vascular abnormalities but do not always indicate the shunting area, thus the pathologic type of the malformation. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 5p136-b PMID:17170835

  18. Effects of Antecedent GABA A Receptor Activation on Counterregulatory Responses to Exercise in Healthy Man.

    PubMed

    Hedrington, Maka S; Tate, Donna B; Younk, Lisa M; Davis, Stephen N

    2015-09-01

    The aim of this study was to determine whether antecedent stimulation of γ-aminobutyric acid (GABA) A receptors with the benzodiazepine alprazolam can blunt physiologic responses during next-day moderate (90 min) exercise in healthy man. Thirty-one healthy individuals (16 male/15 female aged 28 ± 1 year, BMI 23 ± 3 kg/m(2)) were studied during separate, 2-day protocols. Day 1 consisted of morning and afternoon 2-h hyperinsulinemic-euglycemic or hypoglycemic clamps with or without 1 mg alprazolam given 30 min before a clamp. Day 2 consisted of 90-min euglycemic cycling exercise at 50% VO2max. Despite similar euglycemia (5.3 ± 0.1 mmol/L) and insulinemia (46 ± 6 pmol/L) during day 2 exercise studies, GABA A activation with alprazolam during day 1 euglycemia resulted in significant blunting of plasma epinephrine, norepinephrine, glucagon, cortisol, and growth hormone responses. Lipolysis (glycerol, nonesterified fatty acids) and endogenous glucose production during exercise were also reduced, and glucose infusion rates were increased following prior euglycemia with alprazolam. Prior hypoglycemia with alprazolam resulted in further reduction of glucagon and cortisol responses during exercise. We conclude that prior activation of GABA A pathways can play a significant role in blunting key autonomous nervous system, neuroendocrine, and metabolic physiologic responses during next-day exercise in healthy man. PMID:25901095

  19. Detection of the inhibitory neurotransmitter GABA in macrophages by magnetic resonance spectroscopy.

    PubMed

    Stuckey, D J; Anthony, D C; Lowe, J P; Miller, J; Palm, W M; Styles, P; Perry, V H; Blamire, A M; Sibson, N R

    2005-08-01

    Macrophages are key components of the inflammatory response to tissue injury, but their activities can exacerbate neuropathology. High-resolution magnetic resonance spectroscopy was used to identify metabolite levels in perchloric acid extracts of cultured cells of the RAW 264.7 murine macrophage line under resting and lipopolysaccharide-activated conditions. Over 25 metabolites were identified including gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter not previously reported to be present in macrophages. The presence of GABA was also demonstrated in extracts of human peripheral blood monocyte-derived macrophages. This finding suggests that there may be communication between damaged central nervous system (CNS) tissue and recruited macrophages and resident microglia, which could help orchestrate the immune response. On activation, lactate, glutamine, glutamate, and taurine levels were elevated significantly, and GABA and alanine were reduced significantly. Strong resonances from glutathione, evident in the macrophage two-dimensional 1H spectrum, suggest that this may have potential as a noninvasive marker of macrophages recruited to the CNS, as it is only present at low levels in normal brain. Alternatively, a specific combination of spectroscopic changes, such as lactate, alanine, glutathione, and polyamines, may prove to be the most accurate means of detecting macrophage recruitment to the CNS. PMID:15908457

  20. Iontophoretic studies on rat hippocampus with some novel GABA antagonists.

    PubMed

    Dalkara, T; Saederup, E; Squires, R F; Krnjevic, K

    1986-08-01

    Twelve substances which appear to be GABA antagonists, judging by their ability to reverse the inhibitory effect of GABA on 35S-TBPS binding to rat brain membranes, were tested iontophoretically on population spikes in the rat hippocampus. Eight of them, including seven which completely reversed the inhibitory action of GABA on 35S-TBPS binding, caused a marked enhancement of population spikes, with slow onset and long duration and they antagonized the inhibition of population spikes by GABA. These effects were similar to those produced by bicuculline. Electrophysiologically, the most potent of the "complete reversers" were bathophenanthroline disulfonate and brucine. In vitro, amoxapine and brucine most effectively reversed the inhibitory action of GABA on 35S-TBPS binding. Of the five substances which only partly reversed the inhibitory effect of GABA on 35S-TBPS binding, four depressed the population spikes and potentiated the inhibitory action of GABA. The fifth "partial reverser", pipazethate, potently increased the population spikes, like the "complete reversers". Although other interpretations are possible the results are consistent with the existence of several GABA-A receptor types in brain, only some of which are blocked by certain partial reversers. PMID:2874465

  1. Co-release of acetylcholine and gamma-aminobutyric acid by a retinal neuron

    SciTech Connect

    O'Malley, D.M.; Masland, R.H.

    1989-05-01

    Rabbit retinas were vitally stained with 4',6-diamidino-2-phenylindole (DAPI), a fluorescent compound that selectively accumulates within the cholinergic amacrine cells. The retinas were then incubated in vitro in the presence of radioactive gamma-aminobutyric acid (GABA) and autoradiographed. The cells that accumulated DAPI were found to accumulate GABA, confirming immunohistochemical evidence that the cholinergic amacrine cells contain GABA. Incubation of retinas in the presence of elevated concentrations of K+ caused them to release acetylcholine and GABA, and autoradiography showed depletion of radioactive GABA from the cholinergic amacrine cells. This indicates that the cholinergic amacrine cells can secrete acetylcholine and GABA. Retinas were double-labeled with (14C)GABA and (3H)acetylcholine, allowing simultaneous measurement of their release. The release of (14C)GABA was found to be independent of extracellular Ca2+. Radioactive GABA synthesized endogenously from (14C)glutamate behaved the same way as radioactive GABA accumulated from the medium. In the same experiments the simultaneously measured release of (3H)acetylcholine was strongly Ca2+-dependent, indicating that the releases of acetylcholine and GABA are controlled by different mechanisms. Synaptic vesicles immunologically isolated from double-labeled retinas contained much (3H)acetylcholine and little or no (14C)GABA. These results suggest that the cholinergic amacrine cells release acetylcholine primarily by vesicle exocytosis and release GABA primarily by means of a carrier.

  2. Gamma-aminobutyric acid acts as a specific virulence regulator in Pseudomonas aeruginosa.

    PubMed

    Dagorn, Audrey; Hillion, Mélanie; Chapalain, Annelise; Lesouhaitier, Olivier; Duclairoir Poc, Cécile; Vieillard, Julien; Chevalier, Sylvie; Taupin, Laure; Le Derf, Franck; Feuilloley, Marc G J

    2013-02-01

    Gamma-aminobutyric acid (GABA) is widespread in the environment and can be used by animal and plants as a communication molecule. Pseudomonas species, in particular fluorescent ones, synthesize GABA and express GABA-binding proteins. In this study, we investigated the effects of GABA on the virulence of Pseudomonas aeruginosa. While exposure to GABA (10 µM) did not modify either the growth kinetics or the motility of the bacterium, its cytotoxicity and virulence were strongly increased. The Caenorhabditis elegans 'fast killing test' model revealed that GABA acts essentially through an increase in diffusible toxin(s). GABA also modulates the biofilm formation activity and adhesion properties of PAO1. GABA has no effect on cell surface polarity, biosurfactant secretion or on the lipopolysaccharide structure. The production of several exo-enzymes, pyoverdin and exotoxin A is not modified by GABA but we observed an increase in cyanogenesis which, by itself, could explain the effect of GABA on P. aeruginosa virulence. This mechanism appears to be regulated by quorum sensing. A proteomic analysis revealed that the effect of GABA on cyanogenesis is correlated with a reduction of oxygen accessibility and an over-expression of oxygen-scavenging proteins. GABA also promotes specific changes in the expression of thermostable and unstable elongation factors Tuf/Ts involved in the interaction of the bacterium with the host proteins. Taken together, these results suggest that GABA is a physiological regulator of P. aeruginosa virulence. PMID:23154974

  3. Treating enhanced GABAergic inhibition in Down syndrome: use of GABA α5-selective inverse agonists.

    PubMed

    Martínez-Cué, Carmen; Delatour, Benoît; Potier, Marie-Claude

    2014-10-01

    Excess inhibition in the brain of individuals carrying an extra copy of chromosome 21 could be responsible for cognitive deficits observed throughout their lives. A change in the excitatory/inhibitory balance in adulthood would alter synaptic plasticity, potentially triggering learning and memory deficits. γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mature central nervous system and binds to GABAA receptors, opens a chloride channel, and reduces neuronal excitability. In this review we discuss methods to alleviate neuronal inhibition in a mouse model of Down syndrome, the Ts65Dn mouse, using either an antagonist (pentylenetetrazol) or two different inverse agonists selective for the α5-subunit containing receptor. Both inverse agonists, which reduce inhibitory GABAergic transmission, could rescue learning and memory deficits in Ts65Dn mice. We also discuss safety issues since modulation of the excitatory-inhibitory balance to improve cognition without inducing seizures remains particularly difficult when using GABA antagonists. PMID:24412222

  4. Assignment of the human GABA transporter gene (GABATHG) locus to chromosome 3p24-p25

    SciTech Connect

    Huang, Fang; Fei, Jian; Guo, Li-He

    1995-09-01

    An essential regulatory process of synaptic transmission is the inactivation of released neurotransmitters by the transmitter-specific uptake mechanism, {gamma}-Aminobutyric acid (GABA) is an inhibitory transmitter in the vertebrate central nervous system; its activity is terminated by a high-affinity Na{sup +} and Cl{sup -} -dependent specific GABA transporter (GAT), which carries the neurotransmitter to the presynaptic neuron and/or glial elements surrounding the synaptic cleft. Deficiency of the transporter may cause epilepsy and some other nervous diseases. The human GAT gene (GABATHG), approximately 25 kb in length, has been cloned and sequenced by our colleagues (7). Here the results of the in situ hybridization mapping with the gene are presented. 10 refs., 1 fig.

  5. Active shunt capacitance cancelling oscillator circuit

    DOEpatents

    Wessendorf, Kurt O.

    2003-09-23

    An oscillator circuit is disclosed which can be used to produce oscillation using a piezoelectric crystal, with a frequency of oscillation being largely independent of any shunt capacitance associated with the crystal (i.e. due to electrodes on the surfaces of the crystal and due to packaging and wiring for the crystal). The oscillator circuit is based on a tuned gain stage which operates the crystal at a frequency, f, near a series resonance frequency, f.sub.S. The oscillator circuit further includes a compensation circuit that supplies all the ac current flow through the shunt resistance associated with the crystal so that this ac current need not be supplied by the tuned gain stage. The compensation circuit uses a current mirror to provide the ac current flow based on the current flow through a reference capacitor that is equivalent to the shunt capacitance associated with the crystal. The oscillator circuit has applications for driving piezoelectric crystals for sensing of viscous, fluid or solid media by detecting a change in the frequency of oscillation of the crystal and a resonator loss which occur from contact of an exposed surface of the crystal by the viscous, fluid or solid media.

  6. Plant GABA:proline ratio modulates dissemination of the virulence Ti plasmid within the Agrobacterium tumefaciens hosted population.

    PubMed

    Lang, Julien; Faure, Denis

    2016-05-01

    Accumulation of amino acids is a common plant response to several biotic and abiotic stresses, even if the roles of these accumulations remain often poorly understood. In a recent study we measured the levels of different amino acids in tumors of Arabidopsis thaliana induced by the phytopathogen Agrobacterium tumefaciens and correlated these data with changes of gene expressions in both organisms. This led to the demonstration that the non-protein amino acid GABA plays an important role for the adaptation of the bacteria to the plant tumor environment, and especially in the control of the virulent Ti plasmid dissemination. Here we present a model that describes how different GABA:proline ratios in the A. thaliana host may have different impacts on the conjugation of A. tumefaciens Ti plasmid, and advance the view that the amino acid metabolism of plant hosts could be critical for the propagation of the virulence genes in A. tumefaciens populations. PMID:27110651

  7. Study of GABA in Healthy Volunteers: Pharmacokinetics and Pharmacodynamics

    PubMed Central

    Li, Junfeng; Zhang, Zhaoyun; Liu, Xiaoxia; Wang, Yi; Mao, Fei; Mao, Junjun; Lu, Xiaolan; Jiang, Dongdong; Wan, Yun; Lv, Jia-Ying; Cao, Guoying; Zhang, Jing; Zhao, Naiqing; Atkinson, Mark; Greiner, Dale L.; Prud'homme, Gerald J.; Jiao, Zheng; Li, Yiming; Wang, Qinghua

    2015-01-01

    Preclinical studies show that GABA exerts anti-diabetic effects in rodent models of type 1 diabetes. Because little is known about its absorption and effects in humans, we investigated the pharmacokinetics and pharmacodynamics of GABA in healthy volunteers. Twelve subjects were subjected to an open-labeled, three-period trial involving sequential oral administration of placebo, 2 g GABA once, and 2 g GABA three times/day for 7 days, with a 7-day washout between each period. GABA was rapidly absorbed (Tmax: 0.5 ~ 1 h) with the half-life (t1/2) of 5 h. No accumulation was observed after repeated oral GABA administration for 7 days. Remarkably, GABA significantly increased circulating insulin levels in the subjects under either fasting (1.6-fold, single dose; 2.0-fold, repeated dose; p < 0.01) or fed conditions (1.4-fold, single dose; 1.6-fold, repeated dose; p < 0.01). GABA also increased glucagon levels only under fasting conditions (1.3-fold, single dose, p < 0.05; 1.5-fold, repeated dose, p < 0.01). However, there were no significant differences in the insulin-to-glucagon ratio and no significant change in glucose levels in these healthy subjects during the study period. Importantly, GABA significantly decreased glycated albumin levels in the repeated dosing period. Subjects with repeated dosing showed an elevated incidence of minor adverse events in comparison to placebo or the single dosing period, most notably transient discomforts such as dizziness and sore throat. However, there were no serious adverse events observed throughout the study. Our data show that GABA is rapidly absorbed and tolerated in human beings; its endocrine effects, exemplified by increasing islet hormonal secretion, suggest potential therapeutic benefits for diabetes. PMID:26617516

  8. Bobble-head doll syndrome associated with subduroperitoneal shunt malfunction.

    PubMed

    Ahn, Y; Cho, B K; Wang, K C

    1997-04-01

    Bobble-head doll syndrome is known to be associated with aqueductal stenosis or cystic lesions of the III ventricle. The direction of movement is usually vertical. In the literature, only five cases of purely horizontal movement have been reported. Bobble-head doll syndrome manifested as a sign of shunt malfunction has been described in one case with a ventriculoperitoneal shunt. The authors report on a 10-year-old boy who showed subduroperitoneal shunt malfunction associated with horizontal bobble-head doll syndrome. The head bobbing disappeared immediately after shunt revision. Unlike the previously reported cases, in the present case the lesion was asymmetric, though the significance of this for the lateral movement is not clear. This case also showed more marked ventricular dilatation on subduroperitoneal shunt malfunction than in the pre-shunt state. The underlying mechanism of the ventricular dilatation is unknown. PMID:9202861

  9. Alternative uses for the subgaleal shunt in pediatric neurosurgery.

    PubMed

    Tubbs, R Shane; Smyth, Matthew D; Wellons, John C; Blount, Jeffrey P; Grabb, Paul A; Oakes, W Jerry

    2003-07-01

    The subgaleal shunt has been used for the temporary bypass of the normal cerebrospinal fluid (CSF) pathways. We retrospectively reviewed all subgaleal shunts placed at the Children's Hospital, Birmingham, Ala., USA, from 1997 to the present and examined all uses (e.g. indication, length of follow-up) of the subgaleal shunt outside its use for temporary CSF diversion in premature infants with intraventricular hemorrhage and subsequent hydrocephalus. The average length of survival of the primary subgaleal shunt in this population was 32.2 days. We have had good success with subgaleal shunts in children with malignant brain tumors, intraventricular abscesses, chronic truncal wounds, chronic subdural hygromas and meningitis. However, the greatest utility has been in those scenarios in which the peritoneal cavities were not currently, but with time would be, candidates for distal shunt implantation. Examples of these instances are patients with hydrocephalus and necrotizing enterocolitis or hydrocephalus and preoperative abdominal wall pathology such as omphalocele. PMID:12784073

  10. Transjugular Intrahepatic Portosystemic Shunt Dysfunction: Concordance of Clinical Findings, Doppler Ultrasound Examination, and Shunt Venography

    PubMed Central

    Owen, Joshua M; Gaba, Ron Charles

    2016-01-01

    Objectives: The objective of this study was to evaluate the concordance between clinical symptoms, Doppler ultrasound (US), and shunt venography for the detection of stent-graft transjugular intrahepatic portosystemic shunt (TIPS) dysfunction. Materials and Methods: Forty-one patients (M:F 30:11, median age 55 years) who underwent contemporaneous clinical exam, Doppler US, and TIPS venography between 2003 and 2014 were retrospectively studied. Clinical symptoms (recurrent ascites or variceal bleeding) were dichotomously classified as present/absent, and US and TIPS venograms were categorized in a binary fashion as normal/abnormal. US abnormalities included high/low (>190 or <90 cm/s) TIPS velocity, significant velocity rise/fall (>50 cm/s), absent flow, and return of antegrade intra-hepatic portal flow. Venographic abnormalities included shunt stenosis/occlusion and/or pressure gradient elevation. Clinical and imaging concordance rates were calculated. Results: Fifty-two corresponding US examinations and venograms were assessed. The median time between studies was 3 days. Forty of 52 (77%) patients were symptomatic, 33/52 (64%) US examinations were abnormal, and 20/52 (38%) TIPS venograms were abnormal. Concordance between clinical symptoms and TIPS venography was 48% (25/52), while the agreement between US and shunt venography was 65% (34/52). Clinical symptoms and the US concurred in 60% (31/52) of the patients. The sensitivity of clinical symptoms and US for the detection of venographically abnormal shunts was 80% (16/20) and 85% (17/20), respectively. Both clinical symptoms and the US had low specificity (25%, 8/32 and 50%, 16/32) for venographically abnormal shunts. Conclusion: Clinical findings and the US had low concordance rates with TIPS venography, with acceptable sensitivity but poor specificity. These findings suggest the need for improved noninvasive imaging methods for stent-graft TIPS surveillance. PMID:27563495

  11. Neurosteroids and GABA-A Receptor Function

    PubMed Central

    Wang, Mingde

    2011-01-01

    Neurosteroids represent a class of endogenous steroids that are synthesized in the brain, the adrenals, and the gonads and have potent and selective effects on the GABAA-receptor. 3α-hydroxy A-ring reduced metabolites of progesterone, deoxycorticosterone, and testosterone are positive modulators of GABAA-receptor in a non-genomic manner. Allopregnanolone (3α-OH-5α-pregnan-20-one), 5α-androstane-3α, 17α-diol (Adiol), and 3α5α-tetrahydrodeoxycorticosterone (3α5α-THDOC) enhance the GABA-mediated Cl- currents acting on a site (or sites) distinct from the GABA, benzodiazepine, barbiturate, and picrotoxin binding sites. 3α5α-P and 3α5α-THDOC potentiate synaptic GABAA-receptor function and activate δ-subunit containing extrasynaptic receptors that mediate tonic currents. On the contrary, 3β-OH pregnane steroids and pregnenolone sulfate (PS) are GABAA-receptor antagonists and induce activation-dependent inhibition of the receptor. The activities of neurosteroid are dependent on brain regions and types of neurons. In addition to the slow genomic action of the parent steroids, the non-genomic, and rapid actions of neurosteroids play a significant role in the GABAA-receptor function and shift in mood and memory function. This review describes molecular mechanisms underlying neurosteroid action on the GABAA-receptor, mood changes, and cognitive functions. PMID:22654809

  12. Modulation of the release of norepinephrine by gamma-aminobutyric acid and morphine in the frontal cerebral cortex of the rat

    SciTech Connect

    Peoples, R.W.

    1989-01-01

    Agents that enhance gamma-aminobutyric acid, or GABA, neurotransmission modulate certain effects of opioids, such as analgesia. Opioid analgesia is mediated in part by norepinephrine in the forebrain. In this study, the interactions between morphine and GABAergic agents on release of ({sup 3}H) norepinephrine from rat frontal cerebral cortical slices were examined. GABA, 5 {times} 10{sup {minus}5}-10{sup {minus}3} M, enhanced potassium stimulated ({sup 3}H) norepinephrine release and reversed the inhibitory effect of morphine in a noncompetitive manner. GABA did not enhance release of ({sup 3}H) norepinephrine stimulated by the calcium ionophore A23187. The effect of GABA was reduced by the GABA{sub A} receptor antagonists bicuculline methiodide or picrotoxin, and by the selective inhibitor of GABA uptake SKF 89976A, but was blocked completely only when bicuculline methiodide and SKF 89976A were used in combination. The GABA{sub A} agonist muscimol, 10{sup {minus}4} M, mimicked the effect of GABA, but the GABA{sub B} agonist ({plus minus})baclofen, 10{sup {minus}4} M, did not affect the release of ({sup 3}H) norepinephrine in the absence or the presence of morphine. Thus GABA appears to produce this effect by stimulating GABA uptake and GABA{sub A}, but not GABA{sub B}, receptors. In contrast to the results that would be predicted for an event involving GABA{sub A} receptors, however, the effect of GABA did not desensitize, and benzodiazepine agonists did not enhance the effect of GABA at any concentration tested between 10{sup {minus}8} and 10{sup {minus}4} M. Thus these receptors may constitute a subclass of GABA{sub A} receptors. These results support a role of GABA uptake and GABA{sub A} receptors in enhancing the release of norepinephrine and modulating its inhibition by opioids in the frontal cortex of the rat.

  13. Role of GABAB Receptor and L-Arg in GABA-Induced Vasorelaxation in Non-diabetic and Streptozotocin-Induced Diabetic Rat Vessels

    PubMed Central

    Kharazmi, Fatemah; Soltani, Nepton; Rezaei, Sana; Keshavarz, Mansoor; Farsi, Leila

    2015-01-01

    Background: Hypertension is considered an independent risk factor for cardiovascular mortality in diabetic patients. The present study was designed to determine the role of gamma amino butyric acid B (GABAB) receptor and L-arginine (L-Arg) in GABA-induced vasorelaxation in normal and streptozotocin-induced diabetic rat vessels. Methods: Diabetes was induced by a single i.p. injection of streptozotocin (STZ, 60 mg/kg). Eight weeks later, superior mesenteric arteries of all groups were isolated and perfused according to the McGregor method. Results: Baseline perfusion pressure of STZ diabetic rats was significantly higher than non-diabetic rats in both intact and denuded endothelium. In the presence of faclofen, a selective GABAB receptor blocker, GABA-induced relaxation in intact and denuded endothelium mesenteric beds of STZ diabetic rats was suppressed, but this response in non-diabetic rats was not suppressed. Our results showed that in the presence of L-Arg, a nitric oxide precursor, GABA induced vasorelaxation in both diabetic and non-diabetic vessels. Conclusion: From the results of this study, it may be concluded that the vasorelaxatory effect of GABA in diabetic vessel is mediated by the GABAB receptor and nitric oxide, but it seems that in non-diabetic vessel GABAB receptor does not play any role in GABA-induced vasorelaxation, but nitric oxide induced GABA relaxation in non-diabetic vessel. PMID:25864813

  14. Urinary bladder calculi complicating ventriculo-vesical shunt.

    PubMed

    Shahul Hameed, A S; Yousaf, I; Choudhari, K A

    2005-10-01

    A rare case of vesical calculi complicating the procedure of ventriculo-vesical shunt is presented. In addition to highlighting technical difficulties in placing shunt catheters into the urinary system, the potential complications are discussed. We consider this route of cerebrospinal fluid(CSF) diversion less physiological compared with the peritoneal, pleural or the venous sites, and discourage use of the urinary bladder as the drainage site for the shunting of CSF. PMID:16455572

  15. Controlling hysteresis in superconducting constrictions with a resistive shunt

    NASA Astrophysics Data System (ADS)

    Kumar, Nikhil; Winkelmann, C. B.; Biswas, Sourav; Courtois, H.; Gupta, Anjan K.

    2015-07-01

    We demonstrate control of the thermal hysteresis in superconducting constrictions by adding a resistive shunt. In order to prevent thermal relaxation oscillations, the shunt resistor is placed in close proximity to the constriction, making the inductive current-switching time smaller than the thermal equilibration time. We investigate the current-voltage characteristics of the same constriction with and without the shunt-resistor. The widening of the hysteresis-free temperature range is explained on the basis of a simple model.

  16. An evolutionarily conserved switch in response to GABA affects development and behavior of the locomotor circuit of Caenorhabditis elegans.

    PubMed

    Han, Bingjie; Bellemer, Andrew; Koelle, Michael R

    2015-04-01

    The neurotransmitter gamma-aminobutyric acid (GABA) is depolarizing in the developing vertebrate brain, but in older animals switches to hyperpolarizing and becomes the major inhibitory neurotransmitter in adults. We discovered a similar developmental switch in GABA response in Caenorhabditis elegans and have genetically analyzed its mechanism and function in a well-defined circuit. Worm GABA neurons innervate body wall muscles to control locomotion. Activation of GABAA receptors with their agonist muscimol in newly hatched first larval (L1) stage animals excites muscle contraction and thus is depolarizing. At the mid-L1 stage, as the GABAergic neurons rewire onto their mature muscle targets, muscimol shifts to relaxing muscles and thus has switched to hyperpolarizing. This muscimol response switch depends on chloride transporters in the muscles analogous to those that control GABA response in mammalian neurons: the chloride accumulator sodium-potassium-chloride-cotransporter-1 (NKCC-1) is required for the early depolarizing muscimol response, while the two chloride extruders potassium-chloride-cotransporter-2 (KCC-2) and anion-bicarbonate-transporter-1 (ABTS-1) are required for the later hyperpolarizing response. Using mutations that disrupt GABA signaling, we found that neural circuit development still proceeds to completion but with an ∼6-hr delay. Using optogenetic activation of GABAergic neurons, we found that endogenous GABAA signaling in early L1 animals, although presumably depolarizing, does not cause an excitatory response. Thus a developmental depolarizing-to-hyperpolarizing shift is an ancient conserved feature of GABA signaling, but existing theories for why this shift occurs appear inadequate to explain its function upon rigorous genetic analysis of a well-defined neural circuit. PMID:25644702

  17. Roles of forebrain GABA receptors in controlling vasopressin secretion and related phenomena under basal and hyperosmotic circumstances in conscious rats.

    PubMed

    Yamaguchi, Ken'ichi; Yamada, Takaho

    2008-09-01

    Although the anteroventral third ventricular region (AV3V), a forebrain area essential for homeostatic responses, includes receptors for gamma-aminobutyric acid (GABA), the roles of these receptors in controlling vasopressin (AVP) secretion and related phenomena have not been clarified as yet. This study aimed to pursue this problem in conscious rats implanted with indwelling catheters. Cerebral injection sites were determined histologically. Applications of bicuculline, a GABA(A) receptor antagonist, to the AV3V induced prompt and marked augmentations in plasma AVP, osmolality, glucose, arterial pressure and heart rate, without affecting plasma electrolytes. Such phenomena did not occur when phaclofen, a GABA(B) receptor antagonist, was applied to the AV3V. All of the effects of AV3V-administered bicuculline were abolished by preadministration of the GABA(A) receptor agonist muscimol. Preadministration of either MK-801 or NBQX, ionotropic glutamatergic receptor antagonists, was also potent to abolish the AVP response to AV3V bicuculline. When hypertonic saline was infused intravenously, plasma AVP increased progressively, in parallel with rises in plasma osmolality, sodium and arterial pressure. AV3V application of muscimol or baclofen, a GABA(B) receptor agonist, was found to abolish the response of plasma AVP, without inhibiting that of the osmolality or sodium. The response of arterial pressure was also blocked by muscimol treatment, but not by baclofen treatment. Based on these results, we concluded that, under basal conditions, GABA receptors in the AV3V or vicinity may tonically operate to attenuate AVP secretion and cardiovascular functions through mechanisms associated with glutamatergic activity, and that plasma hyperosmolality may cause facilitation of AVP release by decreasing forebrain GABAergic activity. PMID:18639747

  18. Cyclohexanol analogues are positive modulators of GABA(A) receptor currents and act as general anaesthetics in vivo.

    PubMed

    Hall, Adam C; Griffith, Theanne N; Tsikolia, Maia; Kotey, Francesca O; Gill, Nikhila; Humbert, Danielle J; Watt, Erin E; Yermolina, Yuliya A; Goel, Shikha; El-Ghendy, Bahaa; Hall, C Dennis

    2011-09-30

    GABA(A) receptors meet all the pharmacological criteria required to be considered important general anaesthetic targets. In the following study, the modulatory effects of various commercially available and novel cyclohexanols were investigated on recombinant human γ-aminobutyric acid (GABA(A), α(1)β(2)γ(2s)) receptors expressed in Xenopus oocytes, and compared to the modulatory effects on GABA currents observed with exposures to the intravenous anaesthetic agent, propofol. Submaximal EC(20) GABA currents were typically enhanced by co-applications of 3-300 μM cyclohexanols. For instance, at 30 μM 2,6-diisopropylcyclohexanol (a novel compound) GABA responses were increased ~3-fold (although similar enhancements were achieved at 3 μM propofol). As regards rank order for modulation by the cyclohexanol analogues at 30 μM, the % enhancements for 2,6-dimethylcyclohexanol~2,6-diethylcyclohexanol~2,6-diisopropylcyclohexanol~2,6-di-sec-butylcyclohexanol ≫2,6-di-tert-butylcyclohexanol~4-tert-butylcyclohexanol>cyclohexanol~cyclopentanol~2-methylcyclohexanol. We further tested the potencies of the cyclohexanol analogues as general anaesthetics using a tadpole in vivo assay. Both 2,6-diisopropylcyclohexanol and 2,6-dimethylcyclohexanol were effective as anaesthetics with EC(50)s of 14.0 μM and 13.1 μM respectively, while other cyclohexanols with bulkier side chains were less potent. In conclusion, our data indicate that cyclohexanols are both positive modulators of GABA(A) receptors currents and anaesthetics. The positioning and size of the alkyl groups at the 2 and 6 positions on the cyclohexanol ring were critical determinants of activity. PMID:21658385

  19. GABA/progesterone-induced polyphosphoinositide (PPI) breakdown and its role in the acrosome reaction of guinea pig spermatozoa in vitro.

    PubMed

    Yuan, Y; Mao, L; Shi, Q; Roldan, E R; Chen, W; Yu, S; Zhuang, Y; Xu, S

    2001-08-01

    To investigate whether GABA/progesterone (P(4)) stimulates PPI breakdown and its role in the acrosome reaction (AR), spermatozoa of guinea pig were preincubated in MCM-LCa(2+) for 5.5 h and then labeled with [(32)P]pi for 1 h. Samples were washed through a three-step gradient Percoll, adjusted to 5x10(7) cells/mL and exposed to 2 mmol/L Ca(2+), 5 micromol/L GABA, 10 micromol/L P(4) and other agents. Lipids were separated by t.l.c. and radioactivity in spots determined by scintillation counting. The AR was assessed by phase-contrast microscopy. The results showed that (i) when spermatozoa were treated with GABA,(32)P-label diminished rapidly in phosphatidylinositol 4, 5-bisphosphate (PIP(2)), phosphatidylinositol 4-phosphate (PIP), and increased in phosphatidic acid (PA). The loss of label from PPI was almost completed by 10 min. The time-course of the AR was much slower than PPI when spermatozoa reached a maximal response by 15 min; (ii) the pattern of PPI hydrolysis and stimulation of AR was similar for the three agonists tested; their potency followed the order A23187>progesterone> or =GABA; (iii) GABA-induced PIP(2) hydrolysis and rise in PA and the AR were prevented by inclusion of 10 mmol/L neomycin; (iv) the loss of PIP(2) labeling and the increase in PA labeling abolished when spermatozoa were exposed to EGTA or Ca(2+) channel blocker. These results indicate that GABA or P(4)-induced PPI breakdown is an important and essential event in the series of changes to membrane fusion during the AR of guinea pig spermatozoa and this effect is mediated via calcium by activation of phosphatidylinositol-specific phospholipase C. PMID:18726415

  20. Dopamine-related drugs act presynaptically to potentiate GABA(A) receptor currents in VTA dopamine neurons.

    PubMed

    Michaeli, Avner; Yaka, Rami

    2011-01-01

    Electrical activity of ventral tegmental area (VTA) dopamine (DA) neurons is immediately inhibited following in vivo administration of cocaine and other DA-related drugs. While various forms of synaptic modulation were demonstrated in the VTA following exposure to DA-related drugs, comprehensive understanding of their ability to inhibit the activity of DA neurons, however, is still lacking. In this study, using whole-cell patch-clamp recordings from rat brain slices, a novel form of synaptic modulation induced by DA-related drugs was isolated. DA exposure was shown to cause potentiation of γ-amino-butyric acid (GABA) receptor type A (GABA(A)R)-mediated evoked inhibitory postsynaptic currents (eIPSCs), recorded from VTA DA neurons, under conditions of potassium channels blockade. The potentiation of these eIPSCs lasted for more than twenty minutes, could be mimicked by activation of D2-like but not D1-like DA receptors, and was accompanied by an increase in the frequency of GABA(A)R-mediated spontaneous miniature inhibitory postsynaptic currents (mIPSCs). Furthermore, exposure to inhibitors of DA transporter (DAT) led to potentiation of GABA(A) currents in a manner similar to the DA-mediated potentiation. Finally, a prolonged presence of l-NAME, an inhibitor of nitric-oxide (NO) signaling was found to conceal the potentiation of GABA(A) currents induced by the DA-related drugs. Taken together, this study demonstrates a new modulatory form of VTA GABA(A) neurotransmission mediated by DA-related drugs. These results also suggest better understanding of the initial inhibitory action of DA-related drugs on the activity of DA neurons in the VTA. PMID:21527263

  1. An Evolutionarily Conserved Switch in Response to GABA Affects Development and Behavior of the Locomotor Circuit of Caenorhabditis elegans

    PubMed Central

    Han, Bingjie; Bellemer, Andrew; Koelle, Michael R.

    2015-01-01

    The neurotransmitter gamma-aminobutyric acid (GABA) is depolarizing in the developing vertebrate brain, but in older animals switches to hyperpolarizing and becomes the major inhibitory neurotransmitter in adults. We discovered a similar developmental switch in GABA response in Caenorhabditis elegans and have genetically analyzed its mechanism and function in a well-defined circuit. Worm GABA neurons innervate body wall muscles to control locomotion. Activation of GABAA receptors with their agonist muscimol in newly hatched first larval (L1) stage animals excites muscle contraction and thus is depolarizing. At the mid-L1 stage, as the GABAergic neurons rewire onto their mature muscle targets, muscimol shifts to relaxing muscles and thus has switched to hyperpolarizing. This muscimol response switch depends on chloride transporters in the muscles analogous to those that control GABA response in mammalian neurons: the chloride accumulator sodium-potassium-chloride-cotransporter-1 (NKCC-1) is required for the early depolarizing muscimol response, while the two chloride extruders potassium-chloride-cotransporter-2 (KCC-2) and anion-bicarbonate-transporter-1 (ABTS-1) are required for the later hyperpolarizing response. Using mutations that disrupt GABA signaling, we found that neural circuit development still proceeds to completion but with an ∼6-hr delay. Using optogenetic activation of GABAergic neurons, we found that endogenous GABAA signaling in early L1 animals, although presumably depolarizing, does not cause an excitatory response. Thus a developmental depolarizing-to-hyperpolarizing shift is an ancient conserved feature of GABA signaling, but existing theories for why this shift occurs appear inadequate to explain its function upon rigorous genetic analysis of a well-defined neural circuit. PMID:25644702

  2. Distinct structural changes in the GABAA receptor elicited by pentobarbital and GABA.

    PubMed

    Muroi, Yukiko; Theusch, Cassandra M; Czajkowski, Cynthia; Jackson, Meyer B

    2009-01-01

    The barbiturate pentobarbital binds to gamma-aminobutyric acid type A (GABA(A)) receptors, and this interaction plays an important role in the anesthetic action of this drug. Depending on its concentration, pentobarbital can potentiate (approximately 10-100 microM), activate (approximately 100-800 microM), or block (approximately 1-10 mM) the channel, but the mechanisms underlying these three distinct actions are poorly understood. To investigate the drug-induced structural rearrangements in the GABA(A) receptor, we labeled cysteine mutant receptors expressed in Xenopus oocytes with the sulfhydryl-reactive, environmentally sensitive fluorescent probe tetramethylrhodamine-6-maleimide (TMRM). We then used combined voltage clamp and fluorometry to monitor pentobarbital-induced channel activity and local protein movements simultaneously in real time. High concentrations of pentobarbital induced a decrease in TMRM fluorescence (F(TMRM)) of labels tethered to two residues in the extracellular domain (alpha(1)L127C and beta(2)L125C) that have been shown previously to produce an increase in F(TMRM) in response to GABA. Label at beta(2)K274C in the extracellular end of the M2 transmembrane helix reported a small but significant F(TMRM) increase during application of low modulating pentobarbital concentrations, and it showed a much greater F(TMRM) increase at higher concentrations. In contrast, GABA decreased F(TMRM) at this site. These results indicate that GABA and pentobarbital induce different structural rearrangements in the receptor, and thus activate the receptor by different mechanisms. Labels at alpha(1)L127C and beta(2)K274C change their fluorescence by substantial amounts during channel blockade by pentobarbital. In contrast, picrotoxin blockade produces no change in F(TMRM) at these sites, and the pattern of F(TMRM) signals elicited by the antagonist SR95531 differs from that produced by other antagonists. Thus, with either channel block by antagonists or

  3. Semi-shunt field emission in electronic devices

    NASA Astrophysics Data System (ADS)

    Karpov, V. G.; Shvydka, Diana

    2014-08-01

    We introduce a concept of semi-shunts representing needle shaped metallic protrusions shorter than the distance between a device electrodes. Due to the lightening rod type of field enhancement, they induce strong electron emission. We consider the corresponding signature effects in photovoltaic applications; they are: low open circuit voltages and exponentially strong random device leakiness. Comparing the proposed theory with our data for CdTe based solar cells, we conclude that stress can stimulate semi-shunts' growth making them shunting failure precursors. In the meantime, controllable semi-shunts can play a positive role mitigating the back field effects in photovoltaics.

  4. A compact, coaxial shunt current diagnostic for X pinches

    NASA Astrophysics Data System (ADS)

    Wang, Liangping; Zhang, Jinhai; Li, Mo; Zhang, Xinjun; Zhao, Chen; Zhang, Shaoguo

    2015-08-01

    A compact coaxial shunt was applied in X-pinches experiments on Qiangguang pulsed power generator. The coaxial shunt was designed to have a compact construction for smaller inductance and more, for conveniently assembling upon the X pinch load structure. The coaxial shunt is also a cheap current probe and was easily built by research groups. The shunt can monitor a 100 kA high current with a 100 ns rise time. The calibration results showed that the probe used in the experiments has a resistance of 3.2 mΩ with an uncertainty of 3%, and its response time to the step signal is less than 7 ns.

  5. Superconducting fault current-limiter with variable shunt impedance

    DOEpatents

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  6. Results of portal systemic shunts in Budd-Chiari syndrome.

    PubMed Central

    Vons, C; Smadja, C; Bourstyn, E; Szekely, A M; Bonnet, P; Franco, D

    1986-01-01

    Nine patients with Budd-Chiari syndrome (BCS) were treated by a portal systemic shunt. One had thrombosis of the superior mesenteric vein (SMV) and another had complete obstruction of the retrohepatic inferior vena cava (IVC). All other patients had a marked stenosis of the retrohepatic IVC with caval pressure ranging from 12 to 24 mmHg (mean: 17 mmHg). Seven patients had an interposition mesocaval shunt using an autologous jugular vein. The patient with a thrombosed SMV had a portoatrial shunt. The patient with an obstructed IVC had a cavoatrial shunt after an erroneous portacaval shunt had failed to relieve ascites. There were no operative deaths and no major postoperative complications. One patient died 19 months after operation of acute leukemia complicating polycythemia rubra vera. All other patients were alive and well 8 months to 6 years after operation. None of them had encephalopathy. These results suggest several comments: Portal systemic shunts are a good treatment for BCS and have a low operative risk. The mesocaval shunt is an efficient procedure, even when there is stenosis of the IVC with high caval pressure; shunts to the right atrium should be performed only in the case of complete obstruction or inaccessibility of the IVC. The long-term prognosis is excellent, except in patients with potential malignancies. Therefore, portal systemic shunts should be indicated early in patients with symptomatic BCS. PMID:3963896

  7. Ventriculoperitoneal shunt malfunction caused by proximal catheter fat obstruction.

    PubMed

    Mizrahi, Cezar José; Spektor, Sergey; Margolin, Emil; Shoshan, Yigal; Ben-David, Eliel; Cohen, José E; Moscovici, Samuel

    2016-08-01

    Ventriculoperitoneal (VP) shunt placement is the mainstay of treatment for hydrocephalus, yet shunts remain vulnerable to a variety of complications. Although fat droplet migration into the subarachnoid space and cerebrospinal fluid pathways following craniotomy has been observed, a VP shunt obstruction with fat droplets has never been reported to our knowledge. We present the first reported case of VP shunt catheter obstruction by migratory fat droplets in a 55-year-old woman who underwent suboccipital craniotomy for removal of a metastatic tumor of the left medullocerebellar region, without fat harvesting. A VP shunt was inserted 1month later due to communicating hydrocephalus. The patient presented with gait disturbance, intermittent confusion, and pseudomeningocele 21days after shunt insertion. MRI revealed retrograde fat deposition in the ventricular system and VP shunt catheter, apparently following migration of fat droplets from the fatty soft tissue of the craniotomy site. Spinal tap revealed signs of aseptic meningitis. Steroid treatment for aseptic "lipoid" meningitis provided symptom relief. MRI 2months later revealed partial fat resorption and resolution of the pseudomeningocele. VP shunt malfunction caused by fat obstruction of the ventricular catheter should be acknowledged as a possible complication in VP shunts after craniotomy, even in the absence of fat harvesting. PMID:27010421

  8. Impedance Changes Indicate Proximal Ventriculoperitoneal Shunt Obstruction In Vitro.

    PubMed

    Basati, Sukhraaj; Tangen, Kevin; Hsu, Ying; Lin, Hanna; Frim, David; Linninger, Andreas

    2015-12-01

    Extracranial cerebrospinal fluid (CSF) shunt obstruction is one of the most important problems in hydrocephalus patient management. Despite ongoing research into better shunt design, robust and reliable detection of shunt malfunction remains elusive. The authors present a novel method of correlating degree of tissue ingrowth into ventricular CSF drainage catheters with internal electrical impedance. The impedance based sensor is able to continuously monitor shunt patency using intraluminal electrodes. Prototype obstruction sensors were fabricated for in-vitro analysis of cellular ingrowth into a shunt under static and dynamic flow conditions. Primary astrocyte cell lines and C6 glioma cells were allowed to proliferate up to 7 days within a shunt catheter and the impedance waveform was observed. During cell ingrowth a significant change in the peak-to-peak voltage signal as well as the root-mean-square voltage level was observed, allowing the impedance sensor to potentially anticipate shunt malfunction long before it affects fluid drainage. Finite element modeling was employed to demonstrate that the electrical signal used to monitor tissue ingrowth is contained inside the catheter lumen and does not endanger tissue surrounding the shunt. These results may herald the development of "next generation" shunt technology that allows prediction of malfunction before it affects patient outcome. PMID:25014951

  9. Competing pathways in the photo-Favorskii rearrangement and release of esters: Studies on fluorinated p-hydroxyphenacyl GABA and glutamate phototriggers

    PubMed Central

    Stensrud, Kenneth; Noh, Jihyun; Kandler, Karl; Wirz, Jakob; Heger, Dominik

    2012-01-01

    Three new trifluoromethylated p-hydroxyphenacyl (pHP) caged γ-aminobutyric acid (GABA) and glutamate (Glu) derivatives have been examined for their efficacy as photoremovable protecting groups in aqueous solution. By replacing hydrogen with fluorine, e.g., a m-trifluoromethyl or a m-trifluoromethoxy vs. m-methoxy substituents on the pHP chromophore, modest increases in the quantum yields for release of the amino acids GABA and glutamate were realized as well as improved lipophilicity. The pHP triplet undergoes a photo-Favorskii rearrangement with concomitant release of the amino acid substrate. Deprotonation competes with the rearrangement from the triplet excited state and yields the pHP conjugate base that, upon reprotonation, regenerate the starting ketoester, a chemically unproductive or “energy wasting” process. Employing picosecond pump–probe spectroscopy, GABA derivatives 2 – 5 are characterized by short triplet lifetimes, a manifestation of their rapid release of GABA. The bioavailability of released GABA at the GABAA receptor improved when the release took place from m-OCF3 (2) but decreased for m-CF3 (3) when compared with the parent pHP derivative. These studies demonstrate that pKa and lipophilicity exert significant but sometimes opposing influences on the photochemistry and biological activity of pHP phototriggers. PMID:19572582

  10. [Pharmacological influences on the brain level and transport of GABA. II) Effect of various psychoactive drugs on brain level and uptake of GABA].

    PubMed

    Gabana, M A; Varotto, M; Saladini, M; Zanchin, G; Battistin, L

    1981-04-30

    The effects of some psychoactive drugs on the level and uptake of GABA in the mouse brain was studied using well standardized procedures, mainely the silica-gel cromatography for determining the GABA content and the brain slices for measuring GABA uptake. It was found that levomepromazine, sulpiride, haloperidol and amytryptiline were without effects on the cerebral level of GABA; it was also found that these drugs do not influence the rates of uptake of GABA by mouse brain slices. Such results do indicate that the psychoactive drugs studied are without effects on the level and uptake of GABA in the brain. PMID:7272066

  11. Over-drainage and persistent shunt-dependency in patients with idiopathic intracranial hypertension treated with shunts and bariatric surgery

    PubMed Central

    Roth, Jonathan; Constantini, Shlomi; Kesler, Anat

    2015-01-01

    Background: Idiopathic intracranial hypertension (IIH) may lead to visual impairment. Shunt surgery is indicated for refractory IIH-related symptoms that persist despite medical treatment, or those presenting with significant visual decline. Obesity is a risk factor for IIH; a reduction in weight has been shown to improve papilledema. Bariatric surgery (BS) has been suggested for treating IIH associated with morbid obesity. In this study, we describe a high rate of over-drainage (OD) seen in patients following shunts and BS. Methods: The study cohort includes 13 patients with IIH that underwent shunt surgery for treatment of the IIH-related symptoms. Six patients underwent BS in addition to the shunt surgery (but not concomitantly). Seven patients had only shunt surgeries with no BS. Data were collected retrospectively. Results: BS effectively led to weight reduction (body mass index decreasing from 43 ± 4 to 28 ± 5). Patients undergoing BS had 1–6 (2.5 ± 1.9) shunt revisions for OD following BS, as opposed to 0–3 (1.4 ± 1.1) revisions prior to BS over similar time spans (statistically insignificant difference), and 0–6 (1.6 ± 2.5) revisions among the non-BS patients over a longer time span (statistically insignificant difference). Two patients in the BS group underwent shunt externalization and closure; however, they proved to be shunt-dependent. Conclusions: Patients with IIH that undergo shunt surgery and BS (not concomitantly) may suffer from OD symptoms, necessitating multiple shunt revisions, and valve upgrades. Despite BS being a valid primary treatment for some patients with IIH, among shunted patients, BS may not lead to resolution of IIH-related symptoms and patients may remain shunt-dependent. PMID:26713173

  12. Functional properties of GABA synaptic inputs onto GABA neurons in monkey prefrontal cortex.

    PubMed

    Rotaru, Diana C; Olezene, Cameron; Miyamae, Takeaki; Povysheva, Nadezhda V; Zaitsev, Aleksey V; Lewis, David A; Gonzalez-Burgos, Guillermo

    2015-03-15

    In rodent cortex GABAA receptor (GABAAR)-mediated synapses are a significant source of input onto GABA neurons, and the properties of these inputs vary among GABA neuron subtypes that differ in molecular markers and firing patterns. Some features of cortical interneurons are different between rodents and primates, but it is not known whether inhibition of GABA neurons is prominent in the primate cortex and, if so, whether these inputs show heterogeneity across GABA neuron subtypes. We thus studied GABAAR-mediated miniature synaptic events in GABAergic interneurons in layer 3 of monkey dorsolateral prefrontal cortex (DLPFC). Interneurons were identified on the basis of their firing pattern as fast spiking (FS), regular spiking (RS), burst spiking (BS), or irregular spiking (IS). Miniature synaptic events were common in all of the recorded interneurons, and the frequency of these events was highest in FS neurons. The amplitude and kinetics of miniature inhibitory postsynaptic potentials (mIPSPs) also differed between DLPFC interneuron subtypes in a manner correlated with their input resistance and membrane time constant. FS neurons had the fastest mIPSP decay times and the strongest effects of the GABAAR modulator zolpidem, suggesting that the distinctive properties of inhibitory synaptic inputs onto FS cells are in part conferred by GABAARs containing α1 subunits. Moreover, mIPSCs differed between FS and RS interneurons in a manner consistent with the mIPSP findings. These results show that in the monkey DLPFC GABAAR-mediated synaptic inputs are prominent in layer 3 interneurons and may differentially regulate the activity of different interneuron subtypes. PMID:25540225

  13. Linking GABA and glutamate levels to cognitive skill acquisition during development.

    PubMed

    Cohen Kadosh, Kathrin; Krause, Beatrix; King, Andrew J; Near, Jamie; Cohen Kadosh, Roi

    2015-11-01

    Developmental adjustments in the balance of excitation and inhibition are thought to constrain the plasticity of sensory areas of the cortex. It is unknown however, how changes in excitatory or inhibitory neurochemical expression (glutamate, γ-aminobutyric acid (GABA)) contribute to skill acquisition during development. Here we used single-voxel proton magnetic resonance spectroscopy (1H-MRS) to reveal how differences in cortical glutamate vs. GABA ratios relate to face proficiency and working memory abilities in children and adults. We show that higher glutamate levels in the inferior frontal gyrus correlated positively with face processing proficiency in the children, but not the adults, an effect which was independent of age-dependent differences in underlying cortical gray matter. Moreover, we found that glutamate/GABA levels and gray matter volume are dissociated at the different maturational stages. These findings suggest that increased excitation during development is linked to neuroplasticity and the acquisition of new cognitive skills. They also offer a new, neurochemical approach to investigating the relationship between cognitive performance and brain development across the lifespan. PMID:26350618

  14. Immunocytochemical localization of amines and GABA in the optic lobe of the butterfly, Papilio xuthus.

    PubMed

    Hamanaka, Yoshitaka; Kinoshita, Michiyo; Homberg, Uwe; Arikawa, Kentaro

    2012-01-01

    Butterflies have sophisticated color vision. While the spectral organization of the compound eye has been well characterized in the Japanese yellow swallowtail butterfly, Papilio xuthus, neural mechanisms underlying its color vision are largely unexplored. Towards a better understanding of signal processing in the visual system of P. xuthus, we used immunocytochemical techniques to analyze the distribution of transmitter candidates, namely, histamine, serotonin, tyramine and γ-aminobutyric acid (GABA). Photoreceptor terminals in the lamina and medulla exhibited histamine immunoreactivity as demonstrated in other insects. The anti-histamine antiserum also labeled a few large medulla neurons. Medulla intrinsic neurons and centrifugal neurons projecting to the lamina showed serotonin immunoreactivity. Tyramine immunostaining was detected in a subset of large monopolar cells (LMCs) in the lamina, transmedullary neurons projecting to the lobula plate, and cell bodies surrounding the first optic chiasma. An anti-GABA antiserum labeled a subset of LMCs and populations of columnar and tangential neurons surrounding the medulla. Each of the four antisera also labeled a few centrifugal neurons that innervate the lobula complex from the central brain, suggesting that they have neuromodulatory roles. A distinctive feature we found in this study is the possibility that tyramine and GABA act as transmitters in LMCs of P. xuthus, which has not been reported in any other insects so far. PMID:22844431

  15. Linking GABA and glutamate levels to cognitive skill acquisition during development

    PubMed Central

    Krause, Beatrix; King, Andrew J.; Near, Jamie

    2015-01-01

    Abstract Developmental adjustments in the balance of excitation and inhibition are thought to constrain the plasticity of sensory areas of the cortex. It is unknown however, how changes in excitatory or inhibitory neurochemical expression (glutamate, γ‐aminobutyric acid (GABA)) contribute to skill acquisition during development. Here we used single‐voxel proton magnetic resonance spectroscopy (1H‐MRS) to reveal how differences in cortical glutamate vs. GABA ratios relate to face proficiency and working memory abilities in children and adults. We show that higher glutamate levels in the inferior frontal gyrus correlated positively with face processing proficiency in the children, but not the adults, an effect which was independent of age‐dependent differences in underlying cortical gray matter. Moreover, we found that glutamate/GABA levels and gray matter volume are dissociated at the different maturational stages. These findings suggest that increased excitation during development is linked to neuroplasticity and the acquisition of new cognitive skills. They also offer a new, neurochemical approach to investigating the relationship between cognitive performance and brain development across the lifespan. Hum Brain Mapp 36:4334–4345, 2015. © 2015 The Authors. Human Brain Mapping Published byWiley Periodicals, Inc. PMID:26350618

  16. Immunocytochemical Localization of Amines and GABA in the Optic Lobe of the Butterfly, Papilio xuthus

    PubMed Central

    Hamanaka, Yoshitaka; Kinoshita, Michiyo; Homberg, Uwe; Arikawa, Kentaro

    2012-01-01

    Butterflies have sophisticated color vision. While the spectral organization of the compound eye has been well characterized in the Japanese yellow swallowtail butterfly, Papilio xuthus, neural mechanisms underlying its color vision are largely unexplored. Towards a better understanding of signal processing in the visual system of P. xuthus, we used immunocytochemical techniques to analyze the distribution of transmitter candidates, namely, histamine, serotonin, tyramine and γ-aminobutyric acid (GABA). Photoreceptor terminals in the lamina and medulla exhibited histamine immunoreactivity as demonstrated in other insects. The anti-histamine antiserum also labeled a few large medulla neurons. Medulla intrinsic neurons and centrifugal neurons projecting to the lamina showed serotonin immunoreactivity. Tyramine immunostaining was detected in a subset of large monopolar cells (LMCs) in the lamina, transmedullary neurons projecting to the lobula plate, and cell bodies surrounding the first optic chiasma. An anti-GABA antiserum labeled a subset of LMCs and populations of columnar and tangential neurons surrounding the medulla. Each of the four antisera also labeled a few centrifugal neurons that innervate the lobula complex from the central brain, suggesting that they have neuromodulatory roles. A distinctive feature we found in this study is the possibility that tyramine and GABA act as transmitters in LMCs of P. xuthus, which has not been reported in any other insects so far. PMID:22844431

  17. Acute Modulation of Cortical Glutamate and GABA Content by Physical Activity.

    PubMed

    Maddock, Richard J; Casazza, Gretchen A; Fernandez, Dione H; Maddock, Michael I

    2016-02-24

    Converging evidence demonstrates that physical activity evokes a brain state characterized by distinctive changes in brain metabolism and cortical function. Human studies have shown that physical activity leads to a generalized increase in electroencephalography power across regions and frequencies, and a global increase in brain nonoxidative metabolism of carbohydrate substrates. This nonoxidative consumption of carbohydrate has been hypothesized to include increased de novo synthesis of amino acid neurotransmitters, especially glutamate and GABA. Here, we conducted a series of proton magnetic resonance spectroscopy studies in human volunteers before and after vigorous exercise (≥80% of predicted maximal heart rate). Results showed that the resonance signals of both glutamate and GABA increased significantly in the visual cortex following exercise. We further demonstrated a similar increase in glutamate following exercise in an executive region, the anterior cingulate cortex. The increase in glutamate was similar when using echo times of 30 and 144 ms, indicating that exercise-related T2 relaxation effects across this range of relaxation times did not account for the findings. In addition, we found preliminary evidence that more physical activity during the preceding week predicts higher resting glutamate levels. Overall, the results are consistent with an exercise-induced expansion of the cortical pools of glutamate and GABA, and add to a growing understanding of the distinctive brain state associated with physical activity. A more complete understanding of this brain state may reveal important insights into mechanisms underlying the beneficial effects of physical exercise in neuropsychiatric disorders, neurorehabilitation, aging, and cognition. PMID:26911692

  18. Bioassay-guided fractionation of lemon balm (Melissa officinalis L.) using an in vitro measure of GABA transaminase activity.

    PubMed

    Awad, Rosalie; Muhammad, Asim; Durst, Tony; Trudeau, Vance L; Arnason, John T

    2009-08-01

    A novel pharmacological mechanism of action for the anxiolytic botanical Melissa officinalis L. (lemon balm) is reported. The methanol extract was identified as a potent in vitro inhibitor of rat brain GABA transaminase (GABA-T), an enzyme target in the therapy of anxiety, epilepsy and related neurological disorders. Bioassay-guided fractionation led to the identification and isolation of rosmarinic acid (RA) and the triterpenoids, ursolic acid (UA) and oleanolic acid (OA) as active principles. Phytochemical characterization of the crude extract determined RA as the major compound responsible for activity (40% inhibition at 100 microg/mL) since it represented approximately 1.5% of the dry mass of the leaves. Synergistic effects may also play a role. PMID:19165747

  19. Glutamate and GABA contributions to medial prefrontal cortical activity to emotion: implications for mood disorders.

    PubMed

    Stan, Ana D; Schirda, Claudiu V; Bertocci, Michele A; Bebko, Genna M; Kronhaus, Dina M; Aslam, Haris A; LaBarbara, Eduard J; Tanase, Costin; Lockovich, Jeanette C; Pollock, Myrna H; Stiffler, Richelle S; Phillips, Mary L

    2014-09-30

    The dorsomedial prefrontal cortex (MdPFC) and anterior cingulate cortices (ACC) play a critical role in implicit emotion regulation; however the understanding of the specific neurotransmitters that mediate such role is lacking. In this study, we examined relationships between MdPFC concentrations of two neurotransmitters, glutamate and γ-amino butyric acid (GABA), and BOLD activity in ACC during performance of an implicit facial emotion-processing task. Twenty healthy volunteers, aged 20-35 years, were scanned while performing an implicit facial emotion-processing task, whereby presented facial expressions changed from neutral to one of the four emotions: happy, anger, fear, or sad. Glutamate concentrations were measured before and after the emotion-processing task in right MdPFC using magnetic resonance spectroscopy (MRS). GABA concentrations were measured in bilateral MdPFC after the emotion-processing task. Multiple regression models were run to determine the relative contribution of glutamate and GABA concentration, age, and gender to BOLD signal in ACC to each of the four emotions. Multiple regression analyses revealed a significant negative correlation between MdPFC GABA concentration and BOLD signal in subgenual ACC (p<0.05, corrected) to sad versus shape contrast. For the anger versus shape contrast, there was a significant negative correlation between age and BOLD signal in pregenual ACC (p<0.05, corrected) and a positive correlation between MdPFC glutamate concentration (pre-task) and BOLD signal in pregenual ACC (p<0.05, corrected). Our findings are the first to provide insight into relationships between MdPFC neurotransmitter concentrations and ACC BOLD signal, and could further understanding of molecular mechanisms underlying emotion processing in healthy and mood-disordered individuals. PMID:24973815

  20. Chemical integrity of ( sup 3 H)GABA used in binding studies

    SciTech Connect

    Balcar, V.J. )

    1989-07-01

    A method which is claimed to be able to determine the proportion of true GABA within radiolabeled GABA used in binding studies was tested using (3H)GABA. The method was found to be unsuitable for {sup 3}H-labeled GABA and, furthermore, both theoretical considerations and the present experimental data indicated that it could also produce misleading results with ({sup 14}C)GABA.

  1. Mechanisms of carbacholine and GABA action on resting membrane potential and Na+/K+-ATPase of Lumbricus terrestris body wall muscles.

    PubMed

    Volkov, Eugeny M; Nurullin, Leniz F; Volkov, Michael E; Nikolsky, Eugeny E; Vyskočil, Frantisek

    2011-04-01

    This work was aimed to identify the action of several ion channel and pump inhibitors as well as nicotinic, GABAergic, purinergic and serotoninergic drugs on the resting membrane potential (RMP) and assess the role of cholinergic and GABAergic sensitivity in earthworm muscle electrogenesis. The nicotinic agonists acetylcholine (ACh), carbacholine (CCh) and nicotine depolarize the RMP at concentrations of 5 μM and higher. The nicotinic antagonists (+)tubocurarine, α-bungarotoxin, muscarinic antagonists atropine and hexamethonium do not remove or prevent the CCh-induced depolarization. Verapamil, tetrodotoxin, removal of Cl(-) and Ca(2+) from the solution also cannot prevent the depolarization by CCh. In a Na(+)-free medium, however, CCh lost this depolarization ability and this indicates that the drug opens the sodium permeable pathway. Serotonin, glutamate, glycine, adenosine triphosphate (ATP) and cis-4-aminocrotonic acid (GABA(C) receptor antagonist) had no effect on the RMP. On the other hand, isoguvacin, γ-aminobutyric acid (GABA) and baclofen (GABA(B) receptor agonist) hyperpolarized the RMP. Ouabain, bicucullin (GABA(A) antagonist) and phaclofen (GABA(B) antagonist), as well as the removal of Cl(-), suppressed the effect of GABA and baclofen. CCh did not enhance the depolarization generated by ouabain but, on the other hand, hindered the hyperpolarizing activity of baclofen both in the absence and presence of atropine and (+)tubocurarine. The long-term application of CCh depolarizes the RMP primarily by inhibiting the Na(+)/K(+)-ATPase. The muscle membrane also contains A and B type GABA binding sites, the activation of which increases the RMP at the expense of increasing the action of ouabain- and Cl(-) -sensitive electrogenic pumps. PMID:21184841

  2. Shunting branch of portal vein and stent position predict survival after transjugular intrahepatic portosystemic shunt

    PubMed Central

    Bai, Ming; He, Chuang-Ye; Qi, Xing-Shun; Yin, Zhan-Xin; Wang, Jian-Hong; Guo, Wen-Gang; Niu, Jing; Xia, Jie-Lai; Zhang, Zhuo-Li; Larson, Andrew C; Wu, Kai-Chun; Fan, Dai-Ming; Han, Guo-Hong

    2014-01-01

    AIM: To evaluate the effect of the shunting branch of the portal vein (PV) (left or right) and the initial stent position (optimal or suboptimal) of a transjugular intrahepatic portosystemic shunt (TIPS). METHODS: We retrospectively reviewed 307 consecutive cirrhotic patients who underwent TIPS placement for variceal bleeding from March 2001 to July 2010 at our center. The left PV was used in 221 patients and the right PV in the remaining 86 patients. And, 224 and 83 patients have optimal stent position and sub-optimal stent positions, respectively. The patients were followed until October 2011 or their death. Hepatic encephalopathy, shunt dysfunction, and survival were evaluated as outcomes. The difference between the groups was compared by Kaplan-Meier analysis. A Cox regression model was employed to evaluate the predictors. RESULTS: Among the patients who underwent TIPS to the left PV, the risk of hepatic encephalopathy (P = 0.002) and mortality were lower (P < 0.001) compared to those to the right PV. Patients who underwent TIPS with optimal initial stent position had a higher primary patency (P < 0.001) and better survival (P = 0.006) than those with suboptimal initial stent position. The shunting branch of the portal vein and the initial stent position were independent predictors of hepatic encephalopathy and shunt dysfunction after TIPS, respectively. And, both were independent predictors of survival. CONCLUSION: TIPS placed to the left portal vein with optimal stent position may reduce the risk of hepatic encephalopathy and improve the primary patency rates, thereby prolonging survival. PMID:24574750

  3. Depolarizing GABA/glycine synaptic events switch from excitation to inhibition during frequency increases

    NASA Astrophysics Data System (ADS)

    Branchereau, Pascal; Cattaert, Daniel; Delpy, Alain; Allain, Anne-Emilie; Martin, Elodie; Meyrand, Pierre

    2016-02-01

    By acting on their ionotropic chloride channel receptors, GABA and glycine represent the major inhibitory transmitters of the central nervous system. Nevertheless, in various brain structures, depolarizing GABAergic/glycinergic postsynaptic potentials (dGPSPs) lead to dual inhibitory (shunting) and excitatory components, the functional consequences of which remain poorly acknowledged. Indeed, the extent to which each component prevails during dGPSP is unclear. Understanding the mechanisms predicting the dGPSP outcome on neural network activity is therefore a major issue in neurobiology. By combining electrophysiological recordings of spinal embryonic mouse motoneurons and modelling study, we demonstrate that increasing the chloride conductance (gCl) favors inhibition either during a single dGPSP or during trains in which gCl summates. Finally, based on this summation mechanism, the excitatory effect of EPSPs is overcome by dGPSPs in a frequency-dependent manner. These results reveal an important mechanism by which dGPSPs protect against the overexcitation of neural excitatory circuits.

  4. Depolarizing GABA/glycine synaptic events switch from excitation to inhibition during frequency increases

    PubMed Central

    Branchereau, Pascal; Cattaert, Daniel; Delpy, Alain; Allain, Anne-Emilie; Martin, Elodie; Meyrand, Pierre

    2016-01-01

    By acting on their ionotropic chloride channel receptors, GABA and glycine represent the major inhibitory transmitters of the central nervous system. Nevertheless, in various brain structures, depolarizing GABAergic/glycinergic postsynaptic potentials (dGPSPs) lead to dual inhibitory (shunting) and excitatory components, the functional consequences of which remain poorly acknowledged. Indeed, the extent to which each component prevails during dGPSP is unclear. Understanding the mechanisms predicting the dGPSP outcome on neural network activity is therefore a major issue in neurobiology. By combining electrophysiological recordings of spinal embryonic mouse motoneurons and modelling study, we demonstrate that increasing the chloride conductance (gCl) favors inhibition either during a single dGPSP or during trains in which gCl summates. Finally, based on this summation mechanism, the excitatory effect of EPSPs is overcome by dGPSPs in a frequency-dependent manner. These results reveal an important mechanism by which dGPSPs protect against the overexcitation of neural excitatory circuits. PMID:26912194

  5. 49 CFR 236.60 - Switch shunting circuit; use restricted.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Switch shunting circuit; use restricted. 236.60 Section 236.60 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Instructions: All Systems Track Circuits § 236.60 Switch shunting circuit; use restricted. Switch...

  6. 49 CFR 236.724 - Circuit, shunt fouling.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit, shunt fouling. 236.724 Section 236.724 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Circuit, shunt fouling. The track circuit in the fouling section of a turnout, connected in multiple...

  7. 21 CFR 882.4545 - Shunt system implantation instrument.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Shunt system implantation instrument. 882.4545 Section 882.4545 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4545 Shunt system implantation instrument. (a) Identification....

  8. Internal carotid artery rupture caused by carotid shunt insertion

    PubMed Central

    Illuminati, Giulio; Caliò, Francesco G.; Pizzardi, Giulia; Vietri, Francesco

    2015-01-01

    Introduction Shunting is a well-accepted method of maintaining cerebral perfusion during carotid endarterectomy (CEA). Nonetheless, shunt insertion may lead to complications including arterial dissection, embolization, and thrombosis. We present a complication of shunt insertion consisting of arterial wall rupture, not reported previously. Presentation of case A 78-year-old woman underwent CEA combined with coronary artery bypass grafting (CABG). At the time of shunt insertion an arterial rupture at the distal tip of the shunt was detected and was repaired via a small saphenous vein patch. Eversion CEA and subsequent CABG completed the procedure whose postoperative course was uneventful. Discussion Shunting during combined CEA-CABG may be advisable to assure cerebral protection from possible hypoperfusion due to potential hemodynamic instability of patients with severe coronary artery disease. Awareness and prompt management of possible shunt-related complications, including the newly reported one, may contribute to limiting their harmful effect. Conclusion Arterial wall rupture is a possible, previously not reported, shunt-related complication to be aware of when performing CEA. PMID:26255001

  9. [Temporary vascular shunt technique for resource scarce environments].

    PubMed

    Ouattara, N; Mlynski, A; Pierret, C

    2011-10-01

    The purpose of this report is to describe a simple and reproducible technique for temporary vascular shunting. This technique is appropriate only for exceptional situations involving scant resource availability. It is not intended to replace conventional vascular shunting techniques. PMID:22235609

  10. Production of γ-Amino Butyric Acid in Tea Leaves wit Treatment of Lactic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuko; Hayakawa, Kiyoshi; Ueno, Hiroshi

    Lactic acid bacteria was searched for producing termented tea that contained a lot of γ-amino butyric acid(GABA). Also examined were the growth condition, GABA production and changes in catechin contents in the tea leaves. Lactobacillus brevis L12 was found to be suitable for the production of fermented tea since it gave as much GABA as gabaron tea when tea leaves being suspended with water at 10% and incubated for 4 days at 25°C. The amount of GABA produced was more than calculated based upon the content of glutamic acid in tea leaves. It is probable to assume that glutamate derived from glutamine and theanine is converted into GABA.

  11. Biosynthetic route towards saxitoxin and shunt pathway

    PubMed Central

    Tsuchiya, Shigeki; Cho, Yuko; Konoki, Keiichi; Nagasawa, Kazuo; Oshima, Yasukatsu; Yotsu-Yamashita, Mari

    2016-01-01

    Saxitoxin, the most potent voltage-gated sodium channel blocker, is one of the paralytic shellfish toxins (PSTs) produced by cyanobacteria and dinoflagellates. Recently, putative biosynthetic genes of PSTs were reported in these microorganisms. We previously synthesized genetically predicted biosynthetic intermediates, Int-A’ and Int-C’2, and also Cyclic-C’ which was not predicted based on gene, and identified them all in the toxin-producing cyanobacterium Anabaena circinalis (TA04) and the dinoflagellate Alexandrium tamarense (Axat-2). This study examined the incorporation of 15N-labeled intermediates into PSTs (C1 and C2) in A. circinalis (TA04). Conversions from Int-A’ to Int-C’2, from Int-C’2 to Cyclic-C’, and from Int-A’ and Int-C’2 to C1 and C2 were indicated using high resolution-LC/MS. However, Cyclic-C’ was not converted to C1 and C2 and was detected primarily in the extracellular medium. These results suggest that Int-A’ and Int-C’2 are genuine precursors of PSTs, but Int-C’2 converts partially to Cyclic-C’ which is a shunt product excreted to outside the cells. This paper provides the first direct demonstration of the biosynthetic route towards saxitoxin and a shunt pathway. PMID:26842222

  12. Flexural waves focusing through shunted piezoelectric patches

    NASA Astrophysics Data System (ADS)

    Yi, K.; Collet, M.; Ichchou, M.; Li, L.

    2016-07-01

    In this paper, we designed and analyzed a piezo-lens to focus flexural waves in thin plates. The piezo-lens is comprised of a host plate and piezoelectric arrays bonded on the surfaces of the plate. The piezoelectric patches are shunted with negative capacitance circuits. The effective refractive indexes inside the piezo-lens are designed to fit a hyperbolic secant distribution by tuning the negative capacitance values. A homogenized model of a piezo-mechanical system is adopted in the designing process of the piezo-lens. The wave focusing effect is studied by the finite element method. Numerical results show that the piezo-lens can focus flexural waves by bending their trajectories, and is effective in a large frequency band. The piezo-lens has the ability to focus flexural waves at different locations by tuning the shunting negative capacitance values. The piezo-lens is shown to be effective for flexural waves generated by different types of sources.

  13. Inter- and intracellular relationship of substance P-containing neurons with serotonin and GABA in the dorsal raphe nucleus: combination of autoradiographic and immunocytochemical techniques

    SciTech Connect

    Magoul, R.; Onteniente, B.; Oblin, A.; Calas, A.

    1986-06-01

    Double-labeling experiments were performed at the electron microscopic level in the dorsal raphe nucleus of rat, in order to study the inter- and intracellular relationship of substance P with gamma-aminobutyric acid (GABA) and serotonin. Autoradiography for either (/sup 3/H)serotonin or (/sup 3/H)GABA was coupled, on the same tissue section, with peroxidase-antiperoxidase immunocytochemistry for substance P in colchicine-treated animals. Intercellular relationships were represented by synaptic contacts made by (/sup 3/H)serotonin-labeled terminals on substance P-containing somata and dendrites, and by substance P-containing terminals on (/sup 3/H)GABA-labeled cells. Intracellular relationships were suggested by the occurrence of the peptide within (/sup 3/H)serotonin-containing and (/sup 3/H)GABA-containing cell bodies and fibers. Doubly labeled varicosities of the two kinds were also observed in the supraependymal plexus adjacent to the dorsal raphe nucleus. The results demonstrated that, in addition to reciprocal synaptic interactions made by substance P with serotonin and GABA, the dorsal raphe nucleus is the site of intracellular relationships between the peptide and either the amine or the amino acid.

  14. Experiment K-6-18. Study of muscarinic and gaba (benzodiazepine) receptors in the sensory-motor cortex, hippcampus and spinal code

    NASA Technical Reports Server (NTRS)

    Daunton, N.; Damelio, F.; Krasnov, I.

    1990-01-01

    Frontal lobe samples of rat brains flown aboard Cosmos 1887 were processed for the study of muscarinic (cholinergic) and GABA (benzodiazepine) receptors and for immunocytochemical localization of the neurotransmitter gamma-aminobutyric acid (GABA) and glial fibrillary acidic protein (GFAP). Although radioactive labeling of both muscarinic cholinergic and GABA (benzodiazepine) receptors proved to be successful with the techniques employed, distinct receptor localization of individual laminae of the frontal neocortex was not possible since the sampling of the area was different in the various groups of animals. In spite of efforts made for proper orientation and regional identification of laminae, it was found that a densitometric (quantitation of autoradiograms) analysis of the tissue did not contribute to the final interpretation of the effects of weightlessness on these receptors. As to the immunocytochemical studies the use of both markers, GFAP and GABA antiserum, confirmed the suitability of the techniques for use in frozen material. However, similar problems to those encountered in the receptor studies prevented an adequate interpretation of the effects of micro-G exposure on the localization and distribution of GABA and GFAP. This study did, however, confirm the feasibility of investigating neurotransmitters and their receptors in future space flight experiments.

  15. Shunt attachment and method for interfacing current collection systems

    DOEpatents

    Denney, Paul E.; Iyer, Natraj C.; Hannan, III, William F.

    1992-01-01

    A composite brush to shunt attachment wherein a volatile component of a composite but mostly metallic brush, used for current collection purposes, does not upon welding or brazing, adversely affect the formation of the interfacial bond with a conductive shunt which carries the current from the zone of the brush. The brush to shunt attachment for a brush material of copper-graphite composite and a shunt of copper, or substituting silver for copper as an alternative, is made through a hot isostatic pressing (HIP). The HIP process includes applying high pressure and temperature simultaneously at the brush to shunt interface, after it has been isolated or canned in a metal casing in which the air adjacent to the interface has been evacuated and the interfacial area has been sealed before the application of pressure and temperature.

  16. Shunt attachment and method for interfacing current collection systems

    DOEpatents

    Denney, P.E.; Iyer, N.C.; Hannan, W.F. III.

    1992-12-08

    A composite brush to shunt attachment wherein a volatile component of a composite but mostly metallic brush, used for current collection purposes, does not upon welding or brazing, adversely affect the formation of the interfacial bond with a conductive shunt which carries the current from the zone of the brush. The brush to shunt attachment for a brush material of copper-graphite composite and a shunt of copper, or substituting silver for copper as an alternative, is made through a hot isostatic pressing (HIP). The HIP process includes applying high pressure and temperature simultaneously at the brush to shunt interface, after it has been isolated or canned in a metal casing in which the air adjacent to the interface has been evacuated and the interfacial area has been sealed before the application of pressure and temperature. 6 figs.

  17. Portasystemic shunt fraction quantification with colonic iodine-123 iodoamphetamine

    SciTech Connect

    Yen, C.K.; Pollycove, M.; Crass, R.; Lin, T.H.; Baldwin, R.; Lamb, J.

    1986-08-01

    Portasystemic shunting was quantified in dogs with (/sup 123/I)iodoamphetamine (IMP) administered transrectally into the colon and monitored externally with a gamma camera. IMP was absorbed rapidly and unchanged from the colon. After direct injection into the portal vein, IMP was almost completely extracted by the liver on the first pass, and the washout half-life was approximately 60 min. Based on these kinetic data, computer simulation of this biologic system was carried out. Errors associated with simplified models are calculated. The simplest model with insignificant error, which assumed that the tracer behaved like microspheres, was used to quantitate portasystemic shunt fraction in animals with surgically created shunts. Results were compared with the standard of /sup 99m/Tc-labeled macroaggregated albumin infused into a branch of inferior mesenteric vein. For shunt fractions ranging from 0 to 100%, an excellent correlation was seen, indicating that this approach is potentially a simple, noninvasive method of portasystemic shunt fraction quantification.

  18. Management of Ventriculo-Peritoneal Shunts in the Paediatric Population

    PubMed Central

    Low, David; Drake, James M; Seow, Wan Tew; Ng, Wai Hoe

    2010-01-01

    The treatment of hydrocephalus is a challenging one. The development of shunt devices have greatly improved the survival and quality of life of paediatric patients with hydrocephalus; however, shunt dysfunction is a common problem which represents a significant scope of work for paediatric neurosurgeons with shunt failures occuring in up to 40 to 50% of patients during the first two years after shunt surgery. Numerous pathologies ranging from congenital to acquired conditions can result in the development of hydrocephalus in the paediatric population. Obstruction of proximal or distal catheter ends, misplacement, infections and over drainage are some of the common problems accounting for shunt failures. We discussed some of the pertinent problems and nuances involved in treatment of paediatric hydrocephalus with VPS as well as to review the role of endoscopic procedures as an alternative to VPS. PMID:22028738

  19. Metabotropic GABA signalling modulates longevity in C. elegans

    PubMed Central

    Chun, Lei; Gong, Jianke; Yuan, Fengling; Zhang, Bi; Liu, Hongkang; Zheng, Tianlin; Yu, Teng; Xu, X. Z. Shawn; Liu, Jianfeng

    2015-01-01

    The nervous system plays an important but poorly understood role in modulating longevity. GABA, a prominent inhibitory neurotransmitter, is best known to regulate nervous system function and behaviour in diverse organisms. Whether GABA signalling affects aging, however, has not been explored. Here we examined mutants lacking each of the major neurotransmitters in C. elegans, and find that deficiency in GABA signalling extends lifespan. This pro-longevity effect is mediated by the metabotropic GABAB receptor GBB-1, but not ionotropic GABAA receptors. GBB-1 regulates lifespan through G protein-PLCβ signalling, which transmits longevity signals to the transcription factor DAF-16/FOXO, a key regulator of lifespan. Mammalian GABAB receptors can functionally substitute for GBB-1 in lifespan control in C. elegans. Our results uncover a new role of GABA signalling in lifespan regulation in C. elegans, raising the possibility that a similar process may occur in other organisms. PMID:26537867

  20. [GABA-Receptors in Modulation of Fear Memory Extinction].

    PubMed

    Dubrovina, N I

    2016-01-01

    GABA is the major inhibitory neurotransmitter in the central nervous system determining the efficacy of neuronal interaction. GABA-receptors play a key role in different aspects of fear memory--acquisition and consolidation, retention, reconsolidation and extinction. Extinction is an important behavioural phenomenon which allows organism to adapt its behavior to a changing environment. Extinction of fear memory is a form of new inhibitory learning which interferes with expression of the initial acquired fear conditioning. Resistance to extinction is symptom of depression and posttraumatic stress disorder. The aim of the present review was to summarize own and literary data about GABAergic modulation of fear extinction and pharmacological correction of extinction impairment at influences on GABA(A)- and GABA(B)- receptors. PMID:27538279

  1. [Hepatoduodenal circulation and excretion of the new GABA derivative citrocard].

    PubMed

    Tiurenkov, I N; Perfilova, V N; Smirnova, L A; Riabukha, A F; Suchkov, E A; Lebedeva, S A

    2013-01-01

    Pharmacokinetic investigation of a new gamma-aminobutyric acid (GABA) derivative cirtocard showed that, upon the intravenous introduction, the drug is determined in high concentrations in organs of elimination--the liver and kidneys. The tissue accessibility amounts to 1.341 for the liver and 4.053 for the kidneys and the separation factor is 1.041 for the liver and 4.486 for the kidneys. The study of drug excretion showed that cirtocard is determined in the urine for 48 h, its nephritic clearance being 0.047 L/h and extra-nephritic clearance, 0.33 L/h. For the unchanged substance, a large significance ofhepatoduodenal circulation is low probable, since no more than 1 - 2% of the introduced dose was isolated with bile over entire experiment. It is established that the removal of the unchanged substance does not exceed 10% of the introduced dose. There is high probability of hepatoduodenal circulation and excretion of the preparation in the form of metabolites. PMID:23767103

  2. Prefrontal GABA concentration changes in women-Influence of menstrual cycle phase, hormonal contraceptive use, and correlation with premenstrual symptoms.

    PubMed

    De Bondt, Timo; De Belder, Frank; Vanhevel, Floris; Jacquemyn, Yves; Parizel, Paul M

    2015-02-01

    Prefrontal regions are involved in processing emotional stimuli and are a topic of interest in clinical and neurological research. Although sex steroids are potent neuromodulators, the influence of menstrual cycle phase and hormonal contraceptive use is rarely taken into account in neuroimaging studies. Our purpose was to evaluate changes in gamma-aminobutyric acid (GABA) in women, as measured by magnetic resonance spectroscopy (MRS), with phases of the menstrual cycle and use of hormonal contraceptives, and to assess correlations with premenstrual symptoms.Three MRI sessions per cycle were obtained in the natural cycle group, and two sessions in the hormonal contraceptives group. In addition to an anatomical scan, single voxel MRS in the prefrontal area was performed. After quality control, 10 women with natural cycle and 21 women taking hormonal contraceptives were included for analysis. Peripheral blood samples were obtained to determine endogenous hormone concentrations. Subjects were asked to complete a daily rating of severity of problems questionnaire, to quantify premenstrual symptoms. In the natural cycle group, we found a significant increase in prefrontal GABA concentration at the time of ovulation. Conversely, in the hormonal contraceptives group, no differences were found between the pill phase and pill-free phase. GABA concentrations did not significantly correlate with endogenous hormone levels, nor with premenstrual symptoms. Our results indicate that spectroscopically measured GABA concentrations are higher during ovulation in women with a natural menstrual cycle. We suggest that neuroimaging studies should take into account this variability. PMID:25481417

  3. Stress metabolism in green coffee beans (Coffea arabica L.): expression of dehydrins and accumulation of GABA during drying.

    PubMed

    Kramer, Daniela; Breitenstein, Björn; Kleinwächter, Maik; Selmar, Dirk

    2010-04-01

    In order to produce tradeable standard green coffee, processed beans must be dried. The drying procedure affects the abundance of relevant aroma substances, e.g. carbohydrates. Using molecular tools, the corresponding metabolic basis is analyzed. A decrease in water potential of the still living coffee seeds induces massive drought stress responses. As a marker for these stress reactions, accumulation of a general stress metabolite, GABA (gamma-aminobutyric acid), and associated gene expression of drought stress-associated dehydrins were monitored. The results of this study indicate that metabolism in drying coffee beans is quite complex since several events trigger accumulation of GABA. The first peak of GABA accumulation during drying is correlated with expression of isocitrate lyase and thus with ongoing germination processes in coffee seeds. Two subsequent peaks of GABA accumulation correspond to maxima of dehydrin gene expression and are thought to be induced directly by drought stress in the embryo and endosperm tissue, respectively. Apart from the significance for understanding basic seed physiology, metabolic changes in coffee seeds during processing provide valuable information for understanding the role and effect of the steps of green coffee processing on the quality of the resulting coffee. PMID:20208063

  4. gamma-Hydroxybutyrate conversion into GABA induces displacement of GABAB binding that is blocked by valproate and ethosuximide.

    PubMed

    Hechler, V; Ratomponirina, C; Maitre, M

    1997-05-01

    gamma-Hydroxybutyrate (GHB) has been reported to be a ligand for GABAB receptor(s), although with low or very low affinity (IC50 = 150-796 microM). In addition, several reports argue for a role of GHB via GABAB receptors in both in vivo and in vitro electro-physiological experiments. In the present study, we demonstrate that the inhibition of GHB's conversion into GABA by rat brain membranes blocks the ability of GHB to interfere with GABAB binding. In particular, the inhibition of GHB dehydrogenase by valproate or ethosuximide and the blockade of GABA-T by aminooxyacetic acid induce the disappearance of the GABA-like effect of GHB at GABAB, but also at GABAA, receptors. This finding could explain the misinterpretation of in vitro or in vivo experiments where GHB possesses a GABA-like effect. But in addition, it is postulated that the normal metabolism of GHB in brain induces GABAB mechanisms that could be blocked by the administration of valproate or ethosuximide. PMID:9152382

  5. [Influence of GABA(C)-Receptor Antagonist on Formation of Evoked Potentials in Columns of the Rat Somatosensory Cortex].

    PubMed

    Matukhno, A E; Lysenko, L V; Andreeva, Y V; Sukhov, A G

    2015-01-01

    Microelectrode studies of evoked potentials (EP) in neuronal column of rats barrel cortex show activating action of selective GABA(C)-receptor antagonist 1,2,5,6-tetrahydropyridin-4-yl-methylphosphinic acid (TPMPA) mainly on secondary components of EP of supragranular afferent layers of column compared to the efferent infragranular layers. These data suggest localization of GABA(C)-receptors on pre- synaptic terminals of thalamo-cortical glutamatergic afferents and ascending apical dendrites of pyramidal cells. A blockade of GABA(C)-receptors with the selective antagonist TPM PA leads to dose-dependent afferent depolarization with development of presynaptic inhibition and suppression of primary components of EP GABA(C)-receptors blocker produces different effects on secondary components of EP in supragranular layers of the cortex caused by the development of neuronal after hyperpolarization followed by high-amplitude primary response and afterdepolarization followed by low-amplitude primary responses with subsequent activation of different voltage-gated channels and formation of different level of cortical direct current potential gradients. PMID:26841661

  6. Synthesis of novel cognition enhancers with pyrazolo[5,1-c][1,2,4]benzotriazine core acting at γ-aminobutyric acid type A (GABA(A)) receptor.

    PubMed

    Guerrini, Gabriella; Ciciani, Giovanna; Costanzo, Annarella; Daniele, Simona; Martini, Claudia; Ghelardini, Carla; Di Cesare Mannelli, Lorenzo; Ciattini, Samuele

    2013-04-15

    Memory dysfunction associated with aging, neurodegenerative and psychiatric disorders represents an increasing medical need. Advances in research exploring the biological mechanisms underlying learning and memory have opened new potential approaches for development of memory-enhancing therapies addressed to selective neuronal targets. In this work, we synthesized some derivatives with a pyrazolo[5,1-c][1,2,4]benzotriazine core to identify ligands on GABAA receptors subtype (benzodiazepine site on GABAA-receptor) endowed with the potential of enhancing cognition activity without the side effects usually associated with non-selective GABAA modulators. In fact, there is much evidence that GABAA-R (γ-aminobutyric acid, type A receptor) subtype ligands have relevance in learning and memory. In vitro and in vivo tests have been performed. Pharmacological data indicate that compounds 7, 13, 14 and 22 act as dual functional modulators of GABAA-Rs (promnemonic and anxiolytic agents) while only compounds 3 and 10 stand out as selectively displaying good antiamnesic and procognitive activity (1 and 3 mg/kg, respectively). PMID:23490154

  7. Parylene MEMS patency sensor for assessment of hydrocephalus shunt obstruction.

    PubMed

    Kim, Brian J; Jin, Willa; Baldwin, Alexander; Yu, Lawrence; Christian, Eisha; Krieger, Mark D; McComb, J Gordon; Meng, Ellis

    2016-10-01

    Neurosurgical ventricular shunts inserted to treat hydrocephalus experience a cumulative failure rate of 80 % over 12 years; obstruction is responsible for most failures with a majority occurring at the proximal catheter. Current diagnosis of shunt malfunction is imprecise and involves neuroimaging studies and shunt tapping, an invasive measurement of intracranial pressure and shunt patency. These patients often present emergently and a delay in care has dire consequences. A microelectromechanical systems (MEMS) patency sensor was developed to enable direct and quantitative tracking of shunt patency in order to detect proximal shunt occlusion prior to the development of clinical symptoms thereby avoiding delays in treatment. The sensor was fabricated on a flexible polymer substrate to eventually allow integration into a shunt. In this study, the sensor was packaged for use with external ventricular drainage systems for clinical validation. Insights into the transduction mechanism of the sensor were obtained. The impact of electrode size, clinically relevant temperatures and flows, and hydrogen peroxide (H2O2) plasma sterilization on sensor function were evaluated. Sensor performance in the presence of static and dynamic obstruction was demonstrated using 3 different models of obstruction. Electrode size was found to have a minimal effect on sensor performance and increased temperature and flow resulted in a slight decrease in the baseline impedance due to an increase in ionic mobility. However, sensor response did not vary within clinically relevant temperature and flow ranges. H2O2 plasma sterilization also had no effect on sensor performance. This low power and simple format sensor was developed with the intention of future integration into shunts for wireless monitoring of shunt state and more importantly, a more accurate and timely diagnosis of shunt failure. PMID:27589973

  8. Evaluation of improved γ-aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017.

    PubMed

    Shan, Y; Man, C X; Han, X; Li, L; Guo, Y; Deng, Y; Li, T; Zhang, L W; Jiang, Y J

    2015-04-01

    Most γ-aminobutyric acid (GABA)-producing microorganisms are lactic acid bacteria (LAB), but the yield of GABA is limited in most of these GABA-producing strains. In this study, the production of GABA was carried out by using Lactobacillus plantarum NDC75017, a strain screened from traditional fermented dairy products in China. Concentrations of substrate (l-monosodium glutamate, L-MSG) and coenzyme (pyridoxal-5-phosphate, PLP) of glutamate decarboxylase (GAD) and culture temperature were investigated to evaluate their effects on GABA yield of Lb. plantarum NDC75017. The results indicated that GABA production was related to GAD activity and biomass of Lb. plantarum NDC75017. Response surface methodology was used to optimize conditions of GABA production. The optimal factors for GABA production were L-MSG at 80 mM, PLP at 18 μM, and a culture temperature of 36 °C. Under these conditions, production of GABA was maximized at 314.56 mg/100 g. Addition of Lb. plantarum NDC75017 to a commercial starter culture led to higher GABA production in fermented yogurt. Flavor and texture of the prepared yogurt and the control yogurt did not differ significantly. Thus, Lb. plantarum NDC75017 has good potential for manufacture of GABA-enriched fermented milk products. PMID:25622870

  9. Involvement of GABA(A) receptors in myoclonus.

    PubMed

    Matsumoto, R R; Truong, D D; Nguyen, K D; Dang, A T; Hoang, T T; Vo, P Q; Sandroni, P

    2000-01-01

    Alterations in multiple neurochemical systems have been reported in animal and human studies of posthypoxic myoclonus. It is impossible, however, to establish causative relationships between the observed changes and the myoclonic movements from these studies. Therefore, to establish causative links between neurochemical changes and myoclonus, ligands that target neurotransmitter systems that are altered in posthypoxic myoclonus were microinjected into the lateral ventricles of normal rats to identify the changes that can produce myoclonus. Of the ligands that were tested, only the GABA(A) antagonists produced myoclonus after intracerebroventricular administration, suggesting the importance of disinhibition of GABAergic systems in myoclonus. To further examine the role of GABA in myoclonus, GABAergic antagonists were microinjected into the nucleus reticularis of the thalamus (NRT), an area of the brain in which extensive pathologic changes are seen in posthypoxic animals. GABA(A), but not GABA(B), antagonists produced myoclonus after microinjection into the NRT. Earlier investigators have further reported the ability of GABA(A) antagonists to produce myoclonus after microinjection into the caudate. The data therefore suggest that disruption of activity at GABA(A) receptors at any one of a number of levels in the neural axis can produce myoclonus. PMID:10755272

  10. GABA-independent GABAA Receptor Openings Maintain Tonic Currents

    PubMed Central

    Wlodarczyk, Agnieszka I.; Sylantyev, Sergiy; Herd, Murray B.; Kersanté, Flavie; Lambert, Jeremy J.; Rusakov, Dmitri A.; Linthorst, Astrid C.E.; Semyanov, Alexey; Belelli, Delia; Pavlov, Ivan; Walker, Matthew C.

    2013-01-01

    Activation of GABAA receptors (GABAARs) produces two forms of inhibition: ‘phasic’ inhibition generated by the rapid, transient activation of synaptic GABAARs by presynaptic GABA release, and tonic inhibition generated by the persistent activation of peri- or extrasynaptic GABAARs which can detect extracellular GABA. Such tonic GABAAR-mediated currents are particularly evident in dentate granule cells in which they play a major role in regulating cell excitability. Here we show that in rat dentate granule cells in ex-vivo hippocampal slices, tonic currents are predominantly generated by GABA-independent GABAA receptor openings. This tonic GABAAR conductance is resistant to the competitive GABAAR antagonist SR95531, which at high concentrations acts as a partial agonist, but can be blocked by an open channel blocker picrotoxin. When slices are perfused with 200 nM GABA, a concentration that is comparable to cerebrospinal fluid concentrations but is twice that measured by us in the hippocampus in vivo using zero-net-flux microdialysis, negligible GABA is detected by dentate granule cells. Spontaneously opening GABAARs, therefore, maintain dentate granule cell tonic currents in the face of low extracellular GABA concentrations. PMID:23447601

  11. Control of cortical neuronal migration by glutamate and GABA.

    PubMed

    Luhmann, Heiko J; Fukuda, A; Kilb, W

    2015-01-01

    Neuronal migration in the cortex is controlled by the paracrine action of the classical neurotransmitters glutamate and GABA. Glutamate controls radial migration of pyramidal neurons by acting primarily on NMDA receptors and regulates tangential migration of inhibitory interneurons by activating non-NMDA and NMDA receptors. GABA, acting on ionotropic GABAA-rho and GABAA receptors, has a dichotomic action on radially migrating neurons by acting as a GO signal in lower layers and as a STOP signal in upper cortical plate (CP), respectively. Metabotropic GABAB receptors promote radial migration into the CP and tangential migration of interneurons. Besides GABA, the endogenous GABAergic agonist taurine is a relevant agonist controlling radial migration. To a smaller extent glycine receptor activation can also influence radial and tangential migration. Activation of glutamate and GABA receptors causes increases in intracellular Ca(2+) transients, which promote neuronal migration by acting on the cytoskeleton. Pharmacological or genetic manipulation of glutamate or GABA receptors during early corticogenesis induce heterotopic cell clusters in upper layers and loss of cortical lamination, i.e., neuronal migration disorders which can be associated with neurological or neuropsychiatric diseases. The pivotal role of NMDA and ionotropic GABA receptors in cortical neuronal migration is of major clinical relevance, since a number of drugs acting on these receptors (e.g., anti-epileptics, anesthetics, alcohol) may disturb the normal migration pattern when present during early corticogenesis. PMID:25688185

  12. Control of cortical neuronal migration by glutamate and GABA

    PubMed Central

    Luhmann, Heiko J.; Fukuda, A.; Kilb, W.

    2015-01-01

    Neuronal migration in the cortex is controlled by the paracrine action of the classical neurotransmitters glutamate and GABA. Glutamate controls radial migration of pyramidal neurons by acting primarily on NMDA receptors and regulates tangential migration of inhibitory interneurons by activating non-NMDA and NMDA receptors. GABA, acting on ionotropic GABAA-rho and GABAA receptors, has a dichotomic action on radially migrating neurons by acting as a GO signal in lower layers and as a STOP signal in upper cortical plate (CP), respectively. Metabotropic GABAB receptors promote radial migration into the CP and tangential migration of interneurons. Besides GABA, the endogenous GABAergic agonist taurine is a relevant agonist controlling radial migration. To a smaller extent glycine receptor activation can also influence radial and tangential migration. Activation of glutamate and GABA receptors causes increases in intracellular Ca2+ transients, which promote neuronal migration by acting on the cytoskeleton. Pharmacological or genetic manipulation of glutamate or GABA receptors during early corticogenesis induce heterotopic cell clusters in upper layers and loss of cortical lamination, i.e., neuronal migration disorders which can be associated with neurological or neuropsychiatric diseases. The pivotal role of NMDA and ionotropic GABA receptors in cortical neuronal migration is of major clinical relevance, since a number of drugs acting on these receptors (e.g., anti-epileptics, anesthetics, alcohol) may disturb the normal migration pattern when present during early corticogenesis. PMID:25688185

  13. GAB(A) receptors present higher affinity and modified subunit composition in spinal motor neurons from a genetic model of amyotrophic lateral sclerosis.

    PubMed

    Carunchio, Irene; Mollinari, Cristiana; Pieri, Massimo; Merlo, Daniela; Zona, Cristina

    2008-10-01

    Amyotrophic lateral sclerosis is a neurodegenerative disease characterized by the selective degeneration of motor neurons in the spinal cord, brainstem and cerebral cortex. In this study we have analysed the electrophysiological properties of GABA(A) receptors and GABA(A) alpha1 and alpha2 subunits expression in spinal motor neurons in culture obtained from a genetic model of ALS (G93A) and compared with transgenic wild type SOD1 (SOD1) and their corresponding non transgenic litter mates (Control). Although excitotoxic motor neuron death has been extensively studied in relation to Ca(2+)-dependent processes, strong evidence indicates that excitotoxic cell death is also remarkably dependent on Cl(-) ions and on GABA(A) receptor activation. In this study we have analysed the electrophysiological properties of GABA(A) receptors and the expression of GABA(A)alpha(1) and alpha(2) subunits in cultured motor neurons obtained from a genetic model of amyotrophic lateral sclerosis (G93A) and compared them with transgenic wild-type Cu,Zn superoxide dismutase and their corresponding non-transgenic littermates (Control). In all tested motor neurons, the application of gamma-aminobutyric acid (GABA) (0.5-100 mum) evoked an inward current that was reversibly blocked by bicuculline (100 mum), thus indicating that it was mediated by the activation of GABA(A) receptors. Our results indicate that the current density at high GABA concentrations is similar in control, Cu,Zn superoxide dismutase and G93A motor neurons. However, the dose-response curve significantly shifted toward lower concentration values in G93A motor neurons and the extent of desensitization also increased in these neurons. Finally, multiplex single-cell real-time polymerase chain reaction and immunofluorescence revealed that the amount of GABA(A)alpha(1) subunit was significantly increased in G93A motor neurons, whereas the levels of alpha(2) subunit were unchanged. These data show that the functionality and

  14. Modulation of radioligand binding to the GABA(A)-benzodiazepine receptor complex by a new component from Cyperus rotundus.

    PubMed

    Ha, Jeoung-Hee; Lee, Kwang-Youn; Choi, Hyoung-Chul; Cho, Jungsook; Kang, Byung-Soo; Lim, Jae-Chul; Lee, Dong-Ung

    2002-01-01

    Four sesquiterpenes, beta-selinene, isocurcumenol, nootkatone and aristolone and one triterpene, oleanolic acid were isolated from the ethylacetate fraction of the rhizomes of Cyperus rotundus and tested for their ability to modulate gamma-aminobutyric acid (GABA(A))-benzodiazepine receptor function by radioligand binding assays using rat cerebrocortical membranes. Among these compounds, only isocurcumenol, one of the newly identified constituents of this plant, was found to inhibit [3H]Ro15-1788 binding and enhance [3H]flunitrazepam binding in the presence of GABA. These results suggest that isocurcumenol may serve as a benzodiazepine receptor agonist and allosterically modulate GABAergic neurotransmission via enhancement of endogenous receptor ligand binding. PMID:11824542

  15. Molecular aspects of age-related cognitive decline: the role of GABA signaling

    PubMed Central

    McQuail, Joseph A.; Frazier, Charles J.; Bizon, Jennifer L.

    2015-01-01

    Alterations in inhibitory interneurons contribute to cognitive deficits associated with several psychiatric and neurological diseases. Phasic and tonic inhibition imparted by γ-amino-butyric acid (GABA) receptors regulates neural activity and helps to establish the appropriate network dynamics in cortical circuits that support normal cognition. This review highlights basic science demonstrating that inhibitory signaling is altered in aging, and discusses the impact of age-related shifts in inhibition on different forms of memory function, including hippocampus-dependent spatial reference memory and prefrontal cortex (PFU)-dependent working memory. The clinical appropriateness and tractability of select therapeutic candidates for cognitive aging that target receptors mediating inhibition are also discussed. PMID:26070271

  16. Actions of picrodendrin antagonists on dieldrin-sensitive and -resistant Drosophila GABA receptors.

    PubMed Central

    Hosie, A. M.; Ozoe, Y.; Koike, K.; Ohmoto, T.; Nikaido, T.; Sattelle, D. B.

    1996-01-01

    1. A series of terpenoid compounds, recently isolated from Picrodendron baccatum, share a picrotoxane skeleton with picrotoxinin, an antagonist of ionotropic GABA receptors. Referred to as picrodendrins, they inhibit the binding of [35S]-tert-butylbicyclophosphorothionate (TBPS) to rat GABAA receptors. Hitherto, their effects on GABA receptors have not been investigated electrophysiologically. Under two-electrode voltage-clamp, the actions of picrodendrins and related terpenoids have been assayed on homooligomeric GABA receptors formed by the expression of a Drosophila GABA receptor subunit (RDLac) in Xenopus oocytes. 2. All the terpenoids tested, dose-dependently antagonized currents induced by 30 microM (EC50) GABA. 3. Tutin and its analogues (dihydrotutin and isohyenanchin) differ in the structure of their axial C4 substituents. Of these compounds, tutin, which bears an isopropenyl group at this carbon atom, was the most potent antagonist of RDLac homo-oligomers, whereas isohyenanchin, which bears a hydroxyisopropyl group, was the least potent antagonist tested. 4. Picrodendrins differ mainly in the structure of their C9 substituents. The IC50s of picrodendrins ranged from 17 +/- 1.3 nM (picrodendrin-Q) to 1006 +/- 1.3 nM (picrodendrin-O). As such, the most potent picrodendrins (Q, A and B) were approximately equipotent with picrotoxinin as antagonists of RDLac homo-oligomers. 5. Certain picrodendrin compounds effected a use-dependent blockade of RDLac homo-oligomers. Such a biphasic block was not observed with tutin analogues. 6. Picrotoxin-resistant RDLacA3025 homo-oligomers, which have a single amino acid substitution (A302S) in the 2nd transmembrane region, were markedly less sensitive to picrodendrin-O than the wild-type, dieldrin-sensitive, homo-oligomers. 7. The relative potency of tutin analogues demonstrates that the structure-activity relationship of the C4 substituent of picrotoxane-based compounds is conserved in vertebrates and insects. However, the

  17. A pharmacological characterization of GABA, THIP and DS2 at binary α4β3 and β3δ receptors: GABA activates β3δ receptors via the β3(+)δ(-) interface.

    PubMed

    Lee, H J; Absalom, N L; Hanrahan, J R; van Nieuwenhuijzen, P; Ahring, P K; Chebib, M

    2016-08-01

    There is growing evidence that GABA (γ-aminobutyric acid) can activate GABAA receptors (GABAARs) in the absence of an α subunit. In this study, we compared the pharmacology of homomeric and binary α4, β3 or δ subunits with ternary α4β3δ to identify subunit interfaces that contribute to the pharmacology of GABA, THIP, and DS2, and the antagonists, Zn(2+), gabazine and bicuculline. β3δ receptors form functional GABA-gated channels when expressed in Xenopus oocytes with a pharmacology that differs to homomeric β3, binary α4β3 and ternary α4β3δ receptors. GABA had similar potency at α4β3 and β3δ receptors (25µM and 26µM, respectively) but differed at α4β3δ receptors where GABA exhibited a biphasic concentration-response (EC50 (1)=12.6nM; EC50 (2)=6.3μM). THIP activated β3δ receptors (EC50=456μM) but was a more potent activator of α4β3 (EC50=27μM) and α4β3δ receptors (EC50 (1)=27.5nM; EC50 (2)=29.5μΜ), indicating that the α4 subunit significantly contribute to its potency. The δ-preferring modulator, DS2 had marginal or no effect at β3δ and α4β3 receptors, indicating a role for both the α4 and δ subunits for its potency. Gabazine inhibited GABA-elicited currents at β3δ receptors whereas bicuculline activated these receptors. Mutational analysis verified that GABA binds to the β3(+)δ(-) interface formed by the β3 and δ subunits. In conclusion, evaluating agents against binary GABAARs such as β3δ and α4β3 receptors enables identification of interfaces that may contribute to the pharmacology of the more complex ternary α4β3δ receptors. PMID:27181518

  18. Portosystemic Shunt Surgery in Patients with Idiopathic Noncirrhotic Portal Hypertension.

    PubMed

    Karagul, Servet; Yagci, Mehmet Ali; Tardu, Ali; Ertugrul, Ismail; Kirmizi, Serdar; Sumer, Fatih; Isik, Burak; Kayaalp, Cuneyt; Yilmaz, Sezai

    2016-01-01

    BACKGROUND Idiopathic noncirrhotic portal hypertension (INCPH) is a rare disease characterized by increased portal venous pressure in the absence of cirrhosis and other causes of liver diseases. The aim of the present study was to present our results in using portosystemic shunt surgery in patients with INCPH. MATERIAL AND METHODS Patients who had been referred to our Liver Transplantation Institute for liver transplantation and who had undergone surgery from January 2010 to December 2015 were retrospectively analyzed. Patients with INCPH who had undergone portosystemic shunt procedure were included in the study. Age, sex, symptoms and findings, type of portosystemic shunt, and postoperative complications were assessed. RESULTS A total of 1307 patients underwent liver transplantation from January 2010 to December 2015. Eleven patients with INCPH who did not require liver transplantation were successfully operated on with a portosystemic shunt procedure. The mean follow-up was 30.1±19 months (range 7-69 months). There was no mortality in the perioperative period or during the follow-up. Two patients underwent surgery again due to intra-abdominal hemorrhage; one had bleeding from the surgical site except the portacaval anastomosis and the other had bleeding from the h-graft anastomosis. No patient developed encephalopathy and no patient presented with esophageal variceal bleeding after portosystemic shunt surgery. Shunt thrombosis occurred in 1 patient (9.9%). Only 1 patient developed ascites, which was controlled medically. CONCLUSIONS Portosystemic shunt surgery is a safe and effective procedure for the treatment of patients with INCPH. PMID:27194018

  19. Current status of transjugular intrahepatic portosystemic shunts.

    PubMed Central

    Patel, N. H.; Chalasani, N.; Jindal, R. M.

    1998-01-01

    The use of the transjugular intrahepatic portosystemic shunt (TIPS) has emerged as an important nonoperative modality for variceal bleeding, intractable ascites, and for selected cases of hepatic venous obstruction. We believe that TIPS should be viewed as a 'bridge' to liver transplantation and should be carried out only in experienced centres. The adverse haemodynamic changes on the cardiopulmonary system after TIPS should be borne in mind. Prospective trials to evaluate the role of TIPS versus sclerotherapy in variceal bleeding will be watched with interest. There is, however, an urgent need to improve long-term results of TIPS as stent thrombosis and stenosis occur frequently. We advocate routine surveillance to detect these problems at an early stage. PMID:10320885

  20. Muzzle shunt augmentation of conventional railguns

    SciTech Connect

    Parker, J.V. . Physics Div.)

    1991-01-01

    This paper reports on augmentation which is a technique for reducing the armature current and hence the armature power dissipation in a plasma armature railgun. In spite of the advantages, no large augmented railguns have been built, primarily due to the mechanical and electrical complexity introduced by the extra conductors required. it is possible to achieve some of the benefits of augmentation in a conventional railgun by diverting a fraction {phi} of the input current through a shunt path at the muzzle of the railgun. In particular, the relation between force and armature current is the same as that obtained in an n-turn, series-connected augmented railgun with n = 1/(1 {minus} {phi}). The price of this simplification is a reduction in electrical efficiency and some additional complexity in the external electrical system.

  1. GABA Receptors Genes Polymorphisms and Alcohol Dependence: No Evidence of an Association in an Italian Male Population

    PubMed Central

    Tucci, Marianna; Di Pietra, Laura; Ferrara, Santo Davide

    2014-01-01

    Objective The genes encoding for gamma-aminobutyric acid (GABA) A and B receptors may be considered as candidates for alcoholism; genetic alterations at this level may produce structural and functional diversity and thus play a role in the response to alcohol addiction treatment. To investigate these aspects further, we conducted a preliminary genetic association study on a population of Italian male alcohol addicts, focusing on GABA A and B receptors. Methods A total of 186 alcohol-dependent subjects (in the first phase 139, then 47 more samples) and 182 controls were genotyped for 25 single nucleotide polymorphisms (SNPs) of genes encoding the alpha-1 subunit of GABA A receptor (GABRA1) and subunits 1 and 2 of GABA B receptor (GABBR1 and GABBR2). The chi-squared test for allele and genotype distributions and Hardy-Weinberg equilibrium analysis of both subjects and controls were performed. Bonferroni's correction for multiple comparisons was applied. Results Preliminary results comparing 139 alcohol-dependent subjects and 182 controls showed differences in genotype distribution in the former for SNP rs29253, located in the intron region of the GABBR1 gene. In order to clarify the meaning of this association, 47 more samples from alcohol-dependent subjects were tested for this SNP only: the previously found association was not confirmed. Conclusion The lack of significant differences between the two groups does not provide evidence that GABRA 1 and GABBR1 and 2 genes are candidates for alcoholism in this population. Further studies with larger samples are needed, together with investigation of other components of the GABA pathway. PMID:25191505

  2. Elevated prefrontal cortex GABA in patients with major depressive disorder after TMS treatment measured with proton magnetic resonance spectroscopy

    PubMed Central

    Dubin, Marc J.; Mao, Xiangling; Banerjee, Samprit; Goodman, Zachary; Lapidus, Kyle A.B.; Kang, Guoxin; Liston, Conor; Shungu, Dikoma C.

    2016-01-01

    Background GABAergic and glutamatergic neurotransmitter systems are central to the pathophysiology of depression and are potential targets of repetitive transcranial magnetic stimulation (rTMS). We assessed the effect of 10-Hz rTMS over the left dorsolateral prefrontal cortex (DLPFC) of patients with major depressive disorder on the levels of medial prefrontal cortex (MPFC) γ-aminobutyric acid (GABA) and the combined resonance of glutamate and glutamine (Glx) as assessed in vivo with proton magnetic resonance spectroscopy (1H MRS). Methods Currently depressed individuals between the ages of 23 and 68 years participated in a 5-week naturalistic, open-label treatment study of rTMS, with 1H MRS measurements of MPFC GABA and Glx levels at baseline and following 5 weeks of the rTMS intervention. We applied rTMS pulses over the left DLPFC at 10 Hz and 80%–120% of motor threshold for 25 daily sessions, with each session consisting of 3000 pulses. We assessed therapeutic response using the 24-item Hamilton Rating Scale for Depression (HAMD24). The GABA and Glx levels are expressed as ratios of peak areas relative to the area of the synchronously acquired and similarly fitted unsuppressed voxel water signal (W). Results Twenty-three currently depressed individuals (7 men) participated in the study. GABA/W in the MPFC increased 13.8% (p = 0.013) in all depressed individuals. There were no significant effects of rTMS on Glx/W. GABA/W and Glx/W were highly correlated in severely depressed patients at baseline but not after TMS. Limitations The primary study limitations are the open-label design and the inclusion of participants currently taking stable regimens of antidepressant medications. Conclusion These results implicate GABAergic and glutamatergic systems in the mechanism of action of rTMS for major depression, warranting further investigation in larger samples. PMID:26900793

  3. Insights into the binding of GABA to the insect RDL receptor from atomistic simulations: a comparison of models.

    PubMed

    Comitani, Federico; Cohen, Netta; Ashby, Jamie; Botten, Dominic; Lummis, Sarah C R; Molteni, Carla

    2014-01-01

    The resistance to dieldrin (RDL) receptor is an insect pentameric ligand-gated ion channel (pLGIC). It is activated by the neurotransmitter γ-aminobutyric acid (GABA) binding to its extracellular domain; hence elucidating the atomistic details of this interaction is important for understanding how the RDL receptor functions. As no high resolution structures are currently available, we built homology models of the extracellular domain of the RDL receptor using different templates, including the widely used acetylcholine binding protein and two pLGICs, the Erwinia Chrysanthemi ligand-gated ion channel (ELIC) and the more recently resolved GluCl. We then docked GABA into the selected three dimensional structures, which we used as starting points for classical molecular dynamics simulations. This allowed us to analyze in detail the behavior of GABA in the binding sites, including the hydrogen bond and cation-π interaction networks it formed, the conformers it visited and the possible role of water molecules in mediating the interactions; we also estimated the binding free energies. The models were all stable and showed common features, including interactions consistent with experimental data and similar to other pLGICs; differences could be attributed to the quality of the models, which increases with increasing sequence identity, and the use of a pLGIC template. We supplemented the molecular dynamics information with metadynamics, a rare event method, by exploring the free energy landscape of GABA binding to the RDL receptor. Overall, we show that the GluCl template provided the best models. GABA forming direct salt-bridges with Arg211 and Glu204, and cation-π interactions with an aromatic cage including Tyr109, Phe206 and Tyr254, represents a favorable binding arrangement, and the interaction with Glu204 can also be mediated by a water molecule. PMID:24442887

  4. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve.

    PubMed

    Bravo, Javier A; Forsythe, Paul; Chew, Marianne V; Escaravage, Emily; Savignac, Hélène M; Dinan, Timothy G; Bienenstock, John; Cryan, John F

    2011-09-20

    There is increasing, but largely indirect, evidence pointing to an effect of commensal gut microbiota on the central nervous system (CNS). However, it is unknown whether lactic acid bacteria such as Lactobacillus rhamnosus could have a direct effect on neurotransmitter receptors in the CNS in normal, healthy animals. GABA is the main CNS inhibitory neurotransmitter and is significantly involved in regulating many physiological and psychological processes. Alterations in central GABA receptor expression are implicated in the pathogenesis of anxiety and depression, which are highly comorbid with functional bowel disorders. In this work, we show that chronic treatment with L. rhamnosus (JB-1) induced region-dependent alterations in GABA(B1b) mRNA in the brain with increases in cortical regions (cingulate and prelimbic) and concomitant reductions in expression in the hippocampus, amygdala, and locus coeruleus, in comparison with control-fed mice. In addition, L. rhamnosus (JB-1) reduced GABA(Aα2) mRNA expression in the prefrontal cortex and amygdala, but increased GABA(Aα2) in the hippocampus. Importantly, L. rhamnosus (JB-1) reduced stress-induced corticosterone and anxiety- and depression-related behavior. Moreover, the neurochemical and behavioral effects were not found in vagotomized mice, identifying the vagus as a major modulatory constitutive communication pathway between the bacteria exposed to the gut and the brain. Together, these findings highlight the important role of bacteria in the bidirectional communication of the gut-brain axis and suggest that certain organisms may prove to be useful therapeutic adjuncts in stress-related disorders such as anxiety and depression. PMID:21876150

  5. Chronic anabolic-androgenic steroid treatment affects brain GABA(A) receptor-gated chloride ion transport.

    PubMed

    Bitran, D; Hilvers, R J; Frye, C A; Erskine, M S

    1996-01-01

    Previous research in this laboratory has shown that chronic treatment of adult male rats with an anabolic-androgenic steroid (AAS) produced anxiolytic behavior and increased the functional response of cortical gamma-aminobutyric acid(A) (GABA(A)) receptors. The experiments reported here were aimed at further characterizing the effect of chronic AAS exposure on cerebral cortical GABA(A) receptors. Adult male rats were injected with dianabol (1,4-androstadien-17alpha-methyl-17beta-ol-3-one; 10 mg/kg/day, SC) for 4 weeks. A significant decrease in ventral prostate gland weight was found after 2 weeks of dianabol, and returned to control levels 3 and 10 days after steroid discontinuation. Testicular weights decreased throughout the treatment period but reached statistical significance only during the withdrawal period. Serum 3alpha-androstanediol level was marginally increased afer 2 weeks of dianabol injection, and was significantly decreased at 3 and 10 days after withdrawal. GABA-stimulated 36chloride (Cl-) influx in cortical synaptoneurosomes was increased in animals treated with dianabol for 2 and 4 weeks, and remained elevated 3 days after dianabol withdrawal, returning to control levels at withdrawal day 10. The increase in receptor efficacy was associated with a transient increase in receptor sensitivity (inverse of EC50), apparent after 2 weeks of AAS treatment and at withdrawal day 3. In a follow-up experiment, metabolites of dianabol were tested for the in vitro efficacy in potentiating GABA-stimulated Cl- transport. Only 3alpha-androstanedial and androsterone were found to have potent stimulatory effects. The 3beta-reduced metabolites were inactive, as were metabolites that contained a methyl group at the 17alpha position. These results point to significant facilitative effects of dianabol treatment on brain GABA(A) receptors via the metabolic formation of neuroactive steroids. PMID:8632710

  6. Accuracy and stability of measuring GABA, glutamate, and glutamine by proton magnetic resonance spectroscopy: A phantom study at 4 Tesla

    NASA Astrophysics Data System (ADS)

    Henry, Michael E.; Lauriat, Tara L.; Shanahan, Meghan; Renshaw, Perry F.; Jensen, J. Eric

    2011-02-01

    Proton magnetic resonance spectroscopy has the potential to provide valuable information about alterations in gamma-aminobutyric acid (GABA), glutamate (Glu), and glutamine (Gln) in psychiatric and neurological disorders. In order to use this technique effectively, it is important to establish the accuracy and reproducibility of the methodology. In this study, phantoms with known metabolite concentrations were used to compare the accuracy of 2D J-resolved MRS, single-echo 30 ms PRESS, and GABA-edited MEGA-PRESS for measuring all three aforementioned neurochemicals simultaneously. The phantoms included metabolite concentrations above and below the physiological range and scans were performed at baseline, 1 week, and 1 month time-points. For GABA measurement, MEGA-PRESS proved optimal with a measured-to-target correlation of R2 = 0.999, with J-resolved providing R2 = 0.973 for GABA. All three methods proved effective in measuring Glu with R2 = 0.987 (30 ms PRESS), R2 = 0.996 (J-resolved) and R2 = 0.910 (MEGA-PRESS). J-resolved and MEGA-PRESS yielded good results for Gln measures with respective R2 = 0.855 (J-resolved) and R2 = 0.815 (MEGA-PRESS). The 30 ms PRESS method proved ineffective in measuring GABA and Gln. When measurement stability at in vivo concentration was assessed as a function of varying spectral quality, J-resolved proved the most stable and immune to signal-to-noise and linewidth fluctuation compared to MEGA-PRESS and 30 ms PRESS.

  7. Human locus coeruleus neurons express the GABA(A) receptor gamma2 subunit gene and produce benzodiazepine binding.

    PubMed

    Hellsten, Kati S; Sinkkonen, Saku T; Hyde, Thomas M; Kleinman, Joel E; Särkioja, Terttu; Maksimow, Anu; Uusi-Oukari, Mikko; Korpi, Esa R

    2010-06-21

    Noradrenergic neurons of the locus coeruleus project throughout the cerebral cortex and multiple subcortical structures. Alterations in the locus coeruleus firing are associated with vigilance states and with fear and anxiety disorders. Brain ionotropic type A receptors for gamma-aminobutyric acid (GABA) serve as targets for anxiolytic and sedative drugs, and play an essential regulatory role in the locus coeruleus. GABA(A) receptors are composed of a variable array of subunits forming heteropentameric chloride channels with different pharmacological properties. The gamma2 subunit is essential for the formation of the binding site for benzodiazepines, allosteric modulators of GABA(A) receptors that are clinically often used as sedatives/hypnotics and anxiolytics. There are contradictory reports in regard to the gamma2 subunit's expression and participation in the functional GABA(A) receptors in the mammalian locus coeruleus. We report here that the gamma2 subunit is transcribed and participates in the assembly of functional GABA(A) receptors in the tyrosine hydroxylase-positive neuromelanin-containing neurons within postmortem human locus coeruleus as demonstrated by in situ hybridization with specific gamma2 subunit oligonucleotides and autoradiographic assay for flumazenil-sensitive [(3)H]Ro 15-4513 binding to benzodiazepine sites. These sites were also sensitive to the alpha1 subunit-preferring agonist zolpidem. Our data suggest a species difference in the expression profiles of the alpha1 and gamma2 subunits in the locus coeruleus, with the sedation-related benzodiazepine sites being more important in man than rodents. This may explain the repeated failures in the transition of novel drugs with a promising neuropharmacological profile in rodents to human clinical usage, due to intolerable sedative effects. PMID:20417252

  8. Brain GABA levels across psychiatric disorders: A systematic literature review and meta-analysis of (1) H-MRS studies.

    PubMed

    Schür, Remmelt R; Draisma, Luc W R; Wijnen, Jannie P; Boks, Marco P; Koevoets, Martijn G J C; Joëls, Marian; Klomp, Dennis W; Kahn, René S; Vinkers, Christiaan H

    2016-09-01

    The inhibitory gamma-aminobutyric acid (GABA) system is involved in the etiology of most psychiatric disorders, including schizophrenia, autism spectrum disorder (ASD) and major depressive disorder (MDD). It is therefore not surprising that proton magnetic resonance spectroscopy ((1) H-MRS) is increasingly used to investigate in vivo brain GABA levels. However, integration of the evidence for altered in vivo GABA levels across psychiatric disorders is lacking. We therefore systematically searched the clinical (1) H-MRS literature and performed a meta-analysis. A total of 40 studies (N = 1,591) in seven different psychiatric disorders were included in the meta-analysis: MDD (N = 437), schizophrenia (N = 517), ASD (N = 150), bipolar disorder (N = 129), panic disorder (N = 81), posttraumatic stress disorder (PTSD) (N = 104), and attention deficit/hyperactivity disorder (ADHD) (N = 173). Brain GABA levels were lower in ASD (standardized mean difference [SMD] = -0.74, P = 0.001) and in depressed MDD patients (SMD = -0.52, P = 0.005), but not in remitted MDD patients (SMD = -0.24, P = 0.310) compared with controls. In schizophrenia this finding did not reach statistical significance (SMD = -0.23, P = 0.089). No significant differences in GABA levels were found in bipolar disorder, panic disorder, PTSD, and ADHD compared with controls. In conclusion, this meta-analysis provided evidence for lower brain GABA levels in ASD and in depressed (but not remitted) MDD patients compared with healthy controls. Findings in schizophrenia were more equivocal. Even though future (1) H-MRS studies could greatly benefit from a longitudinal design and consensus on the preferred analytical approach, it is apparent that (1) H-MRS studies have great potential in advancing our understanding of the role of the GABA system in the pathogenesis of psychiatric disorders. Hum Brain Mapp 37:3337-3352, 2016. © 2016 Wiley Periodicals

  9. Ultrasound-Guided Retrieval and Position Replacement of a Dislodged Fetal Pleuro-Amniotic Shunt: A Novel Approach for a Known Complication of Feto-Amniotic Shunting.

    PubMed

    Adams, Tracy M; Kunzier, Nadia B; Chavez, Martin R; Vintzileos, Anthony M

    2016-01-01

    Untreated fetal pleural effusion can cause significant perinatal morbidity and mortality. Treatment of pleural effusions with pleuro-amniotic shunting has been shown to improve outcomes. Pleuro-amniotic shunting is associated with complications including ruptured membranes, preterm labor and shunt dislodgement into either the amniotic cavity or the fetal thorax. Shunt dislodgement into the thoracic cavity can cause prenatal complications from the shunt itself or may necessitate neonatal surgery for removal. We present a case where a novel ultrasound-guided technique was used to replace the dislodged pleural shunt in utero, thereby effectively draining the effusion while simultaneously obviating the need for neonatal surgery and decreasing possible perinatal complications. PMID:25660293

  10. GABA receptors, alcohol dependence and criminal behavior.

    PubMed

    Terranova, Claudio; Tucci, Marianna; Sartore, Daniela; Cavarzeran, Fabiano; Di Pietra, Laura; Barzon, Luisa; Palù, Giorgio; Ferrara, Santo D

    2013-09-01

    The aim of this study was to analyze the connection between alcohol dependence and criminal behavior by an integrated genetic-environmental approach. The research, structured as a case-control study, examined 186 alcohol-dependent males; group 1 (N = 47 convicted subjects) was compared with group 2 (N = 139 no previous criminal records). Genetic results were innovative, highlighting differences in genotype distribution (p = 0.0067) in group 1 for single-nucleotide polymorphism rs 3780428, located in the intronic region of subunit 2 of the GABA B receptor gene (GABBR2). Some environmental factors (e.g., grade repetition) were associated with criminal behavior; others (e.g., attendance at Alcoholics Anonymous) were inversely related to convictions. The concomitant presence of the genetic and environmental factors found to be associated with the condition of alcohol-dependent inmate showed a 4-fold increase in the risk of antisocial behavior. The results need to be replicated on a larger population to develop new preventive and therapeutic proposals. PMID:23822588

  11. Altered GABA Signaling in Early Life Epilepsies

    PubMed Central

    Briggs, Stephen W.; Galanopoulou, Aristea S.

    2011-01-01

    The incidence of seizures is particularly high in the early ages of life. The immaturity of inhibitory systems, such as GABA, during normal brain development and its further dysregulation under pathological conditions that predispose to seizures have been speculated to play a major role in facilitating seizures. Seizures can further impair or disrupt GABAA signaling by reshuffling the subunit composition of its receptors or causing aberrant reappearance of depolarizing or hyperpolarizing GABAA receptor currents. Such effects may not result in epileptogenesis as frequently as they do in adults. Given the central role of GABAA signaling in brain function and development, perturbation of its physiological role may interfere with neuronal morphology, differentiation, and connectivity, manifesting as cognitive or neurodevelopmental deficits. The current GABAergic antiepileptic drugs, while often effective for adults, are not always capable of stopping seizures and preventing their sequelae in neonates. Recent studies have explored the therapeutic potential of chloride cotransporter inhibitors, such as bumetanide, as adjunctive therapies of neonatal seizures. However, more needs to be known so as to develop therapies capable of stopping seizures while preserving the age- and sex-appropriate development of the brain. PMID:21826277

  12. 49 CFR 236.309 - Loss of shunt protection; where required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Loss of shunt protection; where required. 236.309... Standards § 236.309 Loss of shunt protection; where required. (a) A loss of shunt of 5 seconds or less shall not permit an established route to be changed at an automatic interlocking. (b) A loss of shunt of...

  13. Nuclear Medicine to Evaluate Complications of Cerebral Shunts: Two Cases and Review of Literature

    PubMed Central

    Vettiyil, Beth; Bessette, Sabrina; McQuiston, Samuel; Greiner, Francis

    2015-01-01

    We present two cases of cerebral shunts - a ventriculopleural shunt and a ventriculoperitoneal shunt, with their associated complications. We also hope to provide a comprehensive literature review on various imaging modalities, including nuclear medicine studies in evaluating cerebral shunt complications. PMID:26420995

  14. Ion beam sputter-etched ventricular catheter for hydrocephalus shunt

    NASA Technical Reports Server (NTRS)

    Banks, B. A. (Inventor)

    1983-01-01

    A cerebrospinal fluid shunt in the form of a ventricular catheter for controlling the condition of hydrocephalus by relieving the excessive cerebrospinal fluid pressure is described. A method for fabrication of the catheter and shunting the cerebral fluid from the cerebral ventricles to other areas of the body is also considered. Shunt flow failure occurs if the ventricle collapse due to improper valve function causing overdrainage. The ventricular catheter comprises a multiplicity of inlet microtubules. Each microtubule has both a large openings at its inlet end and a multiplicity of microscopic openings along its lateral surfaces.

  15. Cerebral radioprotection by pentobarbital: Dose-response characteristics and association with GABA agonist activity

    SciTech Connect

    Olson, J.J.; Friedman, R.; Orr, K.; Delaney, T.; Oldfield, E.H. )

    1990-05-01

    Pentobarbital reduces cerebral radiation toxicity; however, the mechanism of this phenomenon remains unknown. As an anesthetic and depressant of cerebral metabolism, pentobarbital induces its effects on the central nervous system by stimulating the binding of gamma-aminobutyric acid (GABA) to its receptor and by inhibiting postsynaptic excitatory amino acid activity. The purpose of this study is to investigate the role of these actions as well as other aspects of the radioprotective activity of pentobarbital. Fischer 344 rats were separated into multiple groups and underwent two dose-response evaluations. In one set of experiments to examine the relationship of radioprotection to pentobarbital dose, a range of pentobarbital doses (0 to 75 mg/kg) were given intraperitoneally prior to a constant-level radiation dose (70 Gy). In a second series of experiments to determine the dose-response relationship of radiation protection to radiation dose, a range of radiation doses (10 to 90 Gy) were given with a single pentobarbital dose. Further groups of animals were used to evaluate the importance of the timing of pentobarbital administration, the function of the (+) and (-) isomers of pentobarbital, and the role of an alternative GABA agonist (diazepam). In addition, the potential protective effects of alternative methods of anesthesia (ketamine) and induction of cerebral hypometabolism (hypothermia) were examined. Enhancement of survival time from acute radiation injury due to high-dose single-fraction whole-brain irradiation was maximal with 60 mg/kg of pentobarbital, and occurred over the range of all doses examined between 30 to 90 Gy. Protection was seen only in animals that received the pentobarbital before irradiation. Administration of other compounds that enhance GABA binding (Saffan and diazepam) also significantly enhanced survival time.

  16. Design and mechanism of tetrahydrothiophene-based γ-aminobutyric acid aminotransferase inactivators.

    PubMed

    Le, Hoang V; Hawker, Dustin D; Wu, Rui; Doud, Emma; Widom, Julia; Sanishvili, Ruslan; Liu, Dali; Kelleher, Neil L; Silverman, Richard B

    2015-04-01

    Low levels of γ-aminobutyric acid (GABA), one of two major neurotransmitters that regulate brain neuronal activity, are associated with many neurological disorders, such as epilepsy, Parkinson's disease, Alzheimer's disease, Huntington's disease, and cocaine addiction. One of the main methods to raise the GABA level in human brain is to use small molecules that cross the blood-brain barrier and inhibit the activity of γ-aminobutyric acid aminotransferase (GABA-AT), the enzyme that degrades GABA. We have designed a series of conformationally restricted tetrahydrothiophene-based GABA analogues with a properly positioned leaving group that could facilitate a ring-opening mechanism, leading to inactivation of GABA-AT. One compound in the series is 8 times more efficient an inactivator of GABA-AT than vigabatrin, the only FDA-approved inactivator of GABA-AT. Our mechanistic studies show that the compound inactivates GABA-AT by a new mechanism. The metabolite resulting from inactivation does not covalently bind to amino acid residues of GABA-AT but stays in the active site via H-bonding interactions with Arg-192, a π-π interaction with Phe-189, and a weak nonbonded S···O═C interaction with Glu-270, thereby inactivating the enzyme. PMID:25781189

  17. Pollutants removal in subsurface infiltration systems by shunt distributing wastewater with/without intermittent aeration under different shunt ratios.

    PubMed

    Pan, Jing; Yuan, Fang; Zhang, Yang; Huang, Linli; Yu, Long; Zheng, Fanping; Cheng, Fan; Zhang, Jiadi

    2016-10-01

    Matrix dissolved oxygen (DO), removal of COD, TP and nitrogen in subsurface infiltration systems (SISs), named SIS A (without intermittent aeration and shunt distributing wastewater), SIS B (with shunt distributing wastewater) and SIS C (with intermittent aeration and shunt distributing wastewater) were investigated. Aerobic conditions were developed in 50cm depth and anoxic or anaerobic conditions were not changed in 80 and 110cm depth by intermittent aeration. Under appropriate shunt ratios, shunt distributing wastewater improved denitrification and had little influence on COD, TP and NH3-N removal. Under the optimal shunt ratio of 1:2 for SIS C, high average removal rates of COD (90.06%), TP (93.17%), NH3-N (88.20%) and TN (85.79%) were obtained, which were higher than those in SIS A (COD: 82.56%, TP: 92.76%, NH3-N: 71.08%, TN: 49.24%) and SIS B (COD: 81.12%, TP: 92.58%, NH3-N: 69.14%, TN: 58.73%) under the optimal shunt ratio of 1:3. PMID:27347804

  18. Marlin-1, a novel RNA-binding protein associates with GABA receptors.

    PubMed

    Couve, Andrés; Restituito, Sophie; Brandon, Julia M; Charles, Kelly J; Bawagan, Hinayana; Freeman, Katie B; Pangalos, Menelas N; Calver, Andrew R; Moss, Stephen J

    2004-04-01

    GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. Whereas heterodimerization between GABA(B) receptor GABA(B)R1 and GABA(B)R2 subunits is essential for functional expression, how neurons coordinate the assembly of these critical receptors remains to be established. Here we have identified Marlin-1, a novel GABA(B) receptor-binding protein that associates specifically with the GABA(B)R1 subunit in yeast, tissue culture cells, and neurons. Marlin-1 is expressed in the brain and exhibits a granular distribution in cultured hippocampal neurons. Marlin-1 binds different RNA species including the 3'-untranslated regions of both the GABA(B)R1 and GABA(B)R2 mRNAs in vitro and also associates with RNA in cultured neurons. Inhibition of Marlin-1 expression via small RNA interference technology results in enhanced intracellular levels of the GABA(B)R2 receptor subunit without affecting the level of GABA(B)R1. Together our results suggest that Marlin-1 functions to regulate the cellular levels of GABA(B) R2 subunits, which may have significant effects on the production of functional GABA(B) receptor heterodimers. Therefore, our observations provide an added level of regulation for the control of GABA(B) receptor expression and for the efficacy of inhibitory synaptic transmission. PMID:14718537

  19. Postpriapism erectile dysfunction and shunt-related urethral stricture: long-term morbidity after proximal shunt for ischaemic priapism

    PubMed Central

    Bello, Jibril Oyekunle

    2014-01-01

    Recent guidelines have advocated for step-wise treatment of increasing invasiveness in the management of ischaemic priapism though with low-level evidences. In the past, proximal shunts were favoured as first-line treatment. We present an African man who had proximal shunt (cavernoso-spongiosal) three decades ago for ischaemic priapism and subsequently had long-term morbidity over the three decades with adverse effect on his quality of life. Recent guidelines appear to be sound despite their limitations and more invasive cavernoso-spongiosal shunts may be associated with significant long-term morbidities and poor quality of life. PMID:25709730

  20. Development of the GABA-ergic signaling system and its role in larval swimming in sea urchin.

    PubMed

    Katow, Hideki; Abe, Kouki; Katow, Tomoko; Zamani, Alemeh; Abe, Hirokazu

    2013-05-01

    The present study aimed to elucidate the development and γ-amino butyric acid (GABA)-ergic regulation of larval swimming in the sea urchin Hemicentrotus pulcherrimus by cloning glutamate decarboxylase (Hp-gad), GABAA receptor (Hp-gabrA) and GABAA receptor-associated protein (Hp-gabarap), and by performing immunohistochemistry. The regulation of larval swimming was increasingly dependent on the GABAergic system, which was active from the 2 days post-fertilization (d.p.f.) pluteus stage onwards. GABA-immunoreactive cells were detected as a subpopulation of secondary mesenchyme cells during gastrulation and eventually constituted the ciliary band and a subpopulation of blastocoelar cells during the pluteus stage. Hp-gad transcription was detected by RT-PCR during the period when Hp-Gad-positive cells were seen as a subpopulation of blastocoelar cells and on the apical side of the ciliary band from the 2 d.p.f. pluteus stage. Consistent with these observations, inhibition of GAD with 3-mercaptopropioninc acid inhibited GABA immunoreactivity and larval swimming dose dependently. Hp-gabrA amplimers were detected weakly in unfertilized eggs and 4 d.p.f. plutei but strongly from fertilized eggs to 2 d.p.f. plutei, and Hp-GabrA, together with GABA, was localized at the ciliary band in association with dopamine receptor D1 from the two-arm pluteus stage. Hp-gabarap transcription and protein expression were detected from the swimming blastula stage. Inhibition of the GABAA receptor by bicuculline inhibited larval swimming dose dependently. Inhibition of larval swimming by either 3-mercaptopropionic acid or bicuculline was more severe in older larvae (17 and 34 d.p.f. plutei) than in younger ones (1 d.p.f. prism larvae). PMID:23307803

  1. Use of cine phase-contrast MRI in the assessment of distal splenorenal shunt function.

    PubMed

    Cabassa, Paolo; Ravanelli, Marco; Alberti, Daniele; Maroldi, Roberto

    2012-06-01

    Magnetic resonance imaging (MRI) features of a surgical splenorenal shunt in a 28-year-old girl are described. The woman underwent color doppler ultrasonography during follow up for the shunt, which was inconclusive. MR was used to investigate the function of the shunt. Velocity and flow direction in splanchnic vessels and in the shunt were evaluated using cine fast phase-contrast sequences. MR findings could be of help in the evaluation of patients undergoing surgical shunts during follow up. PMID:22405982

  2. A case of breast cancer involving a ventriculoperitoneal shunt.

    PubMed

    Kamei, Mirei; Kikuchi, Nobuyuki; Ichimura, Homare; Chujo, Masao; Takahashi, Yoshiaki; Sugio, Kenji

    2016-12-01

    An 84-year-old woman was examined for an enlargement of an induration in the left breast. A ventriculoperitoneal shunt had been placed for postoperative normal pressure hydrocephalus of a cerebral hemorrhage, and it had penetrated the mass according to the computed tomography findings. Breast cancer was diagnosed after a close examination; however, close observation was selected because her family rejected treatment. She developed somnolence 7 months after the initial examination, and ventricular dilatation and expansion of the low-density region around the ventricle were noted on computed tomography, suggesting that the enlarged tumor had excluded the shunt and caused obstruction. The growth of breast carcinoma involving a shunt tube can be the cause of obstruction of a ventriculoperitoneal shunt. Our findings suggest that a breast lesion should be evaluated at both pre- and postoperation. PMID:26943684

  3. 21 CFR 874.3850 - Endolymphatic shunt tube with valve.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3850 Endolymphatic shunt... of a pressure-limiting valve associated with a tube intended to be implanted in the inner ear...

  4. 21 CFR 874.3850 - Endolymphatic shunt tube with valve.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3850 Endolymphatic shunt... of a pressure-limiting valve associated with a tube intended to be implanted in the inner ear...

  5. 21 CFR 874.3850 - Endolymphatic shunt tube with valve.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3850 Endolymphatic shunt... of a pressure-limiting valve associated with a tube intended to be implanted in the inner ear...

  6. 21 CFR 874.3850 - Endolymphatic shunt tube with valve.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3850 Endolymphatic shunt... of a pressure-limiting valve associated with a tube intended to be implanted in the inner ear...

  7. 21 CFR 874.3850 - Endolymphatic shunt tube with valve.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3850 Endolymphatic shunt... of a pressure-limiting valve associated with a tube intended to be implanted in the inner ear...

  8. 8. VIEW OF SHUNT LOCOMOTIVE NO. 9072 POSITIONING ELECTRIC DIESEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF SHUNT LOCOMOTIVE NO. 9072 POSITIONING ELECTRIC DIESEL LOCOMOTIVE NO. 6734 ON TURNTABLE, adjacent to Erecting Shop and Machine Shop - Juniata Shops, Turntable, South of Sixth Street at Third Avemue, Altoona, Blair County, PA

  9. 5. VIEW OF SHUNT LOCOMOTIVE NO. 9072 POSITIONING ELECTRIC DIESEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF SHUNT LOCOMOTIVE NO. 9072 POSITIONING ELECTRIC DIESEL LOCOMOTIVE NO. 6734 ON TURNTABLE, adjacent to Erecting Shop and Machine Shop - Juniata Shops, Turntable, South of Sixth Street at Third Avemue, Altoona, Blair County, PA