Science.gov

Sample records for acid gas absorption

  1. Acid gas absorption in aqueous solutions of mixed amines

    SciTech Connect

    Rinker, E.B.; Ashour, S.S.; Sandall, O.C.

    1996-12-31

    A mass transfer model has been developed to describe the rate of absorption (or desorption) of H{sub 2}S and CO{sub 2} in aqueous blends of a tertiary and a secondary or a primary amine. The model is based on penetration theory, and all significant chemical reactions are incorporated in the model. The reactions are taken to be reversible, with reactions involving only a proton transfer considered to be at equilibrium. The particular amines studied in this research were methyldiethanolamine (MDEA), a tertiary amine, and diethanolamine (DEA), a secondary amine. Key physicochemical data needed in the model, such as diffusion coefficients, kinetic rate constants, and gas solubilities, were measured. Experimental absorption rates of CO{sub 2} and H{sub 2}S were measured in a model gas-liquid contacting device and were compared with model predictions. Experiments were carried out for single amine solutions (both MDEA and DEA) and for amine blends.

  2. Regeneration of an aqueous solution from an acid gas absorption process by matrix stripping

    DOEpatents

    Rochelle, Gary T.; Oyenekan, Babatunde A.

    2011-03-08

    Carbon dioxide and other acid gases are removed from gaseous streams using aqueous absorption and stripping processes. By replacing the conventional stripper used to regenerate the aqueous solvent and capture the acid gas with a matrix stripping configuration, less energy is consumed. The matrix stripping configuration uses two or more reboiled strippers at different pressures. The rich feed from the absorption equipment is split among the strippers, and partially regenerated solvent from the highest pressure stripper flows to the middle of sequentially lower pressure strippers in a "matrix" pattern. By selecting certain parameters of the matrix stripping configuration such that the total energy required by the strippers to achieve a desired percentage of acid gas removal from the gaseous stream is minimized, further energy savings can be realized.

  3. Absorption of sulfur dioxide from simulated flue gas by polyethyleneimine-phosphoric acid solution.

    PubMed

    Bo, Wen; Li, Hongxia; Zhang, Junjie; Song, Xiangjia; Hu, Jinshan; Liu, Ce

    2016-12-01

    Clean fuel technologies have been widely developed in current society because fuel combustion can directly bring about the emission of hazardous gasses such as SO2. Flue gas desulfurization by polyethyleneimine (PEI)-phosphoric acid solution is an efficient desulfurization method. In this research, the PEI and the additive H3PO4 were used as absorption solution. SO2 was absorbed by the system and desorbed from the loaded solution. The cycle operation was also analyzed. Some technology conditions such as the concentration of PEI, the temperature, the gas flow rate, the concentration of SO2 and the pH value were experimentally researched. With the optimized process, the absorption efficiency of this system could reach 98% and the desorption efficiency was over 60%, showing good absorption/desorption capability. With this efficient approach, the present study may open a new window for developing high-performance absorbents which can make SO2 be well desorbed from the loaded solution and better reused in the flue gas desulfurization. PMID:27082307

  4. Gas-absorption process

    DOEpatents

    Stephenson, Michael J.; Eby, Robert S.

    1978-01-01

    This invention is an improved gas-absorption process for the recovery of a desired component from a feed-gas mixture containing the same. In the preferred form of the invention, the process operations are conducted in a closed-loop system including a gas-liquid contacting column having upper, intermediate, and lower contacting zones. A liquid absorbent for the desired component is circulated through the loop, being passed downwardly through the column, regenerated, withdrawn from a reboiler, and then recycled to the column. A novel technique is employed to concentrate the desired component in a narrow section of the intermediate zone. This technique comprises maintaining the temperature of the liquid-phase input to the intermediate zone at a sufficiently lower value than that of the gas-phase input to the zone to effect condensation of a major part of the absorbent-vapor upflow to the section. This establishes a steep temperature gradient in the section. The stripping factors below this section are selected to ensure that virtually all of the gases in the downflowing absorbent from the section are desorbed. The stripping factors above the section are selected to ensure re-dissolution of the desired component but not the less-soluble diluent gases. As a result, a peak concentration of the desired component is established in the section, and gas rich in that component can be withdrawn therefrom. The new process provides important advantages. The chief advantage is that the process operations can be conducted in a single column in which the contacting zones operate at essentially the same pressure.

  5. Rigorous modeling of the acid gas heat of absorption in alkanolamine solutions

    SciTech Connect

    Emilie Blanchon le Bouhelec; Pascal Mougin; Alain Barreau; Roland Solimando

    2007-08-15

    In this work, we are interested in the estimation of CO{sub 2} and H{sub 2}S heats of absorption in aqueous solutions of alkanolamine: monoethanolamine (MEA), diethanolamine (DEA), and methyldiethanolamine (MDEA). Two methods can be used to calculate the heat release during the absorption phenomenon. The easier which consists of applying the integration of the Gibbs-Helmholtz expression remains inaccurate. The second one, more rigorous, evaluates the heat transfer through an internal energy balance for an open system. The balance expression contains partial molar enthalpies of species in the liquid phase which are calculated from the electrolyte nonrandom-two-liquid (NRTL) excess Gibbs energy model. The calculations carried out in this method can be considered as predictive regarding the NRTL model because its interaction parameters were previously and solely fitted on vapor-liquid equilibrium (VLE) data and not on experimental heat of absorption data. The comparison between both methods and experimental data for the three alkanolamines shows the contribution of this rigorous calculation to better estimate both properties (i.e., solubility and heat) and its usefulness to improve processes. Heats of absorption calculated with the second method can be used in addition to VLE data to fit NRTL parameters. This procedure leads to less-correlated parameters and allows extrapolating the model with more confidence. 63 refs., 10 figs., 6 tabs.

  6. Backscatter absorption gas imaging system

    DOEpatents

    McRae, T.G. Jr.

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  7. Backscatter absorption gas imaging system

    DOEpatents

    McRae, Jr., Thomas G.

    1985-01-01

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  8. Integrated vacuum absorption steam cycle gas separation

    DOEpatents

    Chen, Shiaguo; Lu, Yonggi; Rostam-Abadi, Massoud

    2011-11-22

    Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

  9. Direct fired absorption machine flue gas recuperator

    DOEpatents

    Reimann, Robert C.; Root, Richard A.

    1985-01-01

    A recuperator which recovers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine. The recuperator includes a housing with liquid flowing therethrough, the liquid being in direct contact with the combustion gas for increasing the effectiveness of the heat transfer between the gas and the liquid.

  10. Demonstration of differential backscatter absorption gas imaging.

    PubMed

    Powers, P E; Kulp, T J; Kennedy, R

    2000-03-20

    Backscatter absorption gas imaging (BAGI) is a technique that uses infrared active imaging to generate real-time video imagery of gas plumes. We describe a method that employs imaging at two wavelengths (absorbed and not absorbed by the gas to be detected) to allow wavelength-differential BAGI. From the frames collected at each wavelength, an absorbance image is created that displays the differential absorbance of the atmosphere between the imager and the backscatter surface. This is analogous to a two-dimensional topographic differential absorption lidar or differential optical absorption spectroscopy measurement. Gas plumes are displayed, but the topographic scene image is removed. This allows a more effective display of the plume image, thus ensuring detection under a wide variety of conditions. The instrument used to generate differential BAGI is described. Data generated by the instrument are presented and analyzed to estimate sensitivity. PMID:18338030

  11. Gas in scattering media absorption spectroscopy - GASMAS

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2008-09-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. GASMAS combines narrow-band diode-laser spectroscopy with diffuse media optical propagation. While solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures, typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen. Also other dynamic processes such as drying of materials can be studied. The techniques have also been extended to remote-sensing applications (LIDAR-GASMAS).

  12. Acidic gas capture by diamines

    SciTech Connect

    Rochelle, Gary; Hilliard, Marcus

    2011-05-10

    Compositions and methods related to the removal of acidic gas. In particular, the present disclosure relates to a composition and method for the removal of acidic gas from a gas mixture using a solvent comprising a diamine (e.g., piperazine) and carbon dioxide. One example of a method may involve a method for removing acidic gas comprising contacting a gas mixture having an acidic gas with a solvent, wherein the solvent comprises piperazine in an amount of from about 4 to about 20 moles/kg of water, and carbon dioxide in an amount of from about 0.3 to about 0.9 moles per mole of piperazine.

  13. Gas separation using ultrasound and light absorption

    DOEpatents

    Sinha, Dipen N.

    2012-07-31

    An apparatus and method for separating a chosen gas from a mixture of gases having no moving parts and utilizing no chemical processing is described. The separation of particulates from fluid carriers thereof has been observed using ultrasound. In a similar manner, molecular species may be separated from carrier species. It is also known that light-induced drift may separate light-absorbing species from carrier species. Therefore, the combination of temporally pulsed absorption of light with ultrasonic concentration is expected to significantly increase the efficiency of separation by ultrasonic concentration alone. Additionally, breaking the spatial symmetry of a cylindrical acoustic concentrator decreases the spatial distribution of the concentrated particles, and increases the concentration efficiency.

  14. Hollow fiber gas-liquid membrane contactors for acid gas capture: a review.

    PubMed

    Mansourizadeh, A; Ismail, A F

    2009-11-15

    Membrane contactors using microporous membranes for acid gas removal have been extensively reviewed and discussed. The microporous membrane acts as a fixed interface between the gas and the liquid phase without dispersing one phase into another that offers a flexible modular and energy efficient device. The gas absorption process can offer a high selectivity and a high driving force for transport even at low concentrations. Using hollow fiber gas-liquid membrane contactors is a promising alternative to conventional gas absorption systems for acid gas capture from gas streams. Important aspects of membrane contactor as an efficient energy devise for acid gas removal including liquid absorbents, membrane characteristics, combination of membrane and absorbent, mass transfer, membrane modules, model development, advantages and disadvantages were critically discussed. In addition, current status and future potential in research and development of gas-liquid membrane contactors for acid gas removal were also briefly discussed.

  15. Effect of folic acid on zinc absorption

    SciTech Connect

    Wada, L.; Keating, S.; King, J.C.; Stokstad, E.L.R.

    1986-03-05

    The effect of folic acid on zinc uptake was studied in the human and in the rat. The serum zinc response to a 25 mg oral dose or zinc was measured with and without a 10 mg dose of folic acid. Serum zinc levels were measured prior to the oral dose of zinc and at hourly intervals up to 4 hours after the dose. When zinc was given along, the increases in serum zinc from baseline at hours 1, 2, 3 and 4 were 92, 118, 92 and 66 ..mu..g/dl, respectively. When both zinc and folic acid were given, the increases in serum zinc at hours 1, 2, 3 and 4 were 100, 140, 110 and 75 ..mu..g/dl, respectively. When the increases in serum zinc were plotted against time, there was no significant difference between the areas under the two curves. The everted jejunal sac from the rat was used to study the effect of folate on zinc transport using 100 ..mu..M zinc in the mucosal buffer. The addition of folic acid at levels up to 10/sup -3/M had no significant effect on zinc transport to the serosal side solution or on uptake by the intestinal mucosa. This in vivo study with humans and in vitro study with rat intestine does not support a direct adverse effect of folic acid on zinc absorption.

  16. CARBON DIOXIDE SEPARATION BY PHASE ENHANCED GAS-LIQUID ABSORPTION

    SciTech Connect

    Liang Hu

    2004-09-30

    A new process called phase enhanced gas-liquid absorption has been developed in its early stage. It was found that adding another phase into the absorption system of gas/aqueous phase could enhance the absorption rate. A system with three phases was studied. In the system, gas phase was carbon dioxide. Two liquid phases were used. One was organic phase. Another was aqueous phase. By addition of organic phase into the absorption system of CO{sub 2}-aqueous phase, the absorption rate of CO{sub 2} was increased significantly. CO{sub 2} finally accumulated into aqueous phase. The experimental results proved that (1) Absorption rate of carbon dioxide was enhanced by adding organic phase into gas aqueous phase system; (2) Organic phase played the role of transportation of gas solute (CO{sub 2}). Carbon dioxide finally accumulated into aqueous phase.

  17. CARBON DIOXIDE SEPARATION BY PHASE ENHANCED GAS-LIQUID ABSORPTION

    SciTech Connect

    Liang Hu; Adeyinka A. Adeyiga

    2004-05-01

    A new process called phase enhanced gas-liquid absorption has been developed in its early stage. It was found that adding another phase into the absorption system of gas/aqueous phase could enhance the absorption rate. A system with three phases was studied. In the system, gas phase was carbon dioxide. Two liquid phases were used. One was organic phase. Another was aqueous phase. By addition of organic phase into the absorption system of CO{sub 2}-aqueous phase, the absorption rate of CO{sub 2} was increased significantly. CO{sub 2} finally accumulated into aqueous phase. The experimental results proved that (1) Absorption rate of carbon dioxide was enhanced by adding organic phase into gas aqueous phase system; (2) Organic phase played the role of transportation of gas solute (CO{sub 2}). Carbon dioxide finally accumulated into aqueous phase.

  18. Study on NO2 absorption by ascorbic acid and various chemicals*

    PubMed Central

    Li, Wei; Wu, Cheng-zhi; Fang, He-liang; Shi, Yao; Lei, Le-cheng

    2006-01-01

    Study on NO2 absorption aimed at seeking a better NO2 absorption chemical at pH 4.5~7.0 for application to existing wet flue gas desulfurization (FGD). The results from the double-stirred reactor indicated that ascorbic acid has very high absorption rate at this pH range. The rate constant of ascorbic acid reaction with NO2 (0~1000×10−6 mol/mol) is about 3.54×106 mol/(L·s) at pH 5.4~6.5 at 55 °C. PMID:16365924

  19. Laser absorption phenomena in flowing gas devices

    NASA Technical Reports Server (NTRS)

    Chapman, P. K.; Otis, J. H.

    1976-01-01

    A theoretical and experimental investigation is presented of inverse Bremsstrahlung absorption of CW CO2 laser radiation in flowing gases seeded with alkali metals. In order to motivate this development, some simple models are described of several space missions which could use laser powered rocket vehicles. Design considerations are given for a test call to be used with a welding laser, using a diamond window for admission of laser radiation at power levels in excess of 10 kW. A detailed analysis of absorption conditions in the test cell is included. The experimental apparatus and test setup are described and the results of experiments presented. Injection of alkali seedant and steady state absorption of the laser radiation were successfully demonstrated, but problems with the durability of the diamond windows at higher powers prevented operation of the test cell as an effective laser powered thruster.

  20. Solar assisted gas-fired absorption heat pump

    NASA Astrophysics Data System (ADS)

    Murphy, K. P.; Burke, J. C.; Phillips, B. A.

    1982-08-01

    An evaluation of the technical and economic feasibility of coupling an absorption heat pump and an active solar system for residential applications is discussed. The absorption heat pump is based on a new absorption working pair developed by Allied. Three basic modes of coupling were considered, a series arrangement, a parallel arrangement, and a solar drive arrangement. Little overall difference in performance was found for these three modes but the solar drive was chosen for detailed study. A preliminary design of a dual mode absorption generator was developed capable of using simultaneously heat from gas and solar. The performance of such a system was examined in three cities.

  1. Carbon Dioxide Separation from Flue Gas by Phase Enhanced Absorption

    SciTech Connect

    Liang Hu

    2006-06-30

    A new process, phase enhanced absorption, was invented. The method is carried out in an absorber, where a liquid carrier (aqueous solution), an organic mixture (or organic compound), and a gas mixture containing a gas to be absorbed are introduced from an inlet. Since the organic mixture is immiscible or at least partially immiscible with the liquid carrier, the organic mixture forms a layer or small parcels between the liquid carrier and the gas mixture. The organic mixture in the absorber improves mass transfer efficiency of the system and increases the absorption rate of the gas. The organic mixture serves as a transportation media. The gas is finally accumulated in the liquid carrier as in a conventional gas-liquid absorption system. The presence of the organic layer does not hinder the regeneration of the liquid carrier or recovery of the gas because the organic layer is removed by a settler after the absorption process is completed. In another aspect, the system exhibited increased gas-liquid separation efficiency, thereby reducing the costs of operation and maintenance. Our study focused on the search of the organic layer or transportation layer to enhance the absorption rate of carbon dioxide. The following systems were studied, (1) CO{sub 2}-water system and CO{sub 2}-water-organic layer system; (2) CO{sub 2}-Potassium Carbonate aqueous solution system and CO{sub 2}-Potassium Carbonate aqueous solution-organic layer system. CO{sub 2}-water and CO{sub 2}-Potassium Carbonate systems are the traditional gas-liquid absorption processes. The CO{sub 2}-water-organic layer and CO{sub 2}-Potassium Carbonate-organic layer systems are the novel absorption processes, phase enhanced absorption. As we mentioned early, organic layer (transportation layer phase) is used for the increase of absorption rate. Our study showed that the absorption rate can be increased by adding the organic layer. However, the enhanced factor is highly depended on the liquid mass transfer

  2. Carbon Dioxide Separation from Flue Gas by Phase Enhanced Absorption

    SciTech Connect

    Tim Fout

    2007-06-30

    A new process, phase enhanced absorption, was invented. The method is carried out in an absorber, where a liquid carrier (aqueous solution), an organic mixture (or organic compound), and a gas mixture containing a gas to be absorbed are introduced from an inlet. Since the organic mixture is immiscible or at least partially immiscible with the liquid carrier, the organic mixture forms a layer or small parcels between the liquid carrier and the gas mixture. The organic mixture in the absorber improves mass transfer efficiency of the system and increases the absorption rate of the gas. The organic mixture serves as a transportation media. The gas is finally accumulated in the liquid carrier as in a conventional gas-liquid absorption system. The presence of the organic layer does not hinder the regeneration of the liquid carrier or recovery of the gas because the organic layer is removed by a settler after the absorption process is completed. In another aspect, the system exhibited increased gas-liquid separation efficiency, thereby reducing the costs of operation and maintenance. Our study focused on the search of the organic layer or transportation layer to enhance the absorption rate of carbon dioxide. The following systems were studied, (1) CO{sub 2}-water system and CO{sub 2}-water-organic layer system; (2) CO{sub 2}-Potassium Carbonate aqueous solution system and CO{sub 2}-Potassium Carbonate aqueous solution-organic layer system. CO{sub 2}-water and CO{sub 2}-Potassium Carbonate systems are the traditional gas-liquid absorption processes. The CO{sub 2}-water-organic layer and CO{sub 2}-Potassium Carbonate-organic layer systems are the novel absorption processes, phase enhanced absorption. As we mentioned early, organic layer is used for the increase of absorption rate, and plays the role of transportation of CO{sub 2}. Our study showed that the absorption rate can be increased by adding the organic layer. However, the enhanced factor is highly depended on the

  3. Nonequilibrium gas absorption in rotating permeable media

    NASA Astrophysics Data System (ADS)

    Baev, V. K.; Bazhaikin, A. N.

    2016-08-01

    The absorption of ammonia, sulfur dioxide, and carbon dioxide by water and aqueous solutions in rotating permeable media, a cellular porous disk, and a set of spaced-apart thin disks has been considered. The efficiency of cleaning air to remove these impurities is determined, and their anomalously high solubility (higher than equilibrium value) has been discovered. The results demonstrate the feasibility of designing cheap efficient rotor-type absorbers to clean gases of harmful impurities.

  4. Intestinal absorption and metabolism of homoursodeoxycholic acid in rats.

    PubMed

    Kuramoto, T; Moriwaki, S; Kawamoto, K; Hoshita, T

    1987-07-01

    Intestinal absorption, hepatic biotransformation and intestinal bacterial modification of the C25 homolog of ursodeoxycholic acid, homoursodeoxycholic acid, and its glycine conjugate, glycohomoursodeoxycholic acid, were studied in rats. Homoursodeoxycholic acid, like ursodeoxycholic acid, was efficiently absorbed from the intestine and rapidly excreted into the bile. Most (greater than 95%) of the absorbed homoursodeoxycholic acid was found to undergo beta-oxidation to form two C23 bile acids, norursodeoxycholic acid and nor-beta-muricholic acid during passage through the liver. Bacterial modification of homoursodeoxycholic acid was very similar to that of ursodeoxycholic acid. In the rat intestinal tract, glycohomoursodexycholic acid was deconjugated to form unconjugated homoursodeoxycholic acid which was then 7 beta-dehydroxylated to form homolithocholic acid.

  5. Pathlength Determination for Gas in Scattering Media Absorption Spectroscopy

    PubMed Central

    Mei, Liang; Somesfalean, Gabriel; Svanberg, Sune

    2014-01-01

    Gas in scattering media absorption spectroscopy (GASMAS) has been extensively studied and applied during recent years in, e.g., food packaging, human sinus monitoring, gas diffusion studies, and pharmaceutical tablet characterization. The focus has been on the evaluation of the gas absorption pathlength in porous media, which a priori is unknown due to heavy light scattering. In this paper, three different approaches are summarized. One possibility is to simultaneously monitor another gas with known concentration (e.g., water vapor), the pathlength of which can then be obtained and used for the target gas (e.g., oxygen) to retrieve its concentration. The second approach is to measure the mean optical pathlength or physical pathlength with other methods, including time-of-flight spectroscopy, frequency-modulated light scattering interferometry and the frequency domain photon migration method. By utilizing these methods, an average concentration can be obtained and the porosities of the material are studied. The last method retrieves the gas concentration without knowing its pathlength by analyzing the gas absorption line shape, which depends upon the concentration of buffer gases due to intermolecular collisions. The pathlength enhancement effect due to multiple scattering enables also the use of porous media as multipass gas cells for trace gas monitoring. All these efforts open up a multitude of different applications for the GASMAS technique. PMID:24573311

  6. Dynamic Absorption Model for Off-Gas Separation

    SciTech Connect

    Veronica J. Rutledge

    2011-07-01

    Modeling and simulations will aid in the future design of U.S. advanced reprocessing plants for the recovery and recycle of actinides in used nuclear fuel. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, a rate based, dynamic absorption model is being developed in gPROMS software. Inputs include liquid and gas stream constituents, column properties, liquid and gas phase reactions, number of stages, and inlet conditions. It simulates multiple component absorption with countercurrent flow and accounts for absorption by mass transfer and chemical reaction. The assumption of each stage being a discrete well-mixed entity was made. Therefore, the model is solved stagewise. The simulation outputs component concentrations in both phases as a function of time from which the rate of absorption is determined. Temperature of both phases is output as a function of time also. The model will be used able to be used as a standalone model in addition to in series with other off-gas separation unit operations. The current model is being generated based on NOx absorption; however, a future goal is to develop a CO2 specific model. The model will have the capability to be modified for additional absorption systems. The off-gas models, both adsorption and absorption, will be made available via the server or web for evaluation by customers.

  7. Temperature and pressure measurement based on tunable diode laser absorption spectroscopy with gas absorption linewidth detection

    NASA Astrophysics Data System (ADS)

    Meng, Yunxia; Liu, Tiegen; Liu, Kun; Jiang, Junfeng; Wang, Tao; Wang, Ranran

    2014-11-01

    A gas temperature and pressure measurement method based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) detecting linewidth of gas absorption line was proposed in this paper. Combined with Lambert-Beer Law and ideal gas law, the relationship between temperature, pressure and gas linewidth with Lorentzian line shape was investigated in theory. Taking carbon monoxide (CO) at 1567.32 nm for example, the linewidths of gas absorption line in different temperatures and pressures were obtained by simulation. The relationship between the linewidth of second harmonic and temperature, pressure with the coefficient 0.025 pm/K and 0.0645 pm/kPa respectively. According to the relationship of simulation results and detected linewidth, the undefined temperature and pressure of CO gas were measured. The gas temperature and pressure measurement based on linewidth detection, avoiding the influence of laser intensity, is an effective temperature and pressure measurement method. This method also has the ability to detect temperature and pressure of other gases with Lorentzian line shape.

  8. Oxalic acid decreases calcium absorption in rats

    SciTech Connect

    Weaver, C.M.; Martin, B.R.; Ebner, J.S.; Krueger, C.A.

    1987-11-01

    Calcium absorption from salts and foods intrinsically labeled with /sup 45/Ca was determined in the rat model. Calcium bioavailability was nearly 10 times greater for low oxalate kale, CaCO/sub 3/ and CaCl/sub 2/ than from CaC/sub 2/O/sub 4/ (calcium oxalate) and spinach (high in oxalates). Extrinsic and intrinsic labeling techniques gave a similar assessment of calcium bioavailability from kale but not from spinach.

  9. Absorption by halo gas in the direction of M13

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Savage, B. D.

    1983-01-01

    A high velocity cloud in the direction 1 = 59 degrees, b = 41 degrees is detected in absorption at approximately -80 km/s in high dispersion IUE spectra of the blue star Barnard 29 in the globular cluster M13. The cloud is also seen in the H I 21 cm emission data of Kerr and Knapp (1972). Its radial velocity agrees with Giovanelli's data (1980, 1981) for high velocity clouds seen in this general direction of the sky. The cloud's motion is incompatible with the suggestions that neutral halo gas corotates with disk gas. The motion could be explained if neutral halo gas rotates more slowly than disk gas with increasing distance from the galactic plane. Because of our very limited understanding of the actual motions of halo gas, the scale height of this gas is best derived from plots of N sin b versus z for galactic and extragalactic stars.

  10. Radiant energy absorption studies for laser propulsion. [gas dynamics

    NASA Technical Reports Server (NTRS)

    Caledonia, G. E.; Wu, P. K. S.; Pirri, A. N.

    1975-01-01

    A study of the energy absorption mechanisms and fluid dynamic considerations for efficient conversion of high power laser radiation into a high velocity flow is presented. The objectives of the study are: (1) to determine the most effective absorption mechanisms for converting laser radiation into translational energy, and (2) to examine the requirements for transfer of the absorbed energy into a steady flow which is stable to disturbances in the absorption zone. A review of inverse Bremsstrahlung, molecular and particulate absorption mechanisms is considered and the steady flow and stability considerations for conversion of the laser power to a high velocity flow in a nozzle configuration is calculated. A quasi-one-dimensional flow through a nozzle was formulated under the assumptions of perfect gas.

  11. The percutaneous absorption of salicylic acid.

    PubMed

    Takahashi, H; Ishii, T; Tanabe, K; Ikeda, H

    1976-08-01

    The present paper reports on the penetration of salicylic acid, a substance with high permeability, through swine skin. Liquid scintillation counter and autoradiographic measurements were performed, on the excised swine skin to which ointment had been applied. The results indicated that the substance penetrated mainly through transfollicular route and was deposited transiently at various levels of each follicle, resulting in zig-zag pattern on the liquid scintillation counter curve. The autoradiographic study also revealed a heavy transfollicular pattern of the substance though a slight transepidermal pattern was also noted. Whether the substance penetrates because of its lipid solubility or because of its affinity to the keratinous tissue is still open to question.

  12. A GAS TEMPERATURE PROFILE BY INFRARED EMISSION-ABSORPTION SPECTROSCOPY

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1994-01-01

    This computer program calculates the temperature profile of a flame or hot gas. Emphasis is on profiles found in jet engine or rocket engine exhaust streams containing water vapor or carbon dioxide as radiating gases. The temperature profile is assumed to be axisymmetric with a functional form controlled by two variable parameters. The parameters are calculated using measurements of gas radiation at two wavelengths in the infrared spectrum. Infrared emission and absorption measurements at two or more wavelengths provide a method of determining a gas temperature profile along a path through the gas by using a radiation source and receiver located outside the gas stream being measured. This permits simplified spectral scanning of a jet or rocket engine exhaust stream with the instrumentation outside the exhaust gas stream. This program provides an iterative-cyclic computation in which an initial assumed temperature profile is altered in shape until the computed emission and absorption agree, within specified limits, with the actual instrument measurements of emission and absorption. Temperature determination by experimental measurements of emission and absorption at two or more wavelengths is also provided by this program. Additionally, the program provides a technique for selecting the wavelengths to be used for determining the temperature profiles prior to the beginning of the experiment. By using this program feature, the experimenter has a higher probability of selecting wavelengths which will result in accurate temperature profile measurements. This program provides the user with a technique for determining whether this program will be sufficiently accurate for his particular application, as well as providing a means of finding the solution. The input to the program consists of four types of data: (1) computer program control constants, (2) measurements of gas radiance and transmittance at selected wavelengths, (3) tabulations from the literature of gas

  13. Backscatter absorption gas imaging systems and light sources therefore

    DOEpatents

    Kulp, Thomas Jan; Kliner, Dahv A. V.; Sommers, Ricky; Goers, Uta-Barbara; Armstrong, Karla M.

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  14. Tuning the Carbon Dioxide Absorption in Amino Acid Ionic Liquids.

    PubMed

    Firaha, Dzmitry S; Kirchner, Barbara

    2016-07-01

    One of the possible solutions to prevent global climate change is the reduction of CO2 emissions, which is highly desired for the sustainable development of our society. In this work, the chemical absorption of carbon dioxide in amino acid ionic liquids was studied through first-principles methods. The use of readily accessible and biodegradable amino acids as building blocks for ionic liquids makes them highly promising replacements for the widely applied hazardous aqueous solutions of amines. A detailed insight into the reaction mechanism of the CO2 absorption was obtained through state-of-the-art theoretical methods. This allowed us to determine the reason for the specific CO2 capacities found experimentally. Moreover, we have also conducted a theoretical design of ionic liquids to provide valuable insights into the precise tuning of the energetic and kinetic parameters of the CO2 absorption.

  15. Tuning the Carbon Dioxide Absorption in Amino Acid Ionic Liquids.

    PubMed

    Firaha, Dzmitry S; Kirchner, Barbara

    2016-07-01

    One of the possible solutions to prevent global climate change is the reduction of CO2 emissions, which is highly desired for the sustainable development of our society. In this work, the chemical absorption of carbon dioxide in amino acid ionic liquids was studied through first-principles methods. The use of readily accessible and biodegradable amino acids as building blocks for ionic liquids makes them highly promising replacements for the widely applied hazardous aqueous solutions of amines. A detailed insight into the reaction mechanism of the CO2 absorption was obtained through state-of-the-art theoretical methods. This allowed us to determine the reason for the specific CO2 capacities found experimentally. Moreover, we have also conducted a theoretical design of ionic liquids to provide valuable insights into the precise tuning of the energetic and kinetic parameters of the CO2 absorption. PMID:27214652

  16. Pulsed laser linescanner for a backscatter absorption gas imaging system

    DOEpatents

    Kulp, Thomas J.; Reichardt, Thomas A.; Schmitt, Randal L.; Bambha, Ray P.

    2004-02-10

    An active (laser-illuminated) imaging system is described that is suitable for use in backscatter absorption gas imaging (BAGI). A BAGI imager operates by imaging a scene as it is illuminated with radiation that is absorbed by the gas to be detected. Gases become "visible" in the image when they attenuate the illumination creating a shadow in the image. This disclosure describes a BAGI imager that operates in a linescanned manner using a high repetition rate pulsed laser as its illumination source. The format of this system allows differential imaging, in which the scene is illuminated with light at least 2 wavelengths--one or more absorbed by the gas and one or more not absorbed. The system is designed to accomplish imaging in a manner that is insensitive to motion of the camera, so that it can be held in the hand of an operator or operated from a moving vehicle.

  17. Tracing inflows and outflows with absorption lines in circumgalactic gas

    NASA Astrophysics Data System (ADS)

    Ford, Amanda Brady; Davé, Romeel; Oppenheimer, Benjamin D.; Katz, Neal; Kollmeier, Juna A.; Thompson, Robert; Weinberg, David H.

    2014-10-01

    We examine how H I and metal absorption lines within low-redshift galaxy haloes trace the dynamical state of circumgalactic gas, using cosmological hydrodynamic simulations that include a well-vetted heuristic model for galactic outflows. We categorize inflowing, outflowing, and ambient gas based on its history and fate as tracked in our simulation. Following our earlier work, showing that the ionization level of absorbers was a primary factor in determining the physical conditions of absorbing gas, we show here that it is also a governing factor for its dynamical state. Low-ionization metal absorbers (e.g. Mg II) tend to arise in gas that will fall on to galaxies within several Gyr, while high-ionization metal absorbers (e.g. O VI) generally trace material that was deposited by outflows many Gyr ago. Inflowing gas is dominated by enriched material that was previously ejected in an outflow; hence, accretion at low redshifts is typically substantially enriched. Recycling wind material is preferentially found closer to galaxies, and is more dominant in lower mass haloes since high-mass haloes have more hot gas that is able to support itself against infall. Low-mass haloes also tend to re-eject more of their accreted material, owing to our outflow prescription that employs higher mass loading factors for lower mass galaxies. Typical H I absorbers trace unenriched ambient material that is not participating in the baryon cycle, but stronger H I absorbers arise in cool, enriched inflowing gas. Instantaneous radial velocity measures of absorbers are generally poor at distinguishing between inflowing and outflowing gas, except in the case of very recent outflows. These results suggest that probing halo gas using a range of absorbers can provide detailed information about the amount and physical conditions of material that is participating in the baryon cycle.

  18. [Absorption of amino acids from the perfused ovine rumen].

    PubMed

    L' Leng; Tomás, J; Várady, J; Szányiová, M

    1978-06-01

    The experiments with extracoroporeal perfusion of sheep rumen were performed [Leng et al., 1977]. Bovine plasma, diluted in a 1:1ratio with an isotonic solution of sodium chloride, was used for four perfusions, and autologous blood was used for two perfusions in the course of 150 minutes. After 60 minutes perfusion 20 g enzymatic casein hydrolyzate were applied to the rumen. The levels of free amino acids in the perfusate were recorded after 60 minutes' perfusion [the first phase of perfusion] and at the end of the experiment [the second phase]. The levels of lysine, aspartic acid and glutamic acid increased after perfusions with bovine plasma during the first phase, the levels of glutamic acid, phenylalanine, and in one case of alanine, increased after perfusions with autologus blood. Simultaneously the level of valine decreased after perfusions with bovine plasma, and after perfusions with blood the levels of arginine and valine, and/or lysine, dropped. During the second phase of perfusion, the levels of all the observed amino acids except methionine [bovine plasma], and/or orginine and methionine [blood] rose in the perfusate. The experiments showed that the level of amino acids in the rumen content presented a decisive factor affecting amino acid absorption from the rumen into the blood. Transformation of the amino acids during their passage through the remen wall may be assumed, and glutamic acid is one of the chief products of this process.

  19. Ultraviolet absorption by interstellar gas near 30 Doradus

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Koornneef, J.; Savage, B. D.

    1980-01-01

    The IUE was used to obtain high-resolution far-UV spectra (1150-2070 A) of two stars in the 30 Dor H II region in the LMC. Interstellar absorption components are distinguished at +20, +220, +250, and +290 km/s. The +20 km/s component is produced by matter in the Galaxy; the high-velocity components are produced by absorbing gas near or in the LMC. A model of the line-of-sight distribution of the absorbing clouds is developed from the velocity pattern of the observed LMC features. The presence of Si IV, Al III, and C IV ions is discussed.

  20. Effect of ascorbic acid and other adjuvants on manganese absorption

    SciTech Connect

    Papaioannou, R.; Sohler, A.; Pfeiffer, C.C.

    1986-03-01

    Animal experiments have demonstrated that manganese is poorly absorbed from the gut and that it is rapidly removed from the blood by liver uptake and bilary excretion. Zinc supplements which are readily absorbed can induce a Mn deficiency so that Mn supplementation is necessary. Supplementation with a diet rich in Mn (high in legumes, nuts, whole grains, tea) failed to influence blood Mn levels. The present study is concerned with the route of Mn administration and the effect of various adjuvants on the absorption and availability of Mn. Oral and sublingual administration of 20 mgs of Mn as the chloride failed to elicit a blood level rise. A rise was noted after the intramuscular injection of 2.5 mgs Mn as Mn Cl/sub 2/. Blood Mn levels rose to a maximum in thirty minutes and were back to basal levels within three hours. Adjuvants such as arginine, lecithin, taurine, biotin, bioflavinoids, were tested with essentially negative results. Mn orotate also failed to increase absorption. Oral absorption was obtained with ascorbic acid in five female subjects when 20 mgs of Mn as the chloride was given orally with 1 gm of ascorbic acid. This effect was not observed with five male subjects. A 30-40% increase in blood Mn after 2 hours was found when Mn was administered with ascorbic acid in the female subjects.

  1. A novel CO 2 gas analyzer based on IR absorption

    NASA Astrophysics Data System (ADS)

    Zhang, Guangjun; Wu, Xiaoli

    2004-08-01

    Carbon dioxide (CO 2) gas analyzer can be widely used in many fields. A novel CO 2 gas analyzer based on infrared ray (IR) absorption is presented sufficiently in this paper. Applying Lambert-Beer Law, a novel space-double-beam optical structure is established successfully. The optical structure includes an IR source, a gas cell, a bandpass filter with a transmission wavelength at 4.26 μm, another bandpass filter with a transmission wavelength at 3.9 μm, and two IR detectors. Based on Redial Basic Function (RBF) artificial neural network, the measuring model of IR CO 2 analyzer is established with a high accuracy. A dynamic compensation filter is effectively designed to improve the dynamic characteristic of the IR CO 2 analyzer without gas pump. The IR CO 2 analyzer possesses the advantages of high accuracy and mechanical reliability with small volume, lightweight, and low-power consumption. Therefore, it can be used in such relevant fields as environmental protection, processing control, chemical analysis, medical diagnosis, and space environmental and control systems.

  2. Modeling of NO{sub x} absorption into nitric acid solutions containing hydrogen peroxide

    SciTech Connect

    Thomas, D.; Vanderschuren, J.

    1997-08-01

    A mathematical model was developed for the isothermal absorption of nitrogen oxides into nitric acid solutions containing hydrogen peroxide. This model, based on the two-film theory of absorption with chemical reactions, includes diffusive transport and equilibrium between species in the gas phase and simultaneous absorption of the NO{sub x} components with fast irreversible reactions in the liquid phase. Kinetic parameters relative to the absorption of the different NO{sub x} species were determined at increasing acidities and for a low concentration of H{sub 2}O{sub 2} from test runs performed in a small packed column at 20 C and atmospheric pressure for various NO{sub x} partial pressures up to 500 Pa and the whole range of NO{sub x} oxidation ratios. Only the parameter relative to trivalent NO{sub x} was found to increase with the HNO{sub 3} molarity, the other ones remaining constant. Interpretation of the experimental results according to the model showed that the hydrolysis is the main controlling step for tetravalent nitrogen oxides and that among the trivalent components nitrous acid is likely to be a major transporting species.

  3. [Removal of CO2 from simulated flue gas of power plants by membrane-based gas absorption processes].

    PubMed

    Yang, Ming-Fen; Fang, Meng-Xiang; Zhang, Wei-Feng; Wang, Shu-Yuan; Xu, Zhi-Kang; Luo, Zhong-Yang; Cen, Ke-Fa

    2005-07-01

    Three typical absorbents such as aqueous of aminoacetic acid potassium (AAAP), monoethanolamine (MEA) and methyldiethanolamine(MDEA) are selected to investigate the performance of CO2 separation from flue gas via membrane contactors made of hydrophobic hollow fiber polypropylene porous membrane. Impacts of absorbents, concentrations and flow rates of feeding gas and absorbent solution, cyclic loading of CO2 on the removal rate and the mass transfer velocity of CO2 are discussed. The results demonstrate that the mass transfer velocity was 7.1 mol x (m2 x s)(-1) for 1 mol x L(-1) MEA with flow rate of 0.1 m x s(-1) and flue gas with that of 0.211 m x s(-1). For 1 mol L(-1) AAAP with flow rate of 0.05 m x s(-1) and flue gas of 0.211 m x s(-1), CO2 removal rate (eta) was 93.2 % and eta was 98% for 4 mol x L(-1) AAAP under the same conditions. AAAP being absorbent, eta was higher than 90% in a wider range of concentrations of CO2. It indicates that membrane-based absorption process is a widely-applied and promising way of CO2 removal from flue gas of power plants, which not only appropriates for CO2 removal of flue gas of widely-used PF and NGCC, but also for that of flue gas of IGCC can be utilized widely in future. PMID:16212162

  4. [Removal of CO2 from simulated flue gas of power plants by membrane-based gas absorption processes].

    PubMed

    Yang, Ming-Fen; Fang, Meng-Xiang; Zhang, Wei-Feng; Wang, Shu-Yuan; Xu, Zhi-Kang; Luo, Zhong-Yang; Cen, Ke-Fa

    2005-07-01

    Three typical absorbents such as aqueous of aminoacetic acid potassium (AAAP), monoethanolamine (MEA) and methyldiethanolamine(MDEA) are selected to investigate the performance of CO2 separation from flue gas via membrane contactors made of hydrophobic hollow fiber polypropylene porous membrane. Impacts of absorbents, concentrations and flow rates of feeding gas and absorbent solution, cyclic loading of CO2 on the removal rate and the mass transfer velocity of CO2 are discussed. The results demonstrate that the mass transfer velocity was 7.1 mol x (m2 x s)(-1) for 1 mol x L(-1) MEA with flow rate of 0.1 m x s(-1) and flue gas with that of 0.211 m x s(-1). For 1 mol L(-1) AAAP with flow rate of 0.05 m x s(-1) and flue gas of 0.211 m x s(-1), CO2 removal rate (eta) was 93.2 % and eta was 98% for 4 mol x L(-1) AAAP under the same conditions. AAAP being absorbent, eta was higher than 90% in a wider range of concentrations of CO2. It indicates that membrane-based absorption process is a widely-applied and promising way of CO2 removal from flue gas of power plants, which not only appropriates for CO2 removal of flue gas of widely-used PF and NGCC, but also for that of flue gas of IGCC can be utilized widely in future.

  5. J/{psi} absorption in a multicomponent hadron gas

    SciTech Connect

    Prorok, D.; Turko, L.; Blaschke, D.

    2008-08-29

    A model for anomalous J/{psi} suppression in high energy heavy ion collisions is presented. As the additional suppression mechanism beyond standard nuclear absorption inelastic J/{psi} scattering with hadronic matter is considered. Hadronic matter is modeled as an evolving multi-component gas of point-like non-interacting particles (MCHG). Estimates for the sound velocity of the MCHG are given and the equation of state is compared with Lattice QCD data in the vicinity of the deconfinement phase transition. The approximate cooling pattern caused by longitudinal expansion is presented. It is shown that under these conditions the resulting J/{psi} suppression pattern agrees well with NA38 and NA50 data.

  6. Novel carbon dioxide gas sensor based on infrared absorption

    NASA Astrophysics Data System (ADS)

    Zhang, Guangjun; Lui, Junfang; Yuan, Mei

    2000-08-01

    The feasibility of sensing carbon dioxide with a IR single- beam optical structure is studied, and a novel carbon dioxide gas sensor based on IR absorption is achieved. Applying the Lambert-Beer law and some key techniques such as current stabilization for IR source, using a high-quality IR detector, and data compensation for the influences of ambience temperature and atmosphere total pressure, the sensor can measure carbon dioxide with high precision and efficiency. The mathematical models for providing temperature and pressure compensation for the sensor are established. Moreover the solutions to the models are proposed. Both the models and the solutions to the models are verified via experiments. The sensor possesses the advantages of small volume, light weight, low power consumption, and high reliability. Therefore it can be used in many associated fields, such as environmental protection, processing control, chemical analysis, medical diagnosis, and space environmental and control systems.

  7. Effects of chenodeoxycholic acid and deoxycholic acid on cholesterol absorption and metabolism in humans.

    PubMed

    Wang, Yanwen; Jones, Peter J H; Woollett, Laura A; Buckley, Donna D; Yao, Lihang; Granholm, Norman A; Tolley, Elizabeth A; Heubi, James E

    2006-07-01

    Quantitative and qualitative differences in intralumenal bile acids may affect cholesterol absorption and metabolism. To test this hypothesis, 2 cross-over outpatient studies were conducted in adults with apo-A IV 1/1 or apo-E 3/3 genotypes. Study 1 included 11 subjects 24 to 37 years of age, taking 15 mg/kg/day chenodeoxycholic acid (CDCA) or no bile acid for 20 days while being fed a controlled diet. Study 2 included 9 adults 25 to 38 years of age, taking 15 mg/kg/day deoxycholic acid (DCA) or no bile acid, following the same experimental design and procedures as study 1. CDCA had no effect on plasma lipid concentrations, whereas DCA decreased (P < 0.05) plasma high-density lipoprotein (HDL)-cholesterol and tended to decrease (P = 0.15) low-density lipoprotein (LDL)-cholesterol. CDCA treatment enriched (P < 0.0001) bile with CDCA and increased cholesterol concentration in micelles, whereas meal-stimulated bile acid concentrations were decreased. DCA treatment enriched (P < 0.0001) bile with DCA and tended to increase intralumenal cholesterol solubilized in micelles (P = 0.06). No changes were found in cholesterol absorption, free cholesterol fractional synthetic rate (FSR), or 3-hydroxy-3 methylglutaryl (HMG) CoA reductase and LDL receptor messenger ribonucleic acid (mRNA) levels after CDCA treatment. DCA supplementation tended to decrease cholesterol absorption and reciprocally increase FSR and HMG CoA reductase and LDL receptor mRNA levels. Results of these 2 studies suggest that the solubilization of cholesterol in the intestinal micelles is not a rate-limiting step for its absorption.

  8. Hydroxycitric acid delays intestinal glucose absorption in rats.

    PubMed

    Wielinga, Peter Y; Wachters-Hagedoorn, Renate E; Bouter, Brenda; van Dijk, Theo H; Stellaard, Frans; Nieuwenhuizen, Arie G; Verkade, Henkjan J; Scheurink, Anton J W

    2005-06-01

    In this study, we investigated in rats if hydroxycitric acid (HCA) reduces the postprandial glucose response by affecting gastric emptying or intestinal glucose absorption. We compared the effect of regulator HCA (310 mg/kg) and vehicle (control) on the glucose response after an intragastric or intraduodenal glucose load to investigate the role of altered gastric emptying. Steele's one-compartment model was used to investigate the effect of HCA on systemic glucose appearance after an intraduodenal glucose load, using [U-(13)C]-labeled glucose and d-[6,6-(2)H(2)]-labeled glucose. Because an effect on postabsorptive glucose clearance could not be excluded, the effect of HCA on the appearance of enterally administered glucose in small intestinal tissue, liver, and portal and systemic circulation was determined by [U-(14)C]glucose infusion. Data show that HCA treatment delays the intestinal absorption of enterally administered glucose at the level of the small intestinal mucosa in rats. HCA strongly attenuated postprandial blood glucose levels after both intragastric (P < 0.01) and intraduodenal (P < 0.001) glucose administration, excluding a major effect of HCA on gastric emptying. HCA delayed the systemic appearance of exogenous glucose but did not affect the total fraction of glucose absorbed over the study period of 150 min. HCA treatment decreased concentrations of [U-(14)C]glucose in small intestinal tissue at 15 min after [U-(14)C]glucose administration (P < 0.05), in accordance with the concept that HCA delays the enteral absorption of glucose. These data support a possible role for HCA as food supplement in lowering postprandial glucose profiles. PMID:15604199

  9. Effects of glucose and ascorbic acid on absorption and first pass metabolism of isoniazid in rats.

    PubMed

    Matsuki, Y; Katakuse, Y; Matsuura, H; Kiwada, H; Goromaru, T

    1991-02-01

    We examined the effect of glucose (Glu) and ascorbic acid (AA) on absorption and metabolism of isoniazid (INAH). After p.o. administration of INAH with or without Glu or AA, plasma concentration and urinary excretion of INAH and its metabolites, acetyl INAH (AcINAH), acetyl hydrazine (AcHy) and hydrazine (Hy), were determined by means of gas chromatography-mass spectrometry using stable isotope labeled compounds as internal standard. The combined administration of INAH with Glu or AA led to a significant decrease in the excretion of INAH and Hy, and a significant increase in the excretion of AcINAH and AcHy. The absorption amount of INAH was reduced to about one-half by the addition of Glu and the absorption rate of INAH markedly decreased in the case of co-administration of AA. Comparing the oral case with the results of i.v. administration, Glu and AA only affect the absorption process containing the first pass metabolism of INAH.

  10. Destruction of acid gas emissions

    SciTech Connect

    Mathur, M.P.; Fu, Yuan C.; Ekmann, J.M.; Boyle, J.M.

    1990-12-31

    A method of destroying NO{sub x} and SO{sub x} in a combustion gas is disclosed. The method includes generating active species by treating stable molecules in a high temperature plasma. Ammonia, methane, steam, hydrogen, nitrogen or a combustion of these gases can be selected as the stable molecules. The gases are subjected to plasma conditions sufficient to create free radicals, ions or excited atoms such as N, NH, NH{sub 2}, OH, CH and/or CH{sub 2}. These active species are injected into a combustion gas at a location of sufficiently high temperature to maintain the species in active state and permit them to react with NO{sub x} and SO{sub x}. Typically the injection is made into the immediate post-combustion gases at temperatures of 475--950{degrees}C. 1 fig.

  11. Destruction of acid gas emissions

    DOEpatents

    Mathur, Mahendra P.; Fu, Yuan C.; Ekmann, James M.; Boyle, John M.

    1991-01-01

    A method of destroying NO.sub.x and SO.sub.2 in a combustion gas in disclosed. The method includes generating active species by treating stable moleucles in a high temperature plasma. Ammonia, methane, steam, hydrogen, nitrogen or a combination of these gases can be selected as the stable molecules. The gases are subjected to plasma conditions sufficient to create free radicals, ions or excited atoms such as N, NH, NH.sub.2, OH.sup.-, CH and/or CH.sub.2. These active species are injected into a combustion gas at a location of sufficiently high temperature to maintain the species in active state and permit them to react with NO.sub.x and SO.sub.2. Typically the injection is made into the immediate post-combustion gases at temperatures of 475.degree.-950.degree. C.

  12. Absorption cross section for the 5νOH stretch of acetic acid and peracetic acid

    NASA Astrophysics Data System (ADS)

    Begashaw, I. G.; Collingwood, M.; Bililign, S.

    2009-12-01

    We report measurements of the absorption cross sections for the vibrational O-H stretch (5νOH) overtone transitions in glacial acetic acid and peracetic acid. The photochemistry that results from overtone excitation has been shown to lead to OH radical production in molecules containing O-H (HNO3, H2O2). In addition the overtone excitation has been observed to result in light initiated chemical reaction. A Cavity ring-down spectroscopy (CRDS) instrument comprising of an Nd:YAG pumped dye laser and 620nm high reflectivity mirrors (R=99.995%) was used to measure the cross sections. The dye laser wavelength was calibrated using water vapor spectrum and the HITRAN 2008 database. The instrument’s minimum detectable absorption is αmin =4.5 *10-9cm-1 Hz-1/2 at 2σ noise level near the peak of the absorption feature. This measurement is the first for acetic acid at this excitation level. Preliminary results for acetic acid show the peak occurs near 615nm. Procedures for separating the monomer and dimer contribution will be presented. We would like to acknowledge support from NSF award #0803016 and NOAA-EPP award #NA06OAR4810187.

  13. CO2 Capture from Flue Gas by Phase Transitional Absorption

    SciTech Connect

    Liang Hu

    2009-06-30

    A novel absorption process called Phase Transitional Absorption was invented. What is the Phase Transitional Absorption? Phase Transitional Absorption is a two or multi phase absorption system, CO{sub 2} rich phase and CO{sub 2} lean phase. During Absorption, CO{sub 2} is accumulated in CO{sub 2} rich phase. After separating the two phases, CO{sub 2} rich phase is forward to regeneration. After regeneration, the regenerated CO{sub 2} rich phase combines CO{sub 2} lean phase to form absorbent again to complete the cycle. The advantage for Phase Transitional Absorption is obvious, significantly saving on regeneration energy. Because CO{sub 2} lean phase was separated before regeneration, only CO{sub 2} rich phase was forward to regeneration. The absorption system we developed has the features of high absorption rate, high loading and working capacity, low corrosion, low regeneration heat, no toxic to environment, etc. The process evaluation shows that our process is able to save 80% energy cost by comparing with MEA process.

  14. The Clean Coal Technology Program 100 MWe demonstration of gas suspension absorption for flue gas desulfurization

    SciTech Connect

    Hsu, F.E.; Hedenhag, J.G.; Marchant, S.K.; Pukanic, G.W.; Norwood, V.M.; Burnett, T.A.

    1997-12-31

    AirPol Inc., with the cooperation of the Tennessee Valley Authority (TVA) under a Cooperative Agreement with the United States Department of Energy, installed and tested a 10 MWe Gas Suspension Absorption (GSA) Demonstration system at TVA`s Shawnee Fossil Plant near Paducah, Kentucky. This low-cost retrofit project demonstrated that the GSA system can remove more than 90% of the sulfur dioxide from high-sulfur coal-fired flue gas, while achieving a relatively high utilization of reagent lime. This paper presents a detailed technical description of the Clean Coal Technology demonstration project. Test results and data analysis from the preliminary testing, factorial tests, air toxics texts, 28-day continuous demonstration run of GSA/electrostatic precipitator (ESP), and 14-day continuous demonstration run of GSA/pulse jet baghouse (PJBH) are also discussed within this paper.

  15. Distribution, synthesis, and absorption of kynurenic acid in plants.

    PubMed

    Turski, Michal P; Turska, Monika; Zgrajka, Wojciech; Bartnik, Magdalena; Kocki, Tomasz; Turski, Waldemar A

    2011-05-01

    Kynurenic acid (KYNA) is an endogenous antagonist of the ionotropic glutamate receptors and the α7 nicotinic acetylcholine receptor as well as an agonist of the G-protein-coupled receptor GPR35. In this study, KYNA distribution and synthesis in plants as well as its absorption was researched. KYNA level was determined by means of the high-performance liquid chromatography with fluorescence detection. KYNA was found in leaves, flowers, and roots of tested medicinal herbs: dandelion (Taraxacum officinale), common nettle (Urtica dioica), and greater celandine (Chelidoniummajus). The highest concentration of this compound was detected in leaves of dandelion--a mean value of 0.49 µg/g wet weight. It was shown that KYNA can be synthesized enzymatically in plants from its precursor, L-kynurenine, or absorbed by plants from the soil. Finally, the content of KYNA was investigated in 21 herbal tablets, herbal tea, herbs in sachets, and single herbs in bags. The highest content of KYNA in a maximum daily dose of herbal medicines appeared in St. John's wort--33.75 µg (tablets) or 32.60 µg (sachets). The pharmacological properties of KYNA and its presence in high concentrations in medicinal herbs may suggest that it possesses therapeutic potential, especially in the digestive system and should be considered a new valuable dietary supplement. PMID:21157681

  16. Magnesia spray absorption for the removal of SO/sub 2/ from flue gas

    SciTech Connect

    Felker, L.K.; Egan, B.Z.

    1982-01-01

    Regenerable methods of flue gas desulfurization, which recycle the absorbent and diminish the waste disposal problem, have been developed. One method which substitutes a magnesia (MgO) slurry for the lime/limestone slurry has been under development for several years and commercial systems have been operated. The basic chemical reactions occurring in a magnesia scrubber are known. The magnesia is hydrated in the slurry and the SO/sub 2/ in the flue gas reacts to form magnesium sulfite. The magnesium sulfite formed can be dried and subsequently decomposed at higher temperature to yield MgO for recycle to the scrubber, and more concentrated SO/sub 2/ for sulfuric acid or sulfur production. Thus, the magnesia FGD system both reduces scrubber sludge disposal and provides for a saleable by-product. Significant advantages could be realized by combining spray absorption technology with the regenerable magnesia flue gas desulfurization system as shown on a simplified flow chart. The reduction in equipment, operation, and maintenance requirements, combined with a saleable by-product could result in significant savings in both capital and operating costs. Bench-scale experiments indicate that it is technically feasible to combine spray absorption with magnesia scrubbing to remove greater than 90% of the SO/sub 2/ from gas streams containing 0.1 to 1.0% SO/sub 2/ under controlled conditions. The resulting product will probably be a mixture of MgSO/sub 3/.3H/sub 2/O and MgSO/sub 3/.6H/sub 2/O, with the trihydrate predominating at higher temperatures and lower humidity, while the hexahydrate would be favored at lower temperatures and higher humidity. As previously demonstrated and verified by thermogravimetric analysis, the magnesium sulfite hydrates can be dehydrated and subsequently decomposed thermally to give MgO for recycle to the scrubber and a concentrated SO/sub 2/ gas stream which can be used for sulfuric acid or sulfur production.

  17. Software system for numerical simulation of minor gas constituents lidar sensing by the differential absorption method

    NASA Astrophysics Data System (ADS)

    Bochkovskii, D. A.; Matvienko, G. G.; Romanovskii, O. A.; Kharchenko, O. V.; Yakovlev, S. V.

    2014-11-01

    This paper reports the development of LIDAS (LIdar Differential Absorption Sensing) program-algorithmic system for laser remote sensing of minor gas constituents (MGCs) of the atmosphere by the differential absorption method (DIAL). The system includes modules for the search of wavelengths informative for laser gas analysis by the differential absorption method, for numerical simulation of lidar sensing of atmospheric MGCs, and for calculation of errors of methodical, atmospheric, spectral, and instrumental origin. Lidar sensing of gas constituents by the differential absorption method as applied to problems of sensing of atmospheric MGCs is simulated numerically. Results of experiments on remote sensing of gas constituents of the atmosphere with the use of RO laser are presented.

  18. Gas concentration measurement by optical similitude absorption spectroscopy: methodology and experimental demonstration.

    PubMed

    Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Miffre, Alain; Rairoux, Patrick

    2016-06-13

    We propose a new methodology to measure gas concentration by light-absorption spectroscopy when the light source spectrum is larger than the spectral width of one or several molecular gas absorption lines. We named it optical similitude absorption spectroscopy (OSAS), as the gas concentration is derived from a similitude between the light source and the target gas spectra. The main OSAS-novelty lies in the development of a robust inversion methodology, based on the Newton-Raphson algorithm, which allows retrieving the target gas concentration from spectrally-integrated differential light-absorption measurements. As a proof, OSAS is applied in laboratory to the 2ν3 methane absorption band at 1.66 µm with uncertainties revealed by the Allan variance. OSAS has also been applied to non-dispersive infra-red and the optical correlation spectroscopy arrangements. This all-optics gas concentration retrieval does not require the use of a gas calibration cell and opens new tracks to atmospheric gas pollution and greenhouse gases sources monitoring.

  19. Gas concentration measurement by optical similitude absorption spectroscopy: methodology and experimental demonstration.

    PubMed

    Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Miffre, Alain; Rairoux, Patrick

    2016-06-13

    We propose a new methodology to measure gas concentration by light-absorption spectroscopy when the light source spectrum is larger than the spectral width of one or several molecular gas absorption lines. We named it optical similitude absorption spectroscopy (OSAS), as the gas concentration is derived from a similitude between the light source and the target gas spectra. The main OSAS-novelty lies in the development of a robust inversion methodology, based on the Newton-Raphson algorithm, which allows retrieving the target gas concentration from spectrally-integrated differential light-absorption measurements. As a proof, OSAS is applied in laboratory to the 2ν3 methane absorption band at 1.66 µm with uncertainties revealed by the Allan variance. OSAS has also been applied to non-dispersive infra-red and the optical correlation spectroscopy arrangements. This all-optics gas concentration retrieval does not require the use of a gas calibration cell and opens new tracks to atmospheric gas pollution and greenhouse gases sources monitoring. PMID:27410280

  20. Current advances of integrated processes combining chemical absorption and biological reduction for NO x removal from flue gas.

    PubMed

    Zhang, Shihan; Chen, Han; Xia, Yinfeng; Liu, Nan; Lu, Bi-Hong; Li, Wei

    2014-10-01

    Anthropogenic nitrogen oxides (NO x ) emitted from the fossil-fuel-fired power plants cause adverse environmental issues such as acid rain, urban ozone smoke, and photochemical smog. A novel chemical absorption-biological reduction (CABR) integrated process under development is regarded as a promising alternative to the conventional selective catalytic reduction processes for NO x removal from the flue gas because it is economic and environmentally friendly. CABR process employs ferrous ethylenediaminetetraacetate [Fe(II)EDTA] as a solvent to absorb the NO x following microbial denitrification of NO x to harmless nitrogen gas. Meanwhile, the absorbent Fe(II)EDTA is biologically regenerated to sustain the adequate NO x removal. Compared with conventional denitrification process, CABR not only enhances the mass transfer of NO from gas to liquid phase but also minimize the impact of oxygen on the microorganisms. This review provides the current advances of the development of the CABR process for NO x removal from the flue gas.

  1. Gas phase acidity of substituted benzenes

    NASA Astrophysics Data System (ADS)

    Bouchoux, Guy

    2011-04-01

    Deprotonation thermochemistry of benzene derivatives C 6H 5X (X = H, F, Cl, OH, NH 2, CN, CHO, NO 2, CH 3, C 2H 5, CHCH 2, CCH) has been examined at the G3B3 level of theory. For X = F, Cl, CN, CHO and NO 2, the most favorable deprotonation site is the ortho position of the phenyl ring. This regio-specificity is directly related to the field/inductive effect of the substituent. G3B3 gas phase acidities, Δ acidH° and Δ acidG°, compare within less than 4 kJ mol -1 with experimental data. A noticeable exception is nitrobenzene for which tabulated acidity appear to be underestimated by ca. 120 kJ mol -1.

  2. Combined mass and heat transfer during nonisothermal absorption in gas-liquid slug flow

    SciTech Connect

    Elperin, T.; Fominykh, A.

    1995-03-01

    A model of combined mass and heat transfer during nonisothermal gas absorption from a slug rising, in a channel filled with liquid is suggested. The expressions for coefficients of heat and mass transfer from a single slug are derived in the approximation of the thin concentration and heat boundary layers in a liquid phase. Under the assumptions of a perfect mixing of the dissolved -as in liquid plugs and uniform temperature distribution in liquid plugs, recurrent relations for the dissolved gas concentration and temperature in the n-th liquid plug and mass and heat fluxes from the n-th gas slug are derived. The total mass and heat fluxes in a gas-liquid slug flow are determined. In the limiting case of absorption without heat release the derived formulas recover the expressions for isothermal absorption in a gas-liquid slug flow.

  3. [Study on transdermal absorption of borneol-salicylic acid eutectic mixture].

    PubMed

    Cui, D X; Sugibayashi, K; Morimoto, Y; Li, F L

    1989-01-01

    Borneol is an organic drug having property to form eutectic mixture with salicylic acid. We compared the transdermal absorption rate of borneol alone with that of borneol-salicylic acid eutectic mixture in hairless rats. The results showed that the borneol-salicylic acid eutectic mixture can evidently increase the absorption rate of borneol and provided a method for manufacturing borneol preparation which can easily be absorbed transdermally.

  4. Heat pipe temperature control utilizing a soluble gas absorption reservior

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1976-01-01

    A new gas-controlled heat pipe design is described which uses a liquid matrix reservior, or sponge, to replace the standard gas reservior. Reservior volume may be reduced by a factor of five to ten for certain gas-liquid combinations, while retaining the same level of temperature control. Experiments with ammonia, butane, and carbon dioxide control gases with methanol working fluid are discussed.

  5. Kennard-Stepanov relation connecting absorption and emission spectra in an atomic gas.

    PubMed

    Moroshkin, Peter; Weller, Lars; Sass, Anne; Klaers, Jan; Weitz, Martin

    2014-08-01

    The Kennard-Stepanov relation describes a thermodynamic, Boltzmann-type scaling between the absorption and emission spectral profiles of an absorber, which applies in many liquid state dye solutions as well as in semiconductor systems. Here we examine absorption and emission spectra of rubidium atoms in a dense argon buffer gas environment. We demonstrate that the Kennard-Stepanov relation between absorption and emission spectra is well fulfilled in the collisionally broadened atomic gas system. Our experimental findings are supported by a simple theoretical model.

  6. Oleic acid increases intestinal absorption of the BCRP/ABCG2 substrate, mitoxantrone, in mice.

    PubMed

    Aspenström-Fagerlund, Bitte; Tallkvist, Jonas; Ilbäck, Nils-Gunnar; Glynn, Anders W

    2015-09-01

    The efflux transporter breast cancer resistance protein (BCRP/ABCG2) decrease intestinal absorption of many food toxicants. Oleic acid increases absorption of the specific BCRP substrate mitoxantrone (MXR), and also BCRP gene expression in human intestinal Caco-2 cells, suggesting that oleic acid affect the BCRP function. Here, we investigated the effect of oleic acid on intestinal absorption of MXR in mice. Mice were orally dosed with 2.4g oleic acid/kg b.w. and 1mg MXR/kg b.w., and sacrificed 30, 60, 90 or 120min after exposure, or were exposed to 0.6, 2.4 or 4.8g oleic acid/kg b.w. and 1mg MXR/kg b.w., and sacrificed 90min after exposure. Mice were also treated with Ko143 together with MXR and sacrificed after 60min, as a positive control of BCRP-mediated effects on MXR absorption. Absorption of MXR increased after exposure to oleic acid at all doses, and also after exposure to Ko143. Intestinal BCRP gene expression tended to increase 120min after oleic acid exposure. Our results in mice demonstrate that oleic acid decreases BCRP-mediated efflux, causing increased intestinal MXR absorption in mice. These findings may have implications in humans, concomitantly exposed to oleic acid and food contaminants that, similarly as MXR, are substrates of BCRP.

  7. Process for defoaming acid gas scrubbing solutions and defoaming solutions

    SciTech Connect

    Ernst, E.R.; Robbins, M.L.

    1980-06-17

    The foam in acid gas scrubbing solutions created during an acid gas scrubbing process is reduced or eliminated by the addition of certain polyoxyethylene polyoxypropylene block copolymers as defoaming agents. The defoaming agents are particularly effective when the acid gas scrubbing solution contains an amine having a large hydrophobic moiety.

  8. Trace gas absorption spectroscopy using laser difference-frequency spectrometer for environmental application

    NASA Technical Reports Server (NTRS)

    Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.

    2001-01-01

    A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.

  9. [Gas Concentration Measurement Based on the Integral Value of Absorptance Spectrum].

    PubMed

    Liu, Hui-jun; Tao, Shao-hua; Yang, Bing-chu; Deng, Hong-gui

    2015-12-01

    The absorptance spectrum of a gas is the basis for the qualitative and quantitative analysis of the gas by the law of the Lambert-Beer. The integral value of the absorptance spectrum is an important parameter to describe the characteristics of the gas absorption. Based on the measured absorptance spectrum of a gas, we collected the required data from the database of HIT-RAN, and chose one of the spectral lines and calculated the integral value of the absorptance spectrum in the frequency domain, and then substituted the integral value into Lambert-Beer's law to obtain the concentration of the detected gas. By calculating the integral value of the absorptance spectrum we can avoid the more complicated calculation of the spectral line function and a series of standard gases for calibration, so the gas concentration measurement will be simpler and faster. We studied the changing trends of the integral values of the absorptance spectrums versus temperature. Since temperature variation would cause the corresponding variation in pressure, we studied the changing trends of the integral values of the absorptance spectrums versus both the pressure not changed with temperature and changed with the temperature variation. Based on the two cases, we found that the integral values of the absorptance spectrums both would firstly increase, then decrease, and finally stabilize with temperature increasing, but the ranges of specific changing trend were different in the two cases. In the experiments, we found that the relative errors of the integrated values of the absorptance spectrum were much higher than 1% and still increased with temperature when we only considered the change of temperature and completely ignored the pressure affected by the temperature variation, and the relative errors of the integrated values of the absorptance spectrum were almost constant at about only 1% when we considered that the pressure were affected by the temperature variation. As the integral value

  10. [Gas Concentration Measurement Based on the Integral Value of Absorptance Spectrum].

    PubMed

    Liu, Hui-jun; Tao, Shao-hua; Yang, Bing-chu; Deng, Hong-gui

    2015-12-01

    The absorptance spectrum of a gas is the basis for the qualitative and quantitative analysis of the gas by the law of the Lambert-Beer. The integral value of the absorptance spectrum is an important parameter to describe the characteristics of the gas absorption. Based on the measured absorptance spectrum of a gas, we collected the required data from the database of HIT-RAN, and chose one of the spectral lines and calculated the integral value of the absorptance spectrum in the frequency domain, and then substituted the integral value into Lambert-Beer's law to obtain the concentration of the detected gas. By calculating the integral value of the absorptance spectrum we can avoid the more complicated calculation of the spectral line function and a series of standard gases for calibration, so the gas concentration measurement will be simpler and faster. We studied the changing trends of the integral values of the absorptance spectrums versus temperature. Since temperature variation would cause the corresponding variation in pressure, we studied the changing trends of the integral values of the absorptance spectrums versus both the pressure not changed with temperature and changed with the temperature variation. Based on the two cases, we found that the integral values of the absorptance spectrums both would firstly increase, then decrease, and finally stabilize with temperature increasing, but the ranges of specific changing trend were different in the two cases. In the experiments, we found that the relative errors of the integrated values of the absorptance spectrum were much higher than 1% and still increased with temperature when we only considered the change of temperature and completely ignored the pressure affected by the temperature variation, and the relative errors of the integrated values of the absorptance spectrum were almost constant at about only 1% when we considered that the pressure were affected by the temperature variation. As the integral value

  11. Optical and ultraviolet absorption studies of cool gas in the Milky Way halo

    NASA Technical Reports Server (NTRS)

    Danly, L.

    1990-01-01

    This paper focuses on the contributions from absorption techniques to the knowledge of halo gas with temperatures below 10 to the 5th K. The results from observations of the neutral and singly ionized species on the nature of cool gas in the halo, its structure and its kinematics are presented. An overview of past and optical and ultraviolet observational studies of halo gas is included.

  12. Near-UV absorption cross sections and trans/cis equilibrium of nitrous acid

    SciTech Connect

    Bongartz, A.; Kames, J.; Welter, F.; Schurath, U. )

    1991-02-07

    The A {sup 1}A{double prime} {l arrow} X {sup 1}A{prime} absorption spectrum of gaseous nitrous acid has been measured in the 300-400-nm range. Absolute cross sections were determined by a combination of gas-phase and wet chemical analysis. The cross sections of prominent bands are 25% larger than the recommended values of Stockwell and Calvert. The influence of spectral resolution on absolute and differential absorption cross sections was also investigated. The integrated band area of the n{pi}* transition yields an oscillator strength f = (8.90 {plus minus} 0.36) {times} 10{sup {minus}4}, less than the reported liquid phase value of 2 {times} 10{sup {minus}3}. The equilibrium constant K = p{sub trans}/p{sub cis}, based on the assumption that the oscillator strength of the n{pi}* transition is the same for both rotamers, was found to be 3.25 {plus minus} 0.30 at 277 K. This yields an energy difference {Delta}E between trans- and cis-HONO of -2,700 J mol{sup {minus}1} in the electronic ground state, and -6,000 J mol{sup {minus}1} in the excited state.

  13. Identification of Gas Phase PAHs in Absorption Towards Protostellar Sources

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Temi, Pasquale; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The infrared emission bands (also known as the UIR bands.) have recently been observed in absorption at 3.25 micrometers in the ices surrounding a few proto-stellar objects at 11.2 micrometers in MonR2, and at 6.2 micrometers towards two sources near the galactic center. The UIR bands have been observed in emission for many years, but identifying these bands has proven to be both difficult and contentious as no one has yet found a single material that provides a good match to the features. However, most investigators agree that some form of carbon-based material with aromatic bonds is the most likely candidate, and many arguments favor free molecules (polycyclic aromatic hydrocarbons, PAHs) as the carriers of at least the narrow emission bands. Since the emission arises not from a single molecule but from a family of molecules, identifying which PAHs are contributing to the infrared emission bands is difficult. The identification is further complicated by the fact that the emission at short wavelengths is dominated by small molecules while at long wavelengths it is dominated by large molecules. Thus, for example, the emission at 3.3 micrometers is from a different mix of molecules than those which produce the 11.2 micrometer band. To complicate matters further, the molecular mix includes both neutral and ionic species. In absorption, the same mixture of molecules contributes at all wavelengths and the molecules should be neutral, potentially simplifying comparisons with lab data. Also, absorption strengths measured in the lab are directly applicable to interstellar absorption bands without the need to model an emission spectrum of an unknown mixture of ionized and neutral PAHs. In this paper we show that a mixture of argon matrix isolated PAH molecules can reproduce the 3.25 micrometers absorption band seen in the ISO SWS spectra of four embedded Infrared sources, S140 IRS1, AFGL 2591, Elias 29, and AFGL 989. In section 2 we describe the ISO SWS data analysis and

  14. Capture and release of acid-gasses with acid-gas binding organic compounds

    DOEpatents

    Heldebrant, David J; Yonker, Clement R; Koech, Phillip K

    2015-03-17

    A system and method for acid-gas capture wherein organic acid-gas capture materials form hetero-atom analogs of alkyl-carbonate when contacted with an acid gas. These organic-acid gas capture materials include combinations of a weak acid and a base, or zwitterionic liquids. This invention allows for reversible acid-gas binding to these organic binding materials thus allowing for the capture and release of one or more acid gases. These acid-gas binding organic compounds can be regenerated to release the captured acid gasses and enable these organic acid-gas binding materials to be reused. This enables transport of the liquid capture compounds and the release of the acid gases from the organic liquid with significant energy savings compared to current aqueous systems.

  15. Absorption and metabolism of chlorogenic acids in cultured gastric epithelial monolayers.

    PubMed

    Farrell, Tracy L; Dew, Tristan P; Poquet, Laure; Hanson, Peter; Williamson, Gary

    2011-12-01

    Gastric absorption of feruloylquinic acid and di-O-caffeoylquinic acid analogs has never been investigated despite their potential contribution to the proposed beneficial health effects leading to reduced risk of type 2 diabetes. Using a cultured gastric epithelial model, with an acidic apical pH, the relative permeability coefficients (P(app)) and metabolic fate of a series of chlorogenic acids (CGAs) were investigated. Mechanistic studies were performed in the apical to basal direction and demonstrated differential rates of absorption for different CGA subgroups. For the first time, we show intact absorption of feruloylquinic acids and caffeoylquinic acid lactones across the gastric epithelium (P(app) ∼ 0.2 cm/s). Transport seemed to be mainly by passive diffusion, because good linearity was observed over the incubation period and test concentrations, and we speculate that a potential carrier-mediated component may be involved in uptake of certain 4-acyl CGA isomers. In contrast, absorption of intact di-O-caffeoylquinic acids was rapid (P(app) ∼ 2-10 cm/s) but nonlinear with respect to time and concentration dependence, which was potentially limited by interaction with an efflux transporter and/or pH gradient dependence. For the first time, methylation is shown in gastric mucosa. Furthermore, isoferulic acid, dimethoxycinnamic acid, and ferulic acid were identified as novel gastric metabolites of CGA biotransformation. We propose that the stomach is the first location for the release of hydroxycinnamic acids, which could explain their early detection after coffee consumption.

  16. Ultrafast carrier dynamics of titanic acid nanotubes investigated by transient absorption spectroscopy.

    PubMed

    Wang, Li; Zhao, Hui; Pan, Lin Yun; Weng, Yu Xiang; Nakato, Yoshihiro; Tamai, Naoto

    2010-12-01

    Carrier dynamics of titanic acid nanotubes (phase of H2Ti2O5.H2O) deposited on a quartz plate was examined by visible/near-IR transient absorption spectroscopy with an ultraviolet excitation. The carrier dynamics of titanic acid nanotubes follows the fast trapping process which attributed to the intrinsic tubular structure, the relaxation of shallow trapped carriers and the recombination as a second-order kinetic process. Transient absorption of titanic acid nanotubes was dominated by the absorption of surface-trapped holes in visible region around 500 nm, which was proved by the faster decay dynamics in the presence of polyvinyl alcohol as a hole-scavenger. However, the slow relaxation of free carriers was much more pronounced in the TiO2 single crystals, as compared with the transient absorption spectra of titanic acid nanotubes under the similar excitation.

  17. X(3872) production and absorption in a hot hadron gas

    NASA Astrophysics Data System (ADS)

    Abreu, L. M.; Khemchandani, K. P.; Torres, A. Martínez; Navarra, F. S.; Nielsen, M.

    2016-10-01

    We calculate the time evolution of the X (3872) abundance in the hot hadron gas produced in the late stage of heavy ion collisions. We use effective field Lagrangians to obtain the production and dissociation cross sections of X (3872). In this evaluation we include diagrams involving the anomalous couplings πD*Dbar* and XDbar*D* and also the couplings of the X (3872) with charged D and D* mesons. With these new terms the X (3872) interaction cross sections are much larger than those found in previous works. Using these cross sections as input in rate equations, we conclude that during the expansion and cooling of the hadronic gas, the number of X (3872), originally produced at the end of the mixed QGP/hadron gas phase, is reduced by a factor of 4.

  18. Absorption of thiamine and nicotinic acid in the rat intestine during fasting and immobilization stress

    NASA Technical Reports Server (NTRS)

    Kirilyuk, O. G.; Khmelevskiy, Y. V.

    1980-01-01

    By perfusion of isolated sections of intestine with a solution containing thiamine at a concentration of 3.1 micromole, it was established that thiamine absorption in animals fasted for 72 hours decreased by 28 percent, whereas absorption increased by 12 percent in rats after 24 hour immobilization. After immobilization, absorption of label in the intestinal mucosa increased. Na K ATPase activity in the intestinal mucosa decreased by 10 percent during fasting, and it increased with immobilization of the animals. Activity of Na K ATPase in the intestinal mucosa cells determined the absorption rate of thiamine and nicotinic acid at the level of vitamin transport through the plasma membranes of the enterocytes.

  19. Effect of L-lactic acid on calcium absorption in rats fed omeprazole.

    PubMed

    Chonan, O; Takahashi, R; Yasui, H; Watanuki, M

    1998-06-01

    We examined the effect of L-lactic acid on calcium absorption in male Wistar rats made achlorhydric by dietary omeprazole, a proton pump inhibitor. The dietary omeprazole intake (0.03 g/100 g of diet) increased the gastric pH and decreased the apparent calcium absorption ratio. Dietary famotidine (0.03 g/100 g of diet), an H2-receptor antagonist, and lower doses of omeprazole (0.005 or 0.01 g/100 g of diet) did not affect the gastric pH or the calcium absorption. In a second experiment, dietary lactic acid (0.5, 1.0, or 2.5 g/100 g of diet) increased the intestinal calcium absorption dose dependently in rats fed omeprazole (0.03 g/100 g of diet). The gastric pH was significantly decreased only in the rats fed higher doses of lactic acid (1.0, or 2.5 g/100 g of diet). In a third experiment, a dietary sour milk beverage containing lactic acid (0.5 g/100 g of diet) increased the intestinal calcium absorption, but did not affect the gastric pH in rats fed omeprazole (0.03 g/100 g of diet). Although the significance of gastric acid in terms of overall calcium absorption is not known, under the present experimental conditions, the inhibition of gastric acid secretion by dietary omeprazole decreased the apparent calcium absorption, and the dietary lactic acid prevented the calcium absorption in rats fed omeprazole.

  20. Estimation of background gas concentration from differential absorption lidar measurements

    NASA Astrophysics Data System (ADS)

    Harris, Peter; Smith, Nadia; Livina, Valerie; Gardiner, Tom; Robinson, Rod; Innocenti, Fabrizio

    2016-10-01

    Approaches are considered to estimate the background concentration level of a target species in the atmosphere from an analysis of the measured data provided by the National Physical Laboratory's differential absorption lidar (DIAL) system. The estimation of the background concentration level is necessary for an accurate quantification of the concentration level of the target species within a plume, which is the quantity of interest. The focus of the paper is on methodologies for estimating the background concentration level and, in particular, contrasting the assumptions about the functional and statistical models that underpin those methodologies. An approach is described to characterise the noise in the recorded signals, which is necessary for a reliable estimate of the background concentration level. Results for measured data provided by a field measurement are presented, and ideas for future work are discussed.

  1. Foreign-gas broadening of nitrous oxide absorption lines.

    NASA Technical Reports Server (NTRS)

    Tubbs, L. D.; Williams, D.

    1972-01-01

    We have measured the foreign-gas broadening coefficients for collisional broadening of lines in the nu-3 fundamental of N2O by He, Ne, Ar, Kr, Xe, H2, D2, and CH4. These coefficients, which give the ratio of the line-broadening ability of these gases to the line-broadening ability of N2, can be used with recent measurements and calculations of N2 broadening to obtain optical collision cross sections.

  2. Role of thermal diffusion in cw IR laser absorption in gas mixtures.

    PubMed

    Maleissye, J T; Lempereur, F

    1982-01-15

    The absorption of radiation from a cw CO(2) laser by a mixture of absorbing SF(6) and transparent buffer gases has been measured as a function of pressure of added transparent gas (C(4)H(10)). The results are analyzed in terms of thermal diffusion of excited SF6 molecules out of the irradiation zone. In the 60-400-Torr pressure range, thermal difusion depletes the concentration of SF(6) so that the overall absorption is decreased and competes with the various channels of collisional relaxation which enhance absorption. An approximate semiempirical expression is used to determine the transient perturbation of concentration which occurs inside the laser beam.

  3. Statistical modeling of ammonia absorption in an acid spray scrubber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of acid spray wet scrubbers for recovering ammonia (NH3) emissions is promising due to its high NH3 removal efficiency, simplicity in design, and minimal pressure drop contribution on fans. An experimental study was conducted to evaluate the performance of a lab-optimised acid spray scrubber...

  4. Absorption of acetylsalicylic acid from the rat nasal cavity.

    PubMed

    Hussain, A A; Iseki, K; Kagoshima, M; Dittert, L W

    1992-04-01

    The fate of salicylate in the plasma of rats was followed after nasal, intravenous, and oral administration of 2.0-mg doses of aspirin. Aspirin was well absorbed following nasal administration of a neutralized, nonirritating solution containing triethanolamine. The rate of absorption was slower than that of other nasally administered drugs, such as propranolol or progesterone. The bioavailability of aspirin following nasal administration was 100%, whereas the oral bioavailability was only 58.8% at the dose studied. PMID:1501071

  5. Rapid pressure swing absorption cleanup of post-shift reactor synthesis gas

    SciTech Connect

    Sirkar, K.K.; Majumdar, S.; Bhaumik, S.

    1991-10-31

    This investigation is concerned with the separation of gas mixtures using a novel concept of rapid pressure swing absorption (RAPSAB) of gas in a stationary absorbent liquid through gas-liquid interfaces immobilized in the pore mouths of hydrophobic microporous membranes. The process is implemented in a module well-packed with hydrophobic microporous hollow fiber membranes. The specific objectives are (1) to fiber membranes. The specific objectives are (1) to develop a theoretical model which will provide guidelines for selecting an efficient RAPSAB process cycle which includes desorption; (2) to demonstrate the concept experimentally with a simple gas mixture (e.g., Co{sub 2}-N{sub 2}) and a simple absorbent liquid such as water, and (3) to extend the concept to reactive absorbent liquids for the separation of CO, Co{sub 2} from the post-shift reactor synthesis gas. A simplified theoretical description of the novel rapid pressure swing absorption process has been developed. The absorption part of the pressure swing absorption cycle has been predicted for CO{sub 2}-N{sub 2}-water system. Numerical simulation of the model is being carried out for different operating conditions for selecting an optimum pressure swing cycle.

  6. Using Willie's Acid-Base Box for Blood Gas Analysis

    ERIC Educational Resources Information Center

    Dietz, John R.

    2011-01-01

    In this article, the author describes a method developed by Dr. William T. Lipscomb for teaching blood gas analysis of acid-base status and provides three examples using Willie's acid-base box. Willie's acid-base box is constructed using three of the parameters of standard arterial blood gas analysis: (1) pH; (2) bicarbonate; and (3) CO[subscript…

  7. Exocomet Circumstellar Fe I Absorption in the Beta Pictoris Gas Disk

    NASA Astrophysics Data System (ADS)

    Welsh, Barry Y.; Montgomery, Sharon

    2016-06-01

    We present an archival study of 27 circumstellar Fe i (λ3860 Å) and Ca ii (λ3933 Å) absorption spectra of the β Pictoris system recorded over the 2003-2014 timeframe. We have detected several transient absorption events at velocities red-shifted by >+20 km s-1 from the main central absorption line profiles of both Fe i and Ca ii. Such events can be attributed to the presence of kilometer-sized infalling evaporating bodies (i.e., exocomets) on their grazing approach to the central star. The majority of the transient absorption events detected in the Fe i profiles occur at velocities in the +35 to +50 km s-1 range. This is consistent with that found for Ca ii gas that has been sublimated from the “D” family of β Pictoris exocomets recently found by Kiefer et al. These spectra also reveal that the strength of the main component of the Fe i absorption line at V helio ˜ +21 km s-1 has weakened by ˜30% since 2011. Since neutrals, when ionized, are the main source of the ion-braking mechanism of Brandeker for circumstellar gas in the β Pictoris system, then this may have some measurable effect on the size and/or location of the main circumstellar gas disk. Finally we note that we have failed to detect any circumstellar Fe i absorption in our previously reported spectra of similar gas disks surrounding 28 young A-type stars. Thus, it would appear that the β Pictoris is anomalous with regards to circumstellar Fe i absorption.

  8. The Milky Way's Hot Gas Kinematics: Signatures in Current and Future OVII Absorption Line Observations

    NASA Astrophysics Data System (ADS)

    Miller, Matthew J.; Hodges-Kluck, Edmund J.; Bregman, Joel N.

    2016-02-01

    Detections of z ≈ 0 oxygen absorption and emission lines indicate the Milky Way hosts a hot (˜ {10}6 K), low-density plasma extending ≳ 50 {{kpc}} into the Mily Way’s halo. Current X-ray telescopes cannot resolve the line profiles, but the variation of their strengths on the sky constrains the radial gas distribution. Interpreting the O vii Kα absorption line strengths has several complications, including optical depth and line of sight velocity effects. Here, we present model absorption line profiles accounting for both of these effects to show the lines can exhibit asymmetric structures and be broader than the intrinsic Doppler width. The line profiles encode the hot gas rotation curve, the net inflow or outflow of hot gas, and the hot gas angular momentum profile. We show how line of sight velocity effects impact the conversion between equivalent width and the column density, and provide modified curves of growth accounting for these effects. As an example, we analyze the LMC sight line pulsar dispersion measure and O vii equivalent width to show the average gas metallicity is ≳ 0.6{Z}⊙ and b ≳ 100 km s-1. Determining these properties offers valuable insights into the dynamical state of the Milky Way’s hot gas, and improves the line strength interpretation. We discuss future strategies to observe these effects with an instrument that has a spectral resolution of about 3000, a goal that is technically possible today.

  9. Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide

    NASA Astrophysics Data System (ADS)

    Kiatkamjornwong, Suda; Chomsaksakul, Wararuk; Sonsuk, Manit

    2000-10-01

    Graft copolymerizations of acrylamide and/or acrylic acid onto cassava starch by a simultaneous irradiation technique using gamma-rays as the initiator were studied with regard to various parameters of importance: the monomer-to-cassava starch ratio, total dose (kGy), dose rate (kGy h -1), acrylamide-to-acrylic acid ratio, and the addition of nitric acid and maleic acid as the additives. Grafting parameters were determined in relation to the water absorption of the saponified graft copolymer. The water absorption of the saponified graft copolymer in salt and buffer solutions of different ionic strengths was also measured, from which the superabsorbent properties are found to be pH sensitive. The starch graft copolymers of acrylamide and acrylic acid give higher water absorption than the starch graft copolymers of either acrylamide or acrylic acid alone. The porosity of the saponified starch graft copolymers prepared by the acrylamide/acrylic acid ratios of 70:30 and 50:50 was much higher than the porosity of copolymers in terms of fine networks. Ionic strength and multi-oxidation states of the saline and buffer solutions markedly decreased the water absorption of the saponified cassava starch grafted superabsorbent polymers.

  10. Coronal gas in the Galaxy. II - A statistical analysis of O VI absorptions

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1978-01-01

    This paper deals with general inferences about the low-density phase of interstellar gas having temperatures well above 200,000 K (the 'coronal gas') which can be drawn from O VI absorption data for 72 stars. Attention is given to the behavior of radial velocities, possible evidence for circumstellar O VI, the space distribution of the O VI gas, crowding of normal interstellar gas, and temperature distributions for the coronal gas. A model is adopted in which the coronal gas is contained within randomly distributed and nonoverlapping parcels, each with a size, pressure, and internal temperature distribution that do not vary markedly from one unit to the next. It is shown that the one-dimensional velocity dispersion for O VI regions (26 km/s) is substantially higher than the value for ordinary interstellar clouds (6.4 km/s).

  11. The Use of an Air-Natural Gas Flame in Atomic Absorption.

    ERIC Educational Resources Information Center

    Melucci, Robert C.

    1983-01-01

    Points out that excellent results are obtained using an air-natural gas flame in atomic absorption experiments rather than using an air-acetylene flame. Good results are obtained for alkali metals, copper, cadmium, and zinc but not for the alkaline earths since they form refractory oxides. (Author/JN)

  12. Ascorbic acid absorption in Crohn's disease. Studies using L-(carboxyl-/sup 14/C)ascorbic acid

    SciTech Connect

    Pettit, S.H.; Shaffer, J.L.; Johns, C.W.; Bennett, R.J.; Irving, M.H.

    1989-04-01

    Total body pool and intestinal absorption of ascorbic acid were studied in 12 patients undergoing operation for Crohn's disease (six with fistulae and six without) and in six control patients undergoing operation for reasons other than Crohn's disease. L-(carboxyl-/sup 14/C)Ascorbic acid, 0.19-0.40 megabecquerels (MBq), was given orally. After a period of equilibration, the labeled ascorbic acid was flushed out of the patient's body tissues using large doses of unlabeled ascorbic acid. Intestinal absorption of ascorbic acid, assessed from the total cumulative urinary /sup 14/C recovery, was found to be similar in patients with fistulizing Crohn's disease (73.9 +/- 8.45%), those without fistulas (72.8 +/- 11.53%), and in controls (80.3 +/- 8.11%). Total body pools of ascorbic acid, calculated using the plasma /sup 14/C decay curves, were similar in patients with Crohn's disease with fistulas (17.1 +/- 5.91 mg/kg), patients without fistulas (9.6 +/- 3.58 mg/kg), and in controls (13.3 +/- 4.28 mg/kg). The results indicate that ascorbic acid absorption is normal in patients with both fistulizing and nonfistulizing Crohn's disease. The results suggest that routine supplements of vitamin C are not necessary unless oral ascorbic acid intake is low.

  13. Gas adsorption/absorption heat switch, phase 1

    NASA Technical Reports Server (NTRS)

    Chan, C. K.

    1987-01-01

    The service life and/or reliability of far-infrared sensors on surveillance satellites is presently limited by the cryocooler. The life and/or reliability, however, can be extended by using redundant cryocoolers. To reduce parasitic heat leak, each stage of the inactive redundant cryocooler must be thermally isolated from the optical system, while each stage of the active cryocooler must be thermally connected to the system. The thermal break or the thermal contact can be controlled by heat switches. Among different physical mechanisms for heat switching, mechanically activated heat switches tend to have low reliability and, furthermore, require a large contact force. Magnetoresistive heat switches are, except at very low temperatures, of very low efficiency. Heat switches operated by the heat pipe principle usually require a long response time. A sealed gas gap heat switch operated by an adsorption pump has no mechanical motion and should provide the reliability and long lifetime required in long-term space missions. Another potential application of a heat switch is the thermal isolation of the optical plane during decontamination.

  14. Integrated CO2, Humidity and Thermal Control by Membrane Gas Absorption, Results of Breadboard Testing

    NASA Astrophysics Data System (ADS)

    van Driel, C.; Eckhard, F.; Feron, P. H. M.; Savage, C. J.

    2002-01-01

    Membrane gas absorption for the removal of CO2 in manned spacecrafts is subject of study by Stork and TNO for many years. The system is based on the combination of membrane separation and gas absorption. The air is fed along one side of a hydrophobic membrane and diffuses through the membrane after which the CO2 is selectively absorbed by an absorption liquid. Great advantage is that the system not only can be used to remove the carbon dioxide but also can be applied to control the relative humidity and temperature of the cabin atmosphere. Absorption of moisture and heat is achieved by cooling the absorption liquid below the dewpoint temperature of the gas stream. In the studies, the Crew Transfer Vehicle is used as a basis. Compared to the planned h/w for this vehicle, an air conditioning system, consisting of a condensing heat exchanger, LiOH cartridges to remove the carbon dioxide and a water evaporator assembly, the MGA/MGD has a large volume and a small mass advantage. The absorption liquid circulates through the spacecraft thermal control loop, replacing the coolant water. This set-up has two advantages. At first, by increasing the absorption liquid temperature the CO2 desorption rate in the desorber is favoured and secondly, should additional heat rejection aside from the basic heat rejection system be required (off nominal case), this can be established by dumping extra water via the desorption module, using the associated heat of vaporisation. Control of the water desorption rate is achieved by adjusting the permeate pressure with the throttle valve. In the nominal case the water absorption rate is equal to the desorption rate. The CO2 absorption capacity of the absorption liquid is restored in a desorption unit. This process is based on pervaporation. On one side of the membrane the absorption liquid is fed, on the other side a reduced pressure is maintained. Due to this pressure difference a driving force for water vapour and CO2 is created. The water

  15. Demonstration of an on-site PAFC cogeneration system with waste heat utilization by a new gas absorption chiller

    SciTech Connect

    Urata, Tatsuo

    1996-12-31

    Analysis and cost reduction of fuel cells is being promoted to achieve commercial on-site phosphoric acid fuel cells (on-site FC). However, for such cells to be effectively utilized, a cogeneration system designed to use the heat generated must be developed at low cost. Room heating and hot-water supply are the most simple and efficient uses of the waste heat of fuel cells. However, due to the short room-heating period of about 4 months in most areas in Japan, the sites having demand for waste heat of fuel cells throughout the year will be limited to hotels and hospitals Tokyo Gas has therefore been developing an on-site FC and the technology to utilize tile waste heat of fuel cells for room cooling by means of an absorption refrigerator. The paper describes the results of fuel cell cogeneration tests conducted on a double effect gas absorption chiller heater with auxiliary waste heat recovery (WGAR) that Tokyo Gas developed in its Energy Technology Research Laboratory.

  16. THE STRUCTURE OF THE ULTRAVIOLET ABSORPTION SPECTRA OF CERTAIN PROTEINS AND AMINO ACIDS

    PubMed Central

    Coulter, Calvin B.; Stone, Florence M.; Kabat, Elvin A.

    1936-01-01

    1. The absorption spectra of a number of proteins in the region 2500 to 3000 A. have been found to comprise from six to nine narrow bands. In consequence of variation in the relative intensity of these bands from protein to protein, the absorption curve has a characteristic configuration for each protein. 2. These bands correspond closely in position with the narrow bands which appear in the absorption spectra of tryptophan, tyrosin, and phenylalanine. Tryptophan and tyrosin each present three bands, phenylalanine shows nine. 3. The bands in the proteins are accordingly attributed to these amino acids. In the proteins the bands are displaced from the positions which they occupy in the uncombined amino acids, in most instances, by 10 to 35 A. toward longer wavelengths. 4. The absorption spectrum of Pneumococcus Type I antibody resembles that of normal pseudoglobulin but shows characteristic differences. PMID:19872958

  17. Gas absorption and dust extinction towards the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Hasenberger, Birgit; Forbrich, Jan; Alves, João; Wolk, Scott J.; Meingast, Stefan; Getman, Konstantin V.; Pillitteri, Ignazio

    2016-08-01

    Aims: We characterise the relation between the gas and dust content of the interstellar medium towards young stellar objects in the Orion Nebula Cluster. Methods: X-ray observations provide estimates of the absorbing equivalent hydrogen column density NH based on spectral fits. Near-infrared extinction values are calculated from intrinsic and observed colour magnitudes (J - H) and (H - Ks) as given by the VISTA Orion A survey. A linear fit of the correlation between column density and extinction values AV yields an estimate of the NH/AV ratio. We investigate systematic uncertainties of the results by describing and (if possible) quantifying the influence of circumstellar material and the adopted extinction law, X-ray models, and elemental abundances on the NH/AV ratio. Results: Assuming a Galactic extinction law with RV = 3.1 and solar abundances by Anders & Grevesse (1989, Geochim. Cosmochim. Acta, 53, 197), we deduce an NH/AV ratio of (1.39 ± 0.14) × 1021 cm-2 mag-1 for Class III sources in the Orion Nebula Cluster where the given error does not include systematic uncertainties. This ratio is consistent with similar studies in other star-forming regions and approximately 31% lower than the Galactic value. We find no obvious trends in the spatial distribution of NH/AV ratios. Changes in the assumed extinction law and elemental abundances are demonstrated to have a relevant impact on deduced AV and NH values, respectively. Large systematic uncertainties associated with metal abundances in the Orion Nebula Cluster represent the primary limitation for the deduction of a definitive NH/AV ratio and the physical interpretation of these results. The catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A7

  18. Effect of Acid-Base Equilibrium on Absorption Spectra of Humic acid in the Presence of Copper Ions

    NASA Astrophysics Data System (ADS)

    Lavrik, N. L.; Mulloev, N. U.

    2014-03-01

    The reaction between humic acid (HA, sample IHSS) and a metal ion (Cu2+) that was manifested as absorption bands in the range 210-350 nm was recorded using absorption spectroscopy. The reaction was found to be more effective as the pH increased. These data were interpreted in the framework of generally accepted concepts about the influence of acid-base equilibrium on the dissociation of salts, according to which increasing the solution pH increases the concentration of HA anions. It was suggested that [HA-Cu2+] complexes formed.

  19. Sigmoid Correlations for Gas Solubility and Enthalpy Change of Chemical Absorption of CO2

    DOE PAGES

    Huang, Kuan; Wu, You-Ting; Dai, Sheng

    2015-10-01

    Knowledge of the relationship between gas solubility and enthalpy change of chemical absorption of CO2 is very important for exploring energy-efficient absorbents for CO2 capture. To this end, equations that can directly correlate gas solubility with absorption enthalpy were derived through combining the van’t Hoff equation with the reaction equilibrium thermodynamic model (RETM). In this study, two typical reaction mechanisms for chemical absorption of CO2 (1:1 and 1:2) were considered for RETM. The variations of gas solubility with enthalpy change were found to be distinctively sigmoid functions, regardless of the investigated temperature and pressure or assumed reaction forms between CO2more » and the absorbent molecule. Theoretically calculated variation curves of gas solubility vs enthalpy change agreed well with experimental results reported in literature. Also, on the basis of the trade-off relationship between gas solubility and enthalpy change, criterions for evaluating energy-efficient chemical absorbents for CO2 capture were proposed.« less

  20. Resolving Galactic Feedback and Gas Accretion in NaI Absorption with MaNGA

    NASA Astrophysics Data System (ADS)

    Rubin, Kate; MaNGA Team

    2016-01-01

    Current models of galaxy formation require that the buildup of galactic stellar mass proceeds at a rate much slower than the rate at which gas is accreted onto dark matter halos. The implementation of winds in these models, however, has been primarily via ad hoc prescriptions, as the relationship between outflow morphology and kinematics and star formation activity is not well understood. In addition, empirical evidence for the inflow of gas onto star-forming galaxies has remained elusive. To address these issues, we analyze absorption line profiles for the NaI λλ5890, 5896 transition in spatially-resolved spectroscopy of nearby galaxies observed in the MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) survey. We identify outflows of cool (T~102 K) gas via the blueshift of the absorption lines. Initial results suggest that in systems in which outflows are detected, the equivalent width of the flow varies significantly over the surface of the galaxy, revealing a changing flow covering fraction/velocity within individual objects. We also measure the incidence of redshifted NaI absorption in this sample for constraints on the frequency and cross section of cool gas accretion. This analysis offers unique insight into the morphology, surface density, and velocity of cool inflow and outflow around nearby galaxies. Accurate estimates of these quantities are fundamental to understanding the role of gas flows in regulating galaxy growth.

  1. Methylmercury determination in biological samples using electrothermal atomic absorption spectrometry after acid leaching extraction.

    PubMed

    Saber-Tehrani, Mohammad; Hashemi-Moghaddam, Hamid; Givianrad, Mohammad Hadi; Abroomand-Azar, Parviz

    2006-11-01

    An efficient and sensitive method for the determination of methylmercury in biological samples was developed based on acid leaching extraction of methylmercury into toluene. Methylmercury in the organic phase was determined by electrothermal atomic absorption spectrometry (ETAAS). The methylmercury signal was enhanced and the reproducibility increased by formation of certain complexes and addition of Pd-DDC modifier. The complex of methylmercury with DDC produced the optimum analytical signal in terms of sensitivity and reproducibility compared to complexes with dithizone, cysteine, 1,10-phenanthroline, and diethyldithiocarbamate. Method performance was optimized by modifying parameters such as temperature of mineralization, atomization, and gas flow rate. The limit of detection for methylmercury determination was 0.015 mug g(-1) and the RSD of the whole procedure was 12% for human teeth samples (n=5) and 15.8% for hair samples (n=5). The method's accuracy was investigated by using NIES-13 and by spiking the samples with different amounts of methylmercury. The results were in good agreement with the certified values and the recoveries were 88-95%. PMID:16896613

  2. Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps

    DOEpatents

    Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.

    2012-08-21

    A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.

  3. Enhanced absorption of bumetanide from suppositories containing weak acids in rabbits.

    PubMed

    Yagi, N; Kenmotsu, H; Shimode, Y; Oda, K; Sekikawa, H; Takada, M

    1993-03-01

    The in vitro release of bumetanide from macrogol suppositories with and without weak acids (citric acid and tartaric acid) was studied. The release of bumetanide was not affected when weak acids were added to the suppositories. The in vivo rectal absorption of bumetanide from the suppositories was evaluated in rabbits. The bioavailability (absolute), expressed as the ratio of the area under the plasma concentration-time curve (AUC) following oral administration of bumetanide, was 39% that of intravenous administration. The value in bumetanide following rectal administration of the suppositories without weak acids was 32%. Each absolute bioavailability following rectal administration of the suppositories with 5% citric acid and 5% tartaric acid was 52% and 42%, respectively. These values were significantly larger than those of rectal administration of the suppositories without weak acids. Particularly, the bioavailability following rectal administration of the suppositories containing citric acid was significantly different from even those of oral administration. The absorption rate constants of bumetanide from the suppositories with weak acids were significantly larger than those following oral administration. These results indicated the possibilities of the rectal route of administration of drugs which are weak organic acids and show low or variable bioavailability following oral administration. PMID:8364470

  4. Influence of dietary amino acids on lead absorption

    SciTech Connect

    Quarterman, J.; Humphries, W.R.; Morrison, J.N.; Morrison, E.

    1980-10-01

    Dietary supplements of about 5 g/kg of a number of amino acids increased tissue lead concentrations in newly weaned rats but decreased them in older rats. The retention of both oral and intraperitoneal lead was affected. The uptake of /sup 203/Pb by tissues was reduced when methionine was given in the diet over a period of 5 weeks or when it or ethionine was given by mouth 24 h before the activity was measured. In the liver the fraction of the total activity found in the nuclei and mitochondria was increased by methionine, but in the kidney only the fraction found in nuclei was increased.

  5. Intestinal perfusion studies in tropical sprue. 1. Amino acid and dipeptide absorption.

    PubMed Central

    Hellier, M D; Radhakrishnan, A N; Ganapathy, V; Mathan, V I; Baker, S J

    1976-01-01

    Intestinal absorption of glycine 20 mmol/1, glycyl-glycine 10 mmol/1 plus L-leucine 10 mmol/1, and glycyl-L-leucine 10 mmol/1 has been studied by intestinal perfusion in 11 patients with tropical sprue and 10 control subjects. The patients with sprue had a significant reduction in the rate of absorption of glycine from a 20 mmol/1 solution, but there were no significant differences in the absorption of the other substances. The failure to demonstrate any difference in the absorption of these substances is probably related to their low concentration relative to the maximum absorptive capacity of the intestine. In both groups of subjects the kinetic advantage of glycyl-glycine absorption as compared with glycine absorption was maintained. When the dipeptides were perfused, free amino acids appeared in the perfusate presumably by "back diffusion" from the mucosal cells. In the case of glycyl-L-leucine considerably more glycine and leucine were found in the perfusate in patients with sprue than in the control subjects. There was no correlation between peptide absorption and the concentration of total glycly-glycine hydrolase and glycyl-L-leucine hydrolase, measured as combined brush border and cytosol enzymes. The concentrations of these enzymes were similar in both groups of subjects. PMID:964683

  6. MAPPING THE DYNAMICS OF COLD GAS AROUND SGR A* THROUGH 21 cm ABSORPTION

    SciTech Connect

    Christian, Pierre; Loeb, Abraham

    2015-11-20

    The presence of a circumnuclear stellar disk around Sgr A* and megamaser systems near other black holes indicates that dense neutral disks can be found in galactic nuclei. We show that depending on their inclination angle, optical depth, and spin temperature, these disks could be observed spectroscopically through 21 cm absorption. Related spectroscopic observations of Sgr A* can determine its HI disk parameters and the possible presence of gaps in the disk. Clumps of dense gas similar to the G2 could could also be detected in 21 cm absorption against Sgr A* radio emission.

  7. Transporter-targeted cholic acid-cytarabine conjugates for improved oral absorption.

    PubMed

    Zhang, Dong; Li, Dongpo; Shang, Lei; He, Zhonggui; Sun, Jin

    2016-09-10

    Cytarabine has a poor oral absorption due to its rapid deamination and poor membrane permeability. Bile acid transporters are highly expressed both in enterocytes and hepatocytes and to increase the oral bioavailability and investigate the potential application of cytarabine for liver cancers, a transporter- recognizing prodrug strategy was applied to design and synthesize four conjugates of cytarabine with cholic acid (CA), chenodeoxycholic acid (CDCA), hyodeoxycholic acid (HDCA) and ursodeoxycholic acid (UDCA). The anticancer activities against HepG2 cells were evaluated by MTT assay and the role of bile acid transporters during cellular transport was investigated in a competitive inhibition experiment. The in vitro and in vivo metabolic stabilities of these conjugates were studied in rat plasma and liver homogenates. Finally, an oral bioavailability study was conducted in rats. All the cholic acid-cytarabine conjugates (40μM) showed potent antiproliferative activities (up to 70%) against HepG2 cells after incubation for 48h. The addition of bile acids could markedly reduce the antitumor activities of these conjugates. The N(4)-ursodeoxycholic acid conjugate of cytarabine (compound 5) exhibited optimal stability (t1/2=90min) in vitro and a 3.9-fold prolonged half-life of cytarabine in vivo. More importantly, compound 5 increased the oral bioavailability 2-fold compared with cytarabine. The results of the present study suggest that the prodrug strategy based on the bile acid transporters is suitable for improving the oral absorption and the clinical application of cytarabine. PMID:27377011

  8. Gas in Scattering Media Absorption Spectroscopy -- Laser Spectroscopy in Unconventional Environments

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2010-02-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. The GASMAS technique combines narrow-band diode-laser spectroscopy with optical propagation in diffuse media. Whereas solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures. These are typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. Molecular oxygen and water vapor have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied, demonstrating new possibilities for characterization and diagnostics. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen gas, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the human sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen, while breathing normally through the mouth. A clinical study comprising 40 patients has been concluded.

  9. Optical Absorption, Stability and Structure of NpO2+ Complexeswith Dicarboxylic Acids

    SciTech Connect

    Guoxin Tian; Linfeng Rao

    2006-01-04

    Complexation of NpO2+ with oxalic acid (OX),2,2'-oxydiacetic acid (ODA), 2,2'-iminodiacetic acid (IDA) and 2,2'-thiodiacetic acid (TDA), has been studied using spectrophotometry in1 M NaClO4. Both the position and the intensity of the absorption band of NpO2+ at 980 nm are affected by the formation of NpO2+/dicarboxylate complexes, providing useful information on the complexation strength, the coordination mode and the structure of the complexes.

  10. Gas chromatography-vacuum ultraviolet spectroscopy for analysis of fatty acid methyl esters.

    PubMed

    Fan, Hui; Smuts, Jonathan; Bai, Ling; Walsh, Phillip; Armstrong, Daniel W; Schug, Kevin A

    2016-03-01

    A new vacuum ultraviolet (VUV) detector for gas chromatography was recently developed and applied to fatty acid methyl ester (FAME) analysis. VUV detection features full spectral acquisition in a wavelength range of 115-240nm, where virtually all chemical species absorb. VUV absorption spectra of 37 FAMEs, including saturated, monounsaturated, and polyunsaturated types were recorded. Unsaturated FAMEs show significantly different gas phase absorption profiles than saturated ones, and these classes can be easily distinguished with the VUV detector. Another advantage includes differentiating cis/trans-isomeric FAMEs (e.g. oleic acid methyl ester and linoleic acid methyl ester isomers) and the ability to use VUV data analysis software for deconvolution of co-eluting signals. As a universal detector, VUV also provides high specificity, sensitivity, and a fast data acquisition rate, making it a powerful tool for fatty acid screening when combined with gas chromatography. The fatty acid profile of several food oil samples (olive, canola, vegetable, corn, sunflower and peanut oils) were analyzed in this study to demonstrate applicability to real world samples.

  11. The absorption of acetylsalicylic acid from the stomach in relation to intragastric pH.

    PubMed

    Dotevall, G; Ekenved, G

    1976-01-01

    A comparative study on the effect of a buffered (pH 6.5) and an unbuffered (pH 2.9) solution of acetylsalicylic acid (ASA) on gastric pH, gastric emptying, and gastric absorption of ASA was performed in 10 healthy volunteers. Gastric pH was recorded using radiotelemetry. Gastric emptying and gastric absorption was studied with an aspiration technique and phenol red as nonabsorbable marker. Administration of the unbuffered solution to the fasting subjects resulted in a gastric pH of about 2 and absorption of ASA from the stomach was found to occur. The buffered solution of ASA increased gastric pH to above 5 and gastric absorption of ASA was found to be significantly less than after the unbuffered solution. The buffered solution was emptied from the stomach more rapidly than the unbuffered one. PMID:12558

  12. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish.

    PubMed

    Semova, Ivana; Carten, Juliana D; Stombaugh, Jesse; Mackey, Lantz C; Knight, Rob; Farber, Steven A; Rawls, John F

    2012-09-13

    Regulation of intestinal dietary fat absorption is critical to maintaining energy balance. While intestinal microbiota clearly impact the host's energy balance, their role in intestinal absorption and extraintestinal metabolism of dietary fat is less clear. Using in vivo imaging of fluorescent fatty acid (FA) analogs delivered to gnotobiotic zebrafish hosts, we reveal that microbiota stimulate FA uptake and lipid droplet (LD) formation in the intestinal epithelium and liver. Microbiota increase epithelial LD number in a diet-dependent manner. The presence of food led to the intestinal enrichment of bacteria from the phylum Firmicutes. Diet-enriched Firmicutes and their products were sufficient to increase epithelial LD number, whereas LD size was increased by other bacterial types. Thus, different members of the intestinal microbiota promote FA absorption via distinct mechanisms. Diet-induced alterations in microbiota composition might influence fat absorption, providing mechanistic insight into how microbiota-diet interactions regulate host energy balance.

  13. Current advances of integrated processes combining chemical absorption and biological reduction for NO x removal from flue gas.

    PubMed

    Zhang, Shihan; Chen, Han; Xia, Yinfeng; Liu, Nan; Lu, Bi-Hong; Li, Wei

    2014-10-01

    Anthropogenic nitrogen oxides (NO x ) emitted from the fossil-fuel-fired power plants cause adverse environmental issues such as acid rain, urban ozone smoke, and photochemical smog. A novel chemical absorption-biological reduction (CABR) integrated process under development is regarded as a promising alternative to the conventional selective catalytic reduction processes for NO x removal from the flue gas because it is economic and environmentally friendly. CABR process employs ferrous ethylenediaminetetraacetate [Fe(II)EDTA] as a solvent to absorb the NO x following microbial denitrification of NO x to harmless nitrogen gas. Meanwhile, the absorbent Fe(II)EDTA is biologically regenerated to sustain the adequate NO x removal. Compared with conventional denitrification process, CABR not only enhances the mass transfer of NO from gas to liquid phase but also minimize the impact of oxygen on the microorganisms. This review provides the current advances of the development of the CABR process for NO x removal from the flue gas. PMID:25149446

  14. Exhaust gas monitoring based on absorption spectroscopy in the process industry

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Liu, Wen-qing; Zhang, Yu-jun; Shu, Xiao-wen; Kan, Rui-feng; Cui, Yi-ben; He, Ying; Xu, Zhen-yu; Geng, Hui; Liu, Jian-guo

    2009-07-01

    This non-invasive gas monitor for exhaust gas monitoring must has high reliability and requires little maintenance. Monitor for in-situ measurements using tunable diode laser absorption spectroscopy (TDLAS) in the near infrared, can meet these requirements. TDLAS has evolved over the past decade from a laboratory especially to an accepted, robust and reliable technology for trace gas sensing. With the features of tunability and narrow linewidth of the distributed feedback (DFB) diode laser and by precisely tuning the laser output wavelength to a single isolated absorption line of the gas, TDLAS technique can be utilized to measure gas concentration with high sensitivity. Typical applications for monitoring of H2S, NH3, HC1 and HF are described here together by wavelength modulation spectroscopy with second-harmonic(WMS-2F) detection. This paper will illustrate the problems related to on-line applications, in particular, the overfall effects, automatic light intensity correction, temperature correction, which impacted on absorption coefficient and give details of how effect of automatic correction is necessary. The system mainly includes optics and electronics, optical system mainly composed of fiber, fiber coupler and beam expander, the electron part has been placed in safe analysis room not together with the optical part. Laser merely passes through one-meter-long pipes by the fiber coupling technology, so the system itself has anti-explosion. The results of the system are also presented in the end, the system's response time is only 0.5s, and can be achieved below 1×10-5 the detection limit at the volume fraction, it can entirely replace the traditional methods of detection exhaust gas in the process industry.

  15. Acute Copper and Ascorbic Acid Supplementation Inhibits Non-heme Iron Absorption in Humans.

    PubMed

    Olivares, Manuel; Figueroa, Constanza; Pizarro, Fernando

    2016-08-01

    The objective of the study is to determine the effect of copper (Cu) plus the reducing agent ascorbic acid (AA) on the absorption of non-heme iron (Fe). Experimental study with block design in which each subject was his own control. After signing an informed consent, 14 adult women using an effective method of contraception and negative pregnancy test received 0.5 mg Fe, as ferrous sulfate, alone or with Cu, as copper sulfate, plus ascorbic acid (AA/Cu 2/1 molar ratio) at 4/1; 6/1 and 8/1 Cu/Fe molar ratios as an aqueous solution on days 1, 2, 14, and 15 of the study. Fe absorption was assessed by erythrocyte incorporation of iron radioisotopes (55)Fe and (59)Fe. Geometric mean (range ± SD) absorption of Fe at 4/1 and 6/1 Cu/Fe molar ratios (and AA/Cu 2/1 molar ratio) and Fe alone was 57.4 % (35.7-92.1 %), 64.2 % (45.8-89.9 %), and 38.8 % (20.4-73.8 %), respectively (ANOVA for repeated measures p < 0.001; post hoc test Scheffé, p < 0.05). This is attributable to the enhancing effect of AA on non-heme Fe absorption; however, Fe absorption at Cu/Fe 8/1 molar ratio was 47.3 % (27.7-80.8) (p = NS compared with Fe alone). It was expected that Fe absorption would have been equal or greater than at 4/1 and 6/1 molar ratios. Copper in the presence of ascorbic acid inhibits non-heme Fe absorption at Cu/Fe 8/1 molar ratio.

  16. Gas cell for in situ soft X-ray transmission-absorption spectroscopy of materials

    SciTech Connect

    Drisdell, W. S.; Kortright, J. B.

    2014-07-15

    A simple gas cell design, constructed primarily from commercially available components, enables in situ soft X-ray transmission-absorption spectroscopy of materials in contact with gas at ambient temperature. The cell has a minimum X-ray path length of 1 mm and can hold gas pressures up to ∼300 Torr, and could support higher pressures with simple modifications. The design enables cycling between vacuum and gas environments without interrupting the X-ray beam, and can be fully sealed to allow for measurements of air-sensitive samples. The cell can attach to the downstream port of any appropriate synchrotron beamline, and offers a robust and versatile method for in situ measurements of certain materials. The construction and operation of the cell are discussed, as well as sample preparation and proper spectral analysis, illustrated by examples of spectral measurements. Potential areas for improvement and modification for specialized applications are also mentioned.

  17. Measurement of nitrous acid (HONO) by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Yi, Hongming; Maamary, Rabih; Gao, Xiaoming; Sigrist, Markus W.; Fertein, Eric; Chen, Weidong

    2016-04-01

    Spectroscopic detection of short-lived gaseous nitrous acid (HONO) at 1254.85 cm-1 was realized by off-beam coupled quartz-enhanced photoacoustic spectroscopy (QEPAS) in conjunction with an external cavity quantum cascade lasers (EC-QCL). High sensitivity monitoring of HONO was performed within a very small gas-sample volume (of ~40 mm3) allowing a significant reduction (of about 4 orders of magnitude) of air sampling residence time which is highly desired for accurate quantification of chemically reactive short-lived species. Calibration of the developed QEPAS-based HONO sensor was carried out by means of lab-generated HONO samples whose concentrations were determined by simultaneous measurements of direct HONO absorption spectra in a 109.5 m multipass cell using a distributed feedback (DBF) QCL. A minimum detection limit (MDL @ SNR=1) of 66 ppbv HONO was achieved at 70 mbar using a laser output power of 50 mW and 1 s integration time, which corresponded to a normalized noise equivalent absorption coefficient of 3.6×10-8 cm-1.W/Hz1/2. This MDL was down to 7 ppbv at the optimal integration time of 150 s. The corresponding minimum detected absorption coefficient (SNR=1) is ~1.1×10-7 cm-1 (MDL: ~3 ppbv) in 1 s and ~1.1×10-8 cm-1 (MDL~330 pptv) in 150 s, respectively, with 1 W laser power. Acknowledgements The authors acknowledge financial supports from the CaPPA project (ANR-10-LABX-005) and the CPER CLIMIBIO program. References H. Yi, R. Maamary, X. Gao, M. W. Sigrist, E. Fertein, W. Chen, "Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy", Appl. Phys. Lett. 106 (2015) 101109

  18. Laser-absorption sensing of gas composition of products from coal gasification

    NASA Astrophysics Data System (ADS)

    Jeffries, Jay B.; Sur, Ritobrata; Sun, Kai; Hanson, Ronald K.

    2014-06-01

    A prototype in-situ laser-absorption sensor for the real-time composition measurement (CO, CH4, H2O and CO2) of synthesis gas products of coal gasification (called here syngas) was designed, tested in the laboratory, and demonstrated during field-measurement campaigns in a pilot-scale entrained flow gasifier at the University of Utah and in an engineering-scale, fluidized-bed transport gasifier at the National Carbon Capture Center (NCCC). The prototype design and operation were improved by the lessons learned from each field test. Laser-absorption measurements are problematic in syngas flows because efficient gasifiers operate at elevated pressures (10-50 atm) where absorption transitions are collision broadened and absorption transitions that are isolated at 1 atm become blended into complex features, and because syngas product streams can contain significant particulate, producing significant non-absorption scattering losses of the transmission of laser light. Thus, the prototype sensor used a new wavelength-scanned, wavelength-modulation spectroscopy strategy with 2f-detection and 1f-normalization (WMS-2f/1f) that can provide sensitive absorption measurements of species with spectra blended by collision broadening even in the presence of large non-absorption laser transmission losses (e.g., particulate scattering, beam steering, etc.). The design of the sensor for detection of CO, CH4, H2O and CO2 was optimized for the specific application of syngas monitoring at the output of large-scale gasifiers. Sensor strategies, results and lessons learned from these field measurement campaigns are discussed.

  19. Diode laser absorption sensors for gas-dynamic and combustion flows

    NASA Technical Reports Server (NTRS)

    Allen, M. G.

    1998-01-01

    Recent advances in room-temperature, near-IR and visible diode laser sources for tele-communication, high-speed computer networks, and optical data storage applications are enabling a new generation of gas-dynamic and combustion-flow sensors based on laser absorption spectroscopy. In addition to conventional species concentration and density measurements, spectroscopic techniques for temperature, velocity, pressure and mass flux have been demonstrated in laboratory, industrial and technical flows. Combined with fibreoptic distribution networks and ultrasensitive detection strategies, compact and portable sensors are now appearing for a variety of applications. In many cases, the superior spectroscopic quality of the new laser sources compared with earlier cryogenic, mid-IR devices is allowing increased sensitivity of trace species measurements, high-precision spectroscopy of major gas constituents, and stable, autonomous measurement systems. The purpose of this article is to review recent progress in this field and suggest likely directions for future research and development. The various laser-source technologies are briefly reviewed as they relate to sensor applications. Basic theory for laser absorption measurements of gas-dynamic properties is reviewed and special detection strategies for the weak near-IR and visible absorption spectra are described. Typical sensor configurations are described and compared for various application scenarios, ranging from laboratory research to automated field and airborne packages. Recent applications of gas-dynamic sensors for air flows and fluxes of trace atmospheric species are presented. Applications of gas-dynamic and combustion sensors to research and development of high-speed flows aeropropulsion engines, and combustion emissions monitoring are presented in detail, along with emerging flow control systems based on these new sensors. Finally, technology in nonlinear frequency conversion, UV laser materials, room

  20. Effects of Radiative Emission and Absorption on the Propagation and Extinction of Premixed Gas Flames

    NASA Technical Reports Server (NTRS)

    Ju, Yiguang; Masuya, Goro; Ronney, Paul D.

    1998-01-01

    Premixed gas flames in mixtures of CH4, O2, N2, and CO2 were studied numerically using detailed chemical and radiative emission-absorption models to establish the conditions for which radiatively induced extinction limits may exist independent of the system dimensions. It was found that reabsorption of emitted radiation led to substantially higher burning velocities and wider extinction limits than calculations using optically thin radiation models, particularly when CO2, a strong absorber, is present in the unburned gas, Two heat loss mechanisms that lead to flammability limits even with reabsorption were identified. One is that for dry hydrocarbon-air mixtures, because of the differences in the absorption spectra of H2O and CO2, most of the radiation from product H2O that is emitted in the upstream direction cannot be absorbed by the reactants. The second is that the emission spectrum Of CO2 is broader at flame temperatures than ambient temperature: thus, some radiation emitted near the flame front cannot be absorbed by the reactants even when they are seeded with CO2 Via both mechanisms, some net upstream heat loss due to radiation will always occur, leading to extinction of sufficiently weak mixtures. Downstream loss has practically no influence. Comparison with experiment demonstrates the importance of reabsorption in CO2 diluted mixtures. It is concluded that fundamental flammability limits can exist due to radiative heat loss, but these limits are strongly dependent on the emission-absorption spectra of the reactant and product -gases and their temperature dependence and cannot be predicted using gray-gas or optically thin model parameters. Applications to practical flames at high pressure, in large combustion chambers, and with exhaust-gas or flue-gas recirculation are discussed.

  1. Surface-enhanced infrared absorption of nucleic acids on gold substrate in FTIR reflectance mode

    NASA Astrophysics Data System (ADS)

    Dovbeshko, G. I.; Chegel, Vladimir I.; Gridina, Nina Y.; Repnytska, O. P.; Sekirin, I. V.; Shirshov, Yuri M.

    2001-06-01

    Data on surface enhanced infrared absorption (SEIRA) of nucleic acids deposited on the metal surface have been obtained in the experiment in FTIR reflectance mode. As metal surface, we used Au of 200 - 500 Angstrom thickness on quartz substrate. Roughness of Au was not greater than 50 Angstrom. In our experimental conditions, the enhancement factor of SEIRA was about 3 - 7. We obtained different enhancement factors for different vibrations of nuclei acids. Application of this method to the tumour brain nucleic acid gave a possibility to reveal some structural peculiarities of their sugar-phosphate backbone.

  2. Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids.

    PubMed

    Zhang, Jianmin; Zhang, Suojiang; Dong, Kun; Zhang, Yanqiang; Shen, Youqing; Lv, Xingmei

    2006-05-15

    A new type of "task specific ionic liquid", tetrabutylphosphonium amino acid [P(C4)4][AA], was synthesized by the reaction of tetrabutylphosphonium hydroxide [P(C4)4][OH] with amino acids, including glycine, L-alanine, L-beta-alanine, L-serine, and L-lysine. The liquids produced were characterized by NMR, IR spectroscopies, and elemental analysis, and their thermal decomposition temperature, glass transition temperature, electrical conductivity, density, and viscosity were recorded in detail. The [P(C4)4][AA] supported on porous silica gel effected fast and reversible CO2 absorption when compared with bubbling CO2 into the bulk of the ionic liquid. No changes in absorption capacity and kinetics were found after four cycles of absorption/desorption. The CO2 absorption capacity at equilibrium was 50 mol % of the ionic liquids. In the presence of water (1 wt %), the ionic liquids could absorb equimolar amounts of CO2. The CO2 absorption mechanisms of the ionic liquids with and without water were different. PMID:16528787

  3. Semi-mechanistic modelling of ammonia absorption in an acid spray wet scrubber based on mass balance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A model to describe reactive absorption of ammonia (NH3) in an acid spray scrubber was developed as a function of the combined overall mass transfer coefficient K. An experimental study of NH3 absorption using 1% dilute sulphuric acid was carried out under different operating conditions. An empiric...

  4. Effect of hydrochloric acid on sound absorption and relaxation frequency in magnesium sulfate solutions

    NASA Astrophysics Data System (ADS)

    Fisher, F. H.

    2002-05-01

    The epic work of Kurtze and Tamm on sound absorption spectroscopy in divalent sulfate electrolyte solutions (1953) from the low-kHz region up to over 200 MHz revealed astonishing variability at frequencies below 10 MHz and a common relaxation frequency at about 200 MHz. For magnesium sulfate [Epsom salts] solutions, the salt producing 30× the absorption of fresh water below the 100-kHz region in the oceans at low concentrations [~0.02 moles/liter], Kurtze and Tamm investigated the effects of adding HC1 or H2SO4. They found that as formal pH increased, the results were different for these acids in reducing the sound absorption. Fisher (1983) found that if the absorption was plotted against free hydrogen, ion concentration was the same. We used the 100-liter titanium sphere, a spare ballast tank from the WHOI submarine ALVIN. With precise temperature control, we found an increase in the relaxation frequency as HC1 was added in conjunction with the reduction in sound absorption. The results will be presented and an explanation will be proposed in the context of the Eigen and Tamm multistate dissociation model for MgSO4 (1962) which explains the effects of pressure on both absorption and conductance. [Work supported by ONR.] The author acknowledges C. C. Hsu for his work on this project.

  5. Effect of L-lactic acid on the absorption of calcium in gastrectomized rats.

    PubMed

    Chonan, O; Takahashi, R; Yasui, H; Watanuki, M

    1998-12-01

    The effect of dietary L-lactic acid (LA), (0.5, 1.0, or 2.5 g/100 g of diet) on the absorption of calcium in gastrectomized rats was evaluated for 28 d. Calcium phosphate was used as a source of calcium. The apparent calcium absorption ratio and the calcium contents of the femur and tibia in gastrectomized rats fed the control diet were significantly less than those in sham-operated rats. In the gastrectomized rats, the apparent calcium absorption ratio and the calcium contents of bone in the rats fed the lower doses of LA diets (LA 0.5 or 1.0 g/100 g of diet) were not affected; however, the apparent calcium absorption ratio and the calcium contents of bone in the rats fed the highest doses of LA diet (LA 2.5 g/100 g of diet) were greater than those in gastrectomized rats fed the control diet. Dietary LA (2.5 g/100 g of diet) also enhanced the phosphorus absorption and bone phosphorus content in the gastrectomized rats. We speculated that the highest dose of dietary LA might be associated with the dissolving of a water-insoluble form of calcium salt in the diet, thereby facilitating the calcium absorption and resulting in increased bone calcium content in gastrectomized rats.

  6. Nile blue shows its true colors in gas-phase absorption and luminescence ion spectroscopy.

    PubMed

    Stockett, M H; Houmøller, J; Brøndsted Nielsen, S

    2016-09-14

    Nile blue is used extensively in biology as a histological stain and fluorescent probe. Its absorption and emission spectra are strongly solvent dependent, with variations larger than 100 nm. The molecule is charged due to an iminium group, and it is therefore an obvious target for gas-phase ion spectroscopy. Here we report the absorption and emission spectra of the mass-selected bare ions isolated in vacuo, and based on our results we revisit the interpretation of solution-phase spectra. An accelerator mass spectrometer was used for absorption spectroscopy where the absorption is represented by the yield of photofragment ions versus excitation wavelength (action spectroscopy). The luminescence experiments were done with a newly built ion trap setup equipped with an electrospray ion source, and some details on the mass selection technique will be given which have not been described before. In vacuo, the absorption and emission maxima are at 580 ± 10 nm and 628 ± 1 nm. These values are somewhat blue-shifted relative to those obtained in most solvents; however, they are much further to the red than those in some of the most non-polar solvents. Furthermore, the Stokes shift in the gas phase (1300 cm(-1)) is much smaller than that in these non-polar solvents but similar to that in polar ones. An explanation based on charge localization by solvent dipoles, or by counterions in some non-polar solvents, can fully account for these findings. Hence in the case of ions, it is nontrivial to establish intrinsic electronic transition energies from solvatochromic shifts alone. PMID:27634256

  7. Nile blue shows its true colors in gas-phase absorption and luminescence ion spectroscopy.

    PubMed

    Stockett, M H; Houmøller, J; Brøndsted Nielsen, S

    2016-09-14

    Nile blue is used extensively in biology as a histological stain and fluorescent probe. Its absorption and emission spectra are strongly solvent dependent, with variations larger than 100 nm. The molecule is charged due to an iminium group, and it is therefore an obvious target for gas-phase ion spectroscopy. Here we report the absorption and emission spectra of the mass-selected bare ions isolated in vacuo, and based on our results we revisit the interpretation of solution-phase spectra. An accelerator mass spectrometer was used for absorption spectroscopy where the absorption is represented by the yield of photofragment ions versus excitation wavelength (action spectroscopy). The luminescence experiments were done with a newly built ion trap setup equipped with an electrospray ion source, and some details on the mass selection technique will be given which have not been described before. In vacuo, the absorption and emission maxima are at 580 ± 10 nm and 628 ± 1 nm. These values are somewhat blue-shifted relative to those obtained in most solvents; however, they are much further to the red than those in some of the most non-polar solvents. Furthermore, the Stokes shift in the gas phase (1300 cm(-1)) is much smaller than that in these non-polar solvents but similar to that in polar ones. An explanation based on charge localization by solvent dipoles, or by counterions in some non-polar solvents, can fully account for these findings. Hence in the case of ions, it is nontrivial to establish intrinsic electronic transition energies from solvatochromic shifts alone.

  8. Nile blue shows its true colors in gas-phase absorption and luminescence ion spectroscopy

    NASA Astrophysics Data System (ADS)

    Stockett, M. H.; Houmøller, J.; Brøndsted Nielsen, S.

    2016-09-01

    Nile blue is used extensively in biology as a histological stain and fluorescent probe. Its absorption and emission spectra are strongly solvent dependent, with variations larger than 100 nm. The molecule is charged due to an iminium group, and it is therefore an obvious target for gas-phase ion spectroscopy. Here we report the absorption and emission spectra of the mass-selected bare ions isolated in vacuo, and based on our results we revisit the interpretation of solution-phase spectra. An accelerator mass spectrometer was used for absorption spectroscopy where the absorption is represented by the yield of photofragment ions versus excitation wavelength (action spectroscopy). The luminescence experiments were done with a newly built ion trap setup equipped with an electrospray ion source, and some details on the mass selection technique will be given which have not been described before. In vacuo, the absorption and emission maxima are at 580 ± 10 nm and 628 ± 1 nm. These values are somewhat blue-shifted relative to those obtained in most solvents; however, they are much further to the red than those in some of the most non-polar solvents. Furthermore, the Stokes shift in the gas phase (1300 cm-1) is much smaller than that in these non-polar solvents but similar to that in polar ones. An explanation based on charge localization by solvent dipoles, or by counterions in some non-polar solvents, can fully account for these findings. Hence in the case of ions, it is nontrivial to establish intrinsic electronic transition energies from solvatochromic shifts alone.

  9. Vaginal absorption of low-dose tranexamic acid from impregnated tampons.

    PubMed

    Moodley, J; Cohen, M; Devraj, K; Dutton, M

    1992-02-01

    Tranexamic acid (TA), an antifibrinolytic drug, is usually administered orally to women with menorrhagia. This route of administration is associated with adverse side-effects, therefore tampons impregnated with TA were used to assess the absorption of the drug across the vaginal epithelium. Blood levels of TA in group A (9 patients), who had one tampon inserted, and group B (10 patients), who had a tampon inserted at 2-hourly intervals so that a total of 3 tampons were administered over a 6-hour period, demonstrated absorption of the drug into the blood stream in low concentrations.

  10. Comparison of the composition and gas/particle partitioning of organic acids in monoterpene and isoprene dominated environments

    NASA Astrophysics Data System (ADS)

    Thompson, S.; Yatavelli, L. R.; Stark, H.; Kimmel, J.; Krechmer, J.; Hu, W.; Palm, B. B.; Campuzano Jost, P.; Day, D. A.; Isaacman, G. A.; Goldstein, A. H.; Khan, M. H.; Holzinger, R.; Lopez-Hilfiker, F.; Mohr, C.; Thornton, J. A.; Jayne, J. T.; Worsnop, D. R.; Jimenez, J. L.

    2013-12-01

    Gas and particle-phase organic acids measurements from two different regions with different biogenic volatile organic compound emissions are used to understand gas/particle partitioning principles. A Chemical Ionization High Resolution Time-of-Flight Mass Spectrometer (HRToF-CIMS), with acetate (CH3COO-) as the reagent ion was used to selectively detect acids. Hundreds of gas and particle-phase organic acids were measured in both locations, a monoterpene and MBO-dominated environment (ponderosa pine forest in Colorado, BEACHON-RoMBAS 2011) and isoprene and terpene-dominated environment (mixed deciduous and pine forest in Alabama, SOAS 2013). Time series of gas/particle partitioning for ions consistent with tracers for isoprene oxidation such as methacrylic acid epoxide (MAE) and isoprene epoxydiol (IEPOX) and tracers for α-pinene oxidation such as pinic and pinonic acid will be presented. Gas/particle partitioning, represented as the fraction of each species in the particle-phase, Fp, was calculated for C1-C18 alkanoic acids and biogenic VOC oxidation tracers and compared to an absorptive partitioning model. These results are compared with those of two other instruments that can also quantify gas/particle partitioning with high time resolution: a Semivolatile Thermal Desorption Aerosol GC/MS (SV-TAG) and a Thermal Desorption Proton Transfer Time-of-Flight Mass Spectrometer (TD-PTRMS). Data from both environments were consistent with the values and trends predicted by the absorptive partitioning model for the tracer acids. However, for low carbon number alkanoic acids we report a higher fraction in the particle phase than predicted by the model. The Fp for the bulk-averaged acids and its relationship to the degree of oxidation and carbon number will also be presented. Temporal patterns and correlations with atmospheric conditions and composition will be explored for individual and bulk acids. We will discuss atmospheric implications of the gas/particle partitioning

  11. Acid gas treating by aqueous alkanolamines. Annual report, January-December 1994

    SciTech Connect

    Sandall, O.C.; Rinker, E.B.; Ashour, S.

    1994-12-01

    The objective of this work is to investigate the simulateneous absorption or desorption of CO2 and H2S into and from a mixed aqueous amine solvent consisting of methyldiethanolamine (MDEA) and diethanolamine (DEA). In work completed this year the authors have measured the density, viscosity and surface tension of pure MDEA and DEA over a range in temperatures. The diffusivity of N2O was measured in aqueous blends of MDEA and DEA at 50 wt% total amine for various ratios of DEA to MDEA over the temperature range 20 to 80 deg. C. A theoretically-based model has been developed for the correlation of the physical solubility of N2O in aqueous amine solutions. A penetration theory type model which was developed to describe acid gas absorption in aqueous amine solutions was used to carry out a sensitivity analysis for the various parameters affecting the rate of absorption of CO2 in MDEA solutions.

  12. Ruminant Nutrition Symposium: Role of fermentation acid absorption in the regulation of ruminal pH.

    PubMed

    Aschenbach, J R; Penner, G B; Stumpff, F; Gäbel, G

    2011-04-01

    Highly fermentable diets are rapidly converted to organic acids [i.e., short-chain fatty acids (SCFA) and lactic acid] within the rumen. The resulting release of protons can constitute a challenge to the ruminal ecosystem and animal health. Health disturbances, resulting from acidogenic diets, are classified as subacute and acute acidosis based on the degree of ruminal pH depression. Although increased acid production is a nutritionally desired effect of increased concentrate feeding, the accumulation of protons in the rumen is not. Consequently, mechanisms of proton removal and their quantitative importance are of major interest. Saliva buffers (i.e., bicarbonate, phosphate) have long been identified as important mechanisms for ruminal proton removal. An even larger proportion of protons appears to be removed from the rumen by SCFA absorption across the ruminal epithelium, making efficiency of SCFA absorption a key determinant for the individual susceptibility to subacute ruminal acidosis. Proceeding initially from a model of exclusively diffusional absorption of fermentation acids, several protein-dependent mechanisms have been discovered over the last 2 decades. Although the molecular identity of these proteins is mostly uncertain, apical acetate absorption is mediated, to a major degree, via acetate-bicarbonate exchange in addition to another nitrate-sensitive, bicarbonate-independent transport mechanism and lipophilic diffusion. Propionate and butyrate also show partially bicarbonate-dependent transport modes. Basolateral efflux of SCFA and their metabolites has to be mediated primarily by proteins and probably involves the monocarboxylate transporter (MCT1) and anion channels. Although the ruminal epithelium removes a large fraction of protons from the rumen, it also recycles protons to the rumen via apical sodium-proton exchanger, NHE. The latter is stimulated by ruminal SCFA absorption and salivary Na(+) secretion and protects epithelial integrity. Finally

  13. The Hubble Space Telescope quasar absorption line key project. III - First observational results on Milky Way gas

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Lu, Limin; Bahcall, John N.; Bergeron, Jacqueline; Boksenberg, Alec; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Lockman, Felix J.; Sargent, W. L. W.

    1993-01-01

    Absorption lines found near zero redshift due to Milky Way disk and halo gas in the spectra of 15 quasars observed with the Faint Object Spectrograph (FOS) of the HST at a resolution of about 230 km/s are reported. Results show that Milky Way absorption lines comprise about 44 percent of all absorption lines seen in the first group of Key Project FOS spectra. Milky Way lines were observed for 3C 273 and H1821 + 643. Limits to the Mg-to-H abundance ratio obtained for very high velocity Mg II absorption detections imply gas-phase Mg abundances for the very high velocity gas ranging from more than 0.059 to more than 0.32 times the solar abundance. In all cases where high-velocity H I emission is seen, corresponding high-velocity metal-line absorption is observed.

  14. Influence of dietary protein type and iron source on the absorption of amino acids and minerals.

    PubMed

    Pérez-Llamas, F; Garaulet, M; Martínez, J A; Marín, J F; Larqué, E; Zamora, S

    2001-12-01

    The apparent digestibility coefficient (ADC) of amino acids and the balance of minerals (calcium, phosphorus, magnesium and iron) has been determined in rats fed four diets differing in the protein type (casein or soy protein) and iron source (ferrous sulphate or lactate) in order to study the possible interactions of these nutrients. The availability of amino acids, especially essential amino acids, was greater in the diet made with animal protein (casein). The iron source also affected the absorption of most amino acids in all the diets assayed with ferrous sulphate being greater. The balance of iron, magnesium and phosphorus was higher in the diets containing animal protein. The retention of calcium and magnesium was significantly greater when ferrous sulphate was used as iron source. These results demonstrate the important interaction between amino acids and minerals and between the minerals themselves, which must be carefully studied when selecting different types of protein or mineral sources in human or animal nutrition.

  15. Optical analysis of trapped Gas—Gas in Scattering Media Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Svanberg, S.

    2010-01-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. The technique investigates sharp gas spectral signatures, typically 10000 times sharper than those of the host material, in which the gas is trapped in pores or cavities. The presence of pores causes strong multiple scattering. GASMAS combines narrow-band diode-laser spectroscopy, developed for atmospheric gas monitoring, with diffuse media optical propagation, well-known from biomedical optics. Several applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, and this is also true for haemoglobin, making propagation possible in many natural materials. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities (frontal, maxillary and mastoideal) have been studied, demonstrating new possibilities for characterization and diagnostics. Transport of gas in porous media (diffusion) can be studied by first subjecting the material to, e.g., pure nitrogen, and then observing the rate at which normal, oxygen-containing air, reinvades the material. The conductance of the passages connecting a sinus with the nasal cavity can be objectively assessed by observing the oxygen gas dynamics when flushing the nose with nitrogen. Drying of materials, when liquid water is replaced by air and water vapour, is another example of dynamic processes which can be studied. The technique has also been extended to remote-sensing applications (LIDAR-GASMAS or Multiple-Scattering LIDAR).

  16. Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids

    PubMed Central

    Ferrebee, Courtney B.; Dawson, Paul A.

    2015-01-01

    The classical functions of bile acids include acting as detergents to facilitate the digestion and absorption of nutrients in the gut. In addition, bile acids also act as signaling molecules to regulate glucose homeostasis, lipid metabolism and energy expenditure. The signaling potential of bile acids in compartments such as the systemic circulation is regulated in part by an efficient enterohepatic circulation that functions to conserve and channel the pool of bile acids within the intestinal and hepatobiliary compartments. Changes in hepatobiliary and intestinal bile acid transport can alter the composition, size, and distribution of the bile acid pool. These alterations in turn can have significant effects on bile acid signaling and their downstream metabolic targets. This review discusses recent advances in our understanding of the inter-relationship between the enterohepatic cycling of bile acids and the metabolic consequences of signaling via bile acid-activated receptors, such as farnesoid X nuclear receptor (FXR) and the G-protein-coupled bile acid receptor (TGR5). PMID:26579438

  17. Photodissociation of thioglycolic acid studied by femtosecond time-resolved transient absorption spectroscopy

    SciTech Connect

    Attar, Andrew R.; Blumling, Daniel E.; Knappenberger, Kenneth L. Jr.

    2011-01-14

    Steady-state and time-resolved spectroscopies were employed to study the photodissociation of both the neutral (HS-CH{sub 2}-COOH) and doubly deprotonated ({sup -}S-CH{sub 2}-COO{sup -}) forms of thioglycolic acid (TGA), a common surface-passivating ligand used in the aqueous synthesis and organization of semiconducting nanostructures. Room temperature UV-Vis absorption spectroscopy indicated strong absorption by the S{sub 1} and S{sub 2} excited states at 250 nm and 185 nm, respectively. The spectrum also contained a weaker absorption band that extended to approximately 550 nm, which was assigned to the {pi}{sub CO}{sup *}(leftarrow)n{sub O} transition. Femtosecond time-resolved transient absorption spectroscopy was performed on TGA using 400 nm excitation and a white-light continuum probe to provide the temporally and spectrally resolved data. Both forms of TGA underwent a photoinduced dissociation from the excited state to form an {alpha}-thiol-substituted acyl radical ({alpha}-TAR, S-CH{sub 2}-CO). For the acidic form of TGA, radical formation occurred with an apparent time constant of 60 {+-} 5 fs; subsequent unimolecular decay took 400 {+-} 60 fs. Similar kinetics were observed for the deprotonated form of TGA (70 {+-} 10 fs radical formation; 420 {+-} 40 fs decay). The production of the {alpha}-TAR was corroborated by the observation of its characteristic optical absorption. Time-resolved data indicated that the photoinduced dissociation of TGA via cleavage of the C-OH bond occurred rapidly ({<=}100 fs). The prevalence of TGA in aqueous semiconducting nanoparticles makes its absorption in the visible spectral region and subsequent dissociation key to understanding the behavior of nanoscale systems.

  18. Research on the interaction of hydrogen-bond acidic polymer sensitive sensor materials with chemical warfare agents simulants by inverse gas chromatography.

    PubMed

    Yang, Liu; Han, Qiang; Cao, Shuya; Huang, Feng; Qin, Molin; Guo, Chenghai; Ding, Mingyu

    2015-01-01

    Hydrogen-bond acidic polymers are important high affinity materials sensitive to organophosphates in the chemical warfare agent sensor detection process. Interactions between the sensor sensitive materials and chemical warfare agent simulants were studied by inverse gas chromatography. Hydrogen bonded acidic polymers, i.e., BSP3, were prepared for micro-packed columns to examine the interaction. DMMP (a nerve gas simulant) and 2-CEES (a blister agent simulant) were used as probes. Chemical and physical parameters such as heats of absorption and Henry constants of the polymers to DMMP and 2-CEES were determined by inverse gas chromatography. Details concerning absorption performance are also discussed in this paper.

  19. Research on the Interaction of Hydrogen-Bond Acidic Polymer Sensitive Sensor Materials with Chemical Warfare Agents Simulants by Inverse Gas Chromatography

    PubMed Central

    Yang, Liu; Han, Qiang; Cao, Shuya; Huang, Feng; Qin, Molin; Guo, Chenghai; Ding, Mingyu

    2015-01-01

    Hydrogen-bond acidic polymers are important high affinity materials sensitive to organophosphates in the chemical warfare agent sensor detection process. Interactions between the sensor sensitive materials and chemical warfare agent simulants were studied by inverse gas chromatography. Hydrogen bonded acidic polymers, i.e., BSP3, were prepared for micro-packed columns to examine the interaction. DMMP (a nerve gas simulant) and 2-CEES (a blister agent simulant) were used as probes. Chemical and physical parameters such as heats of absorption and Henry constants of the polymers to DMMP and 2-CEES were determined by inverse gas chromatography. Details concerning absorption performance are also discussed in this paper. PMID:26043177

  20. Clay ingestion enhances intestinal triacylglycerol hydrolysis and non-esterified fatty acid absorption.

    PubMed

    Habold, Caroline; Reichardt, François; Le Maho, Yvon; Angel, Fabielle; Liewig, Nicole; Lignot, Jean-Hervé; Oudart, Hugues

    2009-07-01

    Consumption by animals and humans of earthy materials such as clay is often related to gut pathologies. Our aim was to determine the impact of kaolinite ingestion on glucose and NEFA transport through the intestinal mucosa. The expression of hexose transporters (Na/glucose co-transporter 1 (SGLT1), GLUT2, GLUT5) and of proteins involved in NEFA absorption (fatty acid transporter/cluster of differentiation 36 (FAT/CD36), fatty acid transport protein 4 (FATP4) and liver fatty acid binding protein (L-FABP)) was measured (1) in rats whose jejunum was perfused with a solution of kaolinite, and (2) in rats who ate spontaneously kaolinite pellets during 7 and 28 d. Also, we determined TAG and glucose absorption in the kaolinite-perfused group, and pancreatic lipase activity, gastric emptying and intestinal transit in rats orally administered with kaolinite. Glucose absorption was not affected by kaolinite perfusion or ingestion. However, kaolinite induced a significant increase in intestinal TAG hydrolysis and NEFA absorption. The cytoplasmic expression of L-FABP and FATP4 also increased due to kaolinite ingestion. NEFA may enter the enterocytes via endocytosis mainly since expression of NEFA transporters in the brush-border membrane was not affected by kaolinite. After uptake, rapid binding of NEFA by L-FABP and FATP4 could act as an intracellular NEFA buffer to prevent NEFA efflux. Increased TAG hydrolysis and NEFA absorption may be due to the adsorption properties of clay and also because kaolinite ingestion caused a slowing down of gastric emptying and intestinal transit.

  1. A simplified nonlinear model of the Marangoni instability in gas absorption

    NASA Astrophysics Data System (ADS)

    Skurygin, E. F.; Poroyko, T. A.

    2016-04-01

    The process of gas absorption into initially motionless liquid layer is investigated. The convective instability caused by the temperature dependence of the surface tension. The critical time of transition of the process to unstable convective regime, as well as the intensity of mass transfer in a surface convection are estimated numerically. The mathematical model includes the equations of convective diffusion, thermal conduction and fluid motion. The problem was solved numerically in the two-dimensional formulation. In the coordinate along the interface the concentration of the absorbed substance is represented by three terms of the trigonometric Fourier series. A difference approximation of equations with an exponentially changing grid in the direction normal to the interface is used. The simulations results agree with the well-known experimental data on the absorption of carbon dioxide in water.

  2. Nonlinear absorption and harmonic generation of laser in a gas with anharmonic clusters

    SciTech Connect

    Kumar, Manoj; Tripathi, V. K.

    2013-02-15

    The nonlinear absorption and harmonic generation of intense short pulse laser in a gas embedded with anharmonic clusters are investigated theoretically. When the laser induced excursion of cluster electrons becomes comparable to cluster radius, the restoration force on electrons no longer remains linearly proportional to the excursion. As a consequence, the plasmon resonance is broadened, leading to broadband laser absorption. It also leads to second and third harmonic generations, at much higher level than the one due to ponderomotive nonlinearity. The harmonic yield is resonantly enhanced at the plasmon resonance {omega}={omega}{sub pe}/{radical}(3), where {omega} is the frequency of the laser and {omega}{sub pe} is the plasma frequency of cluster electrons.

  3. Evaluation of the electrode performance for PAFC by using acid absorption, acceleration and ac-impedance measurement

    SciTech Connect

    Kim, Chang-Soo; Song, Rak-Hyun; Choi, Byung-Woo

    1996-12-31

    In PAFC, the degradation on cathode electrode caused by carbon corrosion, platinum dissolution and growth is especially severe. An acceleration test is a good technique for evaluating the degradation of electrode performance, because it does not need long time. Coleman et al used thermal cycling and on-off cycling as an acceleration test. Song et al showed that hydrogen shortage decreased the electrode performance more rapidly than that of air shortage in gas shortage test. Honji et al reported that the rate of coarsening of Pt particle is rapid in open circuit potential and this is one of major causes on the performance degradation of electrode. The cathode performance has been studied by using acid absorption, acceleration and ac-impedance measurements as functions of the polytetrafluoroethylene (PTFE) contents and sintering temperatures of the electrode.

  4. Solvatochromic behavior of the electronic absorption spectra of gallic acid and some of its azo derivatives

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; Hagagg, Sawsan S.; Ali, Alaa E.; Nasr, Nessma M.

    The electronic absorption spectra of gallic acid and its azo derivatives have been studied in various solvents of different polarities. Multiple regression techniques were applied to calculate the regression and correlation coefficients based on an equation that relates the wavenumbers of the absorption band maxima (υmax-) to the solvent parameters; refractive index (n), dielectric constant (D), empirical Kamlet-Taft solvent parameters, π*(dipolarity/polarizability), α (solvent hydrogen-bond donor acidity) and β (solvent hydrogen-bond acceptor basicity). The fitting coefficient obtained from this analysis allows estimating the contribution of each type of interactions relative to total spectral shifts in solution. The dependence of υmax- on the solvent parameters indicates that the obtained bands are affected by specific and non-specific solute-solvent interactions.

  5. Solvatochromic behavior of the electronic absorption spectra of gallic acid and some of its azo derivatives.

    PubMed

    Masoud, Mamdouh S; Hagagg, Sawsan S; Ali, Alaa E; Nasr, Nessma M

    2012-08-01

    The electronic absorption spectra of gallic acid and its azo derivatives have been studied in various solvents of different polarities. Multiple regression techniques were applied to calculate the regression and correlation coefficients based on an equation that relates the wavenumbers of the absorption band maxima (υ(max)(-)) to the solvent parameters; refractive index (n), dielectric constant (D), empirical Kamlet-Taft solvent parameters, π*(dipolarity/polarizability), α (solvent hydrogen-bond donor acidity) and β (solvent hydrogen-bond acceptor basicity). The fitting coefficient obtained from this analysis allows estimating the contribution of each type of interactions relative to total spectral shifts in solution. The dependence of υ(max)(-) on the solvent parameters indicates that the obtained bands are affected by specific and non-specific solute-solvent interactions.

  6. Does salicylic acid increase the percutaneous absorption of diflucortolone-21-valerate?

    PubMed

    Täuber, U; Weiss, C; Matthes, H

    1993-01-01

    The percutaneous absorption of diflucortolone-21-valerate (DFV) and its effect on the pituitary adrenal system were investigated during large skin area treatment (20 g ointment twice a day for 8 days) of two groups of healthy volunteers with Nerisona and Nerisalic ointment, respectively. Plasma levels of diflucortolone, cortisol and dehydroepiandrosterone (DHEA) were measured in both groups whereas plasma levels of salicylic acid were measured additionally in volunteers treated with Nerisalic. No differences, neither in percutaneous absorption of DFV nor in effects on cortisol and DHEA were found between the two treatment groups. There was a slight reduction in cortisol levels under both treatments, but the circadian rhythm was not disturbed. Mean salicylic acid plasma levels under high-dose topical Nerisalic treatment were about 50-fold below levels where toxicity may be expected. PMID:8198813

  7. High reflected cubic cavity as long path absorption cell for infrared gas sensing

    NASA Astrophysics Data System (ADS)

    Yu, Jia; Gao, Qiang; Zhang, Zhiguo

    2014-10-01

    One direct and efficient method to improve the sensitivity of infrared gas sensors is to increase the optical path length of gas cells according to Beer-Lambert Law. In this paper, cubic shaped cavities with high reflected inner coating as novel long path absorption cells for infrared gas sensing were developed. The effective optical path length (EOPL) for a single cubic cavity and tandem cubic cavities were investigated based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) measuring oxygen P11 line at 763 nm. The law of EOPL of a diffuse cubic cavity in relation with the reflectivity of the coating, the port fraction and side length of the cavity was obtained. Experimental results manifested an increase of EOPL for tandem diffuse cubic cavities as the decrease of port fraction of the connecting aperture f', and the EOPL equaled to the sum of that of two single cubic cavities at f'<0.01. The EOPL spectra at infrared wavelength range for different inner coatings including high diffuse coatings and high reflected metallic thin film coatings were deduced.

  8. Folic acid absorption determined by a single stool sample test--a double-isotope technique. The folic acid absorption capacity in children

    SciTech Connect

    Hjelt, K. )

    1989-10-01

    The fractional folic acid absorption (FAFol) was determined in 66 patients with various gastrointestinal diseases by a double-isotope technique, employing a single stool sample test (SSST) as well as a complete stool collection. The age of the patients ranged from 2.5 months to 16.8 years (mean 6.3 years). The test dose was administered orally and consisted of 50 micrograms of (3H)folic acid (monoglutamate) (approximately 20 muCi), carmine powder, and 2 mg 51CrCl3 (approximately 1.25 muCi) as the unabsorbable tracer. The whole-body radiation given to a 1-year-old child averaged 4.8 mrad only. The stool and napkin contents were collected and homogenized by the addition of 300 ml chromium sulfuric acid. A 300-ml sample of the homogenized stool and napkin contents, as well as 300 ml chromium sulfuric acid (75% vol/vol) containing the standards, were counted for the content of 51Cr in a broad-based well counter. The quantity of (3H)folic acid was determined by liquid scintillation, after duplicate distillation. Estimated by SSST, the FAFol, which employs the stool with the highest content of 51Cr corresponding to the most carmine-colored stool, correlated closely with the FAFol based on complete stool collection (r = 0.96, n = 39, p less than 0.0001). The reproducibility of FAFol determined by SSST was assessed from repeated tests in 18 patients. For a mean of 81%, the SD was 4.6%, which corresponded to a coefficient of variation of 5.7%.

  9. Wavelength modulation spectroscopy--digital detection of gas absorption harmonics based on Fourier analysis.

    PubMed

    Mei, Liang; Svanberg, Sune

    2015-03-20

    This work presents a detailed study of the theoretical aspects of the Fourier analysis method, which has been utilized for gas absorption harmonic detection in wavelength modulation spectroscopy (WMS). The lock-in detection of the harmonic signal is accomplished by studying the phase term of the inverse Fourier transform of the Fourier spectrum that corresponds to the harmonic signal. The mathematics and the corresponding simulation results are given for each procedure when applying the Fourier analysis method. The present work provides a detailed view of the WMS technique when applying the Fourier analysis method.

  10. Acid effects on the measurement of mercury by cold vapor atomic absorption spectrometry

    SciTech Connect

    Adeloju, S.B.; Mann, T.F.

    1987-07-01

    The influence of nitric, hydrochloric and sulfuric acids on the measurement of mercury by cold vapor atomic absorption spectrometry has been investigated. Small pre-reduction peaks associated with the instability of mercury were observed in solutions containing less than or equal to 12.5, < 2 and less than or equal to 12.5% v/v of each acid, respectively. Mercury was found to be most stable in greater than or equal to 2% v/v hydrochloric acid and the measured absorbance was not greatly influenced by varying concentration of the acid. The mercury absorbance measurements were more sensitive in solutions containing less than or equal to 6.3% v/v hydrochloric acid than in similar concentrations of nitric and sulfuric acids. The use of the three acids as a digestion mixture result in serious interference from nitrogen oxides. The interference was removed by use of expelling agents such as urea and sulfamic acid or overcome by use of excess stannous chloride, prior to the reduction of mercury(II) ions. The determination of mercury in NBS albacore tuna using both of these approaches to overcome the interference problem proved to be successful.

  11. Simultaneous absorption of SO2 and NO from flue gas with KMnO4/NaOH solutions.

    PubMed

    Chu, H; Chien, T W; Li, S Y

    2001-07-25

    The wet scrubbing combined SOx/NOx removal system is an advanced air pollution control device. This study attempts to understand the absorption kinetics in the system. The absorption of diluted SO2 and simultaneous absorption of diluted SO2 and NO, as occurs in flue gases, in a stirred tank reactor with KMnO4/NaOH solutions were carried out at 50 degrees C. The liquid-side and gas-side mass transfer coefficients of the system were determined. The results indicate that the absorption of SO2 is close to completely gas-film controlled where the NaOH concentration is greater than 0.1 M or the KMnO4 concentration is greater than 0.05 M. The increasing gas flow rate has a positive effect on the absorption rate of SO2. The existence of O2 has no significant effect on the absorption rate of SO2. Adding SO2 would decrease the absorption rate of NO; however, the addition of NO has no effect on the absorption rate of SO2.

  12. A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection

    SciTech Connect

    Langridge, Justin M.; Shillings, Alexander J. L.; Jones, Roderic L.; Ball, Stephen M.

    2008-12-15

    A broadband absorption spectrometer has been developed for highly sensitive and target-selective in situ trace gas measurements. The instrument employs two distinct modes of operation: (i) broadband cavity enhanced absorption spectroscopy (BBCEAS) is used to quantify the concentration of gases in sample mixtures from their characteristic absorption features, and (ii) periodic measurements of the cavity mirrors' reflectivity are made using step-scan phase shift cavity ringdown spectroscopy (PSCRDS). The latter PSCRDS method provides a stand-alone alternative to the more usual method of determining mirror reflectivities by measuring BBCEAS absorption spectra for calibration samples of known composition. Moreover, the instrument's two modes of operation use light from the same light emitting diode transmitted through the cavity in the same optical alignment, hence minimizing the potential for systematic errors between mirror reflectivity determinations and concentration measurements. The ability of the instrument to quantify absorber concentrations is tested in instrument intercomparison exercises for NO{sub 2} (versus a laser broadband cavity ringdown spectrometer) and for H{sub 2}O (versus a commercial hygrometer). A method is also proposed for calculating effective absorption cross sections for fitting the differential structure in BBCEAS spectra due to strong, narrow absorption lines that are under-resolved and hence exhibit non-Beer-Lambert law behavior at the resolution of the BBCEAS measurements. This approach is tested on BBCEAS spectra of water vapor's 4v+{delta} absorption bands around 650 nm. The most immediate analytical application of the present instrument is in quantifying the concentration of reactive trace gases in the ambient atmosphere. The instrument's detection limits for NO{sub 3} as a function of integration time are considered in detail using an Allan variance analysis. Experiments under laboratory conditions produce a 1{sigma} detection limit

  13. A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection

    NASA Astrophysics Data System (ADS)

    Langridge, Justin M.; Ball, Stephen M.; Shillings, Alexander J. L.; Jones, Roderic L.

    2008-12-01

    A broadband absorption spectrometer has been developed for highly sensitive and target-selective in situ trace gas measurements. The instrument employs two distinct modes of operation: (i) broadband cavity enhanced absorption spectroscopy (BBCEAS) is used to quantify the concentration of gases in sample mixtures from their characteristic absorption features, and (ii) periodic measurements of the cavity mirrors' reflectivity are made using step-scan phase shift cavity ringdown spectroscopy (PSCRDS). The latter PSCRDS method provides a stand-alone alternative to the more usual method of determining mirror reflectivities by measuring BBCEAS absorption spectra for calibration samples of known composition. Moreover, the instrument's two modes of operation use light from the same light emitting diode transmitted through the cavity in the same optical alignment, hence minimizing the potential for systematic errors between mirror reflectivity determinations and concentration measurements. The ability of the instrument to quantify absorber concentrations is tested in instrument intercomparison exercises for NO2 (versus a laser broadband cavity ringdown spectrometer) and for H2O (versus a commercial hygrometer). A method is also proposed for calculating effective absorption cross sections for fitting the differential structure in BBCEAS spectra due to strong, narrow absorption lines that are under-resolved and hence exhibit non-Beer-Lambert law behavior at the resolution of the BBCEAS measurements. This approach is tested on BBCEAS spectra of water vapor's 4v+δ absorption bands around 650 nm. The most immediate analytical application of the present instrument is in quantifying the concentration of reactive trace gases in the ambient atmosphere. The instrument's detection limits for NO3 as a function of integration time are considered in detail using an Allan variance analysis. Experiments under laboratory conditions produce a 1σ detection limit of 0.25 pptv for a 10 s

  14. Observing random walks of atoms in buffer gas through resonant light absorption

    NASA Astrophysics Data System (ADS)

    Aoki, Kenichiro; Mitsui, Takahisa

    2016-07-01

    Using resonant light absorption, random-walk motions of rubidium atoms in nitrogen buffer gas are observed directly. The transmitted light intensity through atomic vapor is measured, and its spectrum is obtained, down to orders of magnitude below the shot-noise level to detect fluctuations caused by atomic motions. To understand the measured spectra, the spectrum for atoms performing random walks in a Gaussian light beam is computed, and its analytical form is obtained. The spectrum has 1 /f2 (f is frequency) behavior at higher frequencies, crossing over to a different, but well-defined, behavior at lower frequencies. The properties of this theoretical spectrum agree excellently with the measured spectrum. This understanding also enables us to obtain the diffusion constant, the photon cross section of atoms in buffer gas, and the atomic number density from a single spectral measurement. We further discuss other possible applications of our experimental method and analysis.

  15. Removal of nitric oxide from exhaust gas with cyanuric acid--

    SciTech Connect

    Siebers, D.L. . Combustion Research Faclity); Caton, J.A. . Dept. of Mechanical Engineering)

    1990-01-01

    Addition of gaseous isocyanic acid (HNCO) to the exhaust of combustion systems or chemical process is proposed as a method for reducing nitric oxide (NO) emissions. The HNCO selectively reduces NO in the exhaust through a multistep chemical reaction mechanism. This article presents an experimental investigation of the proposed NO reduction process using cyanuric acid as the source of HNCO. At elevated temperature cyanuric acid decomposes and forms HNCO. The effects of temperature, exhaust gas composition, cyanuric acid concentration (i.e., HNCO concentration), and surfaces were examined. The experiments were conducted in an electrically heated quartz flow reactor using either exhaust from a diesel engine or simulated exhaust gas. The results demonstrate that gas phase NO reduction approaching 100% can be obtained.

  16. Acid gas removal in a confined vortex scrubber

    SciTech Connect

    Hura, H.S.; Diehl, R.C.

    1994-12-31

    This paper reports results of acid gas removal tests performed on a confined vortex scrubber. The confined vortex scrubber (CVS) was developed at the Energy Technology Office of Textron Defense Systems (ETO/TDS) under company as well as Pittsburgh Energy Technology Center (PETC) funding. Previous tests on the CVS have demonstrated > 98% capture for sub-micron fly ash particles, as well as high mercury vapor removal from gas streams. In the recent tests water, sodium hydroxide, and sodium sulfite and bisulfite solutions were used to scrub out hydrochloric, acid gas (HCl) and sulfur dioxide (SO{sub 2}) doped in air supplied to the CVS. The capture efficiency was determined as a function of acid gas concentration, liquor flow rate, and liquor type. When the liquor was supplied only inside the CVS squirrel cage the HCl removal efficiency varied from 85--100% while the SO{sub 2} removal efficiency varied from 60--80%. Significantly higher captures were obtained at 1/3 rd the liquor flow rate by spraying the liquor upstream of the CVS in the air inlet pipe, and increasing the liquor/gas contact time. Total HCl captures > 95% and SO{sub 2} captures > 85% were obtained at a liquid/gas ratio of only 2 gal/1,000 acf for acid gas concentrations of 200--1,800 ppmv. There were no significant differences in the SO{sub 2}, scrubbing ability of the three sodium solutions, and the HCl scrubbing ability of water and a sodium hydroxide solution. These results suggest that the acid gas capture in the CVS is mass transfer limited because of the extremely short gas residence times in the CVS.

  17. High Speed H2O Concentration Measurements Using Absorption Spectroscopy to Monitor Exhaust Gas

    SciTech Connect

    Kranendonk, Laura; Parks, II, James E; Prikhodko, Vitaly Y; Partridge Jr, William P

    2008-01-01

    This paper demonstrates the potential for fast absorption spectroscopy measurements in diesel-engine exhaust to track H2O concentration transients. Wavelength-agile absorption spectroscopy is an optical technique that measures broadband absorption spectra between 10kHz and 100 MHz. From these measured spectra, gas temperature and absorber concentration can be determined. The Fourier-domain mode-locking (FDML) laser is becoming recognized as one of the most robust and reliable wavelength-agile sources available. H2O concentration measurements during combustion events at crank angle resolved speeds are beneficial for a wide variety of applications, such as product improvements for industry, control and reliability checks for experimental researchers, and measures of fit for numerical simulations. The difficulties associated with measuring diesel exhaust compared to in-cylinder measurements are discussed. A full description of the experimental configuration and data processing is explained. Measurements of engine exhaust H2O transients with 10- s temporal resolution are presented for a range of engine conditions.

  18. Formaldehyde in Absorption: Tracing Molecular Gas in Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Dollhopf, Niklaus M.; Donovan Meyer, Jennifer

    2016-01-01

    Early-Type Galaxies (ETGs) have been long-classified as the red, ellipsoidal branch of the classic Hubble tuning fork diagram of galactic structure. In part with this classification, ETGs are thought to be molecular and atomic gas-poor with little to no recent star formation. However, recent efforts have questioned this ingrained classification. Most notably, the ATLAS3D survey of 260 ETGs within ~40 Mpc found 22% contain CO, a common tracer for molecular gas. The presence of cold molecular gas also implies the possibility for current star formation within these galaxies. Simulations do not accurately predict the recent observations and further studies are necessary to understand the mechanisms of ETGs.CO traces molecular gas starting at densities of ~102 cm-3, which makes it a good tracer of bulk molecular gas, but does little to constrain the possible locations of star formation within the cores of dense molecular gas clouds. Formaldehyde (H2CO) traces molecular gas on the order of ~104 cm-3, providing a further constraint on the location of star-forming gas, while being simple enough to possibly be abundant in gas-poor ETGs. In cold molecular clouds at or above ~104 cm-3 densities, the structure of formaldehyde enables a phenomenon in which rotational transitions have excitation temperatures driven below the temperature of the cosmic microwave background (CMB), ~2.7 K. Because the CMB radiates isotropically, formaldehyde can be observed in absorption, independent of distance, as a tracer of moderately-dense molecular clouds and star formation.This novel observation technique of formaldehyde was incorporated for observations of twelve CO-detected ETGs from the ATLAS3D sample, including NGC 4710 and PGC 8815, to investigate the presence of cold molecular gas, and possible star formation, in ETGs. We present images from the Very Large Array, used in its C-array configuration, of the J = 11,0 - 11,1 transition of formaldehyde towards these sources. We report our

  19. An analysis of pollutant gas transport and absorption in pulmonary airways.

    PubMed

    Grotberg, J B; Sheth, B V; Mockros, L F

    1990-05-01

    A mathematical model of ozone absorption, or for any soluble gas that has similar transport properties, is developed for a branching network of liquid-lined cylinders. In particular, we investigate specific flow regimes for finite length tubes where boundary layer phenomena and entrance effects exist in high Reynolds and Peclet (Pe) number airways. The smaller airways which have lower Reynolds and Peclet number flows are modelled by incorporating the detailed analysis found in [10] and modifying it for airways which have alveolated surfaces. We also consider a reacting gas and treat specific regimes where the reaction front is located at the air-liquid interface, within the liquid or at the liquid-tissue interface. Asymptotic methods are used in regions of the tracheobronchial tree where Pe much less than 1 and Pe much greater than 1. In addition, the fact that the radial transport parameter gamma much less than 1 for this toxin, and others such as nitrous oxides, is employed to simplify the analysis. The ozone concentrations, airway absorption and tissue dose are examined as a function of airway generation for several values of the governing parameters. The general result is a maximal dosing in airway generations 17 to 18 that is much larger (up to an order of magnitude) than the predictions of previous theories.

  20. Absorption Line Studies and the Distribution of Neutral Gas in the Local Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.

    1984-01-01

    Previous published absorption line studies performed at ultraviolet and visual wavelengths are combined with new ultraviolet data in order to map out the distribution of HI within 150 pc of the Sun. Newly presented data for distances less than 50 pc further support the local cloud model as presented by Bruhweiler (1982). The Sun is embedded, near the edge of a diffuse cloud with total column density 2 x 10 to the 19th power/sq cm. Most observed directions within 50 pc away from the cloud body reveal trace amounts of gas (N)HI) approximately 10 to the 18th power/sq cm presumably arising in the outer skin of the local cloud. At greater distances (50 approximately or d approximately or 150 pc) most directions show significant absorption with N(HI) 10(19)/sq cm. Two directions, one toward the northern galactic pole (NGP), the other toward beta CMa exhibit unusually low HI column densities out to distances of 150 to 200 pc. However, substantial amounts of gas N(HI) 10 to the 19th power/sq cm, are seen toward the NGP at greater distances. The implicatons of these results on astronomy at wavelengths shortward of 912A are discussed.

  1. The effect of BAY o 2752 on bile acid absorption and cholesterol esterification

    SciTech Connect

    Harnett, K.M.

    1988-01-01

    BAY o 2752 (N,N-(1,11-undecandiyl)bis(2,3-dihydro-2-methyl-1H-indole-1-carboxamide)) has been demonstrated to inhibit intestinal cholesterol absorption in rats. Studies were carried out on male Wistar rats to determine if this drug alters intestinal bile acid absorption or cholesterol esterification by acyl CoA: cholesterol acyltransferase (ACAT) or cholesterol ester hydrolase (CEH). BAY o 2752 did not affect intestinal absorption of taurocholic acid (TC) from ileal segments perfused in vivo with a tragacanth suspension in phosphate buffer containing NaCl, TC, and 24-{sup 14}C-TC as determined by the excretory rate of radioactivity in bile. BAY o 2752 also did not affect the uptake of TC into ileal everted sacs incubated in stirred, gassed Krebs-Ringer bicarbonate buffer with 1 mM TC, 24-{sup 14}C-TC and {sup 3}H-inulin. BAY o 2752 also did not bind TC; TG, in a filtrate of the above solutions remained at 92-98% of control.

  2. Iron Absorption from Two Milk Formulas Fortified with Iron Sulfate Stabilized with Maltodextrin and Citric Acid

    PubMed Central

    Pizarro, Fernando; Olivares, Manuel; Maciero, Eugenia; Krasnoff, Gustavo; Cócaro, Nicolas; Gaitan, Diego

    2015-01-01

    Background: Fortification of milk formulas with iron is a strategy widely used, but the absorption of non-heme iron is low. The purpose of this study was to measure the bioavailability of two iron fortified milk formulas designed to cover toddlers’ nutritional needs. These milks were fortified with iron sulfate stabilized with maltodextrin and citric acid. Methods: 15 women (33–47 years old) participated in study. They received on different days, after an overnight fast, 200 mL of Formula A; 200 mL of Formula B; 30 mL of a solution of iron and ascorbic acid as reference dose and 200 mL of full fat cow’s milk fortified with iron as ferrous sulfate. Milk formulas and reference dose were labeled with radioisotopes 59Fe or 55Fe, and the absorption of iron measured by erythrocyte incorporation of radioactive Fe. Results: The geometric mean iron absorption corrected to 40% of the reference dose was 20.6% for Formula A and 20.7% for Formula B, versus 7.5% of iron fortified cow’s milk (p < 0.001). The post hoc Sheffé indeed differences between the milk formulas and the cow’s milk (p < 0.001). Conclusion: Formulas A and B contain highly bioavailable iron, which contributes to covering toddlers’ requirements of this micronutrient. PMID:26529007

  3. Solidification of Acidic, High Nitrate Nuclear Wastes by Grouting or Absorption on Silica Gel

    SciTech Connect

    A. K. Herbst; S. V. Raman; R. J. Kirkham

    2004-01-01

    The use of grout and silica gel were explored for the solidification of four types of acidic, high nitrate radioactive wastes. Two methods of grouting were tested: direct grouting and pre-neutralization. Two methods of absorption on silica gel were also tested: direct absorption and rotary spray drying. The waste simulant acidity varied between 1 N and 12 N. The waste simulant was neutralized by pre-blending calcium hydroxide with Portland cement and blast furnace slag powders prior to mixing with the simulant for grout solidification. Liquid sodium hydroxide was used to partially neutralize the simulant to a pH above 2 and then it was absorbed for silica gel solidification. Formulations for each of these methods are presented along with waste form characteristics and properties. Compositional variation maps for grout formulations are presented which help determine the optimum "recipe" for a particular waste stream. These maps provide a method to determine the proportions of waste, calcium hydroxide, Portland cement, and blast furnace slag that provide a waste form that meets the disposal acceptance criteria. The maps guide researchers in selecting areas to study and provide an operational envelop that produces acceptable waste forms. The grouts both solidify and stabilize the wastes, while absorption on silica gel produces a solid waste that will not pass standard leaching procedures (TCLP) if required. Silica gel wastes can be made to pass most leach tests if heated to 600ºC.

  4. Absorption, fluorescence, and acid-base equilibria of rhodamines in micellar media of sodium dodecyl sulfate.

    PubMed

    Obukhova, Elena N; Mchedlov-Petrossyan, Nikolay O; Vodolazkaya, Natalya A; Patsenker, Leonid D; Doroshenko, Andrey O; Marynin, Andriy I; Krasovitskii, Boris M

    2017-01-01

    Rhodamine dyes are widely used as molecular probes in different fields of science. The aim of this paper was to ascertain to what extent the structural peculiarities of the compounds influence their absorption, emission, and acid-base properties under unified conditions. The acid-base dissociation (HR(+)⇄R+H(+)) of a series of rhodamine dyes was studied in sodium n-dodecylsulfate micellar solutions. In this media, the form R exists as a zwitterion R(±). The indices of apparent ionization constants of fifteen rhodamine cations HR(+) with different substituents in the xanthene moiety vary within the range of pKa(app)=5.04 to 5.53. The distinct dependence of emission of rhodamines bound to micelles on pH of bulk water opens the possibility of using them as fluorescent interfacial acid-base indicators.

  5. Absorption, fluorescence, and acid-base equilibria of rhodamines in micellar media of sodium dodecyl sulfate.

    PubMed

    Obukhova, Elena N; Mchedlov-Petrossyan, Nikolay O; Vodolazkaya, Natalya A; Patsenker, Leonid D; Doroshenko, Andrey O; Marynin, Andriy I; Krasovitskii, Boris M

    2017-01-01

    Rhodamine dyes are widely used as molecular probes in different fields of science. The aim of this paper was to ascertain to what extent the structural peculiarities of the compounds influence their absorption, emission, and acid-base properties under unified conditions. The acid-base dissociation (HR(+)⇄R+H(+)) of a series of rhodamine dyes was studied in sodium n-dodecylsulfate micellar solutions. In this media, the form R exists as a zwitterion R(±). The indices of apparent ionization constants of fifteen rhodamine cations HR(+) with different substituents in the xanthene moiety vary within the range of pKa(app)=5.04 to 5.53. The distinct dependence of emission of rhodamines bound to micelles on pH of bulk water opens the possibility of using them as fluorescent interfacial acid-base indicators. PMID:27423469

  6. An assay for ribonuclease activity, based on ultraviolet absorption of RNA hydrolysate, using phosphotungstic acid.

    PubMed

    Isobe, K; Uchiyama, S

    1986-06-01

    In the method for the determination of ribonuclease activity that depends on the ultraviolet absorption of the RNA hydrolysate, the uranium reagent (25% perchloric acid solution containing 0.75% uranyl acetate) is commonly used for the efficient precipitation of the unhydrolyzed RNA. However, this reagent is always contaminated by the presence of radioactive isotopes. Radioactive uranium is one of the substances used for atomic nuclear fuel and therefore, at least in Japan, the use of uranium compounds requires permission from the government. We tried to find another efficient and non-radioactive precipitant of RNA to replace the uranium reagent, and have developed a phosphotungsten reagent (25% perchloric acid solution containing 0.75% phosphotungstic acid plus 0.6% bovine serum albumin solution) which functions as efficiently as the uranium reagent in the precipitation of RNA. A cell-free crude extract of Dictyostelium discoideum was used as the source of ribonuclease.

  7. Modulation of the Absorption Maximum of Rhodopsin by Amino Acids in the C-terminus†

    PubMed Central

    Yokoyama, Shozo; Tada, Takashi; Yamato, Takahisa

    2008-01-01

    Vision begins when light is absorbed by visual pigments. It is commonly believed that the absorption spectra of visual pigments are modulated by interactions between the retinal and amino acids within or near 4.5 Å of the retinal in the transmembrane (TM) segments. However, this dogma has not been rigorously tested. In this study, we show that the retinal-opsin interactions extend well beyond the retinal binding pocket. We found that, although it is positioned outside of TM segments, the C-terminus of the rhodopsin in the rockfish longspine thornyhead (Sebastolobus altivelis) modulates its λmax by interacting mainly with the last TM segment. Our results illustrate how amino acids in the C-terminus are likely to interact with the retinal. We anticipate our analyses to be a starting point for viewing the spectral tuning of visual pigments as interactions between the retinal and key amino acids that are distributed throughout the entire pigment. PMID:16922606

  8. Measurement of Gas and Aerosol Phase Absorption Spectra across the Visible and Near-IR Using Supercontinuum Photoacoustic Spectroscopy.

    PubMed

    Radney, James G; Zangmeister, Christopher D

    2015-07-21

    We demonstrate a method to measure the absorption spectra of gas and aerosol species across the visible and near-IR (500 to 840 nm) using a photoacoustic (PA) spectrometer and a pulsed supercontinuum laser source. Measurements of gas phase absorption spectra were demonstrated using H2O(g) as a function of relative humidity (RH). The measured absorption intensities and peak shapes were able to be quantified and compared to spectra calculated using the 2012 High Resolution Transmission (HITRAN2012) database. Size and mass selected nigrosin aerosol was used to measure absorption spectra across the visible and near-IR. Spectra were measured as a function of aerosol size/mass and show good agreement to Mie theory calculations. Lastly, we measured the broadband absorption spectrum of flame generated soot aerosol at 5% and 70% RH. For the high RH case, we are able to quantifiably separate the soot and water absorption contributions. For soot, we observe an enhancement in the mass specific absorption cross section ranging from 1.5 at 500 nm (p < 0.01) to 1.2 at 840 nm (p < 0.2) and a concomitant increase in the absorption Ångström exponent from 1.2 ± 0.4 (5% RH) to 1.6 ± 0.3 (70% RH). PMID:26098142

  9. Effects of an acidic beverage (Coca-Cola) on absorption of ketoconazole.

    PubMed

    Chin, T W; Loeb, M; Fong, I W

    1995-08-01

    Absorption of ketoconazole is impaired in patients with achlorhydria. The purpose of this study was to determine the effectiveness of a palatable acidic beverage (Coca-Cola Classic, pH 2.5) in improving the absorption of ketoconazole in the presence of drug-induced achlorhydria. A prospective, randomized, three-way crossover design with a 1-week wash-out period between each treatment was employed. Nine healthy nonsmoking, nonobese volunteers between 22 and 41 years old were studied. Each subject was randomized to receive three treatments: (A) ketoconazole 200-mg tablet with water (control), (B) omeprazole (60 mg) followed by ketoconazole (200 mg) taken with water, and (C) omeprazole (60 mg) followed by ketoconazole (200 mg) taken with 240 ml of Coca-Cola Classic. The pH values of gastric aspirates were checked after omeprazole was administered to confirm attainment of a pH of > 6. Multiple serum samples were obtained for measurements of ketoconazole concentrations by high-pressure liquid chromatography. The mean area under the ketoconazole concentration-time curve from zero to infinity for the control treatment (17.9 +/- 13.1 mg.h/liter) was significantly greater than that for treatment B (3.5 +/- 5.1 mg.h/liter; 16.6% +/- 15.0% of control). The mean peak concentration was highest for the control treatment (4.1 +/- 1.9 micrograms/ml), for which the mean peak concentration showed a significant increase over that for treatment B. The absorption of ketoconazole was reduced in the presence of omeprazole-induced achlorhydria. However, drug absorption was significantly increased, to approximately 65% of the mean for the control treatment, when the drug was taken with an acidic beverage, such as Coca-Cola.

  10. Effects of an acidic beverage (Coca-Cola) on absorption of ketoconazole.

    PubMed Central

    Chin, T W; Loeb, M; Fong, I W

    1995-01-01

    Absorption of ketoconazole is impaired in patients with achlorhydria. The purpose of this study was to determine the effectiveness of a palatable acidic beverage (Coca-Cola Classic, pH 2.5) in improving the absorption of ketoconazole in the presence of drug-induced achlorhydria. A prospective, randomized, three-way crossover design with a 1-week wash-out period between each treatment was employed. Nine healthy nonsmoking, nonobese volunteers between 22 and 41 years old were studied. Each subject was randomized to receive three treatments: (A) ketoconazole 200-mg tablet with water (control), (B) omeprazole (60 mg) followed by ketoconazole (200 mg) taken with water, and (C) omeprazole (60 mg) followed by ketoconazole (200 mg) taken with 240 ml of Coca-Cola Classic. The pH values of gastric aspirates were checked after omeprazole was administered to confirm attainment of a pH of > 6. Multiple serum samples were obtained for measurements of ketoconazole concentrations by high-pressure liquid chromatography. The mean area under the ketoconazole concentration-time curve from zero to infinity for the control treatment (17.9 +/- 13.1 mg.h/liter) was significantly greater than that for treatment B (3.5 +/- 5.1 mg.h/liter; 16.6% +/- 15.0% of control). The mean peak concentration was highest for the control treatment (4.1 +/- 1.9 micrograms/ml), for which the mean peak concentration showed a significant increase over that for treatment B. The absorption of ketoconazole was reduced in the presence of omeprazole-induced achlorhydria. However, drug absorption was significantly increased, to approximately 65% of the mean for the control treatment, when the drug was taken with an acidic beverage, such as Coca-Cola. PMID:7486898

  11. Chronic intermittent psychological stress promotes macrophage reverse cholesterol transport by impairing bile acid absorption in mice

    PubMed Central

    Silvennoinen, Reija; Quesada, Helena; Kareinen, Ilona; Julve, Josep; Kaipiainen, Leena; Gylling, Helena; Blanco-Vaca, Francisco; Escola-Gil, Joan Carles; Kovanen, Petri T; Lee-Rueckert, Miriam

    2015-01-01

    Psychological stress is a risk factor for atherosclerosis, yet the pathophysiological mechanisms involved remain elusive. The transfer of cholesterol from macrophage foam cells to liver and feces (the macrophage-specific reverse cholesterol transport, m-RCT) is an important antiatherogenic pathway. Because exposure of mice to physical restraint, a model of psychological stress, increases serum levels of corticosterone, and as bile acid homeostasis is disrupted in glucocorticoid-treated animals, we investigated if chronic intermittent restraint stress would modify m-RCT by altering the enterohepatic circulation of bile acids. C57Bl/6J mice exposed to intermittent stress for 5 days exhibited increased transit through the large intestine and enhanced fecal bile acid excretion. Of the transcription factors and transporters that regulate bile acid homeostasis, the mRNA expression levels of the hepatic farnesoid X receptor (FXR), the bile salt export pump (BSEP), and the intestinal fibroblast growth factor 15 (FGF15) were reduced, whereas those of the ileal apical sodium-dependent bile acid transporter (ASBT), responsible for active bile acid absorption, remained unchanged. Neither did the hepatic expression of cholesterol 7α-hydroxylase (CYP7A1), the key enzyme regulating bile acid synthesis, change in the stressed mice. Evaluation of the functionality of the m-RCT pathway revealed increased fecal excretion of bile acids that had been synthesized from macrophage-derived cholesterol. Overall, our study reveals that chronic intermittent stress in mice accelerates m-RCT specifically by increasing fecal excretion of bile acids. This novel mechanism of m-RCT induction could have antiatherogenic potential under conditions of chronic stress. PMID:25969465

  12. Modification of fish skin collagen film and absorption property of tannic acid.

    PubMed

    Liu, Haiying; Zhao, Lu; Guo, Shidong; Xia, Yu; Zhou, Peng

    2014-06-01

    Fish collagen is a biomacromolecule material and is usually used as a clarifying agent. However, fish collagen is not recyclable, and sedimentation usually occurs in the clarification process using fish collagen so that the filtration process is inevitable. This work aimed to provide a recyclable modified fish skin collagen film (MFCF) for adsorption of tannic acids. The collagen from channel catfish skin was extracted and used for preparation of the fish skin collagen film (FCF) and MFCF. The result indicated that the mechanical properties of MFCF were improved by addition of 2 ml/L glycerol, 6 ml/L polyvinyl alcohol (PVA) and 2 ml/L glutaraldehyde in 15 g/L collagen solution. As the most important property of adsorption material, the hydroscopicity of MFCF was only 54%, significantly lower than that of FCF (295%). Therefore, MFCF would not collapse in water. The infrared and thermal properties of MFCF were also investigated in this work. Results indicated that, in comparison to FCF, the physical and chemical properties of MFCF had been improved significantly. MFCF had higher shrink temperature (79.3 °C) and it did not collapse in distilled water at normal temperature. Furthermore, absorption and desorption properties of tannic acid were studied. MFCF showed good capability of absorption and desorption of tannic acid, which leaded to the suggestion that MFCF could have potential applications in adsorption material.

  13. Modification of fish skin collagen film and absorption property of tannic acid.

    PubMed

    Liu, Haiying; Zhao, Lu; Guo, Shidong; Xia, Yu; Zhou, Peng

    2014-06-01

    Fish collagen is a biomacromolecule material and is usually used as a clarifying agent. However, fish collagen is not recyclable, and sedimentation usually occurs in the clarification process using fish collagen so that the filtration process is inevitable. This work aimed to provide a recyclable modified fish skin collagen film (MFCF) for adsorption of tannic acids. The collagen from channel catfish skin was extracted and used for preparation of the fish skin collagen film (FCF) and MFCF. The result indicated that the mechanical properties of MFCF were improved by addition of 2 ml/L glycerol, 6 ml/L polyvinyl alcohol (PVA) and 2 ml/L glutaraldehyde in 15 g/L collagen solution. As the most important property of adsorption material, the hydroscopicity of MFCF was only 54%, significantly lower than that of FCF (295%). Therefore, MFCF would not collapse in water. The infrared and thermal properties of MFCF were also investigated in this work. Results indicated that, in comparison to FCF, the physical and chemical properties of MFCF had been improved significantly. MFCF had higher shrink temperature (79.3 °C) and it did not collapse in distilled water at normal temperature. Furthermore, absorption and desorption properties of tannic acid were studied. MFCF showed good capability of absorption and desorption of tannic acid, which leaded to the suggestion that MFCF could have potential applications in adsorption material. PMID:24876642

  14. Scattered light and accuracy of the cross-section measurements of weak absorptions: Gas and liquid phase UV absorption cross sections of CH3CFCl2

    NASA Technical Reports Server (NTRS)

    Fahr, A.; Braun, W.; Kurylo, M. J.

    1993-01-01

    Ultraviolet absorption cross sections of CH3CFCl2(HCFC-141b) were determined in the gas phase (190-260 nm) and liquid phase (230-260 mm) at 298 K. The liquid phase absorption cross sections were then converted into accurate gas phase values using a previously described procedure. It has been demonstrated that scattered light from the shorter-wavelength region (as little as several parts per thousand) can seriously compromise the absorption cross-section measurement, particularly at longer wavelengths where cross sections are low, and can be a source of discrepancies in the cross sections of weakly absorbing halocarbons reported in the literature. A modeling procedure was developed to assess the effect of scattered light on the measured absorption cross section in our experiments, thereby permitting appropriate corrections to be made on the experimental values. Modeled and experimental results were found to be in good agreement. Experimental results from this study were compared with other available determinations and provide accurate input for calculating the atmospheric lifetime of HCFC-141b.

  15. NOx removal from flue gas by an integrated physicochemical absorption and biological denitrification process.

    PubMed

    van der Maas, Peter; van den Bosch, Pim; Klapwijk, Bram; Lens, Piet

    2005-05-20

    An integrated physicochemical and biological technique for NO(x) removal from flue gas, the so-called BioDeNO(x) process, combines the principles of wet absorption of NO in an aqueous Fe(II)EDTA(2-) solution with biological reduction of the sorbed NO in a bioreactor. The biological reduction of NO to di-nitrogen gas (N(2)) takes place under thermophilic conditions (55 degrees C). This study demonstrates the technical feasibility of this BioDeNO(x) concept in a bench-scale installation with a continuous flue gas flow of 650 l.h(-1) (70-500 ppm NO; 0.8-3.3% O(2)). Stable NO removal with an efficiency of at least 70% was obtained in case the artificial flue gas contained 300 ppm NO and 1% O(2) when the bioreactor was inoculated with a denitrifying sludge. An increase of the O(2) concentration of only 0.3% resulted in a rapid elevation of the redox potential (ORP) in the bioreactor, accompanied by a drastic decline of the NO removal efficiency. This was not due to a limitation or inhibition of the NO reduction, but to a limited biological iron reduction capacity. The latter leads to a depletion of the NO absorption capacity of the scrubber liquor, and thus to a poor NO removal efficiency. Bio-augmentation of the reactor mixed liquor with an anaerobic granular sludge with a high Fe(III) reduction capacity successfully improved the bioreactor efficiency and enabled to treat a flue gas containing at least 3.3% O(2) and 500 ppm NO with an NO removal efficiency of over 80%. The ORP in the bioreactor was found to be a proper parameter for the control of the ethanol supply, needed as electron donor for the biological regeneration process. The NO removal efficiency as well as the Fe(III)EDTA(-) reduction rate were found to decline at ORP values higher than -140 mV (pH 7.0). For stable BioDeNO(x) operation, the supply of electron donor (ethanol) can be used to control the ORP below that critical value.

  16. Standoff gas leak detectors based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Frish, M. B.; Wainner, R. T.; Green, B. D.; Laderer, M. C.; Allen, M. G.

    2005-11-01

    Trace gas sensing and analysis by Tunable Diode Laser Absorption Spectroscopy (TDLAS) has become a robust and reliable technology accepted for industrial process monitoring and control, quality assurance, environmental sensing, plant safety, and infrastructure security. Sensors incorporating well-packaged wavelength-stabilized near-infrared (1.2 to 2.0 μm) laser sources sense over a dozen toxic or industrially-important gases. A large emerging application for TDLAS is standoff sensing of gas leaks, e.g. from natural gas pipelines. The Remote Methane Leak Detector (RMLD), a handheld standoff TDLAS leak survey tool that we developed, is replacing traditional leak detection tools that must be physically immersed within a leak to detect it. Employing a 10 mW 1.6 micron DFB laser, the RMLD illuminates a non-cooperative topographic surface, up to 30 m distant, and analyzes returned scattered light to deduce the presence of excess methane. The eye-safe, battery-powered, 6-pound handheld RMLD enhances walking pipeline survey rates by more than 30%. When combined with a spinning or rastering mirror, the RMLD serves as a platform for mobile leak mapping systems. Also, to enable high-altitude surveying and provide aerial disaster response, we are extending the standoff range to 3000 m by adding an EDFA to the laser transmitter.

  17. Acid gas extraction of pyridine from water

    SciTech Connect

    Laitinen, A.; Kaunisto, J.

    2000-01-01

    Pyridine was extracted from aqueous solutions initially containing 5 or 15 wt % pyridine by using liquid or supercritical carbon dioxide at 10 MPa as a solvent in a mechanically agitated countercurrent extraction column. The lowest pyridine concentration in the raffinate was 0.06 wt %, whereas the pyridine concentration in the extract was 86--94 wt %. From the initial amount of pyridine, 96--99% was transferred from the feed stream to the extract by using relatively small solvent-to-feed ratios of 2.8--4.6 (kg of solvent/kg of feed). The measured distribution coefficients for the water/pyridine/carbon dioxide system ranged from 0.3 to 1 (weight units), depending on the initial pyridine concentration in water. Carbon dioxide is a particularly suitable solvent for the extraction of pyridine from concentrated aqueous solutions. The efficiency may be the result of an acid-base interaction between weakly basic pyridine solute and weakly acidic carbon dioxide solvent in an aqueous environment.

  18. Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy.

    PubMed

    Paci, Paolo; Zvinevich, Yury; Tanimura, Shinobu; Wyslouzil, Barbara E; Zahniser, Mark; Shorter, Joanne; Nelson, David; McManus, Barry

    2004-11-22

    We used a tunable diode laser absorption spectrometer to follow the condensation of D(2)O in a supersonic Laval nozzle. We measured both the concentration of the condensible vapor and the spectroscopic temperature as a function of position and compared the results to those inferred from static pressure measurements. Upstream and in the early stages of condensation, the quantitative agreement between the different experimental techniques is good. Far downstream, the spectroscopic results predict a lower gas phase concentration, a higher condensate mass fraction, and a higher temperature than the pressure measurements. The difference between the two measurement techniques is consistent with a slight compression of the boundary layers along the nozzle walls during condensation. PMID:15549871

  19. Possible microwave absorption by H2S gas in Uranus' and Neptune's atmospheres

    SciTech Connect

    De pater, Imke; Romani, P.N.; Atreya, S.K. Science Systems and Applications, Inc., Seabrook, MD Michigan, Univ., Ann Arbor )

    1991-06-01

    The disk-averaged brightness temperatures of the present 3.55 and 20.1 cm VLA observations are consistent with the planet's thermal spectra. It is estimated, on the basis of calculations which encompass microwave absorption by H2S, that the H2S mixing ratio on both Uranus and Neptune is probably enhanced by a factor of 10-30 above the elemental sulfur solar ratio. There is also more microwave opacity in the Neptune atmosphere than that of Uranus; this may be due to the presence of NH3 gas above the NH4SH cloud layer. Radio occultation data comparisons indicate the probability of NH3's supersaturation in the Neptune atmosphere. 42 refs.

  20. Active differential optical absorption spectroscopy for NO2 gas pollution using blue light emitting diodes

    NASA Astrophysics Data System (ADS)

    Aljalal, Abdulaziz; Gasmi, Khaled; Al-Basheer, Watheq

    2015-05-01

    Availability of high intensity light emitting diodes in the blue region offer excellent opportunity for using them in active Differential Optical Absorption Spectroscopy (DOAS) to detect air pollution. Their smooth and relatively broad spectral emissions as well as their long life make them almost ideal light sources for active DOAS. In this study, we report the usage of a blue light emitting diode in an active DOAS setup to measure traces of NO2 gas and achieving few parts per billion detection limit for a path length of 300 m. Details of the setup will be presented along with the effects on measurement accuracy due to shifts in the measured spectra calibration and due to using theoretical instrument Gaussian function instead of the measured instrument function.

  1. [Measurement of atomic number of alkali vapor and pressure of buffer gas based on atomic absorption].

    PubMed

    Zheng, Hui-jie; Quan, Wei; Liu, Xiang; Chen, Yao; Lu, Ji-xi

    2015-02-01

    High sensitivitymagnetic measurementscanbe achieved by utilizing atomic spinmanipulation in the spin-exchange-relaxation-free (SERF) regime, which uses an alkali cell as a sensing element. The atomic number density of the alkali vapor and the pressure of the buffer gasare among the most important parameters of the cell andrequire accurate measurement. A method has been proposed and developedto measure the atomic number density and the pressure based on absorption spectroscopy, by sweeping the absorption line and fittingthe experiment data with a Lorentzian profile to obtainboth parameters. Due to Doppler broadening and pressure broadening, which is mainly dominated by the temperature of the cell and the pressure of buffer gas respectively, this work demonstrates a simulation of the errorbetween the peaks of the Lorentzian profile and the Voigt profile caused by bothfactors. The results indicates that the Doppler broadening contribution is insignificant with an error less than 0.015% at 313-513 K for a 4He density of 2 amg, and an error of 0.1% in the presence of 0.6-5 amg at 393 K. We conclude that the Doppler broadening could be ignored under above conditions, and that the Lorentzianprofile is suitably applied to fit the absorption spectrumobtainingboth parameters simultaneously. In addition we discuss the resolution and the instability due to thelight source, wavelength and the temperature of the cell. We find that the cell temperature, whose uncertainty is two orders of magnitude larger than the instability of the light source and the wavelength, is one of the main factors which contributes to the error.

  2. H I emission and absorption in nearby, gas-rich galaxies - II. Sample completion and detection of intervening absorption in NGC 5156

    NASA Astrophysics Data System (ADS)

    Reeves, S. N.; Sadler, E. M.; Allison, J. R.; Koribalski, B. S.; Curran, S. J.; Pracy, M. B.; Phillips, C. J.; Bignall, H. E.; Reynolds, C.

    2016-04-01

    We present the results of a survey for intervening 21 cm H I absorption in a sample of 10 nearby, gas-rich galaxies selected from the H I Parkes All-Sky Survey (HIPASS). This follows the six HIPASS galaxies searched in previous work and completes our full sample. In this paper, we searched for absorption along 17 sightlines with impact parameters between 6 and 46 kpc, making one new detection. We also obtained simultaneous H I emission-line data, allowing us to directly relate the absorption-line detection rate to the H I distribution. From this, we find the majority of the non-detections in the current sample are because sightline does not intersect the H I disc of the galaxy at sufficiently high column density, but that source structure is also an important factor. The detected absorption-line arises in the galaxy NGC 5156 (z = 0.01) at an impact parameter of 19 kpc. The line is deep and narrow with an integrated optical depth of 0.82 km s-1. High-resolution Australia Telescope Compact Array (ATCA) images at 5 and 8 GHz reveal that the background source is resolved into two components with a separation of 2.6 arcsec (500 pc at the redshift of the galaxy), with the absorption likely occurring against a single component. We estimate that the ratio of the spin temperature and covering factor, TS/f, is approximately 950 K in the outer disc of NGC 5156, but further observations using very long baseline interferometry would allow us to accurately measure the covering factor and spin temperature of the gas.

  3. Absorption of folic acid and ascorbic acid from nutrient comparable beverages.

    PubMed

    Carter, Brett; Monsivais, Pablo; Drewnowski, Adam

    2010-01-01

    One hundred percent fruit juices can help consumers increase the nutrient content of the diet since these beverages can be naturally rich in micronutrients. Micronutrient-fortified low-calorie beverages are an important alternative to those wishing to minimize their calorie intakes. However, little is known about the bioavailability of nutrients from fortified beverages relative to 100% fruit juices. The present study examined the bioavailability of ascorbic acid (AA) and folic acid (FA) in 100% orange juice (OJ) and a low-calorie beverage fortified with these nutrients. In a within-subjects, cross-over design, 12 adult men consumed a 591 mL serving of OJ, a low-calorie beverage fortified with AA and FA, and 1% low fat milk. Participants were aged 20 to 35 y, with body mass indexes between 20 and 30 kg/m(2). Blood plasma concentrations of AA and serum concentrations of FA were assayed by serial blood draws, made at 30 min intervals for 4.5 h. Blood plasma concentration of AA was significantly greater after ingestion of the fortified beverage compared to after OJ ingestion. However, the bioavailability of AA did not significantly differ from that of OJ. Analyses of FA indicated no significant difference between fortified beverage and OJ. Consumption of both vitamin containing beverages led to higher concentrations of AA and FA than the milk control. This study showed that similar levels of AA and FA bioavailability can be attained through ingestion of 100% OJ and a fortified beverage.

  4. Laser Absorption spectrometer instrument for tomographic 2D-measurement of climate gas emission from soils

    NASA Astrophysics Data System (ADS)

    Seidel, Anne; Wagner, Steven; Dreizler, Andreas; Ebert, Volker

    2014-05-01

    One of the most intricate effects in climate modelling is the role of permafrost thawing during the global warming process. Soil that has formerly never totally lost its ice cover now emits climate gases due to melting processes[1]. For a better prediction of climate development and possible feedback mechanisms, insights into physical procedures (like e.g. gas emission from underground reservoirs) are required[2]. Therefore, a long-term quantification of greenhouse gas concentrations (and further on fluxes) is necessary and the related structures that are responsible for emission need to be identified. In particular the spatial heterogeneity of soils caused by soil internal structures (e.g. soil composition changes or surface cracks) or by surface modifications (e.g. by plant growth) generate considerable complexities and difficulties for local measurements, for example with soil chambers. For such situations, which often cannot be avoided, a spatially resolved 2D-measurement to identify and quantify the gas emission from the structured soil would be needed, to better understand the influence of the soil sub-structures on the emission behavior. Thus we designed a spatially scanning laser absorption spectrometer setup to determine a 2D-gas concentration map in the soil-air boundary layer. The setup is designed to cover the surfaces in the range of square meters in a horizontal plane above the soil to be investigated. Existing field instruments for gas concentration or flux measurements are based on point-wise measurements, so structure identification is very tedious or even impossible. For this reason, we have developed a tomographic in-situ instrument based on TDLAS ('tunable diode laser absorption spectroscopy') that delivers absolute gas concentration distributions of areas with 0.8m × 0.8m size, without any need for reference measurements with a calibration gas. It is a simple and robust device based on a combination of scanning mirrors and reflecting foils, so

  5. Acid gas scrubbing by composite solvent-swollen membranes

    DOEpatents

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1988-01-01

    A composite immobilized liquid membrane suitable for acid gas scrubbing is disclosed. The membrane is a solvent-swollen polymer and a microporous polymeric support, the solvent being selected from a class of highly polar solvents containing at least one atom selected from nitrogen, oxygen, phosphorous and sulfur, and having a boiling point of at least 100.degree. C. and a solubility parameter of from about 7.5 to about 13.5 (cal/cm.sup.3 -atm).sup.1/2. Such solvents are homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. Also disclosed are methods of acid gas scrubbing of high- and low-Btu gas effluents with such solvent-swollen membranes.

  6. Acid gas scrubbing by composite solvent-swollen membranes

    DOEpatents

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1988-04-12

    A composite immobilized liquid membrane suitable for acid gas scrubbing is disclosed. The membrane is a solvent-swollen polymer and a microporous polymeric support, the solvent being selected from a class of highly polar solvents containing at least one atom selected from nitrogen, oxygen, phosphorus and sulfur, and having a boiling point of at least 100 C and a solubility parameter of from about 7.5 to about 13.5 (cal/cm[sup 3]-atm)[sup 1/2]. Such solvents are homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. Also disclosed are methods of acid gas scrubbing of high- and low-Btu gas effluents with such solvent-swollen membranes. 3 figs.

  7. Gas dilution system results and application to acid rain utilities

    SciTech Connect

    Jolley-Souders, K.; Geib, R.; Dunn, C.

    1997-12-31

    In 1997, the United States EPA will remove restrictions preventing acid rain utilities from using gas dilution systems for calibration or linearity studies for continuous emissions monitoring, Test Method 205 in 40CFR51 requires that a gas dilution system must produce calibration gases whose measured values are within {+-}2% of predicted values. This paper presents the evaluation of the Environics/CalMat 2020 Dilution System for use in calibration studies. Internal studies show that concentrations generated by this unit are within {+-}0.5% of predicted values. Studies are being conducted by several acid rain utilities to evaluate the Environics/CalMat system using single minor component calibration standards. In addition, an internally generated study is being performed to demonstrate the system`s accuracy using a multi-component gas mixture. Data from these tests will be presented in the final version of the paper.

  8. Absorption and distribution of high specific radioactivity 2-C-abscisic Acid in cotton seedlings.

    PubMed

    Shindy, W W; Asmundson, C M; Smith, O E; Kumamoto, J

    1973-11-01

    High specific radioactivity (26.3 mc/mmole) racemic 2-(14)C-abscisic acid was synthesized. An aliquot of abscisic acid, 1.2 x 10(-4)m in aqueous methanolic solution, was applied to the surface of either a cotyledon or the first true leaf of 8- to 32-day-old cotton seedlings (Gossypium hirsutum L.). After various intervals (6-192 hours), the seedlings were processed for autoradiography, counting, and identification of the radioactivity. After 6 hours, radioactivity was observed moving basipetally out of the treated leaf toward the roots. Four days later, radioactivity could be detected throughout the whole seedling. After 8 days, 10% of the recovered radioactivity was found in the roots, and 80% remained in the treated leaf blade. Neither leaf type nor age had any effect on the abscisic acid movement or pattern of distribution. Isolated radioactivity from the roots was identified as abscisic acid, based on comparison with an authentic standard by thin layer chromatography, gas-liquid chromatography, or gas-liquid chromatography-mass spectrometry.

  9. Interactions between greenhouse gas policies and acid rain control strategies

    SciTech Connect

    Klein, D.E.; Kane, R.L.; Mansueti, L.

    1997-12-31

    Conventional wisdom and much of the public policy debate have usually drawn a clean delineation between acid rain issues and global warming concerns. This traditional approach of evaluating one policy at a time is too simplistic to serve as a framework for electric utilities making major capital investment and fuel procurement decisions to comply with various environmental requirements. Potential Climate change regulation can affect acid rain compliance decisions, and acid rain compliance decisions will affect future GHG emissions. This paper explores two categories of linkages between these different environmental issues. First, the assumptions one makes regarding future climate change policies can have a profound impact on the economic attractiveness of various acid rain compliance strategies. Second, decisions regarding acid rain compliance strategy can have greenhouse gas implications that might prove more or less difficult to address in future climate change legislation.

  10. Cesium absorption from acidic solutions using ammonium molybdophosphate on a polyacrylonitrile support (AMP-PAN)

    SciTech Connect

    Miller, C.J.; Olson, A.L.; Johnson, C.K.

    1995-12-01

    Recent efforts at the Idaho Chemical Processing Plant (ICPP) have included evaluation of cesium removal technologies as applied to ICPP acidic radioactive waste streams. Ammonium molybdophosphate (AMP) immobilized on a polyacrylonitrile support (AMP-PAN) has been studied as an ion exchange agent for cesium removal from acidic waste solutions. Capacities, distribution coefficients, elutability, and kinetics of cesium-extraction have been evaluated. Exchange breakthrough curves using small columns have been determined from 1M HNO{sub 3} and simulated waste solutions. The theoretical capacity of AMP is 213 g Cs/kg AMP. The average experimental capacity in batch contacts with various acidic solutions was 150 g Cs/kg AMP. The measured cesium distribution coefficients from actual waste solutions were 3287 mL/g for dissolved zirconia calcines, and 2679 mL/g for sodium-bearing waste. The cesium in the dissolved alumina calcines was analyzed for; however, the concentration was below analytical detectable limits resulting in inconclusive results. The reaction kinetics are very rapid (2-10 minutes). Cesium absorption appears to be independent of acid concentration over the range tested (0.1 M to 5 M HNO{sub 3}).

  11. [Absorption of Uranium with Tea Oil Tree Sawdust Modified by Succinic Acid].

    PubMed

    Zhang, Xiao-feng; Chen, Di-yun; Peng, Yan; Liu, Yong-sheng; Xiong, Xue-ying

    2015-05-01

    In order to explore how the modification of succinic acid improves the adsorption of tea oil tree sawdust for uranium, the tea oil tree sawdust was modified by succinic acid, after the pretreatments of crushing, screening, alkalization and acidification. Infrared analysis indicated carboxylic acid groups and ester groups were added to the sawdust after modification, and scanning electron microscope demonstrated after modification the appearance of tea oil tree sawdust was transferred from the structure like compact and straight stripped into the structure like loose and wrinkled leaves, which meant modification increased its inner pores. By the static experiments, effects of reaction time between adsorbent and solvent, dosage of adsorbent, temperature, pH value and initial concentration of uranium were investigated. The results showed that after the modification by succinic acid, the absorption rate of tea oil tree sawdust for uranium increased significantly by about 20% in 12.5 mg · L(-1) initial concentration uranium solution. Adsorption equilibrium was achieved within 180 min, and the kinetic data can be well described by the pseudo-second-order kinetic model. The experimental adsorption isotherm followed the Langmuir and Freundlich models. In addition, the maximum adsorption amounts of tea oil tree sawdust after modification calculated from Langmuir equation raised from 21.413 3 to 31.545 7 mg · g(-1) at 35°C and pH 4.0. PMID:26314117

  12. Probing the gas content of radio galaxies through H I absorption stacking

    NASA Astrophysics Data System (ADS)

    Geréb, K.; Morganti, R.; Oosterloo, T. A.

    2014-09-01

    Using the Westerbork Synthesis Radio Telescope, we carried out shallow H i absorption observations of a flux-selected (S1.4 GHz > 50 mJy) sample of 93 radio active galactic nuclei (AGN), which have available SDSS (Sloan Digital Sky Survey) redshifts between 0.02 < z < 0.23. Our main goal is to study the gas properties of radio sources down to S1.4 GHz flux densities not systematically explored before using, for the first time, stacking of absorption spectra of extragalactic H i. Despite the shallow observations, we obtained a direct detection rate of ~29%, comparable with deeper studies of radio galaxies. Furthermore, detections are found at every S1.4 GHz flux level, showing that H i absorption detections are not biased toward brighter sources. The stacked profiles of detections and non-detections reveal a clear dichotomy in the presence of H i, with the 27 detections showing an average peak τ = 0.02 corresponding to N(H i) ~(7.4 ± 0.2) × 1018 (Tspin/cf) cm-2, while the 66 non-detections remain undetected upon stacking with a peak optical depth upper limit τ < 0.002 corresponding to N(H i) < (2.26 ± 0.06) × 1017 (Tspin/cf) cm-2 (using a FWHM of 62 kms-1, derived from the mean width of the detections). Separating the sample into compact and extended radio sources increases the detection rate, optical depth, and FWHM for the compact sample. The dichotomy for the stacked profiles of detections and non-detections still holds between these two groups of objects. We argue that orientation effects connected to a disk-like distribution of the H i can be partly responsible for the dichotomy that we see in our sample. However, orientation effects alone cannot explain all the observational results, and some of our galaxies must be genuinely depleted of cold gas. A fraction of the compact sources in the sample are confirmed by previous studies as likely young radio sources (compact steep spectrum and gigahertz peaked spectrum sources). These show an even higher

  13. Optical Absorptions of Oxygenated Carbon Chain Cations in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Hardy, F.-X.; Rice, C. A.; Chakraborty, A.; Fulara, J.; Maier, J. P.

    2016-06-01

    The gas-phase electronic spectra of linear OC4O+ and a planar C6H2O+ isomer were obtained at a rotational temperature of ≈10 K. Absorption measurements in a 6 K neon matrix were followed by gas-phase observations in a cryogenic radiofrequency ion trap. The origin bands of the 1{}2{{{\\Pi }}}u ≤ftarrow X{}2{{{\\Pi }}}g transition of OC4O+ and the 1{}2A{}2 ≤ftarrow X{}2B1 of HCCC(CO)CCH+ lie at 417.31 ± 0.01 nm and 523.49 ± 0.01 nm, respectively. These constitute the first electronic spectra of oxygenated carbon chain cations studied under conditions that are relevant to the diffuse interstellar bands (DIBs), as both have a visible transition. The recent analysis of the 579.5 nm DIB indicates that small carriers, five to seven heavy atoms, continue to be possible candidates (Huang & Oka 2015). Astronomical implications are discussed regarding this kind of oxygenated molecules.

  14. Non-invasive gas monitoring in newborn infants using diode laser absorption spectroscopy: a case study

    NASA Astrophysics Data System (ADS)

    Lundin, Patrik; Svanberg, Emilie K.; Cocola, Lorenzo; Lewander, Märta; Andersson-Engels, Stefan; Jahr, John; Fellman, Vineta; Svanberg, Katarina; Svanberg, Sune

    2012-03-01

    Non-invasive diode laser spectroscopy was, for the first time, used to assess gas content in the intestines and the lungs of a new-born, 4 kg, baby. Two gases, water vapor and oxygen, were studied with two low-power tunable diode lasers, illuminating the surface skin tissue and detecting the diffusely emerging light a few centimeters away. The light, having penetrated into the tissue, had experienced absorption by gas located in the lungs and in the intestines. Very distinct water vapor signals were obtained from the intestines while imprint from oxygen was lacking, as expected. Detectable, but minor, signals of water vapor were also obtained from the lungs, illuminating the armpit area and detecting below the collar bone. Water vapor signals were seen but again oxygen signals were lacking, now due to the difficulties of penetration of the oxygen probing light into the lungs of this full-term baby. Ultra-sound images were obtained both from the lungs and from the stomach of the baby. Based on dimensions and our experimental findings, we conclude, that for early pre-term babies, also oxygen should be detectable in the lungs, in addition to intestine and lung detection of water vapor. The present paper focuses on the studies of the intestines while the lung studies will be covered in a forthcoming paper.

  15. Absorption Spectroscopy Study of Acid-Base and Metal-Binding Properties of Flavanones

    NASA Astrophysics Data System (ADS)

    Shubina, V. S.; Shatalina, Yu. V.

    2013-11-01

    We have used absorption spectroscopy to study the acid-base and metal-binding properties of two structurally similar flavanones: taxifolin and naringenin. We have determined the acid dissociation constants for taxifolin (pKa1 = 7.10 ± 0.05, pKa2 = 8.60 ± 0.09, pKa3 = 8.59 ± 0.19, pKa4 = 11.82 ± 0.36) and naringenin (pKa1 = 7.05 ± 0.05, pKa2 = 8.85 ± 0.09, pKa3 = 12.01 ± 0.38). The appearance of new absorption bands in the visible wavelength region let us determine the stoichiometric composition of the iron (II) complexes of the flavanones. We show that at pH 5, in solution there is a mixture of complexes between taxifolin and iron (II) ions in stoichiometric ratio 2:1 and 1:2, while at pH 7.4 and pH 9, we detect a 1:1 taxifolin:Fe(II) complex. We established that at these pH values, naringenin forms a 2:1 complex with iron (II) ions. We propose structures for the complexes formed. Comprehensive study of the acid-base properties and the metal-binding capability of the two structurally similar flavanones let us determine the structure-properties relation and the conditions under which antioxidant activity of the polyphenols appears, via chelation of variable-valence metal ions.

  16. Equivalent absorption and in vivo kinetics of tritiated folic acid and 5-formyl-tetrahydrofolic acid in rats

    SciTech Connect

    Bhandari, S.D.; Gregory, J.F. )

    1990-02-26

    The intestinal absorption and in vivo turnover kinetics of ({sup 3}H)folic acid (FA) and (6S)-5-formyl-({sup 3}H)tetrahydrofolate (5-CHO-THF) were examined to determine whether differences exist in the inherent bioavailability of these forms of the vitamin. Following oral administration of 2 {mu}Ci/100 g body weight (in 50 mM sodium ascorbate, pH 7), a biphasic pattern of urinary tritium excretion was observed for each labeled folate. The following kinetic results were obtained (n=9). Little tritium was found in the GI tract after 8 hours, which indicated nearly complete absorption of each folate. HPLC analysis of urine revealed similar excretory patterns over 0-8 days post-dose for each folate administered, and the patterns of hepatic ({sup 3}H)folates were equivalent when examined after 8 hours and 4 days post-dose. These findings indicate that the bioavailability FA and 5-formyl-THF is equivalent.

  17. Investigation of SO3 absorption line for in situ gas detection inside combustion plants using a 4-μm-band laser source.

    PubMed

    Tokura, A; Tadanaga, O; Nishimiya, T; Muta, K; Kamiyama, N; Yonemura, M; Fujii, S; Tsumura, Y; Abe, M; Takenouchi, H; Kenmotsu, K; Sakai, Y

    2016-09-01

    We have investigated 4-μm-band SO3 absorption lines for in situSO3 detection using a mid-infrared laser source based on difference frequency generation in a quasi-phase-matched LiNbO3 waveguide. In the wavelength range of 4.09400-4.10600 μm, there were strong SO3 absorption lines. The maximum absorption coefficient at a concentration of 170 ppmv was estimated to be about 3.2×10-5  cm-1 at a gas temperature of 190°C. In coexistence with H2O, the reduction of the SO3 absorption peak height was observed, which was caused by sulfuric acid formation. We discuss a method of using an SO3 equilibrium curve to derive the total SO3 molecule concentration. PMID:27607263

  18. First Connection between Cold Gas in Emission and Absorption: CO Emission from a Galaxy-Quasar Pair

    NASA Astrophysics Data System (ADS)

    Neeleman, Marcel; Prochaska, J. Xavier; Zwaan, Martin A.; Kanekar, Nissim; Christensen, Lise; Dessauges-Zavadsky, Miroslava; Fynbo, Johan P. U.; van Kampen, Eelco; Møller, Palle; Zafar, Tayyaba

    2016-04-01

    We present the first detection of molecular emission from a galaxy selected to be near a projected background quasar using the Atacama Large Millimeter/submillimeter Array (ALMA). The ALMA detection of CO(1-0) emission from the z = 0.101 galaxy toward quasar PKS 0439-433 is coincident with its stellar disk and yields a molecular gas mass of Mmol ≈ 4.2 × 109 M⊙ (for a Galactic CO-to-H2 conversion factor), larger than the upper limit on its atomic gas mass. We resolve the CO velocity field, obtaining a rotational velocity of 134 ± 11 km s-1 and a resultant dynamical mass of ≥4 × 1010 M⊙. Despite its high metallicity and large molecular mass, the z = 0.101 galaxy has a low star formation rate, implying a large gas consumption timescale, larger than that typical of late-type galaxies. Most of the molecular gas is hence likely to be in a diffuse extended phase, rather than in dense molecular clouds. By combining the results of emission and absorption studies, we find that the strongest molecular absorption component toward the quasar cannot arise from the molecular disk, but is likely to arise from diffuse gas in the galaxy’s circumgalactic medium. Our results emphasize the potential of combining molecular and stellar emission line studies with optical absorption line studies to achieve a more complete picture of the gas within and surrounding high-redshift galaxies.

  19. FTIR measurements of mid-IR absorption spectra of gaseous fatty acid methyl esters at T=25-500 °C

    NASA Astrophysics Data System (ADS)

    Campbell, M. F.; Freeman, K. G.; Davidson, D. F.; Hanson, R. K.

    2014-09-01

    Gas-phase mid-infrared (IR) absorption spectra (2500-3400 cm-1) for eleven fatty acid methyl esters (FAMEs) have been quantitatively measured at temperatures between 25 and 500 °C using an FTIR spectrometer with a resolution of 1 cm-1. Using these spectra, the absorption cross section at 3.39 μm, corresponding to the monochromatic output of a helium-neon laser, is reported for each of these fuels as a function of temperature. The data indicate that the 3.39 μm cross section values of saturated FAMEs vary linearly with the logarithm of the number of Csbnd H bonds in the molecule.

  20. In vitro predictions of skin absorption of caffeine, testosterone, and benzoic acid: a multi-centre comparison study.

    PubMed

    van de Sandt, J J M; van Burgsteden, J A; Cage, S; Carmichael, P L; Dick, I; Kenyon, S; Korinth, G; Larese, F; Limasset, J C; Maas, W J M; Montomoli, L; Nielsen, J B; Payan, J-P; Robinson, E; Sartorelli, P; Schaller, K H; Wilkinson, S C; Williams, F M

    2004-06-01

    To obtain better insight into the robustness of in vitro percutaneous absorption methodology, the intra- and inter-laboratory variation in this type of study was investigated in 10 European laboratories. To this purpose, the in vitro absorption of three compounds through human skin (9 laboratories) and rat skin (1 laboratory) was determined. The test materials were benzoic acid, caffeine, and testosterone, representing a range of different physico-chemical properties. All laboratories performed their studies according to a detailed protocol in which all experimental details were described and each laboratory performed at least three independent experiments for each test chemical. All laboratories assigned the absorption of benzoic acid through human skin, the highest ranking of the three compounds (overall mean flux of 16.54+/-11.87 microg/cm(2)/h). The absorption of caffeine and testosterone through human skin was similar, having overall mean maximum absorption rates of 2.24+/-1.43 microg/cm(2)/h and 1.63+/-1.94 microg/cm(2)/h, respectively. In 7 out of 9 laboratories, the maximum absorption rates of caffeine were ranked higher than testosterone. No differences were observed between the mean absorption through human skin and the one rat study for benzoic acid and testosterone. For caffeine the maximum absorption rate and the total penetration through rat skin were clearly higher than the mean value for human skin. When evaluating all data, it appeared that no consistent relation existed between the diffusion cell type and the absorption of the test compounds. Skin thickness only slightly influenced the absorption of benzoic acid and caffeine. In contrast, the maximum absorption rate of testosterone was clearly higher in the laboratories using thin, dermatomed skin membranes. Testosterone is the most lipophilic compound and showed also a higher presence in the skin membrane after 24 h than the two other compounds. The results of this study indicate that the in

  1. Evaluation of stack criteria pollutant gas absorption in the new generation thermoelectric water condenser fitted with laminar impinger type heat exchangers

    SciTech Connect

    Baldwin, T.

    1995-12-31

    Title IV of the Clean Air Act Amendments of 1990 authorized the Environmental Protection Agency to establish an Acid Rain Program to reduce the adverse effects of acidic deposition. The Act specifically stipulated that CEMS (continuous emissions monitoring systems) be used to measure the stack emissions under this program. Along with these rules, comes the task of the Stack Tester (Reference Method) to routinely perform RATA (Relative Accuracy Test Audit) tests on the installed CEMS. This paper presents a laboratory and field test sequence to evaluate the signal attenuation through the gas sample conditioning, water condensation removal process, using laminar flow impinger heat exchangers. This method is compared to the EPA CFR 40, Part 60, Appendix A, Method 6, glass impinger train, commonly used by RATA stack testers. CFR 40, Part 75 revisions as of the CAAA 1990, requires more stringent certification and CEMS performance standards. These standards are summarized and related to gas absorption in both the thermoelectric cooler heat exchanger and the Method 6 glass impinger train system. As an incentive to reduce the frequency of RATA tests required per year, emitters are encouraged to achieve relative accuracies of 7.5% or less compared to the reference method. This incentive requires better reference method test apparatus definition. This paper will explore these alternatives and provide test data for comparison to the currently available apparatus. Also discussed is the theory of Electronic Gas Sample Coolers and their practical application to the removal of water from stack gas.

  2. Gas-phase NMR studies of alcohols. Intrinsic acidities

    NASA Astrophysics Data System (ADS)

    Chauvel, J. Paul; True, Nancy S.

    1985-05-01

    Gas-phase (≈100 Torr) 1H NMR spectra of eighteen simple aliphatic and unsaturated alcohols, four fluorinated alcohols, and two thiols were obtained at 148.6°C where hydrogen bonding has little effect on chemical shifts. For the methanol, ethanol, n-propanol, i-propanol, t-butanol, i- butanol, neopentanol, 2,2,2-trifluoroethanol and benzyl alcohol, the observed hydroxylic proton chemical shifts correlate with previously obtained relative gas-phase acidities from thermochemical analysis which employed equilibrium constants of proton transfer reactions measured via mass spectroscopic and ion cyclotron resonance techniques. The correlational dependence is 10.3(0.5) kcal/mol ppm with a correlation coefficient of 0.99. These results demonstrate that the trend of increasing acidity with increasing size of the alkyl substituent is also reflected in the neutral forms of the alcohols, indicating that the polarizability of the ionic forms is not the only determining factor in relative gas-phase acidities of alcohols. Although factors affecting the hydroxylic proton chemical shifts of the larger substituted and unsaturated alcohols are more complex, their observed 1H NMR spectra also reflect this trend. For methanol and ethanol observed gas-phase 1H chemical shifts are also compared with recent theoritical calculations. 3JHH coupling constants across CO bonds are ≈ 5.5 Hz, significantly smaller than typical 3JHH coupling across sp 3 hybrid C C bonds.

  3. Modeling acid-gas generation from boiling chloride brines

    PubMed Central

    2009-01-01

    Background This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Results Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150°C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. Conclusion The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation

  4. Modeling acid-gas generation from boiling chloride brines

    SciTech Connect

    Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

    2009-11-16

    This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent

  5. Two-dimensional (2D) infrared (IR) correlation spectroscopy for dynamic absorption behavior of oleic acid (OA) onto silica gel

    NASA Astrophysics Data System (ADS)

    Genkawa, Takuma; Kanematsu, Wataru; Shinzawa, Hideyuki

    2014-07-01

    Dynamic absorption behavior of oleic acid (OA) onto silica gel was probed by infrared (IR) spectroscopy. Once OA is injected into silica gel placed on a horizontal attenuated total reflectance prism, the silica gel starts to absorb the OA molecules due to the molecular-level interaction based on hydrogen bonding between the COOH of OA and the OH of silica gel. The substantial level of variation of spectral feature is readily observed during the absorption of OA onto silica gel. 2D correlation analysis of the time-dependent IR spectra reveals fine details of absorption dynamics of OA molecules depending on the molecular structure. The predominant absorption of the monomers occurs at the onset of the absorption, and it is then quickly followed by the decrease in the dimers. In other words, the dissociation of the liquid crystals occurs via the disuniting of the tightly packed OA dimers.

  6. Fatty acids determination in Bronte pistachios by gas chromatographic method.

    PubMed

    Pantano, Licia; Lo Cascio, Giovanni; Alongi, Angelina; Cammilleri, Gaetano; Vella, Antonio; Macaluso, Andrea; Cicero, Nicola; Migliazzo, Aldo; Ferrantelli, Vincenzo

    2016-10-01

    A gas chromatographic with flame ionization detector (GC-MS FID) method for the identification and quantification of fatty acids based on the extraction of lipids and derivatisation of free acids to form methyl esters was developed and validated. The proposed method was evaluated to a number of standard FAs, and Bronte pistachios samples were used for that purpose and to demonstrate the applicability of the proposed method. In this regard, repeatability, mean and standard deviation of the analytical procedure were calculated. The results obtained have demonstrated oleic acid as the main component of Bronte pistachios (72.2%) followed by linoleic acid (13.4%) and showed some differences in composition with respect to Tunisian, Turkish and Iranian pistachios.

  7. Estimation of brassylic acid by gas chromatography-mass spectrometry

    SciTech Connect

    Mohammed J. Nasrullah, Erica N. Pfarr, Pooja Thapliyal, Nicholas S. Dusek, Kristofer L. Schiele, Christy Gallagher-Lein, and James A. Bahr

    2010-10-29

    The main focus of this work is to estimate Brassylic Acid (BA) using gas chromatography-mass spectrometry (GC-MS). BA is a product obtained from the oxidative cleavage of Erucic Acid (EA). BA has various applications for making nylons and high performance polymers. BA is a 13 carbon compound with two carboxylic acid functional groups at the terminal end. BA has a long hydrocarbon chain that makes the molecule less sensitive to some of the characterization techniques. Although BA can be characterized by NMR, both the starting material (EA) and products BA and nonanoic acid (NA) have peaks at similar {delta}, ppm values. Hence it becomes difficult for the quick estimation of BA during its synthesis.

  8. Fatty acids determination in Bronte pistachios by gas chromatographic method.

    PubMed

    Pantano, Licia; Lo Cascio, Giovanni; Alongi, Angelina; Cammilleri, Gaetano; Vella, Antonio; Macaluso, Andrea; Cicero, Nicola; Migliazzo, Aldo; Ferrantelli, Vincenzo

    2016-10-01

    A gas chromatographic with flame ionization detector (GC-MS FID) method for the identification and quantification of fatty acids based on the extraction of lipids and derivatisation of free acids to form methyl esters was developed and validated. The proposed method was evaluated to a number of standard FAs, and Bronte pistachios samples were used for that purpose and to demonstrate the applicability of the proposed method. In this regard, repeatability, mean and standard deviation of the analytical procedure were calculated. The results obtained have demonstrated oleic acid as the main component of Bronte pistachios (72.2%) followed by linoleic acid (13.4%) and showed some differences in composition with respect to Tunisian, Turkish and Iranian pistachios. PMID:27265004

  9. A search for ultraviolet circumstellar gas absorption features in alpha Piscis Austrinus (Fomalhaut), a possible Beta Pictoris-like system

    NASA Technical Reports Server (NTRS)

    Cheng, K.-P.; Bruhweiler, Fred C.; Kondo, Yoji

    1994-01-01

    Archival high-dispersion International Ultraviolet Explorer (IUE) spectra have been used to search for circumstellar gas absorption features in alpha PsA (A3 V), a nearby (6.7 pc) proto-planetary system candidate. Recent sub-millimeter mapping observations around the region of alpha PsA indicate a spatially resolved dust disk like the one seen around Beta Pic. To determine how closely this putative disk resembles that of Beta Pic, we have searched for signatures of circumstellar gaseous absorption in all the available IUE high-dispersion data of alpha PsA. Examination of co-added IUE spectra shows weak circumstellar absorptions from excited levels in the resonance multiplet of Fe II near 2600 A. We also conclude that the sharp C I feature near 1657 A, previously identified as interstellar absorption toward alpha PsA, likely has a circumstellar origin. However, because the weakness of these absorption features, we will consider the presence of circumstellar gas as tentative and should be verified by using the Goddard High-Resolution Spectrograph aboard the Hubble Space Telescope. No corresponding circumstellar absorption is detected in higher ionization Fe III and Al III. Since the collisionally ionized nonphotospheric Al III resonance absorption seen in Beta Pic is likely formed close to the stellar surface, its absence in the UV spectra of alpha PsA could imply that, in contrast with Beta Pic, there is no active gaseous disk infall onto the central star. In the alpha PsA gaseous disk, if we assume a solar abundance for iron and all the iron is in the form of Fe II, plus a disk temperature of 5000 K, the Fe II UV1 absorption at 2611.8743 A infers a total hydrogen column density along the line of sight through the circumstellar disk of N(H) approximately equals 3.8 x 10(exp 17)/cm.

  10. Temperature dependence of amino acid side chain IR absorptions in the amide I' region.

    PubMed

    Anderson, Benjamin A; Literati, Alex; Ball, Borden; Kubelka, Jan

    2014-05-01

    Amide I' IR spectra are widely used for studies of structural changes in peptides and proteins as a function of temperature. Temperature dependent absorptions of amino acid side-chains that overlap the amide I' may significantly complicate the structural analyses. While the side-chain IR spectra have been investigated previously, thus far their dependence on temperature has not been reported. Here we present the study of the changes in the IR spectra with temperature for side-chain groups of aspartate, glutamate, asparagine, glutamine, arginine, and tyrosine in the amide I' region (in D2O). Band fitting analysis was employed to extract the temperature dependence of the individual spectral parameters, such as peak frequency, integrated intensity, band width, and shape. As expected, the side-chain IR bands exhibit significant changes with temperature. The majority of the spectral parameters, particularly the frequency and intensity, show linear dependence on temperature, but the direction and magnitude vary depending on the particular side-chain group. The exception is arginine, which exhibits a distinctly nonlinear frequency shift with temperature for its asymmetric CN3H5(+) bending signal, although a linear fit can account for this change to within ~1/3 cm(-1). The applicability of the determined spectral parameters for estimations of temperature-dependent side-chain absorptions in peptides and proteins are discussed.

  11. Fermentation of polysaccharides and absorption of short chain fatty acids in the mammalian hindgut.

    PubMed

    Rechkemmer, G; Rönnau, K; von Engelhardt, W

    1988-01-01

    1. Hindgut volume varies considerably between carnivores, omnivores and herbivores. But a common feature in all mammals is an extensive microbial fermentation of polysaccharides in the hindgut. Large amounts of short chain fatty acids (SCFA) are produced. Total concentrations of SCFA are generally ca 100 mmol/l. SCFA metabolism contributes considerably to the energy metabolism of the animal. 2. In hindgut fermenting herbivores ileal outflow provides fluid and the buffering capacity essential for microbial metabolism. 3. SCFA are rapidly absorbed. Absorption is passive and, unexpectedly, nearly independent from luminal pH. This is attributed to the presence of a constant pH-microclimate at the epithelial surface. 4. The permeability of the proximal compared to the distal colon of guinea pig is higher for acetate, equal for propionate and lower for butyrate. This difference is due to partial absorption of SCFA in the dissociated form in the proximal segment. 5. Protons required for SCFA transport in the undissociated form may be partially explained by HCO3 accumulation or by Na-H exchange. Findings are controversial.

  12. Effect of nonionic surfactants on percutaneous absorption of salicylic acid and sodium salicylate in the presence of dimethyl sulfoxide.

    PubMed

    Shen, W W; Danti, A G; Bruscato, F N

    1976-12-01

    Fifteen nonionic surfactants, 10% (w/w), were each incorporated into white petrolatum USP ointment base containing 10% (w/w) salicylic acid or 11.6% (w/w) sodium salicylate with 10% (w/w) dimethyl sulfoxide. Percutaneous absorption was determined from blood salicylate levels in New Zealand white rabbits at regular intervals for 8 hr following application of the ointment. Percutaneous absorption of salicylic acid was increased significantly when sorbitan monopalmitate, sorbitan trioleate, poloxamer 231, poloxamer 182, polyoxyethylene 4 lauryl ether, polyoxyethylene 2 oleyl ether, or polyoxyl 8 stearate was added to the ointment containing dimethyl sulfoxide, salicylic acid, and white petrolatum. Percutaneous absorption of sodium salicylate was increased significantly when sorbitan monolaurate, sorbitan monopalmitate, or poloxamer 182 was added to the ointment containing dimethyl sulfoxide, sodium salicylate, and white petrolatum.

  13. Sigmoid Correlations for Gas Solubility and Enthalpy Change of Chemical Absorption of CO2

    SciTech Connect

    Huang, Kuan; Wu, You-Ting; Dai, Sheng

    2015-10-01

    Knowledge of the relationship between gas solubility and enthalpy change of chemical absorption of CO2 is very important for exploring energy-efficient absorbents for CO2 capture. To this end, equations that can directly correlate gas solubility with absorption enthalpy were derived through combining the van’t Hoff equation with the reaction equilibrium thermodynamic model (RETM). In this study, two typical reaction mechanisms for chemical absorption of CO2 (1:1 and 1:2) were considered for RETM. The variations of gas solubility with enthalpy change were found to be distinctively sigmoid functions, regardless of the investigated temperature and pressure or assumed reaction forms between CO2 and the absorbent molecule. Theoretically calculated variation curves of gas solubility vs enthalpy change agreed well with experimental results reported in literature. Also, on the basis of the trade-off relationship between gas solubility and enthalpy change, criterions for evaluating energy-efficient chemical absorbents for CO2 capture were proposed.

  14. The influence of the sennosides on absorption of glycyrrhetic acid in rats.

    PubMed

    Mizuhara, Yasuharu; Takizawa, Yukiho; Ishihara, Kazuhisa; Asano, Takayuki; Kushida, Hirotaka; Morota, Takashi; Kase, Yoshio; Takeda, Shuichi; Aburada, Masaki; Nomura, Masaaki; Yokogawa, Koichi

    2005-10-01

    In the course of our clinical studies of Kampo medicine (traditional Japanese medicines), we observed the pharmacokinetic interactions between two herbs. When Onpito (TJ-8117, Kampo medicine) containing licorice and rhubarb was administered orally to human subjects, we observed that the AUC(0-lim) and Cmax of glycyrrhetic acid (GA) in plasma were lower than those treated with other Kampo medicines containing licorice. In this study, we demonstrate the pharmacokinetic interactions of GA derived from glycyrrhizinic acid (GL) in licorice and anthraquinones derived from rhubarb. To our knowledge, this is the first report to investigate the pharmacokinetic interactions between two herbs. When GL was orally co-administrated to rats with a non-effective dose of sennoside A having purgative activity, the AUC(0-lim) and Cmax of GA decreased. In addition, sennoside A did not affect the metabolism of GL by the intestinal bacteria in vitro. In the examination using an in situ loop of rat colon, the remaining ratio of GA rose drastically by the co-administration of sennoside A, sennidin A and rhein. Observed inhibition activity of these anthraquinones on GA absorption depended on the concentration of the components added. The maximum inhibition ratio was approximately 75% by rhein, 60% by sennoside A and 25% by sennidin A. We conclude that the decrease of the pharmacokinetic parameters of GA in human plasma observed in the clinical study of TJ-8117 is attributable to an interactive action of absorption from the intestinal tract by anthraquinones contained in or derived from rhubarb. PMID:16204942

  15. Kinetics of amino acid and glucose absorption following pancreatic diversion in the pig

    NASA Technical Reports Server (NTRS)

    Rerat, A.; Calmes, R.; Corring, T.; Vaissade, P.

    1996-01-01

    An experiment was conducted in the pig to determine the consequences of deprivation of exocrine pancreatic secretion on the composition and quantity of nutrients absorbed after intake of a balanced diet. Five growing pigs (53.8 kg body weight) were fitted with permanent catheters in the portal vein and the carotid artery and with an electromagnetic flow probe around the portal vein to measure the exchanges between the blood and the intestinal lumen. They were also fitted with a permanent catheter in the duct of Wirsung to educe the exocrine pancreatic secretion and another one in the duodenum in order to reintroduce it. In each animal, glucose, amino-N and amino acid absorption as well as insulin and glucagon production were measured over a period of 10 h after the meal (semi-purified diet based on purified starch and containing 180 g fish meal/kg, DM content of the meal 731 g), either in the presence of pancreatic juice (group C: immediate reintroduction), or in the absence of pancreatic juice (group D: deprivation). The deprivation of pancreatic juice provoked a marked depression in the absorption of glucose (D 67.9 (SEM 27.9) g/10 h, C 437.7 (SEM 39.5) g/10 h, P < 0.001), and of amino-N (D 7.55 (SEM 0.54) g/10 h, C 15.80 (SEM 0.79) g/10 h, P < 0.001). The composition of the mixture of amino acids in the portal blood was only slightly modified: only the levels of histidine (P < 0.05) and of valine (P < 0.06, NS) decreased in the absence of pancreatic juice. Insulin production was much lower (by 64%, P < 0.05) in the absence of pancreatic juice whereas that of glucagon was not affected.

  16. Rapid screening and identification of illicit drugs by IR absorption spectroscopy and gas chromatography

    NASA Astrophysics Data System (ADS)

    Mengali, Sandro; Liberatore, Nicola; Luciani, Domenico; Viola, Roberto; Cardinali, Gian Carlo; Elmi, Ivan; Poggi, Antonella; Zampolli, Stefano; Biavardi, Elisa; Dalcanale, Enrico; Bonadio, Federica; Delemont, Olivier; Esseiva, Pierre; Romolo, Francesco S.

    2013-01-01

    Analytical instruments based on InfraRed Absorption Spectroscopy (IRAS) and Gas Chromatography (GC) are today available only as bench-top instrumentation for forensic labs and bulk analysis. Within the 'DIRAC' project funded by the European Commission, we are developing an advanced portable sensor, that combines miniaturized GC as its key chemical separation tool, and IRAS in a Hollow Fiber (HF) as its key analytical tool, to detect and recognize illicit drugs and key precursors, as bulk and as traces. The HF-IRAS module essentially consists of a broadly tunable External Cavity (EC) Quantum Cascade Laser (QCL), thermo-electrically cooled MCT detectors, and an infrared hollow fiber at controlled temperature. The hollow fiber works as a miniaturized gas cell, that can be connected to the output of the GC column with minimal dead volumes. Indeed, the module has been coupled to GC columns of different internal diameter and stationary phase, and with a Vapour Phase Pre-concentrator (VPC) that selectively traps target chemicals from the air. The presentation will report the results of tests made with amphetamines and precursors, as pure substances, mixtures, and solutions. It will show that the sensor is capable of analyzing all the chemicals of interest, with limits of detection ranging from a few nanograms to about 100-200 ng. Furthermore, it is suitable to deal with vapours directly trapped from the headspace of a vessel, and with salts treated in a basic solution. When coupled to FAST GC columns, the module can analyze multi-components mixes in less than 5 minutes.

  17. Gas chromatography coupled with atomic absorption spectrometry — a sensitive instrumentation for mercury speciation

    NASA Astrophysics Data System (ADS)

    Emteborg, Håkan; Sinemus, Hans-Werner; Radziuk, Bernard; Baxter, Douglas C.; Frech, Wolfgang

    1996-07-01

    New instrumentation for the speciation of mercury is described, and is applied to the analysis of natural water samples. The separation of mercury species is effected using gas chromatography of derivatized mercury species on a widebore capillary column. The solvent is vented using a bypass valve and the separated mercury species are pyrolysed on-line at 800°C for production of mercury atoms. These are then detected by atomic absorption spectrometry (AAS) at the 253.7 and 184.9 nm lines simultaneously in a quartz cuvette. The use of the 184.9 nm line provides a more than five-fold increase in sensitivity compared with the conventional 253.7 nm line and an absolute detection limit of 0.5 pg of mercury. The dynamic range of the combined analytical lines provides a linear response over more than three orders of magnitude. A number of organic compounds not containing mercury are also detected following pyrolysis, especially at the 184.9 nm line. These background species must not co-elute at the retention times for methyl- and inorganic mercury, as otherwise a positive interference would result. By maximizing the chromatographic resolution and minimizing the band broadening in the cuvette by use of a make-up gas, the retention times of interest are freed from co-eluting background peaks. The instrumentation has been applied to the determination of ng l -1 concentrations of methyl- and inorganic mercury in Lake Constance, Germany and within the Lake Constance drinking water supply organization, Bodenseewasserversorgung (BWV). The accuracy for the sum of methyl- and inorganic mercury has been assessed by comparison with an independent method for total mercury based on AAS detection implemented at BWV. Relative detection limits using 1 litre water samples and 15 ml injections of the final hexane extract were 0.03 ng l -1 for methylmercury and 0.4 ng l -1 for inorganic mercury based on the 3j criterion.

  18. Fundamental thermochemical properties of amino acids: gas-phase and aqueous acidities and gas-phase heats of formation.

    PubMed

    Stover, Michele L; Jackson, Virgil E; Matus, Myrna H; Adams, Margaret A; Cassady, Carolyn J; Dixon, David A

    2012-03-01

    The gas-phase acidities of the 20 L-amino acids have been predicted at the composite G3(MP2) level. A broad range of structures of the neutral and anion were studied to determine the lowest energy conformer. Excellent agreement is found with the available experimental gas-phase deprotonation enthalpies, and the calculated values are within experimental error. We predict that tyrosine is deprotonated at the CO(2)H site. Cysteine is predicted to be deprotonated at the SH but the proton on the CO(2)H is shared with the S(-) site. Self-consistent reaction field (SCRF) calculations with the COSMO parametrization were used to predict the pK(a)'s of the non-zwitterion form in aqueous solution. The differences in the non-zwitterion pK(a) values were used to estimate the free energy difference between the zwitterion and nonzwitterion forms in solution. The heats of formation of the neutral compounds were calculated from atomization energies and isodesmic reactions to provide the first reliable set of these values in the gas phase. Further calculations were performed on five rare amino acids to predict their heats of formation, acidities, and pK(a) values.

  19. The velocity distribution of interstellar gas observed in strong UV absorption lines

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; York, D. G.

    1978-01-01

    Observations of three strong interstellar UV absorption lines of N I (1199 A), N II (1083 A), and Si III (1206 A) in 47 stars of widely varying distance and a variety of spectral types are analyzed to obtain a velocity distribution function for the interstellar gas. A technique based on the maximum and minimum velocities observed along a line of sight is adopted because of heavy line blending, and results are discussed for both power-law and exponential distribution functions. The expected distribution of radiative-phase supernova remnants (SNRs) in the interstellar medium is calculated as a function of SNR birthrate and of the interstellar density in which they evolve. The results are combined with observed distance estimates, and it is shown that an interstellar density in excess of 0.1 per cu cm would be required to keep the SNRs sufficiently confined so that their cross sections are consistent with the observed number of components. The alternative possibility is considered that SNRs do not enter the radiative phase before escaping from the Galaxy or colliding with neighboring remnants.

  20. Reconstruction of combustion temperature and gas concentration distributions using line-of-sight tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhirong; Sun, Pengshuai; Pang, Tao; Xia, Hua; Cui, Xiaojuan; Li, Zhe; Han, Luo; Wu, Bian; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong

    2016-07-01

    Spatial temperature and gas concentration distributions are crucial for combustion studies to characterize the combustion position and to evaluate the combustion regime and the released heat quantity. Optical computer tomography (CT) enables the reconstruction of temperature and gas concentration fields in a flame on the basis of line-of-sight tunable diode laser absorption spectroscopy (LOS-TDLAS). A pair of H2O absorption lines at wavelengths 1395.51 and 1395.69 nm is selected. Temperature and H2O concentration distributions for a flat flame furnace are calculated by superimposing two absorption peaks with a discrete algebraic iterative algorithm and a mathematical fitting algorithm. By comparison, direct absorption spectroscopy measurements agree well with the thermocouple measurements and yield a good correlation. The CT reconstruction data of different air-to-fuel ratio combustion conditions (incomplete combustion and full combustion) and three different types of burners (one, two, and three flat flame furnaces) demonstrate that TDLAS has the potential of short response time and enables real-time temperature and gas concentration distribution measurements for combustion diagnosis.

  1. Reconstruction of combustion temperature and gas concentration distributions using line-of-sight tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhirong; Sun, Pengshuai; Pang, Tao; Xia, Hua; Cui, Xiaojuan; Li, Zhe; Han, Luo; Wu, Bian; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong

    2016-07-01

    Spatial temperature and gas concentration distributions are crucial for combustion studies to characterize the combustion position and to evaluate the combustion regime and the released heat quantity. Optical computer tomography (CT) enables the reconstruction of temperature and gas concentration fields in a flame on the basis of line-of-sight tunable diode laser absorption spectroscopy (LOS-TDLAS). A pair of H2O absorption lines at wavelengths 1395.51 and 1395.69 nm is selected. Temperature and H2O concentration distributions for a flat flame furnace are calculated by superimposing two absorption peaks with a discrete algebraic iterative algorithm and a mathematical fitting algorithm. By comparison, direct absorption spectroscopy measurements agree well with the thermocouple measurements and yield a good correlation. The CT reconstruction data of different air-to-fuel ratio combustion conditions (incomplete combustion and full combustion) and three different types of burners (one, two, and three flat flame furnaces) demonstrate that TDLAS has the potential of short response time and enables real-time temperature and gas concentration distribution measurements for combustion diagnosis.

  2. Methamphetamine absorption by skin lipids: accumulated mass, partition coefficients, and the influence of fatty acids.

    PubMed

    Parker, K; Morrison, G

    2016-08-01

    Occupants of former methamphetamine laboratories, often residences, may experience increased exposure through the accumulation of the methamphetamine in the organic films that coat skin and indoor surfaces. The objectives of this study were to determine equilibrium partition coefficients of vapor-phase methamphetamine with artificial sebum (AS-1), artificial sebum without fatty acids (AS-2), and real skin surface films, herein called skin oils. Sebum and skin oil-coated filters were exposed to vapor-phase methamphetamine at concentrations ranging from 8 to 159 ppb, and samples were analyzed for exposure time periods from 2 h to 60 days. For a low vapor-phase methamphetamine concentration range of ~8-22 ppb, the equilibrium partition coefficient for AS-1 was 1500 ± 195 μg/g/ppb. For a high concentration range of 98-112 ppb, the partition coefficient was lower, 459 ± 80 μg/g/ppb, suggesting saturation of the available absorption capacity. The low partition coefficient for AS-2 (33 ± 6 μg/g/ppb) suggests that the fatty acids in AS-1 and skin oil are responsible for much high partition coefficients. We predict that the methamphetamine concentration in skin lipids coating indoor surfaces can exceed recommended surface remediation standards even for air concentrations well below 1 ppb.

  3. Developments in absorptive glass mat separators for cycling applications and 36 V lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Toniazzo, V.; Lambert, U.

    The major markets for valve-regulated lead-acid (VRLA) batteries are undergoing a radical upheaval. In particular, the telecommunications industry requires more reliable power supplies, and the familiar 12 V electrical system in cars will probably be soon replaced by a 36/42 V system, or by other electrical systems if part of the automotive market is taken over by hybrid electrical vehicles (HEVs). In order to meet these new challenges and enable VRLA batteries to provide a satisfactory life in float and cycling applications in the telecommunication field, or in the high-rate-partial-state-of-charge service required by both 36/42 V automobiles and HEVs, the lead-acid battery industry has to improve substantially the quality of present VRLA batteries based on absorptive glass mat (AGM) technology. Therefore, manufacturing steps and cell components have to be optimized, especially AGM separators as these are key components for better production yields and battery performance. This paper shows how the optimal segregation of the coarse and fine fibres in an AGM separator structure can improve greatly the properties of the material. The superior capillarity, springiness and mechanical properties of the 100% glass Amerglass multilayer separator compared with commercial monolayer counterparts with the same specific surface-area is highlighted.

  4. Kinetics of CO2 Absorption into Aqueous Basic Amino Acid Salt: Potassium Salt of Lysine Solution.

    PubMed

    Shen, Shufeng; Yang, Ya-nan; Bian, Yangyang; Zhao, Yue

    2016-02-16

    Aqueous amino acid salts are considered as an attractive alternative to alkanolamine solvents (e.g., MEA) for carbon dioxide (CO2) absorption. The kinetics of CO2 into unloaded aqueous solutions of potassium lysinate (LysK) was studied using a wetted wall column at concentrations ranging from 0.25 to 2.0 M and temperatures from 298 to 333 K. Physicochemical properties of aqueous LysK solutions such as density, viscosity, and physical solubility of CO2 were measured to evaluate the reaction rate constants. The reaction pathway is described using zwitterion mechanism taking into account the effect of ionic strength on the reaction rate. Under the fast pseudo-first-order regime, the reaction rate parameters were obtained and correlated in a power-law reaction rate expression. LysK shows higher chemical reactivity toward CO2 than the industrial standard MEA and most of amino acid salts. Its reaction rate constants increase considerably with concentration and temperature. The reaction order is found to be an average value of 1.58 with respect to LysK. The forward second-order kinetic rate constant, k2 0 , are obtained as 31615 and 84822 m3 kmol−1 s−1 at 298 and 313 K, respectively with activation energy of 51.0 kJ mol−1. The contribution of water to the zwitterion deprotonation seems to be more significant than that of LysK for the above-mentioned kinetic conditions PMID:26751093

  5. Vacuum ultraviolet absorption spectroscopy in combination with comprehensive two-dimensional gas chromatography for the monitoring of volatile organic compounds in breath gas: A feasibility study.

    PubMed

    Gruber, Beate; Groeger, Thomas; Harrison, Dale; Zimmermann, Ralf

    2016-09-16

    Vacuum ultraviolet (VUV) absorption spectroscopy was recently introduced as a new detection system for one, as well as comprehensive two-dimensional gas chromatography (GC×GC) and successfully applied to the analysis of various analytes in several matrices. In this study, its suitability for the analysis of breath metabolites was investigated and the impact of a finite volume of the absorption cell and makeup gas pressure was evaluated for volatile analytes in terms of sensitivity and chromatographic resolution. A commercial available VUV absorption spectrometer was coupled to GC×GC and applied to the analysis of highly polar volatile organic compounds (VOCs). Breath gas samples were acquired by needle trap micro extraction (NTME) during a glucose challenge and analysed by the applied technique. Regarding qualitative and quantitative information, the VGA-100 is compatible with common GC×GC detection systems like FID and even TOFMS. Average peak widths of 300ms and LODs in the lower ng range were achieved using GC×GC-VUV. Especially small oxygenated breath metabolites show intense and characteristic absorption patterns in the VUV region. Challenge responsive VOCs could be identified and monitored during a glucose challenge. The new VUV detection technology might especially be of benefit for applications in clinical research. PMID:27545394

  6. Collection of VLE data for acid gas-alkanolamine systems using Fourier transform infrared spectroscopy

    SciTech Connect

    Bullin, J.A.; Frazier, R.E.

    1991-09-01

    The industrial standard process for the purification of natural gas is to remove acid gases, mainly hydrogen sulfide and carbon dioxide, by the absorption and reaction of these gases with alkanolamines. Inadequate data for vapor -- liquid equilibrium (VLE) hinder the industry from converting operations to more energy efficient amine mixtures and conserving energy. Some energy reductions have been realized in the past decade by applying such amine systems as hindered'' amines, methyldiethanolamine (MDEA), and MDEA based amine mixtures. However, the lack of reliable and accurate fundamental VLE data impedes the commercial application of these more efficient alkanolamine systems. The first project objective is to improve the accuracy of vapor -- liquid equilibrium measurements at low hydrogen sulfide concentrations. The second project objective is to measure the VLE for amine mixtures. By improving the accuracy of the VLE measurements on MDEA and mixtures with other amines, energy saving can be quickly and confidently implemented in the many existing absorption units already in use. If about 25% of the existing 95.3 billion SCFD gas purification capacity is converted to these new amine systems, the energy savings are estimated to be about 3 {times} 10{sup 14} BTU/yr.

  7. Process for producing and recovering elemental sulfur from acid gas

    SciTech Connect

    Reed, R. L.

    1985-03-26

    A system and process produce high actual levels of sulfur recovery from acid gas. The system includes two conventional Claus reactors and two cold bed adsorption (CBA) reactors. Four condensers are provided, one disposed before each of the catalytic reactors, and one disposed after the CBA reactor. The system includes a gas clean-up treatment zone for hydrogenation, drying and oxidation of gas to provide stoichiometric ratio of H/sub 2/S and SO/sub 2/. The gas is passed through the clean-up treatment zone prior to being fed to the first of the CBA reactors. The system is designed to operate either in a recovery mode or in a regeneration mode. In the recovery mode, the reactors are in series and the CBA reactors are operated below dew point of sulfur. In regeneration mode, effluent from the clean-up treatment zone is heated in a heat exchanger using effluent from the first catalytic reactor as the heat source. The resulting regeneration gas is fed to one of the two CBA reactors to vaporize sulfur and regenerate the catalyst. The vaporized sulfur is recovered in the condenser. The effluent from the condenser is passed to the other CBA reactor which is operated in the recovery mode during regeneration.

  8. Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals.

    PubMed

    Bugaut, M

    1987-01-01

    Short chain fatty acids (SCFA) also named volatile fatty acids, mainly acetate, propionate and butyrate, are the major end-products of the microbial digestion of carbohydrates in the alimentary canal. The highest concentrations are observed in the forestomach of the ruminants and in the large intestine (caecum and colon) of all the mammals. Butyrate and caproate released by action of gastric lipase on bovine milk triacylglycerols ingested by preruminants or infants are of nutritional importance too. Both squamous stratified mucosa of rumen and columnar simple epithelium of intestine absorb readily SCFA. The mechanisms of SCFA absorption are incompletely known. Passive diffusion of the unionized form across the cell membrane is currently admitted. In the lumen, the necessary protonation of SCFA anions could come first from the hydration of CO2. The ubiquitous cell membrane process of Na+-H+ exchange can also supply luminal protons. Evidence for an acid microclimate (pH = 5.8-6.8) suitable for SCFA-protonation on the surface of the intestinal lining has been provided recently. This microclimate would be generated by an epithelial secretion of H+ ions and would be protected by the mucus coating from the variable pH of luminal contents. Part of the absorbed SCFA does not reach plasma because it is metabolized in the gastrointestinal wall. Acetate incorporation in mucosal higher lipids is well-known. However, the preponderant metabolic pathway for all the SCFA is catabolism to CO2 except in the rumen wall where about 80% of butyrate is converted to ketone bodies which afterwards flow into bloodstream. Thus, SCFA are an important energy source for the gut mucosa itself.

  9. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    SciTech Connect

    Qu, Ming; Abdelaziz, Omar; Yin, Hongxi

    2014-11-01

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  10. In vivo percutaneous absorption of boron as boric acid, borax, and disodium octaborate tetrahydrate in humans: a summary.

    PubMed

    Wester, R C; Hui, X; Maibach, H I; Bell, K; Schell, M J; Northington, D J; Strong, P; Culver, B D

    1998-01-01

    Literature from the first half of this century reports concern for toxicity from topical use of boric acid, but assessment of percutaneous absorption has been impaired by lack of analytical sensitivity. Analytical methods in this study included inductively coupled plasma-mass spectrometry, which now allows quantitation of percutaneous absorption of 10B in 10B-enriched boric acid, borax, and disodium octaborate tetrahydrate (DOT) in biological matrices. This made it possible, in the presence of comparatively large natural dietary boron intakes for the in vivo segment of this study, to quantify the boron passing through skin. Human volunteers were dosed with 10B-enriched boric acid, 5.0%, borax, 5.0%, or disodium octaborate tetrahydrate, 10% in aqueous solutions. Urinalysis, for boron and changes in boron isotope ratios, was used to measure absorption. Boric acid in vivo percutaneous absorption was 0.226 (SD = 0.125) mean percent dose, with flux and permeability constant (Kp) calculated at 0.009 microg/cm2/h and 1.9 x 10(-7) cm/h, respectively. Borax absorption was 0.210 (SD = 0.194) mean percent dose, with flux and Kp calculated at 0.009 microg/cm2/h and 1.8 x 10(-7) cm/h, respectively. DOT absorption was 0.122 (SD = 0.108) mean percent, with flux and Kp calculated at 0.01 microg/cm2/h and 1.0 x 10(-7) cm/h, respectively. Pretreatment with the potential skin irritant 2% sodium lauryl sulfate had no effect on boron skin absorption. These in vivo results show that percutaneous absorption of boron, as boric acid, borax, and disodium octaborate tetrahydrate, through intact human skin is low and is significantly less than the average daily dietary intake. This very low boron skin absorption makes it apparent that, for the borates tested, the use of gloves to prevent systemic uptake is unnecessary. These findings do not apply to abraded or otherwise damaged skin.

  11. Direct determination of peracetic acid, hydrogen peroxide, and acetic acid in disinfectant solutions by far-ultraviolet absorption spectroscopy.

    PubMed

    Higashi, Noboru; Yokota, Hiroshi; Hiraki, Satoru; Ozaki, Yukihiro

    2005-04-01

    In this paper we propose a rapid and highly selective far-ultraviolet (FUV) spectroscopic method for the simultaneous determination of peracetic acid (PAA), hydrogen peroxide, and acetic acid (AA). For this purpose we developed a novel FUV spectrometer that enables us to measure the spectra down to 180 nm. Direct determination of PAA, H(2)O(2), and AA, the three main species in disinfectant solutions, was carried out by using their absorption bands in the 180-220-nm region. The proposed method does not require any reagents or catalysts, a calibration standard, and a complicated procedure for the analysis. The only preparation procedure requested is a dilution of H(2)O(2) with pure water to a concentration range lower than 0.2 wt % in the sample solutions. Usually, the required concentration range can be obtained by the 10 times volume dilution of the actual disinfectant solutions. As the measured sample does not leave any impurity for the disinfection, it can be reused completely by using a circulation system. The detection limit for PAA of the new FUV spectrometer was evaluated to be 0.002 wt %, and the dynamic ranges of the measured concentrations were from 0 to 0.05 wt %, from 0 to 0.2 wt %, and from 0 to 0.2 wt % for PAA, H(2)O(2), and AA, respectively. The response time for the simultaneous determination of the three species is 30 s, and the analysis is applicable even to the flowing samples. This method may become a novel approach for the continuous monitoring of PAA in disinfectant solutions on the process of sterilization. PMID:15801764

  12. Monolayers of long-chain alcohols, fatty acids, and fatty acid esters at the air/water interface: a comparison by external infrared reflection-absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Gericke, Arne; Huehnerfuss, Heinrich

    1994-01-01

    The properties of C15, C16, C18 and C20-alcohols, fatty acids and fatty acid esters are investigated by external infrared reflection-absorption spectrometry in the range 3000 - 1000 cm-1. Analysis of the methylene stretching vibration shows that an increasing space requirement of the hydrophilic headgroup (fatty acid ester > fatty acid >= alcohol) for the same chain length leads to higher chain disorder (i.e., more gauche conformers). However, for a given headgroup the prolongation of the alkyl-chain generally results in an increased hydrophobic interaction and thus in a higher chain-order, i.e., the molecules attain a more transconformation.

  13. Reversible Acid Gas Capture Using CO2-Binding Organic Liquids

    SciTech Connect

    Heldebrant, David J.; Koech, Phillip K.; Yonker, Clement R.; Rainbolt, James E.; Zheng, Feng

    2010-08-31

    Acid gas scrubbing technology is predominantly aqueous alkanolamine based. Of the acid gases, CO2, H2S and SO2 have been shown to be reversible, however there are serious disadvantages with corrosion and high regeneration costs. The primary scrubbing system composed of monoethanolamine is limited to 30% by weight because of the highly corrosive solution. This gravimetric limitation limits the CO2 volumetric (≤108 g/L) and gravimetric capacity (≤7 wt%) of the system. Furthermore the scrubbing system has a large energy penalty from pumping and heating the excess water required to dissolve the MEA bicarbonate salt. Considering the high specific heat of water (4 j/g-1K-1), low capacities and the high corrosion we set out to design a fully organic solvent that can chemically bind all acid gases i.e. CO2 as reversible alkylcarbonate ionic liquids or analogues thereof. Having a liquid acid gas carrier improves process economics because there is no need for excess solvent to pump and to heat. We have demonstrated illustrated in Figure 1, that CO2-binding organic liquids (CO2BOLs) have a high CO2 solubility paired with a much lower specific heat (<1.5 J/g-1K-1) than aqueous systems. CO2BOLs are a subsection of a larger class of materials known as Binding Organic Liquids (BOLs). Our BOLs have been shown to reversibly bind and release COS, CS2, and SO2, which we denote COSBOLS, CS2BOLs and SO2BOLs. Our BOLs are highly tunable and can be designed for post or pre-combustion gas capture. The design and testing of the next generation zwitterionic CO2BOLs and SO2BOLs are presented.

  14. Evidence of In Vivo Absorption of Lactate and Modulation of Short Chain Fatty Acid Absorption from the Reticulorumen of Non-Lactating Cattle Fed High Concentrate Diets

    PubMed Central

    Qumar, Muhammad; Khiaosa-ard, Ratchaneewan; Pourazad, Poulad; Wetzels, Stefanie U.; Klevenhusen, Fenja; Kandler, Wolfgang; Aschenbach, Jörg R.; Zebeli, Qendrim

    2016-01-01

    Short-chain fatty acids (SCFAs) and lactate are endproducts of rumen fermentation and important energy sources for the host ruminant. Because their rapid accumulation results in ruminal acidosis, enhancement of the absorption of SCFA and lactate across reticuloruminal wall is instrumental in increasing energy supply and preventing ruminal acidosis in cattle. This study investigated whether the reticuloruminal absorption of SCFAs and lactate was altered by different strategies of high concentrate feeding. Eight rumen-cannulated, non-lactating Holstein cows were fed a forage-only diet (baseline) and then gradually adapted over 6 d to a 60% concentrate level. Thereafter, this concentrate-rich diet was fed for 4 wk either continuously (Con; n = 8) or interruptedly (Int; n = 8). Absorption of SCFAs and lactate was determined in vivo from the experimental buffer introduced into the washed reticulorumen. The buffer contained acetate, propionate, butyrate and lactate at a concentration of 60, 30, 10 and 5 mmol/L, respectively and Cr-EDTA as a marker for correcting ruminal water fluxes. The reticuloruminal absorption after 35 and 65 min of buffer incubation was measured at the baseline, after 1 wk of 60% concentrate feeding in the interrupted model (Int-1) and after 4 wk of concentrate feeding in both feeding models (Int-4 and Con-4). Data showed that the absorption rates of individual and total SCFAs during the first 35 min of incubation of Con-4 were highest (~1.7 times compared to baseline), while Int-1 and Int-4 were similar to respective baseline. Lactate was not absorbed during forage-only baseline and 1-wk concentrate feeding, but after 4-wk feeding of concentrates in both models. In conclusion, SCFAs absorption across the reticulorumen of non-lactating cattle was enhanced by the 4-wk continuous concentrate feeding, which seems to be more advantageous in terms of rumen acidosis prevention compared to the interrupted feeding model. The study provides evidence of

  15. Absorption of 2,4-Dichlorophenoxyacetic Acid and 3-(p-Chlorophenyl)-1, 1-dimethylurea (Monuron) by Barley Roots 1

    PubMed Central

    Donaldson, T. W.; Bayer, D. E.; Leonard, O. A.

    1973-01-01

    Absorption from culture solution of the herbicides 2, 4-dichlorophenoxyacetic acid (2, 4-D) and 3-(p-chlorophenyl)-1, 1-dimethylurea (Monuron) by excised barley (Hordeum vulgare L.) roots was studied to determine whether absorption was due to an active or a passive mechanism. Herbicide absorption was followed at low temperature, under anaerobic conditions, and in the presence of metabolic inhibitors and compounds of structure similar to that of the herbicide. Total absorption was divided into two phases, exchangeable and nonexchangeable herbicide, by washing the roots for 1 hour following absorption. Absorption of both exchangeable and non-exchangeable 2, 4-D appeared to depend on a supply of metabolic energy which suggests that an active mechanism may be involved. A possible conclusion is that 2, 4-D is absorbed by roots by an adsorption mechanism and that energy is required to maintain the integrity of the absorbing surfaces of the cell. In contrast, absorption of Monuron was independent of an energy supply. It is concluded that the bulk of the Monuron absorbed was taken up passively by diffusion. PMID:16658621

  16. Mechanistic understanding of the effect of PPIs and acidic carbonated beverages on the oral absorption of itraconazole based on absorption modeling with appropriate in vitro data.

    PubMed

    Fotaki, Nikoletta; Klein, Sandra

    2013-11-01

    Proton pump inhibitors (PPIs) are potent gastric acid suppressing agents and are among the most widely sold drugs in the world. However, even though these antisecretory agents are regarded as safe, they can alter the pharmacokinetics of coadministered drugs. Due to the suppression of gastric acid secretion, they can significantly alter the intragastric pH conditions and are thus likely to affect the bioavailability of coadministered drugs requiring an acidic gastric environment for dissolution and subsequent absorption. Among these drugs can be found itraconazole, a poorly soluble triazole-type antifungal compound. Based on observations reported in the literature, gastric pH alterations due to the coadministration of PPIs or acidic beverages can significantly decrease (PPI) or increase (e.g., Coca-Cola) the bioavailability of this compound. In the present work we estimated the fraction of itraconazole that can be absorbed (fabs) from Sporanox capsules or an itraconazole-HBenBCD complex formulation after oral administration with and without coadministration of a PPI or an acidic (carbonated) beverage. For this purpose, the sensitivity of the two formulations toward the impact of various gastric variations (pH, volume, and emptying rate) as they can result from such administration conditions was studied using solubility and dissolution experiments and a physiologically based absorption model. Simulating coadministration of the two formulations with a PPI resulted in a significant (∼ 10-fold) decrease in itraconazole fabs, indicating the pH to be essential for in vivo dissolution and subsequent absorption. The fabs of itraconazole after coadministration of an acidic beverage (Coca-Cola) was far lower than the fabs obtained for itraconazole alone and did not support the observations reported in the literature. These results clearly indicate that in contrast to PPIs, which seem to affect itraconazole bioavailability mainly via intragastric pH changes, coadministered

  17. In vivo percutaneous absorption of boric acid, borax, and disodium octaborate tetrahydrate in humans compared to in vitro absorption in human skin from infinite and finite doses.

    PubMed

    Wester, R C; Hui, X; Hartway, T; Maibach, H I; Bell, K; Schell, M J; Northington, D J; Strong, P; Culver, B D

    1998-09-01

    Literature from the first half of this century report concern for toxicity from topical use of boric acid, but assessment of percutaneous absorption has been impaired by lack of analytical sensitivity. Analytical methods in this study included inductively coupled plasma-mass spectrometry which now allows quantitation of percutaneous absorption of 10B in 10B-enriched boric acid, borax, and disodium octaborate tetrahydrate (DOT) in biological matrices. This made it possible, in the presence of comparatively large natural dietary boron intakes for the in vivo segment of this study, to quantify the boron passing through skin. Human volunteers were dosed with 10B-enriched boric acid, 5.0%, borax, 5.0%, or disodium octaborate tetrahydrate, 10%, in aqueous solutions. Urinalysis, for boron and changes in boron isotope ratios, was used to measure absorption. Boric acid in vivo percutaneous absorption was 0.226 (SD = 0.125) mean percentage dose, with flux and permeability constant (Kp) calculated at 0.009 microgram/cm2/h and 1.9 x 10(-7) cm/h, respectively. Borax absorption was 0.210 (SD = 0.194) mean percentage of dose, with flux and Kp calculated at 0.009 microgram/cm2/h and 1.8 x 10(-7) cm/h, respectively. DOT absorption was 0.122 (SD = 0.108) mean percentage, with flux and Kp calculated at 0.01 microgram/cm2/h and 1.0 x 10(-7) cm/h, respectively. Pretreatment with the potential skin irritant 2% sodium lauryl sulfate had no effect on boron skin absorption. In vitro human skin percentage of doses of boric acid absorbed were 1.2 for a 0.05% solution, 0.28 for a 0.5% solution, and 0.70 for a 5.0% solution. These absorption amounts translated into flux values of, respectively, 0.25, 0.58, and 14.58 micrograms/cm2/h and permeability constants (Kp) of 5.0 x 10(-4), 1.2 x 10(-4), and 2.9 x 10(-4) cm/h for the 0.05, 0.5, and 5.0% solutions. The above in vitro doses were at infinite, 1000 microliters/cm2 volume. At 2 microliters/cm2 (the in vivo dosing volume), flux decreased some

  18. Activated carbon passes tests for acid-gas cleanup

    SciTech Connect

    Harruff, L.G.; Bushkuhl, S.J.

    1996-06-24

    Use of activated carbon to remove hydrocarbon contaminants from the acid-gas feed to Claus sulfur-recovery units has been successfully pilot tested in Saudi Arabia. Pilot plant results are discussed here along with issues involved in scale-up to commercial size. Heavy hydrocarbons, particularly benzene, toluene, and xylene (BTX) have been linked to coke formation and catalyst deactivation in Claus converters. This deactivation results in reduced sulfur recovery and increased sulfur emissions from these plants. This clean-up process was proven to be capable of removing 95% of the BTX and other C{sub 6}+s from acid gas over a wide range of actual plant conditions. Following the adsorption step, the activated carbon was easily regenerated by use of low-pressure steam. A post-regeneration drying step using plant fuel gas also proved beneficial. The paper discusses feed contaminants, vapor-phase cleanup, testing design, test parameters and results, bed drying after regeneration, regeneration conditions, basic flow, system control, and full-scale installation.

  19. Combined electrostatic precipitator and acidic gas removal system

    SciTech Connect

    Sparks, L.E.; Plaks, N.

    1989-12-05

    This patent describes a method of retrofitting an apparatus for removing acidic gas and particulate matter from air. The device to be retrofit including an electrostatic precipitator, lacking a precharger, positioned within a housing, a flue gas generating means outside the housing, an entry port in the housing and upstream of the electrostatic precipitator; an exit port in the housing and downstream of the electrostatic precipitator; and ductwork, outside the housing, leading from the generating means to the entry port. The retrofitting comprising the steps of: substituting electrostatic filtration units, for dry electrostatic precipitation, each comprising a precharger and a downstream particle collector having wires of from 1/4 to 1/2 inch in diameter for the electrostatic precipitator. The substituted units being designed so as to occupy less space in the housing that the electrostatic filter lacking a precharger, thereby leaving free space within the housing between a one of the prechargers which is first downstream from the entry port and the exit port and inserting an acidic gas removal means, within the housing.

  20. An empirical model for gas phase acidity and basicity estimation.

    PubMed

    You, H; Kim, G E; Na, C H; Lee, S; Lee, C J; Cho, K-H; Akiyama, Y; Ishida, T; No, K T

    2014-01-01

    Gas phase acidity and basicity estimation models have been developed for acidic and basic functional groups of amino acid side-chains and also for a number of small organic molecules. The acidic functional groups include aliphatic and aromatic alcohol, and aliphatic and aromatic carboxylic acid, and the basic functional groups include aliphatic, aromatic and hetero-aromatic amines, and also pyridino-, pyrazolo- and imidazolo-groupings. The models are described in terms of a linear combination of descriptors that highly influence reactivity at the reaction centres of the functional groups. In order to describe the chemical environments of the deprotonating and protonating sites, atomic descriptors such as the effective atomic electronegativity and effective atomic polarizability of the atoms in the reaction field and the electrostatic potentials at the reaction sites have been introduced. The coefficient of determination (r(2)) of each model is above 0.8, apart from the imidazole model. The models are readily applicable, ranging from simple organic molecules to proteins.

  1. Measurement of Gas-phase Acids in Diesel Exhaust

    NASA Astrophysics Data System (ADS)

    Wentzell, J. J.; Liggio, J.; Li, S.; Vlasenko, A. L.; Staebler, R. M.; Brook, J.; Lu, G.; Poitras, M.; Chan, T.

    2012-12-01

    Gas-phase acids were measured using chemical ionization mass spectrometry (CIMS) as part of the Diesel Engine Emission Research Experiment (DEERE). The CIMS technique, utilizing acetate ion (CH3COO-) as a reagent ion, proved to be a rapid (measurements on the order of seconds) and sensitive (several counts/pptv) method of quantifying the acid emissions. Diluted diesel exhaust measurements were made from a Constant Volume Sampling dilution tunnel using a light duty (1.9L turbocharged Volkswagen Jetta TDI) diesel engine equipped with an OEM diesel oxidation catalyst and exhaust gas recirculation, mounted on an engine dynamometer. Acids measured included isocyanic, nitrous, nitric, propionic and sum of lactic and oxalic, as well as other unidentified compounds. Complimentary measurements of CO, CO2, Total Hydrocarbon (THC), and NOx, were also performed. Several engine modes (different engine rpm and torque outputs) at steady state were examined to determine their effect on acid emissions. Emission rates with respect to NOx and fuel based emission factors were determined. Measurements of HONO fuel emission factors agree well with real-world measurements within a traffic tunnel.1 The first estimate of isocyanic acid emission factors from a diesel engine is reported, and suggests that the emission of this highly toxic compound in diesel exhaust should not be ignored. 1. Kurtenbach, R., Becker, K. H., Gomes, J. A. G., Kleffmann, J.,Lorzer, J. C., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A.,and Platt, U.: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel, Atmos. Environ., 35, 3385-3394, doi:10.1016/S1352-2310(01)00138-8, 2001.

  2. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics.

    PubMed

    Svensson, Tomas; Lewander, Märta; Svanberg, Sune

    2010-08-01

    We demonstrate high-resolution tunable diode laser absorption spectroscopy (TDLAS) of water vapor confined in nanoporous alumina. Strong multiple light scattering results in long photon pathlengths (1 m through a 6 mm sample). We report on strong line broadening due to frequent wall collisions (gas-surface interactions). For the water vapor line at 935.685 nm, the HWHM of confined molecules are about 4.3 GHz as compared to 2.9 GHz for free molecules (atmospheric pressure). Gas diffusion is also investigated, and in contrast to molecular oxygen (that moves rapidly in and out of the alumina), the exchange of water vapor is found very slow.

  3. Ultraviolet absorption by interstellar gas near the LMC star HD 36402 in the interstellar bubble N51D

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Nash, A. G.

    1982-01-01

    Four interstellar absorption components associated with the immediate surroundings of the star are found in UV, high-dispersion IUE spectra of the LMC star HD 36402 in the N51D nebulosity. The 305 km/sec absorption is found to originate in low-density, 10,000 K gas, and the density and velocity structures agree with that derived from visual emission lines. From a fit of the observed Lyman-alpha profile, it is found that there is an N(H) of about 10 to the 20.2/sq cm in front of HD 36402, while the large N(H) of approximately 10 to the 21.3/sq cm from 21-cm data indicates most of the neutral gas to be behind N51D. An additional component shows N V, C IV and Si IV features which are stronger than is consistent with a wind-blown interstellar bubble, implying that there is additional absorption outside the bubble. Solar abundance ratios for the metals are suggested by the overall pattern of absorption line strength.

  4. Removal of SO/sub 2/ from simulated flue gas by magnesia spray absorption: parameters affecting removal efficiency and products

    SciTech Connect

    Egan, Z.; Felker, L.K.

    1986-04-01

    A bench-scale apparatus simulating a spray dryer was used to study magnesia flue gas desulfurization (FGD) technology combined with spray absorption techniques for the removal of SO/sub 2/ from flue gas. The use of magnesia spray absorption technology requires fewer processing steps, reduces slurry and sludge handling as compared with limestone slurry systems, and yields a saleable sulfur byproduct. Simulated flue gases (SO/sub 2/ in N/sub 2/) were mixed with heated Mg(OH)/sub 2/ slurries and sprayed into a heated glass vessel. The inlet and exit gases were monitored for SO/sub 2/ concentration. Ranges of experimental conditions were as follows: gas flow rate, 7-10 L/min; SO/sub 2/ concentration in the inlet gas, 0.099-1.07%; slurry composition, 0.5-10% Mg(OH)/sub 2/; slurry flow rate, 1-7 mL/min; inlet gas temperature, 107-115 /sup 0/C; and dryer temperature, 73-114 /sup 0/C. The SO/sub 2/ removal efficiency ranged from 28% to nearly 100%, depending primarily on the reaction stoichiometry (Mg(OH)/sub 2//SO/sub 2/ mole ratio). The solid products were MgSO/sub 3/.3H/sub 2/O and MgSO/sub 3/.6H/sub 2/O, with the hexahydrate predominating at lower temperatures and higher humidities.

  5. Genomic study of the absorption mechanism of p-coumaric acid and caffeic acid of extract of Ananas comosus L. leaves.

    PubMed

    Dang, Yun-jie; Zhu, Chun-yan

    2015-03-01

    Cardiac disease has emerged as the leading cause of death worldwide, and food rich in phenolic acids has drawn much attention as sources of active substances of hypolipidemic drug. Ananas comosus L. (pineapple) is one of the most popular tropical and subtropical fruits. Isolated from pineapple leaves, EAL(Extract of Ananas Comosus L. Leaves) is rich in phenolic acids, such as p-coumaric acid, caffeic acid, and other phenolics, highly relevant to the putative cardiovascular-protective effects, which suggests its potential to be a new plant medicine for treatment of cardiac disease, but little is known about absorption, distribution, metabolism, and excretion of EAL in animals or human beings. In this study, we employed cDNA microarray, Caco-2 cell lines, and rat intestinal model to explore the absorption behavior of p-coumaric acid and caffeic acid in EAL. The permeation of 2 substances was concentration and time dependent. Results also indicated that monocarboxylic acid transporter was involved in the transepithelial transport of p-coumaric acid and caffeic acid. PMID:25678210

  6. Genomic study of the absorption mechanism of p-coumaric acid and caffeic acid of extract of Ananas comosus L. leaves.

    PubMed

    Dang, Yun-jie; Zhu, Chun-yan

    2015-03-01

    Cardiac disease has emerged as the leading cause of death worldwide, and food rich in phenolic acids has drawn much attention as sources of active substances of hypolipidemic drug. Ananas comosus L. (pineapple) is one of the most popular tropical and subtropical fruits. Isolated from pineapple leaves, EAL(Extract of Ananas Comosus L. Leaves) is rich in phenolic acids, such as p-coumaric acid, caffeic acid, and other phenolics, highly relevant to the putative cardiovascular-protective effects, which suggests its potential to be a new plant medicine for treatment of cardiac disease, but little is known about absorption, distribution, metabolism, and excretion of EAL in animals or human beings. In this study, we employed cDNA microarray, Caco-2 cell lines, and rat intestinal model to explore the absorption behavior of p-coumaric acid and caffeic acid in EAL. The permeation of 2 substances was concentration and time dependent. Results also indicated that monocarboxylic acid transporter was involved in the transepithelial transport of p-coumaric acid and caffeic acid.

  7. Performance assessment and signal processing for range-integrated concentration measurement of gas species using supercontinuum absorption spectroscopy.

    PubMed

    Dobroc, Alexandre; Cézard, Nicolas

    2012-12-10

    In this paper, we propose signal-processing tools adapted to supercontinuum absorption spectroscopy, in order to predict the precision of gas species concentration estimation. These tools are based on Cramer-Rao bounds computations. A baseline-insensitive concentration estimation algorithm is proposed. These calculations are validated by statistical tests on simulated supercontinuum signals as well as experimental data using a near-infrared supercontinuum laser and a grating spectrometer.

  8. Infrared and density functional theory studies of formic acid hydrate clusters in noble gas matrices

    NASA Astrophysics Data System (ADS)

    Ito, Fumiyuki

    2016-08-01

    Infrared absorption spectra of formic acid hydrate clusters (HCOOH)m(H2O)n have been measured in noble gas matrices (Ar and Kr). The concentration dependence of the spectra and the comparison with a previous experimental study on HCOOH(H2O) and HCOOH(H2O)2 [Geoge et al., Spectrochim. Acta, Part A 60 (2004) 3225] led to the identification of large clusters. Density functional theory calculations at the B3LYP-DCP/6-31+G(2d,2p) level were carried out to determine the anharmonic vibrational properties of the clusters, enabling a consistent assignment of the observed vibrational peaks to specific clusters.

  9. In vitro assessment of potential intestinal absorption of some phenolic families and carboxylic acids from commercial instant coffee samples.

    PubMed

    López-Froilán, R; Ramírez-Moreno, E; Podio, N S; Pérez-Rodríguez, M L; Cámara, M; Baroni, M V; Wunderlin, D A; Sánchez-Mata, M C

    2016-06-15

    Coffee is one of the most consumed beverages in the world, being a source of bioactive compounds as well as flavors. Hydroxycinnamic acids, flavonols, and carboxylic acids have been studied in the samples of instant coffee commercialized in Spain. The studies about contents of food components should be complemented with either in vitro or in vivo bioaccessibility studies to know the amount of food components effectively available for functions in the human body. In this sense, a widely used in vitro model has been applied to assess the potential intestinal absorption of phenolic compounds and organic acids. The contents of hydroxycinnamic acids and flavonols were higher in instant regular coffee samples than in the decaffeinated ones. Bioaccessible phenolic compounds in most analyzed samples account for 20-25% of hydroxycinnamic acids and 17-26% of flavonols. This could mean that a great part of them can remain in the gut, acting as potential in situ antioxidants. Quinic, acetic, pyroglutamic, citric and fumaric acids were identified in commercial instant coffee samples. Succinic acid was found in the coffee blend containing chicory. All carboxylic acids showed a very high bioaccessibility. Particularly, acetic acid and quinic acid were found in higher contents in the samples treated with the in vitro simulation of gastrointestinal processes, compared to the original ones, which can be explained by their cleavage from chlorogenic acid during digestion. This is considered as a positive effect, since quinic acid is considered as an antioxidant inducer.

  10. In vitro assessment of potential intestinal absorption of some phenolic families and carboxylic acids from commercial instant coffee samples.

    PubMed

    López-Froilán, R; Ramírez-Moreno, E; Podio, N S; Pérez-Rodríguez, M L; Cámara, M; Baroni, M V; Wunderlin, D A; Sánchez-Mata, M C

    2016-06-15

    Coffee is one of the most consumed beverages in the world, being a source of bioactive compounds as well as flavors. Hydroxycinnamic acids, flavonols, and carboxylic acids have been studied in the samples of instant coffee commercialized in Spain. The studies about contents of food components should be complemented with either in vitro or in vivo bioaccessibility studies to know the amount of food components effectively available for functions in the human body. In this sense, a widely used in vitro model has been applied to assess the potential intestinal absorption of phenolic compounds and organic acids. The contents of hydroxycinnamic acids and flavonols were higher in instant regular coffee samples than in the decaffeinated ones. Bioaccessible phenolic compounds in most analyzed samples account for 20-25% of hydroxycinnamic acids and 17-26% of flavonols. This could mean that a great part of them can remain in the gut, acting as potential in situ antioxidants. Quinic, acetic, pyroglutamic, citric and fumaric acids were identified in commercial instant coffee samples. Succinic acid was found in the coffee blend containing chicory. All carboxylic acids showed a very high bioaccessibility. Particularly, acetic acid and quinic acid were found in higher contents in the samples treated with the in vitro simulation of gastrointestinal processes, compared to the original ones, which can be explained by their cleavage from chlorogenic acid during digestion. This is considered as a positive effect, since quinic acid is considered as an antioxidant inducer. PMID:27191052

  11. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature

    PubMed Central

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-01-01

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons. PMID:26892255

  12. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature.

    PubMed

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-02-19

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons.

  13. Light absorption during alkali atom-noble gas atom interactions at thermal energies: a quantum dynamics treatment.

    PubMed

    Pacheco, Alexander B; Reyes, Andrés; Micha, David A

    2006-10-21

    The absorption of light during atomic collisions is treated by coupling electronic excitations, treated quantum mechanically, to the motion of the nuclei described within a short de Broglie wavelength approximation, using a density matrix approach. The time-dependent electric dipole of the system provides the intensity of light absorption in a treatment valid for transient phenomena, and the Fourier transform of time-dependent intensities gives absorption spectra that are very sensitive to details of the interaction potentials of excited diatomic states. We consider several sets of atomic expansion functions and atomic pseudopotentials, and introduce new parametrizations to provide light absorption spectra in good agreement with experimentally measured and ab initio calculated spectra. To this end, we describe the electronic excitation of the valence electron of excited alkali atoms in collisions with noble gas atoms with a procedure that combines l-dependent atomic pseudopotentials, including two- and three-body polarization terms, and a treatment of the dynamics based on the eikonal approximation of atomic motions and time-dependent molecular orbitals. We present results for the collision induced absorption spectra in the Li-He system at 720 K, which display both atomic and molecular transition intensities.

  14. Gas Phase Absorption Spectroscopy of C+60 and C+70 in a Cryogenic Ion Trap: Comparison with Astronomical Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Holz, M.; Maier, J. P.; Gerlich, D.; Walker, G. A. H.; Bohlender, D.

    2016-05-01

    Recent low-temperature laboratory measurements and astronomical observations have proved that the fullerene cation {{{C}}}60+ is responsible for four diffuse interstellar bands (DIBs). These absorptions correspond to the strongest bands of the lowest electronic transition. The gas phase spectrum below 10 {{K}} is reported here for the full wavelength range encompassed by the electronic transition. The absorption spectrum of {{{C}}}70+, with its origin band at 7959.2 {{\\mathringA }}, has been obtained under similar laboratory conditions. Observations made toward the reddened star {HD} 183143 were used in a specific search for the absorption of these fullerene cations in diffuse clouds. In the case of {{{C}}}60+, one further band in the astronomical spectrum at 9348.5 \\mathringA is identified, increasing the total number of assigned DIBs to five. Numerous other {{{C}}}60+ absorptions in the laboratory spectrum are found to lie below the astronomical detection limit. Special emphasis is placed on the laboratory determination of absolute absorption cross-sections. For {{{C}}}60+ this directly yields a column density, N({{{C}}}60+), of 2× {10}13 {{{cm}}}-2 in diffuse clouds, without the need to rely on theoretical oscillator strengths. The intensity of the {{{C}}}70+ electronic transition in the range 7000-8000 Å is spread over many features of similar strength. Absorption cross-section measurements indicate that even for a similar column density, the individual absorption bands of {{{C}}}70+ will be too weak to be detected in the astronomical spectra, which is confirmed giving an upper limit of 2 {{m\\mathringA }} to the equivalent width. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  15. Absorption and utilization of organic matter by the strict autotroph, Thiobacillus thiooxidans, with special reference to aspartic acid.

    PubMed

    Butler, R G; Umbreit, W W

    1966-02-01

    Butler, Richard G. (Rutgers, The State University, New Brunswick, N.J.), and Wayne W. Umbreit. Absorption and utilization of organic matter by the strict autotroph, Thiobacillus thiooxidans, with special reference to aspartic acid. J. Bacteriol. 91:661-666. 1966.-The strictly autotrophic bacterium, Thiobacillus thiooxidans, can be shown to assimilate a variety of organic materials. Aspartic acid can be assimilated into protein and can be converted into CO(2), but even in the presence of sulfur it cannot serve as the sole source of carbon for growth. The reason appears to be that aspartic acid is converted into inhibitory materials.

  16. Dermal absorption and skin damage following hydrofluoric acid exposure in an ex vivo human skin model.

    PubMed

    Dennerlein, Kathrin; Kiesewetter, Franklin; Kilo, Sonja; Jäger, Thomas; Göen, Thomas; Korinth, Gintautas; Drexler, Hans

    2016-04-25

    The wide industrial use of hydrofluoric acid (HF) poses a high risk for accidental dermal exposure. Despite local and systemic hazards associated with HF, information on percutaneous penetration and tissue damage is rare. In the present ex vivo study, the dermal absorption of HF (detected in terms of fluoride ions) was quantified and the skin damaging potential as a function of concentration and exposure duration was assessed. Percutaneous penetration of HF (c=5, 30, and 50%) at 3 exposure durations (3, 5, and 10 min) was investigated in a static diffusion cell model using freshly excised human skin. Alterations of skin were histologically evaluated. HF rapidly penetrated through skin under formation of a considerable intradermal reservoir (∼ 13-67% of total absorbed fluoride). Histologically, epidermal alterations were detected already after exposure to 5% HF for 3 min. The degree of skin damage increased with rising concentration and exposure duration leading to coagulation necrosis. For HF concentrations of ≥ 30%, skin damage progressed into deeper skin layers. Topically applied HF concentration was the principal parameter determining HF induced skin effects. The intradermal HF retention capacity associated with progression and prolongation of HF induced skin effects must be considered in the review of skin decontamination procedures.

  17. Absorption and excretion of 1-amino-2-naphthol-6-sulphonic acid in rats and rabbits.

    PubMed

    Larsen, J C; Tarding, F

    1978-01-01

    1-amino-2-naphthol-6-sulphonic acid (ANSA) and compounds of similar structure are metabolites formed by azo reduction in mammals from several commonly used food colours, e.g. Sunset Yellow FCF and Food Red 17. At our institute it has been shown that ANSA produces bile duct proliferation when given orally to rabbits. Furthermore Orange RN which by azo reduction yields ANSA (and aniline) induce the same effect in pigs (Olsen et al., 1973) but not in rats (Gaunt et al., 1971). Using 35S-labelled ANSA the absorption and excretion as well as the localisation in the liver cell of ANSA was investigated in rats and rabbits. The results after p.o. administration shows that the rabbit absorbs and excretes into the urine a significant larger amount of ANSA (30-40%) than the rat (6-13%). The results after i.v. administration shows that some 60% of the injected dose is excreted in the urine in both species. In the rat 15-20% are recovered from the faeces, while only traces (0.1-0.5%) are found in faeces of rabbits. A significant amount of ANSA was retained in the blood and the liver of both species 24 and 48 hours after administration. After differential centrifugation of liver homogenates the majority of ANSA was found in the 9000 x g supernatant.

  18. Effects of docosahexaenoic acid and sardine oil diets on the ultrastructure of jejunal absorptive cells in adult mice.

    PubMed

    Tamura, M; Suzuki, H

    1996-01-01

    The influence of docosahexaenoic acid (DHA) and sardine oil diets on the ultrastructure of jejunal absorptive cells was studied. Adult male Crj:CD-1 (ICR) mice were fed a fat-free semisynthetic diet supplemented with 5% (by weight) purified DHA ethyl ester, refined sardine oil, or palm oil. The mice received the DHA or palm oil diets for 7 days (groups 1 and 2) and the refined sardine oil or palm oil diets for 30 days (groups 3 and 4). There were significant ultrastructural changes in the jejunal absorptive cells between the mice fed on the palm oil diet and those receiving the DHA and sardine oil diets. The endoplasmic reticulum and Golgi apparatus of some jejunal absorptive cells in the mice fed on the palm oil diet for 7 and 30 days developed vacuolation on the upper site of the nucleus. In contrast, many granules, which appeared to be lipid droplets, were observed in the endoplasmic reticulum and Golgi apparatus of the jejunal absorptive cells in the DHA and sardine oil diet groups. These results suggest that ultrastructural differences in the jejunal absorptive cells between mice in the omega-3 fatty acid and palm oil diet groups may be associated with the changes in lipid metabolism.

  19. Neutral gas in Lyman-alpha emitting galaxies Haro 11 and ESO 338-IG04 measured through sodium absorption

    NASA Astrophysics Data System (ADS)

    Sandberg, A.; Östlin, G.; Hayes, M.; Fathi, K.; Schaerer, D.; Mas-Hesse, J. M.; Rivera-Thorsen, T.

    2013-04-01

    Context. The Lyman alpha emission line of neutral hydrogen is an important tool for finding galaxies at high redshift, thus for probing the structure of the early universe. However, the resonance nature of the line and its sensitivity to dust and neutral gas is still not fully understood. Aims: We present measurements of the velocity, covering fraction and optical depth of neutral gas in front of two well-known, local blue compact galaxies that show Lyman alpha in emission: ESO 338-IG 04 and Haro 11. We thus observationally test the hypothesis that Lyman alpha can escape through neutral gas by being Doppler shifted out of resonance. Methods: We present integral field spectroscopy, obtained with the GIRAFFE/Argus spectrograph at VLT/FLAMES in Paranal, Chile. The excellent wavelength resolution allowed us to accurately measure the velocity of the ionized and neutral gas through the Hα emission and Na D absorption, which trace the ionized medium and cold interstellar gas, respectively. We also present independent measurements from the VLT/X-shooter spectrograph that confirm our results. Results: For ESO 338-IG04 we measure no significant shift of neutral gas: the best fit velocity offset is - 15 ± 16 km s-1. For Haro 11, we see an outflow from knot B at 44 ± 13 km s-1, and infalling gas towards knot C with 32 ± 12 km s-1. Based on the relative strength of the Na D absorption lines, we estimate low covering fractions of neutral gas (down to 10%) in all three cases. Conclusions: The Na D absorption most likely occurs in dense clumps with higher column densities than the medium in which the bulk of the Ly α scattering takes place. Still, we find no strong correlation between outflowing neutral gas and strong Ly α emission. The Ly α photons from these two galaxies are therefore likely to be escaping due to a low column density and/or covering fraction. Based on observations made with ESO Telescopes at the Paranal Observatory under program IDs 083.B-0470 and 60.A

  20. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    SciTech Connect

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-25

    It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Finally and overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  1. Eicosapentaenoic acid inhibits intestinal β-carotene absorption by downregulation of lipid transporter expression via PPAR-α dependent mechanism.

    PubMed

    Mashurabad, Purna Chandra; Kondaiah, Palsa; Palika, Ravindranadh; Ghosh, Sudip; Nair, Madhavan K; Raghu, Pullakhandam

    2016-01-15

    The involvement of lipid transporters, the scavenger receptor class B, type I (SR-BI) and Niemann-Pick type C1 Like 1 protein (NPC1L1) in carotenoid absorption is demonstrated in intestinal cells and animal models. Dietary ω-3 fatty acids are known to possess antilipidemic properties, which could be mediated by activation of PPAR family transcription factors. The present study was conducted to determine the effect of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), on intestinal β-carotene absorption. β-carotene uptake in Caco-2/TC7 cells was inhibited by EPA (p < 0.01) and PPARα agonist (P < 0.01), but not by DHA, PPARγ or PPARδ agonists. Despite unaltered β-carotene uptake, both DHA and PPARδ agonists inhibited the NPC1L1 expression. Further, EPA also induced the expression of carnitine palmitoyl transferase 1A (CPT1A) expression, a PPARα target gene. Interestingly, EPA induced inhibition of β-carotene uptake and SR B1 expression were abrogated by specific PPARα antagonist, but not by PPARδ antagonist. EPA and PPARα agonist also inhibited the basolateral secretion of β-carotene from Caco-2 cells grown on permeable supports. These results suggest that EPA inhibits intestinal β-carotene absorption by down regulation of SR B1 expression via PPARα dependent mechanism and provide an evidence for dietary modulation of intestinal β-carotene absorption. PMID:26577021

  2. Eicosapentaenoic acid inhibits intestinal β-carotene absorption by downregulation of lipid transporter expression via PPAR-α dependent mechanism.

    PubMed

    Mashurabad, Purna Chandra; Kondaiah, Palsa; Palika, Ravindranadh; Ghosh, Sudip; Nair, Madhavan K; Raghu, Pullakhandam

    2016-01-15

    The involvement of lipid transporters, the scavenger receptor class B, type I (SR-BI) and Niemann-Pick type C1 Like 1 protein (NPC1L1) in carotenoid absorption is demonstrated in intestinal cells and animal models. Dietary ω-3 fatty acids are known to possess antilipidemic properties, which could be mediated by activation of PPAR family transcription factors. The present study was conducted to determine the effect of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), on intestinal β-carotene absorption. β-carotene uptake in Caco-2/TC7 cells was inhibited by EPA (p < 0.01) and PPARα agonist (P < 0.01), but not by DHA, PPARγ or PPARδ agonists. Despite unaltered β-carotene uptake, both DHA and PPARδ agonists inhibited the NPC1L1 expression. Further, EPA also induced the expression of carnitine palmitoyl transferase 1A (CPT1A) expression, a PPARα target gene. Interestingly, EPA induced inhibition of β-carotene uptake and SR B1 expression were abrogated by specific PPARα antagonist, but not by PPARδ antagonist. EPA and PPARα agonist also inhibited the basolateral secretion of β-carotene from Caco-2 cells grown on permeable supports. These results suggest that EPA inhibits intestinal β-carotene absorption by down regulation of SR B1 expression via PPARα dependent mechanism and provide an evidence for dietary modulation of intestinal β-carotene absorption.

  3. Absorption and excretion of ascorbic acid alone and in acerola (Malpighia emarginata) juice: comparison in healthy Japanese subjects.

    PubMed

    Uchida, Eriko; Kondo, Yoshitaka; Amano, Akiko; Aizawa, Shingo; Hanamura, Takayuki; Aoki, Hitoshi; Nagamine, Kenichi; Koizumi, Takeshi; Maruyama, Naoki; Ishigami, Akihito

    2011-01-01

    It has been suggested that some food components, such as bioflavonoids, affect the bioavailability of ascorbic acid in humans. Since little is known in Japan about the effective intake of this dietary requirement, we tested young Japanese males after the ingestion of commercial ascorbic acid or acerola (Malpighia emarginata DC.) juice to compare the quantities absorbed and excreted. Healthy Japanese subjects received a single oral dose of ascorbic acid solution (50, 100, 200 or 500 mg) and received distilled water as a reference at intervals of 14 d or longer. All subjects were collected blood and urine until 6 h after ingestion and evaluated for time-dependent changes in plasma and urinary ascorbic acid levels. Predictably, the area under the curve (AUC) values in plasma and urine after ingestion increased dose-dependently. Next, each subject received diluted acerola juice containing 50 mg ascorbic acid. Likewise, their plasma and urinary ascorbic acid concentrations were measured. In plasma, the AUC value of ascorbic acid after ingestion of acerola juice tended to be higher than that from ascorbic acid alone. In contrast, the urinary excretion of ascorbic acid at 1, 2 and 5 h after ingestion of acerola juice were significantly less than that of ascorbic acid. These results indicate that some component of acerola juice favorably affected the absorption and excretion of ascorbic acid.

  4. [Enantioseparation of 2-phenylcarboxylic acid esters by capillary gas chromatography].

    PubMed

    Shi, Xueyan; Liu, Feipeng; Bian, Qinghua

    2016-01-01

    Chiral 2-arylcarboxylic acid derivatives are important intermediates for preparing 2-arylcarboxylic acids, which are non-steroidal anti-inflammatory drugs (NSAIDs). In order to separate 2-phenylcarboxylic acid ester enantiomers by capillary gas chromatography (CGC), 2, 6-di-O-pentyl-3-O-butyryl-β-cyclodextrin and 2,6-di-O-benzyl-3-O-heptanoyl-β-cyclodextrin were used as CGC chiral stationary phases, separately, and their enantioseparation abilities to enantiomers of methyl 2-phenylbutanoate, ethyl 2-phenylbutanoate, isopropyl 2-phenylbutanoate, methyl 2-phenylpropionate and cyclopentyl 2-phenylpropionate were examined. It was found that methyl 2-phenylbutanoate, methyl 2-phenylpropionate and cyclopentyl 2-phenylpropionate were successfully separated by using 2,6-di-O-pentyl-3-O-butyryl-β-cyclodextrin and 2,6-di-O-benzyl-3-O-heptanoyl-β-cyclodextrin as CGC chiral stationary phases, respectively. The enantiomer separation abilities of 2, 6-di-O-pentyl-3-O-butyryl-β-cyclodextrin to the three pairs of 2-phenylcarboxylic acid esters tested are superior to those of 2, 6-di-O-benzyl-3-O-heptanoyl-β-cyclodextrin. PMID:27319170

  5. Fluoroalkyl chloroformates in treating amino acids for gas chromatographic analysis.

    PubMed

    Husek, Petr; Simek, Petr; Hartvich, Petr; Zahradnícková, Helena

    2008-04-01

    Novel fluoroalkyl chloroformates with three and four carbon atoms were investigated for the immediate conversion of amino acids into hydrophobic derivatives in water-containing media. Derivatization conditions were extensively studied and optimized sample preparation protocols elaborated. More than 30 amino acids were treated with the particular reagent in isooctane by simply vortexing the reactive organic phase with a slightly basified aqueous medium containing pyridine or 3-picoline as a catalyst. Outstanding separation of nearly all components on 5% phenylmethylsilicone phase in gas chromatographic (GC) analysis with mass spectrometric (MS) or flame ionization detection (FID) required <10 min. Quantitation characteristics involving linearity in the range of 0.1-100 nmol, regression coefficients of 0.999-0.953 (histidine), MS limit of detection (LOD) reaching 0.03 pmol at proline to nearly 20 pmol at glutamic acid, plus electron impact (EI) spectra and diagnostic SIM fragment ions of the derivatives are reported. The novel method is simple, robust and rapid, enabling to treat amino acids in aqueous environment and to analyze them in <15 min. PMID:18242622

  6. Influence of Chitosan Nanoparticles as the Absorption Enhancers on Salvianolic acid B In vitro and In vivo Evaluation

    PubMed Central

    Jin, Xin; Zhang, Shi-bing; Li, Shi-meng; Liang, Ke; Jia, Zeng-yong

    2016-01-01

    Background: Salvianolic acid B (SalB) represents the most abundant and bio-active phenolic constituent among the water-soluble compounds of Salvia miltiorrhiza. But the therapeutic potential of SalB has been significantly restricted by its poor absorption. Methods: In this study, chitosans (CS) and CS nanoparticles (NPs) with different molecular weights (MWs), which have influence on the absorption of SalB, was also investigated. Results: As a preliminary study, water-soluble CS with various MWs (3, 30, 50, and 100 kDa) was chosen. We investigated the MW-dependent Caco-2 cell layer transport phenomena in vitro of CS and NPs at concentrations (4 μg/ml, w/v). SalB, in presence CS or NPs has no significant toxic effect on Caco-2 cell. As the MW increases, the absorption enhancing effect of CS increases. However, as the MW decreases, the absorption enhancing effect of NPs increases. The AUC0–∞ of the SalB-100 kDa CS was 4.25 times greater than that of free SalB. And the AUC0–∞ of the SalB-3 kDa NPs was 16.03 times greater than that of free SalB. Conclusion: CS and NPs with different MWs as the absorption enhancers can promote the absorption of SalB. And the effect on NPs is better than CS. SUMMARY Formation mechanism for NPs PMID:27019562

  7. Differential effects of some natural compounds on the transdermal absorption and penetration of caffeine and salicylic acid.

    PubMed

    Muhammad, Faqir; Riviere, Jim E

    2015-04-10

    Many natural products have the potential to modulate the dermal penetration of topically applied drugs and chemicals. We studied the effect of five natural compounds (hydroxycitronellal, limonene 1,2-epoxide, terpinyl acetate, p-coumaric acid, transferrulic acid) and ethanol on the transdermal penetration of two marker drugs ((14)C-caffeine and (14)C-salicylic acid) in a flow through in vitro porcine skin diffusion system. The parameters of flux, permeability, diffusivity, and percent dose absorbed/retained were calculated and compared. The dermal absorption of (14)C-caffeine was significantly higher with terpinyl acetate and limonene 1,2-epoxide as compared to ethanol; while dermal absorption of (14)C-salicylic acid was significantly greater with hydroxycitronellal and limonene 1,2-epoxide as compared to ethanol. A 10-fold increase in flux and permeability of caffeine with terpinyl acetate was observed while limonene increased flux of caffeine by 4-fold and permeability by 3-fold. Hydroxycitronellal and limonene increased salicylic acid's flux and permeability over 2-fold. The other natural compounds tested did not produce statistically significant effects on dermal penetration parameters for both caffeine and salicylic acid (p≥0.05). These results emphasize the differential effects of natural substances on the transdermal penetration of hydrophilic (caffeine) and hydrophobic (salicylic acid) drugs.

  8. GAS-GRAIN MODELING OF ISOCYANIC ACID (HNCO), CYANIC ACID (HOCN), FULMINIC ACID (HCNO), AND ISOFULMINIC ACID (HONC) IN ASSORTED INTERSTELLAR ENVIRONMENTS

    SciTech Connect

    Quan Donghui; Herbst, Eric; Osamura, Yoshihiro; Roueff, Evelyne

    2010-12-20

    Isocyanic acid (HNCO) is a well-known interstellar molecule. Evidence also exists for the presence of two of its metastable isomers in the interstellar medium: HCNO (fulminic acid) and HOCN (cyanic acid). Fulminic acid has been detected toward cold and lukewarm sources, while cyanic acid has been detected both in these sources and in warm sources in the Galactic Center. Gas-phase models can reproduce the abundances of the isomers in cold sources, but overproduce HCNO in the Galactic Center. Here we present a detailed study of a gas-grain model that contains these three isomers, plus a fourth isomer, isofulminic acid (HONC), for four types of sources: hot cores, the warm envelopes of hot cores, lukewarm corinos, and cold cores. The current model is partially able to rationalize the abundances of HNCO, HOCN, and HCNO in cold and warm sources. Predictions for HONC in all environments are also made.

  9. Analysis of gas absorption to a thin liquid film in the presence of a zero-order chemical reaction

    NASA Technical Reports Server (NTRS)

    Rajagopalan, S.; Rahman, M. M.

    1995-01-01

    The paper presents a detailed theoretical analysis of the process of gas absorption to a thin liquid film adjacent to a horizontal rotating disk. The film is formed by the impingement of a controlled liquid jet at the center of the disk and subsequent radial spreading of liquid along the disk. The chemical reaction between the gas and the liquid film can be expressed as a zero-order homogeneous reaction. The process was modeled by establishing equations for the conservation of mass, momentum, and species concentration and solving them analytically. A scaling analysis was used to determine dominant transport processes. Appropriate boundary conditions were used to solve these equations to develop expressions for the local concentration of gas across the thickness of the film and distributions of film height, bulk concentration, and Sherwood number along the radius of the disk. The partial differential equation for species concentration was solved using the separation of variables technique along with the Duhamel's theorem and the final analytical solution was expressed using confluent hypergeometric functions. Tables for eigenvalues and eigenfunctions are presented for a number of reaction rate constants. A parametric study was performed using Reynolds number, Ekman number, and dimensionless reaction rate as parameters. At all radial locations, Sherwood number increased with Reynolds number (flow rate) as well as Ekman number (rate of rotation). The enhancement of mass transfer due to chemical reaction was found to be small when compared to the case of no reaction (pure absorption), but the enhancement factor was very significant when compared to pure absorption in a stagnant liquid film. The zero-order reaction processes considered in the present investigation included the absorption of oxygen in aqueous alkaline solutions of sodiumdithionite and rhodium complex catalyzed carbonylation of methanol. Present analytical results were compared to previous theoretical

  10. [Determination of dimethylbenzoic acid isomers in urine by gas chromatography].

    PubMed

    Kostrzewski, P; Wiaderna-Brycht, A; Czerski, B

    1994-01-01

    Trimethylobenzene (TMB) is a main ingredient of many organic solvents used in industry. In Farbasol (Polish trade name of the solvent) TMB occurs as a mixture of three isomers: pseudocumene (1, 2, 4-TMB) 30%; mesitylene (1, 3, 5-TMB) 15%; hemimellitene (1,2,3-TMB) 5%. As it is known in human organism, TMB is metabolized mainly to dimethylbenzoic (DMBA) and dimethylhippuric (DMHA) acids, and some authors suggest, that the acids excreted in urine can be biological indicators of exposure to TMB. This study was aimed at developing the method of determination of DMBA isomers in urine. Biological material was hydrolyzed with sodium hydroxide and next extracted with diethyl ether. DMBA concentration in urine was determined by gas chromatography using a variant of quantitative analysis with internal standard (5-methyl-2-isopropylphenol, thymol). Analytical parameters of the developed method of determination of DMBA isomers in urine such as linearity, precision, reproducibility, stability (192 days, when urine samples stored at-18 degrees C), detectability limit (400 micrograms/dm3) have been fully compatible with the requirements of biological monitoring. In order to confirm the presence of DMBA isomers in urine, four volunteers were exposed (8 hours) to Farbasol in toxicological chamber. The TMB concentration in the air, determined by means of gas chromatograph (HP 5890), amounted to 100 mg/m3 (MAC value in Poland). In urine samples collected 2,3-; 2,4-; 2,5-; 2,6-; 3,4-; 3,5-dimethylbenzoic acids were identified by means of GC/MSD.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8170375

  11. Highly ionized gas absorption in the disk and halo toward HD 167756 at 3.5 kilometers per second resolution

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Sembach, Kenneth R.; Cardelli, Jason A.

    1994-01-01

    High-resolution spectra of interstellar Si IV, C IV, and N V absorption lines along the 4 kpc path to the inner Galaxy star HD 167756 at z = -0.85 kpc are presented. The spectra were obtained with the echelle mode of Goddard High Resolution Spectrograph (GHRS) aboard the Hubble Space Telescope (HST) and have signal-to-noise ratios ranging from 23 to 38. The high resolution of the measurements full width at half maximum (FWHM = 3.5 km/s) results in fully resolved line profiles for the highly ionized gas absorption. The measurements provide information on the column density per unit velocity, N(v), as a function of velocity for Si IV, C IV, and N V. The C IV and N V profiles extend from -70 to +70 km/s, while the Si IV profiles extend from -40 to +70 km/s. The integrated logarithmic column densities are long N(Si IV) = 13.09 +/- 0.02, log N(C IV) = 13.83 +/- 0.02, and log N(N V) = 13.56 +/- 0.03. The N V profile is broad, asymmetric, and featureless, while the Si IV profile contains narrow absorption components near V(sub LSR) = -19, 0, +20, and +52 km/s with Doppler spread parameters, b about = 10-12 km/s. The C IV profile contains both broad and narrow structure. The high ion feature near +52 km/s is also detected in the low-ionization lines of Ca II, O I, Si II, and Fe II. The other narrow Si IV and C IV components occur within several km/s of components seen in low-ionization species. The sight line contains at least two types of highly ionized gas. One type gives rise to a broad N V profile, and the other results in the more structured Si IV profile. The C IV profile contains contributions from both types of highly ionized gas. The broad but asymmetric N V profile is well represented by a large Galactic scale height gas which is participating in Galactic rotation and has a combination of thermal and turbulent broadening with b(sub tot) about = 42 km/s. The C IV to N V abundance ratio of 1.0 +/- 0.3 for the gas implies T about 1.6 x 10(exp 5) K or about 8 x 10

  12. Real-time trace gas sensor using a multimode diode laser and multiple-line integrated cavity enhanced absorption spectroscopy.

    PubMed

    Karpf, Andreas; Rao, Gottipaty N

    2015-07-01

    We describe and demonstrate a highly sensitive trace gas sensor based on a simplified design that is capable of measuring sub-ppb concentrations of NO2 in tens of milliseconds. The sensor makes use of a relatively inexpensive Fabry-Perot diode laser to conduct off-axis cavity enhanced spectroscopy. The broad frequency range of a multimode Fabry-Perot diode laser spans a large number of absorption lines, thereby removing the need for a single-frequency tunable laser source. The use of cavity enhanced absorption spectroscopy enhances the sensitivity of the sensor by providing a pathlength on the order of 1 km in a small volume. Off-axis alignment excites a large number of cavity modes simultaneously, thereby reducing the sensor's susceptibility to vibration. Multiple-line integrated absorption spectroscopy (where one integrates the absorption spectra over a large number of rovibronic transitions of the molecular species) further improves the sensitivity of detection. Relatively high laser power (∼400  mW) is used to compensate for the low coupling efficiency of a broad linewidth laser to the optical cavity. The approach was demonstrated using a 407 nm diode laser to detect trace quantities of NO2 in zero air. Sensitivities of 750 ppt, 110 ppt, and 65 ppt were achieved using integration times of 50 ms, 5 s, and 20 s respectively.

  13. Folate-binding protein and the absorption of folic acid in the small intestine of the suckling rat

    SciTech Connect

    Mason, J.B.; Selhub, J.

    1988-09-01

    The folate in milk is largely bound to high-affinity folate-binding protein (FBP). With an in vivo intestinal loop technique, we examined the absorption of folic acid bound to FBP (FA-FBP) in the small intestine of the suckling rat. In contrast to unbound folic acid (FA), FA-FBP is absorbed more avidly in the ileum than in the jejunum (p less than 0.025) and its absorption is not inhibited by 1 mmol sulfasalazine/L. Folate-binding activities in the mucosa of the proximal (duodenum and jejunum combined) and distal (ileum) small intestine were also examined and found to be 0.32 and 1.31 pmol/mg protein, respectively (p less than 0.001). A 6-h fast produced a 42% decrease in folate-binding activity in the distal small intestine (p less than 0.01) but did not change activity in the proximal portion. Collectively, these observations suggest that FA-FBP is absorbed by a mechanism that is distinct from that responsible for the absorption of FA and that absorption does not require prior dissociation of the vitamin-binding protein complex.

  14. Simultaneous assessment of cholesterol absorption and synthesis in humans using on-line gas chromatography/ combustion and gas chromatography/pyrolysis/isotope-ratio mass spectrometry.

    PubMed

    Gremaud, G; Piguet, C; Baumgartner, M; Pouteau, E; Decarli, B; Berger, A; Fay, L B

    2001-01-01

    A number of dietary components and drugs are known to inhibit the absorption of dietary and biliary cholesterol, but at the same time can compensate by increasing cholesterol synthesis. It is, therefore, necessary to have a convenient and accurate method to assess both parameters simultaneously. Hence, we validated such a method in humans using on-line gas chromatography(GC)/combustion and GC/pyrolysis/isotope-ratio mass spectrometry (IRMS). Cholesterol absorption was measured using the ratio of [(13)C]cholesterol (injected intravenously) to [(18)O]cholesterol (administered orally). Simultaneously, cholesterol synthesis was measured using the deuterium incorporation method. Our methodology was applied to 12 mildly hypercholesterolemic men that were given a diet providing 2685 +/- 178 Kcal/day (mean +/- SD) and 255 +/- 8 mg cholesterol per day. Cholesterol fractional synthesis rates ranged from 5.0 to 10.5% pool/day and averaged 7.36% +/- 1.78% pool/day (668 +/- 133 mg/day). Cholesterol absorption ranged from 36.5-79.9% with an average value of 50.8 +/- 15.4%. These values are in agreement with already known data obtained with mildly hypercholesterolemic Caucasian males placed on a diet similar to the one used for this study. However, our combined IRMS method has the advantage over existing methods that it enables simultaneous measurement of cholesterol absorption and synthesis in humans, and is therefore an important research tool for studying the impact of dietary treatments on cholesterol parameters.

  15. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress.

    PubMed

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-02-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter

  16. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress

    PubMed Central

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-01-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter

  17. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress.

    PubMed

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-02-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter

  18. Enhanced absorption of n-3 fatty acids from emulsified compared with encapsulated fish oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have important nutrition and disease management properties. Presently fish oil (FO) supplementation relies on capsular triglyceride. Flavored emulsified lipid preparations may provide an improved approach to FO del...

  19. Vibrationally Resolved Absorption and Fluorescence Spectra of Firefly Luciferin: A Theoretical Simulation in the Gas Phase and in Solution.

    PubMed

    Cheng, Yuan-Yuan; Liu, Ya-Jun

    2016-07-01

    Firefly bioluminescence has been applied in several fields. However, the absorption and fluorescence spectra of the substrate, luciferin, have not been observed at the vibrational level. In this study, the vibrationally resolved absorption and fluorescence spectra of firefly luciferin (neutral form LH2 , phenolate ion form LH(-) and dianion form L(2-) ) are simulated using the density functional method and convoluted by a Gaussian function, with displacement, distortion and Duschinsky effects in the framework of the Franck-Condon approximation. Both neutral and anionic forms of the luciferin are considered in the gas phase and in solution. The simulated spectra have desired band maxima with the experimental ones. The vibronic structure analysis reveals that the features of the most contributive vibrational modes coincide with the key geometry-changing region during transition between the ground state and the first singlet excited state. PMID:27165852

  20. Evaluation of absorption/stripping for second phase expansion of KG gas cracker

    SciTech Connect

    1995-12-01

    This report addresses technology evaluation for a second phase expansion of BP Chemical Ltd.`s (BPCL) KG cracker. Its primary objective was to determine if the absorption/stripping technology being developed by BPCL is competitive with cryogenic demethanization technology. The expansion basis for this evaluation is a 150,000 MTA ethylene increment. This increment represents an increase in KG`s capacity from 450,000 MTA after the current expansion to an ultimate capacity of 600,000 MTA. Two recovery systems for a 150,000 MTA expansion are compared: (1) Case A - Absorption/Stripping Expansion; and (2) Case B - ARS Expansion. Another objective of this report was to confirm the magnitude of the economic advantages of the absorption/stripping technology for grass roots applications. For that evaluation, absorption/stripping was compared with the original 350,000 MTA KG recovery system. The two additional 350,000 MTA grass roots cases evaluated are: (1) Case C - Absorption/Stripping - Grass Roots Design; (2) Case D - Conventional Cryogenic Recovery (Original KG 350,000 MTA design).

  1. Advances in Methane Isotope Measurements via Direct Absorption Spectroscopy with Applications to Oil and Gas Source Characterization

    NASA Astrophysics Data System (ADS)

    Yacovitch, T. I.; Herndon, S. C.; Roscioli, J. R.; Petron, G.; Shorter, J. H.; Jervis, D.; McManus, J. B.; Nelson, D. D.; Zahniser, M. S.; Kolb, C. E., Jr.

    2015-12-01

    Instrumental developments in the measurement of multiple isotopes of methane (12CH4, 13CH4 and 12CH3D) are presented. A first generation 8-micron instrument quantifies 12CH4 and 13CH4 at a 1-second rate via tunable infrared direct absorption spectroscopy (TILDAS). A second generation instrument uses two 3-micron intraband cascade lasers in an Aerodyne dual laser chassis for simultaneous measurement of 12CH4, 13CH4 and 12CH3D. Sensitivity and noise performance improvements are examined. The isotopic signature of methane provides valuable information for emission source identification of this greenhouse gas. A first generation spectrometer has been deployed in the field on a mobile laboratory along with a sophisticated 4-tank calibration system. Calibrations are done on an agressive schedule, allowing for the correction of measured isotope ratios to an absolute isotope scale. Distinct isotopic signatures are found for a number of emission sources in the Denver-Julesburg Basin: oil and gas gathering stations, compressor stations and processing plants; a municipal landfill, and dairy/cattle operations. The isotopic signatures are compared with measured ethane/methane ratios. These direct absorption measurements have larger uncertainties than samples measured via gas chromatography-mass spectrometry, but have several advantages over canister sampling methods: individual sources of short duration are easier to isolate; calibrated isotope ratio results are available immediately; replicate measurements on a single source are easily performed; and the number of sources sampled is not limited by canister availability and processing time.

  2. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    NASA Astrophysics Data System (ADS)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-12-01

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  3. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    SciTech Connect

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-12-15

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  4. Broad Balmer Absorption Line Variability: Evidence of Gas Transverse Motion in the QSO SDSS J125942.80+121312.6

    NASA Astrophysics Data System (ADS)

    Shi, Xiheng; Zhou, Hongyan; Shu, Xinwen; Zhang, Shaohua; Ji, Tuo; Pan, Xiang; Sun, Luming; Zhao, Wen; Hao, Lei

    2016-03-01

    We report on the discovery of broad Balmer absorption lines variability in the QSO SDSS J125942.80+121312.6, based on the optical and near-infrared spectra taken from the SDSS-I, SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), and TripleSpec observations over a timescale of 5.8 years in the QSO's rest-frame. The blueshifted absorption profile of Hβ shows a variation of more than 5σ at a high velocity portion (\\gt 3000 {km} {{{s}}}-1) of the trough. We perform a detailed analysis for the physical conditions of the absorber using Balmer lines as well as metastable He i and optical Fe ii absorptions (λ4233 from b4P5/2 level and λ5169 from a6S5/2) at the same velocity. These Fe ii lines are identified in the QSO spectra for the first time. According to the photoionization simulations, we estimate a gas density of n({{H}})≈ {10}9.1 {{cm}}-3 and a column density of {N}{col}({{H}})≈ {10}23 {{cm}}-2 for the BOSS data, but the model fails to predict the variations of ionic column densities between the SDSS and BOSS observations if changes in ionizing flux are assumed. We thus propose transverse motion of the absorbing gas being the cause of the observed broad Balmer absorption line variability. In fact, we find that the changes in covering factors of the absorber can well-reproduce all of the observed variations. The absorber is estimated ∼0.94 pc away from the central engine, which is where the outflow likely experiences deceleration due to the collision with the surrounding medium. This scheme is consistent with the argument that LoBAL QSOs may represent the transition from obscured star-forming galaxies to classic QSOs.

  5. Solvothermal Synthesis of Caesium Tungsten Bronze in the Presence of Various Organic Acids and Its NIR Absorption Properties

    NASA Astrophysics Data System (ADS)

    Guo, Chongshen; Yin, Shu; Adachi, Kenji; Chonan, Takeshi; Sato, Tsugio

    2011-10-01

    Nanoparticles of caesium tungsten bronze were successfully synthesized by solvothermal reactions in ethanol with the introduction of different organic fatty acids with various carbon numbers of 1 to 5. Compared to the sample prepared in pure ethanol, the samples obtained by mixed solvent of ethanol and fatty acids showed higher production yield, smaller particle size, more uniform particles size distribution and higher Cs/W atomic ratio. In addition, all of samples obtained using acids-ethanol mixed solvent exhibited higher visible light transmittance and greater NIR absorption performance, indicating the potential application for smart window and heat-ray shielding materials. The addition of acetic acid showed the best performance to facilitate the formation of well dispersed CsxWO3 regular nanorods, leading to its excellent optical properties.

  6. Analysis of the Contribution of Chromophores in Side Groups of Amino Acids to the Absorption Spectrum of Hemoglobin

    NASA Astrophysics Data System (ADS)

    Lavrinenko, I. A.; Vashanov, G. A.; Ruban, M. K.

    2014-01-01

    Based on spectral analysis of solutions of aromatic, heterocyclic, and sulfur-containing amino acids, we propose an additive model and assess the roles of the studied types of amino acid residues in formation of the overall absorption spectrum of hemoglobin. We have established that the identified absorption maxima (transitions) at 243.4, 248.4, 253.2, 258.8, 261.6, 264.8, and 268.4 nm belong to phenylalanine amino acid residues. Probably the latter also form the unassigned transition at 241.0 nm. The transitions at 272.8, 274.6, 280.0, and 284.4 nm are a superposition of the absorption by the side groups of tyrosine and tryptophan; the transition at 278.2 nm is associated with tyrosine, masked by adjacent transitions of tryptophan, and the transition at 291.2 nm belongs to tryptophan. We consider the possibility of estimating the changes in the spectral properties of proteins under the influence of various physical and chemical factors using data from additive spectra.

  7. Changes in the absorption of bile acids after total colectomy in patients with an ileostomy or pouch-anal anastomosis

    SciTech Connect

    Nasmyth, D.G.; Johnston, D.; Williams, N.S.; King, R.F.; Burkinshaw, L.; Brooks, K.

    1989-03-01

    Bile acid absorption was investigated using /sup 75/Se Taurohomocholate (SeHCAT) in controls and patients who had undergone total colectomy with either conventional ileostomy or pouch-anal anastomosis for ulcerative colitis or adenomatous polyposis. Whole-body retention of SeHCAT after 168 hours was greater in the controls than the patients who had undergone colectomy (P less than .05). Retention of SeHCAT did not differ significantly between patients with an ileostomy and patients with pouch-anal anastomosis, but patients with an ileostomy and ileal resection of more than 20 cm retained less SeHCAT than patients with a pouch-anal anastomosis (P less than .01). Analysis of fecal bile acids from ileostomies and pouches showed that bacterial metabolism of primary conjugated bile acids was greater in patients with a pouch. It was concluded that bile acid absorption was not significantly impaired by construction of a pouch compared with conventional ileostomy, but bacterial metabolism of bile acids was greater in the pouches.

  8. CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell

    NASA Astrophysics Data System (ADS)

    Krzempek, Karol; Jahjah, Mohammad; Lewicki, Rafał; Stefański, Przemysław; So, Stephen; Thomazy, David; Tittel, Frank K.

    2013-09-01

    The development of a continuous wave, thermoelectrically cooled (TEC), distributed feedback diode laser-based spectroscopic trace-gas sensor for ultra-sensitive and selective ethane (C2H6) concentration measurements is reported. The sensor platform used tunable diode laser absorption spectroscopy (TDLAS) and wavelength modulation spectroscopy as the detection technique. TDLAS was performed using an ultra-compact 57.6 m effective optical path length innovative spherical multipass cell capable of 459 passes between two mirrors separated by 12.5 cm and optimized for the 2.5-4 μm range TEC mercury-cadmium-telluride detector. For an interference-free C2H6 absorption line located at 2,976.8 cm-1, a 1 σ minimum detection limit of 740 pptv with a 1 s lock-in amplifier time constant was achieved.

  9. Research of difference absorption optical fiber CO gas sensor based on FBG

    NASA Astrophysics Data System (ADS)

    Wang, Yanju; Liu, Zhihua; Kang, Yueyi; Wang, Yutian

    2009-07-01

    Based on analysis of the near infrared spectral absorption of CO molecule and considering factors such as compatibility with the transmission characteristics of silica optical fiber and the price, a kind of allfiber remote sensor utilizing Fiber Bragg Grating(FBG) filters and 1.567μm high power light-emitting diode (LED) was developed for real time absorption measurement. FBG has a low insert loss and can be produced easily compared with dielectric interference filters. Theory and experiment proved that the system has simple construct and high sensibility.

  10. Ultraviolet absorption by interstellar gas at large distances from the galactic plane

    NASA Technical Reports Server (NTRS)

    Savage, B. D.; De Boer, K. S.

    1981-01-01

    Eighteen high-dispersion IUE spectra of six stars in the Large Magellanic Cloud, three stars in the Small Magellanic Cloud, and two foreground stars were analyzed. Fourteen spectra cover the wavelengths 1150-2000 A, and four cover 1900-3200 A; the velocity resolution is about 25 km/s. All the Magellanic Cloud spectra exhibit very strong interstellar absorption lines due to a wide range of ionization stages at galactic velocities and at velocities associated with the IMC or SMC. The observational results are related to current theoretical ideas about the origin and physical state of gaseous galactic halos; the analysis is restricted to the Milky Way absorption features.

  11. [Determination of docosahexaenoic acid in milk powder by gas chromatography using acid hydrolysis].

    PubMed

    Shao, Shiping; Xiang, Dapeng; Li, Shuang; Xi, Xinglin; Chen, Wenrui

    2015-11-01

    A method to determine docosahexenoic acid (DHA) in milk powder by gas chromatography was established. The milk powder samples were hydrolyzed with hydrochloric acid, extracted to get total fatty acids by Soxhlet extractor, then esterified with potassium hydroxide methanol solution to form methyl esters, and treated with sodium hydrogen sulfate. The optimal experiment conditions were obtained from orthogonal experiment L9(3(3)) which performed with three factors and three levels, and it requires the reaction performed with 1 mol/L potassium hydroxide solution at 25 degrees C for 5 min. The derivative treated with sodium hydrogen sulfate was separated on a column of SP-2560 (100 m x 0.25 mm x 0.20 μm), and determined in 55 min by temperature programming-gas chromatography. Good linearity was obtained in the range 5.0-300 mg/L with the correlation coefficient of 0.999 9. The relative standard deviations (RSDs) were 3.4%, 1.2% and 1.1% for the seven repeated experiments of 10, 50 and 100 mg/L of DHA, respectively. The limit of detection was 2 mg/kg, and the recoveries of DHA were in the range of 90.4%-93.5%. The results are satisfactory through the tests of practical samples. PMID:26939370

  12. Effects of gas atmospheres on poly(lactic acid) film in acrylic acid plasma treatment

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Fina, Alberto; Venturello, Alberto; Geobaldo, Francesco

    2013-10-01

    Plasma polymerized acrylic acid (AA) coatings were deposited on poly(lactic acid) (PLA) films in various gas atmospheres during the pre-treatment of PLA and the deposition of AA, respectively. Therefore, this work was twofold: the argon pretreated PLA films followed by a deposition in argon were investigated against the mixture of argon and oxygen pretreated ones under the same deposition conditions; the plasma deposition of AA operating in different atmospheres (argon, oxygen and nitrogen) was employed to modify the pretreated PLA in oxygen. Chemical and physical changes on the plasma-treated surfaces were examined using contact angle, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM) and attenuated total reflection infrared (ATR-FTIR) analysis. The results showed that the discharge gas can have a significant influence on the chemical composition of the PLA surfaces: oxygen plasmas introduced oxygen-containing groups in company with surface etching in pretreatment and deposition, while argon discharges was able to achieve much better hydrophilic behavior and high retention ratio of poly(acrylic acid) (PAA) coating before and after washing in water.

  13. Reactive Transport Modeling of Acid Gas Generation and Condensation

    SciTech Connect

    G. Zhahg; N. Spycher; E. Sonnenthal; C. Steefel

    2005-01-25

    Pulvirenti et al. (2004) recently conducted a laboratory evaporation/condensation experiment on a synthetic solution of primarily calcium chloride. This solution represents one potential type of evaporated pore water at Yucca Mountain, Nevada, a site proposed for geologic storage of high-level nuclear waste. These authors reported that boiling this solution to near dryness (a concentration factor >75,000 relative to actual pore waters) leads to the generation of acid condensate (pH 4.5) presumably due to volatilization of HCl (and minor HF and/or HNO{sub 3}). To investigate the various processes taking place, including boiling, gas transport, and condensation, their experiment was simulated by modifying an existing multicomponent and multiphase reactive transport code (TOUGHREACT). This code was extended with a Pitzer ion-interaction model to deal with high ionic strength. The model of the experiment was set-up to capture the observed increase in boiling temperature (143 C at {approx}1 bar) resulting from high concentrations of dissolved salts (up to 8 m CaCl{sub 2}). The computed HCI fugacity ({approx} 10{sup -4} bars) generated by boiling under these conditions is not sufficient to lower the pH of the condensate (cooled to 80 and 25 C) down to observed values unless the H{sub 2}O mass fraction in gas is reduced below {approx}10%. This is because the condensate becomes progressively diluted by H{sub 2}O gas condensation. However, when the system is modeled to remove water vapor, the computed pH of instantaneous condensates decreases to {approx}1.7, consistent with the experiment (Figure 1). The results also show that the HCl fugacity increases, and calcite, gypsum, sylvite, halite, MgCl{sub 2}4H{sub 2}O and CaCl{sub 2} precipitate sequentially with increasing concentration factors.

  14. Design of mini-multi-gas monitoring system based on IR absorption

    NASA Astrophysics Data System (ADS)

    Tan, Qiu-lin; Zhang, Wen-dong; Xue, Chen-yang; Xiong, Ji-jun; Ma, You-chun; Wen, Fen

    2008-07-01

    In this paper, a novel non-dispersive infrared ray (IR) gas detection system is described. Conventional devices typically include several primary components: a broadband source (usually an incandescent filament), a rotating chopper shutter, a narrow-band filter, a sample tube and a detector. But we mainly use the mini-multi-channel detector, electrical modulation means and mini-gas-cell structure. To solve the problems of gas accidents in coal mines, and for family safety that results from using gas, this new IR detection system with integration, miniaturization and non-moving parts has been developed. It is based on the principle that certain gases absorb infrared radiation at specific (and often unique) wavelengths. The infrared detection optics principle used in developing this system is mainly analyzed. The idea of multi-gas detection is introduced and guided through the analysis of the single-gas detection. Through researching the design of cell structure, a cell with integration and miniaturization has been devised. By taking a single-chip microcomputer (SCM) as intelligence handling, the functional block diagram of a gas detection system is designed with the analyzing and devising of its hardware and software system. The way of data transmission on a controller area network (CAN) bus and wireless data transmission mode is explained. This system has reached the technology requirement of lower power consumption, mini-volume, wide measure range, and is able to realize multi-gas detection.

  15. Gas-Phase Polycyclic Aromatic Hydrocarbons in Absorption toward Protostellar Sources?

    NASA Astrophysics Data System (ADS)

    Bregman, Jesse D.; Temi, Pasquale

    2001-06-01

    One of the major criticisms of identifying the infrared emission bands with polycyclic aromatic hydrocarbon (PAH) molecules has been the lack of a match between laboratory spectra of individual PAHs and the emission features. Part of the difficulty arises from the complexity of modeling the emission mechanism with an a priori unknown mixture of ionized and neutral PAHs. A direct comparison between laboratory spectra of PAHs and astronomical sources is possible for absorption spectra. However, because of poor atmospheric transmission, ground-based spectra of the PAH absorption band in the C-H stretch region are too noisy to make a detailed comparison with laboratory spectra. In this paper we show that ISO Short Wavelength Spectrometer spectra of a few protostars that show a 3.25 μm absorption band can be well matched by laboratory absorption spectra of a mixture of isolated PAHs. Based on observations with ISO, an ESA project with instruments funded by ESA member states (especially the PI countries: France, Germany, the Netherlands, and the United Kingdom), with the participation of ISAS and NASA.

  16. Oxygen K-edge absorption spectra of small molecules in the gas phase

    SciTech Connect

    Yang, B.X.; Kirz, J.; Sham, T.K.

    1986-01-01

    The absorption spectra of O/sub 2/, CO, CO/sub 2/ and OCS have been recorded in a transmission mode in the energy region from 500 to 950 eV. Recent observation of EXAFS in these molecules is confirmed in this study. 7 refs., 3 figs.

  17. Retrieval of absorptive gas columnar amounts using atmospheric hyper-spectral irradiance measurements within visible spectrum

    NASA Astrophysics Data System (ADS)

    Xu, Hua; Li, Zhengqiang; Li, Donghui; Xie, Yisong; Li, Kaitao; Qie, Lili; Zhang, Ying; Chen, Xingfeng; Zheng, Xiaobin; Li, Xin; Zhang, Yanna

    2015-10-01

    A hyper spectral ground-based instrument named Atmosphere-Surface Radiation Automatic Instrument (ASRAI) has been developed for the purpose of in-situ calibration of satellites. The apparatus has both upward and downward looking views, and thus can observe both the atmosphere and land surface. The solar transmitted irradiance can be derived from the measured full spectral irradiance and diffused spectral irradiance of atmosphere within visible spectrum (0.4-1.0μm). A method similar to that of King et al. which originally intended to apply to multi-wavelength measurements, is adopted to determine absorptive gaseous columnar amount from hyper spectrum. The solar irradiance at top of atmosphere and absorption coefficients of water vapor (H2O), ozone (O3), oxygen (O2) and nitrogen dioxide (NO2) are recalculated at an instrumental spectral resolution by convolution method. Based on the gaseous characteristics of absorption, the total columnar amounts of water vapor and oxygen are first inferred from solar transmitted irradiance at strong absorption wavelength of 0.934μm and 0.763μm respectively. The total columnar amounts of ozone and nitrogen dioxide, together with aerosol optical depth, are determined by a nonlinear least distance fitting method which minimizes a χ2 statistic to obtain optimal solutions. ASRAI was deployed for observation in Dunhuang site in China in August of 2014. Our results demonstrate that the algorithm is reasonable. Although the validation is preliminary, the hyper spectrum measured by ASRAI exhibits good ability to retrieve the abundance of absorptive gases and aerosols.

  18. Fermi resonance and strong anharmonic effects in the absorption spectra of the ν-OH ( ν-OD) vibration of solid H- and D-benzoic acid

    NASA Astrophysics Data System (ADS)

    Yaremko, A. M.; Ratajczak, H.; Barnes, A. J.; Baran, J.; Durlak, P.; Latajka, Z.

    2009-10-01

    The vibrational spectra of polycrystalline benzoic acid (BA) and its deuterated derivative were studied over the wide frequency region 4000-10 cm -1 by IR and Raman methods. A theoretical analysis of the hydrogen bond frequency region and calculations at the B3LYP/6-311++G(2d, 2p) level for the benzoic acid cyclic dimer in the gas phase were made. In order to study the dynamics of proton transfer two formalisms were applied: Car-Parrinello Molecular Dynamics (CPMD) and Path Integrals Molecular Dynamics (PIMD). It was shown that the experimentally observed very broad ν-OH band absorption is the result of complex anharmonic interaction: Fermi resonance between the OH-stretching and bending vibrations and strong interaction of the ν-OH stretching with the low frequency phonons. The theoretical analysis in the framework of such an approach gave a good correlation with experiment. From the CPMD calculations it was confirmed that the O-H⋯O bridge is not rigid, with the O⋯O distance being described by a large amplitude motion. For the benzoic acid dimer we observed stepwise (asynchronous) proton transfer.

  19. Ca II and Na I absorption signatures from extraplanar gas in the halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    Ben Bekhti, N.; Richter, P.; Westmeier, T.; Murphy, M. T.

    2008-08-01

    Aims: We analyse absorption characteristics and physical conditions of extraplanar intermediate- and high-velocity gas to study the distribution of the neutral and weakly ionised Milky Way halo gas and its relevance for the evolution of the Milky Way and other spiral galaxies. Methods: We combine optical absorption line measurements of Ca II/Na I and 21 cm emission line observations of H I along 103 extragalactic lines of sight towards quasars (QSOs) and active galactic nuclei (AGN). The archival optical spectra were obtained with the Ultraviolet and Visual Echelle Spectrograph (UVES) at the ESO Very Large Telescope, while the 21 cm H I observations were carried out using the 100-m radio telescope at Effelsberg. Results: The analysis of the UVES spectra shows that single and multi-component Ca II/Na I absorbers at intermediate and high velocities are present in about 35 percent of the sight lines, indicating the presence of neutral extraplanar gas structures. In some cases the Ca II/Na I absorption is connected with H I 21 cm intermediate- or high-velocity gas with H I column densities in the range of 1018 to 1020 cm-2 (i.e., the classical IVCs and HVCs), while other Ca II/Na I absorbers show no associated H I emission. The observed H I line widths vary from Δ vFWHM=3.2 km s-1 to 32.0 km s-1 indicating a range of upper gas temperature limits of 250 K up to about 22 500 K. Conclusions: Our study suggests that the Milky Way halo is filled with a large number of neutral gaseous structures whose high column density tail represents the population of common H I high-velocity clouds seen in 21 cm surveys. The Ca II column density distribution follows a power-law f(N)=CNβ with a slope of β ≈ -1.6, thus comparable to the distribution found for intervening metal-line systems toward QSOs. Many of the statistical and physical properties of the Ca II absorbers resemble those of strong (W_λ 2796>0.3 Å) Mg II absorbing systems observed in the circumgalactic environment of

  20. Self-absorption Effects In Experimental Methods Used To Determine Electron Density And Gas Temperature In An Argon Microwave Plasma (SWP) Generated At Atmospheric Pressure

    SciTech Connect

    Santiago, I.; Munoz, J.; Calzada, M. D.

    2008-10-22

    In this work a procedure was applied to verify that self-absorption does not affect the spectral lines used in the experimental determination of the electron density and the gas temperature in surface wave discharges at atmospheric pressure. Therefore, the values of electron density and gas temperature obtained are not perturbed by this phenomenon.

  1. Clean Coal Technology III: 10 MW Demonstration of Gas Suspension Absorption final project performance and economics report

    SciTech Connect

    Hsu, F.E.

    1995-08-01

    The 10 MW Demonstration of the Gas Suspension Absorption (GSA) program is a government and industry co-funded technology development. The objective of the project is to demonstrate the performance of the GSA system in treating a 10 MW slipstream of flue gas resulting from the combustion of a high sulfur coal. This project involves design, fabrication, construction and testing of the GSA system. The Project Performance and Economics Report provides the nonproprietary information for the ``10 MW Demonstration of the Gas Suspension Absorption (GSA) Project`` installed at Tennessee Valley Authority`s (TVA) Shawnee Power Station, Center for Emissions Research (CER) at Paducah, Kentucky. The program demonstrated that the GSA flue-gas-desulfurization (FGD) technology is capable of achieving high SO{sub 2} removal efficiencies (greater than 90%), while maintaining particulate emissions below the New Source Performance Standards (NSPS), without any negative environmental impact (section 6). A 28-day test demonstrated the reliability and operability of the GSA system during continuous operation. The test results and detailed discussions of the test data can be obtained from TVA`s Final Report (Appendix A). The Air Toxics Report (Appendix B), prepared by Energy and Environmental Research Corporation (EERC) characterizes air toxic emissions of selected hazardous air pollutants (HAP) from the GSA process. The results of this testing show that the GSA system can substantially reduce the emission of these HAP. With its lower capital costs and maintenance costs (section 7), as compared to conventional semi-dry scrubbers, the GSA technology commands a high potential for further commercialization in the United States. For detailed information refer to The Economic Evaluation Report (Appendix C) prepared by Raytheon Engineers and Constructors.

  2. Capture of carbon dioxide from ethanol fermentation by liquid absorption for use in biological production of succinic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously it was shown that the gas produced in an ethanol fermentor using either corn or barley as feedstock could be sparged directly into an adjacent fermentor using Escherichia coli AFP184 to provide the CO2 required for succinic acid production. In the present investigation it has been demons...

  3. Nutritional value of protein hydrolysis products (oligopeptides and free amino acids) as a consequence of absorption and metabolism kinetics

    NASA Technical Reports Server (NTRS)

    Rerat, A.

    1995-01-01

    When pigs were submitted to duodenal infusion of solutions containing a large percentage of small peptides (PEP) or free amino acids with the same pattern (AAL) amino acids appear in the portal blood more rapidly and more uniformly after infusion of PEP then after infusion of AAL, with the notable exception of methionine for which the opposite was true. These differences were lowered when a carbohydrate (maltose dextrin) was present in the solution, but nevertheless remained significant for the first hour after the infusion. The long-term (8-hour) uptake of free amino acids into the liver and the peripheral tissues differed in profile according to the nature of the duodenal infusion. Peripheral uptake was appreciably less well balanced after infusion of free amino acids (deficiency of threonine and phenylalanine) than after infusion of small peptides (deficiency of methionine). Accordingly, in the rat, under conditions of discontinuous enteral nutrition the mixture of small peptides was of greater nutritive value than the mixture of free amino acids. It thus appears that the absorption kinetics which results in important variations in the temporal distribution of free amino acids in the tissues may be at the origin of transitory imbalances in tissue amino acid uptake, and as a result of a lower nutritive value.

  4. Modeling of gas absorption cross sections by use of principal-component-analysis model parameters.

    PubMed

    Bak, Jimmy

    2002-05-20

    Monitoring the amount of gaseous species in the atmosphere and exhaust gases by remote infrared spectroscopic methods calls for the use of a compilation of spectral data, which can be used to match spectra measured in a practical application. Model spectra are based on time-consuming line-by-line calculations of absorption cross sections in databases by use of temperature as input combined with path length and partial and total pressure. It is demonstrated that principal component analysis (PCA) can be used to compress the spectrum of absorption cross sections, which depend strongly on temperature, into a reduced representation of score values and loading vectors. The temperature range from 300 to 1000 K is studied. This range is divided into two subranges (300-650 K and 650-1000K), and separate PCA models are constructed for each. The relationship between the scores and the temperature values is highly nonlinear. It is shown, however, that because the score-temperature relationships are smooth and continuous, they can be modeled by polynomials of varying degrees. The accuracy of the data compression method is validated with line-by-line-calculated absorption data of carbon monoxide and water vapor. Relative deviations between the absorption cross sections reconstructed from the PCA model parameters and the line-by-line-calculated values are found to be smaller than 0.15% for cross sections exceeding 1.27 x 10(-21) cm(-1) atm(-1) (CO) and 0.20% for cross sections exceeding 4.03 x 10(-21) cm(-1) atm(-1) (H2O). The computing time is reduced by a factor of 10(4). PMID:12027171

  5. GAS AND DUST ABSORPTION IN THE DoAr 24E SYSTEM

    SciTech Connect

    Kruger, Andrew J.; Richter, Matthew J.; Seifahrt, Andreas; Carr, John S.; Najita, Joan R.; Moerchen, Margaret M.; Doppmann, Greg W.

    2012-11-20

    We present findings for DoAr 24E, a binary system that includes a classical infrared companion. We observed the DoAr 24E system with the Spitzer Infrared Spectrograph (IRS), with high-resolution, near-infrared spectroscopy of CO vibrational transitions, and with mid-infrared imaging. The source of high extinction toward infrared companions has been an item of continuing interest. Here we investigate the disk structure of DoAr 24E using the column densities, temperature, and velocity profiles of two CO absorption features seen toward DoAr 24Eb. We model the spectral energy distributions found using T-ReCS imaging and investigate the likely sources of extinction toward DoAr 24Eb. We find the lack of silicate absorption and small CO column density toward DoAr 24Eb suggest that the mid-infrared continuum is not as extinguished as the near-infrared, possibly due to the mid-infrared originating from an extended region. This, along with the velocity profile of the CO absorption, suggests that the source of high extinction is likely due to a disk or disk wind associated with DoAr 24Eb.

  6. The effects of solvent polarity and pKa on the absorption of solvents into poly(glutaric acid-glycerol) films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, solvent absorption into the matrices of poly(glutaric acid-glycerol) films has been evaluated. It was determined that the combined effects of polarity and the size and shape of the solvent molecule, rather than pKa, have the most significant influence on absorption into the films. P...

  7. [Fatty acid composition of phospholipids of erythrocytes of lamprey, frog, rat, and absorption spectra of their lipid extracts].

    PubMed

    Zabelinskii, S A; Chebotareva, M A; Shukolyukova, E P; Krivchenko, A I

    2014-01-01

    The work deals with study of content and fatty acid composition of phospholipids as well as of absorption spectra of lipid extracts of blood erythrocytes poikilothermal and homoiothermal animals of different evolutionary levels. Objects of study were poikilothermal lamprey (Lampetra fluviatilis) consuming oxygen from water and the common frog (Rana temporatia) consuming it both from water and from air. Homoiothermal animals were white rats (Rattus rattus) inhabiting in the air medium. The animals were studied at the winter-spring periods. There was established the twofold predominance of the phospholipid content in the lamprey plasma as compared with erythrocytes. In frog and rat the reverse ratio was observed. Based on study of the fatty acid composition of erythrocyte phospholipids it is suggested the higher density of membranes of lamprey as compared with frog membranes. As to fatty acides of the rat blood erythrocytic fraction, they turned out to be less diverse, with almost twofold predominance of saturated over unsaturated acids and not containing the long-chained (C22) Ω3 acids. All this leads to the low unsaturation index and, accordingly, to a dense packing of fatty acids in membrane structures of rat erythrocytes. Mechanism of reversible binding of O2 molecules by hemoglobin in erythrocytes is discussed. The mechanism of interaction of O2 molecules with water molecules is likely to interfere with exchange interaction electrons of hemoglobin iron atoms and oxygen molecule. This confirms our obtained absorption spectra showing that in the lipid extract practically not containing water the heme isolated from erythrocytes is converted to hemin. PMID:25775862

  8. BENCH-SCALE EVALUATION OF CALCIUM SORBENTS FOR ACID GAS EMISSION CONTROL

    EPA Science Inventory

    Calcium sorbents for acid gas emission control were evaluated for effectiveness in removing SO2/HCl and SO2/NO from simulated incinerator and boiler flue gases. All tests were conducted in a bench-scale reactor (fixed-bed) simulating fabric filter conditions in an acid gas remova...

  9. A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor

    NASA Astrophysics Data System (ADS)

    Min, K.-E.; Washenfelder, R. A.; Dubé, W. P.; Langford, A. O.; Edwards, P. M.; Zarzana, K. J.; Stutz, J.; Lu, K.; Rohrer, F.; Zhang, Y.; Brown, S. S.

    2016-02-01

    We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361-389 and 438-468 nm, using two light-emitting diodes (LEDs) and a single grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high-power LEDs with electronic on/off modulation, high-reflectivity cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350, and 80 parts per trillion (pptv) in 5 s. The accuracy is 5.8, 9.0, and 5.0 %, limited mainly by the available absorption cross sections.

  10. A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor

    NASA Astrophysics Data System (ADS)

    Min, K.-E.; Washenfelder, R. A.; Dubé, W. P.; Langford, A. O.; Edwards, P. M.; Zarzana, K. J.; Stutz, J.; Lu, K.; Rohrer, F.; Zhang, Y.; Brown, S. S.

    2015-10-01

    We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361-389 and 438-468 nm, using two light emitting diodes (LEDs) and a grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high power LEDs with electronic on/off modulation, state-of-the-art cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350 and 80 pptv in 5 s. The accuracy is 5.8, 9.0 and 5.0 % limited mainly by the available absorption cross sections.

  11. Multi-gas interaction modeling on decorated semiconductor interfaces: A novel Fermi distribution-based response isotherm and the inverse hard/soft acid/base concept

    NASA Astrophysics Data System (ADS)

    Laminack, William; Gole, James

    2015-12-01

    A unique MEMS/NEMS approach is presented for the modeling of a detection platform for mixed gas interactions. Mixed gas analytes interact with nanostructured decorating metal oxide island sites supported on a microporous silicon substrate. The Inverse Hard/Soft acid/base (IHSAB) concept is used to assess a diversity of conductometric responses for mixed gas interactions as a function of these nanostructured metal oxides. The analyte conductometric responses are well represented using a combination diffusion/absorption-based model for multi-gas interactions where a newly developed response absorption isotherm, based on the Fermi distribution function is applied. A further coupling of this model with the IHSAB concept describes the considerations in modeling of multi-gas mixed analyte-interface, and analyte-analyte interactions. Taking into account the molecular electronic interaction of both the analytes with each other and an extrinsic semiconductor interface we demonstrate how the presence of one gas can enhance or diminish the reversible interaction of a second gas with the extrinsic semiconductor interface. These concepts demonstrate important considerations in the array-based formats for multi-gas sensing and its applications.

  12. Analysis of mycolic acid cleavage products and cellular fatty acids of Mycobacterium species by capillary gas chromatography.

    PubMed

    Lambert, M A; Moss, C W; Silcox, V A; Good, R C

    1986-04-01

    After growth and experimental conditions were established, the mycolic acid cleavage products, constituent fatty acids, and alcohols of representative strains of Mycobacterium tuberculosis, M. smegmatis, M. fortuitum complex, M. kansasii, M. gordonae, and M. avium complex were determined by capillary gas chromatography. Reproducible cleavage of mycolic acid methyl esters to tetracosanoic (24:0) or hexacosanoic (26:0) acid methyl esters was achieved by heating the sample in a high-temperature muffle furnace. The major constituent fatty acids in all species were hexadecanoic (16:0) and octadecenoic (18:1 omega 9-c, oleic) acids. With the exception of M. gordonae, 10-methyloctadecanoic acid was found in all species; moreover, M. gordonae was the only species tested which contained 2-methyltetradecanoic acid. M. kansasii was characterized by the presence of 2,4-dimethyltetradecanoic acid, M. avium complex by 2-eicosanol, and M. tuberculosis by 26:0 mycolic acid cleavage product. The mycolic acid cleavage product in the other five species tested was 24:0. Although a limited number of strains and species were tested, preliminary results indicate that this gas chromatographic method can be used to characterize mycobacterial cultures by their mycolic acid cleavage products and constituent fatty acid and alcohol content. PMID:3084554

  13. Speciation of sulfur in humic and fulvic acids using X-ray absorption near-edge structure (XANES) spectroscopy

    NASA Astrophysics Data System (ADS)

    Morra, Matthew J.; Fendorf, Scott E.; Brown, Paul D.

    1997-02-01

    Sulfur species in soils and sediments have previously been determined indirectly using destructive techniques. A direct and more accurate method for S speciation would improve our understanding of S biogeochemistry. X-ray absorption near edge structure (XANES) spectroscopy was performed on purified humic and fulvic acids from terrestrial and aquatic environments. This methodology allows direct determination of S species using the relationship that exists with the energy required for core electron transitions and in some cases, correlation with additional spectral features. Soil, peat, and aquatic humic acids were dominated by sulfonates with an oxidation state of +5, but also contained ester-bonded sulfates with an oxidation state of +6. Leonardite humic acid contained ester-bonded sulfate and an unidentified S compound with an oxidation state of +4.0. In contrast, high-valent S in soil, peat, and aquatic fulvic acids was exclusively in the form of sulfonic acids. Reduced S species were also present in both humic and fulvic acids. XANES is a valuable method for the speciation of S in humic materials and of potential use in S speciation of unfractionated soils.

  14. Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy

    SciTech Connect

    Yi, Hongming; Maamary, Rabih; Fertein, Eric; Chen, Weidong; Gao, Xiaoming; Sigrist, Markus W.

    2015-03-09

    Spectroscopic detection of short-lived gaseous nitrous acid (HONO) at 1254.85 cm{sup −1} was realized by off-beam coupled quartz-enhanced photoacoustic spectroscopy (QEPAS) in conjunction with an external cavity quantum cascade lasers (EC-QCL). High sensitivity monitoring of HONO was performed within a very small gas-sample volume (of ∼40 mm{sup 3}) allowing a significant reduction (of about 4 orders of magnitude) of air sampling residence time which is highly desired for accurate quantification of chemically reactive short-lived species. Calibration of the developed QEPAS-based HONO sensor was carried out by means of lab-generated HONO samples whose concentrations were determined by direct absorption spectroscopy involving a ∼109.5 m multipass cell and a distributed feedback QCL. A minimum detection limit (MDL) of 66 ppbv (1 σ) HONO was achieved at 70 mbar using a laser output power of 50 mW and 1 s integration time, which corresponded to a normalized noise equivalent absorption coefficient of 3.6 × 10{sup −8 }cm{sup −1} W/Hz{sup 1/2}. This MDL was down to 7 ppbv at the optimal integration time of 150 s. The corresponding 1σ minimum detected absorption coefficient is ∼1.1 × 10{sup −7 }cm{sup −1} (MDL ∼ 3 ppbv) in 1 s and ∼1.1 × 10{sup −8 }cm{sup −1} (MDL ∼ 330 pptv) in 150 s, respectively, with 1 W laser power.

  15. Effects of dietary sulfur concentration and forage-to-concentrate ratio on ruminal fermentation, sulfur metabolism, and short-chain fatty acid absorption in beef heifers.

    PubMed

    Amat, S; McKinnon, J J; Penner, G B; Hendrick, S

    2014-02-01

    This study evaluated the effects of dietary S concentration and forage-to-concentrate ratio (F:C) on ruminal fermentation, S metabolism, and short-chain fatty acid (SCFA) absorption in beef heifers. Sixteen ruminally cannulated heifers (initial BW 628 ± 48 kg) were used in a randomized complete block design with a 2 × 2 factorial treatment arrangement. The main factors included F:C (4% forage vs. 51% forage, DM basis) and the S concentration, which was modified using differing sources of wheat dried distillers grains with solubles (DDGS) to achieve low- and high-S diets (LS = 0.30% vs. HS = 0.67% S on a DM basis). Elemental S was also added to increase the S content for the HS diets. Serum sulfate concentration from blood, sulfide (S(2-)), and SCFA concentrations from ruminal fluid, hydrogen sulfide (H2S) concentration from the ruminal gas cap, and urinary sulfate concentration were determined. Continuous rumen pH and SCFA (acetate, butyrate, and propionate) absorption were measured. There were no interactions between S concentration and F:C. The F:C did not affect DMI (P = 0.26) or ruminal S metabolite concentrations (P ≥ 0.19), but ruminal pH was lower (P < 0.01) and SCFA absorption was greater (P < 0.01) for low F:C diets. Heifers fed HS diets had less DMI (P < 0.01) but greater ruminal pH (P < 0.01), greater concentrations of ruminal H2S (P < 0.01) and serum sulfate (P < 0.01), and greater urinary sulfate concentration (P < 0.01) and output (P < 0.01) relative to heifers fed LS diets. Ruminal H2S was positively correlated with serum sulfate (r = 0.89; P < 0.01). Ruminal acetate concentration was not affected (P = 0.26) by dietary S concentration. Heifers fed the HS diet had lower (P = 0.01) ruminal propionate concentration and tended to have lower (P = 0.06) butyrate concentration than heifers fed the LS diet. Ruminal acetate was greater (P = 0.01) and butyrate was less (P < 0.01) with the high F:C diet than the low F:C diet. Both HS (P = 0.06) and low F

  16. Moisturizing lotions can increase transdermal absorption of the herbicide 2,4-dichlorophenoxacetic acid across hairless mouse skin.

    PubMed

    Brand, R M; Charron, A R; Sandler, V L; Jendrzejewski, J L

    2007-01-01

    Moisturizing lotions can be an effective treatment for occupationally induced dry skin. These compounds are designed to be hygroscopic and retain water to keep the stratum corneum hydrated, while at the same time enhancing the horny layer to prevent increases in transepidermal water loss (TEWL). Skin hydration levels, however, are known to influence barrier properties. The purpose of this work was to compare skin moisture levels induced by four commercially available moisturizing lotions with their capacity as transdermal penetration enhancers using the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) as a model chemical. Further, the effect of moisturizing the skin after washing with sodium lauryl sulfate (SLS) on transdermal absorption was determined. Skin moisture levels were also measured noninvasively and were correlated to penetration enhancement. Hairless mouse skin was pretreated with commercially available moisturizing lotions either with or without SLS washing and in vitro permeability studies were performed with the herbicide 2,4-D. The data demonstrate that pretreatment with three of the four lotions tested increased the transdermal absorption of 2,4-D as evidenced by cumulative penetration or faster lag times (p < 0.05). Skin moisture levels correlated with the penetration enhancement capabilities of the lotion. Washing the skin with 5% SDS increased the transdermal absorption of 2,4-D (p < 0.05) and application of moisturizing lotions increased the absorption further. In summary moisturizing lotions may influence transdermal penetration of the skin, with the more effective moisturizers having a greater effect on 2,4-D absorption.

  17. Ergot alkaloids reduce rumen epithelial blood flow and volatile fatty acid absorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ergot alkaloids have been shown to induce vasoconstriction of both peripheral and ruminal vessels. Constriction of ruminal vessels could lead to a reduction in epithelial blood flow thereby reducing nutrient absorption. The objectives of this experiment were to determine if steers receiving endophyt...

  18. Polymer film-based optical access to enclosed gas: demonstration of H2O absorption tomography

    NASA Astrophysics Data System (ADS)

    Wang, Ze; Anderson, Mark H.; Sanders, Scott T.

    2016-09-01

    We demonstrate the use of a film to enable optical access to enclosed gases. We use absorption tomography to image H2O in a 101.6-mm-diameter duct with 2-mm spatial resolution. Considering the central 94 mm, the standard deviation of the image is 1.6 %, and the average mole fraction error is -0.008 %. A polybenzimidazole film is identified to be a candidate for extending the technique to enable NH3 imaging in a diesel aftertreatment system.

  19. Unraveling the mysteries of the Leo Ring: An absorption line study of an unusual gas cloud

    SciTech Connect

    Rosenberg, J. L.; Haislmaier, Karl; Giroux, M. L.; Keeney, B. A.; Schneider, S. E.

    2014-07-20

    Since the discovery of the large (2 × 10{sup 9} M{sub ☉}) intergalactic cloud known as the Leo Ring in the 1980s, the origin of this object has been the center of a lively debate. Determining the origin of this object is still important as we develop a deeper understanding of the accretion and feedback processes that shape galaxy evolution. We present Hubble Space Telescope/Cosmic Origins Spectrograph observations of three sightlines near the ring, two of which penetrate the high column density neutral hydrogen gas visible in 21 cm observations of the object. These observations provide the first direct measurement of the metallicity of the gas in the ring, an important clue to its origin. Our best estimate of the metallicity of the ring is ∼10% Z{sub ☉}, higher than expected for primordial gas but lower than expected from an interaction. We discuss possible modifications to the interaction and primordial gas scenarios that would be consistent with this metallicity measurement.

  20. First principles calculation of oxygen K edge absorption spectrum of acetic acid: Relationship between the spectrum and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Matsui, Yoshiki; Mizoguchi, Teruyasu

    2016-04-01

    First principles calculation of the oxygen K-edge absorption near-edge structure of liquid acetic acid was performed to investigate the relationship between the spectrum and the molecular dynamics in a liquid. The single and double bonded oxygens gave strong peaks at different energies. A liquid model constructed using a molecular dynamics simulation reproduced the experimental spectrum. We revealed that the effect of the dynamic behavior of molecules in a liquid clearly appears in the particular peak from a single-bond oxygen. The relationship between the bonding nature and the dynamic information of a molecule in a spectrum was determined and presented.

  1. Absorption of m-xylene vapours through the respiratory tract and excretion of m-methylhippuric acid in urine.

    PubMed Central

    Seńczuk, W; Orłowski, J

    1978-01-01

    Absorption of m-xylene and excretion of m-methylhippuric acid were investigated under controlled conditions in ten volunteers aged 17-33 years. They were exposed to m-xylene vapours at concentrations of 100, 300, and 600 mg/m3. It was found that m-xylene vapour retained in the lungs tended to decrease at the end of the exposure. An exposure test was devised, based upon the results obtained during our investigations. The amount of xylene absorbed in the course of eight hours' work can be calculated with an accuracy of about +/- 8%. Images PMID:629889

  2. Removal of Mars atmospheric gas absorption from Phobos-2/ISM spectra

    NASA Astrophysics Data System (ADS)

    Castronuovo, M. M.; Ulivieri, C.

    Infrared imaging spectrometer (ISM) is an imaging spectrometer in the range of the near infrared that flew onboard of Soviet probe Phobos 2 in 1989. Its first objective was to obtain information about the mineralogic composition of the soil of Mars and its satellite Phobos, and about the spatial and temporal variability of the Martian atmosphere. In the spectral range of the instrument 0.76-3.16 microns, the radiation emerging from Mars' atmosphere is almost entirely due to the solar radiation reflected by the soil. Therefore, independent knowledge of the spectral transmittance of the atmosphere allows us to eliminate the atmospheric effect from the ISM data and so to obtain the spectral signature of the planet soil. In the present work the Martian atmospheric transmittance has been computed using FASCODE and the spectral lines atlas HITRAN of AFGL. The atmospheric profile has been defined on the basis of the work of Moroz et al. Then, the convolution of the computed transmittance with the response functions of ISM has been carried out to obtain the atmospheric absorption from the measurements it is necessary to renormalize the transmittance computed with FASCODE so that the depth of the absorption bands is the same as that of the bands measured by ISM. Finally, dividing the measured spectra by the computed ones we obtain the spectra signature of Martian soil from which it is possible to deduce the mineralogical composition of the observed zones.

  3. Fast spatially resolved exhaust gas recirculation (EGR) distribution measurements in an internal combustion engine using absorption spectroscopy.

    PubMed

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2015-09-01

    Exhaust gas recirculation (EGR) in internal combustion engines is an effective method of reducing NOx emissions while improving efficiency. However, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder non-uniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. A sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. The study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz. PMID:26253286

  4. Observations of interstellar helium with a gas absorption cell - Implications for the structure of the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Freeman, J.; Paresce, F.; Bowyer, S.; Lampton, M.

    1980-01-01

    A photometer sensitive at the 584 A line of He 1, incorporating a helium gas resonance absorption cell, was flown on the Apollo-Soyuz Test Project in July 1975. The instrument observed much of the night-time sky, and returned 42 min of usable data. The data were analyzed by fitting to a model of resonant scattering of solar 584 A flux from nearby interstellar helium. Good model fits were obtained for an interstellar gas bulk velocity vector pointing toward alpha = 72 deg, delta = +15 deg, with speed 20 km/s, with interstellar medium temperatures from 5000 to 20,000 K and with neutral interstellar helium density (8.9 plus or minus 10 to the -3rd/cu cm). In the context of theoretical studies of the interstellar medium by McKee and Ostriker (1977), the results may indicate that the sun lies in the warm, partially ionized periphery of a cold interstellar cloud, surrounded by a high-temperature gas heated by old supernova remnants.

  5. Fast spatially resolved exhaust gas recirculation (EGR) distribution measurements in an internal combustion engine using absorption spectroscopy.

    PubMed

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2015-09-01

    Exhaust gas recirculation (EGR) in internal combustion engines is an effective method of reducing NOx emissions while improving efficiency. However, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder non-uniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. A sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. The study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.

  6. Fast Spatially Resolved Exhaust Gas Recirculation (EGR) Distribution Measurements in an Internal Combustion Engine Using Absorption Spectroscopy

    DOE PAGES

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E.; Perfetto, Anthony; Geckler, Sam; Partridge, William P.

    2015-09-01

    One effective method of reducing NOx emissions while improving efficiency is exhaust gas recirculation (EGR) in internal combustion engines. But, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder nonuniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. Furthermore, a sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in themore » intake manifold. Our study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.« less

  7. Fast Spatially Resolved Exhaust Gas Recirculation (EGR) Distribution Measurements in an Internal Combustion Engine Using Absorption Spectroscopy

    SciTech Connect

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E.; Perfetto, Anthony; Geckler, Sam; Partridge, William P.

    2015-09-01

    One effective method of reducing NOx emissions while improving efficiency is exhaust gas recirculation (EGR) in internal combustion engines. But, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder nonuniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. Furthermore, a sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. Our study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.

  8. NOx removal from simulated flue gas by chemical absorption-biological reduction integrated approach in a biofilter

    SciTech Connect

    Shi-Han Zhang; Ling-Lin Cai; Xu-Hong Mi; Jin-Lin Jiang; Wei Li

    2008-05-15

    A chemical absorption-biological reduction integrated approach, which combines the advantages of both the chemical and biological technologies, is employed to achieve the removal of nitrogen monoxide (NO) from the simulated flue gas. The biological reduction of NO to nitrogen gas (N{sub 2}) and regeneration of the absorbent Fe(II)EDTA (EDTA:ethylenediaminetetraacetate) take place under thermophilic conditions (50 {+-} 0.5{sup o}C). The performance of a laboratory-scale biofilter was investigated for treating NOx gas in this study. Shock loading studies were performed to ascertain the response of the biofilter to fluctuations of inlet loading rates (0.48-28.68 g NO m{sup 3} h{sup -1}). A maximum elimination capacity (18.78 g NO m{sup 3} h{sup -1}) was achieved at a loading rate of 28.68 g NO m{sup 3} h{sup -1} and maintained 5 h operation at the steady state. Additionally, the effect of certain gaseous compounds (e.g., O{sub 2} and SO{sub 2}) on the NO removal was also investigated. A mathematical model was developed to describe the system performance. The model has been able to predict experimental results for different inlet NO concentrations. In summary, both theoretical prediction and experimental investigation confirm that biofilter can achieve high removal rate for NO in high inlet concentrations under both steady and transient states. 21 refs., 9 figs.

  9. Acid gas treating by aqueous alkanolamines. Annual report, January-December 1993

    SciTech Connect

    Sandall, O.C.; Rinker, E.B.; Ashour, S.

    1993-12-01

    The objective of the work is to investigate the simultaneous absorption or desorption of CO2 and H2S into and from a mixed aqueous amine solvent consisting of methyldiethanolamine (MDEA) and diethanolamine (DEA). In work completed thus far, density, viscosity, gas diffusivity, gas solubility, surface tension, and amine solution vapor pressure have been measured for aqueous MDEA, DEA, and MDEA/DEA mixtures over the temperature range 20 to 100 deg. C and for concentrations up to 50 weight %. A mathematical model, based on the penetration theory, for the simultaneous absorption (desorption) of CO2 and H2S into (from) aqueous solutions of MDEA and DEA has been developed.

  10. Gas chromatography of volatile fatty acids. Method involving separation from biological material by vacuum distillation.

    PubMed

    Tyler, J E; Dibdin, G H

    1975-02-19

    A method is described for the quantitation of C2-C5 volatile fatty acids present in biological tissues. It involved recovery of the acids from their biological matrix by vacuum micro-distillation at room temperature, followed by gas phase separation of aqueous solutions on orthophosphoric acid-modified Phasepak Q columns. The subsequent gas chromatographic procedure resolved iso from normal isomers and showed a linear response for each volatile acid over the range 10-400 ng. There was no evidence of ghosting, isomer peak broadening, or peak tailing. Relative molar response values were shown to be linear with carbon number for all the volatile fatty acids studied.

  11. Synthesis and selective IR absorption properties of iminodiacetic-acid intercalated MgAl-layered double hydroxide

    SciTech Connect

    Wang Lijing; Xu Xiangyu; Evans, David G.; Duan Xue; Li Dianqing

    2010-05-15

    An MgAl-NO{sub 3}-layered double hydroxide (LDH) precursor has been prepared by a method involving separate nucleation and aging steps (SNAS). Reaction with iminodiacetic acid (IDA) under weakly acidic conditions led to the replacement of the interlayer nitrate anions by iminodiacetic acid anions. The product was characterized by XRD, FT-IR, TG-DTA, ICP, elemental analysis and SEM. The results show that the original interlayer nitrate anions of LDHs precursor were replaced by iminodiacetic acid anions and that the resulting intercalation product MgAl-IDA-LDH has an ordered crystalline structure. MgAl-IDA-LDH was mixed with low density polyethylene (LDPE) using a masterbatch method. LDPE films filled with MgAl-IDA-LDH showed a higher mid to far infrared absorption than films filled with MgAl-CO{sub 3}-LDH in the 7-25 {mu}m range, particularly in the key 9-11 {mu}m range required for application in agricultural plastic films. - Graphical abstract: Intercalation of iminodiacetic acid (IDA) anions in a MgAl-NO{sub 3}-layered double hydroxide host leads to an enhancement of its infrared absorbing ability for application in agricultural plastic films.

  12. Interaction of some fluorinated nucleic acid components with praseodymium: an absorption spectral approach.

    PubMed

    Misra, S N

    1990-10-01

    Absorption difference and comparative absorption spectrophotometric studies on praseodymium(III) and fluorouracil, fluorocytosine, fluoroadenine, fluorothymine, fluorouridine, fluorocytidine, fluoroadenosine and fluorothymidine systems at pH approximately 5.5 and in different stoichiometries in 80% DMF medium have been carried out. Magnitudes of spectral parameters, viz. Coulombic (Fk), spin-orbit (zeta 4f), nephelauxetic (beta), bonding (b), intensity (T lambda Judd-Ofelt), and oscillator strength (P) and their variation have provided information on the binding mode of these biomolecules in terms of outer and inner sphere complexation, degree of covalency and extent of 4f orbital involvement. Preliminary ultrasonic studies have indicated that these biomolecules behave as structure breakers, hence weak ligands in aqueous medium, while strengthening water structure in semi-nonaqueous medium. The analysis of the isolated solid complexes has suggested octa- and nona-coordination for praseodymium(III) in fluorinated nucleic bases and fluorinated nucleoside complexes.

  13. X-ray absorption studies of the purple acid phosphatase from red kidney beans (native enzyme, metal exchanged form)

    NASA Astrophysics Data System (ADS)

    Ahlers, F.; Zippel, F.; Klabunde, T.; Krebs, B.; Löcke, R.; Witzel, H.; Nolting, H.-F.

    1995-02-01

    Purple acid phosphatase from red kidney beans (KBP) catalyzes the hydrolysis of activated phosphoric acid monoesters and contains a heterodinuclear Fe(III)Zn(II) core in its active site. Iron K-edge X-ray absorption data have been obtained for the native enzyme and for a metal exchanged derivative, where Zn(II) was substituted by Fe(III). The environment of the native enzyme consists of 2.5 O/N at 1.91 Å, 3 O/N at 2.09 Å, and 1 Zn at 4.05 Å. For the metal exchanged form we obtained 2.5 O/N at 1.94 Å, 2.5 O/N at 2.09 Å, and 1 Fe at 3.79 Å.

  14. [hnprovement on the growth and nutrient absorption of Iris hexagona by exogenous salicylic acid under Cd stress].

    PubMed

    Han, Ying; Den, Peng; Chen, Gang

    2015-10-01

    The effects of exogenous salicylic acid (SA) pretreatment on the biomass, water content, photosynthesis, root vigor, Cd accumulation, nutrient absorption and antioxidant enzyme activity of Iris hexagona under Cd stress were studied by using Hoagland solution culture. The results showed that SA pretreatment promoted dry mass, root vigor and net photosynthetic rate of Cd-stressed I. hexagona seedlings. Compared with only Cd treatment, the Cd accumulation of Cd-treated plants with SA pretreatment remained unaffected, however,. SA pretreatment increased contents of N, P, S, and decreased K content. Activities of antioxidant enzymes of Cd-treated seedling root were increased under SA pretreatment. In conclusion, the improvement on growth of I. hexagona by SA pretreatment under Cd stress was attributed to improving Cd tolerance rather than reducing Cd uptake. The regulation of mineral element accumulation and the increase of antioxidant enzyme activities could be explained for Cd resistance improvement induced by salicylic acid.

  15. Influence of 2,3-dimercaptosuccinic acid on gastrointestinal lead absorption and whole-body lead retention

    SciTech Connect

    Kapoor, S.C.; Wielopolski, L.; Graziano, J.H.; LoIacono, N.J. )

    1989-03-01

    2,3-Dimercaptosuccinic acid (DMSA) is a new orally active heavy metal chelator for the treatment of childhood Pb intoxication on an outpatient basis. The influence of DMSA, as well as other chelating agents, on gastrointestinal 203Pb absorption and whole-body {sup 203}Pb retention was examined. Groups of Sprague-Dawley rats (230-260 g) were gavaged with a solution containing approximately 25 mg/kg Pb (as Pb(NO{sub 3})2) plus 15 microCi {sup 203}Pb. Some groups were then immediately given 0.11 mmol/kg of either DMSA, CaNa2EDTA, D-penicillamine, or BAL by oral gavage, while other groups received the same drugs by ip injection. Control groups received solutions of the drug vehicles po or ip. Whole-body Pb retention and gastrointestinal Pb absorption (whole body retention + urinary Pb excretion) were significantly decreased in rats that received DMSA po. This finding implies that the use of DMSA to treat childhood lead intoxication on an outpatient basis is not associated with a risk for increased Pb absorption.

  16. Computer Program for Calculation of a Gas Temperature Profile by Infrared Emission: Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1977-01-01

    A computer program to calculate the temperature profile of a flame or hot gas was presented in detail. Emphasis was on profiles found in jet engine or rocket engine exhaust streams containing H2O or CO2 radiating gases. The temperature profile was assumed axisymmetric with an assumed functional form controlled by two variable parameters. The parameters were calculated using measurements of gas radiation at two wavelengths in the infrared. The program also gave some information on the pressure profile. A method of selection of wavelengths was given that is likely to lead to an accurate determination of the parameters. The program is written in FORTRAN IV language and runs in less than 60 seconds on a Univac 1100 computer.

  17. Development and Testing of a Differential Absorption LIDAR system for Greenhouse Gas Measurements

    NASA Astrophysics Data System (ADS)

    Maxwell, S. E.; Douglass, K.; Plusquellic, D.; Whetstone, J. R.

    2013-12-01

    Our objective is to develop accurate and reliable methods for quantifying distributed carbon sources and sinks to support both mitigation efforts and climate change research. We will describe progress toward a field-deployable, eye-safe differential absorption LIDAR system. The current version of our system utilizes a high repetition rate (>200 kHz), 200 ns pulsed fiber amplifier driven by tunable DFB lasers around 1602 nm. Collection is performed using a small (3' diameter) telescope and an avalanche photodiode. We demonstrate a rapid hard target measurement of ambient levels of CO2 in our 100m test facility using low powers from the fiber laser and a highly-retro-reflecting target. We also discuss progress toward a range resolved measurement in the test facility, planned upgrades to the facility, and the development of a low-backscatter beam dump for range-limited applications.

  18. Bound states in optical absorption of semiconductor quantum wells containing a two-dimensional electron Gas

    PubMed

    Huard; Cox; Saminadayar; Arnoult; Tatarenko

    2000-01-01

    The dependence of the optical absorption spectrum of a semiconductor quantum well on two-dimensional electron concentration n(e) is studied using CdTe samples. The trion peak (X-) seen at low n(e) evolves smoothly into the Fermi edge singularity at high n(e). The exciton peak (X) moves off to high energy, weakens, and disappears. The X,X- splitting is linear in n(e) and closely equal to the Fermi energy plus the trion binding energy. For Cd0.998Mn0.002Te quantum wells in a magnetic field, the X,X- splitting reflects unequal Fermi energies for M = +/-1/2 electrons. The data are explained by Hawrylak's theory of the many-body optical response including spin effects.

  19. Influence of absorption on nonlinear vibrations of gas in a closed pipe

    SciTech Connect

    Galiullin, R.G.; Galiullina, E.R.; Permyakov, E.I.

    1995-12-01

    We consider dissipative mechanisms involved in resonance vibrations of gas in a closed pipe. Using analysis of a resonance curve as an example, we show the existence of four regimes differing in the mechanism of dissipation. We determine their boundaries, as well as lay a foundation for the procedures used to calculate the amplitude of vibrations within these intervals. Comparison of calculating formulas with experiments conducted by various authors is made.

  20. Ex Vivo and In Situ Evaluation of 'Dispelling-Wind' Chinese Medicine Herb-Drugs on Intestinal Absorption of Chlorogenic Acid.

    PubMed

    Zhai, Lixiang; Shi, Jun; Xu, Weitong; Heinrich, Michael; Wang, Jianying; Deng, Wenji

    2015-12-01

    This study aims to investigate the additive or synergistic effects and mechanism of intestinal absorption of extracts from two commonly used 'dispelling-wind' TCM botanical drugs [roots of Angelica dahurica (Hoffm.) Benth. & Hook. f. ex Franch. & Sav. (RAD) and Saposhnikovia divaricata (Turcz.) Schischk. (RSD)] using chlorogenic acid as a marker substance. Ex vivo everted intestinal sac and in situ single pass perfusion methods using rats were employed to investigate the effects of two TCM botanical drugs extracts on the intestinal absorption of chlorogenic acid. Both the extracts of RAD and RSD showed synergistic properties on the intestinal absorption of chlorogenic acid. The verapamil (a P-gp inhibitor) and intestinal dysbacteriosis model induced by norfloxacin increased the P(app) and K(a) of intestinal absorption of chlorogenic acid. These synergistic effects on intestinal absorption in a rat model can be correlated with the inhibition of P-gp and regulation of gut microbiota. This experimental approach has helped to better understand changes in the absorption of chlorogenic acid under different conditions.

  1. Hot gas in the interstellar medium: A reanalysis of O VI absorption data

    NASA Technical Reports Server (NTRS)

    Shelton, R. L.; Cox, D. P.

    1994-01-01

    The Copernicus O(+5) column densities toward 72 stars provide a rare and valuable tracer of 10(exp 5.5) K gas in the interstellar medium. The original analysis of the data by Jenkins provided important clues about the distribution of interstellar O(+5) ions, but our understanding of the local interstellar medium has since grown substantially. We revisit that work, including the possibility that local hot gas may contribute a significant O(+5) column density to most lines of sight. Our reanalysis also includes slight improvements in the statistics and was found to be reliable when tested on simulated data sets. In the end, we come to conclusions about the distribution of interstellar O(+5) ions that differ considerably from those of the original analysis. With our reanalysis, some theoretical models now show promise. For example, our Local Bubble column density compares favorably with the estimated quantity of O(+5) within the remnant of an ancient local explosion. Similarly, our mean O(+5) column density per feature in more distant regions is like that found in models of hot interstellar bubbles from either stellar winds or ancient supernova explosions in a warm diffuse interstellar environment, suggesting that the hot gas in interstellar space may exist primarily within discrete regions of modest volume occupation rather than in a continuous and pervasive phase.

  2. Selection of an acid-gas removal process for an LNG plant

    SciTech Connect

    Stone, J.B.; Jones, G.N.; Denton, R.D.

    1996-12-31

    Acid gas contaminants, such as, CO{sub 2}, H{sub 2}S and mercaptans, must be removed to a very low level from a feed natural gas before it is liquefied. CO{sub 2} is typically removed to a level of about 100 ppm to prevent freezing during LNG processing. Sulfur compounds are removed to levels required by the eventual consumer of the gas. Acid-gas removal processes can be broadly classified as: solvent-based, adsorption, cryogenic or physical separation. The advantages and disadvantages of these processes will be discussed along with design and operating considerations. This paper will also discuss the important considerations affecting the choice of the best acid-gas removal process for LNG plants. Some of these considerations are: the remoteness of the LNG plant from the resource; the cost of the feed gas and the economics of minimizing capital expenditures; the ultimate disposition of the acid gas; potential for energy integration; and the composition, including LPG and conditions of the feed gas. The example of the selection of the acid-gas removal process for an LNG plant.

  3. Development of a high-efficiency, gas-fired, absorption heat pump for residential and small-commercial applications

    NASA Astrophysics Data System (ADS)

    Phillips, B. A.

    1990-09-01

    The purpose of the total project is to develop a gas fired absorption heat pump for residential and small commercial applications that will produce at least 1.6 Btu of heating and 0.7 Btu of cooling per Btu of heat content in the gas being burned. The primary technology advances that can be used to attain the new goals are higher efficiency cycles, increased flue efficiency, and better fluids. Flue efficiency technology is well developed, and fan assisted combustion systems with condensing heat exchangers can limit flue and insulation losses to the 10 pct range. If this 10 pct loss assumption is made, the resulting target cycle COPs are 1.78 in heating mode and 0.78 in cooling mode at the ARI rating conditions. The objective of Phase 1 was to analyze working fluids and absorption-cycle concepts that are capable of performing at the target COPs and are potentially competitive with existing space-conditioning products in cost, operating life, and reliability. Six advanced cycles were evaluated with ammonia/water as the fluid pair. Then additional analysis was performed with other fluid pairs to determine whether cycle ranking would change depending on which fluid was used. It was concluded that the preferred cycle/fluid was the generator-absorber heat exchange (GAX) cycle using ammonia/water as the fluid pair. A cost estimate made by an independent manufacturing engineering firm for a residential heat pump based on the cycle/fluid combination determined that the GAX heat pump could be cost competitive with existing products.

  4. In vitro percutaneous absorption of boron as boric acid, borax, and disodium octaborate tetrahydrate in human skin: a summary.

    PubMed

    Wester, R C; Hartway, T; Maibach, H I; Schell, M J; Northington, D J; Culver, B D; Strong, P L

    1998-01-01

    Literature from the first half of this century reports concern for toxicity from topical use of boric acid, but assessment of percutaneous absorption has been impaired by lack of analytical sensitivity. Analytical methods in this study included inductively coupled plasma-mass spectrometry which now allows quantitation of percutaneous absorption of 10B in 10B-enriched boric acid, borax and disodium octaborate tetrahydrate (DOT) in biological matrices. In vitro human skin percent doses of boric acid absorbed were 1.2 for a 0.05% solution, 0.28 for a 0.5% solution, and 0.70 for a 5.0% solution. These absorption amounts translated into flux values of, respectively, 0.25, 0.58, and 14.58 microg/cm2/h, and permeability constants (Kp) of 5.0 x 10(-4), 1.2 x 10(-4), and 2.9 x 10(-4) cm/h for the 0.05%, 0.5%, and 5.0% solutions. The above in vitro doses were at infinite, 1000 microL/cm2 volume. At 2 microL/cm2 (the in vivo dosing volume), flux decreased some 200-fold to 0.07 microg/cm2/h and Kp of 1.4 x 10(-6) cm/h, while percent dose absorbed was 1.75%. Borax dosed at 5.0%/1000 microL/cm2 had 0.41 percent dose absorbed, flux at 8.5 microg/cm2/h, and Kp was 1.7 x 10(-4) cm/h. Disodium octaborate tetrahydrate (DOT) dosed at 10%/1000 microL/cm2 was 0.19 percent dose absorbed, flux at 7.9 microg/cm2/h, and Kp was 0.8 x 10(-4) cm/h. These in vitro results from infinite doses (1000 microL/cm2) were a 1000-fold greater than those obtained in the companion in vivo study. The results from the finite (2 microL/cm2) dosing were closer (10-fold difference) to the in vivo results. General application of infinite dose percutaneous absorption values for risk assessment is questioned by these results.

  5. The rapid hydrolysis and efficient absorption of triglycerides with octanoic acid in the 1 and 3 positions and long-chain fatty acid in the 2 position.

    PubMed

    Jandacek, R J; Whiteside, J A; Holcombe, B N; Volpenhein, R A; Taulbee, J D

    1987-05-01

    We describe rapid hydrolysis of triglycerides with medium-chain fatty acids in the 1 and 3 positions and a long-chain fatty acid in the 2 position. The triglycerides, 2-linoleoyl-1,3-dioctanoyl glycerol (8L8) and 2-oleoyl-1,3-dioctanoyl glycerol, hydrolyzed more rapidly than triglycerides comprising all long-chain fatty acids. The in vitro hydrolysis rate of 8L8 was similar to that of a medium-chain triglyceride of octanoic and decanoic acids in random positions. From intestinal recovery of 14C 45 min after injection into the isolated, irrigated loop of the small intestine of an anesthetized rat, the amount of 2-[1-14C]linoleoyl-1,3-dioctanoyl glycerol absorbed was greater than 2 1/2 times that of its long-chain analog, 2-[1-14C]linoleoyl-1,3-dioleoyl glycerol. These data support the ease of hydrolysis and absorption of 1,3-dioctanoyl triglycerides with long-chain fatty acids in the 2 position.

  6. Osmotic pressure, water kinetics and volatile fatty acid absorption in the rumen of sheep sustained by intragastric infusions.

    PubMed

    López, S; Hovell, F D; MacLeod, N A

    1994-02-01

    The effects of changing rumen osmotic pressure (OP) upon water kinetics and volatile fatty acid (VFA) absorption in the rumen of sheep were studied in two 4 x 4 Latin square experiments, each using four lambs with a rumen cannula and an abomasal catheter. In both experiments the lambs were sustained by the intragastric infusion of all nutrients (VFA, Ca, P, Mg and a buffer solution into the rumen, and casein, vitamins and trace elements into the abomasum). On experimental days, which were at least 1 week apart, drinking water and the casein infusion were withdrawn, and the ruminal OP was changed and held constant for 9.5 h, by incorporating NaCl at different concentrations in the buffer solution being infused. In Expt 1 the target OP values were 300, 340, 380 and 420 mosmol/kg, and in Expt 2 were 261 (no saline addition), 350, 420 and 490 mosmol/kg. Using soluble non-absorbable markers (PEG in continuous infusion and Cr-EDTA injected in pulse doses) rumen volume, liquid outflow rates, apparent water absorption through the rumen wall and VFA absorption rates were estimated at six sampling times corresponding to the 1.5 h intervals during the last 7.5 h following the change in rumen OP. Liquid outflow rate (F; ml/h) showed a significant and positive linear relationship with the rumen OP (mosmol/kg), resulting in the equation F = 1.24 OP (SE 0.096)-36.5 (SE 36.6) (r2 0.96). Similarly, water absorption rate (W; ml/h) was significantly affected by rumen OP, and this relationship was given by W = 395 (SE 39.9)-1.16 OP (SE 0.105) (r2 0.95), which means that for an OP of 341 mosmol/kg the net movement of water across the rumen wall would be zero, and either a net efflux or a net influx of water would be observed with lower or higher OP respectively. In Expt 2 there was a significant linear effect of OP on rumen volume (P < 0.01), with higher OP being associated with increases in rumen liquid contents of about 10-20%. As rumen OP was increased there was also a decline in

  7. Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Yan, Qiuhe; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-02-01

    Degradation of humic acid (HA), a predominant type of natural organic matter in ground water and surface waters, was conducted using a gas phase surface discharge plasma system. HA standard and two surface waters (Wetland, and Weihe River) were selected as the targets. The experimental results showed that about 90.9% of standard HA was smoothly removed within 40 min's discharge plasma treatment at discharge voltage 23.0 kV, and the removal process fitted the first-order kinetic model. Roles of some active species in HA removal were studied by evaluating the effects of solution pH and OH radical scavenger; and the results presented that O3 and OH radical played significant roles in HA removal. Scanning electron microscope (SEM) and FTIR analysis showed that HA surface topography and molecular structure were changed during discharge plasma process. The mineralization of HA was analyzed by UV-Vis spectrum, dissolved organic carbon (DOC), specific UV absorbance (SUVA), UV absorption ratios, and excitation-emission matrix (EEM) fluorescence. The formation of disinfection by-products during HA sample chlorination was also identified, and CHCl3 was detected as the main disinfection by-product, but discharge plasma treatment could suppress its formation to a certain extent. In addition, approximately 82.3% and 67.9% of UV254 were removed for the Weihe River water and the Wetland water after 40 min of discharge plasma treatment.

  8. Rapid pressure swing absorption cleanup of post-shift reactor synthesis gas. Technical progress report No. 4, June 1, 1991--September 31, 1991

    SciTech Connect

    Sirkar, K.K.; Majumdar, S.; Bhaumik, S.

    1991-10-31

    This investigation is concerned with the separation of gas mixtures using a novel concept of rapid pressure swing absorption (RAPSAB) of gas in a stationary absorbent liquid through gas-liquid interfaces immobilized in the pore mouths of hydrophobic microporous membranes. The process is implemented in a module well-packed with hydrophobic microporous hollow fiber membranes. The specific objectives are (1) to fiber membranes. The specific objectives are (1) to develop a theoretical model which will provide guidelines for selecting an efficient RAPSAB process cycle which includes desorption; (2) to demonstrate the concept experimentally with a simple gas mixture (e.g., Co{sub 2}-N{sub 2}) and a simple absorbent liquid such as water, and (3) to extend the concept to reactive absorbent liquids for the separation of CO, Co{sub 2} from the post-shift reactor synthesis gas. A simplified theoretical description of the novel rapid pressure swing absorption process has been developed. The absorption part of the pressure swing absorption cycle has been predicted for CO{sub 2}-N{sub 2}-water system. Numerical simulation of the model is being carried out for different operating conditions for selecting an optimum pressure swing cycle.

  9. Highly-Ionized Gas in the Galactic Halo: A FUSE Survey of O 6 Absorption toward 22 Halo Stars

    NASA Astrophysics Data System (ADS)

    Zsargo, J.; Sembach, K. R.; Howk, J. C.; Savage, B. D.

    2002-12-01

    Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of 22 Galactic halo stars are studied to determine the amount of O 6 in the Galactic halo between ~0.3 and ~10 kpc from the Galactic mid-plane. Strong O 6 λ 1031.93 absorption was detected toward 21 stars, and a reliable 3 σ upper limit was obtained toward HD 97991. The weaker member of the O 6 doublet at 1037.62 Å could be studied toward only six stars. The observed columns are reasonably consistent with a patchy exponential O 6 distribution with a mid-plane density of 1.7x10-8 cm-3 and scale height between 2.3 and 4 kpc. We do not see clear signs of strong high-velocity components in O 6 absorption along the Galactic sight lines, which indicates the general absence of high velocity O 6 within 2-5 kpc of the Galactic mid-plane. The correlation between the H 1 and O 6 intermediate velocity absorption is also poor. The O 6 velocity dispersions are much larger than the value of ~18 km/s expected from thermal broadening for gas at T ~ 3x105 K, the temperature at which O 6 is expected to reach its peak abundance in collisional ionization equilibrium. Turbulence, inflow, and outflow must have an effect on the shape of the O 6 profiles. Kinematical comparisons of O 6 with Ar 1 reveal that 9 of 21 sight lines are closely aligned in LSR velocity (|Δ VLSR| <=5 km/s ), while 8 of 21 exhibit significant velocity differences (|Δ VLSR| >= 15 km/s ). This dual behavior may indicate the presence of two different types of O 6-bearing environments toward the Galactic sight lines. Comparison of O 6 with other highly-ionized species suggests that the high ions are produced primarily by cooling hot gas in the Galactic fountain flow, and that turbulent mixing also has a significant contribution. The role of turbulent mixing is most important toward sight lines that sample supernova remnants like Loop I and IV. We are also able to show that the O 6 enhancement toward the Galactic center region that was observed in the FUSE

  10. ATLAS: Airborne Tunable Laser Absorption Spectrometer for stratospheric trace gas measurements

    NASA Technical Reports Server (NTRS)

    Loewenstein, Max; Podolske, James R.; Strahan, Susan E.

    1990-01-01

    The ATLAS instrument is an advanced technology diode laser based absorption spectrometer designed specifically for stratospheric tracer studies. This technique was used in the acquisition of N2O tracer data sets on the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition. These data sets have proved valuable for comparison with atmospheric models, as well as in assisting in the interpretation of the entire ensemble of chemical and meteorological data acquired on these two field studies. The N2O dynamical tracer data set analysis revealed several ramifications concerning the polar atmosphere: the N2O/NO(y) correlation, which is used as a tool to study denitrification in the polar vertex; the N2O Southern Hemisphere morphology, showing subsidence in the winter polar vortex; and the value of the N2O measurements in the interpretation of ClO, O3, and NO(y) measurements and of the derived dynamical tracer, potential vorticity. Field studies also led to improved characterization of the instrument and to improved accuracy.

  11. Gas chromatographic analysis of total fatty acids in cider.

    PubMed

    Blanco-Gomis, D; Alonso, J J; Cabrales, I M; Abrodo, P A

    2001-03-01

    This paper reports the composition of total fatty acids in an apple beverage, cider. Fatty acids are present in the free or esterified form and contribute to both the flavor and foam properties of cider. Fatty acids were separated and identified as methyl esters by GC-MS, and 12 of these were subsequently determined by GC-FID. The major fatty acids found in cider were caproic, caprylic, capric, and palmitic acid, the saturated acids predominating over the unsaturated ones. The proposed method was applied to 59 ciders from three consecutive harvests (1996, 1997, and 1998), which were made by 19 cider-makers from the region of Asturias (Spain). Linear discriminant analysis of fatty acids in these samples allowed selection of palmitoleic, pentadecanoic, linoleic, myristic, and linolenic acid as the most predictive variables to differentiate ciders made from apples grown in the Asturias region (1997 harvest) and ciders made from apples grown outside this region (1996 and 1998 harvests). PMID:11312846

  12. Collection of VLE data for acid gas---alkanolamine systems using fourier transform infrared spectroscopy. [Vapor-liquid equilibrium

    SciTech Connect

    Bullin, J.A.; Frazier, R.E.

    1992-01-01

    The industrial standard process for the purification of natural gas is to remove acid gases, mainly hydrogen sulfide and carbon dioxide, by the absorption and reaction of these gases with alkanolamines. Inadequate data for vapor--liquid equilibrium (VLE) hinder the industry from converting operations to more energy efficient amine mixtures and conserving energy. Some energy reductions have been realized in the past decade by applying such amine systems as hindered'' amines, methyldiethanolamine (MDEA), and MDEA based amine mixtures. However, the lack of reliable and accurate fundamental VLE data impedes the commercial application of these more efficient alkanolamine systems. The first project objective is to improve the accuracy of vapor--liquid equilibrium measurements at low hydrogen sulfide concentrations. The second project objective is to measure the VLE for amine mixtures. By improving the accuracy of the VLE measurements on MDEA and mixtures with other amines, energy saving can be quickly and confidently implemented in the many existing absorption units already in use. If about 25% of the existing 95.3 billion SCFD gas purification capacity is converted to these new amine systems, the energy savings are estimated to be about 3 [times] 10[sup 14] BTU/yr.

  13. Absorption and distribution of deuterium-labeled trans- and cis-11-octadecenoic acid in human plasma and lipoprotein lipids

    SciTech Connect

    Emken, E.A.; Rohwedder, W.K.; Adlof, R.O.; DeJarlais, W.J.; Gulley, R.M.

    1986-09-01

    Triglycerides of deuterium-labeled trans-11-, trans-11-cis-11- and cis-9-octadecenoic acid (11t-18:1-2H, 11c-18:1-2H) were simultaneously fed to two young adult male subjects. Plasma lipids from blood samples collected periodically for 48 hr were analyzed by gas chromatography-mass spectroscopy. The results indicate the delta 11-18:1-2H acids and 9c-18:1-2H were equally well absorbed; relative turnover rates were higher for the delta 11-18-1-2H acids in plasma triglycerides; incorporation of the delta 11-18:1-2H acids into plasma phosphatidylcholine was similar to 9c-18:1-2H, but distribution at the 1- and 2-acyl positions was substantially different; esterification of cholesterol with 11t-18:1 was extremely low; chain shortening of the delta 11-18:1-2H acids was 2-3 times greater than for 9c-18:1-2H; no evidence for desaturation or elongation of the 18:1-2H acids was detected; and a 40% isotopic dilution of the 18:1-2H acids in the chylomicron triglyceride fraction indicated the presence of a substantial intestinal triglyceride pool. Based on our present knowledge, these metabolic results for delta 11-18:1 acids present in hydrogenated oils and animal fats indicate that the delta 11 isomers are no more likely than 9c-18:1 to contribute to dietary fat-related health problems.

  14. Clean Coal Technology III (CCT III) 10 MW demonstration of gas suspension absorption

    SciTech Connect

    Not Available

    1992-02-07

    The Gas Suspension Absorber (GSA) system brings coal combustion gases into contact with a suspended mixture of solids, including sulfur-absorbing lime. After the lime absorbs the sulfur pollutants, the solids are separated from the gases in a cyclone device and recirculated back into the system where they capture additional sulfur pollutant. The cleaned flue gases are sent through a dust collector before being released into the atmosphere. The key to the system's superior economic performance with high sulfur coals is the recirculation of solids. Typically, a solid particle will pass through the system about one hundred times before leaving the system. Another advantage of the GSA system is that a single spray nozzle is used to inject fresh lime slurry. The GSA system is expected to be the answer to the need of the US industry for an effective, economic and space efficient solution to the SO{sub 2} pollution problem.

  15. A model of ruminal volatile fatty acid absorption kinetics and rumen epithelial blood flow in lactating Holstein cows.

    PubMed

    Storm, A C; Kristensen, N B; Hanigan, M D

    2012-06-01

    Ruminal absorption of volatile fatty acids (VFA) is quantitatively the most important nutrient flux in cattle. Historically, VFA absorption models have been derived primarily from ruminal variables such as chemical composition of the fluid, volume, and pH. Recently, a mechanistic model incorporated the control of VFA absorption from epithelial surface area of the reticulorumen. In the present study, we hypothesized that ruminal absorption of VFA was controlled through epithelial permeability to VFA and rumen epithelial capillary blood flow. The objective of the study was to construct a model of VFA exchange across the rumen wall that incorporates epithelial blood flow as a driving force for ruminal VFA removal. The bidirectional fluxes between the ruminal and epithelial pool of VFA were assumed mass action driven, given that passive diffusion of nonionized VFA is the dominant transmembrane VFA flux. Parameter estimates were derived by fitting the model to observed data. The model provided reliable unbiased estimates of ruminal VFA absorption and rumen epithelial blood flow. Blood flow was modeled using an equation that considered the effect of butyrate and dietary crude protein intake per kilogram of body weight. The rate constants related to the flux from ruminal fluid to epithelium were in the order isobutyrate < acetate < propionate < butyrate (0.32 ± 0.02, 0.72 ± 0.2, 0.91 ± 0.06, and 0.97 ± 0.02 /h, respectively). The rate constants for fluxes of isobutyrate, acetate, propionate, and butyrate from the rumen epithelium to the ruminal fluid, relative to the pool size of the epithelium, were 4.78, 10.6, 13.4, and 14.3 /h, respectively. Ruminal concentrations of acetate, propionate, butyrate, and isobutyrate were predicted with root mean square prediction errors as percentage of the observed means (RMSPE) of 5.86, 5.75, 11.3, and 4.12, respectively. The epithelial blood flow was predicted with 26.3% RMSPE. Sensitivity analyses indicated that when ruminal

  16. Absorption and excretion of 14C- perfluorooctanoic acid (PFOA) in beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are industrial chemicals that are environmentally persistent. PFOS has recently been classified as a persistent organic pollutant under the Stockholm Convention. Both PFOS and PFOA can be found in biosolids, and the application of c...

  17. [Coupling of protease activity and sodium loading with intestinal absorption of amino acids].

    PubMed

    Basova, N A; Markov, Iu G; Berzinia, N I

    2005-09-01

    Membrane-bound serine proteases to play a certain role in activation of sodium transport in epithelial cells. To were found explain the protease activity and sodium-dependent L-tryptophan transport across chicken small intestine interaction, four experiments were conducted. One hundred chicks were fed diets that contained 0; 0.3; 3 or 6% of supplemental NaCl and were given distillated water ad libitum. Signs of salt toxicity observed were as follows: a decreased body weight, increased heart and kidney weights, formation of secondary lysosomes in enterocytes and lymphocytes. Such chickens were in the state of negative nitrogen balance. Intestinal absorption of L-tryptophan correlated with mucosal protease activity during increased dietary sodium chloride intake. Recent in vitro and in vivo experiments indicate that enterocyte proteases may be of critical importance in activation of sodium-dependent intestinal transporters for L-tryptophan.

  18. Multifunctional acid formation from the gas-phase ozonolysis of beta-pinene.

    PubMed

    Ma, Yan; Marston, George

    2008-10-28

    The gas-phase ozonolysis of beta-pinene was studied in static chamber experiments, using gas chromatography coupled to mass spectrometric and flame ionisation detection to separate and detect products. A range of multifunctional organic acids-including pinic acid, norpinic acid, pinalic-3-acid, pinalic-4-acid, norpinalic acid and OH-pinalic acid-were identified in the condensed phase after derivatisation. Formation yields for these products under systematically varying reaction conditions (by adding different OH radical scavengers and Criegee intermediate scavengers) were investigated and compared with those observed from alpha-pinene ozonolysis, allowing detailed information on product formation mechanisms to be elucidated. In addition, branching ratios for the initial steps of the reaction were inferred from quantitative measurements of primary carbonyl formation. Atmospheric implications of this work are discussed.

  19. Intestinal absorption, blood transport and hepatic and muscle metabolism of fatty acids in preruminant and ruminant animals.

    PubMed

    Hocquette, J F; Bauchart, D

    1999-01-01

    Current research on lipid metabolism in ruminants aims to improve the growth and health of the animals and the muscle characteristics associated with meat quality. This review, therefore, focuses on fatty acid (FA) metabolism from absorption to partitioning between tissues and metabolic pathways. In young calves, which were given high-fat milk diets, lipid absorption is delayed because the coagulation of milk caseins results in the retention of dietary fat as an insoluble clot in the abomasum. After weaning, the calves were fed forage- and cereal-based diets containing low levels of long-chain fatty acids (LCFA) but leading to high levels of volatile fatty acid (VFA) production by the rumen microflora. Such differences in dietary FA affect: i) the lipid transport system via the production of lipoproteins by the intestine and the liver, and (ii) the subsequent metabolism of lipids and FA by tissues. In preruminant calves, high-fat feed stimulates the secretion of triacylglycerols (TG)-rich lipoproteins (chylomicrons, very-low density lipoproteins (VLDL)). Diets rich in polyunsaturated FA (PUFA) stimulate the production of chylomicrons by the intestine (at peak lipid absorption) and of high density lipoproteins by the liver, leading to high blood concentrations of cholesterol. High levels of non-esterified FA (NEFA) uptake by the liver in high-yielding dairy cows in early lactation leads to TG infiltration of the hepatocytes (fatty liver). This is due to the low chronic capacity of the liver to synthesise and secrete VLDL particles. This abnormality in hepatic FA metabolism involves defects in apolipoprotein B synthesis and low availability of apolipoproteins and lipids for VLDL packaging. Fatty liver in calves is also caused by milk containing either soybean oil (rich in n-6 PUFA), or coconut oil (rich in C12:0 and C14:0). The ability of muscle tissue to use FA as an energy source depends on its mitochondrial content and, hence, on many physiological factors. The

  20. Effects of ozone and sulfuric acid aerosol on gas trapping in the guinea pig lung

    SciTech Connect

    Silbaugh, S.A.; Mauderly, J.L.

    1986-01-01

    Four groups of 20 guinea pigs were sequentially exposed by inhalation to either air followed by sulfuric acid aerosol, ozone followed by sulfuric acid aerosol, ozone followed by air, or air followed by air to determine whether ozone preexposure sensitizes guinea pigs to the airway constrictive effects of sulfuric acid aerosol. All first exposures to ozone or air were 2 h in duration; all second exposures to sulfuric acid or air were for 1 h. All ozone and sulfuric acid exposures were 0.8 ppm and 12 mg/m3, respectively. Animals were observed for respiratory distress during exposure, and excised lungs were quantitated for trapped gas and wet/dry ratios. None of the guinea pigs developed dyspnea, and wet/dry ratios were not altered. Ozone significantly (p less than 0.05) increased trapped gas volumes, which were 44% (ozone-acid) to 68% (ozone-air) greater than in the air-air group. Trapped gas volume was 23% greater in the ozone-acid group than in the air-acid group, but the difference was not statistically significant (p less than 0.20). Thus, ozone increased gas trapping but did not significantly sensitize guinea pigs to the bronchoconstrictive action of sulfuric acid.

  1. Absolute CF{sub 2} density and gas temperature measurements by absorption spectroscopy in dual-frequency capacitively coupled CF{sub 4}/Ar plasmas

    SciTech Connect

    Liu, Wen-Yao; Xu, Yong Peng, Fei; Gong, Fa-Ping; Li, Xiao-Song; Zhu, Ai-Min; Liu, Yong-Xin; Wang, You-Nian

    2014-10-15

    Broadband ultraviolet absorption spectroscopy has been used to determine the CF{sub 2} radical density in dual-frequency capacitively coupled CF{sub 4}/Ar plasmas, using the CF{sub 2} A{sup ~1}B{sub 1}←X{sup ~1}A{sub 1} system of absorption spectrum. The rotational temperature of ground state CF{sub 2} and excited state CF was also estimated by using A{sup ~1}B{sub 1}←X{sup ~1}A{sub 1} system and B{sup 2}Δ−X{sup 2}Π system, respectively. The translational gas temperature was deduced from the Doppler width of the Ar{sup *}({sup 3}P{sub 2}) and Ar{sup *}({sup 3}P{sub 0}) metastable atoms absorption line by using the tunable diode laser absorption spectroscopy. The rotational temperatures of the excited state CF are about 100 K higher than those of ground state CF{sub 2}, and about 200 K higher than the translational gas temperatures. The dependences of the radical CF{sub 2} density, electron density, electron temperature, rotational temperature, and gas temperature on the high frequency power and pressure have been analyzed. Furthermore, the production and loss mechanisms of CF{sub 2} radical and the gas heating mechanisms have also been discussed.

  2. Mercury speciation in hair by headspace injection-gas chromatography-atomic fluorescence spectrometry (methylmercury) and combustion-atomic absorption spectrometry (total Hg).

    PubMed

    Gao, Y; De Galan, S; De Brauwere, A; Baeyens, W; Leermakers, M

    2010-10-15

    The speciation of Hg in human hair was carried out with combustion-atomic absorption spectrometry for total Hg (THg) and headspace-gas chromatography-atomic fluorescence spectrometry (HS-GC-AFS) for methylmercury (MMHg). The determination of total Hg in hair was carried out with the AMA analyzer (Advanced Mercury Analyser 254). Accuracy and reproducibility were assessed on a Certified Reference hair sample (IAEA-086 CRM), yielding, respectively, a recovery of 97.5% and a RSD of 3.2%. Analyses of 10 blank measurements resulted in a detection limit of 1.5 ng g(-1) of THg for a 20mg sample of human hair. MMHg concentrations in hair were assessed with HS-GC-AFS in a single analysis step. Either acid or alkaline extraction can be applied because they yielded very similar results on a IAEA-086 CRM: we observed a recovery of 103% and a RSD of 7% with acid extraction and a recovery of 110% and a RSD of 9% with alkaline extraction. Optimization of the headspace vial, injection and GC parameters is described. The detection limit of the MMHg determination in human hair, which amounts to 0.04 ng g(-1) for a 20mg sample, is far below the concentrations observed in natural samples. The number of samples that can be analyzed per hour, respectively, amounts to 8 for THg and 4 for MMHg. Finally, Hg speciation in natural human hair samples was carried out by combining both AMA and HS-GC-AFS analysis methods. THg levels were at the μg g(-1), level, with an average MMHg fraction of about 70%.

  3. Scattered light and accuracy of the cross-section measurements of weak absorptions: Gas and liquid phase UV absorption cross sections of CH{sub 3}CFCl{sub 2}

    SciTech Connect

    Fahr, A.; Braun, W.; Kurylo, M.J.

    1993-11-20

    Ultraviolet absorption cross sections of CH{sub 3}CFCl{sub 2} (HCFC-141b) were determined in the gas phase (190-260 nm) and liquid phase (230-260 mm) at 298 K. The liquid phase absorption cross sections were then converted into accurate gas phase values using a previously described procedure. It has been demonstrated that scattered light from the shorter-wavelength region (as little as several parts per thousand) can seriously compromise the absorption cross-section measurement, particularly at longer wavelengths where cross sections are low, and can be a source of discrepancies in the cross sections of weakly absorbing halocarbons reported in the literature. A modeling procedure was developed to assess the effect of scattered light on the measured absorption cross section in these experiments, thereby permitting appropriate corrections to be made on the experimental values. Modeled and experimental results were found to be in good agreement. Experimental results from this study were compared with other available determinations and provide accurate input for calculating the atmospheric lifetime of HCFC-141b. 8 refs., 3 figs., 1 tab.

  4. Methods for deacidizing gaseous mixtures by phase enhanced absorption

    DOEpatents

    Hu, Liang

    2012-11-27

    An improved process for deacidizing a gaseous mixture using phase enhanced gas-liquid absorption is described. The process utilizes a multiphasic absorbent that absorbs an acid gas at increased rate and leads to reduced overall energy costs for the deacidizing operation.

  5. Vibrational structure of n-π* transition of the UV absorption spectrum of acryloyl fluoride in the gas phase.

    PubMed

    Koroleva, Lidiya A; Tyulin, Vladimir I; Matveev, Vladimir K; Pentin, Yuriy A

    2014-03-25

    UV absorption spectrum of acryloyl fluoride molecule in the gas phase has been obtained in the region at 32600-35500 cm(-1) with the purpose of the investigation of the hindered internal rotation. The resolved vibrational structure of this spectrum consists of 92 absorption bands, each of which corresponds to a certain transition from the ground (S0) to excited (S1) electronic state. The assignment of all bands has been made. The values ν00trans=34831.8 cm(-1) and ν00cis=34679.2 cm(-1) have been determined. Several Deslandres Tables (DTs) have been constructed for torsional vibration of s-trans- and s-cis-isomers of investigated molecule. The origins in these DTs correspond to bands assigned to ν00 and to fundamental frequencies of each isomer in the S0 and S1 states. These DTs have been used to determine the harmonic frequencies ωe, anharmonicity coefficients x11, and frequencies of the torsional vibration transitions (0-υ) up to high values of the vibrational quantum number υ of s-trans- and s-cis-isomers in the both electronic states. The frequencies of torsional vibrations are ν1(″)=116.5cm(-1) for s-trans-isomer and ν1(″)=101.2 cm(-1) for s-cis-isomer in the S0 state. The frequencies of ones are ν1(')=170.4 cm(-1) for s-trans-isomer and ν1(')=139.7 cm(-1) for s-cis-isomer in the S1 state. The fundamental vibrational frequencies set has been found for isomers in the S0 and S1 states.

  6. [Removal of NO and Hg0 in flue gas using alkaline absorption enhanced by non-thermal plasma].

    PubMed

    Luo, Hong-Jing; Zhu, Tian-Le; Wang, Mei-Yan

    2010-06-01

    Non-thermal plasma (NTP) induced by positive corona discharge was utilized to oxidize NO and Hg0 to more water-soluble NO2 and Hg2+ under the conditions of simulated flue gas. The effects of discharge voltage and inlet SO2 and NO concentrations on NO and Hg0 oxidation and their removals by alkaline absorption were investigated. The results show that the oxidation and removal of NO and Hg0 are enhanced with the increase of discharge voltage. The concentrations of NO and NO2 at the outlet of absorption tower are 0 and 69 mg/m3 with an inlet NO concentration of 134 mg/m3 and a discharge voltage of 12. 8 kV while the outlet concentrations of Hg0 and Hg2+ are 22 microg/m3 and 11 microg/m3 with an inlet Hg0 concentration of 110 microg/m3 and a discharge voltage of 13.1 kV. The presence of SO2 slightly improves the oxidation and removal of Hg0 while it has almost no effect on NO oxidation and its removal. The oxidation and removal of Hg0 are significantly inhibited with the increase of inlet NO concentration. In the coexistence of 800 mg/m3 SO2, 134 mg/m3 NO and 110 microg/m3 Hg0, the removal efficiencies are 57% for NO and 31% for Hg0 with an energy input of 77 J/L.

  7. Toxic Acid Gas Absorber Design Considerations for Air Pollution Control in Process Industries

    ERIC Educational Resources Information Center

    Manyele, S. V.

    2008-01-01

    This paper analyses the design parameters for an absorber used for removal of toxic acid gas (in particular sulfur dioxide) from a process gas stream for environmental health protection purposes. Starting from the equilibrium data, Henry's law constant was determined from the slope of the y-x diagram. Based on mass balances across the absorber,…

  8. Development of a gas phase source for perfluoroalkyl acids to examine atmospheric sampling methods.

    PubMed

    MacInnis, John J; VandenBoer, Trevor C; Young, Cora J

    2016-06-21

    An inability to produce environmentally relevant gaseous mixing ratios of perfluoroalkyl acids (PFAAs), ubiquitous global contaminants, limits the analytical reliability of atmospheric chemists to make accurate gas and particulate measurements that are demonstrably free of interferences due to sampling artefacts. A gas phase source for PFAAs based on the acid displacement mechanism using perfluoropropionate (PFPrA), perfluorobutanoate (PFBA), perfluorohexanoate (PFHxA), and perfluorooctanoate (PFOA) has been constructed. The displacement efficiency of gas phase perfluorocarboxylic acids (PFCAs) is inversely related to chain length. Decreasing displacement efficiencies for PFPrA, PFBA, PFHxA, and PFOA were 90% ± 20%, 40% ± 10%, 40% ± 10%, 9% ± 4%, respectively. Generating detectable amounts of gas phase perfluorosulfonic acids (PFSAs) was not possible. It is likely that lower vapour pressure and much higher acidity play a role in this lack of emission. PFCA emission rates were not elevated by increasing relative humidity (25%-75%), nor flow rate of carrier gas from 33-111 sccm. Overall, reproducible gaseous production of PFCAs was within the error of the production of hydrochloric acid (HCl) as a displacing acid (±20%) and was accomplished using a dry nitrogen flow of 33 ± 2 sccm. A reproducible mass emission rate of 0.97 ± 0.10 ng min(-1) (n = 8) was observed for PFBA. This is equivalent to an atmospheric mixing ratio of 12 ppmv, which is easily diluted to environmentally relevant mixing ratios of PFBA. Conversely, generating gas phase perfluorononanoic acid (PFNA) by sublimating the solid acid under the same conditions produced a mass emission rate of 2800 ng min(-1), which is equivalent to a mixing ratio of 18 ppthv and over a million times higher than suspected atmospheric levels. Thus, for analytical certification of atmospheric sampling methods, generating gas phase standards for PFCAs is best accomplished using acid displacement under dry conditions

  9. Dietary Cerebroside from Sea Cucumber (Stichopus japonicus): Absorption and Effects on Skin Barrier and Cecal Short-Chain Fatty Acids.

    PubMed

    Duan, Jingjing; Ishida, Marina; Aida, Kazuhiko; Tsuduki, Tsuyoshi; Zhang, Jin; Manabe, Yuki; Hirata, Takashi; Sugawara, Tatsuya

    2016-09-21

    Sphingolipids from marine sources have attracted more attention recently because of their distinctive structures and expected functions. In this study, the content and components of cerebroside from sea cucumber Stichopus japonicus were analyzed. The absorption of cerebroside from S. japonicus was investigated with an in vivo lipid absorption assay. The result revealed that S. japonicus is a rich source of cerebroside that contained considerable amounts of odd carbon chain sphingoid bases. The cumulative recoveries of d17:1- and d19:2-containing cerebrosides were 0.31 ± 0.16 and 0.32 ± 0.10%, respectively, for 24 h after administration. To the best of the authors' knowledge, this is the first work that shows sphingolipids from a marine source could be absorbed in vivo and incorporated into ceramides. In addition, dietary supplementation with sea cucumber cerebroside to hairless mouse improved the skin barrier function and increased short-chain fatty acids in cecal contents, which have shown beneficial effects on the host.

  10. An evaluation of the significance of mouth and hand contamination for lead absorption in lead-acid battery workers.

    PubMed

    Far, H S; Pin, N T; Kong, C Y; Fong, K S; Kian, C W; Yan, C K

    1993-01-01

    The present study was conducted to evaluate the role of ingestion through hand and mouth contamination in the absorption of lead in 25 lead-acid battery workers. Levels of personal exposure to airborne lead ranged from 0.004 to 2.58 mg/m3 [geometric mean 0.098, with 25% of samples exceeding threshold limit values (ACGIH) of 0.15 mg/m3]; the mean (SD) blood lead level was 48.9 (10.8) micrograms/dl. Mean hand lead contents increased 33-fold from preshift levels on Monday mornings (33.5 micrograms/500 ml) to midshift levels on Thursday afternoons (1121 micrograms/500 ml). Mouth lead contents increased 16-fold from 0.021 micrograms/50 ml on Mondays to 0.345 micrograms/50 ml on Thursdays. The typical Malay racial habit of feeding with bare hands and fingers without utensils (closely associated with mouth and hand lead levels on Mondays) explained the bulk of the variance in blood lead levels (40%), with mouth lead on Thursdays (closely associated with poor personal hygiene) explaining a further 10%. Air lead was not a significant explanatory variable. The implementation of a programme of reinforcing hand-washing and mouth-rinsing practices resulted in a reduction of the blood lead level by 11.5% 6 months later. These results indicate that parenteral intake from hand and mouth contamination is an important cause of lead absorption in lead-exposed workers.

  11. Dietary Cerebroside from Sea Cucumber (Stichopus japonicus): Absorption and Effects on Skin Barrier and Cecal Short-Chain Fatty Acids.

    PubMed

    Duan, Jingjing; Ishida, Marina; Aida, Kazuhiko; Tsuduki, Tsuyoshi; Zhang, Jin; Manabe, Yuki; Hirata, Takashi; Sugawara, Tatsuya

    2016-09-21

    Sphingolipids from marine sources have attracted more attention recently because of their distinctive structures and expected functions. In this study, the content and components of cerebroside from sea cucumber Stichopus japonicus were analyzed. The absorption of cerebroside from S. japonicus was investigated with an in vivo lipid absorption assay. The result revealed that S. japonicus is a rich source of cerebroside that contained considerable amounts of odd carbon chain sphingoid bases. The cumulative recoveries of d17:1- and d19:2-containing cerebrosides were 0.31 ± 0.16 and 0.32 ± 0.10%, respectively, for 24 h after administration. To the best of the authors' knowledge, this is the first work that shows sphingolipids from a marine source could be absorbed in vivo and incorporated into ceramides. In addition, dietary supplementation with sea cucumber cerebroside to hairless mouse improved the skin barrier function and increased short-chain fatty acids in cecal contents, which have shown beneficial effects on the host. PMID:27585906

  12. Chlorogenic acid is poorly absorbed, independently of the food matrix: A Caco-2 cells and rat chronic absorption study.

    PubMed

    Dupas, Coralie; Marsset Baglieri, Agnès; Ordonaud, Claire; Tomé, Daniel; Maillard, Marie-Noëlle

    2006-11-01

    According to epidemiologic studies, dietary phenolic antioxidants, such as chlorogenic acid (CQA), could prevent coronary heart diseases and some cancers. Coffee is the main source of CQA in the human diet. The aim of this study was to assess the effect of usual coffee consumption conditions, such as the addition of milk, on CQA bioavailability. Interactions between CQA and milk proteins were shown, using an ultrafiltration technique. These interactions proved to be slightly disrupted during an in vitro digestion process. CQA absorption and bioavailability were then studied in vitro using a Caco-2 cell model coupled with an in vitro digestion process, and in vivo, in a chronic supplementation study in which rats were fed daily coffee or coffee and milk for 3 weeks. Both experiments showed that CQA absorption under its native form is weak, but unmodified by the addition of milk proteins, and slightly reduced by the addition of Maillard reaction products. These data show that there are some interactions between coffee phenolics and milk proteins, but these have no significant effect on CQA bioavailability from coffee in the rat. CQA is poorly absorbed under its native form in the body, when ingested in a realistic food matrix. PMID:17054098

  13. Temperature dependence of the gas and liquid phase ultraviolet absorption cross sections of HCFC-123 (CF3CHCl2) and HCFC-142b (CH3CF2Cl)

    NASA Astrophysics Data System (ADS)

    Nayak, Akshaya K.; Buckley, Thomas J.; Kurylo, Michael J.; Fahr, Askar

    1996-04-01

    The absorption cross sections for HCFC-123 (CF3CHCl2) and HCFC-142b (CH3CF2Cl) have been measured in the gas and liquid phases over the temperature range of about 220-330 K. The liquid phase results were converted into effective gas phase cross sections using a wavelength shift procedure, thereby extending the gas phase cross sections to longer wavelengths. The results are compared with other available data and lend increased confidence in atmospheric lifetime calculations for these important industrial alternatives to the fully halogenated chlorofluorocarbons.

  14. Abundances of O, Mg, S, Cr, Mn, Ti, Ni and Zn from absorption lines of neutral gas in the Large Magellanic Cloud in front of R136

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Fitzpatrick, E. L.; Savage, B. D.

    1985-01-01

    Weak absorption lines of C I, O I, Mg I, Mg II, Si I, Si II, P I, Cl I, Cr II, Mn II, Fe I, Ni II, Zn II, CO and C2 are detected in neutral gas in front of the 30 Doradus H II region by IUE spectra of R 136. The Large Magellanic Cloud abundances from the absorption lines are a factor of 2 or 3 below those of the Milky Way, in agreement with emission line study results. Neutral gas density and temperature are estimated from the observed excitation and ionization to be about 300/cu cm and 100 K, respectively; this implies a gas pressure of 30,000/cu cm K.

  15. Acid gas treating by aqueous alkanolamines. Annual report, July-December 1992

    SciTech Connect

    Sandall, O.C.; Rinker, E.B.; Tamimi, A.; Davis, R.A.; Oelschlager, D.W.

    1992-12-01

    The objective of the work is to investigate the simultaneous absorption or desorption of CO2 and H2S into and from a mixed aqueous amine solvent consisting of methyldiethanolamine (MDEA) and diethanolamine (DEA). In work completed thus far models have been developed for single gas (either H2S or CO2) absorption into a single amine solution (MDEA or DEA). Density and viscosity measurements have been made for aqueous MDEA, DEA and MDEA/DEA mixtures over the temperature range 20 to 100 C and for concentrations up to 50 weight %.

  16. A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy.

    PubMed

    Stockett, Mark H; Houmøller, Jørgen; Støchkel, Kristian; Svendsen, Annette; Brøndsted Nielsen, Steen

    2016-05-01

    A relatively simple setup for collection and detection of light emitted from isolated photo-excited molecular ions has been constructed. It benefits from a high collection efficiency of photons, which is accomplished by using a cylindrical ion trap where one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The geometry permits nearly 10% of the emitted light to be collected and, after transmission losses, approximately 5% to be delivered to the entrance of a grating spectrometer equipped with a detector array. The high collection efficiency enables the use of pulsed tunable lasers with low repetition rates (e.g., 20 Hz) instead of continuous wave (cw) lasers or very high repetition rate (e.g., MHz) lasers that are typically used as light sources for gas-phase fluorescence experiments on molecular ions. A hole has been drilled in the cylinder electrode so that a light pulse can interact with the ion cloud in the center of the trap. Simulations indicate that these modifications to the trap do not significantly affect the storage capability and the overall shape of the ion cloud. The overlap between the ion cloud and the laser light is basically 100%, and experimentally >50% of negatively charged chromophore ions are routinely photodepleted. The performance of the setup is illustrated based on fluorescence spectra of several laser dyes, and the quality of these spectra is comparable to those reported by other groups. Finally, by replacing the optical system with a channeltron detector, we demonstrate that the setup can also be used for gas-phase action spectroscopy where either depletion or fragmentation is monitored to provide an indirect measurement on the absorption spectrum of the ion. PMID:27250388

  17. A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Stockett, Mark H.; Houmøller, Jørgen; Støchkel, Kristian; Svendsen, Annette; Brøndsted Nielsen, Steen

    2016-05-01

    A relatively simple setup for collection and detection of light emitted from isolated photo-excited molecular ions has been constructed. It benefits from a high collection efficiency of photons, which is accomplished by using a cylindrical ion trap where one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The geometry permits nearly 10% of the emitted light to be collected and, after transmission losses, approximately 5% to be delivered to the entrance of a grating spectrometer equipped with a detector array. The high collection efficiency enables the use of pulsed tunable lasers with low repetition rates (e.g., 20 Hz) instead of continuous wave (cw) lasers or very high repetition rate (e.g., MHz) lasers that are typically used as light sources for gas-phase fluorescence experiments on molecular ions. A hole has been drilled in the cylinder electrode so that a light pulse can interact with the ion cloud in the center of the trap. Simulations indicate that these modifications to the trap do not significantly affect the storage capability and the overall shape of the ion cloud. The overlap between the ion cloud and the laser light is basically 100%, and experimentally >50% of negatively charged chromophore ions are routinely photodepleted. The performance of the setup is illustrated based on fluorescence spectra of several laser dyes, and the quality of these spectra is comparable to those reported by other groups. Finally, by replacing the optical system with a channeltron detector, we demonstrate that the setup can also be used for gas-phase action spectroscopy where either depletion or fragmentation is monitored to provide an indirect measurement on the absorption spectrum of the ion.

  18. Rumen morphometrics and the effect of digesta pH and volume on volatile fatty acid absorption.

    PubMed

    Melo, L Q; Costa, S F; Lopes, F; Guerreiro, M C; Armentano, L E; Pereira, M N

    2013-04-01

    The effects of rumen digesta volume and pH on VFA absorption and its relation to rumen wall morphology were evaluated. Nine rumen cannulated cows formed 3 groups based on desired variation in rumen morphology: The High group was formed by Holsteins yielding 25.9 kg milk/d and fed on a high-grain total mixed ration (TMR); the Medium group by Holstein-Zebu crossbreds yielding 12.3 kg milk/d and fed on corn silage, tropical pasture, and a commercial concentrate; and the Dry group by nonlactating grazing Jerseys fed exclusively on tropical pasture. Within each group, a sequence of 3 ruminal conditions was induced on each cow in 3 × 3 Latin Squares, with 7-d periods: high digesta volume and high pH (HVHP), low volume and high pH (LVHP), and low volume and low pH (LVLP). Rumen mucosa was biopsied on the first day of Period 1. Ruminal morphometric variables evaluated were mitotic index, absorptive surface and papillae number per square centimeter of wall, area per papillae, papillae area as a percentage of absorptive surface, and epithelium, keratinized layer, and nonkeratinized layer thickness. There was marked variation in rumen morphology among the groups of cows. Grazing Jerseys had decreased rumen wall absorptive surface area and basal cells mitotic index, and increased thickness of the epithelium and of the keratin layer compared with cows receiving concentrates. Mean rumen pH throughout the 4 h sampling period was: 6.78 for HVHP, 7.08 for LVHP, and 5.90 for LVLP (P < 0.01). The capacity of the rumen wall to absorb VFA was estimated by the Valerate/CrEDTA technique. The fractional exponential decay rate for the ratio of valeric acid to Cr (k Val/Cr) was determined by rumen digesta sampling at 20-min intervals during 4 h, after the mixing of markers and the return of the evacuated ruminal content. The k Val/Cr values for treatments HVHP, LVHP, and LVLP were, respectively: 19.6, 23.9, and 35.0 %/h (SEM = 2.01; P = 0.21 for contrast HVHP vs. LVHP and P < 0.01 for

  19. Rumen morphometrics and the effect of digesta pH and volume on volatile fatty acid absorption.

    PubMed

    Melo, L Q; Costa, S F; Lopes, F; Guerreiro, M C; Armentano, L E; Pereira, M N

    2013-04-01

    The effects of rumen digesta volume and pH on VFA absorption and its relation to rumen wall morphology were evaluated. Nine rumen cannulated cows formed 3 groups based on desired variation in rumen morphology: The High group was formed by Holsteins yielding 25.9 kg milk/d and fed on a high-grain total mixed ration (TMR); the Medium group by Holstein-Zebu crossbreds yielding 12.3 kg milk/d and fed on corn silage, tropical pasture, and a commercial concentrate; and the Dry group by nonlactating grazing Jerseys fed exclusively on tropical pasture. Within each group, a sequence of 3 ruminal conditions was induced on each cow in 3 × 3 Latin Squares, with 7-d periods: high digesta volume and high pH (HVHP), low volume and high pH (LVHP), and low volume and low pH (LVLP). Rumen mucosa was biopsied on the first day of Period 1. Ruminal morphometric variables evaluated were mitotic index, absorptive surface and papillae number per square centimeter of wall, area per papillae, papillae area as a percentage of absorptive surface, and epithelium, keratinized layer, and nonkeratinized layer thickness. There was marked variation in rumen morphology among the groups of cows. Grazing Jerseys had decreased rumen wall absorptive surface area and basal cells mitotic index, and increased thickness of the epithelium and of the keratin layer compared with cows receiving concentrates. Mean rumen pH throughout the 4 h sampling period was: 6.78 for HVHP, 7.08 for LVHP, and 5.90 for LVLP (P < 0.01). The capacity of the rumen wall to absorb VFA was estimated by the Valerate/CrEDTA technique. The fractional exponential decay rate for the ratio of valeric acid to Cr (k Val/Cr) was determined by rumen digesta sampling at 20-min intervals during 4 h, after the mixing of markers and the return of the evacuated ruminal content. The k Val/Cr values for treatments HVHP, LVHP, and LVLP were, respectively: 19.6, 23.9, and 35.0 %/h (SEM = 2.01; P = 0.21 for contrast HVHP vs. LVHP and P < 0.01 for

  20. [Effect of heparin on acid-base and blood gas parameters].

    PubMed

    Pöge, A W

    1981-09-15

    The influence of blood-heparin-mixing proportion on the acid-base- and blood-gas parameters was measured by means of the blood-gas- automation ABL 1 with the help of 15 test persons. More than 0.15 ml heparin per ml blood, i.e. more than 750 I.U. heparin per ml blood falsify the measuring data and may lead to wrong diagnostic and therapeutic measures. In clinical practice for one 2-ml-blood test only the dead space of the plastic of various producers are characterized by acid-base- and gas values considerable differing from each other. However, they do not influence the blood parameters. By heparin-Weddel (Wales), heparin-Spofa (CSSR), heparin-Richer (Hungary) and heparin-Polfa (Poland) the same acid-base- and blood gas values will be obtained.

  1. Wheat dextrin, psyllium, and inulin produce distinct fermentation patterns, gas volumes, and short-chain fatty acid profiles in vitro.

    PubMed

    Timm, Derek A; Stewart, Maria L; Hospattankar, Ashok; Slavin, Joanne L

    2010-08-01

    Dietary fiber fermentation decreases luminal pH by the production of short-chain fatty acids (SCFAs). Additional proposed physiological benefits of fiber fermentation include decreased growth of pathogenic bacteria, increased mineral absorption, and serving as an energy source for the colon epithelium. This study examined three common fiber supplements--wheat dextrin (WD) (Benefiber, Novartis Consumer Health Inc., Parsippany, NJ, USA), psyllium (PS) (Metamucil, Procter & Gamble, Cincinnati, OH, USA), and inulin (Fiber Sure, Procter & Gamble)--for pH, SCFAs, and gas production. An established in vitro fermentation model was used to simulate colonic fermentation at 0, 4, 8, 12, and 24 hours. At 24 hours, WD and inulin significantly decreased pH compared to PS. Inulin produced significantly more hydrogen and total gas. All treatments produced similar total SCFA concentrations at 24 hours; however, the rate of production was different. PS had a declining rate of SCFA production from 12 to 24 hours, whereas WD and inulin had a higher rate during that period. Fast-fermenting substrates may not provide as much SCFAs to the distal colon as slow-fermenting substrates. Differences in fermentation rate, gas production, and SCFA production observed for WD, PS, and inulin may affect their gastrointestinal tolerance and require further study.

  2. The Ionized Gas and Nuclear Environment in NGC 3783. V. Variability and Modeling of the Intrinsic Ultraviolet Absorption

    NASA Astrophysics Data System (ADS)

    Gabel, Jack R.; Kraemer, Steven B.; Crenshaw, D. Michael; George, Ian M.; Brandt, W. N.; Hamann, Frederick W.; Kaiser, Mary Elizabeth; Kaspi, Shai; Kriss, Gerard A.; Mathur, Smita; Nandra, Kirpal; Netzer, Hagai; Peterson, Bradley M.; Shields, Joseph C.; Turner, T. J.; Zheng, Wei

    2005-10-01

    We present results on the location, physical conditions, and geometry of the outflow in the Seyfert 1 galaxy NGC 3783 from a study of the variable intrinsic UV absorption. Based on analysis of 18 observations with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope and six observations with the Far Ultraviolet Spectroscopic Explorer obtained between 2000 February and 2002 January, we obtain the following results: (1) The lowest ionization species detected in each of the three strong kinematic components (components 1-3 at radial velocities -1350, -550, and -725 km s-1, respectively) varied, with equivalent widths inversely correlated with the continuum flux. This indicates that the ionization structure in the absorbers responded to changes in the photoionizing flux, with variations occurring over the weekly timescales sampled by our observations. (2) A multicomponent model of the line-of-sight absorption covering factors, which includes an unocculted narrow emission-line region (NLR) and separate covering factors derived for the broad-line region and continuum emission sources, predicts saturation in several lines, consistent with the lack of observed variability in these lines. Differences in covering factors and kinematic structure imply that component 1 is composed of two physically distinct regions (1a and 1b). (3) We obtain column densities for the individual metastable levels from the resolved C III* λ1175 absorption complex in component 1a. Based on our computed metastable level populations, the electron density of this absorber is ~3×104 cm-3. Combined with photoionization modeling results, this places component 1a at ~25 pc from the central source. (4) Using time-dependent calculations, we are able to reproduce the detailed variability observed in component 1 and derive upper limits on the distances for components 2 and 3 of <=25 and <=50 pc, respectively. (5) The ionization parameters derived for the higher ionization UV

  3. Development of a tunable diode laser absorption sensor for online monitoring of industrial gas total emissions based on optical scintillation cross-correlation technique.

    PubMed

    Zhang, Zhirong; Pang, Tao; Yang, Yang; Xia, Hua; Cui, Xiaojuan; Sun, Pengshuai; Wu, Bian; Wang, Yu; Sigrist, Markus W; Dong, Fengzhong

    2016-05-16

    We report the first application of gas total emission using a DFB diode laser for gas concentration measurements combined with two LEDs for gas velocity measurements. In situ gas total emissions and particle density measurements in an industrial pipeline using simultaneous tunable diode laser absorption spectroscopy (TDLAS) and optical scintillation cross-correlation technique (OSCC) are presented. Velocity mean values obtained are 7.59 m/s (OSCC, standard deviation is 1.37 m/s) and 8.20 m/s (Pitot tube, standard deviation is 1.47 m/s) in a steel plant pipeline for comparison. Our experiments demonstrate that the combined system of TDLAS and OSCC provides a new versatile tool for accurate measurements of total gas emissions. PMID:27409967

  4. Improvement of iron nutrition in developing countries: comparison of adding meat, soy protein, ascorbic acid, citric acid, and ferrous sulphate on iron absorption from a simple Latin American-type of meal.

    PubMed

    Hallberg, L; Rossander, L

    1984-04-01

    A study in 49 subjects compared different methods for increasing the absorption of iron from a simple Latin American-type meal composed of maize, rice, and black beans. The addition of meat (75 g) increased the nonheme iron absorption from 0.17 to 0.45 mg; soy protein in an amount corresponding to the protein content of the meat increased the absorption to 0.51 mg (due to the high iron content of soy flour); cauliflower as a source of ascorbic acid (65 mg) increased the absorption to 0.58 mg, pure ascorbic acid (50 mg) to 0.41 mg, and ferrous sulphate mixed into the meal in an amount (6 mg) corresponding to the iron content of the soy flour increased the absorption to 0.64 mg. The addition of citric acid (1 g) reduced the absorption to 0.06 mg (to about one-third). We conclude that several methods are available for increasing iron absorption from a Latin American meal and that the choice of method depends on several factors, particularly cost.

  5. Capric Acid Absorption in the Presence of Hydroxypropyl-β-Cyclodextrin in the Rat Ileum using the In Situ Single-Pass Perfusion Technique.

    PubMed

    Hymas, Richard V; Ho, Norman F H; Higuchi, William I

    2015-09-01

    The purpose of the present study was to gain quantitative mechanistic insight into the role cyclodextrin carriers may play in the intestinal absorption of highly lipophilic molecules. The physical model approach was employed to investigate capric acid absorption in the rat ileum using the in situ single-pass method with 2-hydroxypropyl-β-cyclodextrin (HPB) present in the perfusate. Two physical models were examined: the flat surface model in which the intestinal wall was treated as a hollow, smooth, circular cylinder, and the villus model in which the intestinal surface allowed for the presence of villi. Capric acid absorption was found to be essentially 100% aqueous boundary layer controlled at low HPB concentrations and increasingly membrane controlled at the higher HPB concentrations. Theoretical calculations based on the experimental data and model parameters were found to be consistent with: at low HPB concentrations, capric acid was mainly absorbed at the villus tips and there was very little capric acid penetration into the intervillus space; in contrast, at 50 mM HPB, there was considerable capric acid penetration into the intervillus space, this corresponding to around a 4.5-fold increase in the accessible area for absorption when compared with 0 mM HPB.

  6. WATER ABSORPTION IN GALACTIC TRANSLUCENT CLOUDS: CONDITIONS AND HISTORY OF THE GAS DERIVED FROM HERSCHEL /HIFI PRISMAS OBSERVATIONS

    SciTech Connect

    Flagey, N.; Goldsmith, P. F.; Lis, D. C.; Monje, R.; Phillips, T. G.; Gerin, M.; De Luca, M.; Godard, B.; Neufeld, D.; Sonnentrucker, P.; Goicoechea, J. R.

    2013-01-01

    is below 10{sup 4} cm{sup -3}. We derive the water ortho-to-para ratio for each absorption feature along the line of sight and find that most of the clouds show ratios consistent with the value of 3 expected in thermodynamic equilibrium in the high-temperature limit. However, two clouds with large column densities exhibit a ratio that is significantly below 3. This may argue that the history of water molecules includes a cold phase, either when the molecules were formed on cold grains in the well-shielded, low-temperature regions of the clouds, or when they later become at least partially thermalized with the cold gas ({approx}25 K) in those regions; evidently, they have not yet fully thermalized with the warmer ({approx}50 K) translucent portions of the clouds.

  7. Water Absorption in Galactic Translucent Clouds: Conditions and History of the Gas Derived from Herschel/HIFI PRISMAS Observations

    NASA Astrophysics Data System (ADS)

    Flagey, N.; Goldsmith, P. F.; Lis, D. C.; Gerin, M.; Neufeld, D.; Sonnentrucker, P.; De Luca, M.; Godard, B.; Goicoechea, J. R.; Monje, R.; Phillips, T. G.

    2013-01-01

    We present Herschel/HIFI observations of the three ground state transitions of H2O (556, 1669, and 1113 GHz) and H218O (547, 1655, and 1101 GHz)—as well as the first few excited transitions of H2O (987, 752, and 1661 GHz)—toward six high-mass star-forming regions, obtained as part of the PRISMAS (PRobing InterStellar Molecules with Absorption line Studies) Guaranteed Time Key Program. Water vapor associated with the translucent clouds in Galactic arms is detected in absorption along every line of sight in all the ground state transitions. The continuum sources all exhibit broad water features in emission in the excited and ground state transitions. Strong absorption features associated with the source are also observed at all frequencies except 752 GHz. We model the background continuum and line emission to infer the optical depth of each translucent cloud along the lines of sight. We derive the column density of H2O or H218O for the lower energy level of each transition observed. The total column density of water in translucent clouds is usually about a few 1013 cm-2. We find that the abundance of water relative to hydrogen nuclei is 1 × 10-8 in agreement with models for oxygen chemistry in which high cosmic ray ionization rates are assumed. Relative to molecular hydrogen, the abundance of water is remarkably constant through the Galactic plane with X(H2O) =5 × 10-8, which makes water a good traced of H2 in translucent clouds. Observations of the excited transitions of H2O enable us to constrain the abundance of water in excited levels to be at most 15%, implying that the excitation temperature, T ex, in the ground state transitions is below 10 K. Further analysis of the column densities derived from the two ortho ground state transitions indicates that T ex ~= 5 K and that the density n(H2) in the translucent clouds is below 104 cm-3. We derive the water ortho-to-para ratio for each absorption feature along the line of sight and find that most of the clouds

  8. Absorption and metabolism of orally fed arachidonic and linoleic acid in the rat

    SciTech Connect

    Nilsson, A.; Melin, T. )

    1988-11-01

    ({sup 3}H)arachidonic (({sup 3}H)20:4) and ({sup 14}C)linoleic acid ({sup 14}C)18:2 were fed to rats in Intralipid or cream. Later (30-240 min) the stomach, small intestine, plasma, and liver were analyzed for radioactivity in different lipid classes. ({sup 3}H)20:4 and ({sup 14}C)18:2 were emptied from the stomach and absorbed by the intestine at similar rates. The ({sup 3}H)20:4:({sup 14}C)18:2 ratio of the lipids in the small intestinal wall increased, however, with time. This was due to a higher retention of ({sup 3}H)20:4 than ({sup 14}C)18:2 in intestinal phospholipids. In contrast, more of the ({sup 14}C)18:2 was in triacylglycerol of the small intestine and plasma. The highest {sup 3}H:{sup 14}C ratios were found in phosphatidylethanolamine and phosphatidylinositol. The {sup 3}H:{sup 14}C ratio of intestinal phosphatidylcholine varied with the type of fat vehicle used, being highest in the Intralipid experiments. After feeding Intralipid (30-60 min), significantly more of the plasma ({sup 3}H)20:4 than plasma ({sup 14}C)18:2 was in diacylglycerol, the {sup 3}H:{sup 14}C ratio of which was much higher than that of plasma free fatty acids. ({sup 3}H)20:4 and ({sup 14}C)18:2 of chyle triacylglycerol are thus metabolized differently.

  9. Three-layered absorptive glass mat separator with membrane for application in valve-regulated lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Naidenov, V.; Pavlov, D.; Cherneva, M.

    During charge and discharge of the lead-acid cell equal amounts of H 2SO 4 participate in the reactions at the two types of plates (electrodes). However, the charge and discharge reactions at the positive plates involve also 2 mol of water per every mole of reacted PbO 2. Consequently, a concentration difference appears in the electrolyte between the two electrodes (horizontal stratification), which affects the reversibility of the processes at the two electrodes and thus the cycle life of the battery. The present paper proposes the use of a three-layered absorptive glass mat (AGM) separator, the middle layer playing the role of a membrane that divides (separates) the anodic and cathodic electrolyte spaces, and controls the exchange rates of H 2SO 4, H + ions, O 2 and H 2O flows between the two electrode spaces. To be able to perform this membrane function, the thinner middle AGM layer (0.2 mm) is processed with an appropriate polymeric emulsion to acquire balanced hydrophobic/hydrophilic properties, which sustain constant H 2SO 4 concentration in the two electrode spaces during cycling. Three types of polymeric emulsions have been used for treatment of the membrane: (a) polyvinylpyrollidonestyrene (MPVS), (b) polyvinylpyrrolidone "Luviskol" (MPVP), or (c) polytetrafluorethylene modified with Luviskol (MMAGM). It is established experimentally that the MMAGM membrane maintains equal acid concentration in the anodic and cathodic spaces (no horizontal stratification) during battery cycling and hence ensures longer cycle life performance.

  10. Water Absorption of Jute/Polylactic Acid Composite Intended for an Interior Application and Comparison with Wood-Based Panels

    NASA Astrophysics Data System (ADS)

    Zandvliet, C.; Bandyopadhyay, N. R.; Ray, D.

    2014-04-01

    Jute/polylactic acid (PLA) composite is of special interest because it is entirely from renewable resources with high mechanical properties. Thus, it could be a more eco-friendly alternative to the conventional wood-based panels made of formaldehyde resin which is asserted to be carcinogenic. Yet the water affinity of the natural fibres and susceptibility of polylactic acid towards hydrolysis raise a question about the water resistance of such composites in service condition. In this work, the water absorption behaviour of jute/PLA composites, jute/maleated polypropylene was investigated with regard to interior applications following the standard test method in accordance to ISO 16983:2003 `Wood-based panels—determination of swelling in thickness after immersion in water' and compared to standard of wood-based panels. Untreated and treated jute/PLA composites exhibited a superior water resistance property compared to particleboard, MDF and hardboard and they are by far, below the minimum requirement of the ISO standard 16983.

  11. Determination of Beryllium in Soil and Sediment by Graphite Furnace Atomic Absorption with a Microwave-Acid Digestion Method.

    PubMed

    Lin, Hai-lan; Gan, Jie; Yu, Lei; Zhu, Ri-long; Tian, Yun; Luo, Yue-ping

    2015-11-01

    A method for determination of beryllium in soils and sediments by microwave-acid digestion/graphite furnace atomic absorption (GFAA) is described. In this paper, the working conditions of the instrument are optimized, the drawing of calibration curve is expounded, the pretreatment process of soil and sediments (including microwave heating process and the selection of digestion system) is discussed, and the interference of coexisting elements is examined. The sample was pretreated by microwave digestion parameters using HNO₃/ HCl/HF mixed acid system. The method is fast and simple without matrix modifier, and has no interference by coexisting ions, and has high repeatability and reproducibility. Under the optimal experimental conditions, the limit of detection (LOD) is 0.004 9 mg · kg⁻¹ (sample quantity 0.200 0 g, sample volume 25 mL), and the limits of quantitation (LOQ) is 0.20 mg · kg⁻¹. This method is used to measure the standard samples and actual samples, whether in the laboratory, or between laboratories, has good accuracy and precision.

  12. Determination of Beryllium in Soil and Sediment by Graphite Furnace Atomic Absorption with a Microwave-Acid Digestion Method.

    PubMed

    Lin, Hai-lan; Gan, Jie; Yu, Lei; Zhu, Ri-long; Tian, Yun; Luo, Yue-ping

    2015-11-01

    A method for determination of beryllium in soils and sediments by microwave-acid digestion/graphite furnace atomic absorption (GFAA) is described. In this paper, the working conditions of the instrument are optimized, the drawing of calibration curve is expounded, the pretreatment process of soil and sediments (including microwave heating process and the selection of digestion system) is discussed, and the interference of coexisting elements is examined. The sample was pretreated by microwave digestion parameters using HNO₃/ HCl/HF mixed acid system. The method is fast and simple without matrix modifier, and has no interference by coexisting ions, and has high repeatability and reproducibility. Under the optimal experimental conditions, the limit of detection (LOD) is 0.004 9 mg · kg⁻¹ (sample quantity 0.200 0 g, sample volume 25 mL), and the limits of quantitation (LOQ) is 0.20 mg · kg⁻¹. This method is used to measure the standard samples and actual samples, whether in the laboratory, or between laboratories, has good accuracy and precision. PMID:26978948

  13. A diet-sensitive BAF60a-mediated pathway links hepatic bile acid metabolism to cholesterol absorption and atherosclerosis

    PubMed Central

    Meng, Zhuo-Xian; Wang, Lin; Chang, Lin; Sun, Jingxia; Bao, Jiangyin; Li, Yaqiang; Chen, Y. Eugene; Lin, Jiandie D.

    2015-01-01

    Summary Dietary nutrients interact with gene networks to orchestrate adaptive responses during metabolic stress. Here we identify Baf60a as a diet-sensitive subunit of the SWI/SNF chromatin-remodeling complexes in the mouse liver that links the consumption of fat- and cholesterol-rich diet to elevated plasma cholesterol levels. Baf60a expression was elevated in the liver following feeding with a western diet. Hepatocyte-specific inactivation of Baf60a reduced bile acid production and cholesterol absorption, and attenuated diet-induced hypercholesterolemia and atherosclerosis in mice. Baf60a stimulates expression of genes involved in bile acid synthesis, modification, and transport through a CAR/Baf60a feedforward regulatory loop. Baf60a is required for the recruitment of the SWI/SNF chromatin-remodeling complexes to facilitate an activating epigenetic switch on target genes. These studies elucidate a regulatory pathway that mediates the hyperlipidemic and atherogenic effects of western diet consumption. PMID:26586440

  14. Effect of γ-Cyclodextrin Inclusion Complex on the Absorption of R-α-Lipoic Acid in Rats

    PubMed Central

    Uchida, Ryota; Iwamoto, Kosuke; Nagayama, Suetada; Miyajima, Atsushi; Okamoto, Hinako; Ikuta, Naoko; Fukumi, Hiroshi; Terao, Keiji; Hirota, Takashi

    2015-01-01

    R-α-lipoic acid (RLA) is an endogenous organic acid, and works as a cofactor for mitochondrial enzymes and as a kind of antioxidant. Inclusion complexes of RLA with α-, β- or γ-cyclodextrins (CD) were prepared and orally administered as a suspension to rats. Among them, RLA/γ-CD showed the highest plasma exposure, and its area under the plasma concentration-time curve (AUC) of RLA was 2.2 times higher than that after oral administration of non-inclusion RLA. On the other hand, the AUC after oral administration of non-inclusion RLA and RLA/γ-CD to pylorus-ligated rats did not differ. However, the AUC after intraduodenal administration of RLA/γ-CD was 5.1 times higher than that of non-inclusion RLA, and was almost comparable to the AUC after intraduodenal administration of RLA-Na solution. Furthermore, the AUC after intraduodenal administration of RLA/γ-CD was not affected by biliary ligation or co-administration of an amylase inhibitor. These findings demonstrated that RLA was absorbed from the small intestine effectively when orally administered as a γ-CD inclusion complex, which could be easily dissolved in the lumen of the intestine. In conclusion, γ-CD inclusion complex is an appropriate formulation for supplying RLA as a drug or nutritional supplement with respect to absorption. PMID:25946345

  15. Abnormal incorporation of amino acids into the gas hydrate crystal lattice.

    PubMed

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Lee, Bo Ram; Ahn, Docheon; Lee, Kun-Hong

    2014-12-28

    Gas hydrates are crystalline ice-like solid materials enclosing gas molecules inside. The possibility of the presence of gas hydrates with amino acids in the universe is of interest when revealing the potential existence of life as they are evidence of a source of water and organic precursors, respectively. However, little is known about how they can naturally coexist, and their crystallization behavior would become far more complex as both crystallize with formation of hydrogen bonds. Here, we report abnormal incorporation of amino acids into the gas hydrate crystal lattice that is contrary to the generally accepted crystallization mode, and this resulted in lattice distortion and expansion. The present findings imply the potential for their natural coexistence by sharing the crystal lattice, and will be helpful for understanding the role of additives in the gas hydrate crystallization.

  16. Gas-Phase Structures of Ketene and Acetic Acid from Acetic Anhydride Using Very-High-Temperature Gas Electron Diffraction.

    PubMed

    Atkinson, Sandra J; Noble-Eddy, Robert; Masters, Sarah L

    2016-03-31

    The gas-phase molecular structure of ketene has been determined using samples generated by the pyrolysis of acetic anhydride (giving acetic acid and ketene), using one permutation of the very-high-temperature (VHT) inlet nozzle system designed and constructed for the gas electron diffraction (GED) apparatus based at the University of Canterbury. The gas-phase structures of acetic anhydride, acetic acid, and ketene are presented and compared to previous electron diffraction and microwave spectroscopy data to show improvements in data extraction and manipulation with current methods. Acetic anhydride was modeled with two conformers, rather than a complex dynamic model as in the previous study, to allow for inclusion of multiple pyrolysis products. The redetermined gas-phase structure of acetic anhydride (obtained using the structure analysis restrained by ab initio calculations for electron diffraction method) was compared to that from the original study, providing an improvement on the description of the low vibrational torsions compared to the dynamic model. Parameters for ketene and acetic acid (both generated by the pyrolysis of acetic anhydride) were also refined with higher accuracy than previously reported in GED studies, with structural parameter comparisons being made to prior experimental and theoretical studies. PMID:26916368

  17. Gas-Phase Structures of Ketene and Acetic Acid from Acetic Anhydride Using Very-High-Temperature Gas Electron Diffraction.

    PubMed

    Atkinson, Sandra J; Noble-Eddy, Robert; Masters, Sarah L

    2016-03-31

    The gas-phase molecular structure of ketene has been determined using samples generated by the pyrolysis of acetic anhydride (giving acetic acid and ketene), using one permutation of the very-high-temperature (VHT) inlet nozzle system designed and constructed for the gas electron diffraction (GED) apparatus based at the University of Canterbury. The gas-phase structures of acetic anhydride, acetic acid, and ketene are presented and compared to previous electron diffraction and microwave spectroscopy data to show improvements in data extraction and manipulation with current methods. Acetic anhydride was modeled with two conformers, rather than a complex dynamic model as in the previous study, to allow for inclusion of multiple pyrolysis products. The redetermined gas-phase structure of acetic anhydride (obtained using the structure analysis restrained by ab initio calculations for electron diffraction method) was compared to that from the original study, providing an improvement on the description of the low vibrational torsions compared to the dynamic model. Parameters for ketene and acetic acid (both generated by the pyrolysis of acetic anhydride) were also refined with higher accuracy than previously reported in GED studies, with structural parameter comparisons being made to prior experimental and theoretical studies.

  18. Absorption chillers: Part of the solution

    SciTech Connect

    Occhionero, A.J. ); Hughes, P.J. ); Reid, E.A. )

    1991-01-01

    Acid rain, ozone depletion, global warming, and implementation economics are considered as they relate to the advisability of expanding the application of absorption chillers. Introductory and background information are provided to put the discussion in the proper context. Then all four issues are discussed separately as they relate to absorption chillers. Acid rain and ozone depletion concerns, and implementation economics, are found to support the expanded use of absorption chillers. The global warming concern is found to be more of a gray area, but the areas of benefit correspond well with the conditions of greatest economic advantage. All things considered, absorption chillers are believed to be part of the environmental and economic solution. It is further believed that integrated resource planning (IRP) processes that consider electric and gas technologies on an equal footing would come to the same conclusion for many regions of the United States. 9 refs., 3 tabs.

  19. Are carboxyl groups the most acidic sites in amino acids? Gas-phase acidities, photoelectron spectra, and computations on tyrosine, p-hydroxybenzoic acid, and their conjugate bases.

    PubMed

    Tian, Zhixin; Wang, Xue-Bin; Wang, Lai-Sheng; Kass, Steven R

    2009-01-28

    Deprotonation of tyrosine in the gas phase was found to occur preferentially at the phenolic site, and the conjugate base consists of a 70:30 mixture of phenoxide and carboxylate anions at equilibrium. This result was established by developing a chemical probe for differentiating these two isomers, and the presence of both ions was confirmed by photoelectron spectroscopy. Equilibrium acidity measurements on tyrosine indicated that deltaG(acid)(o) = 332.5 +/- 1.5 kcal mol(-1) and deltaH(acid)(o) = 340.7 +/- 1.5 kcal mol(-1). Photoelectron spectra yielded adiabatic electron detachment energies of 2.70 +/- 0.05 and 3.55 +/- 0.10 eV for the phenoxide and carboxylate anions, respectively. The H/D exchange behavior of deprotonated tyrosine was examined using three different alcohols (CF3CH2OD, C6H5CH2OD, and CH3CH2OD), and incorporation of up to three deuterium atoms was observed. Two pathways are proposed to account for these results, and all of the experimental findings are supplemented with B3LYP/aug-cc-pVDZ and G3B3 calculations. In addition, it was found that electrospray ionization of tyrosine from a 3:1 (v/v) CH3OH/H2O solution using a commercial source produces a deprotonated [M-H]- anion with the gas-phase equilibrium composition rather than the structure of the ion that exists in aqueous media. Electrospray ionization from acetonitrile, however, leads largely to the liquid-phase (carboxylate) structure. A control molecule, p-hydroxybenzoic acid, was found to behave in a similar manner. Thus, the electrospray conditions that are employed for the analysis of a compound can alter the isomeric composition of the resulting anion.

  20. Percutaneous absorption of salicylic acid--in vitro and in vivo studies.

    PubMed

    Mateus, Rita; Moore, David J; Hadgraft, Jonathan; Lane, Majella E

    2014-11-20

    Salicylic acid (SA) has been used in pharmaceutical and cosmetic preparations for many years. Although there are a number of studies which report on the permeation characteristics of this molecule in vitro, to our knowledge the disposition of SA in vivo has not been studied in detail. In the present work we prepared a range of SA formulations with different gelling agents. Permeation of SA from the formulations was studied in vitro using conventional Franz cells and in vivo using confocal Raman spectroscopy (CRS). Selection of the gelling agent clearly influenced the efficacy of SA delivery from all formulations. It was possible to detect SA in vivo using CRS and to depth profile the molecule. A good in vitro-in vivo correlation was also found when the cumulative amounts of SA which permeated in vitro were plotted against the CRS signal in the skin. The findings provide further confidence in the application of CRS for the study of drug disposition in the skin.

  1. Mass energy-absorption coefficients and average atomic energy-absorption cross-sections for amino acids in the energy range 0.122-1.330 MeV

    NASA Astrophysics Data System (ADS)

    More, Chaitali V.; Lokhande, Rajkumar M.; Pawar, Pravina. P.

    2016-05-01

    Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σa,en) and average atomic energy-absorption cross sections (μen/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.

  2. A comparison of simultaneous plasma, atomic absorption, and iron colorimetric determinations of major and trace constituents in acid mine waters

    USGS Publications Warehouse

    Ball, J.W.; Nordstrom, D.K.

    1994-01-01

    Sixty-three water samples collected during June to October 1982 from the Leviathan/Bryant Creek drainage basin were originally analyzed by simultaneous multielement direct-current plasma (DCP) atomic-emission spectrometry, flame atomic-absorption spectrometry, graphite-furnace atomic-absorption spectrometry (GFAAS) (thallium only), ultraviolet-visible spectrometry, and hydride-generation atomic-absorption spectrometry.Determinations were made for the following metallic and semi-metallic constituents: AI, As, B, Ba, Be, Bi, Cd, Ca, Cr, Co, Cu, Fe(11), Fe(total), Li, Pb, Mg, Mn, Mo, Ni, K, Sb, Se, Si, Na, Sr, TI, V, and Zn. These samples were re-analyzed later by simultaneous multielement inductively coupled plasma (ICP) atomic-emission spectrometry and Zeeman-corrected GFAAS to determine the concentrations of many of the same constituents with improved accuracy, precision, and sensitivity. The result of this analysis has been the generation of comparative concentration values for a significant subset of the solute constituents. Many of the more recently determined values replace less-than-detection values for the trace metals; others constitute duplicate analyses for the major constituents. The multiple determinations have yielded a more complete, accurate, and precise set of analytical data. They also have resulted in an opportunity to compare the performance of the plasma-emission instruments operated in their respective simultaneous multielement modes. Flame atomic-absorption spectrometry was judged best for Na and K and hydride-generation atomic-absorption spectrometry was judged best for As because of their lower detection limit and relative freedom from interelement spectral effects. Colorimetric determination using ferrozine as the color agent was judged most accurate, precise, and sensitive for Fe. Cadmium, lead, and vanadium concentrations were too low in this set of samples to enable a determination of whether ICP or DCP is a more suitable technique. Of

  3. Lactic acid fermentation stimulated iron absorption by Caco-2 cells is associated with increased soluble iron content in carrot juice.

    PubMed

    Bergqvist, Sharon W; Andlid, Thomas; Sandberg, Ann-Sofie

    2006-10-01

    An in vitro digestion/Caco-2 cell model was applied to explore the impact of lactic acid (LA) fermentation by Lactobacillus pentosus FSC1 and Leuconostoc mesenteroides FSC2 on the Fe bioavailability of carrot juice. The redox state of Fe in fermented carrot juice was also assessed as a crucial factor for absorption. LA fermentation was shown to improve mineral solubility to different extents at simulated physiological conditions: Mn (2-fold); Fe (1.5-1.7-fold); Zn (1.2-fold); Cu (1-fold). Soluble Fe2+ was increased about 16-fold by LA fermentation, and about one third of the Fe2+ remained soluble after in vitro digestion (about 4-5-fold higher than in fresh juice). Data on cell-line studies showed a 4-fold increase in the efficiency of Fe uptake, but not in transepithelial transfer by Caco2 cells, as a result of fermentation. The increases in Fe2+ level and the efficiency of cellular Fe uptake were strain-dependent. To sum up the effect on both Fe solubility and cellular uptake efficiency, the amount of cellularly absorbed Fe from Ln. mesenteroides FSC2-fermented juice was about 20 % higher than that from L. pentosus FSC1-fermented juice (22.7 v. 19.2 microg/l juice per mg protein). To conclude, LA fermentation enhanced Fe absorption by Caco-2 cells from carrot juice because of increases in not only Fe solubility after digestion, but also the efficiency of cellular Fe uptake. The fermentation-improved efficiency of Fe uptake was possibly due to the increased level of soluble Fe2+ rather than a being a strain-specific event.

  4. Hepatitis C Virus Increases Free Fatty Acids Absorption and Promotes its Replication Via Down-Regulating GADD45α Expression

    PubMed Central

    Chen, Wei; Li, Xiao-ming; Li, An-ling; Yang, Gui; Hu, Han-ning

    2016-01-01

    Background Hepatitis C virus (HCV) infection, as a major cause of chronic hepatic diseases, is always accompanied with an abnormality of lipid metabolism. The aim of this study was to investigate the pathogenic role of free fatty acids (FFA) in human HCV infection. Material/Methods Peripheral blood lipid indexes among HCV patients with different viral loads (199 samples) and healthy donors (80 samples) were detected by clinical biochemistry tests. HCV replication and the expression of growth arrest and DNA-damage-inducible gene 45-α (GADD45α) in Huh7 cells and clinical samples were quantified by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Lipid accumulation in Huh7 cells was detected by immunofluorescence. Results In this study, we found that FFA showed a significant positive correlation with viral load in peripheral blood of HCV patients, but not total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), or low-density lipoprotein cholesterol (LDL-C). GADD45α expression in HCV patients dramatically decreased with the increase of viral load. In Huh7 cells, FFA treatment significantly enhanced HCV replication. HCV infection inhibited GADD45α expression, and this effect was further enhanced with the presence of FFA treatment. Ectopic expression of GADD45α in HCV-infected Huh7 cells markedly inhibited the absorption of FFA and HCV replication. However, FFA significantly elevated GADD45α expression without HCV infection. Conclusions These results demonstrated that HCV down-regulates GADD45α expression to enhance FFA absorption and thus facilitate its replication. GADD45α is an essential mediator for the pathogenesis of HCV infection. Thus, our study provides potential clues in the search for novel therapeutics and fatty lipid control options for HCV patients. PMID:27381636

  5. Determination of boron in blood, urine and bone by electrothermal atomic absorption spectrometry using zirconium and citric acid as modifiers

    NASA Astrophysics Data System (ADS)

    Burguera, Marcela; Burguera, José Luis; Rondón, Carlos; Carrero, Pablo

    2001-10-01

    A comparative study of various potential chemical modifiers (Au, Ba, Be, Ca, Cr, Ir, La, Lu, Mg, Ni, Pd, Pt, Rh, Ru, Sr, V, W, and Zr), and different 'coating' treatments (Zr, W, and W+Rh) of the pyrolytic graphite platform of a longitudinally heated graphite tube atomizer for thermal stabilization and determination of boron was undertaken. The use of Au, Ba, Be, Cr, Ir, Pt, Rh, Ru, Sr and V as modifiers, and of W+Rh coating produced erratic, and noisy signals, while the addition of La, Ni and Pd as modifiers, and the W coating had positive effects, but with too high background absorption signals, rendering their use unsuitable for boron determination even in aqueous solutions. The atomic absorption signal for boron was increased and stabilized when the platform was coated with Zr, and by the addition of Ca, Mg, Lu, W or Zr as modifiers. Only the addition of 10 μg of Zr as a modifier onto Zr-treated platforms allowed the use of a higher pyrolysis temperature without analyte losses. The memory effect was minimized by incorporating a cleaning step with 10 μl of 50 g l -1 NH 4F HF after every three boron measurements. The addition of 10 μl of 15 g l -1 citric acid together with Zr onto Zr-treated platforms significantly improved the characteristic mass to m0=282 pg, which is adequate for biological samples such as urine and bone, although the sensitivity was still inadequate for the determination of boron in blood of subjects without supplementary diet. Under optimized conditions, the detection limit (3σ) was 60 μg l -1. The amount of boron found in whole blood, urine and femur head samples from patients with osteoporosis was in agreement with values previously reported in the literature.

  6. The effect of different fatty acids on the intestinal lymphatic absorption of cyclosporin-A after oral administration in the rat

    SciTech Connect

    Jensen, B.K.

    1988-01-01

    Four studies were conducted in male Sprague-Dawley rats to evaluate the effect of saturated fatty acids (FA) of varying chain lengths on cyclosporin-A (CSA) intestinal lymphatic absorption. {sup 3}H-CSA was given to thoracic duct-ligated and sham rats in a nonlipid-(NL) or busyric (BA), octanoic (OA), lauric (LA), palmitic (PA), or stearic (SA) acid dosage form ({sup 14}C-FA) in an oral absorption study. The dosage forms were given to thoracic duct cannulated (TDC) rats to assess CSA intestinal lymphatic absorption. CSA blood-to-lymph transfer was assessed by intravenous {sup 3}H-CSA in TDC rats. Colchicine pretreated TDC rats received CSA in the NL and PA dosage forms. CSA and FA concentrations in blood and lymph were measured radiometrically. CSA and FA in the chylomicron and aqueous fractions were determined from ultracentrifugation of pooled lymph samples.

  7. Intestinal absorption, blood transport and hepatic and muscle metabolism of fatty acids in preruminant and ruminant animals.

    PubMed

    Hocquette, J F; Bauchart, D

    1999-01-01

    Current research on lipid metabolism in ruminants aims to improve the growth and health of the animals and the muscle characteristics associated with meat quality. This review, therefore, focuses on fatty acid (FA) metabolism from absorption to partitioning between tissues and metabolic pathways. In young calves, which were given high-fat milk diets, lipid absorption is delayed because the coagulation of milk caseins results in the retention of dietary fat as an insoluble clot in the abomasum. After weaning, the calves were fed forage- and cereal-based diets containing low levels of long-chain fatty acids (LCFA) but leading to high levels of volatile fatty acid (VFA) production by the rumen microflora. Such differences in dietary FA affect: i) the lipid transport system via the production of lipoproteins by the intestine and the liver, and (ii) the subsequent metabolism of lipids and FA by tissues. In preruminant calves, high-fat feed stimulates the secretion of triacylglycerols (TG)-rich lipoproteins (chylomicrons, very-low density lipoproteins (VLDL)). Diets rich in polyunsaturated FA (PUFA) stimulate the production of chylomicrons by the intestine (at peak lipid absorption) and of high density lipoproteins by the liver, leading to high blood concentrations of cholesterol. High levels of non-esterified FA (NEFA) uptake by the liver in high-yielding dairy cows in early lactation leads to TG infiltration of the hepatocytes (fatty liver). This is due to the low chronic capacity of the liver to synthesise and secrete VLDL particles. This abnormality in hepatic FA metabolism involves defects in apolipoprotein B synthesis and low availability of apolipoproteins and lipids for VLDL packaging. Fatty liver in calves is also caused by milk containing either soybean oil (rich in n-6 PUFA), or coconut oil (rich in C12:0 and C14:0). The ability of muscle tissue to use FA as an energy source depends on its mitochondrial content and, hence, on many physiological factors. The

  8. Intestinal absorption of amino acids in the Pacific bluefin tuna (Thunnus orientalis): in vitro lysine-arginine interaction using the everted intestine system.

    PubMed

    Martínez-Montaño, Emmanuel; Peña, Emyr; Viana, María Teresa

    2013-04-01

    The interaction between lysine (Lys) and arginine (Arg) in the proximal intestinal region of Pacific bluefin tuna (Thunnus orientalis) was evaluated using the everted intestine method. This in vitro intestinal system has been shown to be an effective tool for studying the nutrient absorption without the need to handle the tuna fish in marine cages as needed for digestibility and amino acid (AA) absorption. We used a factorial design with two sets of variables: low and high Lys concentration (10 and 75 mM) and four different Arg concentrations (3, 10, 20, and 30 mM). Both amino acids were dissolved in marine Ringer solution with a basal amino acidic composition consisting of a tryptone solution (9 mg mL(-1)). No interaction was observed between the absorption of Lys and Arg during the first 10 min of the experiment when low concentration of Lys and Arg was used in the hydrolyzate solution. However, there seemed to be a positive effect on Lys absorption when both amino acids were at high concentrations (30 and 75 mM, respectively). This type of studies will led us to test different formulations and/or additives to better understand the efficiency of AA supplementation as an alternative to in situ studies that are difficult to follow to design with the Pacific Bluefin Tuna.

  9. Effect of acute exposure to ergot alkaloids on short-chain fatty acid absorption and barrier function of isolated bovine ruminal epithelium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ergot alkaloids present in endophyte-infected tall fescue are the causative agents for fescue toxicosis in cattle. Ergot alkaloids have been shown to cause a reduction in blood flow to the rumen epithelium as well as a decrease in short-chain fatty acid (SCFA) absorption from the washed rumen of ste...

  10. Combined experimental and computational investigation of the absorption spectra of E- and Z-cinnamic acids in solution: The peculiarity of Z-cinnamics.

    PubMed

    Salum, María L; Arroyo Mañez, Pau; Luque, F Javier; Erra-Balsells, Rosa

    2015-07-01

    Cinnamic acids are present in all kinds of plant tissues and hence in herbs and derived medicines, cosmetics and foods. The interest in their role in plants and their therapeutic applications has grown exponentially. Because of their molecular structure they can exist in E- and Z-forms, which are both found in plants. However, since only the E-forms are commercially available, very few in vitro and in vivo studies of the Z-form have been reported. In this work the physico-chemical properties of Z-cinnamic acids in solution have been examined by means of UV-absorption spectroscopy and high-level quantum mechanical computations. For each isomer similar absorption spectra were obtained in methanol and acetonitrile. However, distinct trends were found for Z- and E forms of cinnamic acids in water, where a higher hypsochromic shift of the Z-isomer relative to the E-form was observed. In general the wavelength of maximal absorption of the Z-form is dramatically blue shifted (-30 to -40 nm) to λ<280 nm, while a slightly blue shift of the absorption maxima for the corresponding E-form (+3 to -4 nm) was observed. This difference is associated with the non-planar, largely distorted, Z-structure and to the almost complete flat structure of the E-form. The results provide a basis for the study of functional and biotechnological roles of cinnamic acids and for the analysis of samples containing mixture of both geometric isomers.

  11. Evaluation of gas cooling for pressurized phosphoric acid fuel cell stacks

    NASA Technical Reports Server (NTRS)

    Farooque, M.; Skok, A. J.; Maru, H. C.; Kothmann, R. E.; Harry, R. W.

    1983-01-01

    Gas cooling is a more reliable, less expensive and a more simple alternative to conventional liquid cooling for heat removal from the phosphoric acid fuel cell (PAFC). The feasibility of gas cooling has already been demonstrated in atmospheric pressure stacks. This paper presents theoretical and experimental investigation of gas cooling for pressurized PAFC. Two approaches to gas cooling, Distributed Gas Cooling (DIGAS) and Separated Gas Cooling (SGC) were considered, and a theoretical comparison on the basis of cell performance indicated SGC to be superior to DIGAS. The feasibility of SGC was experimentally demonstrated by operating a 45-cell stack for 700 hours at pressure, and determining thermal response and the effect of other related parameters.

  12. Evaluation of Gas-Cooled Pressurized Phosphoric Acid Fuel Cells for Electric Utility Power Generation

    NASA Technical Reports Server (NTRS)

    Faroque, M.

    1983-01-01

    Gas cooling is a more reliable, less expensive and a more simple alternative to conventional liquid cooling for heat removal from the phosphoric acid fuel cell (PAFC). The feasibility of gas-cooling was already demonstrated in atmospheric pressure stacks. Theoretical and experimental investigations of gas-cooling for pressurized PAFC are presented. Two approaches to gas cooling, Distributed Gas-Cooling (DIGAS) and Separated Gas-Cooling (SGC) were considered, and a theoretical comparison on the basis of cell performance indicated SGC to be superior to DIGAS. The feasibility of SGC was experimentally demonstrated by operating a 45-cell stack for 700 hours at pressure, and determining thermal response and the effect of other related parameters.

  13. GAS PERMEATION PROPERTIES OF POLY(LACTIC ACID). (R826733)

    EPA Science Inventory

    Abstract

    The need for the development of polymeric materials based on renewable resources has led to the development of poly(lactic acid) (PLA) which is being produced from a feedstock of corn rather than petroleum. The present study examines the permeation of nitrogen...

  14. Formation routes of interstellar glycine involving carboxylic acids: possible favoritism between gas and solid phase.

    PubMed

    Pilling, Sergio; Baptista, Leonardo; Boechat-Roberty, Heloisa M; Andrade, Diana P P

    2011-11-01

    Despite the extensive search for glycine (NH₂CH₂COOH) and other amino acids in molecular clouds associated with star-forming regions, only upper limits have been derived from radio observations. Nevertheless, two of glycine's precursors, formic acid and acetic acid, have been abundantly detected. Although both precursors may lead to glycine formation, the efficiency of reaction depends on their abundance and survival in the presence of a radiation field. These facts could promote some favoritism in the reaction pathways in the gas phase and solid phase (ice). Glycine and these two simplest carboxylic acids are found in many meteorites. Recently, glycine was also observed in cometary samples returned by the Stardust space probe. The goal of this work was to perform theoretical calculations for several interstellar reactions involving the simplest carboxylic acids as well as the carboxyl radical (COOH) in both gas and solid (ice) phase to understand which reactions could be the most favorable to produce glycine in interstellar regions fully illuminated by soft X-rays and UV, such as star-forming regions. The calculations were performed at four different levels for the gas phase (B3LYP/6-31G*, B3LYP/6-31++G**, MP2/6-31G*, and MP2/6-31++G**) and at MP2/6-31++G** level for the solid phase (ice). The current two-body reactions (thermochemical calculation) were combined with previous experimental data on the photodissociation of carboxylic acids to promote possible favoritism for glycine formation in the scenario involving formic and acetic acid in both gas and solid phase. Given that formic acid is destroyed more in the gas phase by soft X-rays than acetic acid is, we suggest that in the gas phase the most favorable reactions are acetic acid with NH or NH₂OH. Another possible reaction involves NH₂CH₂ and COOH, one of the most-produced radicals from the photodissociation of acetic acid. In the solid phase, we suggest that the reactions of formic acid with NH

  15. Gas Phase Structure of Amino Acids: La-Mb Studies

    NASA Astrophysics Data System (ADS)

    Mata, I. Pena S.; Sanz, M. E.; Vaquero, V.; Cabezas, C.; Perez, C.; Blanco, S.; López, J. C.; Alonso, J. L.

    2009-06-01

    Recent improvements in our laser ablation molecular beam Fourier transform microwave (LA-MB-FTMW) spectrometer such as using Laval-type nozzles and picoseconds Nd:YAG lasers (30 to 150 ps) have allowed a major step forward in the capabilities of this experimental technique as demonstrated by the last results in serine cysteine and threonine^a for which seven, six and seven conformers have been respectively identified. Taking advantage of these improvements we have investigated the natural amino acids metionine, aspartic and glutamic acids and the γ-aminobutyric acid (GABA) with the aim of identify and characterize their lower energy conformers. Searches in the rotational spectra have lead to the identification of seven conformers of metionine, six and five of aspartic and glutamic acids, respectively, and seven for the γ-aminobutyric. These conformers have been unambiguously identified by their spectroscopic constants. In particular the ^{14}N nuclear quadrupole coupling constants, that depend heavily on the orientation of the amino group with respect to the principal inertial axes of the molecule, prove to be a unique tool to distinguish unambigously between conformations with similar rotational constants. For the γ-aminobutyric acid two of the seven observed structures are stablized by an intramolecular interaction n-π*. Two new conformers of proline have been identified together with the two previously observed. J. L. Alonso, C. Pérez, M. E. Sanz, J. C. López, S. Blanco, Phys.Chem.Chem.Phys., 2009, 11, 617. D. B. Atkinson, M. A. Smith, Rev. Sci. Instrum. 1995, 66, 4434 S. Blanco, M. E. Sanz, J. C. López, J. L. Alonso, Proc. Natl. Acad. Sci. USA2007, 104, 20183. M. E. Sanz, S. Blanco, J. C. López, J. L. Alonso, Angew. Chem. Int. Ed.,2008, 120, 6312. A. Lesarri, S. Mata, E. J. Cocinero, S. Blanco, J.C. López, J. L. Alonso, Angew. Chem. Int. Ed. , 2002, 41, 4673

  16. Quantitative gas sensing by backscatter-absorption measurements of a pseudorandom code modulated lambda ~ 8-microm quantum cascade laser.

    PubMed

    Gittins, C M; Wetjen, E T; Gmachl, C; Capasso, F; Hutchinson, A L; Sivco, D L; Baillargeon, J N; Cho, A Y

    2000-08-15

    We have demonstrated quantitative chemical vapor detection with a multimode quantum cascade (QC) laser. Experiments incorporated pseudorandom code (PRC) modulation of the laser intensity to permit sensitive absorption measurements of isopropanol vapor at 8.0micro . The demonstration shows the practicality of one technical approach for implementing low-peak-power QC lasers in the transmitter portion of a differential absorption lidar (DIAL) system. With a 31-chip, 300-ns/chip PRC sequence, the measured isopropanol detection limit was 12 parts in 10(6) by volume times meters (~3x10(-3) absorption) for a simple backscatter-absorption measurement configuration.

  17. Gas chromatographic organic acid profiling analysis of brandies and whiskeys for pattern recognition analysis.

    PubMed

    Park, Y J; Kim, K R; Kim, J H

    1999-06-01

    An efficient gas chromatographic profiling and pattern recognition method is described for brandy and whiskey samples according to their organic acid contents. It involves solid-phase extraction of organic acids using Chromosorb P with subsequent conversion to stable tert-butyldimethylsilyl derivatives for the direct analysis by capillary column gas chromatography and gas chromatography-mass spectrometry. A total of 12 organic acids were reproducibly identified in liquor samples (1 mL). When the GC profiles were simplified to their retention index spectra, characteristic patterns were obtained for each liquor sample as well as for each group average. Stepwise discriminant analysis provided star symbols characteristic for each liquor sample and group average. As expected, canonical discriminant analysis correctly classified 23 liquor samples studied into two groups of either brandy or whiskey.

  18. Gas chromatographic organic acid profiling analysis of brandies and whiskeys for pattern recognition analysis.

    PubMed

    Park, Y J; Kim, K R; Kim, J H

    1999-06-01

    An efficient gas chromatographic profiling and pattern recognition method is described for brandy and whiskey samples according to their organic acid contents. It involves solid-phase extraction of organic acids using Chromosorb P with subsequent conversion to stable tert-butyldimethylsilyl derivatives for the direct analysis by capillary column gas chromatography and gas chromatography-mass spectrometry. A total of 12 organic acids were reproducibly identified in liquor samples (1 mL). When the GC profiles were simplified to their retention index spectra, characteristic patterns were obtained for each liquor sample as well as for each group average. Stepwise discriminant analysis provided star symbols characteristic for each liquor sample and group average. As expected, canonical discriminant analysis correctly classified 23 liquor samples studied into two groups of either brandy or whiskey. PMID:10794629

  19. Active Stand-off Detection of Gas Leaks Using a Short Range Hard-target Backscatter Differential Optical Absorption System Based on a Quantum Cascade Laser Transmitter

    NASA Astrophysics Data System (ADS)

    Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred

    2016-06-01

    Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they can contribute to the global increase of greenhouse gas concentration. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents gas concentration measurements using a quantum cascade laser open path system (QCLOPS). The system retrieves the pathaveraged concentration of N2O and CH4 by collecting the backscattered light from a scattering target. The gas concentration measurements have a high temporal resolution (68 ms) and are achieved at sufficient range (up to 40 m, ~ 130 feet) with a detection limit of 2.6 ppm CH4 and 0.4 ppm for N2O. Given these characteristics, this system is promising for mobile/multidirectional remote detection and evaluation of gas leaks. The instrument is monostatic with a tunable QCL emitting at ~ 7.7 μm wavelength range. The backscattered radiation is collected by a Newtonian telescope and focused on an infrared light detector. Puffs of N2O and CH4 are released along the optical path to simulate a gas leak. The measured absorption spectrum is obtained using the thermal intra-pulse frequency chirped DFB QCL and is analyzed to obtain path averaged gas concentrations.

  20. Collection and analysis of organic acids in exhaust gas. Comparison of different methods

    NASA Astrophysics Data System (ADS)

    Zervas, E.; Montagne, X.; Lahaye, J.

    This paper reports the development of a specific method to identify organic acids in exhaust gases. The organic acids are collected in two impingers containing liquids (pure water or Na 2CO 3 1% aqueous solution) and four cartridges containing solids (silica, fluorisil, alumina B and alumina N). Once collected, the acids are eluted of the solids by a hot water stream. These traps performances, in terms of organic acids collection and elution efficiency, are evaluated and compared. Two sources are used to produce the gas flow containing organic acids: one generates a flow whose concentration is known and stable, the other produces organic acids among other combustion products. For eluted solutions analysis, two methods are used: isocratic ionic chromatography/conductivity detection and GC/FID. Their efficiency in separating 10 aliphatic acids are compared. Their characteristics such as detection limits, detection linearity, repeatability and possible interferences with other components found in exhaust gases are determined. The stability of the organic acids solutions is also studied. Lastly, the use of these methods is illustrated by the analysis of the gas-phase organic acids exhausted by a spark ignition and by a diesel engine.

  1. Pork meat increases iron absorption from a 5-day fully controlled diet when compared to a vegetarian diet with similar vitamin C and phytic acid content.

    PubMed

    Bach Kristensen, Mette; Hels, Ole; Morberg, Catrine; Marving, Jens; Bügel, Susanne; Tetens, Inge

    2005-07-01

    Meat increases absorption of non-haem iron in single-meal studies. The aim of the present study was to investigate, over a 5 d period, the potential increasing effect of consumption of pork meat in a whole diet on the fractional absorption of non-haem iron and the total absorption of iron, when compared to a vegetarian diet. A randomised cross-over design with 3 x 5 d whole-diet periods with diets containing Danish-produced meat, Polish-produced meat or a vegetarian diet was conducted. Nineteen healthy female subjects completed the study. All main meals in the meat diets contained 60 g of pork meat and all diets had high phytic acid content (1250 mumol/d). All main meals were extrinsically labelled with the radioactive isotope (59)Fe and absorption of iron was measured in a whole body counter. The non-haem iron absorption from the Danish meat diet was significantly higher compared to the vegetarian diet (P=0.031). The mean fractional absorption of non-haem iron was 7.9 (se1.1), 6.8 (se 1.0) and 5.3 (se 0.6) % for the Danish and Polish meat diets and vegetarian diet, respectively. Total absorption of iron was higher for both meat diets compared to the vegetarian diet (Danish meat diet: P=0.006, Polish meat diet: P=0.003). The absorption ratios of the present study were well in accordance with absorption ratios estimated using algorithms on iron bioavailability. Neither the meat diets nor the vegetarian diets fulfilled the estimated daily requirements of absorbed iron in spite of a meat intake of 180 g/d in the meat diets.

  2. Engineering Porous Organic Cage Crystals with Increased Acid Gas Resistance.

    PubMed

    Zhu, Guanghui; Hoffman, Christopher D; Liu, Yang; Bhattacharyya, Souryadeep; Tumuluri, Uma; Jue, Melinda L; Wu, Zili; Sholl, David S; Nair, Sankar; Jones, Christopher W; Lively, Ryan P

    2016-07-25

    Both known and new CC3-based porous organic cages are prepared and exposed to acidic SO2 in vapor and liquid conditions. Distinct differences in the stability of the CC3 cages exist depending on the chirality of the diamine linkers used. The acid catalyzed CC3 degradation mechanism is probed via in situ IR and a degradation pathway is proposed and supported with computational results. CC3 crystals synthesized with racemic mixtures of diaminocyclohexane exhibited enhanced stability compared to CC3-R and CC3-S. Confocal fluorescent microscope images reveal that the stability difference in CC3 species originates from an abundance of mesoporous grain boundaries in CC3-R and CC3-S, allowing facile access of aqueous SO2 throughout the crystal, promoting decomposition. These grain boundaries are absent from CC3 crystals made with racemic linkers. PMID:27253350

  3. Gas Phase Electronic Spectroscopy of 5-FLUOROSALICYLIC Acid.

    NASA Astrophysics Data System (ADS)

    Young, Justin W.; Fleisher, Adam J.; Pratt, David W.

    2010-06-01

    Methyl salicylate and its derivatives have generated large amounts of interest due to the possibility of intramolecular proton transfer in their electronically excited states (ESPT). Here, the excited state dynamics of 5-fluorosalicylic acid and its dimer will be discussed within the context of their vibrationally and rotationally resolved electronic spectra. Stark effect studies of the latter permit identification of specific conformers of 5FSA. However, some species exhibit broadened spectra, whereas others do not, suggesting a species-specific ESPT reaction. thanks

  4. Short-chain fatty acids and CO2 as regulators of Na+ and Cl- absorption in isolated sheep rumen mucosa.

    PubMed

    Gäbel, G; Vogler, S; Martens, H

    1991-01-01

    Unidirectional 22Na+ and 36Cl- fluxes were determined in short-circuited, stripped rumen mucosa from sheep by using the Ussing chamber technique. In both CO2/HCO3(-)-containing and CO2/HCO3(-)-free solutions, replacement of gluconate by short-chain fatty acids (SCFA, 39mM) significantly enhanced mucosal-to-serosal Na+ absorption without affecting the Cl- transport in the same direction. Short-chain fatty acid stimulation of Na+ transport was at least partly independent of Cl- and could almost completely be abolished by 1 mM mucosal amiloride, while stimulation of Na+ transport was enhanced by lowering the mucosal pH from 7.3 to 6.5. Similar to the SCFA action, raising the PCO2 in the mucosal bathing solution led to an increase in the amiloride-sensitive mucosal-to-serosal Na+ flux. Along with its effect on sodium transport, raising the PCO2 also stimulated chloride transport. The results are best explained by a model in which undissociated SCFA and/or CO2 permeate the cell membrane and produce a raise in intracellular H+ concentration. This stimulates an apical Na+/H+ exchange, leading to increased Na+ transport. The stimulatory effect of CO2 on Cl- transport is probably mediated by a Cl-/HCO3- exchange mechanism in the apical membrane. Binding of SCFA anions to that exchange as described for the rat distal colon (Binder and Mehta 1989) probably does not play a major role in the rumen.

  5. X-ray absorption and resonance raman spectroscopy of human myeloperoxidase at neutral and acid pH.

    PubMed

    Yue, K T; Taylor, K L; Kinkade, J M; Sinclair, R B; Powers, L S

    1997-04-01

    Myeloperoxidase (MPO), an important enzyme in the oxygen-dependent host defense system of human polymorphonuclear leukocytes, utilizes hydrogen peroxide to catalyze the production of hypochlorous acid, an oxidizing bactericidal agent. While MPO shows significant sequence homology with other peroxidases and this homology is particularly striking among the active-site residues, MPO exhibits unusual spectral features and the unique ability to catalyze the oxidation of chloride ions. We have investigated the MPO active-site with X-ray absorption (XAS) and resonance Raman (RRS) spectroscopies at neutral pH and also at the physiological acidic pH (pH approximately 3) and have compared these results with those of horseradish peroxidase (HRP). At pH 7.5, XAS results show that the iron heme active site is 6-coordinate where the distal ligand is likely nitrogen or oxygen, but not sulfur. The heme is distorted compared to HRP, other peroxidases, and heme compounds, but at pH approximately 3, the distal ligand is lost and the heme is less distorted. RRS results under identical pH conditions show that the skeletal core-size sensitive modes and v3 are shifted to higher frequency at pH approximately 3 indicating a 6- to 5-coordination change of high spin ferric heme. In addition, a new band at 270 cm(-1) is observed at pH approximately 3 which is consistent with the loss of the sixth ligand. The higher symmetry of the heme at pH approximately 3 is reflected by a single v4 mode in the (RRS) spectrum. HRP also loses its loosely associated distal water at this pH, but little change in heme distortion is observed. This change suggests that loss of the distal ligand in MPO releases stress on the heme which may facilitate binding of chloride ion.

  6. TECHNICAL AND OPERATING SUPPORT FOR PILOT DEMONSTRATION OF MORPHYSORB ACID GAS REMOVAL PROCESS

    SciTech Connect

    Nagaraju Palla; Dennis Leppin

    2003-06-30

    GTI and Krupp Uhde have been jointly developing advanced technology for removing high concentrations of acid gas from high-pressure natural gas for over a decade. This technology, the Morphysorb{reg_sign} process, based on N-formyl and N-acetyl morpholine mixtures, has now been tested in a large-scale facility and this paper presents preliminary results from acceptance testing at that facility. Earlier publications have discussed the bench-scale and pilot plant work that led up to this important milestone. The site was Duke Energy's new Kwoen sour gas upgrader near Chetwynd B.C., Canada. This facility has a nameplate capacity of 300 MMscfd of sour natural gas. The objective of the Morphysorb process at this site was to remove 33 MMscfd of acid gas (H{sub 2}S and CO{sub 2}) for reinjection downhole. This represents about half the acid gas present in the feed to the plant. In so doing, proportionately more of the plant ''sales'' gas, which is sent for final processing at the nearby Pine River plant, can be sent down the line without coming up against the sulfur removal capacity limits of Pine River plant, than could with other solvents that were evaluated. Other benefits include less loss of methane downhole with the rejected acid gas and lower circulation and recycle compression horsepower than with competitive solvents. On the downside, the process is expected to have higher solvent vaporization losses than competitive solvents, but this is a comparatively minor drawback when weighed against the value of the benefits. These benefits (and drawbacks) were developed into quantitative ''acceptance'' criteria, which will determine if the solvent will continue to be used at the site and for award of monetary bonuses to the process developer (GTI).

  7. TECHNICAL AND OPERATING SUPPORT FOR PILOT DEMONSTRATION OF MORPHYSORB ACID GAS REMOVAL PROCESS

    SciTech Connect

    Nagaraju Palla; Dennis Leppin

    2003-09-30

    GTI and Krupp Uhde have been jointly developing advanced technology for removing high concentrations of acid gas from high-pressure natural gas for over a decade. This technology, the Morphysorb{reg_sign} process, based on N-formyl and N-acetyl morpholine mixtures, has now been tested in a large-scale facility and this paper presents preliminary results from acceptance testing at that facility. Earlier publications have discussed the bench-scale and pilot plant work that led up to this important milestone. The site was Duke Energy's new Kwoen sour gas upgrader near Chetwynd B.C., Canada. This facility has a nameplate capacity of 300 MMscfd of sour natural gas. The objective of the Morphysorb process at this site was to remove 33 MMscfd of acid gas (H{sub 2}S and CO{sub 2}) for reinjection downhole. This represents about half the acid gas present in the feed to the plant. In so doing, proportionately more of the plant ''sales'' gas, which is sent for final processing at the nearby Pine River plant, can be sent down the line without coming up against the sulfur removal capacity limits of Pine River plant, than could with other solvents that were evaluated. Other benefits include less loss of methane downhole with the rejected acid gas and lower circulation and recycle compression horsepower than with competitive solvents. On the downside, the process is expected to have higher solvent vaporization losses than competitive solvents, but this is a comparatively minor drawback when weighed against the value of the benefits. These benefits (and drawbacks) were developed into quantitative ''acceptance'' criteria, which will determine if the solvent will continue to be used at the site and for award of monetary bonuses to the process developer (GTI).

  8. Gas Phase Measurements of Mono-Fluoro Acids and the Dimer of 3-FLUORO-BENZOIC Acid

    NASA Astrophysics Data System (ADS)

    Daly, Adam M.; Carey, Spencer J.; Pejlovas, Aaron M.; Li, Kexin; Kang, Lu; Kukolich, Stephen G.

    2016-06-01

    The gas phase homodimer of 3-fluorobenzoic acid was detected and the spectra showed evidence of proton tunneling. Experimental rotational constants are A(0^+)= 1151.8(5), B(0^+)=100.3(5), C(0^+)= 87.64(3) MHz and A(0^-)=1152.2(5), B(0^-)= 100.7(5), C(0^-)=88.85(3) MHz for the two ground vibrational states split by the proton tunneling motion. The tunneling splitting (ΔE) is approximately 560 MHz. This homodimer appears to be the largest carboxylic acid dimer observed with F-T microwave spectroscopy. Additionally, the microwave spectra of the mono-fluoro-benozic acids, (2-fluoro, 3-floro and 4-fluoro) benzoic acid have been measured in the frequency range of 4-14 GHz using a pulsed beam Fourier Transform microwave spectrometer. Measured rotational transition lines were assigned and fit using a rigid rotor Hamiltonian. Assignments were made for 3 conformers of 2-fluorobenzoic acid, 2 conformers of 3-fluorobenzoic acid and 1 conformer of 4-fluorobenzoic acid. Supported by the NSF CHE-1057796

  9. Gas phase measurements of mono-fluoro-benzoic acids and the dimer of 3-fluoro-benzoic acid

    NASA Astrophysics Data System (ADS)

    Daly, Adam M.; Carey, Spencer J.; Pejlovas, Aaron M.; Li, Kexin; Kang, Lu; Kukolich, Stephen G.

    2015-04-01

    The microwave spectrum of the mono-fluoro-benzoic acids, 2-fluoro-, 3-fluoro-, and 4-fluoro-benzoic acid have been measured in the frequency range of 4-14 GHz using a pulsed beam Fourier transform microwave spectrometer. Measured rotational transition lines were assigned and fit using a rigid rotor Hamiltonian. Assignments were made for 3 conformers of 2-fluorobenzoic acid, 2 conformers of 3-fluorobenzoic acid, and 1 conformer of 4-fluorobenzoic acid. Additionally, the gas phase homodimer of 3-fluorobenzoic acid was detected, and the spectra showed evidence of proton tunneling. Experimental rotational constants are A(0+) = 1151.8(5), B(0+) = 100.3(5), C(0+) = 87.64(3) MHz and A(0-) = 1152.2(5), B(0-) = 100.7(5), C(0-) = 88.85(3) MHz for the two ground vibrational states split by the proton tunneling motion. The tunneling splitting (ΔE) is approximately 560 MHz. This homodimer appears to be the largest carboxylic acid dimer observed with F-T microwave spectroscopy.

  10. Gas phase measurements of mono-fluoro-benzoic acids and the dimer of 3-fluoro-benzoic acid

    SciTech Connect

    Daly, Adam M.; Carey, Spencer J.; Pejlovas, Aaron M.; Li, Kexin; Kukolich, Stephen G.; Kang, Lu

    2015-04-14

    The microwave spectrum of the mono-fluoro-benzoic acids, 2-fluoro-, 3-fluoro-, and 4-fluoro-benzoic acid have been measured in the frequency range of 4-14 GHz using a pulsed beam Fourier transform microwave spectrometer. Measured rotational transition lines were assigned and fit using a rigid rotor Hamiltonian. Assignments were made for 3 conformers of 2-fluorobenzoic acid, 2 conformers of 3-fluorobenzoic acid, and 1 conformer of 4-fluorobenzoic acid. Additionally, the gas phase homodimer of 3-fluorobenzoic acid was detected, and the spectra showed evidence of proton tunneling. Experimental rotational constants are A(0{sup +}) = 1151.8(5), B(0{sup +}) = 100.3(5), C(0{sup +}) = 87.64(3) MHz and A(0{sup −}) = 1152.2(5), B(0{sup −}) = 100.7(5), C(0{sup −}) = 88.85(3) MHz for the two ground vibrational states split by the proton tunneling motion. The tunneling splitting (ΔE) is approximately 560 MHz. This homodimer appears to be the largest carboxylic acid dimer observed with F-T microwave spectroscopy.

  11. In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen.

    PubMed

    Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L

    2012-10-01

    The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS class III and BCS class II have been proposed, in particular, BCS class II weak acids. However, a discrepancy between the in vivo BE results and in vitro dissolution results for BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH of 6.0. Further the experimental dissolution of ibuprofen tablets in a low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol l (-1) /pH) was dramatically reduced compared with the dissolution in SIF (the average buffer capacity 12.6 mmol l (-1) /pH). Thus these predictions for the oral absorption of BCS class II acids indicate that the absorption patterns depend largely on the intestinal pH and buffer strength and must be considered carefully for a bioequivalence test. Simulation software may be a very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard.

  12. Determination of Free Fatty Acids and Triglycerides by Gas Chromatography Using Selective Esterification Reactions

    SciTech Connect

    Kail, Brian W; Link, Dirk D; Morreale, Bryan D

    2012-11-01

    A method for selectively determining both free fatty acids (FFA) and triacylglycerides (TAGs) in biological oils was investigated and optimized using gas chromatography after esterification of the target species to their corresponding fatty acid methyl esters (FAMEs). The method used acid catalyzed esterification in methanolic solutions under conditions of varying severity to achieve complete conversion of more reactive FFAs while preserving the concentration of TAGs. Complete conversion of both free acids and glycerides to corresponding FAMEs was found to require more rigorous reaction conditions involving heating to 120°C for up to 2 h. Method validation was provided using gas chromatography–flame ionization detection, gas chromatography–mass spectrometry, and liquid chromatography–mass spectrometry. The method improves on existing methods because it allows the total esterified lipid to be broken down by FAMEs contributed by FFA compared to FAMEs from both FFA and TAGs. Single and mixed-component solutions of pure fatty acids and triglycerides, as well as a sesame oil sample to simulate a complex biological oil, were used to optimize the methodologies. Key parameters that were investigated included: HCl-to-oil ratio, temperature and reaction time. Pure free fatty acids were found to esterify under reasonably mild conditions (10 min at 50°C with a 2.1:1 HCl to fatty acid ratio) with 97.6 ± 2.3% recovery as FAMEs, while triglycerides were largely unaffected under these reaction conditions. The optimized protocol demonstrated that it is possible to use esterification reactions to selectively determine the free acid content, total lipid content, and hence, glyceride content in biological oils. This protocol also allows gas chromatography analysis of FAMEs as a more ideal analyte than glyceride species in their native state.

  13. [Comparative studies on the enzymatic absorption of protein hydrolysates in the small intestine of the rat. 3. The absorption trypsins thermatatic and trypsin-thermatatic hydrolysates of a fava bean protein isolate compared to an equimolar mixture of free amino acids].

    PubMed

    Proll, J; Friedrich, M; Noack, J; Noack, R

    1985-01-01

    Tryptic, thermitatic, and tryptic-thermitatic Faba bean protein hydrolyzates as well as their equimolar mixture of amino acids were perfused through proximal and distal parts of the intestine (10 cm length) of non-narcotized rats. The total amino-acid concentration of the perfused solution was 50 mM. The absorption of nitrogen and total amino acids from the tryptic and tryptic-thermitatic hydrolyzates was lower than that from the amino-acid mixture, the absorption from the thermitatic hydrolyzate was in accordance with that from the amino-acid mixture. The absorption pattern of the amino acids which preferably undergo a peptidic absorption is similar with the three hydrolyzates: in the proximal intestinal part this concerns glutamic acid and serine, in the distal intestinal part--methionine, alanine, glycin, and serine. The absorption pattern of the amino acids is different between the three hydrolyzates and the amino-acid mixture. Between the absorption pattern of the amino acids from the three hydrolyzates little differences were evident only in the proximal intestinal part. The coefficients of variation of the tryptic-thermitatic hydrolyzates are in accordance with those of the amino-acid mixture, whereas that of the thermitatic hydrolyzates is significantly lower. In the distal intestinal part all supplied forms are more rapidly absorbed than in the proximal part of the intestine.

  14. Preparation of sphingolipid fatty acid methyl esters for determination by gas-liquid chromatography.

    PubMed

    MacGee, J; Williams, M G

    1981-01-30

    Sphingolipid fatty acids are first converted to a mixture of free acids and their n-butyl esters by heating the specimen at 85 degree C in aqueous butanolic hydrogen chloride; the butyl esters are then saponified with methanolic potassium hydroxide. After acidification and extraction into hexane, the fatty acids are extracted into a very small volume of aqueous trimethyl(m-trifluorotolyl)ammonium hydroxide (TMTFTH), injection of an aliquot of the TMTFTH extract into the gas chromatograph yields the fatty acid methyl esters by pyrolytic methylation of the quaternary ammonium salts of the fatty acids. The preparation of a specimen ready for the gas--liquid chromatographic (GLC) analysis with quantitative recovery of the sphingolipid fatty acids can be accomplished in less than 2 h. By comparison, none of a number of well-accepted techniques for the release of sphingomyelin fatty acids by hydrolysis or methanolysis released the fatty acids quantitatively in less than 3 h, and all required additional manipulations before GLC analysis. PMID:7217267

  15. Ammonia gas sensing behavior of tanninsulfonic acid doped polyaniline-TiO₂ composite.

    PubMed

    Bairi, Venu Gopal; Bourdo, Shawn E; Sacre, Nicolas; Nair, Dev; Berry, Brian C; Biris, Alexandru S; Viswanathan, Tito

    2015-10-16

    A highly active tannin doped polyaniline-TiO₂ composite ammonia gas sensor was developed and the mechanism behind the gas sensing activity was reported for the first time. A tanninsulfonic acid doped polyaniline (TANIPANI)-titanium dioxide nanocomposite was synthesized by an in situ polymerization of aniline in the presence of tanninsulfonic acid and titanium dioxide nanoparticles. X-ray diffraction and thermogravimetric analysis were utilized to determine the incorporation of TiO₂ in TANIPANI matrix. UV-Visible and infrared spectroscopy studies provided information about the electronic interactions among tannin, polyaniline, and TiO₂. Scanning electron microscopy (SEM) along with energy dispersive X-ray spectroscopy (EDS) and atomic force microscopy (AFM) surface analysis techniques were used to investigate the metal oxide dispersions inside polyaniline matrix. Gas sensors were prepared by spin coating solutions of TANIPANI-TiO₂ and TANIPANI composites onto glass slides. Sensors were tested at three different concentrations (20 ppm, 40 ppm, and 60 ppm) of ammonia gas at ambient temperature conditions by measuring the changes in surface resistivity of the films with respect to time. Ammonia gas sensing plots are presented showing the response values, response times and recovery times. The TANIPANI-TiO₂ composite exhibited better response and shorter recovery times when compared to TANIPANI control and other polyaniline composites that have been reported in the literature. For the first time a proposed mechanism of gas sensing basing on the polaron band localization and its effects on the gas sensing behavior of polyaniline are reported.

  16. Preparation of Oxaliplatin-Deoxycholic Acid Derivative Nanocomplexes and In Vivo Evaluation of Their Oral Absorption and Tumor Growth Suppression.

    PubMed

    Jeon, Ok-Cheol; Byun, Youngro; Park, Jin Woo

    2016-02-01

    To prepare orally available oxaliplatin (OXA), nanocomplexes were formed by ionic conjugation of OXA with the deoxycholic acid derivative, Nalpha-deoxycholy-L-lysyl-methylester (DCK), as an oral absorption enhancer. We characterized the DCK-conjugated OXA nanocomplexes by differential scanning calorimetry, particle size determination, and morphological analysis. To evaluate the effects of DCK on the intestinal permeability of OXA, we assessed the solubilities and partition coefficients of OXA and the OXA/DCK nanocomplex, and then conducted in vitro artificial intestinal membrane and Caco-2 cell permeability studies. Finally, bioavailability in rats and tumor growth inhibition in the squamous cell carcinoma (SCC7) model after oral administration of the OXA/DCK nanocomplex were investigated compared to pure OXA. Analysis of the ionic complex formation of OXA with DCK revealed that OXA existed in an amorphous form within the complex, resulting in for- mation of nanocomp;exes (35.05 +/- 4.48 nm in diameter). The solubility of OXA in water was approximately 7.07 mg/mL, whereas the water solubility of OXA/DCK was approximately 2.04 mg/mL and its partition coefficient was approximately 1.2-fold higher than that of OXA. The in vitro intestinal membrane permeability of OXA was significantly enhanced by complex formation with DCK. An in vivo pharmacokinetic study revealed that the Cm value of the OXA/DCK nanocomplex was 3.18-fold higher than that of OXA (32.22 +/- 10.24 ng/mL), and the resulting oral bioavailability of the OXA/DCK nanocomplex was 39.3-fold more than that of OXA. Furthermore, the oral administration of OXA/DCK significantly inhibited tumor growth in SCC7-bearing mice, and maximally inhibited tumor volume by 54% compared to the control. These findings demonstrate the therapeutic potential of the OXA/DCK nanocomplex as an oral anti-cancer therapy because it improves the oral absorption of OXA, which may improve patient compliance and expand the therapeutic

  17. High-Speed Multiplexed Spatiotemporally Resolved Measurements of Exhaust Gas Recirculation Dynamics in a Multi-Cylinder Engine Using Laser Absorption Spectroscopy.

    PubMed

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2016-04-01

    The need for more environmentally friendly and efficient energy conversion is of paramount importance in developing and designing next-generation internal combustion (IC) engines for transportation applications. One effective solution to reducing emissions of mono-nitrogen oxides (NOx) is exhaust gas recirculation (EGR), which has been widely implemented in modern vehicles. However, cylinder-to-cylinder and cycle-to-cycle variations in the charge-gas uniformity can be a major barrier to optimum EGR implementation on multi-cylinder engines, and can limit performance, stability, and efficiency. Precise knowledge and fine control over the EGR system is therefore crucial, particularly for optimizing advanced engine concepts such as reactivity controlled compression ignition (RCCI). An absorption-based laser diagnostic was developed to study spatiotemporal charge-gas distributions in an IC engine intake manifold in real-time. The laser was tuned to an absorption band of carbon dioxide (CO2), a standard exhaust-gas marker, near 2.7 µm. The sensor was capable of probing four separate measurement locations simultaneously, and independently analyzing EGR fraction at speeds of 5 kHz (1.2 crank-angle degree (CAD) at 1 k RPM) or faster with high accuracy. The probes were used to study spatiotemporal EGR non-uniformities in the intake manifold and ultimately promote the development of more efficient and higher performance engines. PMID:27091946

  18. High-Speed Multiplexed Spatiotemporally Resolved Measurements of Exhaust Gas Recirculation Dynamics in a Multi-Cylinder Engine Using Laser Absorption Spectroscopy

    DOE PAGES

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E.; Perfetto, Anthony; Geckler, Sam; Partridge, William P.

    2016-04-01

    The need for more environmentally friendly and efficient energy conversion is of paramount importance in developing and designing next-generation internal combustion (IC) engines for transportation applications. One effective solution to reducing emissions of mono-nitrogen oxides (NOx) is exhaust gas recirculation (EGR), which has been widely implemented in modern vehicles. However, cylinder-to-cylinder and cycle-to-cycle variations in the charge-gas uniformity can be a major barrier to optimum EGR implementation on multi-cylinder engines, and can limit performance, stability, and efficiency. Precise knowledge and fine control over the EGR system is thus crucial, particularly for optimizing advanced engine concepts such as reactivity controlled compressionmore » ignition (RCCI). An absorption-based laser diagnostic was developed to study spatiotemporal charge-gas distributions in an IC engine intake manifold in real-time. The laser was tuned to an absorption band of carbon dioxide (CO2), a standard exhaust-gas marker, near 2.7 µm. The sensor was capable of probing four separate measurement locations simultaneously, and independently analyzing EGR fraction at speeds of 5 kHz (1.2 crank-angle degree (CAD) at 1 k RPM) or faster with high accuracy. Lastly, the probes were used to study spatiotemporal EGR non-uniformities in the intake manifold and ultimately promote the development of more efficient and higher performance engines.« less

  19. High-Speed Multiplexed Spatiotemporally Resolved Measurements of Exhaust Gas Recirculation Dynamics in a Multi-Cylinder Engine Using Laser Absorption Spectroscopy.

    PubMed

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2016-04-01

    The need for more environmentally friendly and efficient energy conversion is of paramount importance in developing and designing next-generation internal combustion (IC) engines for transportation applications. One effective solution to reducing emissions of mono-nitrogen oxides (NOx) is exhaust gas recirculation (EGR), which has been widely implemented in modern vehicles. However, cylinder-to-cylinder and cycle-to-cycle variations in the charge-gas uniformity can be a major barrier to optimum EGR implementation on multi-cylinder engines, and can limit performance, stability, and efficiency. Precise knowledge and fine control over the EGR system is therefore crucial, particularly for optimizing advanced engine concepts such as reactivity controlled compression ignition (RCCI). An absorption-based laser diagnostic was developed to study spatiotemporal charge-gas distributions in an IC engine intake manifold in real-time. The laser was tuned to an absorption band of carbon dioxide (CO2), a standard exhaust-gas marker, near 2.7 µm. The sensor was capable of probing four separate measurement locations simultaneously, and independently analyzing EGR fraction at speeds of 5 kHz (1.2 crank-angle degree (CAD) at 1 k RPM) or faster with high accuracy. The probes were used to study spatiotemporal EGR non-uniformities in the intake manifold and ultimately promote the development of more efficient and higher performance engines.

  20. Retinoic acid binding properties of the lipocalin member beta-lactoglobulin studied by circular dichroism, electronic absorption spectroscopy and molecular modeling methods.

    PubMed

    Zsila, Ferenc; Bikádi, Zsolt; Simonyi, Miklós

    2002-12-01

    Interaction between the Vitamin A derivative all-trans retinoic acid and the lipocalin member bovine beta-lactoglobulin (BLG) was studied by circular dichroism (CD) and electronic absorption spectroscopy at different pH values. In neutral and alkaline solutions achiral retinoic acid forms a non-covalent complex with the protein as indicated by the appearance of a negative Cotton effect around 347 nm associated to the narrowed and red shifted pi-pi(*) absorption band of the ligand. The induced optical activity is attributed to the helical distortion of the conjugated chain caused by the chiral protein binding environment. As the disappearing CD activity showed in the course of CD-pH titration experiment, retinoic acid molecules dissociate from BLG upon acidification but this release is completely reversible as proved by the reconstitution of the CD and absorption spectra after setting the pH back to neutral. This unique behavior of the complex is explained by the conformational change of BLG (Tanford transition) which involves a movement of the EF loop at the entrance of the central cavity from open to closed conformation in the course of pH lowering. From these results it was inferred that retinoic acid binds within the hydrophobic calyx of the beta-barrel. PMID:12429354

  1. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson

    2012-05-15

    A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.

  2. Monitoring water stable isotope composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rothfuss, Youri; Vereecken, Harry; Brüggemann, Nicolas

    2013-04-01

    The water stable isotopologues 1H2H16O and 1H218O are powerful tracers of processes occurring in nature. Their slightly different masses as compared to the most abundant water isotopologue (1H216O) affect their thermodynamic (e.g. during chemical equilibrium reactions or physical phase transitions with equilibration) and kinetic (liquid and vapor phases transport processes and chemical reactions without equilibration) properties. This results in measurable differences of the isotopic composition of water within or between the different terrestrial ecosystem compartments (i.e. sub-soil, soil, surface waters, plant, and atmosphere). These differences can help addressing a number of issues, among them water balance closure and flux partitioning from the soil-plant-atmosphere continuum at the field to regional scales. In soils particularly, the isotopic composition of water (δ2H and δ18O) provides qualitative information about whether water has only infiltrated or already been re-evaporated since the last rainfall event or about the location of the evaporation front. From water stable isotope composition profiles measured in soils, it is also possible, under certain hypotheses, to derive quantitative information such as soil evaporation flux and the identification of root water uptake depths. In addition, water stable isotopologues have been well implemented into physically based Soil-Vegetation-Atmosphere Transfer models (e.g. SiSPAT-Isotope; Soil-Litter iso; TOUGHREACT) and have demonstrated their potential. However, the main disadvantage of the isotope methodology is that, contrary to other soil state variables that can be monitored over long time periods, δ2H and δ18O are typically analyzed following destructive sampling. Here, we present a non-destructive method for monitoring soil liquid water δ2H and δ18O over a wide range of water availability conditions and temperatures by sampling and measuring water vapor equilibrated with soil water using gas

  3. Simultaneous high-speed gas property measurements at the exhaust gas recirculation cooler exit and at the turbocharger inlet of a multicylinder diesel engine using diode-laser-absorption spectroscopy.

    PubMed

    Jatana, Gurneesh S; Magee, Mark; Fain, David; Naik, Sameer V; Shaver, Gregory M; Lucht, Robert P

    2015-02-10

    A diode-laser-absorption-spectroscopy-based sensor system was used to perform high-speed (100 Hz to 5 kHz) measurements of gas properties (temperature, pressure, and H(2)O vapor concentration) at the turbocharger inlet and at the exhaust gas recirculation (EGR) cooler exit of a diesel engine. An earlier version of this system was previously used for high-speed measurements of gas temperature and H(2)O vapor concentration in the intake manifold of the diesel engine. A 1387.2 N m tunable distributed feedback diode laser was used to scan across multiple H(2)O absorption transitions, and the direct absorption signal was recorded using a high-speed data acquisition system. Compact optical connectors were designed to conduct simultaneous measurements in the intake manifold, the EGR cooler exit, and the turbocharger inlet of the engine. For measurements at the turbocharger inlet, these custom optical connectors survived gas temperatures as high as 800 K using a simple and passive arrangement in which the temperature-sensitive components were protected from high temperatures using ceramic insulators. This arrangement reduced system cost and complexity by eliminating the need for any active water or oil cooling. Diode-laser measurements performed during steady-state engine operation were within 5% of the thermocouple and pressure sensor measurements, and within 10% of the H(2)O concentration values derived from the CO(2) gas analyzer measurements. Measurements were also performed in the engine during transient events. In one such transient event, where a step change in fueling was introduced, the diode-laser sensor was able to capture the 30 ms change in the gas properties; the thermocouple, on the other hand, required 7.4 s to accurately reflect the change in gas conditions, while the gas analyzer required nearly 600 ms. To the best of our knowledge, this is the first implementation of such a simple and passive arrangement of high-temperature optical connectors as well

  4. Free-free absorption of infrared radiation in collisions of electrons with neutral rare-gas atoms

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    A relationship between the inverse bremsstrahlung absorption cross section and the electron neutral momentum transfer cross section has been utilized to determine the infrared free-free continuum absorption coefficient for the negative ions of helium, neon, argon, krypton, and xenon. The values of the momentum transfer cross section for this calculation have been obtained from experimental measurements. Analytical expressions for the absorption coefficient have also been developed. From the results of this calculation, it is possible to determine the absorption coefficient per unit electron density per neutral atom for temperatures in the range from 2500 to 25,000 K. The results are compared with those from tabulations of previous calculations and those computed from theoretical values of the phase shifts for the elastic scattering of electrons by neutral atoms.

  5. Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation

    PubMed Central

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Lee, Bo Ram; Park, Da-Hye; Han, Kunwoo; Lee, Kun-Hong

    2013-01-01

    As the foundation of energy industry moves towards gas, flow assurance technology preventing pipelines from hydrate blockages becomes increasingly significant. However, the principle of hydrate inhibition is still poorly understood. Here, we examined natural hydrophobic amino acids as novel kinetic hydrate inhibitors (KHIs), and investigated hydrate inhibition phenomena by using them as a model system. Amino acids with lower hydrophobicity were found to be better KHIs to delay nucleation and retard growth, working by disrupting the water hydrogen bond network, while those with higher hydrophobicity strengthened the local water structure. It was found that perturbation of the water structure around KHIs plays a critical role in hydrate inhibition. This suggestion of a new class of KHIs will aid development of KHIs with enhanced biodegradability, and the present findings will accelerate the improved control of hydrate formation for natural gas exploitation and the utilization of hydrates as next-generation gas capture media. PMID:23938301

  6. Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation

    NASA Astrophysics Data System (ADS)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Lee, Bo Ram; Park, Da-Hye; Han, Kunwoo; Lee, Kun-Hong

    2013-08-01

    As the foundation of energy industry moves towards gas, flow assurance technology preventing pipelines from hydrate blockages becomes increasingly significant. However, the principle of hydrate inhibition is still poorly understood. Here, we examined natural hydrophobic amino acids as novel kinetic hydrate inhibitors (KHIs), and investigated hydrate inhibition phenomena by using them as a model system. Amino acids with lower hydrophobicity were found to be better KHIs to delay nucleation and retard growth, working by disrupting the water hydrogen bond network, while those with higher hydrophobicity strengthened the local water structure. It was found that perturbation of the water structure around KHIs plays a critical role in hydrate inhibition. This suggestion of a new class of KHIs will aid development of KHIs with enhanced biodegradability, and the present findings will accelerate the improved control of hydrate formation for natural gas exploitation and the utilization of hydrates as next-generation gas capture media.

  7. Keto acid profiling analysis as ethoxime/tert-butyldimethylsilyl derivatives by gas chromatography-mass spectrometry.

    PubMed

    Nguyen, Duc-Toan; Lee, Gwang; Paik, Man-Jeong

    2013-01-15

    Organic acids, including keto acids, are key intermediates of central pathways in cellular metabolism. In this study, a comprehensive and reliable method was developed and optimized for the simultaneous measurement of 17 keto acids in various biological samples. The keto acids were converted to solvent extractable forms by ethoximation followed by tert-butyldimethylsilylation for direct analysis by gas chromatography-mass spectrometry in selected ion monitoring mode. The proposed method was precise (0.05-8.3, % RSD) and accurate (-10.5 to 5.3, % RE) with low limit of detection (0.01-0.5ng/mL) and good linearity (r>0.995) in the range of 0.01-5.0μg/mL. This was suitable for profiling analysis of targeted keto acids in human plasma, urine and rat brain tissue.

  8. The basic chemistry of gas recombination in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Nelson, Robert

    2001-01-01

    Oxygen-recombination chemistry has been wedded to traditional lead-acid battery technology to produce so-called sealed, or valve-regulated, lead-acid products. Early attempts to incorporate recombination into lead-acid batteries were unsuccessful because of excessive cost, size, and/or complexity, and none were effectively commercialized. Over the past 20 years, recombination systems have been developed and are under going an extensive program of definition and refinement at many battery companies. This paper presents the basic chemistry of oxygen recombination in lead-acid cells and briefly compares it with the more highly developed nickel-cadmium system, which also operates on the oxygen cycle. Aspects of gas and thermal management relevant to valve-regulated lead-acid batteries are discussed in some detail.

  9. Formation of gas-phase carbonyls from heterogeneous oxidation of polyunsaturated fatty acids at the air-water interface and of the sea surface microlayer

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Gonzalez, L.; Leithead, A.; Finewax, Z.; Thalman, R.; Vlasenko, A.; Vagle, S.; Miller, L. A.; Li, S.-M.; Bureekul, S.; Furutani, H.; Uematsu, M.; Volkamer, R.; Abbatt, J.

    2014-02-01

    Motivated by the potential for reactive heterogeneous chemistry occurring at the ocean surface, gas-phase products were observed when a reactive sea surface microlayer (SML) component, i.e. the polyunsaturated fatty acids (PUFA) linoleic acid (LA), was exposed to gas-phase ozone at the air-seawater interface. Similar oxidation experiments were conducted with SML samples collected from two different oceanic locations, in the eastern equatorial Pacific Ocean and from the west coast of Canada. Online proton-transfer-reaction mass spectrometry (PTR-MS) University of Colorado light-emitting diode cavity-enhanced differential optical absorption spectroscopy (LED-CE-DOAS) were used to detect oxygenated gas-phase products from the ozonolysis reactions. The LA studies indicate that oxidation of a PUFA monolayer on seawater gives rise to prompt and efficient formation of gas-phase aldehydes. The products are formed via the decomposition of primary ozonides which form upon the initial reaction of ozone with the carbon-carbon double bonds in the PUFA molecules. In addition, two highly reactive dicarbonyls, malondialdehyde (MDA) and glyoxal, were also generated, likely as secondary products. Specific yields relative to reactant loss were 78%, 29%, 4% and < 1% for n-hexanal, 3-nonenal, MDA and glyoxal, respectively, where the yields for MDA and glyoxal are likely lower limits. Heterogeneous oxidation of SML samples confirm for the first time that similar carbonyl products are formed via ozonolysis of environmental samples.

  10. Gas-Phase Reactivity of Carboxylic Acid Functional Groups with Carbodiimides

    PubMed Central

    Prentice, Boone M.; Gilbert, Joshua D.; Stutzman, John R.; Forrest, William P.; McLuckey, Scott A.

    2012-01-01

    Gas-phase modification of carboxylic acid functionalities is performed via ion/ion reactions with carbodiimide reagents [N-cyclohexyl-N′-(2-morpholinoethyl)carbodiimide (CMC) and [3-(3-Ethylcarbodiimide-1-yl)propyl]trimethylaminium (ECPT). Gas-phase ion/ion covalent chemistry requires the formation of a long-lived complex. In this instance, the complex is stabilized by an electrostatic interaction between the fixed charge quaternary ammonium group of the carbodiimide reagent cation and the analyte dianion. Subsequent activation results in characteristic loss of an isocyanate derivative from one side of the carbodiimide functionality, a signature for this covalent chemistry. The resulting amide bond is formed on the analyte at the site of the original carboxylic acid. Reactions involving analytes that do not contain available carboxylic acid groups (e.g., they have been converted to sodium salts) or reagents that do not have the carbodiimide functionality do not undergo a covalent reaction. This chemistry is demonstrated using PAMAM generation 0.5 dendrimer, ethylenediaminetetraacetic acid (EDTA), and the model peptide DGAILDGAILD. This work demonstrates the selective gas-phase covalent modification of carboxylic acid functionalities. PMID:23208744

  11. Metal interferences and their removal prior to the determination of As(T) and As(III) in acid mine waters by hydride generation atomic absorption spectrometry

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ball, James W.

    2003-01-01

    Hydride generation atomic absorption spectrometry (HGAAS) is a sensitive and selective method for the determination of total arsenic (arsenic(III) plus arsenic(V)) and arsenic(III); however, it is subject to metal interferences for acid mine waters. Sodium borohydride is used to produce arsine gas, but high metal concentrations can suppress arsine production. This report investigates interferences of sixteen metal species including aluminum, antimony(III), antimony(V), cadmium, chromium(III), chromium(IV), cobalt, copper(II), iron(III), iron(II), lead, manganese, nickel, selenium(IV), selenium(VI), and zinc ranging in concentration from 0 to 1,000 milligrams per liter and offers a method for removing interfering metal cations with cation exchange resin. The degree of interference for each metal without cation-exchange on the determination of total arsenic and arsenic(III) was evaluated by spiking synthetic samples containing arsenic(III) and arsenic(V) with the potential interfering metal. Total arsenic recoveries ranged from 92 to 102 percent for all metals tested except antimony(III) and antimony(V) which suppressed arsine formation when the antimony(III)/total arsenic molar ratio exceeded 4 or the antimony(V)/total arsenic molar ratio exceeded 2. Arsenic(III) recoveries for samples spiked with aluminum, chromium(III), cobalt, iron(II), lead, manganese, nickel, selenium(VI), and zinc ranged from 84 to 107 percent over the entire concentration range tested. Low arsenic(III) recoveries occurred when the molar ratios of metals to arsenic(III) were copper greater than 120, iron(III) greater than 70, chromium(VI) greater than 2, cadmium greater than 800, antimony(III) greater than 3, antimony(V) greater than 12, or selenium(IV) greater than 1. Low recoveries result when interfering metals compete for available sodium borohydride, causing incomplete arsine production, or when the interfering metal oxidizes arsenic(III). Separation of interfering metal cations using

  12. Prediction of two-photon absorption enhancement in red fluorescent protein chromophores made from non-canonical amino acids.

    PubMed

    Salem, M Alaraby; Twelves, Isaac; Brown, Alex

    2016-09-21

    Two-photon spectroscopy of fluorescent proteins is a powerful bio-imaging tool known for deep tissue penetration and little cellular damage. Being less sensitive than the one-photon microscopy alternatives, a protein with a large two-photon absorption (TPA) cross-section is needed. Here, we use time-dependent density functional theory (TD-DFT) at the B3LYP and CAM-B3LYP/6-31+G(d,p) levels of theory to screen twenty-two possible chromophores that can be formed upon replacing the amino-acid Tyr66 that forms the red fluorescent protein (RFP) chromophore with a non-canonical amino acid. The two-level model for TPA was used to assess the properties (i.e., transition dipole moment, permanent dipole moment difference, and the angle between them) leading to the TPA cross-sections determined via response theory. Computing TPA cross-sections with B3LYP and CAM-B3LYP yields similar overall trends. Results using both functionals agree that the RFP-derived model of the Gold Fluorescent Protein chromophore (Model 20) has the largest intrinsic TPA cross-section at the optimized geometry. TPA was further computed for selected chromophores following conformational changes: variation of both the dihedral angle of the acylimine moiety and the tilt and twist angles between the rings of the chromophore. The TPA cross-section assumed an oscillatory trend with the rotation of the acylimine dihedral, and the TPA is maximized in the planar conformation for almost all models. Model 21 (a hydroxyquinoline derivative) is shown to be comparable to Model 20 in terms of TPA cross-section. The conformational study on Model 21 shows that the acylimine angle has a much stronger effect on the TPA than its tilt and twist angles. Having an intrinsic TPA ability that is more than 7 times that of the native RFP chromophore, Models 20 and 21 appear to be very promising for future experimental investigation. PMID:27534378

  13. Prediction of two-photon absorption enhancement in red fluorescent protein chromophores made from non-canonical amino acids.

    PubMed

    Salem, M Alaraby; Twelves, Isaac; Brown, Alex

    2016-09-21

    Two-photon spectroscopy of fluorescent proteins is a powerful bio-imaging tool known for deep tissue penetration and little cellular damage. Being less sensitive than the one-photon microscopy alternatives, a protein with a large two-photon absorption (TPA) cross-section is needed. Here, we use time-dependent density functional theory (TD-DFT) at the B3LYP and CAM-B3LYP/6-31+G(d,p) levels of theory to screen twenty-two possible chromophores that can be formed upon replacing the amino-acid Tyr66 that forms the red fluorescent protein (RFP) chromophore with a non-canonical amino acid. The two-level model for TPA was used to assess the properties (i.e., transition dipole moment, permanent dipole moment difference, and the angle between them) leading to the TPA cross-sections determined via response theory. Computing TPA cross-sections with B3LYP and CAM-B3LYP yields similar overall trends. Results using both functionals agree that the RFP-derived model of the Gold Fluorescent Protein chromophore (Model 20) has the largest intrinsic TPA cross-section at the optimized geometry. TPA was further computed for selected chromophores following conformational changes: variation of both the dihedral angle of the acylimine moiety and the tilt and twist angles between the rings of the chromophore. The TPA cross-section assumed an oscillatory trend with the rotation of the acylimine dihedral, and the TPA is maximized in the planar conformation for almost all models. Model 21 (a hydroxyquinoline derivative) is shown to be comparable to Model 20 in terms of TPA cross-section. The conformational study on Model 21 shows that the acylimine angle has a much stronger effect on the TPA than its tilt and twist angles. Having an intrinsic TPA ability that is more than 7 times that of the native RFP chromophore, Models 20 and 21 appear to be very promising for future experimental investigation.

  14. TECHNICAL AND OPERATING SUPPORT FOR PILOT DEMONSTRATION OF MORPHYSORB ACID GAS REMOVAL PROCESS

    SciTech Connect

    Nagaraju Palla; Dennis Leppin

    2004-02-01

    Over the past 14 years, the Gas Technology Institute and jointly with Uhde since 1997 developing Morphysorb{reg_sign} a new physical solvent-based acid gas removal process. Based on extensive laboratory, bench, pilot-plant scale experiments and computer simulations, DEGT Gas Transmission Company, Canada (DEGT) has chosen the process for use at its Kwoen processing facility near Chetwynd, British Columbia, Canada as the first commercial application for the Morphysorb process. DOE co-funded the development of the Morphysorb process in various stages of development. DOE funded the production of this report to ensure that the results of the work would be readily available to potential users of the process in the United States. The Kwoen Plant is designed to process 300 MMscfd of raw natural gas at 1,080-psia pressure. The sour natural gas contains 20 to 25 percent H{sub 2}S and CO{sub 2}. The plant reduces the acid gas content by about 50% and injects the removed H{sub 2}S and CO{sub 2} into an injection well. The Kwoen plant has been operating since August 2002. Morphysorb{reg_sign} is a physical solvent-based process used for the bulk removal of CO{sub 2} and/or H{sub 2}S from natural gas and other gaseous streams. The solvent consists of N-Formyl morpholine and other morpholine derivatives. This process is particularly effective for high-pressure and high acid-gas applications and offers substantial savings in investment and operating cost compared to competitive physical solvent-based processes. GTI and DEGT first entered into an agreement in 2002 to test the Morphysorb process at their Kwoen Gas Treating Plant in northern BC. The process is operating successfully without any solvent related problems and has between DEGTC and GTI. As of December 2003, about 90 Bcf of sour gas was processed. Of this about 8 Bcf of acid gas containing mainly H{sub 2}S and CO{sub 2} was injected back into the depleted reservoir and 82 Bcf sent for further processing at DEGTC's Pine

  15. An acid-gas removal system for upgrading subquality natural gas

    SciTech Connect

    Palla, N.; Lee, A.L.; Leppin, D.; Shoemaker, H.D.; Hooper, H.M.; Emmrich, G.; Moore, T.F.

    1996-09-01

    The objective of this project is to develop systems to reduce the cost of treating subquality natural gas. Based on over 1,000 laboratory experiments on vapor-liquid equilibria and mass transfer and simulation studies, the use of N-Formyl Morpholine as a solvent together with structured packings has the following advantages: high capacity for H{sub 2}S and CO{sub 2} removal; little or no refrigeration required; less loss of hydrocarbons (CH{sub 4}, C{sub 2}-C{sub 6}); and dehydration potential. To verify these findings and to obtain additional data base for scale-up, a field test unit capable of processing 1MMSCF/d of natural gas has been installed at the Shell Western E and P Inc. (SWEPI) Fandango processing plant site. The results of the testing at the Fandango site will be presented when available.

  16. Two-photon absorption of fluorescent protein chromophores incorporating non-canonical amino acids: TD-DFT screening and classical dynamics.

    PubMed

    Alaraby Salem, M; Brown, Alex

    2015-10-14

    Two-photon spectroscopy of fluorescent proteins is a powerful bio-imaging tool characterized by deep tissue penetration and little damage. However, two-photon spectroscopy has lower sensitivity than one-photon microscopy alternatives and hence a protein with a large two-photon absorption cross-section is needed. We use time-dependent density functional theory (TD-DFT) at the B3LYP/6-31+G(d,p) level of theory to screen twenty-two possible chromophores that can be formed upon replacing the amino-acid Tyr66 that forms the green fluorescent protein (GFP) chromophore with a non-canonical amino acid. A proposed chromophore with a nitro substituent was found to have a large two-photon absorption cross-section (29 GM) compared to other fluorescent protein chromophores as determined at the same level of theory. Classical molecular dynamics are then performed on a nitro-modified fluorescent protein to test its stability and study the effect of the conformational flexibility of the chromophore on its two-photon absorption cross-section. The theoretical results show that the large cross-section is primarily due to the difference between the permanent dipole moments of the excited and ground states of the nitro-modified chromophore. This large difference is maintained through the various conformations assumed by the chromophore in the protein cavity. The nitro-derived protein appears to be very promising as a two-photon absorption probe.

  17. Solvent drag in jejunal absorption of salicylic acid and antipyrine obtained by in situ single-pass perfusion method in rat.

    PubMed

    Hirasawa, T; Muraoka, T; Karino, A; Hayashi, M; Awazu, S

    1984-04-01

    The in situ single-pass perfusion method in an individual rat was developed to discuss the solvent drag in drug intestinal absorption without the individual differences. In this method the apparent water influx (influx') was used as a measure of solvent drag in the same manner as the previous paper. Consequently the sieving coefficients of salicylic acid and antipyrine in one rat are not significantly different from one but in the other are significantly smaller than one, resulting in 0.6-0.7 in average. And it was also shown that the reflection from the membrane in the solvent drag can be detected more precisely and efficiently by this method than the recirculating method in the previous paper. The D2O absorption clearance (CLD2O) was equal to net water flux as estimated theoretically when the D2O concentration in lumen was equal to that in plasma, indicating that D2O can be absorbed by water absorption even in the absence of the concentration gradient. Estimating the real water influx from the net water flux obtained under such condition, the minimal contribution ratio of the solvent drag to the total absorption clearance of salicylic acid and antipyrine was calculated to be approximately 12%.

  18. Sustainable production of acrylic acid: alkali-ion exchanged beta zeolite for gas-phase dehydration of lactic acid.

    PubMed

    Yan, Bo; Tao, Li-Zhi; Liang, Yu; Xu, Bo-Qing

    2014-06-01

    Gas-phase dehydration of lactic acid (LA) to acrylic acid (AA) was investigated over alkali-exchanged β zeolite (M(x)Na(1-x)β, M=Li(+), K(+), Rb(+), or Cs(+)) of different exchange degrees (x). The reaction was conducted under varying conditions to understand the catalyst selectivity for AA production and trends of byproduct formation. The nature and exchange degree of M(+) were found to be critical for the acid-base properties and catalytic performance of the exchanged zeolite. K(x)Na(1-x)β of x=0.94 appeared to be the best performing catalyst whereas Li(x)Na(1-x)β and Naβ were the poorest in terms of AA selectivity and yield. The AA yield as high as 61 mol % (selectivity: 64 mol %) could be obtained under optimized reaction conditions for up to 8 h over the best performing K0.94Na0.06β. The acid and base properties of the catalysts were probed, respectively by temperature-programmed desorption (TPD) of adsorbed NH3 and CO2, and were related to the electrostatic potentials of the alkali ions in the zeolite, which provided a basis for the discussion of the acid-base catalysis for sustainable AA formation from LA.

  19. Influence of citric acid as chemical modifier for lead determination in dietary calcium supplement samples by graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Cezar Paz de Mattos, Julio; Medeiros Nunes, Adriane; Figueiredo Martins, Ayrton; Luiz Dressler, Valderi; Marlon de Moraes Flores, Érico

    2005-06-01

    Citric acid was used as a chemical modifier for Pb determination by graphite furnace atomic absorption spectrometry in dietary supplement samples (calcium carbonate, dolomite and oyster shell samples) and its efficiency was compared to the use of palladium. Pyrolysis and atomization curves were established without use of chemical modifier, with the addition of 20, 100 and 200 μg of citric acid, and with 3 μg of palladium. The citric acid modifier made possible the interference-free Pb determination in the presence of high concentrations of Ca and Mg nitrates. Acid sample digestion involving closed vessels (microwave-assisted and conventional heating) and acid attack using polypropylene vessels at room temperature were compared. All digestion procedures presented similar results for calcium carbonate and dolomite samples. However, for oyster shell samples accurate results were obtained only with the use of closed vessel systems. Analyte addition and matrix-matched standards were used for calibration. The characteristic mass for Pb using citric acid and palladium were 16 and 25 pg, respectively. The relative standard deviation (RSD) was always less than 5% when citric acid was used. The relative and absolute limits of detection were 0.02 μg g - 1 and 8 pg with citric acid and 0.1 μg g - 1 and 44 pg with the Pd modifier, respectively ( n = 10, 3σ). The recovery of Pb in spiked calcium supplement samples (10 μg l - 1 ) was between 98% and 105%. With the use of 100 μg of citric acid as chemical modifier, problems such as high background absorption and high RSD values were minimized in comparison to the addition of 3 μg of palladium.

  20. Picosecond-TALIF and VUV absorption measurements of absolute atomic nitrogen densities from an RF atmospheric pressure plasma jet with He/O2/N2 gas mixtures

    NASA Astrophysics Data System (ADS)

    West, Andrew; Niemi, Kari; Schröter, Sandra; Bredin, Jerome; Gans, Timo; Wagenaars, Erik

    2015-09-01

    Reactive Oxygen and Nitrogen species (RONS) from RF atmospheric pressure plasma jets (APPJs) are important in biomedical applications as well as industrial plasma processing such as surface modification. Atomic oxygen has been well studied, whereas, despite its importance in the plasma chemistry, atomic nitrogen has been somewhat neglected due to its difficulty of measurement. We present absolute densities of atomic nitrogen in APPJs operating with He/O2/N2 gas mixtures in open air, using picosecond Two-photon Absorption Laser Induced Fluorescence (ps-TALIF) and vacuum ultra-violet (VUV) absorption spectroscopy. In order to apply the TALIF technique in complex, He/O2/N2 mixtures, we needed to directly measure the collisional quenching effects using picosecond pulse widths (32ps). Traditional calculated quenching corrections, used in nanosecond TALIF, are inadequate due to a lack of quenching data for complex mixtures. Absolute values for the densities were found by calibrating against a known density of Krypton. The VUV absorption experiments were conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Atomic nitrogen densities were on the order of 1020 m-3 with good agreement between TALIF and VUV absorption. UK EPSRC grant EP/K018388/1.

  1. [Effects of gaseous compositions the on simultaneous removal of NO(x) and SO2 from simulated flue gas by ammonia absorption].

    PubMed

    Wang, Hong; Zhu, Tian-Le; Wang, Mei-Yan

    2013-01-01

    The effects of NO(x) oxidation ratio, O2 and SO2 concentrations in simulated flue gas as well as addition of S(IV) oxidation inhibitor NaS2O3 on the simultaneous removal of SO2 and NO(x) by ammonia absorption were investigated under the conditions of pH 5.9-6.1 and aqueous S(IV) concentration > or = 1.0 mol x L(-1). The research results showed that NO2 could be effectively absorbed by ammonium sulfite, but the NO absorption was negligible. Therefore, NO oxidation is the premise of NO(x) removal. Aqueous S(IV) concentration is a key factor affecting NO2 absorption removal, the higher the O2 concentration or the lower the SO2 concentration, the faster the aaqueous S(IV) concentration decreased, which resulted in a faster decrease of NO2 removal efficiency. S(IV) oxidation was inhibited to some extent by the addition of oxidation inhibitor S2O3(2-) into the absorption solution. As a result, the decrease of NO2 removal efficiency became slower.

  2. Preparation and Absorption Spectral Property of a Multifunctional Water-Soluble Azo Compound with D-π-A Structure, 4-(4- Hydroxy-1-Naphthylazo)Benzoic Acid

    NASA Astrophysics Data System (ADS)

    Hu, L.; Lv, H.; Xie, C. G.; Chang, W. G.; Yan, Z. Q.

    2015-07-01

    A multifunctional water-soluble azo dye with the D-π-A conjugated structure, 4-(4-hydroxy-1-naphthylazo) benzoic acid ( HNBA), was designed and synthesized using 1-naphanol as the electron donator, benzoic acid as the electron acceptor, and -N=N- as the bridging group. After its structure was characterized by FTIR, 1H NMR, and element analysis, the UV-Vis absorption spectral performance of the target dye was studied in detail. The results showed that the dye, combining hydroxyl group, azo group, and carboxyl group, possessed excellent absorption spectral properties (ɛ = 1.2·104 l·mol-1·cm-1) changing with pH and solvents. In particular, in polar and protonic water, it had excellent optical response to some metal ions, i.e., Fe3+ and Pb2+, which might make it a latent colorimetric sensor for detecting heavy metal ions.

  3. Collection of VLE data for acid gas-alkanolamine systems using Fourier transform infrared spectroscopy. Technical report, October 1, 1994--July 31, 1995

    SciTech Connect

    Bullin, J.A.; Rogers, W.J.

    1995-08-01

    The industrial standard process for the purification of natural gas is to remove acid gases, mainly hydrogen sulfide and carbon dioxide, by the absorption and reaction of these gases with alkanolamines. The natural gas industry requires vapor-liquid equilibrium (VLE) data to develop more energy efficient amine mixtures. Some energy reductions have been realized in the past decade by applying such amine systems as hindered amines, methyldiethanolamine (MDEA), and MDEA based amine mixtures. However, the lack of reliable and accurate VLE data impedes the commercial application of these more efficient alkanolamine systems. The first objective of this project is to improve the accuracy of vapor-liquid equilibrium measurements at low hydrogen sulfide concentrations. The second objective is to make VLE measurements for amine mixtures. By improving the accuracy of the VLE data on MDEA and other amines, energy savings can be implemented in the many existing absorption units already in use. If about 25% of the existing 95.3 billion SCFD gas purification capacity is converted to these new amine systems, the energy saved is estimated to be 3 {times} 10{sup 14} BTU/yr. 14 refs., 31 figs., 12 tabs.

  4. A comparison of the gas phase acidities of phospholipid headgroups: experimental and computational studies.

    PubMed

    Thomas, Michael C; Mitchell, Todd W; Blanksby, Stephen J

    2005-06-01

    Proton-bound dimers consisting of two glycerophospholipids with different headgroups were prepared using negative ion electrospray ionization and dissociated in a triple quadrupole mass spectrometer. Analysis of the tandem mass spectra of the dimers using the kinetic method provides, for the first time, an order of acidity for the phospholipid classes in the gas phase of PE < PA < PG < PS < PI. Hybrid density functional calculations on model phospholipids were used to predict the absolute deprotonation enthalpies of the phospholipid classes from isodesmic proton transfer reactions with phosphoric acid. The computational data largely support the experimental acidity trend, with the exception of the relative acidity ranking of the two most acidic phospholipid species. Possible causes of the discrepancy between experiment and theory are discussed and the experimental trend is recommended. The sequence of gas phase acidities for the phospholipid headgroups is found to (1) have little correlation with the relative ionization efficiencies of the phospholipid classes observed in the negative ion electrospray process, and (2) correlate well with fragmentation trends observed upon collisional activation of phospholipid [M - H](-) anions. PMID:15907707

  5. C 1s Near Edge X-ray Absorption Fine Structure (NEXAFS) of substituted benzoic acids: a theoretical and experimental study

    SciTech Connect

    Baldea,I.; Schimmelpfennig, B.; Plaschke, M.; Rothe, J.; Schirmer, J.; Trofimov, A.; Fanghaenel, T.

    2007-01-01

    Ab initio calculations are performed to explain the discrete transitions in experimental C 1s-NEXAFS (near edge X-ray absorption fine structure) spectra of various benzoic acid derivates. Transition energies and oscillator strengths of the contributing C 1s-{pi}* excitations are computed using the ADC(2) (second-order algebraic-diagrammatic construction) method. This method is demonstrated to be well suited for the finite electronic systems represented by these simple organic acids. There is good agreement between experiment and theory reproducing all the relevant spectral features. Some transitions can only be assigned based on a theoretical foundation. Remaining discrepancies between experimental and computed spectra are discussed.

  6. The Effects of Boron Derivatives on Lipid Absorption from the Intestine and on Bile Lipids and Bile Acids of Sprague Dawley Rats

    PubMed Central

    Hall, Iris H.; Reynolds, David J.; Wong, O. T.; Sood, A.; Spielvogel, B. F.

    1995-01-01

    N,N-dimethyl-n-octadecylamine borane 1 at 8 mg/kg/day, tetrakis-u-(trimethylamine boranecarboxylato)-bis(trimethyl-carboxyborane)-dicopper(II) 2 at 2.5 mg/kg/day and trimethylamine-carboxyborane 3 at 8 mg/kg/day were evaluated for their effects on bile lipids, bile acids, small intestinal absorption of cholesterol and cholic acid and liver and small intestinal enzyme activities involved in lipid metabolism. The agent administered orally elevated rat bile excretion of lipids, e.g. cholesterol and phospholipids, and compounds 2 and 3 increased the bile flow rate. These agents altered the composition of the bile acids, but there was no significant increase in lithocholic acid which is most lithogenic agent in rats. The three agents did decrease cholesterol absorption from isolated in situ intestinal duodenum loops in the presence of drug. Hepatic and small intestinal mucosa enzyme activities, e.g. ATP-dependent citrate lyase, acyl CoA cholesterol acyl transferase, cholsterol-7-α -hydroxylase, sn glycerol-3-phosphate acyl transferase, phosphatidylate phosphohydrolase, and lipoprotein lipase, were reduced. However, the boron derivatives 1 and 3 decreased hepatic HMG-CoA reductase activity, the regulatory enzyme for cholesterol synthesis, but the compounds had no effects on small intestinal mucosa HMG-CoA reductase activity. There was no evidence of hepatic cell damage afforded by the drugs based on clinical chemistry values which would induce alterations in bile acid concentrations after treatment of the rat. PMID:18472747

  7. Oxidative degradation of organic acids conjugated with sulfite oxidation in flue gas desulfurization

    SciTech Connect

    Lee, Y.I.

    1986-01-01

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (EGD) conditions. The oxidative degradation constant, k/sub 12/, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate after being normalized by the concentrations of organic acid and dissolved S(IV). K/sub 12/, not significantly affected by pH or dissolved oxygen, is around 10/sup -3/ in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Co, Ni, and Fe and is decreased by Mn and halides. Lower dissolved S(IV) magnified these effects. No k/sub 12/ greater than 4 x 10/sup -3/ or smaller than 0.1 x 10/sup -3/ has been observed. A free radical mechanism was proposed to describe the kinetics: (1) sulfate free radical is the major radical responsible to the degradation of organic acid; (2) ferrous generates sulfate radical by reacting with monoxypersulfate to enhance k/sub 12/; (3) manganous consumes sulfate radical to decrease k/sub 12/; (4) dissolved S(IV) competes with ferrous for monoxypersulfate and with manganous for sulfate radical to demonstrate the effects of dissolved S(IV) on k/sub 12/. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product, glutaric semialdehyde - the major retained product with low manganese, glutaric acid and valeric acids - the major retained product with high manganese, lower molecular weight mono- and dicarboxylic acids, other carbonyl compounds, and hydrocarbons.

  8. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices--CCSD(T) calculations and atomic site occupancies.

    PubMed

    Davis, Barry M; McCaffrey, John G

    2016-01-28

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y(1)P ← a(1)S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm(-1)). All of the M ⋅ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr2 while this transition is quenched in Ba2. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba2 indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications. PMID:26827218

  9. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices--CCSD(T) calculations and atomic site occupancies.

    PubMed

    Davis, Barry M; McCaffrey, John G

    2016-01-28

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y(1)P ← a(1)S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm(-1)). All of the M ⋅ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr2 while this transition is quenched in Ba2. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba2 indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.

  10. Activated carbon cleanup of the acid gas feed to Claus sulfur plants

    SciTech Connect

    Harruff, L.G.; Bushkuhl, S.J.

    1996-12-31

    This paper presents the details of a recently developed novel process using activated carbon to remove hydrocarbon contaminants from the acid gas feed to Claus sulfur recovery units. Heavy hydrocarbons, particularly benzene, toluene and xylene (BTX) have been linked to coke formation and catalyst deactivation in Claus converters. This deactivation results in reduced sulfur recovery and increased sulfur emissions from these plants. This effect is especially evident in split flow Claus plants which bypass some of the acid gas feed stream around the initial combustion step because of a low hydrogen sulfide concentration. This new clean-up process was proven to be capable of removing 95% of the BTX and other C{sub 6}{sup +} hydrocarbons from acid gas over a wide range of actual plant conditions. Following the adsorption step, the activated carbon was easily regenerated using low pressure steam. A post regeneration drying step using plant fuel gas also proved beneficial. This technology was extensively pilot tested in Saudi Aramco`s facilities in Saudi Arabia. Full scale commercial units are planned for two plants in the near future with the first coming on-line in 1997. The process described here represents the first application of activated carbon in this service, and a patent has been applied for. The paper will discuss the pilot plant results and the issues involved in scale-up to commercial size.

  11. A novel control system for automatically locking a diode laser frequency to a selected gas absorption line

    NASA Astrophysics Data System (ADS)

    Dong, Lei; Yin, Wangbao; Ma, Weiguang; Jia, Suotang

    2007-05-01

    A novel control system has been developed for avoiding manual operation during traditional frequency locking. The control system uses a computer with a commercial data acquisition card. This accomplishes the whole operation of frequency locking, including generating ramp, searching locking point, engaging a proportional-integral-differential (PID) regulator at the proper time and outputting PID compensation signal. Moreover, a new method has also been employed to make the novel control system accurately identify the locking points of all absorption lines within the scanning range, so that the laser frequency can be automatically firmly brought onto any selected absorption line centre without any adjusting time. The operation of the system, the ability to identify absorption lines and the performance of the frequency locking were discussed in detail. Successful tests were made with two different lasers: external cavity diode lasers and distributed feedback diode lasers.

  12. Identification of individual acids in a commercial sample of naphthenic acids from petroleum by two-dimensional comprehensive gas chromatography/mass spectrometry.

    PubMed

    Rowland, Steven J; West, Charles E; Scarlett, Alan G; Jones, David

    2011-06-30

    The identification of most individual members of the complex mixtures of carboxylic acids found in petroleum ('naphthenic acids') has eluded chemists for over a century; they remain unresolved by conventional gas chromatographic methods. Recently, however, we successfully used two-dimensional comprehensive gas chromatography/mass spectrometry to identify numerous individual diamondoid acids in the naphthenic acids of oil sands process water (OSPW). We have now applied the same methods to a study of a mixture of commercially available naphthenic acids originally refined from petroleum. The results confirm that OSPW and refined petroleum contain very different distributions of acids, as noted previously, although some of the diamondoid acids recently identified in OSPW were detectable in both. Rather, two-dimensional comprehensive gas chromatography/time-of-flight mass spectrometry (GCxGC/ToF-MS) of the methyl esters of the petroleum acids and of numerous acids synthesised for comparison showed that the former comprised mainly C(8-18) straight-chain, methyl-branched, acyclic isoprenoid, cyclohexyl and isomeric octahydropentalene, perhydroindane and perhydronaphthalene (decalin) acids. Some of the latter bicyclic acids occurred as both the non-alkyl-substituted isomers and the bicyclic ethanoic and propanoic acids. Also present in minor quantities was a range of phenyl carboxylic and substituted phenyl alkanoic acids, and traces of non-acids, including trimethylnaphthalenes, again identified by comparison with the synthesised compounds. These results represent some of the first identifications of multiple individual naphthenic acids in commercial mixtures originating from petroleum and provide a basis for future studies of the petroleum geochemistry, toxicities and environmental impacts of the acids. Furthermore, characterisation of the acids will be important for improving the understanding of the role of naphthenic acids in petroleum engineering, particularly for

  13. Gas-phase structures and thermochemistry of neutral histidine and its conjugated acid and base.

    PubMed

    Riffet, Vanessa; Bouchoux, Guy

    2013-04-28

    Extensive exploration of the conformational space of neutral, protonated and deprotonated histidine has been conducted at the G4MP2 level. Theoretical protonation and deprotonation thermochemistry as well as heats of formation of gaseous histidine and its ionized forms have been calculated at the G4 level considering either the most stable conformers or an equilibrium population of conformers at 298 K. These theoretical results were compared to evaluated experimental determinations. Recommended proton affinity and protonation entropy deduced from these comparisons are PA(His) = 980 kJ mol(-1) and ΔpS(His) ∼ 0 J mol(-1) K(-1), thus leading to a gas-phase basicity value of GB(His) = 947.5 kJ mol(-1). Similarly, gas phase acidity parameters are ΔacidH(o)(His) = 1373 kJ mol(-1), ΔacidS(His) ∼ 10 J mol(-1) K(-1) and ΔacidG(o)(His) = 1343 kJ mol(-1). Computed G4 heats of formation values are equal to -290, 265 and -451 kJ mol(-1) for gaseous neutral histidine and its protonated and deprotonated forms, respectively. The present computational data correct, and complete, previous thermochemical parameter estimates proposed for gas-phase histidine and its acido-basic properties.

  14. Gas-phase absorption cross sections of 24 monocyclic aromatic hydrocarbons in the UV and IR spectral ranges

    NASA Astrophysics Data System (ADS)

    Etzkorn, Thomas; Klotz, Björn; Sørensen, Søren; Patroescu, Iulia V.; Barnes, Ian; Becker, Karl H.; Platt, Ulrich

    Absorption cross sections of 24 volatile and non-volatile derivatives of benzene in the ultraviolet (UV) and the infrared (IR) regions of the electromagnetic spectrum have been determined using a 1080 l quartz cell. For the UV a 0.5 m Czerny-Turner spectrometer coupled with a photodiode array detector (spectral resolution 0.15 nm) was used. IR spectra were recorded with an FT-IR spectrometer (Bruker IFS-88, spectral resolution 1 cm -1). Absolute absorption cross sections and the instrument function are given for the UV, while for the IR, absorption cross sections and integrated band intensities are reported. The study focused primarily on the atmospherically relevant methylated benzenes (benzene, toluene, o-xylene, m-xylene, p-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, ethylbenzene, styrene) and their ring retaining oxidation products (benzaldehyde, o-tolualdehyde, m-tolualdehyde, p-tolualdehyde, phenol, o-cresol, m-cresol, p-cresol, 2,3-dimethylphenol, 2,4-dimethylphenol, 2,5-dimethylphenol, 2,6-dimethylphenol, 3,4-dimethylphenol, 3,5-dimethylphenol, 2,4,6-trimethylphenol and ( E,Z)- and ( E,E)-2,4-hexadienedial). The UV absorption cross sections reported here can be used for the evaluation of DOAS spectra (Differential Optical Absorption Spectroscopy) for measurements of the above compounds in the atmosphere and in reaction chambers, while the IR absorption cross sections will primarily be useful in laboratory studies on atmospheric chemistry, where FT-IR spectrometry is an important tool.

  15. Identification of 19 phthalic acid esters in dairy products by gas chromatography with mass spectrometry.

    PubMed

    Wu, Pinggu; Cai, Chenggang; Yang, Dajin; Wang, Liyuan; Zhou, Yan; Shen, Xianghong; Ma, Bingjie; Tang, Jun

    2015-01-01

    A detection method for 19 kinds of phthalic acid ester compounds analyzed by n-hexane/ether/acetonitrile 1:7:8 v/v/v mixed solvent extraction, quick, easy, cheap, effective, rugged, and safe purification and internal standard method of quantitative gas chromatography with mass spectrometry was established. This method can effectively remove interfering materials, such as lipids, fatty acids, and pigments, from dairy products. The 19 kinds of phthalic acid ester compounds were within a 0.025-0.2 mg/kg range, the recovery rate was 65.2-125.7%, relative standard deviation was 7.9-15.4% (n = 6), and the limit of detection was 0.005-0.02 mg/kg. Concentrations of the 19 kinds of phthalic acid ester compounds ranged between 0.01 and 0.12 mg/kg in ten dairy materials and 20 dairy products. The established method is simple, rapid, accurate, and highly sensitive.

  16. The Production of Polycyclic Aromatic Hydrocarbon Anions in Inert Gas Matrices Doped with Alkali Metals. Electronic Absorption Spectra of the Pentacene Anion (C22H14(-))

    NASA Technical Reports Server (NTRS)

    Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).

  17. Molecular structures of benzoic acid and 2-hydroxybenzoic acid, obtained by gas-phase electron diffraction and theoretical calculations.

    PubMed

    Aarset, Kirsten; Page, Elizabeth M; Rice, David A

    2006-07-20

    The structures of benzoic acid (C6H5COOH) and 2-hydroxybenzoic acid (C6H4OHCOOH) have been determined in the gas phase by electron diffraction using results from quantum chemical calculations to inform restraints used on the structural parameters. Theoretical methods (HF and MP2/6-311+G(d,p)) predict two conformers for benzoic acid, one which is 25.0 kJ mol(-1) (MP2) lower in energy than the other. In the low-energy form, the carboxyl group is coplanar with the phenyl ring and the O-H group eclipses the C=O bond. Theoretical calculations (HF and MP2/6-311+G(d,p)) carried out for 2-hydroxybenzoic acid gave evidence for seven stable conformers but one low-energy form (11.7 kJ mol(-1) lower in energy (MP2)) which again has the carboxyl group coplanar with the phenyl ring, the O-H of the carboxyl group eclipsing the C=O bond and the C=O of the carboxyl group oriented toward the O-H group of the phenyl ring. The effects of internal hydrogen bonding in 2-hydroxybenzoic acid can be clearly observed by comparison of pertinent structural parameters between the two compounds. These differences for 2-hydroxybenzoic acid include a shorter exocyclic C-C bond, a lengthening of the ring C-C bond between the substituents, and a shortening of the carboxylic single C-O bond. PMID:16836466

  18. Ammonia Gas Sensing Behavior of Tanninsulfonic Acid Doped Polyaniline-TiO2 Composite

    PubMed Central

    Bairi, Venu Gopal; Bourdo, Shawn E.; Sacre, Nicolas; Nair, Dev; Berry, Brian C.; Biris, Alexandru S.; Viswanathan, Tito

    2015-01-01

    A highly active tannin doped polyaniline-TiO2 composite ammonia gas sensor was developed and the mechanism behind the gas sensing activity was reported for the first time. A tanninsulfonic acid doped polyaniline (TANIPANI)-titanium dioxide nanocomposite was synthesized by an in situ polymerization of aniline in the presence of tanninsulfonic acid and titanium dioxide nanoparticles. X-ray diffraction and thermogravimetric analysis were utilized to determine the incorporation of TiO2 in TANIPANI matrix. UV-Visible and infrared spectroscopy studies provided information about the electronic interactions among tannin, polyaniline, and TiO2. Scanning electron microscopy (SEM) along with energy dispersive X-ray spectroscopy (EDS) and atomic force microscopy (AFM) surface analysis techniques were used to investigate the metal oxide dispersions inside polyaniline matrix. Gas sensors were prepared by spin coating solutions of TANIPANI-TiO2 and TANIPANI composites onto glass slides. Sensors were tested at three different concentrations (20 ppm, 40 ppm, and 60 ppm) of ammonia gas at ambient temperature conditions by measuring the changes in surface resistivity of the films with respect to time. Ammonia gas sensing plots are presented showing the response values, response times and recovery times. The TANIPANI-TiO2 composite exhibited better response and shorter recovery times when compared to TANIPANI control and other polyaniline composites that have been reported in the literature. For the first time a proposed mechanism of gas sensing basing on the polaron band localization and its effects on the gas sensing behavior of polyaniline are reported. PMID:26501291

  19. Thermal decarboxylation of acetic acid: Implications for origin of natural gas

    USGS Publications Warehouse

    Kharaka, Y.K.; Carothers, W.W.; Rosenbauer, R.J.

    1983-01-01

    Laboratory experiments on the thermal decarboxylation of solutions of acetic acid at 200??C and 300??C were carried out in hydrothermal equipment allowing for on-line sampling of both the gas and liquid phases for chemical and stable-carbon-isotope analyses. The solutions had ambient pH values between 2.5 and 7.1; pH values and the concentrations of the various acetate species at the conditions of the experiments were computed using a chemical model. Results show that the concentrations of acetic acid, and not total acetate in solution, control the reaction rates which follow a first order equation based on decreasing concentrations of acetic acid with time. The decarboxylation rates at 200??C (1.81 ?? 10-8 per second) and 300??C (8.17 ?? 10-8 per second) and the extrapolated rates at lower temperatures are relatively high. The activation energy of decarboxylation is only 8.1 kcal/mole. These high decarboxylation rates, together with the distribution of short-chained aliphatic acid anions in formation waters, support the hypothesis that acid anions are precursors for an important portion of natural gas. Results of the ??13C values of CO2, CH4, and total acetate show a reasonably constant fractionation factor of about 20 permil between CO2 and CH4 at 300??C. The ??13C values of CO2 and CH4 are initially low and become higher as decarboxylation increases. ?? 1983.

  20. Characterization of naphthenic acids by gas chromatography-Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Ortiz, Xavier; Jobst, Karl J; Reiner, Eric J; Backus, Sean M; Peru, Kerry M; McMartin, Dena W; O'Sullivan, Gwen; Taguchi, Vince Y; Headley, John V

    2014-08-01

    During the bitumen extraction from the oil sands of Alberta, large volumes of process water containing naphthenic acids are stored in tailing ponds. The naphthenic acids along with other components in the processed waters are known to be toxic in aquatic environments. In view of the complex matrix and the toxicity of the processed waters, there is a need for complementary analytical techniques for comprehensive characterization of the naphthenic acid mixtures. This study reports the online gas chromatographic separation of naphthenic acid mixtures prior to ultrahigh resolution mass spectrometry detection, using electron and chemical ionization. Two oil sands processed water samples and two groundwater samples were characterized to evaluate the performance of the instrumental technique. The high mass resolution of the system enabled visualization of the data using Kendrick mass defect plots. The addition of gas chromatographic separations enabled visualization of the data as unique compound class elution fingerprints. The technique is demonstrated to be a valuable tool for chemical fingerprinting of naphthenic acids. PMID:25001115

  1. Intestinal absorption and lymphatic transport of a high gamma-linolenic acid canola oil in lymph fistula Sprague-Dawley rats.

    PubMed

    Tso, Patrick; Ding, Kexi; DeMichele, Stephen; Huang, Yung-Sheng

    2002-02-01

    A new canola strain capable of producing >30% gamma-linolenic acid [GLA, 18:3(n-6)] in the seed oil has been developed in our laboratories. This study compares the intestinal absorption and lymphatic transport of this newly developed high GLA content canola oil (HGCO) with traditional GLA-rich borage oil (BO) using a lymph fistula rat model. To assess the extent that 1 mL of GLA in the supplemented oil was absorbed and transported, the fatty acid compositions of triglycerides in mesenteric lymph were compared over a 24-h collection period. The digestion, uptake and lymphatic transport of HGCO and the normal physiologic changes associated with fat absorption (e.g., lymph flow and an increase in lymphatic endogenous lipids outputs, triglycerides, cholesterol and phospholipids) were similar in the HGCO-and the BO-fed rats. The original differences in gamma-linolenic acid content in HGCO and BO were preserved in the fatty acid composition of the rats' lymph lipid. We conclude that the HGCO derived from the genetically modified canola plant is absorbed and transported into lymph similarly to BO. PMID:11823581

  2. Quantification of phenyllactic acid in wheat sourdough using high resolution gas chromatography-mass spectrometry.

    PubMed

    Ryan, Liam Anthony Matthew; Dal Bello, Fabio; Czerny, Michael; Koehler, Peter; Arendt, Elke Karin

    2009-02-11

    In this study, high-resolution gas chromatography-mass spectrometry (HRGC-MS) was successfully used to quantify the level of phenyllactic acid produced by Lactobacillus plantarum strains during sourdough fermentation. Investigation of samples collected during fermentation revealed that the production of phenyllactic acid occurs throughout the growth of L. plantarum in sourdough, but the highest production rate was observed during the logarithmic growth phase. The highest amount, that is, 33.47 mg of phenyllactic acid/kg of dough, was measured in sourdough fermented by the antifungal strain L. plantarum FST 1.7. Sourdoughs fermented by different L. plantarum strains contained different amounts of phenyllactic acid, thus indicating that the production is strain-dependent. Phenylacetic acid was also detected during sourdough analysis, thus showing that the HRGC-MS protocol developed is suitable for the detection not only of phenyllactic acid, but also of a broader range of phenolic acids that are highly relevant, but present in very low amounts in sourdough.

  3. Characterization of 22 Vibrio species by gas chromatography analysis of their cellular fatty acids.

    PubMed

    Urdaci, M C; Marchand, M; Grimont, P A

    1990-05-01

    The cellular fatty acid compositions of 51 Vibrio strains belonging to 22 species as well as five Aeromonas strains were determined by using capillary gas-liquid chromatography (GLC). The major fatty acids were most often hexadecenoic, hexadecanoic and octadecenoic acids. Heptadecenoic acid was present in significant amounts in V. alginolyticus, V. natriegens, V. parahaemolyticus and "Vibrio navarrensis". Twenty fatty acids including branched and hydroxy acids were detected in the genus Vibrio. Quantitative results were treated by principal component analysis to display groups of strains. The first three components (accounting for 69% of the variance) showed the type strains of V. fischeri, V. ordalii, V. damsela, V. mediterranei, V. tubiashii, V. campbellii, V. pelagius, V. gazogenes, and V. nereis to be unclustered. V. alginolyticus (4 strains) and V. parahaemolyticus (4 strains) showed some overlap and the type strain of V. natriegens was in their neighborhood. V. harveyi (4 strains) formed a cluster and V. vulnificus was in its vicinity. V. cholerae (5 strains) overlapped with V. diazotrophicus (3 strains) and was close to the type strain of V. mimicus and V. anguillarum. V. metschnikovii (3 strains) clustered with the type strain of V. cincinnatiensis. A decision tree was devised for the identification of Vibrio species based on qualitative characteristics of fatty acid patterns. However, the following three groups, V. alginolyticus-V. parahaemolyticus-V. natriegens, V. metschnikovii-V. cincinnatiensis and V. cholerae-V. mimicus could not be split into such a decision tree.

  4. Combined liquid and gas chromatographic characterisation of polyglycerol fatty acid esters.

    PubMed

    De Meulenaer, B; Van Royen, G; Vanhoutte, B; Huyghebaert, A

    2000-10-27

    In the present study a combined liquid and gas chromatographic technique is described for the analysis of polyglycerol fatty acid esters. Liquid chromatographic fractionation of samples resulted in pure standards of monoesters of di- and triglycerols and diesters of di- and triglycerols. Confirmation of their identity was achieved by LC-MS analysis. Moreover, a chromatographic identification of the mono- and diesters of cyclic diglycerol was proposed. From the isolation of pure esters and their gas chromatographic analysis, it was revealed that co-elution of several compounds occurred. Thus it was shown that prefractionation of the sample using a simplified liquid chromatographic separation, was necessary in order to characterise the esters correctly. In combination with some other chemical analyses, a complete profile of the chemical composition of polyglycerol fatty acid esters can be obtained.

  5. Electrons Mediate the Gas-Phase Oxidation of Formic Acid with Ozone.

    PubMed

    van der Linde, Christian; Tang, Wai-Kit; Siu, Chi-Kit; Beyer, Martin K

    2016-08-26

    Gas-phase reactions of CO3 (.-) with formic acid are studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Signal loss indicates the release of a free electron, with the formation of neutral reaction products. This is corroborated by adding traces of SF6 to the reaction gas, which scavenges 38 % of the electrons. Quantum chemical calculations of the reaction potential energy surface provide a reaction path for the formation of neutral carbon dioxide and water as the thermochemically favored products. From the literature, it is known that free electrons in the troposphere attach to O2 , which in turn transfer the electron to O3 . O3 (.-) reacts with CO2 to form CO3 (.-) . The reaction reported here formally closes the catalytic cycle for the oxidation of formic acid with ozone, catalyzed by free electrons.

  6. Formation of organic acids from the gas-phase ozonolysis of terpinolene.

    PubMed

    Ma, Yan; Marston, George

    2009-06-01

    Gas-phase ozonolysis of terpinolene was studied in static chamber experiments using gas chromatography coupled to mass spectrometric and flame ionisation detection to separate and detect products. Two isomers of C(7)-diacids and three isomers of C(7)-aldehydic acids were identified in the condensed phase after derivatisation. Possible mechanisms of formation of these acids were investigated using different OH radical scavengers and relative humidities, and were compared to those reported earlier for the ozonolysis of beta-pinene. In addition, branching ratios for some of the individual reaction steps, e.g. the branching ratio between the two hydroperoxide channels of the C(7)-CI, were deduced from the quantitative product yield data. Branching ratios for POZ decomposition and the stabilisation/decomposition of the C(7-)CI were also obtained from measurements of the C(7) primary carbonyl product. PMID:19458821

  7. Elusive Sulfurous Acid: Gas-Phase Basicity and IR Signature of the Protonated Species.

    PubMed

    Sinha, Rajeev K; Scuderi, Debora; Maitre, Philippe; Chiavarino, Barbara; Crestoni, Maria Elisa; Fornarini, Simonetta

    2015-05-01

    The ion corresponding to protonated sulfurous acid, H3SO3(+), has been successfully delivered into the gas phase by electrospray ionization of the solution of a suitable precursor and an in-source fragmentation process. The neutral acid is a highly elusive molecule. However, its gas-phase basicity has been ascertained by means of a kinetic study of proton-transfer reactivity. The structure of the H3SO3(+) sampled ion has been probed by IRMPD spectroscopy in two complementary IR frequency ranges in conjunction with density functional theory calculations and found to conform to a trihydroxosulfonium ion. The characteristic IR signatures may aid in deciphering the presence of this species in extraterrestrial atmospheres. PMID:26263321

  8. Elusive Sulfurous Acid: Gas-Phase Basicity and IR Signature of the Protonated Species.

    PubMed

    Sinha, Rajeev K; Scuderi, Debora; Maitre, Philippe; Chiavarino, Barbara; Crestoni, Maria Elisa; Fornarini, Simonetta

    2015-05-01

    The ion corresponding to protonated sulfurous acid, H3SO3(+), has been successfully delivered into the gas phase by electrospray ionization of the solution of a suitable precursor and an in-source fragmentation process. The neutral acid is a highly elusive molecule. However, its gas-phase basicity has been ascertained by means of a kinetic study of proton-transfer reactivity. The structure of the H3SO3(+) sampled ion has been probed by IRMPD spectroscopy in two complementary IR frequency ranges in conjunction with density functional theory calculations and found to conform to a trihydroxosulfonium ion. The characteristic IR signatures may aid in deciphering the presence of this species in extraterrestrial atmospheres.

  9. Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region

    NASA Astrophysics Data System (ADS)

    Yuan, B.; Veres, P. R.; Warneke, C.; Roberts, J. M.; Gilman, J. B.; Koss, A.; Edwards, P. M.; Graus, M.; Kuster, W. C.; Li, S.-M.; Wild, R. J.; Brown, S. S.; Dubé, W. P.; Lerner, B. M.; Williams, E. J.; Johnson, J. E.; Quinn, P. K.; Bates, T. S.; Lefer, B.; Hayes, P. L.; Jimenez, J. L.; Weber, R. J.; Zamora, R.; Ervens, B.; Millet, D. B.; Rappenglück, B.; de Gouw, J. A.

    2015-02-01

    Formic acid (HCOOH) is one of the most abundant carboxylic acids in the atmosphere. However, current photochemical models cannot fully explain observed concentrations and in particular secondary formation of formic acid across various environments. In this work, formic acid measurements made at an urban receptor site (Pasadena) in June-July 2010 during CalNex (California Research at the Nexus of Air Quality and Climate Change) and a site in an oil and gas producing region (Uintah Basin) in January-February 2013 during UBWOS 2013 (Uintah Basin Winter Ozone Studies) will be discussed. Although the VOC (volatile organic compounds) compositions differed dramatically at the two sites, measured formic acid concentrations were comparable: 2.3 ± 1.3 in UBWOS 2013 and 2.0 ± 1.0 ppb in CalNex. We determine that concentrations of formic acid at both sites were dominated by secondary formation (> 99%). A constrained box model using the Master Chemical Mechanism (MCM v3.2) underestimates the measured formic acid concentrations drastically at both sites (by a factor of > 10). Compared to the original MCM model that includes only ozonolysis of unsaturated organic compounds and OH oxidation of acetylene, when we updated yields of ozonolysis of alkenes and included OH oxidation of isoprene, vinyl alcohol chemistry, reaction of formaldehyde with HO2, oxidation of aromatics, and reaction of CH3O2 with OH, the model predictions for formic acid were improved by a factor of 6.4 in UBWOS 2013 and 4.5 in CalNex, respectively. A comparison of measured and modeled HCOOH/acetone ratios is used to evaluate the model performance for formic acid. We conclude that the modified chemical mechanism can explain 19 and 45% of secondary formation of formic acid in UBWOS 2013 and CalNex, respectively. The contributions from aqueous reactions in aerosol and heterogeneous reactions on aerosol surface to formic acid are estimated to be 0-6 and 0-5% in UBWOS 2013 and CalNex, respectively. We observe that

  10. Surfactant control of gas transport and reactions at the surface of sulfuric acid.

    PubMed

    Park, Seong-Chan; Burden, Daniel K; Nathanson, Gilbert M

    2009-02-17

    Aerosol particles in the atmosphere are tiny chemical reactors that catalyze numerous reactions, including the conversion of benign gases into ozone-destroying ones. In the lower stratosphere, these particles are often supercooled mixtures of water and sulfuric acid. The different species present at the surface of these droplets (H(2)O, H(3)O(+), HSO(4)(-), H(2)SO(4), and SO(4)(2-)) stand at the "gas-liquid frontier"; as the first to be struck by impinging molecules, these species provide the initial environment for solvation and reaction. Furthermore, aerosol particles may contain a wide range of organic molecules, some of which migrate to the surface and coat the droplet. How do ambient gases dissolve in the droplet if it is coated with an organic layer? At one extreme, monolayer films of insoluble, long-chain alcohols can dramatically reduce gas transport, packing so tightly at the surface of water that they impede water evaporation by factors of 10,000 or more. Shorter chain surfactants are expected to pack less tightly, but we wondered whether these incomplete monolayers also block gas transport and whether this system could serve as a model for understanding the surfaces of atmospheric aerosol particles. To address these questions, our research focuses on small, soluble surfactants such as butanol and hexanol dissolved in supercooled sulfuric acid. These amphiphilic molecules spontaneously segregate to the surface and coat the acid but only to a degree. Gas-liquid scattering experiments reveal that these porous films behave in surprisingly diverse ways: they can impose a barrier (to N(2)O(5) hydrolysis), be "invisible" (to water evaporation), or even enhance gas uptake (of HCl). The transition from obstacle to catalyst can be traced to specific interactions between the surfactant and each gas. For example, the hydrolysis of N(2)O(5) may be impeded because of its large size and because alcohol molecules that straddle the interface limit contact between N(2)O(5

  11. Surfactant control of gas transport and reactions at the surface of sulfuric acid.

    PubMed

    Park, Seong-Chan; Burden, Daniel K; Nathanson, Gilbert M

    2009-02-17

    Aerosol particles in the atmosphere are tiny chemical reactors that catalyze numerous reactions, including the conversion of benign gases into ozone-destroying ones. In the lower stratosphere, these particles are often supercooled mixtures of water and sulfuric acid. The different species present at the surface of these droplets (H(2)O, H(3)O(+), HSO(4)(-), H(2)SO(4), and SO(4)(2-)) stand at the "gas-liquid frontier"; as the first to be struck by impinging molecules, these species provide the initial environment for solvation and reaction. Furthermore, aerosol particles may contain a wide range of organic molecules, some of which migrate to the surface and coat the droplet. How do ambient gases dissolve in the droplet if it is coated with an organic layer? At one extreme, monolayer films of insoluble, long-chain alcohols can dramatically reduce gas transport, packing so tightly at the surface of water that they impede water evaporation by factors of 10,000 or more. Shorter chain surfactants are expected to pack less tightly, but we wondered whether these incomplete monolayers also block gas transport and whether this system could serve as a model for understanding the surfaces of atmospheric aerosol particles. To address these questions, our research focuses on small, soluble surfactants such as butanol and hexanol dissolved in supercooled sulfuric acid. These amphiphilic molecules spontaneously segregate to the surface and coat the acid but only to a degree. Gas-liquid scattering experiments reveal that these porous films behave in surprisingly diverse ways: they can impose a barrier (to N(2)O(5) hydrolysis), be "invisible" (to water evaporation), or even enhance gas uptake (of HCl). The transition from obstacle to catalyst can be traced to specific interactions between the surfactant and each gas. For example, the hydrolysis of N(2)O(5) may be impeded because of its large size and because alcohol molecules that straddle the interface limit contact between N(2)O(5

  12. Prototype demonstration of dual sorbent injection for acid gas control on municipal solid waste combustion units

    SciTech Connect

    1994-05-01

    This report gathered and evaluated emissions and operations data associated with furnace injection of dry hydrated lime and duct injection of dry sodium bicarbonate at a commercial, 1500 ton per day, waste-to-energy facility. The information compiled during the project sheds light on these sorbents to affect acid gas emissions from municipal solid waste combustors. The information assesses the capability of these systems to meet the 1990 Clean Air Act and 1991 EPA Emission Guidelines.

  13. Gas chromatographic/mass spectrometric determination of lysergic acid diethylamide (LSD) in serum samples.

    PubMed

    Musshoff, F; Daldrup, T

    1997-08-01

    A sensitive method for the detection and quantification of lysergic acid diethylamide (LSD) in serum samples is described. After liquid-liquid extraction the trimethylsilyl derivative of LSD is detected by gas chromatography-mass spectrometry. Experiments with spiked samples resulted in a recovery of 76%, the coefficient of variation was 9.3%. Excellent linearity was obtained over the range 0.1-10 ng ml-1. Additionally experiments demonstrating the light sensitivity of LSD are presented together with casuistics.

  14. Effects of emulsified octadecanic acids on gas production and cellulolysis by the rumen anaerobic fungus, Piromyces communis M014.

    PubMed

    Kim, Chang-H; Lee, Shin J; Ha, Jong K; Kim, Wan Y; Lee, Sung S

    2008-02-01

    Responses of the rumen anaerobic fungus, Piromyces communis M014, to octadecanic long-chain fatty acids (LCFAs) were evaluated by measuring total and hydrogen gas productions, filter paper (FP) cellulose degradation and polysaccharidase enzyme activities. Octadecanic acids (stearic acid, C(18:0); oleic acid, C(18:1); linoleic acid, C(18:2) and linolenic acid, C(18:3)) were emulsified by ultrasonication under anaerobic conditions, and added to the medium at the level of 0.001%. When P. communis M014 was grown in culture with stearic and oleic acids, the cumulative gas production, FP cellulose digestion and enzyme activities were significantly (p<0.05) increased in the early incubation times relative to those for the control. However, the addition of linolenic acid inhibited all of the investigated parameters, including cellulose degradation, enzyme activities and gas production, up to 168h incubation. These results indicated that stearic and oleic acids tended to have stimulatory effects on fungal cellulolysis, whereas linolenic acid caused a significant (p<0.05) inhibitory effect on cellulolysis by the rumen fungus. The fungus, P. communis M014, can biohydrogenate C(18) unsaturated fatty acids to escape from their toxic effects. Therefore, in this study, the results indicated that the more highly the added C(18) LCFA to the fungal culture was unsaturated, the higher the inhibition of gas production and cellulase enzyme activity was.

  15. Real-time calibration of laser absorption spectrometer using spectral correlation performed with an in-line gas cell.

    PubMed

    Smith, Clinton J; Wang, Wen; Wysocki, Gerard

    2013-09-23

    A real-time drift correction and calibration method using spectral correlation based on a revolving in-line gas cell for laser-based spectroscopic trace-gas measurements has been developed and evaluated experimentally. This technique is relatively simple to implement in laser spectroscopy systems and assures long-term stability of trace-gas measurements by minimizing the effects of external sources of drift in real-time. Spectroscopic sensitivity sufficient for environmental monitoring and effective drift suppression has been achieved for long-term measurements of CO₂ with a quantum cascade laser based spectrometer.

  16. Effect on combined cycle efficiency of stack gas temperature constraints to avoid acid corrosion

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.

    1980-01-01

    To avoid condensation of sulfuric acid in the gas turbine exhaust when burning fuel oils contaning sulfur, the exhaust stack temperature and cold-end heat exchanger surfaces must be kept above the condensation temperature. Raising the exhaust stack temperature, however, results in lower combined cycle efficiency compared to that achievable by a combined cycle burning a sulfur-free fuel. The maximum difference in efficiency between the use of sulfur-free and fuels containing 0.8 percent sulfur is found to be less than one percentage point. The effect of using a ceramic thermal barrier coating (TBC) and a fuel containing sulfur is also evaluated. The combined-cycle efficiency gain using a TBC with a fuel containing sulfur compared to a sulfur-free fuel without TBC is 0.6 to 1.0 percentage points with air-cooled gas turbines and 1.6 to 1.8 percentage points with water-cooled gas turbines.

  17. Determination of phenoxy acid herbicides in water by electron-capture and microcoulometric gas chromatography

    USGS Publications Warehouse

    Goerlitz, D.F.; Lamar, William L.

    1967-01-01

    A sensitive gas chromatographic method using microcoulometric titration and electron-capture detection for the analysis of 2,4-D, silvex, 2,4,5-T, and other phenoxy acid herbicides in water is described. The herbicides are extracted from unfiltered water samples (800-1,000 ml) by use of ethyl ether ; then the herbicides are concentrated and esterilied. To allow the analyst a choice, two esterilication procedures--using either boron trifluoride-methanol or diazomethane--are evaluated. Microcoulometric gas chromatography is specific for the detection of halogenated compounds such as the phenoxy acid herbicides whereas it does not respond to nonhalogenated components. Microcoulometric gas chromatography requires care and patience. It is not convenient for rapid screening of l-liter samples that contain less than 1 microgram of the herbicide. Although electroncapture gas chromatography is less selective and more critically affected by interfering substances, it is, nevertheless, convenient and more sensitive than microcoulometric gas chromatography. Two different liquid phases are used in the gas chromatographic columns--DC-200 silicone in one column and QF-1 silicone in the other. The performance of both columns is improved by the addition of Carbowax 20M. The Gas Chrom Q support is coated with the liquid phases by the 'frontal-analysis' technique. The practical lower limits for measurement of the phenoxy acid herbicides in water primarily depend upon the sample size, interferences present, anal instrumentation used. With l-liter samples of water, the practical lower limits of measurement are 10 ppt (parts per trillion) for 2,4-D and 2 ppt for silvex and 2,4,5-T when electron-capture detection is used, and approximately 20 ppt for each herbicide when analyzed by microcoulometric-titration gas chromatography. Recoveries of the herbicides immediately after addition to unfiltered water samples averaged 92 percent for 2,4-D, 90 percent for silvex, and 98 percent for 2

  18. Micro-structural design and function of an improved absorptive glass mat (AGM) separator for valve-regulated lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Nakayama, Y.; Kishimoto, K.; Sugiyama, S.; Sakaguchi, S.

    Two important properties of absorptive glass mat (AGM) separators are examined in order to design optimum separators for advanced valve-regulated lead-acid (VRLA) batteries. Acid stratification in the separator depends on its micro-glass-fibre diameter, and it is found that the extent of stratification can be estimated based on hydrodynamics theory. Decreasing the plate-group pressure of the separator in the wetted state is also investigated, and it is considered that the phenomenon is caused by the balance between the fibre strength and the surface tension of acid solution. Given these results, the way to design AGM separators according to purpose has been identified. Accordingly, a new AGM separator has been developed and this functions both to suppress stratification and to maintain plate-group pressure.

  19. A novel oxidative method for the absorption of Hg(0) from flue gas of coal fired power plants using task specific ionic liquid scrubber.

    PubMed

    Barnea, Zach; Sachs, Tatyana; Chidambaram, Mandan; Sasson, Yoel

    2013-01-15

    A simple continuous process is described for the removal of mercury from gas streams (such as flue gas of a coal fired power stations) using imidazolium based Task Specific Ionic Liquids [TSILs] with the general structure ([RMIM][XI(2)(-)]) where X=Cl, Br or I. The latter are formed by blending dialkylimidazolium halide salts with iodine. When applied in a gas/liquid scrubber, these salts were shown to absorb >99% of elemental mercury originally present in a gas stream in concentration of 75-400 ppb. The mercury abatement is attained by oxidating the mercury to HgI(2) which is bound as a stable IL complex ([RMIM(+)][XHgI(2)(-)]. The novel absorption system exhibits a remarkable mercury concentration factor of seven orders of magnitude. The final solution obtained contains up to 50% (w/w) mercury in the IL. Upon exposure to sodium formate, directly added to the saturated IL at 45 °C, reduced metallic mercury swiftly precipitated from the solution and could be quantitatively separated and collected. The free IL could be fully recycled. PMID:23199593

  20. Surface Structure and Chemical Switching of Thioctic Acid Adsorbed on Au(111) as Observed Using Near-Edge X-ray Absorption Fine Structure

    SciTech Connect

    Meulenberg, R W; van Buuren, T; Vance, A L; Terminello, L J; Willey, T M; Bostedt, C; Fadley, C S

    2004-01-06

    Thioctic acid (alpha-lipoic acid) is a molecule with a large disulfide-containing base, a short alkyl-chain with four CH{sub 2} units, and a carboxyl termination. Self-assembled monolayer (SAM) films of thioctic acid adsorbed on Au(111) have been investigated with near-edge x-ray absorption fine structure (NEXAFS) spectroscopy and x-ray photoelectron spectroscopy (XPS) to determine film quality, bonding and morphology. Using standard preparation protocols for SAMs, that is, dissolving thioctic acid in ethanol and exposing gold to the solution, results in poor films. These films are highly disordered, contain a mixture of carboxyl and carboxylate terminations, have more than monolayer coverage, and exhibit unbound disulfide. Conversely, forming films by dissolving 1 mmol thioctic acid into 5% acetic acid in ethanol (as previously reported with carboxyl-terminated alkyl-thiols) forms ordered monolayers with small amounts of unbound sulfur. NEXAFS indicates tilted over endgroups with the carboxyl group normal on average 38{sup o} from the surface normal. Slight dichroism in other features indicates alkyl chains statistically more upright than prostrate on the surface. Reflection-absorption Fourier transform infrared (RA-FTIR) spectra indicate hydrogen bonding between neighboring molecules. In such well-formed monolayers, a stark reorientation occurs upon deprotonation of the endgroup by rinsing in a KOH solution. The carboxylate plane normal is now about 66{sup o} from sample normal, a much more upright orientation. Data indicate this reorientation may also cause a more upright orientation to the alkyl portion of the molecules.