Sample records for acid gas control

  1. BENCH-SCALE EVALUATION OF CALCIUM SORBENTS FOR ACID GAS EMISSION CONTROL

    EPA Science Inventory

    Calcium sorbents for acid gas emission control were evaluated for effectiveness in removing SO2/HCl and SO2/NO from simulated incinerator and boiler flue gases. All tests were conducted in a bench-scale reactor (fixed-bed) simulating fabric filter conditions in an acid gas remova...

  2. Acidic gas capture by diamines

    DOEpatents

    Rochelle, Gary [Austin, TX; Hilliard, Marcus [Missouri City, TX

    2011-05-10

    Compositions and methods related to the removal of acidic gas. In particular, the present disclosure relates to a composition and method for the removal of acidic gas from a gas mixture using a solvent comprising a diamine (e.g., piperazine) and carbon dioxide. One example of a method may involve a method for removing acidic gas comprising contacting a gas mixture having an acidic gas with a solvent, wherein the solvent comprises piperazine in an amount of from about 4 to about 20 moles/kg of water, and carbon dioxide in an amount of from about 0.3 to about 0.9 moles per mole of piperazine.

  3. Hollow fiber gas-liquid membrane contactors for acid gas capture: a review.

    PubMed

    Mansourizadeh, A; Ismail, A F

    2009-11-15

    Membrane contactors using microporous membranes for acid gas removal have been extensively reviewed and discussed. The microporous membrane acts as a fixed interface between the gas and the liquid phase without dispersing one phase into another that offers a flexible modular and energy efficient device. The gas absorption process can offer a high selectivity and a high driving force for transport even at low concentrations. Using hollow fiber gas-liquid membrane contactors is a promising alternative to conventional gas absorption systems for acid gas capture from gas streams. Important aspects of membrane contactor as an efficient energy devise for acid gas removal including liquid absorbents, membrane characteristics, combination of membrane and absorbent, mass transfer, membrane modules, model development, advantages and disadvantages were critically discussed. In addition, current status and future potential in research and development of gas-liquid membrane contactors for acid gas removal were also briefly discussed.

  4. Toxic Acid Gas Absorber Design Considerations for Air Pollution Control in Process Industries

    ERIC Educational Resources Information Center

    Manyele, S. V.

    2008-01-01

    This paper analyses the design parameters for an absorber used for removal of toxic acid gas (in particular sulfur dioxide) from a process gas stream for environmental health protection purposes. Starting from the equilibrium data, Henry's law constant was determined from the slope of the y-x diagram. Based on mass balances across the absorber,…

  5. Perfluorocarbon-associated gas exchange in normal and acid-injured large sheep.

    PubMed

    Hernan, L J; Fuhrman, B P; Kaiser, R E; Penfil, S; Foley, C; Papo, M C; Leach, C L

    1996-03-01

    We hypothesized that a) perfluorocarbon-associated gas exchange could be accomplished in normal large sheep; b) the determinants of gas exchange would be similar during perfluorocarbon-associated gas exchange and conventional gas ventilation; c)in large animals with lung injury, perfluorocarbon-associated gas exchange could be used to enhance gas exchange without adverse effects on hemodynamics; and d) the large animal with lung injury could be supported with an FIO2 of <1.0 during perfluorocarbon-associated gas exchange. Prospective, observational animal study and prospective randomized, controlled animal study. An animal laboratory in a university setting. Thirty adult ewes. Five normal ewes (61.0 +/- 4.0 kg) underwent perfluorocarbon-associated gas exchange to ascertain the effects of tidal volume, end-inspiratory pressure, and positive end-expiratory pressure (PEEP) on oxygenation. Respiratory rate, tidal volume, and minute ventilation were studied to determine their effects on CO2 clearance. Sheep, weighing 58.9 +/- 8.3 kg, had lung injury induced by instilling 2 mL/kg of 0.05 Normal hydrochloric acid into the trachea. Five minutes after injury, PEEP was increased to 10 cm H2O. Ten minutes after injury, sheep with Pao2 values of <100 torr (<13.3 kPa) were randomized to continue gas ventilation (control, n=9) or to institute perfluorocarbon-associated gas exchange (n=9) by instilling 1.6 L of unoxygenated perflubron into the trachea and resuming gas ventilation. Blood gas and hemodynamic measurements were obtained throughout the 4-hr study. Both tidal volume and end-inspiratory pressure influenced oxygenation in normal sheep during perfluorocarbon-associated gas exchange. Minute ventilation determined CO2 clearance during perfluorocarbon-associated gas exchange in normal sheep. After acid aspiration lung injury, perfluorocarbon-associated gas exchange increased PaO2 and reduced intrapulmonary shunt fraction. Hypoxia and intrapulmonary shunting were unabated

  6. TECHNOLOGICAL OPTIONS FOR ACID RAIN CONTROL

    EPA Science Inventory

    Discussed are acid rain control options available to the electric utility industry. They include coal switching, flue gas desulfurization, and such emerging lower cost technologies as Limestone Injection Multistage Burners (LIMB) and Advanced Silicate (ADVACATE), both developed ...

  7. Using Willie's Acid-Base Box for Blood Gas Analysis

    ERIC Educational Resources Information Center

    Dietz, John R.

    2011-01-01

    In this article, the author describes a method developed by Dr. William T. Lipscomb for teaching blood gas analysis of acid-base status and provides three examples using Willie's acid-base box. Willie's acid-base box is constructed using three of the parameters of standard arterial blood gas analysis: (1) pH; (2) bicarbonate; and (3) CO[subscript…

  8. The Genealogical Tree of Ethanol: Gas-phase Formation of Glycolaldehyde, Acetic Acid, and Formic Acid

    NASA Astrophysics Data System (ADS)

    Skouteris, Dimitrios; Balucani, Nadia; Ceccarelli, Cecilia; Vazart, Fanny; Puzzarini, Cristina; Barone, Vincenzo; Codella, Claudio; Lefloch, Bertrand

    2018-02-01

    Despite the harsh conditions of the interstellar medium, chemistry thrives in it, especially in star-forming regions where several interstellar complex organic molecules (iCOMs) have been detected. Yet, how these species are synthesized is a mystery. The majority of current models claim that this happens on interstellar grain surfaces. Nevertheless, evidence is mounting that neutral gas-phase chemistry plays an important role. In this paper, we propose a new scheme for the gas-phase synthesis of glycolaldehyde, a species with a prebiotic potential and for which no gas-phase formation route was previously known. In the proposed scheme, the ancestor is ethanol and the glycolaldehyde sister species are acetic acid (another iCOM with unknown gas-phase formation routes) and formic acid. For the reactions of the new scheme with no available data, we have performed electronic structure and kinetics calculations deriving rate coefficients and branching ratios. Furthermore, after a careful review of the chemistry literature, we revised the available chemical networks, adding and correcting several reactions related to glycolaldehyde, acetic acid, and formic acid. The new chemical network has been used in an astrochemical model to predict the abundance of glycolaldehyde, acetic acid, and formic acid. The predicted abundance of glycolaldehyde depends on the ethanol abundance in the gas phase and is in excellent agreement with the measured one in hot corinos and shock sites. Our new model overpredicts the abundance of acetic acid and formic acid by about a factor of 10, which might imply a yet incomplete reaction network.

  9. Increase of weakly acidic gas esophagopharyngeal reflux (EPR) and swallowing-induced acidic/weakly acidic EPR in patients with chronic cough responding to proton pump inhibitors.

    PubMed

    Kawamura, O; Shimoyama, Y; Hosaka, H; Kuribayashi, S; Maeda, M; Nagoshi, A; Zai, H; Kusano, M

    2011-05-01

    Gastro-esophageal reflux disease (GERD)-related chronic cough (CC) may have multifactorial causes. To clarify the characteristics of esophagopharyngeal reflux (EPR) events in CC patients whose cough was apparently influenced by gastro-esophageal reflux (GER), we studied patients with CC clearly responding to full-dose proton pump inhibitor (PPI) therapy (CC patients). Ten CC patients, 10 GERD patients, and 10 healthy controls underwent 24-h ambulatory pharyngo-esophageal impedance and pH monitoring. Weakly acidic reflux was defined as a decrease of pH by >1 unit with a nadir pH >4. In six CC patients, monitoring was repeated after 8 weeks of PPI therapy. The number of each EPR event and the symptom association probability (SAP) were calculated. Symptoms were evaluated by a validated GERD symptom questionnaire. Weakly acidic gas EPR and swallowing-induced acidic/weakly acidic EPR only occurred in CC patients, and the numbers of such events was significantly higher in the CC group than in the other two groups (P < 0.05, respectively). Symptom association probability analysis revealed a positive association between GER and cough in three CC patients. Proton pump inhibitor therapy abolished swallowing-induced acidic/weakly acidic EPR, reduced weakly acidic gas EPR, and improved symptoms (all P < 0.05). Most patients with CC responding to PPI therapy had weakly acidic gas EPR and swallowing-induced acidic/weakly acidic EPR. A direct effect of acidic mist or liquid refluxing into the pharynx may contribute to chronic cough, while cough may also arise indirectly from reflux via a vago-vagal reflex in some patients. © 2011 Blackwell Publishing Ltd.

  10. Enterobacter sp. I-3, a bio-herbicide inhibits gibberellins biosynthetic pathway and regulates abscisic acid and amino acids synthesis to control plant growth.

    PubMed

    Radhakrishnan, Ramalingam; Park, Jae-Man; Lee, In-Jung

    2016-12-01

    Very few bacterial species were identified as bio-herbicides for weed control. The present research was focused to elucidate the plant growth retardant properties of Enterobacter sp. I-3 during their interaction by determining the changes in endogenous photosynthetic pigments, plant hormones and amino acids. The two bacterial isolates I-4-5 and I-3 were used to select the superior bacterium for controlling weed seeds (Echinochloa crus-galli L. and Portulaca oleracea L.) germination. The post-inoculation of I-3 (Enterobacter sp. I-3) significantly inhibited the weeds seed germination than their controls. The mechanism of bacterium induced plant growth reduction was identified in lettuce treated with I-3 bacterium and compared their effects with known chemical herbicide, trinexapac-ethyl (TE). The treatment of I-3 and TE showed a significant inhibitory effect on shoot length, leaf number, leaf length, leaf width, shoot weight, root weight and chlorophyll content in lettuce seedlings. The endogenous gibberellins (GAs) and abscisic acid (ABA) analysis showed that Enterobacter sp. I-3 treated plants had lower levels of GAs (GA 12 , GA 19 , GA 20 and GA 8 ) and GAs/ABA ratio and then, the higher level of ABA when compared to their controls. Indeed, the individual amino acids ie., aspartic acid, glutamic acid, glycine, threonine, alanine, serine, leucine, isoleucine and tyrosine were declined in TE and I-3 exposed plants. Our results suggest that the utilization of Enterobacter sp. I-3 inhibits the GAs pathway and amino acids synthesis in weeds to control their growth can be an alternative to chemical herbicides. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Acid gas scrubbing by composite solvent-swollen membranes

    DOEpatents

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1988-01-01

    A composite immobilized liquid membrane suitable for acid gas scrubbing is disclosed. The membrane is a solvent-swollen polymer and a microporous polymeric support, the solvent being selected from a class of highly polar solvents containing at least one atom selected from nitrogen, oxygen, phosphorous and sulfur, and having a boiling point of at least 100.degree. C. and a solubility parameter of from about 7.5 to about 13.5 (cal/cm.sup.3 -atm).sup.1/2. Such solvents are homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. Also disclosed are methods of acid gas scrubbing of high- and low-Btu gas effluents with such solvent-swollen membranes.

  12. Acid gas scrubbing by composite solvent-swollen membranes

    DOEpatents

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1988-04-12

    A composite immobilized liquid membrane suitable for acid gas scrubbing is disclosed. The membrane is a solvent-swollen polymer and a microporous polymeric support, the solvent being selected from a class of highly polar solvents containing at least one atom selected from nitrogen, oxygen, phosphorus and sulfur, and having a boiling point of at least 100 C and a solubility parameter of from about 7.5 to about 13.5 (cal/cm[sup 3]-atm)[sup 1/2]. Such solvents are homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. Also disclosed are methods of acid gas scrubbing of high- and low-Btu gas effluents with such solvent-swollen membranes. 3 figs.

  13. Ammonia gas sensing behavior of tanninsulfonic acid doped polyaniline-TiO₂ composite.

    PubMed

    Bairi, Venu Gopal; Bourdo, Shawn E; Sacre, Nicolas; Nair, Dev; Berry, Brian C; Biris, Alexandru S; Viswanathan, Tito

    2015-10-16

    A highly active tannin doped polyaniline-TiO₂ composite ammonia gas sensor was developed and the mechanism behind the gas sensing activity was reported for the first time. A tanninsulfonic acid doped polyaniline (TANIPANI)-titanium dioxide nanocomposite was synthesized by an in situ polymerization of aniline in the presence of tanninsulfonic acid and titanium dioxide nanoparticles. X-ray diffraction and thermogravimetric analysis were utilized to determine the incorporation of TiO₂ in TANIPANI matrix. UV-Visible and infrared spectroscopy studies provided information about the electronic interactions among tannin, polyaniline, and TiO₂. Scanning electron microscopy (SEM) along with energy dispersive X-ray spectroscopy (EDS) and atomic force microscopy (AFM) surface analysis techniques were used to investigate the metal oxide dispersions inside polyaniline matrix. Gas sensors were prepared by spin coating solutions of TANIPANI-TiO₂ and TANIPANI composites onto glass slides. Sensors were tested at three different concentrations (20 ppm, 40 ppm, and 60 ppm) of ammonia gas at ambient temperature conditions by measuring the changes in surface resistivity of the films with respect to time. Ammonia gas sensing plots are presented showing the response values, response times and recovery times. The TANIPANI-TiO₂ composite exhibited better response and shorter recovery times when compared to TANIPANI control and other polyaniline composites that have been reported in the literature. For the first time a proposed mechanism of gas sensing basing on the polaron band localization and its effects on the gas sensing behavior of polyaniline are reported.

  14. Gas-controlled dynamic vacuum insulation with gas gate

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber.

  15. Gas-controlled dynamic vacuum insulation with gas gate

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.

  16. An Experimental and Computational Study of the Gas-Phase Acidities of the Common Amino Acid Amides.

    PubMed

    Plummer, Chelsea E; Stover, Michele L; Bokatzian, Samantha S; Davis, John T M; Dixon, David A; Cassady, Carolyn J

    2015-07-30

    Using proton-transfer reactions in a Fourier transform ion cyclotron resonance mass spectrometer and correlated molecular orbital theory at the G3(MP2) level, gas-phase acidities (GAs) and the associated structures for amides corresponding to the common amino acids have been determined for the first time. These values are important because amino acid amides are models for residues in peptides and proteins. For compounds whose most acidic site is the C-terminal amide nitrogen, two ions populations were observed experimentally with GAs that differ by 4-7 kcal/mol. The lower energy, more acidic structure accounts for the majority of the ions formed by electrospray ionization. G3(MP2) calculations predict that the lowest energy anionic conformer has a cis-like orientation of the [-C(═O)NH](-) group whereas the higher energy, less acidic conformer has a trans-like orientation of this group. These two distinct conformers were predicted for compounds with aliphatic, amide, basic, hydroxyl, and thioether side chains. For the most acidic amino acid amides (tyrosine, cysteine, tryptophan, histidine, aspartic acid, and glutamic acid amides) only one conformer was observed experimentally, and its experimental GA correlates with the theoretical GA related to side chain deprotonation.

  17. Effects of emulsified octadecanic acids on gas production and cellulolysis by the rumen anaerobic fungus, Piromyces communis M014.

    PubMed

    Kim, Chang-H; Lee, Shin J; Ha, Jong K; Kim, Wan Y; Lee, Sung S

    2008-02-01

    Responses of the rumen anaerobic fungus, Piromyces communis M014, to octadecanic long-chain fatty acids (LCFAs) were evaluated by measuring total and hydrogen gas productions, filter paper (FP) cellulose degradation and polysaccharidase enzyme activities. Octadecanic acids (stearic acid, C(18:0); oleic acid, C(18:1); linoleic acid, C(18:2) and linolenic acid, C(18:3)) were emulsified by ultrasonication under anaerobic conditions, and added to the medium at the level of 0.001%. When P. communis M014 was grown in culture with stearic and oleic acids, the cumulative gas production, FP cellulose digestion and enzyme activities were significantly (p<0.05) increased in the early incubation times relative to those for the control. However, the addition of linolenic acid inhibited all of the investigated parameters, including cellulose degradation, enzyme activities and gas production, up to 168h incubation. These results indicated that stearic and oleic acids tended to have stimulatory effects on fungal cellulolysis, whereas linolenic acid caused a significant (p<0.05) inhibitory effect on cellulolysis by the rumen fungus. The fungus, P. communis M014, can biohydrogenate C(18) unsaturated fatty acids to escape from their toxic effects. Therefore, in this study, the results indicated that the more highly the added C(18) LCFA to the fungal culture was unsaturated, the higher the inhibition of gas production and cellulase enzyme activity was.

  18. Thermal decarboxylation of acetic acid: Implications for origin of natural gas

    USGS Publications Warehouse

    Kharaka, Y.K.; Carothers, W.W.; Rosenbauer, R.J.

    1983-01-01

    Laboratory experiments on the thermal decarboxylation of solutions of acetic acid at 200??C and 300??C were carried out in hydrothermal equipment allowing for on-line sampling of both the gas and liquid phases for chemical and stable-carbon-isotope analyses. The solutions had ambient pH values between 2.5 and 7.1; pH values and the concentrations of the various acetate species at the conditions of the experiments were computed using a chemical model. Results show that the concentrations of acetic acid, and not total acetate in solution, control the reaction rates which follow a first order equation based on decreasing concentrations of acetic acid with time. The decarboxylation rates at 200??C (1.81 ?? 10-8 per second) and 300??C (8.17 ?? 10-8 per second) and the extrapolated rates at lower temperatures are relatively high. The activation energy of decarboxylation is only 8.1 kcal/mole. These high decarboxylation rates, together with the distribution of short-chained aliphatic acid anions in formation waters, support the hypothesis that acid anions are precursors for an important portion of natural gas. Results of the ??13C values of CO2, CH4, and total acetate show a reasonably constant fractionation factor of about 20 permil between CO2 and CH4 at 300??C. The ??13C values of CO2 and CH4 are initially low and become higher as decarboxylation increases. ?? 1983.

  19. Formation of itraconazole-succinic acid cocrystals by gas antisolvent cocrystallization.

    PubMed

    Ober, Courtney A; Gupta, Ram B

    2012-12-01

    Cocrystals of itraconazole, an antifungal drug with poor bioavailability, and succinic acid, a water-soluble dicarboxylic acid, were formed by gas antisolvent (GAS) cocrystallization using pressurized CO(2) to improve itraconazole dissolution. In this study, itraconazole and succinic acid were simultaneously dissolved in a liquid solvent, tetrahydrofuran, at ambient conditions. The solution was then pressurized with CO(2), which decreased the solvating power of tetrahydrofuran and caused crystallization of itraconazole-succinic acid cocrystals. The cocrystals prepared by GAS cocrystallization were compared to those produced using a traditional liquid antisolvent, n-heptane, for crystallinity, chemical structure, thermal behavior, size and surface morphology, potential clinical relevance, and stability. Powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy analyses showed that itraconazole-succinic acid cocrystals with physical and chemical properties similar to cocrystals produced using a traditional liquid antisolvent technique can be prepared by CO(2) antisolvent cocrystallization. The dissolution profile of itraconazole was significantly enhanced through GAS cocrystallization with succinic acid, achieving over 90% dissolution in less than 2 h. The cocrystals appeared stable against thermal stress for up to 4 weeks under accelerated stability conditions, showing only moderate decreases in their degree of crystallinity but no change in their crystalline structure. This study shows the utility of an itraconazole-succinic acid cocrystal for improving itraconazole bioavailability while also demonstrating the potential for CO(2) to replace traditional liquid antisolvents in cocrystal preparation, thus making cocrystal production more environmentally benign and scale-up more feasible.

  20. Techno-economic Analysis of Acid Gas Removal and Liquefaction for Pressurized LNG

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Seo, Y. K.; Chang, D. J.

    2018-05-01

    This study estimated the life cycle cost (LCC) of an acid gas removal and a liquefaction processes for Pressurized LNG (PLNG) production and compared the results with the cost of normal LNG production. PLNG is pressurized LNG that is liquefied at a higher pressure and temperature than normal LNG. Due to the high temperature, the energy for liquefaction is reduced. The allowable CO2 concentration in PLNG is increased up to 3 mol% when the product pressure 25 bar. An amine process with 35 wt% of diethanolamine (DEA) aqueous solution and a nitrogen expansion cycle were selected for the acid gas removal and the liquefaction processes, respectively. Two types of CO2 concentration in the feed gas were investigated to analyze their impacts on the acid gas removal unit. When the CO2 concentration was 5 mol%, the acid gas removal unit was required for both LNG and PLNG production. However, the acid gas removal unit was not necessary in PLNG when the concentration was 0.5 mol% and the pressure was higher than 15 bar. The results showed that the LCC of PLNG was reduced by almost 35% relative to that of LNG when the PLNG pressure was higher than 15 bar.

  1. Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation

    PubMed Central

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Lee, Bo Ram; Park, Da-Hye; Han, Kunwoo; Lee, Kun-Hong

    2013-01-01

    As the foundation of energy industry moves towards gas, flow assurance technology preventing pipelines from hydrate blockages becomes increasingly significant. However, the principle of hydrate inhibition is still poorly understood. Here, we examined natural hydrophobic amino acids as novel kinetic hydrate inhibitors (KHIs), and investigated hydrate inhibition phenomena by using them as a model system. Amino acids with lower hydrophobicity were found to be better KHIs to delay nucleation and retard growth, working by disrupting the water hydrogen bond network, while those with higher hydrophobicity strengthened the local water structure. It was found that perturbation of the water structure around KHIs plays a critical role in hydrate inhibition. This suggestion of a new class of KHIs will aid development of KHIs with enhanced biodegradability, and the present findings will accelerate the improved control of hydrate formation for natural gas exploitation and the utilization of hydrates as next-generation gas capture media. PMID:23938301

  2. Modeling acid-gas generation from boiling chloride brines

    PubMed Central

    2009-01-01

    Background This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Results Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150°C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. Conclusion The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation

  3. Experimental study of influence characteristics of flue gas fly ash on acid dew point

    NASA Astrophysics Data System (ADS)

    Song, Jinhui; Li, Jiahu; Wang, Shuai; Yuan, Hui; Ren, Zhongqiang

    2017-12-01

    The long-term operation experience of a large number of utility boilers shows that the measured value of acid dew point is generally lower than estimated value. This is because the influence of CaO and MgO on acid dew point in flue gas fly ash is not considered in the estimation formula of acid dew point. On the basis of previous studies, the experimental device for acid dew point measurement was designed and constructed, and the acid dew point under different smoke conditions was measured. The results show that the CaO and MgO in the flue gas fly ash have an obvious influence on the acid dew point, and the content of the fly ash is negatively correlated with the temperature of acid dew point At the same time, the concentration of H2SO4 in flue gas is different, and the acid dew point of flue gas is different, and positively correlated with the acid dew point.

  4. Ammonia Gas Sensing Behavior of Tanninsulfonic Acid Doped Polyaniline-TiO2 Composite

    PubMed Central

    Bairi, Venu Gopal; Bourdo, Shawn E.; Sacre, Nicolas; Nair, Dev; Berry, Brian C.; Biris, Alexandru S.; Viswanathan, Tito

    2015-01-01

    A highly active tannin doped polyaniline-TiO2 composite ammonia gas sensor was developed and the mechanism behind the gas sensing activity was reported for the first time. A tanninsulfonic acid doped polyaniline (TANIPANI)-titanium dioxide nanocomposite was synthesized by an in situ polymerization of aniline in the presence of tanninsulfonic acid and titanium dioxide nanoparticles. X-ray diffraction and thermogravimetric analysis were utilized to determine the incorporation of TiO2 in TANIPANI matrix. UV-Visible and infrared spectroscopy studies provided information about the electronic interactions among tannin, polyaniline, and TiO2. Scanning electron microscopy (SEM) along with energy dispersive X-ray spectroscopy (EDS) and atomic force microscopy (AFM) surface analysis techniques were used to investigate the metal oxide dispersions inside polyaniline matrix. Gas sensors were prepared by spin coating solutions of TANIPANI-TiO2 and TANIPANI composites onto glass slides. Sensors were tested at three different concentrations (20 ppm, 40 ppm, and 60 ppm) of ammonia gas at ambient temperature conditions by measuring the changes in surface resistivity of the films with respect to time. Ammonia gas sensing plots are presented showing the response values, response times and recovery times. The TANIPANI-TiO2 composite exhibited better response and shorter recovery times when compared to TANIPANI control and other polyaniline composites that have been reported in the literature. For the first time a proposed mechanism of gas sensing basing on the polaron band localization and its effects on the gas sensing behavior of polyaniline are reported. PMID:26501291

  5. Development of an Exhaled Breath Monitoring System with Semiconductive Gas Sensors, a Gas Condenser Unit, and Gas Chromatograph Columns

    PubMed Central

    Itoh, Toshio; Miwa, Toshio; Tsuruta, Akihiro; Akamatsu, Takafumi; Izu, Noriya; Shin, Woosuck; Park, Jangchul; Hida, Toyoaki; Eda, Takeshi; Setoguchi, Yasuhiro

    2016-01-01

    Various volatile organic compounds (VOCs) in breath exhaled by patients with lung cancer, healthy controls, and patients with lung cancer who underwent surgery for resection of cancer were analyzed by gas condenser-equipped gas chromatography-mass spectrometry (GC/MS) for development of an exhaled breath monitoring prototype system involving metal oxide gas sensors, a gas condenser, and gas chromatography columns. The gas condenser-GC/MS analysis identified concentrations of 56 VOCs in the breath exhaled by the test population of 136 volunteers (107 patients with lung cancer and 29 controls), and selected four target VOCs, nonanal, acetoin, acetic acid, and propanoic acid, for use with the condenser, GC, and sensor-type prototype system. The prototype system analyzed exhaled breath samples from 101 volunteers (74 patients with lung cancer and 27 controls). The prototype system exhibited a level of performance similar to that of the gas condenser-GC/MS system for breath analysis. PMID:27834896

  6. Feasibility study of NaOH regeneration in acid gas removal unit using membrane electrolysis

    NASA Astrophysics Data System (ADS)

    Taufany, Fadlilatul; Pratama, Alvian; Romzuddin, Muhammad

    2017-05-01

    The world's energy demand is increasing with the development of human civilization. Due to limited energy resource, after 2020 fossil fuels thus is predicted will be replaced by renewable resources. Taking an example, one of the potential renewable energy to be considered is biogas, as its high content of methane, which can be produced via the fermentation process of the organic compounds under controlled anaerobic environment by utilizing the methanogen bacteria. However, prior the further use, this biogas must be purified from its impurities contents, i.e. acid gas of CO2 and H2S, up to 4% and 16 ppmv, respectively, in the acid gas removal unit. This such of purification efforts, will significantly increase the higher heating value of biogas, approximately from 600 to 900 Btu/Scf. During the purification process in this acid gas removal unit, NaOH solution is used as a liquid absorbent to reduce those acid gases content, in which the by-product of alkali salt (brine) was produced as waste. Here we report the feasibility study of the NaOH regeneration process in acid gas removal unit via membrane electrolysis technology, in which both the technical and economic aspects are taken account. To be precise in procedure, the anode semi-cell was filled with the brine solution, while the cathode semi-cell was filled with demineralized water, and those electrodes were separated by the cation exchange membrane. Furthermore, the applied potential was varied ranging from 5, 10, 15 and to 20 V, while the concentration of KCl electrolyte solutions were varied ranging from 0.01, 0.05, 0.1, and to 0.03 M. This study was conducted under controlled temperatures of 30 and 50 °C. Here we found that the % sodium recovery was increased along with the applied potential, temperature, and the decrease in KCl electrolyte concentration. We found that the best results, by means of the highest % sodium recovery, i.e. 97.26 %, was achieved under the experimental condition of temperature at 30

  7. A flexible metal–organic framework: Guest molecules controlled dynamic gas adsorption

    DOE PAGES

    Mahurin, Shannon Mark; Li, Man -Rong; Wang, Hailong; ...

    2015-04-13

    A flexible metal–organic framework (MOF) of [Zn 3(btca) 2(OH) 2]·(guest) n (H 2btca = 1,2,3-benzotriazole-5-carboxylic acid) that exhibits guest molecule-controlled dynamic gas adsorption is reported in which carbon dioxide molecules rather than N 2, He, and Ar induce a structural transition with a corresponding appearance of additional steps in the isotherms. Physical insights into the dynamic adsorption behaviors of flexible compound 1 were detected by gas adsorption at different temperatures and different pressures and confirmed by Fourier transform infrared spectroscopy and molecular simulations. Interestingly, by taking advantage of the flexible nature inherent to the framework, this MOF material enables highlymore » selective adsorption of CO 2/N 2, CO 2/Ar, and CO 2/He of 36.3, 32.6, and 35.9, respectively, at 298 K. Furthermore, this class of flexible MOFs has potential applications for controlled release, molecular sensing, noble gas separation, smart membranes, and nanotechnological devices.« less

  8. First steps towards a gas-phase acidity ladder for derivatized fullerene dications

    NASA Astrophysics Data System (ADS)

    Petrie, Simon; Javahery, Gholamreza; Bohme, Diethard K.

    1993-03-01

    C2+60 can be derivatized by gas-phase ion/molecule reactions with polar hydrogen-bearing molecules. The adduct dications so produced may then undergo proton transfer to neutrals. The occurrence or absence of proton transfer as a secondary process gives information on the gas-phase acidity of the dicationic species C60·(XH)2+in. We have performed studies using a selected-ion flow tube at 294 ± 2 K and 0.35 ± 0.01 Torr, and have used observed reactivity of such dicationic fullerene adducts to determine upper or lower limits to their apparent and absolute gas-phase acidities. We present also a rationale for assessing the proton-transfer reactivity of dications via the apparent gas-phase acidity of these species, rather than the traditional use of gas-phase basicities or proton affinities. We propose that further studies of proton transfer from polycharged fullerene adducts may provide considerable useful information to model the reactivity of polyprotonated proteins and other large molecular polycatiions which can now be produced by techniques such as electrospray ionization.

  9. Automotive gas turbine fuel control

    NASA Technical Reports Server (NTRS)

    Gold, H. (Inventor)

    1978-01-01

    A fuel control system is reported for automotive-type gas turbines and particulary advanced gas turbines utilizing variable geometry components to improve mileage and reduce pollution emission. The fuel control system compensates for fuel density variations, inlet temperature variations, turbine vane actuation, acceleration, and turbine braking. These parameters are utilized to control various orifices, spool valves and pistons.

  10. Identification of Fatty Acids and Aliphatic Hydrocarbons in Sarcina lutea by Gas Chromatography and Combined Gas Chromatography-Mass Spectrometry

    PubMed Central

    Tornabene, T. G.; Gelpi, E.; Oró, J.

    1967-01-01

    The composition and nature of the fatty acids and hydrocarbons of Sarcina lutea were elucidated by gas chromatography and by combined gas chromatography-mass spectrometry. The distribution of fatty acids found in S. lutea showed two families of pairs, or dyads, of saturated monocarboxylic acids (C12–C18) with and without methyl branching. These pairs of fatty acids showed a pattern of iso and anteiso structures for C13, C15, and C17, and iso and normal structures for C12, C14, and C16. Only the C18 showed unsaturation. The distribution of hydrocarbons in the range C22–C29 showed two families of tetrads of unsaturated aliphatic hydrocarbons all showing methyl branching. Each tetrad was composed of four isomers identified as two iso olefins and two anteiso olefins. The only difference between the tetrads pertaining to different families was found in the relative gas chromatographic retention times of the last two components of each group. PMID:6039356

  11. Gas chromatography-vacuum ultraviolet spectroscopy for analysis of fatty acid methyl esters.

    PubMed

    Fan, Hui; Smuts, Jonathan; Bai, Ling; Walsh, Phillip; Armstrong, Daniel W; Schug, Kevin A

    2016-03-01

    A new vacuum ultraviolet (VUV) detector for gas chromatography was recently developed and applied to fatty acid methyl ester (FAME) analysis. VUV detection features full spectral acquisition in a wavelength range of 115-240nm, where virtually all chemical species absorb. VUV absorption spectra of 37 FAMEs, including saturated, monounsaturated, and polyunsaturated types were recorded. Unsaturated FAMEs show significantly different gas phase absorption profiles than saturated ones, and these classes can be easily distinguished with the VUV detector. Another advantage includes differentiating cis/trans-isomeric FAMEs (e.g. oleic acid methyl ester and linoleic acid methyl ester isomers) and the ability to use VUV data analysis software for deconvolution of co-eluting signals. As a universal detector, VUV also provides high specificity, sensitivity, and a fast data acquisition rate, making it a powerful tool for fatty acid screening when combined with gas chromatography. The fatty acid profile of several food oil samples (olive, canola, vegetable, corn, sunflower and peanut oils) were analyzed in this study to demonstrate applicability to real world samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Gas Control System for HEAO-B

    NASA Technical Reports Server (NTRS)

    Taylor, B.; Brissette, R.; Humphrey, A.; Morris, J.; Luger, J.; Swift, W.

    1978-01-01

    The HEAO-B Gas Control System consists of a high pressure gas storage supply together with distribution and regulation assemblies and their associated electronics for management of gas required for HEAO-B X-ray counter experiments. The Gas Control System replenishes a gas mixture (82 percent argon, 12.3 percent carbon dioxide, 5.7 percent xenon) in the counter volumes which is lost by: diffusion through controlled leakage plugs, diffusion through counter windows, and consumption resulting from periodic purges. The gas density in each counter volume is maintained constant to within 0.25 percent by comparison with a sealed reference volume. The system is fully redundant, capable of operating at atmospheric pressure as well as in a vacuum, contains interlocks which shut down gas flow in the event of either leakage or excessive pressure, and is able to shut down counter high voltage if counter pressure is abnormally low. The system is electronically controlled by ground command and self-sustaining in orbit for a period of at least one year.

  13. Controlling Gas-Flow Mass Ratios

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.

    1990-01-01

    Proposed system automatically controls proportions of gases flowing in supply lines. Conceived for control of oxidizer-to-fuel ratio in new gaseous-propellant rocket engines. Gas-flow control system measures temperatures and pressures at various points. From data, calculates control voltages for electronic pressure regulators for oxygen and hydrogen. System includes commercially available components. Applicable to control of mass ratios in such gaseous industrial processes as chemical-vapor depostion of semiconductor materials and in automotive engines operating on compressed natural gas.

  14. Determination of dichloroacetic acid and trichloroacetic acid in drinking water by acidic methanol esterification and headspace gas chromatography.

    PubMed

    Wang, Y H; Wong, P K

    2005-05-01

    A simple and rapid headspace method for gas chromatographic determination of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) in drinking water was developed. Acidic methanol esterification followed by a headspace technique using a capillary column gas chromatograph (GC) equipped with an electron capture detector (ECD) was applied to determine the levels of DCAA and TCAA in drinking water. The major advantages of this method are the use of acidic methanol as the derivatization agent instead of the hazardous diazomethane, and esterification is carried out in water instead of organic solvent. DCAA and TCAA methyl esters produced in the reaction were determined directly by a headspace GC/ECD method. The linear correlation coefficients at concentrations ranging from 0 to 60 microg/L were 0.992 and 0.996 for DCAA and TCAA, respectively. The relative standard deviations (RSD, %) for the determination of DCAA and TCAA in drinking water were 15 and 21.3%, respectively (n=3). The detection limits of this method were 3 and 0.5 microg/L for DCAA and TCAA, respectively, and the recovery was 68-103.2% for DCAA and TCAA.

  15. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    DOEpatents

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain H. R.; Jung, Hun Bok; Carroll, Kenneth

    2016-09-20

    An electrophilic acid gas-reactive fracturing and recovery fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. Proppants stabilize openings in fractures and fissures following fracturing.

  16. Gas-phase hydration of glyoxylic acid: Kinetics and atmospheric implications.

    PubMed

    Liu, Ling; Zhang, Xiuhui; Li, Zesheng; Zhang, Yunhong; Ge, Maofa

    2017-11-01

    Oxocarboxylic acids are one of the most important organic species found in secondary organic aerosols and can be detected in diverse environments. But the hydration of oxocarboxylic acids in the atmosphere has still not been fully understood. Neglecting the hydration of oxocarboxylic acids in atmospheric models may be one of the most important reasons for the significant discrepancies between field measurements and abundance predictions of atmospheric models for oxocarboxylic acids. In the present paper, glyoxylic acid, as the most abundant oxocarboxylic acids in the atmosphere, has been selected as an example to study whether the hydration process can occur in the atmosphere and what the kinetic process of hydration is. The gas-phase hydration of glyoxylic acid to form the corresponding geminal diol and those catalyzed by atmospheric common substances (water, sulfuric acid and ammonia) have been investigated at the CCSD(T)-F12/cc-pVDZ-F12//M06-2X/6-311++G(3df,3pd) level of theory. The contour map of electron density difference of transition states have been further analyzed. It is indicated that these atmospheric common substances can all catalyze on the hydration to some extent and sulfuric acid is the most effective reducing the Gibbs free energy of activation to 9.48 kcal/mol. The effective rate constants combining the overall rate constants and concentrations of the corresponding catalysts have shown that water and sulfuric acid are both important catalysts and the catalysis of sulfuric acid is the most effective for the gas-phase hydration of glyoxylic acid. This catalyzed processes are potentially effective in coastal regions and polluted regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Simultaneous determination of docosahexaenoic acid and eicosapentaenoic acid in common seafood using ultrasonic cell crusher extraction combined with gas chromatography.

    PubMed

    Zhao, Juanjuan; Ren, Yan; Yu, Chen; Chen, Xiangming; Shi, Yanan

    2017-02-01

    An effective method for the simultaneous determination of docosahexaenoic acid and eicosapentaenoic acid in common seafood by gas chromatography was developed and validated. Total docosahexaenoic acid and eicosapentaenoic acid were extracted from seafood by ultrasonic cell crusher assisted extraction and methyl esterified for gas chromatography analysis in the presence of the internal standard. The linearity was good (r > 0.999) in 9.59 ∼ 479.5 μg/mL for docosahexaenoic acid and 9.56 ∼ 477.8 μg/mL for eicosapentaenoic acid. The intrarun and interrun precisions were both within 4.8 and 6.1% for the two analytes, while the accuracy was less than 5.8%. The developed method was applied for determination of docosahexaenoic acid and eicosapentaenoic acid in six kinds of seafood. The result showed the content of docosahexaenoic acid and eicosapentaenoic acid was all higher than 1 mg/g in yellow croaker, hairtail, venerupis philippinarum, mussel, and oyster. Our work may be helpful for dietary optimization and production of docosahexaenoic acid and eicosapentaenoic acid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Are carboxyl groups the most acidic sites in amino acids? Gas-phase acidities, photoelectron spectra, and computations on tyrosine, p-hydroxybenzoic acid, and their conjugate bases.

    PubMed

    Tian, Zhixin; Wang, Xue-Bin; Wang, Lai-Sheng; Kass, Steven R

    2009-01-28

    Deprotonation of tyrosine in the gas phase was found to occur preferentially at the phenolic site, and the conjugate base consists of a 70:30 mixture of phenoxide and carboxylate anions at equilibrium. This result was established by developing a chemical probe for differentiating these two isomers, and the presence of both ions was confirmed by photoelectron spectroscopy. Equilibrium acidity measurements on tyrosine indicated that deltaG(acid)(o) = 332.5 +/- 1.5 kcal mol(-1) and deltaH(acid)(o) = 340.7 +/- 1.5 kcal mol(-1). Photoelectron spectra yielded adiabatic electron detachment energies of 2.70 +/- 0.05 and 3.55 +/- 0.10 eV for the phenoxide and carboxylate anions, respectively. The H/D exchange behavior of deprotonated tyrosine was examined using three different alcohols (CF3CH2OD, C6H5CH2OD, and CH3CH2OD), and incorporation of up to three deuterium atoms was observed. Two pathways are proposed to account for these results, and all of the experimental findings are supplemented with B3LYP/aug-cc-pVDZ and G3B3 calculations. In addition, it was found that electrospray ionization of tyrosine from a 3:1 (v/v) CH3OH/H2O solution using a commercial source produces a deprotonated [M-H]- anion with the gas-phase equilibrium composition rather than the structure of the ion that exists in aqueous media. Electrospray ionization from acetonitrile, however, leads largely to the liquid-phase (carboxylate) structure. A control molecule, p-hydroxybenzoic acid, was found to behave in a similar manner. Thus, the electrospray conditions that are employed for the analysis of a compound can alter the isomeric composition of the resulting anion.

  19. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with a...

  20. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with a...

  1. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with a...

  2. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain

    An electrophilic acid gas-reactive fracturing fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. The proppant stabilizes fracture openings in the bedrock to enhance recovery of energy-producing materials.

  3. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment..., 2011 § 60.648 Optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas... dilute solutions are used. In principle, this method consists of titrating hydrogen sulfide in a gas...

  4. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment..., 2011 § 60.648 Optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas... dilute solutions are used. In principle, this method consists of titrating hydrogen sulfide in a gas...

  5. Controlled Release of Antimicrobial ClO2 Gas from a Two-Layer Polymeric Film System.

    PubMed

    Bai, Zhifeng; Cristancho, Diego E; Rachford, Aaron A; Reder, Amy L; Williamson, Alexander; Grzesiak, Adam L

    2016-11-16

    We report a two-component label system comprising a chlorite-containing polymer film and an acid-containing polymer film that can release antimicrobial ClO 2 gas upon adhering the two films together to enable a reaction of the chlorite and acid under moisture exposure. The chlorite-containing film comprises a commercial acrylate-based pressure-sensitive adhesive polymer impregnated with sodium chlorite. The acid-containing film comprises a commercial poly(vinyl alcohol) polymer loaded with tartaric acid. Both of the films were prepared on low ClO 2 -absorbing substrate films from stable aqueous systems of the polymers with high reagent loading. Rapid and sustained releases of significant amounts of ClO 2 gas from the label system were observed in an in situ quantification system using UV-vis spectroscopy. It was found that the ClO 2 release is slower at a lower temperature and can be accelerated by moisture in the atmosphere and the films. Controlled release of ClO 2 gas from the label system was demonstrated by tailoring film composition and thickness. A model was developed to extract release kinetics and revealed good conversions of the label system. This two-component system can potentially be applied as a two-part label without premature release for applications in food packaging.

  6. Evaluation of gas cooling for pressurized phosphoric acid fuel cell stacks

    NASA Technical Reports Server (NTRS)

    Farooque, M.; Skok, A. J.; Maru, H. C.; Kothmann, R. E.; Harry, R. W.

    1983-01-01

    Gas cooling is a more reliable, less expensive and a more simple alternative to conventional liquid cooling for heat removal from the phosphoric acid fuel cell (PAFC). The feasibility of gas cooling has already been demonstrated in atmospheric pressure stacks. This paper presents theoretical and experimental investigation of gas cooling for pressurized PAFC. Two approaches to gas cooling, Distributed Gas Cooling (DIGAS) and Separated Gas Cooling (SGC) were considered, and a theoretical comparison on the basis of cell performance indicated SGC to be superior to DIGAS. The feasibility of SGC was experimentally demonstrated by operating a 45-cell stack for 700 hours at pressure, and determining thermal response and the effect of other related parameters.

  7. Acidic sweep gas with carbonic anhydrase coated hollow fiber membranes synergistically accelerates CO2 removal from blood.

    PubMed

    Arazawa, D T; Kimmel, J D; Finn, M C; Federspiel, W J

    2015-10-01

    The use of extracorporeal carbon dioxide removal (ECCO2R) is well established as a therapy for patients suffering from acute respiratory failure. Development of next generation low blood flow (<500 mL/min) ECCO2R devices necessitates more efficient gas exchange devices. Since over 90% of blood CO2 is transported as bicarbonate (HCO3(-)), we previously reported development of a carbonic anhydrase (CA) immobilized bioactive hollow fiber membrane (HFM) which significantly accelerates CO2 removal from blood in model gas exchange devices by converting bicarbonate to CO2 directly at the HFM surface. This present study tested the hypothesis that dilute sulfur dioxide (SO2) in oxygen sweep gas could further increase CO2 removal by creating an acidic microenvironment within the diffusional boundary layer adjacent to the HFM surface, facilitating dehydration of bicarbonate to CO2. CA was covalently immobilized onto poly (methyl pentene) (PMP) HFMs through glutaraldehyde activated chitosan spacers, potted in model gas exchange devices (0.0151 m(2)) and tested for CO2 removal rate with oxygen (O2) sweep gas and a 2.2% SO2 in oxygen sweep gas mixture. Using pure O2 sweep gas, CA-PMP increased CO2 removal by 31% (258 mL/min/m(2)) compared to PMP (197 mL/min/m(2)) (P<0.05). Using 2.2% SO2 acidic sweep gas increased PMP CO2 removal by 17% (230 mL/min/m(2)) compared to pure oxygen sweep gas control (P<0.05); device outlet blood pH was 7.38 units. When employing both CA-PMP and 2.2% SO2 sweep gas, CO2 removal increased by 109% (411 mL/min/m(2)) (P<0.05); device outlet blood pH was 7.35 units. Dilute acidic sweep gas increases CO2 removal, and when used in combination with bioactive CA-HFMs has a synergistic effect to more than double CO2 removal while maintaining physiologic pH. Through these technologies the next generation of intravascular and paracorporeal respiratory assist devices can remove more CO2 with smaller blood contacting surface areas. A clinical need exists for more

  8. Power control system for a hot gas engine

    DOEpatents

    Berntell, John O.

    1986-01-01

    A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

  9. 46 CFR 154.904 - Inert gas system: Controls.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Inert gas system: Controls. 154.904 Section 154.904... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.904 Inert gas system: Controls. The inert gas system...

  10. Landfill gas control at military installations. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafer, R.A.; Renta-Babb, A.; Bandy, J.T.

    1984-01-01

    This report provides information useful to Army personnel responsible for recognizing and solving potential problems from gas generated by landfills. Information is provided on recognizing and gauging the magnitude of landfill gas problems; selecting appropriate gas control strategies, procedures, and equipment; use of computer modeling to predict gas production and migration and the success of gas control devices; and safety considerations.

  11. 46 CFR 154.904 - Inert gas system: Controls.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Atmospheric Control in Cargo Containment Systems § 154.904 Inert gas system: Controls. The inert gas system... the cargo area meeting paragraph (a) of this section; (c) Automatic and manual inert gas pressure...

  12. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids.

    PubMed

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong

    2016-08-16

    Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes.

  13. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids

    PubMed Central

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong

    2016-01-01

    Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes. PMID:27526869

  14. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids

    NASA Astrophysics Data System (ADS)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong

    2016-08-01

    Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes.

  15. System for controlling the flow of gas into and out of a gas laser

    DOEpatents

    Alger, Terry; Uhlich, Dennis M.; Benett, William J.; Ault, Earl R.

    1994-01-01

    A modularized system for controlling the gas pressure within a copper vapor or like laser is described herein. This system includes a gas input assembly which serves to direct gas into the laser in a controlled manner in response to the pressure therein for maintaining the laser pressure at a particular value, for example 40 torr. The system also includes a gas output assembly including a vacuum pump and a capillary tube arrangement which operates within both a viscous flow region and a molecular flow region for drawing gas out of the laser in a controlled manner.

  16. Sustainable synthesis of aldehydes, ketones or acids from neat alcohols using nitrogen dioxide gas, and related reactions.

    PubMed

    Naimi-Jamal, M Reza; Hamzeali, Hamideh; Mokhtari, Javad; Boy, Jürgen; Kaupp, Gerd

    2009-01-01

    Benzylic alcohols are quantitatively oxidized by gaseous nitrogen dioxide to give pure aromatic aldehydes. The reaction gas mixtures are transformed to nitric acid, which renders the processes free of waste. The exothermic gas-liquid or gas-solid reactions profit from the solubility of nitrogen dioxide in the neat benzylic alcohols. The acid formed impedes further oxidation of the benzaldehydes. The neat isolated benzaldehydes and nitrogen dioxide quantitatively give the benzoic acids. Solid long-chain primary alcohols are directly and quantitatively oxidized with nitrogen dioxide gas to give the fatty acids in the solid state. The oxidations with ubiquitous nitrogen dioxide are extended to solid heterocyclic thioamides, which gives disulfides, and to diphenylamine, which gives tetraphenylhydrazine. These sustainable (green) specific oxidation procedures produce no dangerous residues from the oxidizing agent or from auxiliaries.

  17. Experimental evidence of nitrous acid formation in the electron beam treatment of flue gas

    NASA Astrophysics Data System (ADS)

    Mätzing, H.; Namba, H.; Tokunaga, O.

    1994-03-01

    In the Electron Beam Dry Scrubbing (EBDS) process, flue gas from fossil fuel burning power plants is irradiated with accelerated (300-800 keV) electrons. Thereby, nitrogen oxide (NO x) and sulfur dioxide (SO 2) traces are transformed into nitric and sulfuric acids, respectively, which are converted into particulate ammonium nitrate and sulfate upon the addition of ammonia. The powdery can be filtered from the main gas stream and can be sold as agricultural fertilizer. A lot of experimental investigations have been performed on the EBDS process and computer models have been developed to interpret the experimental results and to predict economic improvements. According to the model calculations, substantial amounts of intermediate nitrous acid (HNO 2) are formed in the electron beam treatment of flue gas. However, no corresponding experimental information is available so far. Therefore, we have undertaken the first experimental investigation about the formation of nitrous acid in an irradiated mixture of NO in synthetic air. Under these conditions, aerosol formation is avoided. UV spectra of the irradiated gas were recorded in the wavelength range λ = 345-375 nm. Both NO 2 and HNO 2 have characteristic absorption bands in this wavelength range. Calibration spectra of NO 2 were subtracted from the sample spectra. The remaining absorption bands can clearly be assigned to nitrous acid. The concentration of nitrous acid was determined by differential optical absorption. It was found lower than the model prediction. The importance of nitrous acid formation in the EBDS process needs to be clarified.

  18. Control apparatus for hot gas engine

    DOEpatents

    Stotts, Robert E.

    1986-01-01

    A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

  19. Gas turbine engine control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idelchik, M.S.

    1991-02-19

    This paper describes a method for controlling a gas turbine engine. It includes receiving an error signal and processing the error signal to form a primary control signal; receiving at least one anticipatory demand signal and processing the signal to form an anticipatory fuel control signal.

  20. 21 CFR 870.4300 - Cardiopulmonary bypass gas control unit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiopulmonary bypass gas control unit. 870.4300... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Surgical Devices § 870.4300 Cardiopulmonary bypass gas control unit. (a) Identification. A cardiopulmonary bypass gas control unit is a device used...

  1. 21 CFR 870.4300 - Cardiopulmonary bypass gas control unit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass gas control unit. 870.4300... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Surgical Devices § 870.4300 Cardiopulmonary bypass gas control unit. (a) Identification. A cardiopulmonary bypass gas control unit is a device used...

  2. Effects of applying molasses, lactic acid bacteria and propionic acid on fermentation quality, aerobic stability and in vitro gas production of total mixed ration silage prepared with oat-common vetch intercrop on the Tibetan Plateau.

    PubMed

    Chen, Lei; Guo, Gang; Yuan, Xianjun; Zhang, Jie; Li, Junfeng; Shao, Tao

    2016-03-30

    The objective of this study was to investigate the effect of molasses, lactic acid bacteria and propionic acid on the fermentation quality, aerobic stability and in vitro gas production of total mixed ration (TMR) silage prepared with oat-common vetch intercrop on the Tibetan plateau. TMR (436 g kg(-1) dry matter (DM)) was ensiled with six experimental treatments: (1) no additives (control); (2) molasses (M); (3) an inoculant (Lactobacillus plantarum) (L); (4) propionic acid (P); (5) molasses + propionic acid (MP); (6) inoculant + propionic acid (LP). All silages were well preserved with low pH (< 4.19) and NH3-N contents, and high lactic acid contents after ensiling for 45 days. L and PL silages underwent a more efficient fermentation than silages without L. P and MP silages inhibited lactic acid production. Under aerobic conditions, M and L silage reduced aerobic stability for 15 and 74 h, respectively. All silages that had propionic acid in their treatments markedly (P < 0.05) improved the aerobic stability. After 72 h incubation, all additives treatments increased (P < 0.05) the 72 h cumulative gas production and in vitro DM digestibility (IVDMD) as compared with the control. L treatment decreased (P < 0.05) in vitro neutral detergent fibre degradability. Our findings show that TMR prepared with oat-common vetch intercrop can be well preserved. Although propionic acid is compatible with lactic acid bacteria, and when used together, they had minor effects on fermentation, aerobic stability and in vitro digestibility of TMR silage prepared with oat-common vetch intercrop. © 2015 Society of Chemical Industry.

  3. Investigation of Gas-Sensing Property of Acid-Deposited Polyaniline Thin-Film Sensors for Detecting H2S and SO2

    PubMed Central

    Dong, Xingchen; Zhang, Xiaoxing; Wu, Xiaoqing; Cui, Hao; Chen, Dachang

    2016-01-01

    Latent insulation defects introduced in manufacturing process of gas-insulated switchgears can lead to partial discharge during long-time operation, even to insulation fault if partial discharge develops further. Monitoring of decomposed components of SF6, insulating medium of gas-insulated switchgear, is a feasible method of early-warning to avoid the occurrence of sudden fault. Polyaniline thin-film with protonic acid deposited possesses wide application prospects in the gas-sensing field. Polyaniline thin-film sensors with only sulfosalicylic acid deposited and with both hydrochloric acid and sulfosalicylic acid deposited were prepared by chemical oxidative polymerization method. Gas-sensing experiment was carried out to test properties of new sensors when exposed to H2S and SO2, two decomposed products of SF6 under discharge. The gas-sensing properties of these two sensors were compared with that of a hydrochloric acid deposited sensor. Results show that the hydrochloric acid and sulfosalicylic acid deposited polyaniline thin-film sensor shows the most outstanding sensitivity and selectivity to H2S and SO2 when concentration of gases range from 10 to 100 μL/L, with sensitivity changing linearly with concentration of gases. The sensor also possesses excellent long-time and thermal stability. This research lays the foundation for preparing practical gas-sensing devices to detect H2S and SO2 in gas-insulated switchgears at room temperature. PMID:27834895

  4. Biological Control of Meloidogyne incognita by Aspergillus niger F22 Producing Oxalic Acid

    PubMed Central

    Jang, Ja Yeong; Choi, Yong Ho; Shin, Teak Soo; Kim, Tae Hoon; Shin, Kee-Sun; Park, Hae Woong; Kim, Young Ho; Kim, Hun; Choi, Gyung Ja; Jang, Kyoung Soo; Cha, Byeongjin; Kim, In Seon; Myung, Eul Jae

    2016-01-01

    Restricted usage of chemical nematicides has led to development of environmentally safe alternatives. A culture filtrate of Aspergillus niger F22 was highly active against Meloidogyne incognita with marked mortality of second-stage juveniles (J2s) and inhibition of egg hatching. The nematicidal component was identified as oxalic acid by organic acid analysis and gas chromatography-mass spectroscopy (GC-MS). Exposure to 2 mmol/L oxalic acid resulted in 100% juvenile mortality at 1 day after treatment and suppressed egg hatching by 95.6% at 7 days after treatment. Oxalic acid showed similar nematicidal activity against M. hapla, but was not highly toxic to Bursaphelenchus xylophilus. The fungus was incubated on solid medium and dried culture was used for preparation of a wettable powder-type (WP) formulation as an active ingredient. Two WP formulations, F22-WP10 (ai 10%) and oxalic acid-WP8 (ai 8%), were prepared using F22 solid culture and oxalic acid. In a field naturally infested with M. incognita, application of a mixture of F22-WP10 + oxalic acid-WP8 at 1,000- and 500-fold dilutions significantly reduced gall formation on the roots of watermelon plants by 58.8 and 70.7%, respectively, compared to the non-treated control. The disease control efficacy of the mixture of F22-WP10 + oxalic acid-WP8 was significantly higher than that of a chemical nematicide, Sunchungtan (ai 30% fosthiazate). These results suggest that A. niger F22 can be used as a microbial nematicide for the control of root-knot nematode disease. PMID:27258452

  5. Biological Control of Meloidogyne incognita by Aspergillus niger F22 Producing Oxalic Acid.

    PubMed

    Jang, Ja Yeong; Choi, Yong Ho; Shin, Teak Soo; Kim, Tae Hoon; Shin, Kee-Sun; Park, Hae Woong; Kim, Young Ho; Kim, Hun; Choi, Gyung Ja; Jang, Kyoung Soo; Cha, Byeongjin; Kim, In Seon; Myung, Eul Jae; Kim, Jin-Cheol

    2016-01-01

    Restricted usage of chemical nematicides has led to development of environmentally safe alternatives. A culture filtrate of Aspergillus niger F22 was highly active against Meloidogyne incognita with marked mortality of second-stage juveniles (J2s) and inhibition of egg hatching. The nematicidal component was identified as oxalic acid by organic acid analysis and gas chromatography-mass spectroscopy (GC-MS). Exposure to 2 mmol/L oxalic acid resulted in 100% juvenile mortality at 1 day after treatment and suppressed egg hatching by 95.6% at 7 days after treatment. Oxalic acid showed similar nematicidal activity against M. hapla, but was not highly toxic to Bursaphelenchus xylophilus. The fungus was incubated on solid medium and dried culture was used for preparation of a wettable powder-type (WP) formulation as an active ingredient. Two WP formulations, F22-WP10 (ai 10%) and oxalic acid-WP8 (ai 8%), were prepared using F22 solid culture and oxalic acid. In a field naturally infested with M. incognita, application of a mixture of F22-WP10 + oxalic acid-WP8 at 1,000- and 500-fold dilutions significantly reduced gall formation on the roots of watermelon plants by 58.8 and 70.7%, respectively, compared to the non-treated control. The disease control efficacy of the mixture of F22-WP10 + oxalic acid-WP8 was significantly higher than that of a chemical nematicide, Sunchungtan (ai 30% fosthiazate). These results suggest that A. niger F22 can be used as a microbial nematicide for the control of root-knot nematode disease.

  6. Method for the routine quantitative gas chromatographic analysis of major free fatty acids in butter and cream.

    PubMed

    Woo, A H; Lindsay, R C

    1980-07-01

    A rapid quantiative method was developed for routine analysis of the major, even carbon-numbered free fatty acids in butter and cream. Free fatty acids were isolated directly from intact samples by a modified silicic acid-potassium hydroxide arrestant column and were separated by gas chromatography with a 1.8 m x 2 mm inner diameter glass column packed with 10% neopentyl glycol adipate on 80/100 Chromosorb W. Purified, formic acid-saturated carrier gas was required for minimal peak tailing and extended column life. The accuracy and reproducibility of the mmethod was established through quantitative recovery studies of free fatty acid mixtures, free fatty acids added to butter, and replicate analysis of butter and cream samples.

  7. Temperature Controller System for Gas Gun Targets

    NASA Astrophysics Data System (ADS)

    Bucholtz, Scott; Sheffield, Stephen

    2005-07-01

    A temperature controller system capable of heating and cooling gas gun targets over the range -75 C to +200 C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge with integrated thermocouples was developed to measure the internal temperature of the target. Using this system shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful tests were completed on Teflon samples. This work was supported by the NNSA Enhanced Surveillance Campaign through contract DE-ACO4-01AL66850.

  8. Temperature Controller System for Gas Gun Targets

    NASA Astrophysics Data System (ADS)

    Bucholtz, S. M.; Gehr, R. J.; Rupp, T. D.; Sheffield, S. A.; Robbins, D. L.

    2006-07-01

    A temperature controller system capable of heating and cooling gas gun targets over the range -75°C to +120°C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge membrane with integrated thermocouples was developed to measure the internal temperature of the target. Using this system, multiple magnetic gauge shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful heating and cooling tests were completed on Teflon samples.

  9. [Determination a variety of acidic gas in air of workplace by Ion Chromatography].

    PubMed

    Li, Shiyong

    2014-10-01

    To establish a method for determination of a variety of acid gas in the workplace air by Ion Chromatography. (hydrofluoric acid, hydrogen chloride or hydrochloric acid, sulfur anhydride or sulfuric acid, phosphoric acid, oxalic acid). The sample in workplace air was collected by the porous glass plate absorption tube containing 5 ml leacheate. (Sulfuric acid fog, phosphoric acid aerosol microporous membrane after collection, eluted with 5 ml of eluent.) To separated by AS14+AG14 chromatography column, by carbonate (2.0+1.0) mmol/L (Na(2)CO(3)-NaHCO(3)) as eluent, flow rate of 1 ml/min, then analyzed by electrical conductivity detector. The retain time was used for qualitative and the peak area was used for quantitation. The each ion of a variety of acid gas in the air of workplace were excellent in carbonate eluent separation. The linear range of working curve of 0∼20 mg/L. The correlation coefficient r>0.999; lower detection limit of 3.6∼115 µg/L; quantitative limit of 0.012∼0.53 mg/L; acquisition of 15L air were measured, the minimum detection concentration is 0.004 0∼0.13 mg/m(3). The recovery rate is 99.7%∼101.1%. In the sample without mutual interference ions. Samples stored at room temperature for 7 days. The same analysis method, the detection of various acidic gases in the air of workplace, simple operation, good separation effect, high sensitivity, high detection efficiency, easy popularization and application.

  10. Gas turbine engine control system

    NASA Technical Reports Server (NTRS)

    Idelchik, Michael S. (Inventor)

    1991-01-01

    A control system and method of controlling a gas turbine engine. The control system receives an error signal and processes the error signal to form a primary fuel control signal. The control system also receives at least one anticipatory demand signal and processes the signal to form an anticipatory fuel control signal. The control system adjusts the value of the anticipatory fuel control signal based on the value of the error signal to form an adjusted anticipatory signal and then the adjusted anticipatory fuel control signal and the primary fuel control signal are combined to form a fuel command signal.

  11. Dominant factors in controlling marine gas pools in South China

    USGS Publications Warehouse

    Xu, S.; Watney, W.L.

    2007-01-01

    In marine strata from Sinian to Middle Triassic in South China, there develop four sets of regional and six sets of local source rocks, and ten sets of reservoir rocks. The occurrence of four main formation periods in association with five main reconstruction periods, results in a secondary origin for the most marine gas pools in South China. To improve the understanding of marine gas pools in South China with severely deformed geological background, the dominant control factors are discussed in this paper. The fluid sources, including the gas cracked from crude oil, the gas dissolved in water, the gas of inorganic origin, hydrocarbons generated during the second phase, and the mixed pool fluid source, were the most significant control factors of the types and the development stage of pools. The period of the pool formation and the reconstruction controlled the pool evolution and the distribution on a regional scale. Owing to the multiple periods of the pool formation and the reconstruction, the distribution of marine gas pools was complex both in space and in time, and the gas in the pools is heterogeneous. Pool elements, such as preservation conditions, traps and migration paths, and reservoir rocks and facies, also served as important control factors to marine gas pools in South China. Especially, the preservation conditions played a key role in maintaining marine oil and gas accumulations on a regional or local scale. According to several dominant control factors of a pool, the pool-controlling model can be constructed. As an example, the pool-controlling model of Sinian gas pool in Weiyuan gas field in Sichuan basin was summed up. ?? Higher Education Press and Springer-Verlag 2007.

  12. Gas chromatographic determination of carboxylic acid chlorides and residual carboxylic acid precursors used in the production of some penicillins.

    PubMed

    Lauback, R G; Balitz, D F; Mays, D L

    1976-05-01

    An improved gas chromatographic method is described for the simultaneous determination of carboxylic acid chlorides and related carboxylic acids used in the production of some commercial semisynthetic penicillins. The acid chloride reacts with diethylamine to form the corresponding diethylamide. Carboxylic acid impurities are converted to trimethylsilyl esters. The two derivatives are separated and quantitated in the same chromatographic run. This method, an extension of the earlier procedure of Hishta and Bomstein (1), has been applied to the acid chlorides used to make oxacillin, cloxacillin, dicloxacillin, and methicillin (Figure 1); it shows promise of application to other acid chlorides. The determination is more selective than the usual titration methods, which do not differentiate among acids with similar pK's. Relative standard deviations of the acid chloride determination are 1.0-2.5%. Residual carboxylic acid can be repetitively determined within a range of 0.6% absolute.

  13. Gas cushion control of OVJP print head position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, Stephen R

    An OVJP apparatus and method for applying organic vapor or other flowable material to a substrate using a printing head mechanism in which the print head spacing from the substrate is controllable using a cushion of air or other gas applied between the print head and substrate. The print head is mounted for translational movement towards and away from the substrate and is biased toward the substrate by springs or other means. A gas cushion feed assembly supplies a gas under pressure between the print head and substrate which opposes the biasing of the print head toward the substrate somore » as to form a space between the print head and substrate. By controlling the pressure of gas supplied, the print head separation from the substrate can be precisely controlled.« less

  14. 40 CFR 60.5408 - What is an optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... measuring hydrogen sulfide in acid gas-Tutwiler Procedure? 60.5408 Section 60.5408 Protection of Environment... § 60.5408 What is an optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure... of titrating hydrogen sulfide in a gas sample directly with a standard solution of iodine. (b...

  15. 40 CFR 60.5408 - What is an optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... measuring hydrogen sulfide in acid gas-Tutwiler Procedure? 60.5408 Section 60.5408 Protection of Environment... § 60.5408 What is an optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure... of titrating hydrogen sulfide in a gas sample directly with a standard solution of iodine. (b...

  16. Regeneration of an aqueous solution from an acid gas absorption process by matrix stripping

    DOEpatents

    Rochelle, Gary T [Austin, TX; Oyenekan, Babatunde A [Katy, TX

    2011-03-08

    Carbon dioxide and other acid gases are removed from gaseous streams using aqueous absorption and stripping processes. By replacing the conventional stripper used to regenerate the aqueous solvent and capture the acid gas with a matrix stripping configuration, less energy is consumed. The matrix stripping configuration uses two or more reboiled strippers at different pressures. The rich feed from the absorption equipment is split among the strippers, and partially regenerated solvent from the highest pressure stripper flows to the middle of sequentially lower pressure strippers in a "matrix" pattern. By selecting certain parameters of the matrix stripping configuration such that the total energy required by the strippers to achieve a desired percentage of acid gas removal from the gaseous stream is minimized, further energy savings can be realized.

  17. Blood-gas analyzer calibration and quality control using a precision gas-mixing instrument.

    PubMed

    Wallace, W D; Clark, J S; Cutler, C A

    1981-08-01

    We describe a new instrument that performs on-site mixing of oxygen (O2), carbon dioxide (CO2), and nitrogen (N2) to create compositions that can replace gases from standard premixed cylinders. This instrument yields accurate and predictable gas mixtures that can be used for two-point gas calibration of blood gas/pH analyzers or for liquid tonometry of either an aqueous buffer or blood used as quality-control material on blood-gas electrodes. The desired mixture of O2, CO2, and N2 is produced by microprocessor control of the sequential open-times on three solenoid valves that meter these pure gases through a common small-bore orifice. Any combination of O2 and CO2 can be chosen by dialing the front panel thumbwheels and pressing a button. Gas chromatographic evaluation of this gas-mixing instrument demonstrates its accuracy and precision to be better than +/- 0.1% absolute full scale for O2, CO2, and N2, making this instrument calibration and tonometry.

  18. Looking Northwest at Furnace Control Panels and Gas Control Furnace ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Northwest at Furnace Control Panels and Gas Control Furnace in Red Room Within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  19. NIM gas controlled sodium heat pipe

    NASA Astrophysics Data System (ADS)

    Yan, X.; Zhang, J. T.; Merlone, A.; Duan, Y.; Wang, W.

    2013-09-01

    Gas controlled heat pipes (GCHPs) provide a uniform, stable and reproducible temperature zone to calibrate thermometers and thermocouples, and to realize defining fixed points using a calorimetric method. Therefore, to perform such investigations, a GCHP furnace using sodium as its working fluid was constructed at the National Institute of Metrology (NIM), China. Also, investigations into the thermal characteristics of the NIM gas controlled sodium heat pipe were carried out. The temperature stability over 5 hours was better than ±0.25 mK while controlling the pressure at 111250 Pa. The temperature uniformity within 14 cm from the bottom of the thermometer well was within 0.3 mK. While keeping the pressure stable at the same value, 17 temperature determinations were performed over 14 days, obtaining a temperature reproducibility of 1.27 mK. Additionally, the NIM gas controlled sodium heat pipe was compared with the sodium heat pipe produced by INRiM. The temperature in the INRiM sodium heat pipe operating at 111250 Pa was determined, obtaining a difference of 21 mK with respect to the NIM GCHP. This difference was attributed to sodium impurities, pressure controller capabilities and reproducibility, and instabilities of high temperature standard platinum resistance thermometers (HTSPRTs). Further investigations will be carried out on extending the pressure/temperature range and connecting both GCHPs to the same pressure line.

  20. Etching radical controlled gas chopped deep reactive ion etching

    DOEpatents

    Olynick, Deidre; Rangelow, Ivo; Chao, Weilun

    2013-10-01

    A method for silicon micromachining techniques based on high aspect ratio reactive ion etching with gas chopping has been developed capable of producing essentially scallop-free, smooth, sidewall surfaces. The method uses precisely controlled, alternated (or chopped) gas flow of the etching and deposition gas precursors to produce a controllable sidewall passivation capable of high anisotropy. The dynamic control of sidewall passivation is achieved by carefully controlling fluorine radical presence with moderator gasses, such as CH.sub.4 and controlling the passivation rate and stoichiometry using a CF.sub.2 source. In this manner, sidewall polymer deposition thicknesses are very well controlled, reducing sidewall ripples to very small levels. By combining inductively coupled plasmas with controlled fluorocarbon chemistry, good control of vertical structures with very low sidewall roughness may be produced. Results show silicon features with an aspect ratio of 20:1 for 10 nm features with applicability to nano-applications in the sub-50 nm regime. By comparison, previous traditional gas chopping techniques have produced rippled or scalloped sidewalls in a range of 50 to 100 nm roughness.

  1. Evaluation of Gas-Cooled Pressurized Phosphoric Acid Fuel Cells for Electric Utility Power Generation

    NASA Technical Reports Server (NTRS)

    Faroque, M.

    1983-01-01

    Gas cooling is a more reliable, less expensive and a more simple alternative to conventional liquid cooling for heat removal from the phosphoric acid fuel cell (PAFC). The feasibility of gas-cooling was already demonstrated in atmospheric pressure stacks. Theoretical and experimental investigations of gas-cooling for pressurized PAFC are presented. Two approaches to gas cooling, Distributed Gas-Cooling (DIGAS) and Separated Gas-Cooling (SGC) were considered, and a theoretical comparison on the basis of cell performance indicated SGC to be superior to DIGAS. The feasibility of SGC was experimentally demonstrated by operating a 45-cell stack for 700 hours at pressure, and determining thermal response and the effect of other related parameters.

  2. Acid Gas Stability of Zeolitic Imidazolate Frameworks: Generalized Kinetic and Thermodynamic Characteristics

    DOE PAGES

    Bhattacharyya, Souryadeep; Han, Rebecca; Kim, Wun -Gwi; ...

    2018-05-29

    Here, acid gases such as SO 2 and CO 2 are present in many environments in which the use of nanoporous metal-organic frameworks (MOFs) is envisaged. Among metal-organic frameworks, zeolitic imidazolate frameworks (ZIFs) have been extensively explored as membranes or adsorbents. However, there is little systematic knowledge of the effects of acid gas exposure on the structure of ZIFs, in particular the mechanistic aspects of ZIF degradation by acid gases as well as the effects of ZIF crystal topology and linker composition on their stability. Here we present a generalized and quantitative investigation of the kinetic and thermodynamic acid gasmore » stability of a diverse range of ZIF materials. The stability of 16 ZIFs (of SOD, RHO, ANA, and GME topologies) under different environments – humid air, liquid water, and acid gases CO 2 and SO 2 (dry, humid, and aqueous) – are investigated by a suite of experimental and computational methods. The kinetics of ZIF degradation under exposure to humid SO 2 is studied in detail, and effective rate constants for acid gas degradation of ZIFs are reported for the first time. Remarkably, the kinetics of degradation of the diverse ZIFs correlate strongly with the linker pKa and ZIF water adsorption in a manner contrary to that expected from previous predictions in the literature. Furthermore, we find that the material ZIF-71 (RHO topology) shows much higher stability relative to the other ZIFs in humid SO 2 and CO 2 environments.« less

  3. Acid Gas Stability of Zeolitic Imidazolate Frameworks: Generalized Kinetic and Thermodynamic Characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Souryadeep; Han, Rebecca; Kim, Wun -Gwi

    Here, acid gases such as SO 2 and CO 2 are present in many environments in which the use of nanoporous metal-organic frameworks (MOFs) is envisaged. Among metal-organic frameworks, zeolitic imidazolate frameworks (ZIFs) have been extensively explored as membranes or adsorbents. However, there is little systematic knowledge of the effects of acid gas exposure on the structure of ZIFs, in particular the mechanistic aspects of ZIF degradation by acid gases as well as the effects of ZIF crystal topology and linker composition on their stability. Here we present a generalized and quantitative investigation of the kinetic and thermodynamic acid gasmore » stability of a diverse range of ZIF materials. The stability of 16 ZIFs (of SOD, RHO, ANA, and GME topologies) under different environments – humid air, liquid water, and acid gases CO 2 and SO 2 (dry, humid, and aqueous) – are investigated by a suite of experimental and computational methods. The kinetics of ZIF degradation under exposure to humid SO 2 is studied in detail, and effective rate constants for acid gas degradation of ZIFs are reported for the first time. Remarkably, the kinetics of degradation of the diverse ZIFs correlate strongly with the linker pKa and ZIF water adsorption in a manner contrary to that expected from previous predictions in the literature. Furthermore, we find that the material ZIF-71 (RHO topology) shows much higher stability relative to the other ZIFs in humid SO 2 and CO 2 environments.« less

  4. Detection of martian amino acids by chemical derivatization coupled to gas chromatography: in situ and laboratory analysis.

    PubMed

    Rodier, C; Vandenabeele-Trambouze, O; Sternberg, R; Coscia, D; Coll, P; Szopa, C; Raulin, F; Vidal-Madjar, C; Cabane, M; Israel, G; Grenier-Loustalot, M F; Dobrijevic, M; Despois, D

    2001-01-01

    If there is, or ever was, life in our solar system beyond the Earth, Mars is the most likely place to search for. Future space missions will have then to take into account the detection of prebiotic molecules or molecules of biological significance such as amino acids. Techniques of analysis used for returned samples have to be very sensitive and avoid any chemical or biological contamination whereas in situ techniques have to be automated, fast and low energy consuming. Several possible methods could be used for in situ amino acid analyses on Mars, but gas chromatography would likely be the most suitable. Returned samples could be analyzed by any method in routine laboratory use such as gas chromatography, already successfully performed for analyses of organic matter including amino acids from martian meteorites. The derivatization step, which volatilizes amino acids to perform both in situ and laboratory analysis by gas chromatography, is discussed here. c2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  5. Heat pipe temperature control utilizing a soluble gas absorption reservior

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1976-01-01

    A new gas-controlled heat pipe design is described which uses a liquid matrix reservior, or sponge, to replace the standard gas reservior. Reservior volume may be reduced by a factor of five to ten for certain gas-liquid combinations, while retaining the same level of temperature control. Experiments with ammonia, butane, and carbon dioxide control gases with methanol working fluid are discussed.

  6. Mead acid (20:3n-9) and n-3 polyunsaturated fatty acids are not associated with risk of posterior longitudinal ligament ossification: results of a case-control study.

    PubMed

    Hamazaki, Kei; Kawaguchi, Yoshiharu; Nakano, Masato; Yasuda, Taketoshi; Seki, Shoji; Hori, Takeshi; Hamazaki, Tomohito; Kimura, Tomoatsu

    2015-05-01

    Ossification of the posterior longitudinal ligament (OPLL) involves the replacement of ligamentous tissue with ectopic bone. Although genetics and heritability appear to be involved in the development of OPLL, its pathogenesis remains to be elucidated. Given previous findings that 5,8,11-eicosatrienoic acid [20:3n-9, Mead acid (MA)] has depressive effects on osteoblastic activity and anti-angiogenic effects, and that n-3 polyunsaturated fatty acids (PUFAs) have a preventive effect on heterotopic ossification, we hypothesized that both fatty acids would be involved in OPLL development. To examine the biological significance of these and other fatty acids in OPLL, we conducted this case-control study involving 106 patients with cervical OPLL and 109 age matched controls. Fatty acid composition was determined from plasma samples by gas chromatography. Associations between fatty acid levels and incident OPLL were evaluated by logistic regression. Contrary to our expectations, we found no significant differences between patients and controls in the levels of MA or n-3 PUFAs (e.g., eicosapentaenoic acid and docosahexaenoic acid). Logistic regression analysis did not reveal any associations with OPLL risk for MA or n-3 PUFAs. In conclusion, no potential role was found for MA or n-3 PUFAs in ectopic bone formation in the spinal canal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Sequestration of flue gas CO₂ by direct gas-solid carbonation of air pollution control system residues.

    PubMed

    Tian, Sicong; Jiang, Jianguo

    2012-12-18

    Direct gas-solid carbonation reactions of residues from an air pollution control system (APCr) were conducted using different combinations of simulated flue gas to study the impact on CO₂ sequestration. X-ray diffraction analysis of APCr determined the existence of CaClOH, whose maximum theoretical CO₂ sequestration potential of 58.13 g CO₂/kg APCr was calculated by the reference intensity ratio method. The reaction mechanism obeyed a model of a fast kinetics-controlled process followed by a slow product layer diffusion-controlled process. Temperature is the key factor in direct gas-solid carbonation and had a notable influence on both the carbonation conversion and the CO₂ sequestration rate. The optimal CO₂ sequestrating temperature of 395 °C was easily obtained for APCr using a continuous heating experiment. CO₂ content in the flue gas had a definite influence on the CO₂ sequestration rate of the kinetics-controlled process, but almost no influence on the final carbonation conversion. Typical concentrations of SO₂ in the flue gas could not only accelerate the carbonation reaction rate of the product layer diffusion-controlled process, but also could improve the final carbonation conversion. Maximum carbonation conversions of between 68.6% and 77.1% were achieved in a typical flue gas. Features of rapid CO₂ sequestration rate, strong impurities resistance, and high capture conversion for direct gas-solid carbonation were proved in this study, which presents a theoretical foundation for the applied use of this encouraging technology on carbon capture and storage.

  8. 10 CFR 50.44 - Combustible gas control for nuclear power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Combustible gas control for nuclear power reactors. 50.44... FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.44 Combustible gas control... capability for ensuring a mixed atmosphere. (2) Combustible gas control. (i) All boiling water reactors with...

  9. 10 CFR 50.44 - Combustible gas control for nuclear power reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Combustible gas control for nuclear power reactors. 50.44... FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.44 Combustible gas control... capability for ensuring a mixed atmosphere. (2) Combustible gas control. (i) All boiling water reactors with...

  10. 10 CFR 50.44 - Combustible gas control for nuclear power reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Combustible gas control for nuclear power reactors. 50.44... FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.44 Combustible gas control... capability for ensuring a mixed atmosphere. (2) Combustible gas control. (i) All boiling water reactors with...

  11. New ideas for shallow gas well control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourgoyne, A.T.; Kelly, O.A.; Sandoz, C.L.

    1996-06-01

    Flow from an unexpected shallow gas sand is one of the most difficult well control problems faced by oil and gas well operators during drilling operations. Current well control practice for bottom-supported marine rigs usually calls for shutting in the well when a kick is detected, if sufficient casing has been set to keep any flow underground. However, when shallow gas is encountered, casing may not be set deep enough to keep the underground flow from broaching to surface near the platform foundations. Once the flow reaches surface, craters are sometimes formed which can lead to loss of the rigmore » and associated marine structures. This short article overviews an ongoing study by Louisiana State University of the breakdown resistance of shallow marine sediments, using leak-off test data and geotechnical reports provided by Unocal. Such study is important for improving the characterization of shallow marine sediments to allow more reliable shallow casing designs, as the authors will conclude. This study has already proven that sediment failure mechanisms that lead to cratering have been poorly understood. In addition, there has been considerable uncertainty as to the best choices of well design parameters and well control contingency plans that will minimize risks associated with a shallow gas flow.« less

  12. Control means for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Beitler, R. S.; Sellers, F. J.; Bennett, G. W. (Inventor)

    1982-01-01

    A means is provided for developing a signal representative of the actual compressor casing temperature, a second signal representative of compressor inlet gas temperature, and a third signal representative of compressor speed. Another means is provided for receiving the gas temperature and compressor speed signals and developing a schedule output signal which is a representative of a reference casing temperature at which a predetermined compressor blade stabilized clearance is provided. A means is also provided for comparing the actual compressor casing temperature signal and the reference casing temperature signal and developing a clearance control system representative of the difference. The clearance control signal is coupled to a control valve which controls a flow of air to the compressor casing to control the clearance between the compressor blades and the compressor casing. The clearance control signal can be modified to accommodate transient characteristics. Other embodiments are disclosed.

  13. Recent Selected Ion Flow Tube (SIFT) Studies Concerning the Formation of Amino Acids in the Gas Phase

    NASA Technical Reports Server (NTRS)

    Jackson, Douglas M.; Adams, Nigel G.; Babcock, Lucia M.

    2006-01-01

    Recently the simplest amino acid, glycine, has been detected in interstellar clouds, ISC, although this has since been contested. In order to substantiate either of these claims, plausible routes to amino acids need to be investigated. For gas phase synthesis, the SIFT technique has been employed to study simple amino acids via ion-molecule reactions of several ions of interstellar interest with methylamine, ethylamine, formic acid, acetic acid, and methyl formate. Carboxylic acid type ions were considered in the reactions involving the amines. In reactions where the carboxylic acid and methyl formate neutrals were studied, the reactant ions were primarily amine ion fragments. It was observed that the amines and acids preferentially fragment or accept a proton whenever energetically possible. NH3(+), however, uniquely reacted with the neutrals via atom abstraction to form NH4(+). These studies yielded a body of data relevant to astrochemistry, supplementing the available literature. However, the search for gas phase routes to amino acids using conventional molecules has been frustrated. Our most recent research investigates the fragmentation patterns of several amino acids and several possible routes have been suggested for future study.

  14. Turbine gas temperature measurement and control system

    NASA Technical Reports Server (NTRS)

    Webb, W. L.

    1973-01-01

    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  15. Haematological, blood gas and acid-base values in the Galgo Español (Spanish greyhound).

    PubMed

    Mesa-Sanchez, I; Zaldivar-Lopez, S; Couto, C G; Gamito-Gomez, A; Granados-Machuca, M M; Lopez-Villalba, I; Galan-Rodriguez, A

    2012-07-01

    Haematologic profiles, electrolyte concentrations, blood gas values and acid-base balance have been studied and reported in healthy greyhounds; however, there is only one study published on blood gas values in Galgos Españoles. Because of their purported common origins with greyhounds (same group and class), it was hypothesised that Galgos Españoles also have differences in haematologic values, electrolyte concentrations, blood gas values and acid-base balance compared to other non-sporting breeds. Venous blood samples from 30 Galgos Españoles and 20 dogs from different breeds were collected, and complete blood counts, electrolyte concentrations, blood gas values and acid-base balance were measured. From the 24 parameters analysed, 5 had statistically significant differences (P<0·05). Galgos Españoles had higher haematocrit (P<0·001), haemoglobin concentration (P=0·003), erythrocyte count (P=0·016) and pH (P=0·03), and lower platelet count (P=0·005), than those in other-breed dogs. These results confirm that significant haematologic differences exist in Galgos Españoles when compared with other dogs, although these differences are not as striking as in greyhounds. Practitioners need to be aware of these breed-specific differences in order to make accurate diagnoses in Galgos Españoles. © 2012 British Small Animal Veterinary Association.

  16. Fatty Acid and Carbon Isotopic Evidence for type I Methanotrophs in Microbial Mats from a Shallow Marine Gas Seep, Coal Oil Point, CA.

    NASA Astrophysics Data System (ADS)

    Ding, H.; Valentine, D.

    2005-12-01

    To study the microbial community in a Southern California seep field, sediment and bacterial mat samples were collected from natural gas-bearing and gas-free surfaces at two distinct seeps in the Coal Oil Point seep field, offshore Santa Barbara. Fatty acids in these samples were extracted, analyzed and identified. Using gas chromatography (GC), more than 30 different fatty acids were separated. Generally, fatty acid concentrations in natural gas-bearing samples were about 5-fold higher compared to gas-free samples. Using gas chromatography mass sepctrometry (GC-MS), all separated fatty acids were identified in each sample. The major constituents included saturated 14:0, 16:0, 18:0, branched i-15, a-15 and unsaturated 16:1 and 18:1 series fatty acids. GC-IRMS (isotope ratio mass spectrometry) analysis provided the 13C of all major fatty acids and some 16:1 series fatty acids were found to be more depleted than -40% in samples associated with gas seepage. After treatment with dimethyl disufide (DMDS), the 16:1 series fatty acids were resolved into five distinct components, including common composition 16:1(7), bacterial specific i-16:1(7) and typical biomarkers of type I methnotrophs 16:1(8), 16(6) and 16:1(5), suggesting an important role for methnotrophs in seep sediments and microbial mats. These results provide evidence for the activity of type I methanotrophic bacteria in microbial mats and surficial sediments at the Coal Oil Point seep field, and have implications for methane cycling in this and other seep

  17. Gas-Phase Amidation of Carboxylic Acids with Woodward’s Reagent K Ions

    PubMed Central

    Peng, Zhou; Pilo, Alice L.; Luongo, Carl A.; McLuckey, Scott A.

    2015-01-01

    Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward’s reagent K (wrk) in both positive and negative mode. Woodward’s reagent K, N-ethyl-3-phenylisoxazolium-3′-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the wrk ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide. PMID:26122523

  18. Application of microturbines to control emissions from associated gas

    DOEpatents

    Schmidt, Darren D.

    2013-04-16

    A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

  19. SOXAL combined SO{sub x}/NO{sub x} flue gas control demonstration. Quarterly report, April--June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    AQUATECH Systems, a business unit of Allied-Signal Inc., proposes to demonstrate the technical viability and cost effectiveness of the SOXAL process a combined SO{sub x}/NO{sub x} control process on a 3 MW equivalent flue gas slip stream from Niagara Mohawk Power Corporation, Dunkirk Steam Station Boiler No. 4, a coal fired boiler. The SOXAL process combines 90+% sulfur dioxide removal from the flue gas using a sodium based scrubbing solution and regeneration of the spent scrubbing liquor using AQUATECH Systems` proprietary bipolar membrane technology. This regeneration step recovers a stream of sulfur dioxide suitable for subsequent processing to salable sulfurmore » or sulfuric acid. Additionally 90+% control of NO{sub x} gases can be achieved in combination with conventional urea/methanol injection of NO{sub 2} gas into the duct. The SOXAL process is applicable to both utility and industrial scale boilers using either high or low sulfur coal. The SOXAL demonstration Program began September 10, 1991 and is approximately 22 months in duration.« less

  20. SOXAL combined SO{sub x}/NO{sub x} flue gas control demonstration. Quarterly report, October--December 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    AQUATECH Systems a business unit of Allied-Signal Inc., proposes to demonstrate the technical viability and cost effectiveness of the SOXAL process a combined SO{sub x}/NO{sub x} control process on a 2--3 MW equivalent flue gas slip stream from Niagara Mohawk Power Corporation, Dunkirk Steam Station Boiler {number_sign}4, a coal fired boiler. The SOXAL process combines 90+% sulfur dioxide removal from the flue gas using a sodium based scrubbing solution and regeneration of the spent scrubbing liquor using AQUATECH Systems` proprietary bipolar membrane technology. This regeneration step recovers a stream of sulfur dioxide suitable for subsequent processing to salable sulfur ormore » sulfuric acid. Additionally 90+% control of NO{sub x} gases can be achieved in combination with conventional urea/methanol injection of NO{sub 2} gas into the duct. The SOXAL process is applicable to both utility and industrial scale boilers using either high or low sulfur coal. The SOXAL Demonstration Program began September 10, 1991 and is approximately 22 months in duration.« less

  1. Determination of phenoxy acid herbicides in water by electron-capture and microcoulometric gas chromatography

    USGS Publications Warehouse

    Goerlitz, D.F.; Lamar, William L.

    1967-01-01

    A sensitive gas chromatographic method using microcoulometric titration and electron-capture detection for the analysis of 2,4-D, silvex, 2,4,5-T, and other phenoxy acid herbicides in water is described. The herbicides are extracted from unfiltered water samples (800-1,000 ml) by use of ethyl ether ; then the herbicides are concentrated and esterilied. To allow the analyst a choice, two esterilication procedures--using either boron trifluoride-methanol or diazomethane--are evaluated. Microcoulometric gas chromatography is specific for the detection of halogenated compounds such as the phenoxy acid herbicides whereas it does not respond to nonhalogenated components. Microcoulometric gas chromatography requires care and patience. It is not convenient for rapid screening of l-liter samples that contain less than 1 microgram of the herbicide. Although electroncapture gas chromatography is less selective and more critically affected by interfering substances, it is, nevertheless, convenient and more sensitive than microcoulometric gas chromatography. Two different liquid phases are used in the gas chromatographic columns--DC-200 silicone in one column and QF-1 silicone in the other. The performance of both columns is improved by the addition of Carbowax 20M. The Gas Chrom Q support is coated with the liquid phases by the 'frontal-analysis' technique. The practical lower limits for measurement of the phenoxy acid herbicides in water primarily depend upon the sample size, interferences present, anal instrumentation used. With l-liter samples of water, the practical lower limits of measurement are 10 ppt (parts per trillion) for 2,4-D and 2 ppt for silvex and 2,4,5-T when electron-capture detection is used, and approximately 20 ppt for each herbicide when analyzed by microcoulometric-titration gas chromatography. Recoveries of the herbicides immediately after addition to unfiltered water samples averaged 92 percent for 2,4-D, 90 percent for silvex, and 98 percent for 2

  2. Preparing ultrafine PbS powders from the scrap lead-acid battery by sulfurization and inert gas condensation

    NASA Astrophysics Data System (ADS)

    Xia, Huipeng; Zhan, Lu; Xie, Bing

    2017-02-01

    A novel method for preparing ultrafine PbS powders involving sulfurization combined with inert gas condensation is developed in this paper, which is applicable to recycle Pb from lead paste of spent lead-acid batteries. Initially, the effects of the evaporation and condensation temperature, the inert gas pressure, the condensation distance and substrate on the morphology of as-obtained PbS ultrafine particles are intensively investigated using sulfur powders and lead particles as reagents. Highly dispersed and homogeneous PbS nanoparticles can be prepared under the optimized conditions which are 1223 K heating temperature, 573 K condensation temperature, 100 Pa inert gas pressure and 60 cm condensation distance. Furthermore, this method is successfully applied to recycle Pb from the lead paste of spent lead acid battery to prepare PbS ultrafine powders. This work does not only provide the theoretical fundamental for PbS preparation, but also provides a novel and efficient method for recycling spent lead-acid battery with high added-value products.

  3. Methods of Si based ceramic components volatilization control in a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie

    A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.

  4. Simulation modelling for new gas turbine fuel controller creation.

    NASA Astrophysics Data System (ADS)

    Vendland, L. E.; Pribylov, V. G.; Borisov, Yu A.; Arzamastsev, M. A.; Kosoy, A. A.

    2017-11-01

    State of the art gas turbine fuel flow control systems are based on throttle principle. Major disadvantage of such systems is that they require high pressure fuel intake. Different approach to fuel flow control is to use regulating compressor. And for this approach because of controller and gas turbine interaction a specific regulating compressor is required. Difficulties emerge as early as the requirement definition stage. To define requirements for new object, his properties must be known. Simulation modelling helps to overcome these difficulties. At the requirement definition stage the most simplified mathematical model is used. Mathematical models will get more complex and detailed as we advance in planned work. If future adjusting of regulating compressor physical model to work with virtual gas turbine and physical control system is planned.

  5. Interaction of Gas Phase Oxalic Acid with Ammonia and its Atmospheric Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Xiu-Qiu; Liu, Yi-Rong; Huang, Teng

    Oxalic acid is believed to play an important role in the formation and growth of atmospheric organic aerosols. However, as a common organic acid, the understanding of the larger clusters formed by gas phase oxalic acid with multiple ammonia molecules is incomplete. In this work, the structural characteristics and thermodynamics of oxalic acid clusters with up to six ammonia molecules have been investigated at the PW91PW91/6-311++G(3df,3pd) level of theory. We found that oxalic acid forms relatively stable clusters with ammonia molecules, and that ionization events play a key role. The analyses of the thermodynamics and atmospheric relevance indicate that themore » heterodimer (H2C2O4)(NH3) shows an obvious relative concentration in the atmosphere, and thus likely participates in new particle formation. However, with increasing number of ammonia molecules, the concentration of clusters decreases gradually. Additionally, clusters of oxalic acid with ammonia molecules are predicted to form favorably in low temperature conditions and show high Rayleigh scattering intensities.« less

  6. Relocation of blood gas laboratory to the emergency department helps decrease lactic acid values.

    PubMed

    Brazg, Jared; Huang, Phyllis; Weiner, Corey; Singh, Guneet; Likourezos, Antonios; Salem, Linda; Dickman, Eitan; Marshall, John

    2018-03-20

    Emergency physicians often rely on Lactic Acid (LA) values to make important clinical decisions. Accuracy of LA values improve when blood gas analysis is performed in the emergency department (ED) as opposed to a satellite laboratory (SL). To investigate an association between blood gas laboratory location and accuracy of ED lactic acid samples. The study team evaluated lactic acid values from venous and arterial blood gas samples drawn between June 1, 2015 and September 30, 2016. The study was exempt from institutional review board approval. Samples were separated into two groups: those which were drawn prior to and after relocation of the blood gas laboratory to the ED. The data, including patient demographic characteristics, acute illness severity indices, and blood gas results were compared within and between each group using t-test for continuous variables and chi-square test for categorical variables. The primary outcome was the mean lactate value measured in the SL group in 2015 compared to the ED group in 2016. Potassium and creatinine values were measured between the two groups as secondary outcomes. Of the 21,595 consecutive samples drawn, 10,363 samples were from the SL group and 11,232 from the ED group. The SL group included 5458 (52.7%) women; mean (SD) age was 61.8 (21.0). The ED group contained 5860 (52.2%) women; mean (SD) age was 61.7 (20.5). Mean Emergency Severity Index (ESI) were the same in each group at 2.31 and rates of Systemic Inflammatory Response Syndrome (SIRS) were also equivalent in each group at 22.2%. Significant differences were found between LA values in the SL group (mean 2.21mmol/L) and in the ED group (mean 1.99mmol/L) with a p value of <0.0001. There was a small statistical significance between the difference in potassium values in the SL group (mean 3.98meq/L) compared to the ED Group (mean 3.96meq/L) with a p value of 0.022. No significant difference was found between the creatinine values. These results suggest that mean

  7. Relocation of blood gas laboratory to the emergency department helps decrease lactic acid values.

    PubMed

    Brazg, Jared; Huang, Phyllis; Weiner, Corey; Singh, Guneet; Likourezos, Antonios; Salem, Linda; Dickman, Eitan; Marshall, John

    2018-03-12

    Emergency Physicians often rely on Lactic Acid (LA) values to make important clinical decisions. Accuracy of LA values improve when blood gas analysis is performed in the emergency department (ED) as opposed to a satellite laboratory (SL). To investigate an association between blood gas laboratory location and accuracy of ED lactic acid samples. The study team evaluated lactic acid values from venous and arterial blood gas samples drawn between June 1, 2015 and September 30, 2016. The study was exempt from institutional review board approval. Samples were separated into two groups: those which were drawn prior to and after relocation of the blood gas laboratory to the ED. The data, including patient demographic characteristics, acute illness severity indices, and blood gas results were compared within and between each group using t-test for continuous variables and chi-square test for categorical variables. The primary outcome was the mean lactate value measured in the SL group in 2015 compared to the ED group in 2016. Potassium and creatinine values were measured between the two groups as secondary outcomes. Of the 21,595 consecutive samples drawn, 10,363 samples were from the SL group and 11,232 from the ED group. The SL group included 5458 (52.7%) women; mean (SD) age was 61.8 (21.0). The ED group contained 5860 (52.2%) women; mean (SD) age was 61.7 (20.5). Mean Emergency Severity Index (ESI) were the same in each group at 2.31 and rates of Systemic Inflammatory Response Syndrome (SIRS) were also equivalent in each group at 22.2%. Significant differences were found between LA values in the SL group (mean 2.21mmol/L) and in the ED group (mean 1.99mmol/L) with a p value of <0.0001. There was a small statistical significance between the difference in potassium values in the SL group (mean 3.98meq/L) compared to the ED Group (mean 3.96meq/L) with a p value of 0.022. No significant difference was found between the creatinine values. These results suggest that mean

  8. Digital controls for gas turbine engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, K.

    1987-01-01

    This paper begins by first describing the simplistic requirements of a gas turbine engine; how these requirements are best satisfied, frequently with the aid of electronic control systems; what the trade-off between integrity and reliability means; and finally, but forming a major section, this paper describes in qualitative detail a few of the current programmes for Full Authority Digital Engine Controls (FADEC).

  9. Application of Fuzzy-Logic Controller and Neural Networks Controller in Gas Turbine Speed Control and Overheating Control and Surge Control on Transient Performance

    NASA Astrophysics Data System (ADS)

    Torghabeh, A. A.; Tousi, A. M.

    2007-08-01

    This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.

  10. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids.

    PubMed

    Hornung, Veit; Hartmann, Rune; Ablasser, Andrea; Hopfner, Karl-Peter

    2014-08-01

    Recent discoveries in the field of innate immunity have highlighted the existence of a family of nucleic acid-sensing proteins that have similar structural and functional properties. These include the well-known oligoadenylate synthase (OAS) family proteins and the recently identified OAS homologue cyclic GMP-AMP (cGAMP) synthase (cGAS). The OAS proteins and cGAS are template-independent nucleotidyltransferases that, once activated by double-stranded nucleic acids in the cytosol, produce unique classes of 2'-5'-linked second messenger molecules, which - through distinct mechanisms - have crucial antiviral functions. 2'-5'-linked oligoadenylates limit viral propagation through the activation of the enzyme RNase L, which degrades host and viral RNA, and 2'-5'-linked cGAMP activates downstream signalling pathways to induce de novo antiviral gene expression. In this Progress article, we describe the striking functional and structural similarities between OAS proteins and cGAS, and highlight their roles in antiviral immunity.

  11. Study on goaf gas control technology of gob-side entry driving

    NASA Astrophysics Data System (ADS)

    Ren, Qihan; Yuan, Benqing; Li, Qiansi

    2018-01-01

    The 1112 (1) track gate roadway of Gu Qiao coal mine of Huainan mining group adopt the method of gob-side entry driving, the gas emission is large during the driving of the roadway, the gas in the goaf seriously influences the safe driving of the roadway. Equalizing method, drilling drainage method, jet grouting method and other goaf gas controlling measures has been adopted. Finally, it effectively solves the safety threat of gas in goaf to roadway driving, it provides a good reference for the gas control of the gob-side entry.

  12. Amino Acid Control over Deoxyribonucleic Acid Synthesis in Escherichia coli Infected With T-Even Bacteriophage

    PubMed Central

    Donini, Pierluigi

    1970-01-01

    Starvation for a required amino acid of normal or RCstrEscherichia coli infected with T-even phages arrests further synthesis of phage deoxyribonucleic acid (DNA). This amino acid control over phage DNA synthesis does not occur in RCrelE. coli mutants. Heat inactivation of a temperature-sensitive aminoacyl-transfer ribonucleic acid (RNA) synthetase similarly causes an arrest of phage DNA synthesis in infected cells of RCstr phenotype but not in cells of RCrel phenotype. Inhibition of phage DNA synthesis in amino acid-starved RCstr host cells can be reversed by addition of chloramphenicol to the culture. Thus, the general features of amino acid control over T-even phage DNA synthesis are entirely analogous to those known for amino acid control over net RNA synthesis of uninfected bacteria. This analogy shows that the bacterial rel locus controls a wider range of macromolecular syntheses than had been previously thought. PMID:4914067

  13. The effect of zeolite treatment by acids on sodium adsorption ratio of coal seam gas water.

    PubMed

    Wang, Xiaoyu; Ozdemir, Orhan; Hampton, Marc A; Nguyen, Anh V; Do, Duong D

    2012-10-15

    Many coal seam gas (CSG) waters contain a sodium ion concentration which is too high relative to calcium and magnesium ions for environment acceptance. Natural zeolites can be used as a cheap and effective method to control sodium adsorption ratio (SAR, which is a measure of the relative preponderance of sodium to calcium and magnesium) due to its high cation exchange capacity. In this study, a natural zeolite from Queensland was examined for its potential to treat CSG water to remove sodium ions to lower SAR and reduce the pH value. The results demonstrate that acid activated zeolite at 30%wt solid ratio can reduce the sodium content from 563.0 to 182.7 ppm; the pH from 8.74 to 6.95; and SAR from 70.3 to 18.5. Based on the results of the batch experiments, the sodium adsorption capacity of the acid-treated zeolite is three times greater than that of the untreated zeolite. Both the untreated and acid-treated zeolite samples were characterized using zeta potential, surface characterization, DTA/TG and particle size distribution in order to explain their adsorption behaviours. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. ELECTRIC POWER GENERATION USING A PHOSPHORIC ACID FUEL CELL ON A MUNICIPAL SOLID WASTE LANDFILL GAS STREAM

    EPA Science Inventory

    The report gives results of tests to verify the performance of a landfill gas pretreatment unit (GPU) and a phorsphoric acid fuel cell system. The complete system removes contaminants from landfill gas and produces electricity for on-site use or connection to an electric grid. Th...

  15. Acid monomer analysis in waterborne polymer systems by targeted labeling of carboxylic acid functionality, followed by pyrolysis - gas chromatography.

    PubMed

    Brooijmans, T; Okhuijsen, R; Oerlemans, I; Schoenmakers, P J; Peters, R

    2018-05-14

    Pyrolysis - gas chromatography - (PyGC) is a common method to analyse the composition of natural and synthetic resins. The analysis of acid functionality in, for example, waterborne polyacrylates and polyurethanes polymers has proven to be difficult due to solubility issues, inter- and intramolecular interaction effects, lack of detectability in chromatographic analysis, and lack of thermal stability. Conventional analytical techniques, such as PyGC, cannot be used for the direct detection and identification of acidic monomers, due to thermal rearrangements that take place during pyrolysis. To circumvent this, the carboxylic acid groups are protected prior to thermal treatment by reaction with 2-bromoacetophenone. Reaction conditions are investigated and optimised wrt. conversion measurements. The aproach is applied to waterborne polyacryalates and the results are discussed. This approach enables identification and (semi)quantitative analysis of different acid functionalities in waterborne polymers by PyGC. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Virtual Instrumentation Corrosion Controller for Natural Gas Pipelines

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, J.; Agnihotri, G.; Deshpande, D. M.

    2012-12-01

    Corrosion is an electrochemical process. Corrosion in natural gas (methane) pipelines leads to leakages. Corrosion occurs when anode and cathode are connected through electrolyte. Rate of corrosion in metallic pipeline can be controlled by impressing current to it and thereby making it to act as cathode of corrosion cell. Technologically advanced and energy efficient corrosion controller is required to protect natural gas pipelines. Proposed virtual instrumentation (VI) based corrosion controller precisely controls the external corrosion in underground metallic pipelines, enhances its life and ensures safety. Designing and development of proportional-integral-differential (PID) corrosion controller using VI (LabVIEW) is carried out. When the designed controller is deployed at field, it maintains the pipe to soil potential (PSP) within safe operating limit and not entering into over/under protection zone. Horizontal deployment of this technique can be done to protect all metallic structure, oil pipelines, which need corrosion protection.

  17. Surface Lewis acid-base properties of polymers measured by inverse gas chromatography.

    PubMed

    Shi, Baoli; Zhang, Qianru; Jia, Lina; Liu, Yang; Li, Bin

    2007-05-18

    Surface Lewis acid-base properties are significant for polymers materials. The acid constant, K(a) and base constant, K(b) of many polymers were characterized by some researchers with inverse gas chromatography (IGC) in recent years. In this paper, the surface acid-base constants, K(a) and K(b) of 20 kinds of polymers measured by IGC in recent years are summarized and discussed, including seven polymers characterized in this work. After plotting K(b) versus K(a), it is found that the polymers can be encircled by a triangle. They scatter in two regions of the triangle. Four polymers exist in region I. K(b)/K(a) of the polymers in region I are 1.4-2.1. The other polymers exist in region II. Most of the polymers are relative basic materials.

  18. Comparison of chemical-use between hydraulic fracturing, acidizing, and routine oil and gas development

    DOE PAGES

    Stringfellow, William T.; Camarillo, Mary Kay; Domen, Jeremy K.; ...

    2017-04-19

    The potential hazards and risks associated with well-stimulation in unconventional oil and gas development (hydraulic fracturing, acid fracturing, and matrix acidizing) have been investigated and evaluated and federal and state regulations requiring chemical disclosure for well-stimulation have been implemented as part of an overall risk management strategy for unconventional oil and gas development. Similar evaluations for chemicals used in other routine oil and gas development activities, such as maintenance acidizing, gravel packing, and well drilling, have not been previously conducted, in part due to a lack of reliable information concerning on-field chemical-use. In this study, we compare chemical-use between routinemore » activities and the more closely regulated well-stimulation activities using data collected by the South Coast Air Quality Monitoring District (SCAQMD), which mandates the reporting of both unconventional and routine on-field chemical-use for parts of Southern California. Analysis of this data shows that there is significant overlap in chemical-use between so-called unconventional activities and routine activities conducted for well maintenance, well-completion, or rework. A comparison within the SCAQMD shows a significant overlap between both types and amounts of chemicals used for well-stimulation treatments included under State mandatory-disclosure regulations and routine treatments that are not included under State regulations. A comparison between SCAQMD chemical-use for routine treatments and state-wide chemical-use for hydraulic fracturing also showed close similarity in chemical-use between activities covered under chemical disclosure requirements (e.g. hydraulic fracturing) and many other oil and gas field activities. The results of this study indicate regulations and risk assessments focused exclusively on chemicals used in well-stimulation activities may underestimate potential hazard or risk from overall oil field chemical-use.« less

  19. Comparison of chemical-use between hydraulic fracturing, acidizing, and routine oil and gas development

    PubMed Central

    Camarillo, Mary Kay; Domen, Jeremy K.; Shonkoff, Seth B. C.

    2017-01-01

    The potential hazards and risks associated with well-stimulation in unconventional oil and gas development (hydraulic fracturing, acid fracturing, and matrix acidizing) have been investigated and evaluated and federal and state regulations requiring chemical disclosure for well-stimulation have been implemented as part of an overall risk management strategy for unconventional oil and gas development. Similar evaluations for chemicals used in other routine oil and gas development activities, such as maintenance acidizing, gravel packing, and well drilling, have not been previously conducted, in part due to a lack of reliable information concerning on-field chemical-use. In this study, we compare chemical-use between routine activities and the more closely regulated well-stimulation activities using data collected by the South Coast Air Quality Monitoring District (SCAQMD), which mandates the reporting of both unconventional and routine on-field chemical-use for parts of Southern California. Analysis of this data shows that there is significant overlap in chemical-use between so-called unconventional activities and routine activities conducted for well maintenance, well-completion, or rework. A comparison within the SCAQMD shows a significant overlap between both types and amounts of chemicals used for well-stimulation treatments included under State mandatory-disclosure regulations and routine treatments that are not included under State regulations. A comparison between SCAQMD chemical-use for routine treatments and state-wide chemical-use for hydraulic fracturing also showed close similarity in chemical-use between activities covered under chemical disclosure requirements (e.g. hydraulic fracturing) and many other oil and gas field activities. The results of this study indicate regulations and risk assessments focused exclusively on chemicals used in well-stimulation activities may underestimate potential hazard or risk from overall oil field chemical-use. PMID

  20. Comparison of chemical-use between hydraulic fracturing, acidizing, and routine oil and gas development.

    PubMed

    Stringfellow, William T; Camarillo, Mary Kay; Domen, Jeremy K; Shonkoff, Seth B C

    2017-01-01

    The potential hazards and risks associated with well-stimulation in unconventional oil and gas development (hydraulic fracturing, acid fracturing, and matrix acidizing) have been investigated and evaluated and federal and state regulations requiring chemical disclosure for well-stimulation have been implemented as part of an overall risk management strategy for unconventional oil and gas development. Similar evaluations for chemicals used in other routine oil and gas development activities, such as maintenance acidizing, gravel packing, and well drilling, have not been previously conducted, in part due to a lack of reliable information concerning on-field chemical-use. In this study, we compare chemical-use between routine activities and the more closely regulated well-stimulation activities using data collected by the South Coast Air Quality Monitoring District (SCAQMD), which mandates the reporting of both unconventional and routine on-field chemical-use for parts of Southern California. Analysis of this data shows that there is significant overlap in chemical-use between so-called unconventional activities and routine activities conducted for well maintenance, well-completion, or rework. A comparison within the SCAQMD shows a significant overlap between both types and amounts of chemicals used for well-stimulation treatments included under State mandatory-disclosure regulations and routine treatments that are not included under State regulations. A comparison between SCAQMD chemical-use for routine treatments and state-wide chemical-use for hydraulic fracturing also showed close similarity in chemical-use between activities covered under chemical disclosure requirements (e.g. hydraulic fracturing) and many other oil and gas field activities. The results of this study indicate regulations and risk assessments focused exclusively on chemicals used in well-stimulation activities may underestimate potential hazard or risk from overall oil field chemical-use.

  1. Comparison of chemical-use between hydraulic fracturing, acidizing, and routine oil and gas development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stringfellow, William T.; Camarillo, Mary Kay; Domen, Jeremy K.

    The potential hazards and risks associated with well-stimulation in unconventional oil and gas development (hydraulic fracturing, acid fracturing, and matrix acidizing) have been investigated and evaluated and federal and state regulations requiring chemical disclosure for well-stimulation have been implemented as part of an overall risk management strategy for unconventional oil and gas development. Similar evaluations for chemicals used in other routine oil and gas development activities, such as maintenance acidizing, gravel packing, and well drilling, have not been previously conducted, in part due to a lack of reliable information concerning on-field chemical-use. In this study, we compare chemical-use between routinemore » activities and the more closely regulated well-stimulation activities using data collected by the South Coast Air Quality Monitoring District (SCAQMD), which mandates the reporting of both unconventional and routine on-field chemical-use for parts of Southern California. Analysis of this data shows that there is significant overlap in chemical-use between so-called unconventional activities and routine activities conducted for well maintenance, well-completion, or rework. A comparison within the SCAQMD shows a significant overlap between both types and amounts of chemicals used for well-stimulation treatments included under State mandatory-disclosure regulations and routine treatments that are not included under State regulations. A comparison between SCAQMD chemical-use for routine treatments and state-wide chemical-use for hydraulic fracturing also showed close similarity in chemical-use between activities covered under chemical disclosure requirements (e.g. hydraulic fracturing) and many other oil and gas field activities. The results of this study indicate regulations and risk assessments focused exclusively on chemicals used in well-stimulation activities may underestimate potential hazard or risk from overall oil field chemical-use.« less

  2. Short communication: Eicosatrienoic acid and docosatrienoic acid do not promote vaccenic acid accumulation in mixed ruminal cultures.

    PubMed

    AbuGhazaleh, A A; Holmes, L D; Jacobson, B N; Kalscheur, K F

    2006-11-01

    Previous research found that docosahexaenoic acid (C22:6n-3) was a component of fish oil that promotes trans-C18:1 accumulation in ruminal cultures when incubated with linoleic acid. The objective of this study was to determine if eicosatrienoic acid (C20:3n-3) and docosatrienoic acid (C22:3n-3), n-3 fatty acids in fish oil, promote accumulation of trans-C18:1, vaccenic acid (VA) in particular, using cultures of mixed ruminal microorganisms. Treatments consisted of control, control plus 5 mg of C20:3n-3 (ETA), control plus 5 mg of C22:3n-3 (DTA), control plus 15 mg of linoleic acid (LA), control plus 5 mg of C20:3n-3 and 15 mg of linoleic acid (ETALA), and control plus 5 mg of C22:3n-3 and 15 mg of linoleic acid (DTALA). Treatments were incubated in triplicate in 125-mL flasks, and 5 mL of culture contents was taken at 0 and 24 h for fatty acid analysis by gas-liquid chromatography. After 24 h of incubation, the concentrations of trans-C18:1 (0.87, 0.88, and 0.99 mg/culture), and VA (0.52, 0.56, and 0.62 mg/culture) were similar for the control, ETA, and DTA cultures, respectively. The concentrations of trans-C18:1 (5.51, 5.41, and 5.36 mg/culture), and VA (4.78, 4.62, and 4.59 mg/culture) were also similar between LA, ETALA, and DTALA cultures, respectively. These data suggest that C20:3n-3 and C22:3n-3 are not the active components in fish oil that promote VA accumulation when incubated with linoleic acid.

  3. Toward the Active Control of Heat Transfer in the Hot Gas Path of Gas Turbines

    NASA Technical Reports Server (NTRS)

    Oertling, Jeremiah E.

    2003-01-01

    The work at NASA this summer has focused on assisting the Professor's project, namely "Toward the Active Control of Heat Transfer in the Hot Gas Path of Gas Turbines." The mode of controlling the Heat Transfer that the project focuses on is film cooling. Film cooling is used in high temperature regions of a gas turbine and extends the life of the components exposed to these extreme temperatures. A "cool" jet of air is injected along the surface of the blade and this layer of cool air shields the blade from the high temperatures. Cool is a relative term. The hot gas path temperatures reach on the order of 1500 to 2000 K. The "coo" air is on the order of 700 to 1000 K. This cooler air is bled off of an appropriate compressor stage. The next parameter of interest is the jet s position and orientation in the flow-field.

  4. A Controlled Environment System For Measuring Plant-Atmosphere Gas Exchange

    Treesearch

    James M. Brown

    1975-01-01

    Describes an inexpensive, efficient system for measuring plant-atmosphere gas exchange. Designed to measure transpiration from potted tree seedlings, it is readily adaptable for measuring other gas exchanges or gas exchange by plant parts. Light level, air and root temperature can be precisely controlled at minimum cost.

  5. Gas flushing through hyper-acidic crater lakes: the next steps within a reframed monitoring time window

    NASA Astrophysics Data System (ADS)

    Rouwet, Dmitri

    2016-04-01

    Tracking variations in the chemical composition, water temperature and pH of brines from peak-activity crater lakes is the most obvious way to forecast phreatic activity. Volcano monitoring intrinsically implies a time window of observation that should be synchronised with the kinetics of magmatic processes, such as degassing and magma intrusion. To decipher "how much time ago" a variation in degassing regime actually occurred before eventually being detected in a crater lake is key, and depends on the lake water residence time. The above reasoning assumes that gas is preserved as anions in the lake water (SO4, Cl, F anions), in other words, that scrubbing of acid gases is complete and irreversible. Less is true. Recent work has confirmed, by direct MultiGas measurement from evaporative plumes, that even the strongest acid in liquid medium (i.e. SO2) degasses from hyper-acidic crater lakes. The less strong acid HCl has long been recognised as being more volatile than hydrophyle in extremely acidic solutions (pH near 0), through a long-term steady increase in SO4/Cl ratios in the vigorously evaporating crater lake of Poás volcano. We now know that acidic gases flush through hyper-acidic crater lake brines, but we don't know to which extend (completely or partially?), and with which speed. The chemical composition hence only reflects a transient phase of the gas flushing through the lake. In terms of volcanic surveillance this brings the advantage that the monitoring time window is definitely shorter than defined by the water chemistry, but yet, we do not know how much shorter. Empirical experiments by Capaccioni et al. (in press) have tried to tackle this kinetic problem for HCl degassing from a "lab-lake" on the short-term (2 days). With this state of the art in mind, two new monitoring strategies can be proposed to seek for precursory signals of phreatic eruptions from crater lakes: (1) Tracking variations in gas compositions, fluxes and ratios between species in

  6. Year-round records of gas and particulate carboxylic acids (formate and acetate) in the boundary layer at Dumont d'Urville (coastal Antarctica): Production of carboxylic acids from biogenic NMHC emissions from the Antarctic ocean

    NASA Astrophysics Data System (ADS)

    Legrand, M.; Preunkert, S.; Jourdain, B.

    2003-04-01

    Multiple year-round concentrations of acetic and formic acids were measured both in gas and aerosol phases at Dumont d'Urville (DDU, a coastal Antarctic site: 66^o40'S, 140^o01'E) by using mist chamber and aerosol filter sampling. Aerosol levels of the 2 carboxylates range from less than one ng m-3 in winter to 5--10 ng m-3 in summer. Comparison with gas phase concentrations shows that almost 99% of the 2 carboxylic acids are present in the gas phase. Concentrations of formic acid in the gas phase are minima in June--July (70 ng m-3) and increase regularly towards summer months when levels reach ˜400 ng m-3. Concentrations of acetic acid in the gas phase exhibit a more well-marked seasonal cycle with values remaining close to 50 ng m-3 from April to October and strongly increase during summer months (mean value of 800 ng m-3). Such a strong seasonal cycle of carboxylic acids in the high southern latitude marine boundary layer displays with observations made at numerous continental sites where a more weak seasonality is generally observed. It is suggested that carboxylic acids present at DDU mainly originate from biogenic emissions from the Antarctic ocean which are expected to closely follow annual cycle of the sea ice extent and solar radiation, affecting in particular photochemical production of alkenes from dissolved organic carbon released from phytoplancton. Summer levels of carboxylic acids are discussed in terms of air-sea fluxes of NMHCs and photochemical production of carboxylic acids from ozone-alkene reactions and HO_2 reaction with peroxyacetal radical in these poor NOx environments.

  7. SOXAL combined SO{sub x}/NO{sub x} flue gas control demonstration. Quarterly report, January--March 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    AQUATECH Systems a business unit of Allied-Signal Inc., proposes to demonstrate the technical viability and cost effectiveness of the SOXAL process a combined SO{sub x}/NO{sub x} control process on a 3 MW equivalent flue gas slip stream from Niagara Mohawk Power Corporation, Dunkirk Steam Station Boiler No. 4, a coal fired boiler. The SOXAL process combines 90+% sulfur dioxide removal from the flue gas using a sodium based scrubbing solution and regeneration of the spent scrubbing liquor using AQUATECH Systems` proprietary bipolar membrane technology. This regeneration step recovers a stream of sulfur dioxide suitable for subsequent processing to salable sulfurmore » or sulfuric acid. Additionally 90+% control of NO{sub x} gases can be achieved in combination with conventional urea/methanol injection of NO{sub 2} gas into the duct. The SOXAL process is applicable to both utility and industrial scale boilers using either high or low sulfur coal. The SOXAL demonstration Program began September 10, 1991 and is approximately 22 months in duration. During the 6 months of scheduled operations period, expected to begin January 1992, data will be collected from the SOXAL system to define: SO{sub 2} and NO{sub x} control efficiencies; Current efficiency for the regeneration unit; Sulfate oxidation in the absorber; Make-up reagent rates; Product quality including concentrations and compositions; System integration and control philosophy; and Membrane stability and performance with respect to foulants.« less

  8. Analysis of gob gas venthole production performances for strata gas control in longwall mining.

    PubMed

    Karacan, C Özgen

    2015-10-01

    Longwall mining of coal seams affects a large area of overburden by deforming it and creating stress-relief fractures, as well as bedding plane separations, as the mining face progresses. Stress-relief fractures and bedding plane separations are recognized as major pathways for gas migration from gas-bearing strata into sealed and active areas of the mines. In order for strata gas not to enter and inundate the ventilation system of a mine, gob gas ventholes (GGVs) can be used as a methane control measure. The aim of this paper is to analyze production performances of GGVs drilled over a longwall panel. These boreholes were drilled to control methane emissions from the Pratt group of coals due to stress-relief fracturing and bedding plane separations into a longwall mine operating in the Mary Lee/Blue Creek coal seam of the Upper Pottsville Formation in the Black Warrior Basin, Alabama. During the course of the study, Pratt coal's reservoir properties were integrated with production data of the GGVs. These data were analyzed by using material balance techniques to estimate radius of influence of GGVs, gas-in-place and coal pressures, as well as their variations during mining. The results show that the GGVs drilled to extract gas from the stress-relief zone of the Pratt coal interval is highly effective in removing gas from the Upper Pottsville Formation. The radii of influence of the GGVs were in the order of 330-380 m, exceeding the widths of the panels, due to bedding plane separations and stress relieved by fracturing. Material balance analyses indicated that the initial pressure of the Pratt coals, which was around 648 KPa when longwall mining started, decreased to approximately 150 KPa as the result of strata fracturing and production of released gas. Approximately 70% of the initial gas-in-place within the area of influence of the GGVs was captured during a period of one year.

  9. Large-scale optimal control of interconnected natural gas and electrical transmission systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Nai-Yuan; Zavala, Victor M.

    2016-04-01

    We present a detailed optimal control model that captures spatiotemporal interactions between gas and electric transmission networks. We use the model to study flexibility and economic opportunities provided by coordination. A large-scale case study in the Illinois system reveals that coordination can enable the delivery of significantly larger amounts of natural gas to the power grid. In particular, under a coordinated setting, gas-fired generators act as distributed demand response resources that can be controlled by the gas pipeline operator. This enables more efficient control of pressures and flows in space and time and overcomes delivery bottlenecks. We demonstrate that themore » additional flexibility not only can benefit the gas operator but can also lead to more efficient power grid operations and results in increased revenue for gas-fired power plants. We also use the optimal control model to analyze computational issues arising in these complex models. We demonstrate that the interconnected Illinois system with full physical resolution gives rise to a highly nonlinear optimal control problem with 4400 differential and algebraic equations and 1040 controls that can be solved with a state-of-the-art sparse optimization solver. (C) 2016 Elsevier Ltd. All rights reserved.« less

  10. CHEMICAL TRANSFORMATION MODULES FOR EULERIAN ACID DEPOSITION MODELS. VOLUME 1. THE GAS-PHASE CHEMISTRY

    EPA Science Inventory

    This study focuses on the review and evaluation of mechanistic and kinetic data for the gas-phase reactions that lead to the production of acidic substances in the environment. A master mechanism is designed that treats oxides, sulfur dioxide, ozone, hydrogen peroxide, ammonia, t...

  11. Improved Controllers For Heaters In Toxic-Gas Combustors

    NASA Technical Reports Server (NTRS)

    Wishard, James; Lamb, James; Fortier, Edward; Velasquez, Hugo; Waltman, Doug

    1995-01-01

    Commercial electronic proportional controllers installed in place of mechanical power controllers for electric heaters in toxic-gas combustors at NASA's Jet Propulsion Laboratory. Designed to maintain temperature of heater at preset value by turning power fully on or fully off when temperature falls below or rises above that value, respectively. Solid-state power controllers overcome deficiencies of mechanical power controllers.

  12. Gas chromatography/isotope ratio mass spectrometry: analysis of methanol, ethanol and acetic acid by direct injection of aqueous alcoholic and acetic acid samples.

    PubMed

    Ai, Guomin; Sun, Tong; Dong, Xiuzhu

    2014-08-15

    Methanol, ethanol, and acetic acid are not easily extracted from aqueous samples and are susceptible to isotope fractionation in gas chromatography/isotope ratio mass spectrometry (GC/IRMS) analysis. Developing a direct dilution GC/IRMS method for aqueous samples, by adjusting the sample concentrations in common solvents to be similar to each other and using a fixed GC split ratio, is very convenient and important because any linearity effects caused by amount-dependent isotope fractionation can be avoided. The suitability of acetonitrile and acetone solvents for the GC/IRMS analysis of pure methanol, ethanol and acetic acid, and commercial liquor and vinegar samples was evaluated using n-hexane and water as control solvents. All the solvents including water were separated from the analyte on a HP-INNOWAX column and were diverted away from the combustion interface. The influence of liquor matrix on the ethanol GC/IRMS analyses was evaluated by adding pure ethanol to liquor samples. Acetonitrile and acetone gave similar δ(13) C values for pure ethanol and pure acetic acid to those obtained in water and n-hexane, and also gave similar δ(13) C values of ethanol in liquor and acetic acid in white vinegar to that obtained in water. For methanol analysis, acetonitrile and refined acetone gave similar δ(13) C values to that obtained in water, but n-hexane was not a suitable solvent. In addition, isotopic fractionation caused by solvent and solute interactions was observed. We recommend using acetonitrile for the GC/IRMS analysis of aqueous alcoholic samples, and acetone for the analysis of aqueous acetic acid samples. This direct dilution method can provide high accurate and precise GC/IRMS analysis of the relative changes in δ(13) C values of methanol, ethanol, and acetic acid. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Abscisic acid controlled sex before transpiration in vascular plants

    PubMed Central

    McAdam, Scott A. M.; Brodribb, Timothy J.; Hedrich, Rainer; Atallah, Nadia M.; Cai, Chao; Geringer, Michael A.; Lind, Christof; Nichols, David S.; Stachowski, Kye; Sussmilch, Frances C.

    2016-01-01

    Sexual reproduction in animals and plants shares common elements, including sperm and egg production, but unlike animals, little is known about the regulatory pathways that determine the sex of plants. Here we use mutants and gene silencing in a fern species to identify a core regulatory mechanism in plant sexual differentiation. A key player in fern sex differentiation is the phytohormone abscisic acid (ABA), which regulates the sex ratio of male to hermaphrodite tissues during the reproductive cycle. Our analysis shows that in the fern Ceratopteris richardii, a gene homologous to core ABA transduction genes in flowering plants [SNF1-related kinase2s (SnRK2s)] is primarily responsible for the hormonal control of sex determination. Furthermore, we provide evidence that this ABA–SnRK2 signaling pathway has transitioned from determining the sex of ferns to controlling seed dormancy in the earliest seed plants before being co-opted to control transpiration and CO2 exchange in derived seed plants. By tracing the evolutionary history of this ABA signaling pathway from plant reproduction through to its role in the global regulation of plant–atmosphere gas exchange during the last 450 million years, we highlight the extraordinary effect of the ABA–SnRK2 signaling pathway in plant evolution and vegetation function. PMID:27791082

  14. Abscisic acid controlled sex before transpiration in vascular plants.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J; Banks, Jo Ann; Hedrich, Rainer; Atallah, Nadia M; Cai, Chao; Geringer, Michael A; Lind, Christof; Nichols, David S; Stachowski, Kye; Geiger, Dietmar; Sussmilch, Frances C

    2016-10-26

    Sexual reproduction in animals and plants shares common elements, including sperm and egg production, but unlike animals, little is known about the regulatory pathways that determine the sex of plants. Here we use mutants and gene silencing in a fern species to identify a core regulatory mechanism in plant sexual differentiation. A key player in fern sex differentiation is the phytohormone abscisic acid (ABA), which regulates the sex ratio of male to hermaphrodite tissues during the reproductive cycle. Our analysis shows that in the fern Ceratopteris richardii, a gene homologous to core ABA transduction genes in flowering plants [SNF1-related kinase2s (SnRK2s)] is primarily responsible for the hormonal control of sex determination. Furthermore, we provide evidence that this ABA-SnRK2 signaling pathway has transitioned from determining the sex of ferns to controlling seed dormancy in the earliest seed plants before being co-opted to control transpiration and CO 2 exchange in derived seed plants. By tracing the evolutionary history of this ABA signaling pathway from plant reproduction through to its role in the global regulation of plant-atmosphere gas exchange during the last 450 million years, we highlight the extraordinary effect of the ABA-SnRK2 signaling pathway in plant evolution and vegetation function.

  15. Gas turbine engine fuel control

    NASA Technical Reports Server (NTRS)

    Gold, H. S. (Inventor)

    1973-01-01

    A variable orifice system is described that is responsive to compressor inlet pressure and temperature, compressor discharge pressure and rotational speed of a gas-turbine engine. It is incorporated into a hydraulic circuit that includes a zero gradient pump driven at a speed proportional to the speed of the engine. The resulting system provides control of fuel rate for starting, steady running, acceleration and deceleration under varying altitudes and flight speeds.

  16. Investigating the Weak to Evaluate the Strong: An Experimental Determination of the Electron Binding Energy of Carborane Anions and the Gas phase Acidity of Carborane Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Matthew M; Wang, Xue B; Reed, Christopher A

    2009-12-23

    Five CHB 11X 6Y 5 - carborane anions from the series X = Br, Cl, I and Y = H, Cl, CH 3 were generated by electrospray ionization, and their reactivity with a series of Brønsted acids and electron transfer reagents were examined in the gas phase. The undecachlorocarborane acid, H(CHB 11Cl 11), was found to be far more acidic than the former record holder, (1-C 4F 9SO 2) 2NH (i.e., ΔH° acid = 241 ± 29 vs 291.1 ± 2.2 kcal mol -1) and bridges the gas-phase acidity and basicity scales for the first time. Its conjugate base, CHBmore » 11Cl 11 -, was found by photoelectron spectroscopy to have a remarkably large electron binding energy (6.35 ± 0.02 eV) but the value for the (1-C 4F 9SO 2) 2N - anion is even larger (6.5 ± 0.1 eV). Consequently, it is the weak H-(CHB 11Cl 11) BDE (70.0 kcal mol -1, G3(MP2)) compared to the strong BDE of (1-C 4F 9SO 2) 2N-H (127.4 ± 3.2 kcal mol -1) that accounts for the greater acidity of carborane acids.« less

  17. History of blood gas analysis. II. pH and acid-base balance measurements.

    PubMed

    Severinghaus, J W; Astrup, P B

    1985-10-01

    Electrometric measurement of the hydrogen ion concentration was discovered by Wilhelm Ostwald in Leipzig about 1890 and described thermodynamically by his student Walther Nernst, using the van't Hoff concept of osmotic pressure as a kind of gas pressure, and the Arrhenius concept of ionization of acids, both of which had been formalized in 1887. Hasselbalch, after adapting the pH nomenclature of Sørensen to the carbonic-acid mass equation of Henderson, made the first actual blood pH measurements (with a hydrogen electrode) and proposed that metabolic acid-base imbalance be quantified as the "reduced" pH of blood after equilibration to a carbon dioxide tension (PCO2) of 40 mm Hg. This good idea, coming 40 years before simple blood pH measurements at 37 degrees C became widely available, was never adopted. Instead, Van Slyke developed a concept of acid-base chemistry that depended on measuring plasma CO2 content with his manometric apparatus, a standard method until the 1960s, when it was displaced by the three-electrode method of blood gas analysis. The 1952 polio epidemic in Copenhagen stimulated Astrup to develop a glass electrode in which pH could be measured in blood at 37 degrees C before and after equilibration with known PCO2. He introduced the interpolative measurement of PCO2 and bicarbonate level (later base excess) using only pH measurements and, with Siggaard-Andersen, developed clinical acid-base chemistry. Controversy arose when blood base excess was noted to be altered by acute changes in PCO2 and when abnormalities of base excess were called metabolic acidosis or alkalosis, even when they represented compensation for respiratory abnormalities in PCO2. In the 1970s it became clear that "in-vivo" or "extracellular fluid" base excess (measured at an average extracellular fluid hemoglobin concentration of 5 g) eliminated the error caused by acute changes in PCO2. Base excess is now almost universally used as the index of nonrespiratory acid

  18. Method of analysis at the U.S. Geological Survey California Water Science Center, Sacramento Laboratory - determination of haloacetic acid formation potential, method validation, and quality-control practices

    USGS Publications Warehouse

    Zazzi, Barbara C.; Crepeau, Kathryn L.; Fram, Miranda S.; Bergamaschi, Brian A.

    2005-01-01

    An analytical method for the determination of haloacetic acid formation potential of water samples has been developed by the U.S. Geological Survey California Water Science Center Sacramento Laboratory. The haloacetic acid formation potential is measured by dosing water samples with chlorine under specified conditions of pH, temperature, incubation time, darkness, and residual-free chlorine. The haloacetic acids formed are bromochloroacetic acid, bromodichloroacetic acid, dibromochloroacetic acid, dibromoacetic acid, dichloroacetic acid, monobromoacetic acid, monochloroacetic acid, tribromoacetic acid, and trichloroacetic acid. They are extracted, methylated, and then analyzed using a gas chromatograph equipped with an electron capture detector. Method validation experiments were performed to determine the method accuracy, precision, and detection limit for each of the compounds. Method detection limits for these nine haloacetic acids ranged from 0.11 to 0.45 microgram per liter. Quality-control practices include the use of blanks, quality-control samples, calibration verification standards, surrogate recovery, internal standard, matrix spikes, and duplicates.

  19. Air swallowing, belching, acid and non-acid reflux in patients with functional dyspepsia.

    PubMed

    Conchillo, J M; Selimah, M; Bredenoord, A J; Samsom, M; Smout, A J P M

    2007-04-15

    Frequent belching is a common symptom in patients with functional dyspepsia with a reported incidence up to 80%. We hypothesized that patients with functional dyspepsia possibly have a higher frequency of belching than healthy subjects secondary to frequent air swallowing. To assess air swallowing, belching, acid and non-acid reflux patterns of patients with functional dyspepsia. Combined 24-h oesophageal impedance and pH monitoring was performed in 10 functional dyspepsia patients and 10 controls. Analysis of the impedance-pH signals included incidence of air swallows, belching, acid and non-acid reflux. The incidence of air swallows in functional dyspepsia patients were significantly higher compared with controls (153 +/- 15 vs. 79 +/- 10, P < 0.001), while the incidence of liquid-only swallows were not significantly increased. The proportions of gas-containing reflux episodes (belches) and non-acid reflux episodes in functional dyspepsia patients were significantly higher when compared with controls (66.4 vs. 44.4%, P = 0.04 and 70.1 vs. 45.9%, P = 0.009, respectively). Patients with functional dyspepsia swallow air more frequently than controls and this is associated with an increased incidence of non-acid gaseous gastro-oesophageal reflux.

  20. Use of Gas Chromatographic Fatty Acid and Mycolic Acid Cleavage Product Determination To Differentiate among Mycobacterium genavense, Mycobacterium fortuitum, Mycobacterium simiae, and Mycobacterium tuberculosis

    PubMed Central

    Chou, S.; Chedore, P.; Kasatiya, S.

    1998-01-01

    Three Mycobacterium genavense strains and three American Type Culture Collection reference strains each of Mycobacterium fortuitum, Mycobacterium simiae, and Mycobacterium tuberculosis were subcultured onto Mycobacteria 7H11 agar (Difco Laboratories, Detroit, Mich.) supplemented with mycobactin J (Allied Laboratories, Fayette, Mo.). After 4 weeks of incubation at 37°C in 10% CO2, the cultures were analyzed by gas-liquid chromatography (GLC) for their fatty acids and mycolic acid cleavage products. M. fortuitum was clearly differentiated from M. genavense by the presence of the specific marker 2-methyloctadecenoic acid in M. fortuitum and by the ratio of tetracosanoic acid to hexacosanoic acid. This ratio was <1 for M. genavense and >3 for M. fortuitum. M. fortuitum also contained docosanoic acid, which was not detected in M. genavense. M. genavense, M. simiae, and M. tuberculosis, which have similar GLC profiles, were also differentiated from each other by the presence of either cis-10-hexadecenoic acid or cis-11-hexadecenoic acid and by tetradecanoic acid content. PMID:9466781

  1. Use of gas chromatographic fatty acid and mycolic acid cleavage product determination to differentiate among Mycobacterium genavense, Mycobacterium fortuitum, Mycobacterium simiae, and Mycobacterium tuberculosis.

    PubMed

    Chou, S; Chedore, P; Kasatiya, S

    1998-02-01

    Three Mycobacterium genavense strains and three American Type Culture Collection reference strains each of Mycobacterium fortuitum, Mycobacterium simiae, and Mycobacterium tuberculosis were subcultured onto Mycobacteria 7H11 agar (Difco Laboratories, Detroit, Mich.) supplemented with mycobactin J (Allied Laboratories, Fayette, Mo.). After 4 weeks of incubation at 37 degrees C in 10% CO2, the cultures were analyzed by gas-liquid chromatography (GLC) for their fatty acids and mycolic acid cleavage products. M. fortuitum was clearly differentiated from M. genavense by the presence of the specific marker 2-methyloctadecenoic acid in M. fortuitum and by the ratio of tetracosanoic acid to hexacosanoic acid. This ratio was <1 for M. genavense and >3 for M. fortuitum. M. fortuitum also contained docosanoic acid, which was not detected in M. genavense. M. genavense, M. simiae, and M. tuberculosis, which have similar GLC profiles, were also differentiated from each other by the presence of either cis-10-hexadecenoic acid or cis-11-hexadecenoic acid and by tetradecanoic acid content.

  2. Preparation of fatty acid methyl esters for gas-liquid chromatography[S

    PubMed Central

    Ichihara, Ken'ichi; Fukubayashi, Yumeto

    2010-01-01

    A convenient method using commercial aqueous concentrated HCl (conc. HCl; 35%, w/w) as an acid catalyst was developed for preparation of fatty acid methyl esters (FAMEs) from sterol esters, triacylglycerols, phospholipids, and FFAs for gas-liquid chromatography (GC). An 8% (w/v) solution of HCl in methanol/water (85:15, v/v) was prepared by diluting 9.7 ml of conc. HCl with 41.5 ml of methanol. Toluene (0.2 ml), methanol (1.5 ml), and the 8% HCl solution (0.3 ml) were added sequentially to the lipid sample. The final HCl concentration was 1.2% (w/v). This solution (2 ml) was incubated at 45°C overnight or heated at 100°C for 1–1.5 h. The amount of FFA formed in the presence of water derived from conc. HCl was estimated to be <1.4%. The yields of FAMEs were >96% for the above lipid classes and were the same as or better than those obtained by saponification/methylation or by acid-catalyzed methanolysis/methylation using commercial anhydrous HCl/methanol. The method developed here could be successfully applied to fatty acid analysis of various lipid samples, including fish oils, vegetable oils, and blood lipids by GC. PMID:19759389

  3. Sensors control gas metal arc welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siewert, T.A.; Madigan, R.B.; Quinn, T.P.

    1997-04-01

    The response time of a trained welder from the time a weld problem is identified to the time action is taken is about one second--especially after a long, uneventful period of welding. This is acceptable for manual welding because it is close to the time it takes for the weld pool to solidify. If human response time were any slower, manual welding would not be possible. However, human response time is too slow to respond to some weld events, such as melting of the contact tube in gas metal arc welding (GMAW), and only automated intelligent control systems can reactmore » fast enough to correct or avoid these problems. Control systems incorporate welding knowledge that enables intelligent decisions to be made about weld quality and, ultimately, to keep welding parameters in the range where only high-quality welds are produced. This article discusses the correlation of electrical signals with contact-tube wear, changes in shielding gas, changes in arc length, and other weld process data.« less

  4. [Investigation of reference intervals of blood gas and acid-base analysis assays in China].

    PubMed

    Zhang, Lu; Wang, Wei; Wang, Zhiguo

    2015-10-01

    To investigate and analyze the upper and lower limits and their sources of reference intervals in blood gas and acid-base analysis assays. The data of reference intervals were collected, which come from the first run of 2014 External Quality Assessment (EQA) program in blood gas and acid-base analysis assays performed by National Center for Clinical Laboratories (NCCL). All the abnormal values and errors were eliminated. Data statistics was performed by SPSS 13.0 and Excel 2007 referring to upper and lower limits of reference intervals and sources of 7 blood gas and acid-base analysis assays, i.e. pH value, partial pressure of carbon dioxide (PCO2), partial pressure of oxygen (PO2), Na+, K+, Ca2+ and Cl-. Values were further grouped based on instrument system and the difference between each group were analyzed. There were 225 laboratories submitting the information on the reference intervals they had been using. The three main sources of reference intervals were National Guide to Clinical Laboratory Procedures [37.07% (400/1 079)], instructions of instrument manufactures [31.23% (337/1 079)] and instructions of reagent manufactures [23.26% (251/1 079)]. Approximately 35.1% (79/225) of the laboratories had validated the reference intervals they used. The difference of upper and lower limits in most assays among 7 laboratories was moderate, both minimum and maximum (i.e. the upper limits of pH value was 7.00-7.45, the lower limits of Na+ was 130.00-156.00 mmol/L), and mean and median (i.e. the upper limits of K+ was 5.04 mmol/L and 5.10 mmol/L, the upper limits of PCO2 was 45.65 mmHg and 45.00 mmHg, 1 mmHg = 0.133 kPa), as well as the difference in P2.5 and P97.5 between each instrument system group. It was shown by Kruskal-Wallis method that the P values of upper and lower limits of all the parameters were lower than 0.001, expecting the lower limits of Na+ with P value 0.029. It was shown by Mann-Whitney that the statistic differences were found among instrument

  5. Determination of selected fatty acids in dried sweat spot using gas chromatography with flame ionization detection.

    PubMed

    Kanďár, Roman; Drábková, Petra; Andrlová, Lenka; Kostelník, Adam; Čegan, Alexander

    2016-11-01

    A method is described for the determination of fatty acids in dried sweat spot and plasma samples using gas chromatography with flame ionization detection. Plasma and dried sweat spot samples were obtained from a group of blood donors. The sweat was collected from each volunteer during exercise. Sweat was spotted onto collection paper containing butylated hydroxytoluene. Fatty acids were derivatized with acetyl chloride in methanol to form methyl esters of fatty acids. The fatty acids in dried sweat spot samples treated with butylated hydroxytoluene and stored at -20°C were stable for 3 months. Our results indicate that sweat contains, among fatty acids with short chain, also fatty acids with long chain and unsaturated fatty acids. Linear relationships between percentage content of selected fatty acids in dried sweat spot and plasma were observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Environmental policy constraints for acidic exhaust gas scrubber discharges from ships.

    PubMed

    Ülpre, H; Eames, I

    2014-11-15

    Increasingly stringent environmental legislation on sulphur oxide emissions from the combustion of fossil fuels onboard ships (International Maritime Organization (IMO) Regulation 14) can be met by either refining the fuel to reduce sulphur content or by scrubbing the exhaust gases. Commonly used open loop marine scrubbers discharge warm acidic exhaust gas wash water into the sea, depressing its pH. The focus on this paper is on the physics and chemistry behind the disposal of acidic discharges in seawater. The IMO Marine Environment Protection Committee (MEPC 59/24/Add.1 Annex 9) requires the wash water to reach a pH greater than 6.5 at a distance of 4m from the point of discharge. We examine the engineering constraints, specifically size and number of ports, to identify the challenges of meeting regulatory compliance. Copyright © 2014. Published by Elsevier Ltd.

  7. SOXAL combined SO{sub x}/NO{sub x} flue gas control demonstration. Quarterly report, July--September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    AQUATECH Systems, a business unit of Allied-Signal Inc., proposes to demonstrate the technical viability and cost effectiveness of the SOXAL process a combined SO{sub x}/NO{sub x} control process on a 3 MW equivalent flue gas slip stream from Niagara Mohawk Power Corporation Dunkirk Steam Station Boiler No. 4, a coal fired boiler. The SOXAL process combines 90+% sulfur dioxide removal from the flue gas using a sodium based scrubbing solution and regeneration of the spent scrubbing liquor using AQUATECH Systems` proprietary bipolar membrane technology. This regeneration step recovers a stream of sulfur dioxide suitable for subsequent processing to salable sulfurmore » or sulfuric acid. Additionally 90+% control of NO{sub x} gases can be achieved in combination with conventional urea/methanol injection of NO{sub 2} gas into the duct. The SOXAL process is applicable to both utility and industrial scale boilers using either high or lower sulfur coal. The SOXAL demonstration Program began September 10, 1991 and is approximately 26 months in duration. During the 6 months of scheduled operations, between January and July of 1993, data was collected from the SOXAL system to define: SO{sub 2} and NO{sub x} control efficiencies; Current efficiency for the regeneration unit; Sulfate oxidation in the absorber; Make-up reagent rates; Product quality including concentrations and compositions; System integration and control philosophy; and Membrane stability and performance with respect to foulants. The program is expected to be concluded in November 1993.« less

  8. Landfill Gas Control at Military Installations.

    DTIC Science & Technology

    1984-01-01

    GAS CONTROL AT MILITARY INSTALLATIONS by R. A. Shafer A. Renta -Babb J. T. Bandy E. D. Smith P. Malone ’ ’ DTIC -.J Apodfpulrei u d 8ELECTE Approved...PERFORMING ORG. REPORT NUMBER 7. AUTNORIal 6. CONTRACT OR GRANT NUMBER(*) R. A. Shafer E. D. Smith A. Renta -Babb P. Malone J. T. Bandy 9. PERFORMING

  9. Natural gas operations: considerations on process transients, design, and control.

    PubMed

    Manenti, Flavio

    2012-03-01

    This manuscript highlights tangible benefits deriving from the dynamic simulation and control of operational transients of natural gas processing plants. Relevant improvements in safety, controllability, operability, and flexibility are obtained not only within the traditional applications, i.e. plant start-up and shutdown, but also in certain fields apparently time-independent such as the feasibility studies of gas processing plant layout and the process design of processes. Specifically, this paper enhances the myopic steady-state approach and its main shortcomings with respect to the more detailed studies that take into consideration the non-steady state behaviors. A portion of a gas processing facility is considered as case study. Process transients, design, and control solutions apparently more appealing from a steady-state approach are compared to the corresponding dynamic simulation solutions. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Influence of liquid and gas flow rates on sulfuric acid mist removal from air by packed bed tower

    PubMed Central

    2012-01-01

    The possible emission of sulfuric acid mists from a laboratory scale, counter-current packed bed tower operated with a caustic scrubbing solution was studied. Acid mists were applied through a local exhaust hood. The emissions from the packed bed tower were monitored in three different categories of gas flow rate as well as three liquid flow rates, while other influencing parameters were kept almost constant. Air sampling and sulfuric acid measurement were carried out iso-kinetically using USEPA method 8. The acid mists were measured by the barium-thorin titration method. According to the results when the gas flow rate increased from 10 L/s to 30 L/s, the average removal efficiency increased significantly (p < 0.001) from 76.8 ± 1.8% to 85.7 ± 1.2%. Analysis of covariance method followed by Tukey post-hoc test of 92 tests did not show a significant change in removal efficiency between liquid flow rates of 1.5, 2.5 and 3.5 L/min (p = 0.811). On the other hand, with fixed pressure loss across the tower, by increasing the liquid/gas (L/G) mass ratio, the average removal efficiency decreased significantly (p = 0.001) from 89.9% at L/G of <2 to 83.1% at L/G of 2–3 and further to 80.2% at L/G of >3, respectively. L/G of 2–3 was recommended for designing purposes of a packed tower for sulfuric acid mists and vapors removal from contaminated air stream. PMID:23369487

  11. 40 CFR 80.33 - Controls applicable to natural gas retailers and wholesale purchaser-consumers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Controls applicable to natural gas... Prohibitions § 80.33 Controls applicable to natural gas retailers and wholesale purchaser-consumers. (a) After... feet of natural gas per month shall equip each pump from which natural gas is introduced into natural...

  12. 40 CFR 80.33 - Controls applicable to natural gas retailers and wholesale purchaser-consumers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Controls applicable to natural gas... Prohibitions § 80.33 Controls applicable to natural gas retailers and wholesale purchaser-consumers. (a) After... feet of natural gas per month shall equip each pump from which natural gas is introduced into natural...

  13. TECHNOLOGICAL OPTIONS FOR ACID RAIN CONTROL

    EPA Science Inventory

    The paper discusses technological options for acid rain control. Compliance with Title IV of the Clean Air Act Amendments of 1990 will require careful scrutiny of a number of issues before selecting control options to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions...

  14. Partial liquid ventilation with perfluorocarbon improves gas exchange and decreases inflammatory response in oleic acid-induced lung injury in beagles.

    PubMed

    Suh, G Y; Chung, M P; Park, S J; Park, J W; Kim, H C; Kim, H; Han, J; Rhee, C H; Kwon, O J

    1999-12-01

    The aim of this study was to determine the effect of partial liquid ventilation (PLV) using a perfluorocarbon (PFC) on gas exchange and lung inflammatory response in a canine acute lung injury model. After inducing severe lung injury by oleic acid infusion, beagle dogs were randomized to receive either gas ventilation only (control group, n = 6) or PLV (PLV group, n = 7) by sequential instillation of 10 mL/kg of perfluorodecalin (PFC) at 30 min intervals till functional residual capacity was attained. Measurements were made every 30 min till 210 min. Then the lungs were removed and bronchoalveolar lavage (BAL) (35 mL/kg) was performed on the right lung and the left lung was submitted for histologic analysis. There was significant improvement in PaO2 and PaCO2 in the PLV group compared to the control group (p < 0.05) which was associated with a significant decrease in shunt (p < 0.05). There was no significant difference in parameters of lung mechanics and hemodynamics. There was a significant decrease in cell count and neutrophil percentage in BAL fluid and significantly less inflammation and exudate scores in histology in the PLV group (p < 0.05). We conclude that PLV with perfluorodecalin improves gas exchange and decreases inflammatory response in the acutely-injured lung.

  15. Aqueous-phase source of formic acid in clouds

    NASA Technical Reports Server (NTRS)

    Chameides, W. L.; Davis, D. D.

    1983-01-01

    The coupled gas- and aqueous-phase cloud chemistry of HCOOH were examined for controlling factors in the acidity of cloud and rainwater. Attention was given to the aqueous OH/HO2 system that yields an OH species that is highly reactive with other species, notably SO2 and the formaldehyde/formic acid complex. A numerical model was developed to simulate the cloud chemistry in the remote troposphere, with considerations given to CH4-CO-NO(x)-O3-H(x)O(y) system. It was determined that aqueous phase OH radicals can produce and destroy formic acid droplets in daylight conditions, as well as control formic acid levels in rainwater. It is sugested that the same types of reactions may be involved in the control of acetic acid and other organic acids.

  16. Analysis of mycolic acids from a group of corynebacteria by capillary gas chromatography and mass spectrometry.

    PubMed

    Gailly, C; Sandra, P; Verzele, M; Cocito, C

    1982-06-15

    The cell wall of leprosy-derived corynebacteria (a group of 'diphtheroids' isolated from human leprosy lesions and patients' blood) was previously shown to contain, in addition to peptidoglycan and arabinogalactan, mycolic acids. These alpha-branched beta-hydroxy fatty acids were attributed to the corynomycolic group, according to their RF in monodimensional thin-layer chromatography. In the present work, mycolic acids from leprosy-derived and reference corynebacteria have been fractionated by monodimensional and bidimensional thin-layer chromatography and by gas chromatography. Pyrolyzed mycolic acids have been analyzed on conventional packed columns, whereas intact methyl esters of mycolic acids with free and silylated beta-hydroxyl group have been analyzed on capillary columns, and their structure has been established by mass spectrometry. In all leprosy-derived corynebacteria, some 20 components containing 24-36 carbon atoms and 0-4 double bonds were obtained. The three major groups had 32, 34 and 36 carbons, and the frequency of unsaturated versus saturated chains increased proportionally to the molecular weight. For comparison, the main components of a reference corynebacterium. Corynebacterium diphtheriae PW8, had 30 and 32 carbons, and their hydrocarbon chains were essentially saturated. This work confirms the relative chemical homogeneity of different leprosy-derived corynebacteria and describes some peculiar traits in the chemical structure of this group of organisms. In addition, it shows the complexity of the mycolic acid fraction of corynebacterial cell wall and suggests that the mycolic acid pattern is a sort of fingerprint of each bacterial strain grown under standard conditions. Finally, the fractionation of intact corynomycolic acid methyl esters with free or silylated beta-hydroxyl group by capillary gas chromatography proved to be the best analytical procedure at present available for resolving this complex mixture of corynomycolate isomers

  17. Identification of Abscisic Acid in Tulipa gesneriana L. by Gas-Liquid Chromatography with Electron Capture and Combined Gas-Liquid Chromatography and Mass Spectrometry

    PubMed Central

    Terry, Paul H.; Aung, Louis H.; De Hertogh, August A.

    1982-01-01

    A major growth inhibitory substance of tulip bulbs (Tulipa gesneriana L. cv Paul Richter) has been unequivocally shown to be abscisic acid (ABA). The ABA methyl ester of the free ether-soluble acid fractions of tulip organs had the identical retention time on gas-liquid chromatography with electron capture detector as authentic ABA methyl ester. In addition, the mass spectra were the same. On a unit dry matter basis, the basalplate and floral shoot contained 3.6 and 2.6 times more ABA than the fleshy scales, respectively. PMID:16662721

  18. Modelling and identification for control of gas bearings

    NASA Astrophysics Data System (ADS)

    Theisen, Lukas R. S.; Niemann, Hans H.; Santos, Ilmar F.; Galeazzi, Roberto; Blanke, Mogens

    2016-03-01

    Gas bearings are popular for their high speed capabilities, low friction and clean operation, but suffer from poor damping, which poses challenges for safe operation in presence of disturbances. Feedback control can achieve enhanced damping but requires low complexity models of the dominant dynamics over its entire operating range. Models from first principles are complex and sensitive to parameter uncertainty. This paper presents an experimental technique for "in situ" identification of a low complexity model of a rotor-bearing-actuator system and demonstrates identification over relevant ranges of rotational speed and gas injection pressure. This is obtained using parameter-varying linear models that are found to capture the dominant dynamics. The approach is shown to be easily applied and to suit subsequent control design. Based on the identified models, decentralised proportional control is designed and shown to obtain the required damping in theory and in a laboratory test rig.

  19. Industrial Raman gas sensing for real-time system control

    NASA Astrophysics Data System (ADS)

    Buric, M.; Mullen, J.; Chorpening, B.; Woodruff, S.

    2014-06-01

    Opportunities exist to improve on-line process control in energy applications with a fast, non-destructive measurement of gas composition. Here, we demonstrate a Raman sensing system which is capable of reporting the concentrations of numerous species simultaneously with sub-percent accuracy and sampling times below one-second for process control applications in energy or chemical production. The sensor is based upon a hollow-core capillary waveguide with a 300 micron bore with reflective thin-film metal and dielectric linings. The effect of using such a waveguide in a Raman process is to integrate Raman photons along the length of the sample-filled waveguide, thus permitting the acquisition of very large Raman signals for low-density gases in a short time. The resultant integrated Raman signals can then be used for quick and accurate analysis of a gaseous mixture. The sensor is currently being tested for energy applications such as coal gasification, turbine control, well-head monitoring for exploration or production, and non-conventional gas utilization. In conjunction with an ongoing commercialization effort, the researchers have recently completed two prototype instruments suitable for hazardous area operation and testing. Here, we report pre-commercialization testing of those field prototypes for control applications in gasification or similar processes. Results will be discussed with respect to accuracy, calibration requirements, gas sampling techniques, and possible control strategies of industrial significance.

  20. Temperature and acidity effects on WO{sub 3} nanostructures and gas-sensing properties of WO{sub 3} nanoplates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Huili; Liu, Zhifang; Yang, Jiaqin

    2014-09-15

    Graphical abstract: Generally, large acid quantity and high temperature are beneficial to the formation of anhydrous WO3, but the acidity effect on the crystal phase is weaker than that of temperature. Large acid quantity is found helpful to the oriented growth of tungsten oxides, forming a nanoplate-like product. - Highlights: • Large acid quantity is propitious to the oriented growth of a WO{sub 3} nanoplate. • Effect of acid quantity on crystal phases of products is weaker than that of temperature. • One step hydrothermal synthesis of WO{sub 3} is facile and can be easily scaled up. • A WO{submore » 3} nanoplate shows a fast response and distinct sensing selectivity to acetone gas. - Abstract: WO{sub 3} nanostructures were successfully synthesized by a facile hydrothermal method using Na{sub 2}WO{sub 4}·2H{sub 2}O and HNO{sub 3} as raw materials. They are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The specific surface area was obtained from N{sub 2} adsorption–desorption isotherm. The effects of the amount of HNO{sub 3}, hydrothermal temperature and reaction time on the crystal phases and morphologies of the WO{sub 3} nanostructures were investigated in detail, and the reaction mechanism was discussed. Large amount of acid is found for the first time to be helpful to the oriented growth of tungsten oxides, forming nanoplate-like products, while hydrothermal temperature has more influence on the crystal phase of the product. Gas-sensing properties of the series of as-prepared WO{sub 3} nanoplates were tested by means of acetone, ethanol, formaldehyde and ammonia. One of the WO{sub 3} nanoplates with high specific surface area and high crystallinity displays high sensitivity, fast response and distinct sensing selectivity to acetone gas.« less

  1. Acidity control in the North Branch Potomac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheer, D.P.; Harris, D.C.

    1982-11-01

    The North Branch of the Potomac River is polluted by acid drainage from abandoned coal mines. Recent studies have shown an improvement in water quality since the construction of a large dam near Bloomington, MD; the reservoir formed by the dam intercepts and dilutes slugs of acid. In addition, secondary treatment of pulp and paper industry waste waters at Westernport, MD, results in the production of bicarbonate which also helps to neutralise the acid. The authors propose a method for determining the optimal operation of the reservoir to control acidity.

  2. Serum concentrations of fatty acids and colorectal adenoma risk: a case-control study in Japan.

    PubMed

    Ghadimi, Reza; Kuriki, Kiyonori; Tsuge, Shinji; Takeda, Emiru; Imaeda, Nahomi; Suzuki, Sadao; Sawai, Asuka; Takekuma, Kiyoshi; Hosono, Akihiro; Tokudome, Yuko; Goto, Chiho; Esfandiary, Imaneh; Nomura, Hisashi; Tokudome, Shinkan

    2008-01-01

    Epidemiologic studies of n-3 fatty acids (FAs) and risk of colorectal cancer have generated inconsistent results, and relations with precursor colorectal adenomas (CRA) have not been evaluated in detail. We here focused on possible associations of serum FAs with CRA in the Japanese population. We conducted a case-control study of 203 asymptomatic CRA cases (148 men, 55 women) and 179 healthy controls (67 men, 112 women) during 1997-2003 in Nagoya, Japan. Baseline information was obtained using a lifestyle questionnaire and serum FA levels were measured by gas chromatography. A non-significant inverse association with CRA was observed for eicosapentaenoic acid (EPA) among women. Moreover, the concentrations of docosahexaenoeic acid (DHA), a major component of n-3 highly-unsaturated FAs (HUFAs), were significantly lower in cases in both sexes. In addition, serum concentrations of total FAs, saturated FAs (SFAs) and mono-unsaturated FAs (MUFAs) had strong positive links with CRA risk. In contrast, arachidonic acid (AA) and DHA were inversely related, with 66% and 59% risk reduction, respectively. Ratios of SFAs/n-3 PUFAs and SFAs/n-3 HUFAs exhibited significant positive relations with CRA risk but there was no clear link with n-6 PUFAs/n-3 PUFAs. Our findings suggest a promoting influence of SFAs and MUFAs along with a protective effect of DHA on CRA risk. However, further research is needed to investigate the observed discrepancy with the generally accepted roles of the AA cascade in carcinogenesis.

  3. Control of arc length during gas metal arc welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madigan, R.B.; Quinn, T.P.

    1994-12-31

    An arc-length control system has been developed for gas metal arc welding (GMAW) under spray transfer welding conditions. The ability to monitor and control arc length during arc welding allows consistent weld characteristics to be maintained and therefore improves weld quality. Arc length control has only been implemented for gas tungsten arc welding (GTAW), where an automatic voltage control (AVC) unit adjusts torch-to-work distance. The system developed here compliments the voltage- and current-sensing techniques commonly used for control of GMAW. The system consists of an arc light intensity sensor (photodiode), a Hall-effect current sensor, a personal computer and software implementingmore » a data interpretation and control algorithms. Arc length was measured using both arc light and arc current signals. Welding current was adjusted to maintain constant arc length. A proportional-integral-derivative (PID) controller was used. Gains were automatically selected based on the desired welding conditions. In performance evaluation welds, arc length varied from 2.5 to 6.5 mm while welding up a sloped workpiece (ramp in CTWD) without the control. Arc length was maintained within 1 mm of the desired (5 mm ) with the control.« less

  4. Para-hydrogen induced polarization of amino acids, peptides and deuterium-hydrogen gas.

    PubMed

    Glöggler, Stefan; Müller, Rafael; Colell, Johannes; Emondts, Meike; Dabrowski, Martin; Blümich, Bernhard; Appelt, Stephan

    2011-08-14

    Signal Amplification by Reversible-Exchange (SABRE) is a method of hyperpolarizing substrates by polarization transfer from para-hydrogen without hydrogenation. Here, we demonstrate that this method can be applied to hyperpolarize small amounts of all proteinogenic amino acids and some chosen peptides down to the nanomole regime and can be detected in a single scan in low-magnetic fields down to 0.25 mT (10 kHz proton frequency). An outstanding feature is that depending on the chemical state of the used catalyst and the investigated amino acid or peptide, hyperpolarized hydrogen-deuterium gas is formed, which was detected with (1)H and (2)H NMR spectroscopy at low magnetic fields of B(0) = 3.9 mT (166 kHz proton frequency) and 3.2 mT (20 kHz deuterium frequency).

  5. Accurate determination of residual acrylic acid in superabsorbent polymer of hygiene products by headspace gas chromatography.

    PubMed

    Zhang, Shu-Xin; Chai, Xin-Sheng; Jiang, Ran

    2017-02-17

    This work reports on a method for the determination of residual acrylic acid (AA) in the superabsorbent polymers for hygiene products by headspace analysis. It was based on water extraction for the polymer sample at a room temperature for 50min. Then, the AA in the extractant reacted with bicarbonate solution in a closed headspace sample vial, from which the carbon dioxide generated from the reaction (within 20min at 70°C) was detected by gas chromatography (GC). It was found that there is adsorption partition equilibrium of AA between solid-liquid phases. Therefore, an equation for calculating the total AA content in the original polymers sample was derived based on the above phase equilibrium. The results show that the HS-GC method has good precision (RSD<2.51%) and good accuracy (recoveries from 93 to 105%); the limit of quantification (LOQ) was 373mg/kg. The present method is rapid, accurate, and suitable for determining total residual acrylic acid in a wide variety of applications from processing of superabsorbent polymer to commercial products quality control. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Comparison of folic acid levels in schizophrenic patients and control groups

    NASA Astrophysics Data System (ADS)

    Arthy, C. C.; Amin, M. M.; Effendy, E.

    2018-03-01

    Folic acid deficiency is a risk factor for schizophrenia through epidemiology, biochemistry and gene-related studies. Compared with healthy people, schizophrenic patients may have high homocysteine plasma values and homocysteine or low levels of folic acid, which seems to correlate with extrapyramidal motor symptoms caused by neuroleptic therapy and with symptoms of schizophrenia. In this present study, we focus on the difference of folic acid level between schizophrenic patient and control group. The study sample consisted of schizophrenic patients and 14 people in the control group and performed blood sampling to obtain the results of folic acid levels. The folic acid level in both groups was within normal range, but the schizophrenic patient group had lower mean folic acid values of 5.00 ng/ml (sb 1.66), compared with the control group with mean folic acid values of 10.75 ng/ml (sb 4.33). there was the group of the control group had a higher value of folic acid than the schizophrenic group.

  7. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson [Castro Valley, CA

    2012-05-15

    A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.

  8. Gas chromatography-mass spectrometry profiles of urinary organic acids in healthy captive cheetahs (Acinonyx jubatus).

    PubMed

    Tordiffe, Adrian Stephen Wolferstan; van Reenen, Mari; Reyers, Fred; Mienie, Lodewyk Jacobus

    2017-04-01

    In captivity, cheetahs (Acinonyx jubatus) frequently suffer from several unusual chronic diseases that rarely occur in their free-ranging counterparts. In order to develop a better understanding of their metabolism and health we documented the urine organic acids of 41 apparently healthy captive cheetahs, in an untargeted metabolomic study, using gas chromatography-mass spectrometry. A total of 339 organic acids were detected and annotated. Phenolic compounds, thought to be produced by the anaerobic fermentation of aromatic amino acids in the distal colon, as well as their corresponding glycine conjugates, were present in high concentrations. The most abundant organic acids in the cheetahs' urine were an as yet unidentified compound and a novel cadaverine metabolite, tentatively identified as N 1 ,N 5 -dimethylpentane-1,5-diamine. Pantothenic acid and citramalic acid concentrations correlated negatively with age, while glutaric acid concentrations correlated positively with age, suggesting possible dysregulation of coenzyme A metabolism in older cheetahs. This study provides a baseline of urine organic acid reference values in captive cheetahs and suggests important avenues for future research in this species. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Oxidative degradation of organic acids conjugated with sulfite oxidation in flue gas desulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.I.

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (EGD) conditions. The oxidative degradation constant, k/sub 12/, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate after being normalized by the concentrations of organic acid and dissolved S(IV). K/sub 12/, not significantly affected by pH or dissolved oxygen, is around 10/sup -3/ in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Co, Ni, and Fe and is decreased by Mn and halides. Lower dissolved S(IV) magnified these effects. No k/sub 12/more » greater than 4 x 10/sup -3/ or smaller than 0.1 x 10/sup -3/ has been observed. A free radical mechanism was proposed to describe the kinetics: (1) sulfate free radical is the major radical responsible to the degradation of organic acid; (2) ferrous generates sulfate radical by reacting with monoxypersulfate to enhance k/sub 12/; (3) manganous consumes sulfate radical to decrease k/sub 12/; (4) dissolved S(IV) competes with ferrous for monoxypersulfate and with manganous for sulfate radical to demonstrate the effects of dissolved S(IV) on k/sub 12/. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product, glutaric semialdehyde - the major retained product with low manganese, glutaric acid and valeric acids - the major retained product with high manganese, lower molecular weight mono- and dicarboxylic acids, other carbonyl compounds, and hydrocarbons.« less

  10. Gas-phase acidities of cysteine-polyalanine peptides I: A(3,4)CSH and HSCA(3,4).

    PubMed

    Ren, Jianhua; Tan, John P; Harper, Robert T

    2009-10-15

    The gas-phase acidities of four cysteine-polyalanine peptides, A(3,4)CSH and HSCA(3,4), were determined using the extended Cooks kinetic method with full entropy analysis. A triple-quadrupole mass spectrometer with an electrospray interface was employed for the experimental study. The ion activation was achieved via collision-induced dissociation (CID) experiments. The deprotonation enthalpies (Delta(acid)H) of the peptides were determined to be 332.2 +/- 2.0 kcal/mol (A(3)CSH), 325.9 +/- 2.0 kcal/mol (A(4)CSH), 319.3 +/- 3.0 kcal/mol (HSCA(3)), and 319.2 +/- 4.0 kcal/mol (HSCA(4)). The deprotonation entropies (Delta(acid)S) of the peptides were estimated based on the entropy term (Delta(DeltaS)) and the deprotonation entropies of the reference acids. By using the deprotonation enthalpies and entropies, the gas-phase acidities (Delta(acid)G) of the peptides were derived: 325.0 +/- 2.0 kcal/mol (A(3)CSH), 320.2 +/- 2.0 kcal/mol (A(4)CSH), 316.3 +/- 3.0 kcal/mol (HSCA(3)), and 315.4 +/- 4.0 kcal/mol (HSCA(4)). Conformations and energetic information of the peptides were calculated through simulated annealing (Tripos), geometry optimization (AM1), and single-point energy calculations (B3LYP/6-31+G(d)), respectively. The calculated theoretical deprotonation enthalpies (Delta(acid)H) of 334.2 kcal/mol (A(3)CSH), 327.7 kcal/mol (A(4)CSH), 320.6 kcal/mol (HSCA(3)), and 318.6 kcal/mol (HSCA(4)) are in good agreement with the experimentally determined values. Both the experimental and computational studies suggest that the two N-terminal cysteine peptides, HSCA(3,4), are significantly more acidic than the corresponding C-terminal ones, A(3,4)CSH. The high acidities of the former are likely due to the helical conformational effects for which the thiolate anion may be strongly stabilized by the interaction with the helix macrodipole.

  11. Optical control and diagnostics sensors for gas turbine machinery

    NASA Astrophysics Data System (ADS)

    Trolinger, James D.; Jenkins, Thomas P.; Heeg, Bauke

    2012-10-01

    There exists a vast range of optical techniques that have been under development for solving complex measurement problems related to gas-turbine machinery and phenomena. For instance, several optical techniques are ideally suited for studying fundamental combustion phenomena in laboratory environments. Yet other techniques hold significant promise for use as either on-line gas turbine control sensors, or as health monitoring diagnostics sensors. In this paper, we briefly summarize these and discuss, in more detail, some of the latter class of techniques, including phosphor thermometry, hyperspectral imaging and low coherence interferometry, which are particularly suited for control and diagnostics sensing on hot section components with ceramic thermal barrier coatings (TBCs).

  12. Electrochemical Reduction of CO2 to Organic Acids by a Pd-MWNTs Gas-Diffusion Electrode in Aqueous Medium

    PubMed Central

    Lu, Guang; Bian, Zhaoyong; Liu, Xin

    2013-01-01

    Pd-multiwalled carbon nanotubes (Pd-MWNTs) catalysts for the conversion of CO2 to organic acids were prepared by the ethylene glycol reduction and fully characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) technologies. The amorphous Pd particles with an average size of 5.7 nm were highly dispersed on the surface of carbon nanotubes. Functional groups of the MWNTs played a key role in the palladium deposition. The results indicated that Pd-MWNTs could transform CO2 into organic acid with high catalytic activity and CO2 could take part in the reduction reaction directly. Additionally, the electrochemical reduction of CO2 was investigated by a diaphragm electrolysis device, using a Pd-MWNTs gas-diffusion electrode as a cathode and a Ti/RuO2 net as an anode. The main products in present system were formic acid and acetic acid identified by ion chromatograph. The selectivity of the products could be achieved by reaction conditions changing. The optimum faraday efficiencies of formic and acetic acids formed on the Pd-MWNTs gas-diffusion electrode at 4 V electrode voltages under 1 atm CO2 were 34.5% and 52.3%, respectively. PMID:24453849

  13. Evaluation of ionic liquid stationary phases for one dimensional gas chromatography-mass spectrometry and comprehensive two dimensional gas chromatographic analyses of fatty acids in marine biota.

    PubMed

    Gu, Qun; David, Frank; Lynen, Frédéric; Vanormelingen, Pieter; Vyverman, Wim; Rumpel, Klaus; Xu, Guowang; Sandra, Pat

    2011-05-20

    Ionic liquid stationary phases were tested for one dimensional gas chromatography-mass spectrometry (GC-MS) and comprehensive two dimensional gas chromatography (GC×GC) of fatty acid methyl esters from algae. In comparison with polyethylene glycol and cyanopropyl substituted polar stationary phases, ionic liquid stationary phases SLB-IL 82 and SLB-IL 100 showed comparable resolution, but lower column bleeding with MS detection, resulting in better sensitivity. The selectivity and polarity of the ionic liquid phases are similar to a highly polar biscyanopropyl-silicone phase (e.g. HP-88). In GC×GC, using an apolar polydimethyl siloxane×polar ionic liquid column combination, an excellent group-type separation of fatty acids with different carbon numbers and number of unsaturations was obtained, providing information that is complementary to GC-MS identification. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Effect on combined cycle efficiency of stack gas temperature constraints to avoid acid corrosion

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.

    1980-01-01

    To avoid condensation of sulfuric acid in the gas turbine exhaust when burning fuel oils contaning sulfur, the exhaust stack temperature and cold-end heat exchanger surfaces must be kept above the condensation temperature. Raising the exhaust stack temperature, however, results in lower combined cycle efficiency compared to that achievable by a combined cycle burning a sulfur-free fuel. The maximum difference in efficiency between the use of sulfur-free and fuels containing 0.8 percent sulfur is found to be less than one percentage point. The effect of using a ceramic thermal barrier coating (TBC) and a fuel containing sulfur is also evaluated. The combined-cycle efficiency gain using a TBC with a fuel containing sulfur compared to a sulfur-free fuel without TBC is 0.6 to 1.0 percentage points with air-cooled gas turbines and 1.6 to 1.8 percentage points with water-cooled gas turbines.

  15. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries

    PubMed Central

    Prentice, Boone M.

    2013-01-01

    Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field. PMID:23257901

  16. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries.

    PubMed

    Prentice, Boone M; McLuckey, Scott A

    2013-02-01

    Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field.

  17. Fuel control for gas turbine engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stearns, C.F.; Tutherly, H.W.

    1983-12-27

    The basic gas turbine engine hydromechanical fuel control is adaptable to different engine configurations such as turbofan, turboprop and turboshaft engines by incorporating in the main housing those elements having a commonality to all engine configurations and providing a removable block for each configuration having the necessary control elements and flow passages required for that particular configuration. That is to say, a block with the elements peculiar to a turbofan engine could be replaced by a mating block that includes those elements peculiar to a turboshaft engine in adapting the control for a turboshaft configuration. Similarly another block with thosemore » elements peculiar to a turboprop engine could replace any of the other blocks in adapting the control to a turboprop configuration. Obviously the basic control has the necessary flow passages terminating at the interface with the block and these flow passages mate with corresponding passages in the block.« less

  18. Fuel flexibility via real-time Raman fuel-gas analysis for turbine system control

    NASA Astrophysics Data System (ADS)

    Buric, M.; Woodruff, S.; Chorpening, B.; Tucker, D.

    2015-06-01

    The modern energy production base in the U.S. is increasingly incorporating opportunity fuels such as biogas, coalbed methane, coal syngas, solar-derived hydrogen, and others. In many cases, suppliers operate turbine-based generation systems to efficiently utilize these diverse fuels. Unfortunately, turbine engines are difficult to control given the varying energy content of these fuels, combined with the need for a backup natural gas supply to provide continuous operation. Here, we study the use of a specially designed Raman Gas Analyzer based on capillary waveguide technology with sub-second response time for turbine control applications. The NETL Raman Gas Analyzer utilizes a low-power visible pump laser, and a capillary waveguide gas-cell to integrate large spontaneous Raman signals, and fast gas-transfer piping to facilitate quick measurements of fuel-gas components. A U.S. Department of Energy turbine facility known as HYPER (hybrid performance system) serves as a platform for apriori fuel composition measurements for turbine speed or power control. A fuel-dilution system is used to simulate a compositional upset while simultaneously measuring the resultant fuel composition and turbine response functions in real-time. The feasibility and efficacy of system control using the spontaneous Raman-based measurement system is then explored with the goal of illustrating the ability to control a turbine system using available fuel composition as an input process variable.

  19. Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.

    2013-04-01

    Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotopemore » mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.« less

  20. Fatty acid composition of wild mushroom species of order Agaricales--examination by gas chromatography-mass spectrometry and chemometrics.

    PubMed

    Marekov, Ilko; Momchilova, Svetlana; Grung, Bjørn; Nikolova-Damyanova, Boryana

    2012-12-01

    Applying gas chromatography-mass spectrometry of 4,4-dimethyloxazoline fatty acid derivatives, the fatty acid composition of 15 mushroom species belonging to 9 genera and 5 families of order Agaricales growing in Bulgaria is determined. The structure of 31 fatty acids (not all present in each species) is unambiguously elucidated, with linoleic, oleic and palmitic acids being the main components (ranging between 70.9% (Marasmius oreades) and 91.2% (Endoptychum agaricoides)). A group of three hexadecenoic positionally isomeric fatty acids, 6-, 9- and 11-16:1, appeared to be characteristic components of the examined species. By applying chemometrics it was possible to show that the fatty acid composition closely reflects the classification of the species. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Detection of lysergic acid diethylamide (LSD) in urine by gas chromatography-ion trap tandem mass spectrometry.

    PubMed

    Sklerov, J H; Kalasinsky, K S; Ehorn, C A

    1999-10-01

    A confirmatory method for the detection and quantitation of lysergic acid diethylamide (LSD) is presented. The method employs gas chromatography-tandem mass spectrometry (GC-MS-MS) using an internal ionization ion trap detector for sensitive MS-MS-in-time measurements of LSD extracted from urine. Following a single-step solid-phase extraction of 5 mL of urine, underivatized LSD can be measured with limits of quantitation and detection of 80 and 20 pg/mL, respectively. Temperature-programmed on-column injections of urine extracts were linear over the concentration range 20-2000 pg/mL (r2 = 0.999). Intraday and interday coefficients of variation were < 6% and < 13%, respectively. This procedure has been applied to quality-control specimens and LSD-positive samples in this laboratory. Comparisons with alternate GC-MS methods and extraction procedures are discussed.

  2. The existence and gas phase acidity of the HAlnF3n+1 superacids (n = 1-4)

    NASA Astrophysics Data System (ADS)

    Czapla, Marcin; Skurski, Piotr

    2015-06-01

    Novel strong superacids are proposed and investigated on the basis of ab initio calculations. The gas phase acidity of the HAlF4, HAl2F7, and HAl3F10 systems evaluated by the estimation of the Gibbs free energies of their deprotonation reactions were found significant and comparable to the corresponding value characterizing the HTaF6, whereas the strength of the HAl4F13 acid was predicted to exceed that of the HSbF6 acid (the strongest liquid superacid recognized). The deprotonation energies of the HAlnF3n+1 acids (n = 1-4) turned out to be closely related to the electronic stabilities of their corresponding (AlnF3n+1)- anions.

  3. Comparing Adrenaline with Tranexamic Acid to Control Acute Endobronchial Bleeding: A Randomized Controlled Trial

    PubMed Central

    Fekri, Mitra Samareh; Hashemi-Bajgani, Seyed Mehdy; Shafahi, Ahmad; Zarshenas, Rozita

    2017-01-01

    Background: Hemoptysis occurs due to either pulmonary diseases or bronchoscopy interventions. The aim of the present study was to compare the efficacy of the endobronchial instillation of adrenaline with that of tranexamic acid. Methods: Fifty patients were randomly selected as 2 double-blinded sample groups (n=25). In these patients, bleeding could not be controlled with cold saline lavage during bronchoscopy and they, therefore, required prescription of another medicine. Adrenaline (1 mg) in one group and tranexamic acid (500 mg) in the other group were diluted in 20 mL of normal saline and instilled through the bronchoscope. This technique was repeated 3 times at 90-second intervals, if necessary. In the case of persistent bleeding, 90 seconds after the last dose, a second medicine was given for bleeding control. Observation of clot through the bronchoscope meant that the bleeding had stopped. The efficacy of tranexamic acid and adrenaline was evaluated and then compared using the Mann–Whitney test. Results: The time of bleeding control had no significant difference between tranexamic acid and adrenaline (P=0.908). Another analysis was done to evaluate bleeding control with a second medicine; the results showed that 1 (4%) patient in the tranexamic acid and 8 (32%) in the adrenaline group needed the second medicine and there was no significant difference between the 2 groups (P=0.609). Conclusion: Our results suggested that tranexamic acid by endobronchial instillation was as efficient as adrenaline in controlling hemoptysis and required less frequent use of a second medicine. Trial Registration Number: IRCT2014120220188 PMID:28360438

  4. Comparing Adrenaline with Tranexamic Acid to Control Acute Endobronchial Bleeding: A Randomized Controlled Trial.

    PubMed

    Fekri, Mitra Samareh; Hashemi-Bajgani, Seyed Mehdy; Shafahi, Ahmad; Zarshenas, Rozita

    2017-03-01

    Hemoptysis occurs due to either pulmonary diseases or bronchoscopy interventions. The aim of the present study was to compare the efficacy of the endobronchial instillation of adrenaline with that of tranexamic acid. Fifty patients were randomly selected as 2 double-blinded sample groups (n=25). In these patients, bleeding could not be controlled with cold saline lavage during bronchoscopy and they, therefore, required prescription of another medicine. Adrenaline (1 mg) in one group and tranexamic acid (500 mg) in the other group were diluted in 20 mL of normal saline and instilled through the bronchoscope. This technique was repeated 3 times at 90-second intervals, if necessary. In the case of persistent bleeding, 90 seconds after the last dose, a second medicine was given for bleeding control. Observation of clot through the bronchoscope meant that the bleeding had stopped. The efficacy of tranexamic acid and adrenaline was evaluated and then compared using the Mann-Whitney test. The time of bleeding control had no significant difference between tranexamic acid and adrenaline (P=0.908). Another analysis was done to evaluate bleeding control with a second medicine; the results showed that 1 (4%) patient in the tranexamic acid and 8 (32%) in the adrenaline group needed the second medicine and there was no significant difference between the 2 groups (P=0.609). Our results suggested that tranexamic acid by endobronchial instillation was as efficient as adrenaline in controlling hemoptysis and required less frequent use of a second medicine. Trial Registration Number: IRCT2014120220188.

  5. Stereometabolism of ethylbenzene in man: gas chromatographic determination of urinary excreted mandelic acid enantiomers and phenylglyoxylic acid and their relation to the height of occupational exposure.

    PubMed

    Korn, M; Gfrörer, W; Herz, R; Wodarz, I; Wodarz, R

    1992-01-01

    Ethylbenzene is an important industrial solvent and a key substance in styrene production. Ethylbenzene metabolism leads to the formation of mandelic acid, which occurs in two enantiomeric forms, and phenylglyoxylic acid. To decide which enantiomer is preferably formed, 70 urine samples of exposed workers were taken at the end of shifts and--after 3-pentyl ester derivatisation--gas chromatographically analysed. The R/S ratio of mandelic acid enantiomers in urine amounts to 19:1, which means that R-mandelic acid is a major metabolite and S-mandelic acid is one of the minor urinary metabolites of ethylbenzene in man. The R/S ratio is independent of ambient air concentration of ethylbenzene within the investigated range. Compared to an ethylbenzene monoexposure the height of total mandelic acid excretion is decreased in the case of coexposure to other aromatic solvents.

  6. Zero-power autonomous buoyancy system controlled by microbial gas production

    NASA Astrophysics Data System (ADS)

    Wu, Peter K.; Fitzgerald, Lisa A.; Biffinger, Justin C.; Spargo, Barry J.; Houston, Brian H.; Bucaro, Joseph A.; Ringeisen, Bradley R.

    2011-05-01

    A zero-power ballast control system that could be used to float and submerge a device solely using a gas source was built and tested. This system could be used to convey sensors, data loggers, and communication devices necessary for water quality monitoring and other applications by periodically maneuvering up and down a water column. Operational parameters for the system such as duration of the submerged and buoyant states can be varied according to its design. The gas source can be of any origin, e.g., compressed air, underwater gas vent, gas produced by microbes, etc. The zero-power ballast system was initially tested using a gas pump and further tested using gas produced by Clostridium acetobutylicum. Using microbial gas production as the only source of gas and no electrical power during operation, the system successfully floated and submerged periodically with a period of 30 min for at least 24 h. Together with microbial fuel cells, this system opens up possibilities for underwater monitoring systems that could function indefinitely.

  7. Electronic Effects of 11β Substituted 17β-Estradiol Derivatives and Instrumental Effects on the Relative Gas Phase Acidity

    NASA Astrophysics Data System (ADS)

    Bourgoin-Voillard, Sandrine; Fournier, Françoise; Afonso, Carlos; Zins, Emilie-Laure; Jacquot, Yves; Pèpe, Claude; Leclercq, Guy; Tabet, Jean-Claude

    2012-12-01

    Numerous studies have highlighted the role of the proton donor characteristics of the phenol group of 17β-estradiol (E2) in its association with the estrogen receptor alpha (ERα). Since the substitutions at position C(11) have been reported to modulate this association, we hypothesized that such substitutions may modify the phenol acidity. Hence, phenol gas-phase acidity of nine C(11)-substituted E2-derivatives were evaluated using the extended Cooks' kinetic method, which is a method widely used to determine thermochemical properties by mass spectrometry. To enhance accuracy in data collection we recorded data from several instruments, including quadrupole ion trap, triple quadrupole, and hybrid QqTOF. Indeed, we report for the first time the use of the QqTOF instrument to provide a novel means to improve data accuracy by giving access to an intermediate effective temperature range. All experimental gas-phase acidity values were supported by theoretical calculations. Our results confirmed the ability of distant substituents at C(11) to modulate the phenol acidity through electrostatic interactions, electron withdrawing inductive effects, and mesomeric effects. However, no relationship was found between the phenol gas-phase acidity of investigated steroids and their binding affinity for ERα assessed in solution. Thus, our results highlight that the intrinsic properties of the hormone do not influence sufficiently the stabilization of the hormone/ERα complex. It is more likely that such stabilization would be more related to factors depending on the environment within the binding pocket such as hydrophobic, steric as well as direct intermolecular electrostatic effects between ERα residues and the substituted steroidal estrogens.

  8. Robust control of speed and temperature in a power plant gas turbine.

    PubMed

    Najimi, Ebrahim; Ramezani, Mohammad Hossein

    2012-03-01

    In this paper, an H(∞) robust controller has been designed for an identified model of MONTAZER GHAEM power plant gas turbine (GE9001E). In design phase, a linear model (ARX model) which is obtained using real data has been applied. Since the turbine has been used in a combined cycle power plant, its speed and also the exhaust gas temperature should be adjusted simultaneously by controlling fuel signals and compressor inlet guide vane (IGV) position. Considering the limitations on the system inputs, the aim of the control is to maintain the turbine speed and the exhaust gas temperature within desired interval under uncertainties and load demand disturbances. Simulation results of applying the proposed robust controller on the nonlinear model of the system (NARX model), fairly fulfilled the predefined aims. Simulations also show the improvement in the performance compared to MPC and PID controllers for the same conditions. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Treatment of menorrhagia during menstruation: randomised controlled trial of ethamsylate, mefenamic acid, and tranexamic acid.

    PubMed Central

    Bonnar, J.; Sheppard, B. L.

    1996-01-01

    OBJECTIVE: To compare the efficacy and acceptability of ethamsylate, mefenamic acid, and tranexamic acid for treating menorrhagia. DESIGN: Randomised controlled trial. SETTING: A university department of obstetrics and gynaecology. SUBJECTS: 76 women with dysfunctional uterine bleeding. INTERVENTIONS: Treatment for five days from day 1 of menses during three consecutive menstrual periods. 27 patients were randomised to take ethamsylate 500 mg six hourly, 23 patients to take mefenamic acid 500 mg eight hourly, and 26 patients to take tranexamic acid 1 g six hourly. MAIN OUTCOMES MEASURES: Menstrual loss measured by the alkaline haematin method in three control menstrual periods and three menstrual periods during treatment; duration of bleeding; patient's estimation of blood loss; sanitary towel usage; the occurrence of dysmenorrhoea; and unwanted events. RESULTS: Ethamsylate did not reduce mean menstrual blood loss whereas mefenamic acid reduced blood loss by 20% (mean blood loss 186 ml before treatment, 148 ml during treatment) and tranexamic acid reduced blood loss by 54% (mean blood loss 164 ml before treatment, 75 ml during treatment). Sanitary towel usage was significantly reduced in patients treated with mefenamic acid and tranexamic acid. CONCLUSIONS: Tranexamic acid given during menstruation is a safe and highly effective treatment for excessive bleeding. Patients with dysfunctional uterine bleeding should be offered medical treatment with tranexamic acid before a decision is made about surgery. PMID:8806245

  10. 40 CFR 80.33 - Controls applicable to natural gas retailers and wholesale purchaser-consumers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Controls applicable to natural gas... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Controls and Prohibitions § 80.33 Controls applicable to natural gas retailers and wholesale purchaser-consumers. (a) After...

  11. 40 CFR 80.33 - Controls applicable to natural gas retailers and wholesale purchaser-consumers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Controls applicable to natural gas... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Controls and Prohibitions § 80.33 Controls applicable to natural gas retailers and wholesale purchaser-consumers. (a) After...

  12. 40 CFR 80.33 - Controls applicable to natural gas retailers and wholesale purchaser-consumers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Controls applicable to natural gas... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Controls and Prohibitions § 80.33 Controls applicable to natural gas retailers and wholesale purchaser-consumers. (a) After...

  13. All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition

    PubMed Central

    Lausund, Kristian Blindheim; Nilsen, Ola

    2016-01-01

    Thin films of stable metal-organic frameworks (MOFs) such as UiO-66 have enormous application potential, for instance in microelectronics. However, all-gas-phase deposition techniques are currently not available for such MOFs. We here report on thin-film deposition of the thermally and chemically stable UiO-66 in an all-gas-phase process by the aid of atomic layer deposition (ALD). Sequential reactions of ZrCl4 and 1,4-benzenedicarboxylic acid produce amorphous organic–inorganic hybrid films that are subsequently crystallized to the UiO-66 structure by treatment in acetic acid vapour. We also introduce a new approach to control the stoichiometry between metal clusters and organic linkers by modulation of the ALD growth with additional acetic acid pulses. An all-gas-phase synthesis technique for UiO-66 could enable implementations in microelectronics that are not compatible with solvothermal synthesis. Since this technique is ALD-based, it could also give enhanced thickness control and the possibility to coat irregular substrates with high aspect ratios. PMID:27876797

  14. All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lausund, Kristian Blindheim; Nilsen, Ola

    2016-11-01

    Thin films of stable metal-organic frameworks (MOFs) such as UiO-66 have enormous application potential, for instance in microelectronics. However, all-gas-phase deposition techniques are currently not available for such MOFs. We here report on thin-film deposition of the thermally and chemically stable UiO-66 in an all-gas-phase process by the aid of atomic layer deposition (ALD). Sequential reactions of ZrCl4 and 1,4-benzenedicarboxylic acid produce amorphous organic-inorganic hybrid films that are subsequently crystallized to the UiO-66 structure by treatment in acetic acid vapour. We also introduce a new approach to control the stoichiometry between metal clusters and organic linkers by modulation of the ALD growth with additional acetic acid pulses. An all-gas-phase synthesis technique for UiO-66 could enable implementations in microelectronics that are not compatible with solvothermal synthesis. Since this technique is ALD-based, it could also give enhanced thickness control and the possibility to coat irregular substrates with high aspect ratios.

  15. Automated information and control complex of hydro-gas endogenous mine processes

    NASA Astrophysics Data System (ADS)

    Davkaev, K. S.; Lyakhovets, M. V.; Gulevich, T. M.; Zolin, K. A.

    2017-09-01

    The automated information and control complex designed to prevent accidents, related to aerological situation in the underground workings, accounting of the received and handed over individual devices, transmission and display of measurement data, and the formation of preemptive solutions is considered. Examples for the automated workplace of an airgas control operator by individual means are given. The statistical characteristics of field data characterizing the aerological situation in the mine are obtained. The conducted studies of statistical characteristics confirm the feasibility of creating a subsystem of controlled gas distribution with an adaptive arrangement of points for gas control. The adaptive (multivariant) algorithm for processing measuring information of continuous multidimensional quantities and influencing factors has been developed.

  16. Active Control of pH in the Bioculture System Through Carbon Dioxide Control

    NASA Technical Reports Server (NTRS)

    Monhollon, Luke; Pletcher, David; Hauss, Jessica

    2016-01-01

    For successful cell research, the growth culture environment must be tightly controlled. Deviance from the optimal conditions will mask the desired variable being analyzed or lead to inconstancies in the results. In standard laboratories, technology and procedures are readily available for the reliable control of variables such as temperature, pH, nutrient loading, and dissolved gases. Due to the nature of spaceflight, and the inherent constraints to engineering designs, these same elements become a challenge to maintain at stable values by both automated and manual approaches. Launch mass, volume, and power usage create significant constraints to cell culture systems; nonetheless, innovative solutions for active environmental controls are available. The acidity of the growth media cannot be measured through standard probes due to the degradation of electrodes and reliance on indicators for chromatography. Alternatively, carbon dioxide sensors are capable of monitoring the pH by leveraging the relationship between the partial pressure of carbon dioxide and carbonic acid in solution across a membrane. In microgravity cell growth systems, the gas delivery system can be used to actively maintain the media at the proper acidity by maintaining a suitable gas mixture around permeable tubing. Through this method, launch mass and volume are significantly reduced through the efficient use of the limited gas supply in orbit.

  17. STOVL Hot Gas Ingestion control technology

    NASA Technical Reports Server (NTRS)

    Amuedo, K. C.; Williams, B. R.; Flood, J. D.; Johns, A. L.

    1991-01-01

    A comprehensive wind tunnel test program was conducted to evaluate control of Hot Gas Ingestion (HGI) on a 9.2 percent scale model of the McDonnell Aircraft Company model 279-3C advanced Short Takeoff and Vertical Landing (STOVL) configuration. The test was conducted in the NASA-Lewis Research Center 9 ft by 15 ft Low Speed Wind Tunnel during the summer of 1987. Initial tests defined baseline HGI levels as determined by engine face temperature rise and temperature distortion. Subsequent testing was conducted to evaluate HGI control parametrically using Lift Improvement Devices (LIDs), forward nozzle splay angle, a combination of LIDs and forward nozzle splay angle, and main inlet blocking. The results from this test program demonstrate that HGI can be effectively controlled and that HGI is not a barrier to STOVL aircraft development.

  18. Control of the geomorphology and gas hydrate extent on widespread gas emissions offshore Romania (Black Sea)

    NASA Astrophysics Data System (ADS)

    Riboulot, V.; Cattaneo, A.; Sultan, N.; Ker, S.; Scalabrin, C.; Gaillot, A.; Jouet, G.; Marsset, B.; Thomas, Y.; Ballas, G.; Marsset, T.; Garziglia, S.; Ruffine, L.; Boulart, C.

    2016-12-01

    The Romanian sector of the Black Sea deserves attention because the Danube deep-sea fan is one of the largest sediment depositional systems worldwide and is considered the world's most isolated sea, the largest anoxic water body on the planet and a unique energy-rich sea. Due to the high sediment accumulation rate, presence of organic matter and anoxic conditions, the Black sea sediment offshore the Danube delta is rich in gas and thus show BSR. The cartography of the BSR over the last 20 years, exhibits its widespread occurrence, indicative of extensive development of hydrate accumulations and a huge gas hydrate potential. By combining old and new datasets acquired in 2015 during the GHASS expedition, we performed a geomorphological analysis of the continental slope north-east of the Danube canyon that reveals the presence of several landslides inside and outside several canyons incising the seafloor. It is a complex study area presenting sedimentary processes such as seafloor erosion and instability, mass wasting, formation of gas hydrates, fluid migration, gas escape, where the imprint of geomorphology seems to dictate the location where gas seep occurs. . Some 1409 gas seeps within the water column acoustic records are observed between 200 m and 800 m water depth. No gas flares were detected in deeper areas where gas hydrates are stable. Overall, 93% of the all gas seeps observed are above geomorphological structures. 78% are right above escarpment induced by sedimentary destabilizations inside or outside canyons. The results suggest a geomorphological control of degassing at the seafloor and gas seeps are thus constrained by the gas hydrates stability zone. The stability of the gas hydrates is dependent on the salinity gradient through the sedimentary column and thus on the Black Sea recent geological history. The extent and the dynamics of gas hydrates have a probable impact on the sedimentary destabilization observed at the seafloor.

  19. Acidic methanolysis v. alkaline saponification in gas chromatographic characterization of mycobacteria: differentiation between Mycobacterium avium-intracellulare and Mycobacterium gastri.

    PubMed

    Larsson, L

    1983-08-01

    Mycobacterium avium-intracellulare and M.gastri were analyzed with capillary gas chromatography after each strain had been subjected to acidic methanolysis or to alkaline saponification followed by methylation. Prominent peaks of myristic, palmitoleic, palmitic, oleic, stearic and tuberculostearic acids were found in the chromatograms of both species, whereas 2-octadecanol and 2-eicosanol were detected only in M. avium-intracellulare. In initial runs, both of the derivatization principles yielded virtually identical chromatograms for a given strain. After repeated injections of extracts from alkaline saponification, however, the alcohol peaks showed pronounced tailing and finally almost disappeared from the chromatograms. This disadvantage, which was not observed when only acid methanolysis was used, could be overcome with trifluoroacetylation. Restored peak shape of the underivatized alcohols could be achieved by washing the cross-linked stationary phase in the capillary tubing with organic solvents. The study demonstrated the importance of conditions which enable separation of 2-octadecanol and 2-eicosanol when gas chromatography is used for species identification of mycobacteria.

  20. 40 CFR 80.32 - Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... petroleum gas retailers and wholesale purchaser-consumers. 80.32 Section 80.32 Protection of Environment... Controls and Prohibitions § 80.32 Controls applicable to liquefied petroleum gas retailers and wholesale...,660 gallons of liquefied petroleum gas per month shall equip each pump from which liquefied petroleum...

  1. Changes in monosaccharides, organic acids and amino acids during Cabernet Sauvignon wine ageing based on a simultaneous analysis using gas chromatography-mass spectrometry.

    PubMed

    Zhang, Xin-Ke; Lan, Yi-Bin; Zhu, Bao-Qing; Xiang, Xiao-Feng; Duan, Chang-Qing; Shi, Ying

    2018-01-01

    Monosaccharides, organic acids and amino acids are the important flavour-related components in wines. The aim of this article is to develop and validate a method that could simultaneously analyse these compounds in wine based on silylation derivatisation and gas chromatography-mass spectrometry (GC-MS), and apply this method to the investigation of the changes of these compounds and speculate upon their related influences on Cabernet Sauvignon wine flavour during wine ageing. This work presented a new approach for wine analysis and provided more information concerning red wine ageing. This method could simultaneously quantitatively analyse 2 monosaccharides, 8 organic acids and 13 amino acids in wine. A validation experiment showed good linearity, sensitivity, reproducibility and recovery. Multiple derivatives of five amino acids have been found but their effects on quantitative analysis were negligible, except for methionine. The evolution pattern of each category was different, and we speculated that the corresponding mechanisms involving microorganism activities, physical interactions and chemical reactions had a great correlation with red wine flavours during ageing. Simultaneously quantitative analysis of monosaccharides, organic acids and amino acids in wine was feasible and reliable and this method has extensive application prospects. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Mechanistic Processes Controlling Gas Sorption in Shale Reservoirs

    NASA Astrophysics Data System (ADS)

    Schaef, T.; Loring, J.; Ilton, E. S.; Davidson, C. L.; Owen, T.; Hoyt, D.; Glezakou, V. A.; McGrail, B. P.; Thompson, C.

    2014-12-01

    Utilization of CO2 to stimulate natural gas production in previously fractured shale-dominated reservoirs where CO2 remains in place for long-term storage may be an attractive new strategy for reducing the cost of managing anthropogenic CO2. A preliminary analysis of capacities and potential revenues in US shale plays suggests nearly 390 tcf in additional gas recovery may be possible via CO2 driven enhanced gas recovery. However, reservoir transmissivity properties, optimum gas recovery rates, and ultimate fate of CO2 vary among reservoirs, potentially increasing operational costs and environmental risks. In this paper, we identify key mechanisms controlling the sorption of CH4 and CO2 onto phyllosilicates and processes occurring in mixed gas systems that have the potential of impacting fluid transfer and CO2 storage in shale dominated formations. Through a unique set of in situ experimental techniques coupled with molecular-level simulations, we identify structural transformations occurring to clay minerals, optimal CO2/CH4 gas exchange conditions, and distinguish between adsorbed and intercalated gases in a mixed gas system. For example, based on in situ measurements with magic angle spinning NMR, intercalation of CO2 within the montmorillonite structure occurs in CH4/CO2 gas mixtures containing low concentrations (<5 mol%) of CO2. A stable montmorillonite structure dominates during exposure to pure CH4 (90 bar), but expands upon titration of small fractions (1-3 mol%) of CO2. Density functional theory was used to quantify the difference in sorption behavior between CO2 and CH4 and indicates complex interactions occurring between hydrated cations, CH4, and CO2. The authors will discuss potential impacts of these experimental results on CO2-based hydrocarbon recovery processes.

  3. Separation and determination of the enantiomers of lactic acid and 2-hydroxyglutaric acid by chiral derivatization combined with gas chromatography and mass spectrometry.

    PubMed

    Ding, Xuemei; Lin, Shuhai; Weng, Hongbo; Liang, Jianying

    2018-06-01

    Lactic acid and 2-hydroxyglutaric acid are chiral metabolites that have two distinct d- and l-enantiomers with distinct biochemical properties. Perturbations of a single enantiomeric form have been found to be closely related to certain diseases. Therefore, the ability to differentiate the d and l enantiomers is important for these disease studies. Herein, we describe a method for the separation and determination of lactic acid and 2-hydroxyglutaric acid enantiomers by chiral derivatization (with l-menthol and acetyl chloride) combined with gas chromatography and mass spectrometry. The two pairs of above-mentioned enantiomers exhibited linear calibration curves with a correlation coefficient (R 2 ) exceeding 0.99. The measured data were accurate in the acceptable recovery range of 88.17-102.30% with inter- and intraday precisions (relative standard deviations) in the range of 4.23-17.26%. The limits of detection for d-lactic acid, l-lactic acid, d-2-hydroxyglutaric acid, and l-2-hydroxyglutaric acid were 0.13, 0.11, 1.12, and 1.16 μM, respectively. This method was successfully applied to analyze mouse plasma. The d-lactic acid levels in type 2 diabetes mellitus mouse plasma were observed to be significantly higher (P < 0.05, t-test) than those of normal mice, suggesting that d-lactic acid may serve as an indicator for type 2 diabetes mellitus. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Gas phase hydrolysis of formaldehyde to form methanediol: impact of formic acid catalysis.

    PubMed

    Hazra, Montu K; Francisco, Joseph S; Sinha, Amitabha

    2013-11-21

    We find that formic acid (FA) is very effective at facilitating diol formation through its ability to reduce the barrier for the formaldehyde (HCHO) hydrolysis reaction. The rate limiting step in the mechanism involves the isomerization of a prereactive collision complex formed through either the HCHO···H2O + FA and/or HCHO + FA···H2O pathways. The present study finds that the effective barrier height, defined as the difference between the zero-point vibrational energy (ZPE) corrected energy of the transition state (TS) and the HCHO···H2O + FA and HCHO + FA···H2O starting reagents, are respectively only ∼1 and ∼4 kcal/mol. These barriers are substantially lower than the ∼17 kcal/mol barrier associated with the corresponding step in the hydrolysis of HCHO catalyzed by a single water molecule (HCHO + H2O + H2O). The significantly lower barrier heights for the formic acid catalyzed pathway reveal a new important role that organic acids play in the gas phase hydrolysis of atmospheric carbonyl compounds.

  5. Effect of omega-3 fatty acids on the modification of erythrocyte membrane fatty acid content including oleic acid in peritoneal dialysis patients.

    PubMed

    An, W S; Lee, S M; Son, Y K; Kim, S E; Kim, K H; Han, J Y; Bae, H R; Park, Y

    2012-01-01

    Erythrocyte membrane fatty acids (FA), such as oleic acid, are related to acute coronary syndrome. There is no report about the effect of omega-3 FA on oleic acid in peritoneal dialysis (PD) patients. We hypothesized that omega-3 FA can modify erythrocyte membrane FA, including oleic acid, in PD patients. In a double-blind, randomized, placebo-controlled study, 18 patients who were treated with PD for at least 6 months were randomized to treatment for 12 weeks with omega-3 FA or placebo. Erythrocyte membrane FA content was measured by gas chromatography at baseline and after 12 weeks. The erythrocyte membrane content of eicosapentaenoic acid and docosahexaenoic acid was significantly increased and saturated FA and oleic acid were significantly decreased in the omega-3 FA supplementation group after 12 weeks compared to baseline. In conclusion, erythrocyte membrane FA content, including oleic acid, was significantly modified by omega-3 FA supplementation for 12 weeks in PD patients. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2014-05-15

    This study investigates the potential of control strategy optimisation for the reduction of operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, and demonstrates that significant improvements can be realised. A multi-objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and control parameter values for an activated sludge wastewater treatment plant, with objectives including minimisation of greenhouse gas emissions, operational costs and effluent pollutant concentrations, subject to legislative compliance. Different problem formulations are explored, to identify the most effective approach to emissions reduction, and the sets of optimal solutions enable identification of trade-offs between conflicting objectives. It is found that multi-objective optimisation can facilitate a significant reduction in greenhouse gas emissions without the need for plant redesign or modification of the control strategy layout, but there are trade-offs to consider: most importantly, if operational costs are not to be increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent ammonia and total nitrogen concentrations. Design of control strategies for a high effluent quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas emissions, so it is of key importance that effects on emissions are considered in control strategy development and optimisation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Anchoring the Gas-Phase Acidity Scale from Hydrogen Sulfide to Pyrrole. Experimental Bond Dissociation Energies of Nitromethane, Ethanethiol, and Cyclopentadiene.

    PubMed

    Ervin, Kent M; Nickel, Alex A; Lanorio, Jerry G; Ghale, Surja B

    2015-07-16

    A meta-analysis of experimental information from a variety of sources is combined with statistical thermodynamics calculations to refine the gas-phase acidity scale from hydrogen sulfide to pyrrole. The absolute acidities of hydrogen sulfide, methanethiol, and pyrrole are evaluated from literature R-H bond energies and radical electron affinities to anchor the scale. Relative acidities from proton-transfer equilibrium experiments are used in a local thermochemical network optimized by least-squares analysis to obtain absolute acidities of 14 additional acids in the region. Thermal enthalpy and entropy corrections are applied using molecular parameters from density functional theory, with explicit calculation of hindered rotor energy levels for torsional modes. The analysis reduces the uncertainties of the absolute acidities of the 14 acids to within ±1.2 to ±3.3 kJ/mol, expressed as estimates of the 95% confidence level. The experimental gas-phase acidities are compared with calculations, with generally good agreement. For nitromethane, ethanethiol, and cyclopentadiene, the refined acidities can be combined with electron affinities of the corresponding radicals from photoelectron spectroscopy to obtain improved values of the C-H or S-H bond dissociation energies, yielding D298(H-CH2NO2) = 423.5 ± 2.2 kJ mol(-1), D298(C2H5S-H) = 364.7 ± 2.2 kJ mol(-1), and D298(C5H5-H) = 347.4 ± 2.2 kJ mol(-1). These values represent the best-available experimental bond dissociation energies for these species.

  8. Bifidobacterium breve with α-linolenic acid and linoleic acid alters fatty acid metabolism in the maternal separation model of irritable bowel syndrome.

    PubMed

    Barrett, Eoin; Fitzgerald, Patrick; Dinan, Timothy G; Cryan, John F; Ross, R Paul; Quigley, Eamonn M; Shanahan, Fergus; Kiely, Barry; Fitzgerald, Gerald F; O'Toole, Paul W; Stanton, Catherine

    2012-01-01

    The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15) were orally gavaged with either B. breve DPC6330 (10(9) microorganisms/day) alone or in combination with 0.5% (w/w) linoleic acid & 0.5% (w/w) α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11) in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05). Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11) in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05), whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05) compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01) and α-linolenic acid in adipose tissue (p<0.001), whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05), and α-linolenic acid in adipose tissue (p<0.001). B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated rats

  9. Bifidobacterium breve with α-Linolenic Acid and Linoleic Acid Alters Fatty Acid Metabolism in the Maternal Separation Model of Irritable Bowel Syndrome

    PubMed Central

    Barrett, Eoin; Fitzgerald, Patrick; Dinan, Timothy G.; Cryan, John F.; Ross, R. Paul; Quigley, Eamonn M.; Shanahan, Fergus; Kiely, Barry; Fitzgerald, Gerald F.; O'Toole, Paul W.; Stanton, Catherine

    2012-01-01

    The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15) were orally gavaged with either B. breve DPC6330 (109 microorganisms/day) alone or in combination with 0.5% (w/w) linoleic acid & 0.5% (w/w) α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11) in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05). Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11) in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05), whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05) compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01) and α-linolenic acid in adipose tissue (p<0.001), whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05), and α-linolenic acid in adipose tissue (p<0.001). B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated rats

  10. Chemical Reaction between Boric Acid and Phosphine Indicates Boric Acid as an Antidote for Aluminium Phosphide Poisoning.

    PubMed

    Soltani, Motahareh; Shetab-Boushehri, Seyed F; Shetab-Boushehri, Seyed V

    2016-08-01

    Aluminium phosphide (AlP) is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3), a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Activated charcoal significantly reduced the volume of released gas (P <0.01). Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01). A gaseous adduct was formed in the reaction between pure AlP and boric acid. These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning.

  11. Targeted metabolomics analysis reveals the association between maternal folic acid supplementation and fatty acids and amino acids profiles in rat pups.

    PubMed

    Liu, Zhipeng; Liu, Rui; Chou, Jing; Yu, Jiaying; Liu, Xiaowei; Sun, Changhao; Li, Ying; Liu, Liyan

    2018-07-15

    Maternal diet during pregnancy can influence offspring's health by affecting development and metabolism. This study aimed to analyze the influence of maternal folic acid (FA) supplementation on the metabolism of rat pups using targeted metabolomics. Twenty female rats were randomly assigned to a FA supplementation (FAS group, n = 10) or control group (n = 10), which were fed AIN93G diet with 2 or 10 mg/kg FA, respectively. We then measured amino acids and their derivatives, biogenic amines, and fatty acids in the female rats and their pups by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC/MS-MS) and gas chromatography-mass spectrometry (GC/MS-MS). In maternal rats, the significant changes of three metabolites (proline, γ-aminobutyric acid and esterified octadecatetraenoic acid, P < 0.05) were observed in FAS group. For the rat pups, FAS pups had significantly lower homocysteine and higher FA levels than control pups. The lower levels of amino acids (leucine, isoleucine, serine, proline) were obtained in FAS pups. Furthermore, there were the decreased esterified fatty acids (arachidonic acid, eicosapentaenoic acid, and docosatetraenoic acid) and free fatty acids (oleic acid, linoleic acid, γ-linolenic acid, octadecatetraenoic acid, arachidonic acid, eicosapentaenoic acid and selacholeic acid) in FAS pups. Metabolic changes in the FAS pups were characterized by changes in fatty acids and amino acids. These results suggested that FA supplementation during pregnancy influenced amino acids and fatty acids metabolism in rat pups. This study provides new insights into the regulation of amino acids and fatty acids metabolism during early life. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Evaluation of a gas chromatography method for azelaic acid determination in selected biological samples

    PubMed Central

    Garelnabi, Mahdi; Litvinov, Dmitry; Parthasarathy, Sampath

    2010-01-01

    Background: Azelaic acid (AzA) is the best known dicarboxilic acid to have pharmaceutical benefits and clinical applications and also to be associated with some diseases pathophysiology. Materials and Methods: We extracted and methylesterified AzA and determined its concentration in human plasma obtained from healthy individuals and also in mice fed AzA containing diet for three months. Results: AzA was detected in Gas Chromatography (GC) and confirmed by Liquid chromatography mass spectrometry (LCMS), and gas chromatography mass spectrometry (GCMC). Our results have shown that AzA can be determined efficiently in selected biological samples by GC method with 1nM limit of detection (LoD) and the limit of quantification (LoQ); was established at 50nM. Analytical Sensitivity as assayed by hexane demonstrated an analytical sensitivity at 0.050nM. The method has demonstrated 8-10% CV batch repeatability across the sample types and 13-18.9% CV for the Within-Lab Precision analysis. The method has shown that AzA can efficiently be recovered from various sample preparation including liver tissue homogenate (95%) and human plasma (97%). Conclusions: Because of its simplicity and lower limit of quantification, the present method provides a useful tool for determining AzA in various biological sample preparations. PMID:22558586

  13. Evaluation of a gas chromatography method for azelaic acid determination in selected biological samples.

    PubMed

    Garelnabi, Mahdi; Litvinov, Dmitry; Parthasarathy, Sampath

    2010-09-01

    Azelaic acid (AzA) is the best known dicarboxilic acid to have pharmaceutical benefits and clinical applications and also to be associated with some diseases pathophysiology. We extracted and methylesterified AzA and determined its concentration in human plasma obtained from healthy individuals and also in mice fed AzA containing diet for three months. AzA was detected in Gas Chromatography (GC) and confirmed by Liquid chromatography mass spectrometry (LCMS), and gas chromatography mass spectrometry (GCMC). Our results have shown that AzA can be determined efficiently in selected biological samples by GC method with 1nM limit of detection (LoD) and the limit of quantification (LoQ); was established at 50nM. Analytical Sensitivity as assayed by hexane demonstrated an analytical sensitivity at 0.050nM. The method has demonstrated 8-10% CV batch repeatability across the sample types and 13-18.9% CV for the Within-Lab Precision analysis. The method has shown that AzA can efficiently be recovered from various sample preparation including liver tissue homogenate (95%) and human plasma (97%). Because of its simplicity and lower limit of quantification, the present method provides a useful tool for determining AzA in various biological sample preparations.

  14. Study on the correlation between volatile fatty acids and gas production in dry fermentation of kitchen waste

    NASA Astrophysics Data System (ADS)

    Li, Qiangqiang; Ma, Yunfeng; Du, Boying; Wang, Qi; Hu, Qiongqiong; Bian, Yushan

    2018-02-01

    In this study, continuous kitchen waste fermentation and anaerobic digestion experiments were conducted to analyze the gas production potential, and to study the correlation between gas production rate and volatile fatty acid (VFAs) and its component concentration. During the experiment, the total solid(TS) concentration of the reaction system was increased by adding the kitchen waste, analysis of kitchen waste dry fermentation process to start, run, imbalance and imbalance after recovery and the parameters in the process of realizing the change trend and influencing factors of dry fermentation process, pH and ammonia concentration.

  15. An uncooked vegan diet shifts the profile of human fecal microflora: computerized analysis of direct stool sample gas-liquid chromatography profiles of bacterial cellular fatty acids.

    PubMed Central

    Peltonen, R; Ling, W H; Hänninen, O; Eerola, E

    1992-01-01

    The effect of an uncooked extreme vegan diet on fecal microflora was studied by direct stool sample gas-liquid chromatography (GLC) of bacterial cellular fatty acids and by quantitative bacterial culture by using classical microbiological techniques of isolation, identification, and enumeration of different bacterial species. Eighteen volunteers were divided randomly into two groups. The test group received an uncooked vegan diet for 1 month and a conventional diet of mixed Western type for the other month of the study. The control group consumed a conventional diet throughout the study period. Stool samples were collected. Bacterial cellular fatty acids were extracted directly from the stool samples and measured by GLC. Computerized analysis of the resulting fatty acid profiles was performed. Such a profile represents all bacterial cellular fatty acids in a sample and thus reflects its microflora and can be used to detect changes, differences, or similarities of bacterial flora between individual samples or sample groups. GLC profiles changed significantly in the test group after the induction and discontinuation of the vegan diet but not in the control group at any time, whereas quantitative bacterial culture did not detect any significant change in fecal bacteriology in either of the groups. The results suggest that an uncooked extreme vegan diet alters the fecal bacterial flora significantly when it is measured by direct stool sample GLC of bacterial fatty acids. PMID:1482187

  16. Multicenter comparative study of conventional mechanical gas ventilation to tidal liquid ventilation in oleic acid injured sheep.

    PubMed

    Wolfson, Marla R; Hirschl, Ronald B; Jackson, J Craig; Gauvin, France; Foley, David S; Lamm, Wayne J E; Gaughan, John; Shaffer, Thomas H

    2008-01-01

    We performed a multicenter study to test the hypothesis that tidal liquid ventilation (TLV) would improve cardiopulmonary, lung histomorphological, and inflammatory profiles compared with conventional mechanical gas ventilation (CMV). Sheep were studied using the same volume-controlled, pressure-limited ventilator systems, protocols, and treatment strategies in three independent laboratories. Following baseline measurements, oleic acid lung injury was induced and animals were randomized to 4 hours of CMV or TLV targeted to "best PaO2" and PaCO2 35 to 60 mm Hg. The following were significantly higher (p < 0.01) during TLV than CMV: PaO2, venous oxygen saturation, respiratory compliance, cardiac output, stroke volume, oxygen delivery, ventilatory efficiency index; alveolar area, lung % gas exchange space, and expansion index. The following were lower (p < 0.01) during TLV compared with CMV: inspiratory and expiratory pause pressures, mean airway pressure, minute ventilation, physiologic shunt, plasma lactate, lung interleukin-6, interleukin-8, myeloperoxidase, and composite total injury score. No significant laboratories by treatment group interactions were found. In summary, TLV resulted in improved cardiopulmonary physiology at lower ventilatory requirements with more favorable histological and inflammatory profiles than CMV. As such, TLV offers a feasible ventilatory alternative as a lung protective strategy in this model of acute lung injury.

  17. Gas compressor with side branch absorber for pulsation control

    DOEpatents

    Harris, Ralph E [San Antonio, TX; Scrivner, Christine M [San Antonio, TX; Broerman, III, Eugene L.

    2011-05-24

    A method and system for reducing pulsation in lateral piping associated with a gas compressor system. A tunable side branch absorber (TSBA) is installed on the lateral piping. A pulsation sensor is placed in the lateral piping, to measure pulsation within the piping. The sensor output signals are delivered to a controller, which controls actuators that change the acoustic dimensions of the SBA.

  18. Hydrogen Gas-Mediated Deoxydehydration/Hydrogenation of Sugar Acids: Catalytic Conversion of Glucarates to Adipates.

    PubMed

    Larson, Reed T; Samant, Andrew; Chen, Jianbin; Lee, Woojin; Bohn, Martin A; Ohlmann, Dominik M; Zuend, Stephan J; Toste, F Dean

    2017-10-11

    The development of a system for the operationally simple, scalable conversion of polyhydroxylated biomass into industrially relevant feedstock chemicals is described. This system includes a bimetallic Pd/Re catalyst in combination with hydrogen gas as a terminal reductant and enables the high-yielding reduction of sugar acids. This procedure has been applied to the synthesis of adipate esters, precursors for the production of Nylon-6,6, in excellent yield from biomass-derived sources.

  19. Denuder/filter sampling of organic acids and organosulfates at urban and boreal forest sites: Gas/particle distribution and possible sampling artifacts

    NASA Astrophysics Data System (ADS)

    Kristensen, Kasper; Bilde, Merete; Aalto, Pasi P.; Petäjä, Tuukka; Glasius, Marianne

    2016-04-01

    Carboxylic acids and organosulfates comprise an important fraction of atmospheric secondary organic aerosols formed from both anthropogenic and biogenic precursors. The partitioning of these compounds between the gas and particle phase is still unclear and further research is warranted to better understand the abundance and effect of organic acids and organosulfates on the formation and properties of atmospheric aerosols. This work compares atmospheric aerosols collected at an urban and a boreal forest site using two side-by-side sampling systems; a high volume sampler (HVS) and a low volume (LVS) denuder/filter sampling system allowing for separate collection of gas- and particle-phase organics. All particle filters and denuder samples were collected at H.C. Andersen Boulevard (HCAB), Copenhagen, Denmark in the summer of 2010, and at the remote boreal forest site at Hyytiälä forestry field station in Finland in the summer of 2012. The chemical composition of gas- and particle-phase secondary organic aerosol was investigated by ultra-high performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC/ESI-Q-TOFMS), with a focus on carboxylic acids and organosulfates. Results show gas-phase concentrations higher than those observed in the particle phase by a factor of 5-6 in HCAB 2010 and 50-80 in Hyytiälä 2012. Although abundant in the particle phase, no organosulfates were detected in the gas phase at either site. Through a comparison of samples collected by the HVS and the LVS denuder/filter sampling system we evaluate the potential artifacts associated with sampling of atmospheric aerosols. Such comparison shows that particle phase concentrations of semi-volatile organic acids obtained from the filters collected by HVS are more than two times higher than concentrations obtained from filters collected using LVS denuder/filter system. In most cases, higher concentrations of organosulfates are observed in particles

  20. Capillary and Gas Trapping Controls on Pumice Buoyancy in Water

    NASA Astrophysics Data System (ADS)

    Fauria, K. E.; Manga, M.; Wei, Z.

    2016-12-01

    Pumice can float on water for months to years. The longevity of pumice floatation is unexpected, however, because pumice pores are highly connected and water wets volcanic glass. As a result, observations of long floating times have not been reconciled with predictions of rapid sinking. We propose a mechanism to resolve this paradox - the trapping of gas bubbles by water within the pumice. Gas trapping refers to the isolation of gas by water within pore throats such that the gas becomes disconnected from the atmosphere and unable to escape. We use X-ray microtomography images of partially saturated pumice to demonstrate that gas trapping occurs in both ambient-temperature and hot (500°C) pumice. Furthermore, we show that the distribution of trapped gas clusters matches percolation theory predictions. Finally, we propose that diffusion out of trapped gaseous bubbles determines pumice floatation time. Experimental measurements of pumice floatation support a diffusion control on pumice buoyancy and we find that floatation time scales like τ L2/(Dθ2) where is the floatation time, L is the characteristic length of the pumice, D is the gas-water diffusion coefficient, and θ is pumice water saturation.

  1. Gas release-based prescreening combined with reversed-phase HPLC quantitation for efficient selection of high-γ-aminobutyric acid (GABA)-producing lactic acid bacteria.

    PubMed

    Wu, Qinglong; Shah, Nagendra P

    2015-02-01

    High γ-aminobutyric acid (GABA)-producing lactobacilli are promising for the manufacture of GABA-rich foods and to synthesize GRAS (generally recognized as safe)-grade GABA. However, common chromatography-based screening is time-consuming and inefficient. In the present study, Korean kimchi was used as a model of lactic acid-based fermented foods, and a gas release-based prescreening of potential GABA producers was developed. The ability to produce GABA by potential GABA producers in de Man, Rogosa, and Sharpe medium supplemented with or without monosodium glutamate was further determined by HPLC. Based on the results, 9 isolates were regarded as high GABA producers, and were further genetically identified as Lactobacillus brevis based on the sequences of 16S rRNA gene. Gas release-based prescreening combined with reversed-phase HPLC confirmation was an efficient and cost-effective method to identify high-GABA-producing LAB, which could be good candidates for probiotics. The GABA that is naturally produced by these high-GABA-producing LAB could be used as a food additive. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Naphthenic acids in groundwater overlying undeveloped shale gas and tight oil reservoirs.

    PubMed

    Ahad, Jason M E; Pakdel, Hooshang; Lavoie, Denis; Lefebvre, René; Peru, Kerry M; Headley, John V

    2018-01-01

    The acid extractable organics (AEOs) containing naphthenic acids (NAs) in groundwater overlying undeveloped shale gas (Saint-Édouard region) and tight oil (Haldimand sector, Gaspé) reservoirs in Québec, Canada, were analysed using high resolution Orbitrap mass spectrometry and thermal conversion/elemental analysis - isotope ratio mass spectrometry. As classically defined by C n H 2n+Z O 2 , the most abundant NAs detected in the majority of groundwater samples were straight-chain (Z = 0) or monounsaturated (Z = -2) C 16 and C 18 fatty acids. Several groundwater samples from both study areas, however, contained significant proportions of presumably alicyclic bicyclic NAs (i.e., Z = -4) in the C 10 -C 18 range. These compounds may have originated from migrated waters containing a different distribution of NAs, or are the product of in situ microbial alteration of shale organic matter and petroleum. In most groundwater samples, intramolecular carbon isotope values generated by pyrolysis (δ 13 C pyr ) of AEOs were on average around 2-3‰ heavier than those generated by bulk combustion (δ 13 C) of AEOs, providing further support for microbial reworking of subsurface organic carbon. Although concentrations of AEOs were very low (<2.0 mg/L), the detection of potentially toxic bicyclic acids in groundwater overlying unconventional hydrocarbon reservoirs points to a natural background source of organic contaminants prior to any large-scale commercial hydrocarbon development. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Improved fatty acid analysis of conjugated linoleic acid rich egg yolk triacylglycerols and phospholipid species.

    PubMed

    Shinn, Sara; Liyanage, Rohana; Lay, Jack; Proctor, Andrew

    2014-07-16

    Reports from chicken conjugated linoleic acid (CLA) feeding trials are limited to yolk total fatty acid composition, which consistently described increased saturated fatty acids and decreased monounsaturated fatty acids. However, information on CLA triacylglycerol (TAG) and phospholipid (PL) species is limited. This study determined the fatty acid composition of total lipids in CLA-rich egg yolk produced with CLA-rich soy oil, relative to control yolks using gas chromatography with flame ionization detection (GC-FID), determined TAG and PL fatty acid compositions by thin-layer chromatography-GC-FID (TLC-GC-FID), identified intact PL and TAG species by TLC-matrix-assisted laser desorption/ionization mass spectrometry (TLC-MALDI-MS), and determined the composition of TAG and PL species in CLA and control yolks by direct flow infusion electrospray ionization MS (DFI ESI-MS). In total, 2 lyso-phosphatidyl choline (LPC) species, 1 sphingomyelin species, 17 phosphatidyl choline species, 19 TAG species, and 9 phosphatidyl ethanolamine species were identified. Fifty percent of CLA was found in TAG, occurring predominantly in C52:5 and C52:4 TAG species. CLA-rich yolks contained significantly more LPC than did control eggs. Comprehensive lipid profiling may provide insight on relationships between lipid composition and the functional properties of CLA-rich eggs.

  4. Dynamic Control of Aerodynamic Instabilities in Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Greitzer, E. M.; Epstein, A. H.; Guenette, G. R.; Gysling, D. L.; Haynes, J.; Hendricks, G. J.; Paduano, J.; Simon, J. S.; Valavani, L.

    1992-01-01

    This lecture discusses the use of closed loop control at the component level to enhance the performance of gas turbine engines. The general theme is the suppression of flow instabilities (rotating stall and surge) through use of feedback, either actively or by means of the aeromechanical coupling provided by tailored structures. The basic concepts that underlie active control of turbomachinery instability, and their experimental demonstration, are first described for a centrifugal compressor. It is shown that the mechanism for stabilization is associated with damping of unsteady perturbations in the compression system, and the steady-state performance can thus remain virtually unaltered. Control of instability using a tailored structure is then discussed, along with experimental results illustrating the flow range extension achievable using this technique. A considerably more complex problem is presented by active control or rotating stall where the multi-dimensional features mean that distributed sensing and actuation are required. In addition, there are basic questions concerning unsteady fluid mechanics; these imply the need to resolve issues connected with identification of suitable signals as well as with definition of appropriate wave launchers for implementing the feedback. These issues are discussed and the results of initial successful demonstrations of active control of rotating stall in a single-stage and a three-stage axial compressor are presented. The lecture concludes with suggestions for future research on dynamic control of gas turbine engines.

  5. Chemical Reaction between Boric Acid and Phosphine Indicates Boric Acid as an Antidote for Aluminium Phosphide Poisoning

    PubMed Central

    Soltani, Motahareh; Shetab-Boushehri, Seyed F.; Shetab-Boushehri, Seyed V.

    2016-01-01

    Objectives: Aluminium phosphide (AlP) is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3), a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. Methods: This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Results: Activated charcoal significantly reduced the volume of released gas (P <0.01). Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01). A gaseous adduct was formed in the reaction between pure AlP and boric acid. Conclusion: These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning. PMID:27606109

  6. 40 CFR 80.32 - Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Controls applicable to liquefied... Controls and Prohibitions § 80.32 Controls applicable to liquefied petroleum gas retailers and wholesale...,660 gallons of liquefied petroleum gas per month shall equip each pump from which liquefied petroleum...

  7. 40 CFR 80.32 - Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Controls applicable to liquefied... Controls and Prohibitions § 80.32 Controls applicable to liquefied petroleum gas retailers and wholesale...,660 gallons of liquefied petroleum gas per month shall equip each pump from which liquefied petroleum...

  8. 40 CFR 80.32 - Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Controls applicable to liquefied... Controls and Prohibitions § 80.32 Controls applicable to liquefied petroleum gas retailers and wholesale...,660 gallons of liquefied petroleum gas per month shall equip each pump from which liquefied petroleum...

  9. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    PubMed

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis.

  10. Valency-Controlled Framework Nucleic Acid Signal Amplifiers.

    PubMed

    Liu, Qi; Ge, Zhilei; Mao, Xiuhai; Zhou, Guobao; Zuo, Xiaolei; Shen, Juwen; Shi, Jiye; Li, Jiang; Wang, Lihua; Chen, Xiaoqing; Fan, Chunhai

    2018-06-11

    Weak ligand-receptor recognition events are often amplified by recruiting multiple regulatory biomolecules to the action site in biological systems. However, signal amplification in in vitro biomimetic systems generally lack the spatiotemporal regulation in vivo. Herein we report a framework nucleic acid (FNA)-programmed strategy to develop valence-controlled signal amplifiers with high modularity for ultrasensitive biosensing. We demonstrated that the FNA-programmed signal amplifiers could recruit nucleic acids, proteins, and inorganic nanoparticles in a stoichiometric manner. The valence-controlled signal amplifier enhanced the quantification ability of electrochemical biosensors, and enabled ultrasensitive detection of tumor-relevant circulating free DNA (cfDNA) with sensitivity enhancement of 3-5 orders of magnitude and improved dynamic range. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Experiment Comparison between Engineering Acid Dew Point and Thermodynamic Acid Dew Point

    NASA Astrophysics Data System (ADS)

    Song, Jinghui; Yuan, Hui; Deng, Jianhua

    2018-06-01

    in order to realize the accurate prediction of acid dew point, a set of measurement system of acid dew point for the flue gas flue gas in the tail of the boiler was designed and built, And measured at the outlet of an air preheater of a power plant of 1 000 MW, The results show that: Under the same conditions, with the test temperature decreases, Nu of heat transfer tubes, fouling and corrosion of pipe wall and corrosion pieces gradually deepened. Then, the measured acid dew point is compared with the acid dew point obtained by using the existing empirical formula under the same coal type. The dew point of engineering acid is usually about 40 ° lower than the dew point of thermodynamic acid because of the coupling effect of fouling on the acid liquid, which can better reflect the actual operation of flue gas in engineering and has certain theoretical guidance for the design and operation of deep waste heat utilization system significance.

  12. [Determination of 13C enrichment in soil amino acid enantiomers by gas chromatogram/mass spectrometry].

    PubMed

    He, Hong-Bo; Zhang, Wei; Ding, Xue-Li; Bai, Zhen; Liu, Ning; Zhang, Xu-Dong

    2008-06-01

    The transformation and renewal of amino acid enantiomers is of significance in indicating the turnover mechanism of soil organic matter. In this paper, a method of gas chromatogram/mass spectrometry combined with U-13 C-glucose incubation was developed to determine the 13C enrichment in soil amino acid enantiomers, which could effectively differentiate the original and the newly synthesized amino acids in soil matrix. The added U-13 C-glucose was utilized rapidly to structure the amino acid carbon skeleton, and the change of relative abundance of isotope ions could be determined by mass spectrometry. The direct incorporation of U-13 C glucose was estimated by the intensity increase of m/z (F + n) to F (F was parent fragment, and n was the carbon number in the fragment), while the total isotope incorporation from the added 13C could be calculated according to the abundance ratio increment summation from m/z (Fa + 1) through (Fa + T) (Fa was the fragment containing all original skeleton carbons, and T was the carbon number in the amino acid molecule). The 13C enrichment in the target compound was expressed as atom percentage excess (APE), and that of D-amino acid needed to be corrected by the coefficient of hydrolysis-induced racemization. The 13C enrichment reflected the carbon turnover velocity of individual amino acid enantiomers, and was powerful to investigate the dynamics of soil amino acids.

  13. Kinetics and methane gas yields of selected C1 to C5 organic acids in anaerobic digestion.

    PubMed

    Yang, Yu; Chen, Qian; Guo, Jialiang; Hu, Zhiqiang

    2015-12-15

    Volatile fatty acids (VFAs) and other short-chain organic acids such as lactic and pyruvic acids are intermediates in anaerobic organic degradation. In this study, anaerobic degradation of seven organic acids in salt form was investigated, including formate (C1), acetate (C2), propionate (C3), pyruvate (C3), lactate (C3), butyrate (C4), and valerate (C5). Microbial growth kinetics on these organic acids were determined individually at 37 °C through batch anaerobic digestion tests by varying substrate concentrations from 250 to 4000 mg COD/L. The cumulative methane generation volume was determined real-time by respirometry coupled with gas chromatographic analysis while methane yield and related kinetics were calculated. The methane gas yields (fe, mg CH4 COD/mg substrate COD) from anaerobic degradation of formate, acetate, propionate, pyruvate, lactate, butyrate, and valerate were 0.44 ± 0.27, 0.58 ± 0.05, 0.53 ± 0.18, 0.24 ± 0.05, 0.17 ± 0.05, 0.43 ± 0.15, 0.49 ± 0.11, respectively. Anaerobic degradation of formate showed self-substrate inhibition at the concentrations above 3250 mg COD/L. Acetate, propionate, pyruvate, butyrate, lactate, and valerate did not inhibit methane production at the highest concentrations tested (i.e., 4000 mg COD/L). Microbes growing on acetate had the highest overall specific growth rate (0.30 d(-1)) in methane production. For comparison, the specific microbial growth rates on formate, propionate, pyruvate, butyrate, lactate, and valerate for methane production were 0.10, 0.06, 0.08, 0.07, 0.05, 0.15 d(-1), respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Fuel gas conditioning process

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  15. Myocardial concentrations of fatty acids in dogs with dilated cardiomyopathy.

    PubMed

    Smith, Caren E; Freeman, Lisa M; Meydani, Mohsen; Rush, John E

    2005-09-01

    To compare myocardial concentrations of fatty acids in dogs with dilated cardiomyopathy (DCM) with concentrations in control dogs. Myocardial tissues from 7 dogs with DCM and 16 control dogs. Myocardial tissues were homogenized, and total fatty acids were extracted and converted to methyl esters. Myocardial concentrations of fatty acids were analyzed by use of gas chromatography and reported as corrected percentages. The amount of docosatetraenoic acid (C22:4 n-6) was significantly higher in myocardial samples from dogs with DCM (range, 0.223% to 0.774%; median, 0.451%), compared with the amount in samples obtained from control dogs (range, 0.166% to 0.621%; median, 0.280%). There were no significant differences between DCM and control dogs for concentrations of any other myocardial fatty acids. Although concentrations of most myocardial fatty acids did not differ significantly between dogs with DCM and control dogs, the concentration of docosatetraenoic acid was significantly higher in dogs with DCM. Additional investigation in a larger population is warranted to determine whether this is a primary or secondary effect of the underlying disease and whether alterations in fatty acids may be a target for intervention in dogs with DCM.

  16. A Demonstration of Acid Rain

    ERIC Educational Resources Information Center

    Fong, Man Wai

    2004-01-01

    A demonstration showing acid rain formation is described. Oxides of sulfur and nitrogen that result from the burning of fossil fuels are the major pollutants of acid rain. In this demonstration, SO[subscript 2] gas is produced by the burning of matches. An acid-base indicator will show that the dissolved gas turns an aqueous solution acidic.

  17. Utilizing two detectors in the measurement of trichloroacetic acid in human urine by reaction headspace gas chromatography.

    PubMed

    Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian

    2018-05-16

    A reaction headspace gas chromatography (HS-GC) technique was investigated for quantitatively analyzing trichloroacetic acid in human urine. This method is based on the decomposition reaction of trichloroacetic acid under high-temperature conditions. The carbon dioxide and chloroform formed from the decomposition reaction can be respectively detected by the thermal conductivity detection HS-GC and flame ionization detection HS-GC. The reaction can be completed in 60 min at 90°C. This method was used to quantify 25 different human urine samples, which had a range of trichloroacetic acid from 0.52 to 3.47 mg/L. It also utilized two different detectors, the thermal conductivity detector and the flame ionization detector. The present reaction HS-GC method is accurate, reliable and well suitable for batch detection of trichloroacetic acid in human urine. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Concurrent Lactic and Volatile Fatty Acid Analysis of Microbial Fermentation Samples by Gas Chromatography with Heat Pre-treatment.

    PubMed

    Darwin; WipaCharles; Cord-Ruwisch, Ralf

    2018-01-01

    Organic acid analysis of fermentation samples can be readily achieved by gas chromatography (GC), which detects volatile organic acids. However, lactic acid, a key fermentation acid is non-volatile and can hence not be quantified by regular GC analysis. However the addition of periodic acid to organic acid samples has been shown to enable lactic acid analysis by GC, as periodic acid oxidizes lactic acid to the volatile acetaldehyde. Direct GC injection of lactic acid standards and periodic acid generated inconsistent and irreproducible peaks, possibly due to incomplete lactic acid oxidation to acetaldehyde. The described method is developed to improve lactic acid analysis by GC by using a heat treated derivatization pre-treatment, such that it becomes independent of the retention time and temperature selection of the GC injector. Samples containing lactic acid were amended by periodic acid and heated in a sealed test tube at 100°C for at least 45 min before injecting it to the GC. Reproducible and consistent peaks of acetaldehyde were obtained. Simultaneous determination of lactic acid, acetone, ethanol, butanol, volatile fatty acids could also be accomplished by applying this GC method, enabling precise and convenient organic acid analysis of biological samples such as anaerobic digestion and fermentation processes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Control of Clostridium perfringens-induced necrotic enteritis in broilers by target-released butyric acid, fatty acids and essential oils.

    PubMed

    Timbermont, L; Lanckriet, A; Dewulf, J; Nollet, N; Schwarzer, K; Haesebrouck, F; Ducatelle, R; Van Immerseel, F

    2010-04-01

    The efficacy of target-released butyric acid, medium-chain fatty acids (C(6) to C(12) but mainly lauric acid) and essential oils (thymol, cinnamaldehyde, essential oil of eucalyptus) micro-encapsulated in a poly-sugar matrix to control necrotic enteritis was investigated. The minimal inhibitory concentrations of the different additives were determined in vitro, showing that lauric acid, thymol, and cinnamaldehyde are very effective in inhibiting the growth of Clostridium perfringens. The in vivo effects were studied in two trials in an experimental necrotic enteritis model in broiler chickens. In the first trial, four groups of chickens were fed a diet supplemented with butyric acid, with essential oils, with butyric acid in combination with medium-chain fatty acids, or with butyric acid in combination with medium-chain fatty acids and essential oils. In all groups except for the group receiving only butyric acid, a significant decrease in the number of birds with necrotic lesions was found compared with the infected, untreated control group. In the second trial the same products were tested but at a higher concentration. An additional group was fed a diet supplemented with only medium-chain fatty acids. In all groups except for that receiving butyric acid in combination with medium-chain fatty acids and essential oils, a significant decrease in the number of birds with necrotic lesions was found compared with the infected, untreated control group. These results suggest that butyric acid, medium-chain fatty acids and/or essential oils may contribute to the prevention of necrotic enteritis in broilers.

  20. Controlled pilot oxidizer for a gas turbine combustor

    DOEpatents

    Laster, Walter R.; Bandaru, Ramarao V.

    2010-07-13

    A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.

  1. Validation of acid washes as critical control points in hazard analysis and critical control point systems.

    PubMed

    Dormedy, E S; Brashears, M M; Cutter, C N; Burson, D E

    2000-12-01

    A 2% lactic acid wash used in a large meat-processing facility was validated as an effective critical control point (CCP) in a hazard analysis and critical control point (HACCP) plan. We examined the microbial profiles of beef carcasses before the acid wash, beef carcasses immediately after the acid wash, beef carcasses 24 h after the acid wash, beef subprimal cuts from the acid-washed carcasses, and on ground beef made from acid-washed carcasses. Total mesophilic, psychrotrophic, coliforms, generic Escherichia coli, lactic acid bacteria, pseudomonads, and acid-tolerant microorganisms were enumerated on all samples. The presence of Salmonella spp. was also determined. Acid washing significantly reduced all counts except for pseudomonads that were present at very low numbers before acid washing. All other counts continued to stay significantly lower (P < 0.05) than those on pre-acid-washed carcasses throughout all processing steps. Total bacteria, coliforms, and generic E. coli enumerated on ground beef samples were more than 1 log cycle lower than those reported in the U.S. Department of Agriculture Baseline data. This study suggests that acid washes may be effective CCPs in HACCP plans and can significantly reduce the total number of microorganisms present on the carcass and during further processing.

  2. Chemical technology for the toxic gas flow control through process water system.

    PubMed

    Broussard, G; Bramanti, O; Salvatore, A; Marchese, F M

    2001-01-01

    The aim of this work is focused on the safety and toxicological aspects due to under-pressure industrial plant management, above all in the case which the gas is very dangerous for human health and environment. Here is illustrated the safe method of control of risks through specific choices of engineering devices and chemical process: in this way we have shown the mathematical calculation regarding the case of ammonia flow gas running in the piping and plant under-pressure. In this paper the Authors show the assessment of the technological solution for falling down of a toxic gas as NH3, which lets off from safety values facilities. The under pressure industrial plants with ammonia are protected through the safety valves, settled at 20 bar pressure. The out-let gas flow is capted by a tank of a water bulk of five time theoretical water amount necessary to the complete absorption of gas. In order to prevent any health risk and carry out a safety management, it needs to verify two basic aspects, with connected specific techniques: 1. The safety valves technology through the mathematical calculation of operating device; 2. The absorption process of the toxic agent for controlling of dangerous runaway of gas.

  3. Hydrofluoric acid burn resulting from ignition of gas from a compressed air duster.

    PubMed

    Foster, Kevin N; Jones, LouAnn; Caruso, Daniel M

    2003-01-01

    A young female suffered burns to her hand after the ignition of gas from a compressed air duster. After debridement and dressing, the patient continued to have pain out of proportion to injury that was refractory to intravenous morphine. The material safety data sheet revealed that the chemical used was 1,1-difluoroethane. High temperatures can cause decompensation to form hydrofluoric acid. Calcium gluconate gel was applied topically to the patient's burns, which caused prompt and complete relief of her pain. A review of different compressed air duster products revealed that the main ingredient in each was a halogenated hydrocarbon. Although not considered flammable, all products have warnings regarding the possibility of ignition under various circumstances. Ignition of the gas in compressed air cleaners not only can cause flame burns, it can also cause chemical damage from exposure to hydrogen and fluoride ions. Prompt recognition and treatment is necessary to prevent severe injury.

  4. Geological Modeling and Fluid Flow Simulation of Acid Gas Storage, Nugget Sandstone, Moxa Arch, Wyoming

    NASA Astrophysics Data System (ADS)

    Li, S.; Zhang, Y.; Zhang, X.; Du, C.

    2009-12-01

    The Moxa Arch Anticline is a regional-scale northwest-trending uplift in western Wyoming where geological storage of acid gases (CO2, CH4, N2, H2S, He) from ExxonMobile's Shute Creek Gas Plant is under consideration. The Nugget Sandstone, a deep saline aquifer at depths exceeding 17,170 ft, is a candidate formation for acid gas storage. As part of a larger goal of determining site suitability, this study builds three-dimensional local to regional scale geological and fluid flow models for the Nugget Sandstone, its caprock (Twin Creek Limestone), and an underlying aquifer (Ankareh Sandstone), or together, the ``Nugget Suite''. For an area of 3000 square miles, geological and engineering data were assembled, screened for accuracy, and digitized, covering an average formation thickness of ~1700 feet. The data include 900 public-domain well logs (SP, Gamma Ray, Neutron Porosity, Density, Sonic, shallow and deep Resistivity, Lithology, Deviated well logs), 784 feet of core measurements (porosity and permeability), 4 regional geological cross sections, and 3 isopach maps. Data were interpreted and correlated for geological formations and facies, the later categorized using both Neural Network and Gaussian Hierarchical Clustering algorithms. Well log porosities were calibrated with core measurements, those of permeability estimated using formation-specific porosity-permeability transforms. Using conditional geostatistical simulations (first indicator simulation of facies, then sequential Gaussian simulation of facies-specific porosity), data were integrated at the regional-scale to create a geological model from which a local-scale simulation model surrounding the Shute Creek injection site was extracted. Based on this model, full compositional multiphase flow simulations were conducted with which we explore (1) an appropriate grid resolution for accurate acid gas predictions (pressure, saturation, and mass balance); (2) sensitivity of key geological and engineering

  5. Controllability analysis and decentralized control of a wet limestone flue gas desulfurization plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perales, A.L.V.; Ortiz, F.J.G.; Ollero, P.

    2008-12-15

    Presently, decentralized feedback control is the only control strategy used in wet limestone flue gas desulfurization (WLFGD) plants. Proper tuning of this control strategy is becoming an important issue in WLFGD plants because more stringent SO{sub 2} regulations have come into force recently. Controllability analysis is a highly valuable tool for proper design of control systems, but it has not been applied to WLFGD plants so far. In this paper a decentralized control strategy is designed and applied to a WLFGD pilot plant taking into account the conclusions of a controllability analysis. The results reveal that good SO{sub 2} controlmore » in WLFGD plants can be achieved mainly because the main disturbance of the process is well-aligned with the plant and interactions between control loops are beneficial to SO{sub 2} control.« less

  6. Four Structures of Tartaric Acid Revealed in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Cortijo, Vanessa; Díez, Verónica; Alonso, Elena R.; Mata, Santiago; Alonso, José L.

    2017-06-01

    The tartaric acid, one of the most important organic compounds, has been transferred into the gas phase by laser ablation of its natural crystalline form (m.p.174°C) and probed in a supersonic expansion by chirped-pulse Fourier transform microwave spectroscopy (CP-FTMW). Four stable structures, two with an extended (trans) disposition of the carbon chain and two with a bent (gauche) disposition, have been unequivocally identified on the basis of the experimental rotational constants in conjunction with ab initio predictions. The intramolecular interactions that govern the conformational preferences are dominated by cooperative O-H...O=C type and O-H?O hydrogen bonds extended along the entire molecule. The observation of only μc- type spectra for one "trans" and one "gauche" conformers, support the existence of a C2 symmetry for each structure.

  7. A solenoid failure detection system for cold gas attitude control jet valves

    NASA Technical Reports Server (NTRS)

    Johnston, P. A.

    1970-01-01

    The development of a solenoid valve failure detection system is described. The technique requires the addition of a radioactive gas to the propellant of a cold gas jet attitude control system. Solenoid failure is detected with an avalanche radiation detector located in the jet nozzle which senses the radiation emitted by the leaking radioactive gas. Measurements of carbon monoxide leakage rates through a Mariner type solenoid valve are presented as a function of gas activity and detector configuration. A cylindrical avalanche detector with a factor of 40 improvement in leak sensitivity is proposed for flight systems because it allows the quantity of radioactive gas that must be added to the propellant to be reduced to a practical level.

  8. Gas turbine engine active clearance control

    NASA Technical Reports Server (NTRS)

    Deveau, Paul J. (Inventor); Greenberg, Paul B. (Inventor); Paolillo, Roger E. (Inventor)

    1985-01-01

    Method for controlling the clearance between rotating and stationary components of a gas turbine engine are disclosed. Techniques for achieving close correspondence between the radial position of rotor blade tips and the circumscribing outer air seals are disclosed. In one embodiment turbine case temperature modifying air is provided in flow rate, pressure and temperature varied as a function of engine operating condition. The modifying air is scheduled from a modulating and mixing valve supplied with dual source compressor air. One source supplies relatively low pressure, low temperature air and the other source supplies relatively high pressure, high temperature air. After the air has been used for the active clearance control (cooling the high pressure turbine case) it is then used for cooling the structure that supports the outer air seal and other high pressure turbine component parts.

  9. A simplified fuel control approach for low cost aircraft gas turbines

    NASA Technical Reports Server (NTRS)

    Gold, H.

    1973-01-01

    Reduction in the complexity of gas turbine fuel controls without loss of control accuracy, reliability, or effectiveness as a method for reducing engine costs is discussed. A description and analysis of hydromechanical approach are presented. A computer simulation of the control mechanism is given and performance of a physical model in engine test is reported.

  10. [Determination of residual solvents in 7-amino-3-chloro cephalosporanic acid by gas chromatography].

    PubMed

    Ma, Li; Yao, Tong-wei

    2011-01-01

    To develop a gas chromatography method for determination of residual solvents in 7-amino-3-chloro cephalosporanic acid (7-ACCA). The residual levels of acetone, methanol, dichloromethane, ethyl acetate, isobutanol, pyridine and toluene in 7-ACCA were measured by gas chromatography using Agilent INNOWAX capillary column (30 m × 0.32 mm,0.5 μm). The initial column temperature was 70° maintained for 6 min and then raised (10°C/min) to 160°C for 1 min. Nitrogen gas was used as carrier and FID as detector. The flow of carrier was 1.0 ml/min, the temperature of injection port and detector was 200°C and 250°C, respectively. The limits of detection for acetone, methanol, dichloromethane, ethyl acetate, isobutanol, pyridine, toluene in 7-ACCA were 2.5 μg/ml, 1.5 μg/ml, 15 μg/ml, 2.5 μg/ml, 2.5 μg/ml, 2.5 μg/ml and 11 μg/ml, respectively. Only acetone was detected in the sample, and was less than the limits of Ch.P. The method can effectively detect the residual solvents in 7-ACCA.

  11. [Determination of three phenoxyalkanoic acid herbicides in blood using gas chromatography coupled with solid-phase extraction and derivatization].

    PubMed

    Xin, Guobin; Tan, Jiayi; Yao, Lijuan; Zhu, Yu; Jiang, Zhaolin; Song, Hui

    2008-01-01

    A method for the determination of three phenoxyalkanoic acid herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D), 2-(2,4-dichlorophenoxy)-propanoic acid (2,4-DP), and 4-chloro-2-methylphenoxy-acetic acid (MCPA), in blood was developed. The blood sample was diluted with 0.1 mol/L hydrochloric acid, and extracted by solid-phase extraction using porous resin GDX401 as adsorbent and ethyl ether as eluent. The extract was esterified with dichloropropanol in the presence of sulfuric acid as catalyst. The derivatives were analysed by gas chromatography with electron-capture detection. The detection limits of 2,4-D, 2,4-DP and MCPA were 20, 8 and 40 ng/mL, respectively. In quantitative analysis, 2,4-dichlorophenylacetic acid was used as an internal standard. The linear relationships and recoveries were satisfactory. The derivatization of the three herbicides with methanol, ethanol, n-propanol, n-butanol, and trifluoroethanol were also studied, and the analytical methods of these derivatization were compared with that of dichloropropanol as esterifying agent. The method is sensitive enough for the examination of the poison samples in actual.

  12. [Determination of fatty acids in natural cream and artificial cream by comprehensive two-dimensional gas chromatography-mass spectrometry].

    PubMed

    Zhou, Ruize; Zhou, Ya; Mao, Ting; Jiang, Jie

    2018-01-08

    A method for the determination of 37 fatty acids in natural cream and artificial cream was developed by comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS). The samples were extracted with toluene and acetyl chloride-methanol (1:9,v/v) solution was added to the extract for fat esterification. Finally, the fatty acids were analyzed by GC×GC-MS. The GC conditions were as follows:a DB-5 column (30 m×0.25 mm×0.25 μm) was set as the 1st dimensional column and a BPX-50 column (2.5 m×0.1 mm×0.25 μm) was the 2nd dimensional column. The primary oven temperature was programmed from 50℃ (held for 2 min) to 180℃ at a rate of 20℃/min, followed by an increase to 250℃ at 2.5℃/min, then raised up to 300℃ (held for 5 min) at 3℃/min. The ion source temperature was 200℃ with auxiliary temperature of 300℃ in scan mode. All fatty acids were separated effectively and determined accurately while the modulation period was 5s and the scan range of MS was m/z 40-385. This procedure was applied to analyze the fatty acids in commercial natural cream and artificial cream from Chinese markets, among which we found the characteristic components in different kinds of samples. Compared with gas chromatography-flame ionization detector (GC-FID), GC×GC-MS method was more sensitive and more components of fatty acids were detected. Conclusively, this work suggests a new technical approach in analyzing fatty acids in natural cream and artificial cream, which is meaningful to ensure the quality identification and safety of natural cream.

  13. Recent Operational Experience with the Internal Thermal Control System Dual-Membrane Gas Trap

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Lukens, Clark; Reeves, Daniel R.; Holt, James M.

    2004-01-01

    A dual-membrane gas trap is currently used to remove gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station. The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the gas bubbles. The inner hydrophobic fiber allows the trapped gas bubbles to pass through and vent to the ambient atmosphere in the cabin. The gas removal performance and operational lifetime of the gas trap have been affected by contamination in the ITCS coolant. However, the gas trap has performed flawlessly with regard to its purpose of preventing gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pump. This paper discusses on-orbit events over the course of the last year related to the performance and functioning of the gas trap.

  14. Operational Experience with the Internal Thermal Control System Dual-Membrane Gas Trap

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Lukens, Clark; Reeves, Daniel R.; Holt, James M.

    2003-01-01

    A dual-membrane gas trap is currently used to remove non-condensed gases (NCG) from the Internal Thermal Control System (ITCS) coolant on board the International Space Station. The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the NCG. The inner hydrophobic fiber allows the trapped NCG to pass through and vent to the ambient atmosphere in the cabin. The purpose of the gas trap is to prevent gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pump, and the current gas trap has performed flawlessly in this regard. However, because of actual operational conditions on-orbit, its gas removal performance and operational lifetime have been affected. This paper discusses experiences with several of these dual- membrane gas traps, including on-orbit gas venting rate, effects due to the presence of nickel in the ITCS coolant, and subsequent refurbishing to remove the nickel from the gas trap.

  15. A critical analysis of carbonic anhydrase function, respiratory gas exchange, and the acid-base control of secretion in the rectal gland of Squalus acanthias.

    PubMed

    Shuttleworth, Trevor J; Thompson, Jill; Munger, R Stephen; Wood, Chris M

    2006-12-01

    We compared in vivo responses of rectal gland secretion to carbonic anhydrase (CA) inhibition (10(-4) mol l(-1) acetazolamide) in volume-loaded dogfish with in vitro responses in an isolated-perfused gland stimulated with 5 x 10(-6) mol l(-1) forskolin and removed from systemic influences. We also measured respiratory gas exchange in the perfused gland, described the acid-base status of the secreted fluid, and determined the relative importance of various extracellular and intracellular acid-base parameters in controlling rectal gland secretion in vitro. In vivo, acetazolamide inhibited Cl(-) secretion and decreased pHi in the rectal gland, but interpretation was confounded by an accompanying systemic respiratory acidosis, which would also have contributed to the inhibition. In the perfused gland, M(CO(2)) and M(O(2)) increased in linear relation to increases in Cl(-) secretion rate. CA inhibition (10(-4) mol l(-1) acetazolamide) had no effect on Cl(-) secretion rate or pHi in the perfused gland, in contrast to in vivo, but caused a transitory 30% inhibition of M(CO(2)) (relative to stable M(O(2))) and elevation in secretion P(CO(2)) effects, which peaked at 2 h and attenuated by 3.5-4 h. Secretion was inhibited by acidosis and stimulated by alkalosis; the relationship between relative Cl(-) secretion rate and pHe was almost identical to that seen in vivo. Experimental manipulations of perfusate pH, P(CO(2)) and HCO(3)(-) concentration, together with measurements of pHi, demonstrated that these responses were most strongly correlated with changes in pHe, and were not related to changes in P(CO(2)), extracellular HCO(3)(-), or intracellular HCO(3)(-) levels, though changes in pHi may also have played a role. The acid-base status of the secreted fluid varied with that of the perfusate, secretion pH remaining about 0.3-0.5 units lower, and changing in concert with pHe rather than pHi; secretion HCO(3)(-) concentrations remained low, even in the face of greatly

  16. Dedicated exhaust gas recirculation control systems and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sczomak, David P.; Narayanaswamy, Kushal; Keating, Edward J.

    An engine control system of a vehicle includes a fuel control module that controls fuel injection of a first cylinder of an engine based on a first target air/fuel ratio that is fuel lean relative to a stoichiometric air/fuel ratio and that controls fuel injection of a second cylinder of the engine based on a second target air/fuel ratio that is fuel rich relative to stoichiometry. The first cylinder outputs exhaust to a first three way catalyst (TWC), and the second cylinder outputs exhaust to an exhaust gas recirculation (EGR) valve. An EGR control module controls opening of the EGRmore » valve to: (i) a second TWC that reacts with nitrogen oxides (NOx) in the exhaust and outputs ammonia to a selective catalytic reduction (SCR) catalyst; and (ii) a conduit that recirculates exhaust back to an intake system of the engine.« less

  17. An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.; Chang, Clarence T.

    2008-01-01

    An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.

  18. Optimal Discrete Event Supervisory Control of Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan (Technical Monitor); Ray, Asok

    2004-01-01

    This report presents an application of the recently developed theory of optimal Discrete Event Supervisory (DES) control that is based on a signed real measure of regular languages. The DES control techniques are validated on an aircraft gas turbine engine simulation test bed. The test bed is implemented on a networked computer system in which two computers operate in the client-server mode. Several DES controllers have been tested for engine performance and reliability.

  19. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  20. C-terminal peptide extension via gas-phase ion/ion reactions

    PubMed Central

    Peng, Zhou; McLuckey, Scott A.

    2015-01-01

    The formation of peptide bonds is of great importance from both a biological standpoint and in routine organic synthesis. Recent work from our group demonstrated the synthesis of peptides in the gas-phase via ion/ion reactions with sulfo-NHS reagents, which resulted in conjugation of individual amino acids or small peptides to the N-terminus of an existing ‘anchor’ peptide. Here, we demonstrate a complementary approach resulting in the C-terminal extension of peptides. Individual amino acids or short peptides can be prepared as reagents by incorporating gas phase-labile protecting groups to the reactive C-terminus and then converting the N-terminal amino groups to the active ketenimine reagent. Gas-phase ion/ion reactions between the anionic reagents and doubly protonated “anchor” peptide cations results in extension of the “anchor” peptide with new amide bond formation at the C-terminus. We have demonstrated that ion/ion reactions can be used as a fast, controlled, and efficient means for C-terminal peptide extension in the gas phase. PMID:26640400

  1. Exploring the Ideal Gas Law through a Quantitative Gasometric Analysis of Nitrogen Produced by the Reaction of Sodium Nitrite with Sulfamic Acid

    ERIC Educational Resources Information Center

    Yu, Anne

    2010-01-01

    The gasometric analysis of nitrogen produced in a reaction between sodium nitrite, NaNO[superscript 2], and sulfamic acid, H(NH[superscript 2])SO[superscript 3], provides an alternative to more common general chemistry experiments used to study the ideal gas law, such as the experiment in which magnesium is reacted with hydrochloric acid. This…

  2. Measuring Gas-Phase Basicities of Amino Acids Using an Ion Trap Mass Spectrometer: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Sunderlin, Lee S.; Ryzhov, Victor; Keller, Lanea M. M.; Gaillard, Elizabeth R.

    2005-01-01

    An experiment is performed to measure the relative gas-phase basicities of a series of five amino acids to compare the results to literature values. The experiments use the kinetic method for deriving ion thermochemistry and allow students to perform accurate measurements of thermodynamics in a relatively short time.

  3. Fatal spontaneous Clostridium septicum gas gangrene: a possible association with iatrogenic gastric acid suppression.

    PubMed

    Wu, Yiru E; Baras, Alexander; Cornish, Toby; Riedel, Stefan; Burton, Elizabeth C

    2014-06-01

    The long-term use of proton pump inhibitors has been linked to an increased risk for the development of gastric polyps, hip fractures, pneumonia, and Clostridium difficile colitis. There is evidence that chronic acid suppression from long-term use of proton pump inhibitors poses some risk for the development of C difficile-associated diarrhea by decreasing the elimination of pathogenic microbes before reaching the lower gastrointestinal tract. Here we present a case of a 51-year-old woman with a recent history of abdominal pain and fever who presented to the emergency department with rapidly progressive spontaneous necrotizing fasciitis and gas gangrene and died within hours of presentation. Postmortem examination confirmed spreading tissue gas gangrene and myonecrosis. In addition, multiple intestinal ulcers containing Clostridium septicum were present at autopsy. This case illustrates a possible association between proton pump inhibitor therapy and fatal C septicum infection.

  4. Mixed microalgae consortia growth under higher concentration of CO2 from unfiltered coal fired flue gas: Fatty acid profiling and biodiesel production.

    PubMed

    Aslam, Ambreen; Thomas-Hall, Skye R; Manzoor, Maleeha; Jabeen, Faiza; Iqbal, Munawar; Uz Zaman, Qamar; Schenk, Peer M; Asif Tahir, M

    2018-02-01

    Biodiesel is produced by transesterification of fatty acid methyl esters (FAME) from oleaginous microalgae feedstock. Biodiesel fuel properties were studied and compared with biodiesel standards. Qualitative analysis of FAME was done while cultivating mixed microalgae consortia under three concentrations of coal fired flue gas (1%, 3.0% and 5.5% CO 2 ). Under 1% CO 2 concentration (flue gas), the FAME content was 280.3 μg/mL, whereas the lipid content was 14.03 μg/mL/D (day). Both FAMEs and lipid contents were low at other CO 2 concentrations (3.0 and 5.5%). However, mixed consortia in the presence of phosphate buffer and flue gas (PB + FG) showed higher saturated fatty acids (SFA) (36.28%) and unsaturated fatty acids (UFA) (63.72%) versus 5.5% CO 2 concentration, which might be responsible for oxidative stability of biodiesel. Subsequently, higher cetane number (52) and low iodine value (136.3 gI 2 /100 g) biodiesel produced from mixed consortia (PB + FG) under 5.5% CO 2 along with 50 mM phosphate buffer were found in accordance with European (EN 14214) standard. Results revealed that phosphate buffer significantly enhanced the biodiesel quality, but reduced the FAME yield. This study intended to develop an integrated approach for significant improvement in biodiesel quality under surplus phosphorus by utilizing waste flue gas (as CO 2 source) using microalgae. The CO 2 sequestration from industrial flue gas not only reduced greenhouse gases, but may also ensure the sustainable and eco-benign production of biodiesel. Copyright © 2018. Published by Elsevier B.V.

  5. Intercomparison of the measurements of oxalic acid in aerosols by gas chromatography and ion chromatography

    NASA Astrophysics Data System (ADS)

    Kawamura, Kimitaka; Barrie, Leonard A.; Toom-Sauntry, Desiree

    2010-12-01

    Oxalate, the anion of oxalic acid, is one of the most abundant measurable organic species in atmospheric aerosols. Traditionally, this bifunctional species has been measured by gas chromatography (GC) after derivatization to butyl ester and by ion chromatography (IC) without derivatization. However, there are few published comparisons of the two techniques. Here, we report the results of an intercomparison study for the measurement of oxalic acid in Arctic aerosols (<2.5 μm, n = 82) collected in 1992 using GC and IC. The concentrations of oxalic acid by GC ranged from 6.5-59.1 ng m -3 (av. 26.0 ng m -3, median 26.2 ng m -3) whereas those by IC ranged from 6.6-52.1 ng m -3 (av. 26.6 ng m -3, median 25.4 ng m -3). They showed a good correlation ( r = 0.84) with a slope of 0.96. Thus, observations of oxalate obtained by GC employing dibutyl esters are almost equal to those by IC. Because the accuracy of oxalic acid by GC method largely depends on the method used, it is important to strictly examine the recovery in each study.

  6. Destruction of acid gas emissions

    DOEpatents

    Mathur, Mahendra P.; Fu, Yuan C.; Ekmann, James M.; Boyle, John M.

    1991-01-01

    A method of destroying NO.sub.x and SO.sub.2 in a combustion gas in disclosed. The method includes generating active species by treating stable moleucles in a high temperature plasma. Ammonia, methane, steam, hydrogen, nitrogen or a combination of these gases can be selected as the stable molecules. The gases are subjected to plasma conditions sufficient to create free radicals, ions or excited atoms such as N, NH, NH.sub.2, OH.sup.-, CH and/or CH.sub.2. These active species are injected into a combustion gas at a location of sufficiently high temperature to maintain the species in active state and permit them to react with NO.sub.x and SO.sub.2. Typically the injection is made into the immediate post-combustion gases at temperatures of 475.degree.-950.degree. C.

  7. Adaptive model-based control systems and methods for controlling a gas turbine

    NASA Technical Reports Server (NTRS)

    Brunell, Brent Jerome (Inventor); Mathews, Jr., Harry Kirk (Inventor); Kumar, Aditya (Inventor)

    2004-01-01

    Adaptive model-based control systems and methods are described so that performance and/or operability of a gas turbine in an aircraft engine, power plant, marine propulsion, or industrial application can be optimized under normal, deteriorated, faulted, failed and/or damaged operation. First, a model of each relevant system or component is created, and the model is adapted to the engine. Then, if/when deterioration, a fault, a failure or some kind of damage to an engine component or system is detected, that information is input to the model-based control as changes to the model, constraints, objective function, or other control parameters. With all the information about the engine condition, and state and directives on the control goals in terms of an objective function and constraints, the control then solves an optimization so the optimal control action can be determined and taken. This model and control may be updated in real-time to account for engine-to-engine variation, deterioration, damage, faults and/or failures using optimal corrective control action command(s).

  8. Acid rain controls through the back door

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The paper briefly discusses the regulatory policy changes being proposed for acid rain control. Court rulings requiring the EPA to order reductions of sulfur dioxide emissions from power plants are described. Costs to utilities, and ultimately consumers, are also considered.

  9. Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses.

    PubMed

    Holm, Christian K; Rahbek, Stine H; Gad, Hans Henrik; Bak, Rasmus O; Jakobsen, Martin R; Jiang, Zhaozaho; Hansen, Anne Louise; Jensen, Simon K; Sun, Chenglong; Thomsen, Martin K; Laustsen, Anders; Nielsen, Camilla G; Severinsen, Kasper; Xiong, Yingluo; Burdette, Dara L; Hornung, Veit; Lebbink, Robert Jan; Duch, Mogens; Fitzgerald, Katherine A; Bahrami, Shervin; Mikkelsen, Jakob Giehm; Hartmann, Rune; Paludan, Søren R

    2016-02-19

    Stimulator of interferon genes (STING) is known be involved in control of DNA viruses but has an unexplored role in control of RNA viruses. During infection with DNA viruses STING is activated downstream of cGAMP synthase (cGAS) to induce type I interferon. Here we identify a STING-dependent, cGAS-independent pathway important for full interferon production and antiviral control of enveloped RNA viruses, including influenza A virus (IAV). Further, IAV interacts with STING through its conserved hemagglutinin fusion peptide (FP). Interestingly, FP antagonizes interferon production induced by membrane fusion or IAV but not by cGAMP or DNA. Similar to the enveloped RNA viruses, membrane fusion stimulates interferon production in a STING-dependent but cGAS-independent manner. Abolishment of this pathway led to reduced interferon production and impaired control of enveloped RNA viruses. Thus, enveloped RNA viruses stimulate a cGAS-independent STING pathway, which is targeted by IAV.

  10. Open Air Silicon Deposition by Atmospheric Pressure Plasma under Local Ambient Gas Control

    NASA Astrophysics Data System (ADS)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2015-09-01

    In this paper, we report open air silicon (Si) deposition by combining a silane free Si deposition technology and a newly developed local ambient gas control technology. Recently, material processing in open air has been investigated intensively. While a variety of materials have been deposited, there were only few reports on Si deposition due to the susceptibility to contamination and the hazardous nature of source materials. Since Si deposition is one of the most important processes in device fabrication, we have developed open air silicon deposition technologies in BEANS project. For a clean and safe process, a local ambient gas control head was designed. Process gas leakage was prevented by local evacuation, and air contamination was shut out by inert curtain gas. By numerical and experimental investigations, a safe and clean process condition with air contamination less than 10 ppm was achieved. Si film was deposited in open air by atmospheric pressure plasma enhanced chemical transport under the local ambient gas control. The film was microcrystalline Si with the crystallite size of 17 nm, and the Hall mobility was 2.3 cm2/V .s. These properties were comparable to those of Si films deposited in a vacuum chamber. This research has been conducted as one of the research items of New Energy and Industrial Technology Development Organization ``BEANS'' project.

  11. [Dietary supplementation of obese children with 1000 mg alpha-linolenic acid per day: a placebo-controlled double blind study].

    PubMed

    Lohner, Szimonetta; Marosvölgyi, Tamás; Burus, István; Schmidt, János; Molnár, Dénes; Decsi, Tamás

    2007-08-12

    Enhanced dietary intake of omega-3 fatty acids may benefit persons with increased cardiovascular risk, among them obese subjects. Incorporation of omega-3 fatty acids into the plasma lipids is a prerequisite to achieve the favorable effects; however, only very few data are available on the dose of omega-3 fatty acid supplementation in children. The aim of our study was to examine the effects of the consumption of a diet supplemented with 1000 mg alpha-linolenic acid daily on plasma lipids in obese children. In this two times six-week-long, placebo-controlled, crossover study, 9 obese children (age: 13.1 [2.5] years, body mass index: 31.2 [6.2] kg/m 2 ), median [IQR]) incorporated into their diet one egg and one meatball (50 g) per day from hens fed diets containing flaxseed oil, i.e. supplementary dietary intake of 1000 mg alpha-linolenic acid per day was provided. The fatty acid composition of plasma lipids was determined by high-resolution gas-liquid chromatography. Tendencies of increase were observed in the alpha-linolenic acid content of plasma lipids in the phospholipid, triacyl-glycerine and sterol-ester fractions after the supplementation with alpha-linolenic acid. In the non-esterified fatty acid fraction, the values of alpha-linolenic acid were significantly higher after the supplementation (0.11 [0.08] versus 0.14 [0.20], % weight/weight, p < 0.05), indicating the beginning of the accumulation of alpha-linolenic acid in plasma lipids. In obese children a six-week-long supplementation of the diet with 1000 mg alpha-linolenic acid per day increased significantly the contribution of omega-3 fatty acids only to the non-esterified fatty acids of plasma lipids, but had no significant effect on the esterified fractions. Increase of the dose of supplementation may be needed to influence omega-3 fatty acid status in obese children.

  12. Gas-phase acidities of nitrated azoles as determined by the extended kinetic method and computations.

    PubMed

    Nichols, Charles M; Old, William M; Lineberger, W Carl; Bierbaum, Veronica M

    2015-01-15

    Making use of the extended kinetic method and the alternative method for data analysis, we have experimentally determined ΔH°acid (kcal/mol) for six mononitrated azole species (2-nitropyrrole = 337.0, 3-nitropyrrole = 335.8, 3-nitropyrazole = 330.5, 4-nitropyrazole = 329.5, 2-nitroimidazole = 327.4, and 4-nitroimidazole = 325.0). We report an absolute uncertainty of ±2.2 kcal/mol that arises from the uncertainties of the reference acids; the relative values are known within 0.4 kcal/mol. Combining these experimental ΔH°acid values with ΔS°acid values calculated at the B3LYP/aug-cc-pVTZ level of theory, we report ΔG°acid (kcal/mol) for the nitroazoles (2-nitropyrrole = 329.4, 3-nitropyrrole = 328.4, 3-nitropyrazole = 323.1, 4-nitropyrazole = 322.0, 2-nitroimidazole = 319.7, and 4-nitroimidazole = 317.6); the absolute uncertainties are ±2.4 kcal/mol. In addition to the experimental studies, we have computationally investigated the gas-phase acidities and electron affinities of the azoles in this work, as well as higher-order aza- and dinitro-substituted azoles. We discuss trends in the stabilities of the deprotonated azoles based on aza substitution and nitro group placement. 4-Nitroimidazole has already found use as the anionic component in ionic liquids, and we propose that the additional nitrated azolate ions are potential candidates for the anionic component of ionic liquids.

  13. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Quality control material for cystic fibrosis... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a) Identification. Quality control material for cystic fibrosis nucleic acid assays. A quality control material for...

  14. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Quality control material for cystic fibrosis... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a) Identification. Quality control material for cystic fibrosis nucleic acid assays. A quality control material for...

  15. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Quality control material for cystic fibrosis... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a) Identification. Quality control material for cystic fibrosis nucleic acid assays. A quality control material for...

  16. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Quality control material for cystic fibrosis... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a) Identification. Quality control material for cystic fibrosis nucleic acid assays. A quality control material for...

  17. Remotely controlled valves on interstate natural gas pipelines : September 1999.

    DOT National Transportation Integrated Search

    1999-09-01

    This report is in response to a Congressional mandate in the : Accountable Pipeline Safety and Partnership Act of 1996 to survey : and assess the effectiveness of remotely controlled valves (RCVs) : on interstate natural gas pipelines and to determin...

  18. Control of Meloidogyne incognita Using Mixtures of Organic Acids

    PubMed Central

    Seo, Yunhee; Kim, Young Ho

    2014-01-01

    This study sought to control the root-knot nematode (RKN) Meloidogyne incognita using benign organo-chemicals. Second-stage juveniles (J2) of RKN were exposed to dilutions (1.0%, 0.5%, 0.2%, and 0.1%) of acetic acid (AA), lactic acid (LA), and their mixtures (MX). The nematode bodies were disrupted severely and moderately by vacuolations in 0.5% of MX and single organic acids, respectively, suggesting toxicity of MX may be higher than AA and LA. The mortality of J2 was 100% at all concentrations of AA and MX and only at 1.0% and 0.5% of LA, which lowered slightly at 0.2% and greatly at 0.1% of LA. This suggests the nematicidal activity of MX may be mostly derived from AA together with supplementary LA toxicity. MX was applied to chili pepper plants inoculated with about 1,000 J2, for which root-knot gall formations and plant growths were examined 4 weeks after inoculation. The root gall formation was completely inhibited by 0.5% MX and standard and double concentrations of fosthiazate; and inhibited 92.9% and 57.1% by 0.2% and 0.1% MX, respectively. Shoot height, shoot weight, and root weight were not significantly (P ≤ 0.05) different among all treatments and the untreated and non-inoculated controls. All of these results suggest that the mixture of the organic acids may have a potential to be developed as an eco-friendly nematode control agent that needs to be supported by the more nematode control experiments in fields. PMID:25506312

  19. Organic acids for control of Salmonella in different feed materials

    PubMed Central

    2013-01-01

    Background Salmonella control in animal feed is important in order to protect animal and public health. Organic acids is one of the control measures used for treatment of Salmonella contaminated feed or feed ingredients. In the present study, the efficacy of formic acid (FA) and different blends of FA, propionic acid (PA) and sodium formate (SF) was investigated. Four Salmonella strains isolated from feed were assayed for their acid tolerance. Also, the effect of lower temperatures (5°C and 15°C) compared to room temperature was investigated in rape seed and soybean meal. Results The efficacy of acid treatments varied significantly between different feed materials. The strongest reduction was seen in pelleted and compound mash feed (2.5 log10 reduction) followed by rapeseed meal (1 log10 reduction) after 5 days exposure. However, in soybean meal the acid effects were limited (less than 0.5 log10 reduction) even after several weeks’ exposure. In all experiments the survival curves showed a concave shape, with a fast initial death phase followed by reduction at a slower rate during the remaining time of the experiment. No difference in Salmonella reduction was observed between FA and a blend of FA and PA, whereas a commercial blend of FA and SF (Amasil) was slightly more efficacious (0.5-1 log10 reduction) than a blend of FA and PA (Luprocid) in compound mash feed. The Salmonella Infantis strain was found to be the most acid tolerant strain followed by, S. Putten, S. Senftenberg and S. Typhimurium. The tolerance of the S. Infantis strain compared with the S. Typhimurium strain was statistically significant (p<0.05). The lethal effect of FA on the S. Typhimurium strain and the S. Infantis strain was lower at 5°C and 15°C compared to room temperatures. Conclusions Acid treatment of Salmonella in feed is a matter of reducing the number of viable bacterial cells rather than eliminating the organism. Recommendations on the use of acids for controlling Salmonella in

  20. Organic acids for control of Salmonella in different feed materials.

    PubMed

    Koyuncu, Sevinc; Andersson, Mats Gunnar; Löfström, Charlotta; Skandamis, Panagiotis N; Gounadaki, Antonia; Zentek, Jürgen; Häggblom, Per

    2013-04-18

    Salmonella control in animal feed is important in order to protect animal and public health. Organic acids is one of the control measures used for treatment of Salmonella contaminated feed or feed ingredients. In the present study, the efficacy of formic acid (FA) and different blends of FA, propionic acid (PA) and sodium formate (SF) was investigated. Four Salmonella strains isolated from feed were assayed for their acid tolerance. Also, the effect of lower temperatures (5°C and 15°C) compared to room temperature was investigated in rape seed and soybean meal. The efficacy of acid treatments varied significantly between different feed materials. The strongest reduction was seen in pelleted and compound mash feed (2.5 log10 reduction) followed by rapeseed meal (1 log10 reduction) after 5 days exposure. However, in soybean meal the acid effects were limited (less than 0.5 log10 reduction) even after several weeks' exposure. In all experiments the survival curves showed a concave shape, with a fast initial death phase followed by reduction at a slower rate during the remaining time of the experiment.No difference in Salmonella reduction was observed between FA and a blend of FA and PA, whereas a commercial blend of FA and SF (Amasil) was slightly more efficacious (0.5-1 log10 reduction) than a blend of FA and PA (Luprocid) in compound mash feed. The Salmonella Infantis strain was found to be the most acid tolerant strain followed by, S. Putten, S. Senftenberg and S. Typhimurium. The tolerance of the S. Infantis strain compared with the S. Typhimurium strain was statistically significant (p<0.05). The lethal effect of FA on the S. Typhimurium strain and the S. Infantis strain was lower at 5°C and 15°C compared to room temperatures. Acid treatment of Salmonella in feed is a matter of reducing the number of viable bacterial cells rather than eliminating the organism. Recommendations on the use of acids for controlling Salmonella in feed should take into account the

  1. An investigation of improved airbag performance by vent control and gas injection

    NASA Astrophysics Data System (ADS)

    Lee, Calvin; Rosato, Nick; Lai, Francis

    Airbags are currently being investigated as an impact energy absorber for U.S. Army airdrop. Simple airbags with constant vent areas have been found to be unsatisfactory in yielding high G forces. In this paper, a method of controlling the vent area and a method of injecting gas into the airbag during its compression stroke to improve airbag performance are presented. Theoretical analysis of complex airbags using these two methods show that they provide lower G forces than simple airbags. Vertical drop tests of a vent-control airbag confirm this result. Gas-injection airbags are currently being tested.

  2. A Plan for Revolutionary Change in Gas Turbine Engine Control System Architecture

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.

    2011-01-01

    The implementation of Distributed Engine Control technology on the gas turbine engine has been a vexing challenge for the controls community. A successful implementation requires the resolution of multiple technical issues in areas such as network communications, power distribution, and system integration, but especially in the area of high temperature electronics. Impeding the achievement has been the lack of a clearly articulated message about the importance of the distributed control technology to future turbine engine system goals and objectives. To resolve these issues and bring the technology to fruition has, and will continue to require, a broad coalition of resources from government, industry, and academia. This presentation will describe the broad challenges facing the next generation of advanced control systems and the plan which is being put into action to successfully implement the technology on the next generation of gas turbine engine systems.

  3. Capabilities of a New Pressure Controller for Gas-Controlled Heat Pipes

    NASA Astrophysics Data System (ADS)

    Giunta, S.; Merlone, A.; Marenco, S.; Marcarino, P.; Tiziani, A.

    2008-10-01

    Pressure control is used in many metrological applications and for the control of thermodynamic quantities. At the Italian National Research Institute of Metrology (INRiM), a new pressure controller has been designed and assembled, operating in the pressure range between 4 kPa and 400 kPa. This innovative instrument uses a commercial pressure transducer with a sensitivity of 10-4 and several electro-valves interposed among calibrated volumes of different dimensions in order to realize known ratios for very fine pressure changes. The device is provided with several circuits to drive the electro-valve actions, for signal processing and transmission, and for both manual and automatic control. Input/output peripherals, such as a 4 × 20 dot matrix display and a 4 × 4 keyboard, allow setting of the parameters and data visualization, while a remote control port allows interfacing with a computer. The operating principle of this pressure controller has been recently applied, with excellent results, to control the pressure in gas-controlled heat pipes by using a standard platinum resistance thermometer as a temperature/pressure sensor, achieving in this case a relative sensitivity better than 10-6 in pressure. Several tests were also made to control the pressure by means of a commercial sensor. The device, its main components, and its capabilities are here reported, together with application tests and results.

  4. Method for controlling gas metal arc welding

    DOEpatents

    Smartt, Herschel B.; Einerson, Carolyn J.; Watkins, Arthur D.

    1989-01-01

    The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections.

  5. Controlled growth of well-aligned GaS nanohornlike structures and their field emission properties.

    PubMed

    Sinha, Godhuli; Panda, Subhendu K; Datta, Anuja; Chavan, Padmakar G; Shinde, Deodatta R; More, Mahendra A; Joag, D S; Patra, Amitava

    2011-06-01

    Here, we report the synthesis of vertically aligned gallium sulfide (GaS) nanohorn arrays using simple vapor-liquid-solid (VLS) method. The morphologies of GaS nano and microstructures are tuned by controlling the temperature and position of the substrate with respect to the source material. A plausible mechanism for the controlled growth has been proposed. It is important to note that the turn-on field value of GaS nanohorns array is found to be the low turn-on field 4.2 V/μm having current density of 0.1 μA/cm(2). The striking feature of the field emission behavior of the GaS nanohorn arrays is that the average emission current remains nearly constant over long time without any degradation. © 2011 American Chemical Society

  6. A Technique for Murine Irradiation in a Controlled Gas Environment

    PubMed Central

    Walb, M. C.; Moore, J. E.; Attia, A.; Wheeler, K. T.; Miller, M. S.; Munley, M. T.

    2013-01-01

    NASA’s extra-vehicular activities (EVAs) involve exposure to high energy photons while breathing 100% oxygen. Using previously verified mouse models, our laboratory is studying whether low dose irradiation under these hyperoxic conditions could lead to an increase in carcinogenic potential. To simulate the environment astronauts encounter during an EVA, enclosed chambers were constructed that allowed for mouse movement, controlled gas conditions, and uniform radiation dose delivery. Custom-built gas chambers with input/output gas valves and dividers that allowed for uniform gas flow were used to keep 6 unanesthetized mice separated while they were irradiated. The chambers were supplied with 100% oxygen or air using ball valves linked together with T-splitters. A calibrated ion chamber was used to verify the radiation dose distribution across an entire chamber. Mice were placed in the gas environments for 0.5 h, irradiated with a 10 or 18 MV photon beam from a medical linear accelerator, and left in their gas environment for 2 h post-irradiation. We irradiated 200 mice (5 different doses between 0–1000 mGy) under normoxic or 100% oxygen conditions. For the next step of this research, these mice will be euthanized 9 months post-irradiation, and lung tumors will be counted and sized to determine if hyperoxia increases the carcinogenic effect for this model. PMID:22846321

  7. Gas chromatography/trace analysis of derivatized azelaic acid as a stability marker.

    PubMed

    Alzweiri, Muhammed; Tarawneh, Ruba; Khanfar, Mohammad A

    2013-10-01

    Azelaic acid, a naturally occurring saturated dicarboxylic acid, is found in many topical formulations for its various medical benefits or as a byproduct of the oxidative decomposition of unsaturated fatty acids. The poor volatility of azelaic acid hinders its applicability in GC analysis. Therefore, azelaic acid was derivatized by methylation and silylation procedures to enhance its volatility for GC analysis. Accordingly, dimethyl azelate (DMA) and di(trimethylsilyl) azelate were synthesized and characterized by GC-MS. Subsequently, a GC with flame ionization detection method was developed and validated to analyze trace amounts of azelaic acid in some marketed skin creams. Unlike DMA, di(trimethylsilyl) azelate was chemically unstable and degraded within few hours. Nonane was used as a stable internal standard. Variability due to derivatization and extraction was controlled by a standard addition procedure. DMA analysis was linear in a wide concentration range (100 ng/mL to 100 mg/mL). Moreover, the method was accurate (96.4-103.4%) and precise with inter- and intraday variability <2.0% and LOQ and LOD of 100 and 10 ng/mL, respectively. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. delta 13C analyses of vegetable oil fatty acid components, determined by gas chromatography--combustion--isotope ratio mass spectrometry, after saponification or regiospecific hydrolysis.

    PubMed

    Woodbury, S E; Evershed, R P; Rossell, J B

    1998-05-01

    The delta 13C values of the major fatty acids of several different commercially important vegetable oils were measured by gas chromatography--combustion--isotope ratio mass spectrometry. The delta 13C values obtained were found to fall into two distinct groups, representing the C3 and C4 plants classes from which the oils were derived. The delta 13C values of the oils were measured by continuous flow elemental isotope ratio mass spectrometry and were found to be similar to their fatty acids, with slight differences between individual fatty acids. Investigations were then made into the influence on the delta 13C values of fatty acids of the position occupied on the glycerol backbone. Pancreatic lipase was employed to selectively hydrolyse fatty acids from the 1- and 3-positions with the progress of the reaction being followed by high-temperature gas chromatography in order to determine the optimum incubation time. The 2-monoacylglycerols were then isolated by thin-layer chromatography and fatty acid methyl esters prepared. The delta 13C values obtained indicate that fatty acids from any position on the glycerol backbone are isotopically identical. Thus, whilst quantification of fatty acid composition at the 2-position and measurement of delta 13C values of oils and their major fatty acids are useful criteria in edible oil purity assessment, measurement of delta 13C values of fatty acids from the 2-position does not assist with oil purity assignments.

  9. Current situation and control measures of groundwater pollution in gas station

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Zhang, Xiaofeng; Zhang, Qianjin

    2017-11-01

    In recent years, pollution accidents caused by gas station leakage has occurred worldwide which can be persistent in groundwater. Numerous studies have demonstrated that the contaminated groundwater is threatening the ecological environment and human health. In this article, current status and sources of groundwater pollution by gas station are analyzed, and experience of how to prevent groundwater pollution from gas stations are summarized. It is demonstrated that installation of secondary containment measures for the oil storage of the oil tank system, such as installation of double-layer oil tanks or construction of impermeable ponds, is a preferable method to prevent gas stations from groundwater pollution. Regarding to the problems of groundwater pollution caused by gas station, it is proposed that it is urgent to investigate the leakage status of gas station. Relevant precise implementation regulations shall be issued and carried out, and supervision management of gas stations would need to be strengthened. Then single-layer steel oil tanks shall be replaced by double-layer tanks, and the impermeable ponds should be constructed according to the risk ranking. From the control methodology, the groundwater environment monitoring systems, supervision level, laws and regulations as well as pollution remediation should also be carried out and strengthened.

  10. CONTROLLING PCDD/PCDF EMISSIONS FROM INCINERATORS BY FLUE GAS CLEANING

    EPA Science Inventory

    The paper discusses controlling polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDF) emissions from incinerators by flue gas cleaning. New Source performance Standards for municipal waste combustors (MWCs) and guide-lines for existing incinerators in the U.S., proposed on Dec...

  11. Positional isomerization of trans-3-hexadecenoic acid employing 2-amino-2-methyl-propanol as a derivatizing agent for ethylenic bond location by gas chromatography/mass spectrometry.

    PubMed

    Lamberto, M; Ackman, R G

    1995-09-20

    The effect of derivatization with 2-amino-2-methyl-propanol on trans-3-hexadecenoic acid was investigated as part of the identification of the trans-3-hexadecenoic acid in two Nova Scotian seaweeds. After the extraction of the total fatty acids and their methylation, the monoenoic trans fraction was isolated by thin-layer chromatography on silica gels impregnated with silver nitrate. This fraction was first analyzed by gas chromatography and showed the presence of the trans-3-hexadecenoic acid; other fatty acids were not present. The isolated fraction was derivatized with 2-amino-2-methyl-propanol prior to analysis by gas chromatography/mass spectrometry. The chromatogram obtained showed the presence of a positional isomer formed during the derivatization of the trans-3-hexadecenoic acid. The mass spectrum showed a prominent [M+H] and diagnostic ions for the identification of the unknown isomer, corresponding to the 4,4-dimethyloxazoline (DMOX) derivative of a presumed 2-hexadecenoic acid. Definitive confirmation of the ethylenic bond position was obtained by oxidative ozonolysis of the DMOX derivatives of the fatty acids under investigation. Infrared spectroscopy showed that the artifact formed during the DMOX derivatization of trans-3-hexadecenoic acid was the DMOX derivative of cis-2-hexadecenoic acid.

  12. Capture and release of mixed acid gasses with binding organic liquids

    DOEpatents

    Heldebrant, David J.; Yonker, Clement R.

    2010-09-21

    Reversible acid-gas binding organic liquid systems that permit separation and capture of one or more of several acid gases from a mixed gas stream, transport of the liquid, release of the acid gases from the ionic liquid and reuse of the liquid to bind more acid gas with significant energy savings compared to current aqueous systems. These systems utilize acid gas capture compounds made up of strong bases and weak acids that form salts when reacted with a selected acid gas, and which release these gases when a preselected triggering event occurs. The various new materials that make up this system can also be included in various other applications such as chemical sensors, chemical reactants, scrubbers, and separators that allow for the specific and separate removal of desired materials from a gas stream such as flue gas.

  13. Lipids and Fatty Acids in Algae: Extraction, Fractionation into Lipid Classes, and Analysis by Gas Chromatography Coupled with Flame Ionization Detector (GC-FID).

    PubMed

    Guihéneuf, Freddy; Schmid, Matthias; Stengel, Dagmar B

    2015-01-01

    Despite the number of biochemical studies exploring algal lipids and fatty acid biosynthesis pathways and profiles, analytical methods used by phycologists for this purpose are often diverse and incompletely described. Potential confusion and potential variability of the results between studies can therefore occur due to change of protocols for lipid extraction and fractionation, as well as fatty acid methyl esters (FAME) preparation before gas chromatography (GC) analyses. Here, we describe a step-by-step procedure for the profiling of neutral and polar lipids using techniques such as solid-liquid extraction (SLE), thin-layer chromatography (TLC), and gas chromatography coupled with flame ionization detector (GC-FID). As an example, in this protocol chapter, analyses of neutral and polar lipids from the marine microalga Pavlova lutheri (an EPA/DHA-rich haptophyte) will be outlined to describe the distribution of fatty acid residues within its major lipid classes. This method has been proven to be a reliable technique to assess changes in lipid and fatty acid profiles in several other microalgal species and seaweeds.

  14. Fabrication and test of digital output interface devices for gas turbine electronic controls

    NASA Technical Reports Server (NTRS)

    Newirth, D. M.; Koenig, E. W.

    1978-01-01

    A program was conducted to develop an innovative digital output interface device, a digital effector with optical feedback of the fuel metering valve position, for future electronic controls for gas turbine engines. A digital effector (on-off solenoids driven directly by on-off signals from a digital electronic controller) with optical position feedback was fabricated, coupled with the fuel metering valve, and tested under simulated engine operating conditions. The testing indicated that a digital effector with optical position feedback is a suitable candidate, with proper development for future digital electronic gas turbine controls. The testing also identified several problem areas which would have to be overcome in a final production configuration.

  15. Pepsin and bile acid concentrations in sputum of mustard gas exposed patients.

    PubMed

    Karbasi, Ashraf; Goosheh, Hassan; Aliannejad, Rasoul; Saber, Hamid; Salehi, Maryam; Jafari, Mahvash; Imani, Saber; Saburi, Amin; Ghanei, Mostafa

    2013-01-01

    Gastro-esophageal reflux has been suggested to be associated with several pulmonary complications such as asthma, and post-transplant bronchiolitis obliterans (BO). Pepsin or bile salts in the sputum is shown to be an optimal molecular marker of gastric contents macro/micro aspiration. In this study, we investigated sputum pepsin as a marker of micro-aspiration in sulfur mustard (SM) exposed cases compared to healthy controls. In a case controlled study, 26 cases with BO and 12 matched healthy controls were recruited and all cases were symptomatic and their exposure to SM was previously documented during Iran-Iraq conflict. Pepsin levels in sputum and total bile acids were measured using enzymatic assay. The severity of respiratory disorder was categorized based upon the spirometric values. The average concentration of pepsin in sputum was higher in the case group (0.29 ± 0.23) compared with healthy subjects (0.13 ± 0.07; P ± 0.003). Moreover, the average concentration of bile acids in the sputum cases was not significantly different in comparison to the controls ( P = 0.5). Higher pepsin concentrations in sputum of SM exposed patients compared with healthy control subjects indicate the occurrence of significantly more gastric micro-aspiration in SM exposed patients.

  16. Pepsin and Bile Acid Concentrations in Sputum of Mustard Gas Exposed Patients

    PubMed Central

    Karbasi, Ashraf; Goosheh, Hassan; Aliannejad, Rasoul; Saber, Hamid; Salehi, Maryam; Jafari, Mahvash; Imani, Saber; Saburi, Amin; Ghanei, Mostafa

    2013-01-01

    Background/Aim: Gastro-esophageal reflux has been suggested to be associated with several pulmonary complications such as asthma, and post-transplant bronchiolitis obliterans (BO). Pepsin or bile salts in the sputum is shown to be an optimal molecular marker of gastric contents macro/micro aspiration. In this study, we investigated sputum pepsin as a marker of micro-aspiration in sulfur mustard (SM) exposed cases compared to healthy controls. Materials and Methods: In a case controlled study, 26 cases with BO and 12 matched healthy controls were recruited and all cases were symptomatic and their exposure to SM was previously documented during Iran-Iraq conflict. Pepsin levels in sputum and total bile acids were measured using enzymatic assay. The severity of respiratory disorder was categorized based upon the spirometric values. Result: The average concentration of pepsin in sputum was higher in the case group (0.29 ± 0.23) compared with healthy subjects (0.13 ± 0.07; P ± 0.003). Moreover, the average concentration of bile acids in the sputum cases was not significantly different in comparison to the controls (P = 0.5). Conclusion: Higher pepsin concentrations in sputum of SM exposed patients compared with healthy control subjects indicate the occurrence of significantly more gastric micro-aspiration in SM exposed patients. PMID:23680709

  17. Amonia gas: an improved reagent for chemical ionization mass spectrometry of bile acid methyl ester acetates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMark, B.R.; Klein, P.D.

    1981-01-01

    The ammonia chemical ionization mass spectra of 28 methyl ester acetate derivatives of bile acids and related compounds have been determined by gas-liquid chromatography-mass spectrometry. Advantages of ammonia ionization over the previously studied isobutane ionization include a 130 to 270% enhancement in the sensitivity of base peak monitoring, and direct determination of molecular weight from the base peak (M + NH/sub 4//sup +/) in the mass spectrum of any of the derivatives. Minor ions in the ammonia spectra also allow selective detection of 3-keto compounds and can indicate unsaturation or double bond conjugation in the molecule. The significance of thesemore » studies for the detection and quantitation of bile acids is discussed. 2 tables.« less

  18. Power Up with Methane Gas: Struthers Water Pollution Control Facility

    EPA Pesticide Factsheets

    The city of Struthers received $5.4 million in ARRA funding from the Ohio’s CWSRF for a project that uses methane gas produced at the Struthers Water Pollution Control Facility to power unit treatment processes and offset the facility’s energy footprint.

  19. Erythrocyte Membrane Fatty Acid Composition in Premenopausal Patients with Iron Deficiency Anemia.

    PubMed

    Aktas, Mehmet; Elmastas, Mahfuz; Ozcicek, Fatih; Yilmaz, Necmettin

    2016-01-01

    Iron deficiency anemia (IDA) is one of the most common nutritional disorders in the world. In the present study, we evaluated erythrocyte membrane fatty acid composition in premenopausal patients with IDA. Blood samples of 102 premenopausal women and 88 healthy control subjects were collected. After the erythrocytes were separated from the blood samples, the membrane lipids were carefully extracted, and the various membrane fatty acids were measured by gas chromatography (GC). Statistical analyses were performed with the SPSS software program. We used blood ferritin concentration <15 ng/mL as cut-off for the diagnosis of IDA. The five most abundant individual fatty acids obtained were palmitic acid (16:0), oleic acid (18:1, n-9c), linoleic acid (18:2, n-6c), stearic acid (18:0), and erucic acid (C22:1, n-9c). These compounds constituted about 87% of the total membrane fatty acids in patients with IDA, and 79% of the total membrane fatty acids in the control group. Compared with control subjects, case patients had higher percentages of palmitic acid (29.9% case versus 25.3% control), oleic acid (16.8% case versus 15.1% control), and stearic acid (13.5% case versus 10.5% control), and lower percentages of erucic acid (11.5% case versus 13.6% control) and linoleic acid (15.2% case versus 15.4% control) in their erythrocyte membranes. In conclusion, the total-erythrocyte-membrane saturated fatty acid (SFA) composition in premenopausal women with IDA was found to be higher than that in the control group; however, the total-erythrocyte-membrane unsaturated fatty acid (UFA) composition in premenopausal women with IDA was found to be lower than that in the control group. The differences in these values were statistically significant.

  20. Method for controlling gas metal arc welding

    DOEpatents

    Smartt, H.B.; Einerson, C.J.; Watkins, A.D.

    1987-08-10

    The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections. 3 figs., 1 tab.

  1. Active bypass flow control for a seal in a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, Todd A.; Kimmel, Keith D.

    An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wears.more » In at least one embodiment, the metering device may include a valve formed from one or more pins movable between open and closed positions in which the one pin at least partially bisects the bypass channel to regulate flow.« less

  2. Assessment of Uinta Basin Oil and Natural Gas Well Pad Pneumatic Controller Emissions

    EPA Science Inventory

    In the fall of 2016, a field study was conducted in the Uinta Basin Utah to improve information on oil and natural gas well pad pneumatic controllers (PCs) and emission measurement methods. A total of 80 PC systems at five oil sites (supporting six wells) and three gas sites (sup...

  3. Determination of homovanillic acid and vanillylmandelic acid in urine of autistic children by gas chromatography/mass spectrometry.

    PubMed

    Kałuzna-Czaplińska, Joanna; Socha, Ewa; Rynkowski, Jacek

    2010-09-01

    Studies suggest dopamine nervous systems are involved in the pathogenesis of autistic disorder. Quantification of urinary homovanillic acid (HVA) and vanillylmandelic acid (VMA) can be a very important tool in the study of disorders of dopamine metabolism in autistic children. The urine specimens were collected from 20 autistic children and 36 neurologically normal children. Urinary HVA and VMA were simultaneously analyzed by gas chromatography-mass spectrometry. The method involves extraction of HVA and VMA from urinary samples and derivatization to N,O-bis(trimethylsilyl)trifluoroacetamide derivatives. The detection limits are 0.15 microg/mL and 0.23 microg/mL for VMA and HVA, respectively. The levels of HVA and VMA were higher in the urine of autistic children (28.8+/-15.5 micromol/mmol creatinine and 22.2+/-13.0 micromol/mmol creatinine, respectively) compared with those of the generally healthy children (4.6+/-0.7 micromol/mmol creatinine for HVA and 3.8+/-0.6 micromol/mmol creatinine for VMA). We proposed a simple, rapid method for a routine analysis of human urine to detect HVA and VMA related to an abnormal functional imbalance of the dopamine system, and showed our experience of application of this method to patients with a diagnosis of autism spectrum disorders. These results suggest significant differences in the levels of HVA and VMA between autistic and healthy children.

  4. Separation behavior of octadecadienoic acid isomers and identification of cis- and trans-isomers using gas chromatography.

    PubMed

    Shibamoto, Shigeaki; Gooley, Andrew; Yamamoto, Kouhei

    2015-01-01

    Using a strongly polar cyanopropyl capillary column we have investigated the gas chromatography (GC) separation behaviors of 24 octadecadienoic acid methyl ester (18:2ME) isomers compared against saturated methyl stearate (18:0ME) and arachidic acid methyl ester (20:0ME), and the dependency on the GC column temperature. The 24 isomers were obtained by performing cis-to trans-isomerization of six regioisomers: five of the 18:2ME isomers were prepared by the partial reduction of methyl α-linolenate and methyl γ-linolenate C18 trienoic acids with different double bond positions, whereas the sixth isomer, 18:2ME (c5, c9), was obtained from a raw constituent fatty acid methyl ester (FAME) sample extracted from Japanese yew seeds. There are no reference standards commercially available for 18:2ME isomers, and in elucidating the elution order of these isomers this study should help the future identification of cis- and trans-type of 18:2ME. We also report the identification method of cis- and trans-type of FAME using equivalent chain lengths and attempt the identification of cis- and trans-type of 18:2ME isomers from partially hydrogenated canola oil.

  5. Gas Chromatographic Determination of Fatty Acids in Oils with Regard to the Assessment of Fire Hazard

    NASA Astrophysics Data System (ADS)

    Bartošová, Alica; Štefko, Tomáš

    2017-06-01

    The aim of the paper was to study and research the application of processing gas chromatographic method for the rapid and accurate determination of the composition of different types of oils, such as substances with the possibility of an adverse event spontaneous combustion or self-heating. Tendency to spontaneous combustion is chemically characterized mainly by the amount of unsaturated fatty acids, which have one or more double bonds in their molecule. Vegetable oils essentially consist of the following fatty acids: palmitic, stearic, oleic, linoleic, and linoleic. For the needs of assessment, the fire hazard must be known, in which the double bond is present, as well as their number in a molecule. As an analytical method, GCMS was used for determination of oils content. Three types of oil were used - rapeseed, sunflower, and coconut oil. Owing to the occurrence of linoleic acid C18:2 (49.8 wt.%) and oleic acid C18:1 (43.3 wt.%) with double bonds, sunflower oil is the most prone to self-heating. The coconut and rapeseed oils contain double bond FAME in lesser amount, and their propensity to self-heating is relatively low.

  6. Quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria by gas chromatography-mass spectrometry.

    PubMed

    Guan, Wenna; Zhao, Hui; Lu, Xuefeng; Wang, Cong; Yang, Menglong; Bai, Fali

    2011-11-11

    Simple and rapid quantitative determination of fatty-acid-based biofuels is greatly important for the study of genetic engineering progress for biofuels production by microalgae. Ideal biofuels produced from biological systems should be chemically similar to petroleum, like fatty-acid-based molecules including free fatty acids, fatty acid methyl esters, fatty acid ethyl esters, fatty alcohols and fatty alkanes. This study founded a gas chromatography-mass spectrometry (GC-MS) method for simultaneous quantification of seven free fatty acids, nine fatty acid methyl esters, five fatty acid ethyl esters, five fatty alcohols and three fatty alkanes produced by wild-type Synechocystis PCC 6803 and its genetically engineered strain. Data obtained from GC-MS analyses were quantified using internal standard peak area comparisons. The linearity, limit of detection (LOD) and precision (RSD) of the method were evaluated. The results demonstrated that fatty-acid-based biofuels can be directly determined by GC-MS without derivation. Therefore, rapid and reliable quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria can be achieved using the GC-MS method founded in this work. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Analysis of chlorophenoxy acid herbicides in water by large-volume on-line derivatization and gas chromatography-mass spectrometry.

    PubMed

    Ding, W H; Liu, C H; Yeh, S P

    2000-10-27

    This work presents a modified method to analyze chlorophenoxy acid herbicides in water samples. The herbicides 2,4-D (2,4-dichlorophenoxyacetic acid). Silvex (2,4,5-trichlorophenoxypropionic acid) and 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) were used to evaluate the method. The method involves extraction of samples by a graphitized carbon black cartridge, and on-line derivatization in the GC injection port using a large-volume (10-20 microl) direct sample introduction (DSI) device with tetraalkylammonium salts. The analytes were then identified and quantitated by ion-trap gas chromatography-mass spectrometry. The large-volume DSI injection-port derivatization technique provides sensitivity, fast and reproducible results for chlorophenoxy acid herbicides residues, to quantitation at 0.1 to 0.2 microg/l in 500-ml water samples. An enhanced characteristic mass chromatogram of molecular ions of butylated chlorophenoxy acid herbicides with a significant chlorine isotope pattern by electron impact ionization MS allows us to determine herbicides residues at trace levels in aqueous samples. Recovery of the herbicide residues in spiked various water samples ranged from 70 to 99% while RSDs ranged from 1 to 13%.

  8. Synthesis of formamide and isocyanic acid after ion irradiation of frozen gas mixtures

    NASA Astrophysics Data System (ADS)

    Kaňuchová, Z.; Urso, R. G.; Baratta, G. A.; Brucato, J. R.; Palumbo, M. E.; Strazzulla, G.

    2016-01-01

    Context. Formamide (NH2HCO) and isocyanic acid (HNCO) have been observed as gaseous species in several astronomical environments such as cometary comae and pre- and proto-stellar objects. A debate is open on the formation route of those molecules, in particular if they are formed by chemical reactions in the gas phase and/or on grains. In this latter case it is relevant to understand if the formation occurs through surface reactions or is induced by energetic processing. Aims: We present arguments that support the formation of formamide in the solid phase by cosmic-ion-induced energetic processing of ices present as mantles of interstellar grains and on comets. Formamides, along with other molecules, are expelled in the gas phase when the physical parameters are appropriate to induce the desorption of ices. Methods: We have performed several laboratory experiments in which ice mixtures (H2O:CH4:N2, H2O:CH4:NH3, and CH3OH:N2) were bombarded with energetic (30-200 keV) ions (H+ or He+). FTIR spectroscopy was performed before, during, and after ion bombardment. In particular, the formation of HNCO and NH2HCO was measured quantiatively. Results: Energetic processing of ice can quantitatively reproduce the amount of NH2HCO observed in cometary comae and in many circumstellar regions. HNCO is also formed, but additional formation mechanisms are requested to quantitatively account for the astronomical observations. Conclusions: We suggest that energetic processing of ices in the pre- and proto-stellar regions and in comets is the main mechanism to produce formamide, which, once it is released in the gas phase because of desorption of ices, is observed in the gas phase in these astrophysical environments.

  9. Enhanced levels of atmospheric low-molecular weight monocarboxylic acids in gas and particulates over Mt. Tai, North China, during field burning of agricultural wastes

    NASA Astrophysics Data System (ADS)

    Mochizuki, Tomoki; Kawamura, Kimitaka; Nakamura, Shinnosuke; Kanaya, Yugo; Wang, Zifa

    2017-12-01

    To understand the source and atmospheric behaviour of low molecular weight monocarboxylic acids (monoacids), gaseous (G) and particulate (P) organic acids were collected at the summit of Mt. Tai in the North China Plain (NCP) during field burning of agricultural waste (wheat straw). Particulate organic acids were collected with neutral quartz filter whereas gaseous organic acids were collected with KOH-impregnated quartz filter. Normal (C1-C10), branched (iC4-iC6), hydroxy (lactic and glycolic), and aromatic (benzoic) monoacids were determined with a capillary gas chromatography employing p-bromophenacyl esters. We found acetic acid as the most abundant gas-phase species whereas formic acid is the dominant particle-phase species. Concentrations of formic (G/P 1 570/1 410 ng m-3) and acetic (3 960/1 120 ng m-3) acids significantly increased during the enhanced field burning of agricultural wastes. Concentrations of formic and acetic acids in daytime were found to increase in both G and P phases with those of K+, a field-burning tracer (r = 0.32-0.64). Primary emission and secondary formation of acetic acid is linked with field burning of agricultural wastes. In addition, we found that particle-phase fractions (Fp = P/(G + P)) of formic (0.50) and acetic (0.31) acids are significantly high, indicating that semi-volatile organic acids largely exist as particles. Field burning of agricultural wastes may play an important role in the formation of particulate monoacids in the NCP. High levels (917 ng m-3) of particle-phase lactic acid, which is characteristic of microorganisms, suggest that microbial activity associated with terrestrial ecosystem significantly contributes to the formation of organic aerosols.

  10. Adsorption and reaction mechanism of arsenic vapors over γ-Al2O3 in the simulated flue gas containing acid gases.

    PubMed

    Hu, Hongyun; Chen, Dunkui; Liu, Huan; Yang, Yuhan; Cai, Hexun; Shen, Junhao; Yao, Hong

    2017-08-01

    Arsenic emission from fuel combustion and metal smelting flue gas causes serious pollution. Addition of sorbents is a promising way for the arsenic capture from high temperature flue gas. However, it is difficult to remove arsenic from SO 2 /HCl-rich flue gas due to the competitive reaction of the sorbents with arsenic and these acid gases. To solve this problem, arsenic adsorption over γ-Al 2 O 3 was studied in this work to evaluate its adsorption mechanism, resistance to acid gases as well as regeneration behavior. The results show that γ-Al 2 O 3 had good resistance to acid gases and the arsenic adsorption by γ-Al 2 O 3 could be effectively carried out at a wide temperature range between 573 and 1023 K. Nevertheless, adsorption at higher-temperature (like 1173 K) leaded to the decrease of surface area and the rearrangement of crystal structure of γ-Al 2 O 3 , reducing the active sites for arsenic adsorption. The adsorption of arsenic was confirmed to occur at different active sites in γ-Al 2 O 3 by forming various adsorbed species. Increasing temperature facilitated arsenic transformation into more stable chemisorbed As 3+ and As 5+ which were difficult to remove through thermal treatment regeneration. Fortunately, the regeneration of spent γ-Al 2 O 3 could be well performed using NaOH solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. FIELD TEST MEASUREMENTS AT FIVE MUNICIPAL SOLID WASTE LANDFILLS WITH LANDFILL GAS CONTROL TECHNOLOGY--FINAL REPORT

    EPA Science Inventory

    Research was conducted to evaluate landfill gas emissions at five municipal solid waste landfills which have modern control technology for landfill gas emissions. Comprehensive testing was conducted on the raw landfill gas and the combustion outlet exhaust. The project had two ...

  12. 49 CFR 192.197 - Control of the pressure of gas delivered from high-pressure distribution systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Control of the pressure of gas delivered from high-pressure distribution systems. 192.197 Section 192.197 Transportation Other Regulations Relating to... STANDARDS Design of Pipeline Components § 192.197 Control of the pressure of gas delivered from high...

  13. Waste gas storage

    NASA Technical Reports Server (NTRS)

    Vickers, Brian D. (Inventor)

    1994-01-01

    Method for storing a waste gas mixture comprised of nitrogen, oxygen, carbon dioxide, and inert gases, the gas mixture containing corrosive contaminants including inorganic acids and bases and organic solvents, and derived from space station operations. The gas mixture is stored under pressure in a vessel formed of a filament wound composite overwrap on a metal liner, the metal liner being pre-stressed in compression by the overwrap, thereby avoiding any tensile stress in the liner, and preventing stress corrosion cracking of the liner during gas mixture storage.

  14. Active bypass flow control for a seal in a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, Todd A.; Kimmel, Keith D.

    An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wearsmore » In at least one embodiment, the metering device may include an annular ring having at least one metering orifice extending therethrough, whereby alignment of the metering orifice with the outlet may be adjustable to change a cross-sectional area of an opening of aligned portions of the outlet and the metering orifice.« less

  15. Empirical Modeling of Plant Gas Fluxes in Controlled Environments

    NASA Technical Reports Server (NTRS)

    Cornett, Jessie David

    1994-01-01

    As humans extend their reach beyond the earth, bioregenerative life support systems must replace the resupply and physical/chemical systems now used. The Controlled Ecological Life Support System (CELSS) will utilize plants to recycle the carbon dioxide (CO2) and excrement produced by humans and return oxygen (O2), purified water and food. CELSS design requires knowledge of gas flux levels for net photosynthesis (PS(sub n)), dark respiration (R(sub d)) and evapotranspiration (ET). Full season gas flux data regarding these processes for wheat (Triticum aestivum), soybean (Glycine max) and rice (Oryza sativa) from published sources were used to develop empirical models. Univariate models relating crop age (days after planting) and gas flux were fit by simple regression. Models are either high order (5th to 8th) or more complex polynomials whose curves describe crop development characteristics. The models provide good estimates of gas flux maxima, but are of limited utility. To broaden the applicability, data were transformed to dimensionless or correlation formats and, again, fit by regression. Polynomials, similar to those in the initial effort, were selected as the most appropriate models. These models indicate that, within a cultivar, gas flux patterns appear remarkably similar prior to maximum flux, but exhibit considerable variation beyond this point. This suggests that more broadly applicable models of plant gas flux are feasible, but univariate models defining gas flux as a function of crop age are too simplistic. Multivariate models using CO2 and crop age were fit for PS(sub n), and R(sub d) by multiple regression. In each case, the selected model is a subset of a full third order model with all possible interactions. These models are improvements over the univariate models because they incorporate more than the single factor, crop age, as the primary variable governing gas flux. They are still limited, however, by their reliance on the other environmental

  16. Development of a Controlled Release of Salicylic Acid Loaded Stearic Acid-Oleic Acid Nanoparticles in Cream for Topical Delivery

    PubMed Central

    Woo, J. O.; Misran, M.; Lee, P. F.; Tan, L. P.

    2014-01-01

    Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs) with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release. PMID:24578624

  17. A Novel Repair Technique for the Internal Thermal Control System Dual-Membrane Gas Trap

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Patel, Vipul; Reeves, Daniel R.; Holt, James M.

    2005-01-01

    A dual-membrane gas trap is currently used to remove gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the gas bubbles. The inner hydrophobic fiber allows the trapped gas bubbles to pass through and vent to the ambient atmosphere in the cabin. The gas trap was designed to last for the entire lifetime of the ISS, and therefore was not designed to be repaired. However, repair of these gas traps is now a necessity due to contamination from the on-orbit ITCS fluid and other sources on the ground as well as a limited supply of flight gas traps. This paper describes a novel repair technique that has been developed that will allow the refurbishment of contaminated gas traps and their return to flight use.

  18. Characterizing amino-acid biosignatures amongst individuals with schizophrenia: a case-control study.

    PubMed

    Cao, Bing; Wang, Dongfang; Brietzke, Elisa; McIntyre, Roger S; Pan, Zihang; Cha, Danielle; Rosenblat, Joshua D; Zuckerman, Hannah; Liu, Yaqiong; Xie, Qing; Wang, Jingyu

    2018-05-23

    Amino acids and derivatives participate in the biosynthesis and downstream effects of numerous neurotransmitters. Variations in specific amino acids have been implicated in the pathophysiology of schizophrenia. Herein, we sought to compare levels of amino acids and derivatives between subjects with schizophrenia and healthy controls (HC). Two hundred and eight subjects with Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria (DSM-IV)-defined schizophrenia and 175 age- and sex-matched HC were enrolled. The levels of twenty-five amino acids and seven related derivatives were measured in plasma samples using hydrophilic interaction liquid chromatography (HILIC) liquid chromatography-tandem mass spectrometry (LC-MS). After controlling for age, sex and body mass index (BMI), four amino acids and derivatives (i.e., cysteine, GABA, glutamine and sarcosine) were observed to be higher in the schizophrenia group when compared with HC; seven amino acids and derivatives were lower in the schizophrenia group (i.e., arginine, L-ornithine, threonine, taurine, tryptophan, methylcysteine, and kynurenine). Statistically significant differences in plasma amino-acid profiles between subjects with first-episode vs. recurrent schizophrenia for aspartate and glutamine were also demonstrated using generalized linear models controlling for age, sex, and BMI. The differences in amino acids and derivatives among individuals with schizophrenia when compared to HC may represent underlying pathophysiology, including but not limited to dysfunctional proteinogenic processes, alterations in excitatory and inhibitory neurotransmission, changes in ammonia metabolism and the urea cycle. Taken together, amino-acid profiling may provide a novel stratification approach among individuals with schizophrenia.

  19. Low-Cost Control System Built Upon Consumer-Based Electronics For Supervisory Control Of A Gas-Operated Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetherington Jr, G Randall; Vineyard, Edward Allan; Mahderekal, Isaac

    A preliminary evaluation of the performance of a consumer-based control system was conducted by the Oak Ridge National Laboratory (ORNL) and Southwest Gas as part of a cooperative research and development agreement (CRADA) authorized by the Department of Energy (DOE) (Mahderekal et al. (2013). The goal of the research was to evaluate the low-cost approach as a solution for implementing a supervisory control system for a residential gas-operated heat pump. The design incorporated two consumer-based micro-controllers; the Arduino Mega-2650 and the BeagleBone (white). Ten five-ton heat pump systems were designed, fabricated, and operationally tested in the Las Vega NV region.more » A robust data set was produced that allowed detailed assessment of the reliability and the operational perfromance of the newly developed control system. Experiences gained from the test provided important points of improvement for subsequent evolution of the heat pump technology.« less

  20. Dynamic Control of Adsorption Sensitivity for Photo-EMF-Based Ammonia Gas Sensors Using a Wireless Network

    PubMed Central

    Vashpanov, Yuriy; Choo, Hyunseung; Kim, Dongsoo Stephen

    2011-01-01

    This paper proposes an adsorption sensitivity control method that uses a wireless network and illumination light intensity in a photo-electromagnetic field (EMF)-based gas sensor for measurements in real time of a wide range of ammonia concentrations. The minimum measurement error for a range of ammonia concentration from 3 to 800 ppm occurs when the gas concentration magnitude corresponds with the optimal intensity of the illumination light. A simulation with LabView-engineered modules for automatic control of a new intelligent computer system was conducted to improve measurement precision over a wide range of gas concentrations. This gas sensor computer system with wireless network technology could be useful in the chemical industry for automatic detection and measurement of hazardous ammonia gas levels in real time. PMID:22346680

  1. Hyper-thermal acid hydrolysis and adsorption treatment of red seaweed, Gelidium amansii for butyric acid production with pH control.

    PubMed

    Ra, Chae Hun; Jeong, Gwi-Taek; Kim, Sung-Koo

    2017-03-01

    Optimal hyper-thermal (HT) acid hydrolysis conditions for Gelidium amansii were determined to be 12% (w/v) seaweed slurry content and 144 mM H 2 SO 4 at 150 °C for 10 min. HT acid hydrolysis-treated G. amansii hydrolysates produced low concentrations of inhibitory compounds and adsorption treatment using 3% activated carbon. An adsorption time of 5 min was subsequently used to remove the inhibitory 5-hydroxymethylfurfural from the medium. A final maximum monosaccharide concentration of 44.6 g/L and 79.1% conversion from 56.4 g/L total fermentable monosaccharides with 120 g dw/L G. amansii slurry was obtained from HT acid hydrolysis, enzymatic saccharification, and adsorption treatment. This study demonstrates the potential for butyric acid production from G. amansii hydrolysates under non-pH-controlled as well as pH-controlled fermentation using Clostridium acetobutylicum KCTC 1790. The activated carbon treatment and pH-controlled fermentation showed synergistic effects and produced butyric acid at a concentration of 11.2 g/L after 9 days of fermentation.

  2. Evaluation Of Rotation Frequency Gas-Diesel Engines When Using Automatic Control System

    NASA Astrophysics Data System (ADS)

    Zhilenkov, A.; Efremov, A.

    2017-01-01

    A possibility of quality improvement of stabilization of rotation frequency of the gas-diesels used as prime mover of generator set in the multigenerator units working for abruptly variable load of large power is considered. An evaluation is made on condition of fuzzy controller use developed and described by the authors in a number of articles. An evaluation has shown that theoretically, the revolution range of gas-diesel engine may be reduced at 25-30 times at optimal settings of the controller in all the power range. The results of modeling showing a considerable quality improvement of transient processes in the investigated system at a sharp change of loading are presented in this article.

  3. The deep-tow marine controlled-source electromagnetic transmitter system for gas hydrate exploration

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Deng, Ming; Wu, Zhongliang; Luo, Xianhu; Jing, Jianen; Chen, Kai

    2017-02-01

    The Marine Controlled-Source Electromagnetic (MCSEM) method has been recognized as an important and effective tool to detect electrically resistive structures, such as oil, gas, and gas hydrate. The MCSEM performance is strongly influenced by the transmitter system design. We have developed a deep-tow MCSEM transmitter system. In this paper, some new technical details will be present. A 10,000 m optical-electrical composite cable is used to support high power transmission and fast data transfer; a new clock unit is designed to keep the synchronization between transmitter and receivers, and mark the time stamp into the transmission current full waveform; a data link is established to monitor the real-time altitude of the tail unit; an online insulation measuring instrument is adopted to monitor current leakage from high voltage transformer; a neutrally buoyant dipole antenna of copper cable and flexible electrodes are created to transmit the large power current into seawater; a new design method for the transmitter, which is called "real-time control technology of hardware parallelism", is described to achieve inverting and recording high-power current waveform, controlling functions, and collecting auxiliary information. We use a gas hydrate exploration test to verify the performance of the transmitter system, focusing on more technical details, rather than applications. The test shows that the transmitter can be used for gas hydrate exploration as an effective source.

  4. Infrared Emission from Gas-Aerosol Reactions

    DTIC Science & Technology

    1982-09-01

    Gaseous Amonia Infrared (IR) "Gas-aerosol Reactions Sulfuric Acid- amonia IR Luminescence Exothermic Reactions Octanoic Acid- amonia IR Laser Acid-base...of radiation observed from the reactions of chloro- sulfuric acid aerosol with gaseous amonia and water. Other systems which were screened including

  5. Formation of amino acids by cobalt-60 irradiation of hydrogen cyanide solutions

    NASA Technical Reports Server (NTRS)

    Sweeney, M. A.; Toste, A. P.; Ponnamperuma, C.

    1976-01-01

    Experiments were conducted to study the pathway for the prebiotic origin of amino acids from hydrogen cyanide (HCN) under the action of ionizing radiation considered as an effective source of energy on the primitive earth. The irradiations were performed in a cobalt-60 source with a dose rate of 200,000 rad/hr. Seven naturally occurring amino acids are identified among the products formed by the hydrolysis of gamma-irradiated solutions of HCN: glycine, alanine, valine, serine, threonine, aspartic acid, and glutamic acid. The identity of these amino acids is established by gas chromatography and mass spectrometry. Control experiments provided evidence that the amino acids are not the result of contamination.

  6. Microbiological evaluation of chronic blepharitis among Iranian veterans exposed to mustard gas: a case-controlled study.

    PubMed

    Karimian, Farid; Zarei-Ghanavati, Siamak; A, Baradaran-Rafii; Jadidi, Khosrow; Lotfi-Kian, Alireza

    2011-06-01

    To evaluate the microbiological characteristics of eyelid margin flora in chronic blepharitis in mustard gas-exposed individuals and compare the results with those in age- and sex-matched unexposed people. In this comparative case series, 289 patients with ocular manifestations of mustard gas exposure (case) were evaluated for signs of chronic blepharitis. Additionally, microbiological evaluation of eyelid margins was conducted in these patients and compared with results of 100 unexposed patients with chronic blepharitis (control). One-hundred fifty (52.0%) of 289 mustard gas casualties had signs of chronic blepharitis. Microbiological evaluation revealed higher isolation rates of Staphylococcus epidermidis (78%) and Staphylococcus aureus (57%) in the case in comparison to control group (P < 0.01). Moreover, S. aureus isolated from the cases exhibited greater resistance to common antibiotics compared with control group. Fungi were isolated more frequent in the case compared with controls (30% vs. 4%, P < 0.01), with Cladosporium and Candida species being most common in the case group. Exposure to mustard gas seems to alter the microbiological flora of the eyelid margin. Staphylococcus spp., including antibiotic-resistant strains, and fungi were more frequently isolated in these patients. The relationship between microbial culture results and the severity of ocular surface manifestations in mustard gas-injured cases warrant further investigation.

  7. Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.).

    PubMed

    Wang, Ming Li; Khera, Pawan; Pandey, Manish K; Wang, Hui; Qiao, Lixian; Feng, Suping; Tonnis, Brandon; Barkley, Noelle A; Pinnow, David; Holbrook, Corley C; Culbreath, Albert K; Varshney, Rajeev K; Guo, Baozhu

    2015-01-01

    Peanut, a high-oil crop with about 50% oil content, is either crushed for oil or used as edible products. Fatty acid composition determines the oil quality which has high relevance to consumer health, flavor, and shelf life of commercial products. In addition to the major fatty acids, oleic acid (C18:1) and linoleic acid (C18:2) accounting for about 80% of peanut oil, the six other fatty acids namely palmitic acid (C16:0), stearic acid (C18:0), arachidic acid (C20:0), gadoleic acid (C20:1), behenic acid (C22:0), and lignoceric acid (C24:0) are accounted for the rest 20%. To determine the genetic basis and to improve further understanding on effect of FAD2 genes on these fatty acids, two recombinant inbred line (RIL) populations namely S-population (high oleic line 'SunOleic 97R' × low oleic line 'NC94022') and T-population (normal oleic line 'Tifrunner' × low oleic line 'GT-C20') were developed. Genetic maps with 206 and 378 marker loci for the S- and the T-population, respectively were used for quantitative trait locus (QTL) analysis. As a result, a total of 164 main-effect (M-QTLs) and 27 epistatic (E-QTLs) QTLs associated with the minor fatty acids were identified with 0.16% to 40.56% phenotypic variation explained (PVE). Thirty four major QTLs (>10% of PVE) mapped on five linkage groups and 28 clusters containing more than three QTLs were also identified. These results suggest that the major QTLs with large additive effects would play an important role in controlling composition of these minor fatty acids in addition to the oleic and linoleic acids in peanut oil. The interrelationship among these fatty acids should be considered while breeding for improved peanut genotypes with good oil quality and desired fatty acid composition.

  8. Determination of total acid content in biomass hydrolysates by solvent-assisted and reaction based headspace gas chromatography.

    PubMed

    Huang, Liu-Lian; Hu, Hui-Chao; Chen, Li-Hui

    2015-11-27

    This work reports on a novel method for the determination of total acid (TA) in biomass hydrolysates by a solvent-assisted and reaction-based headspace gas chromatography (HS-GC). The neutralization reaction between the acids in hydrolysates and bicarbonate in an ethanol (50%) aqueous solution was performed in a closed headspace sample vial, from which the carbon dioxide generated from the reaction was detected by HS-GC. It was found that the addition of ethanol can effectively eliminate the precipitation of some organic acids in the biomass hydrolysates. The results showed that the reaction and headspace equilibration can be achieved within 45min at 70°C; the method has a good precision (RSD<3.27%) and accuracy (recovery of 97.4-105%); the limit of quantification is 1.36μmol. The present method is quite suitable to batch analysis of TA content in hydrolysate for the biorefinery related research. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Multiple Acid Sensors Control Helicobacter pylori Colonization of the Stomach.

    PubMed

    Huang, Julie Y; Goers Sweeney, Emily; Guillemin, Karen; Amieva, Manuel R

    2017-01-01

    Helicobacter pylori's ability to respond to environmental cues in the stomach is integral to its survival. By directly visualizing H. pylori swimming behavior when encountering a microscopic gradient consisting of the repellent acid and attractant urea, we found that H. pylori is able to simultaneously detect both signals, and its response depends on the magnitudes of the individual signals. By testing for the bacteria's response to a pure acid gradient, we discovered that the chemoreceptors TlpA and TlpD are each independent acid sensors. They enable H. pylori to respond to and escape from increases in hydrogen ion concentration near 100 nanomolar. TlpD also mediates attraction to basic pH, a response dampened by another chemoreceptor TlpB. H. pylori mutants lacking both TlpA and TlpD (ΔtlpAD) are unable to sense acid and are defective in establishing colonization in the murine stomach. However, blocking acid production in the stomach with omeprazole rescues ΔtlpAD's colonization defect. We used 3D confocal microscopy to determine how acid blockade affects the distribution of H. pylori in the stomach. We found that stomach acid controls not only the overall bacterial density, but also the microscopic distribution of bacteria that colonize the epithelium deep in the gastric glands. In omeprazole treated animals, bacterial abundance is increased in the antral glands, and gland colonization range is extended to the corpus. Our findings indicate that H. pylori has evolved at least two independent receptors capable of detecting acid gradients, allowing not only survival in the stomach, but also controlling the interaction of the bacteria with the epithelium.

  10. Multiple Acid Sensors Control Helicobacter pylori Colonization of the Stomach

    PubMed Central

    Huang, Julie Y.; Goers Sweeney, Emily; Guillemin, Karen

    2017-01-01

    Helicobacter pylori’s ability to respond to environmental cues in the stomach is integral to its survival. By directly visualizing H. pylori swimming behavior when encountering a microscopic gradient consisting of the repellent acid and attractant urea, we found that H. pylori is able to simultaneously detect both signals, and its response depends on the magnitudes of the individual signals. By testing for the bacteria’s response to a pure acid gradient, we discovered that the chemoreceptors TlpA and TlpD are each independent acid sensors. They enable H. pylori to respond to and escape from increases in hydrogen ion concentration near 100 nanomolar. TlpD also mediates attraction to basic pH, a response dampened by another chemoreceptor TlpB. H. pylori mutants lacking both TlpA and TlpD (ΔtlpAD) are unable to sense acid and are defective in establishing colonization in the murine stomach. However, blocking acid production in the stomach with omeprazole rescues ΔtlpAD’s colonization defect. We used 3D confocal microscopy to determine how acid blockade affects the distribution of H. pylori in the stomach. We found that stomach acid controls not only the overall bacterial density, but also the microscopic distribution of bacteria that colonize the epithelium deep in the gastric glands. In omeprazole treated animals, bacterial abundance is increased in the antral glands, and gland colonization range is extended to the corpus. Our findings indicate that H. pylori has evolved at least two independent receptors capable of detecting acid gradients, allowing not only survival in the stomach, but also controlling the interaction of the bacteria with the epithelium. PMID:28103315

  11. Lipid fatty acid profile analyses in liver and serum in rats with nonalcoholic steatohepatitis using improved gas chromatography-mass spectrometry methodology

    USDA-ARS?s Scientific Manuscript database

    Fatty acids (FA) are essential components of lipids and exhibit important biological functions. The analyses of FAs are routinely carried out by gas chromatography-mass spectrometry, after multi-step sample preparation. In this study, several key experimental factors were carefully examined, validat...

  12. Surface-area-controlled synthesis of porous TiO2 thin films for gas-sensing applications

    NASA Astrophysics Data System (ADS)

    Park, Jae Young; Kim, Ho-hyoung; Rana, Dolly; Jamwal, Deepika; Katoch, Akash

    2017-03-01

    Surface-area-controlled porous TiO2 thin films were prepared via a simple sol-gel chemical route, and their gas-sensing properties were thoroughly investigated in the presence of typical oxidizing NO2 gas. The surface area of TiO2 thin films was controlled by developing porous TiO2 networked by means of controlling the TiO2-to-TTIP (titanium isopropoxide, C12H28O4Ti) molar ratio, where TiO2 nanoparticles of size ˜20 nm were used. The sensor’s response was found to depend on the surface area of the TiO2 thin films. The porous TiO2 thin-film sensor with greater surface area was more sensitive than those of TiO2 thin films with lesser surface area. The improved sensing ability was ascribed to the porous network formed within the thin films by TiO2 sol. Our results show that surface area is a key parameter for obtaining superior gas-sensing performance; this provides important guidelines for preparing and using porous thin films for gas-sensing applications.

  13. Deflagration-to-Detonation Transition Control by Nanosecond Gas Discharges

    DTIC Science & Technology

    2008-04-07

    Report 3. DATES COVERED (From – To) 1 April 2007 - 18 August 09 4. TITLE AND SUBTITLE Deflagration-To- Detonation Transition Control By Nanosecond...SUPPLEMENTARY NOTES 14. ABSTRACT During the current project, an extensive experimental study of detonation initiation by high{voltage...nanosecond gas discharges has been performed in a smooth detonation tube with different discharge chambers and various discharge cell numbers. The chambers

  14. Active Pattern Factor Control for Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    May, James E.

    1998-01-01

    Small variations in fuel/air mixture ratios within gas turbine combustors can result in measurable, and potentially detrimental, exit thermal gradients. Thermal gradients can increase emissions, as well as shorten the design life of downstream turbomachinery, particularly stator vanes. Uniform temperature profiles are usually sought through careful design and manufacturing of related combustor components. However, small componentto-component variations as well as numerous aging effects degrade system performance. To compensate for degraded thermal performance, researchers are investigating active, closed-loop control schemes.

  15. Comparison of Two Derivatization Methods for the Analysis of Fatty Acids and Trans Fatty Acids in Bakery Products Using Gas Chromatography

    PubMed Central

    Salimon, Jumat; Omar, Talal A.; Salih, Nadia

    2014-01-01

    Two different procedures for the methylation of fatty acids (FAs) and trans fatty acids (TFAs) in food fats were compared using gas chromatography (GC-FID). The base-catalyzed followed by an acid-catalyzed method (KOCH3/HCl) and the base-catalyzed followed by (trimethylsilyl)diazomethane (TMS–DM) method were used to prepare FA methyl esters (FAMEs) from lipids extracted from food products. In general, both methods were suitable for the determination of cis/trans FAs. The correlation coefficients (r) between the methods were relatively small (ranging from 0.86 to 0.99) and had a high level of agreement for the most abundant FAs. The significant differences (P = 0.05) can be observed for unsaturated FAs (UFAs), specifically for TFAs. The results from the KOCH3/HCl method showed the lowest recovery values (%R) and higher variation (from 84% to 112%), especially for UFAs. The TMS-DM method had higher R values, less variation (from 90% to 106%), and more balance between variation and %RSD values in intraday and interday measurements (less than 4% and 6%, resp.) than the KOCH3/HCl method, except for C12:0, C14:0, and C18:0. Nevertheless, the KOCH3/HCl method required shorter time and was less expensive than the TMS-DM method which is more convenient for an accurate and thorough analysis of rich cis/trans UFA samples. PMID:24719581

  16. Comparison of two derivatization methods for the analysis of fatty acids and trans fatty acids in bakery products using gas chromatography.

    PubMed

    Salimon, Jumat; Omar, Talal A; Salih, Nadia

    2014-01-01

    Two different procedures for the methylation of fatty acids (FAs) and trans fatty acids (TFAs) in food fats were compared using gas chromatography (GC-FID). The base-catalyzed followed by an acid-catalyzed method (KOCH3/HCl) and the base-catalyzed followed by (trimethylsilyl)diazomethane (TMS-DM) method were used to prepare FA methyl esters (FAMEs) from lipids extracted from food products. In general, both methods were suitable for the determination of cis/trans FAs. The correlation coefficients (r) between the methods were relatively small (ranging from 0.86 to 0.99) and had a high level of agreement for the most abundant FAs. The significant differences (P = 0.05) can be observed for unsaturated FAs (UFAs), specifically for TFAs. The results from the KOCH3/HCl method showed the lowest recovery values (%R) and higher variation (from 84% to 112%), especially for UFAs. The TMS-DM method had higher R values, less variation (from 90% to 106%), and more balance between variation and %RSD values in intraday and interday measurements (less than 4% and 6%, resp.) than the KOCH3/HCl method, except for C12:0, C14:0, and C18:0. Nevertheless, the KOCH3/HCl method required shorter time and was less expensive than the TMS-DM method which is more convenient for an accurate and thorough analysis of rich cis/trans UFA samples.

  17. Gas hydrate formation in the deep sea: In situ experiments with controlled release of methane, natural gas, and carbon dioxide

    USGS Publications Warehouse

    Brewer, P.G.; Orr, F.M.; Friederich, G.; Kvenvolden, K.A.; Orange, D.L.

    1998-01-01

    We have utilized a remotely operated vehicle (ROV) to initiate a program of research into gas hydrate formation in the deep sea by controlled release of hydrocarbon gases and liquid CO2 into natural sea water and marine sediments. Our objectives were to investigate the formation rates and growth patterns of gas hydrates in natural systems and to assess the geochemical stability of the reaction products over time. The novel experimental procedures used the carrying capacity, imaging capability, and control mechanisms of the ROV to transport gas cylinders to depth and to open valves selectively under desired P-T conditions to release the gas either into contained natural sea water or into sediments. In experiments in Monterey Bay, California, at 910 m depth and 3.9??C water temperature we find hydrate formation to be nearly instantaneous for a variety of gases. In sediments the pattern of hydrate formation is dependent on the pore size, with flooding of the pore spaces in a coarse sand yielding a hydrate cemented mass, and gas channeling in a fine-grained mud creating a veined hydrate structure. In experiments with liquid CO2 the released globules appeared to form a hydrate skin as they slowly rose in the apparatus. An initial attempt to leave the experimental material on the sea floor for an extended period was partially successful; we observed an apparent complete dissolution of the liquid CO2 mass, and an apparent consolidation of the CH4 hydrate, over a period of about 85 days.

  18. Unexpectedly acidic nanoparticles formed in dimethylamine-ammonia-sulfuric-acid nucleation experiments at CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, Michael J.; Winkler, Paul M.; Kim, Jaeseok

    New particle formation driven by acid–base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas-phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas-phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10–30 nm VMD particles. This behavior is not consistent with present nanoparticle physicochemical models,more » which predict a higher dimethylaminium fraction when NH 3 and DMA are present at similar gas-phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base : acid ratios lower than 1 : 1. The lowest base fractions were found in particles below 15 nm VMD, with a strong size-dependent composition gradient. The reasons for the very acidic composition remain uncertain, but a plausible explanation is that the particles did not reach thermodynamic equilibrium with respect to the bases due to rapid heterogeneous conversion of SO 2 to sulfate. Furthermore, these results indicate that sulfuric acid does not require stabilization by ammonium or dimethylaminium as acid–base pairs in particles as small as 10 nm.« less

  19. Unexpectedly acidic nanoparticles formed in dimethylamine-ammonia-sulfuric-acid nucleation experiments at CLOUD

    DOE PAGES

    Lawler, Michael J.; Winkler, Paul M.; Kim, Jaeseok; ...

    2016-11-03

    New particle formation driven by acid–base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas-phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas-phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10–30 nm VMD particles. This behavior is not consistent with present nanoparticle physicochemical models,more » which predict a higher dimethylaminium fraction when NH 3 and DMA are present at similar gas-phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base : acid ratios lower than 1 : 1. The lowest base fractions were found in particles below 15 nm VMD, with a strong size-dependent composition gradient. The reasons for the very acidic composition remain uncertain, but a plausible explanation is that the particles did not reach thermodynamic equilibrium with respect to the bases due to rapid heterogeneous conversion of SO 2 to sulfate. Furthermore, these results indicate that sulfuric acid does not require stabilization by ammonium or dimethylaminium as acid–base pairs in particles as small as 10 nm.« less

  20. Molecular dynamics investigation of separation of hydrogen sulfide from acidic gas mixtures inside metal-doped graphite micropores.

    PubMed

    Huang, Pei-Hsing

    2015-09-21

    The separation of poisonous compounds from various process fluids has long been highly intractable, motivating the present study on the dynamic separation of H2S in acidic-gas-mixture-filled micropores. The molecular dynamics approach, coupled with the isothermal-isochoric ensemble, was used to model the molecular interactions and adsorption of H2S/CO2/CO/H2O mixtures inside metal-doped graphite slits. Due to the difference in the adsorption characteristics between the two distinct adsorbent materials, the metal dopant in the graphitic micropores leads to competitive adsorption, i.e. the Au and graphite walls compete to capture free adsorbates. The effects of competitive adsorption, coupled with changes in the gas temperature, concentration, constituent ratio and slit width on the constituent separation of mixtures were systematically studied. The molecule-wall binding energies calculated in this work (those of H2S, H2O and CO on Au walls and those of H2O, CO and CO2 on graphite walls) show good agreement with those obtained using density functional theory (DFT) and experimental results. The z-directional self-diffusivities (Dz) for adsorbates inside the slit ranged from 10(-9) to 10(-7) m(2) s(-1) as the temperature was increased from 10 to 500 K. The values are comparable with those for a typical microporous fluid (10(-8)-10(-9) m(2) s(-1) in a condensed phase and 10(-6)-10(-7) m(2) s(-1) in the gaseous state). The formation of H-bonding networks and hydrates of H2S is disadvantageous for the separation of mixtures. The results indicate that H2S can be efficiently separated from acidic gas mixtures onto the Au(111) surface by (i) reducing the mole fraction of H2S and H2O in the mixtures, (ii) raising the gas temperature to the high temperature limit (≥400 K), and (iii) lowering the slit width to below the threshold dimension (≤23.26 Å).

  1. Pulse-modulated dual-gas control subsystem for space cabin atmosphere

    NASA Technical Reports Server (NTRS)

    Jackson, J. K.

    1974-01-01

    An atmosphere control subsystem (ACS) was developed for use in a closed manned cabin, such as the Space Shuttle Orbiter. This subsystem uses the Perkin Elmer mass spectrometer for continuous measurement of major atmospheric constituents (H2, H2O, N2, O2, and CO2). The O2 and N2 analog signals are used as inputs to the controller, which produces a pulse-frequency-modulated output to operate the N2 gas admission solenoid valve and an on-off signal to operate the O2 valve. The proportional controller characteristic results in improved control accuracy as compared with previously used on-off controllers having significant dead-band. A 60-day evaluation test was performed on the ACS during which operation was measured at various values of control setpoint and simulated cabin leakage.

  2. Preparation of fatty acid methyl esters for gas-chromatographic analysis of marine lipids: insight studies.

    PubMed

    Carvalho, Ana P; Malcata, F Xavier

    2005-06-29

    Assays for fatty acid composition in biological materials are commonly carried out by gas chromatography, after conversion of the lipid material into the corresponding methyl esters (FAME) via suitable derivatization reactions. Quantitative derivatization depends on the type of catalyst and processing conditions employed, as well as the solubility of said sample in the reaction medium. Most literature pertinent to derivatization has focused on differential comparison between alternative methods; although useful to find out the best method for a particular sample, additional studies on factors that may affect each step of FAME preparation are urged. In this work, the influence of various parameters in each step of derivatization reactions was studied, using both cod liver oil and microalgal biomass as model systems. The accuracies of said methodologies were tested via comparison with the AOCS standard method, whereas their reproducibility was assessed by analysis of variance of (replicated) data. Alkaline catalysts generated lower levels of long-chain unsaturated FAME than acidic ones. Among these, acetyl chloride and BF(3) were statistically equivalent to each other. The standard method, which involves alkaline treatment of samples before acidic methylation with BF(3), provided equivalent results when compared with acidic methylation with BF(3) alone. Polarity of the reaction medium was found to be of the utmost importance in the process: intermediate values of polarity [e.g., obtained by a 1:1 (v/v) mixture of methanol with diethyl ether or toluene] provided amounts of extracted polyunsaturated fatty acids statistically higher than those obtained via the standard method.

  3. Growth and tolerance of infants fed formula with a new algal source of docosahexaenoic acid: Double-blind, randomized, controlled trial.

    PubMed

    Yeiser, Michael; Harris, Cheryl L; Kirchoff, Ashlee L; Patterson, Ashley C; Wampler, Jennifer L; Zissman, Edward N; Berseth, Carol Lynn

    2016-12-01

    Docosahexaenoic acid (DHA) in infant formula at concentrations based on worldwide human milk has resulted in circulating red blood cell (RBC) lipids related to visual and cognitive development. In this study, infants received study formula (17mg DHA/100kcal) with a commercially-available (Control: n=140; DHASCO®) or alternative (DHASCO®-B: n=127) DHA single cell oil from 14 to 120 days of age. No significant group differences were detected for growth rates by gender through 120 days of age. Blood fatty acids at 120 days of age were assessed by capillary column gas chromatography in a participant subset (Control: n=34; DHASCO-B: n=27). The 90% confidence interval (91-104%) for the group mean (geometric) total RBC DHA (µg/mL) ratio fell within the pre-specified equivalence limit (80-125%), establishing study formula equivalence with respect to DHA. This study demonstrated infant formula with DHASCO-B was safe, well-tolerated, and associated with normal growth. Furthermore, DHASCO and DHASCO-B represented equivalent sources of DHA as measured by circulating RBC DHA. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. High-resolution gas chromatography/mass spectrometry method for characterization and quantitative analysis of ginkgolic acids in Ginkgo biloba plants, extracts, and dietary supplements.

    PubMed

    Wang, Mei; Zhao, Jianping; Avula, Bharathi; Wang, Yan-Hong; Avonto, Cristina; Chittiboyina, Amar G; Wylie, Philip L; Parcher, Jon F; Khan, Ikhlas A

    2014-12-17

    A high-resolution gas chromatography/mass spectrometry (GC/MS) with selected ion monitor method focusing on the characterization and quantitative analysis of ginkgolic acids (GAs) in Ginkgo biloba L. plant materials, extracts, and commercial products was developed and validated. The method involved sample extraction with (1:1) methanol and 10% formic acid, liquid-liquid extraction with n-hexane, and derivatization with trimethylsulfonium hydroxide (TMSH). Separation of two saturated (C13:0 and C15:0) and six unsaturated ginkgolic acid methyl esters with different positional double bonds (C15:1 Δ8 and Δ10, C17:1 Δ8, Δ10, and Δ12, and C17:2) was achieved on a very polar (88% cyanopropyl) aryl-polysiloxane HP-88 capillary GC column. The double bond positions in the GAs were determined by ozonolysis. The developed GC/MS method was validated according to ICH guidelines, and the quantitation results were verified by comparison with a standard high-performance liquid chromatography method. Nineteen G. biloba authenticated and commercial plant samples and 21 dietary supplements purported to contain G. biloba leaf extracts were analyzed. Finally, the presence of the marker compounds, terpene trilactones and flavonol glycosides for Ginkgo biloba in the dietary supplements was determined by UHPLC/MS and used to confirm the presence of G. biloba leaf extracts in all of the botanical dietary supplements.

  5. Organic acids in naturally colored surface waters

    USGS Publications Warehouse

    Lamar, William L.; Goerlitz, D.F.

    1966-01-01

    Most of the organic matter in naturally colored surface waters consists of a mixture of carboxylic acids or salts of these acids. Many of the acids color the water yellow to brown; however, not all of the acids are colored. These acids range from simple to complex, but predominantly they are nonvolatile polymeric carboxylic acids. The organic acids were recovered from the water by two techniques: continuous liquid-liquid extraction with n-butanol and vacuum evaporation at 50?C (centigrade). The isolated acids were studied by techniques of gas, paper, and column chromatography and infrared spectroscopy. About 10 percent of the acids recovered were volatile or could be made volatile for gas chromatographic analysis. Approximately 30 of these carboxylic acids were isolated, and 13 of them were individually identified. The predominant part of the total acids could not be made volatile for gas chromatographic analysis. Infrared examination of many column chromatographic fractions indicated that these nonvolatile substances are primarily polymeric hydroxy carboxylic acids having aromatic and olefinic unsaturation. The evidence suggests that some of these acids result from polymerization in aqueous solution. Elemental analysis of the sodium fusion products disclosed the absence of nitrogen, sulfur, and halogens.

  6. Volcanic gas

    USGS Publications Warehouse

    McGee, Kenneth A.; Gerlach, Terrance M.

    1995-01-01

    In Roman mythology, Vulcan, the god of fire, was said to have made tools and weapons for the other gods in his workshop at Olympus. Throughout history, volcanoes have frequently been identified with Vulcan and other mythological figures. Scientists now know that the “smoke" from volcanoes, once attributed by poets to be from Vulcan’s forge, is actually volcanic gas naturally released from both active and many inactive volcanoes. The molten rock, or magma, that lies beneath volcanoes and fuels eruptions, contains abundant gases that are released to the surface before, during, and after eruptions. These gases range from relatively benign low-temperature steam to thick hot clouds of choking sulfurous fume jetting from the earth. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other volcanic gases are hydrogen sulfide, hydrochloric acid, hydrogen, carbon monoxide, hydrofluoric acid, and other trace gases and volatile metals. The concentrations of these gas species can vary considerably from one volcano to the next.

  7. Incorporation of oxygen into abscisic Acid and phaseic Acid from molecular oxygen.

    PubMed

    Creelman, R A; Zeevaart, J A

    1984-05-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumarium. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% (18)O(2) and 80% N(2) indicates that one atom of (18)O is incorporated in the 6'-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase.Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing (18)O(2) indicates that one atom of (18)O is present in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-stressed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggests that either (a) the oxygen present in the 1'-, 4'-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1'- and 4'-positions of abscisic acid which is converted to abscisic acid under conditions of water stress.

  8. Development of Monopole Interaction Models for Ionic Compounds. Part I: Estimation of Aqueous Henry's Law Constants for Ions and Gas Phase pKa Values for Acidic Compounds.

    PubMed

    Hilal, S H; Saravanaraj, A N; Carreira, L A

    2014-02-01

    The SPARC (SPARC Performs Automated Reasoning in Chemistry) physicochemical mechanistic models for neutral compounds have been extended to estimate Henry's Law Constant (HLC) for charged species by incorporating ionic electrostatic interaction models. Combinations of absolute aqueous pKa values, relative pKa values in the gas phase, and aqueous HLC for neutral compounds have been used to develop monopole interaction models that quantify the energy differences upon moving an ionic solute molecule from the gas phase to the liquid phase. Inter-molecular interaction energies were factored into mechanistic contributions of monopoles with polarizability, dipole, H-bonding, and resonance. The monopole ionic models were validated by a wide range of measured gas phase pKa data for 450 acidic compounds. The RMS deviation error and R(2) for the OH, SH, CO2 H, CH3 and NR2 acidic reaction centers (C) were 16.9 kcal/mol and 0.87, respectively. The calculated HLCs of ions were compared to the HLCs of 142 ions calculated by quantum mechanics. Effects of inter-molecular interaction of the monopoles with polarizability, dipole, H-bonding, and resonance on acidity of the solutes in the gas phase are discussed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Variable leak gas source

    DOEpatents

    Henderson, Timothy M.; Wuttke, Gilbert H.

    1977-01-01

    A variable leak gas source and a method for obtaining the same which includes filling a quantity of hollow glass micro-spheres with a gas, storing said quantity in a confined chamber having a controllable outlet, heating said chamber above room temperature, and controlling the temperature of said chamber to control the quantity of gas passing out of said controllable outlet. Individual gas filled spheres may be utilized for calibration purposes by breaking a sphere having a known quantity of a known gas to calibrate a gas detection apparatus.

  10. [Gas chromatography in quantitative analysis of hydrocyanic acid and its salts in cadaveric blood].

    PubMed

    Iablochkin, V D

    2003-01-01

    A direct gas chromatography method was designed for the quantitative determination of cyanides (prussic acid) in cadaveric blood. Its sensitivity is 0.05 mg/ml. The routine volatile products, including substances, which emerge due to putrefaction of organic matters, do not affect the accuracy and reproducibility of the method; the exception is H-propanol that was used as the internal standard. The method was used in legal chemical expertise related with acute cyanide poisoning (suicide) as well as with poisoning of products of combustion of nonmetals (foam-rubber). The absolute error does not exceed 10% with a mean quadratic deviation of 0.0029-0.0033 mg.

  11. Modification and testing of an engine and fuel control system for a hydrogen fuelled gas turbine

    NASA Astrophysics Data System (ADS)

    Funke, H. H.-W.; Börner, S.; Hendrick, P.; Recker, E.

    2011-10-01

    The control of pollutant emissions has become more and more important by the development of new gas turbines. The use of hydrogen produced by renewable energy sources could be an alternative. Besides the reduction of NOx emissions emerged during the combustion process, another major question is how a hydrogen fuelled gas turbine including the metering unit can be controlled and operated. This paper presents a first insight in modifications on an Auxiliary Power Unit (APU) GTCP 36300 for using gaseous hydrogen as a gas turbine fuel. For safe operation with hydrogen, the metering of hydrogen has to be fast, precise, and secure. So, the quality of the metering unit's control loop has an important influence on this topic. The paper documents the empiric determination of the proportional integral derivative (PID) control parameters for the metering unit.

  12. Software to Control and Monitor Gas Streams

    NASA Technical Reports Server (NTRS)

    Arkin, C.; Curley, Charles; Gore, Eric; Floyd, David; Lucas, Damion

    2012-01-01

    This software package interfaces with various gas stream devices such as pressure transducers, flow meters, flow controllers, valves, and analyzers such as a mass spectrometer. The software provides excellent user interfacing with various windows that provide time-domain graphs, valve state buttons, priority- colored messages, and warning icons. The user can configure the software to save as much or as little data as needed to a comma-delimited file. The software also includes an intuitive scripting language for automated processing. The configuration allows for the assignment of measured values or calibration so that raw signals can be viewed as usable pressures, flows, or concentrations in real time. The software is based on those used in two safety systems for shuttle processing and one volcanic gas analysis system. Mass analyzers typically have very unique applications and vary from job to job. As such, software available on the market is usually inadequate or targeted on a specific application (such as EPA methods). The goal was to develop powerful software that could be used with prototype systems. The key problem was to generalize the software to be easily and quickly reconfigurable. At Kennedy Space Center (KSC), the prior art consists of two primary methods. The first method was to utilize Lab- VIEW and a commercial data acquisition system. This method required rewriting code for each different application and only provided raw data. To obtain data in engineering units, manual calculations were required. The second method was to utilize one of the embedded computer systems developed for another system. This second method had the benefit of providing data in engineering units, but was limited in the number of control parameters.

  13. Acid-Base Electronic Properties in the Gas Phase: Permanent Electric Dipole Moments of a Photoacidic Substrate.

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Morgan, Philip J.; Pratt, David W.

    2009-06-01

    The permanent electric dipole moments of two conformers of 2-naphthol (2HN) in their ground and electronically excited states have been experimentally determined by Stark-effect measurements in a molecular beam. When in solution, 2HN is a weak base in the S{_0} state and a strong acid in the S{_1} state. Using sequential solvation of the cis-2HN photoacid with the base ammonia, we have begun to approach condensed phase acid-base interactions with gas phase rotational resolution. Our study, void of bulk solvent perturbations, is of importance to the larger community currently describing aromatic biomolecule and "super" photoacid behavior via theoretical modeling and condensed phase solvatochromism. [2] A. Weller. Prog. React. Kinet. 5, 273 (1970). [3] D. F. Plusquellic, X. -Q. Tan, and D. W. Pratt. J. Chem. Phys. 96, 8026 (1992).

  14. Recovery of Water from Boiler Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Levy; Harun Bilirgen; Kwangkook Jeong

    2008-09-30

    This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending stronglymore » on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.« less

  15. Multi-gas interaction modeling on decorated semiconductor interfaces: A novel Fermi distribution-based response isotherm and the inverse hard/soft acid/base concept

    NASA Astrophysics Data System (ADS)

    Laminack, William; Gole, James

    2015-12-01

    A unique MEMS/NEMS approach is presented for the modeling of a detection platform for mixed gas interactions. Mixed gas analytes interact with nanostructured decorating metal oxide island sites supported on a microporous silicon substrate. The Inverse Hard/Soft acid/base (IHSAB) concept is used to assess a diversity of conductometric responses for mixed gas interactions as a function of these nanostructured metal oxides. The analyte conductometric responses are well represented using a combination diffusion/absorption-based model for multi-gas interactions where a newly developed response absorption isotherm, based on the Fermi distribution function is applied. A further coupling of this model with the IHSAB concept describes the considerations in modeling of multi-gas mixed analyte-interface, and analyte-analyte interactions. Taking into account the molecular electronic interaction of both the analytes with each other and an extrinsic semiconductor interface we demonstrate how the presence of one gas can enhance or diminish the reversible interaction of a second gas with the extrinsic semiconductor interface. These concepts demonstrate important considerations in the array-based formats for multi-gas sensing and its applications.

  16. Characterization and chemical composition of fatty acids content of watermelon and muskmelon cultivars in Saudi Arabia using gas chromatography/mass spectroscopy.

    PubMed

    Albishri, Hassan M; Almaghrabi, Omar A; Moussa, Tarek A A

    2013-01-01

    The growth in the production of biodiesel, which is principally fatty acid methyl esters (FAME), has been phenomenal in the last ten years because of the general desire to cut down on the release of greenhouse gases into the atmosphere, and also as a result of the increasing cost of fossil fuels. Establish whether there is any relationship between two different species (watermelon and muskmelon) within the same family (Cucurbitaceae) on fatty acid compositions and enumerate the different fatty acids in the two species. Extraction of fatty acids from the two species and preparation the extract to gas chromatography/mass spectroscopy analysis to determine the fatty acids compositions qualitatively and quantitatively. The analyzed plants (watermelon and muskmelon) contain five saturated fatty acids; tetrdecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid and octadecanoic acid with different concentrations, while muskmelon contains an extra saturated fatty acid named eicosanoic acid. The watermelon plant contains five unsaturated fatty acids while muskmelon contains three only, the two plants share in two unsaturated fatty acids named 9-hexadecenoic acid and 9-octadecenoic acid, the muskmelon plant contains higher amounts of these two acids (2.04% and 10.12%, respectively) over watermelon plant (0.88% and 0.25%, respectively). The chemical analysis of watermelon and muskmelon revealed that they are similar in saturated fatty acids but differ in unsaturated fatty acids which may be a criterion of differentiation between the two plants.

  17. Characterization and chemical composition of fatty acids content of watermelon and muskmelon cultivars in Saudi Arabia using gas chromatography/mass spectroscopy

    PubMed Central

    Albishri, Hassan M.; Almaghrabi, Omar A.; Moussa, Tarek A. A.

    2013-01-01

    Background: The growth in the production of biodiesel, which is principally fatty acid methyl esters (FAME), has been phenomenal in the last ten years because of the general desire to cut down on the release of greenhouse gases into the atmosphere, and also as a result of the increasing cost of fossil fuels. Objective: Establish whether there is any relationship between two different species (watermelon and muskmelon) within the same family (Cucurbitaceae) on fatty acid compositions and enumerate the different fatty acids in the two species. Materials and Methods: Extraction of fatty acids from the two species and preparation the extract to gas chromatography/mass spectroscopy analysis to determine the fatty acids compositions qualitatively and quantitatively. Results: The analyzed plants (watermelon and muskmelon) contain five saturated fatty acids; tetrdecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid and octadecanoic acid with different concentrations, while muskmelon contains an extra saturated fatty acid named eicosanoic acid. The watermelon plant contains five unsaturated fatty acids while muskmelon contains three only, the two plants share in two unsaturated fatty acids named 9-hexadecenoic acid and 9-octadecenoic acid, the muskmelon plant contains higher amounts of these two acids (2.04% and 10.12%, respectively) over watermelon plant (0.88% and 0.25%, respectively). Conclusion: The chemical analysis of watermelon and muskmelon revealed that they are similar in saturated fatty acids but differ in unsaturated fatty acids which may be a criterion of differentiation between the two plants. PMID:23661995

  18. Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amy, Fabrice; Hufton, Jeffrey; Bhadra, Shubhra

    2015-06-30

    Air Products has developed an acid gas removal technology based on adsorption (Sour PSA) that favorably compares with incumbent AGR technologies. During this DOE-sponsored study, Air Products has been able to increase the Sour PSA technology readiness level by successfully operating a two-bed test system on coal-derived sour syngas at the NCCC, validating the lifetime and performance of the adsorbent material. Both proprietary simulation and data obtained during the testing at NCCC were used to further refine the estimate of the performance of the Sour PSA technology when expanded to a commercial scale. In-house experiments on sweet syngas combined withmore » simulation work allowed Air Products to develop new PSA cycles that allowed for further reduction in capital expenditure. Finally our techno economic analysis of the use the Sour PSA technology for both IGCC and coal-to-methanol applications suggests significant improvement of the unit cost of electricity and methanol compared to incumbent AGR technologies.« less

  19. Need for Robust Sensors for Inherently Fail-Safe Gas Turbine Engine Controls, Monitoring, and Prognostics (Postprint)

    DTIC Science & Technology

    2006-09-01

    MONITORING , AND PROGNOSTICS Alireza R. Behbahani Controls / Engine Health Management Turbine Engine Division / PRTS U.S. Air Force Research...Technical Report 2005. 8. Greitzer, Frank et al, “Gas Turbine Engine Health Monitoring and Prognostics ”, International Society of Logistics (SOLE...AFRL-PR-WP-TP-2007-217 NEED FOR ROBUST SENSORS FOR INHERENTLY FAIL-SAFE GAS TURBINE ENGINE CONTROLS, MONITORING , AND PROGNOSTICS (POSTPRINT

  20. Ribonucleic acid interference (RNAi) and control of citrus pests

    USDA-ARS?s Scientific Manuscript database

    Ribonucleic acid interference, RNAi, applications and function are described for the non-scientist to bring a better understanding of how this emerging technology is providing environmentally friendly, non-transgenic, insect pest control. ...

  1. New pressure control method of mixed gas in a combined cycle power plant of a steel mill

    NASA Astrophysics Data System (ADS)

    Xie, Yudong; Wang, Yong

    2017-08-01

    The enterprise production concept is changing with the development of society. A steel mill requires a combined-cycle power plant, which consists of both a gas turbine and steam turbine. It can recycle energy from the gases that are emitted from coke ovens and blast furnaces during steel production. This plant can decrease the overall energy consumption of the steel mill and reduce pollution to our living environment. To develop a combined-cycle power plant, the pressure in the mixed-gas transmission system must be controlled in the range of 2.30-2.40 MPa. The particularity of the combined-cycle power plant poses a challenge to conventional controllers. In this paper, a composite control method based on the Smith predictor and cascade control was proposed for the pressure control of the mixed gases. This method has a concise structure and can be easily implemented in actual industrial fields. The experiment has been conducted to validate the proposed control method. The experiment illustrates that the proposed method can suppress various disturbances in the gas transmission control system and sustain the pressure of the gas at the desired level, which helps to avoid abnormal shutdowns in the combined-cycle power plant.

  2. A System for Controlling the Oxygen Content of a Gas Produced by Combustion

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Davis, W. T.; Puster, R. L. (Inventor)

    1984-01-01

    A mixture of air, CH4 and OH(2) is burned in a combustion chamber to produce a product gas in the test section. The OH(2) content of the product gas is compared with the OH(2) content of reference air in an OH(2) sensor. If there is a difference an error signal is produced at the output of a control circuit which by the means of a solenoid valve, regulates the flow of OH(2) into the combustion chamber to make the error signal zero. The product gas in the test section has the same oxygen content as air.

  3. Surface acidity scales: Experimental measurements of Brønsted acidities on anatase TiO2 and comparison with coinage metal surfaces

    NASA Astrophysics Data System (ADS)

    Silbaugh, Trent L.; Boaventura, Jaime S.; Barteau, Mark A.

    2016-08-01

    The first quantitative surface acidity scale for Brønsted acids on a solid surface is presented through the use of titration-displacement and equilibrium experiments on anatase TiO2. Surface acidities of species on TiO2 correlated with gas phase acidities, as was previously observed in qualitative studies of Brønsted acid displacement on Ag(110), Cu(110) and Au(111). A 90% compression of the surface acidity scale relative to the gas phase was observed due to compensation from the covalent component of the conjugate base - surface bond. Adsorbed conjugate bases need not be completely anionic for correlations with gas phase acidities to hold. Positive and negative substituent effects, such as substituted fluorine and hydrocarbon sidechain dispersion interactions with the surface, may modify the surface acidity scale, in agreement with previous experimental and theoretical work on Au(111).

  4. Gas Selectivity Control in Co3O4 Sensor via Concurrent Tuning of Gas Reforming and Gas Filtering using Nanoscale Hetero-Overlayer of Catalytic Oxides.

    PubMed

    Jeong, Hyun-Mook; Jeong, Seong-Yong; Kim, Jae-Hyeok; Kim, Bo-Young; Kim, Jun-Sik; Abdel-Hady, Faissal; Wazzan, Abdulaziz A; Al-Turaif, Hamad Ali; Jang, Ho Won; Lee, Jong-Heun

    2017-11-29

    Co 3 O 4 sensors with a nanoscale TiO 2 or SnO 2 catalytic overlayer were prepared by screen-printing of Co 3 O 4 yolk-shell spheres and subsequent e-beam evaporation of TiO 2 and SnO 2 . The Co 3 O 4 sensors with 5 nm thick TiO 2 and SnO 2 overlayers showed high responses (resistance ratios) to 5 ppm xylene (14.5 and 28.8) and toluene (11.7 and 16.2) at 250 °C with negligible responses to interference gases such as ethanol, HCHO, CO, and benzene. In contrast, the pure Co 3 O 4 sensor did not show remarkable selectivity toward any specific gas. The response and selectivity to methylbenzenes and ethanol could be systematically controlled by selecting the catalytic overlayer material, varying the overlayer thickness, and tuning the sensing temperature. The significant enhancement of the selectivity for xylene and toluene was attributed to the reforming of less reactive methylbenzenes into more reactive and smaller species and oxidative filtering of other interference gases, including ubiquitous ethanol. The concurrent control of the gas reforming and oxidative filtering processes using a nanoscale overlayer of catalytic oxides provides a new, general, and powerful tool for designing highly selective and sensitive oxide semiconductor gas sensors.

  5. Biofiltration of Chloroform in a Trickle Bed Air Biofilter Under Acidic Conditions

    EPA Science Inventory

    In this paper, the application of biofiltration is investigated for controlled removal of gas phase chloroform through cometabolic degradation with ethanol. A trickle bed air biofilter (TBAB) operated under acidic pH 4 is subjected to aerobic biodegradation of chloroform and etha...

  6. Vitamin C: an experimental and theoretical study on the gas-phase structure and ion energetics of protonated ascorbic acid.

    PubMed

    Ricci, Andreina; Pepi, Federico; Cimino, Paola; Troiani, Anna; Garzoli, Stefania; Salvitti, Chiara; Di Rienzo, Brunella; Barone, Vincenzo

    2016-12-01

    In order to investigate the gas-phase mechanisms of the acid catalyzed degradation of ascorbic acid (AA) to furan, we undertook a mass spectrometric (ESI/TQ/MS) and theoretical investigation at the B3LYP/6-31 + G(d,p) level of theory. The gaseous reactant species, the protonated AA, [C 6 H 8 O 6 ]H + , were generated by electrospray ionization of a 10 -3  M H 2 O/CH 3 OH (1 : 1) AA solution. In order to structurally characterize the gaseous [C 6 H 8 O 6 ]H + ionic reactants, we estimated the proton affinity and the gas-phase basicity of AA by the extended Cooks's kinetic method and by computational methods at the B3LYP/6-31 + G(d,p) level of theory. As expected, computational results identify the carbonyl oxygen atom (O2) of AA as the preferred protonation site. From the experimental proton affinity of 875.0 ± 12 kJ mol -1 and protonation entropy ΔS p 108.9 ± 2 J mol -1  K -1 , a gas-phase basicity value of AA of 842.5 ± 12 kJ mol -1 at 298 K was obtained, which is in agreement with the value issuing from quantum mechanical computations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Genetic Mapping of QTLs Controlling Fatty Acids Provided Insights into the Genetic Control of Fatty Acid Synthesis Pathway in Peanut (Arachis hypogaea L.)

    PubMed Central

    Wang, Hui; Qiao, Lixian; Feng, Suping; Tonnis, Brandon; Barkley, Noelle A.; Pinnow, David; Holbrook, Corley C.; Culbreath, Albert K.; Varshney, Rajeev K.; Guo, Baozhu

    2015-01-01

    Peanut, a high-oil crop with about 50% oil content, is either crushed for oil or used as edible products. Fatty acid composition determines the oil quality which has high relevance to consumer health, flavor, and shelf life of commercial products. In addition to the major fatty acids, oleic acid (C18:1) and linoleic acid (C18:2) accounting for about 80% of peanut oil, the six other fatty acids namely palmitic acid (C16:0), stearic acid (C18:0), arachidic acid (C20:0), gadoleic acid (C20:1), behenic acid (C22:0), and lignoceric acid (C24:0) are accounted for the rest 20%. To determine the genetic basis and to improve further understanding on effect of FAD2 genes on these fatty acids, two recombinant inbred line (RIL) populations namely S-population (high oleic line ‘SunOleic 97R’ × low oleic line ‘NC94022’) and T-population (normal oleic line ‘Tifrunner’ × low oleic line ‘GT-C20’) were developed. Genetic maps with 206 and 378 marker loci for the S- and the T-population, respectively were used for quantitative trait locus (QTL) analysis. As a result, a total of 164 main-effect (M-QTLs) and 27 epistatic (E-QTLs) QTLs associated with the minor fatty acids were identified with 0.16% to 40.56% phenotypic variation explained (PVE). Thirty four major QTLs (>10% of PVE) mapped on five linkage groups and 28 clusters containing more than three QTLs were also identified. These results suggest that the major QTLs with large additive effects would play an important role in controlling composition of these minor fatty acids in addition to the oleic and linoleic acids in peanut oil. The interrelationship among these fatty acids should be considered while breeding for improved peanut genotypes with good oil quality and desired fatty acid composition. PMID:25849082

  8. Gas stream purifier

    NASA Technical Reports Server (NTRS)

    Adam, Steven J.

    1994-01-01

    A gas stream purifier has been developed that is capable of removing corrosive acid, base, solvent, organic, inorganic, and water vapors as well as particulates from an inert mixed gas stream using only solid scrubbing agents. This small, lightweight purifier has demonstrated the ability to remove contaminants from an inert gas stream with a greater than 99 percent removal efficiency. The Gas Stream Purifier has outstanding market and sales potential in manufacturing, laboratory and science industries, medical, automotive, or any commercial industry where pollution, contamination, or gas stream purification is a concern. The purifier was developed under NASA contract NAS9-18200 Schedule A for use in the international Space Station. A patent application for the Gas Stream Purifier is currently on file with the United States Patent and Trademark Office.

  9. Tracking and Control of Gas Turbine Engine Component Damage/Life

    NASA Technical Reports Server (NTRS)

    Jaw, Link C.; Wu, Dong N.; Bryg, David J.

    2003-01-01

    This paper describes damage mechanisms and the methods of controlling damages to extend the on-wing life of critical gas turbine engine components. Particularly, two types of damage mechanisms are discussed: creep/rupture and thermo-mechanical fatigue. To control these damages and extend the life of engine hot-section components, we have investigated two methodologies to be implemented as additional control logic for the on-board electronic control unit. This new logic, the life-extending control (LEC), interacts with the engine control and monitoring unit and modifies the fuel flow to reduce component damages in a flight mission. The LEC methodologies were demonstrated in a real-time, hardware-in-the-loop simulation. The results show that LEC is not only a new paradigm for engine control design, but also a promising technology for extending the service life of engine components, hence reducing the life cycle cost of the engine.

  10. NATURAL GAS REBURNING FOR NOX CONTROL ON A CYCLONE-FIRED BOILER

    EPA Science Inventory

    The paper discusses natural gas reburning (fuel staging) for nitrogen oxide (NOx) control on a cyclone-fired boiler. eburning is an in-furnace NOx combustion modification technology that has been shown to reduce NOx by 50-60%. eburning is accomplished by injecting fuel downstream...

  11. An intelligent emissions controller for fuel lean gas reburn in coal-fired power plants.

    PubMed

    Reifman, J; Feldman, E E; Wei, T Y; Glickert, R W

    2000-02-01

    The application of artificial intelligence techniques for performance optimization of the fuel lean gas reburn (FLGR) system is investigated. A multilayer, feedforward artificial neural network is applied to model static nonlinear relationships between the distribution of injected natural gas into the upper region of the furnace of a coal-fired boiler and the corresponding oxides of nitrogen (NOx) emissions exiting the furnace. Based on this model, optimal distributions of injected gas are determined such that the largest NOx reduction is achieved for each value of total injected gas. This optimization is accomplished through the development of a new optimization method based on neural networks. This new optimal control algorithm, which can be used as an alternative generic tool for solving multidimensional nonlinear constrained optimization problems, is described and its results are successfully validated against an off-the-shelf tool for solving mathematical programming problems. Encouraging results obtained using plant data from one of Commonwealth Edison's coal-fired electric power plants demonstrate the feasibility of the overall approach. Preliminary results show that the use of this intelligent controller will also enable the determination of the most cost-effective operating conditions of the FLGR system by considering, along with the optimal distribution of the injected gas, the cost differential between natural gas and coal and the open-market price of NOx emission credits. Further study, however, is necessary, including the construction of a more comprehensive database, needed to develop high-fidelity process models and to add carbon monoxide (CO) emissions to the model of the gas reburn system.

  12. Performance evaluation of an advanced air-fuel ratio controller on a stationary, rich-burn natural gas engine

    NASA Astrophysics Data System (ADS)

    Kochuparampil, Roshan Joseph

    The advent of an era of abundant natural gas is making it an increasingly economical fuel source against incumbents such as crude oil and coal, in end-use sectors such as power generation, transportation and industrial chemical production, while also offering significant environmental benefits over these incumbents. Equipment manufacturers, in turn, are responding to widespread demand for power plants optimized for operation with natural gas. In several applications such as distributed power generation, gas transmission, and water pumping, stationary, spark-ignited, natural gas fueled internal combustion engines (ICEs) are the power plant of choice (over turbines) owing to their lower equipment and operational costs, higher thermal efficiencies across a wide load range, and the flexibility afforded to end-users when building fine-resolution horsepower topologies: modular size increments ranging from 100 kW -- 2 MW per ICE power plant compared to 2 -- 5 MW per turbine power plant. Under the U.S. Environment Protection Agency's (EPA) New Source Performance Standards (NSPS) and Reciprocating Internal Combustion Engine National Emission Standards for Hazardous Air Pollutants (RICE NESHAP) air quality regulations, these natural gas power plants are required to comply with stringent emission limits, with several states mandating even stricter emissions norms. In the case of rich-burn or stoichiometric natural gas ICEs, very high levels of sustained emissions reduction can be achieved through exhaust after-treatment that utilizes Non Selective Catalyst Reduction (NSCR) systems. The primary operational constraint with these systems is the tight air-fuel ratio (AFR) window of operation that needs to be maintained if the NSCR system is to achieve simultaneous reduction of carbon monoxide (CO), nitrogen oxides (NOx), total hydrocarbons (THC), volatile organic compounds (VOCs), and formaldehyde (CH 2O). Most commercially available AFR controllers utilizing lambda (oxygen

  13. Mapping the conformational free energy of aspartic acid in the gas phase and in aqueous solution.

    PubMed

    Comitani, Federico; Rossi, Kevin; Ceriotti, Michele; Sanz, M Eugenia; Molteni, Carla

    2017-04-14

    The conformational free energy landscape of aspartic acid, a proteogenic amino acid involved in a wide variety of biological functions, was investigated as an example of the complexity that multiple rotatable bonds produce even in relatively simple molecules. To efficiently explore such a landscape, this molecule was studied in the neutral and zwitterionic forms, in the gas phase and in water solution, by means of molecular dynamics and the enhanced sampling method metadynamics with classical force-fields. Multi-dimensional free energy landscapes were reduced to bi-dimensional maps through the non-linear dimensionality reduction algorithm sketch-map to identify the energetically stable conformers and their interconnection paths. Quantum chemical calculations were then performed on the minimum free energy structures. Our procedure returned the low energy conformations observed experimentally in the gas phase with rotational spectroscopy [M. E. Sanz et al., Phys. Chem. Chem. Phys. 12, 3573 (2010)]. Moreover, it provided information on higher energy conformers not accessible to experiments and on the conformers in water. The comparison between different force-fields and quantum chemical data highlighted the importance of the underlying potential energy surface to accurately capture energy rankings. The combination of force-field based metadynamics, sketch-map analysis, and quantum chemical calculations was able to produce an exhaustive conformational exploration in a range of significant free energies that complements the experimental data. Similar protocols can be applied to larger peptides with complex conformational landscapes and would greatly benefit from the next generation of accurate force-fields.

  14. Mapping the conformational free energy of aspartic acid in the gas phase and in aqueous solution

    NASA Astrophysics Data System (ADS)

    Comitani, Federico; Rossi, Kevin; Ceriotti, Michele; Sanz, M. Eugenia; Molteni, Carla

    2017-04-01

    The conformational free energy landscape of aspartic acid, a proteogenic amino acid involved in a wide variety of biological functions, was investigated as an example of the complexity that multiple rotatable bonds produce even in relatively simple molecules. To efficiently explore such a landscape, this molecule was studied in the neutral and zwitterionic forms, in the gas phase and in water solution, by means of molecular dynamics and the enhanced sampling method metadynamics with classical force-fields. Multi-dimensional free energy landscapes were reduced to bi-dimensional maps through the non-linear dimensionality reduction algorithm sketch-map to identify the energetically stable conformers and their interconnection paths. Quantum chemical calculations were then performed on the minimum free energy structures. Our procedure returned the low energy conformations observed experimentally in the gas phase with rotational spectroscopy [M. E. Sanz et al., Phys. Chem. Chem. Phys. 12, 3573 (2010)]. Moreover, it provided information on higher energy conformers not accessible to experiments and on the conformers in water. The comparison between different force-fields and quantum chemical data highlighted the importance of the underlying potential energy surface to accurately capture energy rankings. The combination of force-field based metadynamics, sketch-map analysis, and quantum chemical calculations was able to produce an exhaustive conformational exploration in a range of significant free energies that complements the experimental data. Similar protocols can be applied to larger peptides with complex conformational landscapes and would greatly benefit from the next generation of accurate force-fields.

  15. Fuel control for gas turbine with continuous pilot flame

    DOEpatents

    Swick, Robert M.

    1983-01-01

    An improved fuel control for a gas turbine engine having a continuous pilot flame and a fuel distribution system including a pump drawing fuel from a source and supplying a line to the main fuel nozzle of the engine, the improvement being a control loop between the pump outlet and the pump inlet to bypass fuel, an electronically controlled throttle valve to restrict flow in the control loop when main nozzle demand exists and to permit substantially unrestricted flow without main nozzle demand, a minimum flow valve in the control loop downstream of the throttle valve to maintain a minimum pressure in the loop ahead of the flow valve, a branch tube from the pilot flame nozzle to the control loop between the throttle valve and the minimum flow valve, an orifice in the branch tube, and a feedback tube from the branch tube downstream of the orifice to the minimum flow valve, the minimum flow valve being operative to maintain a substantially constant pressure differential across the orifice to maintain constant fuel flow to the pilot flame nozzle.

  16. Incorporation of Oxygen into Abscisic Acid and Phaseic Acid from Molecular Oxygen 1

    PubMed Central

    Creelman, Robert A.; Zeevaart, Jan A. D.

    1984-01-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumarium. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% 18O2 and 80% N2 indicates that one atom of 18O is incorporated in the 6′-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase. Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing 18O2 indicates that one atom of 18O is present in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-stressed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggests that either (a) the oxygen present in the 1′-, 4′-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1′- and 4′-positions of abscisic acid which is converted to abscisic acid under conditions of water stress. PMID:16663564

  17. No reduction using sublimination of cyanuric acid

    DOEpatents

    Perry, Robert A.

    1996-01-01

    A method of reducing the NO content of a gas stream comprises contacting the gas stream with an amount of HNCO at a temperature effective for heat-induced decomposition of cyanuric acid, said amount and temperature being effective for the resultant lowering of the NO content of the gas stream, said cyanuric acid being particulate and having a particle size of less than 90 .mu.m.

  18. Proper battery system design for GAS experiments

    NASA Astrophysics Data System (ADS)

    Calogero, Stephen A.

    1992-10-01

    The purpose of this paper is to help the GAS experimenter to design a battery system that meets mission success requirements while at the same time reducing the hazards associated with the battery system. Lead-acid, silver-zinc and alkaline chemistry batteries will be discussed. Lithium batteries will be briefly discussed with emphasis on back-up power supply capabilities. The hazards associated with different battery configurations will be discussed along with the controls necessary to make the battery system two-fault tolerant.

  19. Proper battery system design for GAS experiments

    NASA Technical Reports Server (NTRS)

    Calogero, Stephen A.

    1992-01-01

    The purpose of this paper is to help the GAS experimenter to design a battery system that meets mission success requirements while at the same time reducing the hazards associated with the battery system. Lead-acid, silver-zinc and alkaline chemistry batteries will be discussed. Lithium batteries will be briefly discussed with emphasis on back-up power supply capabilities. The hazards associated with different battery configurations will be discussed along with the controls necessary to make the battery system two-fault tolerant.

  20. 10 CFR 50.44 - Combustible gas control for nuclear power reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Combustible gas control for nuclear power reactors. 50.44 Section 50.44 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION... for nuclear power reactors. (a) Definitions—(1) Inerted atmosphere means a containment atmosphere with...

  1. 10 CFR 50.44 - Combustible gas control for nuclear power reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Combustible gas control for nuclear power reactors. 50.44 Section 50.44 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION... for nuclear power reactors. (a) Definitions—(1) Inerted atmosphere means a containment atmosphere with...

  2. Tissue Fatty Acid Profile is Differently Modulated from Olive Oil and Omega-3 Polyunsaturated Fatty Acids in ApcMin/+ Mice.

    PubMed

    Tutino, Valeria; Caruso, Maria G; De Leonardis, Giampiero; De Nunzio, Valentina; Notarnicola, Maria

    2017-11-16

    Fatty acid profile can be considered an appropriate biomarker for investigating the relations between the patterns of fatty acid metabolism and specific diseases, as cancer, cardiovascular and degenerative diseases. Aim of this study was to test the effects of diets enriched with olive oil and omega-3 Polyunsaturated Fatty Acids (PUFAs) on fatty acid profile in intestinal tissue of ApcMin/+ mice. Three groups of animals were considered: control group, receiving a standard diet; olive oilgroup, receiving a standard diet enriched with olive oil; omega-3 group, receiving a standard diet enriched with salmon fish. Tissue fatty acid profile was evaluated by gas chromatography method. Olive oil and omega-3 PUFAs in the diet differently affect the tissue fatty acid profile. Compared to control group, the levels of Saturated Fatty Acids (SFAs) were lower in olive oil group, while an increase of SFAs was found in omega-3 group. Monounsaturated Fatty Acids (MUFAs) levels were enhanced after olive oil treatment, and in particular, a significant increase of oleic acid levels was detected; MUFAs levels were instead reduced in omega-3 group in line with the decrease of oleic acid levels. The total PUFAs levels were lower in olive oil respect to control group. Moreover, a significant induction of Saturation Index (SI) levels was observed after omega-3 PUFAs treatment, while its levels were reduced in mice fed with olive oil. Our data demonstrated a different effect of olive oil and omega-3 PUFAs on tissue lipid profile in APCMin/+ mice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport.

    PubMed

    Sheng, Zhizhi; Wang, Honglong; Tang, Yongliang; Wang, Miao; Huang, Lizhi; Min, Lingli; Meng, Haiqiang; Chen, Songyue; Jiang, Lei; Hou, Xu

    2018-02-01

    The development of membrane technology is central to fields ranging from resource harvesting to medicine, but the existing designs are unable to handle the complex sorting of multiphase substances required for many systems. Especially, the dynamic multiphase transport and separation under a steady-state applied pressure have great benefits for membrane science, but have not been realized at present. Moreover, the incorporation of precisely dynamic control with avoidance of contamination of membranes remains elusive. We show a versatile strategy for creating elastomeric microporous membrane-based systems that can finely control and dynamically modulate the sorting of a wide range of gases and liquids under a steady-state applied pressure, nearly eliminate fouling, and can be easily applied over many size scales, pressures, and environments. Experiments and theoretical calculation demonstrate the stability of our system and the tunability of the critical pressure. Dynamic transport of gas and liquid can be achieved through our gating interfacial design and the controllable pores' deformation without changing the applied pressure. Therefore, we believe that this system will bring new opportunities for many applications, such as gas-involved chemical reactions, fuel cells, multiphase separation, multiphase flow, multiphase microreactors, colloidal particle synthesis, and sizing nano/microparticles.

  4. Apparatus and method for gas turbine active combustion control system

    NASA Technical Reports Server (NTRS)

    Knobloch, Aaron (Inventor); Mancini, Alfred Albert (Inventor); Myers, William J. (Inventor); Fortin, Jeffrey B. (Inventor); Umeh, Chukwueloka (Inventor); Kammer, Leonardo C. (Inventor); Shah, Minesh (Inventor)

    2011-01-01

    An Active Combustion Control System and method provides for monitoring combustor pressure and modulating fuel to a gas turbine combustor to prevent combustion dynamics and/or flame extinguishments. The system includes an actuator, wherein the actuator periodically injects pulsed fuel into the combustor. The apparatus also includes a sensor connected to the combustion chamber down stream from an inlet, where the sensor generates a signal detecting the pressure oscillations in the combustor. The apparatus controls the actuator in response to the sensor. The apparatus prompts the actuator to periodically inject pulsed fuel into the combustor at a predetermined sympathetic frequency and magnitude, thereby controlling the amplitude of the pressure oscillations in the combustor by modulating the natural oscillations.

  5. Fuel cell-gas turbine hybrid system design part II: Dynamics and control

    NASA Astrophysics Data System (ADS)

    McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

    2014-05-01

    Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

  6. System of treating flue gas

    DOEpatents

    Ziegler, D.L.

    1975-12-01

    A system is described for treating or cleaning incinerator flue gas containing acid gases and radioactive and fissionable contaminants. Flue gas and a quench solution are fed into a venturi and then tangentially into the lower portion of a receptacle for restricting volumetric content of the solution. The upper portion of the receptacle contains a scrub bed to further treat or clean the flue gas.

  7. NO reduction using sublimation of cyanuric acid

    DOEpatents

    Perry, R.A.

    1996-05-21

    A method of reducing the NO content of a gas stream comprises contacting the gas stream with an amount of HNCO at a temperature effective for heat-induced decomposition of cyanuric acid, said amount and temperature being effective for the resultant lowering of the NO content of the gas stream, said cyanuric acid being particulate and having a particle size of less than 90 {micro}m. 1 fig.

  8. The development and evaluation of a subcutaneous infusion delivery system based on osmotic pump control and gas drive.

    PubMed

    Xie, Xiangyang; Yang, Yang; Yang, Yanfang; Li, Zhiping; Zhang, Hui; Chi, Qiang; Cai, Xingshi; Mei, Xingguo

    2016-09-01

    A novel, self-administration drug delivery system for subcutaneous infusion was developed and evaluated. The device includes two main components: an osmotic tablet controlled gas actuator and a syringe catheter system. The sodium carbonate in the osmotic pump tablet will release into the surround citric acid solution and produce CO 2 gas, which will drive the drug solution into subcutaneous tissue. The key formulation factors of the osmotic tablet that would influence the infusion profiles of the device were investigated by single factor exploration. The formulation was optimized via a response surface methodology. With an 18 ± 4 min of lag time, the delivery system was able to infuse at an approximate zero-order up to 5.90 ± 0.37 h with a precision of 9.0% RSD (n = 6). A linear correlation was found for the infusion profile and the fitting equation was Y = 0.014X - 0.004 (r = 0.998). A temperature change of 4 °C was found to modify the flow rate by about 12.0%. In vivo results demonstrated that the present subcutaneous infusion device was similar to the commercial infusion pump, and it could bring a long and constant ampicillin plasma level with minimized fluctuations.

  9. Chromatographic efficiency of polar capillary columns applied for the analysis of fatty acid methyl esters by gas chromatography.

    PubMed

    Waktola, Habtewold D; Mjøs, Svein A

    2018-04-01

    The chromatographic efficiency that could be achieved in temperature-programmed gas chromatography was compared for four capillary columns that are typically applied for analysis of fatty acid methyl esters (FAME). Three different carrier gases, hydrogen, helium and nitrogen, were applied. For each experiment, the carrier gas velocities and the temperature rates were varied with a full 9 × 3 design, with nine levels on the carrier gas velocity and temperature rates of 1, 2 or 3°C/min. Response surface methodology was used to create models of chromatographic efficiency as a function of temperature rate and carrier gas velocity. The chromatographic efficiency was defined as the inverse of peak widths measured in retention index units. The final results were standardized so that the efficiencies that could be achieved within a certain time frame, defined by the retention time of the last compound in the chromatogram, could be compared. The results show that there were clear differences in the efficiencies that could be achieved with the different columns and that the efficiency decreased with increasing polarity of the stationary phase. The differences can be explained by higher resistance to mass transfer in the stationary phase in the most polar columns. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Control of Cr6+ emissions from gas metal arc welding using a silica precursor as a shielding gas additive.

    PubMed

    Topham, Nathan; Wang, Jun; Kalivoda, Mark; Huang, Joyce; Yu, Kuei-Min; Hsu, Yu-Mei; Wu, Chang-Yu; Oh, Sewon; Cho, Kuk; Paulson, Kathleen

    2012-03-01

    Hexavalent chromium (Cr(6+)) emitted from welding poses serious health risks to workers exposed to welding fumes. In this study, tetramethylsilane (TMS) was added to shielding gas to control hazardous air pollutants produced during stainless steel welding. The silica precursor acted as an oxidation inhibitor when it decomposed in the high-temperature welding arc, limiting Cr(6+) formation. Additionally, a film of amorphous SiO(2) was deposited on fume particles to insulate them from oxidation. Experiments were conducted following the American Welding Society (AWS) method for fume generation and sampling in an AWS fume hood. The results showed that total shielding gas flow rate impacted the effectiveness of the TMS process. Increasing shielding gas flow rate led to increased reductions in Cr(6+) concentration when TMS was used. When 4.2% of a 30-lpm shielding gas flow was used as TMS carrier gas, Cr(6+) concentration in gas metal arc welding (GMAW) fumes was reduced to below the 2006 Occupational Safety and Health Administration standard (5 μg m(-3)) and the efficiency was >90%. The process also increased fume particle size from a mode size of 20 nm under baseline conditions to 180-300 nm when TMS was added in all shielding gas flow rates tested. SiO(2) particles formed in the process scavenged nanosized fume particles through intercoagulation. Transmission electron microscopy imagery provided visual evidence of an amorphous film of SiO(2) on some fume particles along with the presence of amorphous SiO(2) agglomerates. These results demonstrate the ability of vapor phase silica precursors to increase welding fume particle size and minimize chromium oxidation, thereby preventing the formation of hexavalent chromium.

  11. The food additive vanillic acid controls transgene expression in mammalian cells and mice.

    PubMed

    Gitzinger, Marc; Kemmer, Christian; Fluri, David A; El-Baba, Marie Daoud; Weber, Wilfried; Fussenegger, Martin

    2012-03-01

    Trigger-inducible transcription-control devices that reversibly fine-tune transgene expression in response to molecular cues have significantly advanced the rational reprogramming of mammalian cells. When designed for use in future gene- and cell-based therapies the trigger molecules have to be carefully chosen in order to provide maximum specificity, minimal side-effects and optimal pharmacokinetics in a mammalian organism. Capitalizing on control components that enable Caulobacter crescentus to metabolize vanillic acid originating from lignin degradation that occurs in its oligotrophic freshwater habitat, we have designed synthetic devices that specifically adjust transgene expression in mammalian cells when exposed to vanillic acid. Even in mice transgene expression was robust, precise and tunable in response to vanillic acid. As a licensed food additive that is regularly consumed by humans via flavoured convenience food and specific fresh vegetable and fruits, vanillic acid can be considered as a safe trigger molecule that could be used for diet-controlled transgene expression in future gene- and cell-based therapies.

  12. Improvement of the control of a gas metal arc welding process

    NASA Astrophysics Data System (ADS)

    Gött, Gregor; Schöpp, Heinz; Hofmann, Frank; Heinz, Gerd

    2010-02-01

    Up to now, the use of the electrical characteristics for process control is state of the art in gas metal arc welding (GMAW). The aim of the work is the improvement of GMAW processes by using additional information from the arc. Therefore, the emitted light of the arc is analysed spectroscopically and compared with high-speed camera images. With this information, a conclusion about the plasma arc and the droplet formation is reasonable. With the correlation of the spectral and local information of the plasma, a specific control of the power supply can be applied. A corresponding spectral control unit (SCU) is introduced.

  13. Reactions Between Water Soluble Organic Acids and Nitrates in Atmospheric Aerosols: Recycling of Nitric Acid and Formation of Organic Salts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bingbing; Laskin, Alexander

    Atmospheric particles often include a complex mixture of nitrate and secondary organic materials accumulated within the same individual particles. Nitrate as an important inorganic component can be chemically formed in the atmosphere. For instance, formation of sodium nitrate (NaNO3) and calcium nitrate Ca(NO3)2 when nitrogen oxide and nitric acid (HNO3) species react with sea salt and calcite, respectively. Organic acids contribute a significant fraction of photochemically formed secondary organics that can condense on the preexisting nitrate-containing particles. Here, we present a systematic microanalysis study on chemical composition of laboratory generated particles composed of water soluble organic acids and nitrates (i.e.more » NaNO3 and Ca(NO3)2) investigated using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and Fourier transform infrared micro-spectroscopy (micro-FTIR). The results show that water-soluble organic acids can react with nitrates releasing gaseous HNO3 during dehydration process. These reactions are attributed to acid displacement of nitrate with weak organic acids driven by the evaporation of HNO3 into gas phase due to its relatively high volatility. The reactions result in significant nitrate depletion and formation of organic salts in mixed organic acids/nitrate particles that in turn may affect their physical and chemical properties relevant to atmospheric environment and climate. Airborne nitrate concentrations are estimated by thermodynamic calculations corresponding to various nitrate depletions in selected organic acids of atmospheric relevance. The results indicate a potential mechanism of HNO3 recycling, which may further affect concentrations of gas- and aerosol-phase species in the atmosphere and the heterogeneous reaction chemistry between them.« less

  14. Acidities of Water and Methanol in Aqueous Solution and DMSO

    ERIC Educational Resources Information Center

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  15. Saturated fatty acids as possible important metabolites for epithelial ovarian cancer based on the free and esterified fatty acid profiles determined by GC-MS analysis.

    PubMed

    Yin, Rui; Yang, Tongshu; Su, Hui; Ying, Li; Liu, Liyan; Sun, Changhao

    2016-09-26

    The aims were to investigate the serum free fatty acid (FFA) and esterified fatty acid (EFA) profiles and to identify biomarkers that can be used to identify patients with epithelial ovarian cancer (EOC) based on the metabolomics approach. We applied a targeted gas chromatography-mass spectrometry metabolomics approach to serum samples from 40 EOC patients and 35 healthy controls for achieving the FFA and EFA profiles. These metabolite profiles were processed using multivariate analysis to obtain potential biomarkers. And then, some independent samples were chosen to validate these potential biomarkers. There were higher saturated fatty acids and lower unsaturated fatty acids in EOC patients when compared with the healthy controls. EFA (C16:0), EFA (C18:0) and FFA (C16:0) were identified as potential biomarkers that distinguished EOC from the healthy controls. The areas under the curve from the EFA (C16:0), EFA (C18:0) and FFA (C16:0) in validated study were 0.745, 0.701, 0.682, respectively. Our study provides useful information to bridge the gaps in our understanding to the fatty acids metabolic alterations associated with EOC, and this study has demonstrated saturated fatty acid biomarkers might be helpful for the detection and characterization of EOC patients.

  16. Poly (lactic-co-glycolic acid) controlled release systems: experimental and modeling insights

    PubMed Central

    Hines, Daniel J.; Kaplan, David L.

    2013-01-01

    Poly-lactic-co-glycolic acid (PLGA) has been the most successful polymeric biomaterial for use in controlled drug delivery systems. There are several different chemical and physical properties of PLGA that impact the release behavior of drugs from PLGA delivery devices. These properties must be considered and optimized in drug release device formulation. Mathematical modeling is a useful tool for identifying, characterizing, and predicting the mechanisms of controlled release. The advantages and limitations of poly (lactic-co-glycolic acid) for controlled release are reviewed, followed by a review of current approaches in controlled release technology that utilize PLGA. Mathematical modeling applied towards controlled release rates from PLGA-based devices will also be discussed to provide a complete picture of state of the art understanding of the control achievable with this polymeric system, as well as the limitations. PMID:23614648

  17. Inverse association between 18-carbon trans fatty acids and intelligence quotients in smoking schizophrenia patients.

    PubMed

    Lohner, Szimonetta; Vágási, Judit; Marosvölgyi, Tamás; Tényi, Tamás; Decsi, Tamás

    2014-01-30

    This study aimed to investigate polyunsaturated (PUFA) and trans isomeric fatty acid status in schizophrenia patients. Fatty acid composition of plasma phospholipids (PL) and triacylglycerols (TG) was analyzed by gas chromatography in 29 schizophrenia patients and 15 healthy controls. We found no difference in PL n-3 fatty acid status between the two groups, while the values of 22:5n-6 were significantly higher in patients with schizophrenia than in controls. In TG, values of docosatrienoic acid (20:3n-3) and docosapentaenoic acid (20:5n-3) were significantly higher in schizophrenia patients than in controls. We found no difference in the trans fatty acid status between patients and controls. In smoking schizophrenia patients significant negative correlations were detected between Wechsler adult full-scale intelligence quotients and values of total trans fatty acids in PL lipids, whereas no such correlation was seen either in non-smoking schizophrenia patients, or in healthy controls. While data obtained in the present study fail to furnish evidence for n-3 PUFA supplementation to the diet of patients with schizophrenia, they indicate that in smoking schizophrenia patients high dietary exposure to trans fatty acids is associated with lower intelligence quotients. © 2013 Published by Elsevier Ireland Ltd.

  18. Controlling Plasma Stability of Hydroxamic Acids: A MedChem Toolbox.

    PubMed

    Hermant, Paul; Bosc, Damien; Piveteau, Catherine; Gealageas, Ronan; Lam, BaoVy; Ronco, Cyril; Roignant, Matthieu; Tolojanahary, Hasina; Jean, Ludovic; Renard, Pierre-Yves; Lemdani, Mohamed; Bourotte, Marilyne; Herledan, Adrien; Bedart, Corentin; Biela, Alexandre; Leroux, Florence; Deprez, Benoit; Deprez-Poulain, Rebecca

    2017-11-09

    Hydroxamic acids are outstanding zinc chelating groups that can be used to design potent and selective metalloenzyme inhibitors in various therapeutic areas. Some hydroxamic acids display a high plasma clearance resulting in poor in vivo activity, though they may be very potent compounds in vitro. We designed a 57-member library of hydroxamic acids to explore the structure-plasma stability relationships in these series and to identify which enzyme(s) and which pharmacophores are critical for plasma stability. Arylesterases and carboxylesterases were identified as the main metabolic enzymes for hydroxamic acids. Finally, we suggest structural features to be introduced or removed to improve stability. This work thus provides the first medicinal chemistry toolbox (experimental procedures and structural guidance) to assess and control the plasma stability of hydroxamic acids and realize their full potential as in vivo pharmacological probes and therapeutic agents. This study is particularly relevant to preclinical development as it allows obtaining compounds equally stable in human and rodent models.

  19. Pedologic and climatic controls on Rn-222 concentrations in soil gas, Denver, Colorado

    USGS Publications Warehouse

    Asher-Bolinder, S.; Owen, D.E.; Schumann, R.R.

    1990-01-01

    Soil-gas radon concentrations are controlled seasonally by factors of climate and pedology. In a swelling soil of the semiarid Western United States, soil-gas radon concentrations at 100 cm depth increase in winter and spring due to increased emanation with higher soil moisture and the capping effect of surface water or ice. Radon concentrations in soil drop markedly through the summer and fall. The increased insolation of spring and summer warms and dries the soil, limiting the amount of water that reaches 100 cm. Probable controls on the distribution of uranium within the soil column include its downward leaching, its precipitation or adsorption onto B-horizon clays, concretions, or cement, and the uranium content and mineralogy of the soil's granitic and gneissic precursors. -from Authors

  20. Surfactant control of air-sea gas exchange across contrasting biogeochemical regimes

    NASA Astrophysics Data System (ADS)

    Pereira, Ryan; Schneider-Zapp, Klaus; Upstill-Goddard, Robert

    2014-05-01

    Air-sea gas exchange is important to the global partitioning of CO2.Exchange fluxes are products of an air-sea gas concentration difference, ΔC, and a gas transfer velocity, kw. The latter is controlled by the rate of turbulent diffusion at the air-sea interface but it cannot be directly measured and has a high uncertainty that is now considered one of the greatest challenges to quantifying net global air-sea CO2 exchange ...(Takahashi et al., 2009). One important control on kw is exerted by sea surface surfactants that arise both naturally from biological processes and through anthropogenic activity. They influence gas exchange in two fundamental ways: as a monolayer physical barrier and through modifying sea surface hydrodynamics and hence turbulent energy transfer. These effects have been demonstrated in the laboratory with artificial surfactants ...(Bock et al., 1999; Goldman et al., 1988) and through purposeful surfactant releases in coastal waters .(.).........().(Brockmann et al., 1982) and in the open ocean (Salter et al., 2011). Suppression of kwin these field experiments was ~5-55%. While changes in both total surfactant concentration and the composition of the natural surfactant pool might be expected to impact kw, the required in-situ studies are lacking. New data collected from the coastal North Sea in 2012-2013 shows significant spatio-temporal variability in the surfactant activity of organic matter within the sea surface microlayer that ranges from 0.07-0.94 mg/L T-X-100 (AC voltammetry). The surfactant activities show a strong winter/summer seasonal bias and general decrease in concentration with increasing distance from the coastline possibly associated with changing terrestrial vs. phytoplankton sources. Gas exchange experiments of this seawater using a novel laboratory tank and gas tracers (CH4 and SF6) demonstrate a 12-45% reduction in kw compared to surfactant-free water. Seasonally there is higher gas exchange suppression in the summer

  1. Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties.

    PubMed

    Aulin, Christian; Karabulut, Erdem; Tran, Amy; Wågberg, Lars; Lindström, Tom

    2013-08-14

    The layer-by-layer (LbL) deposition method was used for the build-up of alternating layers of nanofibrillated cellulose (NFC) or carboxymethyl cellulose (CMC) with a branched, cationic polyelectrolyte, polyethyleneimine (PEI) on flexible poly (lactic acid) (PLA) substrates. With this procedure, optically transparent nanocellulosic films with tunable gas barrier properties were formed. 50 layer pairs of PEI/NFC and PEI/CMC deposited on PLA have oxygen permeabilities of 0.34 and 0.71 cm(3)·μm/m(2)·day·kPa at 23 °C and 50% relative humidity, respectively, which is in the same range as polyvinyl alcohol and ethylene vinyl alcohol. The oxygen permeability of these multilayer nanocomposites outperforms those of pure NFC films prepared by solvent-casting. The nanocellulosic LbL assemblies on PLA substrates was in detailed characterized using a quartz crystal microbalance with dissipation (QCM-D). Atomic force microscopy (AFM) reveals large structural differences between the PEI/NFC and the PEI/CMC assemblies, with the PEI/NFC assembly showing a highly entangled network of nanofibrils, whereas the PEI/CMC surfaces lacked structural features. Scanning electron microscopy images showed a nearly perfect uniformity of the nanocellulosic coatings on PLA, and light transmittance results revealed remarkable transparency of the LbL-coated PLA films. The present work demonstrates the first ever LbL films based on high aspect ratio, water-dispersible nanofibrillated cellulose, and water-soluble carboxymethyl cellulose polymers that can be used as multifunctional films and coatings with tailorable properties, such as gas barriers and transparency. Owing to its flexibility, transparency and high-performance gas barrier properties, these thin film assemblies are promising candidates for several large-scale applications, including flexible electronics and renewable packaging.

  2. Determination of red blood cell fatty acid profiles: Rapid and high-confident analysis by chemical ionization-gas chromatography-tandem mass spectrometry.

    PubMed

    Schober, Yvonne; Wahl, Hans Günther; Renz, Harald; Nockher, Wolfgang Andreas

    2017-01-01

    Cellular fatty acid (FA) profiles have been acknowledged as biomarkers in various human diseases. Nevertheless, common FA analysis by gas chromatography mass spectrometry (GC-MS) requires long analysis time. Hence, there is a need for feasible methods for high throughput analysis in clinical studies. FA was extracted from red blood cells (RBC) and derivatized to fatty acid methyl esters (FAME). A method using gas chromatography tandem mass spectrometry (GC-MS/MS) with ammonia-induced chemical ionization (CI) was developed for the analysis of FA profiles in human RBC. We compared this method with classical single GC-MS using electron impact ionization (EI). The FA profiles of 703 RBC samples were determined by GC-MS/MS. In contrast to EI ammonia-induced CI resulted in adequate amounts of molecular ions for further fragmentation of FAME. Specific fragments for confident quantification and fragmentation were determined for 45 FA. The GC-MS/MS method has a total run time of 9min compared to typical analysis times of up to 60min in conventional GC-MS. Intra and inter assay variations were <10% for all FA analyzed. Analysis of RBC FA composition revealed an age-dependent increase of the omega-3 eicosapentaenoic and docosahexaenoic acid, and a decline of the omega-6 linoleic acid with a corresponding rise of the omega-3 index. The combination of ammonia-induced CI and tandem mass spectrometry after GC separation allows for high-throughput, robust and confident analysis of FA profiles in the clinical laboratory. Copyright © 2016. Published by Elsevier B.V.

  3. Control logic for exhaust gas driven turbocharger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeff, G.A.

    1991-12-31

    This patent describes a method of controlling an exhaust gas driven turbocharger supplying charge air for an internal combustion engine powering vehicle, the turbocharger being adjustable from a normal mode to a power mode in which the charge air available to the engine during vehicle acceleration is increased over that available when the turbocharger is in the normal mode, the vehicle including engine power control means switchable by the vehicle operator from a normal mode to a power mode so that the vehicle operator may selectively elect either the normal mode or the power mode, comprising the steps of measuringmore » the speed of the vehicle, permitting the vehicle operator to elect either the power mode or the normal mode for a subsequent vehicle acceleration, and then adjusting the turbocharger to the power mode when the speed of the vehicle is less than a predetermined reference speed and the vehicle operator has elected to power mode to increase the charge air available to the engine and thereby increasing engine power on a subsequent acceleration of the vehicle.« less

  4. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing.more » During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.« less

  5. Analysis of bacterial fatty acids by flow modulated comprehensive two-dimensional gas chromatography with parallel flame ionization detector/mass spectrometry.

    PubMed

    Gu, Qun; David, Frank; Lynen, Frédéric; Rumpel, Klaus; Xu, Guowang; De Vos, Paul; Sandra, Pat

    2010-06-25

    Comprehensive two-dimensional gas chromatography (GCxGC) offers an interesting tool for profiling bacterial fatty acids. Flow modulated GCxGC using a commercially available system was evaluated, different parameters such as column flows and modulation time were optimized. The method was tested on bacterial fatty acid methyl esters (BAMEs) from Stenotrophomonas maltophilia LMG 958T by using parallel flame ionization detector (FID)/mass spectrometry (MS). The results are compared to data obtained using a thermal modulated GCxGC system. The data show that flow modulated GCxGC-FID/MS method can be applied in a routine environment and offers interesting perspectives for chemotaxonomy of bacteria.

  6. Aromatic aldehyde-catalyzed gas-phase decarboxylation of amino acid anion via imine intermediate: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Xiang, Zhang

    2013-10-01

    It is generally appreciated that carbonyl compound can promote the decarboxylation of the amino acid. In this paper, we have performed the experimental and theoretical investigation into the gas-phase decarboxylation of the amino acid anion catalyzed by the aromatic aldehyde via the imine intermediate on the basis of the tandem mass spectrometry (MS/MS) technique and density functional theory (DFT) calculation. The results show that the aromatic aldehyde can achieve a remarkable catalytic effect. Moreover, the catalytic mechanism varies according to the type of amino acid: (i) The decarboxylation of α-amino acid anion is determined by the direct dissociation of the Csbnd C bond adjacent to the carboxylate, for the resulting carbanion can be well stabilized by the conjugation between α-carbon, Cdbnd N bond and benzene ring. (ii) The decarboxylation of non-α-amino acid anion proceeds via a SN2-like transition state, in which the dissociation of the Csbnd C bond adjacent to the carboxylate and attacking of the resulting carbanion to the Cdbnd N bond or benzene ring take place at the same time. Specifically, for β-alanine, the resulting carbanion preferentially attacks the benzene ring leading to the benzene anion, because attacking the Cdbnd N bond in the decarboxylation can produce the unstable three or four-membered ring anion. For the other non-α-amino acid anion, the Cdbnd N bond preferentially participates in the decarboxylation, which leads to the pediocratic nitrogen anion.

  7. Control of acid and duodenogastroesophageal reflux (DGER) in patients with Barrett's esophagus.

    PubMed

    Yachimski, Patrick; Maqbool, Sabba; Bhat, Yasser M; Richter, Joel E; Falk, Gary W; Vaezi, Michael F

    2015-08-01

    Symptom eradication in patients with Barrett's esophagus (BE) does not guarantee control of acid or duodenogastroesophageal reflux (DGER). Continued reflux of acid and/or DGER may increase risk of neoplastic progression and may decrease the likelihood of columnar mucosa eradication after ablative therapy. To date, no study has addressed whether both complete acid and DGER control is possible in patients with BE. This prospective study was designed to assess the effect of escalating-dose proton pump inhibitor (PPI) therapy on esophageal acid and DGER. Patients with BE (≥3 cm in length) underwent simultaneous ambulatory prolonged pH and DGER monitoring after at least 1 week off PPI therapy followed by testing on therapy after 1 month of twice-daily rabeprazole (20 mg). In those with continued acid and/or DGER, the tests were repeated after 1 month of double-dose (40 mg twice daily) rabeprazole. The primary study outcome was normalization of both acid and DGER. Symptom severity was assessed on and off PPI therapy employing a four-point ordinal scale. A total of 29 patients with BE consented for pH monitoring, of whom 23 also consented for both pH and DGER monitoring off and on therapy (83% male; mean age 58 years; mean body mass index 29; mean Barrett's length 6.0 cm). Median (interquartile range) total % time pH <4 and bilirubin absorbance >0.14 off PPI therapy were 18.4 (11.7-20.0) and 9.7 (5.0-22.2), respectively. In addition, 26/29 (90%) had normalized acid and 18/23 (78%) had normalized DGER on rabeprazole 20 mg. Among those not achieving normalization on 20 mg twice daily, 3/3 (100%) had normalized acid and 4/5 (80%) had normalized DGER on rabeprazole 40 mg twice daily. All subjects had symptoms controlled on rabeprazole 20 mg twice daily. Univariate analysis found no predictor for normalization of physiologic parameters based on demographics. Symptom control does not guarantee normalization of acid and DGER at standard dose of twice-daily PPI

  8. Characteristic chromatographic fingerprint study of short-chain fatty acids in human milk, infant formula, pure milk and fermented milk by gas chromatography-mass spectrometry.

    PubMed

    Jiang, Zhenzuo; Liu, Yanan; Zhu, Yan; Yang, Jing; Sun, Lili; Chai, Xin; Wang, Yuefei

    2016-09-01

    Human milk, infant formula, pure milk and fermented milk as food products or dietary supplements provide a range of nutrients required to both infants and adults. Recently, a growing body of evidence has revealed the beneficial roles of short-chain fatty acids (SCFAs), a subset of fatty acids produced from the fermentation of dietary fibers by gut microbiota. The objective of this study was to establish a chromatographic fingerprint technique to investigate SCFAs in human milk and dairy products by gas chromatography coupled with mass spectrometry. The multivariate method for principal component analysis assessed differences between milk types. Human milk, infant formula, pure milk and fermented milk were grouped independently, mainly because of differences in formic acid, acetic acid, propionic acid and hexanoic acid levels. This method will be important for the assessment of SCFAs in human milk and various dairy products.

  9. Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport

    PubMed Central

    Sheng, Zhizhi; Wang, Honglong; Tang, Yongliang; Wang, Miao; Huang, Lizhi; Min, Lingli; Meng, Haiqiang; Chen, Songyue; Jiang, Lei; Hou, Xu

    2018-01-01

    The development of membrane technology is central to fields ranging from resource harvesting to medicine, but the existing designs are unable to handle the complex sorting of multiphase substances required for many systems. Especially, the dynamic multiphase transport and separation under a steady-state applied pressure have great benefits for membrane science, but have not been realized at present. Moreover, the incorporation of precisely dynamic control with avoidance of contamination of membranes remains elusive. We show a versatile strategy for creating elastomeric microporous membrane-based systems that can finely control and dynamically modulate the sorting of a wide range of gases and liquids under a steady-state applied pressure, nearly eliminate fouling, and can be easily applied over many size scales, pressures, and environments. Experiments and theoretical calculation demonstrate the stability of our system and the tunability of the critical pressure. Dynamic transport of gas and liquid can be achieved through our gating interfacial design and the controllable pores’ deformation without changing the applied pressure. Therefore, we believe that this system will bring new opportunities for many applications, such as gas-involved chemical reactions, fuel cells, multiphase separation, multiphase flow, multiphase microreactors, colloidal particle synthesis, and sizing nano/microparticles. PMID:29487906

  10. Identification Of Fatty Acid Isomers By Gas Chromatography / Matrix Isolation / Fourier Transform Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mossoba, Magdi M.; McDonald, Richard E.; Chen, Jo-Yun T.; Page, Samuel W.

    1989-12-01

    Geometric and positional isomers of fatty acid methyl esters (FAME) derived from hydrogenated soybean oil and margarines were separated by silver nitrate-thin layer chromatography (AgNO3-TLC) followed by capillary gas chromatography (GC) and identified by matrix isolation / Fourier transform infrared (MI/FTIR) spectroscopyi,2. Because of the high specificity of the MI technique, it was possible to distinguish between different 18-carbon aliphatic chains of FAME positional isomers with cis or trans configuration, and to determine their degree of unsaturation. For the first time mid-IR spectra were observed for methylene-interrupted or isolated trans, trans or cis/ trans C18 FAME positional isomers. These spectra could be readily differentiated based on unique MI/FTIR spectral characteristics.

  11. Regioselectivity of pyridine deprotonation in the gas phase.

    PubMed

    Schafman, Bonnie S; Wenthold, Paul G

    2007-03-02

    The regioselective deprotonation of pyridine in the gas phase has been investigated by using chemical reactivity studies. The mixture of regioisomers, trapped as carboxylates, formed in an equilibrium mixture is determined to result from 70-80% deprotonation in the 4-position, and 20-30% deprotonation at the 3-position. The ion formed by deprotonation in the 2-position is not measurably deprotonated at equilibrium because the ion is destabilized by lone-pair repulsion. From the composition of the mixture, the gas-phase acidities (DeltaH degrees acid) at the 4-, 3-, and 2-positions are determined to be 389.9 +/- 2.0, 391.2-391.5, and >391.5 kcal/mol, respectively. The relative acidities of the 4- and 3-positions are explained by using Hammett-Taft parameters, derived by using the measured gas-phase acidities of pyridine carboxylic acids. The values of sigmaF and sigmaR are -0.18 and 0.74, respectively, showing the infused nitrogen in pyridine to have a strong pi electron-withdrawing effect, but with little sigma-inductive effect.

  12. Acidity-controlled selective oxidation of alpha-pinene, isolated from Indonesian pine's turpentine oils (pinus merkusii)

    NASA Astrophysics Data System (ADS)

    Masruri; Farid Rahman, Mohamad; Nurkam Ramadhan, Bagus

    2016-02-01

    Alpha-pinene was isolated in high purity from turpentine oil harvested from Pinus merkusii plantation. The recent investigation on selective oxidation of alpha-pinene using potassium permanganate was undertaken under acidic conditions. The result taught the selective oxidation of alpha-pinene in acidic using potassium permanganate lead to the formation of 2-(3-acetyl-2,2-dimethylcyclobutyl)acetaldehyde or pinon aldehyde. The study method applied reaction in various different buffer conditions i.e. pH 3, 4, 5, and 6, respectively, and each reaction product was monitored using TLC every hour. Product determination was undertaken on spectrometry basis such as infrared, ultra violet-visible, gas chromatography- and liquid chromatography-mass spectrometry.

  13. Amino acid analysis

    NASA Technical Reports Server (NTRS)

    Winitz, M.; Graff, J. (Inventor)

    1974-01-01

    The process and apparatus for qualitative and quantitative analysis of the amino acid content of a biological sample are presented. The sample is deposited on a cation exchange resin and then is washed with suitable solvents. The amino acids and various cations and organic material with a basic function remain on the resin. The resin is eluted with an acid eluant, and the eluate containing the amino acids is transferred to a reaction vessel where the eluant is removed. Final analysis of the purified acylated amino acid esters is accomplished by gas-liquid chromatographic techniques.

  14. High-resolution gas chromatography/mas spectrometry method for characterization and quantitative analysis of ginkgolic acids in ginkgo biloba plants, extracts, and dietary supplements

    USDA-ARS?s Scientific Manuscript database

    A high resolution GC/MS with Selected Ion Monitor (SIM) method focusing on the characterization and quantitative analysis of ginkgolic acids (GAs) in Ginkgo biloba L. plant materials, extracts and commercial products was developed and validated. The method involved sample extraction with (1:1) meth...

  15. Method and apparatus for controlling gas evolution from chemical reactions

    DOEpatents

    Skorpik, James R.; Dodson, Michael G.

    1999-01-01

    The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846.

  16. Method and apparatus for controlling gas evolution from chemical reactions

    DOEpatents

    Skorpik, J.R.; Dodson, M.G.

    1999-05-25

    The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846. 8 figs.

  17. Ca2+-driven intestinal HCO(3)(-) secretion and CaCO3 precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport.

    PubMed

    Cooper, Christopher A; Whittamore, Jonathan M; Wilson, Rod W

    2010-04-01

    Marine teleost fish continuously ingest seawater to prevent dehydration and their intestines absorb fluid by mechanisms linked to three separate driving forces: 1) cotransport of NaCl from the gut fluid; 2) bicarbonate (HCO(3)(-)) secretion and Cl(-) absorption via Cl(-)/HCO(3)(-) exchange fueled by metabolic CO(2); and 3) alkaline precipitation of Ca(2+) as insoluble CaCO(3), which aids H(2)O absorption). The latter two processes involve high rates of epithelial HCO(3)(-) secretion stimulated by intestinal Ca(2+) and can drive a major portion of water absorption. At higher salinities and ambient Ca(2+) concentrations the osmoregulatory role of intestinal HCO(3)(-) secretion is amplified, but this has repercussions for other physiological processes, in particular, respiratory gas transport (as it is fueled by metabolic CO(2)) and acid-base regulation (as intestinal cells must export H(+) into the blood to balance apical HCO(3)(-) secretion). The flounder intestine was perfused in vivo with salines containing 10, 40, or 90 mM Ca(2+). Increasing the luminal Ca(2+) concentration caused a large elevation in intestinal HCO(3)(-) production and excretion. Additionally, blood pH decreased (-0.13 pH units) and plasma partial pressure of CO(2) (Pco(2)) levels were elevated (+1.16 mmHg) at the highest Ca perfusate level after 3 days of perfusion. Increasing the perfusate [Ca(2+)] also produced proportional increases in net acid excretion via the gills. When the net intestinal flux of all ions across the intestine was calculated, there was a greater absorption of anions than cations. This missing cation flux was assumed to be protons, which vary with an almost 1:1 relationship with net acid excretion via the gill. This study illustrates the intimate link between intestinal HCO(3)(-) production and osmoregulation with acid-base balance and respiratory gas exchange and the specific controlling role of ingested Ca(2+) independent of any other ion or overall osmolality in marine

  18. Combined NO/sub x//SO/sub 2/ removal from flue gas using ferrous chelates of SH-containing amino acids and alkali

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, D.K.; Chang, S.G.

    1987-04-01

    We report herein the use of ferrous chelates of SH-containing amino acids including cysteine, penicillamine, N-acetylcysteine, and N-acetylpenicillamine in neutral or alkaline solutions for the combined removal of NO and SO/sub 2/ in wet flue gas clean-up systems. These SH-containing amino acids not only can stabilize ferrous ions in alkaline solutions to promote the absorption of NO, but are also capable of rapidly reducing ferric ions formed during the scrubbing process back to ferrous ions. The disulfide form of the above amino acids can be reduced by SO/sub 2/ and H/sub 2/S to regenerate the starting monomeric species. The chemistrymore » relevant to the absorption of NO by the above ferrous chelates and the ligand regeneration process will be discussed.« less

  19. Combined NO/sub x//SO/sub 2/ removal from flue gas using ferrous chelates of SH-containing amino acids and alkali

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, D.K.; Chang, S.G.

    1987-01-01

    We report herein the use of ferrous chelates of SH-containing amino acids including cysteine, penicillamine, N-acetylcysteine, and N-acetylpenicillamine in neutral or alkaline solutions for the combined removal of NO and SO/sub 2/ in wet flue gas clean-up systems. These SH-containing amino acids not only can stabilize ferrous ions in alkaline solutions to promote the absorption of NO, but are also capable of rapidly reducing ferric ions formed during the scrubbing process back to ferrous ions. The disulfide from of the above amino acids can be reduced by SO/sub 2/ and H/sub 2/S to regenerate the starting monomeric species. The chemistrymore » relevant to the absorption of NO by the above ferrous chelates and the ligand regeneration process will be discussed.« less

  20. Design development and test: Two-gas atmosphere control subsystem

    NASA Technical Reports Server (NTRS)

    Jackson, J. K.

    1974-01-01

    An atmosphere control subsystem (ACS) was developed for NASA-IBJSC which is designed to measure the major atmospheric constituents in the manned cabin of the space shuttle orbiter and control the addition of oxygen and nitrogen to maintain the partial pressures of these gases within very close limits. The ACS includes a mass spectrometer sensor (MSS) which analyzes the atmosphere of a shuttle vehicle pressurized cabin, and an electronic control assembly (ECA). The MSS was built and tested to meet the requirements for flight equipment for the M-171 Metabolic Analyzer experiment for the Skylab flight program. The instrument analyzes an atmospheric gas sample and produces continuous 0-5 vdc analog signals proportional to the partial pressures of H2, O2, N2, H2O, CO2 and total hydrocarbons having a m/e ratio between 50 and 120. It accepts signals from the MSS proportional to the partial pressures of N2 and O2 and controls the supply of these gases to the closed cabin.

  1. Prenatal folic acid use associated with decreased risk of myelomeningocele: A case-control study offers further support for folic acid fortification in Bangladesh.

    PubMed

    Kancherla, Vijaya; Ibne Hasan, Md Omar Sharif; Hamid, Rezina; Paul, Ligi; Selhub, Jacob; Oakley, Godfrey; Quamruzzaman, Quazi; Mazumdar, Maitreyi

    2017-01-01

    Neural tube defects contribute to severe morbidity and mortality in children and adults; however, they are largely preventable through maternal intake of folic acid before and during early pregnancy. We examined the association between maternal prenatal folic acid supplement intake and risk of myelomeningocele (a severe and common type of neural tube defect) in the offspring. We performed secondary analysis using data from a case-control study conducted at Dhaka Community Hospital, Bangladesh between April and November of 2013. Cases and controls included children with and without myelomeningocele, respectively, and their mothers. Cases were identified from local hospitals and rural health clinics served by Dhaka Community Hospital. Controls were selected from pregnancy registries located in the same region as the cases, and matched (1:1) to cases by age and sex. Myelomeningocele in the offspring was confirmed by a pediatrician with expertise in classifying neural tube defects. Maternal prenatal folic acid supplement intake was the main exposure of interest. We estimated crude and adjusted odds ratios (OR) and 95% confidence intervals (CI) using conditional logistic regression analysis. There were 53 pairs of matched cases and controls in our study. Overall, 51% of case mothers reported using folic acid supplements during pregnancy compared to 72% of control mothers (p = 0.03). Median plasma folate concentrations at the time of study visit were 2.79 ng/mL and 2.86 ng/mL among case and control mothers, respectively (p = 0.85). Maternal prenatal folic acid use significantly decreased the odds of myelomeningocele in the offspring (unadjusted OR = 0.42, 95% CI = 0.18-0.96). The association was slightly attenuated after adjusting for maternal age at the time of pregnancy (adjusted OR = 0.43, 95% CI = 0.18-1.02). Our study confirms the protective association between maternal prenatal folic acid supplement use and myelomeningocele among children born in Bangladesh. Our

  2. Surface properties of calcium and magnesium oxide nanopowders grafted with unsaturated carboxylic acids studied with inverse gas chromatography.

    PubMed

    Maciejewska, Magdalena; Krzywania-Kaliszewska, Alicja; Zaborski, Marian

    2012-09-28

    Inverse gas chromatography (IGC) was applied at infinite dilution to evaluate the surface properties of calcium and magnesium oxide nanoparticles and the effect of surface grafted unsaturated carboxylic acid on the nanopowder donor-acceptor characteristics. The dispersive components (γ(s)(D)) of the free energy of the nanopowders were determined by Gray's method, whereas their tendency to undergo specific interactions was estimated based on the electron donor-acceptor approach presented by Papirer. The calcium and magnesium oxide nanoparticles exhibited high surface energies (79 mJ/m² and 74 mJ/m², respectively). Modification of nanopowders with unsaturated carboxylic acids decreased their specific adsorption energy. The lowest value of γ(s)(D) was determined for nanopowders grafted with undecylenic acid, approximately 55 mJ/m². The specific interactions were characterised by the molar free energy (ΔG(A)(SP)) and molar enthalpy (ΔH(A)(SP)) of adsorption as well as the donor and acceptor interaction parameters (K(A), K(D)). Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Formic acid catalyzed hydrolysis of SO3 in the gas phase: a barrierless mechanism for sulfuric acid production of potential atmospheric importance.

    PubMed

    Hazra, Montu K; Sinha, Amitabha

    2011-11-02

    Computational studies at the B3LYP/6-311++G(3df,3pd) and MP2/6-311++G(3df,3pd) levels are performed to explore the changes in reaction barrier height for the gas phase hydrolysis of SO(3) to form H(2)SO(4) in the presence of a single formic acid (FA) molecule. For comparison, we have also performed calculations for the reference reaction involving water assisted hydrolysis of SO(3) at the same level. Our results show that the FA assisted hydrolysis of SO(3) to form H(2)SO(4) is effectively a barrierless process. The barrier heights for the isomerization of the SO(3)···H(2)O···FA prereactive collision complex, which is the rate limiting step in the FA assisted hydrolysis, are found to be respectively 0.59 and 0.08 kcal/mol at the B3LYP/6-311++G(3df,3pd) and MP2/6-311++G(3df,3pd) levels. This is substantially lower than the ~7 kcal/mol barrier for the corresponding step in the hydrolysis of SO(3) by two water molecules--which is currently the accepted mechanism for atmospheric sulfuric acid production. Simple kinetic analysis of the relative rates suggests that the reduction in barrier height facilitated by FA, combined with the greater stability of the prereactive SO(3)···H(2)O···FA collision complex compared to SO(3)···H(2)O···H(2)O and the rather plentiful atmospheric abundance of FA, makes the formic acid mediated hydrolysis reaction a potentially important pathway for atmospheric sulfuric acid production.

  4. Room temperature synthesis of free-standing HKUST-1 membranes from copper hydroxide nanostrands for gas separation.

    PubMed

    Mao, Yiyin; shi, Li; Huang, Hubiao; Cao, Wei; Li, Junwei; Sun, Luwei; Jin, Xianda; Peng, Xinsheng

    2013-06-25

    Large scale, robust, well intergrown free-standing HKUST-1 membranes were converted from copper hydroxide nanostrand free-standing films in 1,3,5-benzenetricarboxylic acid water-ethanol solution at room temperature, and explored for gas separation. The truncated crystals are controllable and favorable for the dense intergrowth.

  5. Cryogenic fractionator gas as stripping gas of fines slurry in a coking and gasification process

    DOEpatents

    DeGeorge, Charles W.

    1981-01-01

    In an integrated coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a scrubbing process and wherein the resulting solids-liquid slurry is stripped with a stripping gas to remove acidic gases, at least a portion of the stripping gas comprises a gas comprising hydrogen, nitrogen and methane separated from the coker products.

  6. Different catalytic effects of a single water molecule: the gas-phase reaction of formic acid with hydroxyl radical in water vapor.

    PubMed

    Anglada, Josep M; Gonzalez, Javier

    2009-12-07

    The effect of a single water molecule on the reaction mechanism of the gas-phase reaction between formic acid and the hydroxyl radical was investigated with high-level quantum mechanical calculations using DFT-B3LYP, MP2 and CCSD(T) theoretical approaches in concert with the 6-311+G(2df,2p) and aug-cc-pVTZ basis sets. The reaction between HCOOH and HO has a very complex mechanism involving a proton-coupled electron transfer process (pcet), two hydrogen-atom transfer reactions (hat) and a double proton transfer process (dpt). The hydroxyl radical predominantly abstracts the acidic hydrogen of formic acid through a pcet mechanism. A single water molecule affects each one of these reaction mechanisms in different ways, depending on the way the water interacts. Very interesting is also the fact that our calculations predict that the participation of a single water molecule results in the abstraction of the formyl hydrogen of formic acid through a hydrogen atom transfer process (hat).

  7. Environmental security control of resource utilization of shale gas' drilling cuttings containing heavy metals.

    PubMed

    Wang, Chao-Qiang; Lin, Xiao-Yan; Zhang, Chun; Mei, Xu-Dong

    2017-09-01

    The overall objective of this research project was to investigate the heavy metals environmental security control of resource utilization of shale gas' drilling cuttings. To achieve this objective, we got through theoretical calculation and testing, ultimately and preliminarily determine the content of heavy metals pollutants, and compared with related standards at domestically and abroad. The results indicated that using the second Fike's law, the theoretical model of the release amount of heavy metal can be made, and the groundwater environmental risk as main point compared with soil. This study can play a role of standard guidance on environmental security control of drilling cuttings resource utilization by the exploration and development of shale gas in our country.

  8. Pgas, a Low-pH-Induced Promoter, as a Tool for Dynamic Control of Gene Expression for Metabolic Engineering of Aspergillus niger.

    PubMed

    Yin, Xian; Shin, Hyun-Dong; Li, Jianghua; Du, Guocheng; Liu, Long; Chen, Jian

    2017-03-15

    The dynamic control of gene expression is important for adjusting fluxes in order to obtain desired products and achieve appropriate cell growth, particularly when the synthesis of a desired product drains metabolites required for cell growth. For dynamic gene expression, a promoter responsive to a particular environmental stressor is vital. Here, we report a low-pH-inducible promoter, P gas , which promotes minimal gene expression at pH values above 5.0 but functions efficiently at low pHs, such as pH 2.0. First, we performed a transcriptional analysis of Aspergillus niger , an excellent platform for the production of organic acids, and we found that the promoter P gas may act efficiently at low pH. Then, a gene for synthetic green fluorescent protein ( sGFP ) was successfully expressed by P gas at pH 2.0, verifying the results of the transcriptional analysis. Next, P gas was used to express the cis -aconitate decarboxylase ( cad ) gene of Aspergillus terreus in A. niger , allowing the production of itaconic acid at a titer of 4.92 g/liter. Finally, we found that P gas strength was independent of acid type and acid ion concentration, showing dependence on pH only. IMPORTANCE The promoter P gas can be used for the dynamic control of gene expression in A. niger for metabolic engineering to produce organic acids. This promoter may also be a candidate tool for genetic engineering. Copyright © 2017 American Society for Microbiology.

  9. Guide for studying and evaluating internal accounting controls. Oil and gas exploration, development and production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    One of the most important responsibilities of any company's management is to establish and maintain, via periodic evaluations, is adequate internal accounting controls. Arthur Andersen and Co. approaches this problem as it relates to the oil and gas industry by logically dividing the economic events that affect a given company into four groups of activity termed ''business cycles'': treasury, expenditure, conversion (exploration, development, and production), and revenue activities. Independent public accountants can evaluate a company's existing internal controls much more thoroughly by studying only one category of business transactions at a time. Arthur Andersen's guide to reviewing internal controls coversmore » each step of this ''transaction-flow'' method as applied to a typical oil and gas company.« less

  10. Serum bile acid level and fatty acid composition in Chinese children with non-alcoholic fatty liver disease.

    PubMed

    Lu, Li Ping; Wan, Yan Ping; Xun, Peng Cheng; Zhou, Ke Jun; Chen, Cheng; Cheng, Si Yang; Zhang, Min Zhong; Wu, Chun Hua; Lin, Wei Wei; Jiang, Ying; Feng, Hai Xia; Wang, Jia Lu; He, Ka; Cai, Wei

    2017-08-01

    To determine serum bile acid (BA) and fatty acid (FA) profiles in Chinese children with non-alcoholic fatty liver disease (NAFLD). A total 76 children aged 4-17 years were categorized into three groups according to the presence and absence of as well as the severity of NAFLD, that is, non-NAFLD (control), mild and moderate to severe NAFLD groups, respectively, based on their liver ultrasonography findings. Serum BA and FA profiles were quantified separately by mass spectrometry and gas chromatography. General linear models were performed to assess the differences among the groups. After adjusted for potential confounders, children with NAFLD had higher levels of chenodeoxycholic acid (CDCA), unconjugated primary BAs (CDCA + cholic acid) but lower levels of deoxycholic acid (DCA), taurodeoxycholic acid (TDCA), glycodeoxycholic acid (GDCA), total DCA (DCA + TDCA + GDCA), glycolithocholic acid (GLCA) and total lithocholic acid (GLCA + taurolithocholic acid) than children without NAFLD. As for FAs, children with mild and moderate to severe NAFLD had higher levels of n-7 monounsaturated FA. Circulating BA and FA profiles may change in children with NAFLD. Further studies are needed to determine their associations and to understand the underlying mechanism of action. © 2017 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  11. Strategies to diagnose and control microbial souring in natural gas storage reservoirs and produced water systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, E.A.; Derr, R.M.; Pope, D.H.

    1995-12-31

    Hydrogen sulfide production (souring) in natural gas storage reservoirs and produced water systems is a safety and environmental problem that can lead to operational shutdown when local hydrogen sulfide standards are exceeded. Systems affected by microbial souring have historically been treated using biocides that target the general microbial community. However, requirements for more environmentally friendly solutions have led to treatment strategies in which sulfide production can be controlled with minimal impact to the system and environment. Some of these strategies are based on microbial and/or nutritional augmentation of the sour environment. Through research sponsored by the Gas Research Institute (GRI)more » in Chicago, Illinois, methods have been developed for early detection of microbial souring in natural gas storage reservoirs, and a variety of mitigation strategies have been evaluated. The effectiveness of traditional biocide treatment in gas storage reservoirs was shown to depend heavily on the methods by which the chemical is applied. An innovative strategy using nitrate was tested and proved ideal for produced water and wastewater systems. Another strategy using elemental iodine was effective for sulfide control in evaporation ponds and is currently being tested in microbially sour natural gas storage wells.« less

  12. HCOOH-induced Controlled-release Hydrolysis of Microalgae (Scenedesmus) to Lactic Acid over Sn-Beta Catalyst.

    PubMed

    Zan, Yifan; Sun, Yuanyuan; Kong, Lingzhao; Miao, Gai; Bao, Liwei; Wang, Hao; Li, Shenggang; Sun, Yuhan

    2018-06-12

    Formic acid induced controlled-release hydrolysis of sugar-rich microalgae (Scenedesmus) over the Sn-Beta catalyst was found to be a highly efficient process for producing lactic acid as a platform chemical. One-pot reaction with a very high lactic acid yield of 83.0% was realized in a batch reactor using water as the solvent. Under the attack of formic acid, the cell wall of Scenedesmus was disintegrated, and hydrolysis of the starch inside the cell was strengthened in a controlled-release mode, resulting in a stable and relatively low glucose concentration. Subsequently, the Sn-Beta catalyst was employed for the efficient conversion of glucose into lactic acid with stable catalytic performance through isomerization, retro-aldol and de-/rehydration reactions. Thus, the hydrolysis of polysaccharides and the catalytic conversion of the monosaccharide into lactic acid was realized by the synergy between an organic Brønsted acid and a heterogeneous Lewis acid catalyst. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Sensing Parts per Million Level Ammonia and Parts per Billion Level Acetic Acid in the Gas Phase by Common Black Film with a Fluorescent pH Probe.

    PubMed

    Fu, Jingni; Zhang, Luning

    2018-01-16

    Relying on the nanometer-thick water core and large surface area-to-volume ratio (∼2 × 10 8 m -1 ) of common black film (CBF), we are able to use a pH-sensitive dye (carboxy-seminaphthorhodafluor-1, SNARF-1) to detect ammonia and acetic acid gas adsorption into the CBF, with the limit of detection reaching 0.8 ppm for NH 3 gas and 3 ppb for CH 3 COOH gas in the air. Data analysis reveals that fluorescence signal change is linearly proportional to the gas concentration up to 15 ppm and 65 ppb for NH 3 and CH 3 COOH, respectively.

  14. Improvements of gas-fired kiln by use of a microcomputer control system for the porcelain manufacture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loong, H.; Liang, C.C.; Tseng, K.T.

    1988-01-01

    The use of microcomputer control system to gas-fired kiln not only enhanced the porcelain kiln's productivity from 75% to 95% but also saved its operation cost around US$ 200,000 per year. The self-designed microcomputer control system can simultaneous set and control the firing conditions of the period kiln which was built up in our laboratory. Our period kiln having volume of 4 M/sup 3/ was insulated by ceramic fiber which is different from use of refractory in traditional kilns. At the bottom of the kiln is an off-gas tunnel connected with a chimney. Besides the auto start-up and continuous operationmore » of kiln, the main functions of this microcomputer control system are summarized.« less

  15. Nonlinear multivariable design by total synthesis. [of gas turbine engine control systems

    NASA Technical Reports Server (NTRS)

    Sain, M. K.; Peczkowski, J. L.

    1982-01-01

    The Nominal Design Problem (NDP) is extended to nonlinear cases, and a new case study of robust feedback synthesis for gas turbine control design is presented. The discussion of NDP extends and builds on earlier Total Synthesis Problem theory and ideas. Some mathematical preliminaries are given in which a bijection from a set S onto a set T is considered, with T admitting the structure of an F-vector space. NDP is then discussed for a nonlinear plant, and nonlinear nominal design is defined and characterized. The design of local controllers for a turbojet and the scheduling of these controls into a global control are addressed.

  16. Effects of simulated flue gas on components of Scenedesmus raciborskii WZKMT.

    PubMed

    Li, Xie-kun; Xu, Jing-liang; Guo, Ying; Zhou, Wei-zheng; Yuan, Zhen-hong

    2015-08-01

    Scenedesmus raciborskii WZKMT cultured with simulated flue gas was investigated. Cellular components, including total sugar, starch, chlorophyll, protein and lipid, were compared between simulated flue gas and 7% (v/v) CO2. Dissolution of SO2 and NO in simulated flue gas led to pH decrease and toxicity to microalgae cells. Furthermore, the death or aging of microalgae cells reduced the buffer capacity and caused decrease of simulated flue gas absorption. With 7% CO2, the highest total sugar and starch content could attain to 66.76% and 53.16%, respectively, which indicated S. raciborskii WZKMT is a desired feedstock candidate for bioethanol production. Microalgae growth and starch accumulation was inhibited, while cells produced more chlorophyll, protein and lipid when simulated flue gas was the carbon source. Fatty acids composition analysis indicated that there was no significant distinction on fatty acids relative content (fatty acid/TFA) between cells aerated using simulated flue gas and 7% CO2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J C; Haut, R; Jahn, G

    2010-02-19

    An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations.more » Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.« less

  18. Characterization of naphthenic acids in oil sands wastewaters by gas chromatography-mass spectrometry.

    PubMed

    Holowenko, Fervone M; MacKinnon, Michael D; Fedorak, Phillip M

    2002-06-01

    The water produced during the extraction of bitumen from oil sands is toxic to aquatic organisms due largely to a group of naturally occurring organic acids, naphthenic acids (NAs), that are solubilized from the bitumen during processing. NAs are a complex mixture of alkyl-substituted acyclic and cycloaliphatic carboxylic acids, with the general chemical formula CnH(2n + Z)O2, where n is the carbon number and Z specifies a homologous family. Gas chromatography-electron impact mass spectrometry was used to characterize NAs in nine water samples derived from oil sands extraction processes. For each sample, the analysis provided the relative abundances for up to 156 base peaks, with each representing at least one NA structure. Plotting the relative abundances of NAs as three-dimensional bar graphs showed differences among samples. The relative abundance of NAs with carbon numbers < or = 21 to those in the "C22 + cluster" (sum of all NAs with carbon numbers > or = 22 in Z families 0 to -12) proved useful for comparing the water samples that had a range of toxicities. A decrease in toxicity of process-affected waters accompanied an increase in the proportion of NAs in the "C22 + cluster", likely caused by biodegradation of NAs with carbon numbers of < or = 21. In addition, an increase in the proportion of NAs in the "C22 + cluster" accompanied a decrease in the total NAs in the process-affected waters, again suggesting the selective removal of NAs with carbon numbers of < or = 21. This is the first investigation in which changes in the fingerprint of the NA fraction of process-affected waters from the oil sands operations has corresponded with measured toxicity in these waters.

  19. Timing of dietary acid intake and erosive tooth wear: A case-control study.

    PubMed

    O'Toole, Saoirse; Bernabé, Eduardo; Moazzez, Rebecca; Bartlett, David

    2017-01-01

    There is a lack of clinical data on the impact of timing of dietary acid intake and toothbrush abrasion when attempting to control erosive tooth wear progression. The aim of this study was to estimate the association of theoretical causative factors with erosive tooth wear to inform evidence-based guidelines. Using case-control study design, 300 participants with dietary erosive tooth wear and 300 age-matched controls were recruited from the restorative clinics of King's College London Dental Institute. A previously validated questionnaire was adapted to be interviewer-led and to assess frequency, timing and duration of dietary acid intake in addition to alternate drinking habits prior to swallowing. Timing of toothbrushing in relation to meals and dietary acid intake was investigated. Associations with erosive tooth wear were assessed in crude and adjusted logistic regression models. Fruit intake between meals (p<0.001), but not with meals (p=0.206), was associated with erosive tooth wear and contrasted with acidic drinks which maintained a strong association regardless of timing of intake (OR up to 11.84 [95% CI: 5.42-25.89], p<0.001). Prolonged fruit eating and alternate drinking habits prior to swallowing (OR 12.82 [95% CI: 5.85-28.08] and 10.34 [95% CI: 4.85-22.06] respectively) were as strongly associated with erosive tooth wear as three or greater daily acid intakes (OR 10.92 [95% CI: 4.40-27.10]). Toothbrushing within 10min of acid intake was not associated with erosive tooth wear following adjustments for dietary factors (OR 1.41 [95% CI: 0.82-2.42], p=0.215]). Significantly increased odds ratios were observed when acids were consumed between meals in this cohort of patients. Universal advice to delay brushing after meals may not be substantiated. Prevention should be focused on avoiding dietary acids between meals, eliminating habits which increase contact time with the acid and reducing daily intake of acidic drinks. Toothbrushing after meals was not

  20. Processes to remove acid forming gases from exhaust gases

    DOEpatents

    Chang, Shih-Ger

    1994-01-01

    The present invention relates to a process for reducing the concentration of NO in a gas, which process comprises: (A) contacting a gas sample containing NO with a gaseous oxidizing agent to oxidize the NO to NO.sub.2 ; (B) contacting the gas sample of step (A) comprising NO.sub.2 with an aqueous reagent of bisulfite/sulfite and a compound selected from urea, sulfamic acid, hydrazinium ion, hydrazoic acid, nitroaniline, sulfanilamide, sulfanilic acid, mercaptopropanoic acid, mercaptosuccinic acid, cysteine or combinations thereof at between about 0.degree. and 100.degree. C. at a pH of between about 1 and 7 for between about 0.01 and 60 sec; and (C) optionally contacting the reaction product of step (A) with conventional chemical reagents to reduce the concentrations of the organic products of the reaction in step (B) to environ-mentally acceptable levels. Urea or sulfamic acid are preferred, especially sulfamic acid, and step (C) is not necessary or performed.

  1. Processes to remove acid forming gases from exhaust gases

    DOEpatents

    Chang, S.G.

    1994-09-20

    The present invention relates to a process for reducing the concentration of NO in a gas, which process comprises: (A) contacting a gas sample containing NO with a gaseous oxidizing agent to oxidize the NO to NO[sub 2]; (B) contacting the gas sample of step (A) comprising NO[sub 2] with an aqueous reagent of bisulfite/sulfite and a compound selected from urea, sulfamic acid, hydrazinium ion, hydrazoic acid, nitroaniline, sulfanilamide, sulfanilic acid, mercaptopropanoic acid, mercaptosuccinic acid, cysteine or combinations thereof at between about 0 and 100 C at a pH of between about 1 and 7 for between about 0.01 and 60 sec; and (C) optionally contacting the reaction product of step (A) with conventional chemical reagents to reduce the concentrations of the organic products of the reaction in step (B) to environmentally acceptable levels. Urea or sulfamic acid are preferred, especially sulfamic acid, and step (C) is not necessary or performed. 16 figs.

  2. Esophageal Acid Clearance During Random Swallowing Is Faster in Patients with Barrett’s Esophagus Than in Healthy Controls

    PubMed Central

    Lottrup, Christian; Krarup, Anne L; Gregersen, Hans; Ejstrud, Per; Drewes, Asbjørn M

    2016-01-01

    Background/Aims Impaired esophageal acid clearance may be a contributing factor in the pathogenesis of Barrett’s esophagus. However, few studies have measured acid clearance as such in these patients. In this explorative, cross-sectional study, we aimed to compare esophageal acid clearance and swallowing rate in patients with Barrett’s esophagus to that in healthy controls. Methods A total of 26 patients with histology-confirmed Barrett’s esophagus and 12 healthy controls underwent (1) upper endoscopy, (2) an acid clearance test using a pH-impedance probe under controlled conditions including controlled and random swallowing, and (3) an ambulatory pH-impedance measurement. Results Compared with controls and when swallowing randomly, patients cleared acid 46% faster (P = 0.008). Furthermore, patients swallowed 60% more frequently (mean swallows/minute: 1.90 ± 0.74 vs 1.19 ± 0.58; P = 0.005), and acid clearance time decreased with greater random swallowing rate (P < 0.001). Swallowing rate increased with lower distal esophageal baseline impedance (P = 0.014). Ambulatory acid exposure was greater in patients (P = 0.033), but clearance times assessed from the ambulatory pH-measurement and acid clearance test were not correlated (all P > 0.3). Conclusions More frequent swallowing and thus faster acid clearance in Barrett’s esophagus may constitute a protective reflex due to impaired mucosal integrity and possibly acid hypersensitivity. Despite these reinforced mechanisms, acid clearance ability seems to be overthrown by repeated, retrograde acid reflux, thus resulting in increased esophageal acid exposure and consequently mucosal changes. PMID:27557545

  3. Effects of Surfactant Contamination on the Next Generation Gas Trap for the ISS Internal Thermal Control System

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Lukens, Clark; Reeves, Daniel R.; Holt, James M.

    2004-01-01

    The current dual-membrane gas trap is designed to remove non-condensed gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). To date it has successfully served its purpose of preventing gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pump. However, contamination in the ITCS coolant has adversely affected the gas venting rate and lifetime of the gas trap, warranting a development effort for a next-generation gas trap. Previous testing has shown that a hydrophobic-only design is capable of performing even better than the current dual-membrane design for both steady-state gas removal and gas slug removal in clean deionized water. This paper presents results of testing to evaluate the effects of surfactant contamination on the steady-state performance of the hydrophobic-only design.

  4. Controllable fabrication of porous free-standing polypyrrole films via a gas phase polymerization.

    PubMed

    Lei, Junyu; Li, Zhicheng; Lu, Xiaofeng; Wang, Wei; Bian, Xiujie; Zheng, Tian; Xue, Yanpeng; Wang, Ce

    2011-12-15

    A facile gas phase polymerization method has been proposed in this work to fabricate porous free-standing polypyrrole (PPy) films. In the presence of pyrrole vapor, the films are obtained in the gas/water interface spontaneously through the interface polymerization with the oxidant of FeCl(3) in the water. Both the thickness of the film and the size of the pores could be controlled by adjusting the concentrations of the oxidant and the reaction time. The as-prepared PPy films exhibited a superhydrophilic behavior due to its composition and porous structures. We have demonstrated a possible formation mechanism for the porous free-standing PPy films. This gas phase polymerization is shown to be readily scalable to prepare large area of PPy films. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Control of oral malodour by dentifrices measured by gas chromatography.

    PubMed

    Newby, Evelyn E; Hickling, Jenneth M; Hughes, Francis J; Proskin, Howard M; Bosma, Marylynn P

    2008-04-01

    To evaluate the effect of toothpaste treatments on levels of oral volatile sulphur compounds (VSCs) measured by gas chromatography in two clinical studies. These were blinded, randomised, controlled, crossover studies with 16 (study A) or 20 (study B) healthy volunteers between the ages of 19-54. Study A: breath samples were collected at baseline, immediately and lhr after brushing. Four dentifrices (Zinc A, Zinc B, commercially available triclosan dentifrice and zinc free control) were evaluated. Study B: breath samples were collected at baseline, immediately, 1, 2, 3 and 7 hours after treatment. Subjects consumed a light breakfast then provided an additional breath sample between baseline assessment and treatment. Two dentifrices (gel-to-foam and a commercially available triclosan dentrifrice) were evaluated. Breath samples were collected in syringes and analysed for VSCs (hydrogen sulphide, methyl mercaptan and Total VSCs) utilising gas chromatography (GC) with flame photometric detection. Study A: immediately after treatment, a statistically significant reduction in VSCs from baseline was observed for Zinc A product only. A statistically significant reduction in VSCs from baseline was observed after 1 hour for all products. Both zinc products exhibited a significantly greater reduction from baseline VSCs than Colgate Total and Control at all time points. Study B: a statistically significant reduction in VSCs from baseline was observed at all time points for both products. The gel-to-foam product exhibited significantly greater reduction from baseline Total VSC concentration than Colgate Total at all time points from 1 hour post-treatment. Control of oral malodour by toothpaste treatment, evaluated as VSC levels using GC, has been demonstrated. Zinc is effective at reducing VSCs and the efficacy of zinc is formulation dependent. A gel-to-foam dentifrice was more effective at reducing VSCs than Colgate Total up to 7 hours.

  6. A quantitative headspace-solid-phase microextraction-gas chromatography-flame ionization detector method to analyze short chain free fatty acids in rat feces.

    PubMed

    Fiorini, Dennis; Boarelli, Maria Chiara; Gabbianelli, Rosita; Ballini, Roberto; Pacetti, Deborah

    2016-09-01

    This study sought to develop and validate a quantitative method to analyze short chain free fatty acids (SCFAs) in rat feces by solid-phase microextraction and gas chromatography (SPME-GC) using the salt mixture ammonium sulfate and sodium dihydrogen phosphate as salting out agent. Conditioning and extraction time, linearity, limits of detection and quantification, repeatability, and recovery were evaluated. The proposed method allows quantification with improved sensitivity as compared with other methods exploiting SPME-GC. The method has been applied to analyze rat fecal samples, quantifying acetic, propionic, isobutyric, butyric, isopentanoic, pentanoic, and hexanoic acids. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Fuzzy logic for plant-wide control of biological wastewater treatment process including greenhouse gas emissions.

    PubMed

    Santín, I; Barbu, M; Pedret, C; Vilanova, R

    2018-06-01

    The application of control strategies is increasingly used in wastewater treatment plants with the aim of improving effluent quality and reducing operating costs. Due to concerns about the progressive growth of greenhouse gas emissions (GHG), these are also currently being evaluated in wastewater treatment plants. The present article proposes a fuzzy controller for plant-wide control of the biological wastewater treatment process. Its design is based on 14 inputs and 6 outputs in order to reduce GHG emissions, nutrient concentration in the effluent and operational costs. The article explains and shows the effect of each one of the inputs and outputs of the fuzzy controller, as well as the relationship between them. Benchmark Simulation Model no 2 Gas is used for testing the proposed control strategy. The results of simulation results show that the fuzzy controller is able to reduce GHG emissions while improving, at the same time, the common criteria of effluent quality and operational costs. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  8. LITERATURE REVIEW OF BORIC ACID SOLUBILITY DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crapse, K.; Kyser, E.

    2011-09-22

    A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system replaces the current dilute nitric acid strip solution with 0.01 M boric acid. This literature study is performed to determine if there is a potential for boric acid to crystallize in the lines with emphasis on the transfer lines to the Defense Waste Processing Facility. This report focuses on the aqueous phase chemistry of boric acid under conditions relevant to MCU and SWPF. Operating and transfer conditions examined for the purpose ofmore » this review include temperatures between 13 C (McLeskey, 2008) and 45 C (Fondeur, 2007) and concentrations from 0 to 3M in nitric acid as well as exposure of small amounts of entrained boric acid in the organic phase to the sodium hydroxide caustic wash stream. Experiments were also conducted to observe any chemical reactions and off-gas generation that could occur when 0.01 M boric acid solution mixes with 3 M nitric acid solution and vice versa. Based on the low concentration (0.01M) of boric acid in the MCU/SWPF strip acid and the moderate operating temperatures (13 C to 45 C), it is unlikely that crystallization of boric acid will occur in the acid strip solution under process or transfer conditions. Mixing experiments of boric and nitric acid show no measurable gas generation (< 1 cc of gas per liter of solution) under similar process conditions.« less

  9. Ca2+-driven intestinal HCO3− secretion and CaCO3 precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport

    PubMed Central

    Cooper, Christopher A.; Whittamore, Jonathan M.

    2010-01-01

    Marine teleost fish continuously ingest seawater to prevent dehydration and their intestines absorb fluid by mechanisms linked to three separate driving forces: 1) cotransport of NaCl from the gut fluid; 2) bicarbonate (HCO3−) secretion and Cl− absorption via Cl−/HCO3− exchange fueled by metabolic CO2; and 3) alkaline precipitation of Ca2+ as insoluble CaCO3, which aids H2O absorption). The latter two processes involve high rates of epithelial HCO3− secretion stimulated by intestinal Ca2+ and can drive a major portion of water absorption. At higher salinities and ambient Ca2+ concentrations the osmoregulatory role of intestinal HCO3− secretion is amplified, but this has repercussions for other physiological processes, in particular, respiratory gas transport (as it is fueled by metabolic CO2) and acid-base regulation (as intestinal cells must export H+ into the blood to balance apical HCO3− secretion). The flounder intestine was perfused in vivo with salines containing 10, 40, or 90 mM Ca2+. Increasing the luminal Ca2+ concentration caused a large elevation in intestinal HCO3− production and excretion. Additionally, blood pH decreased (−0.13 pH units) and plasma partial pressure of CO2 (Pco2) levels were elevated (+1.16 mmHg) at the highest Ca perfusate level after 3 days of perfusion. Increasing the perfusate [Ca2+] also produced proportional increases in net acid excretion via the gills. When the net intestinal flux of all ions across the intestine was calculated, there was a greater absorption of anions than cations. This missing cation flux was assumed to be protons, which vary with an almost 1:1 relationship with net acid excretion via the gill. This study illustrates the intimate link between intestinal HCO3− production and osmoregulation with acid-base balance and respiratory gas exchange and the specific controlling role of ingested Ca2+ independent of any other ion or overall osmolality in marine teleost fish. PMID:20130227

  10. Molecular and isotopic analyses of the hydroxy acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite

    NASA Astrophysics Data System (ADS)

    Cronin, J. R.; Pizzarello, S.; Epstein, S.; Krishnamurthy, R. V.

    1993-10-01

    The hydroxymonocarboxylic acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite were analyzed as their tert-butyldimethylsilyl derivatives using combined gas chromatography-mass spectrometry. The hydroxydicarboxylic acids have not been found previously in meteorites. Each class of compounds is numerous with carbon chains up to C8 or C9 and many, if not all, chain and substitution position isomers represented at each carbon number. The alpha-hydroxycarboxylic acids and alpha-hydroxydicarboxylic acids correspond structurally to many of the known meteoritic alpha-aminocarboxylic acids and alpha-aminodicarboxylic acids, a fact that supports the proposal that a Strecker synthesis was involved in the formation of both classes of compounds. Isotopic analyses show these acids to be D-rich relative to terrestrial organic compounds, as expected; however, the hydroxy acids appear to be isotopically lighter than the amino acids with respect to both carbon and hydrogen.

  11. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the gas chromatographic-electron capture method prescribed in paragraph (c)(3) of this section. If..._locations.html. (3) The gas chromatographic-electron capture method for testing fatty acids for chick-edema...

  12. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the gas chromatographic-electron capture method prescribed in paragraph (c)(3) of this section. If..._locations.html. (3) The gas chromatographic-electron capture method for testing fatty acids for chick-edema...

  13. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a... cystic fibrosis nucleic acid assays is a device intended to help monitor reliability of a test system by...

  14. Impact of acetic acid concentration, application volume, and adjuvants on weed control efficacy

    USDA-ARS?s Scientific Manuscript database

    Vinegar has been identified as a potential organic herbicide, yet additional information is needed to determine the influence of acetic acid concentration, application volume, and adjuvants on weed control. Acetic acid is a contact herbicide, injuring and killing plants by first destroying the cell ...

  15. Effects of alpha lipoic acid, ascorbic acid-6-palmitate, and fish oil on the glutathione, malonaldehyde, and fatty acids levels in erythrocytes of streptozotocin induced diabetic male rats.

    PubMed

    Yilmaz, Okkeş; Ozkan, Yusuf; Yildirim, Mehmet; Oztürk, A Ihsan; Erşan, Yasemin

    2002-01-01

    In this research, it has been aimed to evaluate the improvement effects of alpha lipoic acid (ALA), ascorbic acid-6-palmitate (AA6P), fish oil (FO), and their combination (COM) on some biochemical properties in erythrocytes of streptozotocin (STZ)-induced diabetic male rats. According to experimental results, glutathione (GSH) level in erythrocytes decreased in diabetes (P < 0.01), D + ALA, and D + AA6P groups (P < 0.001). Malonaldehyde (MA) level increased in diabetes (P < 0.05), D + FO, and D + COM groups (P < 0.001), but its level in D + AA6P and D + ALA groups was lower in diabetes group (P < 0.01). Total lipid level in diabetes and diabetes plus antioxidant administered groups were higher than control. Total cholesterol level was high in diabetes and D + ALA groups (P < 0.05), but its level reduced in D + FO compared to control and diabetes groups, P < 0.05, < 0.001, respectively. Total triglyceride (TTG) level was high in the D + ALA (P < 0.05) and D + COM (P < 0.001) groups. In contrast, TTG level in blood of diabetes group was higher than diabetes plus antioxidant and FO administered groups (P < 0.001). According to gas chromatography analysis results, while the palmitic acid raised in diabetes group (P < 0.05), stearic acid in D + FO, D + ALA, and diabetes groups was lower than control (P < 0.05), oleic acid reduced in D + COM and D + FO groups, but its level raised in D + AA6P and D + ALA groups (P < 0.01). As the linoleic acid (LA) elevated in ALA + D, D + AA6P, and diabetes groups, linolenic acid level in diabetes, D + AA6P, and D + FO groups was lower than control (P < 0.001). Arachidonic acid (AA) decreased in D + ALA, D+ AA6P, and diabetes groups (P < 0.01), but its level in D + COM and D + FO was higher than control (P < 0.05). Docosahexaenoic acid (DHA) increased in D + AA6P and D + COM (P < 0.05). While the total saturated fatty acid level raised in diabetes group, its level reduced in D + ALA and D + FO groups (P < 0.05). In contrast, total

  16. Acid-Labile Acyclic Cucurbit[n]uril Molecular Containers for Controlled Release.

    PubMed

    Mao, Dake; Liang, Yajun; Liu, Yamin; Zhou, Xianhao; Ma, Jiaqi; Jiang, Biao; Liu, Jia; Ma, Da

    2017-10-02

    Stimuli-responsive molecular containers are of great importance for controlled drug delivery and other biomedical applications. A new type of acid labile acyclic cucurbit[n]uril (CB[n]) molecular containers is presented that can degrade and release the encapsulated cargo at accelerated rates under mildly acidic conditions (pH 5.5-6.5). These containers retain the excellent recognition properties of CB[n]-type hosts. A cell culture study demonstrated that the cellular uptake of cargos could be fine-tuned by complexation with different containers. The release and cell uptake of cargo dye was promoted by acidic pH. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Gas-Phase and Solution-Phase Homolytic Bond Dissociation Energies of H-N(+) Bonds in the Conjugate Acids of Nitrogen Bases.

    PubMed

    Liu, Wei-Zhong; Bordwell, Frederick G.

    1996-07-12

    The oxidation potentials of 19 nitrogen bases (abbreviated as B: six primary amines, five secondary amines, two tertiary amines, three anilines, pyridine, quinuclidine, and 1,4-diazabicyclo[2,2,2]octane), i.e., E(ox)(B) values in dimethyl sulfoxide (DMSO) and/or acetonitrile (AN), have been measured. Combination of these E(ox)(B) values with the acidity values of the corresponding acids (pK(HB)(+)) in DMSO and/or AN using the equation: BDE(HB)(+) = 1.37pK(HB)(+) + 23.1 E(ox)(B) + C (C equals 59.5 kcal/mol in AN and 73.3 kcal/mol in DMSO) gave estimates of solution phase homolytic bond dissociation energies of H-B(+) bonds. Gas-phase BDE values of H-B(+) bonds were estimated from updated proton affinities (PA) and adiabatic ionization potentials (aIP) using the equation, BDE(HB(+))(g) = PA + aIP - 314 kcal/mol. The BDE(HB)(+) values estimated in AN were found to be 5-11 kcal/mol higher than the corresponding gas phase BDE(HB(+))(g) values. These bond-strengthening effects in solution are interpreted as being due to the greater solvation energy of the HB(+) cation than that of the B(+*) radical cation.

  18. Control rod system useable for fuel handling in a gas-cooled nuclear reactor

    DOEpatents

    Spurrier, Francis R.

    1976-11-30

    A control rod and its associated drive are used to elevate a complete stack of fuel blocks to a position above the core of a gas-cooled nuclear reactor. A fuel-handling machine grasps the control rod and the drive is unlatched from the rod. The stack and rod are transferred out of the reactor, or to a new location in the reactor, by the fuel-handling machine.

  19. Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, Robert E.

    2015-12-08

    Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.

  20. Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, Robert B.

    Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.

  1. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro

    PubMed Central

    Carlsson, Johan A.; Wold, Agnes E.; Sandberg, Ann-Sofie; Östman, Sofia M.

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells. PMID:26619195

  2. Explaining the differential solubility of flue gas components in ionic liquids from first-principle calculations.

    PubMed

    Prasad, B Ram; Senapati, Sanjib

    2009-04-09

    Flue gas is greatly responsible for acid rain formation and global warming. New generation ionic liquids (ILs) have potential in controlling the flue gas emissions, as they acquire high absorptivity for the component gases SO(2), CO(2), etc. The association of the IL-gas interactions to the absorptivity of gas molecules in ILs is, however, poorly understood. In this paper, we present a molecular level description of the interactions of ILs with SO(2), CO(2), and N(2) and show its implications to the differential gas solubility. Our results indicate that the IL anion-gas interactions play a key role in deciding the gas solubility in ILs, particularly for polar gases such as SO(2). On the other hand, regular solution assumption applies to N(2) solubility. In accordance with the previous theoretical and experimental findings, our results also imply that the IL anions dominate the interactions with gas molecules while the cations play a secondary role and the underlying fluid structures of the ILs remain unperturbed by the addition of gas molecules.

  3. 46 CFR 153.557 - Special requirements for hydrochloric acid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and... system that carries hydrochloric acid must be lined with: (1) Natural rubber; (2) Neoprene; or (3) A material approved for hydrochloric acid tanks by the Commandant (CG-522). (b) Containment systems for...

  4. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baselinemore » CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.« less

  5. HEPATIC FATTY ACID PROFILE OF RATS FED A TRIHEPTANOIN-BASED KETOGENIC DIET.

    PubMed

    Vieira de Melo, Ingrid Sofia; Da Rocha Ataide, Terezinha; Lima de Oliveira, Suzana; Bezerra Bueno, Nassib; Duarte de Freitas, Johnnatan; Goulart Sant'Ana, Antônio Euzébio

    2015-07-01

    the aim of this study was to evaluate the influence of consumption of a ketogenic diet supplemented with triheptanoin, a medium-chain anaplerotic triacylglycerol, on the liver fatty acid profile of Wistar rats. three groups of male Wistar rats (n = 10) were submitted to an AIN-93 control diet, a triheptanoin- based ketogenic diet, or a soybean oil-based ketogenic diet for 60 days. Excised livers were subjected to lipid extraction and methylation to obtain fatty acids methyl esters, which were subjected to gas chromatography- mass spectrometry. compared to the rats fed the control diet, those fed ketogenic diets showed a significant reduction in the concentrations of 9-hexadecenoic and 9-octadecenoic acids, whereas those fed triheptanoin showed increased levels of octadecanoic acid. changes in the liver fatty acid profiles of the rats fed a triheptanoin-based or a soybean oil-based ketogenic diet did not seem to be related to the dietary fat source, but rather to the characteristics of the ketogenic diets themselves. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  6. ELECTRON MICROSCOPIC OBSERVATION OF SPECIMENS UNDER CONTROLLED GAS PRESSURE

    PubMed Central

    Heide, Hans Gunther

    1962-01-01

    A technique for encasing specimens in a thin gas layer during their observation in the Siemens Elmiskop I is described. All gases can be employed at pressures up to one atmosphere. Destruction of specimens can occur in the beam; all organic specimens are particularly liable to decompose. The conditions under which this can be avoided are given. A useful application of the technique allows one to prevent specimens from drying out, as they normally do in vacuum. A further application uses the controlled removal of carbon for thinning organic layers and for selective etching of organic materials. PMID:13905967

  7. Sulfuric acid induces airway hyperresponsiveness to substance P in the guinea pig.

    PubMed

    Stengel, P W; Bendele, A M; Cockerham, S L; Silbaugh, S A

    1993-01-01

    We investigated whether sulfuric acid inhalation would cause hyperresponsiveness to substance P. Guinea pigs became dyspneic during a 1 h sulfuric acid exposure, but recovered by 24 h when they were challenged with substance P or histamine aerosols. Eight minutes after the start of challenge, animals were killed and excised lung gas volumes measured. Sulfuric acid slightly increased histamine responsiveness compared to controls. However, sulfuric acid caused a much more pronounced leftward shift in the dose response to substance P. Coadministration of the neutral endopeptidase (NEP) inhibitor, thiorphan, did not reduce sulfuric acid-related hyperresponsiveness to substance P. By 72 h, sensitization to substance P was absent. Histological evaluation of sulfuric acid-treated lungs revealed mild alveolitis at 24 h, but not at 72 h. We conclude that sulfuric acid produces a marked sensitization to substance P. Inactivation of NEP does not appear to account for this effect.

  8. Controls on methane expulsion during melting of natural gas hydrate systems. Topic area 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flemings, Peter

    1.1. Project Goal The project goal is to predict, given characteristic climate-induced temperature change scenarios, the conditions under which gas will be expelled from existing accumulations of gas hydrate into the shallow ocean or directly to the atmosphere. When those conditions are met, the fraction of the gas accumulation that escapes and the rate of escape shall be quantified. The predictions shall be applicable in Arctic regions and in gas hydrate systems at the up dip limit of the stability zone on continental margins. The behavior shall be explored in response to two warming scenarios: longer term change due tomore » sea level rise (e.g. 20 thousand years) and shorter term due to atmospheric warming by anthropogenic forcing (decadal time scale). 1.2. Project Objectives During the first budget period, the objectives are to review and categorize the stability state of existing well-studied hydrate reservoirs, develop conceptual and numerical models of the melting process, and to design and conduct laboratory experiments that dissociate methane hydrate in a model sediment column by systematically controlling the temperature profile along the column. The final objective of the first budget period shall be to validate the models against the experiments. In the second budget period, the objectives are to develop a model of gas flow into sediment in which hydrate is thermodynamically stable, and conduct laboratory experiments of this process to validate the model. The developed models shall be used to quantify the rate and volume of gas that escapes from dissociating hydrate accumulations. In addition, specific scaled simulations characteristic of Arctic regions and regions near the stability limit at continental margins shall be performed. 1.3. Project Background and Rationale The central hypothesis proposed is that hydrate melting (dissociation) due to climate change generates free gas that can, under certain conditions, propagate through the gas hydrate

  9. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  10. Gas-phase advanced oxidation for effective, efficient in situ control of pollution.

    PubMed

    Johnson, Matthew S; Nilsson, Elna J K; Svensson, Erik A; Langer, Sarka

    2014-01-01

    In this article, gas-phase advanced oxidation, a new method for pollution control building on the photo-oxidation and particle formation chemistry occurring in the atmosphere, is introduced and characterized. The process uses ozone and UV-C light to produce in situ radicals to oxidize pollution, generating particles that are removed by a filter; ozone is removed using a MnO2 honeycomb catalyst. This combination of in situ processes removes a wide range of pollutants with a comparatively low specific energy input. Two proof-of-concept devices were built to test and optimize the process. The laboratory prototype was built of standard ventilation duct and could treat up to 850 m(3)/h. A portable continuous-flow prototype built in an aluminum flight case was able to treat 46 m(3)/h. Removal efficiencies of >95% were observed for propane, cyclohexane, benzene, isoprene, aerosol particle mass, and ozone for concentrations in the range of 0.4-6 ppm and exposure times up to 0.5 min. The laboratory prototype generated a OH(•) concentration derived from propane reaction of (2.5 ± 0.3) × 10(10) cm(-3) at a specific energy input of 3 kJ/m(3), and the portable device generated (4.6 ± 0.4) × 10(9) cm(-3) at 10 kJ/m(3). Based on these results, in situ gas-phase advanced oxidation is a viable control strategy for most volatile organic compounds, specifically those with a OH(•) reaction rate higher than ca. 5 × 10(-13) cm(3)/s. Gas-phase advanced oxidation is able to remove compounds that react with OH and to control ozone and total particulate mass. Secondary pollution including formaldehyde and ultrafine particles might be generated, depending on the composition of the primary pollution.

  11. Using organic acids to control subacute ruminal acidosis and fermentation in feedlot cattle fed a high-grain diet.

    PubMed

    Vyas, D; Beauchemin, K A; Koenig, K M

    2015-08-01

    The objective of this study was to determine whether supplementing organic acids can prevent incidences of subacute ruminal acidosis (SARA) in beef heifers fed a diet consisting of 8% barley silage and 92% barley grain-based concentrate (DM basis). Ten ruminally cannulated Hereford crossbred heifers (484 ± 25 kg BW) were used in a replicated 5 × 5 Latin square design with 14-d periods including 10 d for dietary adaptation and 4 d for measurements. Dietary treatments included no supplementation (Control), low fumaric acid (61 g/d), high fumaric acid (125 g/d), low malic acid (59 g/d), and high malic acid (134 g/d). Organic acid supplementation had no effect on DMI ( = 0.77). Similarly, no effects were observed on mean ( = 0.74), minimum ( = 0.64), and maximum ( = 0.27) ruminal pH measured continuously for 48 h. Moreover, area under the curve for pH thresholds 6.2 ( = 0.97), 5.8 ( = 0.66), 5.5 ( = 0.55), and 5.2 ( = 0.93) was similar for all treatments. However, malic acid supplementation lowered the amount of time that ruminal pH was <6.2 compared with the Control ( = 0.02) and fumaric acid treatments ( < 0.01). No effects were observed on total VFA concentrations with organic acid supplementation ( = 0.98) compared with the Control, but greater total VFA concentrations were observed with fumaric acid compared with the malic acid treatments ( = 0.02). The population of total culturable bacteria 3 h after feeding was reduced with supplemental malic acid compared with the Control ( = 0.03) and fumaric acid treatments ( = 0.03). However, no effects were observed with organic acid supplementation on lactic acid-utilizing bacteria ( = 0.59). In conclusion, under the conditions of the present study, organic acid supplementation did not have any significant effects on ruminal fermentation parameters compared with the Control and were not effective in preventing SARA in beef cattle fed high-grain diets.

  12. Metabolomics by Gas Chromatography-Mass Spectrometry: the combination of targeted and untargeted profiling

    PubMed Central

    Fiehn, Oliver

    2016-01-01

    Gas chromatography-mass spectrometry (GC-MS)-based metabolomics is ideal for identifying and quantitating small molecular metabolites (<650 daltons), including small acids, alcohols, hydroxyl acids, amino acids, sugars, fatty acids, sterols, catecholamines, drugs, and toxins, often using chemical derivatization to make these compounds volatile enough for gas chromatography. This unit shows that on GC-MS- based metabolomics easily allows integrating targeted assays for absolute quantification of specific metabolites with untargeted metabolomics to discover novel compounds. Complemented by database annotations using large spectral libraries and validated, standardized standard operating procedures, GC-MS can identify and semi-quantify over 200 compounds per study in human body fluids (e.g., plasma, urine or stool) samples. Deconvolution software enables detection of more than 300 additional unidentified signals that can be annotated through accurate mass instruments with appropriate data processing workflows, similar to liquid chromatography-MS untargeted profiling (LC-MS). Hence, GC-MS is a mature technology that not only uses classic detectors (‘quadrupole’) but also target mass spectrometers (‘triple quadrupole’) and accurate mass instruments (‘quadrupole-time of flight’). This unit covers the following aspects of GC-MS-based metabolomics: (i) sample preparation from mammalian samples, (ii) acquisition of data, (iii) quality control, and (iv) data processing. PMID:27038389

  13. Unconventional mechanisms control cyclic respiratory gas release in flying Drosophila.

    PubMed

    Lehmann, Fritz-Olaf; Heymann, Nicole

    2005-10-01

    The high power output of flight muscles places special demands on the respiratory gas exchange system in insects. In small insects, respiration relies on diffusion, and for elevated locomotor performance such as flight, instantaneous gas exchange rates typically co-vary with the animal's metabolic activity. By contrast, under certain conditions, instantaneous release rate of carbon dioxide from the fruit fly Drosophila flying in a virtual-reality flight arena may oscillate distinctly at low frequency (0.37+/-0.055 Hz), even though flight muscle mechanical power output requires constant metabolic activity. Cross-correlation analysis suggests that this uncoupling between respiratory and metabolic rate is not driven by conventional types of convective flow reinforcement such as abdominal pumping, but might result from two unusual mechanisms for tracheal breathing. Simplified analytical modeling of diffusive tracheal gas exchange suggests that cyclic release patterns in the insect occur as a consequence of the stochastically synchronized control of spiracle opening area by the four large thoracic spiracles. Alternatively, in-flight motion analysis of the abdomen and proboscis using infra-red video imaging suggests utilization of the proboscis extension reflex (PER) for tracheal convection. Although the respiratory benefit of synchronized spiracle opening activity in the fruit fly is unclear, proboscis-induced tracheal convection might potentially help to balance the local oxygen supply between different body compartments of the flying animal.

  14. Effects of controlled gas environments in microbial enhancement of plant protein recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudgett, R.E.; Bajracharya, R.

    Controlled gas environments were maintained by a novel aeration system in solid substrate fermentations for enhanced protein recovery from pressed alfalfa residues. High O/sub 2/ pressures stimulated biomass and enzyme production by an Aspergillus species, isolated from alfalfa, which produced cellulase and pectinase activities in growth-associated metabolism. High CO/sub 2/ pressures also stimulated enzyme production, but had less effect on biomass production, as established from the dissimilation of plant solids. Cellulase and pectinase activities were generally related to protein recoveries. Recoveries were greater than or equal to 50% higher than those obtained by mechanical extraction, with maximum recoveries of greatermore » than or equal to 70% of crude protein contents. Protein not recovered at high cellulase and pectinase activities were believed to be in structurally bound forms not amenable to recovery by nonproteolytic enzymes. Buffering at pH 8 and autoclaving of residues prior to fermentation had little effect on protein recoveries. Controlled gas environments are seen to offer an interesting potential for optimizing industrial fermentation processes for the production of microbial enzymes.« less

  15. Internal gas and liquid distributor for electrodeionization device

    DOEpatents

    Lin, YuPo J.; Snyder, Seth W.; Henry, Michael P.; Datta, Saurav

    2016-05-17

    The present invention provides a resin-wafer electrodeionization (RW-EDI) apparatus including cathode and anode electrodes separated by a plurality of porous solid ion exchange resin wafers, which when in use are filled with an aqueous fluid. The apparatus includes one or more wafers comprising a basic ion exchange medium, and preferably includes one or more wafers comprising an acidic ion exchange medium. The wafers are separated from one another by ion exchange membranes. The gas and aqueous fluid are introduced into each basic wafer via a porous gas distributor which disperses the gas as micro-sized bubbles laterally throughout the distributor before entering the wafer. The fluid within the acidic and/or basic ion exchange wafers preferably includes, or is in contact with, a carbonic anhydrase (CA) enzyme or inorganic catalyst to facilitate conversion of bicarbonate ion to carbon dioxide within the acidic medium.

  16. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wiberg, Gustav K. H.; Fleige, Michael; Arenz, Matthias

    2015-02-01

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  17. Factors affecting variations in the detailed fatty acid profile of Mediterranean buffalo milk determined by 2-dimensional gas chromatography.

    PubMed

    Pegolo, S; Stocco, G; Mele, M; Schiavon, S; Bittante, G; Cecchinato, A

    2017-04-01

    Buffalo milk is the world's second most widely produced milk, and increasing attention is being paid to its composition, particularly the fatty acid profile. The objectives of the present study were (1) to characterize the fatty acid composition of Mediterranean buffalo milk, and (2) to investigate potential sources of variation in the buffalo milk fatty acid profile. We determined the profile of 69 fatty acid traits in 272 individual samples of Mediterranean buffalo milk using gas chromatography. In total, 51 individual fatty acids were identified: 24 saturated fatty acids, 13 monounsaturated fatty acids, and 14 polyunsaturated fatty acids. The major individual fatty acids in buffalo milk were in the order 16:0, 18:1 cis-9, 14:0, and 18:0. Saturated fatty acids were the predominant fraction in buffalo milk fat (70.49%); monounsaturated and polyunsaturated fatty acids were at 25.95 and 3.54%, respectively. Adopting a classification based on carbon-chain length, we found that medium-chain fatty acids (11-16 carbons) represented the greater part (53.7%) of the fatty acid fraction of buffalo milk, whereas long-chain fatty acids (17-24 carbons) and short-chain fatty acids (4-10 carbons) accounted for 32.73 and 9.72%, respectively. The n-3 and n-6 fatty acids were 0.46 and 1.77%, respectively. The main conjugated linoleic acid, rumenic acid, represented 0.45% of total milk fatty acids. Herd/test date and stage of lactation were confirmed as important sources of variation in the fatty acid profile of buffalo milk. The percentages of short-chain and medium-chain fatty acids in buffalo milk increased in early lactation (+0.6 and +3.5%, respectively), whereas long-chain fatty acids decreased (-4.2%). The only exception to this pattern was butyric acid, which linearly decreased from the beginning of lactation, confirmation that its synthesis is independent of malonyl-CoA. These results seem to suggest that in early lactation the mobilization of energy reserves may have less

  18. Gas hydrate inhibition by perturbation of liquid water structure

    NASA Astrophysics Data System (ADS)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong

    2015-06-01

    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.

  19. Gas hydrate inhibition by perturbation of liquid water structure.

    PubMed

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong

    2015-06-17

    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.

  20. Data on the effect of oral feeding of Arachidonic acid or Docosahexanoic acid on haematopoiesis in mice.

    PubMed

    Limbkar, Kedar; Dhenge, Ankita; Jadhav, Dipesh D; Thulasiram, Hirekodathakallu V; Kale, Vaijayanti; Limaye, Lalita

    2017-10-01

    Stem cells have peculiar property to self-renew and differentiate. It is important to control their fate in safe and effective ways for their therapeutic use. The mediators of essential polyunsaturated fatty acids (PUFAs) namely Arachidonic acid (AA) and Docosahexanoic acid (DHA) are known to play a role in haematopoiesis via various metabolic pathways [1]. However the direct effect of purified AA or DHA on haematopoiesis has not been well investigated yet. We have reported that oral administration of PUFAs enhanced haematopoiesis in mice [2]. Signaling Leukocyte Antigen Molecule (SLAM) (CD48 - CD150 + ) phenotype consists of pure population of haematopoietic stem cells (HSCs). Herein we observed higher percentage of SLAM (CD48 - CD150 + ) phenotype in the bone marrow (BM) cells of mice fed with AA or DHA compared to PBS fed control mice. Data from engraftment study depicts that BM from AA/DHA-fed mice showed higher absolute number of donor cells in recipient mice compared to control. The enhanced hematopoiesis observed in AA/DHA-fed mice was returned to normal when the mice were kept on normal diet for six weeks (after ten days of oral feeding). We confirmed GCMS (Gas Chromatography-Mass Spectroscopy) retention times of AA and DHA by co-injecting fatty acid extract from AA or DHA fed mice with purified AA or DHA standards respectively. Representative flow cytometry profile of Lin - Sca-1 + c-kit + (LSK) cells showed higher expression of CXCR4 protein and ligands of Wnt, Notch1 signaling in BM of AA/DHA-fed mice.

  1. Controlled release properties of zein-fatty acid blend films for multiple bioactive compounds.

    PubMed

    Arcan, Iskender; Yemenicioğlu, Ahmet

    2014-08-13

    To develop edible films having controlled release properties for multiple bioactive compounds, hydrophobicity and morphology of zein films were modified by blending zein with oleic (C18:1)Δ⁹, linoleic (C18:2)Δ(9,12), or lauric (C₁₂) acids in the presence of lecithin. The blend zein films showed 2-8.5- and 1.6-2.9-fold lower initial release rates for the model active compounds, lysozyme (LYS) and (+)-catechin (CAT), than the zein control films, respectively. The change of fatty acid chain length affected both CAT and LYS release rates while the change of fatty acid double bond number affected only the CAT release rate. The film morphologies suggested that the blend films owe their controlled release properties mainly to the microspheres formed within their matrix and encapsulation of active compounds. The blend films showed antilisterial activity and antioxidant activity up to 81 μmol Trolox/cm². The controlled release of multiple bioactive compounds from a single film showed the possibility of combining application of active and bioactive packaging technologies and improving not only safety and quality but also health benefits of packed food.

  2. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  3. [Smartphone application for blood gas interpretation].

    PubMed

    Obiols, Julien; Bardo, Pascale; Garnier, Jean-Pierre; Brouard, Benoît

    2013-01-01

    Ninety four per cent of health professionals use their smartphone for business purposes and more than 50% has medical applications. The «Blood Gas» application was created to be part of this dynamic and participate to e-health development in France. The «Blood Gas» application facilitates interpretation of the results of blood gas analysis using an algorithm developed with reference to a medical bibliography. It can detect some complex or intricate acid-base disorders in evaluating the effectiveness of the secondary response. The application also studied the respiratory status of the patient by calculating the PaO2/FiO2 ratio and the alveol-arterial gradient. It also indicates the presence of a shunt effect. Finally, a specific module to calculate the SID (strong ion difference) depending on the model of Stewart can detect complex acid-base disorders.

  4. Acid-catalyzed condensed-phase reactions of limonene and terpineol and their impacts on gas-to-particle partitioning in the formation of organic aerosols.

    PubMed

    Li, Yong Jie; Cheong, Gema Y L; Lau, Arthur P S; Chan, Chak K

    2010-07-15

    We investigated the condensed-phase reactions of biogenic VOCs with C double bond C bonds (limonene, C(10)H(16), and terpineol, C(10)H(18)O) catalyzed by sulfuric acid by both bulk solution (BS) experiments and gas-particle (GP) experiments using a flow cell reactor. Product analysis by gas chromatography-mass spectrometry (GC-MS) showed that cationic polymerization led to dimeric and trimeric product formation under conditions of relative humidity (RH) <20% (in the GP experiments) and a sulfuric acid concentration of 57.8 wt % (in the BS experiments), while hydration occurred under conditions of RH > 20% (in the GP experiments) and sulfuric acid concentrations of 46.3 wt % or lower (in the BS experiments). Apparent partitioning coefficients (K(p,rxn)) were estimated from the GP experiments by including the reaction products. Only under extremely low RH conditions (RH < 5%) did the values of K(p,rxn) ( approximately 5 x 10(-6) m(3)/microg for limonene and approximately 2 x 10(-5) m(3)/microg for terpineol) substantially exceed the physical partitioning coefficients (K(p) = 6.5 x 10(-8) m(3)/microg for limonene and =2.3 x 10(-6) m(3)/microg for terpineol) derived from the absorptive partitioning theory. At RH higher than 5%, the apparent partitioning coefficients (K(p,rxn)) of both limonene and terpineol were in the same order of magnitude as the K(p) values derived from the absorptive partitioning theory. Compared with other conditions including VOC concentration and degree of neutralization (by ammonium) of acidic particles, RH is a critical parameter that influences both the reaction mechanisms and the uptake ability (K(p,rxn) values) of these processes. The finding suggests that RH needs to be considered when taking the effects of acid-catalyzed reactions into account in estimating organic aerosol formation from C double bond C containing VOCs.

  5. The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice.

    PubMed

    Yaish, Mahmoud W; El-Kereamy, Ashraf; Zhu, Tong; Beatty, Perrin H; Good, Allen G; Bi, Yong-Mei; Rothstein, Steven J

    2010-09-09

    The interaction between phytohormones is an important mechanism which controls growth and developmental processes in plants. Deciphering these interactions is a crucial step in helping to develop crops with enhanced yield and resistance to environmental stresses. Controlling the expression level of OsAP2-39 which includes an APETALA 2 (AP2) domain leads to phenotypic changes in rice. Overexpression of OsAP2-39 leads to a reduction in yield by decreasing the biomass and the number of seeds in the transgenic rice lines. Global transcriptome analysis of the OsAP2-39 overexpression transgenic rice revealed the upregulation of a key abscisic acid (ABA) biosynthetic gene OsNCED-I which codes for 9-cis-epoxycarotenoid dioxygenase and leads to an increase in the endogenous ABA level. In addition to OsNCED-1, the gene expression analysis revealed the upregulation of a gene that codes for the Elongation of Upper most Internode (EUI) protein, an enzyme that catalyzes 16α, 17-epoxidation of non-13-hydroxylated GAs, which has been shown to deactivate gibberellins (GAs) in rice. The exogenous application of GA restores the wild-type phenotype in the transgenic line and ABA application induces the expression of EUI and suppresses the expression of OsAP2-39 in the wild-type line. These observations clarify the antagonistic relationship between ABA and GA and illustrate a mechanism that leads to homeostasis of these hormones. In vivo and in vitro analysis showed that the expression of both OsNCED-1 and EUI are directly controlled by OsAP2-39. Together, these results reveal a novel mechanism for the control of the ABA/GA balance in rice which is regulated by OsAP2-39 that in turn regulates plant growth and seed production.

  6. The APETALA-2-Like Transcription Factor OsAP2-39 Controls Key Interactions between Abscisic Acid and Gibberellin in Rice

    PubMed Central

    Yaish, Mahmoud W.; El-kereamy, Ashraf; Zhu, Tong; Beatty, Perrin H.; Good, Allen G.; Bi, Yong-Mei; Rothstein, Steven J.

    2010-01-01

    The interaction between phytohormones is an important mechanism which controls growth and developmental processes in plants. Deciphering these interactions is a crucial step in helping to develop crops with enhanced yield and resistance to environmental stresses. Controlling the expression level of OsAP2-39 which includes an APETALA 2 (AP2) domain leads to phenotypic changes in rice. Overexpression of OsAP2-39 leads to a reduction in yield by decreasing the biomass and the number of seeds in the transgenic rice lines. Global transcriptome analysis of the OsAP2-39 overexpression transgenic rice revealed the upregulation of a key Abscisic Acid (ABA) biosynthetic gene OsNCED-I which codes for 9-cis-epoxycarotenoid dioxygenase and leads to an increase in the endogenous ABA level. In addition to OsNCED-1, the gene expression analysis revealed the upregulation of a gene that codes for the Elongation of Upper most Internode (EUI) protein, an enzyme that catalyzes 16α, 17-epoxidation of non-13-hydroxylated GAs, which has been shown to deactivate gibberellins (GAs) in rice. The exogenous application of GA restores the wild-type phenotype in the transgenic line and ABA application induces the expression of EUI and suppresses the expression of OsAP2-39 in the wild-type line. These observations clarify the antagonistic relationship between ABA and GA and illustrate a mechanism that leads to homeostasis of these hormones. In vivo and in vitro analysis showed that the expression of both OsNCED-1 and EUI are directly controlled by OsAP2-39. Together, these results reveal a novel mechanism for the control of the ABA/GA balance in rice which is regulated by OsAP2-39 that in turn regulates plant growth and seed production. PMID:20838584

  7. Gas vesicles.

    PubMed Central

    Walsby, A E

    1994-01-01

    The gas vesicle is a hollow structure made of protein. It usually has the form of a cylindrical tube closed by conical end caps. Gas vesicles occur in five phyla of the Bacteria and two groups of the Archaea, but they are mostly restricted to planktonic microorganisms, in which they provide buoyancy. By regulating their relative gas vesicle content aquatic microbes are able to perform vertical migrations. In slowly growing organisms such movements are made more efficiently than by swimming with flagella. The gas vesicle is impermeable to liquid water, but it is highly permeable to gases and is normally filled with air. It is a rigid structure of low compressibility, but it collapses flat under a certain critical pressure and buoyancy is then lost. Gas vesicles in different organisms vary in width, from 45 to > 200 nm; in accordance with engineering principles the narrower ones are stronger (have higher critical pressures) than wide ones, but they contain less gas space per wall volume and are therefore less efficient at providing buoyancy. A survey of gas-vacuolate cyanobacteria reveals that there has been natural selection for gas vesicles of the maximum width permitted by the pressure encountered in the natural environment, which is mainly determined by cell turgor pressure and water depth. Gas vesicle width is genetically determined, perhaps through the amino acid sequence of one of the constituent proteins. Up to 14 genes have been implicated in gas vesicle production, but so far the products of only two have been shown to be present in the gas vesicle: GvpA makes the ribs that form the structure, and GvpC binds to the outside of the ribs and stiffens the structure against collapse. The evolution of the gas vesicle is discussed in relation to the homologies of these proteins. Images PMID:8177173

  8. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    PubMed

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure L-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Control of enzymatic browning in apple slices by using ascorbic acid under different conditions.

    PubMed

    el-Shimi, N M

    1993-01-01

    Control of phenol oxidase activity in apple slices by the use of ascorbic acid at different pH values, temperature and time of incubation was investigated. The enzyme was almost inactivated at 1% and 1.5% ascorbic acid. Ascorbic acid solution (1%) caused a remarkable inhibition with the increasing acidity up to pH = 1. Heating treatments for apple slices dipped in 1% ascorbic acid caused a reduction of enzymatic browning, optimum temperature for inactivation of the enzyme was between 60-70 degrees C for 15 minutes. Increasing the time of dipping apple slices in 1% ascorbic acid solutions and at different pH values reduce phenolase activity.

  10. Geologic controls on gas hydrate occurrence in the Mount Elbert prospect, Alaska North Slope

    USGS Publications Warehouse

    Boswell, R.; Rose, K.; Collett, T.S.; Lee, M.; Winters, W.; Lewis, K.A.; Agena, W.

    2011-01-01

    Data acquired at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well, drilled in the Milne Point area of the Alaska North Slope in February, 2007, indicates two zones of high gas hydrate saturation within the Eocene Sagavanirktok Formation. Gas hydrate is observed in two separate sand reservoirs (the D and C units), in the stratigraphically highest portions of those sands, and is not detected in non-sand lithologies. In the younger D unit, gas hydrate appears to fill much of the available reservoir space at the top of the unit. The degree of vertical fill with the D unit is closely related to the unit reservoir quality. A thick, low-permeability clay-dominated unit serves as an upper seal, whereas a subtle transition to more clay-rich, and interbedded sand, silt, and clay units is associated with the base of gas hydrate occurrence. In the underlying C unit, the reservoir is similarly capped by a clay-dominated section, with gas hydrate filling the relatively lower-quality sands at the top of the unit leaving an underlying thick section of high-reservoir quality sands devoid of gas hydrate. Evaluation of well log, core, and seismic data indicate that the gas hydrate occurs within complex combination stratigraphic/structural traps. Structural trapping is provided by a four-way fold closure augmented by a large western bounding fault. Lithologic variation is also a likely strong control on lateral extent of the reservoirs, particularly in the D unit accumulation, where gas hydrate appears to extend beyond the limits of the structural closure. Porous and permeable zones within the C unit sand are only partially charged due most likely to limited structural trapping in the reservoir lithofacies during the period of primary charging. The occurrence of the gas hydrate within the sands in the upper portions of both the C and D units and along the crest of the fold is consistent with an interpretation that these deposits are converted free gas accumulations

  11. Regulation of renal amino acid transporters during metabolic acidosis.

    PubMed

    Moret, Caroline; Dave, Mital H; Schulz, Nicole; Jiang, Jean X; Verrey, Francois; Wagner, Carsten A

    2007-02-01

    The kidney plays a major role in acid-base homeostasis by adapting the excretion of acid equivalents to dietary intake and metabolism. Urinary acid excretion is mediated by the secretion of protons and titratable acids, particularly ammonia. NH(3) is synthesized in proximal tubule cells from glutamine taken up via specific amino acid transporters. We tested whether kidney amino acid transporters are regulated in mice in which metabolic acidosis was induced with NH(4)Cl. Blood gas and urine analysis confirmed metabolic acidosis. Real-time RT-PCR was performed to quantify the mRNAs of 16 amino acid transporters. The mRNA of phosphoenolpyruvate carboxykinase (PEPCK) was quantified as positive control for the regulation and that of GAPDH, as internal standard. In acidosis, the mRNA of kidney system N amino acid transporter SNAT3 (SLC38A3/SN1) showed a strong induction similar to that of PEPCK, whereas all other tested mRNAs encoding glutamine or glutamate transporters were unchanged or reduced in abundance. At the protein level, Western blotting and immunohistochemistry demonstrated an increased abundance of SNAT3 and reduced expression of the basolateral cationic amino acid/neutral amino acid exchanger subunit y(+)-LAT1 (SLC7A7). SNAT3 was localized to the basolateral membrane of the late proximal tubule S3 segment in control animals, whereas its expression was extended to the earlier S2 segment of the proximal tubule during acidosis. Our results suggest that the selective regulation of SNAT3 and y(+)LAT1 expression may serve a major role in the renal adaptation to acid secretion and thus for systemic acid-base balance.

  12. Therapeutic potential of glycyrrhetinic acids: a patent review (2010-2017).

    PubMed

    Hussain, Hidayat; Green, Ivan R; Shamraiz, Umair; Saleem, Muhammad; Badshah, Amin; Abbas, Ghulam; Rehman, Najeeb Ur; Irshad, Muhammad

    2018-05-01

    Glycyrrhetinic acids (GAs) viz., 18β-glycyrrhetinic acid and 18α-glycyrrhetinic acid, are oleanane-type triterpenes having a carboxylic acid group at C-30, and are extracted from the Chines herbal medicine licorice (Glycyrrhiza uralensis). Although the pharmacological properties of GAs have long been known, attention to them has greatly increased in recent times due to their cytotoxic activity. Areas covered: This review represents the patents granted about natural and synthetic glycyrrhetinic acid analogs from January 2010 to December 2017, the advances made by research groups in conjunction with pharmaceutical companies in the discovery of new natural or synthetic glycyrrhetinic acid analogs. Expert opinion: GAs demonstrate excellent cytotoxic, antimicrobial, enzyme inhibitory, antiinflammatory, antioxidant, analgesic, and antiviral effects. It is interesting to note that the C- 3 (OH) and C 30- CO 2 H functional groups make GAs very attractive lead structures for medicinal scientists since these functionalities allow the generation of further chemical diversity for improved pharmacological effects. Moreover, various GA analogues have been prepared via modification of the C 30- CO 2 H. It is noteworthy that the C-30 amide of GA demonstrated better cytotoxic effects compared to the parent compounds. In addition, GAs have the capability to conjugate with other anticancer drugs or be converted into their halo or amino analogs which is expected to stimulate medicinal chemist to synthesize new lead compounds in cancer drug discovery.

  13. Optimized biogas-fermentation by neural network control.

    PubMed

    Holubar, P; Zani, L; Hager, M; Fröschl, W; Radak, Z; Braun, R

    2003-01-01

    In this work several feed-forward back-propagation neural networks (FFBP) were trained in order to model, and subsequently control, methane production in anaerobic digesters. To produce data for the training of the neural nets, four anaerobic continuous stirred tank reactors (CSTR) were operated in steady-state conditions at organic loading rates (Br) of about 2 kg x m(-3) x d(-1) chemical oxygen demand (COD), and disturbed by pulse-like increase of the organic loading rate. For the pulses additional carbon sources were added to the basic feed (surplus- and primary sludge) to simulate cofermentation and to increase the COD. Measured parameters were: gas composition, methane production rate, volatile fatty acid concentration, pH, redox potential, volatile suspended solids and COD of feed and effluent. A hierarchical system of neural nets was developed and embedded in a Decision Support System (DSS). A 3-3-1 FFBP simulated the pH with a regression coefficient of 0.82. A 9-3-3 FFBP simulated the volatile fatty acid concentration in the sludge with a regression coefficient of 0.86. And a 9-3-2 FFBP simulated the gas production and gas composition with a regression coefficient of 0.90 and 0.80 respectively. A lab-scale anaerobic CSTR controlled by this tool was able to maintain a methane concentration of about 60% at a rather high gas production rate of between 5 to 5.6 m3 x m(-3) x d(-1).

  14. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea

    USGS Publications Warehouse

    Xiujuan Wang,; ,; Collett, Timothy S.; Lee, Myung W.; Yang, Shengxiong; Guo, Yiqun; Wu, Shiguo

    2014-01-01

    Multi-channel seismic reflection data, well logs, and recovered sediment cores have been used in this study to characterize the geologic controls on the occurrence of gas hydrate in the Shenhu area of the South China Sea. The concept of the "gas hydrate petroleum system" has allowed for the systematic analysis of the impact of gas source, geologic controls on gas migration, and the role of the host sediment in the formation and stability of gas hydrates as encountered during the 2007 Guangzhou Marine Geological Survey Gas Hydrate Expedition (GMGS-1) in the Shenhu area. Analysis of seismic and bathymetric data identified seventeen sub-linear, near-parallel submarine canyons in this area. These canyons, formed in the Miocene, migrated in a northeasterly direction, and resulted in the burial and abandonment of canyons partially filled by coarse-grained sediments. Downhole wireline log (DWL) data were acquired from eight drill sites and sediment coring was conducted at five of these sites, which revealed the presence of suitable reservoirs for the occurrence of concentrated gas hydrate accumulations. Gas hydrate-bearing sediment layers were identified from well log and core data at three sites mainly within silt and silt clay sediments. Gas hydrate was also discovered in a sand reservoir at one site as inferred from the analysis of the DWL data. Seismic anomalies attributed to the presence of gas below the base of gas hydrate stability zone, provided direct evidence for the migration of gas into the overlying gas hydrate-bearing sedimentary sections. Geochemical analyses of gas samples collected from cores confirmed that the occurrence of gas hydrate in the Shenhu area is controlled by the presence thermogenic methane gas that has migrated into the gas hydrate stability zone from a more deeply buried source.

  15. Noble-gas-rich separates from ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Moniot, R. K.

    1980-02-01

    Acid-resistant residues were prepared by HCl-HF demineralization of three H-type ordinary chondrites: Brownfield 1937 (H3), Dimmitt (H3, 4), and Estacado (H6). These residues were found to contain a large proportion of the planetary-type trapped Ar, Kr, and Xe in the meteorites. The similarity of these acid residues to those from carbonaceous chondrites and LL-type ordinary chondrites suggests that the same phase carries the trapped noble gases in all these diverse meteorite types. Because the H group represents a large fraction of all meteorites, this result indicates that the gas-rich carrier phase is as universal as the trapped noble-gas component itself. When treated with an oxidizing etchant, the acid residues lost almost all their complement of noble gases.

  16. Modeling the Control Systems of Gas-Turbines to Ensure Their Reliable Parallel Operation in the UPS of Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinogradov, A. Yu., E-mail: vinogradov-a@ntcees.ru; Gerasimov, A. S.; Kozlov, A. V.

    Consideration is given to different approaches to modeling the control systems of gas turbines as a component of CCPP and GTPP to ensure their reliable parallel operation in the UPS of Russia. The disadvantages of the approaches to the modeling of combined-cycle units in studying long-term electromechanical transients accompanied by power imbalance are pointed out. Examples are presented to support the use of more detailed models of gas turbines in electromechanical transient calculations. It is shown that the modern speed control systems of gas turbines in combination with relatively low equivalent inertia have a considerable effect on electromechanical transients, includingmore » those caused by disturbances not related to power imbalance.« less

  17. Advanced online control mode selection for gas turbine aircraft engines

    NASA Astrophysics Data System (ADS)

    Wiseman, Matthew William

    The modern gas turbine aircraft engine is a complex, highly nonlinear system the operates in a widely varying environment. Traditional engine control techniques based on the hydro mechanical control concepts of early turbojet engines are unable to deliver the performance required from today's advanced engine designs. A new type of advanced control utilizing multiple control modes and an online mode selector is investigated, and various strategies for improving the baseline mode selection architecture are introduced. The ability to five-tune actuator command outputs is added to the basic mode selection and blending process, and mode selection designs that we valid for the entire flight envelope are presented. Methods for optimizing the mode selector to improve overall engine performance are also discussed. Finally, using flight test data from a GE F110-powered F16 aircraft, the full-envelope mode selector designs are validated and shown to provide significant performance benefits. Specifically, thrust command tracking is enhanced while critical engine limits are protected, with very little impact on engine efficiency.

  18. Fast comprehensive two-dimensional gas chromatography method for fatty acid methyl ester separation and quantification using dual ionic liquid columns.

    PubMed

    Nosheen, Asia; Mitrevski, Blagoj; Bano, Asghari; Marriott, Philip J

    2013-10-18

    Safflower oil is a complex mixture of C18 saturated and unsaturated fatty acids amongst other fatty acids, and achieving separation between these similar structure components using one dimensional gas chromatography (GC) may be difficult. This investigation aims to obtain improved separation of fatty acid methyl esters in safflower oil, and their quantification using comprehensive two-dimensional GC (GC×GC). Here, GC×GC separation is accomplished by the coupling of two ionic liquid (IL) column phases: the combination of SLB-IL111 with IL59 column phases was finally selected since it provided excellent separation of a FAME standard mixture, as well as fatty acids in safflower and linseed oil, compared to other tested column sets. Safflower oil FAME were well separated in a short run of 16min. FAME validation was demonstrated by method reproducibility, linearity over a range up to 500mgL(-1), and limits of detection which ranged from 1.9mgL(-1) to 5.2mgL(-1) at a split ratio of 20:1. Quantification was carried out using two dilution levels of 200-fold for major components and 20-fold for trace components. The fatty acids C15:0 and C17:0 were not reported previously in safflower oil. The SLB-IL111/IL59 column set proved to be an effective and novel configuration for separation and quantification of vegetable and animal oil fatty acids. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Gas/Particle Partitioning of Organic Acids and Organic Aerosols in a Ponderosa Pine Forest in Colorado during BEACHON-RoMBAS 2011

    NASA Astrophysics Data System (ADS)

    Jimenez, J. L.; Yatavelli, L.; Stark, H.; Hayes, P. L.; Campuzano-Jost, P.; Thompson, S.; Kimmel, J. R.; Day, D. A.; Cubison, M. J.; Thornton, J. A.; Jayne, J.; Worsnop, D. R.

    2012-12-01

    The Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) took place at Manitou Forest, CO, during July-Aug. 2011. Gas and particle-phase organic acids were analyzed in real time using a micro-orifice volatilization impactor chemical ionization high-resolution time-of-flight mass spectrometer (MOVI-HRToF-CIMS; Yatavelli et al., AS&T 2012; Yatavelli & Thornton, AS&T 2010) with acetate as the reagent ion. During the gas sampling phase (when the MOVI was at room temperature) aerosol was collected on the MOVI impactor, and was subsequently thermally desorbed over 10 min. under nitrogen, allowing the collection of temperature-programmed thermal desorption (TPTD) mass spectra of particle-phase species. The high resolution of the instrument allows the determination of the elemental composition of most detected ions. Positive Matrix Factorization (PMF) is shown to be very useful to quantify the CIMS backgrounds during the different phases of operation. Two methods were used to estimate the volatility of the detected species. First, the fraction of each species in the particle phase (Fp) vs carbon number was found to approximately follow partitioning theory, both for the alkanoic acids and also for the total acid signal, after accounting for the effect of the oxidation state on vapor pressure. Fp was found to respond on timescales of ~1 h to changes in ambient temperature, indicating that diffusion limitations to evaporation are not major for the aerosol at this site. Preliminary results suggest that Fp depends more strongly on vapor pressure and temperature than on RH, suggesting preferential partitioning for the organic phase rather than the water phase. Secondly, the volatility of individual or groups of acids can be quantified based on the TPTD signal based on calibration with multiple acids of known vapor pressure at concentrations similar to ambient, analogous to the methods of

  20. Amino Acid Concentrations in HIV-Infected Youth Compared to Healthy Controls and Associations with CD4 Counts and Inflammation.

    PubMed

    Ziegler, Thomas R; Judd, Suzanne E; Ruff, Joshua H; McComsey, Grace A; Eckard, Allison Ross

    2017-07-01

    Amino acids play critical roles in metabolism, cell function, body composition and immunity, but little data on plasma amino acid concentrations in HIV are available. We evaluated plasma amino acid concentrations and associations with CD4 counts and inflammatory biomarkers in HIV-infected youth. HIV-infected subjects with a high (≥500 cells/mm 3 ) and low (<500 cells/mm 3 ) current CD4 + T cell counts were compared to one another and to a matched healthy control group. Plasma concentrations of 19 amino acids were determined with an amino acid analyzer. Plasma levels of interleukin-6, tumor necrosis factor receptor-I, and soluble vascular cellular adhesion molecule-I were also measured. Seventy-nine HIV-infected subjects (40 and 39 with high and low CD4 + T cell counts, respectively) and 40 controls were included. There were no differences in amino acid concentrations between HIV-infected subjects with high or low CD4 + T cell counts. When combined, the HIV-infected group exhibited significantly lower median plasma concentrations compared to controls for total, essential, branched-chain and sulfur amino acids, as well as for 12 individual amino acids. Glutamate was the only amino acid that was higher in the HIV-infected group. There were no significant correlations between amino acid endpoints and inflammatory biomarkers for either HIV-infected group or controls. Plasma amino acid concentrations were lower in HIV-infected youth compared to healthy controls, regardless of immune status, while glutamate concentrations were elevated. These findings can inform future interventional studies designed to improve metabolic and clinical parameters influenced by amino acid nutriture.