Science.gov

Sample records for acid gas emission

  1. Destruction of acid gas emissions

    SciTech Connect

    Mathur, M.P.; Fu, Yuan C.; Ekmann, J.M.; Boyle, J.M.

    1990-12-31

    A method of destroying NO{sub x} and SO{sub x} in a combustion gas is disclosed. The method includes generating active species by treating stable molecules in a high temperature plasma. Ammonia, methane, steam, hydrogen, nitrogen or a combustion of these gases can be selected as the stable molecules. The gases are subjected to plasma conditions sufficient to create free radicals, ions or excited atoms such as N, NH, NH{sub 2}, OH, CH and/or CH{sub 2}. These active species are injected into a combustion gas at a location of sufficiently high temperature to maintain the species in active state and permit them to react with NO{sub x} and SO{sub x}. Typically the injection is made into the immediate post-combustion gases at temperatures of 475--950{degrees}C. 1 fig.

  2. Destruction of acid gas emissions

    DOEpatents

    Mathur, Mahendra P.; Fu, Yuan C.; Ekmann, James M.; Boyle, John M.

    1991-01-01

    A method of destroying NO.sub.x and SO.sub.2 in a combustion gas in disclosed. The method includes generating active species by treating stable moleucles in a high temperature plasma. Ammonia, methane, steam, hydrogen, nitrogen or a combination of these gases can be selected as the stable molecules. The gases are subjected to plasma conditions sufficient to create free radicals, ions or excited atoms such as N, NH, NH.sub.2, OH.sup.-, CH and/or CH.sub.2. These active species are injected into a combustion gas at a location of sufficiently high temperature to maintain the species in active state and permit them to react with NO.sub.x and SO.sub.2. Typically the injection is made into the immediate post-combustion gases at temperatures of 475.degree.-950.degree. C.

  3. BENCH-SCALE EVALUATION OF CALCIUM SORBENTS FOR ACID GAS EMISSION CONTROL

    EPA Science Inventory

    Calcium sorbents for acid gas emission control were evaluated for effectiveness in removing SO2/HCl and SO2/NO from simulated incinerator and boiler flue gases. All tests were conducted in a bench-scale reactor (fixed-bed) simulating fabric filter conditions in an acid gas remova...

  4. Optimizing Techology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants

    SciTech Connect

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2004-01-31

    More than 56,000 coal quality data records from five public data sets have been selected for use in this project. These data will be used to create maps showing where coals with low mercury and acid-gas emissions might be found for power plants classified by air-pollution controls. Average coal quality values, calculated for 51,156 commercial coals by U.S. county-of-origin, are listed in the appendix. Coal moisture values are calculated for commercially shipped coal from 163 U.S. counties, where the raw assay data (including mercury and chlorine values) are reported on a dry basis. The calculated moisture values are verified by comparison with observed moisture values in commercial coal. Moisture in commercial U.S. coal shows provincial variation. For example, high volatile C bituminous rank coal from the Interior province has 3% to 4% more moisture than equivalent Rocky Mountain province coal. Mott-Spooner difference values are calculated for 4,957 data records for coals collected from coal mines and exploration drill holes. About 90% of the records have Mott-Spooner difference values within {+-}250 Btu/lb.

  5. OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS

    SciTech Connect

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-10-01

    Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

  6. 2005 Crater Lake Formation, Lahar, Acidic Flood, and Gas Emission From Chiginagak Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Schaefer, J. R.; Scott, W. E.; McGimsey, R. G.; Jorgenson, J.

    2005-12-01

    A 400-m-wide crater lake developed in the formerly snow-and-ice-filled crater of Mount Chiginagak volcano sometime between August 2004 and June 2005, presumably due to increased heat flux from the hydrothermal system. We are also evaluating the possible role of magma intrusion and degassing. In early summer 2005, clay-rich debris and an estimated 5.6 million cubic meters of acidic water from the crater exited through tunnels in the base of a glacier that breaches the south crater rim. Over 27 kilometers downstream, the acidic waters of the flood reached approximately 1.5 meters above current water levels and inundated an important salmon spawning drainage, acidifying at least the surface water of Mother Goose Lake (approximately 1 cubic kilometer in volume) and preventing the annual salmon run. No measurements of pH were taken until late August 2005. At that time the pH of water sampled from the Mother Goose Lake inlet, lake surface, and outlet stream (King Salmon River) was 3.2. Defoliation and leaf damage of vegetation along affected streams, in areas to heights of over 70 meters in elevation above flood level, indicates that a cloud of detrimental gas or aerosol accompanied the flood waters. Analysis of stream water, lake water, and vegetation samples is underway to better determine the agent responsible for the plant damage. This intriguing pattern of gas-damaged vegetation concentrated along and above the flood channels is cause for further investigation into potential hazards associated with Chiginagak's active crater lake. Anecdotal evidence from local lodge owners and aerial photographs from 1953 suggest that similar releases occurred in the mid-1970s and early 1950s.

  7. Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants

    SciTech Connect

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2004-07-31

    County-average hydrogen values are calculated for the part 2, 1999 Information Collection Request (ICR) coal-quality data, published by the U.S. Environmental Protection Agency. These data are used together with estimated, county-average moisture values to calculate average net heating values for coal produced in U.S. counties. Finally, 10 draft maps of the contiguous U.S. showing the potential uncontrolled sulfur, chlorine and mercury emissions of coal by U.S. county-of-origin, as well as expected mercury emissions calculated for existing emission control technologies, are presented and discussed.

  8. Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants

    SciTech Connect

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-01-31

    Revised maps and associated data show potential mercury, sulfur, and chlorine emissions for U.S. coal by county of origin. Existing coal mining and coal washing practices result in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Selection of low-mercury coal is a good mercury control option for plants having hot-side ESP, cold-side ESP, or hot-side ESP/FGD emission controls. Chlorine content is more important for plants having cold-side ESP/FGD or SDA/FF controls; optimum net mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions.

  9. Feeding reduced crude protein diets with crystalline amino acids supplementation reduce air gas emissions from housing.

    PubMed

    Li, Q-F; Trottier, N; Powers, W

    2015-02-01

    The objective of this study was to test the hypothesis that reducing dietary CP by 1.5% and supplementing crystalline AA (CAA) to meet the standardized ileal digestible (SID) AA requirements for growing and finishing pigs decreases air emissions of ammonia (NH), nitrous oxide (NO), and carbon dioxide (CO) compared with an industry standard diet, without reducing growth performance. Seventy-two pigs were allocated to 12 rooms (6 pigs per room) and 2 diets (6 rooms per diet) formulated according to a 5-phase feeding program across the grow-finish period (107 d total). The diets consisted of a standard diet containing 18.5 to 12.2% CP or a reduced CP diet containing 17.5 to 11.0% CP + CAA over the course of the 5-phase feeding program. Gases (NH, NO, hydrogen sulfide, methane, nonmethane total hydrocarbon, and CO) and ventilation rates were measured continuously from the rooms. Compared with standard diet, ADG and feed conversion of pigs fed reduced CP + CAA diets did not differ (2.7 kg gain/d and 0.37 kg gain/kg feed, respectively). Compared with standard diet, feeding reduced CP + CAA diets decreased ( < 0.01) NH emissions by 46% over the 107-d period (5.4 and 2.9 g · pig · d, respectively). Change in NH emissions for each percentage unit reduction in dietary CP concentration corresponded with 47.9, 53.2, 26.8, 26.5, and 51.6% during Phases 1 through 5, respectively. Emissions of other gases did not differ between diets. Feeding reduced CP diets formulated based on SID AA requirements for grow-finisher swine is effective in reducing NH emissions from housing compared with recent industry formulations and does not impact growth performances.

  10. Method for cleaning sinter plant gas emissions

    SciTech Connect

    Herman, S.T.; Jassund, S.A.; Mazer, M.R.

    1981-03-17

    A method for cleaning sinter plant gas emissions using a wet electrostatic precipitator system having separate recirculating wash liquor loops for the high voltage precipitator section and the pre-scrubber section. The system is operated with acidic washing liquor to avoid scaling and deposition of solids within the system.

  11. Acidic gas capture by diamines

    SciTech Connect

    Rochelle, Gary; Hilliard, Marcus

    2011-05-10

    Compositions and methods related to the removal of acidic gas. In particular, the present disclosure relates to a composition and method for the removal of acidic gas from a gas mixture using a solvent comprising a diamine (e.g., piperazine) and carbon dioxide. One example of a method may involve a method for removing acidic gas comprising contacting a gas mixture having an acidic gas with a solvent, wherein the solvent comprises piperazine in an amount of from about 4 to about 20 moles/kg of water, and carbon dioxide in an amount of from about 0.3 to about 0.9 moles per mole of piperazine.

  12. Electrostatic control of acid mist emissions

    SciTech Connect

    Dahlin, R S; Brown, T D

    1991-01-01

    This paper describes a two-phased study of the control of acid mist emissions using a compact, wet electrostatic precipitator (WESP). The goal of the study was to determine the degree of acid mist control that could be achieved when a compact WESP is used to replace or augment the mist eliminators in a flue gas desulfurization (FGD) system. Phase I of the study examined the electrical operation of a lab-scale WESP collecting an acid mist from a coal combustion pilot plant equipped with a spray chamber. The results of this study were used to develop and validate a computer model of the WESP. In Phase II, measurements were made at two utility scrubber installations to determine the loadings of acid mist, fly ash, and scrubber carryover. These measurements were used as input to the model to project the performance of a retrofitted WESP.

  13. Stimulated Cherenkov emission in gas dynamics

    SciTech Connect

    Kuzelev, M. V. Rukhadze, A. A.

    2008-11-15

    A linear theory is developed for stimulated Cherenkov emission from planar and cylindrical gas flows in gaseous environments. An analogy is demonstrated between Cherenkov emission in gas dynamics and stimulated Cherenkov electromagnetic emission from a charged particle beam in a medium.

  14. Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil.

    PubMed

    Khan, Sardar; Chao, Cai; Waqas, Muhammad; Arp, Hans Peter H; Zhu, Yong-Guan

    2013-08-01

    Biochar addition to soil has been proposed to improve plant growth by increasing soil fertility, minimizing bioaccumulation of toxic metal(liod)s and mitigating climate change. Sewage sludge (SS) is an attractive, though potentially problematic, feedstock of biochar. It is attractive because of its large abundance; however, it contains elevated concentrations of metal(loid)s and other contaminants. The pyrolysis of SS to biochar (SSBC) may be a way to reduce the availability of these contaminants to the soil and plants. Using rice plant pot experiments, we investigated the influence of SSBC upon biomass yield, bioaccumulation of nutrients, and metal(loid)s, and green housegas (GHG) emissions. SSBC amendments increased soil pH, total nitrogen, soil organic carbon and available nutrients and decreased bioavailable As, Cr, Co, Ni, and Pb (but not Cd, Cu, and Zn). Regarding rice plant properties, SSBC amendments significantly (P ≤ 0.01) increased shoot biomass (71.3-92.2%), grain yield (148.8-175.1%), and the bioaccumulation of phosphorus and sodium, though decreased the bioaccumulation of nitrogen (except in grain) and potassium. Amendments of SSBC significantly (P ≤ 0.05) reduced the bioaccumulation of As, Cr, Co, Cu, Ni, and Pb, but increased that of Cd and Zn, though not above limits set by Chinese regulations. Finally regarding GHG emissions, SSBC significantly (P < 0.01) reduced N2O emissions and stimulated the uptake/oxidation of CH4 enough to make both the cultivated and uncultivated paddy soil a CH4 sink. SSBC can be beneficial in rice paddy soil but the actual associated benefits will depend on site-specific conditions and source of SS; long-term effects remain a further unknown. PMID:23796060

  15. Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil.

    PubMed

    Khan, Sardar; Chao, Cai; Waqas, Muhammad; Arp, Hans Peter H; Zhu, Yong-Guan

    2013-08-01

    Biochar addition to soil has been proposed to improve plant growth by increasing soil fertility, minimizing bioaccumulation of toxic metal(liod)s and mitigating climate change. Sewage sludge (SS) is an attractive, though potentially problematic, feedstock of biochar. It is attractive because of its large abundance; however, it contains elevated concentrations of metal(loid)s and other contaminants. The pyrolysis of SS to biochar (SSBC) may be a way to reduce the availability of these contaminants to the soil and plants. Using rice plant pot experiments, we investigated the influence of SSBC upon biomass yield, bioaccumulation of nutrients, and metal(loid)s, and green housegas (GHG) emissions. SSBC amendments increased soil pH, total nitrogen, soil organic carbon and available nutrients and decreased bioavailable As, Cr, Co, Ni, and Pb (but not Cd, Cu, and Zn). Regarding rice plant properties, SSBC amendments significantly (P ≤ 0.01) increased shoot biomass (71.3-92.2%), grain yield (148.8-175.1%), and the bioaccumulation of phosphorus and sodium, though decreased the bioaccumulation of nitrogen (except in grain) and potassium. Amendments of SSBC significantly (P ≤ 0.05) reduced the bioaccumulation of As, Cr, Co, Cu, Ni, and Pb, but increased that of Cd and Zn, though not above limits set by Chinese regulations. Finally regarding GHG emissions, SSBC significantly (P < 0.01) reduced N2O emissions and stimulated the uptake/oxidation of CH4 enough to make both the cultivated and uncultivated paddy soil a CH4 sink. SSBC can be beneficial in rice paddy soil but the actual associated benefits will depend on site-specific conditions and source of SS; long-term effects remain a further unknown.

  16. OIL AND GAS FIELD EMISSIONS SURVEY

    EPA Science Inventory

    The report gives results of an oil and gas field emissions survey. The production segment of the oil and gas industry has been identified as a source category that requires the development of more reliable emissions inventory methodologies. The overall purpose of the project was ...

  17. Emissions of volatile fatty acids from feed at dairy facilities

    NASA Astrophysics Data System (ADS)

    Alanis, Phillip; Ashkan, Shawn; Krauter, Charles; Campbell, Sean; Hasson, Alam S.

    2010-12-01

    Recent studies suggest that dairy operations may be a major source of non-methane volatile organic compounds in dairy-intensive regions such as Central California, with short chain carboxylic acids (volatile fatty acids or VFAs) as the major components. Emissions of four VFAs (acetic acid, propanoic acid, butanoic acid and hexanoic acid) were measured from two feed sources (silage and total mixed rations (TMR)) at six Central California Dairies over a fifteen-month period. Measurements were made using a combination of flux chambers, solid phase micro-extraction fibers coupled to gas chromatography mass spectrometry (SPME/GC-MS) and infra-red photoaccoustic detection (IR-PAD for acetic acid only). The relationship between acetic acid emissions, source surface temperature and four sample composition factors (acetic acid content, ammonia-nitrogen content, water content and pH) was also investigated. As observed previously, acetic acid dominates the VFA emissions. Fluxes measured by IR-PAD were systematically lower than SPME/GC-MS measurements by a factor of two. High signals in field blanks prevented emissions from animal waste sources (flush lane, bedding, open lot) from being quantified. Acetic acid emissions from feed sources are positively correlated with surface temperature and acetic acid content. The measurements were used to derive a relationship between surface temperature, acetic acid content and the acetic acid flux. The equation derived from SPME/GC-MS measurements predicts estimated annual average acetic acid emissions of (0.7 + 1/-0.4) g m -2 h -1 from silage and (0.2 + 0.3/-0.1) g m -2 h -1 from TMR using annually averaged acetic acid content and meteorological data. However, during the summer months, fluxes may be several times higher than these values.

  18. Emissions control for ground power gas turbines

    NASA Technical Reports Server (NTRS)

    Rudney, R. A.; Priem, R. J.; Juhasz, A. J.; Anderson, D. N.; Mroz, T. S.; Mularz, E. J.

    1977-01-01

    The similarities and differences of emissions reduction technology for aircraft and ground power gas turbines is described. The capability of this technology to reduce ground power emissions to meet existing and proposed emissions standards is presented and discussed. Those areas where the developing aircraft gas turbine technology may have direct application to ground power and those areas where the needed technology may be unique to the ground power mission are pointed out. Emissions reduction technology varying from simple combustor modifications to the use of advanced combustor concepts, such as catalysis, is described and discussed.

  19. Reservoir Greenhouse Gas Emissions at Russian HPP

    SciTech Connect

    Fedorov, M. P.; Elistratov, V. V.; Maslikov, V. I.; Sidorenko, G. I.; Chusov, A. N.; Atrashenok, V. P.; Molodtsov, D. V.; Savvichev, A. S.; Zinchenko, A. V.

    2015-05-15

    Studies of greenhouse-gas emissions from the surfaces of the world’s reservoirs, which has demonstrated ambiguity of assessments of the effect of reservoirs on greenhouse-gas emissions to the atmosphere, is analyzed. It is recommended that greenhouse- gas emissions from various reservoirs be assessed by the procedure “GHG Measurement Guidelines for Fresh Water Reservoirs” (2010) for the purpose of creating a data base with results of standardized measurements. Aprogram for research into greenhouse-gas emissions is being developed at the St. Petersburg Polytechnic University in conformity with the IHA procedure at the reservoirs impounded by the Sayano-Shushenskaya and Mainskaya HPP operated by the RusHydro Co.

  20. Greenhouse Gas Emissions from Pasture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon dioxide, nitrous oxide, and methane are the primary greenhouse gases associated with global climate change. Livestock production’s contribution to carbon dioxide emissions is minimal, but it is a substantial contributor to both nitrous oxide and methane emissions. In both grazing and confin...

  1. Emissions from gas fired agricultural burners

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of the Federal Clean Air Act, the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) began defining Best Available Control Technology (BACT) for NOx emissions from cotton gin drying system gas fired burners in its jurisdiction. The NOx emission levels of conventionally used...

  2. On strategies for reducing greenhouse gas emissions

    PubMed Central

    Bolin, Bert; Kheshgi, Haroon S.

    2001-01-01

    Equity is of fundamental concern in the quest for international cooperation to stabilize greenhouse gas concentrations by the reduction of emissions. By modeling the carbon cycle, we estimate the global CO2 emissions that would be required to stabilize the atmospheric concentration of CO2 at levels ranging from 450 to 1,000 ppm. These are compared, on both an absolute and a per-capita basis, to scenarios for emissions from the developed and developing worlds generated by socio-economic models under the assumption that actions to mitigate greenhouse gas emissions are not taken. Need and equity have provided strong arguments for developing countries to request that the developed world takes the lead in controlling its emissions, while permitting the developing countries in the meantime to use primarily fossil fuels for their development. Even with major and early control of CO2 emissions by the developed world, limiting concentration to 450 ppm implies that the developing world also would need to control its emissions within decades, given that we expect developing world emissions would otherwise double over this time. Scenarios leading to CO2 concentrations of 550 ppm exhibit a reduction of the developed world's per-capita emission by about 50% over the next 50 years. Even for the higher stabilization levels considered, the developing world would not be able to use fossil fuels for their development in the manner that the developed world has used them. PMID:11296250

  3. On strategies for reducing greenhouse gas emissions.

    PubMed

    Bolin, B; Kheshgi, H S

    2001-04-24

    Equity is of fundamental concern in the quest for international cooperation to stabilize greenhouse gas concentrations by the reduction of emissions. By modeling the carbon cycle, we estimate the global CO(2) emissions that would be required to stabilize the atmospheric concentration of CO(2) at levels ranging from 450 to 1,000 ppm. These are compared, on both an absolute and a per-capita basis, to scenarios for emissions from the developed and developing worlds generated by socio-economic models under the assumption that actions to mitigate greenhouse gas emissions are not taken. Need and equity have provided strong arguments for developing countries to request that the developed world takes the lead in controlling its emissions, while permitting the developing countries in the meantime to use primarily fossil fuels for their development. Even with major and early control of CO(2) emissions by the developed world, limiting concentration to 450 ppm implies that the developing world also would need to control its emissions within decades, given that we expect developing world emissions would otherwise double over this time. Scenarios leading to CO(2) concentrations of 550 ppm exhibit a reduction of the developed world's per-capita emission by about 50% over the next 50 years. Even for the higher stabilization levels considered, the developing world would not be able to use fossil fuels for their development in the manner that the developed world has used them.

  4. On strategies for reducing greenhouse gas emissions.

    PubMed

    Bolin, B; Kheshgi, H S

    2001-04-24

    Equity is of fundamental concern in the quest for international cooperation to stabilize greenhouse gas concentrations by the reduction of emissions. By modeling the carbon cycle, we estimate the global CO(2) emissions that would be required to stabilize the atmospheric concentration of CO(2) at levels ranging from 450 to 1,000 ppm. These are compared, on both an absolute and a per-capita basis, to scenarios for emissions from the developed and developing worlds generated by socio-economic models under the assumption that actions to mitigate greenhouse gas emissions are not taken. Need and equity have provided strong arguments for developing countries to request that the developed world takes the lead in controlling its emissions, while permitting the developing countries in the meantime to use primarily fossil fuels for their development. Even with major and early control of CO(2) emissions by the developed world, limiting concentration to 450 ppm implies that the developing world also would need to control its emissions within decades, given that we expect developing world emissions would otherwise double over this time. Scenarios leading to CO(2) concentrations of 550 ppm exhibit a reduction of the developed world's per-capita emission by about 50% over the next 50 years. Even for the higher stabilization levels considered, the developing world would not be able to use fossil fuels for their development in the manner that the developed world has used them. PMID:11296250

  5. Mitigating greenhouse gas emissions: Voluntary reporting

    SciTech Connect

    1997-10-01

    The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

  6. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    PubMed

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  7. Methane Gas Emissions - is Older Infrastructure Leakier?

    NASA Astrophysics Data System (ADS)

    Wendt, L. P.; Caulton, D.; Zondlo, M. A.; Lane, H.; Lu, J.; Golston, L.; Pan, D.

    2015-12-01

    Large gains in natural gas production from hydraulic fracturing is reinvigorating the US energy economy. It is a clean burning fuel with lower emissions than that of coal or oil. Studies show that methane (CH4) leaks from natural gas infrastructure vary widely. A broader question is whether leak rates of methane might offset the benefits of combustion of natural gas. Excess methane (CH4) is a major greenhouse gas with a radiative forcing constant of 25 times that of CO2 when projected over a 100-year period. An extensive field study of 250 wells in the Marcellus Shale conducted in July 2015 examined the emission rates of this region and identifed super-emitters. Spud production data will provide information as to whether older infrastructure is responsible for more of the emissions. Quantifying the emission rate was determined by extrapolating methane releases at a distance from private well pads using an inverse Gaussian plume model. Wells studied were selected by prevailing winds, distance from public roads, and topographical information using commercial (ARCGIS and Google Earth), non-profit (drillinginfo), and government (State of PA) databases. Data were collected from the mobile sensing lab (CH4, CO2 and H2O sensors), as well as from a stationary tower. Emission rates from well pads will be compared to their original production (spud dates) to evaluate whether infrastructure age and total production correlates with the observed leak rates. Very preliminary results show no statistical correlation between well pad production rates and observed leak rates.

  8. Assessing Greenhouse Gas Emissions from University Purchases

    ERIC Educational Resources Information Center

    Thurston, Matthew; Eckelman, Matthew J.

    2011-01-01

    Purpose: A greenhouse gas (GHG) inventory was conducted for Yale University's procurement of goods and services over a one-year period. The goal of the inventory was to identify the financial expenditures resulting in the greatest "indirect" GHG emissions. This project is part of an ongoing effort to quantify and reduce the university's…

  9. Reducing exhaust gas emissions from Citydiesel busses

    NASA Astrophysics Data System (ADS)

    Mikkonen, Seppo

    The effect of fuel composition and exhaust gas aftertreatment on the emissions was measured from truck and bus engines. Possibilities to measure unregulated emissions (aldehydes, polyaromatic hydrocarbons, mutagenicity) were built. A reformulated diesel fuel 'Citydiesel' was developed. Citydiesel was able to reduce emissions compared to standard diesel fuel as follows: particulates by 10 to 30%, nitrogen oxides by 2 to 10%, sulphur dioxide by 97%, polyaromatic hydrocarbons (PAH) over 50%, mutagenicity of the exhaust particulates clearly, odor of the exhaust, and smoke after a cold start. The use of Citydiesel fuel reduces emissions of the existing vehicles immediately which is a remarkable benefit. The very low sulphur content (below 50 ppm) makes it possible to use oxidation. catalytic converters to reduce emissions of diesel vehicles. The new Euro 2 exhaust regulations coming into force during 1996 can be met with a modern diesel engine, Citydiesel fuel, and exhaust gas aftertreatment. Properties of Citydiesel fuel were verified in a three year field test with 140 city buses. Experience was good; e.g., engine oil change interval could be lengthened. Total value of the exhaust was estimated with different fuels and aftertreatment device in order to find out cheap ways to reduce emissions.

  10. [Greenhouse gas emission from reservoir and its influence factors].

    PubMed

    Zhao, Xiao-jie; Zhao, Tong-qian; Zheng, Hua; Duan, Xiao-nan; Chen, Fa-lin; Ouyang, Zhi-yun; Wang, Xiao-ke

    2008-08-01

    Reservoirs are significant sources of emissions of the greenhouse gases. Discussing greenhouse gas emission from the reservoirs and its influence factors are propitious to evaluate emission of the greenhouse gas accurately, reduce gas emission under hydraulic engineering and hydropower development. This paper expatiates the mechanism of the greenhouse gas production, sums three approaches of the greenhouse gas emission, which are emissions from nature emission of the reservoirs, turbines and spillways and downstream of the dam, respectively. Effects of greenhouse gas emission were discussed from character of the reservoirs, climate, pH of the water, vegetation growing in the reservoirs and so on. Finally, it has analyzed the heterogeneity of the greenhouse gas emission as well as the root of the uncertainty and carried on the forecast with emphasis to the next research.

  11. Embodied greenhouse gas emissions in diets.

    PubMed

    Pradhan, Prajal; Reusser, Dominik E; Kropp, Juergen P

    2013-01-01

    Changing food consumption patterns and associated greenhouse gas (GHG) emissions have been a matter of scientific debate for decades. The agricultural sector is one of the major GHG emitters and thus holds a large potential for climate change mitigation through optimal management and dietary changes. We assess this potential, project emissions, and investigate dietary patterns and their changes globally on a per country basis between 1961 and 2007. Sixteen representative and spatially differentiated patterns with a per capita calorie intake ranging from 1,870 to >3,400 kcal/day were derived. Detailed analyses show that low calorie diets are decreasing worldwide, while in parallel diet composition is changing as well: a discernable shift towards more balanced diets in developing countries can be observed and steps towards more meat rich diets as a typical characteristics in developed countries. Low calorie diets which are mainly observable in developing countries show a similar emission burden than moderate and high calorie diets. This can be explained by a less efficient calorie production per unit of GHG emissions in developing countries. Very high calorie diets are common in the developed world and exhibit high total per capita emissions of 3.7-6.1 kg CO(2eq.)/day due to high carbon intensity and high intake of animal products. In case of an unbridled demographic growth and changing dietary patterns the projected emissions from agriculture will approach 20 Gt CO(2eq.)/yr by 2050. PMID:23700408

  12. Measurement of Gas-phase Acids in Diesel Exhaust

    NASA Astrophysics Data System (ADS)

    Wentzell, J. J.; Liggio, J.; Li, S.; Vlasenko, A. L.; Staebler, R. M.; Brook, J.; Lu, G.; Poitras, M.; Chan, T.

    2012-12-01

    Gas-phase acids were measured using chemical ionization mass spectrometry (CIMS) as part of the Diesel Engine Emission Research Experiment (DEERE). The CIMS technique, utilizing acetate ion (CH3COO-) as a reagent ion, proved to be a rapid (measurements on the order of seconds) and sensitive (several counts/pptv) method of quantifying the acid emissions. Diluted diesel exhaust measurements were made from a Constant Volume Sampling dilution tunnel using a light duty (1.9L turbocharged Volkswagen Jetta TDI) diesel engine equipped with an OEM diesel oxidation catalyst and exhaust gas recirculation, mounted on an engine dynamometer. Acids measured included isocyanic, nitrous, nitric, propionic and sum of lactic and oxalic, as well as other unidentified compounds. Complimentary measurements of CO, CO2, Total Hydrocarbon (THC), and NOx, were also performed. Several engine modes (different engine rpm and torque outputs) at steady state were examined to determine their effect on acid emissions. Emission rates with respect to NOx and fuel based emission factors were determined. Measurements of HONO fuel emission factors agree well with real-world measurements within a traffic tunnel.1 The first estimate of isocyanic acid emission factors from a diesel engine is reported, and suggests that the emission of this highly toxic compound in diesel exhaust should not be ignored. 1. Kurtenbach, R., Becker, K. H., Gomes, J. A. G., Kleffmann, J.,Lorzer, J. C., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A.,and Platt, U.: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel, Atmos. Environ., 35, 3385-3394, doi:10.1016/S1352-2310(01)00138-8, 2001.

  13. Removal of nitric oxide from exhaust gas with cyanuric acid--

    SciTech Connect

    Siebers, D.L. . Combustion Research Faclity); Caton, J.A. . Dept. of Mechanical Engineering)

    1990-01-01

    Addition of gaseous isocyanic acid (HNCO) to the exhaust of combustion systems or chemical process is proposed as a method for reducing nitric oxide (NO) emissions. The HNCO selectively reduces NO in the exhaust through a multistep chemical reaction mechanism. This article presents an experimental investigation of the proposed NO reduction process using cyanuric acid as the source of HNCO. At elevated temperature cyanuric acid decomposes and forms HNCO. The effects of temperature, exhaust gas composition, cyanuric acid concentration (i.e., HNCO concentration), and surfaces were examined. The experiments were conducted in an electrically heated quartz flow reactor using either exhaust from a diesel engine or simulated exhaust gas. The results demonstrate that gas phase NO reduction approaching 100% can be obtained.

  14. EDITORIAL: Tropical deforestation and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Gibbs, Holly K.; Herold, Martin

    2007-10-01

    Carbon emissions from tropical deforestation have long been recognized as a key component of the global carbon budget, and more recently of our global climate system. Tropical forest clearing accounts for roughly 20% of anthropogenic carbon emissions and destroys globally significant carbon sinks (IPCC 2007). Global climate policy initiatives are now being proposed to address these emissions and to more actively include developing countries in greenhouse gas mitigation (e.g. Santilli et al 2005, Gullison et al 2007). In 2005, at the Conference of the Parties (COP) in Montreal, the United Nations Framework Convention on Climate Change (UNFCCC) launched a new initiative to assess the scientific and technical methods and issues for developing policy approaches and incentives to reduce emissions from deforestation and degradation (REDD) in developing countries (Gullison et al 2007). Over the last two years the methods and tools needed to estimate reductions in greenhouse gas emissions from deforestation have quickly evolved, as the scientific community responded to the UNFCCC policy needs. This focus issue highlights those advancements, covering some of the most important technical issues for measuring and monitoring emissions from deforestation and forest degradation and emphasizing immediately available methods and data, as well as future challenges. Elements for effective long-term implementation of a REDD mechanism related to both environmental and political concerns are discussed in Mollicone et al. Herold and Johns synthesize viewpoints of national parties to the UNFCCC on REDD and expand upon key issues for linking policy requirements and forest monitoring capabilities. In response to these expressed policy needs, they discuss a remote-sensing-based observation framework to start REDD implementation activities and build historical deforestation databases on the national level. Achard et al offer an assessment of remote sensing measurements across the world

  15. Efficacy of β-mannanase supplementation to corn-soya bean meal-based diets on growth performance, nutrient digestibility, blood urea nitrogen, faecal coliform and lactic acid bacteria and faecal noxious gas emission in growing pigs.

    PubMed

    Upadhaya, Santi Devi; Park, Jae Won; Lee, Jae Hwan; Kim, In Ho

    2016-01-01

    A study was conducted to determine the efficacy of β-mannanase supplementation to a diet based on corn and soya bean meal (SBM) on growth performance, nutrient digestibility, blood urea nitrogen (BUN), faecal coliforms and lactic acid bacteria, and noxious gas emission in growing pigs. A total of 140 pigs [(Landrace × Yorkshire) × Duroc; average body weight 25 ± 3 kg] were randomly allotted to a 2 × 2 factorial arrangement with dietary treatments consisting of hulled or dehulled SBM without or with supplementation of 400 U β-mannanase/kg. During the 6 weeks of experimental feeding, β-mannanase supplementation had no effect on body weight gain, feed intake and gain:feed (G:F) ratio. Compared with dehulled SBM, feeding hulled SBM caused an increased feed intake of pigs in the entire trial (p = 0.05). The G:F ratio was improved in pigs receiving dehulled SBM (p < 0.05). Dietary treatments did not influence the total tract digestibility of dry matter, nitrogen and gross energy. Enzyme supplementation reduced (p < 0.05) the population of faecal coliforms and tended to reduce the NH3 concentration after 24 h of fermentation in a closed box containing faecal slurry. Feeding hulled SBM tended to reduce NH3 emission on days 3 and 5 of fermentation. In conclusion, mannanase supplementation had no influence on growth performance and nutrient digestibility but showed a positive effect on reducing coliform population and tended to reduce NH3 emission. Dehulled SBM increased G:F ratio and hulled SBM tended to reduce NH3 emission.

  16. Application of microturbines to control emissions from associated gas

    DOEpatents

    Schmidt, Darren D.

    2013-04-16

    A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

  17. Green house gas emissions from composting and mechanical biological treatment.

    PubMed

    Amlinger, Florian; Peyr, Stefan; Cuhls, Carsten

    2008-02-01

    In order to carry out life-cycle assessments as a basis for far-reaching decisions about environmentally sustainable waste treatment, it is important that the input data be reliable and sound. A comparison of the potential greenhouse gas (GHG) emissions associated with each solid waste treatment option is essential. This paper addresses GHG emissions from controlled composting processes. Some important methodological prerequisites for proper measurement and data interpretation are described, and a common scale and dimension of emission data are proposed so that data from different studies can be compared. A range of emission factors associated with home composting, open windrow composting, encapsulated composting systems with waste air treatment and mechanical biological waste treatment (MBT) are presented from our own investigations as well as from the literature. The composition of source materials along with process management issues such as aeration, mechanical agitation, moisture control and temperature regime are the most important factors controlling methane (CH4), nitrous oxide (N2O) and ammoniac (NH3) emissions. If ammoniac is not stripped during the initial rotting phase or eliminated by acid scrubber systems, biofiltration of waste air provides only limited GHG mitigation, since additional N2O may be synthesized during the oxidation of NH3, and only a small amount of CH4 degradation occurs in the biofilter. It is estimated that composting contributes very little to national GHG inventories generating only 0.01-0.06% of global emissions. This analysis does not include emissions from preceding or post-treatment activities (such as collection, transport, energy consumption during processing and land spreading), so that for a full emissions account, emissions from these activities would need to be added to an analysis.

  18. Green house gas emissions from composting and mechanical biological treatment.

    PubMed

    Amlinger, Florian; Peyr, Stefan; Cuhls, Carsten

    2008-02-01

    In order to carry out life-cycle assessments as a basis for far-reaching decisions about environmentally sustainable waste treatment, it is important that the input data be reliable and sound. A comparison of the potential greenhouse gas (GHG) emissions associated with each solid waste treatment option is essential. This paper addresses GHG emissions from controlled composting processes. Some important methodological prerequisites for proper measurement and data interpretation are described, and a common scale and dimension of emission data are proposed so that data from different studies can be compared. A range of emission factors associated with home composting, open windrow composting, encapsulated composting systems with waste air treatment and mechanical biological waste treatment (MBT) are presented from our own investigations as well as from the literature. The composition of source materials along with process management issues such as aeration, mechanical agitation, moisture control and temperature regime are the most important factors controlling methane (CH4), nitrous oxide (N2O) and ammoniac (NH3) emissions. If ammoniac is not stripped during the initial rotting phase or eliminated by acid scrubber systems, biofiltration of waste air provides only limited GHG mitigation, since additional N2O may be synthesized during the oxidation of NH3, and only a small amount of CH4 degradation occurs in the biofilter. It is estimated that composting contributes very little to national GHG inventories generating only 0.01-0.06% of global emissions. This analysis does not include emissions from preceding or post-treatment activities (such as collection, transport, energy consumption during processing and land spreading), so that for a full emissions account, emissions from these activities would need to be added to an analysis. PMID:18338701

  19. Greenhouse Gas Emissions from Brazilian Sugarcane Soils

    NASA Astrophysics Data System (ADS)

    Carmo, J.; Pitombo, L.; Cantarella, H.; Rosseto, R.; Andrade, C.; Martinelli, L.; Gava, G.; Vargas, V.; Sousa-Neto, E.; Zotelli, L.; Filoso, S.; Neto, A. E.

    2012-04-01

    Bioethanol from sugarcane is increasingly seen as a sustainable alternative energy source. Besides having high photosynthetic efficiency, sugarcane is a perennial tropical grass crop that can re-grow up to five or more years after being planted. Brazil is the largest producer of sugarcane in the world and management practices commonly used in the country lead to lower rates of inorganic N fertilizer application than sugarcane grown elsewhere, or in comparison to other feedstocks such as corn. Therefore, Brazilian sugarcane ethanol potentially promotes greenhouse gas savings. For that reason, several recent studies have attempted to assess emissions of greenhouse gases (GHG) during sugarcane production in the tropics. However, estimates have been mainly based on models due to a general lack of field data. In this study, we present data from in situ experiments on emission of three GHG (CO2, N2O, and CH4) in sugarcane fields in Brazil. Emissions are provided for sugarcane in different phases of the crop life cycle and under different management practices. Our results show that the use of nitrogen fertilizer in sugarcane crops resulted in an emission factor for N2O similar to those predicted by IPCC (1%), ranging from 0.59% in ratoon cane to 1.11% in plant cane. However, when vinasse was applied in addition to mineralN fertilizer, emissions of GHG increased in comparison to those from the use of mineral N fertilizer alone. Emissions increased significantly when experiments mimicked the accumulation of cane trash on the soil surface with 14 tons ha-1and 21 tons ha-1, which emission factor were 1.89% and 3.03%, respectively. This study is representative of Brazilian sugarcane systems under specific conditions for key factors affecting GHG emissions from soils. Nevertheless, the data provided will improve estimates of GHG from Brazilian sugarcane, and efforts to assess sugarcane ethanol sustainability and energy balance. Funding provided by the São Paulo Research

  20. Carbonyl Emissions From Oil and Gas Production Facilities

    NASA Astrophysics Data System (ADS)

    Lyman, S. N.; O'Neil, T.; Tran, T.

    2015-12-01

    A number of recent studies have targeted emissions of methane and other hydrocarbons from oil and gas exploration and production activity. These measurements are greatly increasing understanding of the atmospheric impacts of oil and gas development. Very few measurements exist, however, of emissions of formaldehyde and other carbonyls from oil and gas equipment. Carbonyls are toxic and serve as important ozone precursors, especially during winter ozone episodes in places like Utah's Uintah Basin. Current air quality models are only able to reproduce observed high wintertime ozone if they incorporate emissions inventories with very high carbonyl emissions. We measured carbonyl emissions from oil and gas equipment and facilities—including glycol dehydrators, liquid storage tanks, raw gas leaks, raw gas-burning engines, and produced water surface impoundments—in Rocky Mountain oil and gas fields. Carbonyl emissions from raw gas were below detection, but emissions of formaldehyde, acetaldehyde, and other carbonyls were detected from liquid storage tanks, glycol dehydrators, and other oil and gas equipment. In some cases, carbonyls may be formed from the degradation of methanol and other chemicals used in oil and gas production, but the collected data provide evidence for other non-combustion formation pathways. Raw gas-burning engines also emitted carbonyls. Emissions from all measured sources were a small fraction of total volatile organic compound emissions. We incorporated our measurements into an emissions inventory, used that inventory in an air quality model (WRF-SMOKE-CAMx), and were unable to reproduce observed high wintertime ozone. This could be because (1) emission sources we have not yet measured, including compressors, gas processing plants, and others, are large; (2) non-carbonyl emissions, especially those that quickly degrade into carbonyls during photochemical processing, are underestimated in the inventory; or (3) the air quality model is unable

  1. Greenhouse gas emissions from a managed grassland

    NASA Astrophysics Data System (ADS)

    Jones, S. K.; Rees, R. M.; Skiba, U. M.; Ball, B. C.

    2005-07-01

    Managed grasslands contribute to global warming by the exchange of the greenhouse gases carbon dioxide, nitrous oxide and methane. To reduce uncertainties of the global warming potential of European grasslands and to assess potential mitigation options, an integrated approach quantifying fluxes from all three gases is needed. Greenhouse gas emissions from a grassland site in the SE of Scotland were measured in 2002 and 2003. Closed static chambers were used for N 2O and CH 4 flux measurements, and samples were analysed by gas chromatography. Closed dynamic chambers were used for soil respiration measurements, using infrared gas analysis. Three organic manures and two inorganic fertilizers were applied at a rate of 300 kg N ha -1 a -1 (available N) and compared with a zero-N control on grassland plots in a replicated experimental design. Soil respiration from plots receiving manure was up to 1.6 times larger than CO 2 release from control plots and up to 1.7 times larger compared to inorganic treatments ( p<0.05). A highly significant ( p<0.001) effect of fertilizer and manure treatments on N 2O release was observed. Release of N 2O from plots receiving inorganic fertilizers resulted in short term peaks of up to 388 g N 2O-N ha -1 day -1. However losses from plots receiving organic manures were both longer lasting and greater in magnitude, with an emission of up to 3488 g N 2O-N ha -1 day -1 from the sewage sludge treatments. During the 2002 growing season the cumulative total N 2O flux from manure treatments was 25 times larger than that from mineral fertilizers. CH 4 emissions were only significantly increased ( p<0.001) for a short period following applications of cattle slurry. Although soil respiration in manure plots was high, model predictions and micrometeorological flux measurements at an adjacent site suggest that all plots receiving fertilizer or manure acted as a sink for CO 2. Therefore in terms of global warming potentials the contribution of N 2O from

  2. Rough surface mitigates electron and gas emission

    SciTech Connect

    Molvik, A

    2004-09-03

    Heavy-ion beams impinging on surfaces near grazing incidence (to simulate the loss of halo ions) generate copious amounts of electrons and gas that can degrade the beam. We measured emission coefficients of {eta}{sub e} {le} 130 and {eta}{sub 0} {approx} 10{sup 4} respectively, with 1 MeV K{sup +} incident on stainless steel. Electron emission scales as {eta}{sub e} {proportional_to} 1/cos({theta}), where {theta} is the ion angle of incidence relative to normal. If we were to roughen a surface by blasting it with glass beads, then ions that were near grazing incidence (90{sup o}) on smooth surface would strike the rims of the micro-craters at angles closer to normal incidence. This should reduce the electron emission: the factor of 10 reduction, Fig. 1(a), implies an average angle of incidence of 62{sup o}. Gas desorption varies more slowly with {theta} (Fig. 1(b)) decreasing a factor of {approx}2, and along with the electron emission is independent of the angle of incidence on a rough surface. In a quadrupole magnet, electrons emitted by lost primary ions are trapped near the wall by the magnetic field, but grazing incidence ions can backscatter and strike the wall a second time at an azimuth where magnetic field lines intercept the beam. Then, electrons can exist throughout the beam (see the simulations of Cohen, HIF News 1-2/04). The SRIM (TRIM) Monte Carlo code predicts that 60-70% of 1 MeV K{sup +} ions backscatter when incident at 88-89{sup o} from normal on a smooth surface. The scattered ions are mostly within {approx}10{sup o} of the initial direction but a few scatter by up to 90{sup o}. Ion scattering decreases rapidly away from grazing incidence, Fig. 1(c ). At 62 deg. the predicted ion backscattering (from a rough surface) is 3%, down a factor of 20 from the peak, which should significantly reduce electrons in the beam from lost halo ions. These results are published in Phys. Rev. ST - Accelerators and Beams.

  3. Inventory of Alabama greenhouse gas emissions and sinks: 1990

    SciTech Connect

    Li, Chumeng; Herz, W.J.; Griffin, R.A.

    1996-12-31

    Greenhouse gas concentrations in the atmosphere have been increasing since the industrial revolution. Worldwide efforts are being made to study anthropogenic greenhouse gas emissions. This study quantified the anthropogenic greenhouse gas emissions in Alabama in 1990. Alabama anthropogenic greenhouse gas emissions and sinks from 13 sources were studied. 1990 Alabama total anthropogenic greenhouse gas emissions and sinks were estimated to be 153.42 and 21.66 million tons of carbon dioxide equivalent. As a result, the net total greenhouse gas emissions were estimated to be 131.76 million tons of carbon dioxide equivalent. Fossil fuel combustion is the major source of emissions, representing approximately 78 percent. Coal mining and landfills are other two significant emission sources, representing approximately 10 and 6 percent of the total emissions respectively. Forests in Alabama represent the major sink, offsetting approximately 14 percent of the total emissions. On a per capita basis, Alabama`s emission rate is 32.3 tons of carbon dioxide equivalent per capita in 1990, compared to the national per capita average of 23.4 tons of carbon dioxide equivalent. The high emission rate is attributed to higher emissions than the national average from fossil fuel combustion, from coal mining and landfills in Alabama.

  4. Gas dilution system results and application to acid rain utilities

    SciTech Connect

    Jolley-Souders, K.; Geib, R.; Dunn, C.

    1997-12-31

    In 1997, the United States EPA will remove restrictions preventing acid rain utilities from using gas dilution systems for calibration or linearity studies for continuous emissions monitoring, Test Method 205 in 40CFR51 requires that a gas dilution system must produce calibration gases whose measured values are within {+-}2% of predicted values. This paper presents the evaluation of the Environics/CalMat 2020 Dilution System for use in calibration studies. Internal studies show that concentrations generated by this unit are within {+-}0.5% of predicted values. Studies are being conducted by several acid rain utilities to evaluate the Environics/CalMat system using single minor component calibration standards. In addition, an internally generated study is being performed to demonstrate the system`s accuracy using a multi-component gas mixture. Data from these tests will be presented in the final version of the paper.

  5. Interactions between greenhouse gas policies and acid rain control strategies

    SciTech Connect

    Klein, D.E.; Kane, R.L.; Mansueti, L.

    1997-12-31

    Conventional wisdom and much of the public policy debate have usually drawn a clean delineation between acid rain issues and global warming concerns. This traditional approach of evaluating one policy at a time is too simplistic to serve as a framework for electric utilities making major capital investment and fuel procurement decisions to comply with various environmental requirements. Potential Climate change regulation can affect acid rain compliance decisions, and acid rain compliance decisions will affect future GHG emissions. This paper explores two categories of linkages between these different environmental issues. First, the assumptions one makes regarding future climate change policies can have a profound impact on the economic attractiveness of various acid rain compliance strategies. Second, decisions regarding acid rain compliance strategy can have greenhouse gas implications that might prove more or less difficult to address in future climate change legislation.

  6. Determination of methylmercury and butyltin compounds in marine biota and sediments using microwave-assisted acid extraction, solid-phase microextraction, and gas chromatography with microwave-induced plasma atomic emission spectrometric detection.

    PubMed

    Tutschku, Silke; Schantz, Michele M; Wise, Stephen A

    2002-09-15

    A method is described for the determination of methylmercury and butyltin compounds in marine sediment and tissue using microwave-assisted acid extraction or digestion and solid-phase microextraction (SPME) followed by analysis using gas chromatography with microwave-induced plasma atomic emission spectrometric detection (GC-MIP-AES). Using the SPME-GC-MIP-AES method, enrichment factors for methylmercury and butyltin compounds of 50-100 were achieved, as compared to the typical hexane extraction, and measurements in marine tissue and sediment matrixes were possible at 1-2 microg/kg (methylmercury) and 10-100 ng/kg (butyltins). The SPME-GC-MIP-AES method was validated using several marine sediment and tissue matrix certified reference materials (CRMs) with certified values for methylmercury and butyltin compounds. The SPME-GC-MIP-AES method was used to measure methylmercury in four marine tissue CRMs ranging from oyster tissue at 13.0 +/- 1.0 microg/kg to fish tissue at 397 +/- 13 microg/kg (as Hg dry mass). Results from the SPME-GC-MIP-AES method were used in conjunction with results from other techniques to assign certified values for methylmercury in oyster, mussel, and fish tissue CRMs. Mono-, di-, and tributyltin were measured in three sediment CRMs at concentration levels of (0.08 +/- 0.03)-(0.35 +/- 0.05) mg/kg (as Sn dry mass). PMID:12349972

  7. Greenhouse Gas Emissions Calculator for Grain and Biofuel Farming Systems

    ERIC Educational Resources Information Center

    McSwiney, Claire P.; Bohm, Sven; Grace, Peter R.; Robertson, G. Philip

    2010-01-01

    Opportunities for farmers to participate in greenhouse gas (GHG) credit markets require that growers, students, extension educators, offset aggregators, and other stakeholders understand the impact of agricultural practices on GHG emissions. The Farming Systems Greenhouse Gas Emissions Calculator, a web-based tool linked to the SOCRATES soil…

  8. 40 CFR 1036.530 - Calculating greenhouse gas emission rates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Calculating greenhouse gas emission... Procedures § 1036.530 Calculating greenhouse gas emission rates. This section describes how to calculate... applicable duty cycle as specified in 40 CFR 1065.650. Do not apply infrequent regeneration...

  9. Particulate, carbon monoxide, and acid emission factors for residential wood burn stoves

    SciTech Connect

    Burnet, P.G.; Edmisten, N.G.; Tiegs, P.E.; Houck, J.E.; Yoder, R.A.

    1986-09-01

    Emissions from residential wood burning stoves are of increasing concern in many areas. This concern is due to the magnitude of the emissions and the toxic and chemical characteristics of the pollutants. Recent testing of standard and new technology woodstoves has provided data for developing a family of particulate and carbon monoxide emission factor curves. This testing has also provided data illustrating the acidity of woodstove emissions. The particulate and carbon monoxide curves relate the actual stove emissions to the stove size and operating parameters of burn rate, fuel loading, and fuel moisture. Curves relating stove types to the acidity of emissions have also been constructed. Test data show actual emissions vary from 3 to 50 grams per kilogram for particles and from 50 to 300 grams per kilogram for carbon monoxide. Since woodstove emissions are the largest single category of particulate emissions in many area, it is essential that these emissions be quantified specifically for geographic regions, allowing meaningful impact analysis modeling to be accomplished. Emission factors for particles and carbon monoxide are presented from several stove sizes and burn rates. The acidic nature of woodstove emissions has been clearly demonstrated. Tests indicate woodstove flue gas condensate solutions to be predominantly in the 2.8 to 4.2 pH range. Condensate solutions from conventional woodstoves exhibited the characteristic buffering capacity of carboxylic acids when titrations were performed with a strong base. The environmental impact of buffered acidic woodstove emissions is not currently well understood; however, it is possible with the data presented here to make semi-quantitative estimates of acid emission from particulate and carbon monoxide emission factors and wood use inventories.

  10. Aproaches for mitigation of greenhouse gas emission from agricultural fields

    NASA Astrophysics Data System (ADS)

    Sudo, S.; Itoh, M.

    2009-12-01

    Percentage of atmospheric methane emitted form rice paddy is estimated at 60Tg/yr (20 - 100Tg/yr) which is near 10% of total global methane emission of 535Tg/yr (410 - 660Tg) (IPCC(1995), and which is near 30% of anthropogenic CH4 emission. Thus, mitigation of CH4 emission is required to be speed up. CH4 in paddy soil is emanated by the activities of anaerobic bacteria which is called methane producer through reduction of CO2 or decomposition of acetic acid, and it is transported to atmosphere through soil or paddy water surface. It is effective to control methane emission from rice paddy that period is prolonged on intermittent irrigation drainage, composted rice straw is incorporated as fertilizer instead of flesh one, or other. However, empirical approach of these kinds of experiments had not been sufficient because such a kind of experiment required significant times and efforts. In this study, we conducted demonstrative experiments to verify the effects of water management method differences in order to reduce CH4 emission from rice paddy at 9 experimental sites in 8 prefectures. In this, we used new gas analyzer which can measure CH4, CO2 and N2O at once developed by National Institute for Agro-Environmental Sciences (NIAES), Japan. In this report, we show the preliminary results in first year of this study. Nakaboshi (mid-season-drainage) is one of cultivation methods in rice paddy that surface water in paddy field is once drained for about 10 days and the field is maintained like upland field to give adequate stress to rice plant for better harvest qualities and yields. Our targeted evaluation was dependencies of Nakaboshi periods lengths and Nakaboshi periods to CH4 emission reduction amounts for total cultivation periods within harvest yield maintained. The longer length of Nakaboshi period was prolonged, the lesser emission amounts of CH4 decreased even after when Nakaboshi period lasted, as a whole. In some soil types, for example in Kagoshima

  11. Do volcanic emissions affect carbon gas fluxes in peatlands?

    NASA Astrophysics Data System (ADS)

    Harrison, Nicola; Delmelle, Pierre; Toet, Sylvia; Gauci, Vincent; Ineson, Phil

    2010-05-01

    Recently, a link has been suggested between volcanic deposition of SO4 and the suppression of CH4 emissions in northern peatlands (Gauci et al., 2008). This link stems from the widely accepted idea that acid rain SO4 additions to peatlands can cause a shift in microbial communities as SO4 reducing bacteria out-compete methanogens for substrates, which results in a suppression of CH4 emission. However, volcanic emissions contain besides S other chemically reactive species that are potentially harmful to the environment. In particular, gaseous and particulate F emissions from volcanoes constitute a steady or intermittent source of F emission and deposition into the environment both close to the source and within fallout range of large eruptions. The objective of this study was to investigate the effect of volcanic depositions of SO4, both alone and in combination with F, on CH4 emission in peatlands. Peat mesocosms collected from Pennine uplands in the UK were treated with weekly pulses of Na2SO4 and NaF over 20 weeks in doses of 74 kg SO4/ ha and 13.5 and 135 kg F /ha. CH4 emissions were measured at regular intervals by taking headspace samples, which were analysed by GC-FID. CO2 fluxes were also measured using a portable Infra Red Gas Analyser (IRGA). No significant differences in CH4 and CO2 emissions were observed for any of the treatments when compared to the controls, which had only received deionised water. These findings are in contrast with previous studies where SO4 reduces CH4 emission in peatlands. The reason for this is unclear but may be due to the heterogeneous nature of peat soils. An alternative explanation relates to the previous history of the soils used in the mesocosms which are known to have been previously exposed to large volumes of anthropogenic S pollution. This may have caused microbial communities to evolve and become acclimatised to high levels of S addition. In either case, the assumption that CH4 suppression in peatlands occurs upon

  12. USERS MANUAL: LANDFILL GAS EMISSIONS MODEL - VERSION 2.0

    EPA Science Inventory

    The document is a user's guide for a computer model, Version 2.0 of the Landfill Gas Emissions Model (LandGEM), for estimating air pollution emissions from municipal solid waste (MSW) landfills. The model can be used to estimate emission rates for methane, carbon dioxide, nonmet...

  13. Parametric modeling of exhaust gas emission from natural gas fired gas turbines

    SciTech Connect

    Bakken, L.E.; Skogly, L.

    1996-07-01

    Increased focus on air pollution from gas turbines in the Norwegian sector of the North Sea has resulted in taxes on CO{sub 2}. Statements made by the Norwegian authorities imply regulations and/or taxes on NO{sub x} emissions in the near future. The existing CO{sub 2} tax of NOK 0.82/Sm{sup 3} (US Dollars 0.12/Sm{sup 3}) and possible future tax on NO{sub x} are analyzed mainly with respect to operating and maintenance costs for the gas turbine. Depending on actual tax levels, the machine should be operated on full load/optimum thermal efficiency or part load to reduce specific exhaust emissions. Based on field measurements, exhaust emissions (CO{sub 2}, CO, NO{sub x}, N{sub 2}O, UHC, etc.) are established with respect to load and gas turbine performance, including performance degradation. Different NO{sub x} emission correlations are analyzed based on test results, and a proposed prediction model presented. The impact of machinery performance degradation on emission levels is particularly analyzed. Good agreement is achieved between measured and predicted NO{sub x} emissions from the proposed correlation. To achieve continuous exhaust emission control, the proposed NO{sub x} model is implemented to the on-line condition monitoring system on the Sleipner A platform, rather than introducing sensitive emission sensors in the exhaust gas stack. The on-line condition monitoring system forms an important tool in detecting machinery condition/degradation and air pollution, and achieving optimum energy conservation.

  14. Lifecycle greenhouse gas emissions of coal, conventional and unconventional natural gas for electricity generation

    EPA Science Inventory

    An analysis of the lifecycle greenhouse gas (GHG) emissions associated with natural gas use recently published by Howarth et al. (2011) stated that use of natural gas produced from shale formations via hydraulic fracturing would generate greater lifecycle GHG emissions than petro...

  15. Volcanic Carbon: Global Variations in Gas Emissions

    NASA Astrophysics Data System (ADS)

    Fischer, T. P.; de Moor, M. J.

    2014-12-01

    Magmas degas volatiles during ascent from the mantle and mafic melts with 7 wt% H2O attain volatile saturation at ~15km depth. Magmatic gases are dominated by H2O, CO2 and S species, independent of their tectonic setting. At rift volcanoes, C is sourced from the mantle whereas arc volcanoes sample both mantle and subducted C. Volcanic gases provide detailed information on volatile sources and degassing processes. Comparison of fumarole gases with melt inclusions and volcanic plumes shows that most fumaroles sample degassed magma. Water, CO2 and S vary significantly between tectonic settings. The Kuriles, Japan, and Kamchatka have H2O/CO2 of 40 to 800 while other arcs such as the Cascades, Central America, S. America, Java, and Aeolian have ratios of 1 to 70. Gases from rift volcanoes have H2O/CO2 between 3 and 9. Some of these variations are due to addition of meteoric and subducted water, as evidenced by O and H isotopes. Speciation of H and C in volcanic gases are typically controlled by redox buffer reactions imposed by the Fe3+-Fe2+ (i.e. QFM) rock buffer or the SO2-H2S gas buffer. In more exotic systems such as Poás, hydrothermal S phases such as liquid native S can play a role in high T gas C and H speciation. Arcs dominate the global subaerial volcanic CO2 emission budget and arc total fluxes vary significantly i.e. only about 2 t/yr/km from the Aleutians and about 65 t/yr/km from Central America. Reasons for this are poorly constrained and may include variability in subducted material or slab/mantle conditions at depth. A large uncertainty results from use of generalized arc-wide C/S ratios, used in calculating C fluxes, and the paucity of data for remote arcs. Resolving C fluxes from subducted versus mantle or crustal (assimilated) C relies on C isotope ratios, which can vary spatially and temporally as a function of source or degassing processes. Therefore, when considering the deep C cycle and Cexchange between the interior and surface of the Earth

  16. 75 FR 57275 - Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... ADMINISTRATION Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot AGENCY: Federal... Supplier Greenhouse Gas (GHG) Emissions Inventory pilot. Public comments are particularly invited on... Information Collection 3090- 00XX; Supplier Greenhouse Gas Emissions Inventory Pilot, by any of the...

  17. Measurement of gas and aerosol agricultural emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies of air quality indicate that agricultural emissions may impact particulate mass concentrations through both primary and secondary processes. Agriculture impacts can include primary dust emission, on-facility combustion from vehicles or seasonal field burning, and gaseous emissions from waste...

  18. Improving emissions factors for estimating urban natural gas leakage

    NASA Astrophysics Data System (ADS)

    Phillips, Nathan

    2013-04-01

    Emissions factors for pipeline natural gas leaks are in need of refinement. In addition to limitations from the small sample sizes of leaks that were initially used to develop emissions factors, a further limitation to emissions factors is lack of knowledge of characteristic statistical distributions of pipeline leak rates. For example, leaks were implicitly assumed to be normally distributed so that an average leak rate was used for pipelines of a given construction. Our natural gas leak data from Boston, USA, in which we found over 3,000 natural gas leaks, indicates that leaks rates are highly skewed, with relatively few leaks likely contributing disproportionately to the total. The long-tailed distribution of gas leak rates is mirrored by a similarly skewed distribution of surface methane concentrations in air. These data suggest that emissions factors should be based on correctly specified statistical distributions, and that fixing relatively few large leaks first may provide the most environmental benefit per cost.

  19. ENVIRONMENTAL APPLICATION OF GAS CHROMATOGRAPHY/ATOMIC EMISSION DETECTION

    EPA Science Inventory

    A gas chromatography/atomic emission detector (GC/AED) system has been evaluated for its applicability to environmental analysis. Detection limits, elemental response factors, and regression analysis data were determined for 58 semivolatile environmental contaminants. Detection l...

  20. Gas phase acidity of substituted benzenes

    NASA Astrophysics Data System (ADS)

    Bouchoux, Guy

    2011-04-01

    Deprotonation thermochemistry of benzene derivatives C 6H 5X (X = H, F, Cl, OH, NH 2, CN, CHO, NO 2, CH 3, C 2H 5, CHCH 2, CCH) has been examined at the G3B3 level of theory. For X = F, Cl, CN, CHO and NO 2, the most favorable deprotonation site is the ortho position of the phenyl ring. This regio-specificity is directly related to the field/inductive effect of the substituent. G3B3 gas phase acidities, Δ acidH° and Δ acidG°, compare within less than 4 kJ mol -1 with experimental data. A noticeable exception is nitrobenzene for which tabulated acidity appear to be underestimated by ca. 120 kJ mol -1.

  1. Prototype demonstration of dual sorbent injection for acid gas control on municipal solid waste combustion units

    SciTech Connect

    1994-05-01

    This report gathered and evaluated emissions and operations data associated with furnace injection of dry hydrated lime and duct injection of dry sodium bicarbonate at a commercial, 1500 ton per day, waste-to-energy facility. The information compiled during the project sheds light on these sorbents to affect acid gas emissions from municipal solid waste combustors. The information assesses the capability of these systems to meet the 1990 Clean Air Act and 1991 EPA Emission Guidelines.

  2. Failed suicide attempt by emission gas poisoning

    SciTech Connect

    Hays, P.; Bornstein, R.A.

    1984-04-01

    After prolonged exposure to emission gases from his car, a patient survived, probably because of low carbon monoxide levels in the emission gases of his modern car. The authors anticipate a reduction in fatalities when this method of suicide is used.

  3. Agricultural opportunities to mitigate greenhouse gas emissions.

    PubMed

    Johnson, Jane M-F; Franzluebbers, Alan J; Weyers, Sharon Lachnicht; Reicosky, Donald C

    2007-11-01

    Agriculture is a source for three primary greenhouse gases (GHGs): CO(2), CH(4), and N(2)O. It can also be a sink for CO(2) through C sequestration into biomass products and soil organic matter. We summarized the literature on GHG emissions and C sequestration, providing a perspective on how agriculture can reduce its GHG burden and how it can help to mitigate GHG emissions through conservation measures. Impacts of agricultural practices and systems on GHG emission are reviewed and potential trade-offs among potential mitigation options are discussed. Conservation practices that help prevent soil erosion, may also sequester soil C and enhance CH(4) consumption. Managing N to match crop needs can reduce N(2)O emission and avoid adverse impacts on water quality. Manipulating animal diet and manure management can reduce CH(4) and N(2)O emission from animal agriculture. All segments of agriculture have management options that can reduce agriculture's environmental footprint.

  4. PROCEEDINGS: THE 1992 GREENHOUSE GAS EMISSIONS AND MITIGATION RESEARCH SYMPOSIUM

    EPA Science Inventory

    The report documents the 1992 Greenhouse Gas Emissions and Mitigation Research Symposium held in Washington, DC, August 18-20, 1992. The symposium provided a forum for exchange of technical information on global change emissions and potential mitigation technologies. The primary ...

  5. Nutritional and management strategies to mitigate animal greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal production is a significant source of greenhouse gas (GHG) emissions worldwide. The current analysis was conducted to evaluate the potential of nutritional, manure and animal management practices for mitigating methane and nitrous oxide, i.e. non-carbon dioxide GHG emissions from enteric ferm...

  6. Reconciling divergent estimates of oil and gas methane emissions

    PubMed Central

    Zavala-Araiza, Daniel; Lyon, David R.; Alvarez, Ramón A.; Davis, Kenneth J.; Harriss, Robert; Herndon, Scott C.; Karion, Anna; Kort, Eric Adam; Lamb, Brian K.; Lan, Xin; Marchese, Anthony J.; Pacala, Stephen W.; Robinson, Allen L.; Shepson, Paul B.; Sweeney, Colm; Talbot, Robert; Townsend-Small, Amy; Yacovitch, Tara I.; Zimmerle, Daniel J.; Hamburg, Steven P.

    2015-01-01

    Published estimates of methane emissions from atmospheric data (top-down approaches) exceed those from source-based inventories (bottom-up approaches), leading to conflicting claims about the climate implications of fuel switching from coal or petroleum to natural gas. Based on data from a coordinated campaign in the Barnett Shale oil and gas-producing region of Texas, we find that top-down and bottom-up estimates of both total and fossil methane emissions agree within statistical confidence intervals (relative differences are 10% for fossil methane and 0.1% for total methane). We reduced uncertainty in top-down estimates by using repeated mass balance measurements, as well as ethane as a fingerprint for source attribution. Similarly, our bottom-up estimate incorporates a more complete count of facilities than past inventories, which omitted a significant number of major sources, and more effectively accounts for the influence of large emission sources using a statistical estimator that integrates observations from multiple ground-based measurement datasets. Two percent of oil and gas facilities in the Barnett accounts for half of methane emissions at any given time, and high-emitting facilities appear to be spatiotemporally variable. Measured oil and gas methane emissions are 90% larger than estimates based on the US Environmental Protection Agency’s Greenhouse Gas Inventory and correspond to 1.5% of natural gas production. This rate of methane loss increases the 20-y climate impacts of natural gas consumed in the region by roughly 50%. PMID:26644584

  7. Reconciling divergent estimates of oil and gas methane emissions.

    PubMed

    Zavala-Araiza, Daniel; Lyon, David R; Alvarez, Ramón A; Davis, Kenneth J; Harriss, Robert; Herndon, Scott C; Karion, Anna; Kort, Eric Adam; Lamb, Brian K; Lan, Xin; Marchese, Anthony J; Pacala, Stephen W; Robinson, Allen L; Shepson, Paul B; Sweeney, Colm; Talbot, Robert; Townsend-Small, Amy; Yacovitch, Tara I; Zimmerle, Daniel J; Hamburg, Steven P

    2015-12-22

    Published estimates of methane emissions from atmospheric data (top-down approaches) exceed those from source-based inventories (bottom-up approaches), leading to conflicting claims about the climate implications of fuel switching from coal or petroleum to natural gas. Based on data from a coordinated campaign in the Barnett Shale oil and gas-producing region of Texas, we find that top-down and bottom-up estimates of both total and fossil methane emissions agree within statistical confidence intervals (relative differences are 10% for fossil methane and 0.1% for total methane). We reduced uncertainty in top-down estimates by using repeated mass balance measurements, as well as ethane as a fingerprint for source attribution. Similarly, our bottom-up estimate incorporates a more complete count of facilities than past inventories, which omitted a significant number of major sources, and more effectively accounts for the influence of large emission sources using a statistical estimator that integrates observations from multiple ground-based measurement datasets. Two percent of oil and gas facilities in the Barnett accounts for half of methane emissions at any given time, and high-emitting facilities appear to be spatiotemporally variable. Measured oil and gas methane emissions are 90% larger than estimates based on the US Environmental Protection Agency's Greenhouse Gas Inventory and correspond to 1.5% of natural gas production. This rate of methane loss increases the 20-y climate impacts of natural gas consumed in the region by roughly 50%.

  8. Reconciling divergent estimates of oil and gas methane emissions.

    PubMed

    Zavala-Araiza, Daniel; Lyon, David R; Alvarez, Ramón A; Davis, Kenneth J; Harriss, Robert; Herndon, Scott C; Karion, Anna; Kort, Eric Adam; Lamb, Brian K; Lan, Xin; Marchese, Anthony J; Pacala, Stephen W; Robinson, Allen L; Shepson, Paul B; Sweeney, Colm; Talbot, Robert; Townsend-Small, Amy; Yacovitch, Tara I; Zimmerle, Daniel J; Hamburg, Steven P

    2015-12-22

    Published estimates of methane emissions from atmospheric data (top-down approaches) exceed those from source-based inventories (bottom-up approaches), leading to conflicting claims about the climate implications of fuel switching from coal or petroleum to natural gas. Based on data from a coordinated campaign in the Barnett Shale oil and gas-producing region of Texas, we find that top-down and bottom-up estimates of both total and fossil methane emissions agree within statistical confidence intervals (relative differences are 10% for fossil methane and 0.1% for total methane). We reduced uncertainty in top-down estimates by using repeated mass balance measurements, as well as ethane as a fingerprint for source attribution. Similarly, our bottom-up estimate incorporates a more complete count of facilities than past inventories, which omitted a significant number of major sources, and more effectively accounts for the influence of large emission sources using a statistical estimator that integrates observations from multiple ground-based measurement datasets. Two percent of oil and gas facilities in the Barnett accounts for half of methane emissions at any given time, and high-emitting facilities appear to be spatiotemporally variable. Measured oil and gas methane emissions are 90% larger than estimates based on the US Environmental Protection Agency's Greenhouse Gas Inventory and correspond to 1.5% of natural gas production. This rate of methane loss increases the 20-y climate impacts of natural gas consumed in the region by roughly 50%. PMID:26644584

  9. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation.

    PubMed

    Heath, Garvin A; O'Donoughue, Patrick; Arent, Douglas J; Bazilian, Morgan

    2014-08-01

    Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices.

  10. Emissions involved in acidic deposition processes: Methodology and results

    SciTech Connect

    Placet, M.

    1990-01-01

    Data on the emissions involved in atmospheric acid-base chemistry are crucial to the assessment of acidic deposition and its effects. Sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and volatile organic compounds (VOCs) are the primary chemical compounds involved in acidic deposition processes. In addition, other emission species -- e.g., ammonia, alkaline dust particles, hydrogen chloride, and hydrogen fluoride -- are involved in atmospheric acid-base chemistry, either by contributing acidic constituents or by neutralizing acidic species. Several emissions data bases have been developed under the auspices of the National Acid Precipitation Program (NAPAP). In addition to those developed by NAPAP, emissions data bases and emissions trends estimates also have been developed by organizations such as the Electric Power Research Institute (EPRI) and the U.S. Environmental Protection Agency (EPA). This paper briefly describes and compares the methods used in developing these emissions data bases and presents an overview of their emissions estimates. A more detailed discussion of these topics can be found in the State-of-Science Report on emissions recently released by NAPAP and in the references cited in that report. 14 refs., 4 figs., 1 tab.

  11. Process for defoaming acid gas scrubbing solutions and defoaming solutions

    SciTech Connect

    Ernst, E.R.; Robbins, M.L.

    1980-06-17

    The foam in acid gas scrubbing solutions created during an acid gas scrubbing process is reduced or eliminated by the addition of certain polyoxyethylene polyoxypropylene block copolymers as defoaming agents. The defoaming agents are particularly effective when the acid gas scrubbing solution contains an amine having a large hydrophobic moiety.

  12. Measuring and managing reservoir greenhouse gas emissions

    EPA Science Inventory

    Methane (CH4) is the second most important anthropogenic greenhouse gas with a heat trapping capacity 34 times greater than that of carbon dioxide on a 100 year time scale. Known anthropogenic CH4 sources include livestock production, rice agriculture, landfills, and natural gas...

  13. Quantification of aldehydes emissions from alternative and renewable aviation fuels using a gas turbine engine

    NASA Astrophysics Data System (ADS)

    Li, Hu; Altaher, Mohamed A.; Wilson, Chris W.; Blakey, Simon; Chung, Winson; Rye, Lucas

    2014-02-01

    In this research three renewable aviation fuel blends including two HEFA (Hydrotreated Ester and Fatty Acid) blends and one FAE (Fatty Acids Ethyl Ester) blend with conventional Jet A-1 along with a GTL (Gas To Liquid) fuel have been tested for their aldehydes emissions on a small gas turbine engine. Three strong ozone formation precursors: formaldehyde, acetaldehyde and acrolein were measured in the exhaust at different operational modes and compared to neat Jet A-1. The aim is to assess the impact of renewable and alternative aviation fuels on aldehydes emissions from aircraft gas turbine engines so as to provide informed knowledge for the future deployment of new fuels in aviation. The results show that formaldehyde was a major aldehyde species emitted with a fraction of around 60% of total measured aldehydes emissions for all fuels. Acrolein was the second major emitted aldehyde species with a fraction of ˜30%. Acetaldehyde emissions were very low for all the fuels and below the detention limit of the instrument. The formaldehyde emissions at cold idle were up to two to threefold higher than that at full power. The fractions of formaldehyde were 6-10% and 20% of total hydrocarbon emissions in ppm at idle and full power respectively and doubled on a g kg-1-fuel basis.

  14. Greenhouse-gas emissions from soils increased by earthworms

    NASA Astrophysics Data System (ADS)

    Lubbers, Ingrid M.; van Groenigen, Kees Jan; Fonte, Steven J.; Six, Johan; Brussaard, Lijbert; van Groenigen, Jan Willem

    2013-03-01

    Earthworms play an essential part in determining the greenhouse-gas balance of soils worldwide, and their influence is expected to grow over the next decades. They are thought to stimulate carbon sequestration in soil aggregates, but also to increase emissions of the main greenhouse gases carbon dioxide and nitrous oxide. Hence, it remains highly controversial whether earthworms predominantly affect soils to act as a net source or sink of greenhouse gases. Here, we provide a quantitative review of the overall effect of earthworms on the soil greenhouse-gas balance. Our results suggest that although earthworms are largely beneficial to soil fertility, they increase net soil greenhouse-gas emissions.

  15. Alternative control techniques document. NOx emissions from stationary gas turbines

    SciTech Connect

    Snyder, R.B.

    1993-01-01

    The Alternative Control Techniques document describes available control technologies for reducing NOx emissions levels from stationary combustion gas turbines. Information on the formation of NOx and uncontrolled NOx emissions from gas turbines is included. Water injection, steam injection, and low-NOx combustors, used independently or in combination with selective catalytic reduction (SCR), are discussed. Achievable controlled NOx emissions levels, costs and cost effectiveness, and environmental impacts are presented and applicability to new equipment as well as retrofit applications is discussed. The application of these technologies to gas turbines operating in offshore platform applications is included. Information on the use of alternate fuels, catalytic combustion, and selective noncatalytic reduction (SNCR) to reduce NOx emissions is also briefly presented.

  16. The Effect of Natural Gas Supply on US Renewable Energy and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Shearer, C.; Bistline, J.; Inman, M.; Davis, S. J.

    2014-12-01

    Increased use of natural gas has been promoted as a means of decarbonizing the US power sector, because of superior generator efficiency and lower CO2 emissions per unit of electricity than coal. We model the effect of different gas supplies on the US power sector and greenhouse gas (GHG) emissions. Across a range of climate policies, we find that more abundant natural gas decreases use of both coal and renewable energy technologies in the future. Without a climate policy, overall energy use also increases as the gas supply increases. With reduced deployment of lower-carbon renewable energies and increased electricity consumption, the effect of higher gas supplies on GHG emissions is small: cumulative emissions 2013-2055 in our high gas supply scenario are 2% less than in our low gas supply scenario, when there are no new climate policies and a methane leakage rate of 1.5% is assumed. Assuming leakage rates of 0 or 3% does not substantially alter this finding. In our results, only climate policies bring about a significant reduction in future CO2 emissions within the US electricity sector. Our results suggest that without strong limits on GHG emissions or policies that explicitly encourage renewable energy, more abundant natural gas may actually slow the process of decarbonization, primarily by delaying deployment of renewable energy technologies.

  17. Effect of enhanced leachate recirculated (ELR) landfill operation and gas extraction on greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Samir, Sonia

    The bioreactor/ enhanced leachate recirculated (ELR) landfill operation with the addition of moisture/ leachate to the landfill, accelerate the process of landfill waste decomposition; and increase the generation of LFG over a shorter period of time. Since emissions from the landfills are directly related to the gas generation, the increase in gas generation might also increase the emission from the landfill. On the contrary, the presence of gas extraction is suggested to mitigate the fugitive emissions from the landfills. Therefore, the motivation of the current study was to evaluate the effect of ELR operation as well as the gas extraction on the greenhouse gas emissions from the landfill. The current study was conducted in the City of Denton Landfill, Texas. Methane emission was investigated using a portable FID and static flux chamber technique from the landfill surface. Emission was measured from an ELR operated cell (cell 2) as well as a conventional cell (cell 0) in the City of Denton Landfill. Methane emission for cell 2 varied from 9544.3 ppm to 0 ppm while for cell 0, it varied from 0 ppm to 47 ppm. High spatial variations were observed during monitoring from both cells 0 and cell 2 which could be recognized as the variation of gas generation below the cover soil. The comparison between emissions from the slope and surface of the landfill showed that more methane emission occurred from the slopes than the top surface. In addition, the average landfill emission showed an increasing trend with increase in temperature and decreasing trend with increasing precipitation. The effect of ELR operation near the recirculation pipes showed a lag period between the recirculation and the maximum emission near the pipe. The emission near the pipe decreased after 1 day of recirculation and after the initial decrease, the emission started to increase and continued to increase up to 7 days after the recirculation. However, approximately after 10 days of recirculation, the

  18. Development of a gas phase source for perfluoroalkyl acids to examine atmospheric sampling methods.

    PubMed

    MacInnis, John J; VandenBoer, Trevor C; Young, Cora J

    2016-06-21

    An inability to produce environmentally relevant gaseous mixing ratios of perfluoroalkyl acids (PFAAs), ubiquitous global contaminants, limits the analytical reliability of atmospheric chemists to make accurate gas and particulate measurements that are demonstrably free of interferences due to sampling artefacts. A gas phase source for PFAAs based on the acid displacement mechanism using perfluoropropionate (PFPrA), perfluorobutanoate (PFBA), perfluorohexanoate (PFHxA), and perfluorooctanoate (PFOA) has been constructed. The displacement efficiency of gas phase perfluorocarboxylic acids (PFCAs) is inversely related to chain length. Decreasing displacement efficiencies for PFPrA, PFBA, PFHxA, and PFOA were 90% ± 20%, 40% ± 10%, 40% ± 10%, 9% ± 4%, respectively. Generating detectable amounts of gas phase perfluorosulfonic acids (PFSAs) was not possible. It is likely that lower vapour pressure and much higher acidity play a role in this lack of emission. PFCA emission rates were not elevated by increasing relative humidity (25%-75%), nor flow rate of carrier gas from 33-111 sccm. Overall, reproducible gaseous production of PFCAs was within the error of the production of hydrochloric acid (HCl) as a displacing acid (±20%) and was accomplished using a dry nitrogen flow of 33 ± 2 sccm. A reproducible mass emission rate of 0.97 ± 0.10 ng min(-1) (n = 8) was observed for PFBA. This is equivalent to an atmospheric mixing ratio of 12 ppmv, which is easily diluted to environmentally relevant mixing ratios of PFBA. Conversely, generating gas phase perfluorononanoic acid (PFNA) by sublimating the solid acid under the same conditions produced a mass emission rate of 2800 ng min(-1), which is equivalent to a mixing ratio of 18 ppthv and over a million times higher than suspected atmospheric levels. Thus, for analytical certification of atmospheric sampling methods, generating gas phase standards for PFCAs is best accomplished using acid displacement under dry conditions

  19. Methane Emissions from United States Natural Gas Gathering and Processing.

    PubMed

    Marchese, Anthony J; Vaughn, Timothy L; Zimmerle, Daniel J; Martinez, David M; Williams, Laurie L; Robinson, Allen L; Mitchell, Austin L; Subramanian, R; Tkacik, Daniel S; Roscioli, Joseph R; Herndon, Scott C

    2015-09-01

    New facility-level methane (CH4) emissions measurements obtained from 114 natural gas gathering facilities and 16 processing plants in 13 U.S. states were combined with facility counts obtained from state and national databases in a Monte Carlo simulation to estimate CH4 emissions from U.S. natural gas gathering and processing operations. Total annual CH4 emissions of 2421 (+245/-237) Gg were estimated for all U.S. gathering and processing operations, which represents a CH4 loss rate of 0.47% (±0.05%) when normalized by 2012 CH4 production. Over 90% of those emissions were attributed to normal operation of gathering facilities (1697 +189/-185 Gg) and processing plants (506 +55/-52 Gg), with the balance attributed to gathering pipelines and processing plant routine maintenance and upsets. The median CH4 emissions estimate for processing plants is a factor of 1.7 lower than the 2012 EPA Greenhouse Gas Inventory (GHGI) estimate, with the difference due largely to fewer reciprocating compressors, and a factor of 3.0 higher than that reported under the EPA Greenhouse Gas Reporting Program. Since gathering operations are currently embedded within the production segment of the EPA GHGI, direct comparison to our results is complicated. However, the study results suggest that CH4 emissions from gathering are substantially higher than the current EPA GHGI estimate and are equivalent to 30% of the total net CH4 emissions in the natural gas systems GHGI. Because CH4 emissions from most gathering facilities are not reported under the current rule and not all source categories are reported for processing plants, the total CH4 emissions from gathering and processing reported under the EPA GHGRP (180 Gg) represents only 14% of that tabulated in the EPA GHGI and 7% of that predicted from this study.

  20. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions

  1. Capture and release of acid-gasses with acid-gas binding organic compounds

    DOEpatents

    Heldebrant, David J; Yonker, Clement R; Koech, Phillip K

    2015-03-17

    A system and method for acid-gas capture wherein organic acid-gas capture materials form hetero-atom analogs of alkyl-carbonate when contacted with an acid gas. These organic-acid gas capture materials include combinations of a weak acid and a base, or zwitterionic liquids. This invention allows for reversible acid-gas binding to these organic binding materials thus allowing for the capture and release of one or more acid gases. These acid-gas binding organic compounds can be regenerated to release the captured acid gasses and enable these organic acid-gas binding materials to be reused. This enables transport of the liquid capture compounds and the release of the acid gases from the organic liquid with significant energy savings compared to current aqueous systems.

  2. Trace gas emissions from burning Florida wetlands

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Levine, Joel S.; Lebel, Peter J.; Winstead, Edward L.; Koller, Albert M., Jr.; Hinkle, C. Ross

    1990-01-01

    Measurements of biomass burn-produced trace gases were obtained using a helicopter at low altitudes above burning Florida wetlands on November 9, 1987, and from both helicopter and light-aircraft samplings on November 7, 1988. Carbon dioxide normalized emission ratios for carbon monoxide, hydrogen, methane, total nonmethane hydrocarbons, and nitrous oxide were obtained over burning graminoid wetlands consisting primarily of Spartina bakeri and Juncus roemerianus. Some interspersed scrub oak and saw palmetto were also burned. No significant differences were observed in the emission ratios determined for these gases from samples collected over flaming, mixed, and smoldering phases of combustion during the 1987 fire. Combustion-categorized differences in emission ratios were small for the 1988 fire. Combustion efficiency was relatively good (low emission ratios for reduced gases) for both fires. It is believed that the consistently low emission ratios were a unique result of graminoid wetlands fires, in which the grasses and rushes burned rapidly down to standing water and were quickly extinguished. Consequently, the efficiency of the combustion was good and the amount and duration of smoldering combustion was greatly deminished.

  3. Climate change : enhanced : recent reductions in China's greenhouse gas emissions.

    SciTech Connect

    Streets, D. G.; Jiang, K.; Hu, X.; Sinton, J. E.; Zhang, X.-Q.; Xu, D.; Jacobson, M. Z.; Hansen, J. E.; Decision and Information Sciences; Energy Research Inst.; LBNL; Chinese Academy of Forestry; Stanford Univ.; NASA Goddard Inst. for Space Studies

    2001-11-30

    Using the most recent energy and other statistical data, we have estimated the annual trends in China's greenhouse gas emissions for the period 1990 to 2000. The authors of this Policy Forum calculate that CO2 emissions declined by 7.3% between 1996 and 2000, while CH4 emissions declined by 2.2% between 1997 and 2000. These reductions were due to a combination of energy reforms, economic restructuring, forestry policies, and economic slowdown. The effects of these emission changes on global mean temperatures are estimated and compared with the effects of concurrent changes in two aerosol species, sulfate and black carbon.

  4. GAS EMISSION FROM DEBRIS DISKS AROUND A AND F STARS

    SciTech Connect

    Zagorovsky, Kyryl; Brandeker, Alexis; Wu Yanqin E-mail: alexis@astro.su.s

    2010-09-01

    Gas has been detected in a number of debris disk systems. This gas may have arisen from grain sublimation or grain photodesorption. It interacts with the surrounding dust grains through a number of charge and heat exchanges. Studying the chemical composition and physical state of this gas can therefore reveal much about the dust component in these debris disks. We have produced a new code, ONTARIO, to address gas emission from dusty gas-poor disks around A-F stars. This code computes the gas ionization and thermal balance self-consistently, with particular care taken of heating/cooling mechanisms. Line emission spectra are then produced for each species (up to zinc) by statistical equilibrium calculations of the atomic/ionic energy levels. For parameters that resemble the observed {beta} Pictoris gas disk, we find that the gas is primarily heated by photoelectric emission from dust grains, and primarily cooled through the C II 157.7 {mu}m line emission. The gas can be heated to a temperature that is warmer than that of the dust and may in some cases reach temperature for thermal escape. The dominant cooling line, C II 157.7 {mu}m, should be detectable by Herschel in these disks, while the O I 63.2 {mu}m line will be too faint. We also study the dependence of the cooling line fluxes on a variety of disk parameters, in light of the much improved sensitivity to thermal line emission in the mid/far-infrared and at submillimeter wavelengths provided by, in particular, Herschel, SOFIA, and ALMA. These new instruments will yield much new information about dusty debris disks.

  5. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    PubMed

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles.

  6. Measurement of Emissions from Produced Water Ponds: Upstream Oil and Gas Study #1; Final Report

    EPA Science Inventory

    Significant uncertainty exists regarding air pollutant emissions from upstream oil and gas production operations. Oil and gas operations present unique and challenging emission testing issues due to the large variety and quantity of potential emissions sources. This report summ...

  7. Atmospheric emission characterization of Marcellus shale natural gas development sites.

    PubMed

    Goetz, J Douglas; Floerchinger, Cody; Fortner, Edward C; Wormhoudt, Joda; Massoli, Paola; Knighton, W Berk; Herndon, Scott C; Kolb, Charles E; Knipping, Eladio; Shaw, Stephanie L; DeCarlo, Peter F

    2015-06-01

    Limited direct measurements of criteria pollutants emissions and precursors, as well as natural gas constituents, from Marcellus shale gas development activities contribute to uncertainty about their atmospheric impact. Real-time measurements were made with the Aerodyne Research Inc. Mobile Laboratory to characterize emission rates of atmospheric pollutants. Sites investigated include production well pads, a well pad with a drill rig, a well completion, and compressor stations. Tracer release ratio methods were used to estimate emission rates. A first-order correction factor was developed to account for errors introduced by fenceline tracer release. In contrast to observations from other shale plays, elevated volatile organic compounds, other than CH4 and C2H6, were generally not observed at the investigated sites. Elevated submicrometer particle mass concentrations were also generally not observed. Emission rates from compressor stations ranged from 0.006 to 0.162 tons per day (tpd) for NOx, 0.029 to 0.426 tpd for CO, and 67.9 to 371 tpd for CO2. CH4 and C2H6 emission rates from compressor stations ranged from 0.411 to 4.936 tpd and 0.023 to 0.062 tpd, respectively. Although limited in sample size, this study provides emission rate estimates for some processes in a newly developed natural gas resource and contributes valuable comparisons to other shale gas studies. PMID:25897974

  8. Atmospheric emission characterization of Marcellus shale natural gas development sites.

    PubMed

    Goetz, J Douglas; Floerchinger, Cody; Fortner, Edward C; Wormhoudt, Joda; Massoli, Paola; Knighton, W Berk; Herndon, Scott C; Kolb, Charles E; Knipping, Eladio; Shaw, Stephanie L; DeCarlo, Peter F

    2015-06-01

    Limited direct measurements of criteria pollutants emissions and precursors, as well as natural gas constituents, from Marcellus shale gas development activities contribute to uncertainty about their atmospheric impact. Real-time measurements were made with the Aerodyne Research Inc. Mobile Laboratory to characterize emission rates of atmospheric pollutants. Sites investigated include production well pads, a well pad with a drill rig, a well completion, and compressor stations. Tracer release ratio methods were used to estimate emission rates. A first-order correction factor was developed to account for errors introduced by fenceline tracer release. In contrast to observations from other shale plays, elevated volatile organic compounds, other than CH4 and C2H6, were generally not observed at the investigated sites. Elevated submicrometer particle mass concentrations were also generally not observed. Emission rates from compressor stations ranged from 0.006 to 0.162 tons per day (tpd) for NOx, 0.029 to 0.426 tpd for CO, and 67.9 to 371 tpd for CO2. CH4 and C2H6 emission rates from compressor stations ranged from 0.411 to 4.936 tpd and 0.023 to 0.062 tpd, respectively. Although limited in sample size, this study provides emission rate estimates for some processes in a newly developed natural gas resource and contributes valuable comparisons to other shale gas studies.

  9. LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE

    SciTech Connect

    Raymond Drnevich; James Meagher; Vasilis Papavassiliou; Troy Raybold; Peter Stuttaford; Leonard Switzer; Lee Rosen

    2004-08-01

    In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter, and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.

  10. Greenhouse gas emissions during composting of dairy manure: Delaying pile mixing does not reduce overall emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of the timing of pile mixing on greenhouse gas (GHG) emissions during dairy manure composting was determined using large flux chambers designed to completely cover replicate pilot-scale compost piles. GHG emissions from compost piles that were mixed at 2, 3, 4, or 5 weeks after initial c...

  11. Mitigating Greenhouse Gas Emissions: Voluntary Reporting 1996

    EIA Publications

    1997-01-01

    Presents information on voluntary actions to reduce greenhouse gases or remove such gases from the atmosphere in 1995. It provides an overview of participation in the Voluntary Reporting Program, a perspective on the composition of activities reported, and a review of some key issues in interpreting and evaluating achievements associated with reported emissions mitigation initiatives.

  12. Capturing fugitive methane emissions from natural gas compressor buildings.

    PubMed

    Litto, R; Hayes, R E; Liu, B

    2007-08-01

    Fugitive methane emissions account for about 50% of the greenhouse gas (GHG) emissions from the Canadian conventional oil and gas sector. Sources include leaks in natural gas transmission facilities such as pipelines and compressor stations. There are three sources of methane emissions in a compressor station. The first is emissions resulting from incomplete combustion in the engine; the second is leaks in valves, flanges and other equipment in the building; and the third results from instrument venting. Fugitive methane emissions may be in low concentration relative to air, and thus cannot be destroyed by conventional combustion (below flammability limits of about 5-16%). The present study investigates the feasibility of capturing methane emissions from a compressor station. Computer modelling of the flow patterns of lean methane emissions inside the building is used to show the influence of doors, vents and leak location. Simulations show that for a typical building most fugitive methane exits through the ridge vent provided that the main doors remain closed. When the extraction rate through the ridge vent is controlled, the methane concentration is at acceptable levels for destruction in a catalytic flow reverse reactor, that is, in the range of 0.1-1% by volume. PMID:16891053

  13. Activated carbon passes tests for acid-gas cleanup

    SciTech Connect

    Harruff, L.G.; Bushkuhl, S.J.

    1996-06-24

    Use of activated carbon to remove hydrocarbon contaminants from the acid-gas feed to Claus sulfur-recovery units has been successfully pilot tested in Saudi Arabia. Pilot plant results are discussed here along with issues involved in scale-up to commercial size. Heavy hydrocarbons, particularly benzene, toluene, and xylene (BTX) have been linked to coke formation and catalyst deactivation in Claus converters. This deactivation results in reduced sulfur recovery and increased sulfur emissions from these plants. This clean-up process was proven to be capable of removing 95% of the BTX and other C{sub 6}+s from acid gas over a wide range of actual plant conditions. Following the adsorption step, the activated carbon was easily regenerated by use of low-pressure steam. A post-regeneration drying step using plant fuel gas also proved beneficial. The paper discusses feed contaminants, vapor-phase cleanup, testing design, test parameters and results, bed drying after regeneration, regeneration conditions, basic flow, system control, and full-scale installation.

  14. Gas emissions and slug dynamics at Stromboli

    NASA Astrophysics Data System (ADS)

    Pering, Tom D.; McGonigle, Andrew J. S.; James, Mike R.; Tamburello, Giancarlo; Aiuppa, Alessandro

    2016-04-01

    We present UV camera data for 200 strombolian and hornito degassing events at Stromboli during June and July 2014. This data was processed to calculate SO2 masses for each event. In addition to calculating SO2 masses of the slugs which generate these events we also observe periods of elevated flux following events, termed the gas coda, lasting ≈ 30 - 180 s, which we also calculate SO2masses for. This provided a range of explosive plus coda SO2 masses of ≈ 18 - 225 kg. In combination with 3D fluid numerical simulations of slug flow we begin to probe a possible generation mechanism for the observed gas codas. The simulations show that 'daughter bubbles' are produced from the base of ascending slugs, which result in gas mass loss rates from the slugs of between ≈ 1.2 - 14.2 kg s‑1. Nf, the dimensionless inverse viscosity number, can be used to characterise the form of a slug wake, and hence when mass loss through daughter bubble production may occur. However, the observed daughter bubble behaviour occurs at lower levels of Nf than predicted by previous mm- to cm-scale studies and suggests that extra physics (e.g. surface tension), beyond that included in Nf, may be needed to parameterise daughter bubble production. We suggest that daughter bubbles could play a role in modulating explosivity of strombolian eruptions as a potential causal mechanism for gas coda production.

  15. FETC Programs for Reducing Greenhouse Gas Emissions

    SciTech Connect

    Ruether, J.A.

    1998-02-01

    Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called `greenhouse gases.` Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth`s atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide.

  16. Wellbeing impacts of city policies for reducing greenhouse gas emissions.

    PubMed

    Hiscock, Rosemary; Mudu, Pierpaolo; Braubach, Matthias; Martuzzi, Marco; Perez, Laura; Sabel, Clive

    2014-12-01

    To mitigate climate change, city authorities are developing policies in areas such as transportation, housing and energy use, to reduce greenhouse gas emissions. In addition to their effects on greenhouse gas emissions, these policies are likely to have consequences for the wellbeing of their populations for example through changes in opportunities to take physical exercise. In order to explore the potential consequences for wellbeing, we first explore what 'wellbeing' is and how it can be operationalised for urban planners. In this paper, we illustrate how wellbeing can be divided into objective and subjective aspects which can be measured quantitatively; our review of measures informs the development of a theoretical model linking wellbeing to policies which cities use to reduce greenhouse gas emissions. Finally, we discuss the extent to which the links proposed in the conceptual model are supported by the literature and how cities can assess wellbeing implications of policies.

  17. Wellbeing Impacts of City Policies for Reducing Greenhouse Gas Emissions

    PubMed Central

    Hiscock, Rosemary; Mudu, Pierpaolo; Braubach, Matthias; Martuzzi, Marco; Perez, Laura; Sabel, Clive

    2014-01-01

    To mitigate climate change, city authorities are developing policies in areas such as transportation, housing and energy use, to reduce greenhouse gas emissions. In addition to their effects on greenhouse gas emissions, these policies are likely to have consequences for the wellbeing of their populations for example through changes in opportunities to take physical exercise. In order to explore the potential consequences for wellbeing, we first explore what ‘wellbeing’ is and how it can be operationalized for urban planners. In this paper, we illustrate how wellbeing can be divided into objective and subjective aspects which can be measured quantitatively; our review of measures informs the development of a theoretical model linking wellbeing to policies which cities use to reduce greenhouse gas emissions. Finally, we discuss the extent to which the links proposed in the conceptual model are supported by the literature and how cities can assess wellbeing implications of policies. PMID:25464129

  18. Limiting net greenhouse gas emissions in the United States

    SciTech Connect

    Bradley, R A; Watts, E C; Williams, E R

    1991-09-01

    In 2988 the Congress requested DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. This report presents the results of that study. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity), and the relationship between energy production and use and the emission of radiactively important gases. Topics discussed include: energy and environmental technology to reduce greenhouse gas emissions, fossil energy production and electricity generation technologies, nuclear energy technology, renewable energy technologies, energy storage, transmission, and distribution technology, transportation, technology, industrial technology, residential and commercial building technology, greenhouse gas removal technology, approaches to restructuring the demand for energy.

  19. Black Carbon Emissions from Associated Natural Gas Flaring

    NASA Astrophysics Data System (ADS)

    Weyant, C.; Shepson, P. B.; Subramanian, R.; Cambaliza, M. O. L.; Mccabe, D. C.; Baum, E. K.; Caulton, D.; Heimburger, A. M. F.; Bond, T. C.

    2014-12-01

    Approximately 150 billion cubic meters (BCM) of associated natural gas is flared and vented in the world, annually, emitting greenhouse gases and other pollutants with no energy benefit. Based on estimates from satellite observations, the United States flares about 7 BCM of gas, annually (the 5th highest flaring volume worldwide). The volume of gas flared in the US is growing, largely due to flaring in the Bakken formation in North Dakota. Black carbon (BC), a combustion by-product from gas flaring, is a short-term climate pollutant that absorbs shortwave radiation both in the atmosphere and on snow and ice surfaces. Flaring may be a significant source of global BC climate effects. For example, modeling estimates suggest that associated gas flares are the source of a significant percentage of BC surface concentrations in the Arctic, where BC-induced ice melting occurs. However, there are no direct field measurements of BC emission factors from associated gas flares. Emission measurements of BC that include a range of flaring conditions are needed to ascertain the magnitude of BC emissions from this source. Over one hundred flare plumes were sampled in the Bakken formation using a small aircraft. Methane, carbon dioxide, and BC were measured simultaneously, allowing the calculation of BC mass emission factors using the carbon balance method. BC was measured using two methods; optical absorption was measured using a Particle Soot Absorption Photometer (PSAP) and BC particle number and mass concentrations were measured with a Single Particle Soot Photometer (SP2). Simultaneous sampling of BC absorption and mass allows for the calculation of the BC mass absorption cross-section. Results indicate that emission factor variability between flares in the region is significant; there are two orders of magnitude variation in the BC emission factors.

  20. Near-Zero Emissions Oxy-Combustion Flue Gas Purification

    SciTech Connect

    Minish Shah; Nich Degenstein; Monica Zanfir; Rahul Solunke; Ravi Kumar; Jennifer Bugayong; Ken Burgers

    2012-06-30

    The objectives of this project were to carry out an experimental program to enable development and design of near zero emissions (NZE) CO{sub 2} processing unit (CPU) for oxy-combustion plants burning high and low sulfur coals and to perform commercial viability assessment. The NZE CPU was proposed to produce high purity CO{sub 2} from the oxycombustion flue gas, to achieve > 95% CO{sub 2} capture rate and to achieve near zero atmospheric emissions of criteria pollutants. Two SOx/NOx removal technologies were proposed depending on the SOx levels in the flue gas. The activated carbon process was proposed for power plants burning low sulfur coal and the sulfuric acid process was proposed for power plants burning high sulfur coal. For plants burning high sulfur coal, the sulfuric acid process would convert SOx and NOx in to commercial grade sulfuric and nitric acid by-products, thus reducing operating costs associated with SOx/NOx removal. For plants burning low sulfur coal, investment in separate FGD and SCR equipment for producing high purity CO{sub 2} would not be needed. To achieve high CO{sub 2} capture rates, a hybrid process that combines cold box and VPSA (vacuum pressure swing adsorption) was proposed. In the proposed hybrid process, up to 90% of CO{sub 2} in the cold box vent stream would be recovered by CO{sub 2} VPSA and then it would be recycled and mixed with the flue gas stream upstream of the compressor. The overall recovery from the process will be > 95%. The activated carbon process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx, thus exceeding the performance targets of >99% and >95%, respectively. The process was also found to be suitable for power plants burning both low and high sulfur coals. Sulfuric acid process did not meet the performance expectations. Although it could achieve high SOx (>99%) and NOx (>90%) removal efficiencies, it could not produce by

  1. The Antarctic ozone depletion caused by Erebus volcano gas emissions

    NASA Astrophysics Data System (ADS)

    Zuev, V. V.; Zueva, N. E.; Savelieva, E. S.; Gerasimov, V. V.

    2015-12-01

    Heterogeneous chemical reactions releasing photochemically active molecular chlorine play a key role in Antarctic stratospheric ozone destruction, resulting in the Antarctic ozone hole. Hydrogen chloride (HCl) is one of the principal components in these reactions on the surfaces of polar stratospheric clouds (PSCs). PSCs form during polar nights at extremely low temperatures (lower than -78 °C) mainly on sulfuric acid (H2SO4) aerosols, acting as condensation nuclei and formed from sulfur dioxide (SO2). However, the cause of HCl and H2SO4 high concentrations in the Antarctic stratosphere, leading to considerable springtime ozone depletion, is still not clear. Based on the NCEP/NCAR reanalysis data over the last 35 years and by using the NOAA HYSPLIT trajectory model, we show that Erebus volcano gas emissions (including HCl and SO2) can reach the Antarctic stratosphere via high-latitude cyclones with the annual average probability Pbarann. of at least ∼0.235 (23.5%). Depending on Erebus activity, this corresponds to additional annual stratospheric HCl mass of 1.0-14.3 kilotons (kt) and SO2 mass of 1.4-19.7 kt. Thus, Erebus volcano is the natural and powerful source of additional stratospheric HCl and SO2, and hence, the cause of the Antarctic ozone depletion, together with man-made chlorofluorocarbons.

  2. UK emissions of the greenhouse gas nitrous oxide

    PubMed Central

    Skiba, U.; Jones, S. K.; Dragosits, U.; Drewer, J.; Fowler, D.; Rees, R. M.; Pappa, V. A.; Cardenas, L.; Chadwick, D.; Yamulki, S.; Manning, A. J.

    2012-01-01

    Signatories of the Kyoto Protocol are obliged to submit annual accounts of their anthropogenic greenhouse gas emissions, which include nitrous oxide (N2O). Emissions from the sectors industry (3.8 Gg), energy (14.4 Gg), agriculture (86.8 Gg), wastewater (4.4 Gg), land use, land-use change and forestry (2.1 Gg) can be calculated by multiplying activity data (i.e. amount of fertilizer applied, animal numbers) with simple emission factors (Tier 1 approach), which are generally applied across wide geographical regions. The agricultural sector is the largest anthropogenic source of N2O in many countries and responsible for 75 per cent of UK N2O emissions. Microbial N2O production in nitrogen-fertilized soils (27.6 Gg), nitrogen-enriched waters (24.2 Gg) and manure storage systems (6.4 Gg) dominate agricultural emission budgets. For the agricultural sector, the Tier 1 emission factor approach is too simplistic to reflect local variations in climate, ecosystems and management, and is unable to take into account some of the mitigation strategies applied. This paper reviews deviations of observed emissions from those calculated using the simple emission factor approach for all anthropogenic sectors, briefly discusses the need to adopt specific emission factors that reflect regional variability in climate, soil type and management, and explains how bottom-up emission inventories can be verified by top-down modelling. PMID:22451103

  3. Addressing biogenic greenhouse gas emissions from hydropower in LCA.

    PubMed

    Hertwich, Edgar G

    2013-09-01

    The ability of hydropower to contribute to climate change mitigation is sometimes questioned, citing emissions of methane and carbon dioxide resulting from the degradation of biogenic carbon in hydropower reservoirs. These emissions are, however, not always addressed in life cycle assessment, leading to a bias in technology comparisons, and often misunderstood. The objective of this paper is to review and analyze the generation of greenhouse gas emissions from reservoirs for the purpose of technology assessment, relating established emission measurements to power generation. A literature review, data collection, and statistical analysis of methane and CO2 emissions are conducted. In a sample of 82 measurements, methane emissions per kWh hydropower generated are log-normally distributed, ranging from micrograms to 10s of kg. A multivariate regression analysis shows that the reservoir area per kWh electricity is the most important explanatory variable. Methane emissions flux per reservoir area are correlated with the natural net primary production of the area, the age of the power plant, and the inclusion of bubbling emissions in the measurement. Even together, these factors fail to explain most of the variation in the methane flux. The global average emissions from hydropower are estimated to be 85 gCO2/kWh and 3 gCH4/kWh, with a multiplicative uncertainty factor of 2. GHG emissions from hydropower can be largely avoided by ceasing to build hydropower plants with high land use per unit of electricity generated. PMID:23909506

  4. Drivers of the growth in global greenhouse gas emissions.

    PubMed

    Arto, Iñaki; Dietzenbacher, Erik

    2014-05-20

    Greenhouse gas emissions increased by 8.9 Gigatons CO2 equivalent (Gt) in the period 1995-2008. A phenomenon that has received due attention is the upsurge of emission transfers via international trade. A question that has remained unanswered is whether trade changes have affected global emissions. For each of five factors (one of which is trade changes) in 40 countries we quantify its contribution to the growth in global emissions. We find that the changes in the levels of consumption per capita have led to an enormous growth in emissions (+14.0 Gt). This effect was partly offset by the changes in technology (-8.4 Gt). Smaller effects are found for population growth (+4.2 Gt) and changes in the composition of the consumption (-1.5 Gt). Changes in the trade structure had a very moderate effect on global emissions (+0.6 Gt). Looking at the geographical distribution, changes in the emerging economies (Brazil, Russia, India, Indonesia and China) have caused 44% of emission growth whereas the increase in their national emissions accounted for 59% of emission growth. This means that 15% (1.4 Gt) of all extra GHG emissions between 1995 and 2008 have been emitted in emerging countries but were caused by changes in other countries. PMID:24754816

  5. UK emissions of the greenhouse gas nitrous oxide.

    PubMed

    Skiba, U; Jones, S K; Dragosits, U; Drewer, J; Fowler, D; Rees, R M; Pappa, V A; Cardenas, L; Chadwick, D; Yamulki, S; Manning, A J

    2012-05-01

    Signatories of the Kyoto Protocol are obliged to submit annual accounts of their anthropogenic greenhouse gas emissions, which include nitrous oxide (N(2)O). Emissions from the sectors industry (3.8 Gg), energy (14.4 Gg), agriculture (86.8 Gg), wastewater (4.4 Gg), land use, land-use change and forestry (2.1 Gg) can be calculated by multiplying activity data (i.e. amount of fertilizer applied, animal numbers) with simple emission factors (Tier 1 approach), which are generally applied across wide geographical regions. The agricultural sector is the largest anthropogenic source of N(2)O in many countries and responsible for 75 per cent of UK N(2)O emissions. Microbial N(2)O production in nitrogen-fertilized soils (27.6 Gg), nitrogen-enriched waters (24.2 Gg) and manure storage systems (6.4 Gg) dominate agricultural emission budgets. For the agricultural sector, the Tier 1 emission factor approach is too simplistic to reflect local variations in climate, ecosystems and management, and is unable to take into account some of the mitigation strategies applied. This paper reviews deviations of observed emissions from those calculated using the simple emission factor approach for all anthropogenic sectors, briefly discusses the need to adopt specific emission factors that reflect regional variability in climate, soil type and management, and explains how bottom-up emission inventories can be verified by top-down modelling.

  6. Drivers of the growth in global greenhouse gas emissions.

    PubMed

    Arto, Iñaki; Dietzenbacher, Erik

    2014-05-20

    Greenhouse gas emissions increased by 8.9 Gigatons CO2 equivalent (Gt) in the period 1995-2008. A phenomenon that has received due attention is the upsurge of emission transfers via international trade. A question that has remained unanswered is whether trade changes have affected global emissions. For each of five factors (one of which is trade changes) in 40 countries we quantify its contribution to the growth in global emissions. We find that the changes in the levels of consumption per capita have led to an enormous growth in emissions (+14.0 Gt). This effect was partly offset by the changes in technology (-8.4 Gt). Smaller effects are found for population growth (+4.2 Gt) and changes in the composition of the consumption (-1.5 Gt). Changes in the trade structure had a very moderate effect on global emissions (+0.6 Gt). Looking at the geographical distribution, changes in the emerging economies (Brazil, Russia, India, Indonesia and China) have caused 44% of emission growth whereas the increase in their national emissions accounted for 59% of emission growth. This means that 15% (1.4 Gt) of all extra GHG emissions between 1995 and 2008 have been emitted in emerging countries but were caused by changes in other countries.

  7. Addressing biogenic greenhouse gas emissions from hydropower in LCA.

    PubMed

    Hertwich, Edgar G

    2013-09-01

    The ability of hydropower to contribute to climate change mitigation is sometimes questioned, citing emissions of methane and carbon dioxide resulting from the degradation of biogenic carbon in hydropower reservoirs. These emissions are, however, not always addressed in life cycle assessment, leading to a bias in technology comparisons, and often misunderstood. The objective of this paper is to review and analyze the generation of greenhouse gas emissions from reservoirs for the purpose of technology assessment, relating established emission measurements to power generation. A literature review, data collection, and statistical analysis of methane and CO2 emissions are conducted. In a sample of 82 measurements, methane emissions per kWh hydropower generated are log-normally distributed, ranging from micrograms to 10s of kg. A multivariate regression analysis shows that the reservoir area per kWh electricity is the most important explanatory variable. Methane emissions flux per reservoir area are correlated with the natural net primary production of the area, the age of the power plant, and the inclusion of bubbling emissions in the measurement. Even together, these factors fail to explain most of the variation in the methane flux. The global average emissions from hydropower are estimated to be 85 gCO2/kWh and 3 gCH4/kWh, with a multiplicative uncertainty factor of 2. GHG emissions from hydropower can be largely avoided by ceasing to build hydropower plants with high land use per unit of electricity generated.

  8. A Survey of Methane Emissions from California's Natural Gas Infrastructure

    NASA Astrophysics Data System (ADS)

    Fischer, M. L.; Cui, X.; Jeong, S.; Conley, S. A.; Mehrotra, S.; Faloona, I. C.; Chen, T.; Blake, D. R.; Clements, C. B.; Lareau, N.; Lloyd, M.; Fairley, D.

    2015-12-01

    Methane emissions from natural gas infrastructure are estimated to contribute small but uncertain fractions of total natural gas consumed in California and of California's total GHG budget. Because natural gas (NG) methane is an energy resource, an economic commodity, a potential health hazard, and a potent greenhouse gas, it is important to identify and quantify and control both intentional venting, and un-intentional leakages. Here, we report results of an observational survey, measuring NG methane emissions across examples from subsectors of California's natural gas infrastructure, ranging from production and processing, to transmission and distribution, and notably including examples from the consumption subsector. At regional scales, a combination of tower and aircraft measurements are used to estimate emissions of NG methane for the San Francisco Bay Area. At facility scales, aircraft mass balance measurements are applied to estimate NG methane emissions from associated with individual petroleum production fields, NG storage facilities, and petroleum refineries. At local scales, ground-based roadway surveys are applied to place lower limits on NG emissions from aggregate leakage sources in selected urban and suburban areas, a sample of NG fueling stations, and a small number of capped gas wells. For a subset of the consumption subsector, mass balance and CH4:CO2 emission ratio measurements are used to estimate leakage from a sample of quiescent residential buildings and example operating gas appliances. In general, CH4 emissions are found to grow with the NG throughput in a given area or facility, though the observed ratio of leakage to throughput varies by more than an order of magnitude for some cases (e.g., urban areas), presumably in response to varied infrastructure type, vintage, and maintenance. Taken in sum, preliminary results of this initial survey are consistent with the commonly held assumption that total NG methane emissions from California NG

  9. Rice management interventions to mitigate greenhouse gas emissions: a review.

    PubMed

    Hussain, Saddam; Peng, Shaobing; Fahad, Shah; Khaliq, Abdul; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2015-03-01

    Global warming is one of the gravest threats to crop production and environmental sustainability. Rice, the staple food of more than half of the world's population, is the most prominent cause of greenhouse gas (GHG) emissions in agriculture and gives way to global warming. The increasing demand for rice in the future has deployed tremendous concerns to reduce GHG emissions for minimizing the negative environmental impacts of rice cultivation. In this review, we presented a contemporary synthesis of existing data on how crop management practices influence emissions of GHGs in rice fields. We realized that modifications in traditional crop management regimes possess a huge potential to overcome GHG emissions. We examined and evaluated the different possible options and found that modifying tillage permutations and irrigation patterns, managing organic and fertilizer inputs, selecting suitable cultivar, and cropping regime can mitigate GHG emissions. Previously, many authors have discussed the feasibility principle and the influence of these practices on a single gas or, in particular, in the whole agricultural sector. Nonetheless, changes in management practices may influence more than one gas at the same time by different mechanisms or sometimes their effects may be antagonistic. Therefore, in the present attempt, we estimated the overall global warming potential of each approach to consider the magnitude of its effects on all gases and provided a comprehensive assessment of suitable crop management practices for reducing GHG emissions in rice culture. PMID:25354441

  10. Rice management interventions to mitigate greenhouse gas emissions: a review.

    PubMed

    Hussain, Saddam; Peng, Shaobing; Fahad, Shah; Khaliq, Abdul; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2015-03-01

    Global warming is one of the gravest threats to crop production and environmental sustainability. Rice, the staple food of more than half of the world's population, is the most prominent cause of greenhouse gas (GHG) emissions in agriculture and gives way to global warming. The increasing demand for rice in the future has deployed tremendous concerns to reduce GHG emissions for minimizing the negative environmental impacts of rice cultivation. In this review, we presented a contemporary synthesis of existing data on how crop management practices influence emissions of GHGs in rice fields. We realized that modifications in traditional crop management regimes possess a huge potential to overcome GHG emissions. We examined and evaluated the different possible options and found that modifying tillage permutations and irrigation patterns, managing organic and fertilizer inputs, selecting suitable cultivar, and cropping regime can mitigate GHG emissions. Previously, many authors have discussed the feasibility principle and the influence of these practices on a single gas or, in particular, in the whole agricultural sector. Nonetheless, changes in management practices may influence more than one gas at the same time by different mechanisms or sometimes their effects may be antagonistic. Therefore, in the present attempt, we estimated the overall global warming potential of each approach to consider the magnitude of its effects on all gases and provided a comprehensive assessment of suitable crop management practices for reducing GHG emissions in rice culture.

  11. Using Willie's Acid-Base Box for Blood Gas Analysis

    ERIC Educational Resources Information Center

    Dietz, John R.

    2011-01-01

    In this article, the author describes a method developed by Dr. William T. Lipscomb for teaching blood gas analysis of acid-base status and provides three examples using Willie's acid-base box. Willie's acid-base box is constructed using three of the parameters of standard arterial blood gas analysis: (1) pH; (2) bicarbonate; and (3) CO[subscript…

  12. Synthesis and development of processes for the recovery of sulfur from acid gases. Part 1, Development of a high-temperature process for removal of H{sub 2}S from coal gas using limestone -- thermodynamic and kinetic considerations; Part 2, Development of a zero-emissions process for recovery of sulfur from acid gas streams

    SciTech Connect

    Towler, G.P.; Lynn, S.

    1993-05-01

    Limestone can be used more effectively as a sorbent for H{sub 2}S in high-temperature gas-cleaning applications if it is prevented from undergoing calcination. Sorption of H{sub 2}S by limestone is impeded by sintering of the product CaS layer. Sintering of CaS is catalyzed by CO{sub 2}, but is not affected by N{sub 2} or H{sub 2}. The kinetics of CaS sintering was determined for the temperature range 750--900{degrees}C. When hydrogen sulfide is heated above 600{degrees}C in the presence of carbon dioxide elemental sulfur is formed. The rate-limiting step of elemental sulfur formation is thermal decomposition of H{sub 2}S. Part of the hydrogen thereby produced reacts with CO{sub 2}, forming CO via the water-gas-shift reaction. The equilibrium of H{sub 2}S decomposition is therefore shifted to favor the formation of elemental sulfur. The main byproduct is COS, formed by a reaction between CO{sub 2} and H{sub 2}S that is analogous to the water-gas-shift reaction. Smaller amounts of SO{sub 2} and CS{sub 2} also form. Molybdenum disulfide is a strong catalyst for H{sub 2}S decomposition in the presence of CO{sub 2}. A process for recovery of sulfur from H{sub 2}S using this chemistry is as follows: Hydrogen sulfide is heated in a high-temperature reactor in the presence of CO{sub 2} and a suitable catalyst. The primary products of the overall reaction are S{sub 2}, CO, H{sub 2} and H{sub 2}O. Rapid quenching of the reaction mixture to roughly 600{degrees}C prevents loss Of S{sub 2} during cooling. Carbonyl sulfide is removed from the product gas by hydrolysis back to CO{sub 2} and H{sub 2}S. Unreacted CO{sub 2} and H{sub 2}S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H{sub 2} and CO, which recovers the hydrogen value from the H{sub 2}S. This process is economically favorable compared to the existing sulfur-recovery technology and allows emissions of sulfur-containing gases to be controlled to very low levels.

  13. Trace gas emissions from chaparral and boreal forest fires

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Levine, Joel S.; Sebacher, Daniel I.; Winstead, Edward L.; Riggan, Philip J.; Stocks, Brian J.; Brass, James A.; Ambrosia, Vincent G.

    1989-01-01

    Using smoke samples collected during low-level helicopter flights, the mixing ratios of CO2, CO, CH4, total nonmethane hydrocarbons, H2, and N2O over burning chaparral in southern California and over a burning boreal forest site in northern Ontario, Canada, were determined. Carbon dioxide-normalized emission ratios were determined for each trace gas for conditions of flaming, mixed, and smoldering combustion. The emission ratios for these trace gases were found to be highest for the smoldering combustion, generally thought to be the least efficient combustion stage. However, high emission ratios for these gases could be also produced during very vigorous flaming combustion.

  14. Enhanced nighttime gas emissions from a lake

    NASA Astrophysics Data System (ADS)

    Podgrajsek, E.; Sahlée, E.; Rutgersson, A.

    2016-05-01

    Methane (CH4) and carbon dioxide (CO2) are two important greenhouse gases. Previous studies have shown that lakes can be important natural sources of atmospheric CH4 and CO2. It is therefore important to monitor the fluxes of these gases between lakes and the atmosphere in order to understand the processes that govern the exchange. Most previous lake flux studies are based on chamber measurements, by using the eddy covariance method, the resolution in time and in space of the fluxes is increased, which gives more information on the governing processes. Eddy covariance measurements at a Swedish lake show that both methane fluxes (FCH4 ) and carbon dioxide fluxes (FCO2 ) experience high nighttime fluxes for a large part of the data set (largest median FCH4night ≈ 13 nmol m2 s-1 and smallest median FCH4day ≈ 4.0 nmol m-2 s-1, largest median FCO2night ≈ 0.2 μmol m2 s-1 and smallest median FCO2day ≈ 0.02 μmol m-2 s-1, with larger variability during night). For the diel cycle of the CH4 fluxes it is suggested that water side convection could enhance the transfer velocity, transport CH4 rich water to the surface, as well as trigger ebullition. The high nighttime CO2 fluxes could to a large extent be explained with enhanced transfer velocities due to water side convection. If gas fluxes are not measured during nighttime, when water side convection normally is generated, periods of potential high gas flux might be missed and estimations of the total amount of gas released from lakes to the atmosphere will be biased.

  15. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation

    PubMed Central

    Heath, Garvin A.; O’Donoughue, Patrick; Arent, Douglas J.; Bazilian, Morgan

    2014-01-01

    Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices. PMID:25049378

  16. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation.

    PubMed

    Heath, Garvin A; O'Donoughue, Patrick; Arent, Douglas J; Bazilian, Morgan

    2014-08-01

    Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices. PMID:25049378

  17. Sensitivity of Multi-gas Climate Policy to Emission Metrics

    SciTech Connect

    Smith, Steven J.; Karas, Joseph F.; Edmonds, James A.; Eom, Jiyong; Mizrahi, Andrew H.

    2013-04-01

    Multi-gas greenhouse emission targets require that different emissions be combined into an aggregate total. The Global Warming Potential (GWP) index is currently used for this purpose, despite various criticisms of the underlying concept. It is not possible to uniquely define a single metric that perfectly captures the different impacts of emissions of substances with widely disparate atmospheric lifetimes, which leads to a wide range of possible index values. We examine the sensitivity of emissions and climate outcomes to the value of the index used to aggregate methane emissions using a technologically detailed integrated assessment model. We find that the sensitivity to index value is of order 4-14% in terms of methane emissions and 2% in terms of total radiative forcing, using index values between 4 and 70 for methane, with larger regional differences in some cases. The sensitivity to index value is much higher in economic terms, with total 2-gas mitigation cost decreasing 4-5% for a lower index and increasing 10-13% for a larger index, with even larger changes if the emissions reduction targets are small. The sensitivity to index value also depends on the assumed maximum amount of mitigation available in each sector. Evaluation of the maximum mitigation potential for major sources of non-CO2 greenhouse gases would greatly aid analysis

  18. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 15: GAS-ASSISTED GLYCOL PUMPS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  19. Trends in Global Greenhouse Gas Emissions from 1990 to 2010.

    PubMed

    Malik, Arunima; Lan, Jun; Lenzen, Manfred

    2016-05-01

    Anthropogenic carbon dioxide emissions are known to alter hydrological cycles, disrupt marine ecosystems and species lifecycles, and cause global habitat loss. In this study, we use a comprehensive global input-output database to assess the driving forces underlying the change in global CO2 emissions from 1990 to 2010. We decompose the change in emissions for the 20 year period into six mutually exclusive causal determinants. Our assessment of trends in fuel-use reveals that a 10.8 Peta-gram (Pg) rise in emissions from 1990 to 2010 constitutes emissions from the consumption of coal (49%), petroleum (25%), natural gas (17%), and biomass (9%). We demonstrate that affluence (per-capita consumption) and population growth are outpacing any improvements in carbon efficiency in driving up emissions worldwide. Our results suggest that supply chain measures to improve technological efficiency are not sufficient to reduce emissions. To achieve significant emission savings, policy makers need to address the issue of affluence. We argue that policies to address unsustainable lifestyles and consumer behavior are largely unheard of, and governments may need to actively intervene in nonsustainable lifestyles to achieve emission reductions. The results presented in this paper are vital for informing future policy decisions for mitigating climate change. PMID:27063930

  20. Reducing greenhouse gas emissions in Czechoslovakia

    SciTech Connect

    Kostalova, M.; Suk, J.; Kolar, S.

    1991-12-01

    In this paper are presented important findings on the potential for energy conservation and carbon emissions reduction over the coming decades in Czechoslovakia. The authors describe the state of the energy use in Czechoslovakia today and the measures required to transform its energy system to a market-based economy oriented towards the environmental goal of decreased energy intensity. This work furthers our understanding of the need for energy efficiency in the newly forming market economies of East and Central Europe. This paper is part of a series of country studies sponsored by the Global Climate Division of the Office of Policy, Planning, and Evaluation, United States Environmental Protection Agency (EPA). We have completed similar studies in Canada, the former Soviet Union, France, Hungary, Italy, Japan, Poland the United Kingdom, and the United States. Research is currently underway or planned in Bulgaria, Romania, and Ukraine.

  1. Particulate exhaust emissions from an experimental combustor. [gas turbine engine

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Ingebo, R. D.

    1975-01-01

    The concentration of dry particulates (carbon) in the exhaust of an experimental gas turbine combustor was measured at simulated takeoff operating conditions and correlated with the standard smoke-number measurement. Carbon was determined quantitatively from a sample collected on a fiberglass filter by converting the carbon in the smoke sample to carbon dioxide and then measuring the volume of carbon dioxide formed by gas chromatography. At a smoke of 25 (threshold of visibility of the smoke plume for large turbojets) the carbon concentration was 2.8 mg carbon/cu m exhaust gas, which is equivalent to an emission index of 0.17 g carbon/kg fuel.

  2. Greenhouse Gas Emissions from Septic Systems in New York State.

    PubMed

    Truhlar, Allison M; Rahm, Brian G; Brooks, Rachael A; Nadeau, Sarah A; Makarsky, Erin T; Walter, M Todd

    2016-07-01

    Onsite septic systems use microbial processes to eliminate organic wastes and nutrients such as nitrogen; these processes can contribute to air pollution through the release of greenhouse gases (GHGs). Current USEPA estimates for septic system GHG emissions are based on one study conducted in north-central California and are limited to methane; therefore, the contribution of these systems to the overall GHG emission budget is unclear. This study quantified and compared septic system GHG emissions from the soil over leach fields and the roof vent, which are the most likely locations for gas emissions during normal septic system operation. At each of eight septic systems, we measured fluxes of CH, CO, and NO using a static chamber method. The roof vent released the majority of septic system gas emissions. In addition, the leach field was a significant source of NO fluxes. Comparisons between leach field and vent emissions suggest that biological processes in the leach field soil may influence the type and quantity of gas released. Overall, our results suggest that (i) revisions are needed in USEPA guidance (e.g., septic systems are not currently listed as a source of NO emissions) and (ii) similar studies representing a wider range of climatic and geographic settings are needed. The total vent, sand filter, and leach field GHG emissions were 0.17, 0.045, and 0.050 t CO-equivalents capita yr, respectively. In total, this represents about 1.5% of the annual carbon footprint of an individual living in the United States. PMID:27380062

  3. Quantification of greenhouse gas emissions from sludge treatment wetlands.

    PubMed

    Uggetti, Enrica; García, Joan; Lind, Saara E; Martikainen, Pertti J; Ferrer, Ivet

    2012-04-15

    Constructed wetlands are nowadays successfully employed as an alternative technology for wastewater and sewage sludge treatment. In these systems organic matter and nutrients are transformed and removed by a variety of microbial reaction and gaseous compounds such as methane (CH(4)) and nitrous oxide (N(2)O) may be released to the atmosphere. The aim of this work is to introduce a method to determine greenhouse gas emissions from sludge treatment wetlands (STW) and use the method in a full-scale system. Sampling and analysing techniques used to determine greenhouse gas emissions from croplands and natural wetlands were successfully adapted to the quantification of CH(4) and N(2)O emissions from an STW. Gas emissions were measured using the static chamber technique in 9 points of the STW during 13 days. The spatial variation in the emission along the wetland did not follow some specific pattern found for the temporal variation in the fluxes. Emissions ranged from 10 to 5400 mg CH(4)/m(2)d and from 20 to 950 mgN(2)O/m(2)d, depending on the feeding events. The comparison between the CH(4) and N(2)O emissions of different sludge management options shows that STW have the lowest atmospheric impact in terms of CO(2) equivalent emissions (Global warming potential with time horizon of 100 years): 17 kg CO(2) eq/PE y for STW, 36 kg CO(2) eq/PE y for centrifuge and 162 kg CO(2) eq/PE y for untreated sludge transport, PE means Population Equivalent.

  4. Volcanic Gas Emissions Through History and Geography

    NASA Astrophysics Data System (ADS)

    Halmer, M. M.

    2003-12-01

    The total gaseous output of a volcano is in most cases closely related to its actual phase of activity. A volcano undergoes different stages of activity during its "life-time". For estimating the gas input into the atmosphere from ancient volcanoes these activity stages have to be considered very intensely. We considered the global distribution of 360 subaerial active volcanoes that erupted at least once during the past 100 years. A significant feature is the high concentration of active volcanoes along the subduction zone of the Circumpacific Ring of Fire. Volcanoes related to subduction zones are the major gas-emitters because of the large number of very active and highly explosive volcanoes. More than 300 of the 360 active subaerial volcanoes are related to subduction zones, 24 to rift zones and 22 to ocean islands. There is no tendency for volcanoes of a certain tectonic setting to be located at a specific latitude. We summarized altitudes of 360 volcanoes and determined their altitudinal range for each tectonic setting. Volcanoes of the three main tectonic settings show average heights between 1-3km: a) subduction zones: 2-3km, b) rift zones: 1-3km, and c) ocean islands: 1.5-2.5km. Active volcanoes cluster in the equatorial latitudes (0° to 30° ) on both hemispheres with volcanoes in the southern hemisphere reaching heights of over 6000m a.s.l. Thus, most eruptions (30 eruptions/a) occurred at equatorial latitudes (0° - 30° ). In general, the number of volcanoes located in the northern exceeds those in the southern hemisphere by 3:1. We assume a higher SO2 input into the northern hemisphere. But we found also a relatively high volcanic SO2 output in the southern hemisphere, which may be caused by higher magma supply rates. The increased frequency of eruptions in the southern hemisphere in the equatorial latitudes could be partly caused by shorter intervals between eruptions (Takada, 1999). Volcanoes between 50° -60° N showed also a relatively high annual

  5. Trace gas emissions from the marine biosphere.

    PubMed

    Liss, Peter S

    2007-07-15

    A wide variety of trace gases (e.g. dimethyl sulphide, organohalogens, ammonia, non-methane and oxygenated hydrocarbons, volatile oxygenated organics and nitrous oxide) are formed in marine waters by biological and photochemical processes. This leads in many, but not all, cases to supersaturation of the water relative to marine air concentrations and a net flux of trace gas to the atmosphere. Since the gases are often in their reduced forms in the water, once in the atmosphere they are subject to oxidation by photolysis or radical attack to form chemically reactive species that can affect the oxidizing capacity of the air. They can also lead to the formation of new particles or the growth of existing ones that can then contribute to both direct and indirect (via the formation of cloud condensation nuclei) aerosol effects on climate. These cycles are discussed with respect to their impacts on the chemistry of the atmosphere, climate and human health. This whole topic was the subject of an extensive review (Nightingale & Liss 2003 In Treatise in geochemistry (eds H. D. Holland & K. K. Turekian), pp. 49-81) and what will be attempted here is a brief update of the earlier paper. There is no attempt to be comprehensive either in terms of gases covered or to give a complete review of all the recent literature. It is a personal view of recent advances both from my own research group as well as significant work from others. Questions raised at the meeting 'Trace gas biogeochemistry and global change' are dealt with at appropriate places in the text (rather than at the end of the piece). Discussion of each of the gases or group of gases is given in the following separate sections.

  6. Subsurface banding poultry litter impacts greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact subsurface banding poultry litter (PL) has on greenhouse gas emissions is limited. Thus, a study was conducted in established bermudagrass pastures located in Coastal Plain and Piedmont regions to determine the effects subsurface applying PL has on soil flux using two different band spaci...

  7. Inverse-dispersion technique for assessing lagoon gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring gas emissions from treatment lagoons and storage ponds poses challenging conditions for existing micrometeorological techniques because of non-ideal wind conditions, such as those induced by trees and crops surrounding the lagoons, and lagoons with dimensions too small to establish equilib...

  8. Greenhouse gas emissions related to ethanol produced from corn

    SciTech Connect

    Marland, G.

    1994-04-01

    This report confers the details of a panel meeting discussion on greenhouse gases. The topic of this discussion was ethanol. Members discussed all aspects of growing corn and producing ethanol. Then the question was raised as to whether or not this is a suitable substitute to fossil fuel usage in the reduction of greenhouse gas emissions.

  9. AGRICULTURAL MANAGEMENT EFFECTS ON NITROUS OXIDE GAS EMISSIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrous oxide (N2O) gas is produced by micro-organisms during nitrification and/or denitrification of fertilizer nitrogen in soil. Atmospheric emissions of N2O can be important from an agronomic standpoint since any escape of N from the soil represents N that cannot be utilized by the crop. Once in ...

  10. Greenhouse gas emissions from soil under changing environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This manuscript is the Guest Editors’ Introduction to a special issue on greenhouse gas emissions from agriculture. The papers were assembled following presentation at EuroSoil 2012. Exchange of greenhouse gases between soils and the atmosphere is a natural consequence of several ecosystem process...

  11. Unconventional Heavy Oil Growth and Global Greenhouse Gas Emissions.

    PubMed

    Nduagu, Experience I; Gates, Ian D

    2015-07-21

    Enormous global reserves of unconventional heavy oil make it a significant resource for economic growth and energy security; however, its extraction faces many challenges especially on greenhouse gas (GHG) emissions, water consumption, and recently, social acceptability. Here, we question whether it makes sense to extract and use unconventional heavy oil in spite of these externalities. We place unconventional oils (oil sands and oil shale) alongside shale gas, coal, lignite, wood and conventional oil and gas, and compare their energy intensities and life cycle GHG emissions. Our results reveal that oil shale is the most energy intensive fuel among upgraded primary fossil fuel options followed by in situ-produced bitumen from oil sands. Lignite is the most GHG intensive primary fuel followed by oil shale. Based on future world energy demand projections, we estimate that if growth of unconventional heavy oil production continues unabated, the incremental GHG emissions that results from replacing conventional oil with heavy oil would amount to 4-21 Gt-CO2eq GtCO2eq over four decades (2010 by 2050). However, prevailing socio-economic, regional and global energy politics, environmental and technological challenges may limit growth of heavy oil production and thus its GHG emissions contributions to global fossil fuel emissions may be smaller. PMID:26114481

  12. Unconventional Heavy Oil Growth and Global Greenhouse Gas Emissions.

    PubMed

    Nduagu, Experience I; Gates, Ian D

    2015-07-21

    Enormous global reserves of unconventional heavy oil make it a significant resource for economic growth and energy security; however, its extraction faces many challenges especially on greenhouse gas (GHG) emissions, water consumption, and recently, social acceptability. Here, we question whether it makes sense to extract and use unconventional heavy oil in spite of these externalities. We place unconventional oils (oil sands and oil shale) alongside shale gas, coal, lignite, wood and conventional oil and gas, and compare their energy intensities and life cycle GHG emissions. Our results reveal that oil shale is the most energy intensive fuel among upgraded primary fossil fuel options followed by in situ-produced bitumen from oil sands. Lignite is the most GHG intensive primary fuel followed by oil shale. Based on future world energy demand projections, we estimate that if growth of unconventional heavy oil production continues unabated, the incremental GHG emissions that results from replacing conventional oil with heavy oil would amount to 4-21 Gt-CO2eq GtCO2eq over four decades (2010 by 2050). However, prevailing socio-economic, regional and global energy politics, environmental and technological challenges may limit growth of heavy oil production and thus its GHG emissions contributions to global fossil fuel emissions may be smaller.

  13. Impact of greenhouse gas emissions reduction in Indonesia: NO2

    NASA Astrophysics Data System (ADS)

    Susandi, A.

    2004-12-01

    In this study, we develop scenarios of total air pollution from fossil fuel consumption and its impacts for the 21st century, using an inter-temporal general equilibrium model MERGE. The Model for Evaluating the Regional and Global Effects of greenhouse gas reduction policies (MERGE) is used to project energy consumption and production. We use the base scenarios from IPCC (2000). These scenarios assume that no measures are undertaken to control greenhouse gas emissions. We extend the IPCC scenarios with mitigation scenarios, estimating the air pollution impacts of greenhouse gas emission reduction. The MERGE model was extended to analyze emissions of nitrogen dioxide (NO2), their concentrations, impacts on human health, and economic valuation. To estimate of nitrogen dioxide (NO2) impacts on respiratory symptoms, we calculated the NO2 concentration as derived from nitrogen oxide (NOx). In the baseline scenario, the concentrations of NO2 are rising to 2,263 μg/m3 in 2100. If the Organisation for Economic Co-operation and Development (OECD) countries reduce their emissions, respiratory symptoms among adult's associated with NO2 case would reach the highest to 65,741% of adult population cases by the end of century. If all countries reduce their emission in the future, the total health problem cost associated with NO2 will lower 35% of GDP than in the baseline scenario during the century.

  14. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect

    Mark Scotto

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  15. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect

    Mark V. Scotto; Mark A. Perna

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  16. Hollow fiber gas-liquid membrane contactors for acid gas capture: a review.

    PubMed

    Mansourizadeh, A; Ismail, A F

    2009-11-15

    Membrane contactors using microporous membranes for acid gas removal have been extensively reviewed and discussed. The microporous membrane acts as a fixed interface between the gas and the liquid phase without dispersing one phase into another that offers a flexible modular and energy efficient device. The gas absorption process can offer a high selectivity and a high driving force for transport even at low concentrations. Using hollow fiber gas-liquid membrane contactors is a promising alternative to conventional gas absorption systems for acid gas capture from gas streams. Important aspects of membrane contactor as an efficient energy devise for acid gas removal including liquid absorbents, membrane characteristics, combination of membrane and absorbent, mass transfer, membrane modules, model development, advantages and disadvantages were critically discussed. In addition, current status and future potential in research and development of gas-liquid membrane contactors for acid gas removal were also briefly discussed.

  17. Exhaust gas emissions of a vortex breakdown stabilized combustor

    NASA Technical Reports Server (NTRS)

    Yetter, R. A.; Gouldin, F. C.

    1976-01-01

    Exhaust gas emission data are described for a swirl stabilized continuous combustor. The combustor consists of confined concentric jets with premixed fuel and air in the inner jet and air in the outer jet. Swirl may be induced in both inner and outer jets with the sense of rotation in the same or opposite directions (co-swirl and counter-swirl). The combustor limits NO emissions by lean operation without sacrificing CO and unburned hydrocarbon emission performance, when commercial-grade methane and air fired at one atmosphere without preheat are used. Relative swirl direction and magnitude are found to have significant effects on exhaust gas concentrations, exit temperatures, and combustor efficiencies. Counter-swirl gives a large recirculation zone, a short luminous combustion zone, and large slip velocities in the interjet shear layer. For maximum counter-swirl conditions, the efficiency is low.

  18. Air toxics emissions from gas-fired engines

    SciTech Connect

    Meeks, H.N. Jr. )

    1992-07-01

    In 1190, 14 natural-gas-fired internal combustion engines (ICE's) in oilfield service were tested in Santa Barbara County, CA, to satisfy California air toxics legislation. The combustion exhaust was tested for formaldehyde, acetaldehyde, acrolein, benzene, toluene, xylences, naphthalene, and polycyclic aromatic hydrocarbons. The fuel was tested for aromatics to enable calculation of destruction efficiencies. Two-stroke and four-stroke engines were tested. Four-stroke engines ranging from 39 to 208 hp were used in pumping unit and constant load service. Emissions from four-stroke engines were unrelated to size and service. The two-stroke engines produced considerably higher emissions than the four-stroke engines. This paper reports that test results indicate natural-gas-fired ICE's produce toxic substances in small amounts. Formaldehyde and benzene dominated the toxic emission profile.

  19. Greenhouse gas emissions from forestry operations: a life cycle assessment.

    PubMed

    Sonne, Edie

    2006-01-01

    Most forest carbon assessments focus only on biomass carbon and assume that greenhouse gas (GHG) emissions from forestry activities are minimal. This study took an in-depth look at the direct and indirect emissions from Pacific Northwest (PNW) Douglas-fir [Pseudotsuga menziesii (Mirbel) Franco] forestry activities to support or deny this claim. Greenhouse gas budgets for 408 "management regimes" were calculated using Life Cycle Assessment (LCA) methodology. These management regimes were comprised of different combinations of three types of seedlings (P + 1, 1 + 1, and large plug), two types of site preparation (pile and burn, and chemical), 17 combinations of management intensity including fertilization, herbicide treatment, pre-commercial thinning (PCT), commercial thinning (CT), and nothing, and four different rotation ages (30, 40, 50, and 60 yr). Normalized to 50 yr, average direct GHG emissions were 8.6 megagrams (Mg) carbon dioxide equivalents (CO2e) ha(-1), which accounted for 84% of total GHG emissions from the average of 408 management regimes. Harvesting (PCT, CT, and clear cutting) contributed the most to total GHG emissions (5.9 Mg CO2e per 700 m3 harvested timber), followed by pile and burn site preparation (4.0 Mg CO2e ha(-1) or 32% of total GHG emissions) and then fertilization (1.9 Mg CO2e ha(-1) or 15% of total GHG emissions). Seedling production, seedling transportation, chemical site preparation, and herbicide treatment each contributed less than 1% of total GHG emissions when assessed per hectare of planted timberland. Total emissions per 100 m3 averaged 1.6 Mg CO2e ha(-1) over all 408 management regimes. An uncertainty analysis using Monte Carlo simulations revealed that there are significant differences between most alternative management regimes. PMID:16825464

  20. High-voltage spark atomic emission detector for gas chromatography

    NASA Technical Reports Server (NTRS)

    Calkin, C. L.; Koeplin, S. M.; Crouch, S. R.

    1982-01-01

    A dc-powered, double-gap, miniature nanosecond spark source for emission spectrochemical analysis of gas chromatographic effluents is described. The spark is formed between two thoriated tungsten electrodes by the discharge of a coaxial capacitor. The spark detector is coupled to the gas chromatograph by a heated transfer line. The gas chromatographic effluent is introduced into the heated spark chamber where atomization and excitation of the effluent occurs upon breakdown of the analytical gap. A microcomputer-controlled data acquisition system allows the implementation of time-resolution techniques to distinguish between the analyte emission and the background continuum produced by the spark discharge. Multiple sparks are computer averaged to improve the signal-to-noise ratio. The application of the spark detector for element-selective detection of metals and nonmetals is reported.

  1. The effect of local parameters on gas turbine emissions

    NASA Technical Reports Server (NTRS)

    Kauffman, C. W.; Correa, S. M.; Orozco, N. J.

    1980-01-01

    Gas turbine engine inlet parameters reflect changes in local atmospheric conditions. The pollutant emissions for the engine reflects these changes. In attempting to model the effect of the changing ambient conditions on the emissions it was found that these emissions exhibit an extreme sensitivity to some of the details of the combustion process such as the local fuel-air ratio and the size of the drops in the fuel spray. Fuel-air ratios have been mapped under nonburning conditions using a single JT8D-17 combustion can at simulated idle conditions, and significant variations in the local values have been found. Modelling of the combustor employs a combination of perfectly stirred and plug flow reactors including a finite rate vaporization treatment of the fuel spray. Results show that a small increase in the mean drop size can lead to a large increase in hydrocarbon emissions and decreasing the value of the CO-OH rate constant can lead to large increases in the carbon monoxide emissions. These emissions may also be affected by the spray characteristics with larger drops retarding the combustion process. Hydrocarbon, carbon monoxide, and oxides of nitrogen emissions calculated using the model accurately reflect measured emission variations caused by changing engine inlet conditions.

  2. Reducing Greenhouse Gas Emissions from Agricultural Wetlands in Borneo

    NASA Astrophysics Data System (ADS)

    Abdul, H.; Fatah, L.; Nursyamsi, D.; Kazuyuki, I.

    2011-12-01

    At the forum G20 meeting in 2009, Indonesian President delivered Indonesia's commitment to reduce national greenhouse gas (GHG) emissions by 26% in 2020 by unilateral action and by 41% with support of other countries. To achieve the target, Indonesian government has put forestry, agriculture (including peatlands), energy, industry and transportation as main responsible sectors. Development of crop with low GHG emissions, increasing C sequestration and the use of organic fertilizers are among the activities to be carried out in 2010-2020 period to minimize GHG emissions from agricultural sectors. Three experiments have been carried out to elucidate the reflectivity of crop selection, soil ameliorants and organic fertilizers on GHG emissions from agricultural wetlands in Borneo. Firstly, gas samples were collected in weekly basis from oil palm, paddy, and vegetables fields and analyzed for methane (CH4) and nitrous oxide (N2O) concentrations by a gas chromatography. Secondly, coal fly ash, dolomite and ZnSO4 were incorporated into a pot containing peat and/or alluvial soils taken from wetlands in South Kalimantan. The air samples were taken and analyzed for CH4 by a gas chromatography. Finally, microbial consortium are isolated from soil, sediment and cow dung. The microbes were then propagated and used in a rice straw composting processes. The CO2, CH4 and N2O emissions from composting vessel were measured at one, two and four weeks of composting processes. The results showed that shifting the use of peatlands for oil palm to vegetable field reduced the GHG emissions by about 74% and that to paddy field reduce the GHG emissions by about 82%. The CH4 emissions from paddy field can be further reduced by applying dolomite. However, the use of coal fly ash and ZnSO4 increased CH4 emissions from peat soil cultivated to rice. The use of microbe isolated from saline soil could reduce GHG emissions during the composting of rice straw. The social aspect of GHG reduction in

  3. Estonian greenhouse gas emissions inventory report

    SciTech Connect

    Punning, J.M.; Ilomets, M.; Karindi, A.; Mandre, M.; Reisner, V.; Martins, A.; Pesur, A.; Roostalu, H.; Tullus, H.

    1996-07-01

    It is widely accepted that the increase of greenhouse gas concentrations in the atmosphere due to human activities would result in warming of the Earth`s surface. To examine this effect and better understand how the GHG increase in the atmosphere might change the climate in the future, how ecosystems and societies in different regions of the World should adapt to these changes, what must policymakers do for the mitigation of that effect, the worldwide project within the Framework Convention on Climate Change was generated by the initiative of United Nations. Estonia is one of more than 150 countries, which signed the Framework Convention on Climate Change at the United Nations Conference on Environment and Development held in Rio de Janeiro in June 1992. In 1994 a new project, Estonian Country Study was initiated within the US Country Studies Program. The project will help to compile the GHG inventory for Estonia, find contemporary trends to investigate the impact of climate change on the Estonian ecosystems and economy and to formulate national strategies for Estonia addressing to global climate change.

  4. Greenlandic Microbiomes and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Jacobsen, C. S.; Nielsen, M. S.; Priemé, A.; Holben, W. E.; Stibal, M.; Morales, S.; Bælum, J.; Elberling, B.; Kuhry, P.; Hugelius, G.

    2014-12-01

    the potential (DNA) and activity (mRNA) found in the soils. However, distinct differences were found in the active microbiomes of the thawed soils, and this is discussed in relation to the emission of N2O, CH4 and CO2.

  5. Effects of gas atmospheres on poly(lactic acid) film in acrylic acid plasma treatment

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Fina, Alberto; Venturello, Alberto; Geobaldo, Francesco

    2013-10-01

    Plasma polymerized acrylic acid (AA) coatings were deposited on poly(lactic acid) (PLA) films in various gas atmospheres during the pre-treatment of PLA and the deposition of AA, respectively. Therefore, this work was twofold: the argon pretreated PLA films followed by a deposition in argon were investigated against the mixture of argon and oxygen pretreated ones under the same deposition conditions; the plasma deposition of AA operating in different atmospheres (argon, oxygen and nitrogen) was employed to modify the pretreated PLA in oxygen. Chemical and physical changes on the plasma-treated surfaces were examined using contact angle, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM) and attenuated total reflection infrared (ATR-FTIR) analysis. The results showed that the discharge gas can have a significant influence on the chemical composition of the PLA surfaces: oxygen plasmas introduced oxygen-containing groups in company with surface etching in pretreatment and deposition, while argon discharges was able to achieve much better hydrophilic behavior and high retention ratio of poly(acrylic acid) (PAA) coating before and after washing in water.

  6. A Snapshot of Greenhouse Gas Emissions from a Cattle Feedlot.

    PubMed

    Bai, Mei; Flesch, Thomas K; McGinn, Sean M; Chen, Deli

    2015-11-01

    Beef cattle feedlots emit large amounts of the greenhouse gases (GHG) methane (CH) and nitrous oxide (NO), as well as ammonia (NH), which contributes to NO emission when NH is deposited to land. However, there is a lack of simultaneous, in situ, and nondisturbed measurements of the major GHG gas components from beef cattle feedlots, or measurements from different feedlot sources. A short-term campaign at a beef cattle feedlot in Victoria, Australia, quantified CH, NO, and NH emissions from the feedlot pens, manure stockpiles, and surface run-off pond. Open-path Fourier transform infrared (OP-FTIR) spectrometers and open-path lasers (OP-Laser) were used with an inverse-dispersion technique to estimate emissions. Daily average emissions of CH, NO, and NH were 132 (± 2.3 SE), 0, and 117 (± 4.5 SE) g animal d from the pens and 22 (± 0.7 SE), 2 (± 0.2 SE), and 9 (± 0.6 SE) g animal d from the manure stockpiles. Emissions of CH and NH from the run-off pond were less than 0.5 g animal d. Extrapolating these results to the feedlot population of cattle across Australia would mean that feedlots contribute approximately 2% of the agricultural GHG emissions and 2.7% of livestock sector emissions, lower than a previous estimate of 3.5%.

  7. Greenhouse gas emissions from septic systems in New York State

    NASA Astrophysics Data System (ADS)

    Truhlar, A. M.; Rahm, B. G.; Brooks, R. A.; Nadeau, S. A.; Walter, M. T.

    2015-12-01

    Onsite septic systems are a practical way to treat wastewater in rural or less-densely populated areas. Septic systems utilize microbial processes to eliminate organic wastes and nutrients such as nitrogen; these processes can contribute to air pollution through the release of greenhouse gases (GHGs). At each of nine septic systems, we measured fluxes of CH4, CO2, and N2O from the soil over the leach field and sand filter, and from the roof outlet vent. These are the most likely locations for gas emissions during normal operation of the septic system. The majority of all septic system gas emissions were released from the roof vent. However, our comparisons of the gas fluxes from these locations suggest that biological processes in the soil, especially the soil over the leach field, can influence the type and quantity of gas that is released from the system. The total vent, sand filter, and leach field GHG emissions were 0.12, 0.045, and 0.046 tonne CO2e capita-1 year-1, respectively. In total, this represents about 1.5% of the annual carbon footprint of an individual living in the US.

  8. A GAS TEMPERATURE PROFILE BY INFRARED EMISSION-ABSORPTION SPECTROSCOPY

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1994-01-01

    This computer program calculates the temperature profile of a flame or hot gas. Emphasis is on profiles found in jet engine or rocket engine exhaust streams containing water vapor or carbon dioxide as radiating gases. The temperature profile is assumed to be axisymmetric with a functional form controlled by two variable parameters. The parameters are calculated using measurements of gas radiation at two wavelengths in the infrared spectrum. Infrared emission and absorption measurements at two or more wavelengths provide a method of determining a gas temperature profile along a path through the gas by using a radiation source and receiver located outside the gas stream being measured. This permits simplified spectral scanning of a jet or rocket engine exhaust stream with the instrumentation outside the exhaust gas stream. This program provides an iterative-cyclic computation in which an initial assumed temperature profile is altered in shape until the computed emission and absorption agree, within specified limits, with the actual instrument measurements of emission and absorption. Temperature determination by experimental measurements of emission and absorption at two or more wavelengths is also provided by this program. Additionally, the program provides a technique for selecting the wavelengths to be used for determining the temperature profiles prior to the beginning of the experiment. By using this program feature, the experimenter has a higher probability of selecting wavelengths which will result in accurate temperature profile measurements. This program provides the user with a technique for determining whether this program will be sufficiently accurate for his particular application, as well as providing a means of finding the solution. The input to the program consists of four types of data: (1) computer program control constants, (2) measurements of gas radiance and transmittance at selected wavelengths, (3) tabulations from the literature of gas

  9. Communicating the uncertainty in estimated greenhouse gas emissions from agriculture.

    PubMed

    Milne, Alice E; Glendining, Margaret J; Lark, R Murray; Perryman, Sarah A M; Gordon, Taylor; Whitmore, Andrew P

    2015-09-01

    In an effort to mitigate anthropogenic effects on the global climate system, industrialised countries are required to quantify and report, for various economic sectors, the annual emissions of greenhouse gases from their several sources and the absorption of the same in different sinks. These estimates are uncertain, and this uncertainty must be communicated effectively, if government bodies, research scientists or members of the public are to draw sound conclusions. Our interest is in communicating the uncertainty in estimates of greenhouse gas emissions from agriculture to those who might directly use the results from the inventory. We tested six methods of communication. These were: a verbal scale using the IPCC calibrated phrases such as 'likely' and 'very unlikely'; probabilities that emissions are within a defined range of values; confidence intervals for the expected value; histograms; box plots; and shaded arrays that depict the probability density of the uncertain quantity. In a formal trial we used these methods to communicate uncertainty about four specific inferences about greenhouse gas emissions in the UK. Sixty four individuals who use results from the greenhouse gas inventory professionally participated in the trial, and we tested how effectively the uncertainty about these inferences was communicated by means of a questionnaire. Our results showed differences in the efficacy of the methods of communication, and interactions with the nature of the target audience. We found that, although the verbal scale was thought to be a good method of communication it did not convey enough information and was open to misinterpretation. Shaded arrays were similarly criticised for being open to misinterpretation, but proved to give the best impression of uncertainty when participants were asked to interpret results from the greenhouse gas inventory. Box plots were most favoured by our participants largely because they were particularly favoured by those who worked

  10. Gas Emissions Acquired during the Aircraft Particle Emission Experiment (APEX) Series

    NASA Technical Reports Server (NTRS)

    Changlie, Wey; Chowen, Chou Wey

    2007-01-01

    NASA, in collaboration with other US federal agencies, engine/airframe manufacturers, airlines, and airport authorities, recently sponsored a series of 3 ground-based field investigations to examine the particle and gas emissions from a variety of in-use commercial aircraft. Emissions parameters were measured at multiple engine power settings, ranging from idle to maximum thrust, in samples collected at 3 different down stream locations of the exhaust. Sampling rakes at nominally 1 meter down stream contained multiple probes to facilitate a study of the spatial variation of emissions across the engine exhaust plane. Emission indices measured at 1 m were in good agreement with the engine certification data as well as predictions provided by the engine company. However at low power settings, trace species emissions were observed to be highly dependent on ambient conditions and engine temperature.

  11. Estimating greenhouse gas emissions from future Amazonian hydroelectric reservoirs

    NASA Astrophysics Data System (ADS)

    de Faria, Felipe A. M.; Jaramillo, Paulina; Sawakuchi, Henrique O.; Richey, Jeffrey E.; Barros, Nathan

    2015-12-01

    Brazil plans to meet the majority of its growing electricity demand with new hydropower plants located in the Amazon basin. However, large hydropower plants located in tropical forested regions may lead to significant carbon dioxide and methane emission. Currently, no predictive models exist to estimate the greenhouse gas emissions before the reservoir is built. This paper presents two different approaches to investigate the future carbon balance of eighteen new reservoirs in the Amazon. The first approach is based on a degradation model of flooded carbon stock, while the second approach is based on flux data measured in Amazonian rivers and reservoirs. The models rely on a Monte Carlo simulation framework to represent the balance of the greenhouse gases into the atmosphere that results when land and river are converted into a reservoir. Further, we investigate the role of the residence time/stratification in the carbon emissions estimate. Our results imply that two factors contribute to reducing overall emissions from these reservoirs: high energy densities reservoirs, i.e., the ratio between the installed capacity and flooded area, and vegetation clearing. While the models’ uncertainties are high, we show that a robust treatment of uncertainty can effectively indicate whether a reservoir in the Amazon will result in larger greenhouse gas emissions when compared to other electricity sources.

  12. Black Carbon Emissions from Associated Natural Gas Flaring.

    PubMed

    Weyant, Cheryl L; Shepson, Paul B; Subramanian, R; Cambaliza, Maria O L; Heimburger, Alexie; McCabe, David; Baum, Ellen; Stirm, Brian H; Bond, Tami C

    2016-02-16

    Approximately 150 billion cubic meters (BCM) of natural gas is flared and vented in the world annually, emitting greenhouse gases and other pollutants with no energy benefit. About 7 BCM per year is flared in the United States, and half is from North Dakota alone. There are few emission measurements from associated gas flares and limited black carbon (BC) emission factors have been previously reported from the field. Emission plumes from 26 individual flares in the Bakken formation in North Dakota were sampled. Methane, carbon dioxide, and BC were measured simultaneously, allowing the calculation of BC mass emission factors using the carbon balance method. Particle optical absorption was measured using a three-wavelength particle soot absorption photometer (PSAP) and BC particle number and mass concentrations were measured with a single particle soot photometer. The BC emission factors varied over 2 orders of magnitude, with an average and uncertainty range of 0.14 ± 0.12 g/kg hydrocarbons in associated gas and a median of 0.07 g/kg which represents a lower bound on these measurements. An estimation of the BC emission factor derived from PSAP absorption provides an upper bound at 3.1 g/kg. These results are lower than previous estimations and laboratory measurements. The BC mass absorption cross section was 16 ± 12 m(2)/g BC at 530 nm. The average absorption Ångström exponent was 1.2 ± 0.8, suggesting that most of the light absorbing aerosol measured was black carbon and the contribution of light absorbing organic carbon was small. PMID:26764563

  13. Black Carbon Emissions from Associated Natural Gas Flaring.

    PubMed

    Weyant, Cheryl L; Shepson, Paul B; Subramanian, R; Cambaliza, Maria O L; Heimburger, Alexie; McCabe, David; Baum, Ellen; Stirm, Brian H; Bond, Tami C

    2016-02-16

    Approximately 150 billion cubic meters (BCM) of natural gas is flared and vented in the world annually, emitting greenhouse gases and other pollutants with no energy benefit. About 7 BCM per year is flared in the United States, and half is from North Dakota alone. There are few emission measurements from associated gas flares and limited black carbon (BC) emission factors have been previously reported from the field. Emission plumes from 26 individual flares in the Bakken formation in North Dakota were sampled. Methane, carbon dioxide, and BC were measured simultaneously, allowing the calculation of BC mass emission factors using the carbon balance method. Particle optical absorption was measured using a three-wavelength particle soot absorption photometer (PSAP) and BC particle number and mass concentrations were measured with a single particle soot photometer. The BC emission factors varied over 2 orders of magnitude, with an average and uncertainty range of 0.14 ± 0.12 g/kg hydrocarbons in associated gas and a median of 0.07 g/kg which represents a lower bound on these measurements. An estimation of the BC emission factor derived from PSAP absorption provides an upper bound at 3.1 g/kg. These results are lower than previous estimations and laboratory measurements. The BC mass absorption cross section was 16 ± 12 m(2)/g BC at 530 nm. The average absorption Ångström exponent was 1.2 ± 0.8, suggesting that most of the light absorbing aerosol measured was black carbon and the contribution of light absorbing organic carbon was small.

  14. Silicon Carbide Gas Sensors for Propulsion Emissions and Safety Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Xu, J.; Neudeck, P. G.; Lukco, D.; Trunek, A.; Spry, D.; Lampard, P.; Androjna, D.; Makel, D.; Ward, B.

    2007-01-01

    Silicon carbide (SiC) based gas sensors have the ability to meet the needs of a range of aerospace propulsion applications including emissions monitoring, leak detection, and hydrazine monitoring. These applications often require sensitive gas detection in a range of environments. An effective sensing approach to meet the needs of these applications is a Schottky diode based on a SiC semiconductor. The primary advantage of using SiC as a semiconductor is its inherent stability and capability to operate at a wide range of temperatures. The complete SiC Schottky diode gas sensing structure includes both the SiC semiconductor and gas sensitive thin film metal layers; reliable operation of the SiC-based gas sensing structure requires good control of the interface between these gas sensitive layers and the SiC. This paper reports on the development of SiC gas sensors. The focus is on two efforts to better control the SiC gas sensitive Schottky diode interface. First, the use of palladium oxide (PdOx) as a barrier layer between the metal and SiC is discussed. Second, the use of atomically flat SiC to provide an improved SiC semiconductor surface for gas sensor element deposition is explored. The use of SiC gas sensors in a multi-parameter detection system is briefly discussed. It is concluded that SiC gas sensors have potential in a range of propulsion system applications, but tailoring of the sensor for each application is necessary.

  15. Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type.

    PubMed

    England, G C; McGrath, T P; Gilmer, L; Seebold, J G; Lev-On, M; Hunt, T

    2001-01-01

    Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based on field emission tests of gas-fired external combustion devices used in the petroleum industry. The effect of combustion system design and operating parameters on HAP emissions determined by both field and research tests are discussed. Data from field tests of gas-fired petroleum industry boilers and heaters generally show very low emission levels of organic HAPs. A comparison of the emission data for boilers and process heaters, including units with and without various forms of NOx emission controls, showed no significant difference in organic HAP emission characteristics due to process or burner design. This conclusion is also supported by the results of research tests with different burner designs. Based on field tests of units fired with natural gas and various petroleum industry process gases and research tests in which gas composition was intentionally varied, organic HAP emissions were not determined to be significantly affected by the gas composition. Research data indicate that elevated organic HAP emission levels are found only under extreme operating conditions (starved air or high excess air combustion) associated with poor combustion. PMID:11219701

  16. The FAOSTAT database of greenhouse gas emissions from agriculture

    NASA Astrophysics Data System (ADS)

    Tubiello, Francesco N.; Salvatore, Mirella; Rossi, Simone; Ferrara, Alessandro; Fitton, Nuala; Smith, Pete

    2013-03-01

    Greenhouse gas (GHG) emissions from agriculture, including crop and livestock production, forestry and associated land use changes, are responsible for a significant fraction of anthropogenic emissions, up to 30% according to the Intergovernmental Panel on Climate Change (IPCC). Yet while emissions from fossil fuels are updated yearly and by multiple sources—including national-level statistics from the International Energy Agency (IEA)—no comparable efforts for reporting global statistics for agriculture, forestry and other land use (AFOLU) emissions exist: the latest complete assessment was the 2007 IPCC report, based on 2005 emission data. This gap is critical for several reasons. First, potentially large climate funding could be linked in coming decades to more precise estimates of emissions and mitigation potentials. For many developing countries, and especially the least developed ones, this requires improved assessments of AFOLU emissions. Second, growth in global emissions from fossil fuels has outpaced that from AFOLU during every decade of the period 1961-2010, so the relative contribution of the latter to total climate forcing has diminished over time, with a need for regular updates. We present results from a new GHG database developed at FAO, providing a complete and coherent time series of emission statistics over a reference period 1961-2010, at country level, based on FAOSTAT activity data and IPCC Tier 1 methodology. We discuss results at global and regional level, focusing on trends in the agriculture sector and net deforestation. Our results complement those available from the IPCC, extending trend analysis to a longer historical period and, critically, beyond 2005 to more recent years. In particular, from 2000 to 2010, we find that agricultural emissions increased by 1.1% annually, reaching 4.6 Gt CO2 yr-1 in 2010 (up to 5.4-5.8 Gt CO2 yr-1 with emissions from biomass burning and organic soils included). Over the same decade 2000-2010, the

  17. FIELD MEASUREMENT OF GREENHOUSE GAS EMISSION RATES AND DEVELOPMENT OF EMISSION FACTORS FOR WASTEWATER TREATMENT

    EPA Science Inventory

    The report gives results of field testing to develop more reliable green house gas (GHG) emission estimates for Wastewater treatment (WWT) lagoons. (NOTE: Estimates are available for the amount of methane (CH4) emitted from certain types of waste facilities, but there is not adeq...

  18. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect

    D. Straub; D. Ferguson; K. Casleton; G. Richards

    2006-03-01

    U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

  19. Subsea Gas Emissions from the Barbados Accretionary Complex

    NASA Astrophysics Data System (ADS)

    Barnard, A.; Sager, W. W.; Snow, J. E.; Max, M. D.

    2015-12-01

    We study newly identified gas plumes in the water column from the Barbados Accretionary Complex using multibeam echo soundings from cruise AT21-02. The multibeam data were used to define a region with several ~600 - 900 m tall gas plumes in the water column directly above cratered hummocky regions of the sea floor that have relatively high backscatter, at a water depth of ~1500 m. The natural gas hydrate stability zone reaches a minimum depth of ~600 m in the water column, similar to that of the tallest imaged bubble plumes, implying hydrate shells on the gas bubbles. Maximum tilt of the plume shows current shear in a direction from northwest to southeast (~128°), similar to the transport direction of North Atlantic Deep Water. The source of hydrocarbons, determined from existing geochemical data, suggests the gas source was subjacent marine Cretaceous source rocks. North-south trending faults, craters and mud volcanoes associated with the gas plumes point to the presence of a deep plumbing system and indicate that gas is a driver of mud volcanism. The widespread occurrence of seafloor morphology related to venting indicates that subsea emissions from the Barbados Accretionary Complex are substantial.

  20. Unified account of gas pollutants and greenhouse gas emissions: Chinese transportation 1978-2004

    NASA Astrophysics Data System (ADS)

    Ji, Xi; Chen, G. Q.

    2010-09-01

    To facilitate the aggregation of both quantity and quality of waste emissions, the concept of chemical exergy combining the first and second laws of thermodynamics is introduced for a unified account of gas pollutants and greenhouse gases, by a case study for the Chinese transportation system 1978-2004 with main gas pollutants of NO, SO2, CO and main greenhouse gases of CO2 and CH4. With chemical exergy emission factors concretely estimated, the total emission as well as emission intensity by exergy of the overall transportation system and of its four modes of highways, railways, waterways and civil aviation are accounted in full detail and compared with those by the conventionally prevailing metrics of mass, with essential implications for environmental policy making.

  1. No tillage and liming reduce greenhouse gas emissions from poorly drained agricultural soils in Mediterranean regions.

    PubMed

    García-Marco, Sonia; Abalos, Diego; Espejo, Rafael; Vallejo, Antonio; Mariscal-Sancho, Ignacio

    2016-10-01

    No tillage (NT) has been associated to increased N2O emission from poorly drained agricultural soils. This is the case for soils with a low permeable Bt horizon, which generates a perched water layer after water addition (via rainfall or irrigation) over a long period of time. Moreover, these soils often have problems of acidity and require liming application to sustain crop productivity; changes in soil pH have large implications for the production and consumption of soil greenhouse gas (GHG) emissions. Here, we assessed in a split-plot design the individual and interactive effects of tillage practices (conventional tillage (CT) vs. NT) and liming (Ca-amendment vs. not-amendment) on N2O and CH4 emissions from poorly drained acidic soils, over a field experiment with a rainfed triticale crop. Soil mineral N concentrations, pH, temperature, moisture, water soluble organic carbon, GHG fluxes and denitrification capacity were measured during the experiment. Tillage increased N2O emissions by 68% compared to NT and generally led to higher CH4 emissions; both effects were due to the higher soil moisture content under CT plots. Under CT, liming reduced N2O emissions by 61% whereas no effect was observed under NT. Under both CT and NT, CH4 oxidation was enhanced after liming application due to decreased Al(3+) toxicity. Based on our results, NT should be promoted as a means to improve soil physical properties and concurrently reduce N2O and CH4 emissions. Raising the soil pH via liming has positive effects on crop yield; here we show that it may also serve to mitigate CH4 emissions and, under CT, abate N2O emissions. PMID:27235901

  2. No tillage and liming reduce greenhouse gas emissions from poorly drained agricultural soils in Mediterranean regions.

    PubMed

    García-Marco, Sonia; Abalos, Diego; Espejo, Rafael; Vallejo, Antonio; Mariscal-Sancho, Ignacio

    2016-10-01

    No tillage (NT) has been associated to increased N2O emission from poorly drained agricultural soils. This is the case for soils with a low permeable Bt horizon, which generates a perched water layer after water addition (via rainfall or irrigation) over a long period of time. Moreover, these soils often have problems of acidity and require liming application to sustain crop productivity; changes in soil pH have large implications for the production and consumption of soil greenhouse gas (GHG) emissions. Here, we assessed in a split-plot design the individual and interactive effects of tillage practices (conventional tillage (CT) vs. NT) and liming (Ca-amendment vs. not-amendment) on N2O and CH4 emissions from poorly drained acidic soils, over a field experiment with a rainfed triticale crop. Soil mineral N concentrations, pH, temperature, moisture, water soluble organic carbon, GHG fluxes and denitrification capacity were measured during the experiment. Tillage increased N2O emissions by 68% compared to NT and generally led to higher CH4 emissions; both effects were due to the higher soil moisture content under CT plots. Under CT, liming reduced N2O emissions by 61% whereas no effect was observed under NT. Under both CT and NT, CH4 oxidation was enhanced after liming application due to decreased Al(3+) toxicity. Based on our results, NT should be promoted as a means to improve soil physical properties and concurrently reduce N2O and CH4 emissions. Raising the soil pH via liming has positive effects on crop yield; here we show that it may also serve to mitigate CH4 emissions and, under CT, abate N2O emissions.

  3. Mapping Fugitive Gas Emission Sources and Severity Across Southeastern Saskatchewan

    NASA Astrophysics Data System (ADS)

    Baillie, J.; Risk, D. A.; Lavoie, M.; Williams, J. P.

    2015-12-01

    Southeastern Saskatchewan, Canada contains a 10,000 km2 region heavily developed by oil and gas activity that has been struggling with air quality issues, arising from hundreds or thousands of oil and gas leak points. The region is also very diverse in terms of oilfield operators, who use extraction techniques including conventional, enhanced oil recovery (EOR), and fracking. As regulators and operators need more knowledge about emission patterns locally, we undertook comprehensive mapping and characterization of leak sources at the regional scale using vehicle-based data collection, together with computational techniques. We measured the presence and source of fugitive emissions from infrastructure and oilfield activities in eight 100 km2 survey domains. These included two controls with no oil and gas activity, and otherwise the domains were selected to capture the diversity of development; targeting primarily conventional and EOR activities in the Weyburn-Midale beds, and unconventional activities in the Bakken play. A total of 25 unique operators fell within the survey domains. Each domain was surveyed multiple times for CO2, CH4, and H2S, allowing us to identify persistent leaks and to screen out one-time events. The multiple gas targets also provided opportunities for discriminating one type of fugitive emission from another (i.e. flares from storage tanks) using ratios of excess (above ambient) concentrations, after correcting for natural background variability with a signal-processing routine. Fugitive emissions were commonly observed in all study domains. Most emissions were associated with oil and gas infrastructure, as opposed to drilling and other short-term activities. There were obvious emissions at many well pads, storage tanks, and flares. We also observed high geochemical variability around flares, with some being very effective in combusting toxic gases, and others less so. Almost all observed concentrations fell below regulatory limits, but have a

  4. 77 FR 26476 - Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... AGENCY 40 CFR Part 60 Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources... proposed rule, ``Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric... for the proposed Standards of Performance for Greenhouse Gas Emissions for New Stationary...

  5. Opportunities for reducing greenhouse gas emissions in tropical peatlands

    PubMed Central

    Murdiyarso, D.; Hergoualc’h, K.; Verchot, L. V.

    2010-01-01

    The upcoming global mechanism for reducing emissions from deforestation and forest degradation in developing countries should include and prioritize tropical peatlands. Forested tropical peatlands in Southeast Asia are rapidly being converted into production systems by introducing perennial crops for lucrative agribusiness, such as oil-palm and pulpwood plantations, causing large greenhouse gas (GHG) emissions. The Intergovernmental Panel on Climate Change Guidelines for GHG Inventory on Agriculture, Forestry, and Other Land Uses provide an adequate framework for emissions inventories in these ecosystems; however, specific emission factors are needed for more accurate and cost-effective monitoring. The emissions are governed by complex biophysical processes, such as peat decomposition and compaction, nutrient availability, soil water content, and water table level, all of which are affected by management practices. We estimate that total carbon loss from converting peat swamp forests into oil palm is 59.4 ± 10.2 Mg of CO2 per hectare per year during the first 25 y after land-use cover change, of which 61.6% arise from the peat. Of the total amount (1,486 ± 183 Mg of CO2 per hectare over 25 y), 25% are released immediately from land-clearing fire. In order to maintain high palm-oil production, nitrogen inputs through fertilizer are needed and the magnitude of the resulting increased N2O emissions compared to CO2 losses remains unclear. PMID:21081702

  6. Opportunities for reducing greenhouse gas emissions in tropical peatlands.

    PubMed

    Murdiyarso, D; Hergoualc'h, K; Verchot, L V

    2010-11-16

    The upcoming global mechanism for reducing emissions from deforestation and forest degradation in developing countries should include and prioritize tropical peatlands. Forested tropical peatlands in Southeast Asia are rapidly being converted into production systems by introducing perennial crops for lucrative agribusiness, such as oil-palm and pulpwood plantations, causing large greenhouse gas (GHG) emissions. The Intergovernmental Panel on Climate Change Guidelines for GHG Inventory on Agriculture, Forestry, and Other Land Uses provide an adequate framework for emissions inventories in these ecosystems; however, specific emission factors are needed for more accurate and cost-effective monitoring. The emissions are governed by complex biophysical processes, such as peat decomposition and compaction, nutrient availability, soil water content, and water table level, all of which are affected by management practices. We estimate that total carbon loss from converting peat swamp forests into oil palm is 59.4 ± 10.2 Mg of CO(2) per hectare per year during the first 25 y after land-use cover change, of which 61.6% arise from the peat. Of the total amount (1,486 ± 183 Mg of CO(2) per hectare over 25 y), 25% are released immediately from land-clearing fire. In order to maintain high palm-oil production, nitrogen inputs through fertilizer are needed and the magnitude of the resulting increased N(2)O emissions compared to CO(2) losses remains unclear.

  7. Opportunities for reducing greenhouse gas emissions in tropical peatlands.

    PubMed

    Murdiyarso, D; Hergoualc'h, K; Verchot, L V

    2010-11-16

    The upcoming global mechanism for reducing emissions from deforestation and forest degradation in developing countries should include and prioritize tropical peatlands. Forested tropical peatlands in Southeast Asia are rapidly being converted into production systems by introducing perennial crops for lucrative agribusiness, such as oil-palm and pulpwood plantations, causing large greenhouse gas (GHG) emissions. The Intergovernmental Panel on Climate Change Guidelines for GHG Inventory on Agriculture, Forestry, and Other Land Uses provide an adequate framework for emissions inventories in these ecosystems; however, specific emission factors are needed for more accurate and cost-effective monitoring. The emissions are governed by complex biophysical processes, such as peat decomposition and compaction, nutrient availability, soil water content, and water table level, all of which are affected by management practices. We estimate that total carbon loss from converting peat swamp forests into oil palm is 59.4 ± 10.2 Mg of CO(2) per hectare per year during the first 25 y after land-use cover change, of which 61.6% arise from the peat. Of the total amount (1,486 ± 183 Mg of CO(2) per hectare over 25 y), 25% are released immediately from land-clearing fire. In order to maintain high palm-oil production, nitrogen inputs through fertilizer are needed and the magnitude of the resulting increased N(2)O emissions compared to CO(2) losses remains unclear. PMID:21081702

  8. Trace Gas Emission from in-Situ Denitrifying Bioreactors

    NASA Astrophysics Data System (ADS)

    Pluer, W.; Walter, M. T.; Geohring, L.

    2014-12-01

    Despite decades of concerted effort to mitigate nonpoint source nitrate (NO3-) pollution from agricultural lands, these efforts have not been sufficient to arrest eutrophication. A primary process for removing excess NO3- from water is denitrification, where denitrifying bacteria use NO3- for respiration in the absence of oxygen. Denitrification results in reduced forms of nitrogen, often dinitrogen gas (N2) but also nitrous oxide (N2O), an aggressive greenhouse gas. A promising solution to NO3- pollution is to intercept agricultural discharges with denitrifying bioreactors (DNBRs). DNBRs provide conditions ideal for denitrifiers: an anaerobic environment, sufficient organic matter, and excess NO3-. These conditions are also ideal for methanogens, which produce methane (CH4), another harmful trace gas. While initial results from bioreactor studies show that they can cost-effectively remove NO3-, trace gas emissions are an unintended consequence. This study's goal was to determine how bioreactor design promotes denitrification while limiting trace gas production. Reactor inflow and outflow water samples were tested for nutrients, including NO3-, and dissolved inflow and outflow gas samples were tested for N2O and CH4. NO3- reduction and trace gas production were evaluated at various residence times, pHs, and inflow NO3- concentrations in field and lab-scale reactors. Low NO3- reduction indicated conditions that stressed denitrifying bacteria while high reductions indicated designs that optimized pollutant treatment for water quality. Several factors influenced high N2O, suggesting non-ideal conditions for the final step of complete denitrification. High CH4 emissions pointed to reactor media choice for discouraging methanogens, which may remove competition with denitrifiers. It is critical to understand all of potential impacts that DNBRs may have, which means identifying processes and design specifications that may affect them.

  9. GLOBAL ANTROPOGENIC NON-CO2 GREENHOUSE GAS EMISSIONS: 1990-2020

    EPA Science Inventory

    This report will synthesize available data on emissions of non-CO2 greenhouse gases by gas, source category, and country or region. Historic emissions data, as well as projected emission levels will be provided.

  10. Greenhouse gas emissions from on-site wastewater treatment systems

    NASA Astrophysics Data System (ADS)

    Somlai-Haase, Celia; Knappe, Jan; Gill, Laurence

    2016-04-01

    Nearly one third of the Irish population relies on decentralized domestic wastewater treatment systems which involve the discharge of effluent into the soil via a percolation area (drain field). In such systems, wastewater from single households is initially treated on-site either by a septic tank and an additional packaged secondary treatment unit, in which the influent organic matter is converted into carbon dioxide (CO2) and methane (CH4) by microbial mediated processes. The effluent from the tanks is released into the soil for further treatment in the unsaturated zone where additional CO2 and CH4 are emitted to the atmosphere as well as nitrous oxide (N2O) from the partial denitrification of nitrate. Hence, considering the large number of on-site systems in Ireland and internationally, these are potential significant sources of greenhouse gas (GHG) emissions, and yet have received almost no direct field measurement. Here we present the first attempt to quantify and qualify the production and emissions of GHGs from a septic tank system serving a single house in the County Westmeath, Ireland. We have sampled the water for dissolved CO2, CH4 and N2O and measured the gas flux from the water surface in the septic tank. We have also carried out long-term flux measurements of CO2 from the drain field, using an automated soil gas flux system (LI-8100A, Li-Cor®) covering a whole year semi-continuously. This has enabled the CO2 emissions from the unsaturated zone to be correlated against different meteorological parameters over an annual cycle. In addition, we have integrated an ultraportable GHG analyser (UGGA, Los Gatos Research Inc.) into the automated soil gas flux system to measure CH4 flux. Further, manual sampling has also provided a better understanding of N2O emissions from the septic tank system.

  11. Soil nitrogen gas emissions increase considerably in warmer forest soils

    NASA Astrophysics Data System (ADS)

    Kitzler, Barbara; Schindlbacher, Andreas; Jandl, Robert; Zechmeister-Boltenstern, Sophie

    2015-04-01

    Climate change will likely modify ecosystem properties and processes and therefore impact nitrogen (N) dynamics of forest soils. To elucidate the effect of warming and drought conditions on the nitrogen gas emissions we measured N2O and NO fluxes from the soil warming experiment Achenkirch, a spruce-fir-beech forest soil in the North Tyrolean limestone Alps in Austria. The uppermost layer of the soil was warmed (4°C) by heating cables during the snow-free seasons. Roofs were installed during 25 days in July/August 2008 and 2009 to simulate drought conditions. Gas sampling was conducted biweekly with static chambers (N2O). Gas concentrations were detected by GC. Nitric oxide fluxes were measured by an automatic dynamic chamber system on an hourly basis. In our study the emissions of N2O were increased by up to 73 % at warmed plots, and we observed a temporary increase following first rain. However N2O emissions of the drought affected plots remained depressed for more than two months after roof removal. Nitric oxide fluxes were increased considerably during dry periods and under warmer conditions.

  12. The greenhouse gas emissions performance of cellulosic ethanol supply chains in Europe

    PubMed Central

    Slade, Raphael; Bauen, Ausilio; Shah, Nilay

    2009-01-01

    Background Calculating the greenhouse gas savings that may be attributed to biofuels is problematic because production systems are inherently complex and methods used to quantify savings are subjective. Differing approaches and interpretations have fuelled a debate about the environmental merit of biofuels, and consequently about the level of policy support that can be justified. This paper estimates and compares emissions from plausible supply chains for lignocellulosic ethanol production, exemplified using data specific to the UK and Sweden. The common elements that give rise to the greatest greenhouse gas emissions are identified and the sensitivity of total emissions to variations in these elements is estimated. The implications of including consequential impacts including indirect land-use change, and the effects of selecting alternative allocation methods on the interpretation of results are discussed. Results We find that the most important factors affecting supply chain emissions are the emissions embodied in biomass production, the use of electricity in the conversion process and potentially consequential impacts: indirect land-use change and fertiliser replacement. The large quantity of electricity consumed during enzyme manufacture suggests that enzymatic conversion processes may give rise to greater greenhouse gas emissions than the dilute acid conversion process, even though the dilute acid process has a somewhat lower ethanol yield. Conclusion The lignocellulosic ethanol supply chains considered here all lead to greenhouse gas savings relative to gasoline An important caveat to this is that if lignocellulosic ethanol production uses feedstocks that lead to indirect land-use change, or other significant consequential impacts, the benefit may be greatly reduced. Co-locating ethanol, electricity generation and enzyme production in a single facility may improve performance, particularly if this allows the number of energy intensive steps in enzyme

  13. Greenhouse gas and alcohol emissions from feedlot steers and calves.

    PubMed

    Stackhouse, Kimberly R; Pan, Yuee; Zhao, Yongjing; Mitloehner, Frank M

    2011-01-01

    Livestock's contributions to climate change and smog-forming emissions are a growing public policy concern. This study quantifies greenhouse gas (GHG) and alcohol emissions from calves and feedlot steers. Carbon dioxide (CO) methane (CH), nitrous oxide (NO), ethanol (EtOH), and methanol (MeOH) were measured from a total of 45 Holstein and Angus steers and 9 Holstein calves representative of four different growth stages commonly present on calf ranches and commercial feedlots. Individuals from each animal type were randomly assigned to three equal replicate groups of nine animals per group. Steers were fed a high concentrate diet and calves a milk replacer and grain supplement. Cattle and calves were housed in groups of three animals in an environmental chamber for 24 h. The CO, NO, EtOH, and MeOH concentrations from the air inlet and outlet of the chamber were measured using an INNOVA 1412 monitor and CH using a TEI 55C methane analyzer. Emission rates (g head h) were calculated. The GHGs were mainly produced by enteric fermentation and respiration and differed across life stages of cattle. Compared with dairy cows, feedlot steers produce relatively less GHG. In general, ethanol and methanol, the most important volatile organic compound (VOC) group in the dairy sector, were below the lower limit of detection of the gas analyzer. The present data will be useful to verify models and to enhance GHG emission inventories for enteric fermentation, respiration, and fresh excreta for numerous cattle life stages across the beef industry.

  14. Greenhouse Gas Emission Evaluation of the GTL Pathway.

    PubMed

    Forman, Grant S; Hahn, Tristan E; Jensen, Scott D

    2011-10-15

    Gas to liquids (GTL) products have the potential to replace petroleum-derived products, but the efficacy with which any sustainability goals can be achieved is dependent on the lifecycle impacts of the GTL pathway. Life cycle assessment (LCA) is an internationally established tool (with GHG emissions as a subset) to estimate these impacts. Although the International Standard Organization's ISO 14040 standard advocates the system boundary expansion method (also known as the "displacement method" or the "substitution method") for life-cycle analyses, application of this method for the GTL pathway has been limited until now because of the difficulty in quantifying potential products to be displaced by GTL coproducts. In this paper, we use LCA methodology to establish the most comprehensive GHG emissions evaluation to date of the GTL pathway. The influence of coproduct credit methods on the GTL GHG emissions results using substitution methodology is estimated to afford the Well-to-Wheels (WTW) greenhouse gas (GHG) intensity of GTL Diesel. These results are compared to results using energy-based allocation methods of reference GTL diesel and petroleum-diesel pathways. When substitution methodology is used, the resulting WTW GHG emissions of the GTL pathway are lower than petroleum diesel references. In terms of net GHGs, an interesting way to further reduce GHG emissions is to blend GTL diesel in refineries with heavy crudes that require severe hydrotreating, such as Venezuelan heavy crude oil or bitumen derived from Canadian oil sands and in jurisdictions with tight aromatic specifications for diesel, such as California. These results highlight the limitation of using the energy allocation approach for situations where coproduct GHG emissions reductions are downstream from the production phase.

  15. NOAA Mobile Laboratory Measures Oil and Gas Emissions

    NASA Astrophysics Data System (ADS)

    Kofler, J. D.; Petron, G.; Dube, W. P.; Edwards, P. M.; Brown, S. S.; Geiger, F.; Patrick, L.; Crepinsek, S.; Chen, H.; Miller, B. R.; Montzka, S. A.; Lang, P. M.; Newberger, T.; Higgs, J. A.; Sweeney, C.; Guenther, D.; Karion, A.; Wolter, S.; Williams, J.; Jordan, A.; Tans, P. P.; Schnell, R. C.

    2012-12-01

    A van capable of continuous real time measurements of CH4 , CO2, CO, Water Vapor, Ozone, NO, NO2, Volatile Organic Compounds VOCs including aromatics and other traces gases was driven in the oil and gas fields of the Uintah Basin in northeastern Utah. Compressor Stations, processing plants, oil and gas well heads. Separators, condensate tanks, evaporation pond disposal facilities, holding tanks, hydraulic fracturing sites, gas pipelines and more were studied using the van. The mobile measurements provide a powerful tool to get to the source of the emissions and reveal the unique chemical signature of each of the stages and components of oil and gas production as well as the overall basin and background gas concentrations. In addition to a suite of gas analyzers, the van includes a meteorological system (temperature, humidity, and wind speed and direction), GPS tracking, flask sampling system and a batter power system. Aspects of the vans hardware, sampling methods and operations are discussed along with a few highlights of the measurements.

  16. Trace gas emissions from biomass burning in tropical Australian savannas

    SciTech Connect

    Hurst, D.F.; Griffith, D.W.T.; Cook, G.D.

    1994-08-20

    The trace gas emissions of biomass burning was measured during the 1991 and 1992 dry seasons (April through October) at the Kapalga Research Station in Kakadu National Park, Northern Territory, Australia. Over 100 smoke samples from savannah fires were collected, from the ground and from aircraft flying at 50 to 700 meters above the fires. The samples were analyzed for carbon dioxide, carbon monoxide, nitrous oxides, and other carbon and nitrogen compounds using gas phase Fourier transform infrared (FTIR) spectroscopy, matrix isolation FTIR spectroscopy, and chemiluminescence techniques. This paper describes the results of the gas analyses and discusses the potential impacts of these gases on regional atmospheric chemistry.49 refs., 4 figs., 7 tabs.

  17. Investigation of Fuel Nozzle Technologies to Reduce Gas Turbine Emissions

    NASA Astrophysics Data System (ADS)

    Antony Francis, Roger Neil

    With increasing requirements for reduced emissions from future gas turbines, a multitude of research is being conducted into fuel nozzles by gas turbine manufacturers. This thesis focuses on the development of a novel spill return nozzle, to improve combustion efficiency at starting and low power conditions -where combustion efficiency is often the poorest. The spill return nozzle has the advantage of being able to improve atomization performance and reduce internal coking potential, all while being a simple and durable design. The spill return nozzle tech- nology was subsequently applied to a design for an existing small gas turbine combustor, and its improvements over the existing nozzle were demonstrated. The proposed design was also extended to experimental testing in a simplified form. CAD drawings of the components for testing were made, and prototypes were built in plastic using a high accuracy 3D printer. Future work involves conducting experimental tests to validate results.

  18. Sulfur-rich geothermal emissions elevate acid aerosol levels in metropolitan Taipei.

    PubMed

    Lin, Chih-Hung; Mao, I-Fang; Tsai, Pei-Hsien; Chuang, Hsin-Yi; Chen, Yi-Ju; Chen, Mei-Lien

    2010-08-01

    Several studies have demonstrated that millions of people globally are potentially exposed to volcanic gases. Hydrogen sulfide is a typical gas in volcanic and geothermal areas. The gas is toxic at high concentrations that predominantly affects the nervous, cardiovascular, and respiratory systems. The WHO air quality guideline for hydrogen sulfide is 150 microg m(-3) (105 ppb). The northwest part of Taipei is surrounded by sulfur-rich geothermal and hot springs. Active fumaroles and bubbling springs around the geothermal area emit acidic gases. In combination with automobile emissions, the pollution of acid aerosols is characteristic of the metropolis. This study considered sulfur-rich geothermal, suburban and downtown locations of this metropolis to evaluate geothermally emitted acid aerosol and H(2)S pollution. Acid aerosols were collected using a honeycomb denuder filter pack sampling system (HDS), and then analyzed by ion chromatography (IC). Results indicated that long-term geothermal emissions, automobile emissions and photochemical reactions have led to significant variations in air pollution among regions of metropolitan Taipei. The highest H(2)S concentration was 1705 ppb in the geothermal area with low traffic density and the mean concentration was 404.06 ppb, which was higher than WHO guideline and might cause eye irritation. The SO(2) concentrations were relatively low (mean concentration was 3.9 ppb) in this area. It may partially result from the chemical reduction reaction in the geothermal emission, which converted the SO(2) gas into SO(4)(2-) and H(2)S. Consequently, very high sulfate concentrations (mean concentration higher than 25.0 microg m(-3)) were also observed in the area. The geothermal areas also emitted relatively high levels of aerosol acidity, Cl(-), F(-), PO(4)(3-), and N-containing aerosols. As a result, concentrations of HNO(3), NO(2)(-), PO(4)(3-), and SO(4)(2-) in metropolitan Taipei are significantly higher than those in other

  19. Carbon soundings: greenhouse gas emissions of the UK music industry

    NASA Astrophysics Data System (ADS)

    Bottrill, C.; Liverman, D.; Boykoff, M.

    2010-01-01

    Over the past decade, questions regarding how to reduce human contributions to climate change have become more commonplace and non-nation state actors—such as businesses, non-government organizations, celebrities—have increasingly become involved in climate change mitigation and adaptation initiatives. For these dynamic and rapidly expanding spaces, this letter provides an accounting of the methods and findings from a 2007 assessment of greenhouse gas (GHG) emissions in the UK music industry. The study estimates that overall GHG emissions associated with the UK music market are approximately 540 000 t CO2e per annum. Music recording and publishing accounted for 26% of these emissions (138 000 t CO2e per annum), while three-quarters (74%) derived from activities associated with live music performances (400 000 t CO2e per annum). These results have prompted a group of music industry business leaders to design campaigns to reduce the GHG emissions of their supply chains. The study has also provided a basis for ongoing in-depth research on CD packaging, audience travel, and artist touring as well as the development of a voluntary accreditation scheme for reducing GHG emissions from activities of the UK music industry.

  20. Determining thresholds for mandatory reporting of greenhouse gas emissions.

    PubMed

    West, Tristram O; Peña, Naomi

    2003-03-15

    A number of countries are considering implementation of reporting requirements for greenhouse gases. Some reporting systems have been proposed that would require each entity or facility exceeding an annual emissions threshold to report their emissions to a governmental agency. The analysis presented here provides a first approximation of the number of facilities in selected U.S. economic sectors that would report under several different reporting thresholds. Results indicate that thresholds below 10,000 Mg of carbon dioxide equivalent (CO2E) per year may bring in relatively large numbers of facilities while minimally increasing the percentage of reported emissions. None of the reporting thresholds considered in this analysis would account for the majority of greenhouse gas emissions from the U.S. agricultural, transportation, or residential and commercial building sectors. If these sectors, in which large numbers of farms, vehicles, and buildings each emit relatively small amounts of greenhouse gases, are to be included in a reporting framework, additional or alternative approaches to reporting should be considered. Alternative approaches may include creating separate thresholds for individual greenhouse gases instead of using an aggregated CO2E unit, creating separate reporting thresholds for individual sectors, or combining sources of small emissions into a single reporting entity.

  1. Limiting net greenhouse gas emissions in the United States

    SciTech Connect

    Bradley, R A; Watts, E C; Williams, E R

    1991-09-01

    In 1988, Congress requested that DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity) and the relationship between energy production and use and the emission of radiatively important gases. Topics discussed include: state of the science in estimating atmosphere/climate change relationships, the potential consequences of atmosphere/climate change, us greenhouse emissions past and present, an approach to analyzing the technical potential and cost of reducing US energy-related greenhouse gas emissions, current policy base and National Energy Strategy actions, fiscal instruments, regulatory instruments, combined strategies and instruments, macroeconomic impacts, carbon taxation and international trade, a comparison to other studies.

  2. Upscaling of greenhouse gas emissions in upland forestry following clearfell

    NASA Astrophysics Data System (ADS)

    Toet, Sylvia; Keane, Ben; Yamulki, Sirwan; Blei, Emanuel; Gibson-Poole, Simon; Xenakis, Georgios; Perks, Mike; Morison, James; Ineson, Phil

    2016-04-01

    Data on greenhouse gas (GHG) emissions caused by forest management activities are limited. Management such as clearfelling may, however, have major impacts on the GHG balance of forests through effects of soil disturbance, increased water table, and brash and root inputs. Besides carbon dioxide (CO2), the biogenic GHGs nitrous oxide (N2O) and methane (CH4) may also contribute to GHG emissions from managed forests. Accurate flux estimates of all three GHGs are therefore necessary, but, since GHG emissions usually show large spatial and temporal variability, in particular CH4 and N2O fluxes, high-frequency GHG flux measurements and better understanding of their controls are central to improve process-based flux models and GHG budgets at multiple scales. In this study, we determined CO2, CH4 and N2O emissions following felling in a mature Sitka spruce (Picea sitchensis) stand in an upland forest in northern England. High-frequency measurements were made along a transect using a novel, automated GHG chamber flux system ('SkyLine') developed at the University of York. The replicated, linear experiment aimed (1) to quantify GHG emissions from three main topographical features at the clearfell site, i.e. the ridges on which trees had been planted, the hollows in between and the drainage ditches, and (2) to determine the effects of the green-needle component of the discarded brash. We also measured abiotic soil and climatic factors alongside the 'SkyLine' GHG flux measurements to identify drivers of the observed GHG emissions. All three topographic features were overall sources of GHG emissions (in CO2 equivalents), and, although drainage ditches are often not included in studies, GHG emissions per unit area were highest from ditches, followed by ridges and lowest in hollows. The CO2 emissions were most important in the GHG balance of ridges and hollows, but CH4 emissions were very high from the drainage ditches, contributing to over 50% of their overall net GHG emissions

  3. Greenhouse gas emissions from sludge treatment reed beds.

    PubMed

    Cui, Yubo; Zhang, Shunli; Chen, Zhaobo; Chen, Rui; Deng, Xinnan

    2015-01-01

    Sludge treatment reed bed systems (STRBs) are considered as an alternative technology for surplus sludge treatment. Organic matter is decomposed by various microbial reactions, resulting in gases such as CO₂and CH₄emitting into the atmosphere. The aim of this study is to investigate gas emission from STRBs. The static transparent chamber was adopted to measure gas emission; it allows sunlight to enter and plants to photosynthesise. The comparison of total solids and volatile solids showed STRBs have a higher efficiency in dewatering and mineralization than a conventional unplanted sludge drying bed (USDB). The CO₂emission ranged from 28.68 to 100.42 g CO₂m⁻² d(-1) in USDB, from 16.48 to 65.18 g CO₂m⁻² d⁻¹ in STRBs; CH₄emission ranged from 0.26 to 0.99 g CH₄ m⁻² d⁻¹ in USDB, from 0.43 to 1.95 g CH₄m⁻² d⁻¹ in STRBs. Both gas fluxes decreased towards the end of vegetation and reached the highest rates during the hot and dry summer. After the system was loaded by sludge, the fluxes of CO₂and CH₄significantly decreased in the USDB, whereas they increased in STRBs. In terms of CO₂equivalent, the global warming potential of CH₄was 13.13 g CO₂eq m⁻² d⁻¹ and 15.02 g CO₂eq m⁻² d⁻¹ in USDB and STRBs, respectively.

  4. Greenhouse gas emissions from municipal wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Parravicini, Vanessa; Svardal, Karl

    2016-04-01

    by a person in Germany or Austria (10.6 t CO2e/p/a, UBA, 2016). The results indicate that GHG emissions from WWTP have at global scale a small impact, as also highlighted by the Austrian national inventory report (NIR, 2015), where the estimated CO2e emissions from WWTPs account for only 0.23% of the total CO2e emission in Austria. References IPCC (2006). Intergovernmental Panel on Climate Change, Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Program, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Anabe K. (eds). Published: IGES, Japan. http://www.ipcc-nggip.iges.or.jp/public/2006gl/. NIR (2015). Austria's National Inventory Report 2015. Submission under the United Nations Framework Convention on Climate Change and under the Kyoto Protocol. Reports, Band 0552, ISBN: 978-3-99004-364-6, Umweltbundesamt, Wien. Parravicini V., Valkova T., Haslinger J., Saracevic E., Winkelbauer A., Tauber J., Svardal K., Hohenblum P., Clara M., Windhofer G., Pazdernik K., Lampert C. (2015). Reduktionspotential bei den Lachgasemissionen aus Kläranlagen durch Optimierung des Betriebes (ReLaKO). The research project was financially supported by the Ministry for agriculture, forestry, Environment and Water Management. Project leader: TU Wien, Institute for Water Quality, Ressources and Waste Management; Project partner: Umweltbundesamt GmbH. Final report: http://www.bmlfuw.gv.at/service/publikationen/wasser/Lachgasemissionen---Kl-ranlagen.html. UBA (2016). German average carbon footprint. Umweltbundesamt, Januar 2016, http://uba.klimaktiv-co2-rechner.de/de_DE/page/footprint/

  5. Nitrogenous gas emissions induced by abiotic nitrite reactions with soil organic matter of a Norway spruce forest

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Vereecken, Harry; Schloter, Michael; Brüggemann, Nicolas

    2016-04-01

    As an important intermediate of the nitrogen cycle, nitrite is highly reactive to soil organic matter (SOM) in forest soils under acidic conditions. However, there is little knowledge about how much its abiotic reactions with SOM contribute to nitrogen (N) gas emissions of forest soils till now. In this study, we provide data on N gas (N2O, NO, NO2) emissions from abiotic nitrite reactions with different fractions of soil organic matter in spruce forest soil, as well as the mechanisms involved. Soil samples were taken from the Oh layer at the TERENO-Wüstebach catchment, Germany, where Norway spruce (Picea abies) dominates. SOM was fractionated into dissolved organic matter (DOM), fulvic acid (FA), humic acid (HA) and humin (HN) according to their solubility. The dynamics of simultaneous NOx and N2O emissions were analyzed with a dynamic flow-through chamber system, coupled to an infrared laser absorption analyzer for N2O and a chemo-luminescence analyzer for NOx (NO and NO2), which allowed emission measurements with high time resolution. The 15N labelling technique was used for tracing the fate of nitrite-N towards establishment of a total N balance. When nitrite was added to the soil fractions, a large amount of NOx was immediately emitted, mostly in the form of NO. N2O emission was delayed by approximately 0.5-1 h. The NO and N2O emission pattern could be almost perfectly fitted with the Hill equation. The N2O formation rates increased significantly in the following order: DOM, FA, HA and HN, while the total amounts of the gases emitted increased significantly in the opposite order. These results revealed that abiotic reactions of nitrite with SOM in spruce forest soil play an important role in N gas emissions, while the chemical nature of the different SOM fractions determines the rate and amount of N gas emissions.

  6. Communicating the uncertainty in estimated greenhouse gas emissions from agriculture.

    PubMed

    Milne, Alice E; Glendining, Margaret J; Lark, R Murray; Perryman, Sarah A M; Gordon, Taylor; Whitmore, Andrew P

    2015-09-01

    In an effort to mitigate anthropogenic effects on the global climate system, industrialised countries are required to quantify and report, for various economic sectors, the annual emissions of greenhouse gases from their several sources and the absorption of the same in different sinks. These estimates are uncertain, and this uncertainty must be communicated effectively, if government bodies, research scientists or members of the public are to draw sound conclusions. Our interest is in communicating the uncertainty in estimates of greenhouse gas emissions from agriculture to those who might directly use the results from the inventory. We tested six methods of communication. These were: a verbal scale using the IPCC calibrated phrases such as 'likely' and 'very unlikely'; probabilities that emissions are within a defined range of values; confidence intervals for the expected value; histograms; box plots; and shaded arrays that depict the probability density of the uncertain quantity. In a formal trial we used these methods to communicate uncertainty about four specific inferences about greenhouse gas emissions in the UK. Sixty four individuals who use results from the greenhouse gas inventory professionally participated in the trial, and we tested how effectively the uncertainty about these inferences was communicated by means of a questionnaire. Our results showed differences in the efficacy of the methods of communication, and interactions with the nature of the target audience. We found that, although the verbal scale was thought to be a good method of communication it did not convey enough information and was open to misinterpretation. Shaded arrays were similarly criticised for being open to misinterpretation, but proved to give the best impression of uncertainty when participants were asked to interpret results from the greenhouse gas inventory. Box plots were most favoured by our participants largely because they were particularly favoured by those who worked

  7. Nutrient removal and greenhouse gas emissions in duckweed treatment ponds.

    PubMed

    Sims, Atreyee; Gajaraj, Shashikanth; Hu, Zhiqiang

    2013-03-01

    Stormwater treatment ponds provide a variety of functions including sediment retention, organic and nutrient removal, and habitat restoration. The treatment ponds are, however, also a source of greenhouse gases. The objectives of this study were to assess greenhouse gas (CH(4), CO(2) and N(2)O) emissions in duckweed treatment ponds (DWPs) treating simulated stormwater and to determine the role of ammonia-oxidizing organisms in nutrient removal and methanogens in greenhouse gas emissions. Two replicated DWPs operated at a hydraulic retention time (HRT) of 10 days were able to remove 84% (± 4% [standard deviation]) chemical oxygen demand (COD), 79% (± 3%) NH(4)(+)-N, 86% (± 2%) NO(3)(-)-N and 56% (± 7%) orthophosphate. CH(4) emission rates in the DWPs ranged from 502 to 1900 mg CH(4) m(-2) d(-1) while those of nitrous oxide (N(2)O) ranged from 0.63 to 4 mg N(2)O m(-2) d(-1). The CO(2) emission rates ranged from 1700 to 3300 mg CO(2) m(-2) day(-1). Duckweed coverage on water surface along with the continued deposit of duckweed debris in the DWPs and low-nutrient influent water created a low dissolved oxygen environment for the growth of unique ammonia-oxidizing organisms and methanogens. Archaeal and bacterial amoA abundance in the DWPs ranged from (1.5 ± 0.2) × 10(7) to (1.7 ± 0.2) × 10(8) copies/g dry soil and from (1.0 ± 0.3) × 10(3) to (1.5 ± 0.4) × 10(6) copies/g dry soil, respectively. The 16S rRNA acetoclastic and hydrogenotrophic methanogens ranged from (5.2 ± 0.2) × 10(5) to (9.0 ± 0.3) × 10(6) copies/g dry soil and from (1.0 ± 0.1) × 10(2) to (5.5 ± 0.4) × 10(3) copies/g dry soil, respectively. Ammonia-oxidizing archaea (AOA) appeared to be the dominant nitrifiers and acetoclastic Methanosaeta was the major methanogenic genus. The results suggest that methane is the predominant (>90%) greenhouse gas in the DWPs, where the relatively low stormwater nutrient inputs facilitate the growth of K-strategists such as AOA and Methanosaeta that may

  8. Volcanic Gas Emissions Mapping Using a Mass Spectrometer System

    NASA Technical Reports Server (NTRS)

    Griffin, Timothy P.; Diaz, J. Andres

    2008-01-01

    The visualization of hazardous gaseous emissions at volcanoes using in-situ mass spectrometry (MS) is a key step towards a better comprehension of the geophysical phenomena surrounding eruptive activity. In-Situ gas data consisting of helium, carbon dioxide, sulfur dioxide, and other gas species, were acquired with an MS system. MS and global position system (GPS) data were plotted on ground imagery, topography, and remote sensing data collected by a host of instruments during the second Costa Rica Airborne Research and Technology Applications (CARTA) mission This combination of gas and imaging data allowed 3-dimensional (3-D) visualization of the volcanic plume end the mapping of gas concentration at several volcanic structures and urban areas This combined set of data has demonstrated a better tool to assess hazardous conditions by visualizing and modeling of possible scenarios of volcanic activity. The MS system is used for in-situ measurement of three-dimensional gas concentrations at different volcanic locations with three different transportation platforms, aircraft, auto, and hand carried. The demonstration for urban contamination mapping is also presented as another possible use for the MS system.

  9. Estimating greenhouse gas emissions of European cities--modeling emissions with only one spatial and one socioeconomic variable.

    PubMed

    Baur, Albert H; Lauf, Steffen; Förster, Michael; Kleinschmit, Birgit

    2015-07-01

    Substantive and concerted action is needed to mitigate climate change. However, international negotiations struggle to adopt ambitious legislation and to anticipate more climate-friendly developments. Thus, stronger actions are needed from other players. Cities, being greenhouse gas emission centers, play a key role in promoting the climate change mitigation movement by becoming hubs for smart and low-carbon lifestyles. In this context, a stronger linkage between greenhouse gas emissions and urban development and policy-making seems promising. Therefore, simple approaches are needed to objectively identify crucial emission drivers for deriving appropriate emission reduction strategies. In analyzing 44 European cities, the authors investigate possible socioeconomic and spatial determinants of urban greenhouse gas emissions. Multiple statistical analyses reveal that the average household size and the edge density of discontinuous dense urban fabric explain up to 86% of the total variance of greenhouse gas emissions of EU cities (when controlled for varying electricity carbon intensities). Finally, based on these findings, a multiple regression model is presented to determine greenhouse gas emissions. It is independently evaluated with ten further EU cities. The reliance on only two indicators shows that the model can be easily applied in addressing important greenhouse gas emission sources of European urbanites, when varying power generations are considered. This knowledge can help cities develop adequate climate change mitigation strategies and promote respective policies on the EU or the regional level. The results can further be used to derive first estimates of urban greenhouse gas emissions, if no other analyses are available.

  10. The emission of fluorine gas during incineration of fluoroborate residue.

    PubMed

    Feng, Yuheng; Jiang, Xuguang; Chen, Dezhen

    2016-05-01

    The emission behaviors of wastes from fluorine chemical industry during incineration have raised concerns because multiple fluorine products might danger human health. In this study, fluorine emission from a two-stage incineration system during the combustion of fluoroborate residue was examined. In a TG-FTIR analysis BF3, SiF4 and HF were identified as the initial fluorine forms to be released, while fluorine gases of greenhouse effect such as CF4 and SF6 were not found. Below 700 °C, NaBF4 in the sample decomposed to generate BF3. Then part of BF3 reacted with SiO2 in the system to form SiF4 or hydrolyzed to HF. At higher temperatures, the NaF left in the sample was gradually hydrolyzed to form HF. A lab-scale two-stage tube furnace is established to simulate the typical two-stage combustion chamber in China. Experimental tests proved that HF was the only fluorine gas in the flue gas, and emissions of BF3 and SiF4 can be negligible. Thermodynamic equilibrium model predicted that all SiF4 would be hydrolyzed at 1100 °C in the secondary-chamber, which agreed well with the experimental results. PMID:26808247

  11. Greenhouse gas emission associated with sugar production in southern Brazil

    PubMed Central

    2010-01-01

    Background Since sugarcane areas have increased rapidly in Brazil, the contribution of the sugarcane production, and, especially, of the sugarcane harvest system to the greenhouse gas emissions of the country is an issue of national concern. Here we analyze some data characterizing various activities of two sugarcane mills during the harvest period of 2006-2007 and quantify the carbon footprint of sugar production. Results According to our calculations, 241 kg of carbon dioxide equivalent were released to the atmosphere per a ton of sugar produced (2406 kg of carbon dioxide equivalent per a hectare of the cropped area, and 26.5 kg of carbon dioxide equivalent per a ton of sugarcane processed). The major part of the total emission (44%) resulted from residues burning; about 20% resulted from the use of synthetic fertilizers, and about 18% from fossil fuel combustion. Conclusions The results of this study suggest that the most important reduction in greenhouse gas emissions from sugarcane areas could be achieved by switching to a green harvest system, that is, to harvesting without burning. PMID:20565736

  12. Impact of routine episodic emissions on the expected frequency distribution of emissions from oil and gas production sources.

    NASA Astrophysics Data System (ADS)

    Smith, N.; Blewitt, D.; Hebert, L. B.

    2015-12-01

    In coordination with oil and gas operators, we developed a high resolution (< 1 min) simulation of temporal variability in well-pad oil and gas emissions over a year. We include routine emissions from condensate tanks, dehydrators, pneumatic devices, fugitive leaks and liquids unloading. We explore the variability in natural gas emissions from these individual well-pad sources, and find that routine short-term episodic emissions such as tank flashing and liquids unloading result in the appearance of a skewed, or 'fat-tail' distribution of emissions, from an individual well-pad over time. Additionally, we explore the expected variability in emissions from multiple wells with different raw gas composition, gas/liquids production volumes and control equipment. Differences in well-level composition, production volume and control equipment translate into differences in well-level emissions leading to a fat-tail distribution of emissions in the absence of operational upsets. Our results have several implications for recent studies focusing on emissions from oil and gas sources. Time scale of emission estimates are important and have important policy implications. Fat tail distributions may not be entirely driven by avoidable mechanical failures, and are expected to occur under routine operational conditions from short-duration emissions (e.g., tank flashing, liquid unloading). An understanding of the expected distribution of emissions for a particular population of wells is necessary to evaluate whether the observed distribution is more skewed than expected. Temporal variability in well-pad emissions make comparisons to annual average emissions inventories difficult and may complicate the interpretation of long-term ambient fenceline monitoring data. Sophisticated change detection algorithms will be necessary to identify when true operational upsets occur versus routine short-term emissions.

  13. Greenhouse gas emissions from constructed wetlands treating dairy wastewater

    NASA Astrophysics Data System (ADS)

    Glass, Vimy M.

    In Nova Scotia, constructed wetland systems are widely considered as effective treatment systems for agricultural wastewater. Although research has examined the water quality treatment attributes, there has been limited focus on the air quality effects of these systems. Six operational pilot-scale constructed wetlands were built with flow-through chambers for quantifying greenhouse gas (GHG) emissions in Truro, NS. Utilized within this facility were three gas analyzers to monitor GHG emissions (CO2, N 2O, CH4) and the gaseous fluxes could then be determined using the mass balance micrometeorological technique. Prior to data collection, the site underwent testing to ensure valid conclusions and replicated responses from the wetland systems. Those wetlands receiving wastewater at a typical HLR (10.6 mm d-1) and with ample vegetation displayed the best concentration reductions. During the growing season (GS), average CO 2 consumption was large (approximately -44 g CO2m -2 d-1) for wetlands with dense vegetation (approximately 100% cover) at the typical loading rate. For those wetlands at higher loading rates, CO2 emissions were observed to be as high as +9.2 g CO 2m-2 d-1. Wetlands with typical loading rates and healthy aquatic vegetation produced average CH4 fluxes of approximately 43 g CO2 eq. m-2d-1, while higher loaded systems with little vegetation approached 90 g CO 2 eq. m-2d-1. During the non-growing season (NGS), all vegetated wetlands exhibited higher CH4 emissions than the non-vegetated systems (˜15 to 20% higher). Vegetation maturity played a strong role in the GHG balance. The average CO2consumption for wetlands with established vegetation was ˜ -36 g CO2 m -2 d-1 during the GS. Wetland 4, which had been newly transplanted in 2004, had the highest single day CO2 consumption of -152 g CO2m-2 d-1 . Methane emissions from wetlands with two-year-old vegetation followed the same pattern but were approximately half of the emissions recorded from 2003. The

  14. Gas emissions as influenced by home composting system configuration.

    PubMed

    Adhikari, Bijaya K; Trémier, Anne; Barrington, Suzelle; Martinez, José; Daumoin, Mylène

    2013-02-15

    Home composting systems (HC) are known to facilitate municipal solid waste management, but little is known about their environmental impact including their greenhouse gas emissions (GGE). The present research focused on selecting HC configuration producing the least CH(4) and N(2)O. Thus, 4 HC types were used to compost food and yard waste for 150 days and monitored for CO(2), CH(4) and N(2)O as of day 15: the wood and plastic bins (WB and PB), the mixed and unmixed ground pile (GPM and GP). Using the same waste recipe, all HC were filled at once (batch fed) to maximize gaseous emissions. Weekly as of day 15, CO(2), N(2)O and CH(4) emissions were measured during 2-h sessions using a closed chamber inserted into the compost surface. Monitored compost characteristics indicated little differences over time except for moisture content. From day 15 to 150, CH(4) emissions were not measurable. Generation of N(2)O occurred between day 20 and 120 with PB producing the least because of top and bottom slots providing continuous convective aeration, as compared to the WB with slats over its full height and the naturally aerated mixed and unmixed ground piles. Total N(2)O emissions of 56 kg CO(2)-eq (tonne wet waste treated)(-1) for PB, 75 for GP, 97 for WB and 99 for GPM represented average value for centralized composting facilities. Present and past scientific works suggest the need for more research to establish the combined effect of management and HC configuration on gaseous emissions, with close CH(4) measurements from day 0 to 15.

  15. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect

    Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

    2007-03-01

    Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

  16. Reducing greenhouse gas emissions for climate stabilization: framing regional options.

    PubMed

    Olabisi, Laura Schmitt; Reich, Peter B; Johnson, Kris A; Kapuscinski, Anne R; Su, Sangwon H; Wilson, Elizabeth J

    2009-03-15

    The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO2 concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term.

  17. Greenhouse gas emissions from home composting in practice.

    PubMed

    Ermolaev, Evgheni; Sundberg, Cecilia; Pell, Mikael; Jönsson, Håkan

    2014-01-01

    In Sweden, 16% of all biologically treated food waste is home composted. Emissions of the greenhouse gases CH4 and N2O and emissions of NH3 from home composts were measured and factors affecting these emissions were examined. Gas and substrate in the compost bins were sampled and the composting conditions assessed 13 times during a 1-year period in 18 home composts managed by the home owners. The influence of process parameters and management factors was evaluated by regression analysis. The mean CH4 and N2O concentration was 28.1 and 5.46 ppm (v/v), respectively, above the ambient level and the CH4:CO2 and N2O:CO2 ratio was 0.38% and 0.15%, respectively (median values 0.04% and 0.07%, respectively). The home composts emitted less CH4 than large-scale composts, but similar amounts of N2O. Overall NH3 concentrations were low. Increasing the temperature, moisture content, mixing frequency and amount of added waste all increased CH4 emissions.

  18. Volcanic gas emissions and their effect on ambient air character

    SciTech Connect

    Sutton, A.J.; Elias, T.

    1994-01-01

    This bibliography was assembled to service an agreement between Department of Energy and the USGS to provide a body of references and useful annotations for understanding background gas emissions from Kilauea volcano. The current East Rift Zone (ERZ) eruption of Kilauea releases as much as 500,000 metric tonnes of SO{sub 2} annually, along with lesser amounts of other chemically and radiatively active species including H{sub 2}S, HCl, and HF. Primary degassing locations on Kilauea are located in the summit caldera and along the middle ERZ. The effects of these emissions on ambient air character are a complex function of chemical reactivity, source geometry and effusivity, and local meteorology. Because of this complexity, we organized the bibliography into three main sections: (1) characterizing gases as they leave the edifice; (2) characterizing gases and chemical reaction products away from degassing sources; and (3) Hawaii Island meteorology.

  19. Trace gas and particle emissions from fires in large diameter and belowground biomass fuels

    NASA Astrophysics Data System (ADS)

    Bertschi, Isaac; Yokelson, Robert J.; Ward, Darold E.; Babbitt, Ron E.; Susott, Ronald A.; Goode, Jon G.; Hao, Wei Min

    2003-07-01

    We adopt a working definition of residual smoldering combustion (RSC) as biomass combustion that produces emissions that are not lofted by strong fire-induced convection. RSC emissions can be produced for up to several weeks after the passage of a flame front and they are mostly unaffected by flames. Fuels prone to RSC include downed logs, duff, and organic soils. Limited observations in the tropics and the boreal forest suggest that RSC is a globally significant source of emissions to the troposphere. This source was previously uncharacterized. We measured the first emission factors (EF) for RSC in a series of laboratory fires and in a wooded savanna in Zambia, Africa. We report EFRSC for both particles with diameter <2.5 μm (PM2.5) and the major trace gases as measured by open-path Fourier transform infrared (OP-FTIR) spectroscopy. The major trace gases include carbon dioxide, carbon monoxide, methane, ethane, ethene, acetylene, propene, formaldehyde, methanol, acetic acid, formic acid, glycolaldehyde, phenol, furan, ammonia, and hydrogen cyanide. We show that a model used to predict trace gas EF for fires in a wide variety of aboveground fine fuels fails to predict EF for RSC. For many compounds, our EF for RSC-prone fuels from the boreal forest and wooded savanna are very different from the EF for the same compounds measured in fire convection columns above these ecosystems. We couple our newly measured EFRSC with estimates of fuel consumption by RSC to refine emission estimates for fires in the boreal forest and wooded savanna. We find some large changes in estimates of biomass fire emissions with the inclusion of RSC. For instance, the wooded savanna methane EF increases by a factor of 2.5 even when RSC accounts for only 10% of fuel consumption. This shows that many more measurements of fuel consumption and EF for RSC are needed to improve estimates of biomass burning emissions.

  20. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect

    Not Available

    1997-10-01

    This report serves as the technology basis of a needed national climate change technology strategy, with the confidence that a strong technology R&D program will deliver a portfolio of technologies with the potential to provide very substantial greenhouse gas emission reductions along with continued economic growth. Much more is needed to define such a strategy, including identification of complementary deployment policies and analysis to support the seeping and prioritization of R&D programs. A national strategy must be based upon governmental, industrial, and academic partnerships.

  1. Microplasma-based atomic emission detectors for gas chromatography.

    PubMed

    Miclea, M; Okruss, M; Kunze, K; Ahlman, N; Franzke, J

    2007-08-01

    This paper is an update on the development of microplasmas as detectors for gas chromatography. Direct current (dc), alternating current (ac), and radio frequency (rf) microplasmas developed in recent years will be described with their significant analytical results, which mostly concern the detection of halogens and sulfur. New results will be added which employ a microhollow cathode discharge (MHCD) as excitation source. Emphasis will be given to this microplasma which has already been implemented as an element-selective detector for emission spectrometry and as ionization source for mass spectrometry. The possibility to use it as a multielement-selective detector for gas chromatography will be presented. A discussion of the published detection limits of all these microplasmas is given.

  2. Real-time emission factor measurements of isocyanic acid from light duty gasoline vehicles.

    PubMed

    Brady, James M; Crisp, Timia A; Collier, Sonya; Kuwayama, Toshihiro; Forestieri, Sara D; Perraud, Véronique; Zhang, Qi; Kleeman, Michael J; Cappa, Christopher D; Bertram, Timothy H

    2014-10-01

    Exposure to gas-phase isocyanic acid (HNCO) has been previously shown to be associated with the development of atherosclerosis, cataracts and rheumatoid arthritis. As such, accurate emission inventories for HNCO are critical for modeling the spatial and temporal distribution of HNCO on a regional and global scale. To date, HNCO emission rates from light duty gasoline vehicles, operated under driving conditions, have not been determined. Here, we present the first measurements of real-time emission factors of isocyanic acid from a fleet of eight light duty gasoline-powered vehicles (LDGVs) tested on a chassis dynamometer using the Unified Driving Cycle (UC) at the California Air Resources Board (CARB) Haagen-Smit test facility, all of which were equipped with three-way catalytic converters. HNCO emissions were observed from all vehicles, in contrast to the idealized laboratory measurements. We report the tested fleet averaged HNCO emission factors, which depend strongly on the phase of the drive cycle; ranging from 0.46 ± 0.13 mg kg fuel(-1) during engine start to 1.70 ± 1.77 mg kg fuel(-1) during hard acceleration after the engine and catalytic converter were warm. The tested eight-car fleet average fuel based HNCO emission factor was 0.91 ± 0.58 mg kg fuel(-1), within the range previously estimated for light duty diesel-powered vehicles (0.21-3.96 mg kg fuel(-1)). Our results suggest that HNCO emissions from LDGVs represent a significant emission source in urban areas that should be accounted for in global and regional models. PMID:25198906

  3. Real-time emission factor measurements of isocyanic acid from light duty gasoline vehicles.

    PubMed

    Brady, James M; Crisp, Timia A; Collier, Sonya; Kuwayama, Toshihiro; Forestieri, Sara D; Perraud, Véronique; Zhang, Qi; Kleeman, Michael J; Cappa, Christopher D; Bertram, Timothy H

    2014-10-01

    Exposure to gas-phase isocyanic acid (HNCO) has been previously shown to be associated with the development of atherosclerosis, cataracts and rheumatoid arthritis. As such, accurate emission inventories for HNCO are critical for modeling the spatial and temporal distribution of HNCO on a regional and global scale. To date, HNCO emission rates from light duty gasoline vehicles, operated under driving conditions, have not been determined. Here, we present the first measurements of real-time emission factors of isocyanic acid from a fleet of eight light duty gasoline-powered vehicles (LDGVs) tested on a chassis dynamometer using the Unified Driving Cycle (UC) at the California Air Resources Board (CARB) Haagen-Smit test facility, all of which were equipped with three-way catalytic converters. HNCO emissions were observed from all vehicles, in contrast to the idealized laboratory measurements. We report the tested fleet averaged HNCO emission factors, which depend strongly on the phase of the drive cycle; ranging from 0.46 ± 0.13 mg kg fuel(-1) during engine start to 1.70 ± 1.77 mg kg fuel(-1) during hard acceleration after the engine and catalytic converter were warm. The tested eight-car fleet average fuel based HNCO emission factor was 0.91 ± 0.58 mg kg fuel(-1), within the range previously estimated for light duty diesel-powered vehicles (0.21-3.96 mg kg fuel(-1)). Our results suggest that HNCO emissions from LDGVs represent a significant emission source in urban areas that should be accounted for in global and regional models.

  4. Communicating the Uncertainty in Greenhouse Gas Emissions from Agriculture

    NASA Astrophysics Data System (ADS)

    Milne, Alice; Glendining, Margaret; Perryman, Sarah; Whitmore, Andy

    2014-05-01

    Effective communication of the uncertainty in estimates of greenhouse gas emissions is important. It allows an individual, whether they are a scientist, policy maker or member of the public, to draw proper conclusions and so make sound decisions. Communicating uncertainty is challenging, however. There is no single best method for communicating uncertainty and the success of a particular method will depend on the subject matter and the target audience. Our interest is in communicating the uncertainty in estimates of greenhouse gas emissions from agriculture to those who might directly use the results from a national inventory. We tested six methods of communication. These were: calibrated phrases such as 'very uncertain' and 'likely'; probabilities, whereby the probability of being within a defined range of values is given; confidence intervals for the expected value; histograms; box plots and shaded arrays. We asked 64 individuals who use results from the greenhouse gas inventory for their opinions on how successfully these methods communicated uncertainty. We analysed the results to see which methods were preferred and to see whether this preference was affected either by the professional group to which individuals belonged or the level of mathematics to which they were educated. The professional groups represented in our study were categorised as (i) those who influence policy (ii) research scientists (iii) those representing the environment and (iv) those representing the agricultural industry. The responses to our questionnaire were varied but some clear messages came through. Our analysis showed that although calibrated phrases were thought to be a good method of communication they did not convey enough information and were open to misinterpretation. Shaded arrays were similarly criticized for being open to misinterpretation, but proved to give the best indication of uncertainty when individuals were asked to interpret results from the greenhouse gas

  5. Laboratory Investigation of Trace Gas Emissions from Biomass Burning on DoD Bases

    NASA Astrophysics Data System (ADS)

    Burling, I. R.; Yokelson, R. J.; Griffith, D. W.; Roberts, J. M.; Veres, P. R.; Warneke, C.; Johnson, T. J.

    2009-12-01

    Vegetation representing fuels commonly managed with prescribed fires was collected from five DoD bases and burned under controlled conditions at the USFS Firelab in Missoula, MT. The smoke emissions were measured with a large suite of state-of-the-art instrumentation. Seventy-seven fires were conducted and the smoke composition data will improve DoD land managers’ ability to assess the impact of prescribed fires on local air quality. A key instrument used in the measurement of the gas phase species in smoke was an open-path FTIR (OP-FTIR) spectrometer, built and operated by the Universities of Montana and Wollongong. The OP-FTIR has to date detected and quantified 20 gas phase species - CO2, CO, H2O, N2O, NO2, NO, HONO, NH3, HCl, SO2, CH4, CH3OH, HCHO, HCOOH, C2H2, C2H4, CH3COOH, HCN, propylene and furan. The spectra were analyzed using a non-linear least squares fitting routine that included reference spectra recently acquired at the Pacific Northwest National Laboratories. Preliminary results from the OP-FTIR analysis are reported here. Of particular interest, gas-phase nitrous acid (HONO) was detected simultaneously by the OP-FTIR and negative-ion proton-transfer chemical ionization spectrometer (NI-PT-CIMS), with preliminary fire-integrated molar emission ratios (relative to NOx) ranging from approximately 0.03 to 0.20, depending on the vegetation type. HONO is an important precursor in the production of OH, the primary oxidizing species in the atmosphere. There existed little previous data documenting HONO emissions from either wild or prescribed fires. The non-methane organic emissions were dominated by oxygenated species, which can be further oxidized and thus involved in secondary aerosol formation. Elevated amounts of gas-phase HCl were also detected in the smoke, with the amounts varying depending on location and vegetation type.

  6. Greenhouse Gas Emissions from Three Cage Layer Housing Systems

    PubMed Central

    Fournel, Sébastien; Pelletier, Frédéric; Godbout, Stéphane; Lagacé, Robert; Feddes, John

    2011-01-01

    Simple Summary Greenhouse gas (GHG) emissions were measured from three different cage layer housing systems. A comparative study was conducted to identify the housing system with the least impact on the environment. The results showed that liquid manure from deep-pit housing systems produces greater emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) than natural and forced dried manure from belt housing systems. The influencing factors appeared to be the manure removal frequency and the dry matter content of the manure. Abstract Agriculture accounts for 10 to 12% of the World’s total greenhouse gas (GHG) emissions. Manure management alone is responsible for 13% of GHG emissions from the agricultural sector. During the last decade, Québec’s egg production systems have shifted from deep-pit housing systems to manure belt housing systems. The objective of this study was to measure and compare carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions from three different cage layer housing systems: a deep liquid manure pit and a manure belt with natural or forced air drying. Deep liquid manure pit housing systems consist of “A” frame layer cages located over a closed pit containing the hens’ droppings to which water is added to facilitate removal by pumping. Manure belt techniques imply that manure drops on a belt beneath each row of battery cages where it is either dried naturally or by forced air until it is removed. The experiment was replicated with 360 hens reared into twelve independent bench-scale rooms during eight weeks (19–27 weeks of age). The natural and forced air manure belt systems reduced CO2 (28.2 and 28.7 kg yr−1 hen−1, respectively), CH4 (25.3 and 27.7 g yr−1 hen−1, respectively) and N2O (2.60 and 2.48 g yr−1 hen−1, respectively) emissions by about 21, 16 and 9% in comparison with the deep-pit technique (36.0 kg CO2 yr−1 hen−1, 31.6 g CH4 yr−1 hen−1 and 2.78 g N2O yr−1 hen−1). The

  7. Monitoring soil greenhouse gas emissions from managed grasslands

    NASA Astrophysics Data System (ADS)

    Díaz-Pinés, Eugenio; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2014-05-01

    Grasslands in Central Europe are of enormous social, ecological and economical importance. They are intensively managed, but the influence of different common practices (i.e. fertilization, harvesting) on the total greenhouse gas budget of grasslands is not fully understood, yet. In addition, it is unknown how these ecosystems will react due to climate change. Increasing temperatures and changing precipitation will likely have an effect on productivity of grasslands and on bio-geo-chemical processes responsible for emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). In the frame of the TERENO Project (www.tereno.net), a long-term observatory has been implemented in the Ammer catchment, southern Germany. Acting as an in situ global change experiment, 36 big lysimeters (1 m2 section, 150 cm height) have been translocated along an altitudinal gradient, including three sites ranging from 600 to 860 meters above sea level. In addition, two treatments have been considered, corresponding to different management intensities. The overall aim of the pre-alpine TERENO observatory is improving our understanding of the consequences of climate change and management on productivity, greenhouse gas balance, soil nutritional status, nutrient leaching and hydrology of grasslands. Two of the sites are equipped with a fully automated measurement system in order to continuously and accurately monitor the soil-atmosphere greenhouse gas exchange. Thus, a stainless steel chamber (1 m2 section, 80 cm height) is controlled by a robotized system. The chamber is hanging on a metal structure which can move both vertically and horizontally, so that the chamber is able to be set onto each of the lysimeters placed on the field. Furthermore, the headspace of the chamber is connected with a gas tube to a Quantum Cascade Laser, which continuously measures CO2, CH4, N2O and H2O mixing ratios. The chamber acts as a static chamber and sets for 15 minutes onto each lysimeter

  8. U.S. EPA'S RESEARCH TO UPDATE GUIDANCE FOR QUANTIFYING LANDFILL GAS EMISSIONS

    EPA Science Inventory

    Landfill emissions, if left uncontrolled, contribute to air toxics, climate change, tropospheric ozone, and urban smog. EPA's Office of Research and Development is conducting research to help update EPA's landfill gas emission factors. The last update to EPA's landfill gas emiss...

  9. Photo Bleaching of Dissolved Organic Matter Enhances Abiotic Greenhouse Gas Emissions but Inhibits Biotic Emissions

    NASA Astrophysics Data System (ADS)

    Wang, J.; Chow, A. T.; Ng, T.; Wong, P.

    2013-12-01

    Greenhouse gas (GHG) emission from aquatic sources is one of the essential processes in the global carbon cycling. The natural Fenton reaction is commonly occurring in sunlited environment, affecting the degradation of dissolved organic matters (DOMs) and many other biogeochemical processes. In order to evaluate the effect of natural Fenton reaction on the CH4 and CO2 emissions from DOMs, different sources (wetland surface water, wetland soil pore water, and plant litter leachates) of organic matters were incubated under controlled laboratory condition with different dosages of Fenton reagents and environmental conditions. The GHG emissions depended on the dose of Fenton-reagents, reaction time, temperature, and light intensity. Abiotically, the DOMs were photo-degraded into GHGs by both the direct and indirect photolysis. Yet biotically, the reactive oxidative species (ROSs) generated from sunlited waters inactivated the microbes and thus inhibited the biotic GHG emissions. Results of our experiments demonstrate that the dual roles of photo-bleaching of DOM on GHG emission from sunlited surface waters.

  10. Characteristics of dioxin emissions from a Waelz plant with acid and basic kiln mode.

    PubMed

    Hung, Pao Chen; Chi, Kai Hsien; Chen, Mei Lien; Chang, Moo Been

    2012-01-30

    The concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were measured in the flue gas of a Waelz plant operated in acid and basic modes, respectively. To abate (PCDD/F) and other pollutants, the plant operates with a post-treatment of flue gases by activated carbon injection and subsequent filtration. Relatively high PCDD/F discharge by fly ashes is found with acid kiln mode of the Waelz process. Therefore, basic kiln mode of the Waelz process is investigated and compared in this plant. With the adsorbent injection rate of 7 kg/h (95 mg/Nm(3)), the PCDD/F concentration in stack gas was measured as 0.123 ng I-TEQ/Nm(3) in the basic operating mode. The added Ca(OH)(2) reacted with metal catalysts and HCl((g)) in the flue gas and thus effectively suppressed the formation of PCDD/Fs. PCDD/F concentrations in fly ashes sampled from the dust settling chamber, cyclone, primary filter and secondary filter in basic kiln mode were significantly lower than that in acid kiln mode. Total PCDD/F emission on the basis of treating one kg of electric arc furnace dust in the basic operation mode was 269 ng I-TEQ/kg EAF-dust treated which was significantly lower than that in acid mode (640 ng I-TEQ/kg EAF-dust treated).

  11. Characteristics of dioxin emissions from a Waelz plant with acid and basic kiln mode.

    PubMed

    Hung, Pao Chen; Chi, Kai Hsien; Chen, Mei Lien; Chang, Moo Been

    2012-01-30

    The concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were measured in the flue gas of a Waelz plant operated in acid and basic modes, respectively. To abate (PCDD/F) and other pollutants, the plant operates with a post-treatment of flue gases by activated carbon injection and subsequent filtration. Relatively high PCDD/F discharge by fly ashes is found with acid kiln mode of the Waelz process. Therefore, basic kiln mode of the Waelz process is investigated and compared in this plant. With the adsorbent injection rate of 7 kg/h (95 mg/Nm(3)), the PCDD/F concentration in stack gas was measured as 0.123 ng I-TEQ/Nm(3) in the basic operating mode. The added Ca(OH)(2) reacted with metal catalysts and HCl((g)) in the flue gas and thus effectively suppressed the formation of PCDD/Fs. PCDD/F concentrations in fly ashes sampled from the dust settling chamber, cyclone, primary filter and secondary filter in basic kiln mode were significantly lower than that in acid kiln mode. Total PCDD/F emission on the basis of treating one kg of electric arc furnace dust in the basic operation mode was 269 ng I-TEQ/kg EAF-dust treated which was significantly lower than that in acid mode (640 ng I-TEQ/kg EAF-dust treated). PMID:22178278

  12. Greenhouse Gas Emissions from Arctic Freshwaters: Approaches for Scaling UP

    NASA Astrophysics Data System (ADS)

    MacIntyre, S.; Cortés, A.; Cooke, M.; Sadro, S.; Kushner, P. J.

    2015-12-01

    Turbulence moderates emissions of greenhouse gases on a number of scales, and it, in turn, is moderated by processes which govern the stability of boundary layers. On the smallest scale, it mediates the fluxes of gases across the air-water interface; at intermediate scales, that is, the size of within lake eddies, it brings gases to the air-water interface; on a larger scale, eddies in the unstable atmospheric boundary layers transport gases away from water bodies and maintain concentration gradients and further, help sustain fluxes by inducing within lake turbulence. The winds and cooling which induce within-lake turbulence and over-lake boundary layers are moderated by weather patterns dependent on even larger scale physical processes. Using time series measurements of lake temperatures, surface meteorology, and profiles of temperature-gradient microstructure in Alaskan arctic lakes ranging from 0.1 to 150 ha in surface area, we quantify the dependency of turbulence in the water column and at the air-water interface on surface meteorology and lake size. We show the lake size dependent variability in the stability of atmospheric boundary layers. We illustrate the resulting lake-size and weather dependent variability in gas transfer coefficients and within lake mixing. Using cluster analysis, we identify dominant weather patterns in the Alaskan Arctic Region and link them to within lake mixing dynamics. We then illustrate the dependency of greenhouse gas emissions on variability in local weather, lake size, and weather patterns.

  13. 76 FR 71559 - Acid Rain Program: Notice of Annual Adjustment Factors for Excess Emissions Penalty

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... AGENCY Acid Rain Program: Notice of Annual Adjustment Factors for Excess Emissions Penalty AGENCY.... SUMMARY: The Acid Rain Program under title IV of the Clean Air Act provides for automatic excess emissions penalties in dollars per ton of excess emissions for sources that do not meet their annual Acid...

  14. 78 FR 64496 - Acid Rain Program: Notice of Annual Adjustment Factors for Excess Emissions Penalty

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... AGENCY Acid Rain Program: Notice of Annual Adjustment Factors for Excess Emissions Penalty AGENCY.... SUMMARY: The Acid Rain Program under title IV of the Clean Air Act provides for automatic excess emissions penalties in dollars per ton of excess emissions for sources that do not meet their annual Acid...

  15. Emission spectroscopic study on gas-gas interactions in glow discharge plasmas using several binary gas mixtures.

    PubMed

    Wagatsuma, Kazuaki

    2010-01-01

    Emission spectra of constituent gas species from glow discharge plasmas using argon-helium, krypton-helium, argon-krypton, and krypton-argon gas mixtures were analyzed to elucidate collisional energy transfer between these gas species occurring in the plasma. In the argon-helium mixed gas plasma, the enhancement or quenching of particular Ar II lines was observed when helium was added to an argon-matrix glow discharge plasma, meaning that a redistribution in the population among the excited levels could be induced through argon-helium collisions. On the other hand, the krypton-helium plasma showed little change in the emission intensities of Kr II lines when helium was added to a krypton-matrix glow discharge plasma, meaning that energy exchanges between krypton and helium excited species occur inactively. These phenomena are principally because the excitation energy as well as the spin multiplicity between collision partners follow both the energy resonance conditions and the spin conservation rule in collisions of the second kind in the argon-helium system, but not in the krypton-helium system. In the argon-krypton and krypton-argon mixed gas plasmas, significant intensity changes of particular Ar II or Kr II lines could not be found; therefore, there were no dominant channels for energy exchanges between argon and krypton species in the mixed gas plasmas.

  16. Greenhouse gas emissions from naturally ventilated freestall dairy barns

    NASA Astrophysics Data System (ADS)

    Joo, H. S.; Ndegwa, P. M.; Heber, A. J.; Ni, J.-Q.; Bogan, B. W.; Ramirez-Dorronsoro, J. C.; Cortus, E.

    2015-02-01

    Greenhouse gas (GHG) emissions from two naturally-ventilated dairy freestall barns measured for a total of 21 d, one week each in May, July, and September 2009, are presented in this article. The holding capacity of Barn 1 (B1) was 400 Holstein cows, while that for Barn 2 (B2) was 850 cows. Air samples were taken from inlets and outlets of the barns via a custom made multiplexer gas sampling system for measurement of gas concentrations using a photoacoustic infrared multigas analyzer. Barn ventilation rates were based on air velocity measured with arrays of 3-D ultrasonic anemometers at inlets and outlets. Gas concentrations (10 min means) in the barns ranged from: 443-789 ppm for CO2, 0.0-39.4 ppm for CH4, and 0.25-0.39 ppm for N2O; with mean concentrations ranging from 6 to 20%, 0 to 4%, and 26 to 180% above the average background concentrations for CO2, N2O, and CH4, respectively. The correlations between CO2 and CH4 enhanced concentrations were relatively stronger (R of 0.67-0.74) than between CO2 and N2O enhanced concentrations (R of 0.10-0.20). Environmental conditions did not significantly (p = 0.46) impact the enhanced concentrations of N2O in the barns. All three parameters (T, RH, and v) had significant (p < 0.01) influences on CO2 enhanced concentrations; while only T (p < 0.01) and v (p < 0.01) had significant influences on CH4 enhanced concentrations. Enhanced concentrations of CO2 and CH4 correlated negatively with all three parameters. The influence of the temperature-humidity index (THI) on CO2 enhanced concentrations was higher than that of v; while the effect v had on CH4 enhanced concentrations was slightly higher than that of the temperature-humidity index. The average emissions, based on hourly means, ranged from 5.3 to 10.7 kg d-1 AU-1 for CO2; 0.3 to 2.5 g d-1 AU-1 for N2O; and between 67 and 252 g d-1 AU-1 for CH4. Nitrous oxide emissions from the smaller barn, B1 (0.4-2.5 g d-1 AU-1), were significantly higher than from the larger barn, B2

  17. Microbial mitigation of greenhouse gas emissions from landfill cover soils

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Woo

    Landfills are one of the major sources of methane (CH4), a potent greenhouse gas with a global warming potential (GWP) ˜23 times higher than that of carbon dioxide (CO2). Although some effective strategies have been formulated to prevent methane emissions from large landfills, many landfills allow methane to be freely emitted to the atmosphere. In such situations, it is often proposed to stimulate methanotrophs, a group of bacteria that consume methane, in the cover soil to prevent fugitive methane emissions. Several factors, however, must be addressed to make such a biogenic removal mechanism effective. First, methanotrophic activity can be inhibited by nonmethane organic compounds (NMOCs) that are commonly found in landfill soil gas. Second, although methanotrophs can be easily stimulated with the addition of nitrogenous fertilizers, biogenic production of nitrous oxide with a GWP ˜296 times higher than that of carbon dioxide, is also stimulated. To consider these issues, two general areas of research were performed. First, a dimensionless number was developed based on Michaelis-Menten kinetics that describes the effects of the presence of multiple NMOCs on methanotrophic growth and survival. This model was validated via experimental measurements of methanotrophic growth in the presence of varying amounts of NMOCs. Second, the effects of nutrient amendments on methane oxidation and nitrous oxide production were examined by constructing soil microcosms using landfill cover soils. Here, it was shown that the addition of ammonium in the presence of phenylacetylene stimulated methane oxidation but inhibited nitrous oxide production. Furthermore, to understand the methanotrophic community structure and activity in response to these amendments, DNA microarray and transcript analyses were performed. The results indicated the predominance of Type II methanotrophs but that Type I methanotrophs responded more significantly to these amendments. Also, substantial activity

  18. Towards a comprehensive greenhouse gas emissions inventory for biosolids.

    PubMed

    Alvarez-Gaitan, J P; Short, Michael D; Lundie, Sven; Stuetz, Richard

    2016-06-01

    Effective handling and treatment of the solids fraction from advanced wastewater treatment operations carries a substantial burden for water utilities relative to the total economic and environmental impacts from modern day wastewater treatment. While good process-level data for a range of wastewater treatment operations are becoming more readily available, there remains a dearth of high quality operational data for solids line processes in particular. This study seeks to address this data gap by presenting a suite of high quality, process-level life cycle inventory data covering a range of solids line wastewater treatment processes, extending from primary treatment through to biosolids reuse in agriculture. Within the study, the impacts of secondary treatment technology and key parameters such as sludge retention time, activated sludge age and primary-to-waste activated sludge ratio (PS:WAS) on the life cycle inventory data of solids processing trains for five model wastewater treatment plant configurations are presented. BioWin(®) models are calibrated with real operational plant data and estimated electricity consumption values were reconciled against overall plant energy consumption. The concept of "representative crop" is also introduced in order to reduce the uncertainty associated with nitrous oxide emissions and soil carbon sequestration offsets under biosolids land application scenarios. Results indicate that both the treatment plant biogas electricity offset and the soil carbon sequestration offset from land-applied biosolids, represent the main greenhouse gas mitigation opportunities. In contrast, fertiliser offsets are of relatively minor importance in terms of the overall life cycle emissions impacts. Results also show that fugitive methane emissions at the plant, as well as nitrous oxide emissions both at the plant and following agricultural application of biosolids, are significant contributors to the overall greenhouse gas balance and combined are

  19. Towards a comprehensive greenhouse gas emissions inventory for biosolids.

    PubMed

    Alvarez-Gaitan, J P; Short, Michael D; Lundie, Sven; Stuetz, Richard

    2016-06-01

    Effective handling and treatment of the solids fraction from advanced wastewater treatment operations carries a substantial burden for water utilities relative to the total economic and environmental impacts from modern day wastewater treatment. While good process-level data for a range of wastewater treatment operations are becoming more readily available, there remains a dearth of high quality operational data for solids line processes in particular. This study seeks to address this data gap by presenting a suite of high quality, process-level life cycle inventory data covering a range of solids line wastewater treatment processes, extending from primary treatment through to biosolids reuse in agriculture. Within the study, the impacts of secondary treatment technology and key parameters such as sludge retention time, activated sludge age and primary-to-waste activated sludge ratio (PS:WAS) on the life cycle inventory data of solids processing trains for five model wastewater treatment plant configurations are presented. BioWin(®) models are calibrated with real operational plant data and estimated electricity consumption values were reconciled against overall plant energy consumption. The concept of "representative crop" is also introduced in order to reduce the uncertainty associated with nitrous oxide emissions and soil carbon sequestration offsets under biosolids land application scenarios. Results indicate that both the treatment plant biogas electricity offset and the soil carbon sequestration offset from land-applied biosolids, represent the main greenhouse gas mitigation opportunities. In contrast, fertiliser offsets are of relatively minor importance in terms of the overall life cycle emissions impacts. Results also show that fugitive methane emissions at the plant, as well as nitrous oxide emissions both at the plant and following agricultural application of biosolids, are significant contributors to the overall greenhouse gas balance and combined are

  20. A study of low emissions gas turbine combustions

    NASA Technical Reports Server (NTRS)

    Adelman, Henry G.

    1994-01-01

    Analytical studies have been conducted to determine the best methods of reducing NO(x) emissions from proposed civilian supersonic transports. Modifications to the gas turbine engine combustors and the use of additives were both explored. It was found that combustors which operated very fuel rich or lean appear to be able to meet future emissions standards. Ammonia additives were also effective in removing NO(x), but residual ammonia remained a problem. Studies of a novel combustor which reduces emissions and improves performance were initiated. In a related topic, a study was begun on the feasibility of using supersonic aircraft to obtain atmospheric samples. The effects of shock heating and compression on sample integrity were modeled. Certain chemical species, including NO2, HNO3, and ClONO2 were found to undergo changes to their composition after they passed through shock waves at Mach 2. The use of detonation waves to enhance mixing and combustion in supersonic airflows was also investigated. This research is important to the use of airbreathing propulsion to obtain orbital speeds and access to space. Both steady and pulsed detonation waves were shown to improve engine performance.

  1. Aligning corporate greenhouse-gas emissions targets with climate goals

    NASA Astrophysics Data System (ADS)

    Krabbe, Oskar; Linthorst, Giel; Blok, Kornelis; Crijns-Graus, Wina; van Vuuren, Detlef P.; Höhne, Niklas; Faria, Pedro; Aden, Nate; Pineda, Alberto Carrillo

    2015-12-01

    Corporate climate action is increasingly considered important in driving the transition towards a low-carbon economy. For this, it is critical to ensure translation of global goals to greenhouse-gas (GHG) emissions reduction targets at company level. At the moment, however, there is a lack of clear methods to derive consistent corporate target setting that keeps cumulative corporate GHG emissions within a specific carbon budget (for example, 550-1,300 GtCO2 between 2011 and 2050 for the 2 °C target). Here we propose a method for corporate emissions target setting that derives carbon intensity pathways for companies based on sectoral pathways from existing mitigation scenarios: the Sectoral Decarbonization Approach (SDA). These company targets take activity growth and initial performance into account. Next to target setting on company level, the SDA can be used by companies, policymakers, investors or other stakeholders as a benchmark for tracking corporate climate performance and actions, providing a mechanism for corporate accountability.

  2. Greenhouse gas emissions control by economic incentives: Survey and analysis

    SciTech Connect

    South, D.W.; Kosobud, R.F.; Quinn, K.G.

    1991-12-31

    This paper presents a survey of issues and concerns raised in recent literature on the application of market-based approaches to greenhouse effect policy with an emphasis on tradeable emission permits. The potential advantages of decentralized decision-making -- cost-effectiveness or allocation efficiency, stimulation of innovations, and political feasibility are discussed. The potential difficulties of data recording, monitoring, enforcement, and of creating viable emission permit contracts and markets are examined. Special attention is given to the problem of designing a greenhouse effect policy that is cost-effective over time, a problem that has been given little attention to date. Proposals to reduce or stabilize greenhouse gas emission (especially CO{sub 2}) in the short run require high carbon tax rates or permit prices and impose heavy adjustment costs on the fossil fuel industry. A more cost-effective time path of permit prices is proposed that achieves the same long-run climate change stabilization goals. 21 refs., 3 figs.

  3. Greenhouse gas emissions control by economic incentives: Survey and analysis

    SciTech Connect

    South, D.W.; Kosobud, R.F.; Quinn, K.G.

    1991-01-01

    This paper presents a survey of issues and concerns raised in recent literature on the application of market-based approaches to greenhouse effect policy with an emphasis on tradeable emission permits. The potential advantages of decentralized decision-making -- cost-effectiveness or allocation efficiency, stimulation of innovations, and political feasibility are discussed. The potential difficulties of data recording, monitoring, enforcement, and of creating viable emission permit contracts and markets are examined. Special attention is given to the problem of designing a greenhouse effect policy that is cost-effective over time, a problem that has been given little attention to date. Proposals to reduce or stabilize greenhouse gas emission (especially CO{sub 2}) in the short run require high carbon tax rates or permit prices and impose heavy adjustment costs on the fossil fuel industry. A more cost-effective time path of permit prices is proposed that achieves the same long-run climate change stabilization goals. 21 refs., 3 figs.

  4. Control of acid mist emissions from FGD systems

    SciTech Connect

    Dahlin, R S; Brown, T D

    1991-01-01

    Improved control of acid mist emissions can be achieved by replacing or augmenting the conventional mist eliminators with a wet electrostatic precipitator (WESP). This paper describes a two-phased study performed to determine the degree of control that can be achieved with this approach. Phase I was a study of the electrical operation of a lab-scale WESP collecting an acid mist from a coal combustion pilot plant equipped with a spray chamber. The results of this study were used to develop and validate a computer model of the WESP. In Phase II, measurements were made at two utility scrubber installations to determine the loadings of acid mist, fly ash, and scrubber carryover. These measurements were used as input to the model to project the performance of a retrofitted WESP.

  5. Gas-engine-based, low-emission cogeneration units

    SciTech Connect

    Chellini, R.

    1994-04-01

    Continental Energy Systems (CES) of Westmalle, Belgium, has been specializing, since its foundation in 1983, in the supply of cogeneration packages in the 50-300 KW power range. CES activity is mainly concentrated in the transformation of Valmet, Scania, Iveco and MAN diesel engines into spark-ignited engines capable of running on natural gas, CNG, LPG, biogas, landfill gas, etc. In the upper power range they also package Waukesha gas engines supplied from the Dutch plant of the American engine manufacturer. The new closed-loop combustion control system allows engines in the naturally-aspirated or turbocharged configuration with catalytic converters to operate well below Euro 2 limits. In fact, these engines already comply with 1995 CARB (California Air Resources Board) emission limits and with those that will become mandatory in Europe with the 1996 step. The new system still makes use of conventional components for metering and mixing functions, but these are considered as three separate devices; the electronic control unit, the oxygen sensor and an actuator enabling closed loop air/fuel ratio control. 4 figs.

  6. Acid gas removal in a confined vortex scrubber

    SciTech Connect

    Hura, H.S.; Diehl, R.C.

    1994-12-31

    This paper reports results of acid gas removal tests performed on a confined vortex scrubber. The confined vortex scrubber (CVS) was developed at the Energy Technology Office of Textron Defense Systems (ETO/TDS) under company as well as Pittsburgh Energy Technology Center (PETC) funding. Previous tests on the CVS have demonstrated > 98% capture for sub-micron fly ash particles, as well as high mercury vapor removal from gas streams. In the recent tests water, sodium hydroxide, and sodium sulfite and bisulfite solutions were used to scrub out hydrochloric, acid gas (HCl) and sulfur dioxide (SO{sub 2}) doped in air supplied to the CVS. The capture efficiency was determined as a function of acid gas concentration, liquor flow rate, and liquor type. When the liquor was supplied only inside the CVS squirrel cage the HCl removal efficiency varied from 85--100% while the SO{sub 2} removal efficiency varied from 60--80%. Significantly higher captures were obtained at 1/3 rd the liquor flow rate by spraying the liquor upstream of the CVS in the air inlet pipe, and increasing the liquor/gas contact time. Total HCl captures > 95% and SO{sub 2} captures > 85% were obtained at a liquid/gas ratio of only 2 gal/1,000 acf for acid gas concentrations of 200--1,800 ppmv. There were no significant differences in the SO{sub 2}, scrubbing ability of the three sodium solutions, and the HCl scrubbing ability of water and a sodium hydroxide solution. These results suggest that the acid gas capture in the CVS is mass transfer limited because of the extremely short gas residence times in the CVS.

  7. Remote and Onsite Direct Measurements of Emissions from Oil and Natural Gas Production

    EPA Science Inventory

    Environmentally responsible oil and gas production requires accurate knowledge of emissions from long-term production operations1, which can include methane, volatile organic compounds, and hazardous air pollutants. Well pad emissions vary based on the geologically-determined com...

  8. a Review of Hydropower Reservoir and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Rosa, L. P.; Dos Santos, M. A.

    2013-05-01

    Like most manmade projects, hydropower dams have multiple effects on the environment that have been studied in some depth over the past two decades. Among their most important effects are potential changes in water movement, flowing much slower than in the original river. This favors the appearance of phytoplankton as nutrients increase, with methanogenesis replacing oxidative water and generating anaerobic conditions. Although research during the late 1990s highlighted the problems caused by hydropower dams emitting greenhouse gases, crucial aspects of this issue still remain unresolved. Similar to natural water bodies, hydropower reservoirs have ample biota ranging from microorganisms to aquatic vertebrates. Microorganisms (bacteria) decompose organic matter producing biogenic gases under water. Some of these biogenic gases cause global warming, including methane, carbon dioxide and nitrous oxide. The levels of GHG emissions from hydropower dams are a strategic matter of the utmost importance, and comparisons with other power generation options such as thermo-power are required. In order to draw up an accurate assessment of the net emissions caused by hydropower dams, significant improvements are needed in carbon budgets and studies of representative hydropower dams. To determine accurately the net emissions caused by hydro reservoir formation is required significant improvement of carbon budgets studies on different representatives' hydro reservoirs at tropical, boreal, arid, semi arid and temperate climate. Comparisons must be drawn with emissions by equivalent thermo power plants, calculated and characterized as generating the same amount of energy each year as the hydropower dams, burning different fuels and with varying technology efficiency levels for steam turbines as well as coal, fuel oil and natural gas turbines and combined cycle plants. This paper brings to the scientific community important aspects of the development of methods and techniques applied

  9. Greenhouse Gas Emissions from Three Cage Layer Housing Systems.

    PubMed

    Fournel, Sébastien; Pelletier, Frédéric; Godbout, Stéphane; Lagacé, Robert; Feddes, John

    2011-12-27

    Agriculture accounts for 10 to 12% of the World's total greenhouse gas (GHG) emissions. Manure management alone is responsible for 13% of GHG emissions from the agricultural sector. During the last decade, Québec's egg production systems have shifted from deep-pit housing systems to manure belt housing systems. The objective of this study was to measure and compare carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) emissions from three different cage layer housing systems: a deep liquid manure pit and a manure belt with natural or forced air drying. Deep liquid manure pit housing systems consist of "A" frame layer cages located over a closed pit containing the hens' droppings to which water is added to facilitate removal by pumping. Manure belt techniques imply that manure drops on a belt beneath each row of battery cages where it is either dried naturally or by forced air until it is removed. The experiment was replicated with 360 hens reared into twelve independent bench-scale rooms during eight weeks (19-27 weeks of age). The natural and forced air manure belt systems reduced CO₂ (28.2 and 28.7 kg yr(-1) hen(-1), respectively), CH₄ (25.3 and 27.7 g yr(-1) hen(-1), respectively) and N₂O (2.60 and 2.48 g yr(-1) hen(-1), respectively) emissions by about 21, 16 and 9% in comparison with the deep-pit technique (36.0 kg CO₂ yr(-1) hen(-1), 31.6 g CH₄ yr(-1) hen(-1) and 2.78 g N₂O yr(-1) hen(-1)). The shift to manure belt systems needs to be encouraged since this housing system significantly decreases the production of GHG.

  10. A spatially resolved fuel-based inventory of Utah and Colorado oil and natural gas emissions

    NASA Astrophysics Data System (ADS)

    Gorchov Negron, A.; McDonald, B. C.; De Gouw, J. A.; Frost, G. J.

    2015-12-01

    A fuel-based approach is presented for estimating emissions from US oil and natural gas production that utilizes state-level fuel surveys of oil and gas engine activity, well-level production data, and emission factors for oil and gas equipment. Emissions of carbon dioxide (CO2) and nitrogen oxides (NOx) are mapped on a 4 km x 4 km horizontal grid for 2013-14 in Utah and Colorado. Emission sources include combustion from exploration (e.g., drilling), production (e.g., heaters, dehydrators, and compressor engines), and natural gas processing plants, which comprise a large fraction of the local combustion activity in oil and gas basins. Fuel-based emission factors of NOx are from the U.S. Environmental Protection Agency, and applied to spatially-resolved maps of CO2 emissions. Preliminary NOx emissions from this study are estimated for the Uintah Basin, Utah, to be ~5300 metric tons of NO2-equivalent in 2013. Our result compares well with an observations-based top-down emissions estimate of NOx derived from a previous study, ~4200 metric tons of NO2-equivalent. By contrast, the 2011 National Emissions Inventory estimates oil and gas emissions of NOx to be ~3 times higher than our study in the Uintah Basin. We intend to expand our fuel-based approach to map combustion-related emissions in other U.S. oil and natural gas basins and compare with additional observational datasets.

  11. A design for a relational database for the calculation and storage of greenhouse gas emissions.

    PubMed

    Newcomb, T M

    2001-10-01

    The Intergovernmental Panel on Climate Change (IPCC) has published guidelines for the development of national greenhouse gas-emissions inventories and recommendations for collecting data necessary to calculate greenhouse gas emissions. Many regional and local jurisdictions will be performing inventories of greenhouse gas emissions and estimating the benefits of mitigation strategies to reduce emissions. This article advocates the development of relational databases to calculate and store emissions estimates based on IPCC guidelines and quantities of precursors of greenhouse gases. Specific examples of tables and queries are used to illustrate calculation methods and formulae, the choice of database keys, and the choice of methods for joining tables to construct queries.

  12. Measurements of gas phase acids in diesel exhaust: a relevant source of HNCO?

    PubMed

    Wentzell, Jeremy J B; Liggio, John; Li, Shao-Meng; Vlasenko, A; Staebler, Ralf; Lu, Gang; Poitras, Marie-Josée; Chan, Tak; Brook, Jeffrey R

    2013-07-16

    Gas-phase acids in light duty diesel (LDD) vehicle exhaust were measured using chemical ionization mass spectrometry (CIMS). Fuel based emission factors (EF) and NOx ratios for these species were determined under differing steady state engine operating conditions. The derived HONO and HNO3 EFs agree well with literature values, with HONO being the single most important acidic emission. Of particular importance is the quantification of the EF for the toxic species, isocyanic acid (HNCO). The emission factors for HNCO ranged from 0.69 to 3.96 mg kgfuel(-1), and were significantly higher than previous biomass burning emission estimates. Further ambient urban measurements of HNCO demonstrated a clear relationship with the known traffic markers of benzene and toluene, demonstrating for the first time that urban commuter traffic is a source of HNCO. Estimates based upon the HNCO-benzene relationship indicate that upward of 23 tonnes of HNCO are released annually from commuter traffic in the Greater Toronto Area, far exceeding the amount possible from LDD alone. Nationally, 250 to 770 tonnes of HNCO may be emitted annually from on-road vehicles, likely representing the dominant source of exposure in urban areas, and with emissions comparable to that of biomass burning. PMID:23781923

  13. Uncertainty in the Life Cycle Greenhouse Gas Emissions from U.S. Production of Three Biobased Polymer Families.

    PubMed

    Posen, I Daniel; Jaramillo, Paulina; Griffin, W Michael

    2016-03-15

    Interest in biobased products has been motivated, in part, by the claim that these products have lower life cycle greenhouse gas (GHG) emissions than their fossil counterparts. This study investigates GHG emissions from U.S. production of three important biobased polymer families: polylactic acid (PLA), polyhydroxybutyrate (PHB) and bioethylene-based plastics. The model incorporates uncertainty into the life cycle emission estimates using Monte Carlo simulation. Results present a range of scenarios for feedstock choice (corn or switchgrass), treatment of coproducts, data sources, end of life assumptions, and displaced fossil polymer. Switchgrass pathways generally have lower emissions than corn pathways, and can even generate negative cradle-to-gate emissions if unfermented residues are used to coproduce energy. PHB (from either feedstock) is unlikely to have lower emissions than fossil polymers once end of life emissions are included. PLA generally has the lowest emissions when compared to high emission fossil polymers, such as polystyrene (mean GHG savings up to 1.4 kg CO2e/kg corn PLA and 2.9 kg CO2e/kg switchgrass PLA). In contrast, bioethylene is likely to achieve the greater emission reduction for ethylene intensive polymers, like polyethylene (mean GHG savings up to 0.60 kg CO2e/kg corn polyethylene and 3.4 kg CO2e/kg switchgrass polyethylene).

  14. Combustor for a low-emissions gas turbine engine

    DOEpatents

    Glezer, Boris; Greenwood, Stuart A.; Dutta, Partha; Moon, Hee-Koo

    2000-01-01

    Many government entities regulated emission from gas turbine engines including CO. CO production is generally reduced when CO reacts with excess oxygen at elevated temperatures to form CO2. Many manufactures use film cooling of a combustor liner adjacent to a combustion zone to increase durability of the combustion liner. Film cooling quenches reactions of CO with excess oxygen to form CO2. Cooling the combustor liner on a cold side (backside) away from the combustion zone reduces quenching. Furthermore, placing a plurality of concavities on the cold side enhances the cooling of the combustor liner. Concavities result in very little pressure reduction such that air used to cool the combustor liner may also be used in the combustion zone. An expandable combustor housing maintains a predetermined distance between the combustor housing and combustor liner.

  15. The Impact of Diffuse Ionized Gas on Emission-line Ratios and Gas Metallicity Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Yan, Renbin; MaNGA Team

    2016-01-01

    Diffuse Ionized Gas (DIG) is prevalent in star-forming galaxies. Using a sample of galaxies observed by MaNGA, we demonstrate how DIG in star-forming galaxies impact the measurements of emission line ratios, hence the gas-phase metallicity measurements and the interpretation of diagnostic diagrams. We demonstrate that emission line surface brightness (SB) is a reasonably good proxy to separate HII regions from regions dominated by diffuse ionized gas. For spatially-adjacent regions or regions at the same radius, many line ratios change systematically with emission line surface brightness, reflecting a gradual increase of dominance by DIG towards low SB. DIG could significantly bias the measurement of gas metallicity and metallicity gradient. Because DIG tend to have a higher temperature than HII regions, at fixed metallicity DIG displays lower [NII]/[OII] ratios. DIG also show lower [OIII]/[OII] ratios than HII regions, due to extended partially-ionized regions that enhance all low-ionization lines ([NII], [SII], [OII], [OI]). The contamination by DIG is responsible for a substantial portion of the scatter in metallicity measurements. At different surface brightness, line ratios and line ratio gradients can differ systematically. As DIG fraction could change with radius, it can affect the metallicity gradient measurements in systematic ways. The three commonly used strong-line metallicity indicators, R23, [NII]/[OII], O3N2, are all affected in different ways. To make robust metallicity gradient measurements, one has to properly isolate HII regions and correct for DIG contamination. In line ratio diagnostic diagrams, contamination by DIG moves HII regions towards composite or LINER-like regions.

  16. Understanding the mechanism behind the nitrous acid (HONO) emissions from the northern soils

    NASA Astrophysics Data System (ADS)

    Bhattarai, Hem Raj; Siljanen, Henri MP; Biasi, Christina; Maljanen, Marja

    2016-04-01

    The interest of the flux of nitrous acid (HONO) from soils has recently increased. HONO is an important source of the oxidant OH- radical in the troposphere and thus results a reduction of the greenhouse gas methane (CH4) in the atmosphere. Soils have been recently found to be potential sources of HONO as these emissions are linked to other nitrogen cycle processes, especially presence of nitrite in soils. Ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB) have been suggested as possible yet substantial sources of HONO. Along with soil pH, other physical properties such as C:N, nitrogen availability, soil moisture and temperature may effect HONO emissions. Our preliminary results demonstrate that drained acidic peatlands with a low C:N produces higher NO, N2O and HONO emissions compared to those in pristine peatlands and upland forest soils. This study will identify the hotspots and the process involved in HONO emissions in northern ecosystems. Along with HONO, we will examine the emissions of NO and N2O to quantify the related N-gases emitted. These results will add a new piece of information in our knowledge of the nitrogen cycle. Soil samples will be collected from several boreal and arctic sites in Finland, Sweden and Russia. In the laboratory, soil samples will be manipulated based on previously described soil physical properties. This will be followed by labelling experiment coupled with selective nitrification inhibitor experiment in the soils. Our first hypothesis is that northern ecosystems are sources of HONO. Second, is that the soil properties (C:N ratio, moisture, N-availability, pH) regulate the magnitude of HONO emissions from northern soils. Third is that the first step of nitrification (ammonium oxidation) is the main pathway to produce HONO. This study will show that the northern ecosystems could be sources of HONO and therefore increasing the oxidizing capacity of the lower atmosphere.

  17. Dual emission and double proton transfer in salicylic acid

    NASA Astrophysics Data System (ADS)

    Pant, D. D.; Joshi, H. C.; Bisht, P. B.; Tripathi, H. B.

    1994-07-01

    The photophysics of salicylic acid (SA) monomer and dimer has been studied by using steady-state and time-resolved spectroscopic techniques. Dilute solution in alkanes emits at 450 nm, which as in methyl salicylate is due to intramolecular proton transfer. In concentrated solutions and in solid state, the SA dimer shows two emissions, at 370 nm and 450 nm, with some unusual behaviour in both the steady state and the time domain fluorescence. The concept of double proton transfer and the tunneling mechanism in the excited state can rationalize the observed photophysical behaviour.

  18. How phosphorus limitation can control climatic gas emission

    NASA Astrophysics Data System (ADS)

    Gypens, Nathalie; Borges, Alberto V.; Speeckaert, Gaelle; Ghyoot, Caroline

    2015-04-01

    Anthropogenic activities severely increased river nutrient [nitrogen (N) and phosphorus (P)] loads to European coastal areas. However, specific nutrient reduction policies implemented since the late 1990's have considerably reduced P loads, while N is maintained. In the Southern North Sea, the resulting N: P: Si imbalance (compared to phytoplankton requirements) stimulated the growth of Phaeocystis colonies modifying the functioning of the ecosystem and, therefore, the carbon cycle but also the biogenic sulphur cycle, Phaeocystis being a significant producer of DMSP (dimethylsulphide propionate), the precursor of dimethylsulfide (DMS). In this application, the mechanistic MIRO-BIOGAS model is used to investigate the effects of changing N and P loads on ecosystem structure and their impact on DMS and CO2 emissions. In particular, competition for P between phytoplankton groups (diatoms vs Phaeocystis colonies) but also between phytoplankton and bacteria is explored. The ability of autotroph and heterotroph organism to use dissolved organic phosphorus (DOP) as P nutrient source is also explored and its effect on climatic gas emission estimated. Simulations were done from 1950 to 2010 and different nutrient limiting conditions are analyzed.

  19. Cost of abating greenhouse gas emissions with cellulosic ethanol.

    PubMed

    Dwivedi, Puneet; Wang, Weiwei; Hudiburg, Tara; Jaiswal, Deepak; Parton, William; Long, Stephen; DeLucia, Evan; Khanna, Madhu

    2015-02-17

    We develop an integrated framework to determine and compare greenhouse gas (GHG) intensities and production costs of cellulosic ethanol derived from corn stover, switchgrass, and miscanthus grown on high and low quality soils for three representative counties in the Eastern United States. This information is critical for assessing the cost-effectiveness of utilizing cellulosic ethanol for mitigating GHG emissions and designing appropriate policy incentives to support cellulosic ethanol production nationwide. We find considerable variations in the GHG intensities and production costs of ethanol across feedstocks and locations mostly due to differences in yields and soil characteristics. As compared to gasoline, the GHG savings from miscanthus-based ethanol ranged between 130% and 156% whereas that from switchgrass ranged between 97% and 135%. The corresponding range for GHG savings with corn stover was 57% to 95% and marginally below the threshold of at least 60% for biofuels classified as cellulosic biofuels under the Renewable Fuels Standard. Estimates of the costs of producing ethanol relative to gasoline imply an abatement cost of at least $48 Mg(-1) of GHG emissions (carbon dioxide equivalent) abated and can be used to infer the minimum carbon tax rate needed to induce consumption of cellulosic ethanol. PMID:25588032

  20. Cost of abating greenhouse gas emissions with cellulosic ethanol.

    PubMed

    Dwivedi, Puneet; Wang, Weiwei; Hudiburg, Tara; Jaiswal, Deepak; Parton, William; Long, Stephen; DeLucia, Evan; Khanna, Madhu

    2015-02-17

    We develop an integrated framework to determine and compare greenhouse gas (GHG) intensities and production costs of cellulosic ethanol derived from corn stover, switchgrass, and miscanthus grown on high and low quality soils for three representative counties in the Eastern United States. This information is critical for assessing the cost-effectiveness of utilizing cellulosic ethanol for mitigating GHG emissions and designing appropriate policy incentives to support cellulosic ethanol production nationwide. We find considerable variations in the GHG intensities and production costs of ethanol across feedstocks and locations mostly due to differences in yields and soil characteristics. As compared to gasoline, the GHG savings from miscanthus-based ethanol ranged between 130% and 156% whereas that from switchgrass ranged between 97% and 135%. The corresponding range for GHG savings with corn stover was 57% to 95% and marginally below the threshold of at least 60% for biofuels classified as cellulosic biofuels under the Renewable Fuels Standard. Estimates of the costs of producing ethanol relative to gasoline imply an abatement cost of at least $48 Mg(-1) of GHG emissions (carbon dioxide equivalent) abated and can be used to infer the minimum carbon tax rate needed to induce consumption of cellulosic ethanol.

  1. Volatile emissions and gas geochemistry of Hot Spring Basin, Yellowstone National Park, USA

    USGS Publications Warehouse

    Werner, C.; Hurwitz, S.; Evans, William C.; Lowenstern, J. B.; Bergfeld, D.; Heasler, H.; Jaworowski, C.; Hunt, A.

    2008-01-01

    We characterize and quantify volatile emissions at Hot Spring Basin (HSB), a large acid-sulfate region that lies just outside the northeastern edge of the 640??ka Yellowstone Caldera. Relative to other thermal areas in Yellowstone, HSB gases are rich in He and H2, and mildly enriched in CH4 and H2S. Gas compositions are consistent with boiling directly off a deep geothermal liquid at depth as it migrates toward the surface. This fluid, and the gases evolved from it, carries geochemical signatures of magmatic volatiles and water-rock reactions with multiple crustal sources, including limestones or quartz-rich sediments with low K/U (or 40*Ar/4*He). Variations in gas chemistry across the region reflect reservoir heterogeneity and variable degrees of boiling. Gas-geothermometer temperatures approach 300????C and suggest that the reservoir feeding HSB is one of the hottest at Yellowstone. Diffuse CO2 flux in the western basin of HSB, as measured by accumulation-chamber methods, is similar in magnitude to other acid-sulfate areas of Yellowstone and is well correlated to shallow soil temperatures. The extrapolation of diffuse CO2 fluxes across all the thermal/altered area suggests that 410 ?? 140??t d- 1 CO2 are emitted at HSB (vent emissions not included). Diffuse fluxes of H2S were measured in Yellowstone for the first time and likely exceed 2.4??t d- 1 at HSB. Comparing estimates of the total estimated diffuse H2S emission to the amount of sulfur as SO42- in streams indicates ~ 50% of the original H2S in the gas emission is lost into shallow groundwater, precipitated as native sulfur, or vented through fumaroles. We estimate the heat output of HSB as ~ 140-370??MW using CO2 as a tracer for steam condensate, but not including the contribution from fumaroles and hydrothermal vents. Overall, the diffuse heat and volatile fluxes of HSB are as great as some active volcanoes, but they are a small fraction (1-3% for CO2, 2-8% for heat) of that estimated for the entire

  2. Plasma emission spectral detection for pyrolysis-gas chromatography

    NASA Astrophysics Data System (ADS)

    Riska, Gregory D.; Estes, Scott A.; Beyer, John O.; Uden, Peter C.

    Specific element gas chromatographic detection by plasma emission spectroscopy has been evaluated for the characterization of volatile pyrolyzates from a number of polymers containing hetero-atoms. Directly interfaced rapid-temperature rise time pyrolysis with high resolution open tubular column gas chromatography was employed. The atmospheric pressure microwave induced and sustained plasma utilizing a "Beenakker" type TM 010 cavity was applied for specific detection of phosphorus and carbon in polyphosphazene pyrolysis and for boron in carborane-silicone pyrolysis. An interfaced d.c. argon atmospheric pressure plasma was found more advantageous for the specific determination of silicon in the pyrolysis products of novel linear silarylene-siloxanes. In phosphazene pyrolysis notable differences were seen in the phosphorus content of volatiles formed on pyrolysis between polymers fluoroalkoxy and chlorophenoxy substituents. For carborane-silicones sequential volatilization followed by pyrolysis allowed the identification of residual boron containing monomers as well as pyrolyzates. Pyrolysis of the silarylene-siloxanes showed markedly differing levels of silicon content in polymers with differing aromatic backbones and different levels of vinyl substitution.

  3. Mitigation of greenhouse gas emissions in livestock production: a review of technical options for non-C02 emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal production is a significant source of greenhouse gas (GHG) emissions worldwide. This analysis was done to evaluate the potential use of nutritional, manure, and animal management practices to mitigate non-CO2 GHG emissions (i.e., methane, CH4 and nitrous oxide, N2O) from enteric fermentation ...

  4. Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States

    NASA Astrophysics Data System (ADS)

    Burling, I. R.; Yokelson, R. J.; Griffith, D. W. T.; Johnson, T. J.; Veres, P.; Roberts, J. M.; Warneke, C.; Urbanski, S. P.; Reardon, J.; Weise, D. R.; Hao, W. M.; de Gouw, J.

    2010-11-01

    Vegetation commonly managed by prescribed burning was collected from five southeastern and southwestern US military bases and burned under controlled conditions at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The smoke emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared (OP-FTIR) spectrometer for measurement of gas-phase species. The OP-FTIR detected and quantified 19 gas-phase species in these fires: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. Emission factors for these species are presented for each vegetation type burned. Gas-phase nitrous acid (HONO), an important OH precursor, was detected in the smoke from all fires. The HONO emission factors ranged from 0.15 to 0.60 g kg-1 and were higher for the southeastern fuels. The fire-integrated molar emission ratios of HONO (relative to NOx) ranged from approximately 0.03 to 0.20, with higher values also observed for the southeastern fuels. The majority of non-methane organic compound (NMOC) emissions detected by OP-FTIR were oxygenated volatile organic compounds (OVOCs) with the total identified OVOC emissions constituting 61 ± 12% of the total measured NMOC on a molar basis. These OVOC may undergo photolysis or further oxidation contributing to ozone formation. Elevated amounts of gas-phase HCl and SO2 were also detected during flaming combustion, with the amounts varying greatly depending on location and vegetation type. The fuels with the highest HCl emission factors were all located in the coastal regions, although HCl was also observed from fuels farther inland. Emission factors for HCl were generally higher for the southwestern fuels, particularly those found in the chaparral biome in the coastal regions of California.

  5. Laboratory measurements of trace gas emissions from biomass burning of fuel types from the Southeastern and Southwestern United States

    NASA Astrophysics Data System (ADS)

    Burling, I. R.; Yokelson, R. J.; Griffith, D. W. T.; Johnson, T. J.; Veres, P.; Roberts, J. M.; Warneke, C.; Urbanski, S. P.; Reardon, J.; Weise, D. R.; Hao, W. M.; de Gouw, J.

    2010-07-01

    Vegetation commonly managed by prescribed burning was collected from five southeastern and southwestern US military bases and burned under controlled conditions at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The smoke emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared (OP-FTIR) spectrometer for measurement of gas-phase species. The OP-FTIR detected and quantified 19 gas-phase species in these fires: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. Emission factors for these species are presented for each vegetation type burned. Gas-phase nitrous acid (HONO), an important OH precursor, was detected in the smoke from all fires. The HONO emission factors ranged from 0.15 to 0.60 g kg-1 and were higher for the southeastern fuels. The fire-integrated molar emission ratios of HONO (relative to NOx) ranged from approximately 0.03 to 0.20, with higher values also observed for the southeastern fuels. The majority of non-methane organic compound (NMOC) emissions detected by OP-FTIR were oxygenated volatile organic compounds (OVOCs) with the total identified OVOC emissions constituting 61±12% of the total measured NMOC on a molar basis. These OVOC may undergo photolysis or further oxidation contributing to ozone formation. Elevated amounts of gas-phase HCl and SO2 were also detected during flaming combustion, with the amounts varying greatly depending on location and vegetation type. The fuels with the highest HCl emission factors were all located in the coastal regions, although HCl was also observed from fuels farther inland. Emission factors for HCl were generally higher for the southwestern fuels, particularly those found in the chaparral biome in the coastal regions of California.

  6. Trace gas and particulate emissions from biomass burning in temperate ecosystems

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Levine, Joel S.; Winstead, Edward L.; Stocks, Brian J.

    1991-01-01

    Emissions measured from fires in graminoid wetlands, Mediterranean chaparrals, and boreal forests, suggest that such ecosystemic parameters as fuel size influence combustion emissions in ways that are broadly predictable. The degree of predictability is most noticeable when wetland fire-related results are compared with boreal forest emissions; the inorganic fraction of the particulate emissions is close in composition irrespective of the ecosystem. It is found that both aerosol and trace gas emissions are influenced by the phase of combustion.

  7. Current and Future Greenhouse Gas Emissions from Global Crop Intensification and Expansion

    NASA Astrophysics Data System (ADS)

    Carlson, K. M.; Gerber, J. S.; Mueller, N. D.; O'Connell, C.; West, P. C.

    2014-12-01

    Food systems currently contribute up to one-third of total anthropogenic greenhouse gas emissions, and these emissions are expected to rise as demand for agricultural products increases. Thus, improving the greenhouse gas emissions efficiency of agriculture - the tons or kilocalories of production per ton of CO2 equivalent emissions - will be critical to support a resilient future global system. Here, we model and evaluate global, 2000-era, spatially explicit relationships between a suite of greenhouse gas emissions from various agronomic practices (i.e., fertilizer application, peatland draining, and rice cultivation) and crop yields. Then, we predict potential emissions from future crop production increases achieved through intensification and extensification, including CO2 emissions from croplands replacing non-urban land cover. We find that 2000-era yield-scaled agronomic emissions are highly heterogeneous across crops types, crop management practices, and regions. Rice agriculture produces more total CO2-equivalent emissions than any other crop. Moreover, inundated rice in just a few countries contributes the vast majority of these rice emissions. Crops such as sunflower and cotton have low efficiency on a caloric basis. Our results suggest that intensification tends to be a more efficient pathway to boost greenhouse gas emissions efficiency than expansion. We conclude by discussing potential crop- and region-specific agricultural development pathways that may boost the greenhouse gas emissions efficiency of agriculture.

  8. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOEpatents

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  9. Impacts of acid emissions from Nevado del Ruiz volcano, Colombia, on selected terrestrial and aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Parnell, Roderic A.; Burke, Kelly J.

    1990-07-01

    Emissions of acidic gases and thermal waters from Nevado del Ruiz volcano have recently increased in concert with the November 13, 1985 eruption. This study examines the downwind and downstream effects of these emissions on alpine ecosystems high on the slopes of the volcano (4100 m) and on coffee plantations at lower elevations (< 2000 m) and greater distances from the active vent (> 30 km). Samples of bulk deposition, rain, soils, soil solutions, and streams were collected over a six-month period (January-July, 1987) to examine the impacts of this volcanogenic acidity. Bulk deposition falling on the higher slopes of the volcano is usually acidified; however, deposition reaching the distal coffee plantations seldom is acidic. The sources of the acids are hydrogen chloride and sulfur dioxide in the plume of the volcano. Although sulfur dioxide is by far the more abundant gas, hydrogen chloride is most responsible for acidification of rain falling on the slopes of the volcano. With distance from the vent, the chloride/sulfate ratio drops exponentially. The only major influence on regional precipitation chemistry in addition to the volcano appears to be land-use-related activities around the coffee plantations. Deposition on these areas is enriched by an order of magnitude in nitrate and base cations, compared to all other stations. Throughfall chemistry in the coffee plantations shows a dramatic response to occasional acid-rain events. A base-leaching process on coffee plant leaves is triggered by acid rain. For each equivalent of hydrogen ion in rain on the leaf surface, over 23 equivalents of potassium ion are leached from the leaf. In spite of this dramatic response by the vegetation, the plantation soils appear relatively unaffected by acidic deposition. In contrast, the alpine soils on the volcano exhibit low pHs, high sulfate and chloride concentrations in soil solutions, and high extractable sulfate concentrations. All of these factors indicate that these

  10. Uncertainty in life cycle greenhouse gas emissions from United States natural gas end-uses and its effects on policy.

    PubMed

    Venkatesh, Aranya; Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott

    2011-10-01

    Increasing concerns about greenhouse gas (GHG) emissions in the United States have spurred interest in alternate low carbon fuel sources, such as natural gas. Life cycle assessment (LCA) methods can be used to estimate potential emissions reductions through the use of such fuels. Some recent policies have used the results of LCAs to encourage the use of low carbon fuels to meet future energy demands in the U.S., without, however, acknowledging and addressing the uncertainty and variability prevalent in LCA. Natural gas is a particularly interesting fuel since it can be used to meet various energy demands, for example, as a transportation fuel or in power generation. Estimating the magnitudes and likelihoods of achieving emissions reductions from competing end-uses of natural gas using LCA offers one way to examine optimal strategies of natural gas resource allocation, given that its availability is likely to be limited in the future. In this study, the uncertainty in life cycle GHG emissions of natural gas (domestic and imported) consumed in the U.S. was estimated using probabilistic modeling methods. Monte Carlo simulations are performed to obtain sample distributions representing life cycle GHG emissions from the use of 1 MJ of domestic natural gas and imported LNG. Life cycle GHG emissions per energy unit of average natural gas consumed in the U.S were found to range between -8 and 9% of the mean value of 66 g CO(2)e/MJ. The probabilities of achieving emissions reductions by using natural gas for transportation and power generation, as a substitute for incumbent fuels such as gasoline, diesel, and coal were estimated. The use of natural gas for power generation instead of coal was found to have the highest and most likely emissions reductions (almost a 100% probability of achieving reductions of 60 g CO(2)e/MJ of natural gas used), while there is a 10-35% probability of the emissions from natural gas being higher than the incumbent if it were used as a

  11. Estimating methane gas generation from Devil's swamp landfill using greenhouse gas emission models

    NASA Astrophysics Data System (ADS)

    Adeyemi, Ayodeji Thompson

    Greenhouse gas (GHG) has been a key issue in the study, design, and management of landfills. Landfill gas (LFG) is considered either as a significant source of renewable energy (if extracted and processed accordingly) or significant source of pollution and risk (if not mitigated or processed). A municipal solid waste (MSW) landfill emits a significant amount of methane, a potent GHG. Thus, quantification and mitigation of GHG emissions is an important area of study in engineering and other sciences related to landfill technology and management. The present study will focus on estimating methane generation from Devils swamp landfill (DSLF), a closed landfill in Baton Rouge, LA. The landfill operated for 53 years (1940-1993) and contains both industrial and municipal waste products. Since the Clean Air Act of 1963, landfills are now classified as New Source Performance Standard (NSPS) waste (i.e., waste that will decompose to generate LFG). Currently, the DSLF is being used as source of renewable energy through the "Waste to Energy" program. For this study, to estimate the methane potential in the DSLF, it is important to determine the characteristics and classification of the landfill's wastes. The study uses and compares different GHG modeling tools---LandGEM, a multiphase model, and a simple first-order model---to estimate methane gas emission and compare results with the actual emissions from the DSLF. The sensitivity of the methane generation rate was analyzed by the methane generation models to assess the effects of variables such as initial conditions, specific growth rate, and reaction rate constants. The study concludes that methane (L0) and initial organic concentration in waste (k) are the most important parameters when estimating methane generation using the models.

  12. Prediction of methane emission from lactating dairy cows using milk fatty acids and mid-infrared spectroscopy.

    PubMed

    van Gastelen, Sanne; Dijkstra, Jan

    2016-09-01

    Enteric methane (CH4 ) production is among the main targets of greenhouse gas mitigation practices for the dairy industry. A simple, robust and inexpensive measurement technique applicable on a large scale to estimate CH4 emission from dairy cattle would therefore be valuable. Milk fatty acids (MFA) are related to CH4 production because of the common biochemical pathway between CH4 and fatty acids in the rumen. A summary of studies that investigated the predictive power of MFA composition for CH4 emission indicated good potential, with predictive power ranging between 47% and 95%. Until recently, gas chromatography (GC) was the principal method used to determine the MFA profile, but GC is unsuitable for routine analysis. This has led to the application of mid-infrared (MIR) spectroscopy. The major advantages of using MIR spectroscopy to predict CH4 emission include its simplicity and potential practical application at large scale. Disadvantages include the inability to predict important MFA for CH4 prediction, and the moderate predictive power for CH4 emission. It may not be sufficient to predict CH4 emission based on MIR alone. Integration with other factors, like feed intake, nutrient composition of the feed, parity, and lactation stage may improve the prediction of CH4 emission using MIR spectra. © 2016 Society of Chemical Industry. PMID:26996655

  13. Acid gas extraction of pyridine from water

    SciTech Connect

    Laitinen, A.; Kaunisto, J.

    2000-01-01

    Pyridine was extracted from aqueous solutions initially containing 5 or 15 wt % pyridine by using liquid or supercritical carbon dioxide at 10 MPa as a solvent in a mechanically agitated countercurrent extraction column. The lowest pyridine concentration in the raffinate was 0.06 wt %, whereas the pyridine concentration in the extract was 86--94 wt %. From the initial amount of pyridine, 96--99% was transferred from the feed stream to the extract by using relatively small solvent-to-feed ratios of 2.8--4.6 (kg of solvent/kg of feed). The measured distribution coefficients for the water/pyridine/carbon dioxide system ranged from 0.3 to 1 (weight units), depending on the initial pyridine concentration in water. Carbon dioxide is a particularly suitable solvent for the extraction of pyridine from concentrated aqueous solutions. The efficiency may be the result of an acid-base interaction between weakly basic pyridine solute and weakly acidic carbon dioxide solvent in an aqueous environment.

  14. {open_quotes}Perspectives on greenhouse gas emissions trends{close_quotes}

    SciTech Connect

    Hausker, K.

    1995-12-31

    This paper discusses the common perspective on greenhouse gas emissions that well over half of carbon dioxide emissions originate in developing countries. According to IPCC data, in 1991 energy-related carbon emissions from non-OECD countries accounted for 57% of the global total, while emissions from OECD countries accounted for 43%. This perspective is misleading and oversimplified. The true picture of greenhouse gas emissions is much more complex, and varies by country and gas. On a country by country basis, the OECD countries are the largest current and historic emitters. The developed countries must take the lead in reducing greenhouse gas emissions. We cannot simply look at greenhouse gases in the context of OECD and non-OECD countries. There is a huge disparity between the emissions of Russia, Eastern European and certain Asian Countries compared to other non-OECD countries. On a per country basis, most developing country contributions to the global greenhouse gas budget are negligible. Finally, all greenhouse gases must be considered. While energy-related CO2 will remain the most important greenhouse gas over the next 25 years, land-use related CO2 or anthropogenic methane cannot be ignored or underestimated. Since the relative importance of various emission sources varies from region to region, greenhouse gas mitigation strategies must be tailored to the particular circumstances and factors friving emission in each region.

  15. Fugitive greenhouse gas emissions from shale gas activities - a case study of Dish, TX

    NASA Astrophysics Data System (ADS)

    Khan, A.; Roscoe, B.; Lary, D.; Schaefer, D.; Tao, L.; Sun, K.; Brian, A.; DiGangi, J.; Miller, D. J.; Zondlo, M. A.

    2012-12-01

    We evaluate new findings on aerial (horizontal and vertical) mapping of methane emissions in the atmospheric boundary layer region to help study fugitive methane emissions from extraction, transmission, and storage of natural gas and oil in Dish, Texas. Dish is located in the Barnett Shale which has seen explosive development of hydraulic fracking activities in recent years. The aerial measurements were performed with a new laser-based methane sensor developed specifically for an unmanned aerial vehicle (UAV). The vertical cavity surface emitting laser (VCSEL) methane sensor, with a mass of 2.5 kg and a precision of < 20 ppbv methane at 1 Hz, was flown on the UT-Dallas ARC Payload Master electronic aircraft at two sites in Texas: one representative of urban emissions of the Dallas-Fort Worth area in Richardson, Texas and another in Dish, Texas, closer to gas and oil activities. Methane mixing ratios at Dish were ubiquitously in the 3.5 - 4 ppmv range which was 1.5 - 2 ppmv higher than methane levels immediately downwind of Dallas. During the flight measurements at Dish, narrow methane plumes exceeding 20 ppmv were frequently observed at altitudes from the surface to 130 m above the ground. Based on the wind speed at the sampling location, the horizontal widths of large methane plumes were of the order of 100 m. The locations of the large methane plumes were variable in space and time over a ~ 1 km2 area sampled from the UAV. Spatial mapping over larger scales (10 km) by ground-based measurements showed similar methane levels as the UAV measurements. To corroborate our measurements, alkane and other hydrocarbon mixing ratios from an on-site TCEQ environmental monitoring station were analyzed and correlated with methane measurements to fingerprint the methane source. We show that fugitive methane emissions at Dish are a significant cause of the large and ubiquitous methane levels on the 1-10 km scale.

  16. Effects of fertilizer placement on trace gas emissions from container-grown plant production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased trace gas emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are widely believed to be a primary cause of global warming. Agriculture is a large contributor to these emissions; however, its role in climate change is unique in that it can act as a source of trace gas ...

  17. Effects of fertilizer placement on trace gas emissions from nursery container production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased trace gas emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are widely believed to be a primary cause of global warming. Agriculture is a large contributor to these emissions; however, its role in climate change is unique in that it can act as a source of trace gas ...

  18. Trace gas emissions from nursery crop production using different fertilizer methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased trace gas emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are widely believed to be a primary cause of global warming. Agriculture is a large contributor to these emissions; however, its role in climate change is unique in that it can act as a source of trace gas ...

  19. 75 FR 67059 - Public Hearings for Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-01

    ... Hearings for Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles AGENCIES: Environmental Protection Agency (EPA) and National Highway Traffic Safety... to be held for the joint proposed rules ``Greenhouse Gas Emissions Standards and Fuel...

  20. 40 CFR 1036.610 - Innovative technology credits and adjustments for reducing greenhouse gas emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... adjustments for reducing greenhouse gas emissions. 1036.610 Section 1036.610 Protection of Environment... adjustments for reducing greenhouse gas emissions. (a) You may ask us to apply the provisions of this section... the provisions of 40 CFR 86.1866-12(d)(3). However, we will generally not seek public comment...

  1. 40 CFR 1036.610 - Innovative technology credits and adjustments for reducing greenhouse gas emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... adjustments for reducing greenhouse gas emissions. 1036.610 Section 1036.610 Protection of Environment... adjustments for reducing greenhouse gas emissions. (a) You may ask us to apply the provisions of this section... the provisions of 40 CFR 86.1866-12(d)(3). However, we will generally not seek public comment...

  2. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  3. LANDFILL GAS EMISSIONS MODEL (LANDGEM) VERSION 3.02 USER'S GUIDE

    EPA Science Inventory

    The Landfill Gas Emissions Model (LandGEM) is an automated estimation tool with a Microsoft Excel interface that can be used to estimate emission rates for total landfill gas, methane, carbon dioxide, nonmethane organic compounds, and individual air pollutants from municipal soli...

  4. Modeling the Relative GHG Emissions of Conventional and Shale Gas Production

    PubMed Central

    2011-01-01

    Recent reports show growing reserves of unconventional gas are available and that there is an appetite from policy makers, industry, and others to better understand the GHG impact of exploiting reserves such as shale gas. There is little publicly available data comparing unconventional and conventional gas production. Existing studies rely on national inventories, but it is not generally possible to separate emissions from unconventional and conventional sources within these totals. Even if unconventional and conventional sites had been listed separately, it would not be possible to eliminate site-specific factors to compare gas production methods on an equal footing. To address this difficulty, the emissions of gas production have instead been modeled. In this way, parameters common to both methods of production can be held constant, while allowing those parameters which differentiate unconventional gas and conventional gas production to vary. The results are placed into the context of power generation, to give a ″well-to-wire″ (WtW) intensity. It was estimated that shale gas typically has a WtW emissions intensity about 1.8–2.4% higher than conventional gas, arising mainly from higher methane releases in well completion. Even using extreme assumptions, it was found that WtW emissions from shale gas need be no more than 15% higher than conventional gas if flaring or recovery measures are used. In all cases considered, the WtW emissions of shale gas powergen are significantly lower than those of coal. PMID:22085088

  5. Methane Emissions from the Natural Gas Transmission and Storage System in the United States.

    PubMed

    Zimmerle, Daniel J; Williams, Laurie L; Vaughn, Timothy L; Quinn, Casey; Subramanian, R; Duggan, Gerald P; Willson, Bryan; Opsomer, Jean D; Marchese, Anthony J; Martinez, David M; Robinson, Allen L

    2015-08-01

    The recent growth in production and utilization of natural gas offers potential climate benefits, but those benefits depend on lifecycle emissions of methane, the primary component of natural gas and a potent greenhouse gas. This study estimates methane emissions from the transmission and storage (T&S) sector of the United States natural gas industry using new data collected during 2012, including 2,292 onsite measurements, additional emissions data from 677 facilities and activity data from 922 facilities. The largest emission sources were fugitive emissions from certain compressor-related equipment and "super-emitter" facilities. We estimate total methane emissions from the T&S sector at 1,503 [1,220 to 1,950] Gg/yr (95% confidence interval) compared to the 2012 Environmental Protection Agency's Greenhouse Gas Inventory (GHGI) estimate of 2,071 [1,680 to 2,690] Gg/yr. While the overlap in confidence intervals indicates that the difference is not statistically significant, this is the result of several significant, but offsetting, factors. Factors which reduce the study estimate include a lower estimated facility count, a shift away from engines toward lower-emitting turbine and electric compressor drivers, and reductions in the usage of gas-driven pneumatic devices. Factors that increase the study estimate relative to the GHGI include updated emission rates in certain emission categories and explicit treatment of skewed emissions at both component and facility levels. For T&S stations that are required to report to the EPA's Greenhouse Gas Reporting Program (GHGRP), this study estimates total emissions to be 260% [215% to 330%] of the reportable emissions for these stations, primarily due to the inclusion of emission sources that are not reported under the GHGRP rules, updated emission factors, and super-emitter emissions. PMID:26195284

  6. Methane Emissions from the Natural Gas Transmission and Storage System in the United States.

    PubMed

    Zimmerle, Daniel J; Williams, Laurie L; Vaughn, Timothy L; Quinn, Casey; Subramanian, R; Duggan, Gerald P; Willson, Bryan; Opsomer, Jean D; Marchese, Anthony J; Martinez, David M; Robinson, Allen L

    2015-08-01

    The recent growth in production and utilization of natural gas offers potential climate benefits, but those benefits depend on lifecycle emissions of methane, the primary component of natural gas and a potent greenhouse gas. This study estimates methane emissions from the transmission and storage (T&S) sector of the United States natural gas industry using new data collected during 2012, including 2,292 onsite measurements, additional emissions data from 677 facilities and activity data from 922 facilities. The largest emission sources were fugitive emissions from certain compressor-related equipment and "super-emitter" facilities. We estimate total methane emissions from the T&S sector at 1,503 [1,220 to 1,950] Gg/yr (95% confidence interval) compared to the 2012 Environmental Protection Agency's Greenhouse Gas Inventory (GHGI) estimate of 2,071 [1,680 to 2,690] Gg/yr. While the overlap in confidence intervals indicates that the difference is not statistically significant, this is the result of several significant, but offsetting, factors. Factors which reduce the study estimate include a lower estimated facility count, a shift away from engines toward lower-emitting turbine and electric compressor drivers, and reductions in the usage of gas-driven pneumatic devices. Factors that increase the study estimate relative to the GHGI include updated emission rates in certain emission categories and explicit treatment of skewed emissions at both component and facility levels. For T&S stations that are required to report to the EPA's Greenhouse Gas Reporting Program (GHGRP), this study estimates total emissions to be 260% [215% to 330%] of the reportable emissions for these stations, primarily due to the inclusion of emission sources that are not reported under the GHGRP rules, updated emission factors, and super-emitter emissions.

  7. Greenhouse Gas Emission from In-situ Denitrifying Bioreactors

    NASA Astrophysics Data System (ADS)

    Pluer, W.; Walter, M. T.; Geohring, L.

    2013-12-01

    Despite decades of concerted effort to mitigate nonpoint source nitrate (NO3-) pollution from agricultural lands, these efforts have not been sufficient to arrest eutrophication, which continues to be a serious and chronic problem. Two primary processes for removing excess NO3- from water are biological assimilation and denitrification. Denitrifying bacteria use NO3- as the electron acceptor for respiration in the absence of oxygen. Denitrification results in reduced forms of nitrogen, often dinitrogen gas (N2) but also nitrous oxide (N2O), an aggressive greenhouse gas (GHG). A promising solution to NO3- pollution is to intercept agricultural discharges with denitrifying bioreactors (DNBRs), though research has been limited to NO3- level reduction and omitted process mechanisms. DNBRs work by providing an anaerobic environment with plenty of organic matter (commonly woodchips) for denitrifying bacteria to flourish. While, initial results from bioreactor studies show that they can cost-effectively remove NO3-, GHG emission could be an unintended consequence. The study's goal is to determine how bioreactor design promotes microbial denitrification while limiting N2O production. It specifically focuses on expanding the body of knowledge concerning DNBRs in the areas of design implications and internal processes by measuring intermediate compounds and not solely NO3-. Nutrient samples are collected at inflow and outflow structures and tested for NO3- and nitrite (NO2-). Dissolved and headspace gas samples are collected and tested for N2O. Additional gas samples will be analyzed for naturally-occurring isotopic N2 to support proposed pathways. Designs will be analyzed both through the N2O/N2 production ratio and NO2- production caused by various residence times and inflow NO3- concentrations. High GHG ratios and NO2- production suggest non-ideal conditions or flow patterns for complete denitrification. NO3- reduction is used for comparison with previous studies. Few

  8. Methane emissions estimate from airborne measurements over a western United States natural gas field

    NASA Astrophysics Data System (ADS)

    Karion, Anna; Sweeney, Colm; PéTron, Gabrielle; Frost, Gregory; Michael Hardesty, R.; Kofler, Jonathan; Miller, Ben R.; Newberger, Tim; Wolter, Sonja; Banta, Robert; Brewer, Alan; Dlugokencky, Ed; Lang, Patricia; Montzka, Stephen A.; Schnell, Russell; Tans, Pieter; Trainer, Michael; Zamora, Robert; Conley, Stephen

    2013-08-01

    (CH4) emissions from natural gas production are not well quantified and have the potential to offset the climate benefits of natural gas over other fossil fuels. We use atmospheric measurements in a mass balance approach to estimate CH4 emissions of 55 ± 15 × 103 kg h-1 from a natural gas and oil production field in Uintah County, Utah, on 1 day: 3 February 2012. This emission rate corresponds to 6.2%-11.7% (1σ) of average hourly natural gas production in Uintah County in the month of February. This study demonstrates the mass balance technique as a valuable tool for estimating emissions from oil and gas production regions and illustrates the need for further atmospheric measurements to determine the representativeness of our single-day estimate and to better assess inventories of CH4 emissions.

  9. Biomass energy: Sustainable solution for greenhouse gas emission

    NASA Astrophysics Data System (ADS)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    sustainable carbon sink will be developed. Clean energy production from biomass (such as ethanol, biodiesel, producer gas, bio-methane) could be viable option to reduce fossil fuel consumption. Electricity generation from biomass is increasing throughout the world. Co-firing of biomass with coal and biomass combustion in power plant and CHP would be a viable option for clean energy development. Biomass can produce less emission in the range of 14% to 90% compared to emission from fossil for electricity generation. Therefore, biomass could play a vital role for generation of clean energy by reducing fossil energy to reduce greenhouse gas emissions. The main barriers to expansion of power generation from biomass are cost, low conversion efficiency and availability of feedstock. Internationalization of external cost in power generation and effective policies to improve energy security and carbon dioxide reduction is important to boost up the bio-power. In the long run, bio-power will depend on technological development and on competition for feedstock with food production and arable land use.

  10. Development of a method for estimating emissions from oil and gas production sites utilizing remote observations

    EPA Science Inventory

    There is a lack of information on emissions of ozone precursors, hazardous air pollutants, and greenhouse gases from oil and gas production operations, and measurement of these emissions presents many challenges. Assessment is complicated by the fugitive nature ofthe emissions, v...

  11. Greenhouse gas emissions from beef cattle feedlot pen surfaces in Texas during fall

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate estimation of greenhouse gas (GHG) emissions, including nitrous oxide and methane from open beef cattle feedlots is an increasing concern given the current and potential future reporting requirements for GHG emissions. Research measuring emission fluxes of nitrous oxide and methane from ope...

  12. Acid gas scrubbing by composite solvent-swollen membranes

    DOEpatents

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1988-01-01

    A composite immobilized liquid membrane suitable for acid gas scrubbing is disclosed. The membrane is a solvent-swollen polymer and a microporous polymeric support, the solvent being selected from a class of highly polar solvents containing at least one atom selected from nitrogen, oxygen, phosphorous and sulfur, and having a boiling point of at least 100.degree. C. and a solubility parameter of from about 7.5 to about 13.5 (cal/cm.sup.3 -atm).sup.1/2. Such solvents are homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. Also disclosed are methods of acid gas scrubbing of high- and low-Btu gas effluents with such solvent-swollen membranes.

  13. Acid gas scrubbing by composite solvent-swollen membranes

    DOEpatents

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1988-04-12

    A composite immobilized liquid membrane suitable for acid gas scrubbing is disclosed. The membrane is a solvent-swollen polymer and a microporous polymeric support, the solvent being selected from a class of highly polar solvents containing at least one atom selected from nitrogen, oxygen, phosphorus and sulfur, and having a boiling point of at least 100 C and a solubility parameter of from about 7.5 to about 13.5 (cal/cm[sup 3]-atm)[sup 1/2]. Such solvents are homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. Also disclosed are methods of acid gas scrubbing of high- and low-Btu gas effluents with such solvent-swollen membranes. 3 figs.

  14. Field evaluation of natural gas and dry sorbent injection for MWC emissions control

    SciTech Connect

    Wohadlo, S; Abbasi, H; Cygan, D

    1993-10-01

    The Institute of Gas Technology (IGT), in cooperation with the Olmsted Waste-to-Energy Facility (OWEF) and with subcontracted engineering services from the Energy and Environmental Research Corporation (EER), has completed the detailed engineering and preparation of construction specifications for an Emissions Reduction Testing System (ERTS). The ERTS has been designed for retrofit to one of two 100-ton/day municipal waste combustors at the OWEF, located in Rochester, Minnesota. The purpose of the retrofit is to conduct a field evaluation of a combined natural gas and sorbent injection process (IGT`s METHANE de-TOX{sup SM}, IGT Patent No. 5,105,747) for reducing the emissions of oxides of nitrogen (NO{sub x}), hydrochloric acid (HCI), oxides of sulfur (SO{sub x}), carbon monoxide (CO), total hydrocarbons (THC), and chlorinated hydrocarbons (dioxin/furans). In addition, the design includes modifications for the control of heavy metals (HM). Development of the process should allow the waste-to-energy industry to meet the Federal New Source Performance Standards for these pollutants at significantly lower costs when compared to existing technology of Thermal deNO{sub x} combined with spray dryer scrubber/fabric filters. Additionally, the process should reduce boiler corrosion and increase both the thermal and power production efficiency of the facility.

  15. Greenhouse Gas Emissions Reporting through Integrated Business Solutions

    NASA Astrophysics Data System (ADS)

    Smith, D.

    2010-12-01

    Given the risks posed by global climate change, it is important that society as a whole responds in order to reduce the emission of greenhouse gas (GHG) into the atmosphere. Whether you are an environmentalist, a small-to-medium business owner, or a corporate risk manager - the need to act is now in order to reduce future environmental damage. While this sounds overwhelming, it’s really quite simple. Carbon Management is the process of understanding where your commercial activities generate GHG emissions, so that you can reduce those emissions in a planned, financially responsible way. Specifically, governments have the capacity to lead in this area and reduce these costs throughout their cities. Village Green Global develops and manages demonstration projects for the government that act as exemplar models to assist in gathering verifiable GHG reporting within selected regions and cities. This model highlights opportunities for the capture of conservation and energy credit commodities for local financial markets to use in global trading. Information gathered will prepare government for the ongoing changing global requirements and mitigate risk of unnecessary market exposure and cost; allow government to take a measured, responsible approach to its environmental responsibilities; reduce operational costs, improving the government’s asset utilization and more effectively streamlining its operations; and establish the government as responsible and proactive due to its creative approach to environmental challenges. Village Green Global’s government partnership model aims to deliver new jobs and technologies in the emerging “green economy;” a linkage to education at both at College and University levels, then assisting industry and community needs; and the involvement of industry leaders ensures training is targeted to job creation and local capacity building opportunities, in turn creating new skills and career pathways for the displaced workforce from the

  16. Greenhouse gas emissions in Canada and Japan: sector-specific estimates and managerial and economic implications.

    PubMed

    Hayami, Hitoshi; Nakamura, Masao

    2007-10-01

    Many firms generate large amounts of carbon dioxide and other greenhouse gases when they burn fossil fuels in their production processes. In addition, production of raw materials and other inputs the firms procure for their operations also generates greenhouse gases indirectly. These direct and indirect greenhouse gas emissions occur in many sectors of our economies. In this paper, we first present sector-specific estimates for such greenhouse gas emissions. We then show that estimates for such sector-specific greenhouse gas emissions are often required for various types of corporate as well as public policy analyses in both domestic and international contexts. Measuring greenhouse gas emissions resulting from firms' multi-stage production processes in a multi-sector context is relevant for policies related to the Kyoto protocol, an international agreement to limit global greenhouse gas emissions. For example, since the protocol allows firms to engage in trading and offsetting of their greenhouse gas emissions across national borders, provided that emissions are correctly measured, the firms can take advantage of such trading schemes by placing their energy-intensive production facilities globally and strategically. We present several case studies which illustrate the importance of this and other aspects of greenhouse gas emissions in firms' environmental management. We also argue that our modeling and estimation methods based on input-output analyses are suitable for the types of research goals we have in this paper. Our methods are applied to data for Canada and Japan in a variety of environmental management circumstances.

  17. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 10: METERING AND PRESSURE REGULATING STATIONS IN NATURAL GAS TRANSMISSIONS AND DISTRIBUTION

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  18. Comparison of the composition and gas/particle partitioning of organic acids in monoterpene and isoprene dominated environments

    NASA Astrophysics Data System (ADS)

    Thompson, S.; Yatavelli, L. R.; Stark, H.; Kimmel, J.; Krechmer, J.; Hu, W.; Palm, B. B.; Campuzano Jost, P.; Day, D. A.; Isaacman, G. A.; Goldstein, A. H.; Khan, M. H.; Holzinger, R.; Lopez-Hilfiker, F.; Mohr, C.; Thornton, J. A.; Jayne, J. T.; Worsnop, D. R.; Jimenez, J. L.

    2013-12-01

    Gas and particle-phase organic acids measurements from two different regions with different biogenic volatile organic compound emissions are used to understand gas/particle partitioning principles. A Chemical Ionization High Resolution Time-of-Flight Mass Spectrometer (HRToF-CIMS), with acetate (CH3COO-) as the reagent ion was used to selectively detect acids. Hundreds of gas and particle-phase organic acids were measured in both locations, a monoterpene and MBO-dominated environment (ponderosa pine forest in Colorado, BEACHON-RoMBAS 2011) and isoprene and terpene-dominated environment (mixed deciduous and pine forest in Alabama, SOAS 2013). Time series of gas/particle partitioning for ions consistent with tracers for isoprene oxidation such as methacrylic acid epoxide (MAE) and isoprene epoxydiol (IEPOX) and tracers for α-pinene oxidation such as pinic and pinonic acid will be presented. Gas/particle partitioning, represented as the fraction of each species in the particle-phase, Fp, was calculated for C1-C18 alkanoic acids and biogenic VOC oxidation tracers and compared to an absorptive partitioning model. These results are compared with those of two other instruments that can also quantify gas/particle partitioning with high time resolution: a Semivolatile Thermal Desorption Aerosol GC/MS (SV-TAG) and a Thermal Desorption Proton Transfer Time-of-Flight Mass Spectrometer (TD-PTRMS). Data from both environments were consistent with the values and trends predicted by the absorptive partitioning model for the tracer acids. However, for low carbon number alkanoic acids we report a higher fraction in the particle phase than predicted by the model. The Fp for the bulk-averaged acids and its relationship to the degree of oxidation and carbon number will also be presented. Temporal patterns and correlations with atmospheric conditions and composition will be explored for individual and bulk acids. We will discuss atmospheric implications of the gas/particle partitioning

  19. Activated carbon cleanup of the acid gas feed to Claus sulfur plants

    SciTech Connect

    Harruff, L.G.; Bushkuhl, S.J.

    1996-12-31

    This paper presents the details of a recently developed novel process using activated carbon to remove hydrocarbon contaminants from the acid gas feed to Claus sulfur recovery units. Heavy hydrocarbons, particularly benzene, toluene and xylene (BTX) have been linked to coke formation and catalyst deactivation in Claus converters. This deactivation results in reduced sulfur recovery and increased sulfur emissions from these plants. This effect is especially evident in split flow Claus plants which bypass some of the acid gas feed stream around the initial combustion step because of a low hydrogen sulfide concentration. This new clean-up process was proven to be capable of removing 95% of the BTX and other C{sub 6}{sup +} hydrocarbons from acid gas over a wide range of actual plant conditions. Following the adsorption step, the activated carbon was easily regenerated using low pressure steam. A post regeneration drying step using plant fuel gas also proved beneficial. This technology was extensively pilot tested in Saudi Aramco`s facilities in Saudi Arabia. Full scale commercial units are planned for two plants in the near future with the first coming on-line in 1997. The process described here represents the first application of activated carbon in this service, and a patent has been applied for. The paper will discuss the pilot plant results and the issues involved in scale-up to commercial size.

  20. Atmospheric emissions and air quality impacts from natural gas production and use.

    PubMed

    Allen, David T

    2014-01-01

    The US Energy Information Administration projects that hydraulic fracturing of shale formations will become a dominant source of domestic natural gas supply over the next several decades, transforming the energy landscape in the United States. However, the environmental impacts associated with fracking for shale gas have made it controversial. This review examines emissions and impacts of air pollutants associated with shale gas production and use. Emissions and impacts of greenhouse gases, photochemically active air pollutants, and toxic air pollutants are described. In addition to the direct atmospheric impacts of expanded natural gas production, indirect effects are also described. Widespread availability of shale gas can drive down natural gas prices, which, in turn, can impact the use patterns for natural gas. Natural gas production and use in electricity generation are used as a case study for examining these indirect consequences of expanded natural gas availability.

  1. Atmospheric emissions and air quality impacts from natural gas production and use.

    PubMed

    Allen, David T

    2014-01-01

    The US Energy Information Administration projects that hydraulic fracturing of shale formations will become a dominant source of domestic natural gas supply over the next several decades, transforming the energy landscape in the United States. However, the environmental impacts associated with fracking for shale gas have made it controversial. This review examines emissions and impacts of air pollutants associated with shale gas production and use. Emissions and impacts of greenhouse gases, photochemically active air pollutants, and toxic air pollutants are described. In addition to the direct atmospheric impacts of expanded natural gas production, indirect effects are also described. Widespread availability of shale gas can drive down natural gas prices, which, in turn, can impact the use patterns for natural gas. Natural gas production and use in electricity generation are used as a case study for examining these indirect consequences of expanded natural gas availability. PMID:24498952

  2. Implications of low natural gas prices on life cycle greenhouse gas emissions in the U.S. electricity sector

    NASA Astrophysics Data System (ADS)

    Jaramillo, P.; Venkatesh, A.; Griffin, M.; Matthews, S.

    2012-12-01

    Increased production of unconventional natural gas resources in the U.S. has drastically reduced the price of natural gas. While in 2005 prices went above 10/MMBtu, since 2011 they have been below 3/MMBtu. These low prices have encouraged the increase of natural gas utilization in the United States electricity sector. Natural gas can offset coal for power generation, reducing emissions such as greenhouse gases, sulfur and nitrogen oxides. In quantifying the benefit of offsetting coal by using natural gas, life cycle assessment (LCA) studies have shown up to 50% reductions in life cycle greenhouse gas (GHG) emissions can be expected. However, these studies predominantly use limited system boundaries that contain single individual coal and natural gas power plants. They do not consider (regional) fleets of power plants that are dispatched on the basis of their short-run marginal costs. In this study, simplified economic dispatch models (representing existing power plants in a given region) are developed for three U.S. regions - ERCOT, MISO and PJM. These models, along with historical load data are used to determine how natural gas utilization will increase in the short-term due to changes in natural gas price. The associated changes in fuel mix and life cycle GHG emissions are estimated. Results indicate that life cycle GHG emissions may, at best, decrease by 5-15% as a result of low natural gas prices, compared to almost 50% reductions estimated by previous LCAs. This study thus provides more reasonable estimates of potential reductions in GHG emissions from using natural gas instead of coal in the electricity sector in the short-term.

  3. The effect of natural gas supply on US renewable energy and CO2 emissions

    NASA Astrophysics Data System (ADS)

    Shearer, Christine; Bistline, John; Inman, Mason; Davis, Steven J.

    2014-09-01

    Increased use of natural gas has been promoted as a means of decarbonizing the US power sector, because of superior generator efficiency and lower CO2 emissions per unit of electricity than coal. We model the effect of different gas supplies on the US power sector and greenhouse gas (GHG) emissions. Across a range of climate policies, we find that abundant natural gas decreases use of both coal and renewable energy technologies in the future. Without a climate policy, overall electricity use also increases as the gas supply increases. With reduced deployment of lower-carbon renewable energies and increased electricity consumption, the effect of higher gas supplies on GHG emissions is small: cumulative emissions 2013-55 in our high gas supply scenario are 2% less than in our low gas supply scenario, when there are no new climate policies and a methane leakage rate of 1.5% is assumed. Assuming leakage rates of 0 or 3% does not substantially alter this finding. In our results, only climate policies bring about a significant reduction in future CO2 emissions within the US electricity sector. Our results suggest that without strong limits on GHG emissions or policies that explicitly encourage renewable electricity, abundant natural gas may actually slow the process of decarbonization, primarily by delaying deployment of renewable energy technologies.

  4. [Compositions of organic acids in PM10 emission sources in Xiamen urban atmosphere].

    PubMed

    Yang, Bing-Yu; Huang, Xing-Xing; Zheng, An; Liu, Bi-Lian; Wu, Shui-Ping

    2013-01-01

    The possible organic acid emission sources in PM10 in Xiamen urban atmosphere such as cooking, biomass burning, vehicle exhaust and soil/dust were obtained using a re-suspension test chamber. A total of 15 organic acids including dicarboxylic acids, fatty acids and aromatic acids were determined using GC/MS after derivatization with BF3/n-butanol. The results showed that the highest total concentration of 15 organic acids (53%) was found in cooking emission and the average concentration of the sum of linoleic acid and oleic acid was 24% +/- 14%. However, oxalic acid was the most abundant species followed by phthalic acid in gasoline vehicle exhaust. The ratios of adipic to azelaic acid in gasoline combustion emissions were significantly higher than those in other emission sources, which can be used to qualitatively differentiate anthropogenic and biological source of dicarboxylic acids in atmospheric samples. The ratios of malonic to succinic acid in source emissions (except gasoline generator emissions) were lower (0.07-0.44) than ambient PM10 samples (0.61-3.93), which can be used to qualitatively differentiate the primary source and the secondary source of dicarboxylic acids in urban PM10.

  5. Ammonia emission factors for the NAPAP (National Acid Precipitation Assessment Program) emission inventory. Final report, January 1985-December 1986

    SciTech Connect

    Misenheimer, D.C.; Warn, T.E.; Zelmanowitz, S.

    1987-01-01

    The report provides information on certain sources of ammonia emissions to the atmosphere for use in the National Acid Precipitation Assessment Program (NAPAP) emission inventories. Major anthropogenic sources of ammonia emissions to the atmosphere are identified, and emission factors for these sources are presented based on a review of the most recent data available. The emission factors developed are used to estimate nationwide emissions for base year 1980 and are compared to ammonia emission factors used in other emission inventories. Major anthropogenic source categories covered are cropland spreading of livestock wastes, beef cattle feedlots, fertilizer manufacture and use, fuel combustion, ammonia synthesis, petroleum refineries, and coke manufacture. Approximately 840,000 tons of ammonia is estimated to have been emitted in the U.S. in 1980; over 64% of which is estimated to have been from livestock wastes.

  6. Evaluation of Methods for the Determination of Black Carbon Emissions from an Aircraft Gas Turbine Engine

    EPA Science Inventory

    The emissions from aircraft gas turbine engines consist of nanometer size black carbon (BC) particles plus gas-phase sulfur and organic compounds which undergo gas-to-particle conversion downstream of the engine as the plume cools and dilutes. In this study, four BC measurement ...

  7. The quantum mechanics of ion-enhanced field emission and how it influences microscale gas breakdown

    SciTech Connect

    Li, Yingjie; Go, David B.

    2014-09-14

    The presence of a positive gas ion can enhance cold electron field emission by deforming the potential barrier and increasing the tunneling probability of electrons—a process known as ion-enhanced field emission. In microscale gas discharges, ion-enhanced field emission produces additional emission from the cathode and effectively reduces the voltage required to breakdown a gaseous medium at the microscale (<10 μm). In this work, we enhance classic field emission theory by determining the impact of a gaseous ion on electron tunneling and compute the effect of ion-enhanced field emission on the breakdown voltage. We reveal that the current density for ion-enhanced field emission retains the same scaling as vacuum cold field emission and that this leads to deviations from traditional breakdown theory at microscale dimensions.

  8. Methane emissions from process equipment at natural gas production sites in the United States: pneumatic controllers.

    PubMed

    Allen, David T; Pacsi, Adam P; Sullivan, David W; Zavala-Araiza, Daniel; Harrison, Matthew; Keen, Kindal; Fraser, Matthew P; Daniel Hill, A; Sawyer, Robert F; Seinfeld, John H

    2015-01-01

    Emissions from 377 gas actuated (pneumatic) controllers were measured at natural gas production sites and a small number of oil production sites, throughout the United States. A small subset of the devices (19%), with whole gas emission rates in excess of 6 standard cubic feet per hour (scf/h), accounted for 95% of emissions. More than half of the controllers recorded emissions of 0.001 scf/h or less during 15 min of measurement. Pneumatic controllers in level control applications on separators and in compressor applications had higher emission rates than controllers in other types of applications. Regional differences in emissions were observed, with the lowest emissions measured in the Rocky Mountains and the highest emissions in the Gulf Coast. Average methane emissions per controller reported in this work are 17% higher than the average emissions per controller in the 2012 EPA greenhouse gas national emission inventory (2012 GHG NEI, released in 2014); the average of 2.7 controllers per well observed in this work is higher than the 1.0 controllers per well reported in the 2012 GHG NEI.

  9. First Connection between Cold Gas in Emission and Absorption: CO Emission from a Galaxy-Quasar Pair

    NASA Astrophysics Data System (ADS)

    Neeleman, Marcel; Prochaska, J. Xavier; Zwaan, Martin A.; Kanekar, Nissim; Christensen, Lise; Dessauges-Zavadsky, Miroslava; Fynbo, Johan P. U.; van Kampen, Eelco; Møller, Palle; Zafar, Tayyaba

    2016-04-01

    We present the first detection of molecular emission from a galaxy selected to be near a projected background quasar using the Atacama Large Millimeter/submillimeter Array (ALMA). The ALMA detection of CO(1-0) emission from the z = 0.101 galaxy toward quasar PKS 0439-433 is coincident with its stellar disk and yields a molecular gas mass of Mmol ≈ 4.2 × 109 M⊙ (for a Galactic CO-to-H2 conversion factor), larger than the upper limit on its atomic gas mass. We resolve the CO velocity field, obtaining a rotational velocity of 134 ± 11 km s-1 and a resultant dynamical mass of ≥4 × 1010 M⊙. Despite its high metallicity and large molecular mass, the z = 0.101 galaxy has a low star formation rate, implying a large gas consumption timescale, larger than that typical of late-type galaxies. Most of the molecular gas is hence likely to be in a diffuse extended phase, rather than in dense molecular clouds. By combining the results of emission and absorption studies, we find that the strongest molecular absorption component toward the quasar cannot arise from the molecular disk, but is likely to arise from diffuse gas in the galaxy’s circumgalactic medium. Our results emphasize the potential of combining molecular and stellar emission line studies with optical absorption line studies to achieve a more complete picture of the gas within and surrounding high-redshift galaxies.

  10. 40 CFR Table W - 1A of Subpart W-Default Whole Gas Emission Factors for Onshore Petroleum and Natural Gas Production

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Factors for Onshore Petroleum and Natural Gas Production W Table W Protection of Environment... Petroleum and Natural Gas Systems Definitions. Pt. 98, Subpt. W, Table W-1A Table W-1A of Subpart W—Default Whole Gas Emission Factors for Onshore Petroleum and Natural Gas Production Onshore petroleum...

  11. Characteristics and photochemical potentials of volatile organics emission from stack exhaust gas of industrial processes

    SciTech Connect

    Hsu, Y.C.; Tsai, J.H.; Lin, T.C.; Cheng, C.C.; Huang, Y.H.

    1999-07-01

    The main objective of this project was to measure the main volatile organic compounds (VOCs) in stack gas from the downstream petrochemical plants. Six pollution sources of industrial processes, including Acrylonitrile-Butadiene-Styrene (ABS), Vinyl Chloride(VC), Polyvinyl Chloride (PVC), Acrylic Resin, para-Terephthalic Acid (PTA) and Polyurethane (PU) synthetic manufacturing processes, were measured by using USEPA Method 18. The concentration and emission rate database of twenty-seven VOCs has been established. Fifty-two selected stacks were sampled and analyzed for VOCs. Analysis of emission factors and characteristics of the twenty-seven VOCs in these stacks show that the emission characteristics are various among different industrial processes. The order of the single-stack VOCs average emission factor are ABS (1.109 lbs VOCs/ton-ABS; 22 stacks) {gt} Acrylic Resin (0.651 lbs VOCs/ton-acrylic resin; 7 stacks) {gt} PU Synthetic (0.606 lbs VOCs/ton-PU synthetic; 4 stacks) {gt} PTA (0.054 lbs VOCs/ton-PTA; 4 stacks) {gt} PVC (0.014 lbs VOCs/ton-PVC; 11 stacks) {gt} VC ({lt} 0.001; 4 stacks) manufacturing processes. The emission factors of VOC in AP-42 database for the processes of are 5 to 40 times higher than those of VOCs in this research. Because of the equipment of pollutant control setting up before the emitted exhaust gas, their average emission factors in these measured processes are almost lower than those of VOCs in AP-42 database. Compared with the characteristics of VOCs, there is little similarity in VOC characteristics for the stacks of six processes between the results from this research and the data from US EPA SPECIATE data system. Furthermore, according to maximum incremental reactivities (MIR) of VOCs probed into photochemical reaction potentials, the results show that those of PTA manufacturing process have an ozone formation potential of 2.33 g O{sub 3}/g VOCs, which is higher than other processes.

  12. The growth response of Alternanthera philoxeroides in a simulated post-combustion emission with ultrahigh [CO2] and acidic pollutants.

    PubMed

    Xu, Cheng-Yuan; Griffin, Kevin L; Blazier, John C; Craig, Elizabeth C; Gilbert, Dominique S; Sritrairat, Sanpisa; Anderson, O Roger; Castaldi, Marco J; Beaumont, Larry

    2009-07-01

    Although post-combustion emissions from power plants are a major source of air pollution, they contain excess CO2 that could be used to fertilize commercial greenhouses and stimulate plant growth. We addressed the combined effects of ultrahigh [CO2] and acidic pollutants in flue gas on the growth of Alternanthera philoxeroides. When acidic pollutants were excluded, the biomass yield of A. philoxeroides saturated near 2000 micromol mol(-1) [CO2] with doubled biomass accumulation relative to the ambient control. The growth enhancement was maintained at 5000 micromol mol(-1) [CO2], but declined when [CO2] rose above 1%, in association with a strong photosynthetic inhibition. Although acidic components (SO2 and NO2) significantly offset the CO2 enhancement, the aboveground yield increased considerably when the concentration of pollutants was moderate (200 times dilution). Our results indicate that using excess CO2 from the power plant emissions to optimize growth in commercial green house could be viable.

  13. Gas-phase NMR studies of alcohols. Intrinsic acidities

    NASA Astrophysics Data System (ADS)

    Chauvel, J. Paul; True, Nancy S.

    1985-05-01

    Gas-phase (≈100 Torr) 1H NMR spectra of eighteen simple aliphatic and unsaturated alcohols, four fluorinated alcohols, and two thiols were obtained at 148.6°C where hydrogen bonding has little effect on chemical shifts. For the methanol, ethanol, n-propanol, i-propanol, t-butanol, i- butanol, neopentanol, 2,2,2-trifluoroethanol and benzyl alcohol, the observed hydroxylic proton chemical shifts correlate with previously obtained relative gas-phase acidities from thermochemical analysis which employed equilibrium constants of proton transfer reactions measured via mass spectroscopic and ion cyclotron resonance techniques. The correlational dependence is 10.3(0.5) kcal/mol ppm with a correlation coefficient of 0.99. These results demonstrate that the trend of increasing acidity with increasing size of the alkyl substituent is also reflected in the neutral forms of the alcohols, indicating that the polarizability of the ionic forms is not the only determining factor in relative gas-phase acidities of alcohols. Although factors affecting the hydroxylic proton chemical shifts of the larger substituted and unsaturated alcohols are more complex, their observed 1H NMR spectra also reflect this trend. For methanol and ethanol observed gas-phase 1H chemical shifts are also compared with recent theoritical calculations. 3JHH coupling constants across CO bonds are ≈ 5.5 Hz, significantly smaller than typical 3JHH coupling across sp 3 hybrid C C bonds.

  14. Measuring and Managing Greenhouse Gas Emissions from the Production of Livestock in Brazil

    NASA Astrophysics Data System (ADS)

    Cohn, A.

    2009-12-01

    Livestock production is the cause of substantial greenhouse gas emissions both through enteric fermentation and land use change. It has been shown that programs to reduce emissions from livestock could be a large and low-cost source of greenhouse gas mitigation. Yet in order to achieve emissions reductions, further research is needed to quantify how the emissions intensity of livestock production varies across the biophysical and socio-economic geographies of production. Particularly large data gaps exist for tropical livestock production even as tropical production expands rapidly. In this poster, I present results of a review of lifecycle greenhouse gas intensity for livestock production systems in Brazil. I also discuss opportunities and challenges in using these data as part of a decision support tool for programs to reduce greenhouse gas emissions from livestock.

  15. Modeling acid-gas generation from boiling chloride brines

    PubMed Central

    2009-01-01

    Background This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Results Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150°C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. Conclusion The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation

  16. Modeling acid-gas generation from boiling chloride brines

    SciTech Connect

    Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

    2009-11-16

    This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent

  17. The impact of landfilling and composting on greenhouse gas emissions--a review.

    PubMed

    Lou, X F; Nair, J

    2009-08-01

    Municipal solid waste is a significant contributor to greenhouse gas emissions through decomposition and life-cycle activities processes. The majority of these emissions are a result of landfilling, which remains the primary waste disposal strategy internationally. As a result, countries have been incorporating alternative forms of waste management strategies such as energy recovery from landfill gas capture, aerobic landfilling (aerox landfills), pre-composting of waste prior to landfilling, landfill capping and composting of the organic fraction of municipal solid waste. As the changing global climate has been one of the major environmental challenges facing the world today, there is an increasing need to understand the impact of waste management on greenhouse gas emissions. This review paper serves to provide an overview on the impact of landfilling (and its various alternatives) and composting on greenhouse gas emissions taking into account streamlined life cycle activities and the decomposition process. The review suggests greenhouse gas emissions from waste decomposition are considerably higher for landfills than composting. However, mixed results were found for greenhouse gas emissions for landfill and composting operational activities. Nonetheless, in general, net greenhouse gas emissions for landfills tend to be higher than that for composting facilities.

  18. Assessment of alternative disposal methods to reduce greenhouse gas emissions from municipal solid waste in India.

    PubMed

    Yedla, Sudhakar; Sindhu, N T

    2016-06-01

    Open dumping, the most commonly practiced method of solid waste disposal in Indian cities, creates serious environment and economic challenges, and also contributes significantly to greenhouse gas emissions. The present article attempts to analyse and identify economically effective ways to reduce greenhouse gas emissions from municipal solid waste. The article looks at the selection of appropriate methods for the control of methane emissions. Multivariate functional models are presented, based on theoretical considerations as well as the field measurements to forecast the greenhouse gas mitigation potential for all the methodologies under consideration. Economic feasibility is tested by calculating the unit cost of waste disposal for the respective disposal process. The purpose-built landfill system proposed by Yedla and Parikh has shown promise in controlling greenhouse gas and saving land. However, these studies show that aerobic composting offers the optimal method, both in terms of controlling greenhouse gas emissions and reducing costs, mainly by requiring less land than other methods. PMID:27118738

  19. Assessment of alternative disposal methods to reduce greenhouse gas emissions from municipal solid waste in India.

    PubMed

    Yedla, Sudhakar; Sindhu, N T

    2016-06-01

    Open dumping, the most commonly practiced method of solid waste disposal in Indian cities, creates serious environment and economic challenges, and also contributes significantly to greenhouse gas emissions. The present article attempts to analyse and identify economically effective ways to reduce greenhouse gas emissions from municipal solid waste. The article looks at the selection of appropriate methods for the control of methane emissions. Multivariate functional models are presented, based on theoretical considerations as well as the field measurements to forecast the greenhouse gas mitigation potential for all the methodologies under consideration. Economic feasibility is tested by calculating the unit cost of waste disposal for the respective disposal process. The purpose-built landfill system proposed by Yedla and Parikh has shown promise in controlling greenhouse gas and saving land. However, these studies show that aerobic composting offers the optimal method, both in terms of controlling greenhouse gas emissions and reducing costs, mainly by requiring less land than other methods.

  20. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    SciTech Connect

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L.; Chen, R.; Zhou, C.

    2015-10-15

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different

  1. Long-term trends and opportunities for managing regional water supply and wastewater greenhouse gas emissions.

    PubMed

    Hall, Murray R; West, Jim; Sherman, Bradford; Lane, Joe; de Haas, David

    2011-06-15

    Greenhouse gas emissions are likely to rise faster than growth in population and more than double for water supply and wastewater services over the next 50 years in South East Queensland (SEQ), Australia. New sources of water supply such as rainwater tanks, recycled water, and desalination currently have greater energy intensity than traditional sources. In addition, direct greenhouse gas emissions from reservoirs and wastewater treatment and handling have potentially the same magnitude as emissions from the use of energy. Centralized and decentralized water supply and wastewater systems are considered for a scenario based upon a government water supply strategy for the next 50 years. Many sources of data have large uncertainties which are estimated following the IPCC Good Practice Guidelines. Important sources of emissions with large uncertainties such as rainwater tanks and direct emissions were identified for further research and potential mitigation of greenhouse gas emissions.

  2. Fatty acids determination in Bronte pistachios by gas chromatographic method.

    PubMed

    Pantano, Licia; Lo Cascio, Giovanni; Alongi, Angelina; Cammilleri, Gaetano; Vella, Antonio; Macaluso, Andrea; Cicero, Nicola; Migliazzo, Aldo; Ferrantelli, Vincenzo

    2016-10-01

    A gas chromatographic with flame ionization detector (GC-MS FID) method for the identification and quantification of fatty acids based on the extraction of lipids and derivatisation of free acids to form methyl esters was developed and validated. The proposed method was evaluated to a number of standard FAs, and Bronte pistachios samples were used for that purpose and to demonstrate the applicability of the proposed method. In this regard, repeatability, mean and standard deviation of the analytical procedure were calculated. The results obtained have demonstrated oleic acid as the main component of Bronte pistachios (72.2%) followed by linoleic acid (13.4%) and showed some differences in composition with respect to Tunisian, Turkish and Iranian pistachios.

  3. Estimation of brassylic acid by gas chromatography-mass spectrometry

    SciTech Connect

    Mohammed J. Nasrullah, Erica N. Pfarr, Pooja Thapliyal, Nicholas S. Dusek, Kristofer L. Schiele, Christy Gallagher-Lein, and James A. Bahr

    2010-10-29

    The main focus of this work is to estimate Brassylic Acid (BA) using gas chromatography-mass spectrometry (GC-MS). BA is a product obtained from the oxidative cleavage of Erucic Acid (EA). BA has various applications for making nylons and high performance polymers. BA is a 13 carbon compound with two carboxylic acid functional groups at the terminal end. BA has a long hydrocarbon chain that makes the molecule less sensitive to some of the characterization techniques. Although BA can be characterized by NMR, both the starting material (EA) and products BA and nonanoic acid (NA) have peaks at similar {delta}, ppm values. Hence it becomes difficult for the quick estimation of BA during its synthesis.

  4. Fatty acids determination in Bronte pistachios by gas chromatographic method.

    PubMed

    Pantano, Licia; Lo Cascio, Giovanni; Alongi, Angelina; Cammilleri, Gaetano; Vella, Antonio; Macaluso, Andrea; Cicero, Nicola; Migliazzo, Aldo; Ferrantelli, Vincenzo

    2016-10-01

    A gas chromatographic with flame ionization detector (GC-MS FID) method for the identification and quantification of fatty acids based on the extraction of lipids and derivatisation of free acids to form methyl esters was developed and validated. The proposed method was evaluated to a number of standard FAs, and Bronte pistachios samples were used for that purpose and to demonstrate the applicability of the proposed method. In this regard, repeatability, mean and standard deviation of the analytical procedure were calculated. The results obtained have demonstrated oleic acid as the main component of Bronte pistachios (72.2%) followed by linoleic acid (13.4%) and showed some differences in composition with respect to Tunisian, Turkish and Iranian pistachios. PMID:27265004

  5. Impact of alternative fuels on emissions characteristics of a gas turbine engine - part 1: gaseous and particulate matter emissions.

    PubMed

    Lobo, Prem; Rye, Lucas; Williams, Paul I; Christie, Simon; Uryga-Bugajska, Ilona; Wilson, Christopher W; Hagen, Donald E; Whitefield, Philip D; Blakey, Simon; Coe, Hugh; Raper, David; Pourkashanian, Mohamed

    2012-10-01

    Growing concern over emissions from increased airport operations has resulted in a need to assess the impact of aviation related activities on local air quality in and around airports, and to develop strategies to mitigate these effects. One such strategy being investigated is the use of alternative fuels in aircraft engines and auxiliary power units (APUs) as a means to diversify fuel supplies and reduce emissions. This paper summarizes the results of a study to characterize the emissions of an APU, a small gas turbine engine, burning conventional Jet A-1, a fully synthetic jet fuel, and other alternative fuels with varying compositions. Gas phase emissions were measured at the engine exit plane while PM emissions were recorded at the exit plane as well as 10 m downstream of the engine. Five percent reduction in NO(x) emissions and 5-10% reduction in CO emissions were observed for the alternative fuels. Significant reductions in PM emissions at the engine exit plane were achieved with the alternative fuels. However, as the exhaust plume expanded and cooled, organic species were found to condense on the PM. This increase in organic PM elevated the PM mass but had little impact on PM number.

  6. Impact of alternative fuels on emissions characteristics of a gas turbine engine - part 1: gaseous and particulate matter emissions.

    PubMed

    Lobo, Prem; Rye, Lucas; Williams, Paul I; Christie, Simon; Uryga-Bugajska, Ilona; Wilson, Christopher W; Hagen, Donald E; Whitefield, Philip D; Blakey, Simon; Coe, Hugh; Raper, David; Pourkashanian, Mohamed

    2012-10-01

    Growing concern over emissions from increased airport operations has resulted in a need to assess the impact of aviation related activities on local air quality in and around airports, and to develop strategies to mitigate these effects. One such strategy being investigated is the use of alternative fuels in aircraft engines and auxiliary power units (APUs) as a means to diversify fuel supplies and reduce emissions. This paper summarizes the results of a study to characterize the emissions of an APU, a small gas turbine engine, burning conventional Jet A-1, a fully synthetic jet fuel, and other alternative fuels with varying compositions. Gas phase emissions were measured at the engine exit plane while PM emissions were recorded at the exit plane as well as 10 m downstream of the engine. Five percent reduction in NO(x) emissions and 5-10% reduction in CO emissions were observed for the alternative fuels. Significant reductions in PM emissions at the engine exit plane were achieved with the alternative fuels. However, as the exhaust plume expanded and cooled, organic species were found to condense on the PM. This increase in organic PM elevated the PM mass but had little impact on PM number. PMID:22913288

  7. 40 CFR Table W - 5 of Subpart W-Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Factors for Liquefied Natural Gas (LNG) Storage W Table W Protection of Environment ENVIRONMENTAL... Natural Gas Systems Definitions. Pt. 98, Subpt. W, Table W-5 Table W-5 of Subpart W—Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage LNG storage Emission factor...

  8. 40 CFR 1036.108 - Greenhouse gas emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 CFR 1037.104. (a) Emission standards. Emission standards apply for engines measured using the test..., measure CO2 emissions using the steady-state duty cycle specified in 40 CFR 86.1362 (referred to as the... 40 CFR part 1037 for limits on using engines certified to only one cycle. For medium and heavy...

  9. 40 CFR 1036.108 - Greenhouse gas emission standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 CFR 1037.104. (a) Emission standards. Emission standards apply for engines measured using the test..., measure CO2 emissions using the steady-state duty cycle specified in 40 CFR 86.1362 (referred to as the... 40 CFR part 1037 for limits on using engines certified to only one cycle. For medium and heavy...

  10. Federal, state and utility roles in reducing new building greenhouse gas emissions

    SciTech Connect

    Johnson, J.A.; Shankle, D.; Boulin, J.

    1995-03-01

    This paper will explore the role of implementation of building energy codes and standards in reducing US greenhouse gas emissions. It will discuss the role of utilities in supporting the US Department of Energy (DOE) and the Environmental Protection Agency in improving the efficiency of new buildings. The paper will summarize Federal policies and programs that improve code compliance and increase overall greenhouse gas emission reductions. Finally, the paper will discuss the role of code compliance and the energy and greenhouse gas emission reductions that have been realized from various Federal, State and utility programs that enhance compliance.

  11. Fuel prices, emission standards, and generation costs for coal vs natural gas power plants.

    PubMed

    Pratson, Lincoln F; Haerer, Drew; Patiño-Echeverri, Dalia

    2013-05-01

    Low natural gas prices and stricter, federal emission regulations are promoting a shift away from coal power plants and toward natural gas plants as the lowest-cost means of generating electricity in the United States. By estimating the cost of electricity generation (COE) for 304 coal and 358 natural gas plants, we show that the economic viability of 9% of current coal capacity is challenged by low natural gas prices, while another 56% would be challenged by the stricter emission regulations. Under the current regulations, coal plants would again become the dominant least-cost generation option should the ratio of average natural gas to coal prices (NG2CP) rise to 1.8 (it was 1.42 in February 2012). If the more stringent emission standards are enforced, however, natural gas plants would remain cost competitive with a majority of coal plants for NG2CPs up to 4.3.

  12. Stibine/arsine emissions from lead-acid batteries

    SciTech Connect

    Varma, R.; Cook, G. M.; Yao, N. P.

    1980-01-01

    Antimonial lead alloys, which also contain some arsenic, have traditionally been used for the fabrication of lead-acid battery electrodes. The possible generation of arsine and stibine during battery operation must be considered in the development of batteries for electric vehicles, utility load-leveling, and solar electricity storage. Research on generation of arsine and stibine is summarized, and exposure limits are given. Published analytical procedures for determination of arsine and stibine and their sensitivities are discussed. The design and testing of a stibine/arsine monitoring field kit are described. A hydrogen-oxygen recombination device can recombine stoichiometric H/sub 2/-O/sub 2/ with about 97% efficiency while scavenging the charge gas of much of the SbH/sub 3/ and AsH/sub 3/; its principles are illustrated. Experiments to estimate exposure of drivers to AsH/sub 3/ and SbH/sub 3/ from lead-acid batteries in electric vehicles are under way. 4 figures, 2 tables. (RWR)

  13. Emissions of methane from offshore oil and gas platforms in Southeast Asia.

    PubMed

    Nara, Hideki; Tanimoto, Hiroshi; Tohjima, Yasunori; Mukai, Hitoshi; Nojiri, Yukihiro; Machida, Toshinobu

    2014-01-01

    Methane is a substantial contributor to climate change. It also contributes to maintaining the background levels of tropospheric ozone. Among a variety of CH4 sources, current estimates suggest that CH4 emissions from oil and gas processes account for approximately 20% of worldwide anthropogenic emissions. Here, we report on observational evidence of CH4 emissions from offshore oil and gas platforms in Southeast Asia, detected by a highly time-resolved spectroscopic monitoring technique deployed onboard cargo ships of opportunity. We often encountered CH4 plumes originating from operational flaring/venting and fugitive emissions off the coast of the Malay Peninsula and Borneo. Using night-light imagery from satellites, we discovered more offshore platforms in this region than are accounted for in the emission inventory. Our results demonstrate that current knowledge regarding CH4 emissions from offshore platforms in Southeast Asia has considerable uncertainty and therefore, emission inventories used for modeling and assessment need to be re-examined.

  14. Fundamental thermochemical properties of amino acids: gas-phase and aqueous acidities and gas-phase heats of formation.

    PubMed

    Stover, Michele L; Jackson, Virgil E; Matus, Myrna H; Adams, Margaret A; Cassady, Carolyn J; Dixon, David A

    2012-03-01

    The gas-phase acidities of the 20 L-amino acids have been predicted at the composite G3(MP2) level. A broad range of structures of the neutral and anion were studied to determine the lowest energy conformer. Excellent agreement is found with the available experimental gas-phase deprotonation enthalpies, and the calculated values are within experimental error. We predict that tyrosine is deprotonated at the CO(2)H site. Cysteine is predicted to be deprotonated at the SH but the proton on the CO(2)H is shared with the S(-) site. Self-consistent reaction field (SCRF) calculations with the COSMO parametrization were used to predict the pK(a)'s of the non-zwitterion form in aqueous solution. The differences in the non-zwitterion pK(a) values were used to estimate the free energy difference between the zwitterion and nonzwitterion forms in solution. The heats of formation of the neutral compounds were calculated from atomization energies and isodesmic reactions to provide the first reliable set of these values in the gas phase. Further calculations were performed on five rare amino acids to predict their heats of formation, acidities, and pK(a) values.

  15. Methane Emissions from Leak and Loss Audits of Natural Gas Compressor Stations and Storage Facilities.

    PubMed

    Johnson, Derek R; Covington, April N; Clark, Nigel N

    2015-07-01

    As part of the Environmental Defense Fund's Barnett Coordinated Campaign, researchers completed leak and loss audits for methane emissions at three natural gas compressor stations and two natural gas storage facilities. Researchers employed microdilution high-volume sampling systems in conjunction with in situ methane analyzers, bag samples, and Fourier transform infrared analyzers for emissions rate quantification. All sites had a combined total methane emissions rate of 94.2 kg/h, yet only 12% of the emissions total resulted from leaks. Methane slip from exhausts represented 44% of the total emissions. Remaining methane emissions were attributed to losses from pneumatic actuators and controls, engine crankcases, compressor packing vents, wet seal vents, and slop tanks. Measured values were compared with those reported in literature. Exhaust methane emissions were lower than emissions factor estimates for engine exhausts, but when combined with crankcase emissions, measured values were 11.4% lower than predicted by AP-42 as applicable to emissions factors for four-stroke, lean-burn engines. Average measured wet seal emissions were 3.5 times higher than GRI values but 14 times lower than those reported by Allen et al. Reciprocating compressor packing vent emissions were 39 times higher than values reported by GRI, but about half of values reported by Allen et al. Though the data set was small, researchers have suggested a method to estimate site-wide emissions factors for those powered by four-stroke, lean-burn engines based on fuel consumption and site throughput.

  16. Top-down Constraints on Emissions: Example for Oil and Gas Operations

    NASA Astrophysics Data System (ADS)

    Petron, G.; Sweeney, C.; Karion, A.; Brewer, A.; Hardesty, R.; Banta, R. M.; Frost, G. J.; Trainer, M.; Miller, B. R.; Conley, S. A.; Kofler, J.; Newberger, T.; Higgs, J. A.; Wolter, S.; Guenther, D.; Andrews, A. E.; Dlugokencky, E. J.; Lang, P. M.; Montzka, S. A.; Edwards, P. M.; Dube, W. P.; Brown, S. S.; Helmig, D.; Hueber, J.; Rella, C.; Jacobson, G. A.; Wolfe, D. E.; Bruhwiler, L.; Tans, P. P.; Schnell, R. C.

    2012-12-01

    In many countries, human-caused emissions of the two major long lived greenhouse gases, carbon dioxide and methane, are primarily linked to the use of fossil fuels (coal, oil and natural gas). Fugitive emissions of natural gas (mainly CH4) from the oil and gas exploration and production sector may also be an important contributor to natural gas life cycle/greenhouse gas footprint. Fuel use statistics have traditionally been used in combination with fuel and process specific emission factors to estimate CO2 emissions from fossil-fuel-based energy systems (power plants, motor vehicles…). Fugitive emissions of CH4, in contrast, are much harder to quantify. Fugitive emission levels may vary substantially from one oil and gas producing basin to another and may not scale with common activity data, such as production numbers. In the USA, recent efforts by the industry, States and the US Environmental Protection Agency have focused on developing new bottom-up inventory methodologies to assess methane and volatile organic compounds emissions from oil and gas producing basins. The underlying assumptions behind these inventories are multiple and result de facto in large uncertainties. Independent atmospheric-based estimates of emissions provide another valuable piece of information that can be used to evaluate inventories. Over the past year, the NOAA Earth System Research Laboratory has used its expertise in high quality GHG and wind measurements to evaluate regional emissions of methane from two oil and gas basins in the Rocky Mountain region. Results from these two campaigns will be discussed and compared with available inventories.

  17. ADVANCED DEHYDRATOR DESIGN SAVES GAS AND REDUCES HAP EMISSIONS

    EPA Science Inventory

    Glycol dehydrators remove water from gas pipe lines. An advanced dehydrator by Engineered Concepts, Farmington, NM, saves a significant amount of gas, while reducing hazardous air pollutants, volatile organic compounds and CO2 air pollutants

  18. Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review

    SciTech Connect

    Traynor, G.W.; Apte, M.G.; Chang, G.-M.

    1996-08-01

    There is a need to reduce air pollutant emissions in some U.S. urban regions to meet federal and state air quality guidelines. Opportunities exist for reducing pollutant emissions from natural gas appliances in the residential sector. A cost-benefit analysis on various pollutant-reducing strategies is needed to evaluate these opportunities. The effectiveness of these pollutant-reducing strategies (e.g., low-emission burners, energy conservation) can then be ranked among themselves and compared with other pollutant-reducing strategies available for the region. A key step towards conducting a cost-benefit analysis is to collect information on pollutant emissions from existing residential natural gas appliances. An extensive literature search was conducted to collect data on residential natural-gas-appliance pollutant emission factors. The literature primarily describes laboratory tests and may not reflect actual emission factor distributions in the field. Pollutant emission factors for appliances operated at over 700 test conditions are summarized for nitrogen oxides, carbon monoxide, fine particulate matter, formaldehyde, and methane. The appliances for which pollutant emissions are summarized include forced-air furnaces; stand-alone space heaters (vented and unvented); water heaters; cooking range burners, ovens, and broilers; and pilot lights. The arithmetic means of the nitrogen oxides and fine particulate matter emission factor distributions agree well with the Environmental Protection Agency published emission factor values for domestic gas appliances (in report AP-42). However, the carbon monoxide and methane distribution means are much higher than the relevant AP-42 values. Formaldehyde emission factors are not addressed in AP-42, but the emission factor mean for formaldehyde is comparable to the AP-42 emission factor value for total hydrocarbon emissions.

  19. Greenhouse gas emissions from dairy manure management: a review of field-based studies.

    PubMed

    Owen, Justine J; Silver, Whendee L

    2015-02-01

    Livestock manure management accounts for almost 10% of greenhouse gas emissions from agriculture globally, and contributes an equal proportion to the US methane emission inventory. Current emissions inventories use emissions factors determined from small-scale laboratory experiments that have not been compared to field-scale measurements. We compiled published data on field-scale measurements of greenhouse gas emissions from working and research dairies and compared these to rates predicted by the IPCC Tier 2 modeling approach. Anaerobic lagoons were the largest source of methane (368 ± 193 kg CH4 hd(-1) yr(-1)), more than three times that from enteric fermentation (~120 kg CH4 hd(-1) yr(-1)). Corrals and solid manure piles were large sources of nitrous oxide (1.5 ± 0.8 and 1.1 ± 0.7 kg N2O hd(-1) yr(-1), respectively). Nitrous oxide emissions from anaerobic lagoons (0.9 ± 0.5 kg N2O hd(-1) yr(-1)) and barns (10 ± 6 kg N2O hd(-1) yr(-1)) were unexpectedly large. Modeled methane emissions underestimated field measurement means for most manure management practices. Modeled nitrous oxide emissions underestimated field measurement means for anaerobic lagoons and manure piles, but overestimated emissions from slurry storage. Revised emissions factors nearly doubled slurry CH4 emissions for Europe and increased N2O emissions from solid piles and lagoons in the United States by an order of magnitude. Our results suggest that current greenhouse gas emission factors generally underestimate emissions from dairy manure and highlight liquid manure systems as promising target areas for greenhouse gas mitigation.

  20. Mobile Methane Measurements of Natural Gas Distribution and End-use Emissions in Indianapolis

    NASA Astrophysics Data System (ADS)

    Lamb, B. K.; Roscioli, J. R.; Floerchinger, C. R.; Herndon, S. C.; Ferrara, T.

    2015-12-01

    Indianapolis is the site of the INFLUX program to investigate greenhouse gas emissions from a large metropolitan area. A key question in INFLUX is the relative contributions of methane emissions from the local gas distribution system in comparison to biogenic sources, such as the wastewater treatment system and landfills, and of end use emissions from furnaces and other combustion devices downstream of customer gas meters. During February and March, 2015, the Aerodyne van was used to measure methane, ethane, CO2 and other trace gases during mobile sampling traverses through a number of urban and suburban Indianapolis neighborhoods. Signatures of distinct natural gas emissions, biogenic emissions, and combustion emissions were observed in small plumes. In a number of cases, these sources were identified as manhole covers in city streets, where nearby leaks can seep into the local wastewater system. Quantification of ethane and methane from 45 manholes reveal that some had emissions that were clearly biogenic while others had a distinct natural gas signature. This paper describes the results from the analysis of these mobile data in the context of the current Indianapolis methane emission inventory.

  1. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    PubMed

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan

    2015-01-01

    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer.

  2. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    PubMed

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan

    2015-01-01

    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer. PMID:25985667

  3. Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts

    PubMed Central

    McKain, Kathryn; Down, Adrian; Raciti, Steve M.; Budney, John; Hutyra, Lucy R.; Floerchinger, Cody; Herndon, Scott C.; Nehrkorn, Thomas; Zahniser, Mark S.; Jackson, Robert B.; Phillips, Nathan; Wofsy, Steven C.

    2015-01-01

    Methane emissions from natural gas delivery and end use must be quantified to evaluate the environmental impacts of natural gas and to develop and assess the efficacy of emission reduction strategies. We report natural gas emission rates for 1 y in the urban region of Boston, using a comprehensive atmospheric measurement and modeling framework. Continuous methane observations from four stations are combined with a high-resolution transport model to quantify the regional average emission flux, 18.5 ± 3.7 (95% confidence interval) g CH4⋅m−2⋅y−1. Simultaneous observations of atmospheric ethane, compared with the ethane-to-methane ratio in the pipeline gas delivered to the region, demonstrate that natural gas accounted for ∼60–100% of methane emissions, depending on season. Using government statistics and geospatial data on natural gas use, we find the average fractional loss rate to the atmosphere from all downstream components of the natural gas system, including transmission, distribution, and end use, was 2.7 ± 0.6% in the Boston urban region, with little seasonal variability. This fraction is notably higher than the 1.1% implied by the most closely comparable emission inventory. PMID:25617375

  4. Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts.

    PubMed

    McKain, Kathryn; Down, Adrian; Raciti, Steve M; Budney, John; Hutyra, Lucy R; Floerchinger, Cody; Herndon, Scott C; Nehrkorn, Thomas; Zahniser, Mark S; Jackson, Robert B; Phillips, Nathan; Wofsy, Steven C

    2015-02-17

    Methane emissions from natural gas delivery and end use must be quantified to evaluate the environmental impacts of natural gas and to develop and assess the efficacy of emission reduction strategies. We report natural gas emission rates for 1 y in the urban region of Boston, using a comprehensive atmospheric measurement and modeling framework. Continuous methane observations from four stations are combined with a high-resolution transport model to quantify the regional average emission flux, 18.5 ± 3.7 (95% confidence interval) g CH4 ⋅ m(-2) ⋅ y(-1). Simultaneous observations of atmospheric ethane, compared with the ethane-to-methane ratio in the pipeline gas delivered to the region, demonstrate that natural gas accounted for ∼ 60-100% of methane emissions, depending on season. Using government statistics and geospatial data on natural gas use, we find the average fractional loss rate to the atmosphere from all downstream components of the natural gas system, including transmission, distribution, and end use, was 2.7 ± 0.6% in the Boston urban region, with little seasonal variability. This fraction is notably higher than the 1.1% implied by the most closely comparable emission inventory.

  5. CFD Investigation of Pollutant Emission in Can-Type Combustor Firing Natural Gas, LNG and Syngas

    NASA Astrophysics Data System (ADS)

    Hasini, H.; Fadhil, SSA; Mat Zian, N.; Om, NI

    2016-03-01

    CFD investigation of flow, combustion process and pollutant emission using natural gas, liquefied natural gas and syngas of different composition is carried out. The combustor is a can-type combustor commonly used in thermal power plant gas turbine. The investigation emphasis on the comparison of pollutant emission such in particular CO2, and NOx between different fuels. The numerical calculation for basic flow and combustion process is done using the framework of ANSYS Fluent with appropriate model assumptions. Prediction of pollutant species concentration at combustor exit shows significant reduction of CO2 and NOx for syngas combustion compared to conventional natural gas and LNG combustion.

  6. Socioeconomic Drivers of Greenhouse Gas Emissions in the United States.

    PubMed

    Liang, Sai; Wang, Hongxia; Qu, Shen; Feng, Tiantian; Guan, Dabo; Fang, Hong; Xu, Ming

    2016-07-19

    Existing studies examined the U.S.'s direct GHG emitters and final consumers driving upstream GHG emissions, but overlooked the U.S.'s primary suppliers enabling downstream GHG emissions and relative contributions of socioeconomic factors to GHG emission changes from the supply side. This study investigates GHG emissions of sectors in the U.S. from production-based (direct emissions), consumption-based (upstream emissions driven by final consumption of products), and income-based (downstream emissions enabled by primary inputs of sectors) viewpoints. We also quantify relative contributions of socioeconomic factors to the US's GHG emission changes during 1995-2009 from both the consumption and supply sides, using structural decomposition analysis (SDA). Results show that income-based method can identify new critical sectors leading to GHG emissions (e.g., Renting of Machinery & Equipment and Other Business Activities and Financial Intermediation sectors) which are unidentifiable by production-based and consumption-based methods. Moreover, the supply side SDA reveals new factors for GHG emission changes: mainly production output structure representing product allocation pattern and primary input structure indicating sectoral shares in primary inputs. In addition to production-side and consumption-side GHG reduction measures, the U.S. should also pay attention to supply side measures such as influencing the behaviors of product allocation and primary inputs. PMID:27276120

  7. Fugitive Emissions from Conventional and Hydraulically Fractured Natural Gas Developments in Western Canada

    NASA Astrophysics Data System (ADS)

    Atherton, E. E.; Risk, D. A.; Lavoie, M.; Marshall, A. D.; Baillie, J.; Williams, J. P.

    2015-12-01

    Presently, fugitive emissions released into the atmosphere during the completion and production of oil and gas wells are poorly regulated within Canada. Some possible upstream sources of these emissions include flowback during well completions, liquid unloading, chemical injection pumps, and equipment leaks. The environmental benefits of combusting natural gas compared to oil or coal are negated if methane leakages surpass 3.2% of total production, so it is important to have a thorough understanding of these fugitive emissions. This study compares atmospheric leakage pathways of methane and other fugitive gases in both conventional and unconventional oil and gas developments in Western Canada to help fill this knowledge gap. Over 5000 kilometers of mobile survey campaigns were completed in carefully selected developments in the Montney shale play in British Columbia, and in conventional oil fields in Alberta. These sites are developed by more than 25 different operators. High precision laser and UV fluorescence gas analyzers were used to gather geolocated trace gas concentrations at a frequency of 1 Hz while driving. These data were processed with an adaptive technique to compensate for fluctuations in background concentrations for each gas. The residual excess concentrations were compositionally fingerprinted on the basis of the expected gas ratios for potential emission sites in order to definitively attribute anomalies to infrastructural leak sources. Preliminary results from the mobile surveys of both conventional and unconventional oil and gas sites are presented here. Pathways of methane and other fugitive gases are mapped to their respective sources, identifying common causes of emissions leaks across the oil and gas industry. This is the first bottom-up study of fugitive emissions from Canadian energy developments to produce publicly available data. These findings are significant to operators interested in lowering emissions for economic benefit, as well as

  8. An estimate of gas emissions and magmatic gas content from Kilauea volcano

    USGS Publications Warehouse

    Greenland, L.P.; Rose, William I., Jr.; Stokes, J.B.

    1985-01-01

    Emission rates of CO2 have been measured at Kilauea volcano, Hawaii, in the east-rift eruptive plume and CO2 and SO2 have been measured in the plume from the noneruptive fumaroles in the summit caldera. These data yield an estimate of the loading of Kilauean eruptive gases to the atmosphere and suggest that such estimates may be inferred directly from measured lava volumes. These data, combined with other chemical and geologic data, suggest that magma arrives at the shallow summit reservoir containing (wt.%) 0.32% H2O, 0.32% CO2 and 0.09% S. Magma is rapidly degassed of most of its CO2 in the shallow reservoir before transport to the eruption site. Because this summit degassing yields a magma saturated and in equilibrium with volatile species and because transport of the magma to the eruption site occurs in a zone no shallower than the summit reservoir, we suggest that eruptive gases from Kilauea characteristically should be one of two types: a 'primary' gas from fresh magma derived directly from the mantle and a carbon-depleted gas from magma stored in the summit reservoir. ?? 1995.

  9. Measurements of methane emissions from natural gas gathering facilities and processing plants: measurement methods

    NASA Astrophysics Data System (ADS)

    Roscioli, J. R.; Yacovitch, T. I.; Floerchinger, C.; Mitchell, A. L.; Tkacik, D. S.; Subramanian, R.; Martinez, D. M.; Vaughn, T. L.; Williams, L.; Zimmerle, D.; Robinson, A. L.; Herndon, S. C.; Marchese, A. J.

    2014-12-01

    Increased natural gas production in recent years has spurred intense interest in methane (CH4) emissions associated with its production, gathering, processing, transmission and distribution. Gathering and processing facilities (G&P facilities) are unique in that the wide range of gas sources (shale, coal-bed, tight gas, conventional, etc.) results in a wide range of gas compositions, which in turn requires an array of technologies to prepare the gas for pipeline transmission and distribution. We present an overview and detailed description of the measurement method and analysis approach used during a 20-week field campaign studying CH4 emissions from the natural gas G&P facilities between October 2013 and April 2014. Dual tracer flux measurements and onsite observations were used to address the magnitude and origins of CH4 emissions from these facilities. The use of a second tracer as an internal standard revealed plume-specific uncertainties in the measured emission rates of 20-47%, depending upon plume classification. Combining downwind methane, ethane (C2H6), carbon monoxide (CO), carbon dioxide (CO2), and tracer gas measurements with onsite tracer gas release allows for quantification of facility emissions, and in some cases a more detailed picture of source locations.

  10. Measurements of methane emissions at natural gas production sites in the United States

    PubMed Central

    Allen, David T.; Torres, Vincent M.; Thomas, James; Sullivan, David W.; Harrison, Matthew; Hendler, Al; Herndon, Scott C.; Kolb, Charles E.; Fraser, Matthew P.; Hill, A. Daniel; Lamb, Brian K.; Miskimins, Jennifer; Sawyer, Robert F.; Seinfeld, John H.

    2013-01-01

    Engineering estimates of methane emissions from natural gas production have led to varied projections of national emissions. This work reports direct measurements of methane emissions at 190 onshore natural gas sites in the United States (150 production sites, 27 well completion flowbacks, 9 well unloadings, and 4 workovers). For well completion flowbacks, which clear fractured wells of liquid to allow gas production, methane emissions ranged from 0.01 Mg to 17 Mg (mean = 1.7 Mg; 95% confidence bounds of 0.67–3.3 Mg), compared with an average of 81 Mg per event in the 2011 EPA national emission inventory from April 2013. Emission factors for pneumatic pumps and controllers as well as equipment leaks were both comparable to and higher than estimates in the national inventory. Overall, if emission factors from this work for completion flowbacks, equipment leaks, and pneumatic pumps and controllers are assumed to be representative of national populations and are used to estimate national emissions, total annual emissions from these source categories are calculated to be 957 Gg of methane (with sampling and measurement uncertainties estimated at ±200 Gg). The estimate for comparable source categories in the EPA national inventory is ∼1,200 Gg. Additional measurements of unloadings and workovers are needed to produce national emission estimates for these source categories. The 957 Gg in emissions for completion flowbacks, pneumatics, and equipment leaks, coupled with EPA national inventory estimates for other categories, leads to an estimated 2,300 Gg of methane emissions from natural gas production (0.42% of gross gas production). PMID:24043804

  11. Measurements of methane emissions at natural gas production sites in the United States.

    PubMed

    Allen, David T; Torres, Vincent M; Thomas, James; Sullivan, David W; Harrison, Matthew; Hendler, Al; Herndon, Scott C; Kolb, Charles E; Fraser, Matthew P; Hill, A Daniel; Lamb, Brian K; Miskimins, Jennifer; Sawyer, Robert F; Seinfeld, John H

    2013-10-29

    Engineering estimates of methane emissions from natural gas production have led to varied projections of national emissions. This work reports direct measurements of methane emissions at 190 onshore natural gas sites in the United States (150 production sites, 27 well completion flowbacks, 9 well unloadings, and 4 workovers). For well completion flowbacks, which clear fractured wells of liquid to allow gas production, methane emissions ranged from 0.01 Mg to 17 Mg (mean = 1.7 Mg; 95% confidence bounds of 0.67-3.3 Mg), compared with an average of 81 Mg per event in the 2011 EPA national emission inventory from April 2013. Emission factors for pneumatic pumps and controllers as well as equipment leaks were both comparable to and higher than estimates in the national inventory. Overall, if emission factors from this work for completion flowbacks, equipment leaks, and pneumatic pumps and controllers are assumed to be representative of national populations and are used to estimate national emissions, total annual emissions from these source categories are calculated to be 957 Gg of methane (with sampling and measurement uncertainties estimated at ± 200 Gg). The estimate for comparable source categories in the EPA national inventory is ~1,200 Gg. Additional measurements of unloadings and workovers are needed to produce national emission estimates for these source categories. The 957 Gg in emissions for completion flowbacks, pneumatics, and equipment leaks, coupled with EPA national inventory estimates for other categories, leads to an estimated 2,300 Gg of methane emissions from natural gas production (0.42% of gross gas production).

  12. THE IMPACT OF MUNICIPAL SOLID WASTE MANAGEMENT ON GREENHOUSE GAS EMISSIONS IN THE UNITED STATES

    EPA Science Inventory

    Technological advancements in United States (U.S.) municipal solid waste (MSW) disposal and a focus on the environmental advantages of integrated MSW management have greatly reduced the environmental impacts of MSW management, including greenhouse gas (GHG) emissions. This study ...

  13. GUIDANCE FOR EVALUATING LANDFILL GAS EMISSIONS FROM CLOSED OR ABANDONED FACILITIES

    EPA Science Inventory

    This document provides guidance to Superfund remedial project managers, on scene coordinators, facility owners, and potentially responsible parties for conducting an air pathway analysis for landfill gas (LFG) emissions under the Comprehensive Environmental Response, Compensation...

  14. Greenhouse gas emissions in an agroforestry system in the southeastern U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agroforestry systems can provide diverse ecosystem services and economic benefits that conventional farming practices cannot. Importantly, these systems have the potential to mitigate greenhouse gas emissions by reducing the need for external inputs, enhancing nutrient cycling and promoting C seques...

  15. Sustainability of Switchgrass for Cellulosic Ethanol: Evaluating Net Energy, Greenhouse Gas Emissions, and Feedstocks Costs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial herbaceous plants such as switchgrass are being evaluated as cellulosic bioenergy crops. Sustainability concerns with switchgrass (Panicum virgatum L.) and similar energy crops have been about net energy efficiency, potential greenhouse gas (GHG) emissions, and economic feasibility grown ...

  16. Soil C storage and greenhouse gas emission perennial grasses managed for bio energy feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial grasses like switchgrass or big bluestem when managed as bioenergy feedstock require nitrogenous inputs. Nitrogen fertilizer frequently cause nitrous oxide emission. Therefore, managing grasses as feedstock may reduce the greenhouse gas (GHG) mitigation potential expected from perennial. ...

  17. Development of Greenhouse Gas Emissions Model (GEM) for Heavy- & Medium-Duty Vehicle Compliance

    EPA Science Inventory

    A regulatory vehicle simulation program was designed for determining greenhouse gas (GHG) emissions and fuel consumption by estimating the performance of technologies, verifying compliance with the regulatory standards and estimating the overall benefits of the program.

  18. Predictive emission monitoring successfully replaces CEMS in gas turbine applications

    SciTech Connect

    1996-03-01

    As more and more regulations require enhanced monitoring of stack emissions, a number of industries are turning from conventional continuous emission monitoring systems (CEMS) to predictive emission monitoring systems (PEMS). PEMS typically cost less to install and operate than CEMS, and they frequently offer a number of additional advantages, including low maintenance and high reliability. The advantages of PEMS are discussed in this paper. 1 ref., 1 fig., 1 tab.

  19. Life cycle greenhouse gas emissions from U.S. liquefied natural gas exports: implications for end uses.

    PubMed

    Abrahams, Leslie S; Samaras, Constantine; Griffin, W Michael; Matthews, H Scott

    2015-03-01

    This study analyzes how incremental U.S. liquefied natural gas (LNG) exports affect global greenhouse gas (GHG) emissions. We find that exported U.S. LNG has mean precombustion emissions of 37 g CO2-equiv/MJ when regasified in Europe and Asia. Shipping emissions of LNG exported from U.S. ports to Asian and European markets account for only 3.5-5.5% of precombustion life cycle emissions, hence shipping distance is not a major driver of GHGs. A scenario-based analysis addressing how potential end uses (electricity and industrial heating) and displacement of existing fuels (coal and Russian natural gas) affect GHG emissions shows the mean emissions for electricity generation using U.S. exported LNG were 655 g CO2-equiv/kWh (with a 90% confidence interval of 562-770), an 11% increase over U.S. natural gas electricity generation. Mean emissions from industrial heating were 104 g CO2-equiv/MJ (90% CI: 87-123). By displacing coal, LNG saves 550 g CO2-equiv per kWh of electricity and 20 g per MJ of heat. LNG saves GHGs under upstream fugitive emissions rates up to 9% and 5% for electricity and heating, respectively. GHG reductions were found if Russian pipeline natural gas was displaced for electricity and heating use regardless of GWP, as long as U.S. fugitive emission rates remain below the estimated 5-7% rate of Russian gas. However, from a country specific carbon accounting perspective, there is an imbalance in accrued social costs and benefits. Assuming a mean social cost of carbon of $49/metric ton, mean global savings from U.S. LNG displacement of coal for electricity generation are $1.50 per thousand cubic feet (Mcf) of gaseous natural gas exported as LNG ($.028/kWh). Conversely, the U.S. carbon cost of exporting the LNG is $1.80/Mcf ($.013/kWh), or $0.50-$5.50/Mcf across the range of potential discount rates. This spatial shift in embodied carbon emissions is important to consider in national interest estimates for LNG exports. PMID:25650513

  20. Life cycle greenhouse gas emissions from U.S. liquefied natural gas exports: implications for end uses.

    PubMed

    Abrahams, Leslie S; Samaras, Constantine; Griffin, W Michael; Matthews, H Scott

    2015-03-01

    This study analyzes how incremental U.S. liquefied natural gas (LNG) exports affect global greenhouse gas (GHG) emissions. We find that exported U.S. LNG has mean precombustion emissions of 37 g CO2-equiv/MJ when regasified in Europe and Asia. Shipping emissions of LNG exported from U.S. ports to Asian and European markets account for only 3.5-5.5% of precombustion life cycle emissions, hence shipping distance is not a major driver of GHGs. A scenario-based analysis addressing how potential end uses (electricity and industrial heating) and displacement of existing fuels (coal and Russian natural gas) affect GHG emissions shows the mean emissions for electricity generation using U.S. exported LNG were 655 g CO2-equiv/kWh (with a 90% confidence interval of 562-770), an 11% increase over U.S. natural gas electricity generation. Mean emissions from industrial heating were 104 g CO2-equiv/MJ (90% CI: 87-123). By displacing coal, LNG saves 550 g CO2-equiv per kWh of electricity and 20 g per MJ of heat. LNG saves GHGs under upstream fugitive emissions rates up to 9% and 5% for electricity and heating, respectively. GHG reductions were found if Russian pipeline natural gas was displaced for electricity and heating use regardless of GWP, as long as U.S. fugitive emission rates remain below the estimated 5-7% rate of Russian gas. However, from a country specific carbon accounting perspective, there is an imbalance in accrued social costs and benefits. Assuming a mean social cost of carbon of $49/metric ton, mean global savings from U.S. LNG displacement of coal for electricity generation are $1.50 per thousand cubic feet (Mcf) of gaseous natural gas exported as LNG ($.028/kWh). Conversely, the U.S. carbon cost of exporting the LNG is $1.80/Mcf ($.013/kWh), or $0.50-$5.50/Mcf across the range of potential discount rates. This spatial shift in embodied carbon emissions is important to consider in national interest estimates for LNG exports.

  1. Assessment of methane emissions from oil and gas production pads using mobile measurements.

    PubMed

    Brantley, Halley L; Thoma, Eben D; Squier, William C; Guven, Birnur B; Lyon, David

    2014-12-16

    A new mobile methane emissions inspection approach, Other Test Method (OTM) 33A, was used to quantify short-term emission rates from 210 oil and gas production pads during eight two-week field studies in Texas, Colorado, and Wyoming from 2010 to 2013. Emission rates were log-normally distributed with geometric means and 95% confidence intervals (CIs) of 0.33 (0.23, 0.48), 0.14 (0.11, 0.19), and 0.59 (0.47, 0.74) g/s in the Barnett, Denver-Julesburg, and Pinedale basins, respectively. This study focused on sites with emission rates above 0.01 g/s and included short-term (i.e., condensate tank flashing) and maintenance-related emissions. The results fell within the upper ranges of the distributions observed in recent onsite direct measurement studies. Considering data across all basins, a multivariate linear regression was used to assess the relationship of methane emissions to well age, gas production, and hydrocarbon liquids (oil or condensate) production. Methane emissions were positively correlated with gas production, but only approximately 10% of the variation in emission rates was explained by variation in production levels. The weak correlation between emission and production rates may indicate that maintenance-related stochastic variables and design of production and control equipment are factors determining emissions.

  2. Emissions of coalbed and natural gas methane from abandoned oil and gas wells in the United States

    NASA Astrophysics Data System (ADS)

    Townsend-Small, Amy; Ferrara, Thomas W.; Lyon, David R.; Fries, Anastasia E.; Lamb, Brian K.

    2016-03-01

    Recent work indicates that oil and gas methane (CH4) inventories for the United States are underestimated. Here we present results from direct measurements of CH4 emissions from 138 abandoned oil and gas wells, a source currently missing from inventories. Most abandoned wells do not emit CH4, but 6.5% of wells had measurable CH4 emissions. Twenty-five percent of wells we visited that had not been plugged emitted > 5 g CH4 h-1. Stable isotopes indicate that wells emit natural gas and/or coalbed CH4. We estimate that abandoned wells make a small contribution (<1%) to regional CH4 emissions in our study areas. Additional data are needed to accurately determine the contribution of abandoned wells to national CH4 budgets, particularly measurements in other basins and better characterization of the abundance and regional distribution of high emitters.

  3. Emissions from gas appliances: Their origin and control. A GATC task report, June 1990-December 1992

    SciTech Connect

    Weller, A.E.

    1993-04-01

    The intent of the document is to organize available information on combustion emissions from residential and commercial gas appliances. Information is supplied on both the mechanisms responsible for the origin of these emissions and approaches to burner and appliance design that can reduce these emissions. Describe to the extent possible are low-emission combustion systems having a traceable connection to theoretical principles and those empirically displaying low emissions without such a connection. The reference document can serve as a starting point and guide for manufacturers to plan and evaluate their programs of burner design and application.

  4. Process for producing and recovering elemental sulfur from acid gas

    SciTech Connect

    Reed, R. L.

    1985-03-26

    A system and process produce high actual levels of sulfur recovery from acid gas. The system includes two conventional Claus reactors and two cold bed adsorption (CBA) reactors. Four condensers are provided, one disposed before each of the catalytic reactors, and one disposed after the CBA reactor. The system includes a gas clean-up treatment zone for hydrogenation, drying and oxidation of gas to provide stoichiometric ratio of H/sub 2/S and SO/sub 2/. The gas is passed through the clean-up treatment zone prior to being fed to the first of the CBA reactors. The system is designed to operate either in a recovery mode or in a regeneration mode. In the recovery mode, the reactors are in series and the CBA reactors are operated below dew point of sulfur. In regeneration mode, effluent from the clean-up treatment zone is heated in a heat exchanger using effluent from the first catalytic reactor as the heat source. The resulting regeneration gas is fed to one of the two CBA reactors to vaporize sulfur and regenerate the catalyst. The vaporized sulfur is recovered in the condenser. The effluent from the condenser is passed to the other CBA reactor which is operated in the recovery mode during regeneration.

  5. Greenhouse gas emissions from home composting of organic household waste.

    PubMed

    Andersen, J K; Boldrin, A; Christensen, T H; Scheutz, C

    2010-12-01

    The emission of greenhouse gases (GHGs) is a potential environmental disadvantage of home composting. Because of a lack of reliable GHG emission data, a comprehensive experimental home composting system was set up. The system consisted of six composting units, and a static flux chamber method was used to measure and quantify the GHG emissions for one year composting of organic household waste (OHW). The average OHW input in the six composting units was 2.6-3.5 kg week(-1) and the temperature inside the composting units was in all cases only a few degrees (2-10 °C) higher than the ambient temperature. The emissions of methane (CH(4)) and nitrous oxide (N(2)O) were quantified as 0.4-4.2 kg CH(4)Mg(-1) input wet waste (ww) and 0.30-0.55 kg N(2)OMg(-1)ww, depending on the mixing frequency. This corresponds to emission factors (EFs) (including only CH(4) and N(2)O emissions) of 100-239 kg CO(2)-eq.Mg(-1)ww. Composting units exposed to weekly mixing had the highest EFs, whereas the units with no mixing during the entire year had the lowest emissions. In addition to the higher emission from the frequently mixed units, there was also an instant release of CH(4) during mixing which was estimated to 8-12% of the total CH(4) emissions. Experiments with higher loads of OHW (up to 20 kg every fortnight) entailed a higher emission and significantly increased overall EFs (in kg substance per Mg(-1)ww). However, the temperature development did not change significantly. The GHG emissions (in kg CO(2)-eq.Mg(-1)ww) from home composting of OHW were found to be in the same order of magnitude as for centralised composting plants.

  6. Effect of water injection on nitric oxide emissions of a gas turbine combustor burning natural gas fuel

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    The effect of direct water injection on the exhaust gas emissions of a turbojet combustor burning natural gas fuel was investigated. The results are compared with the results from similar tests using ASTM Jet-A fuel. Increasing water injection decreased the emissions of oxides of nitrogen (NOX) and increased the emissions of carbon monoxide and unburned hydrocarbons. The greatest percentage decrease in NOX with increasing water injection was at the lowest inlet-air temperature tested. The effect of increasing inlet-air temperature was to decrease the effect of the water injection. The reduction in NOX due to water injection was almost identical to the results obtained with Jet-A fuel. However, the emission indices of unburned hydrocarbons, carbon monoxide, and percentage nitric oxide in NOX were not.

  7. Stratospheric Trace Gas Distributions from Far Infrared Thermal Emission Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Guo, Jing

    1987-09-01

    An inversion algorithm has been developed to retrieve stratospheric trace gas distributions from high resolution far infrared limb thermal emission spectral data. The algorithm follows an onion peel approach and employs a non-linear least-square-fit spectral analysis technique. The infrared radiative transfer model used to compute the spectrum is based on full line-by-line and layer-by-layer calculations and includes curvature and refraction effects. Finite instrument field of view effects have been studied. An inversion algorithm has also been developed to correct observation angles. The spectral measurements were made in the Balloon Intercomparison Campaign (BIC), October, 1982, using a Fourier transform spectrometer. The observed spectra have an unapodized spectral resolution of 0.0033 cm ^{-1}, and cover the spectral region between 20-100 cm^{-1}. Spectral data for selected limb sequences have been calibrated. The instrument line shape function has been empirically determined. The observation angles of the spectra have been corrected from spectral lines of O_2 in the 23 -84 cm^{-1} region to have an accuracy within 4 arc minutes. The vertical profiles of O_3, H_2O, HDO, HCN, ^ {16}O^{16}O ^{18}O, and ^ {16}O^{18}O ^{16}O in the stratosphere have been retrieved with an altitude resolution of about 4-5 km in the 20-37 km range. The results are compared with available measurements in literature. The vertical profiles of O_3, H_2 O, and HDO are retrieved from spectral lines in the 20-100 cm^{-1} region. The variation of the D/H ratio of water vapor is derived. The vertical profile of HCN is retrieved from spectral lines in the 32-56 cm^{-1} region. The volume mixing ratio of HCN is found to be 139 pptv at 20 km, 127 pptv at 25 km, and increasing to 172 pptv at 37 km. The vertical profiles of stratospheric ^ {16}O^{16}O ^{18}O and ^ {16}O^{18}O ^{16}O are retrieved from spectral lines in the 39-76 cm^{-1 } region. The ratio of total heavy isotopic ozone ^{50}O_3 to

  8. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2014-05-15

    This study investigates the potential of control strategy optimisation for the reduction of operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, and demonstrates that significant improvements can be realised. A multi-objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and control parameter values for an activated sludge wastewater treatment plant, with objectives including minimisation of greenhouse gas emissions, operational costs and effluent pollutant concentrations, subject to legislative compliance. Different problem formulations are explored, to identify the most effective approach to emissions reduction, and the sets of optimal solutions enable identification of trade-offs between conflicting objectives. It is found that multi-objective optimisation can facilitate a significant reduction in greenhouse gas emissions without the need for plant redesign or modification of the control strategy layout, but there are trade-offs to consider: most importantly, if operational costs are not to be increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent ammonia and total nitrogen concentrations. Design of control strategies for a high effluent quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas emissions, so it is of key importance that effects on emissions are considered in control strategy development and optimisation.

  9. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics (Fact Sheet)

    SciTech Connect

    Not Available

    2012-11-01

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that helps to clarify inconsistent and conflicting life cycle GHG emission estimates in the published literature and provide more precise estimates of life cycle GHG emissions from PV systems.

  10. Mitigating greenhouse gas emissions from beef cattle housing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beef cattle are potential sources of greenhouse gases (GHG). These emissions include methane produced by fermentation within the gut (enteric), and methane and nitrous oxide emissions from manure. Life Cycle Analysis of North American (NA) beef cattle production systems consistently indicate that...

  11. 40 CFR 1036.108 - Greenhouse gas emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., measure CO2 emissions using the steady-state duty cycle specified in 40 CFR 86.1362 (referred to as the... 40 CFR part 1037 for limits on using engines certified to only one cycle. For medium and heavy heavy... engines), measure CO2 emissions using the transient duty cycle specified in 40 CFR part 86, subpart N....

  12. Status review of NASA programs for reducing aircraft gas turbine engine emissions

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1976-01-01

    Programs initiated by NASA to develop and demonstrate low emission advanced technology combustors for reducing aircraft gas turbine engine pollution are reviewed. Program goals are consistent with urban emission level requirements as specified by the U. S. Environmental Protection Agency and with upper atmosphere cruise emission levels as recommended by the U. S. Climatic Impact Assessment Program and National Research Council. Preliminary tests of advanced technology combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft gas turbine engines without adverse effects on fuel consumption. Preliminary test results from fundamental studies indicate that extremely low emission combustion systems may be possible for future generation jet aircraft. The emission reduction techniques currently being evaluated in these programs are described along with the results and a qualitative assessment of development difficulty.

  13. Determination of greenhouse gas emission reductions from sewage sludge anaerobic digestion in China.

    PubMed

    Liu, H-T; Kong, X-J; Zheng, G-D; Chen, C-C

    2016-01-01

    Sewage sludge is a considerable source of greenhouse gas (GHG) emission in the field of organic solid waste treatment and disposal. In this case study, total GHG emissions from sludge anaerobic digestion, including direct and indirect emissions as well as replaceable emission reduction due to biogas being reused instead of natural gas, were quantified respectively. The results indicated that no GHG generation needed to be considered during the anaerobic digestion process. Indirect emissions were mainly from electricity and fossil fuel consumption on-site and sludge transportation. Overall, the total GHG emission owing to relative subtraction from anaerobic digestion rather than landfill, and replaceable GHG reduction caused by reuse of its product of biogas, were quantified to be 0.7214 (northern China) or 0.7384 (southern China) MgCO2 MgWS(-1) (wet sludge). PMID:26744944

  14. Determination of greenhouse gas emission reductions from sewage sludge anaerobic digestion in China.

    PubMed

    Liu, H-T; Kong, X-J; Zheng, G-D; Chen, C-C

    2016-01-01

    Sewage sludge is a considerable source of greenhouse gas (GHG) emission in the field of organic solid waste treatment and disposal. In this case study, total GHG emissions from sludge anaerobic digestion, including direct and indirect emissions as well as replaceable emission reduction due to biogas being reused instead of natural gas, were quantified respectively. The results indicated that no GHG generation needed to be considered during the anaerobic digestion process. Indirect emissions were mainly from electricity and fossil fuel consumption on-site and sludge transportation. Overall, the total GHG emission owing to relative subtraction from anaerobic digestion rather than landfill, and replaceable GHG reduction caused by reuse of its product of biogas, were quantified to be 0.7214 (northern China) or 0.7384 (southern China) MgCO2 MgWS(-1) (wet sludge).

  15. Reversible Acid Gas Capture Using CO2-Binding Organic Liquids

    SciTech Connect

    Heldebrant, David J.; Koech, Phillip K.; Yonker, Clement R.; Rainbolt, James E.; Zheng, Feng

    2010-08-31

    Acid gas scrubbing technology is predominantly aqueous alkanolamine based. Of the acid gases, CO2, H2S and SO2 have been shown to be reversible, however there are serious disadvantages with corrosion and high regeneration costs. The primary scrubbing system composed of monoethanolamine is limited to 30% by weight because of the highly corrosive solution. This gravimetric limitation limits the CO2 volumetric (≤108 g/L) and gravimetric capacity (≤7 wt%) of the system. Furthermore the scrubbing system has a large energy penalty from pumping and heating the excess water required to dissolve the MEA bicarbonate salt. Considering the high specific heat of water (4 j/g-1K-1), low capacities and the high corrosion we set out to design a fully organic solvent that can chemically bind all acid gases i.e. CO2 as reversible alkylcarbonate ionic liquids or analogues thereof. Having a liquid acid gas carrier improves process economics because there is no need for excess solvent to pump and to heat. We have demonstrated illustrated in Figure 1, that CO2-binding organic liquids (CO2BOLs) have a high CO2 solubility paired with a much lower specific heat (<1.5 J/g-1K-1) than aqueous systems. CO2BOLs are a subsection of a larger class of materials known as Binding Organic Liquids (BOLs). Our BOLs have been shown to reversibly bind and release COS, CS2, and SO2, which we denote COSBOLS, CS2BOLs and SO2BOLs. Our BOLs are highly tunable and can be designed for post or pre-combustion gas capture. The design and testing of the next generation zwitterionic CO2BOLs and SO2BOLs are presented.

  16. Assessment of Methane Emissions from Oil and Gas Production Pads using Mobile Measurements

    EPA Science Inventory

    Journal Article Abstract --- "A mobile source inspection approach called OTM 33A was used to quantify short-term methane emission rates from 218 oil and gas production pads in Texas, Colorado, and Wyoming from 2010 to 2013. The emission rates were log-normally distributed with ...

  17. Reducing Energy Cost and Greenhouse Gas Emission in the Corporate Sector, a Delphi Study

    ERIC Educational Resources Information Center

    Kramer, Maxim L.

    2013-01-01

    The study is titled "Reducing energy cost and GreenHouse Gas emission in the corporate sector, A Delphi Study". The study applied the Delphi methodology and focused on the Green IT solutions that can help the modern corporate organizations with less than 1000 employees to decrease their energy costs and GHG emissions. The study presents…

  18. Subjective Well-Being Approach to Environmental Valuation: Evidence for Greenhouse Gas Emissions

    ERIC Educational Resources Information Center

    Beja, Edsel L., Jr.

    2012-01-01

    The subjective well-being approach to environmental valuation is applied to analyze the valuation of greenhouse gas emissions with a fairness-adjustment in the valuation exercise. Results indicate that industrialized countries have high willingness-to-pay to reduce emissions. Developing countries differ in their valuations. Results indicate that…

  19. Computer simulation of energy use, greenhouse gas emissions and process economics of the fluid milk process

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On-farm activities associated with fluid milk production contribute approximately 70% of total greenhouse gas (GHG) emissions while off-farm activities arising from milk processing, packaging, and refrigeration, contribute the remainder in the form of energy-related carbon dioxide (CO2) emissions. W...

  20. Software for evaluating greenhouse gas emissions and the carbon footprint of dairy production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract: Dairy production, along with all other types of animal agriculture, is a recognized source of greenhouse gas (GHG) emissions, but little information exists on the net emissions from our farms. Component models for representing all important sources and sinks of CH4, N2O, and CO2 in dairy p...

  1. Characterization of Gas and Particle Emissions from Laboratory Burns of Peat

    EPA Science Inventory

    Peat cores collected from two locations in eastern North Carolina (NC, USA) were burned in a laboratory facility to characterize emissions during simulated field combustion. Particle and gas samples were analyzed to quantify emission factors for particulate matter (PM2.5), organi...

  2. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 9: UNDERGROUND PIPELINES

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  3. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 14: GLYCOL DEHYDRATORS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  4. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 1: EXECUTIVE SUMMARY

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  5. ESTIMATE OF METHANE EMISSIONS FROM THE U.S. NATURAL GAS INDUSTRY

    EPA Science Inventory

    Global methane from the fossil fuel industries have been poorly quantified and, in many cases, emissions are not well-known even at the country level. Historically, methane emissions from the U.S. gas industry have been based on sparse data, incorrect assumptions, or both. As a r...

  6. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 8: EQUIPMENT LEAKS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  7. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 3: GENERAL METHODOLOGY

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  8. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 11: COMPRESSOR DRIVER EXHAUST

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  9. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 13: CHEMICAL INJECTION PUMPS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  10. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 6: VENTED & COMBUSTION SOURCE SUMMARY

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  11. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 4: STATISTICAL METHODOLOGY

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  12. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 7: BLOW AND PURGE ACTIVITIES

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  13. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 5: ACTIVITY FACTORS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  14. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 12: PNEUMATIC DEVICES

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  15. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 2: TECHNICAL REPORT

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  16. Pile mixing increases greenhouse gas emissions during composting of dairy manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of pile mixing on greenhouse gas (GHG) emissions from stored dairy manure was determined using large flux chambers designed to completely cover pilot-scale manure piles. GHG emissions from piles that were mixed four times during the 80 day trial were about 20% higher than unmixed piles. ...

  17. Greenhouse gas emissions from beef cattle feedlot pen surfaces in Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate estimation of greenhouse gas (GHG) emissions, including nitrous oxide and methane from open-lot beef cattle feedlots is an increasing concern given the current and potential future reporting requirements for GHG emissions. Research concerning nitrous oxide and methane fluxes from the manure...

  18. U.S. EPA'S FIELD TEST PROGRAMS TO UPDATE DATA ON LANDFILL GAS EMISSIONS

    EPA Science Inventory

    The paper discusses a field test program in which the EPA is currently engaged to improve data on landfill gas (LFG) emissions. LFG emissions data in use at this time are based on determinations made in the late 1980s and early 1990s; changes in landfill operations, such as using...

  19. Methane Emissions from Natural Gas in the Urban Region of Boston, Massachusetts

    NASA Astrophysics Data System (ADS)

    McKain, K.; Down, A.; Raciti, S. M.; Budney, J.; Hutyra, L.; Floerchinger, C. R.; Herndon, S. C.; Zahniser, M. S.; Nehrkorn, T.; Jackson, R. B.; Phillips, N. G.; Wofsy, S. C.

    2014-12-01

    Methane emissions from the natural gas supply chain must be quantified to assess environmental impacts of natural gas and to develop emission reduction strategies. We report natural gas emission rates for one year in the urban region of Boston, MA, using an atmospheric measurement and modeling framework. Continuous methane observations from four stations are combined with a high-resolution transport model to quantify the regional average emission rate, 20.6 ± 1.7 (95 % CI) g CH4 m-2 yr-1. Simultaneous observations of atmospheric ethane, compared with the ethane to methane ratio in pipeline gas, demonstrate that natural gas accounted for 58 - 100 % of methane emissions, depending on season. Using government statistics and geospatial data on energy consumption, we estimate the fractional loss rate to the atmosphere from all downstream components of the natural gas system, including transmission, distribution, and end-use, was 2.9 ± 0.3 % in the Boston urban region, compared to 1.1 % inferred by the Massachusetts greenhouse gas inventory.

  20. Gas Desorption and Electron Emission from 1 MeV Potassium Ion Bombardment of Stainless Steel

    SciTech Connect

    Molvik, A W; Covo, M K; Bieniosek, F M; Prost, L; Seidl, P A; Baca, D; Coorey, A; Sakumi, A

    2004-07-19

    Gas desorption and electron emission coefficients were measured for 1 MeV potassium ions incident on stainless steel at grazing angles (between 80 and 88 from normal incidence) using a new gas-electron source diagnostic (GESD). Issues addressed in design and commissioning of the GESD include effects from backscattering of ions at the surface, space-charge limited emission current, and reproducibility of desorption measurements. We find that electron emission coefficients {gamma}{sub e} scale as 1/cos({theta}) up to angles of 86, where {gamma}{sub e} = 90. Nearer grazing incidence, {gamma}{sub e} is reduced below the 1/cos({theta}) scaling by nuclear scattering of ions through large angles, reaching {gamma}{sub e} = 135 at 88. Electrons were emitted with a measured temperature of {approx}30 eV. Gas desorption coefficients {gamma}{sub sigma} were much larger, of order {gamma}{sub sigma} = 104. They also varied with angle, but much more slowly than 1/cos({theta}). From this we conclude that the desorption was not entirely from adsorbed layers of gas on the surface. Two mitigation techniques were investigated: rough surfaces reduced electron emission by a factor of ten and gas desorption by a factor of two; a mild bake to 230 had no effect on electron emission, but decreased gas desorption by 15% near grazing incidence. We propose that gas desorption is due to electronic sputtering.

  1. Gas Desorption and Electron Emission from 1 MeV Potassium Iion Bombardment of Stainless Steel

    SciTech Connect

    Molvik, A; Covo, M K; Bieniosek, F; Prost, L; Seidl, P; Baca, D; Coorey, A; Sakumi, A

    2004-03-25

    Gas desorption and electron emission coefficients were measured for 1 MeV potassium ions incident on stainless steel at grazing angles (between 80 and 88 degrees from normal incidence) using a new gas-electron source diagnostic (GESD). Issues addressed in design and commissioning of the GESD include effects from backscattering of ions at the surface, space-charge limited emission current, and reproducibility of desorption measurements. We find that electron emission coefficients {gamma}{sub e} scale as 1/cos({theta}) up to angles of 86 degrees, where {gamma}{sub e} = 90. Nearer grazing incidence, {gamma}{sub e} is reduced below the 1/cos({theta}) scaling by nuclear scattering of ions through large angles, reaching {gamma}{sub e} = 135 at 88 degrees. Electrons were emitted with a measured temperature of {approx}30 eV. Gas desorption coefficients {gamma}{sub 0} were much larger, of order {gamma}{sub 0} = 10{sub 4}. They also varied with angle, but much more slowly than 1/cos({theta}). From this we conclude that the desorption was not entirely from adsorbed layers of gas on the surface. Two mitigation techniques were investigated: rough surfaces reduced electron emission by a factor of ten and gas desorption by a factor of two; a mild bake to {approx}220 degrees had no effect on electron emission, but decreased gas desorption by 15% near grazing incidence. We propose that gas desorption is due to electronic sputtering.

  2. Environmental policy constraints for acidic exhaust gas scrubber discharges from ships.

    PubMed

    Ülpre, H; Eames, I

    2014-11-15

    Increasingly stringent environmental legislation on sulphur oxide emissions from the combustion of fossil fuels onboard ships (International Maritime Organization (IMO) Regulation 14) can be met by either refining the fuel to reduce sulphur content or by scrubbing the exhaust gases. Commonly used open loop marine scrubbers discharge warm acidic exhaust gas wash water into the sea, depressing its pH. The focus on this paper is on the physics and chemistry behind the disposal of acidic discharges in seawater. The IMO Marine Environment Protection Committee (MEPC 59/24/Add.1 Annex 9) requires the wash water to reach a pH greater than 6.5 at a distance of 4m from the point of discharge. We examine the engineering constraints, specifically size and number of ports, to identify the challenges of meeting regulatory compliance. PMID:25284442

  3. Environmental policy constraints for acidic exhaust gas scrubber discharges from ships.

    PubMed

    Ülpre, H; Eames, I

    2014-11-15

    Increasingly stringent environmental legislation on sulphur oxide emissions from the combustion of fossil fuels onboard ships (International Maritime Organization (IMO) Regulation 14) can be met by either refining the fuel to reduce sulphur content or by scrubbing the exhaust gases. Commonly used open loop marine scrubbers discharge warm acidic exhaust gas wash water into the sea, depressing its pH. The focus on this paper is on the physics and chemistry behind the disposal of acidic discharges in seawater. The IMO Marine Environment Protection Committee (MEPC 59/24/Add.1 Annex 9) requires the wash water to reach a pH greater than 6.5 at a distance of 4m from the point of discharge. We examine the engineering constraints, specifically size and number of ports, to identify the challenges of meeting regulatory compliance.

  4. Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China.

    PubMed

    Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao

    2016-03-01

    In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase. PMID:27011196

  5. Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China.

    PubMed

    Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao

    2016-03-22

    In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase.

  6. Aerial Surveys of Elevated Hydrocarbon Emissions from Oil and Gas Production Sites.

    PubMed

    Lyon, David R; Alvarez, Ramón A; Zavala-Araiza, Daniel; Brandt, Adam R; Jackson, Robert B; Hamburg, Steven P

    2016-05-01

    Oil and gas (O&G) well pads with high hydrocarbon emission rates may disproportionally contribute to total methane and volatile organic compound (VOC) emissions from the production sector. In turn, these emissions may be missing from most bottom-up emission inventories. We performed helicopter-based infrared camera surveys of more than 8000 O&G well pads in seven U.S. basins to assess the prevalence and distribution of high-emitting hydrocarbon sources (detection threshold ∼ 1-3 g s(-1)). The proportion of sites with such high-emitting sources was 4% nationally but ranged from 1% in the Powder River (Wyoming) to 14% in the Bakken (North Dakota). Emissions were observed three times more frequently at sites in the oil-producing Bakken and oil-producing regions of mixed basins (p < 0.0001, χ(2) test). However, statistical models using basin and well pad characteristics explained 14% or less of the variance in observed emission patterns, indicating that stochastic processes dominate the occurrence of high emissions at individual sites. Over 90% of almost 500 detected sources were from tank vents and hatches. Although tank emissions may be partially attributable to flash gas, observed frequencies in most basins exceed those expected if emissions were effectively captured and controlled, demonstrating that tank emission control systems commonly underperform. Tanks represent a key mitigation opportunity for reducing methane and VOC emissions.

  7. Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China

    PubMed Central

    Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao

    2016-01-01

    In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase. PMID:27011196

  8. Aerial Surveys of Elevated Hydrocarbon Emissions from Oil and Gas Production Sites.

    PubMed

    Lyon, David R; Alvarez, Ramón A; Zavala-Araiza, Daniel; Brandt, Adam R; Jackson, Robert B; Hamburg, Steven P

    2016-05-01

    Oil and gas (O&G) well pads with high hydrocarbon emission rates may disproportionally contribute to total methane and volatile organic compound (VOC) emissions from the production sector. In turn, these emissions may be missing from most bottom-up emission inventories. We performed helicopter-based infrared camera surveys of more than 8000 O&G well pads in seven U.S. basins to assess the prevalence and distribution of high-emitting hydrocarbon sources (detection threshold ∼ 1-3 g s(-1)). The proportion of sites with such high-emitting sources was 4% nationally but ranged from 1% in the Powder River (Wyoming) to 14% in the Bakken (North Dakota). Emissions were observed three times more frequently at sites in the oil-producing Bakken and oil-producing regions of mixed basins (p < 0.0001, χ(2) test). However, statistical models using basin and well pad characteristics explained 14% or less of the variance in observed emission patterns, indicating that stochastic processes dominate the occurrence of high emissions at individual sites. Over 90% of almost 500 detected sources were from tank vents and hatches. Although tank emissions may be partially attributable to flash gas, observed frequencies in most basins exceed those expected if emissions were effectively captured and controlled, demonstrating that tank emission control systems commonly underperform. Tanks represent a key mitigation opportunity for reducing methane and VOC emissions. PMID:27045743

  9. Natural Gas Methane Emissions in the United States Greenhouse Gas Inventory: Sources, Uncertainties and Opportunities for Improvement

    SciTech Connect

    Heath, Garvin; Warner, Ethan; Steinberg, Daniel; Brandt, Adam

    2015-11-19

    Presentation summarizing key findings of a Joint Institute for Strategic Energy Analysis Report at an Environmental Protection Agency workshop: 'Stakeholder Workshop on EPA GHG Data on Petroleum and Natural Gas Systems' on November 19, 2015. For additional information see the JISEA report, 'Estimating U.S. Methane Emissions from the Natural Gas Supply Chain: Approaches, Uncertainties, Current Estimates, and Future Studies' NREL/TP-6A50-62820.

  10. Combined electrostatic precipitator and acidic gas removal system

    SciTech Connect

    Sparks, L.E.; Plaks, N.

    1989-12-05

    This patent describes a method of retrofitting an apparatus for removing acidic gas and particulate matter from air. The device to be retrofit including an electrostatic precipitator, lacking a precharger, positioned within a housing, a flue gas generating means outside the housing, an entry port in the housing and upstream of the electrostatic precipitator; an exit port in the housing and downstream of the electrostatic precipitator; and ductwork, outside the housing, leading from the generating means to the entry port. The retrofitting comprising the steps of: substituting electrostatic filtration units, for dry electrostatic precipitation, each comprising a precharger and a downstream particle collector having wires of from 1/4 to 1/2 inch in diameter for the electrostatic precipitator. The substituted units being designed so as to occupy less space in the housing that the electrostatic filter lacking a precharger, thereby leaving free space within the housing between a one of the prechargers which is first downstream from the entry port and the exit port and inserting an acidic gas removal means, within the housing.

  11. An empirical model for gas phase acidity and basicity estimation.

    PubMed

    You, H; Kim, G E; Na, C H; Lee, S; Lee, C J; Cho, K-H; Akiyama, Y; Ishida, T; No, K T

    2014-01-01

    Gas phase acidity and basicity estimation models have been developed for acidic and basic functional groups of amino acid side-chains and also for a number of small organic molecules. The acidic functional groups include aliphatic and aromatic alcohol, and aliphatic and aromatic carboxylic acid, and the basic functional groups include aliphatic, aromatic and hetero-aromatic amines, and also pyridino-, pyrazolo- and imidazolo-groupings. The models are described in terms of a linear combination of descriptors that highly influence reactivity at the reaction centres of the functional groups. In order to describe the chemical environments of the deprotonating and protonating sites, atomic descriptors such as the effective atomic electronegativity and effective atomic polarizability of the atoms in the reaction field and the electrostatic potentials at the reaction sites have been introduced. The coefficient of determination (r(2)) of each model is above 0.8, apart from the imidazole model. The models are readily applicable, ranging from simple organic molecules to proteins.

  12. Fugitive methane emissions from leak-prone natural gas distribution infrastructure in urban environments.

    PubMed

    Hendrick, Margaret F; Ackley, Robert; Sanaie-Movahed, Bahare; Tang, Xiaojing; Phillips, Nathan G

    2016-06-01

    Fugitive emissions from natural gas systems are the largest anthropogenic source of the greenhouse gas methane (CH4) in the U.S. and contribute to the risk of explosions in urban environments. Here, we report on a survey of CH4 emissions from 100 natural gas leaks in cast iron distribution mains in Metro Boston, MA. Direct measures of CH4 flux from individual leaks ranged from 4.0 - 2.3 × 10(4) g CH4•day(-1). The distribution of leak size is positively skewed, with 7% of leaks contributing 50% of total CH4 emissions measured. We identify parallels in the skewed distribution of leak size found in downstream systems with midstream and upstream stages of the gas process chain. Fixing 'superemitter' leaks will disproportionately stem greenhouse gas emissions. Fifteen percent of leaks surveyed qualified as potentially explosive (Grade 1), and we found no difference in CH4 flux between Grade 1 leaks and all remaining leaks surveyed (p = 0.24). All leaks must be addressed, as even small leaks cannot be disregarded as 'safely leaking.' Key methodological impediments to quantifying and addressing the impacts of leaking natural gas distribution infrastructure involve inconsistencies in the manner in which gas leaks are defined, detected, and classified. To address this need, we propose a two-part leak classification system that reflects both the safety and climatic impacts of natural gas leaks.

  13. Detection and quantification of fugitive emissions from Colorado oil and gas production operations using remote monitoring

    EPA Science Inventory

    Western states contain vast amounts of oil and gas production. For example, Weld County Colorado contains approximately 25,000 active oil and gas well sites with associated production operations. There is little information on the air pollutant emission potential from this source...

  14. Fugitive methane emissions from leak-prone natural gas distribution infrastructure in urban environments.

    PubMed

    Hendrick, Margaret F; Ackley, Robert; Sanaie-Movahed, Bahare; Tang, Xiaojing; Phillips, Nathan G

    2016-06-01

    Fugitive emissions from natural gas systems are the largest anthropogenic source of the greenhouse gas methane (CH4) in the U.S. and contribute to the risk of explosions in urban environments. Here, we report on a survey of CH4 emissions from 100 natural gas leaks in cast iron distribution mains in Metro Boston, MA. Direct measures of CH4 flux from individual leaks ranged from 4.0 - 2.3 × 10(4) g CH4•day(-1). The distribution of leak size is positively skewed, with 7% of leaks contributing 50% of total CH4 emissions measured. We identify parallels in the skewed distribution of leak size found in downstream systems with midstream and upstream stages of the gas process chain. Fixing 'superemitter' leaks will disproportionately stem greenhouse gas emissions. Fifteen percent of leaks surveyed qualified as potentially explosive (Grade 1), and we found no difference in CH4 flux between Grade 1 leaks and all remaining leaks surveyed (p = 0.24). All leaks must be addressed, as even small leaks cannot be disregarded as 'safely leaking.' Key methodological impediments to quantifying and addressing the impacts of leaking natural gas distribution infrastructure involve inconsistencies in the manner in which gas leaks are defined, detected, and classified. To address this need, we propose a two-part leak classification system that reflects both the safety and climatic impacts of natural gas leaks. PMID:27023280

  15. 40 CFR 1037.241 - Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family is... below the applicable standards. See 40 CFR part 86, subpart S, for showing compliance with the...

  16. 40 CFR 1037.241 - Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family is... below the applicable standards. See 40 CFR part 86, subpart S, for showing compliance with the...

  17. 40 CFR 1037.241 - Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family is... below the applicable standards. See 40 CFR part 86, subpart S, for showing compliance with the...

  18. Mobile monitoring of fugitive methane emissions from natural gas consumer industries

    EPA Science Inventory

    Natural gas is used as a feedstock for major industrial processes, such as ammonia and fertilizer production. However, fugitive methane emissions from many major end-use sectors of the natural gas supply chain have not yet been well quantified. This presentation introduces new m...

  19. The Mobile Monitoring of fugitive methane emissions from natural gas consumer industries

    EPA Science Inventory

    Natural gas is used as a feedstock for major industrial processes, such as ammonia and fertilizer production. However, fugitive methane emissions from many major end-use sectors of the natural gas supply chain have not been quantified yet. This presentation introduces new tools ...

  20. Optimal sensor locations for the backward Lagrangian stochastic technique in measuring lagoon gas emission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the impact of gas concentration and wind sensor locations on the accuracy of the backward Lagrangian stochastic inverse-dispersion technique (bLS) for measuring gas emission rates from a typical lagoon environment. Path-integrated concentrations (PICs) and 3-dimensional (3D) wi...

  1. Greenhouse gas emission from soil amended with biochar made from hydrothermally carbonizing swine solids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar made from hydrothermally carbonizing swine solids was mixed with a 50/50 mixture of Norfolk Ap and E horizon at a rate of 20 g/kg. During the incubation period of 54 days, greenhouse gas (CO2 and N2O) emission fluxes were calculated by nonlinearly regressing time-series headspace gas concent...

  2. Reconstruction of inundation and greenhouse gas emissions from Siberian wetlands over the last half-century

    NASA Astrophysics Data System (ADS)

    Bohn, T. J.; Schroeder, R.; Podest, E.; Pinto, N.; McDonald, K. C.; Chiu, C.; Bowling, L. C.; Lettenmaier, D. P.

    2010-12-01

    Changes in greenhouse gas emissions such as methane and carbon dioxide from high-latitude wetlands in a warming climate may have important implications for global warming, due to the large amounts of carbon stored in high-latitude soils and the high greenhouse warming potential of methane. As much as 1/3 of global natural methane emissions come from high latitudes. Efforts to monitor high-latitude greenhouse gas emissions are hampered by the sparseness of in situ data at high latitudes, especially in Northern Eurasia. While biogeochemical modeling can provide estimates of greenhouse gas emissions in such areas, the lack of in situ measurements also makes it difficult to constrain these models. Fortunately, emissions of greenhouse gases, especially methane, are sensitive to hydrologic variables such as inundation that now can be observed via passive microwave and synthetic aperture radar remote sensors. Here we apply a combination of large-scalehydrologic/biogeochemical models and remote sensing observations across the West Siberian lowlands to estimate soil moisture, inundation, and greenhouse gas fluxes. Our modeling framework consists of the Variable Infiltration Capacity macroscale hydrological model (VIC), extended to include carbon cycling and coupled to a methane emissions model. In particular, we include a representation of the spatial distribution of soil moisture, which allows us to compare our simulated emissions to both large-scale remote sensing observations and point-scale in-situ observations. We have calibrated this framework using observed streamflow, inundation products derived from PALSAR and AMSR-E, and in situ water table and greenhouse gas emissions observations. Using the calibrated model, we examine the interannual variabilityof a model-derived inundation and greenhouse gas emission data set across W. Siberia for the period 1948-2007.

  3. Reconstruction of inundation and greenhouse gas emissions from Siberian wetlands over the last half-century

    NASA Astrophysics Data System (ADS)

    Bohn, T. J.; Podest, E.; Schroeder, R.; McDonald, K. C.; Chiu, C.; Bowling, L. C.; Glagolev, M.; Lettenmaier, D. P.

    2009-12-01

    Changes in greenhouse gas emissions such as methane (CH4) and carbon dioxide (CO2) from high-latitude wetlands in a warming climate may have important implications for projections of global warming, due to the large amounts of carbon stored in high-latitude soils and the high greenhouse warming potential of methane. As much as 1/3 of global natural methane emissions come from high latitudes. Efforts to monitor high-latitude greenhouse gas emissions are hampered by the sparseness of in situ data at high latitudes, especially in Northern Eurasia. While biogeochemical modeling can provide estimates of greenhouse gas emissions in such areas, the lack of in situ measurements also makes it difficult to constrain these models. Fortunately, emissions of greenhouse gases, especially methane, are sensitive to hydrologic variables such as inundation that now can be observed via passive microwave and synthetic aperture radar remote sensors. Here we apply a combination of large-scale hydrologic/biogeochemical models and remote sensing observations across the West Siberian lowlands to estimate soil moisture, inundation, and greenhouse gas fluxes. Our modeling framework consists of the Variable Infiltration Capacity macroscale hydrological model (VIC), extended to include carbon cycling and coupled to a methane emissions model. In particular, our modeling framework includes a parameterization of the spatial distribution of soil moisture, which allows us to compare our simulated emissions to both large-scale remote sensing observations and point-scale in-situ observations. We have calibrated this framework using observed streamflow, inundation products derived from PALSAR and AMSR-E, and in situ water table and greenhouse gas emissions observations. Using the calibrated model, we examine the interannual variability of simulated inundation and greenhouse gas emissions across W. Siberia for the period 1948-2007.

  4. A fuel cycle framework for evaluating greenhouse gas emission reduction technology

    SciTech Connect

    Ashton, W.B.; Barns, D.W. ); Bradley, R.A. . Office of Environmental Analysis)

    1990-05-01

    Energy-related greenhouse gas (GHG) emissions arise from a number of fossil fuels, processes and equipment types throughout the full cycle from primary fuel production to end-use. Many technology alternatives are available for reducing emissions based on efficiency improvements, fuel switching to low-emission fuels, GHG removal, and changes in end-use demand. To conduct systematic analysis of how new technologies can be used to alter current emission levels, a conceptual framework helps develop a comprehensive picture of both the primary and secondary impacts of a new technology. This paper describes a broad generic fuel cycle framework which is useful for this purpose. The framework is used for cataloging emission source technologies and for evaluating technology solutions to reduce GHG emissions. It is important to evaluate fuel mix tradeoffs when investigating various technology strategies for emission reductions. For instance, while substituting natural gas for coal or oil in end-use applications to reduce CO{sub 2} emissions, natural gas emissions of methane in the production phase of the fuel cycle may increase. Example uses of the framework are given.

  5. Environmental consequences of invasive species: greenhouse gas emissions of insecticide use and the role of biological control in reducing emissions.

    PubMed

    Heimpel, George E; Yang, Yi; Hill, Jason D; Ragsdale, David W

    2013-01-01

    Greenhouse gas emissions associated with pesticide applications against invasive species constitute an environmental cost of species invasions that has remained largely unrecognized. Here we calculate greenhouse gas emissions associated with the invasion of an agricultural pest from Asia to North America. The soybean aphid, Aphis glycines, was first discovered in North America in 2000, and has led to a substantial increase in insecticide use in soybeans. We estimate that the manufacture, transport, and application of insecticides against soybean aphid results in approximately 10.6 kg of carbon dioxide (CO2) equivalent greenhouse gasses being emitted per hectare of soybeans treated. Given the acreage sprayed, this has led to annual emissions of between 6 and 40 million kg of CO2 equivalent greenhouse gasses in the United States since the invasion of soybean aphid, depending on pest population size. Emissions would be higher were it not for the development of a threshold aphid density below which farmers are advised not to spray. Without a threshold, farmers tend to spray preemptively and the threshold allows farmers to take advantage of naturally occurring biological control of the soybean aphid, which can be substantial. We find that adoption of the soybean aphid economic threshold can lead to emission reductions of approximately 300 million kg of CO2 equivalent greenhouse gases per year in the United States. Previous studies have documented that biological control agents such as lady beetles are capable of suppressing aphid densities below this threshold in over half of the soybean acreage in the U.S. Given the acreages involved this suggests that biological control results in annual emission reductions of over 200 million kg of CO2 equivalents. These analyses show how interactions between invasive species and organisms that suppress them can interact to affect greenhouse gas emissions.

  6. Environmental Consequences of Invasive Species: Greenhouse Gas Emissions of Insecticide Use and the Role of Biological Control in Reducing Emissions

    PubMed Central

    Heimpel, George E.; Yang, Yi; Hill, Jason D.; Ragsdale, David W.

    2013-01-01

    Greenhouse gas emissions associated with pesticide applications against invasive species constitute an environmental cost of species invasions that has remained largely unrecognized. Here we calculate greenhouse gas emissions associated with the invasion of an agricultural pest from Asia to North America. The soybean aphid, Aphis glycines, was first discovered in North America in 2000, and has led to a substantial increase in insecticide use in soybeans. We estimate that the manufacture, transport, and application of insecticides against soybean aphid results in approximately 10.6 kg of carbon dioxide (CO2) equivalent greenhouse gasses being emitted per hectare of soybeans treated. Given the acreage sprayed, this has led to annual emissions of between 6 and 40 million kg of CO2 equivalent greenhouse gasses in the United States since the invasion of soybean aphid, depending on pest population size. Emissions would be higher were it not for the development of a threshold aphid density below which farmers are advised not to spray. Without a threshold, farmers tend to spray preemptively and the threshold allows farmers to take advantage of naturally occurring biological control of the soybean aphid, which can be substantial. We find that adoption of the soybean aphid economic threshold can lead to emission reductions of approximately 300 million kg of CO2 equivalent greenhouse gases per year in the United States. Previous studies have documented that biological control agents such as lady beetles are capable of suppressing aphid densities below this threshold in over half of the soybean acreage in the U.S. Given the acreages involved this suggests that biological control results in annual emission reductions of over 200 million kg of CO2 equivalents. These analyses show how interactions between invasive species and organisms that suppress them can interact to affect greenhouse gas emissions. PMID:23977273

  7. Gas phase emissions from cooking processes and their secondary aerosol production potential

    NASA Astrophysics Data System (ADS)

    Klein, Felix; Platt, Stephen; Bruns, Emily; Termime-roussel, Brice; Detournay, Anais; Mohr, Claudia; Crippa, Monica; Slowik, Jay; Marchand, Nicolas; Baltensperger, Urs; Prevot, Andre; El Haddad, Imad

    2014-05-01

    -ToF-MS) were used to quantify OA and VOC emissions, respectively. SOA production potential of the different emissions was quantified by introducing them into the PSI mobile smog chamber and a potential aerosol chamber (PAM) where they were photochemically aged. The measurements of primary emissions suggest that the COA factor identified in ambient atmospheric aerosols is mostly related to fat release from frying with vegetable oils or grilling fatty-meats. In contrast, vegetable cooking (boiling and frying) was associated with significant VOC emissions. The VOC emissions from frying consist mainly of aldehydes which are formed through breaking of fatty acids. Gas phase composition, emission factors and SAPP from all these processes will be presented. This work was supported by the Swiss National Science Foundation as well as the Swiss Federal Office for the Environment. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n.° 290605 (COFUND: PSI-FELLOW). J. Allan et al, Atmos. Chem. Phys. 10, 647-668 (2010) X.-F. Huang et al, Atmos. Chem. Phys. 10, 8933-8945 (2010) Y.-L. Sun et al, Atmos. Chem. Phys. 11, 1581-1602 (2011)

  8. Atmospheric hydrocarbon emissions and concentrations in the barnett shale natural gas production region.

    PubMed

    Zavala-Araiza, Daniel; Sullivan, David W; Allen, David T

    2014-05-01

    Hourly ambient hydrocarbon concentration data were collected, in the Barnett Shale Natural Gas Production Region, using automated gas chromatography (auto-GC), for the period from April 2010 to December 2011. Data for three sites were compared: a site in the geographical center of the natural gas production region (Eagle Mountain Lake (EML)); a rural/suburban site at the periphery of the production region (Flower Mound Shiloh), and an urban site (Hinton). The dominant hydrocarbon species observed in the Barnett Shale region were light alkanes. Analyses of daily, monthly, and hourly patterns showed little variation in relative composition. Observed concentrations were compared to concentrations predicted using a dispersion model (AERMOD) and a spatially resolved inventory of volatile organic compounds (VOC) emissions from natural gas production (Barnett Shale Special Emissions Inventory) prepared by the Texas Commission on Environmental Quality (TCEQ), and other emissions information. The predicted concentrations of VOC due to natural gas production were 0-40% lower than background corrected measurements, after accounting for potential under-estimation of certain emission categories. Hourly and daily variations in observed, background corrected concentrations were primarily explained by variability in meteorology, suggesting that episodic emission events had little impact on hourly averaged concentrations. Total emissions for VOC from natural gas production sources are estimated to be approximately 25,300 tons/yr, when accounting for potential under-estimation of certain emission categories. This region produced, in 2011, approximately 5 bcf/d of natural gas (100 Gg/d) for a VOC to natural gas production ratio (mass basis) of 0.0006.

  9. Greenhouse Gas emissions from California Geothermal Power Plants

    DOE Data Explorer

    Sullivan, John

    2014-03-14

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

  10. Effect of Background Emissivity on Gas Detection in Thermal Hyperspectral Imagery

    SciTech Connect

    Walsh, Stephen J.; Tardiff, Mark F.; Chilton, Lawrence K.; Metoyer, Candace N.

    2008-10-02

    Detecting and identifying weak gaseous plumes using thermal imaging data is complicated by many factors. These include variability due to atmosphere, ground and plume temper- ature, and background clutter. This paper presents an analysis of one formulation of the physics-based radiance model, which describes at-sensor observed radiance. The background emissivity and plume/ground temperatures are isolated, and their effects on net chemical signal are described. This analysis shows that the plume’s physical state, emission or absorption, is directly dependent on the background emissivity. It then describes what conditions on the background emissivity have inhibiting effects on the net chemical signal. These claims are illustrated by analyzing synthetic hyperspectral imaging data with the Adaptive Matched Filter using four chemicals and three distinct background emissivities. Two chemicals (Carbontetrachloride and Tetraflourosilane) in the analysis had a very strong relationship with the background emissivities: they exhibited absorbance over a small range of wavenumbers and the background emissivities showed a consistent ordering at these wavenumbers. Analysis of simulated hyperspectral images containing these chemicals showed complete agreement with the analysis of the physics-based model that described when the background emissivities would have inhibiting effects on gas detection. The other chemicals considered (Ammonia and Tributylphosphate) exhibited very complex absorbance structure across the longwave infrared spectrum. Analysis of images containing these chemicals revealed that the the analysis of the physics-based model did not hold completely for these complex chemicals but did suggest that gas detection was dominated by their dominant absorbance features. These results provide some explanation of the effect of the background emissivity on gas detection and a more general exploration of gas absorbance/background emissivity variability and their effects on

  11. Controlling fine particulate and acid mist emissions from a residual oil fired utility boiler with an EDV{trademark} system

    SciTech Connect

    Olen, K.R.; Vincent, H.B.; Jones, G.

    1995-06-01

    Florida Power & Light Company (FPL), in cooperation with the Electric Power Research Institute (EPRI) and Belco Technologies Corporation, evaluated the performance of an EDV system to remove fine particulate and acid mist from untreated flue gas from a residual oil-fired utility boiler. The cosponsored project was carried out using a full-scale EDV module in a slip stream from one of the 400 MW wall-fired boilers at FPL`s Sanford Plant. Particulate, acid gas and chemical analytical data are presented, and used to illustrate the effects of operating variables on EDV performance. EDV system efficiencies of 90% were achieved, which resulted in controlled particulate and SO{sub 3} emissions of less than 10 mg/Nm{sup 3} (0.0065 lbs/10{sup 6}Btu) and 1 ppmv, respectively.

  12. Straw management and greenhouse gas emissions in sugarcane cropping in São Paulo State, Brazil

    NASA Astrophysics Data System (ADS)

    Pitombo, L.; Cantarella, H.; Packer, A.; Ramos, N.; de Lima, M.; Carmo, J.

    2012-04-01

    Greenhouse gas emissions during the cropping would consolidate or derail the biofuels as an environmental commodity, mainly due to N2O emissions from fertilizers. It occurs because the Greenhouse Gas Potential of N2O is 298 times greater than CO2; thus, the range among the balance favorable or not is very close. Since in São Paulo State the sugarcane harvest has been changed from burned to no-burned form due to environmental and social factors, the straw is maintained in the field. However, primarily because straw changes carbon, nitrogen and water availability, we hypothesized that straw influences N2O emissions from soil. At this work, our aim is to determine the amount of applied fertilizer emitted as N2O in sugarcane crop with different levels of straw maintained in the field. The experiment was installed in October 2011 in a commercial area in São Paulo State, which is the principal producer in Brazil (22°22' S, 47°30'W). It is conducted in four blocks with four plots (12x15m) each with the treatments 0; 50; 75; 100% of produced straw by the crop maintained in the field. Nitrogen fertilizer was applied at line as ammonium nitrate (100 kg N ha-1) in all plots. Subplots were included with no nitrogen fertilizer for determination of background emissions. For gas efflux determination is adopted the chamber-based method, where is used the linear regression based on the curve generated from the four gas values measured along the 30 min intervals. The gas measurements are taken at fertilizer line and in between-row position. Inside the chambers (30 cm diameter) were placed the respective amount of straw (by area) and fertilizer (by length). We adopt high frequency of gas samplings to avoid quantification errors from seasonality. Among October and December the samplings are done in alternated days because we are waiting the peak emissions in this period as well as verify in other works. After December, the samplings interval will decrease progressively until once

  13. Kennard-Stepanov relation connecting absorption and emission spectra in an atomic gas.

    PubMed

    Moroshkin, Peter; Weller, Lars; Sass, Anne; Klaers, Jan; Weitz, Martin

    2014-08-01

    The Kennard-Stepanov relation describes a thermodynamic, Boltzmann-type scaling between the absorption and emission spectral profiles of an absorber, which applies in many liquid state dye solutions as well as in semiconductor systems. Here we examine absorption and emission spectra of rubidium atoms in a dense argon buffer gas environment. We demonstrate that the Kennard-Stepanov relation between absorption and emission spectra is well fulfilled in the collisionally broadened atomic gas system. Our experimental findings are supported by a simple theoretical model.

  14. Pollutant-emission factors for gas stoves: a literature survey. Final report, June 1985-May 1986

    SciTech Connect

    Davidson, C.I.; Borrazzo, J.E.; Hendrickson, C.T.

    1987-02-01

    Published emission factors for CO, NO, NO/sub 2/, and NOx are summarized. In a statistical analysis of the available data, stove differences and type of combustion are the most important factors in explaining the observed variance in emission factors. Limited data also suggest that CO and NO/sub 2/ emission factors vary considerably with gas flow rate. It is concluded that the influence of stove design, gas flow rate, and characteristics of stove use are key factors that merit further study.

  15. Incorporating redox processes improves prediction of carbon and nutrient cycling and greenhouse gas emission

    NASA Astrophysics Data System (ADS)

    Tang, Guoping; Zheng, Jianqiu; Yang, Ziming; Graham, David; Gu, Baohua; Mayes, Melanie; Painter, Scott; Thornton, Peter

    2016-04-01

    Among the coupled thermal, hydrological, geochemical, and biological processes, redox processes play major roles in carbon and nutrient cycling and greenhouse gas (GHG) emission. Increasingly, mechanistic representation of redox processes is acknowledged as necessary for accurate prediction of GHG emission in the assessment of land-atmosphere interactions. Simple organic substrates, Fe reduction, microbial reactions, and the Windermere Humic Aqueous Model (WHAM) were added to a reaction network used in the land component of an Earth system model. In conjunction with this amended reaction network, various temperature response functions used in ecosystem models were assessed for their ability to describe experimental observations from incubation tests with arctic soils. Incorporation of Fe reduction reactions improves the prediction of the lag time between CO2 and CH4 accumulation. The inclusion of the WHAM model enables us to approximately simulate the initial pH drop due to organic acid accumulation and then a pH increase due to Fe reduction without parameter adjustment. The CLM4.0, CENTURY, and Ratkowsky temperature response functions better described the observations than the Q10 method, Arrhenius equation, and ROTH-C. As electron acceptors between O2 and CO2 (e.g., Fe(III), SO42‑) are often involved, our results support inclusion of these redox reactions for accurate prediction of CH4 production and consumption. Ongoing work includes improving the parameterization of organic matter decomposition to produce simple organic substrates, examining the influence of redox potential on methanogenesis under thermodynamically favorable conditions, and refining temperature response representation near the freezing point by additional model-experiment iterations. We will use the model to describe observed GHG emission at arctic and tropical sites.

  16. Incorporating redox processes improves prediction of carbon and nutrient cycling and greenhouse gas emission

    NASA Astrophysics Data System (ADS)

    Tang, Guoping; Zheng, Jianqiu; Yang, Ziming; Graham, David; Gu, Baohua; Mayes, Melanie; Painter, Scott; Thornton, Peter

    2016-04-01

    Among the coupled thermal, hydrological, geochemical, and biological processes, redox processes play major roles in carbon and nutrient cycling and greenhouse gas (GHG) emission. Increasingly, mechanistic representation of redox processes is acknowledged as necessary for accurate prediction of GHG emission in the assessment of land-atmosphere interactions. Simple organic substrates, Fe reduction, microbial reactions, and the Windermere Humic Aqueous Model (WHAM) were added to a reaction network used in the land component of an Earth system model. In conjunction with this amended reaction network, various temperature response functions used in ecosystem models were assessed for their ability to describe experimental observations from incubation tests with arctic soils. Incorporation of Fe reduction reactions improves the prediction of the lag time between CO2 and CH4 accumulation. The inclusion of the WHAM model enables us to approximately simulate the initial pH drop due to organic acid accumulation and then a pH increase due to Fe reduction without parameter adjustment. The CLM4.0, CENTURY, and Ratkowsky temperature response functions better described the observations than the Q10 method, Arrhenius equation, and ROTH-C. As electron acceptors between O2 and CO2 (e.g., Fe(III), SO42-) are often involved, our results support inclusion of these redox reactions for accurate prediction of CH4 production and consumption. Ongoing work includes improving the parameterization of organic matter decomposition to produce simple organic substrates, examining the influence of redox potential on methanogenesis under thermodynamically favorable conditions, and refining temperature response representation near the freezing point by additional model-experiment iterations. We will use the model to describe observed GHG emission at arctic and tropical sites.

  17. Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices

    SciTech Connect

    Barnitt, R. A.; Chernich, D.; Burnitzki, M.; Oshinuga, A.; Miyasato, M.; Lucht, E.; van der Merwe, D.; Schaberg, P.

    2010-05-01

    A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimes almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.

  18. Greenhouse gas emissions from Brazil’s Amazonian hydroelectric dams

    NASA Astrophysics Data System (ADS)

    Fearnside, Philip M.

    2016-01-01

    Tropical dams are often falsely portrayed as ‘clean’ emissions-free energy sources. The letter by de Faria et al (2015 Environ. Res. Lett. 10 124019) adds to evidence questioning this myth. Calculations are made for 18 dams that are planned or under construction in Brazilian Amazonia and show that emissions from storage hydroelectric dams would exceed those from electricity generation based on fossil fuels. Fossil fuels need not be the alternative, because Brazil has vast potential for wind and solar power as well as opportunities for energy conservation. Because dam-building is rapidly shifting to humid tropical areas, where emissions are higher than in other climatic zones, the impact of these emissions needs to be given proper weight in energy-policy decisions.

  19. Effect of Environmental Factors on Sulfur Gas Emissions from Drywall

    SciTech Connect

    Maddalena, Randy

    2011-08-20

    Problem drywall installed in U.S. homes is suspected of being a source of odorous and potentially corrosive indoor pollutants. The U.S. Consumer Product Safety Commission's (CPSC) investigation of problem drywall incorporates three parallel tracks: (1) evaluating the relationship between the drywall and reported health symptoms; (2) evaluating the relationship between the drywall and electrical and fire safety issues in affected homes; and (3) tracing the origin and the distribution of the drywall. To assess the potential impact on human health and to support testing for electrical and fire safety, the CPSC has initiated a series of laboratory tests that provide elemental characterization of drywall, characterization of chemical emissions, and in-home air sampling. The chemical emission testing was conducted at Lawrence Berkeley National Laboratory (LBNL). The LBNL study consisted of two phases. In Phase 1 of this study, LBNL tested thirty drywall samples provided by CPSC and reported standard emission factors for volatile organic compounds (VOCs), aldehydes, reactive sulfur gases (RSGs) and volatile sulfur compounds (VSCs). The standard emission factors were determined using small (10.75 liter) dynamic test chambers housed in a constant temperature environmental chamber. The tests were all run at 25 C, 50% relative humidity (RH) and with an area-specific ventilation rate of {approx}1.5 cubic meters per square meter of emitting surface per hour [m{sup 3}/m{sup 2}/h]. The thirty samples that were tested in Phase 1 included seventeen that were manufactured in China in 2005, 2006 and 2009, and thirteen that were manufactured in North America in 2009. The measured emission factors for VOCs and aldehydes were generally low and did not differ significantly between the Chinese and North American drywall. Eight of the samples tested had elevated emissions of volatile sulfur-containing compounds with total RSG emission factors between 32 and 258 micrograms per square meter

  20. Greenhouse gas emissions from home composting of organic household waste

    SciTech Connect

    Andersen, J.K.; Boldrin, A.; Christensen, T.H.; Scheutz, C.

    2010-12-15

    The emission of greenhouse gases (GHGs) is a potential environmental disadvantage of home composting. Because of a lack of reliable GHG emission data, a comprehensive experimental home composting system was set up. The system consisted of six composting units, and a static flux chamber method was used to measure and quantify the GHG emissions for one year composting of organic household waste (OHW). The average OHW input in the six composting units was 2.6-3.5 kg week{sup -1} and the temperature inside the composting units was in all cases only a few degrees (2-10 {sup o}C) higher than the ambient temperature. The emissions of methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) were quantified as 0.4-4.2 kg CH{sub 4} Mg{sup -1} input wet waste (ww) and 0.30-0.55 kg N{sub 2}O Mg{sup -1} ww, depending on the mixing frequency. This corresponds to emission factors (EFs) (including only CH{sub 4} and N{sub 2}O emissions) of 100-239 kg CO{sub 2}-eq. Mg{sup -1} ww. Composting units exposed to weekly mixing had the highest EFs, whereas the units with no mixing during the entire year had the lowest emissions. In addition to the higher emission from the frequently mixed units, there was also an instant release of CH{sub 4} during mixing which was estimated to 8-12% of the total CH{sub 4} emissions. Experiments with higher loads of OHW (up to 20 kg every fortnight) entailed a higher emission and significantly increased overall EFs (in kg substance per Mg{sup -1} ww). However, the temperature development did not change significantly. The GHG emissions (in kg CO{sub 2}-eq. Mg{sup -1} ww) from home composting of OHW were found to be in the same order of magnitude as for centralised composting plants.

  1. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover.

    PubMed

    Ng, C W W; Chen, Z K; Coo, J L; Chen, R; Zhou, C

    2015-10-01

    Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas-water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different climate conditions. The results of experimental study and numerical simulation reveal that as the degree of saturation and thickness of clay increase, the gas breakthrough pressure increases but the gas emission rate decreases significantly. Under a gas pressure of 10 kPa (the upper bound limit of typical landfill gas pressure), a 0.6m or thicker

  2. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover.

    PubMed

    Ng, C W W; Chen, Z K; Coo, J L; Chen, R; Zhou, C

    2015-10-01

    Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas-water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different climate conditions. The results of experimental study and numerical simulation reveal that as the degree of saturation and thickness of clay increase, the gas breakthrough pressure increases but the gas emission rate decreases significantly. Under a gas pressure of 10 kPa (the upper bound limit of typical landfill gas pressure), a 0.6m or thicker

  3. Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction.

    PubMed

    Hanafiah, Marlia M; Xenopoulos, Marguerite A; Pfister, Stephan; Leuven, Rob S E W; Huijbregts, Mark A J

    2011-06-15

    Human-induced changes in water consumption and global warming are likely to reduce the species richness of freshwater ecosystems. So far, these impacts have not been addressed in the context of life cycle assessment (LCA). Here, we derived characterization factors for water consumption and global warming based on freshwater fish species loss. Calculation of characterization factors for potential freshwater fish losses from water consumption were estimated using a generic species-river discharge curve for 214 global river basins. We also derived characterization factors for potential freshwater fish species losses per unit of greenhouse gas emission. Based on five global climate scenarios, characterization factors for 63 greenhouse gas emissions were calculated. Depending on the river considered, characterization factors for water consumption can differ up to 3 orders of magnitude. Characterization factors for greenhouse gas emissions can vary up to 5 orders of magnitude, depending on the atmospheric residence time and radiative forcing efficiency of greenhouse gas emissions. An emission of 1 ton of CO₂ is expected to cause the same impact on potential fish species disappearance as the water consumption of 10-1000 m³, depending on the river basin considered. Our results make it possible to compare the impact of water consumption with greenhouse gas emissions.

  4. Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon.

    PubMed

    Galford, Gillian L; Melillo, Jerry M; Kicklighter, David W; Cronin, Timothy W; Cerri, Carlos E P; Mustard, John F; Cerri, Carlos C

    2010-11-16

    The Brazilian Amazon is one of the most rapidly developing agricultural areas in the world and represents a potentially large future source of greenhouse gases from land clearing and subsequent agricultural management. In an integrated approach, we estimate the greenhouse gas dynamics of natural ecosystems and agricultural ecosystems after clearing in the context of a future climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006-2050) impacts on carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) emissions from the agricultural frontier state of Mato Grosso, using a process-based biogeochemistry model, the Terrestrial Ecosystems Model (TEM). We estimate a net emission of greenhouse gases from Mato Grosso, ranging from 2.8 to 15.9 Pg CO(2)-equivalents (CO(2)-e) from 2006 to 2050. Deforestation is the largest source of greenhouse gas emissions over this period, but land uses following clearing account for a substantial portion (24-49%) of the net greenhouse gas budget. Due to land-cover and land-use change, there is a small foregone carbon sequestration of 0.2-0.4 Pg CO(2)-e by natural forests and cerrado between 2006 and 2050. Both deforestation and future land-use management play important roles in the net greenhouse gas emissions of this frontier, suggesting that both should be considered in emissions policies. We find that avoided deforestation remains the best strategy for minimizing future greenhouse gas emissions from Mato Grosso.

  5. Storage management influences greenhouse gas emissions from biosolids.

    PubMed

    Majumder, Ramaprasad; Livesley, Stephen J; Gregory, David; Arndt, Stefan K

    2015-03-15

    Biosolids produced by wastewater treatment plants are often stored in stockpiles and can be a significant source of greenhouse gases (GHG). Growing trees in shallow stockpiled biosolids may remove nutrients, keep the biosolids drier and offset GHG emissions through C sequestration. We directly measured methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) flux from a large biosolid stockpile and two shallow stockpiles, one planted with Salix reichardtii (willow) trees, from December 2009 to January 2011. All stockpiles emitted large annual amounts of GHG ranging from 38 kg CO2-e Mg(-1) dry biosolid for the large stockpile, to 65 kg CO2-e Mg(-1) for the unplanted shallow stockpile, probably due to the greater surface area to volume ratio. GHG emissions were dominated by N2O and CO2 whilst CH4 emissions were negligible (<2%) from the large stockpile and the shallow stockpiles were actually a CH4 sink. Annual willow tree growth was 12 Mg dry biomass ha(-1), but this only offset 8% of the GHG emissions from the shallow planted stockpile. Our data highlight that biosolid stockpiles are significant sources for GHG emissions but alternate management options such as shallow stockpiles or planting for biomass production will not lead to GHG emission reductions.

  6. Storage management influences greenhouse gas emissions from biosolids.

    PubMed

    Majumder, Ramaprasad; Livesley, Stephen J; Gregory, David; Arndt, Stefan K

    2015-03-15

    Biosolids produced by wastewater treatment plants are often stored in stockpiles and can be a significant source of greenhouse gases (GHG). Growing trees in shallow stockpiled biosolids may remove nutrients, keep the biosolids drier and offset GHG emissions through C sequestration. We directly measured methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) flux from a large biosolid stockpile and two shallow stockpiles, one planted with Salix reichardtii (willow) trees, from December 2009 to January 2011. All stockpiles emitted large annual amounts of GHG ranging from 38 kg CO2-e Mg(-1) dry biosolid for the large stockpile, to 65 kg CO2-e Mg(-1) for the unplanted shallow stockpile, probably due to the greater surface area to volume ratio. GHG emissions were dominated by N2O and CO2 whilst CH4 emissions were negligible (<2%) from the large stockpile and the shallow stockpiles were actually a CH4 sink. Annual willow tree growth was 12 Mg dry biomass ha(-1), but this only offset 8% of the GHG emissions from the shallow planted stockpile. Our data highlight that biosolid stockpiles are significant sources for GHG emissions but alternate management options such as shallow stockpiles or planting for biomass production will not lead to GHG emission reductions. PMID:25585149

  7. Characteristics of seabed tremors induced by gas emissions off Southwest Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, S.; Hsu, S.; Liang, C.; Doo, W.; Lin, J.

    2013-12-01

    Gas emissions out of the seabed have been observed in the offshore area of southwest Taiwan by 38 kHz echo sounders and sub-bottom profilers. The intensities of the gas emissions are closely modulated by the tidal variation. In this study, we use ocean bottom seismometer (OBS) to monitor the gas emissions and analyze the behavior of the seabed tremors. Among the recorded seismic signals, the long-duration tremors are very prounced. Those tremors are characterized by monochromatic signals and mainly horizontally oscillate for several hours. Becuse the particle motions are almost along horizontal directions, it suggests that the tremor source is from near-seafloor source link to gas emission out of the seabed. Gas-induced tremors mainly occur during both the rising periods and falling period of the tides, probably related to the higher stress variations induced by the tidal variation. However, although they may be recorded at different sites within a time interval, their amplitudes are not coherent, indicating the source is small and origin at the vicinity of each receiver. Because of the lack of temporal coherence, it's hard to identify the tremors' sources by traditional earthquake relocation methods. Here, we use the horizontal particle motions of the tremors to define the azimuths of the gas emission sources to each receiver. By summarizing multiple sources azimuths, we are able us to minimize the source spots. The results can also be used to characterize the seabed attributes in the offshore area of SW Taiwan.

  8. The Natural Gas Vehicle Challenge '92: Exhaust emissions testing and results

    SciTech Connect

    Rimkus, W.A.; Larsen, R.P. ); Zammit, M.G. ); Davies, J.G.; Salmon, G.S. ); Bruetsch, R.I. )

    1992-01-01

    The Natural Gas Vehicle (NGV) Challenge '92, was organized by Argonne National Laboratory. The main sponsors were the US Department of Energy the Energy, Mines, and Resources -- Canada, and the Society of Automotive Engineers. It resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck donated by General Motors, teams of college and university student engineers worked to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine. out and tailpipe emissions of regulated exhaust constituents. Nine of the student modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors contributing to good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

  9. The Natural Gas Vehicle Challenge `92: Exhaust emissions testing and results

    SciTech Connect

    Rimkus, W.A.; Larsen, R.P.; Zammit, M.G.; Davies, J.G.; Salmon, G.S.; Bruetsch, R.I.

    1992-11-01

    The Natural Gas Vehicle (NGV) Challenge `92, was organized by Argonne National Laboratory. The main sponsors were the US Department of Energy the Energy, Mines, and Resources -- Canada, and the Society of Automotive Engineers. It resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck donated by General Motors, teams of college and university student engineers worked to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine. out and tailpipe emissions of regulated exhaust constituents. Nine of the student modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors contributing to good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

  10. The development of an ultra-low-emission gas-fired cyclonic combustor

    SciTech Connect

    Xiong, Tian-yu; Khinkis, M.J. ); Coppin, W.P. )

    1991-01-01

    A gas-fired cyclonic combustor has been developed for relatively low-temperature direct-air heating applications that require ultra-low pollutant emissions. High-lean premixed combustion with a flame stabilizer is adopted to achieve ultra-low emissions and high turndown operation. On the basis of analytical studies and cold modeling, a 350-kW test combustor was designed and successfully tested. Experimental results obtained using natural gas and ambient air demonstrated that the test combustor can operate steadily at high excess air up to 80% to 100% over a large turndown range up to 40:1. At design operating conditions, NO{sub x} emissions as low as 0.6 vppm and CO and total hydrocarbon (THC) emissions below 3 vppm were achieved. Over the full operating range, NO{sub x} emissions from 0.3 to 1.0 vppm and CO and THC emissions below 4 vppm were demonstrated. In all tests, concentrations of NO{sub 2} were less than 40% of the total NO{sub x} emissions -- lower than the level of NO{sub 2} emissions from combustion processes required for good indoor air quality (0.5 vppm). This paper presents the concept of high-lean premixed ultra-low-emission cyclonic combustion, design specifications for the combustion system, and the major experimental results, including flame stability, emissions, and turndown performance. 13 refs., 12 figs., 1 tab.

  11. The Value of Advanced Technology in Meeting 2050 Greenhouse Gas Emissions Targets in the United States

    SciTech Connect

    Kyle, G. Page; Clarke, Leon E.; Pugh, Graham; Wise, Marshall A.; Calvin, Katherine V.; Edmonds, James A.; Kim, Son H.

    2009-12-01

    This paper, a contribution to the EMF 22 subgroup on Transition Scenarios, examines the relationship between technology evolution over the next forty years and the cost, energy, and greenhouse gas emissions consequences of possible U.S. mitigation goals. The paper explores these issues within the context of cumulative emissions targets based on linear reductions in CO2-e emissions of 50 percent and 80 percent below 1990 levels by 2050. Six technology futures were constructed within the MiniCAM integrated assessment model and then applied to the emissions targets. The paper explores the influence of technology availability and expectations of future technology availability on the economic consequences of emissions mitigation, on the time path of emissions mitigation, and on the evolution of the U.S. energy system over time. One of the strongest themes to emerge from the scenarios in this study is that near-term decision-making depends on the availability of technology decades into the future, when deep emissions reductions are required to meet the cumulative emissions goals. In the scenarios in this paper, it is expectations about future technology that have the most dramatic effect on greenhouse gas emissions prices and emissions reductions in 2020, as opposed to near-term technology availability. Moreover, it is the nature of technology 20, 30, and 40 years out, rather than availability and deployment of technology in the next decade, that will largely determine the character of the mid-century energy system.

  12. On-road remote sensing of liquefied petroleum gas (LPG) vehicle emissions measurement and emission factors estimation

    NASA Astrophysics Data System (ADS)

    Ning, Z.; Chan, T. L.

    In the present study, the real-world on-road liquefied petroleum gas (LPG) vehicle/taxi emissions of carbon monoxide (CO), hydrocarbon (HC) and nitric oxide (NO) were investigated. A regression analysis approach based on the measured LPG vehicle emission data was also used to estimate the on-road LPG vehicle emission factors of CO, HC and NO with respect to the effects of instantaneous vehicle speed and acceleration/deceleration profiles for local urban driving patterns. The results show that the LPG vehicle model years and driving patterns have a strong correlation to their emission factors. A unique correlation of LPG vehicle emission factors (i.e., g km -1 and g l -1) on different model years for urban driving patterns has been established. Finally, a comparison was made between the average LPG, and petrol [Chan, T.L., Ning, Z., Leung, C.W., Cheung, C.S., Hung, W.T., Dong, G., 2004. On-road remote sensing of petrol vehicle emissions measurement and emission factors estimation in Hong Kong. Atmospheric Environment 38, 2055-2066 and 3541] and diesel [Chan, T.L., Ning, Z., 2005. On-road remote sensing of diesel vehicle emissions measurement and emission factors estimation in Hong Kong. Atmospheric Environment 39, 6843-6856] vehicle emission factors. It has shown that the introduction of the replacement of diesel taxis to LPG taxis has alleviated effectively the urban street air pollution. However, it has demonstrated that proper maintenance on the aged LPG taxis should also be taken into consideration.

  13. Life-cycle fossil energy consumption and greenhouse gas emissions of bioderived chemicals and their conventional counterparts.

    PubMed

    Adom, Felix; Dunn, Jennifer B; Han, Jeongwoo; Sather, Norm

    2014-12-16

    Biomass-derived chemical products may offer reduced environmental impacts compared to their fossil-derived counterparts and could improve profit margins at biorefineries when coproduced with higher-volume, lower-profit margin biofuels. It is important to assess on a life-cycle basis the energy and environmental impacts of these bioproducts as compared to conventional, fossil-derived products. We undertook a life-cycle analysis of eight bioproducts produced from either algal-derived glycerol or corn stover-derived sugars. Selected on the basis of technology readiness and market potential, the bioproducts are propylene glycol, 1,3-propanediol, 3-hydroxypropionic acid, acrylic acid, polyethylene, succinic acid, isobutanol, and 1,4-butanediol. We developed process simulations to obtain energy and material flows in the production of each bioproduct and examined sensitivity of these flows to process design assumptions. Conversion process data for fossil-derived products were based on the literature. Conversion process data were combined with upstream parameters in the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model to generate life-cycle greenhouse gas (GHG) emissions and fossil energy consumption (FEC) for each bioproduct and its corresponding petroleum-derived product. The bioproducts uniformly offer GHG emissions reductions compared to their fossil counterparts ranging from 39 to 86% on a cradle-to-grave basis. Similarly, FEC was lower for bioproducts than for conventional products.

  14. Life-cycle fossil energy consumption and greenhouse gas emissions of bioderived chemicals and their conventional counterparts.

    PubMed

    Adom, Felix; Dunn, Jennifer B; Han, Jeongwoo; Sather, Norm

    2014-12-16

    Biomass-derived chemical products may offer reduced environmental impacts compared to their fossil-derived counterparts and could improve profit margins at biorefineries when coproduced with higher-volume, lower-profit margin biofuels. It is important to assess on a life-cycle basis the energy and environmental impacts of these bioproducts as compared to conventional, fossil-derived products. We undertook a life-cycle analysis of eight bioproducts produced from either algal-derived glycerol or corn stover-derived sugars. Selected on the basis of technology readiness and market potential, the bioproducts are propylene glycol, 1,3-propanediol, 3-hydroxypropionic acid, acrylic acid, polyethylene, succinic acid, isobutanol, and 1,4-butanediol. We developed process simulations to obtain energy and material flows in the production of each bioproduct and examined sensitivity of these flows to process design assumptions. Conversion process data for fossil-derived products were based on the literature. Conversion process data were combined with upstream parameters in the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model to generate life-cycle greenhouse gas (GHG) emissions and fossil energy consumption (FEC) for each bioproduct and its corresponding petroleum-derived product. The bioproducts uniformly offer GHG emissions reductions compared to their fossil counterparts ranging from 39 to 86% on a cradle-to-grave basis. Similarly, FEC was lower for bioproducts than for conventional products. PMID:25380298

  15. Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air composition

    NASA Astrophysics Data System (ADS)

    Warneke, C.; Geiger, F.; Edwards, P. M.; Dube, W.; Pétron, G.; Kofler, J.; Zahn, A.; Brown, S. S.; Graus, M.; Gilman, J. B.; Lerner, B. M.; Peischl, J.; Ryerson, T. B.; de Gouw, J. A.; Roberts, J. M.

    2014-10-01

    Emissions of volatile organic compounds (VOCs) associated with oil and natural gas production in the Uintah Basin, Utah were measured at a ground site in Horse Pool and from a NOAA mobile laboratory with PTR-MS instruments. The VOC compositions in the vicinity of individual gas and oil wells and other point sources such as evaporation ponds, compressor stations and injection wells are compared to the measurements at Horse Pool. High mixing ratios of aromatics, alkanes, cycloalkanes and methanol were observed for extended periods of time and for short-term spikes caused by local point sources. The mixing ratios during the time the mobile laboratory spent on the well pads were averaged. High mixing ratios were found close to all point sources, but gas well pads with collection and dehydration on the well pad were clearly associated with higher mixing ratios than other wells. The comparison of the VOC composition of the emissions from the oil and natural gas well pads showed that gas well pads without dehydration on the well pad compared well with the majority of the data at Horse Pool, and that oil well pads compared well with the rest of the ground site data. Oil well pads on average emit heavier compounds than gas well pads. The mobile laboratory measurements confirm the results from an emissions inventory: the main VOC source categories from individual point sources are dehydrators, oil and condensate tank flashing and pneumatic devices and pumps. Raw natural gas is emitted from the pneumatic devices and pumps and heavier VOC mixes from the tank flashings.

  16. Greenhouse gas emissions in Sub-Saharan Africa

    SciTech Connect

    Graham, R.L.; Perlack, R.D.; Prasad, A.M.G.; Ranney, J.W.; Waddle, D.B.

    1990-11-01

    Current and future carbon emissions from land-use change and energy consumption were analyzed for Sub-Saharan Africa. The energy sector analysis was based on UN energy data tapes while the land-use analysis was based on a spatially-explicit land-use model developed specifically for this project. The impacts of different energy and land-use strategies on future carbon emissions were considered. (A review of anthropogenic emissions of methane, nitrous oxides, and chlorofluorocarbons in Sub-Saharan Africa indicated that they were probably minor in both a global and a regional context. The study therefore was focused on emissions of carbon dioxide.) The land-use model predicts carbon emissions from land use change and the amount of carbon stored in vegetation (carbon inventory) on a yearly basis between 1985 and 2001. Emissions and inventory are modeled at 9000 regularly-spaced point locations in Sub-Saharan Africa using location-specific information on vegetation type, soils, climate and deforestation. Vegetation, soils, and climate information were derived from continental-scale maps while relative deforestation rates(% of forest land lost each year) were developed from country-specific forest and deforestation statistics (FAO Tropical Forest Resources Assessment for Africa, 1980). The carbon emissions under different land use strategies in Sub-Saharan Africa were analyzed by modifying deforestation rates and altering the amount of carbon stored under different land uses. The considered strategies were: preservation of existing forests, implementation of agroforestry, and establishment of industrial tree plantations. 82 refs., 16 figs., 25 tabs.

  17. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    SciTech Connect

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  18. Soil Greenhouse Gas Emissions from a Subtropical Mangrove in Hong Kong

    NASA Astrophysics Data System (ADS)

    Lai, D. Y. F.; Xu, J.

    2014-12-01

    The concept of "blue carbon" has received increasing attention recently, which points to the potential role of vegetated coastal wetlands in carbon sequestration. Yet, the magnitude and controls of greenhouse gas emissions from coastal wetland ecosystems, especially mangroves in the subtropical regions, are still largely unknown. In this study, we conducted chamber measurements in the Mai Po Marshes Nature Reserve of Hong Kong at monthly intervals to characterize the spatial and temporal variability of the emission of greenhouse gases, including CO2, CH4 and N2O from mangrove soils, and examine the influence of environmental and biotic variables on greenhouse gas fluxes. We found the highest mean CH4 and N2O emissions in autumn and the highest CO2 flux in summer. Along the tidal gradient, we observed significantly higher CH4 and N2O emissions from the middle zones and landward zones, respectively, while no clear spatial variation of CO2 emissions was observed. There were significantly higher soil greenhouse gas emissions from sites dominated by Avicennia marina than those dominated by Kandelia obovata, which might be due to the presence of pneumatophores which facilitated gas transport. We found a significant, negative correlation between CH4 flux and soil NO3-N concentration, while CO2 flux was positively correlation with total Kjeldahl nitrogen content. Soil temperature was positively correlated with the emissions of all three greenhouse gases, while water table depth was positively and negatively correlated with CH4 and N2O emissions, respectively. Our findings demonstrate the high spatial and temporal variability of greenhouse gas emissions from mangrove soils which could be attributed in part to the differences in environmental conditions and dominant plant species.

  19. Greenhouse Gas Emissions from Educational Facilities and the EPA Greenhouse Gas Reporting Rule: Actions You Need to Take Now

    ERIC Educational Resources Information Center

    Wurmbrand, Mitchell M.; Klotz, Thomas C.

    2010-01-01

    On September 22, 2009, The United States Environmental Protection Agency (EPA) issued its final rule on greenhouse gas (GHG) emission reporting. The informational literature that EPA has published to support the rule clearly states that EPA believes the vast majority of smaller GHG-emitting facilities, such as educational facilities, will not be…

  20. Estimating the Influence of Oil and Gas Emissions on Urban Ozone and Associated Health Risks

    NASA Astrophysics Data System (ADS)

    Capps, S.; Nsanzineza, R.; Turner, M. D.; Henze, D. K.; Zhao, S.; Russell, M. G.; Hakami, A.; Milford, J. B.

    2015-12-01

    Tropospheric ozone (O3) degrades air quality, impacting human health and public welfare. The National Ambient Air Quality Standard (NAAQS) is designed to limit these impacts, but certain areas in the continental U.S. exceed this standard. Mitigating O3 NAAQS exceedances by designing emissions controls can be complicated in urban areas because of the long-range transport of ozone and its gaseous precursors as well as the complex mix of local emissions sources. Recent growth of unconventional oil and gas development near urban areas in Colorado, Texas, and the northeastern corridor has exacerbated this problem. To estimate the contribution of emissions from oil and gas development to urban O3 issues, we apply the CMAQ adjoint, which efficiently elucidates the relative influence of emissions sources on select concentration-based metrics. Specifically, the adjoint is used to calculate the spatially-specific relative contributions of emissions of oxides of nitrogen (NOx) and volatile organic compounds (VOCs) throughout the continental U.S. to O3 NAAQS exceedances and to ozone-related health risks in select urban areas. By evaluating these influences for different urban areas, including one in California that has been managing air quality with adjacent oil and gas development for a longer period of time, we are able to compare and contrast the emissions control strategies that may be more effective in particular regions. Additionally, the resulting relationships between emissions and concentrations provide a way to project ozone impacts when measurements provide refined estimates of emissions from this sector.

  1. Decoupling of greenhouse gas emissions from global agricultural production: 1970-2050.

    PubMed

    Bennetzen, Eskild H; Smith, Pete; Porter, John R

    2016-02-01

    Since 1970 global agricultural production has more than doubled; contributing ~1/4 of total anthropogenic greenhouse gas (GHG) burden in 2010. Food production must increase to feed our growing demands, but to address climate change, GHG emissions must decrease. Using an identity approach, we estimate and analyse past trends in GHG emission intensities from global agricultural production and land-use change and project potential future emissions. The novel Kaya-Porter identity framework deconstructs the entity of emissions from a mix of multiple sources of GHGs into attributable elements allowing not only a combined analysis of the total level of all emissions jointly with emissions per unit area and emissions per unit product. It also allows us to examine how a change in emissions from a given source contributes to the change in total emissions over time. We show that agricultural production and GHGs have been steadily decoupled over recent decades. Emissions peaked in 1991 at ~12 Pg CO2 -eq. yr(-1) and have not exceeded this since. Since 1970 GHG emissions per unit product have declined by 39% and 44% for crop- and livestock-production, respectively. Except for the energy-use component of farming, emissions from all sources have increased less than agricultural production. Our projected business-as-usual range suggests that emissions may be further decoupled by 20-55% giving absolute agricultural emissions of 8.2-14.5 Pg CO2 -eq. yr(-1) by 2050, significantly lower than many previous estimates that do not allow for decoupling. Beyond this, several additional costcompetitive mitigation measures could reduce emissions further. However, agricultural GHG emissions can only be reduced to a certain level and a simultaneous focus on other parts of the food-system is necessary to increase food security whilst reducing emissions. The identity approach presented here could be used as a methodological framework for more holistic food systems analysis.

  2. Decoupling of greenhouse gas emissions from global agricultural production: 1970-2050.

    PubMed

    Bennetzen, Eskild H; Smith, Pete; Porter, John R

    2016-02-01

    Since 1970 global agricultural production has more than doubled; contributing ~1/4 of total anthropogenic greenhouse gas (GHG) burden in 2010. Food production must increase to feed our growing demands, but to address climate change, GHG emissions must decrease. Using an identity approach, we estimate and analyse past trends in GHG emission intensities from global agricultural production and land-use change and project potential future emissions. The novel Kaya-Porter identity framework deconstructs the entity of emissions from a mix of multiple sources of GHGs into attributable elements allowing not only a combined analysis of the total level of all emissions jointly with emissions per unit area and emissions per unit product. It also allows us to examine how a change in emissions from a given source contributes to the change in total emissions over time. We show that agricultural production and GHGs have been steadily decoupled over recent decades. Emissions peaked in 1991 at ~12 Pg CO2 -eq. yr(-1) and have not exceeded this since. Since 1970 GHG emissions per unit product have declined by 39% and 44% for crop- and livestock-production, respectively. Except for the energy-use component of farming, emissions from all sources have increased less than agricultural production. Our projected business-as-usual range suggests that emissions may be further decoupled by 20-55% giving absolute agricultural emissions of 8.2-14.5 Pg CO2 -eq. yr(-1) by 2050, significantly lower than many previous estimates that do not allow for decoupling. Beyond this, several additional costcompetitive mitigation measures could reduce emissions further. However, agricultural GHG emissions can only be reduced to a certain level and a simultaneous focus on other parts of the food-system is necessary to increase food security whilst reducing emissions. The identity approach presented here could be used as a methodological framework for more holistic food systems analysis. PMID:26451699

  3. [Enantioseparation of 2-phenylcarboxylic acid esters by capillary gas chromatography].

    PubMed

    Shi, Xueyan; Liu, Feipeng; Bian, Qinghua

    2016-01-01

    Chiral 2-arylcarboxylic acid derivatives are important intermediates for preparing 2-arylcarboxylic acids, which are non-steroidal anti-inflammatory drugs (NSAIDs). In order to separate 2-phenylcarboxylic acid ester enantiomers by capillary gas chromatography (CGC), 2, 6-di-O-pentyl-3-O-butyryl-β-cyclodextrin and 2,6-di-O-benzyl-3-O-heptanoyl-β-cyclodextrin were used as CGC chiral stationary phases, separately, and their enantioseparation abilities to enantiomers of methyl 2-phenylbutanoate, ethyl 2-phenylbutanoate, isopropyl 2-phenylbutanoate, methyl 2-phenylpropionate and cyclopentyl 2-phenylpropionate were examined. It was found that methyl 2-phenylbutanoate, methyl 2-phenylpropionate and cyclopentyl 2-phenylpropionate were successfully separated by using 2,6-di-O-pentyl-3-O-butyryl-β-cyclodextrin and 2,6-di-O-benzyl-3-O-heptanoyl-β-cyclodextrin as CGC chiral stationary phases, respectively. The enantiomer separation abilities of 2, 6-di-O-pentyl-3-O-butyryl-β-cyclodextrin to the three pairs of 2-phenylcarboxylic acid esters tested are superior to those of 2, 6-di-O-benzyl-3-O-heptanoyl-β-cyclodextrin. PMID:27319170

  4. Fluoroalkyl chloroformates in treating amino acids for gas chromatographic analysis.

    PubMed

    Husek, Petr; Simek, Petr; Hartvich, Petr; Zahradnícková, Helena

    2008-04-01

    Novel fluoroalkyl chloroformates with three and four carbon atoms were investigated for the immediate conversion of amino acids into hydrophobic derivatives in water-containing media. Derivatization conditions were extensively studied and optimized sample preparation protocols elaborated. More than 30 amino acids were treated with the particular reagent in isooctane by simply vortexing the reactive organic phase with a slightly basified aqueous medium containing pyridine or 3-picoline as a catalyst. Outstanding separation of nearly all components on 5% phenylmethylsilicone phase in gas chromatographic (GC) analysis with mass spectrometric (MS) or flame ionization detection (FID) required <10 min. Quantitation characteristics involving linearity in the range of 0.1-100 nmol, regression coefficients of 0.999-0.953 (histidine), MS limit of detection (LOD) reaching 0.03 pmol at proline to nearly 20 pmol at glutamic acid, plus electron impact (EI) spectra and diagnostic SIM fragment ions of the derivatives are reported. The novel method is simple, robust and rapid, enabling to treat amino acids in aqueous environment and to analyze them in <15 min. PMID:18242622

  5. Greenhouse Gas Emissions From Urban Wastewater Treatment Plants

    NASA Astrophysics Data System (ADS)

    Sturchio, N. C.; Bellucci, F.; Gonzalez-Meler, M. A.; Heraty, L.; Kozak, J. A.

    2010-12-01

    Wastewater treatment plants are considered the seventh highest contributor of greenhouse gases (GHG) to the atmosphere. For instance, USEPA recently reported (http://epa.gov/climatechange/emissions/downloads10/US-GHG-Inventory-2010_Chapter8-Waste.pdf) that U.S. wastewater treatment released 24.3 Tg CO2e (i.e. CO2 GHG equivalents) via CH4 and 4.9 Tg CO2e via N20 during 2008. Emissions of GHG from wastewater treatment sources are often modeled using algorithms that rely on surrogates such as five-day Biological or Chemical Oxygen Demand [B(C)OD5] for CH4 and protein content of diets for N2O. Unfortunately, empirical validation of these models using field data is lacking. To fill this gap, we measured annual CH4 and N20 emissions from three wastewater treatment plants in the Chicago region that differ in size and design. Plants ranged from serving 0.17 to 2.3 million people, treating from 27 to 751 millions of gallons of wastewater per day, and having BOD5 from 101 to 220 mg/L. Primary settling tanks, exhausts, and aeration basins were the main sources of CH4 emissions, whereas N2O was mainly emitted by aeration basins at the three plants investigated. During 2009, per capita emissions for CH4 and N2O (for every thousand people) ranged from 61 to 1130 kg/yr and from 12 to 226 Kg/yr, respectively. These wide variations were in part due to chemistry of influent waters and plant design. We found that IPCC and USEPA algorithms were good predictors of CH4 emissions but they largely underestimated N20 emissions. Despite the differences in plant design and per capita emissions, we found that all three plants have a similar CH4:N2O flux ratio. If this flux ratio proves to be a general characteristic of wastewater treatment plants, it could provide a more accurate alternative to current models for estimation of N2O emissions.

  6. Carbon sequestration and greenhouse gas emissions in urban turf

    NASA Astrophysics Data System (ADS)

    Townsend-Small, Amy; Czimczik, Claudia I.

    2010-01-01

    Undisturbed grasslands can sequester significant quantities of organic carbon (OC) in soils. Irrigation and fertilization enhance CO2 sequestration in managed turfgrass ecosystems but can also increase emissions of CO2 and other greenhouse gases (GHGs). To better understand the GHG balance of urban turf, we measured OC sequestration rates and emission of N2O (a GHG ˜ 300 times more effective than CO2) in Southern California, USA. We also estimated CO2 emissions generated by fuel combustion, fertilizer production, and irrigation. We show that turf emits significant quantities of N2O (0.1-0.3 g N m-2 yr-1) associated with frequent fertilization. In ornamental lawns this is offset by OC sequestration (140 g C m-2 yr-1), while in athletic fields, there is no OC sequestration because of frequent surface restoration. Large indirect emissions of CO2 associated with turfgrass management make it clear that OC sequestration by turfgrass cannot mitigate GHG emissions in cities.

  7. Trace Gas Emissions Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Collections under the broad heading of Trace Gas Emissions are organized as Fossil-Fuel CO2 Emissions, Land-Use CO2 Emissions, Soil CO2 Emissions, and Methane.

  8. The impact of emission standards on the design of aircraft gas turbine engine combustors

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1976-01-01

    The advent of environmental standards for controlling aircraft gas turbine engine emissions has led to a reevaluation of combustor design techniques. Effective emission control techniques have been identified and a wide spectrum of potential applications for these techniques to existing and advanced engines are being considered. Results from advanced combustor concept evaluations and from fundamental experiments are presented and discussed and comparisons are made with existing EPA emission standards and recommended levels for high altitude cruise. The impact that the advanced low emission concepts may impose on future aircraft engine combustor designs and related engine components is discussed.

  9. Gas phase C{sub 2}-C{sub 10} organic acids concentrations in the Los Angeles atmosphere

    SciTech Connect

    Nolte, C.G.; Fraser, M.P.; Cass, G.R.

    1999-02-15

    The atmospheric concentrations of gas-phase C{sub 2}--C{sub 10} monocarboxylic and benzoic acids are reported in samples collected during a severe Los Angeles area photochemical smog episode. Average urban concentrations are 10--50 {times} greater than concentrations observed at a remote background location, indicating an anthropogenic origin for these compounds. Average urban concentrations during the episode were 16.1 {micro}g m{sup {minus}3} (6.6 ppb) for acetic acid and 1.67 {micro}g m{sup {minus}3} (0.55 ppb) for propionic acid, with progressively lesser amounts as the carbon chain length of the acids is increased. Spatial and diurnal variations in atmospheric organic acids concentrations point to the importance of both direct emissions from primary sources and formation by photochemical reaction of precursor compounds.

  10. 40 CFR Table W - 4 of Subpart W-Default Total Hydrocarbon Emission Factors for Underground Natural Gas Storage

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false 4 of Subpart W-Default Total Hydrocarbon Emission Factors for Underground Natural Gas Storage W Table W Protection of Environment... Total Hydrocarbon Emission Factors for Underground Natural Gas Storage Underground natural gas...

  11. 40 CFR Table W - 2 of Subpart W-Default Total Hydrocarbon Emission Factors for Onshore Natural Gas Processing

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false 2 of Subpart W-Default Total Hydrocarbon Emission Factors for Onshore Natural Gas Processing W Table W Protection of Environment... Total Hydrocarbon Emission Factors for Onshore Natural Gas Processing Onshore natural gas...

  12. GAS-GRAIN MODELING OF ISOCYANIC ACID (HNCO), CYANIC ACID (HOCN), FULMINIC ACID (HCNO), AND ISOFULMINIC ACID (HONC) IN ASSORTED INTERSTELLAR ENVIRONMENTS

    SciTech Connect

    Quan Donghui; Herbst, Eric; Osamura, Yoshihiro; Roueff, Evelyne

    2010-12-20

    Isocyanic acid (HNCO) is a well-known interstellar molecule. Evidence also exists for the presence of two of its metastable isomers in the interstellar medium: HCNO (fulminic acid) and HOCN (cyanic acid). Fulminic acid has been detected toward cold and lukewarm sources, while cyanic acid has been detected both in these sources and in warm sources in the Galactic Center. Gas-phase models can reproduce the abundances of the isomers in cold sources, but overproduce HCNO in the Galactic Center. Here we present a detailed study of a gas-grain model that contains these three isomers, plus a fourth isomer, isofulminic acid (HONC), for four types of sources: hot cores, the warm envelopes of hot cores, lukewarm corinos, and cold cores. The current model is partially able to rationalize the abundances of HNCO, HOCN, and HCNO in cold and warm sources. Predictions for HONC in all environments are also made.

  13. Transportation and Greenhouse Gas Emissions Trading. Final Technical Report

    SciTech Connect

    Steve Winkelman; Tim Hargrave; Christine Vanderlan

    1999-10-01

    The authors conclude in this report that an upstream system would ensure complete regulatory coverage of transportation sector emissions in an efficient and feasible manner, and as such represents a key component of a national least-cost GHG emissions abatement strategy. The broad coverage provided by an upstream system recommends this approach over vehicle-maker based approaches, which would not cover emissions from heavy-duty vehicles and the aviation, marine and off-road sub-sectors. The on-road fleet approach unfairly and inefficiently burdens vehicle manufacturers with responsibility for emissions that they cannot control. A new vehicles approach would exclude emissions from vehicles on the road prior to program inception. The hybrid approach faces significant technical and political complications, and it is not clear that the approach would actually change behavior among vehicle makers and users, which is its main purpose. They also note that a trading system would fail to encourage many land use and infrastructure measures that affect VMT growth and GHG emissions. They recommend that this market failure be addressed by complementing the trading system with a program specifically targeting land use- and infrastructure-related activities. A key issue that must be addressed in designing a national GHG control strategy is whether or not it is necessary to guarantee GHG reductions from the transport sector. Neither an upstream system nor a downstream approach would do so, since both would direct capital to the least-cost abatement opportunities wherever they were found. They review two reasons why it may be desirable to force transportation sector reductions: first, that the long-term response to climate change will require reductions in all sectors; and second, the many ancillary benefits associated with transportation-related, and especially VMT-related, emissions reduction activities. If policy makers find it desirable to establish transportation

  14. Greenhouse-gas emissions from biofuel use in Asia.

    SciTech Connect

    Streets, D. G.; Waldhoff, S. T.

    1999-07-06

    Biomass is a primary fuel for much of the world's population. In some developing countries it can contribute 80-90% of total primary energy consumption. In Asia as a whole we estimate that biomass contributes about 22 EJ, almost 24% of total energy use. Much of this biomass is combusted in inefficient domestic stoves and cookers, enhancing the formation of products of incomplete combustion (PIC), many of which are greenhouse gases. An inventory of the combustion of biofuels (fuelwood, crop residues, and dried animal waste) in Asia is used to develop estimates of the emissions of carbon-containing greenhouse gases (CO{sub 2},CO, CH{sub 4}, and NMHC) in Asian countries. The data are examined from two perspectives: total carbon released and total global warming potential (GWP) of the gases. We estimate that blofuels contributed 573 Tg-C in 1990, about 28% of the total carbon emissions from energy use in Asia. China (259 Tg-C) and India (187 Tg-C) were the largest emitting countries by far. The majority of the emissions, 504 Tg-C, are in the form of CO{sub 2}; however, emissions of non-CO{sub 2} greenhouse gases are significant: 57 Tg-C as CO, 6.4 Tg-C as CH{sub 4}, and 5.9 Tg-C as NMHC. Because of the high rate of incomplete combustion in typical biofuel stoves and the high GWP coefficients of the products of incomplete combustion, biofuels comprise an even larger share of energy-related emissions when measured in terms of global warming potential (in CO{sub 2} equivalents): 38% over a 20-year time frame and 31% over 100 years. Even when the biofuel is assumed to be harvested on a completely sustainable basis (all CO{sub 2} emissions are reabsorbed in the following growing season), PIC emissions from biofuel combustion account for almost 5% of total carbon emissions and nearly 25% of CO{sub 2} equivalents in terms of short-term (20-year) GWP.

  15. Political influences on greenhouse gas emissions from US states.

    PubMed

    Dietz, Thomas; Frank, Kenneth A; Whitley, Cameron T; Kelly, Jennifer; Kelly, Rachel

    2015-07-01

    Starting at least in the 1970s, empirical work suggested that demographic (population) and economic (affluence) forces are the key drivers of anthropogenic stress on the environment. We evaluate the extent to which politics attenuates the effects of economic and demographic factors on environmental outcomes by examining variation in CO2 emissions across US states and within states over time. We find that demographic and economic forces can in part be offset by politics supportive of the environment--increases in emissions over time are lower in states that elect legislators with strong environmental records.

  16. Political influences on greenhouse gas emissions from US states

    PubMed Central

    Dietz, Thomas; Frank, Kenneth A.; Whitley, Cameron T.; Kelly, Jennifer; Kelly, Rachel

    2015-01-01

    Starting at least in the 1970s, empirical work suggested that demographic (population) and economic (affluence) forces are the key drivers of anthropogenic stress on the environment. We evaluate the extent to which politics attenuates the effects of economic and demographic factors on environmental outcomes by examining variation in CO2 emissions across US states and within states over time. We find that demographic and economic forces can in part be offset by politics supportive of the environment—increases in emissions over time are lower in states that elect legislators with strong environmental records. PMID:26080396

  17. Political influences on greenhouse gas emissions from US states.

    PubMed

    Dietz, Thomas; Frank, Kenneth A; Whitley, Cameron T; Kelly, Jennifer; Kelly, Rachel

    2015-07-01

    Starting at least in the 1970s, empirical work suggested that demographic (population) and economic (affluence) forces are the key drivers of anthropogenic stress on the environment. We evaluate the extent to which politics attenuates the effects of economic and demographic factors on environmental outcomes by examining variation in CO2 emissions across US states and within states over time. We find that demographic and economic forces can in part be offset by politics supportive of the environment--increases in emissions over time are lower in states that elect legislators with strong environmental records. PMID:26080396

  18. GAS EXCITATION IN ULIRGs: MAPS OF DIAGNOSTIC EMISSION-LINE RATIOS IN SPACE AND VELOCITY

    SciTech Connect

    Soto, Kurt T.; Martin, Crystal L.

    2012-11-15

    Emission-line spectra extracted at multiple locations across 39 ultraluminous infrared galaxies have been compiled into a spectrophotometric atlas. Line profiles of H{alpha}, [N II], [S II], [O I], H{beta}, and [O III] are resolved and fit jointly with common velocity components. Diagnostic ratios of these line fluxes are presented in a series of plots, showing how the Doppler shift, line width, gas excitation, and surface brightness change with velocity at fixed position and also with distance from the nucleus. One general characteristic of these spectra is the presence of shocked gas extending many kiloparsecs from the nucleus. In some systems, the rotation curves of the emitting gas indicate motions that suggest gas disks, which are most frequent at early merger stages. At these early merger stages, the emission line ratios indicate the presence of shocked gas, which may be triggered by the merger event. We also report the general characteristics of the integrated spectra.

  19. EAF Gas Waste Heat Utilization and Discussion of the Energy Conservation and CO2 Emissions Reduction

    NASA Astrophysics Data System (ADS)

    Yang, Ling-zhi; Zhu, Rong; Ma, Guo-hong

    2016-02-01

    As a large number of energy was taken away by the high temperature furnace gas during the EAF smelting process, a huge economic and environmental benefits would obtained to recycle and utilize. In this paper, the energy of the EAF was analyzed theoretically with the hot metal ratio of 50%. Combined with the utilization of the gas waste heat during the scrap preheating, electricity generation, production of steam and production of coal gas processes, the effect of the energy saving and emission was calculated with comprehensive utilization of the high temperature furnace gas. An optimal scheme for utilization of the waste heat was proposed based on the calculation. The results show that the best way for energy saving and carbon reduction is the production of coal gas, while the optimal scheme for waste heat utilization is combined the production of coal gas with the scrap preheating, which will save 170 kWh/t of energy and decrease 57.88 kg/t of carbon emission. As hot metal ratio in EAF steelmaking is often more than 50%, which will produce more EAF gas waste heat, optimizing EAF gas waste heat utilization will have more obvious effect on energy saving and emission reduction.

  20. Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States

    SciTech Connect

    Burling, Ian; Yokelson, Robert J.; Griffith, David WT; Johnson, Timothy J.; Veres, Patrick; Roberts, J.; Warneke, Carsten; Urbanski, Shawn; Reardon, James; Weise, David; Hao, WeiMin; Gouw, Joost de

    2010-11-25

    Fuels commonly managed by prescribed burning were collected from five Department of Defense (DoD) bases in the southeast and southwest U.S. and burned under controlled conditions at the USFS Firelab in Missoula, MT. The smoke emissions were measured with a large suite of state-of-the-art instrumentation. A key instrument used in the measurement of the gas-phase species in smoke was an open-path Fourier transform infrared (OP FTIR) spectrometer. The OP FTIR detected and quantified 19 gas-phase species in these fires - CO2, CO, H2O, NO2, NO, HONO, NH3, HCl, SO2, CH4, CH3OH, HCHO, HCOOH, C2H2, C2H4, CH3COOH, HCN, C3H6 and C4H4O. Of particular interest, gas-phase nitrous acid (HONO) was detected in the smoke from all fires. The HONO emission factor ranged from 0.15 to 0.60 g kg 1 and was higher for the southeast fuels. Similarly, the fire-integrated molar emission ratios (relative to NOx) ranged from approximately 0.03 to 0.20, with higher values observed for the southeast fuels. HONO is an important precursor in the production of OH, the primary oxidizing species in the atmosphere but there exists little previous data documenting HONO emissions from either wild or prescribed fires. The detected non-methane organic compound (NMOC) emissions were dominated by oxygenated volatile organic compounds (OVOCs) with total identified molar OVOC emissions ranging from 39 to 79% of the total identified molar non-methane organic compounds (NMOC). Emitted NMOC can undergo further oxidation and photolysis in the case of OVOC and thus involved in secondary aerosol formation. Elevated amounts of gas-phase HCl and SO2 were also detected in the smoke, with the amounts varying depending on location and vegetation type. Emission factors for HCl were typically much higher for the southwest fuels, particularly those found in the chaparral biome in the coastal regions of California.

  1. Real-time exhaust gas modular flowmeter and emissions reporting system for mobile apparatus

    NASA Technical Reports Server (NTRS)

    Breton, Leo Alphonse Gerard (Inventor)

    2002-01-01

    A real-time emissions reporting system includes an instrument module adapted to be detachably connected to the exhaust pipe of a combustion engine to provide for flow of exhaust gas therethrough. The instrument module includes a differential pressure probe which allows for determination of flow rate of the exhaust gas and a gas sampling tube for continuously feeding a sample of the exhaust gas to a gas analyzer or a mounting location for a non-sampling gas analyzer. In addition to the module, the emissions reporting system also includes an elastomeric boot for detachably connecting the module to the exhaust pipe of the combustion engine, a gas analyzer for receiving and analyzing gases sampled within the module and a computer for calculating pollutant mass flow rates based on concentrations detected by the gas analyzer and the detected flowrate of the exhaust gas. The system may also include a particulate matter detector with a second gas sampling tube feeding same mounted within the instrument module.

  2. Stepwise multiple regression method of greenhouse gas emission modeling in the energy sector in Poland.

    PubMed

    Kolasa-Wiecek, Alicja

    2015-04-01

    The energy sector in Poland is the source of 81% of greenhouse gas (GHG) emissions. Poland, among other European Union countries, occupies a leading position with regard to coal consumption. Polish energy sector actively participates in efforts to reduce GHG emissions to the atmosphere, through a gradual decrease of the share of coal in the fuel mix and development of renewable energy sources. All evidence which completes the knowledge about issues related to GHG emissions is a valuable source of information. The article presents the results of modeling of GHG emissions which are generated by the energy sector in Poland. For a better understanding of the quantitative relationship between total consumption of primary energy and greenhouse gas emission, multiple stepwise regression model was applied. The modeling results of CO2 emissions demonstrate a high relationship (0.97) with the hard coal consumption variable. Adjustment coefficient of the model to actual data is high and equal to 95%. The backward step regression model, in the case of CH4 emission, indicated the presence of hard coal (0.66), peat and fuel wood (0.34), solid waste fuels, as well as other sources (-0.64) as the most important variables. The adjusted coefficient is suitable and equals R2=0.90. For N2O emission modeling the obtained coefficient of determination is low and equal to 43%. A significant variable influencing the amount of N2O emission is the peat and wood fuel consumption.

  3. Proceedings of the 1992 Gas Research Institute, glycol dehydrator air emissions conference

    SciTech Connect

    Rueter, C.O.; Heath, C.J.

    1992-01-01

    Emissions of benzene, toluene, ethyl benzene, and the xylene isomers (BTEX) and other volatile organic compounds (VOC) from the reboiler still vent of glycol dehydration units have become a major concern for the natural gas industry as a result of increasing regulatory pressure. The Clean Air Act Amendments of 1990 have provided an impetus for regulating these emissions, and several states are regulating or considering regulation of these units. Because the estimated 20,000--30,000 glycol units in the United States treat virtually all of the domestically produced gas, this issue is of crucial importance to the natural gas industry. To encourage communication and a transfer of regulatory and technical information, the Gas Research Institute sponsored a two and a half day conference on glycol dehydrator air emissions issues. Twenty-two technical papers were presented on regulatory issues and activities, industry approaches to addressing emissions, research and development programs, process and emissions modeling, and control technologies. An open question and answer forum was also held. The conference was attended by 190 people from the production, processing, pipeline, and storage segments of the natural gas industry, as well as regulators, researchers, vendors, and other interested in the conference topic.

  4. Microscale gas breakdown: ion-enhanced field emission and the modified Paschen’s curve

    NASA Astrophysics Data System (ADS)

    Go, D. B.; Venkattraman, A.

    2014-12-01

    Gas breakdown at microscale dimensions has been of great interest to the microelectromechanical systems (MEMS) and plasma communities for nearly 15 years as the first reports of deviations from traditional theory began to emerge. Since those first reports, a significant amount of work has investigated why gas breakdown deviates from the classic Paschen’s Law when the dimensions are in the range of 1-10 µm. Nearly universally, these deviations that form the so-called modified Paschen’s curve have been attributed to electron field emission, where electrons directly tunnel from the cathode into the gas due to the very high electric fields at microscale dimensions. Furthermore, because of ionization in the gas gap, field emission is enhanced by positive ions and thus is inherently coupled to the gas and discharge dynamics. Progress in understanding the mechanisms and physics of this process has in turn led to new ideas and devices that capitalize on the high surface-to-volume ratio in microscale dimensions and take advantage of cathode emission processes. This topical review summarizes and analyzes the numerous experimental, computational and analytical works on breakdown at microscale dimensions, discusses implications and new areas emerging in microscale devices that take advantage of field emission and presents perspectives looking ahead at new opportunities for field emission-driven microplasmas.

  5. Estimate of methane emissions from the U.S. natural gas industry.

    PubMed

    Kirchgessner, D A; Lott, R A; Cowgill, R M; Harrison, M R; Shires, T M

    1997-09-01

    Global methane emissions from the fossil fuel industries have been poorly quantified and, in many cases, emissions are not well-known even at the country level. Historically, methane emissions from the U.S. gas industry have been based on sparse data, incorrect assumptions, or both. As a result, the estimate of the contribution these emissions make to the global methane inventory could be inaccurate. For this reason the assertion that global warming could be reduced by replacing coal and oil fuels with natural gas could not be defended. A recently completed, multi year study conducted by the U.S. Environmental Protection Agency's Office of Research and Development and the Gas Research Institute had the objective of determining methane emissions from the U.S. gas industry with an accuracy of +/-0.5% of production. The study concluded that, in the 1992 base year, methane emissions from the industry were 314 +/- 105 Bscf or 6.04 +/- 2.01 Tg (all conversions to international units are made at 15.56 degrees C and 101.325 kPa).

  6. Effects of nitrogen loading on greenhouse gas emissions in salt marshes

    NASA Astrophysics Data System (ADS)

    Tang, J.; Moseman-Valtierra, S.; Kroeger, K. D.; Morkeski, K.; Mora, J.; Chen, X.; Carey, J.

    2014-12-01

    Salt marshes play an important role in global and regional carbon and nitrogen cycling. We tested the hypothesis that anthropogenic nitrogen loading alters greenhouse gas (GHG, including CO2, CH4, and N2O) emissions and carbon sequestration in salt marshes. We measured GHG emissions biweekly for two growing seasons across a nitrogen-loading gradient of four Spartina salt marshes in Waquoit Bay, Massachusetts. In addition, we conducted nitrogen addition experiments in a pristine marsh by adding low and high nitrate to triplicate plots bi-weekly during the summer. The GHG flux measurements were made in situ with a state-of-the-art mobile gas measurement system using the cavity ring down technology that consists of a CO2/CH4 analyzer (Picarro) and an N2O/CO analyzer (Los Gatos). We observed strong seasonal variations in greenhouse gas emissions. The differences in gas emissions across the nitrogen gradient were not significant, but strong pulse emissions of N2O were observed after nitrogen was artificially added to the marsh. Our results will facilitate model development to simulate GHG emissions in coastal wetlands and support methodology development to assess carbon credits in preserving and restoring coastal wetlands.

  7. Estimate of methane emissions from the U.S. natural gas industry.

    PubMed

    Kirchgessner, D A; Lott, R A; Cowgill, R M; Harrison, M R; Shires, T M

    1997-09-01

    Global methane emissions from the fossil fuel industries have been poorly quantified and, in many cases, emissions are not well-known even at the country level. Historically, methane emissions from the U.S. gas industry have been based on sparse data, incorrect assumptions, or both. As a result, the estimate of the contribution these emissions make to the global methane inventory could be inaccurate. For this reason the assertion that global warming could be reduced by replacing coal and oil fuels with natural gas could not be defended. A recently completed, multi year study conducted by the U.S. Environmental Protection Agency's Office of Research and Development and the Gas Research Institute had the objective of determining methane emissions from the U.S. gas industry with an accuracy of +/-0.5% of production. The study concluded that, in the 1992 base year, methane emissions from the industry were 314 +/- 105 Bscf or 6.04 +/- 2.01 Tg (all conversions to international units are made at 15.56 degrees C and 101.325 kPa). PMID:9308164

  8. A rational procedure for estimation of greenhouse-gas emissions from municipal wastewater treatment plants.

    PubMed

    Monteith, Hugh D; Sahely, Halla R; MacLean, Heather L; Bagley, David M

    2005-01-01

    Municipal wastewater treatment may lead to the emission of greenhouse gases. The current Intergovenmental Panel on Climate Change (Geneva, Switzerland) approach attributes only methane emissions to wastewater treatment, but this approach may overestimate greenhouse gas emissions from the highly aerobic processes primarily used in North America. To better estimate greenhouse gas emissions, a procedure is developed that can be used either with plant-specific data or more general regional data. The procedure was evaluated using full-scale data from 16 Canadian wastewater treatment facilities and then applied to all 10 Canadian provinces. The principal greenhouse gas emitted from municipal wastewater treatment plants was estimated to be carbon dioxide (CO2), with very little methane expected. The emission rates ranged from 0.005 kg CO2-equivalent/m3 treated for primary treatment facilities to 0.26 kg CO2-equivalent/m3 for conventional activated sludge, with anaerobic sludge digestion to over 0.8 kg CO2-equivalent/m3 for extended aeration with aerobic digestion. Increasing the effectiveness of biogas generation and use will decrease the greenhouse gas emissions that may be assigned to the wastewater treatment plant.

  9. Dynamics of the enhanced emissions of monoterpenes and methyl salicylate, and decreased uptake of formaldehyde, by Quercus ilex leaves after application of jasmonic acid.

    PubMed

    Filella, Iolanda; Peñuelas, Josep; Llusià, Joan

    2006-01-01

    Jasmonic acid (JA) is a signalling compound with a key role in both stress and development in plants, and is reported to elicit the emission of volatile organic compounds (VOCs). Here we studied the dynamics of such emissions and the linkage with photosynthetic rates and stomatal conductance. We sprayed JA on leaves of the Mediterranean tree species Quercus ilex and measured the photosynthetic rates, stomatal conductances, and emissions and uptake of VOCs using proton transfer reaction mass spectrometry and gas chromatography after a dark-light transition. Jasmonic acid treatment delayed the induction of photosynthesis and stomatal conductance by approx. 20 min, and decreased them 24 h after spraying. Indications were found of both stomatal and nonstomatal limitations of photosynthesis. Monoterpene emissions were enhanced (20-30%) after JA spraying. Jasmonic acid also increased methyl salicylate (MeSa) emissions (more than twofold) 1 h after treatment, although after 24 h this effect had disappeared. Formaldehyde foliar uptake decreased significantly 24 h after JA treatment. Both biotic and abiotic stresses can thus affect plant VOC emissions through their strong impact on JA levels. Jasmonic acid-mediated increases in monoterpene and MeSa emissions might have a protective role when confronting biotic and abiotic stresses. PMID:16390425

  10. Black carbon particulate matter emission factors for buoyancy-driven associated gas flares.

    PubMed

    McEwen, James D N; Johnson, Matthew R

    2012-03-01

    Flaring is a technique used extensively in the oil and gas industry to burn unwanted flammable gases. Oxidation of the gas can preclude emissions of methane (a potent greenhouse gas); however, flaring creates other pollutant emissions such as particulate matter (PM) in the form of soot or black carbon (BC). Currently available PM emissionfactors for flares were reviewed and found to be questionably accurate, or based on measurements not directly relevant to open-atmosphere flares. In addition, most previous studies of soot emissions from turbulent diffusion flames considered alkene or alkyne based gaseous fuels, and few considered mixed fuels in detail and/or lower sooting propensity fuels such as methane, which is the predominant constituent of gas flared in the upstream oil and gas industry. Quantitative emission measurements were performed on laboratory-scale flares for a range of burner diameters, exit velocities, and fuel compositions. Drawing from established standards, a sampling protocol was developed that employed both gravimetric analysis of filter samples and real-time measurements of soot volume fraction using a laser-induced incandescence (LII) system. For the full range of conditions tested (burner inner diameter [ID] of 12.7-76.2 mm, exit velocity 0.1-2.2 m/sec, 4- and 6-component methane-based fuel mixtures representative of associated gas in the upstream oil industry), measured soot emission factors were less than 0.84 kg soot/10(3) m3 fuel. A simple empirical relationship is presented to estimate the PM emission factor as a function of the fuel heating value for a range of conditions, which, although still limited, is an improvement over currently available emission factors. PMID:22482289

  11. Methane emission from naturally ventilated livestock buildings can be determined from gas concentration measurements.

    PubMed

    Bjerg, Bjarne; Zhang, Guoqiang; Madsen, Jørgen; Rom, Hans B

    2012-10-01

    Determination of emission of contaminant gases as ammonia, methane, or laughing gas from natural ventilated livestock buildings with large opening is a challenge due to the large variations in gas concentration and air velocity in the openings. The close relation between calculated animal heat production and the carbon dioxide production from the animals have in several cases been utilized for estimation of the ventilation air exchange rate for the estimation of ammonia and greenhouse gas emissions. Using this method, the problem of the complicated air velocity and concentration distribution in the openings is avoided; however, there are still some important issues remained unanswered: (1) the precision of the estimations, (2) the requirement for the length of measuring periods, and (3) the required measuring point number and location. The purpose of this work was to investigate how estimated average gas emission and the precision of the estimation are influenced by different calculation procedures, measuring period length, measure point locations, measure point numbers, and criteria for excluding measuring data. The analyses were based on existing data from a 6-day measuring period in a naturally ventilated, 150 milking cow building. The results showed that the methane emission can be determined with much higher precision than ammonia or laughing gas emissions, and, for methane, relatively precise estimations can be based on measure periods as short as 3 h. This result makes it feasible to investigate the influence of feed composition on methane emission in a relative large number of operating cattle buildings and consequently it can support a development towards reduced greenhouse gas emission from cattle production. PMID:22020391

  12. Evaluation of a biologically active cover for mitigation of landfill gas emissions.

    PubMed

    Barlaz, M A; Green, R B; Chanton, J P; Goldsmith, C D; Hater, G R

    2004-09-15

    Landfills are the third largest source of anthropogenic CH4 in the United States, and there is potential for reduction in this source of greenhouse gases and other contaminants. The objective of this work was to contrast emissions of CH4 and non-methane organic compounds (NMOCs) from landfill cells covered with soil or a biologically active cover consisting of yard waste compost. On the basis of four field campaigns over 14 months, CH4 emissions from the biocover (BC) varied from -1.73 to 1.33 g m(-2) d(-1), with atmospheric uptake measured in 52% of tests. BC emissions did not increase when the gas collection system was turned off. Uptake of atmospheric CH4 was measured in 54% of tests on the soil cover (SC) when the gas collection was system active and 12% when the gas collection system was off. Many (26%) relatively high fluxes (>15 g m(-2) d(-1)) were measured from the SC as were some dramatic effects due to deactivation of the gas collection system. In tests with positive emissions, stable isotope measurements showed that the BC and SC were responsible for oxidation of 55% and 21% of the CH4 reaching the bottom of the respective cover. Seven of the highest 10 NMOC emissions were measured in the SC, and 17 of 21 fluxes for speciated organic compounds were higher in the SC. The relationship between CH4, NMOC, and individual organic compound emissions suggested a correlation between CH4 and trace organic oxidation. BCs can reduce landfill gas emissions in the absence of a gas collection system and can serve as a polishing step in the presence of an active system.

  13. Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)

    SciTech Connect

    Not Available

    2013-01-01

    Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

  14. Supplanting ecosystem services provided by scavengers raises greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Morales-Reyes, Zebensui; Pérez-García, Juan M.; Moleón, Marcos; Botella, Francisco; Carrete, Martina; Lazcano, Carolina; Moreno-Opo, Rubén; Margalida, Antoni; Donázar, José A.; Sánchez-Zapata, José A.

    2015-01-01

    Global warming due to human-induced increments in atmospheric concentrations of greenhouse gases (GHG) is one of the most debated topics among environmentalists and politicians worldwide. In this paper we assess a novel source of GHG emissions emerged following a controversial policy decision. After the outbreak of bovine spongiform encephalopathy in Europe, the sanitary regulation required that livestock carcasses were collected from farms and transformed or destroyed in authorised plants, contradicting not only the obligations of member states to conserve scavenger species but also generating unprecedented GHG emission. However, how much of this emission could be prevented in the return to traditional and natural scenario in which scavengers freely remove livestock carcasses is largely unknown. Here we show that, in Spain (home of 95% of European vultures), supplanting the natural removal of dead extensive livestock by scavengers with carcass collection and transport to intermediate and processing plants meant the emission of 77,344 metric tons of CO2 eq. to the atmosphere per year, in addition to annual payments of ca. $50 million to insurance companies. Thus, replacing the ecosystem services provided by scavengers has not only conservation costs, but also important and unnecessary environmental and economic costs.

  15. HEAVY-DUTY GREENHOUSE GAS EMISSIONS MODEL (GEM)

    EPA Science Inventory

    Class 2b-8 vocational truck manufacturers and Class 7/8 tractor manufacturers would be subject to vehicle-based fuel economy and emission standards that would use a truck simulation model to evaluate the impact of the truck tires and/or tractor cab design on vehicle compliance wi...

  16. Supplanting ecosystem services provided by scavengers raises greenhouse gas emissions.

    PubMed

    Morales-Reyes, Zebensui; Pérez-García, Juan M; Moleón, Marcos; Botella, Francisco; Carrete, Martina; Lazcano, Carolina; Moreno-Opo, Rubén; Margalida, Antoni; Donázar, José A; Sánchez-Zapata, José A

    2015-01-15

    Global warming due to human-induced increments in atmospheric concentrations of greenhouse gases (GHG) is one of the most debated topics among environmentalists and politicians worldwide. In this paper we assess a novel source of GHG emissions emerged following a controversial policy decision. After the outbreak of bovine spongiform encephalopathy in Europe, the sanitary regulation required that livestock carcasses were collected from farms and transformed or destroyed in authorised plants, contradicting not only the obligations of member states to conserve scavenger species but also generating unprecedented GHG emission. However, how much of this emission could be prevented in the return to traditional and natural scenario in which scavengers freely remove livestock carcasses is largely unknown. Here we show that, in Spain (home of 95% of European vultures), supplanting the natural removal of dead extensive livestock by scavengers with carcass collection and transport to intermediate and processing plants meant the emission of 77,344 metric tons of CO2 eq. to the atmosphere per year, in addition to annual payments of ca. $50 million to insurance companies. Thus, replacing the ecosystem services provided by scavengers has not only conservation costs, but also important and unnecessary environmental and economic costs.

  17. Supplanting ecosystem services provided by scavengers raises greenhouse gas emissions.

    PubMed

    Morales-Reyes, Zebensui; Pérez-García, Juan M; Moleón, Marcos; Botella, Francisco; Carrete, Martina; Lazcano, Carolina; Moreno-Opo, Rubén; Margalida, Antoni; Donázar, José A; Sánchez-Zapata, José A

    2015-01-01

    Global warming due to human-induced increments in atmospheric concentrations of greenhouse gases (GHG) is one of the most debated topics among environmentalists and politicians worldwide. In this paper we assess a novel source of GHG emissions emerged following a controversial policy decision. After the outbreak of bovine spongiform encephalopathy in Europe, the sanitary regulation required that livestock carcasses were collected from farms and transformed or destroyed in authorised plants, contradicting not only the obligations of member states to conserve scavenger species but also generating unprecedented GHG emission. However, how much of this emission could be prevented in the return to traditional and natural scenario in which scavengers freely remove livestock carcasses is largely unknown. Here we show that, in Spain (home of 95% of European vultures), supplanting the natural removal of dead extensive livestock by scavengers with carcass collection and transport to intermediate and processing plants meant the emission of 77,344 metric tons of CO2 eq. to the atmosphere per year, in addition to annual payments of ca. $50 million to insurance companies. Thus, replacing the ecosystem services provided by scavengers has not only conservation costs, but also important and unnecessary environmental and economic costs. PMID:25589381

  18. Supplanting ecosystem services provided by scavengers raises greenhouse gas emissions

    PubMed Central

    Morales-Reyes, Zebensui; Pérez-García, Juan M.; Moleón, Marcos; Botella, Francisco; Carrete, Martina; Lazcano, Carolina; Moreno-Opo, Rubén; Margalida, Antoni; Donázar, José A.; Sánchez-Zapata, José A.

    2015-01-01

    Global warming due to human-induced increments in atmospheric concentrations of greenhouse gases (GHG) is one of the most debated topics among environmentalists and politicians worldwide. In this paper we assess a novel source of GHG emissions emerged following a controversial policy decision. After the outbreak of bovine spongiform encephalopathy in Europe, the sanitary regulation required that livestock carcasses were collected from farms and transformed or destroyed in authorised plants, contradicting not only the obligations of member states to conserve scavenger species but also generating unprecedented GHG emission. However, how much of this emission could be prevented in the return to traditional and natural scenario in which scavengers freely remove livestock carcasses is largely unknown. Here we show that, in Spain (home of 95% of European vultures), supplanting the natural removal of dead extensive livestock by scavengers with carcass collection and transport to intermediate and processing plants meant the emission of 77,344 metric tons of CO2 eq. to the atmosphere per year, in addition to annual payments of ca. $50 million to insurance companies. Thus, replacing the ecosystem services provided by scavengers has not only conservation costs, but also important and unnecessary environmental and economic costs. PMID:25589381

  19. Greenhouse gas emissions from alternative water supply processes in southern California, USA

    NASA Astrophysics Data System (ADS)

    Schneider, A.; Townsend-Small, A.

    2012-12-01

    Burgeoning population centers and declining hydrological resources have encouraged the development of alternative water treatment systems, including desalination and wastewater recycling. These processes currently provide potable water for millions of people and assist in satisfying agricultural and landscaping irrigation demands. There are a variety of alternative water production methods in place, and while they help to reduce the demands placed on aquifers, during their operation they are also significant sources of greenhouse gases. The environmental advantages of these alternative water production methods need to be carefully weighed against their energy footprints and greenhouse gas emissions profiles. This study measured the greenhouse gas emissions of a wastewater treatment and recycling facility in Orange County, California to get a more complete picture of the carbon footprint of the plant. We measured atmospheric emissions of CO2, CH4, and N2O throughout the water recycling process and at various times of the day and week. This allowed us to assemble a thorough, cross-sectional profile of greenhouse gas emissions from the facility. We then compared the measured emissions of the treatment plant to the modeled emissions of desalination plants in order to assess the relative carbon footprints of the two water production methods. Other water supply alternatives, including regional water importation, were also included in the comparison in order to provide a more complete understanding of the potential greenhouse gas emissions. Finally, we assessed the significance of wastewater treatment as an urban greenhouse gas source when compared to other known emissions in the region. This research offers a valuable tool for sustainable urban and regional development by providing planners with a quantified comparison of the carbon footprints of several water production options.

  20. Emissions and Chemistry of Volatile Organic Compounds in Early Spring of Western U.S.: Interactions between Oil/Gas Emissions and Biogenic Emissions

    NASA Astrophysics Data System (ADS)

    Yuan, B.; Koss, A.; Warneke, C.; Gilman, J.; Lerner, B. M.; Peischl, J.; Ryerson, T. B.; Sjostedt, S. J.; Thompson, C. R.; Wild, R. J.; Brown, S. S.; Neuman, J. A.; Eilerman, S. J.; Wolfe, G. M.; St Clair, J. M.; Hanisco, T. F.; Thayer, M. P.; Keutsch, F. N.; De Gouw, J. A.

    2015-12-01

    A series of research flights with the NOAA WP-3D aircraft were conducted during the SONGNEX campaign (www.esrl.noaa.gov/csd/projects/songnex) to characterize emissions of trace gases from oil and gas basins in the western United States and their chemical transformations. Volatile organic compounds (VOCs) were measured by a newly developed chemical ionization mass spectrometer that uses H3O+ for ionization and a high-resolution time-of-flight mass spectrometer for detection (H3O+ CIMS). Results from the measurements will be presented at the meeting. Emission fluxes of VOCs can be determined both by the mass balance and eddy covariance methods. To investigate the potential for eddy covariance flux measurements, we focus on two flights conducted over the Haynesville shale basin on April 4 and April 25, 2015, respectively. Much higher concentrations of biogenic VOCs (isoprene, monoterpenes and methanol) were measured during the flight on April 25, 2015, which provides an opportunity to evaluate our instrument for the eddy covariance technique. Emissions and deposition of various hydrocarbons and oxygenated VOCs are determined and flux divergence derived from flux estimates at different altitudes is used to explore formation and loss processes of organic species in the boundary layer. Based on results from the eddy covariance technique, we will discuss some implications on distribution of emission strength in an oil/gas basin, i.e. what is the relative importance of high versus low emitters to the total emissions. We will also investigate the roles of biogenic emissions in the chemical evolution of oil and gas emissions by comparing the two flights.

  1. Observation of CH4 and other Non-CO2 Green House Gas Emissions from California

    SciTech Connect

    Fischer, Marc L.; Zhao, Chuanfeng; Riley, William J.; Andrews, Arlyn C.

    2009-01-09

    In 2006, California passed the landmark assembly bill AB-32 to reduce California's emissions of greenhouse gases (GHGs) that contribute to global climate change. AB-32 commits California to reduce total GHG emissions to 1990 levels by 2020, a reduction of 25 percent from current levels. To verify that GHG emission reductions are actually taking place, it will be necessary to measure emissions. We describe atmospheric inverse model estimates of GHG emissions obtained from the California Greenhouse Gas Emissions Measurement (CALGEM) project. In collaboration with NOAA, we are measuring the dominant long-lived GHGs at two tall-towers in central California. Here, we present estimates of CH{sub 4} emissions obtained by statistical comparison of measured and predicted atmospheric mixing ratios. The predicted mixing ratios are calculated using spatially resolved a priori CH{sub 4} emissions and surface footprints, that provide a proportional relationship between the surface emissions and the mixing ratio signal at tower locations. The footprints are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. Integral to the inverse estimates, we perform a quantitative analysis of errors in atmospheric transport and other factors to provide quantitative uncertainties in estimated emissions. Regressions of modeled and measured mixing ratios suggest that total CH{sub 4} emissions are within 25% of the inventory estimates. A Bayesian source sector analysis obtains posterior scaling factors for CH{sub 4} emissions, indicating that emissions from several of the sources (e.g., landfills, natural gas use, petroleum production, crops, and wetlands) are roughly consistent with inventory estimates, but livestock emissions are significantly higher than the inventory. A Bayesian 'region' analysis is used to identify spatial variations in CH{sub 4} emissions from 13 sub-regions within California. Although, only

  2. Exploratory study on the pyrolysis and PAH emissions of polylactic acid

    NASA Astrophysics Data System (ADS)

    Chien, Yi-Chi; Liang, Chenju; Yang, Shu-hua

    2011-01-01

    The emission factors for 16 U.S. EPA priority polycyclic aromatic hydrocarbons (PAHs) from the polylactic acid (PLA) pyrolysis and the decomposition mechanism were investigated in this study. The fragments and gas compositions using on-line thermogravimetry-mass spectrometry (TG-MS) were determined. A temperature series of 7 fragments was analyzed in helium, and was found to include: m/z = 16, which may represent methane; 28, which may be carbon monoxide; 44, which may be acetaldehyde; 56, which may be methylketene, 144, which may be oligomers of lactide. In addition, there are little amount of 100, and 200 which are oligomers of lactides observed in the pyrolysis of PLA. The pyrolysis of PLA is a non-radical, backbiting ester interchange reaction involving the OH chain ends. Depending on the size of the cyclic transition state, the product can be a lactide molecule, an oligomeric ring with more than two repeat units, methylketene, or acetaldehyde. Carbon monoxide and methane are contributions from the decomposition of acetaldehyde. Experimentally, not detected (n.d.)-40.47 μg of 16 PAH emissions were determined from per gram of PLA pyrolysis. The PAH profiles showed a predominance of naphthalene (58.9%), phenanthrene (12.5%), and fluoranthene (5.9%). The total PAH emissions for PLA pyrolysis is significantly lower than the values associated with PLA combustion. From the viewpoint of air pollution control, this result suggests that pyrolysis seems a better alternative than combustion for the disposal of waste PLA. Also, since pyrolysis is the first step for an incineration process, these results can provide important information on the control of PAHs formation for a commercialized incinerator.

  3. Greenhouse Gas Emission Accounting and Management of Low-Carbon Community

    PubMed Central

    Song, Dan; Su, Meirong; Yang, Jin; Chen, Bin

    2012-01-01

    As the major source of greenhouse gas (GHG) emission, cities have been under tremendous pressure of energy conservation and emission reduction for decades. Community is the main unit of urban housing, public facilities, transportation, and other properties of city's land use. The construction of low-carbon community is an important pathway to realize carbon emission mitigation in the context of rapid urbanization. Therefore, an efficient carbon accounting framework should be proposed for CO2 emissions mitigation at a subcity level. Based on life-cycle analysis (LCA), a three-tier accounting framework for the carbon emissions of the community is put forward, including emissions from direct fossil fuel combustion, purchased energy (electricity, heat, and water), and supply chain emissions embodied in the consumption of goods. By compiling a detailed CO2 emission inventory, the magnitude of carbon emissions and the mitigation potential in a typical high-quality community in Beijing are quantified within the accounting framework proposed. Results show that emissions from supply chain emissions embodied in the consumption of goods cannot be ignored. Specific suggestions are also provided for the urban decision makers to achieve the optimal resource allocation and further promotion of low-carbon communities. PMID:23251104

  4. Greenhouse gas emission accounting and management of low-carbon community.

    PubMed

    Song, Dan; Su, Meirong; Yang, Jin; Chen, Bin

    2012-01-01

    As the major source of greenhouse gas (GHG) emission, cities have been under tremendous pressure of energy conservation and emission reduction for decades. Community is the main unit of urban housing, public facilities, transportation, and other properties of city's land use. The construction of low-carbon community is an important pathway to realize carbon emission mitigation in the context of rapid urbanization. Therefore, an efficient carbon accounting framework should be proposed for CO₂ emissions mitigation at a subcity level. Based on life-cycle analysis (LCA), a three-tier accounting framework for the carbon emissions of the community is put forward, including emissions from direct fossil fuel combustion, purchased energy (electricity, heat, and water), and supply chain emissions embodied in the consumption of goods. By compiling a detailed CO₂ emission inventory, the magnitude of carbon emissions and the mitigation potential in a typical high-quality community in Beijing are quantified within the accounting framework proposed. Results show that emissions from supply chain emissions embodied in the consumption of goods cannot be ignored. Specific suggestions are also provided for the urban decision makers to achieve the optimal resource allocation and further promotion of low-carbon communities. PMID:23251104

  5. Quantifying greenhouse-gas emissions from atmospheric measurements: a critical reality check for climate legislation.

    PubMed

    Weiss, Ray F; Prinn, Ronald G

    2011-05-28

    Emissions reduction legislation relies upon 'bottom-up' accounting of industrial and biogenic greenhouse-gas (GHG) emissions at their sources. Yet, even for relatively well-constrained industrial GHGs, global emissions based on 'top-down' methods that use atmospheric measurements often agree poorly with the reported bottom-up emissions. For emissions reduction legislation to be effective, it is essential that these discrepancies be resolved. Because emissions are regulated nationally or regionally, not globally, top-down estimates must also be determined at these scales. High-frequency atmospheric GHG measurements at well-chosen station locations record 'pollution events' above the background values that result from regional emissions. By combining such measurements with inverse methods and atmospheric transport and chemistry models, it is possible to map and quantify regional emissions. Even with the sparse current network of measurement stations and current inverse-modelling techniques, it is possible to rival the accuracies of regional 'bottom-up' emission estimates for some GHGs. But meeting the verification goals of emissions reduction legislation will require major increases in the density and types of atmospheric observations, as well as expanded inverse-modelling capabilities. The cost of this effort would be minor when compared with current investments in carbon-equivalent trading, and would reduce the volatility of that market and increase investment in emissions reduction. PMID:21502167

  6. Measurements of methane emissions from natural gas gathering facilities and processing plants: measurement results.

    PubMed

    Mitchell, Austin L; Tkacik, Daniel S; Roscioli, Joseph R; Herndon, Scott C; Yacovitch, Tara I; Martinez, David M; Vaughn, Timothy L; Williams, Laurie L; Sullivan, Melissa R; Floerchinger, Cody; Omara, Mark; Subramanian, R; Zimmerle, Daniel; Marchese, Anthony J; Robinson, Allen L

    2015-03-01

    Facility-level methane emissions were measured at 114 gathering facilities and 16 processing plants in the United States natural gas system. At gathering facilities, the measured methane emission rates ranged from 0.7 to 700 kg per hour (kg/h) (0.6 to 600 standard cubic feet per minute (scfm)). Normalized emissions (as a % of total methane throughput) were less than 1% for 85 gathering facilities and 19 had normalized emissions less than 0.1%. The range of methane emissions rates for processing plants was 3 to 600 kg/h (3 to 524 scfm), corresponding to normalized methane emissions rates <1% in all cases. The distributions of methane emissions, particularly for gathering facilities, are skewed. For example, 30% of gathering facilities contribute 80% of