Science.gov

Sample records for acid gases organic

  1. Uptake of Ambient Organic Gases to Acidic Sulfate Aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.

    2009-05-01

    The formation of secondary organic aerosols (SOA) in the atmosphere has been an area of significant interest due to its climatic relevance, its effects on air quality and human health. Due largely to the underestimation of SOA by regional and global models, there has been an increasing number of studies focusing on alternate pathways leading to SOA. In this regard, recent work has shown that heterogeneous and liquid phase reactions, often leading to oligomeric material, may be a route to SOA via products of biogenic and anthropogenic origin. Although oligomer formation in chamber studies has been frequently observed, the applicability of these experiments to ambient conditions, and thus the overall importance of oligomerization reactions remain unclear. In the present study, ambient air is drawn into a Teflon smog chamber and exposed to acidic sulfate aerosols which have been formed in situ via the reaction of SO3 with water vapor. The aerosol composition is measured with a High Resolution Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS), and particle size distributions are monitored with a scanning mobility particle sizer (SMPS). The use of ambient air and relatively low inorganic particle loading potentially provides clearer insight into the importance of heterogeneous reactions. Results of experiments, with a range of sulfate loadings show that there are several competing processes occurring on different timescales. A significant uptake of ambient organic gases to the particles is observed immediately followed by a slow shift towards higher m/z over a period of several hours indicating that higher molecular weight products (possibly oligomers) are being formed through a reactive process. The results suggest that heterogeneous reactions can occur with ambient organic gases, even in the presence of ammonia, which may have significant implications to the ambient atmosphere where particles may be neutralized after their formation.

  2. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  3. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... nitrogen oxides in excess of the emission limits listed in table 2 of this subpart for affected...

  4. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  5. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of...

  6. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of...

  7. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... nitrogen oxides in excess of the emission limits listed in table 2 of this subpart for affected...

  8. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... discharged into the atmosphere from that affected facility any gases that contain mercury in excess of 0.080 milligrams per dry standard cubic meter or 15 percent of the potential mercury emission concentration (85... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection...

  9. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the Arctic troposphere

    NASA Astrophysics Data System (ADS)

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-10-01

    Sea salt aerosols (SSA) are dominant particles in the Arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes in physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard, in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased, the C, N, O, and S content increased. 12C- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C- line scan further shows that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces likely determines their hygroscopic and optical properties. These abundant SSA as reactive surfaces adsorbing inorganic and organic acidic gases can shorten acidic gas lifetime and influence the possible gaseous reactions in the Arctic atmosphere, which need to be incorporated into atmospheric chemical models in the Arctic troposphere.

  10. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the arctic troposphere

    NASA Astrophysics Data System (ADS)

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-06-01

    Sea salt aerosols (SSA) are dominant particles in the arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes of physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased but the C, N, O, and S content increased. 12C14N- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C14N- line scans further show that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces determines their hygroscopic and optical properties. These abundant SSA, whose reactive surfaces absorb inorganic and organic acidic gases in the arctic troposphere, need to be incorporated into atmospheric chemical models.

  11. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustor acid gases, expressed as sulfur dioxide and hydrogen chloride, are specified in... include emission limits for hydrogen chloride at least as protective as the emission limits for hydrogen... hydrogen chloride contained in the gases discharged to the atmosphere from a designated facility is...

  12. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... discharged to the atmosphere from a designated facility is 27 milligrams per dry standard cubic meter... contained in the gases discharged to the atmosphere from a designated facility is 25 milligrams per dry... the gases discharged to the atmosphere from a designated facility is 10 percent (6-minute average)....

  13. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... facility shall cause to be discharged into the atmosphere from that affected facility any gases that... operator of an affected facility shall cause to be discharged into the atmosphere from that affected... atmosphere from that affected facility any gases that contain cadmium in excess of the limits specified...

  14. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... discharged to the atmosphere from a designated facility is 27 milligrams per dry standard cubic meter... contained in the gases discharged to the atmosphere from a designated facility is 25 milligrams per dry... the gases discharged to the atmosphere from a designated facility is 10 percent (6-minute average)....

  15. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... facility shall cause to be discharged into the atmosphere from that affected facility any gases that... operator of an affected facility shall cause to be discharged into the atmosphere from that affected... atmosphere from that affected facility any gases that contain cadmium in excess of the limits specified...

  16. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... discharged into the atmosphere from the affected facility any gases that contain mercury in excess of the... potential mercury emission concentration (85-percent reduction by weight), corrected to 7 percent oxygen... percent of the potential mercury emission concentration (85-percent reduction by weight), corrected to...

  17. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operator of an affected facility must not cause to be discharged into the atmosphere from that affected... operator of an affected facility must not cause to be discharged into the atmosphere from that affected... discharged into the atmosphere from that affected facility any gases that contain mercury in excess of...

  18. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operator of an affected facility must not cause to be discharged into the atmosphere from that affected... operator of an affected facility must not cause to be discharged into the atmosphere from that affected... discharged into the atmosphere from that affected facility any gases that contain mercury in excess of...

  19. Control of acid gases using a fluidized bed adsorber.

    PubMed

    Chiang, Bo-Chin; Wey, Ming-Yen; Yeh, Chia-Lin

    2003-08-01

    During incineration, secondary pollutants such as acid gases, organic compounds, heavy metals and particulates are generated. Among these pollutants, the acid gases, including sulfur oxides (SO(x)) and hydrogen chloride (HCl), can cause corrosion of the incinerator piping and can generate acid rain after being emitted to the atmosphere. To address this problem, the present study used a novel combination of air pollution control devices (APCDs), composed of a fluidized bed adsorber integrated with a fabric filter. The major objective of the work is to demonstrate the performance of a fluidized bed adsorber for removal of acid gases from flue gas of an incinerator. The adsorbents added in the fluidized bed adsorber were mainly granular activated carbon (AC; with or without chemical treatment) and with calcium oxide used as an additive. The advantages of a fluidized bed reactor for high mass transfer and high gas-solid contact can enhance the removal of acid gases when using a dry method. On the other hand, because the fluidized bed can filter particles, fine particles prior to and after passing through the fluidized bed adsorber were investigated. The competing adsorption on activated carbon between different characteristics of pollutants was also given preliminary discussion. The results indicate that the removal efficiencies of the investigated acid gases, SO(2) and HCl, are higher than 94 and 87%, respectively. Thus, a fluidized bed adsorber integrated with a fabric filter has the potential to replace conventional APCDs, even when there are other pollutants at the same time. PMID:12935758

  20. Processes to remove acid forming gases from exhaust gases

    DOEpatents

    Chang, S.G.

    1994-09-20

    The present invention relates to a process for reducing the concentration of NO in a gas, which process comprises: (A) contacting a gas sample containing NO with a gaseous oxidizing agent to oxidize the NO to NO[sub 2]; (B) contacting the gas sample of step (A) comprising NO[sub 2] with an aqueous reagent of bisulfite/sulfite and a compound selected from urea, sulfamic acid, hydrazinium ion, hydrazoic acid, nitroaniline, sulfanilamide, sulfanilic acid, mercaptopropanoic acid, mercaptosuccinic acid, cysteine or combinations thereof at between about 0 and 100 C at a pH of between about 1 and 7 for between about 0.01 and 60 sec; and (C) optionally contacting the reaction product of step (A) with conventional chemical reagents to reduce the concentrations of the organic products of the reaction in step (B) to environmentally acceptable levels. Urea or sulfamic acid are preferred, especially sulfamic acid, and step (C) is not necessary or performed. 16 figs.

  1. Bioprocessing of organic gases in waste air

    SciTech Connect

    Bohn, H.L.

    1993-12-31

    Natural porous media (soils, compost, peat, wood bark chips) in biofilters effectively, safely, and inexpensively remove organic gases from air by adsorbing then and oxidizing them to CO{sub 2}. The sorption capacities of the media are low: their effectiveness is due to oxidation by the active microbial population which disposes the gas and continuously regenerates the sorption capacity. O-, N-, and S-containing organic gases generally oxidize rapidly and {>=}95% removal efficiency is routine. Aromatic and halogenated organic gases oxidize slowly and require correspondingly larger biofilter beds and reaction times to achieve high removal efficiencies. Installation costs of biofilters vary widely, operating costs are low because no fuel or oxidant is required, and no secondary pollution is created.

  2. Abiotic uptake of gases by organic soils

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.

    2007-12-01

    Methodological and experimental studies of the abiotic uptake of gaseous substances by organic soils were performed. The static adsorption method of closed vessels for assessing the interaction of gases with the solid and liquid soil phases and the dynamic method of determining the sorption isotherms of gases by soils were analyzed. The theoretical substantiation of the methods and their practical implementations on the basis of a PGA-7 portable gas analyzer (Russia) were considered. Good agreement between the equilibrium sorption isotherms of the gases and the Langmuir model was revealed; for the real ranges of natural gas concentrations, this model can be reduced to the linear Henry equation. The limit values of the gas sorption (Langmuir monolayer capacity) are typical for dry samples; they vary from 670 4000 g/m3 for methane and oxygen to 20 000 25 000 g/m3 for carbon dioxide. The linear distribution coefficients of gases between the solid and gas phases of organic soils (Henry constants) are 8 18 units for poorly sorbed gases (O2, CH4) and 40 60 units for CO2. The kinetics of the chemicophysical uptake of gases by the soil studied is linear in character and obeys the relaxation kinetic model of the first order with the corresponding relaxation constants, which vary from 1 h -1 in wet samples to 10 h -1 in dry samples.

  3. Processes to remove acid forming gases from exhaust gases

    DOEpatents

    Chang, Shih-Ger

    1994-01-01

    The present invention relates to a process for reducing the concentration of NO in a gas, which process comprises: (A) contacting a gas sample containing NO with a gaseous oxidizing agent to oxidize the NO to NO.sub.2 ; (B) contacting the gas sample of step (A) comprising NO.sub.2 with an aqueous reagent of bisulfite/sulfite and a compound selected from urea, sulfamic acid, hydrazinium ion, hydrazoic acid, nitroaniline, sulfanilamide, sulfanilic acid, mercaptopropanoic acid, mercaptosuccinic acid, cysteine or combinations thereof at between about 0.degree. and 100.degree. C. at a pH of between about 1 and 7 for between about 0.01 and 60 sec; and (C) optionally contacting the reaction product of step (A) with conventional chemical reagents to reduce the concentrations of the organic products of the reaction in step (B) to environ-mentally acceptable levels. Urea or sulfamic acid are preferred, especially sulfamic acid, and step (C) is not necessary or performed.

  4. Removal of acid gases from gas streams

    SciTech Connect

    Nieh, E.C.Y.

    1988-10-04

    This patent describes a method for the purification of a stream of gas comprising a normally gaseous hydrocarbon or synthesis gas contaminated with acid gases which comprises the steps of: countercurrently contacting the gas stream in an absorption zone with a stream of a treating agent consisting essentially of an aqueous solution of N-methyldiethanolamine and imidazole or a methyl substituted imidazole to thereby remove a substantial portion of the acid contaminants from the hydrocarbon gas stream by absorption into the treating agent, discharging an at least partially purified gas stream from the absorption zone, discharging the treating agent enriched with absorbed acid gas components from the absorption zone; and subsequently regenerating the enriched treating agent.

  5. Clostridium stain which produces acetic acid from waste gases

    DOEpatents

    Gaddy, James L.

    1997-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  6. Clostridium strain which produces acetic acid from waste gases

    DOEpatents

    Gaddy, J.L.

    1997-01-14

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 4 figs.

  7. Uptake of organic trace gases by organic films

    NASA Astrophysics Data System (ADS)

    Donaldson, D. James

    2004-03-01

    Surfaces exposed to the atmosphere, particularly in urban environments, become coated with a film whose chemical composition is similar to that of urban aerosol particles. Such films can act as reservoirs for gas phase pollutants and as media for chemical reactions (much as aerosols do). We have constructed a Knudsen effusion cell apparatus to study the non-reactive and reactive uptake of trace atmospheric gases by such urban films. We report here our first results of the uptake of three classes of compound: polycyclic aromatic hydrocarbons (PAHs), chlorinated aromatics and carboxylic acids, by films composed of fatty acids and high molecular weight hydrocarbons.

  8. Amine Chemistry at Aqueous Interfaces: The Study of Organic Amines in Neutralizing Acidic Gases at an Air/Water Surface Using Vibrational Sum Frequency Spectroscopy

    NASA Astrophysics Data System (ADS)

    McWilliams, L.; Wren, S. N.; Valley, N. A.; Richmond, G.

    2014-12-01

    Small organic bases have been measured in atmospheric samples, with their sources ranging from industrial processing to animal husbandry. These small organic amines are often highly soluble, being found in atmospheric condensed phases such as fogwater and rainwater. Additionally, they display acid-neutralization ability often greater than ammonia, yet little is known regarding their kinetic and thermodynamic properties. This presentation will describe the molecular level details of a model amine system at the vapor/liquid interface in the presence of acidic gas. We find that this amine system shows very unique properties in terms of its bonding, structure, and orientation at aqueous surfaces. The results of our studies using a combination of computation, vibrational sum frequency spectroscopy, and surface tension will report the properties inherent to these atmospherically relevant species at aqueous surfaces.

  9. Cryogenic process for removing acidic gases from gas mixtures

    SciTech Connect

    Gazzi, L.; Cotone, G.; Ginnasi, A.; Rescalli, C.; Soldati, G.; Vetere, A.

    1985-04-30

    Low temperature treatments are combined with solvent treatments using particularly selective solvents for stripping acidic gases such as carbon dioxide and hydrogen sulphide from natural gas or from synthetic gases. The preferred solvents are a wide range of compounds having an esteric or an etheric function in their molecule, but there are also examples of compounds which have the two functions simultaneously. The stripping process is comparatively simple, is efficient, especially for high contents of acidic gases in the raw gas streams, and is economically acceptable.

  10. Method for removing acid gases from a gaseous stream

    DOEpatents

    Gorin, Everett; Zielke, Clyde W.

    1981-01-01

    In a process for hydrocracking a heavy aromatic polynuclear carbonaceous feedstock containing reactive alkaline constituents to produce liquid hydrocarbon fuels boiling below about 475.degree. C. at atmospheric pressure by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, thereafter separating a gaseous stream containing hydrogen, at least a portion of the hydrocarbon fuels and acid gases from the molten metal halide and regenerating the molten metal halide, thereby producing a purified molten metal halide stream for recycle to the hydrocracking zone, an improvement comprising; contacting the gaseous acid gas, hydrogen and hydrocarbon fuels-containing stream with the feedstock containing reactive alkaline constituents to remove acid gases from the acid gas containing stream. Optionally at least a portion of the hydrocarbon fuels are separated from gaseous stream containing hydrogen, hydrocarbon fuels and acid gases prior to contacting the gaseous stream with the feedstock.

  11. Cryogenic process for fractionally removing acidic gases from gas mixtures

    SciTech Connect

    Gazzi, L.; Cotone, G.; Ginnasi, A.; Rescalli, C.; Soldati, G.; Vetere, A.

    1985-07-16

    A process is described for stripping acidic gases, mainly hydrogen sulphide and carbon dioxide, from natural gas or synthesis gas, especially when the percentages of such acidic gases are high and the conventional processes become economically objectionable. The process is based on the use of a number of selective solvents, generally belonging to the class of esters, ethers, mixed ester-ethers and lactones, in combination with sequential absorbing cycles which start from the stripping of hydrogen sulphide, and comprise the regeneration of the solvents used by several expansion cycles: H2S and CO2 are recovered and the regenerated solvents recycled.

  12. MULTIPOLLUTANT MERCURY AND ACID GASES CONTROL TECHNOLOGY

    EPA Science Inventory

    Plans are to continue testing for acid gas, mercury and NOx removal on baseline CFB operation with lime slurry, then use modified lime hydrates and slurries, and modified calcium silicates as additives for enhanced mercury and SO2 removal. Also, data from a coal-fired utility b...

  13. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C.J.; Mackenzie, P.D.

    1982-09-03

    Contaminating basic gases, i.e., ammonia and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with stream, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  14. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C. Judson; MacKenzie, Patricia D.

    1985-01-01

    Contaminating basic gases, i.e., ammonia, and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with steam, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  15. Capture and release of acid-gasses with acid-gas binding organic compounds

    DOEpatents

    Heldebrant, David J; Yonker, Clement R; Koech, Phillip K

    2015-03-17

    A system and method for acid-gas capture wherein organic acid-gas capture materials form hetero-atom analogs of alkyl-carbonate when contacted with an acid gas. These organic-acid gas capture materials include combinations of a weak acid and a base, or zwitterionic liquids. This invention allows for reversible acid-gas binding to these organic binding materials thus allowing for the capture and release of one or more acid gases. These acid-gas binding organic compounds can be regenerated to release the captured acid gasses and enable these organic acid-gas binding materials to be reused. This enables transport of the liquid capture compounds and the release of the acid gases from the organic liquid with significant energy savings compared to current aqueous systems.

  16. Measurement of Selected Organic Trace Gases During TRACE-P

    NASA Technical Reports Server (NTRS)

    Atlas, Elliot

    2004-01-01

    Major goals of the TRACE-P mission were: 1) to investigate the chemical composition of radiatively important gases, aerosols, and their precursors in the Asian outflow over the western Pacific, and 2) to describe and understand the chemical evolution of the Asian outflow as it is transported and mixed into the global troposphere. The research performed as part of this proposal addressed these major goals with a study of the organic chemical composition of gases in the TRACE-P region. This work was a close collaboration with the Blake/Rowland research group at UC-Irvine, and they have provided a separate report for their funded effort.

  17. Recovery of organic acids

    DOEpatents

    Verser, Dan W.; Eggeman, Timothy J.

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  18. Recovery of organic acids

    SciTech Connect

    Verser, Dan W.; Eggeman, Timothy J.

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  19. Microorganisms for producing organic acids

    SciTech Connect

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  20. Process for the removal of acid forming gases from exhaust gases and production of phosphoric acid

    DOEpatents

    Chang, Shih-Ger; Liu, David K.

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorous preferably in a wet scrubber. The addition of yellow phosphorous in the system induces the production of O.sub.3 which subsequently oxidizes NO to NO.sub.2. The resulting NO.sub.2 dissolves readily and can be reduced to form ammonium ions by dissolved SO.sub.2 under appropriate conditions. In a 20 acfm system, yellow phosphorous is oxidized to yield P.sub.2 O.sub.5 which picks up water to form H.sub.3 PO.sub.4 mists and can be collected as a valuable product. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, better than 90% of SO.sub.2 and NO in simulated flue gas can be removed. Stoichiometric ratios (P/NO) ranging between 0.6 and 1.5 were obtained.

  1. Treatment of gas streams for removal of acid gases

    SciTech Connect

    Nieh, E.C.Y.

    1987-09-29

    A method is described for the purification of a stream of gas comprising a normally gaseous hydrocarbon or synthesis gas contaminated with acid gases which comprises the steps of: countercurrently contacting the gas stream in an absorption zone with a treating agent to remove a substantial portion of the acid contaminants from the hydrocarbon gas stream by absorption into the treating agent, discharging an at least partially purified hydrocarbon gas stream from the absorption zone, and discharging the treating agent enriched with absorbed acid gas components from the absorption zone. The treating agent consists essentially of an aqueous solution of from about 40 to about 60 wt. % of N-methyldiethanolamine and from about 5 to about 15 wt. % of N,N-diethyl hydroxylamine.

  2. Solubility calculations for acid gases in amine blends

    SciTech Connect

    Chakravarty, T.

    1985-01-01

    Treating with alkanolamines is often used to sweeten gases containing only a few parts per million of CO/sub 2/ and H/sub 2/S. Primary amines such as monoethanolamine (MEA) have great affinity for acid gases and are able to produce high purity sweet gas; on the other hand, tertiary amines like methyldiethanolamine (MDEA) have large capacity and are easy to regenerate but, because they do not bind chemically with CO/sub 2/, they are unable to produce a sweetened gas low in this component. Recently, the use of amine blends has become a subject of potentially great commercial importance. Since, the range of possible amines and blend formulations is large, a method for predicting equilibrium solubility is needed. A rigorous thermodynamic model has been developed which uses the extended Debye-Huckel expression, is very similar to one developed for single-amine solutions, and involves the fitting of binary interaction parameters to experimental data. In this work the interaction parameters found to be important in the activity coefficient expression were fitted to each single-acid-gas single-amine subsystem using all published solubility data. The resulting model was then validated by comparing mixed-acid-gas single-amine solubility predictions with published VLE data. MEA-MDEA and DEA-MDEA blends have been studied in detail in this work. It is found that each amine contributes to the overall acid gas solubility in a nonlinear way and that the solubility curves can exhibit maxima and minima as a function of the relative concentrations of the amines.

  3. Reported emissions of organic gases are not consistent with observations.

    PubMed

    Henry, R C; Spiegelman, C H; Collins, J F; Park, E

    1997-06-24

    Regulatory agencies and photochemical models of ozone rely on self-reported industrial emission rates of organic gases. Incorrect self-reported emissions can severely impact on air quality models and regulatory decisions. We compared self-reported emissions of organic gases in Houston, Texas, to measurements at a receptor site near the Houston ship channel, a major petrochemical complex. We analyzed hourly observations of total nonmethane organic carbon and 54 hydrocarbon compounds from C-2 to C-9 for the period June through November, 1993. We were able to demonstrate severe inconsistencies between reported emissions and major sources as derived from the data using a multivariate receptor model. The composition and the location of the sources as deduced from the data are not consistent with the reported industrial emissions. On the other hand, our observationally based methods did correctly identify the location and composition of a relatively small nearby chemical plant. This paper provides strong empirical evidence that regulatory agencies and photochemical models are making predictions based on inaccurate industrial emissions. PMID:11038551

  4. Indoor exposures to fine aerosols and acid gases.

    PubMed Central

    Koutrakis, P; Brauer, M; Briggs, S L; Leaderer, B P

    1991-01-01

    Indoor exposures to aerosols and gases are associated with both indoor and outdoor air pollution sources. The identification of sources and the assessment of their relative contribution can be a complicated process due to a) the presence of numerous indoor sources, which can vary from building to building; b) the uncertainties associated with the estimation of the impact of outdoor sources on indoor air quality; c) the interactions between pollutants; and d) the importance of reactions between pollutants and indoor surfaces. It is well established that fine particles (diameter less than or equal to 2.5 microns) originating from outdoor sources such as automobiles, oil and coal combustion, incineration, and diverse industrial activities can penetrate into the indoor environment. Indoor/outdoor ratios, usually varying between 0.4 and 0.8, depend on parameters such as particle size and density, air exchange rate, and the surface-to-volume ratio of the indoor environment. Determining fine particle elemental composition makes it possible to identify the contribution of different outdoor sources. This paper focuses on the origin and the concentration of indoor aerosols and acid gases by highlighting the results from two indoor air quality studies. PMID:1821374

  5. Soluble species in the Arctic summer troposphere - Acidic gases, aerosols, and precipitation

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Vijgen, A. S.; Harriss, R. C.

    1992-01-01

    The large-scale spatial distribution from 0.15-to 6 km altitude in the North American Arctic troposphere of several soluble acidic gases and major aerosol species during the summertime is reported. The distribution is found to be compositionally consistent on a large spatial scale. The summertime troposphere is an acidic environment, with HCOOH and CH3COOH the principal acidic gases while acidic sulfate aerosols dominate the particulate phase. There appears to be a surface source of NH3 over the pack ice which may originate from decay of dead marine organisms on the ice surface, evolution from surface ocean waters in open ice leads, or release from rotting sea ice. At low altitude over the pack ice this NH34 appears to partially neutralize aerosol acidity. Over sub-Arctic tundra in southeastern Alaska, inputs of marine biogenic sulfur from the Bering Sea appear to be an important source of boundary layer aerosol SO4(2-). The rainwater acidity over the tundra is typical of remote regions.

  6. Biological production of acetic acid from waste gases with Clostridium ljungdahlii

    DOEpatents

    Gaddy, James L.

    1998-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  7. Biological production of acetic acid from waste gases with Clostridium ljungdahlii

    DOEpatents

    Gaddy, J.L.

    1998-09-15

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 5 figs.

  8. Arterial Blood Carbonic Acid Inversely Determines Lactic and Organic Acids

    PubMed Central

    Aiken, Christopher Geoffrey Alexander

    2013-01-01

    Objective: To establish that arterial blood carbonic acid varies inversely with lactic acid in accordance with bicarbonate exchanging for lactate across cell membranes through the anion exchange mechanism to maintain the Gibbs-Donnan equilibrium. Study Design: Over 5 years, lactate was measured on all blood gases taken from neonatal admissions, as well as organic acid whenever electrolytes were required. Results: Arterial blood gases from 63 infants given high calcium TPN were analyzed. Twenty two needed continuous positive airways pressure (CPAP) only and 31 intermittent positive pressure ventilation (IPPV) and surfactant followed by CPAP to treat respiratory distress syndrome in 51 and meconium aspiration syndrome in 2. All survived and were free of infection. Excluded gases were those with high and falling lactate soon after delivery representing perinatal asphyxia, and those on dexamethasone. Strong inverse relations between carbonic and lactic acids were found at all gestational ages and, independent of glomerular filtration, between carbonic and organic acids. Lactate (mmol/L) = 62.53 X PCO2 -0.96(mmHg) r2 0.315, n 1232, p <0.001. Sixty divided by PCO2 is a convenient measure of physiological lactate at any given PCO2. In the first week, 9.13 ± 2.57% of arterial gases from infants on IPPV had lactates above 120/PCO2, significantly more than 4.74 ± 2.73% on CPAP (p<0.05) and 2.47 ± 2.39% on no support. Conclusion: Changes in arterial blood carbonic acid cause immediate inverse changes in lactic acid, because their anions interchange across cell membranes according to the Gibbs –Donnan equilibrium. Increasing PCO2 from 40 to 120 mmHg decreased lactate from 1.5 mmol/L to 0.5 mmol/L, so that the sum of carbonic and lactic acids increased from 2.72 mmol/L to only 4.17 mmol/L. This helps explain the neuroprotective effect of hypercapnoea and highlights the importance of avoiding any degree of hypocapnoea in infants on IPPV. PMID:24392387

  9. Application of FIGAERO (Filter Inlet for Gases and AEROsol) coupled to a high resolution time of flight chemical ionization mass spectrometer to field and chamber organic aerosol: Implications for carboxylic acid formation and gas-particle partitioning from monoterpene oxidation

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, F.; Mohr, C.; Ehn, M.; Rubach, F.; Mentel, T. F.; Kleist, E.; Wildt, J.; Thornton, J. A.

    2013-12-01

    We present measurements of a large suite of gas and particle phase carboxylic acid containing compounds made with a Filter Inlet for Gas and AEROsol (FIGAERO) coupled to a high resolution time of flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. A prototype operated with acetate negative ion proton transfer chemistry was deployed on the Julich Plant Atmosphere Chamber to study a-pinene oxidation, and a modified version was deployed at the SMEAR II forest station in Hyytiälä, Finland and SOAS, in Brent Alabama. We focus here on results from JPAC and Hyytiälä, where we utilized the same ionization method most selective towards carboxylic acids. In all locations, 100's of organic acid compounds were observed in the gas and particles and many of the same composition acids detected in the gas-phase were detected in the particles upon temperature programmed thermal desorption. Particulate organics detected by FIGAERO are highly correlated with organic aerosol mass measured by an AMS, providing additional volatility and molecular level information about collected aerosol. The fraction of a given compound measured in the particle phase follows expected trends with elemental composition, but many compounds would not be well described by an absorptive partitioning model assuming unity activity coefficients. Moreover the detailed structure in the thermal desorption signals reveals a contribution from thermal decomposition of large molecular weight organics and or oligomers with implications for partitioning measurements and model validation

  10. ACID GASES IN CO2-RICH SUBSURFACE GEOLOGIC ENVIRONMENTS

    SciTech Connect

    Chialvo, Ariel A; Vlcek, Lukas; Cole, David

    2013-01-01

    The analysis of species behavior involving dilute fluid environments has been crucial for the advance of modern solvation thermodynamics through molecular-based formalisms to guide the development of macroscopic regression tools in the description of fluid behavior and correlation of experimental data (Chialvo 2013). Dilute fluid environments involving geologic formations are of great theoretical and practical relevance regardless of the thermodynamic state conditions. The most challenging systems are those involving highly compressible and reactive confined environments, i.e., where small perturbations of pressure and/or temperature can trigger considerable density changes. This in turn can alter significantly the species solvation, their preferential solvation, and consequently, their reactivity with one another and with the surrounding mineral surfaces whose outcome is the modification of the substrate porosity and permeability, and ultimately, the integrity of the mineral substrates. Considering that changes in porosity and permeability resulting from dissolution and precipitation phenomena in confined environments are at the core of the aqueous CO2-mineral interactions, and that caprock integrity (e.g., sealing capacity) depends on these key parameters, it is imperative to gain fundamental understanding of the mineral-fluid interfacial phenomena and fluid-fluid equilibria under mineral confinement at subsurface conditions. In order to undertand the potential effects of acid gases as contaminants of supercritical CO2 streams, in the next section we will discuss the thermodynamic behavior of CO2 fluid systems by addressing two crucial issues in the context of carbon capture, utilization and sequestration (CCUS) technologies: (i) Why should we consider (acid gas) CO2 impurities? and (ii) Why are CO2 fluid - mineral interactions of paramount relevance?

  11. Halocarbons and other trace heteroatomic organic compounds in volcanic gases from Vulcano (Aeolian Islands, Italy)

    NASA Astrophysics Data System (ADS)

    Schwandner, Florian M.; Seward, Terry M.; Giże, Andrew P.; Hall, Keith; Dietrich, Volker J.

    2013-01-01

    Adsorbent-trapped volcanic gases, sublimates and condensates from active vents of the La Fossa crater on the island of Vulcano (Aeolian Islands, Italy) as well as ambient and industrial air were quantitatively analyzed by Short-Path Thermal Desorption-Solid Phase Microextraction-Cryotrapping-Gas Chromatography/Mass Spectrometry (SPTD-SPME-CF-GC-MS). Among the over 200 detected and quantified compounds are alkanes, alkenes, arenes, phenols, aldehydes, carboxylic acids, esters, ketones, nitriles, PAHs and their halogenated, methylated and sulfonated derivatives, as well as various heterocyclic compounds including thiophenes and furans. Most compounds are found at concentrations well above laboratory, ambient air, adsorbent and field blank levels. For some analytes (e.g., CFC-11, CH2Cl2, CH3Br), concentrations are up to several orders of magnitude greater than even mid-latitudinal industrial urban air maxima. Air or laboratory contamination is negligible or absent on the basis of noble gas measurements and their isotopic ratios. The organic compounds are interpreted as the product of abiogenic gas-phase radical reactions. On the basis of isomer abundances, n-alkane distributions and substitution patterns the compounds are thought to have formed by high-temperature (e.g., 900 °C) alkyl free radical reactions and halide electrophilic substitution on arenes, alkanes and alkenes. The apparent abiogenic organic chemistry of volcanic gases may give insights into metal transport processes during the formation and alteration of hydrothermal ore deposits, into the natural volcanic source strength of ozone-depleting atmospheric trace gases (i.e., halocarbons), into possibly sensitive trace gas redox pairs as potential early indicators of subsurface changes on volcanoes in the state of imminent unrest, and into the possible hydrothermal origin of early life on Earth, as indicated by the presence of simple amino acids, nitriles, and alkanoic acids.

  12. Vapor-liquid equilibria in the system ethanethiol + methyldiethanolamine + water in the presence of acid gases

    SciTech Connect

    Jou, F.Y.; Mather, A.E.; Schmidt, K.A.G.; Ng, H.J.

    1999-07-01

    This investigation was carried out to determine the solubility of ethanethiol in a methyldiethanolamine (MDEA) solution. Measurements were made in the absence of acid gases, H{sub 2}H and CO{sub 2}, with individual acid gases present, and with mixtures of acid gases present. Experiments with an aqueous solution of 50 mass % MDEA were carried out at 40 and 70 C. The total pressure for most of the experiments was 6,890 kPa, which was maintained by methane. Partial pressures of ethanethiol ranged from 0.2 to 15 kPa.

  13. Sorption of organic gases in a furnished room

    SciTech Connect

    Singer, Brett C.; Revzan, Kenneth L.; Hotchi, Toshifumi; Hodgson, Alfred T.; Brown, Nancy J.

    2003-11-30

    We present experimental data and semi-empirical models describing the sorption of organic gases in a simulated indoor residential environment. Two replicate experiments were conducted with 20 volatile organic compounds (VOCs) in a 50-m{sup 3} room finished with painted wallboard, carpet and cushion, draperies and furnishings. The VOCs span a wide volatility range and include ten Hazardous Air Pollutants. VOCs were introduced to the static chamber as a pulse and their gas-phase concentrations were measured during a net adsorption period and a subsequent net desorption period. Three sorption models were fit to the measured concentrations for each compound to determine the simplest formulation needed to adequately describe the observed behavior. Sorption parameter values were determined by fitting the models to adsorption period data then checked by comparing measured and predicted behavior during desorption. The adequacy of each model was evaluated using a goodness of fit parameter calculated for each period. Results indicate that sorption usually does not greatly affect indoor concentrations of methyl-tert-butyl ether, 2-butanone, isoprene and benzene. In contrast, sorption appears to be a relevant indoor process for many of the VOCs studied, including C{sub 8}-C{sub 10} aromatic hydrocarbons (HC), terpenes, and pyridine. These compounds sorbed at rates close to typical residential air change rates and exhibited substantial sorptive partitioning at equilibrium. Polycyclic aromatic HCs, aromatic alcohols, ethenylpyridine and nicotine initially adsorbed to surfaces at rates of 1.5 to >6 h{sup -1} and partitioned 95 to >99% in the sorbed phase at equilibrium.

  14. Organic Acids by Ion Chromatography

    NASA Astrophysics Data System (ADS)

    Rich, William E.; Johnson, Edward; Lois, Louis; Stafford, Brian E.; Kabra, Pokar M.; Marton, Laurence J.

    The presence of increased levels of various organic acids in physiological fluids such as serum, plasma, and urine has been correlated with a variety of diseases (1). Although some are rare, others such as lactic acidosis and hyperoxaluria are more widespread (2, 3). The estimation of organic acids in biological fluids has long been an analytical problem owing to the nature of the samples and the hydrophilic behavior of the various acids.

  15. Analysis of Organic Acids.

    ERIC Educational Resources Information Center

    Griswold, John R.; Rauner, Richard A.

    1990-01-01

    Presented are the procedures and a discussion of the results for an experiment in which students select unknown carboxylic acids, determine their melting points, and investigate their solubility behavior in water and ethanol. A table of selected carboxylic acids is included. (CW)

  16. Radiolysis gases from nitric acid solutions containing HSA and HAN

    SciTech Connect

    Smith, J.R.

    1994-10-28

    The concentration of hydrogen (H{sub 2}) in the radiolytically produced off-gas from 2.76-4.25M HNO{sub 3}/PU solutions has been found to be greatly reduced in the presence of sulfamic acid (HSA) and hydroxylamine nitrate (HAN). The H{sub 2} concentration ([H{sub 2}]) is reduced from 35 percent to about 4 percent by dilution caused from an increase in the production rates of nitrogen (N{sub 2}), nitrous oxide (N{sub 2}O), and oxygen (O{sub 2}) gases. The generation rate of H{sub 2} was not affected by HSA or HAN giving a measured radiolytic yield, G(H{sub 2}), value of 0.201 molecules/100 eV for 2.765M NO{sub 3}{sup -} solution (a value of 0.213 is predicted from previous data). The G(H{sub 2}) values are dependent on the solution nitrate concentration ([NO{sub 3}{sup -}]). The generation rates of N{sub 2}, N{sub 2}O, and O{sub 2} are not dependent on the [NO{sub 3}{sup -}] in this narrow range, but are dependent on the presence of HSA and the concentration of HAN. The percentage [H{sub 2}] for the 2.5 to 3.0M NO{sub 3}{sup -} range expected in the off- from the FB-Line Pu{sup +3} Hold Tanks is conservatively estimated to be about 3.5 to 4.5 % for Pu + 3 solutions initially containing 0.023M HAN/0.165M HSA. The upper limit [H{sub 2}] may actually be about 4.1 % (4.3 % at 90 % confidence limits) but more {open_quotes}initial{close_quotes} off-gas rate data is needed at about 2.9M [NO{sub 3}{sup -}] in Pu{sup +3} solution for verification. Addition of ascorbic acid had no effect on the off-gas rate of Pu{sup +3} solutions containing HSA and NO{sub 3}{sup -} concentrations higher than those expected in the hold tanks. The maximum {open_quotes}hold time{close_quotes} for 50 grams/liter Pu{sup +3}/0.165M HSA/0.023M HAN/2.5-3.0M HNO{sub 3} solution is 20.3{+-}2.1 days. After this time the HSA initially present will become exhausted and the [H{sub 2}] will increase to 35 %. This hold time may be longer in [NO{sub 3}{sup -}] < 3.0M, but again more study is needed.

  17. Process for the removal of acid forming gases from exhaust gases

    DOEpatents

    Chang, S.G.; Liu, D.K.

    1992-11-17

    Exhaust gases are treated to remove NO or NO[sub x] and SO[sub 2] by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50 C is attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO[sub x] and SO[sub 2], alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO[sub x] and SO[sub 2] can be removed in an economic fashion. 9 figs.

  18. Process for the removal of acid forming gases from exhaust gases

    DOEpatents

    Chang, Shih-Ger; Liu, David K.

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. are attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO and SO.sub.2 can be removed in an economic fashion.

  19. Field Observations of the Processing of Organic Aerosol Particles and Trace Gases by Fogs and Clouds

    NASA Astrophysics Data System (ADS)

    Collett, J. L.; Herckes, P.

    2003-12-01

    In many environments, organic compounds account for a significant fraction of fine particle mass. Because the lifetimes of accumulation mode aerosol particles are governed largely by interactions with clouds, it is important to understand how organic aerosol particles are processed by clouds and fogs. Recently we have examined the organic composition of clouds and fogs in a variety of environments as well as how these fogs and clouds process organic aerosol particles and soluble organic trace gases. The investigations, conducted in Europe, North America, Central America, and the Pacific region, have included studies of polluted radiation fogs, orographic clouds in clean and polluted environments, and marine stratocumulus. Our results show that organic matter is a significant component of fog and cloud droplets. In polluted California radiation fogs, we observed concentrations of total organic carbon (TOC) ranging from 2 to 40 ppmC, with significantly lower concentrations measured in marine and continental clouds. An average of approximately 80 percent of organic matter was found in solution, while the remainder appears to be suspended material inside cloud and fog drops. Ultrafiltration measurements indicate that as much as half of the dissolved organic carbon is present in very large molecules with molecular weights in excess of 500 Daltons. Field measurements made using a two-stage cloud water collector reveal that organic matter tends to be enriched in smaller cloud or fog droplets. Consequently, removal of organic compounds by precipitating clouds or by direct cloud/fog drop deposition will be slowed due to the fact that small drops are incorporated less efficiently into precipitation and removed less efficiently by sedimentation or inertial impaction. Despite this trend, we have observed that sedimentation of droplets from long-lived radiation fogs provides a very effective mechanism for cleansing the atmosphere of carbonaceous aerosol particles, with organic

  20. Process for recovery of sulfur from acid gases

    DOEpatents

    Towler, Gavin P.; Lynn, Scott

    1995-01-01

    Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.

  1. Low to middle tropospheric profiles and biosphere/troposphere fluxes of acidic gases in the summertime Canadian taiga

    NASA Technical Reports Server (NTRS)

    Klemm, O.; Talbot, R. W.; Fitzgerald, D. R.; Klemm, K. I.; Lefer, B. L.

    1994-01-01

    We report features of acidic gases in the troposphere from 9 to 5000 m altitude above ground over the Canadian taiga in the summer of 1990. The measurements were conducted at a 30-m meteorological tower and from the NASA Wallops Electra aircraft as part of the joint U.S.-Canadian Arctic Boundary Layer Expedition (ABLE) 3B Northern Wetland Studies (NOWES). We sampled air for acidic gases using the mist chamber collector coupled with subsequent analysis using ion chromatography. At the tower we collected samples at two heights during a 13-day period, including diurnal studies. Using eddy flux and profile data, we estimated the biosphere/troposphere fluxes of nitric, formic, and acetic acids and sulfur dioxide. For the organic acids, emissions from the taiga in the afternoon hours and deposition during the predawn morning hours were observed. The flux intensities alone were however not high enough to explain the observed changes in mixing ratios. The measured deposition fluxes of nitric acid were high enough to have a significant influence on its mixing ratio in the boundary layer. On three days we measured vertical profiles of nitric, formic, and acetic acids through the lower to midtroposphere. We found that the chemical composition of the troposphere was extremely heterogenous. Pronounced layers of polluted air were readily apparent from our measurements. Local photochemical production and episodic long-range transport of trace components, originating from biomass burning and possibly industrial emissions, appear to have a strong influence on the composition of the troposphere and biosphere/troposphere fluxes of acidic gases at this site.

  2. Solubility of acid gases in a mixed solvent

    SciTech Connect

    MacGregor, R.J.; Mather, A.E.

    1987-01-01

    The solubility of hydrogen sulphide and carbon dioxide and their mixtures has been measured at 40/sup 0/ and 100/sup 0/C in a mixed solvent consisting of 20.9 wt% (2.0 M) MDEA (methyldiethanolamine), 30.5 wt% sulfolane, and 48.6 wt% water. The results have been compared with those for aqueous 2.0 M MDEA and an analogous mixed solvent, containing AMP (2-amino-2-methyl-1-propanol), which are available in the literature. At solution loadings less than 1 mol acid gas/mol MDEA, the solubility of the acid gas was lower in the mixed solvent that in the corresponding aqueous MDEA solvent; at solution loadings greater than 1 mol acid gas/mol MDEA, the reverse was true. At all loadings and at both temperatures studied, the mixed MDEA solvent absorbed equal or lesser quantities of acid gas than the comparable mixed AMP solvent. However, the shapes of the solubility curves show that the mixed MDEA solvent would be a better choice for certain industrial applications. These data were used to modify the solubility model of Deshmukh and Mather to account for the mixed solvent effects on the system thermodynamics. Results show that the model is useful as a first approximation in predicting acid gas solubilities; agreement with experiment was generally found to be within +-15%.

  3. Exposure assessment of oxidant gases and acidic aerosols

    SciTech Connect

    Lioy, P.J.

    1989-01-01

    Clearly the presence of high ozone and acidic species in North America is primarily dependent upon photochemical air pollution. Evidence shows, however, that high acid exposures may occur in specific types of areas of high sulfur fuel use during the winter. At the present time, our concerns about exposure to local populations and regional populations should be directed primarily toward the outdoor activity patterns of individuals in the summer, and how those activity patterns relate to the location, duration, and concentrations of ozone and acid aerosol in photochemical air pollution episodes. Lioy Dyba and Mage et al have examined the activity patterns of children in summer camps. Because they spend more time outside than the normal population, these children form an important group of exercising individuals subject to photochemical pollution exposures. The dose of ozone inhaled by the children in the two camps was within 50% and 25% of the dose inhaled by adults in controlled clinical situations that produced clinically significant decrements in pulmonary function and increased the symptoms after 6.6 hr exposure in a given day. The chamber studies have used only ozone, whereas in the environment this effect may be enhanced by the presence of a complex mixture. The work of Lioy et al in Mendham, New Jersey found that hydrogen ion seemed to play a role in the inability of the children to return immediately to their normal peak expiratory flow rate after exposure. The camp health study conducted in Dunsville, Ontario suggested that children participating in a summer camp where moderate levels of ozone (100 ppb) but high levels of acid (46 micrograms/m3) occurred during an episode had a similar response. Thus, for children or exercising adults who are outdoors for at least one hour or more during a given day, the presence and persistence of oxidants in the environment are of particular concern. 63 references.

  4. Degradation of organic gases using ultrasonic mist generated from TiO2 suspension.

    PubMed

    Sekiguchi, Kazuhiko; Noshiroya, Daisuke; Handa, Misako; Yamamoto, Keisuke; Sakamoto, Kazuhiko; Namiki, Norikazu

    2010-09-01

    The photocatalytic degradation of organic gases with mist particles that were formed by ultrasonic atomization of a TiO(2) suspension was performed with three different ultraviolet light sources. Three aromatic volatile organic compounds (VOCs; toluene, p-xylene, and styrene) and aldehydes (formaldehyde and acetaldehyde) were chosen as model organic gases for the degradation experiment. Under UV(365) irradiation, toluene was decomposed by a photocatalytic reaction on the surface of mist particles. Under UV(254+185) irradiation, the removal efficiency and mineralization ratio of the VOC gases were higher than those under UV(365) or UV(254) irradiation. Under UV(254+185) irradiation, it was found that VOC gases were immediately degraded and converted to water-soluble intermediates by not only direct photolysis but also oxidation by OH radical, since the removal efficiency of several organic gases depended on the reaction rate with OH radical and the primary effect of generated ozone was to complete the mineralization of the intermediates. On the other hand, water-soluble aldehyde gases were rapidly trapped by mist particles before reaction on their surface. Furthermore, water-soluble intermediates that formed via the decomposition of VOC gases were completely trapped in the mist and were not detected at the reactor exit. Therefore, notable secondary particle generation was not observed, even under UV(254+185) irradiation. Based on these results as well as the size distribution of the mist droplets, it was found that primarily submicron-scale droplets contributed to the photocatalytic reaction. Lastly, we propose a mechanism for the degradation of organic gaseous pollutants on the surface of mist particles. PMID:20705323

  5. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for municipal waste combustor... for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) (c) On...

  6. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for municipal waste combustor... for Municipal Waste Combustors for Which Construction Is Commenced After December 20, 1989 and On or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) (c) On...

  7. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for municipal waste combustor... for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) (c) On...

  8. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for municipal waste combustor... for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) (c) On...

  9. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for municipal waste combustor... for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) (c) On...

  10. Modeling the selectivity of indoor pollution gases over N2 on covalent organic frameworks.

    PubMed

    Li, Wenliang; Pang, Yujia; Zhang, Jingping

    2014-07-01

    The selectivity of indoor pollution gases (including formaldehyde, benzene, and toluene) over N2 on a set of 37 covalent organic frameworks (COFs) was modeled by combining classical grand canonical Monte Carlo (GCMC) methods and periodic density functional theory with dispersion correction (DFT-D2). The pore volume, pore size, and the isosteric heat (Q st) of gases on COFs were investigated to explore the origin of the high selectivity of pollution gases over N2. We found that the size match between the pore of the COFs and the corresponding pollution gases is the key factor for high selectivity. Additionally, the Q st for the investigated four gases follows the order of toluene > benzene > formaldehyde > N2, which is consistent with the order of selectivity. Furthermore, the favorite sites and interaction energies of pollution gases on COFs were calculated by the periodic DFT-D2 method. Our simulation procedure offers an alternative approach with which to evaluate or design the best candidate porous materials in capture pollution gases. PMID:24980986

  11. Experimental equilibrium between acid gases and ethanolamine solutions

    SciTech Connect

    Bhairi, A.M.

    1984-01-01

    The general subject area of this study is equilibrium solubility of carbon dioxide and hydrogen sulfide in solutions of some common ethanolamines. The amines studied are most widely used in the area of gas sweetening. They include monoethanolamine, diglycolamine, diethanolamine and methyldiethanolamine. Only limited data are available for some of these amines. The process involved developing simple apparatus and procedure for investigating the equilibrium solubility of carbon dioxide and hydrogen sulfide in aqueous alkanolamine solutions. The procedure uses a single equilibrium cell. No gas chromatograph nor liquid chemical analysis is required. Measurements of the solubility were made in different amine solution concentrations at acid gas partial pressures to 1000 psia and temperatures from 77 to 240{degree}F. The method used was found to be sound as indicated by the consistency and reproducibility of the data.

  12. Plasma-chemical waste treatment of acid gases

    SciTech Connect

    Harkness, J.B.L.; Doctor, R.D.; Daniels, E.J.

    1993-09-01

    The research to date has shown that a H{sub 2}S waste-treatment process based on plasma-chemical dissociation technology is compatible with refinery and high-carbon-oxide acid-gas streams. The minor amounts of impurities produced in the plasma-chemical reactor should be treatable by an internal catalytic reduction step. Furthermore, the plasma-chemical technology appears to be more efficient and more economical than the current technology. The principal key to achieving high conversions with relatively low energies of dissociation is the concept of the high-velocity, cyclonic-flow pattern in the plasma reaction zone coupled with the recycling of unconverted hydrogen sulfide. Future work will include testing the effects of components that might be carried over to the plasma reactor by ``upset`` conditions in the amine purification system of a plant and testing the plasma-chemical process on other industrial wastes streams that contain potentially valuable chemical reagents. The strategy for the commercialization of this technology is to form a Cooperative Research and Development Agreement with the Institute of Hydrogen Energy and Plasma Technology of the Russian Scientific Center/Kurchatov Institute and with an American start-up company to develop an ``American`` version of the process and to build a commercial-scale demonstration unit in the United States. The timetable proposed would involve building a ``field test`` facility which would test the plasma-chemical reactor and sulfur recovery unit operations on an industrial hydrogen sulfide waste s at a scale large enough to obtain the energy and material balance data required for a final analysis of the commercial potential of this technology. The field test would then be followed by construction of a commercial demonstration unit in two to three years. The commercial demonstration unit would be a fully integrated plant consisting of one commercial-scale module.

  13. SOA Precursors: A Comparison of Semi-Volatile and Water Soluble Organic Gases During SOAS

    NASA Astrophysics Data System (ADS)

    Carlton, A. M. G.; Sareen, N.; Turpin, B. J.

    2014-12-01

    It is well-established that a major pathway for secondary organic aerosol (SOA) formation is via the partitioning of semi-volatile products of gas-phase photochemical reactions into preexisting organic particulate matter. Semi-volatile partitioning theory is widely used while modeling SOA. Despite its significance, parameterizations based solely on this formation pathway are unable to reproduce trends in SOA mass, particularly high atmospheric O/C ratios and enrichment of organic aerosol aloft. Recent studies have also highlighted the importance of formation of SOA through reactions of water-soluble organic gases (WSOG) in atmospheric waters (clouds, fogs, and wet aerosols). In order to understand the relative magnitude of potential precursors to SOA via both formation pathways, we modeled semi-volatile and WSOG concentrations during the Secondary Organic and Aerosol Study (SOAS) conducted in Brent, Alabama during June-July 2013. CMAQ 5.0.1 is used to predict mixing ratios of semi-volatile gases and WSOG over the continental US for a 10 day time period during SOAS. Our modeling results indicate that WSOG concentrations are an order of magnitude greater, on average, than the sum of semi-volatile gases. Interestingly, concentrations of semi-volatile gases increase aloft, unlike concentrations of WSOG. These results suggest that the potential for SOA formation from WSOG was high, and provide support for efforts to accurately model that multiphase chemistry in order to develop more effective air quality management strategies.

  14. Sorption of organic gases in residential bedrooms andbathrooms

    SciTech Connect

    Singer, B.C.; Hodgson, A.T.; Hotchi, T.; Ming, K.Y.; Sextro,R.G.; Wood, E.E.; Brown, N.J.

    2005-01-05

    Experiments were conducted to characterize organic gas sorption in residential bedrooms (n=4), bathrooms (n=2), and a furnished test chamber. Rooms were studied ''as-is'' with material surfaces and furnishings unaltered. Surface materials were characterized and areas quantified. Experiments included rapid volatilization of a volatile organic compound (VOC) mixture with the room closed and sealed for a 5-h Adsorb phase, followed by 30-min Flush and 2-h closed-room Desorb phases. The mixture included n-alkanes, aromatics, glycol ethers, 2-ethyl-1-hexanol, dichlorobenzene, and organophosphorus compounds. Measured gas-phase concentrations were fit to three variations of a mathematical model that considers sorption occurring at one surface sink and one potential embedded sink. The 2-parameter sink model tracked measurements for most compounds, but improved fits were obtained for some VOCs with a 3-parameter sink-diffusion or a 4-parameter two-sink model. Sorptive partitioning and initial adsorption rates increased with decreasing vapor pressure within each chemical class.

  15. Capture and release of mixed acid gasses with binding organic liquids

    DOEpatents

    Heldebrant, David J.; Yonker, Clement R.

    2010-09-21

    Reversible acid-gas binding organic liquid systems that permit separation and capture of one or more of several acid gases from a mixed gas stream, transport of the liquid, release of the acid gases from the ionic liquid and reuse of the liquid to bind more acid gas with significant energy savings compared to current aqueous systems. These systems utilize acid gas capture compounds made up of strong bases and weak acids that form salts when reacted with a selected acid gas, and which release these gases when a preselected triggering event occurs. The various new materials that make up this system can also be included in various other applications such as chemical sensors, chemical reactants, scrubbers, and separators that allow for the specific and separate removal of desired materials from a gas stream such as flue gas.

  16. SAMPLING FOR HIGH-MOLECULAR-WEIGHT ORGANIC COMPOUNDS IN POWER PLANT STACK GASES

    EPA Science Inventory

    The results of laboratory and field investigations of experimental sampling systems intended to collect high-molecular-weight organic compounds from flue gases in coal-fired power plants are presented. The most promising sampling device was a solid sorbent cartridge inserted dire...

  17. Isotopic geochemistry of acid thermal waters and volcanic gases from Zaō volcano in Japan

    NASA Astrophysics Data System (ADS)

    Kiyosu, Yasuhiro; Kurahashi, Makoto

    1984-08-01

    The chemical composition and D/H, {18O }/{16O } and {34S }/{32S } ratios have been determined for the acid hot waters and volcanic gases discharging from Zaō volcano in Japan. The thermal springs in Zaō volcano issue acid sulfate-chloride type waters (Zaō) and acid sulfate type waters (Kamoshika). Gases emitted at Kamoshika fumaroles are rich in CO 2, SO 2 and N 2, exclusive of H 2O. Chloride concentrations and oxygen isotope data indicate that the Zaō thermal waters issue a fluid mixture from an acid thermal reservoir and meteoric waters from shallow aquifers. The waters in the Zaō volcanic system have slight isotopic shifts from the respective local meteoric values. The isotopic evidence indicates that most of the water in the system is meteoric in origin. Sulfates in Zaō acid sulfate-chloride waters with δ34S values of around +15‰, are enriched in 34S compared to Zaō H 2S, while the acid sulfate waters at Kamoshika contain supergene light sulfate ( δ 34S = ˜ + 4‰ ) derived from volcanic sulfur dioxide from the volcanic exhalations. The sulfur species in Zaō acid waters are lighter in δ34S than those of other volcanic areas, reflecting the difference in total pressure.

  18. Morphological and chemical modification of mineral dust: Observational insight into the heterogeneous uptake of acidic gases

    NASA Astrophysics Data System (ADS)

    Matsuki, Atsushi; Iwasaka, Yasunobu; Shi, Guangyu; Zhang, Daizhou; Trochkine, Dmitri; Yamada, Maromu; Kim, Yoon-Suk; Chen, Bin; Nagatani, Tetsuji; Miyazawa, Takeshi; Nagatani, Masahiro; Nakata, Hiroshi

    2005-11-01

    Aerosol samples were collected in the urban atmosphere of Beijing, China, by deploying a tethered balloon. Coarse particles (d > 1 μm) were individually analyzed using electron microscopes, to investigate the extent of dust modification by acidic gases in the atmosphere. Based on the elemental composition, irregularly shaped mineral dust was separated into carbonate and silicate groups. Both sulfate and nitrate were found to accumulate on carbonate more readily than silicate particles. Interestingly, spherical particles resembling Ca-carbonate in composition were spotted frequently in the samples. These Ca-rich spherical particles were more abundant under humid conditions, suggesting that they are deliquesced carbonate particles that formed in the atmosphere following the uptake of acidic gases. Sulfate and nitrate were more frequently detected in the Ca-rich spherical particles than in carbonate in the original solid form, indicating that the gas uptake efficiency of carbonate is further enhanced after the phase transition.

  19. Observing Organic Molecules in Interstellar Gases: Non Equilibrium Excitation.

    NASA Astrophysics Data System (ADS)

    Wiesenfeld, Laurent; Faure, Alexandre; Remijan, Anthony; Szalewicz, Krzysztof

    2014-06-01

    In order to observe quantitatively organic molecules in interstellar gas, it is necessary to understand the relative importance of photonic and collisional excitations. In order to do so, collisional excitation transfer rates have to be computed. We undertook several such studies, in particular for H_2CO and HCOOCH_3. Both species are observed in many astrochemical environments, including star-forming regions. We found that those two molecules behave in their low-lying rotational levels in an opposite way. For cis methyl-formate, a non-equilibrium radiative transfer treatment of rotational lines is performed, using a new set of theoretical collisional rate coefficients. These coefficients have been computed in the temperature range 5 to 30 K by combining coupled-channel scattering calculations with a high accuracy potential energy surface for HCOOCH_3 -- He. The results are compared to observations toward the Sagittarius B2(N) molecular cloud. A total of 2080 low-lying transitions of methyl formate, with upper levels below 25 K, were treated. These lines are found to probe a cold (30 K), moderately dense (n ˜ 104 cm-3) interstellar gas. In addition, our calculations indicate that all detected emission lines with a frequency below 30 GHz are collisionally pumped weak masers amplifying the background of Sgr B2(N). This result demonstrates the generality of the inversion mechanism for the low-lying transitions of methyl formate. For formaldehyde, we performed a similar non-equilibrium treatment, with H_2 as the collisional partner, thanks to the accurate H_2CO - H_2 potential energy surface . We found very different energy transfer rates for collisions with para-H_2 (J=0) and ortho-H_2 (J=1). The well-known absorption against the cosmological background of the 111→ 101 line is shown to depend critically on the difference of behaviour between para and ortho-H_2, for a wide range of H_2 density. We thank the CNRS-PCMI French national program for continuous support

  20. Raman Scattering Sensor for On-Line Monitoring of Amines and Acid Gases

    SciTech Connect

    Uibel, Rory; Smith, Lee

    2010-05-20

    Sulfur and CO2 removal from hydrocarbon streams and power plant effluents are a major problem. The sulfur is normally in the form of H2S. These two acid gases are scrubbed using aqueous amine solutions that are difficult to control with conventional technology. Process Instruments Inc. developed Raman scattering technology for on-line, real-time monitoring of amine streams to improve their efficiency in scrubbing H2S and CO2 from hydrocarbon streams and power plant effluents. Improved control of amine and acid gas concentrations will allow refineries, natural gas processes and power plants to more efficiently scrub Sulfur and CO2, saving energy, time and financial resources.

  1. Separation of rare gases and chiral molecules by selective binding in porous organic cages.

    PubMed

    Chen, Linjiang; Reiss, Paul S; Chong, Samantha Y; Holden, Daniel; Jelfs, Kim E; Hasell, Tom; Little, Marc A; Kewley, Adam; Briggs, Michael E; Stephenson, Andrew; Thomas, K Mark; Armstrong, Jayne A; Bell, Jon; Busto, Jose; Noel, Raymond; Liu, Jian; Strachan, Denis M; Thallapally, Praveen K; Cooper, Andrew I

    2014-10-01

    The separation of molecules with similar size and shape is an important technological challenge. For example, rare gases can pose either an economic opportunity or an environmental hazard and there is a need to separate these spherical molecules selectively at low concentrations in air. Likewise, chiral molecules are important building blocks for pharmaceuticals, but chiral enantiomers, by definition, have identical size and shape, and their separation can be challenging. Here we show that a porous organic cage molecule has unprecedented performance in the solid state for the separation of rare gases, such as krypton and xenon. The selectivity arises from a precise size match between the rare gas and the organic cage cavity, as predicted by molecular simulations. Breakthrough experiments demonstrate real practical potential for the separation of krypton, xenon and radon from air at concentrations of only a few parts per million. We also demonstrate selective binding of chiral organic molecules such as 1-phenylethanol, suggesting applications in enantioselective separation. PMID:25038731

  2. Separation of rare gases and chiral molecules by selective binding in porous organic cages

    NASA Astrophysics Data System (ADS)

    Chen, Linjiang; Reiss, Paul S.; Chong, Samantha Y.; Holden, Daniel; Jelfs, Kim E.; Hasell, Tom; Little, Marc A.; Kewley, Adam; Briggs, Michael E.; Stephenson, Andrew; Thomas, K. Mark; Armstrong, Jayne A.; Bell, Jon; Busto, Jose; Noel, Raymond; Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.; Cooper, Andrew I.

    2014-10-01

    The separation of molecules with similar size and shape is an important technological challenge. For example, rare gases can pose either an economic opportunity or an environmental hazard and there is a need to separate these spherical molecules selectively at low concentrations in air. Likewise, chiral molecules are important building blocks for pharmaceuticals, but chiral enantiomers, by definition, have identical size and shape, and their separation can be challenging. Here we show that a porous organic cage molecule has unprecedented performance in the solid state for the separation of rare gases, such as krypton and xenon. The selectivity arises from a precise size match between the rare gas and the organic cage cavity, as predicted by molecular simulations. Breakthrough experiments demonstrate real practical potential for the separation of krypton, xenon and radon from air at concentrations of only a few parts per million. We also demonstrate selective binding of chiral organic molecules such as 1-phenylethanol, suggesting applications in enantioselective separation.

  3. Simultaneous control of acid gases and PAHs using a spray dryer combined with a fabric filter using different additives.

    PubMed

    Liu, Zhen Shu; Wey, Ming Yen; Lin, Chiou Liang

    2002-04-26

    The purpose of this research was to simultaneously evaluate the removal efficiency of acid gases and PAHs from the flue gas emitted by a laboratory incinerator. This flue gas contained dust, acid gases, organics and heavy metals. A spray dryer combined with a fabric filter was used as the air pollution control device (APCD) in this study. The operating conditions investigated included different feedstock additives (polyvinyl chloride (PVC) and NaCl) and spray dryer additives (SiO2, CaCl2 and NaHCO3). The removal efficiency for SO2 could be enhanced by adding inorganic additives, such as SiO2, CaCl2 and NaHCO3. The presence of PVC in the incinerator feedstock also increased the removal efficiency of SO2in the spray dryer. The improved removal of PAHs could be attributed to the addition of feedstock additives (PVC and NaCl) and spray dryer additives (SiO2, CaCl2 and NaHCO3). PMID:11900910

  4. Degradation Pathways for Geogenic Volatile Organic Compounds (VOCs) in Soil Gases from the Solfatara Crater (Campi Flegrei, Southern Italy).

    NASA Astrophysics Data System (ADS)

    Tassi, F.; Venturi, S.; Cabassi, J.; Capecchiacci, F.; Nisi, B., Sr.; Vaselli, O.

    2014-12-01

    The chemical composition of volatile organic compounds (VOCs) in soil gases from the Solfatara crater (Campi Flegrei, Southern Italy) was analyzed to investigate the effects of biogeochemical processes occurring within the crater soil on gases discharged from the hydrothermal reservoir and released into the atmosphere through diffuse degassing. In this system, two fumarolic vents (namely Bocca Grande and Bocca Nuova) are the preferential pathways for hydrothermal fluid uprising. For our goal, the chemistry of VOCs discharged from these sites were compared to that of soil gases. Our results highlighted that C4-C9 alkanes, alkenes, S-bearing compounds and alkylated aromatics produced at depth were the most prone to degradation processes, such as oxidation-reduction and hydration-dehydration reactions, as well as to microbial activity. Secondary products, which were enriched in sites characterized by low soil gas fluxes, mostly consisted of aldheydes, ketons, esters, ethers, organic acids and, subordinately, alcohols. Benzene, phenol and hydrofluorocarbons (HCFCs) produced at depth were able to transit through the soil almost undisturbed, independently on the emission rate of diffuse degassing. The presence of cyclics was possibly related to an independent low-temperature VOC source, likely within sedimentary formations overlying the hydrothermal reservoir. Chlorofluorocarbons (CFCs) were possibly due to air contamination. This study demonstrated the strict control of biogeochemical processes on the behaviour of hydrothermal VOCs that, at least at a local scale, may have a significant impact on air quality. Laboratory experiments conducted at specific chemical-physical conditions and in presence of different microbial populations may provide useful information for the reconstruction of the degradation pathways controlling fate and behaviour of VOCs in the soil.

  5. Modeling the simultaneous transport of two acid gases in tertiary amines with reversible reactions

    SciTech Connect

    Al-Ghawas, H.A.; Sandall, O.C.

    1988-10-01

    The objective of this work is to develop a model for the simultaneous mass transfer of two acid gases in tertiary amines accompanied by reversible chemical reactions. The model has been applied to the industrially important system of simultaneous absorption or desorption of CO/sub 2/ and H/sub 2/S in aqueous methyldiethanolamine (MDEA). In most applications the treated gas must be virtually free of H/sub 2/S; however, it is often not necessary or economical to remove substantial amounts of CO/sub 2/. Hence, selective removal of H/sub 2/S from gas streams such as natural or synthetic gases which contain CO/sub 2/ is desirable. In this research a film theory model describing the simultaneous diffusion and reversible reaction of two gases into reactive liquid has been used to predict the mass transfer enhancement factors of CO/sub 2/ and H/sub 2/S in aqueous MDEA solutions. The resulting unstable two point boundary value problem has been solved numerically for a range of the dimensionless parameters that characterize an important application for this system. In studying the simultaneous transport of CO/sub 2/ and H/sub 2/S, it is found that the reversibility of the reactions, under certain conditions, causes desorption to take place although absorption would be expected on the basis of overall driving forces. This showed that not only enhancement factors larger but also smaller than unity and even negative values are possible.

  6. Organic Acid Production by Filamentous Fungi

    SciTech Connect

    Magnuson, Jon K.; Lasure, Linda L.

    2004-05-03

    Many of the commercial production processes for organic acids are excellent examples of fungal biotechnology. However, unlike penicillin, the organic acids have had a less visible impact on human well-being. Indeed, organic acid fermentations are often not even identified as fungal bioprocesses, having been overshadowed by the successful deployment of the β-lactam processes. Yet, in terms of productivity, fungal organic acid processes may be the best examples of all. For example, commercial processes using Aspergillus niger in aerated stirred-tank-reactors can convert glucose to citric acid with greater than 80% efficiency and at final concentrations in hundreds of grams per liter. Surprisingly, this phenomenal productivity has been the object of relatively few research programs. Perhaps a greater understanding of this extraordinary capacity of filamentous fungi to produce organic acids in high concentrations will allow greater exploitation of these organisms via application of new knowledge in this era of genomics-based biotechnology. In this chapter, we will explore the biochemistry and modern genetic aspects of the current and potential commercial processes for making organic acids. The organisms involved, with a few exceptions, are filamentous fungi, and this review is limited to that group. Although yeasts including Saccharomyces cerevisiae, species of Rhodotorula, Pichia, and Hansenula are important organisms in fungal biotechnology, they have not been significant for commercial organic acid production, with one exception. The yeast, Yarrowia lipolytica, and related yeast species, may be in use commercially to produce citric acid (Lopez-Garcia, 2002). Furthermore, in the near future engineered yeasts may provide new commercial processes to make lactic acid (Porro, Bianchi, Ranzi, Frontali, Vai, Winkler, & Alberghina, 2002). This chapter is divided into two parts. The first contains a review of the commercial aspects of current and potential large

  7. Noble Gases and Nitrogen Released from a Lunar Soil Pyroxene Separate by Acid Etching

    NASA Astrophysics Data System (ADS)

    Rider, P. E.

    1993-07-01

    We report initial results from a series of experiments designed to measure recently implanted solar wind (SW) ions in lunar soil mineral grains [1]. An acid-etching technique similar to the CSSE method developed at ETH Zurich was used to make abundance and isotope measurements of the SW noble gas and nitrogen compositions. Among the samples examined was a pyroxene separate from soil 75081. It was first washed with H2O to remove contamination from the sample finger walls and grain surfaces. H2O also acted as a weak acid, releasing gases from near-surface sites. Treatment with H2SO3 followed the water washes. Acid pH (~1.8 to ~1.0) and temperature (~23 degrees C to ~90 degrees C) and duration of acid attack (several minutes to several days) were varied from step to step. Finally, the sample was pyrolyzed in several steps to remove the remaining gases, culminating with a high-temperature pyrolysis at 1200 degrees C. Measurements of the light noble gases were mostly consistent with those from previous CSSE experiments performed on pyroxene [2,3]. It should be noted, however, that the Zurich SEP component was not easily distinguishable in the steps where it was expected to be observed. We suspect our experimental protocol masked the SEP reservoir, preventing us from seeing its distinctive signature. The most interesting results from this sample are its Kr and Xe isotopic and elemental compositions. Pyroxene apparently retains heavy noble gases as well as ilmenite (and plagioclase [4]). The heavy noble gas element ratios from this sample along with those previously reported [5,6] are, however, considerably heavier than the theoretically determined "solar system" values [7,8]. Explanations for the difference include the possibility that the derivations are incorrect, that there is another component of lunar origin mixing with the solar component, or that some type of loss mechanism is altering the noble gas reservoirs of the grains. The Kr and Xe isotopic compositions for

  8. Distributions and Correlations of Organic Trace Gases in the Western Pacific Atmosphere

    NASA Astrophysics Data System (ADS)

    Donets, V.; Atlas, E. L.; Schauffler, S.; Navarro, M. A.; Lueb, R.; Campos, T. L.; Weinheimer, A. J.; Montzka, D.; Kaser, L.; Pan, L.; Salawitch, R. J.; Zhu, X.; Pope, L.

    2014-12-01

    The chemistry of the Tropical Western Pacific atmosphere was studied during three coordinated research missions (CONTRAST, ATTREX, CAST) during Winter, 2014. The purpose of the studies was to examine the chemical emissions of reactive gases from the marine surface, to diagnose transport characteristics of this region, and to better understand the controls of the chemical composition and reactive gas budgets of the tropical atmosphere, including the Tropical Transition Layer (TTL) and lower tropical stratosphere. As part of these studies a wide range of trace gases were measured, including various halo- and hydrocarbons, organic nitrates, methyl halides and solvents. In this presentation we will discuss results from whole air samples that were collected from NASA Global Hawk and NSF/NCAR Gulfstream-V aircrafts during ATTREX and CONTRAST, respectively. Samples were collected at altitudes from near 0.5 km to 18 km, and included latitudes from 40°N to 20°S in the Western Pacific. Combined measurements from two aircrafts produced over 1200 samples, which were subsequently analyzed in the field by means of gas chromatography combined with mass selective, flame ionization and electron capture detectors. The observed distributions of trace gases reflected the combined effects of marine emissions and convective mixing, long range transport, and slow ascent in the TTL. We will show our preliminary results featuring vertical and horizontal distributions of selected hydrocarbon and organic halogen trace species and correlations among these species that were observed during the campaigns.

  9. Collection and analysis of organic acids in exhaust gas. Comparison of different methods

    NASA Astrophysics Data System (ADS)

    Zervas, E.; Montagne, X.; Lahaye, J.

    This paper reports the development of a specific method to identify organic acids in exhaust gases. The organic acids are collected in two impingers containing liquids (pure water or Na 2CO 3 1% aqueous solution) and four cartridges containing solids (silica, fluorisil, alumina B and alumina N). Once collected, the acids are eluted of the solids by a hot water stream. These traps performances, in terms of organic acids collection and elution efficiency, are evaluated and compared. Two sources are used to produce the gas flow containing organic acids: one generates a flow whose concentration is known and stable, the other produces organic acids among other combustion products. For eluted solutions analysis, two methods are used: isocratic ionic chromatography/conductivity detection and GC/FID. Their efficiency in separating 10 aliphatic acids are compared. Their characteristics such as detection limits, detection linearity, repeatability and possible interferences with other components found in exhaust gases are determined. The stability of the organic acids solutions is also studied. Lastly, the use of these methods is illustrated by the analysis of the gas-phase organic acids exhausted by a spark ignition and by a diesel engine.

  10. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    SciTech Connect

    Goodson, Boyd M.

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

  11. Sulfurous Gases As Biological Messengers and Toxins: Comparative Genetics of Their Metabolism in Model Organisms

    PubMed Central

    Mathew, Neal D.; Schlipalius, David I.; Ebert, Paul R.

    2011-01-01

    Gasotransmitters are biologically produced gaseous signalling molecules. As gases with potent biological activities, they are toxic as air pollutants, and the sulfurous compounds are used as fumigants. Most investigations focus on medical aspects of gasotransmitter biology rather than toxicity toward invertebrate pests of agriculture. In fact, the pathways for the metabolism of sulfur containing gases in lower organisms have not yet been described. To address this deficit, we use protein sequences from Homo sapiens to query Genbank for homologous proteins in Caenorhabditis elegans, Drosophila melanogaster, and Saccharomyces cerevisiae. In C. elegans, we find genes for all mammalian pathways for synthesis and catabolism of the three sulfur containing gasotransmitters, H2S, SO2 and COS. The genes for H2S synthesis have actually increased in number in C. elegans. Interestingly, D. melanogaster and Arthropoda in general, lack a gene for 3-mercaptopyruvate sulfurtransferase, an enzym for H2S synthesis under reducing conditions. PMID:22131987

  12. Adsorption of selected gases on metal-organic frameworks and covalent organic frameworks: A comparative grand canonical Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Wang, Lu; Zhao, Jijun; Yan, Tianying

    2012-06-01

    The adsorption properties of H2, CO, NO, and NO2 in several typical nanoporous materials (covalent organic framework (COF)-105, COF-108, metal-organic framework (MOF)-5, and MOF-177) at 298 K were investigated by grand canonical Monte Carlo simulations. Good agreement between simulated results and experimental data has been achieved for H2 adsorption on MOF-5 and MOF-177, indicating the reliability of the theoretical approach. The simulated adsorption isotherms for these four gases show analogical trend, i.e., increasing nearly linearly with pressure. Among the four host materials, COF-108 exhibits the highest hydrogen uptake (˜0.89 wt. % at 100 bars) owing to its low densities and high surface area. The adsorption amounts of NO2 in these materials are higher than those of the other three gases because of the stronger gas-sorbent interaction. In particular, NO2 adsorption amount in MOF-177 can reach as high as 10.7 mmol/g at 298 K and 10 bars. The interaction between the four gases (H2, CO, NO, and NO2) and the COF/MOF adsorbents is further discussed in terms of the isosteric heat.

  13. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases.

    PubMed

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay. PMID:23907148

  14. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases

    NASA Astrophysics Data System (ADS)

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-08-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay.

  15. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases

    PubMed Central

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay. PMID:23907148

  16. Identification of significant precursor gases of secondary organic aerosols from residential wood combustion

    NASA Astrophysics Data System (ADS)

    Bruns, Emily A.; El Haddad, Imad; Slowik, Jay G.; Kilic, Dogushan; Klein, Felix; Baltensperger, Urs; Prévôt, André S. H.

    2016-06-01

    Organic gases undergoing conversion to form secondary organic aerosol (SOA) during atmospheric aging are largely unidentified, particularly in regions influenced by anthropogenic emissions. SOA dominates the atmospheric organic aerosol burden and this knowledge gap contributes to uncertainties in aerosol effects on climate and human health. Here we characterize primary and aged emissions from residential wood combustion using high resolution mass spectrometry to identify SOA precursors. We determine that SOA precursors traditionally included in models account for only ~3–27% of the observed SOA, whereas for the first time we explain ~84–116% of the SOA by inclusion of non-traditional precursors. Although hundreds of organic gases are emitted during wood combustion, SOA is dominated by the aging products of only 22 compounds. In some cases, oxidation products of phenol, naphthalene and benzene alone comprise up to ~80% of the observed SOA. Identifying the main precursors responsible for SOA formation enables improved model parameterizations and SOA mitigation strategies in regions impacted by residential wood combustion, more productive targets for ambient monitoring programs and future laboratories studies, and links between direct emissions and SOA impacts on climate and health in these regions.

  17. Identification of significant precursor gases of secondary organic aerosols from residential wood combustion

    PubMed Central

    Bruns, Emily A.; El Haddad, Imad; Slowik, Jay G.; Kilic, Dogushan; Klein, Felix; Baltensperger, Urs; Prévôt, André S. H.

    2016-01-01

    Organic gases undergoing conversion to form secondary organic aerosol (SOA) during atmospheric aging are largely unidentified, particularly in regions influenced by anthropogenic emissions. SOA dominates the atmospheric organic aerosol burden and this knowledge gap contributes to uncertainties in aerosol effects on climate and human health. Here we characterize primary and aged emissions from residential wood combustion using high resolution mass spectrometry to identify SOA precursors. We determine that SOA precursors traditionally included in models account for only ~3–27% of the observed SOA, whereas for the first time we explain ~84–116% of the SOA by inclusion of non-traditional precursors. Although hundreds of organic gases are emitted during wood combustion, SOA is dominated by the aging products of only 22 compounds. In some cases, oxidation products of phenol, naphthalene and benzene alone comprise up to ~80% of the observed SOA. Identifying the main precursors responsible for SOA formation enables improved model parameterizations and SOA mitigation strategies in regions impacted by residential wood combustion, more productive targets for ambient monitoring programs and future laboratories studies, and links between direct emissions and SOA impacts on climate and health in these regions. PMID:27312480

  18. Identification of significant precursor gases of secondary organic aerosols from residential wood combustion.

    PubMed

    Bruns, Emily A; El Haddad, Imad; Slowik, Jay G; Kilic, Dogushan; Klein, Felix; Baltensperger, Urs; Prévôt, André S H

    2016-01-01

    Organic gases undergoing conversion to form secondary organic aerosol (SOA) during atmospheric aging are largely unidentified, particularly in regions influenced by anthropogenic emissions. SOA dominates the atmospheric organic aerosol burden and this knowledge gap contributes to uncertainties in aerosol effects on climate and human health. Here we characterize primary and aged emissions from residential wood combustion using high resolution mass spectrometry to identify SOA precursors. We determine that SOA precursors traditionally included in models account for only ~3-27% of the observed SOA, whereas for the first time we explain ~84-116% of the SOA by inclusion of non-traditional precursors. Although hundreds of organic gases are emitted during wood combustion, SOA is dominated by the aging products of only 22 compounds. In some cases, oxidation products of phenol, naphthalene and benzene alone comprise up to ~80% of the observed SOA. Identifying the main precursors responsible for SOA formation enables improved model parameterizations and SOA mitigation strategies in regions impacted by residential wood combustion, more productive targets for ambient monitoring programs and future laboratories studies, and links between direct emissions and SOA impacts on climate and health in these regions. PMID:27312480

  19. Fundamental Understanding of the Interaction of Acid Gases with CeO2 : From Surface Science to Practical Catalysis

    DOE PAGESBeta

    Tumuluri, Uma; Rother, Gernot; Wu, Zili

    2016-03-21

    Acid gases including CO2, SO2, and NOx are ubiquitous in large-scale energy applications including heterogeneous catalysis. The adverse environmental and health effects of these acid gases have resulted in high interest in the research and development of technologies to remove or convert these acid gases. The main challenge for the development of these technologies is to develop catalysts that are highly efficient, stable, and cost-effective, and many catalysts have been reported in this regard. CeO2 and CeO2-based catalysts have gained prominence in the removal and conversion of CO2, SO2, and NOx because of their structural robustness and redox and acid–basemore » properties. In this article, we provide a brief overview of the application of CeO2 and CeO2-based catalysts for the removal of CO2, SO2, and NOx gases with an emphasis on the fundamental understanding of the interactions of these acid gases with CeO2. The studies summarized in this review range from surface science using single crystals and thin films with precise crystallographic planes to practical catalysis applications of nanocrystalline and polycrystalline CeO2 materials with defects and dopants. After an introduction to the properties of CeO2 surfaces, their catalytic properties for conversions of different acid gases are reviewed and discussed. Lastly, we find that the surface atomic structure, oxygen vacancies, and surface acid–base properties of CeO2 play vital roles in the surface chemistry and structure evolution during the interactions of acid gases with CeO2 and CeO2-based catalysts.« less

  20. Dissolved Gases and Ice Fracturing During the Freezing of a Multicellular Organism: Lessons from Tardigrades

    PubMed Central

    Kletetschka, Gunther; Hruba, Jolana

    2015-01-01

    Abstract Three issues are critical for successful cryopreservation of multicellular material: gases dissolved in liquid, thermal conductivity of the tissue, and localization of microstructures. Here we show that heat distribution is controlled by the gas amount dissolved in liquids and that when changing the liquid into solid, the dissolved gases either form bubbles due to the absence of space in the lattice of solids and/or are migrated toward the concentrated salt and sugar solution at the cost of amount of heat required to be removed to complete a solid-state transition. These factors affect the heat distribution in the organs to be cryopreserved. We show that the gas concentration issue controls fracturing of ice when freezing. There are volumetric changes not only when changing the liquid into solid (volume increases) but also reduction of the volume when reaching lower temperatures (volume decreases). We discuss these issues parallel with observations of the cryosurvivability of multicellular organisms, tardigrades, and discuss their analogy for cryopreservation of large organs. PMID:26309797

  1. Reported emissions of organic gases are not consistent with observations

    PubMed Central

    Henry, Ronald C.; Spiegelman, Clifford H.; Collins, John F.; Park, EunSug

    1997-01-01

    Regulatory agencies and photochemical models of ozone rely on self-reported industrial emission rates of organic gases. Incorrect self-reported emissions can severely impact on air quality models and regulatory decisions. We compared self-reported emissions of organic gases in Houston, Texas, to measurements at a receptor site near the Houston ship channel, a major petrochemical complex. We analyzed hourly observations of total nonmethane organic carbon and 54 hydrocarbon compounds from C-2 to C-9 for the period June through November, 1993. We were able to demonstrate severe inconsistencies between reported emissions and major sources as derived from the data using a multivariate receptor model. The composition and the location of the sources as deduced from the data are not consistent with the reported industrial emissions. On the other hand, our observationally based methods did correctly identify the location and composition of a relatively small nearby chemical plant. This paper provides strong empirical evidence that regulatory agencies and photochemical models are making predictions based on inaccurate industrial emissions. PMID:11038551

  2. Dissolved Gases and Ice Fracturing During the Freezing of a Multicellular Organism: Lessons from Tardigrades.

    PubMed

    Kletetschka, Gunther; Hruba, Jolana

    2015-01-01

    Three issues are critical for successful cryopreservation of multicellular material: gases dissolved in liquid, thermal conductivity of the tissue, and localization of microstructures. Here we show that heat distribution is controlled by the gas amount dissolved in liquids and that when changing the liquid into solid, the dissolved gases either form bubbles due to the absence of space in the lattice of solids and/or are migrated toward the concentrated salt and sugar solution at the cost of amount of heat required to be removed to complete a solid-state transition. These factors affect the heat distribution in the organs to be cryopreserved. We show that the gas concentration issue controls fracturing of ice when freezing. There are volumetric changes not only when changing the liquid into solid (volume increases) but also reduction of the volume when reaching lower temperatures (volume decreases). We discuss these issues parallel with observations of the cryosurvivability of multicellular organisms, tardigrades, and discuss their analogy for cryopreservation of large organs. PMID:26309797

  3. Separation of rare gases and chiral molecules by selective binding in porous organic cages

    SciTech Connect

    Chen, Linjiang; Reiss, Paul S.; Chong, Samantha Y.; Holden, Daniel; Jelfs, Kim E.; Hasell, Tom; Little, Marc A.; Kewley, Adam; Briggs, Michael E.; Stephenson, Andrew; Thomas, K. M.; Armstrong, Jayne A.; Bell, Jon; Busto, Jose; Noel, Raymond; Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.; Cooper, Andrew I.

    2014-10-31

    Abstract: The rare gases krypton, xenon, and radon pose both an economic opportunity and a potential environmental hazard. Xenon is used in commercial lighting, medical imaging, and anesthesia, and can sell for $5,000 per kilogram. Radon, by contrast, Is naturally radioactive and the second largest cause of lung cancer, and radioactive xenon, 133Xe, was a major pollutant released In the Fukushima Daiichi Nuclear Power Plant disaster. We describe an organic cage molecule that can capture xenon and radon with unprecedented selectivity, suggesting new technologies for environmental monitoring, removal of pollutants, or the recovery of rare, valuable elements from air.

  4. Is dry deposition of semi-volatile organic gases a significant loss of secondary organic aerosols (SOA)?

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Aumont, B.; Knote, C. J.; Lee-Taylor, J. M.; Madronich, S.

    2013-12-01

    Dry deposition removal of semi-volatile organic compounds from the atmosphere and its impact on organic aerosol mass is currently under-explored and not well represented in chemistry-climate models, especially for the many complex partly oxidized organics involved in particle formation. The main reason for this omission is that current models use simplified SOA mechanisms that lump precursors and their products into volatility bins, therefore losing information on important properties of individual molecules (or groups) that are needed to calculate dry deposition. In this study, we apply the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to simulate SOA formation and estimate the influence of dry deposition of gas-phase organics on SOA concentrations downwind of an urban area (Mexico City), as well as over a pine forest. SOA precursors considered here include short- and long-chain alkanes (C3-25), alkenes, light aromatics, isoprene and monoterpenes. We show that dry deposition of oxidized gases is not an efficient sink for anthropogenic SOA, as it removes <5% of SOA within the city's boundary layer and ~15% downwind. The effect on biogenic SOA is however significantly larger. We discuss reasons for these differences, and investigate separately the impacts on short and long-chain species. We show that the dry deposition is competing with the uptake of gases to the aerosol phase. In the absence of this condensation, ~50% of the regionally produced mass downwind of Mexico City would have been dry-deposited. However, because dry deposition of submicron aerosols is slow, condensation onto particles protects organic gases from deposition and therefore increases their atmospheric burden and lifetime. We use the explicit GECKO-A model to build an empirical parameterization for use in 3D models. Removal (dry and wet) of organic vapors depends on their solubility, and required Henry's law solubility coefficients were estimated for

  5. Organic acid-tolerant microorganisms and uses thereof for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-05-06

    Organic acid-tolerant microorganisms and methods of using same. The organic acid-tolerant microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid (3HP), acrylic acid, and propionic acid. Further modifications to the microorganisms such as increasing expression of malonyl-CoA reductase and/or acetyl-CoA carboxylase provide or increase the ability of the microorganisms to produce 3HP. Methods of generating an organic acid with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers include replacing acsA or homologs thereof in cells with genes of interest and selecting for the cells comprising the genes of interest with amounts of organic acids effective to inhibit growth of cells harboring acsA or the homologs.

  6. Testing of organic acids in engine coolants

    SciTech Connect

    Weir, T.W.

    1999-08-01

    The effectiveness of 30 organic acids as inhibitors in engine coolants is reported. Tests include glassware corrosion of coupled and uncoupled metals. FORD galvanostatic and cyclic polarization electrochemistry for aluminum pitting, and reserve alkalinity (RA) measurements. Details of each test are discussed as well as some general conclusions. For example, benzoic acid inhibits coupled metals well but is ineffective on cast iron when uncoupled. In benzoic acid inhibits coupled metals well but is ineffective on cast iron when uncoupled. In general, the organic acids provide little RA when titrated to a pH of 5.5, titration to a pH of 4.5 can result in precipitation of the acid. Trends with respect to acid chain length are reported also.

  7. Nanoparticles modified with multiple organic acids

    NASA Technical Reports Server (NTRS)

    Cook, Ronald Lee (Inventor); Luebben, Silvia DeVito (Inventor); Myers, Andrew William (Inventor); Smith, Bryan Matthew (Inventor); Elliott, Brian John (Inventor); Kreutzer, Cory (Inventor); Wilson, Carolina (Inventor); Meiser, Manfred (Inventor)

    2007-01-01

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  8. Nanoparticles modified with multiple organic acids

    DOEpatents

    Cook, Ronald Lee; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew; Elliott, Brian John; Kreutzer, Cory; Wilson, Carolina; Meiser, Manfred

    2007-07-17

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  9. Collisions and Reactions of Protic Gases with Surfactant-Coated Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Park, Seong-Chan; Glass, Samuel; Lawrence, Jennifer; Nathanson, Gilbert

    2004-03-01

    The presence of surfactant molecules on sulfuric acid droplets in the atmosphere may alter the rates of heterogeneous reactions by impeding gas entry. We perform molecular beam experiments with deuterated sulfuric acid solutions (60-68 wt % D_2SO4 at 213 K) with varying concentrations of surfactants including butanol, hexanol, and octanol. We direct a beam of a protic gas HX (X = Cl or Br) at a continuously renewed film of supercooled D_2SO_4/D_2O in vacuum and measure the fraction of thermalized HX that undergo HX→ DX exchange. Our results contradict the notion that surfactants impede gas transport. The presence of surface alcohol does not alter the rate of D_2O evaporation from the liquid surface. Our most striking result is that surface alcohol actually increases the HX→ DX exchange fraction, implying that HX dissociates more readily at the interface when alcohol is present. This enhancement may be caused by the dilution of the acid near the surface by segregated alcohol molecules, which provide additional OH groups for protonation by HX. We are now investigating other surfactants as well as other atmospheric gases.

  10. MEMBRANE SYSTEM FOR RECOVERY OF VOLATILE ORGANIC COMPOUNDS FROM REMEDIATION OFF-GASES

    SciTech Connect

    J.G. Wijmans

    2003-11-17

    In situ vacuum extraction, air or steam sparging, and vitrification are widely used to remediate soil contaminated with volatile organic compounds (VOCs). All of these processes produce a VOC-laden air stream from which the VOC must be removed before the air can be discharged or recycled to the generating process. Treatment of these off-gases is often a major portion of the cost of the remediation project. Currently, carbon adsorption and catalytic incineration are the most common methods of treating these gas streams. Membrane Technology and Research, Inc. (MTR) proposed an alternative treatment technology based on selective membranes that separate the organic components from the gas stream, producing a VOC-free air stream. This technology can be applied to off-gases produced by various remediation activities and the systems can be skid-mounted and automated for easy transportation and unattended operation. The target performance for the membrane systems is to produce clean air (less than 10 ppmv VOC) for discharge or recycle, dischargeable water (less than 1 ppmw VOC), and a concentrated liquid VOC phase. This report contains the results obtained during Phase II of a two-phase project. In Phase I, laboratory experiments were carried out to demonstrate the feasibility of the proposed approach. In the subsequent Phase II project, a demonstration system was built and operated at the McClellan Air Force Base near Sacramento, California. The membrane system was fed with off-gas from a Soil Vacuum Extraction (SVE) system. The work performed in Phase II demonstrated that the membrane system can reduce the VOC concentration in remediation off-gas to 10 ppmv, while producing a concentrated VOC phase and dischargeable water containing less than 1 ppmw VOC. However, the tests showed that the presence of 1 to 3% carbon dioxide in the SVE off-gas reduced the treatment capacity of the system by a factor of three to four. In an economic analysis, treatment costs of the membrane

  11. Separation and identification of carboxylic acids in MALT samples from the headspace gases in Hanford tank 103C

    SciTech Connect

    Clauss, S.A.; Lucke, R.B.

    1993-08-01

    Samples of headspace gases from Westinghouse Hanford Company (WHC) waste storage tank 103C were analyzed by gas chromatography/mass spectrometry by Pacific Northwest Laboratory staff. The samples were obtained using a cryo-trap sampler designed by WHC and known as the Mobile Analytical Laboratory Trap (MALT). The samples, which were obtained in September 1989, were available in large amounts (200 mi). The specific targets for this analysis were n-butyric, i-butyric, n-valeric, and i-valeric organic acids. Of the acids targeted, only n-butyric was found, and only trace amounts of it were detected with a detection limit below 1 ppM in the extract. The levels found were so low as to cause difficulty in quantitation. All concentrations reported here are for the methanol extract solutions and not the concentrations in the headspace of tank 103C. To calculate concentrations in the headspace, the MALT sampling volume and the methanol rinse volume must be obtained from the MALT personnel at WHC.

  12. Biological production of products from waste gases

    DOEpatents

    Gaddy, James L.

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  13. The contribution of drained organic soils to the globally emitted greenhouse gases and emission hotspots

    NASA Astrophysics Data System (ADS)

    Barthelmes, Alexandra; Couwenberg, John; Joosten, Hans

    2016-04-01

    Key words: organic soils, peatlands, drainage, emissions, globally Peatlands cover only 3% of the global land surface. Some 15% of these peatlands have been drained for agriculture, forestry and grazing, which leads to the release of huge amounts of carbon. The '2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands' (IPCC 2014) offers up-to-date default emission factors for different land use types on organic soil and thus enables proper reporting. For this, realistic area data of drained organic soils are needed at a national scale. We analysed the drained organic soil areas and related emissions as reported to the UNFCCC in 2014 for several Nordic-Baltic countries . The analysis revealed that the areas often seem to be underestimated and that several countries use outdated emission factors. The re-assessment of the drained area and the application of the IPCC (2014) default emission factors resulted in 5-10 x higher emissions from drained organic soils for some countries. Out of 9 Nordic-Baltic countries only 1 country seems to have overestimated the drainage related organic soil emissions. If adopting the default emission factors from IPCC (2014) globally, the emissions from drained and degrading organic soils (~ 1,600 Mt CO2-eq.) amount to almost double the amount of CO2 emissions from aviation, even when emissions from peat fires are not included . By far the top single emitter of drained peatland related greenhouse gases is Indonesia, followed by the European Union and Russia. 25 countries are together responsible for 95% of global emissions from peatland drainage, excluding fires. Fires raise the importance of particularly Indonesia and Russian Federation. In 25 countries emissions from peatland degradation are over 50% of the emissions from fossil fuels and cement production combined, hence peatland emissions are of national significance.

  14. Leaching of organic acids from macromolecular organic matter by non-supercritical CO2

    NASA Astrophysics Data System (ADS)

    Sauer, P.; Glombitza, C.; Kallmeyer, J.

    2012-04-01

    The storage of CO2 in underground reservoirs is discussed controversly in the scientific literature. The worldwide search for suitable storage formations also considers coal-bearing strata. CO2 is already injected into seams for enhanced recovery of coal bed methane. However, the effects of increased CO2 concentration, especially on organic matter rich formations, are rarely investigated. The injected CO2 will dissolve in the pore water, causing a decrease in pH and resulting in acidic formation waters. Huge amounts of low molecular weight organic acids (LMWOAs) are chemically bound to the macromolecular matrix of sedimentary organic matter and may be liberated by hydrolysis, which is enhanced by the acidic porewater. Recent investigations outlined the importance of LMWOAs as a feedstock for microbial life in the subsurface [1]. Therefore, injection of CO2 into coal formations may result in enhanced nutrient supply for subsurface microbes. To investigate the effect of high concentrations of dissolved CO2 on the release of LMWOAs from coal we developed an inexpensive high-pressure high temperature system that allows manipulating the partial pressure of dissolved gases at pressures and temperatures up to 60 MPa and 120° C, respectively. In a reservoir vessel, gases are added to saturate the extraction medium to the desired level. Inside the extraction vessel hangs a flexible and inert PVDF sleeve (polyvinylidene fluoride, almost impermeable for gases), holding the sample and separating it from the pressure fluid. The flexibility of the sleeve allows for subsampling without loss of pressure. Coal samples from the DEBITS-1 well, Waikato Basin, NZ (R0 = 0.29, TOC = 30%). were extracted at 90° C and 5 MPa, either with pure or CO2-saturated water. Subsamples were taken at different time points during the extraction. The extracted LMWOAs such as formate, acetate and oxalate were analysed by ion chromatography. Yields of LMWOAs were higher with pure water than with CO2

  15. Metal-organic frameworks with high capacity and selectivity for harmful gases

    PubMed Central

    Britt, David; Tranchemontagne, David; Yaghi, Omar M.

    2008-01-01

    Benchmarks have been established for the performance of six metal-organic frameworks (MOFs) and isoreticular MOFs (IRMOFs, which have the same underlying topology as MOF-5), MOF-5, IRMOF-3, MOF-74, MOF-177, MOF-199, and IRMOF-62, as selective adsorbents for eight harmful gases: sulfur dioxide, ammonia, chlorine, tetrahydrothiophene, benzene, dichloromethane, ethylene oxide, and carbon monoxide. Kinetic breakthrough measurements are used to determine the calculated dynamic adsorption capacity of each “benchmark” MOF for each gas. The capacity of each MOF is compared to that of a sample of Calgon BPL activated carbon. We find that pore functionality plays a dominant role in determining the dynamic adsorption performance of MOFs. MOFs featuring reactive functionality outperform BPL carbon in all but one case and exhibit high dynamic adsorption capacities up to 35% by weight. PMID:18711128

  16. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study

    SciTech Connect

    Biganzoli, Laura; Racanella, Gaia; Marras, Roberto; Rigamonti, Lucia

    2015-01-15

    Highlights: • Two scenarios of acid gases removal in WTE plants were compared in an LCA study. • A detailed inventory based on primary data has been reported for the production of the new dolomitic sorbent. • Results show that the comparison between the two scenarios does not show systematic differences. • The potential impacts are reduced only if there is an increase in the energy efficiency of the WTE plant. - Abstract: The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminary stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO{sub 2} emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests described in

  17. Photoenhanced anaerobic digestion of organic acids

    DOEpatents

    Weaver, Paul F.

    1990-01-01

    A process is described for rapid conversion of organic acids and alcohols anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion or organic acids and alcohols into methane with low levels of light energy input.

  18. Locating Gases in Porous Materials: Cryogenic Loading of Fuel-Related Gases Into a Sc-based Metal-Organic Framework under Extreme Pressures.

    PubMed

    Sotelo, Jorge; Woodall, Christopher H; Allan, Dave R; Gregoryanz, Eugene; Howie, Ross T; Kamenev, Konstantin V; Probert, Michael R; Wright, Paul A; Moggach, Stephen A

    2015-11-01

    An alternative approach to loading metal organic frameworks with gas molecules at high (kbar) pressures is reported. The technique, which uses liquefied gases as pressure transmitting media within a diamond anvil cell along with a single-crystal of a porous metal-organic framework, is demonstrated to have considerable advantages over other gas-loading methods when investigating host-guest interactions. Specifically, loading the metal-organic framework Sc2BDC3 with liquefied CO2 at 2 kbar reveals the presence of three adsorption sites, one previously unreported, and resolves previous inconsistencies between structural data and adsorption isotherms. A further study with supercritical CH4 at 3-25 kbar demonstrates hyperfilling of the Sc2 BDC3 and two high-pressure displacive and reversible phase transitions are induced as the filled MOF adapts to reduce the volume of the system. PMID:26358845

  19. Production and condensation of organic gases in the atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Sagan, C.; Thompson, W. R.

    1984-08-01

    The rates and altitudes for the dissociation of atmospheric constituents on Titan are calculated for solar ultraviolet radiation, the solar wind, Saturn magnetospheric particles, the Saturn co-rotating plasma, and cosmic rays. Laboratory experiments show that a variety of simple gas phase organic molecules and more complex organic solids called tholins are produced by such irradiations of simulated Titanian atmospheres. Except for ultraviolet wavelengths longward of the methane photodissociation continuum, most dissociation events occur between about 3100 and 3600 km altitude, corresponding well to the region of EUV opacity detected by Voyager. For a wide variety of simple to moderately complex organic gases in the Titanian atmosphere, condensation occurs below the top of the main cloud deck at about 2825 km. It is proposed that such condensates, begining with CH4 at about 2615 km comprise the principal mass of the Titan clouds. There is a distinct tendency for the atmosphere of Titan to act as a fractional distillation device, molecules of greater complexity condensing out at higher altitudes.

  20. Glass shell manufacturing in space. [residual gases in spherical shells made from metal-organic gels

    NASA Technical Reports Server (NTRS)

    Nolen, R. J.; Ebner, M. A.; Downs, R. L.

    1980-01-01

    Residual gases always found in glass shells are CO2, O2 and N2. In those cases where high water vapor pressure is maintained in the furnace, water is also found in the shells. Other evidence for the existence of water in shells is the presence of water-induced surface weathering of the interior shell surface. Water and CO2 are the predominant volatiles generated by the pyrolysis of both inorganic and hydrolyzed metal-organic gels. The pyrolysates of unhydrolyzed metal-organic gels also contain, in addition to water and CO2, significant levels of organic volatiles, such as ethanol and some hydrocarbons; on complete oxidation, these produce CO2 and water as well. Water is most likely the initial blowing agent, it is produced copiously during the initial stages of heating. In the later stages, CO2 becomes the dominant gas as H2O is lost at increasing rates. Water in the shell arises mainly from gel dehydration, CO2 by sodium bicarbonate/carbonate decomposition and carbon oxidation, and O2 and N2 by permeation of the ambient furnace air through the molten shell wall.

  1. Production and condensation of organic gases in the atmosphere of Titan

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Thompson, W. R.

    1984-01-01

    The rates and altitudes for the dissociation of atmospheric constituents on Titan are calculated for solar ultraviolet radiation, the solar wind, Saturn magnetospheric particles, the Saturn co-rotating plasma, and cosmic rays. Laboratory experiments show that a variety of simple gas phase organic molecules and more complex organic solids called tholins are produced by such irradiations of simulated Titanian atmospheres. Except for ultraviolet wavelengths longward of the methane photodissociation continuum, most dissociation events occur between about 3100 and 3600 km altitude, corresponding well to the region of EUV opacity detected by Voyager. For a wide variety of simple to moderately complex organic gases in the Titanian atmosphere, condensation occurs below the top of the main cloud deck at about 2825 km. It is proposed that such condensates, begining with CH4 at about 2615 km comprise the principal mass of the Titan clouds. There is a distinct tendency for the atmosphere of Titan to act as a fractional distillation device, molecules of greater complexity condensing out at higher altitudes.

  2. Production and condensation of organic gases in the atmosphere of Titan

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Thompson, W. R.

    1982-01-01

    The rates and altitudes for the dissociation of atmospheric constituents on Titan are calculated for solar ultraviolet radiation, the solar wind, Saturn magnetospheric particles, the Saturn co-rotating plasma, and cosmic rays. Laboratory experiments show that a variety of simple gas phase organic molecules and more complex organic solids called tholins are produced by such irradiations of simulated Titanian atmospheres. Except for ultraviolet wavelengths longward of the methane photodissociation continuum, most dissociation events occur between about 3100 and 3600 km altitude, corresponding well to the region of EUV opacity detected by Voyager. For a wide variety of simple to moderately complex organic gases in the Titanian atmosphere, condensation occurs below the top of the main cloud deck at about 2825 km. It is proposed that such condensates, beginning with CH4 at about 2615 km, comprise the principal mass of the Titan clouds. There is a distinct tendency for the atmosphere of Titan to act as a fractional distillation device, molecules of greater complexity condensing out at higher altitudes.

  3. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study.

    PubMed

    Biganzoli, Laura; Racanella, Gaia; Marras, Roberto; Rigamonti, Lucia

    2015-01-01

    The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminary stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO2 emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests described in Biganzoli et al. (2014) and from the dolomitic sorbent production plant. The results of the LCA show minor changes in the potential impacts between the two operational modes of the plants. These differences are for 8 impact categories in favour of the new operational mode based on the addition of the dolomitic sorbent, and for 7 impact categories in favour of the traditional operation. A final evaluation was conducted on the potential

  4. Contamination monitoring for ammonia, amines, and acid gases utilizing ion mobility spectroscopy (IMS)

    NASA Astrophysics Data System (ADS)

    Bacon, Tad; Webber, Kurt; Carpio, Ronald A.

    1998-06-01

    The effect of ammonia (NH3) and n-methyl pyrrolidinone (NMP) contamination on chemically amplified DUV resists is well documented. Other amines and related compounds are under suspicion as well. In addition, the concentration levels that are of concern have steadily decreased from approximately 10 ppbv down to levels as low as 0.1 ppbv. While some techniques such as ion chromotagraphy (IC) have been demonstrated to have limits of detection at these levels, the analysis times are rather long and cumbersome. This paper describes the use of IMS to perform these measurements, in a totally automated, continuous instrument. IMS is a simplified time-of-flight technique that requires no liquid reagents and has been demonstrated to be a reliable method for monitoring for ammonia and NMP in cleanrooms. This paper demonstrates the ability of the technique to monitor for amines such as dimethylamine, methylamine, methanolamine, ethanolamine, diethanolamine, butylamine and others. Detection limits of 0.1 ppbv and below are clearly demonstrated. Also discussed are methods of monitoring multiple points with a single analyzer. Ability to detect corrosive gases such as hydrogen fluoride (HF), hydrogen chloride (HCl), sulfur dioxide (SO2), sulfur trioxide (SO3), nitrogen dioxide (NO2), chlorine (Cl2), bromine (Br2), phosphoric acid (H3PO4) are also demonstrated.

  5. Annular denuders for use in global climate and stratospheric measurements of acidic gases and particles

    NASA Astrophysics Data System (ADS)

    Stevens, Robert K.

    1991-02-01

    Measurements of acidic and basic gases that coexist with fine particle (less than 2.5 micron) may be useful for determining the impact of these species on global climate changes and determining species that influence stratospheric ozone levels. Annular denuders are well suited for this purpose. A new concentric annular denuder system, consisting of a three channel denuder, a Teflon coated cyclone preseparator, and a multistage filter pack was developed, evaluated, and shown to provide reliable atmospheric measurements of SO2, HNO2, HNO3, NH3, SO4(=), NH4(+), NO3(-), and H(+). For example, the precision of the annular denuder for the ambient measurements of HNO3 and nitrates at concentrations between 0.1 to 3 microgram/cu m was + or - 12 and 16 pct., respectively. The 120 x 25 mm three channel denuder is encased in a stainless steel sheath and has annular spaces that are 1 mm wide. This design was shown to have nearly identical capacity for removal of SO2 as conventional 210 x 25 mm single channel denuder configurations. The cyclone preseparator was designed and tested to have a D sub 50 cutoff diameter of 2.5 micron and minimal retention of HNO3.

  6. MEMBRANE SYSTEM FOR RECOVERY OF VOLATILE ORGANIC COMPOUNDS FROM REMEDIATION OFF-GASES

    SciTech Connect

    J.G. Wijmans; R. Daniels; R. Olsen

    2000-01-13

    In situ vacuum extraction, air or steam sparging, and vitrification are widely used methods of remediating soil contaminated with volatile organic compounds (VOCs). All of these processes produce a VOC.-laden air stream from which the VOC must be removed before the air can be discharged or recycled to the generating process. Treatment of these off-gases is often a major portion of the cost of the remediation project. Carbon adsorption and catalytic incineration, the most common methods of treating these gas streams, suffer from significant drawbacks. Membrane Technology and Research, Inc. (NITR) proposes an alternative treatment technology, based on permselective membranes that separate the organic components from the gas stream, producing a VOC-free air stream. The technology we propose to develop can be applied to all of these off-gas streams and is not tied to a particular off-gas generating source. We propose to develop a completely self-contained system because remediation projects are frequently in remote locations where access to trained operators and utilities is limited. The system will be a turnkey unit, skid-mounted and completely automatic, requiring power but no other utilities. The system will process the off-gas, producing a concentrated liquid VOC stream and a purified gas containing less than 10 ppm VOC that can be discharged or recycled to the gas-generating process.

  7. The cost-effective synthesis of furan- and thienyl-based microporous polyaminals for adsorption of gases and organic vapors.

    PubMed

    Li, Guiyang; Zhang, Biao; Yan, Jun; Wang, Zhonggang

    2016-01-21

    This work reveals that furfural and 2-thenaldehyde can readily react with melamine via "one-step" polycondensation to yield hyper-cross-linked sulfur-, nitrogen- and oxygen-rich microporous polyaminals with promising applications in adsorption of gases and toxic organic vapors. PMID:26611445

  8. Reactions of tetraphenyltitanium with organic acids

    SciTech Connect

    Razuvaev, G.A.; Vyshinskaya, L.I.; Vasil'eva, G.A.

    1987-12-10

    As a result of the reactions of tetraphenyltitanium with dibasic organic acids high yields were obtained of new thermally stable titanium(III) complexes: phenyltitanium(III)carboxylates. Under the action of proton-active reagents (hydrochloric acid, cyclopentadiene, methanol) the latter break down with the breakage of titanium-phenyl bond. The proposed structure was based on IR- and ESR-spectral data. The dinuclear structure of the complexes was established on the basis of a study of the triplet structure of the ESR spectra, which showed the existence of intermolecular titanium-titanium exchange through methylene groups of the dicarboxylate bridges.

  9. Membrane System for Recovery of Volatile Organic Compounds from Remediation Off-Gases.: Phase 1.

    SciTech Connect

    Wijmans, J.G.; Goakey, S.; Wang, X.; Baker, R.W.; Kaschemekat, J.H.

    1997-04-01

    In situ vacuum extraction, air or steam sparging, and vitrification are widely used methods of remediating soil contaminated with volatile organic compounds (VOCs). All of these processes produce a VOC-laden air stream from which the VOC must be removed before the air can be discharged or recycled to the generating process. Treatment of these off-gases is often a major portion of the cost of the remediation project. Carbon adsorption and catalytic incineration, the most common methods of treating these gas streams, suffer from significant drawbacks. This report covers the first phase of a two-phase project. The first phase involved the laboratory demonstration of the water separation section of the unit, the production and demonstration of new membrane modules to improve the separation, the design studies required for the demonstration system, and initial contacts with potential field sites. In the second phase, the demonstration system will be built and, after a short laboratory evaluation, will be tested at two field sites.

  10. Energy densification of biomass-derived organic acids

    DOEpatents

    Wheeler, M. Clayton; van Walsum, G. Peter; Schwartz, Thomas J.; van Heiningen, Adriaan

    2013-01-29

    A process for upgrading an organic acid includes neutralizing the organic acid to form a salt and thermally decomposing the resulting salt to form an energy densified product. In certain embodiments, the organic acid is levulinic acid. The process may further include upgrading the energy densified product by conversion to alcohol and subsequent dehydration.

  11. Treatment of broiler litter with organic acids.

    PubMed

    Ivanov, I E

    2001-04-01

    Experiments for treatment of contaminated broiler litter with citric, tartaric and salicylic acids were performed. At days 2 and 6 after the treatment, pH values (using a pH-meter), the ammonia concentrations (titration with 0.1 N HCl) and the microbial cells counts were determined in both experimental and control specimens of litter. The cost of acidification of litter was also determined. Our studies showed that the treatment of the contaminated litter with 5 per cent citric acid, 4 per cent tartaric acid and 1.5 per cent salicylic acid created an acid medium with pH under 5.0 and thus reduced the microbial counts to 2.2 x 10(3)colony forming units per gram manure litter. The treatment reduced the content of ammonia in the litter and in the air under the hygienic limits, i.e. 25-50 ppm. The cost of acidification of litter with these organic acids amounted to 0.1 $ per bird and 1.5 $ per 15 birds on one square metre in a growth period of 50 days. PMID:11356097

  12. High temperature abatement of acid gases from waste incineration. Part I: experimental tests in full scale plants.

    PubMed

    Biganzoli, Laura; Racanella, Gaia; Rigamonti, Lucia; Marras, Roberto; Grosso, Mario

    2015-02-01

    In recent years, several waste-to-energy plants in Italy have experienced an increase of the concentration of acid gases (HCl, SO2 and HF) in the raw gas. This is likely an indirect effect of the progressive decrease of the amount of treated municipal waste, which is partially replaced by commercial waste. The latter is characterised by a higher variability of its chemical composition because of the different origins, with possible increase of the load of halogen elements such as chlorine (Cl) and fluorine (F), as well as of sulphur (S). A new dolomitic sorbent was then tested in four waste-to-energy plants during standard operation as a pre-cleaning stage, to be directly injected at high temperature in the combustion chamber. For a sorbent injection of about 6 kg per tonne of waste, the decrease of acid gases concentration downstream the boiler was in the range of 7-37% (mean 23%) for HCl, 34-95% (mean 71%) for SO2 and 39-80% (mean 63%) for HF. This pre-abatement of acid gases allowed to decrease the feeding rate of the traditional low temperature sorbent (sodium bicarbonate in all four plants) by about 30%. Furthermore, it was observed by the plant operators that the sorbent helps to keep the boiler surfaces cleaner, with a possible reduction of the fouling phenomena and a consequent increase of the specific energy production. A preliminary quantitative estimate was carried out in one of the four plants. PMID:25465511

  13. Organic Geochemistry of Sediments, Interstitial Fluids and Light Volatile Hydrocarbon Gases from Giza and North Alex Mud Volcanoes, Western Nile Deep-Sea Fan

    NASA Astrophysics Data System (ADS)

    Nuzzo, Marianne; Elvert, Marcus; Heuer, Verena; Schmidt, Mark; Hinrichs, Kai-Uwe; Scholz, Florian; Reitz, Anja; Hensen, Christian

    2010-05-01

    The West Nile Delta Project is a multi-disciplinary research project lead at IFM-GEOMAR (Kiel, Germany) and funded by RWE-DEA (Hamburg, Germany). It aims at investigating the sources and transport mechanisms of fluids and hydrocarbon gases seeping at two mud volcanoes (MVs) of the western Nile Deep-Sea Fan: North Alex and Giza MVs, and at the long-term monitoring of the seepage activity at these sites [1,2]. A comparative study of the organic geochemistry of sediments, gases and fluids was carried out in order to constrain (i) the sources of fluids, mud and gases erupted at these cold seeps, and (ii) the microbial hydrocarbon-oxidation processes associated with the extrusion of mud and gases. The molecular and stable isotope composition of light volatile hydrocarbon gases stripped from pore fluids reveal a clear thermogenic origin at the less active Giza MV and at the active centre of N. Alex MV. However, they probably originate from different sources, as shown by the distinct 13C-CH4 values of ~ -45‰ and -37‰VPDB at North Alex and Giza MVs, respectively, while 2H-CH4 values are similar (~ -228‰VSMOW). Away from the centre at North Alex MV the gases have variable compositions and are mainly produced by Archaea microbes. The microbial production of CH4 is probably sustained by the high content of the mud breccia sediments in labile organic matter. Indeed Total Organic Carbon content values are high (~ 1 and 2%weight) in MV sediments from both sites as well as at the reference site away from Giza MV, suggesting a main shallow (Plio-Pleistocene) sedimentary source. Consistently, the sedimentary lipids contain high amounts of compounds typically issued from terrestrial plants such as -amyrin and nC26:0 to nC30:0 fatty acids & alkenols. The hypothesis that labile terrestrial organic matter sustains intense microbial activity in the mud volcano sediments is supported by the extreme enrichment of pore fluids in a suite of Volatile Fatty Acids, in particular

  14. Methods for calculation of engineering parameters for gas separation. [vapor pressure and solubility of gases in organic liquids

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.

    1979-01-01

    A group additivity method is generated which allows estimation, from the structural formulas alone, of the energy of vaporization and the molar volume at 25 C of many nonpolar organic liquids. Using these two parameters and appropriate thermodynamic relations, the vapor pressure of the liquid phase and the solubility of various gases in nonpolar organic liquids are predicted. It is also possible to use the data to evaluate organic and some inorganic liquids for use in gas separation stages or liquids as heat exchange fluids in prospective thermochemical cycles for hydrogen production.

  15. Validation of the i-STAT system for the analysis of blood gases and acid-base status in juvenile sandbar shark (Carcharhinus plumbeus).

    PubMed

    Harter, T S; Morrison, P R; Mandelman, J W; Rummer, J L; Farrell, A P; Brill, R W; Brauner, C J

    2015-01-01

    Accurate measurements of blood gases and acid-base status require an array of sophisticated laboratory equipment that is typically not available during field research; such is the case for many studies on the stress physiology, ecology and conservation of elasmobranch fish species. Consequently, researchers have adopted portable clinical analysers that were developed for the analysis of human blood characteristics, but often without thoroughly validating these systems for their use on fish. The aim of our study was to test the suitability of the i-STAT system, the most commonly used portable clinical analyser in studies on fish, for analysing blood gases and acid-base status in elasmobranchs, over a broad range of conditions and using the sandbar shark (Carcharhinus plumbeus) as a model organism. Our results indicate that the i-STAT system can generate useful measurements of whole blood pH, and the use of appropriate correction factors may increase the accuracy of results. The i-STAT system was, however, unable to generate reliable results for measurements of partial pressure of oxygen (PO2) and the derived parameter of haemoglobin O2 saturation. This is probably due to the effect of a closed-system temperature change on PO2 within the i-STAT cartridge and the fact that the temperature correction algorithms used by i-STAT assume a human temperature dependency of haemoglobin-O2 binding; in many ectotherms, this assumption will lead to equivocal i-STAT PO2 results. The in vivo partial pressure of CO2 (PCO2) in resting sandbar sharks is probably below the detection limit for PCO2 in the i-STAT system, and the measurement of higher PCO2 tensions was associated with a large measurement error. In agreement with previous work, our results indicate that the i-STAT system can generate useful data on whole blood pH in fishes, but not blood gases. PMID:27293687

  16. Removal of NO sub x from flue gases using the urea acidic process; Kinetics of the chemical reaction of nitrous acid with urea

    SciTech Connect

    Lasalle, A.; Roizard, C.; Midoux, N.; Bourret, P.; Dyens, P.J. )

    1992-03-01

    This paper deals with the removal of nitrogen oxides from flue gases using the acidic urea process. The chemical hydrolysis of nitrous acid, which leads to NO formation, is avoided by nitrous acid reaction with urea. Products of this reaction are gases, e.g. CO{sub 2} and N{sub 2} which can then be directly released into the atmosphere. The aim here is to determine the kinetic parameters of the chemical reaction of nitrous acid with urea. Experiments are performed in a closed stirred reactor. The manometric method (measurement of the pressure versus time curve) leads to the determination of the concentration of HNO{sub 2} and then to the chemical rate versus time. Operating parameters are the concentration of urea (333-3330 mol m{sup {minus}3}), the pH (0.75-1.25), and the temperature (3-40{degrees}C). The experimental results are as follows: the order relative to nitrous acid is 1; the rate constant decreases with pH; the influence of temperature on the rate constant can be expressed by (pH = 1) k = 1.82 {times} 10{sup 8} exp ({minus}(60400/RT)) (SI units).

  17. Effect of residual gases in high vacuum on the energy-level alignment at noble metal/organic interfaces

    SciTech Connect

    Helander, M. G.; Wang, Z. B.; Lu, Z. H.

    2011-10-31

    The energy-level alignment at metal/organic interfaces has traditionally been studied using ultraviolet photoelectron spectroscopy (UPS) in ultra-high vacuum (UHV). However, since most devices are fabricated in high vacuum (HV), these studies do not accurately reflect the interfaces in real devices. We demonstrate, using UPS measurements of samples prepared in HV and UHV and current-voltage measurements of devices prepared in HV, that the small amounts of residual gases that are adsorbed on the surface of clean Cu, Ag, and Au (i.e., the noble metals) in HV can significantly alter the energy-level alignment at metal/organic interfaces.

  18. Apparatus for purifying arsine, phosphine, ammonia, and inert gases to remove Lewis acid and oxidant impurities therefrom

    DOEpatents

    Tom, Glenn M.; Brown, Duncan W.

    1991-01-08

    An apparatus for purifying a gaseous mixture comprising arsine, phosphine, ammonia, and/or inert gases, to remove Lewis acid and/or oxidant impurities therefrom, comprising a vessel containing a bed of a scavenger, the scavenger including a support having associated therewith an anion which is effective to remove such impurities, such anion being selected from one or more members of the group consisting of: (i) carbanions whose corresponding protonated compounds have a pK.sub.a value of from about 22 to about 36; and (ii) anions formed by reaction of such carbanions with the primary component of the mixture.

  19. Biological production of ethanol from waste gases with Clostridium ljungdahlii

    DOEpatents

    Gaddy, James L.

    2000-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products is disclosed. The method includes introducing the waste gases into a bioreactor where they are fermented to various product, such as organic acids, alcohols H.sub.2, SCP, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  20. Organic acids and selected nitrogen species for ABLE-3

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.

    1991-01-01

    The NASA Global Tropospheric Experiment (GTE) executed airborne science missions aboard the NASA Wallops Electra (NA429) in the North American high latitude (greater than 45 deg North) atmosphere during Jul. to Aug. 1988 and Jul. to Aug. 1990. These missions were part of GTE's Atmospheric Boundary Layer Experiment (ABLE). The 1988 mission , ABLE-3A, examined the ecosystems of Alaska as a source and/or sink for important tropospheric gases and particles, and gained new information on the chemical composition of the Arctic atmosphere during the summertime. During 1990 the second high latitude mission, ABLE-3B, focused on the Hudson Bay Lowland and Labrador regions of Canada. Both of these missions provided benchmark data sets on atmosphere biosphere exchange and atmospheric chemistry over largely uninhabited regions of North America. In support of the GTE/ABLE-3A and -3B field missions, the University of New Hampshire flew instrumentation aboard the Wallops Electra research aircraft to provide measurements of the trace gases nitric (HNO3), formic (HCOOH), and acetic (CH3COOH) acid. In addition, measurements were conducted to determine the major water soluble ionic composition of the atmospheric aerosol. For ABLE-3B, groundbased measurements of the acidic trace gases were also performed from the NASA micrometerological tower situated at Schefferville, Laborador. These measurements were aimed at assessing dry deposition of acidic gases to the taiga ecosystem in the Laborador region of Canada.

  1. Molecular simulation of separation of CO{sub 2} from flue gases in Cu-BTC metal-organic framework

    SciTech Connect

    Yang, Q.Y.; Xue, C.Y.; Zhong, C.L.; Chen, J.F.

    2007-11-15

    In this work, a computational study was performed on the adsorption separation of CO{sub 2} from flue gases (mixtures of CO{sub 2}/N{sub 2}/O{sub 2}) in Cu-BTC metal-organic framework (MOF) to investigate the applicability of MOFs to this important industrial system. The computational results showed that Cu-BTC is a promising material for separation of CO{sub 2} from flue gases, and the macroscopic separation behaviors of the MOF were elucidated at a molecular level to give insight into the underlying mechanisms. The present work not only provided useful information for understanding the separation characteristics of MOFs, but also showed their potential applications in chemical industry.

  2. [Comparison of demineralization of different organic acid to enamel].

    PubMed

    Liu, L; Yue, S; Jiang, H; Lu, T

    1998-05-01

    The rates of demineralization of 5 organic acids (mathanoic acid, formic acid, propionic acid, Lactic acid, acetic acid, mixed acid) to the bovine enamel were tested and analysed with the self-made calcium ionselective microelectrodes(Ca(2+)-ISME) basing on a neutral carriers of ETH1001. The results showed; 1. The difference between the rates of demineralization of formic acid and lactic acid, formic acid and propionic acid, formic acid and acetic acid, acetic acid and mixed acid, acetic acid and lactic acid, propionic acid and mixed acid, propionic acid and lactic acid, lactic acid and mixed acid were of great significance (P < 0.01); 2. The rates of demineralization of acetic and mixed acid decreased with time, due to saturation of the solution during demineralization; 3. Ca(2+)-ISME was of the advantages of simplicity, rapidity, sensitivity and accuracy. The results suggest that the cariogenic potential is related to different acid products of different cariogenic bacteria, and the degree of mineral saturation within solution affects the rate of demineralization. PMID:12214404

  3. FORMATION OF ACIDIC TRACE ORGANIC BY-PRODUCTS FROM THE CHLORINATION OF HUMIC ACIDS

    EPA Science Inventory

    A method for concentrating and analyzing acidic trace organics produced by the chlorination of humic acids at concentrations approximating common drinking water levels is described. Data are compared from several humic acid sources. Specific compound analyses of the extracts were...

  4. Procedures for safe handling of off-gases from electric vehicle lead-acid batteries during overcharge

    SciTech Connect

    LaBelle, S.J.; Bhattacharyya, M.H.; Loutfy, R.O.; Varma, R.

    1980-01-25

    The potential for generation of toxic gases from lead-acid batteries has long been recognized. Prior to the current interest in electric vehicles, there were no studies specificaly oriented to toxic gas release from traction batteries, however. As the Department of Energy Demonstration Project (in the Electric and Hybrid Vehicle Program) progresses, available data from past studies and parallel health effects programs must be digested into guidance to the drivers and maintenance personnel, tailored to their contact with electric vehicles. The basic aspects of lead-acid battery operation, vehicle use, and health effects of stibine and arsine to provide electric vehicle users with the information behind the judgment that vehicle operation and testing may proceed are presented. Specifically, it is concluded that stibine generation or arsine generation at rapid enough rates to induce acute toxic response is not at all likely. Procedures to guard against low-level exposure until more definitive data on ambient concentrations of the gases are collected are presented for both charging the batteries and driving the vehicles. A research plan to collect additional quantitative data from electric traction batteries is presented.

  5. Purification Or Organic Acids Using Anion Exchange Chromatography.

    DOEpatents

    Ponnampalam; Elankovan

    2001-09-04

    Disclosed is a cost-effective method for purifying and acidifying carboxylic acids, including organic acids and amino acids. The method involves removing impurities by allowing the anionic form of the carboxylic acid to bind to an anion exchange column and washing the column. The carboxylic anion is displaced as carboxylic acid by washing the resin with a strong inorganic anion. This method is effective in removing organic carboxylic acids and amino acids from a variety of industrial sources, including fermentation broths, hydrolysates, and waste streams.

  6. Measuring radioactive noble gases by absorption in polycarbonates and other organics: From radon indoors to nuclear safety

    NASA Astrophysics Data System (ADS)

    Pressyanov, Dobromir S.

    2013-07-01

    The report summarizes recent research and practice of using materials with high absorption ability to noble gases to measure their radioactive isotopes. Most of the studies employ bisphenol-A based polycarbonates, because of their remarkably high absorption ability to noble gases. This is the material of which commercial CDs/DVDs are made and they may serve as serendipitous, already available in dwellings, radon and thoron detectors. We present the essence of the gathered experimental evidence that the CD/DVD method can successfully address some long-lasted problems in radon dosimetry: The first is making sufficiently precise retrospective 222Rn dosimetry for the purposes of epidemiological studies and risk estimation. The second is rapid identification of buildings with radon problem. We demonstrate how this can be used to develop an integrated approach to the radon problem. Within this approach detection, diagnostic and mitigation are considered as an unified whole, and the interval between the decision to provide disks for analysis and the complete mitigation of the building, if radon problem is identified, is short. Besides radon and thoron, bisphenol-A based polycarbonates were successfully used to measure 85Kr and 133Xe for the purposes of the effluents control and nuclear safety of nuclear installations. The perspectives to employ other organic materials in which noble gases are highly soluble for measurement of their radioactive isotopes are also discussed.

  7. Biobased organic acids production by metabolically engineered microorganisms.

    PubMed

    Chen, Yun; Nielsen, Jens

    2016-02-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed. PMID:26748037

  8. FIELD METHOD COMPARISON FOR THE CHARACTERIZATION OF ACID AEROSOLS AND GASES

    EPA Science Inventory

    This paper presents findings from two intercomparison studies of acid aerosol measurement systems, which were conducted in Uniontown and State College, PA, during the summers of 1990 and 1991, respectively. s part of these studies, acid aerosol and gas concentrations (NH3, HNO3, ...

  9. D-Amino Acids in Living Higher Organisms

    NASA Astrophysics Data System (ADS)

    Fujii, Noriko

    2002-04-01

    The homochirality of biological amino acids (L-amino acids) and of the RNA/DNA backbone (D-ribose) might have become established before the origin of life. It has been considered that D-amino acids and L-sugars were eliminated on the primitive Earth. Therefore, the presence and function of D-amino acids in living organisms have not been studied except for D-amino acids in the cell walls of microorganisms. However, D-amino acids were recently found in various living higher organisms in the form of free amino acids, peptides, and proteins. Free D-aspartate and D-serine are present and may have important physiological functions in mammals. D-amino acids in peptides are well known as opioid peptides and neuropeptides. In protein, D-aspartate residues increase during aging. This review deals with recent advances in the study of D-amino acids in higher organisms.

  10. Experimental study of the hydrothermal reactivity of organic acids and acid anions: II. Acetic acid, acetate, and valeric acid

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.; Seewald, Jeffrey S.

    2003-10-01

    Organic acids and acid anions occur in substantial concentrations in many aqueous geologic fluids and are thought to take part in a variety of geochemical processes ranging from the transport of metals in ore-forming fluids to the formation of natural gas to serving as a metabolic energy source for microbes in subsurface habitats. The widespread occurrence of organic acids and their potential role in diverse geologic processes has led to numerous experimental studies of their thermal stability, yet there remain substantial gaps in our knowledge of the factors that control the rates and reaction pathways for the decomposition of these compounds under geologic conditions. In order to address some of these uncertainties, a series of laboratory experiments were conducted to examine the behavior of organic acids and acid anions under hydrothermal conditions in the presence of minerals. Reported here are results of experiments where aqueous solutions of acetic acid, sodium acetate, or valeric acid ( n-pentanoic acid) were heated at 325°C, 350 bars in the presence of the mineral assemblages hematite + magnetite + pyrite, pyrite + pyrrhotite + magnetite, and hematite + magnetite. The results indicate that aqueous acetic acid and acetate decompose by a combination of two reaction pathways: decarboxylation and oxidation. Both reactions are promoted by minerals, with hematite catalyzing the oxidation reaction while magnetite catalyzes decarboxylation. The oxidation reaction is much faster, so that oxidation dominates the decomposition of acetic acid and acetate when hematite is present. In contrast to previous reports that acetate decomposed more slowly than acetic acid, we found that acetate decomposed at slightly faster rates than the acid in the presence of minerals. Although longer-chain monocarboxylic acids are generally thought to decompose by decarboxylation, valeric acid appeared to decompose primarily by "deformylation" to 1-butene plus formic acid. Subsequent

  11. Temporal Variations of Organic Acids in Sumac Fruit

    SciTech Connect

    Robbins, C.; Mulcahy, F.; Somayajula, K.; Edenborn, H.M.

    2006-10-01

    Extracts from staghorn sumac (Rhus typhina) fruits were obtained from fresh fruits obtained from June to October in two successive years. Total acidity, pH, and concentrations of malic and succinic acids determined using liquid chromatography were measured for each extract. Acidity and acid concentrations reached their maxima in late July, and declined slowly thereafter. Malic and succinic acid concentrations in the extracts reached maxima of about 4 and 0.2% (expressed per unit weight of fruit), respectively. Malic and succinic acids were the only organic acids observed in the extracts, and mass balance determinations indicate that these acids are most likely the only ones present in appreciable amounts.

  12. The response of soil organic matter decomposition and greenhouse gases emission to global warming and nitrogen addition

    NASA Astrophysics Data System (ADS)

    Oh, H.; Choi, J. H.

    2014-12-01

    The increase of atmospheric greenhouse gases has caused noticeable climate change. The increased temperature by climate change could dramatically change in the decomposition rate and greater losses of carbon from soil organic matter. Decomposition of organic carbon regulates both the amount of organic material which is stored in soils, as well as the amount of mineralized carbon that can be released into the atmosphere as greenhouse gases (CO2 and CH4). In addition, the largest increase in the N-deposition was expected in Asia due to the dramatic increase in anthropogenic activities. Previous results from N-deposition experiments led to apparently contradictory hypotheses regarding the decomposition of organic carbon in soil. N-deposition has been found to decrease the decomposition of chemically complex carbon compounds, while increasing decomposition rates of labile carbon pools. Combined changes in temperature increase and N-deposition have considerable potential to affect soil carbon sequestration/loss and soil nutrient cycling. This study investigated how the combined changes of temperature increase and N-deposition influence mineralization processes and C dynamics of two soil systems (wetlands and forest). For this objective, we conducted a growth chamber experiment to examine the effects of combined changes in temperature increase and N-deposition on the decomposition of organic carbon and emission of greenhouse gases from two different soil systems. The samples were collected in wetland and forest around Gyeongan stream of South Korea. Incubator experiment was conducted under the enhanced air temperature (controlled 20 ℃, 25 ℃ and 30 ℃) and nitrogen addition (low and high condition by using ammonium nitrate). GHGs (CO2, N2O, and CH4) were measured gas chromatograph. Results of experiment show that CO2 flux decrease with time at forest soil and increase at wetland. Moreover high temperature (25 ℃, 30 ℃) and high concentration of nitrogen cause

  13. EMISSION OF ORGANIC COMPOUNDS AND COMBUSTION GASES DURING HAZARDOUSWASTE COFIRING IN A WATERTUBE PACKAGE BOILER

    EPA Science Inventory

    The primary objective of this study was to evaluate the sorptionand desorption of organic compounds on combustion-generated sootduring the cofiring of hazardous organics with fuel oil in afull-scale boiler. orption of organics was accomplished by firinga watertube package boiler ...

  14. Laboratory studies of interaction between trace gases and sulphuric acid or sulphate aerosols using flow-tube reactors

    NASA Astrophysics Data System (ADS)

    Leu, Ming-Taun

    Stratospheric ozone provides a protective shield for humanity and the global biosphere from harmful ultraviolet solar radiation. In past decades, theoretical models for the calculation of ozone balance frequently used gas-phase reactions alone in their studies. Since the discovery of the Antarctic ozone hole in 1985, however, it has been demonstrated that knowledge of heterogeneous reactions is needed to understand this significant natural event owing to the anthropogenic emission of chlorofluorocarbons. In this review I will briefly discuss the experimental techniques for the research of heterogeneous chemistry carried out in our laboratory. These experimental instruments include flow-tube reactors, an electron-impact ionization mass spectrometer, a chemical ionization mass spectrometer and a scanning mobility particle spectrometer. Numerous measurements of uptake coefficient (or reaction probability) and solubility of trace gases in liquid sulphuric acid have been performed under the ambient conditions in the upper troposphere and lower stratosphere, mainly 190-250 K and 40-80 wt% of H

  15. A Pilot-Scale Evaluation of a New Technology to Control NO(x) Emissions from Boilers at KSC: Hydrogen Peroxide Injection into Boiler Flue Gases Followed by Wet Scrubbing of Acid Gases

    NASA Technical Reports Server (NTRS)

    Cooper, C. David

    1997-01-01

    Emissions of nitrogen oxides NO(x) are a significant problem in the United States. NO(x) are formed in any combustion process, therefore it is not surprising that NO(x) are emitted from the boilers at KSC. Research at UCF has shown (in the laboratory) that injecting H2O2 into hot simulated flue gases can oxidize the NO and NO2 to their acid gas forms, HNO2 and HNO3, respectively. These acid gases are much more water soluble than their counterparts, and theoretically can be removed easily by wet scrubbing. This technology was of interest to NASA, both for their boilers at KSC, and for their combustion sources elsewhere. However, it was necessary to field test the technology and to provide pilot-scale data to aid in design of full-scale facilities. Hence this project was initiated in May of 1996.

  16. Chemical evolution on planetary surfaces: from simple gases to organic macrocycles

    NASA Astrophysics Data System (ADS)

    Fox, Stefan; Strasdeit, Henry

    It is generally accepted that α-amino acids existed in the primordial ocean on the Hadean / early Archean Earth. They had been abiotically synthesized from smaller molecules such as H2 , CH4 , H2 O, NH3 , HCN, aldehydes, ketones, and alcohols [1-3]. Once the amino acids had been formed, they probably reacted to more complex molecules. One possibility is the thermal transformation at hot volcanic coasts. In a first step, amino acid-containing seawater evaporated in the vicinity of lava streams. A salt crust remained in which amino acids were embedded. In a second step, these embedded amino acids were thermally transformed to new compounds. In order to simulate this hot-volcanic-coast scenario artificial salt crusts with embedded amino acids were prepared and heated to 300-800 ° C in a slow stream of nitrogen gas. We found that in the salt crusts glycine, DL-alanine and -aminoisobutyric acid were chemically bonded to calcium or magnesium ions. This metal coordination prevents the sublimation of the amino acids and permits the thermal formation of pyridines, piperazine-2,5-diones, polycyclic aromatic hydrocarbons, and especially several alkylated pyrroles. Thus an abiotic source of pyrroles on young Earth-like planets may exist. Amino acids and pyrroles are building blocks of important biomolecules. It might seem plausible that amino acids formed peptides on the early Earth. However, in aqueous solution the condensation reaction is unfavorable, and even if short peptides would have formed they would have tended to hydrolyze. This argument is equally true for nucleic acid components [4]. In contrast to that, it is known that pyrrole, in aqueous HCl solutions, reacts with formaldehyde to form oligopyrroles [5]. Prebiotic oligopyrroles and their metal complexes may have been utilized by primitive metabolizing systems and later modified into porphyrin-like macrocycles such as chlorophyll. [1] Miller, S. L. (1953) Science, 117, 528. [2] Johnson, A. P., Cleaves, H. J

  17. ROLE OF SOIL ORGANIC ACIDS IN MINERAL WEATHERING PROCESSES

    EPA Science Inventory

    The soluble organic acids in soils consist largely of complex mixtures of polymeric compounds referred to collectively as fluvic and humic acids. These compounds are relatively refactory, and are broken down only slowly by bacteria. ow-molecular-mass acids (e.g., acetic, oxalic, ...

  18. Modeling the influence of organic acids on soil weathering

    USGS Publications Warehouse

    Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate

    2014-01-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  19. A new technique to determine organic and inorganic acid contamination.

    PubMed

    Vo, Evanly

    2002-01-01

    A new acid indicator pad was developed for the detection of acid breakthrough of gloves and chemical protective clothing. The pad carries a reagent which responds to acid contaminant by producing a color change. The pad was used to detect both organic and inorganic acids permeating through glove materials using the modified ASTM F-739 and direct permeability testing procedures. Breakthrough times for each type of glove were determined, and found to range from 4 min to > 4 h for propionic acid, from 3 min to > 4 h for acrylic acid, and from 26 min to > 4 h for HCl. A quantification was performed for propionic and acrylic acids following solvent desorption and gas chromatography. Both acids exhibited > 99% adsorption [the acid and its reactivity (the acid reacted with an indicator to contribute the color change)] on the pads at a spiking level of 1.8 microL for each acid. Acid recovery during quantification was calculated for each acid, ranging from 52-72% (RSD < or = 4.0%) for both acids over the spiking range 0.2-1.8 microL. The quantitative mass of the acids on the pads at the time of breakthrough detection ranged from 260-282 and 270-296 microg cm(-2) for propionic acid and acrylic acid, respectively. The new colorimetric indicator pad should be useful in detecting and collecting acid permeation samples through gloves and chemical protective clothing in both laboratory and field studies, for quantitative analysis. PMID:11827389

  20. Enhancement of acidic gases in biomass burning impacted air masses over Canada

    NASA Technical Reports Server (NTRS)

    Lefer, B. L.; Talbot, R. W.; Harriss, R. C.; Bradshaw, J. D.; Sandholm, S. T.; Olson, J. O.; Sachse, G. W.; Collins, J.; Shipham, M. A.; Blake, D. R.

    1994-01-01

    Biomass-burning impacted air masses sampled over central and eastern Canada during the summer of 1990 as part of ABLE 3B contained enhanced mixing ratios of gaseous HNO3, HCOOH, CH3COOH, and what appears to be (COOH)2. These aircraft-based samples were collected from a variety of fresh burning plumes and more aged haze layers from different source regions. Values of the enhancement factor, delta X/delta CO, where X represents an acidic gas, for combustion-impacted air masses sampled both near and farther away from the fires, were relatively uniform. However, comparison of carboxylic acid emission ratios measured in laboratory fires to field plume enhancement factors indicates significant in-plume production of HCOOH. Biomass-burning appears to be an important source of HNO3, HCOOH, and CH3COOH to the troposphere over subarctic Canada.

  1. Composition of quince (Cydonia oblonga Miller) seeds: phenolics, organic acids and free amino acids.

    PubMed

    Silva, Branca M; Andrade, Paula B; Ferreres, Federico; Seabra, Rosa M; Oliveira, M Beatriz P P; Ferreira, Margarida A

    2005-04-01

    Phenolic compounds, organic acids and free amino acids of quince seeds were determined by HPLC/DAD, HPLC/UV and GC/FID, respectively. Quince seeds presented a phenolic profile composed of 3-O-caffeoylquinic, 4-O-caffeoylquinic, 5-O-caffeoylquinic and 3,5-dicaffeoylquinic acids, lucenin-2, vicenin-2, stellarin-2, isoschaftoside, schaftoside, 6-C-pentosyl-8-C-glucosyl chrysoeriol and 6-C-glucosyl-8-C-pentosyl chrysoeriol. Six identified organic acids constituted the organic acid profile of quince seeds: citric, ascorbic, malic, quinic, shikimic and fumaric acids. The free amino acid profile was composed of 21 identified free amino acids and the three most abundant were glutamic and aspartic acids and asparagine. PMID:15702641

  2. Measurement and analysis of the relationship between ammonia, acid gases, and fine particles in eastern North Carolina.

    PubMed

    Baek, Bok Haeng; Aneja, Viney P

    2004-05-01

    An annular denuder system, which consisted of a cyclone separator; two diffusion denuders coated with sodium carbonate and citric acid, respectively; and a filter pack consisting of Teflon and nylon filters in series, was used to measure acid gases, ammonia (NH3), and fine particles in the atmosphere from April 1998 to March 1999 in eastern North Carolina (i.e., an NH3-rich environment). The sodium carbonate denuders yielded average acid gas concentrations of 0.23 microg/m3 hydrochloric acid (standard deviation [SD] +/- 0.2 microg/m3); 1.14 microg/m3 nitric acid (SD +/- 0.81 microg/m3), and 1.61 microg/m3 sulfuric acid (SD +/- 1.58 microg/m3). The citric acid denuders yielded an average concentration of 17.89 microg/m3 NH3 (SD +/- 15.03 microg/m3). The filters yielded average fine aerosol concentrations of 1.64 microg/m3 ammonium (NH4+; SD +/- 1.26 microg/m3); 0.26 microg/m3 chloride (SD +/- 0.69 microg/m3), 1.92 microg/m3 nitrate (SD +/- 1.09 microg/m3), and 3.18 microg/m3 sulfate (SO4(2-); SD +/- 3.12 microg/m3). From seasonal variation, the measured particulates (NH4+, SO4(2-), and nitrate) showed larger peak concentrations during summer, suggesting that the gas-to-particle conversion was efficient during summer. The aerosol fraction in this study area indicated the domination of ammonium sulfate particles because of the local abundance of NH3, and the long-range transport of SO4(2-) based on back trajectory analysis. Relative humidity effects on gas-to-particle conversion processes were analyzed by particulate NH4+ concentration originally formed from the neutralization processes with the secondary pollutants in the atmosphere. PMID:15149049

  3. Measurement, analysis, and modeling of gas-to-particle conversion between ammonia, acid gases, and fine particles

    NASA Astrophysics Data System (ADS)

    Baek, Bok-Haeng

    Since 1990, the population of hogs in eastern North Carolina has increased sharply resulting in increased emissions of ammonia. An Annular Denuder System (ADS) was used, which consisted of a cyclone separator, two diffusion denuders coated with sodium carbonate and citric acid, respectively, and a filter pack consisting of Teflon and nylon filters in series. The ADS measured ammonia, acid gases, and fine particles in ambient atmosphere at a commercial hog farm in Eastern North Carolina from April 1998 to March 1999. The sodium carbonate coated denuders yielded average acid gas concentrations of 0.23 mug/m 3 HCl (+/-0.20 mug/m3); 1.10 mug/m 3 HONO (+/-1.17 mug/m3); 1.14 mug/m 3 HNO3 (+/-0.81 mug/m3), and 1.61 mug/m 3 SO2 (+/-1.58 mug/m3). The citric acid coated denuders yielded an average concentration of 17.89 mug/m 3 NH3 (+/-15.03 mug/m3). The filters yielded average fine aerosol (i.e., fine particular matter, Dp ≤ 2.5 mum) concentrations of 1.64 mug/m3 NH4+ (+/-1.26 mug/m3); 0.26 mug/m3 Cl - (+/-0.69 mug/m3); 1.92 mug/m 3 NO3- (+/-1.09 mug/m 3), and 3.18 mug/m3 SO42- (+/-3.12 mug/m3). Using the data collected from the study sites, we evaluated the seasonal variations and the effects of relative humidity on fine particle species. Based on the measurements of ammonia, acid gases, and fine particles, the mean pseudo-first-order rate constant, kS, between NH3 and H2SO4 aerosol is estimated to be 3.70 (+/-2.99) x 10-3 sec-1. The rate constant was found to increase as temperature increases, and decrease with increasing relative humidity. The equilibrium time constant was determined based on the estimated kinetic rate constants and the observed inorganic components of atmospheric aerosols. The average value of equilibrium time constant was determined to be 17.01 (+/-12.19) minutes for ambient equilibrium time between ammonia, nitric acid gas and ammonium nitrate aerosol; and 10.83 (+/-8.97) minutes for ammonia, hydrochloric acid, and ammonium chloride. The aerosol

  4. MEASUREMENT OF POLYCYCLIC ORGANIC MATERIALS AND OTHER HAZARDOUS ORGANIC COMPOUNDS IN STACK GASES - STATE OF THE ART

    EPA Science Inventory

    This report documents and reviews state-of-the-art methods for the measurement of polycyclic organic matter (POM) and other hazardous organic materials which are present in industrial stack emissions. Measurement methods for many hazardous compounds, such as POM and nitrosamines,...

  5. Role of minerals in the thermal alteration of organic matter. I - Generation of gases and condensates under dry condition

    NASA Technical Reports Server (NTRS)

    Tannenbaum, E.; Kaplan, I. R.

    1985-01-01

    Pyrolysis experiments conducted at 200 and 300 C on kerogen and bitumen from the Monterey formation and on the Green River Formation kerogen with montmorillonite, illite, and calcite added are described. The pyrolysis products are identified and gas and condensate analyses are performed. A catalytic effect is detected in the pyrolysis of kerogen with montmorillonite; however, illite and calcite display no catalytic activity. The increased production of C1-C6 hydrocarbons and the dominance of branched hydrocarbons in the C4-C6 range reveals a catalytic influence. It is observed that the catalysis of montmorillonite is greater during bitumen pyrolysis than for kerogen, and catalysis with minerals affects the production of CO2. It is concluded that a mineral matrix is important in determining the type and amount of gases and condensates forming from organic matter under thermal stress.

  6. On the source of organic acid aerosol layers above clouds.

    PubMed

    Sorooshian, Armin; Lu, Miao-Ling; Brechtel, Fred J; Jonsson, Haflidi; Feingold, Graham; Flagan, Richard C; Seinfeld, John H

    2007-07-01

    During the July 2005 Marine Stratus/Stratocumulus Experiment (MASE) and the August-September 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter probed aerosols and cumulus clouds in the eastern Pacific Ocean off the coast of northern California and in southeastern Texas, respectively. An on-board particle-into-liquid sampler (PILS) quantified inorganic and organic acid species with < or = 5-min time resolution. Ubiquitous organic aerosol layers above cloud with enhanced organic acid levels were observed in both locations. The data suggest that aqueous-phase reactions to produce organic acids, mainly oxalic acid, followed by droplet evaporation is a source of elevated organic acid aerosol levels above cloud. Oxalic acid is observed to be produced more efficiently relative to sulfate as the cloud liquid water content increases, corresponding to larger and less acidic droplets. As derived from large eddy simulations of stratocumulus underthe conditions of MASE, both Lagrangian trajectory analysis and diurnal cloudtop evolution provide evidence that a significant fraction of the aerosol mass concentration above cloud can be accounted for by evaporated droplet residual particles. Methanesulfonate data suggest that entrainment of free tropospheric aerosol can also be a source of organic acids above boundary layer clouds. PMID:17695910

  7. Gastric emptying of organic acids in the dog.

    PubMed

    Blum, A L; Hegglin, J; Krejs, G J; Largiadèr, F; Säuberli, H; Schmid, P

    1976-10-01

    Test meals of 300 ml. of six different organic acids were instilled into the stomach of six healthy mongrel dogs. Citric, acetic, propionic, lactic, tartaric and succinic acid were given in 50, 100, 150, and 200 mN concentrations. 2. During the emptying process, the gastric contents were aspirated and immediately re-instilled at 10 min intervals, and the following parameters were recorded: volume, concentration of the organic anion, pH, hydrogen ion concentration and osmolarity. 3. By multiple stepwise regression analysis, the combination of parameters which most effectively determines gastric emptying rate was found to be: concentration of the organic anion, followed by intragastric volume and number of previous test meals given on the same day. These three parameters appear in the equation for gastric emptying rate in which the individual characteristic of each acid is expressed by a constant. 4. Among the various acids, inhibition of emptying rate increases with rising number of carboxylic groups of the acid and its molecular weight. 5. After proximal gastric vagotomy, emptying rate of organic acids is independent of volume, and emptying approaches an exponential pattern. 6. A model for gastric emptying of organic acids with at least three different receptors is proposed: one for the structure of the organic acid, one for concentration and one for intragastric volume. PMID:10436

  8. Gastric emptying of organic acids in the dog.

    PubMed Central

    Blum, A L; Hegglin, J; Krejs, G J; Largiadèr, F; Säuberli, H; Schmid, P

    1976-01-01

    Test meals of 300 ml. of six different organic acids were instilled into the stomach of six healthy mongrel dogs. Citric, acetic, propionic, lactic, tartaric and succinic acid were given in 50, 100, 150, and 200 mN concentrations. 2. During the emptying process, the gastric contents were aspirated and immediately re-instilled at 10 min intervals, and the following parameters were recorded: volume, concentration of the organic anion, pH, hydrogen ion concentration and osmolarity. 3. By multiple stepwise regression analysis, the combination of parameters which most effectively determines gastric emptying rate was found to be: concentration of the organic anion, followed by intragastric volume and number of previous test meals given on the same day. These three parameters appear in the equation for gastric emptying rate in which the individual characteristic of each acid is expressed by a constant. 4. Among the various acids, inhibition of emptying rate increases with rising number of carboxylic groups of the acid and its molecular weight. 5. After proximal gastric vagotomy, emptying rate of organic acids is independent of volume, and emptying approaches an exponential pattern. 6. A model for gastric emptying of organic acids with at least three different receptors is proposed: one for the structure of the organic acid, one for concentration and one for intragastric volume. PMID:10436

  9. Organic acids composition of Cydonia oblonga Miller leaf.

    PubMed

    Oliveira, Andreia P; Pereira, José A; Andrade, Paula B; Valentão, Patrícia; Seabra, Rosa M; Silva, Branca M

    2008-11-15

    Organic acid profiles of 36 Cydonia oblonga Miller leaf samples, from three different geographical origins of northern (Bragança and Carrazeda de Ansiães) and central Portugal (Covilhã), harvested in three collection months (June, August and October of 2006), were determined by HPLC/UV (214nm). Quince leaves presented a common organic acid profile, composed of six constituents: oxalic, citric, malic, quinic, shikimic and fumaric acids. C. oblonga leaves total organic acid content varied from 1.6 to 25.8g/kg dry matter (mean value of 10.5g/kg dry matter). Quinic acid was the major compound (72.2%), followed by citric acid (13.6%). Significant differences were found in malic and quinic acids relative abundances and total organic acid contents according to collection time, which indicates a possible use of these compounds as maturity markers. Between June and August seems to be the best period to harvest quince leaves for preparation of decoctions or infusions, since organic acids total content is higher in this season. PMID:26047441

  10. Development of an In-Fiber Nanocavity Towards Detection of Volatile Organic Gases

    PubMed Central

    Matias, Ignacio R.

    2006-01-01

    A fiber optic sensor for Volatile Organic Compounds (VOCs) detection has been developed and characterized for some organic gasses. The sensor is based on a novel vapochromic material, which is able to change its optical properties in presence of organic vapors in a reversely way. A nano Fabry Perot is constructed onto a cleaved ended optical fiber pigtail by Electrostatic Self Assembly method (ESA), doping this structure with the vapochromic material. Employing a reflection scheme, a change in the intensity modulated reflected signal at 850 nm have been registered. The response of the sensor has been evaluated for five different VOCs, and a deeper study has been made for vapors of three different alcohols.

  11. Collection and analysis of organic gases from natural ecosystems - Application to poultry manure

    NASA Technical Reports Server (NTRS)

    Smith, M. S.; Francis, A. J.; Duxbury, J. M.

    1977-01-01

    Combined gas chromatography-mass spectrometry was used to identify volatile compounds generated from chicken manure and collected in Poropak QS-Carbosieve B traps. Various alcohols, ketones, esters, and carboxylic acids together with dimethyl sulfide and dimethyl disulfide were detected when the wastes were incubated in an argon atmosphere. Significant amounts of dimethyl sulfide and dimethyl disulfide but few other compounds were found when the manure was incubated in air

  12. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  13. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V.

    2012-02-21

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  14. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V

    2013-04-30

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  15. Fluxes and origin of halogenated organic trace gases from Momotombo volcano (Nicaragua)

    NASA Astrophysics Data System (ADS)

    Frische, Matthias; Garofalo, Kristin; Hansteen, Thor H.; Borchers, Reinhard

    2006-05-01

    In order to assess the contribution of quiescent degassing volcanoes to the global halo(hydro)carbon inventory, we have quantified volcanic fluxes of methyl halides (CH3Cl, CH3Br, and CH3I), ethyl halides (C2H5Cl, C2H5Br, and C2H5I), and higher chlorinated methanes (CH2Cl2, CHCl3, and CCl4). About every eight months over a 2-year period (July 2001 to July 2003), gas samples were collected and analyzed from high-temperature fumaroles (472°C-776°C) at the Nicaraguan subduction zone volcano Momotombo. Using a simultaneous record of trace and main compounds in fumarolic gases as well as SO2 fluxes of the plume, we were able to calculate halo(hydro)carbon fluxes for Momotombo and extrapolate our results to estimate halo(hydro)carbon fluxes for the whole Quaternary Nicaraguan volcanic arc and, in addition, for all volcanoes globally. The most abundant halohydrocarbon was CH3Cl with concentrations up to 19 ppmv. Further major halo(hydro)carbons were CH3Br, CH3I, CH2Cl2, CHCl3, CCl4, C2H5Cl, C2H5Br, C2H5I, and C2H3Cl with an average concentration of 0.20 to 720 ppbv. Estimated mean halo(hydro)carbon fluxes from Momotombo were in the range of 630-5000 g/yr for methyl halides, 49-260 g/yr for ethyl halides, and 2.4-24 g/yr for higher chlorinated methanes. When the results for Momotombo are scaled up to SO2 fluxes of the Nicaraguan volcanic transect, fluxes of 1.7 × 105 g/yr CH3Cl and 82 g/yr CCl4 are attained for Nicaragua. Scaled up to the estimated global SO2 flux, this translates to hypothetical global fluxes of 5.6 × 106 g/yr CH3Cl and 2.7 × 103 g/yr CCl4. These volcanic fluxes are negligible compared to global anthropogenic and natural emissions of about 3 × 1012 g/yr CH3Cl and 2 × 1010 g/yr CCl4.

  16. Organic compounds in lunar samples: pyrolysis products, hydrocarbons, amino acids.

    PubMed

    Nagy, B; Drew, D M; Hamilton, P B; Modzeleski, V E; Murphy, M E; Scott, W M; Urey, H C; Young, M

    1970-01-30

    Lunar fines and a chip from inside a rock pyrolyzed in helium at 700 degrees C gave methane, other gases, and aromatic hydrocarbons. Benzene/methanol extracts of fines yielded traces of high molecular weight alkanes and sulfur. Traces of glycine, alanine, ethanolamine, and urea were found in aqueous extracts. Biological controls and a terrestrial rock, dunite, subjected to exhaust from the lunar module descent engine showed a different amino acid distribution. Interpretation of the origin of the carbon compounds requires extreme care, because of possible contamination acquired during initial sample processing. PMID:5410553

  17. Measurements of Acetic Acid and its Relationships with Trace Gases on Appledore Island, ME during the ICARTT Campaign

    NASA Astrophysics Data System (ADS)

    Haase, K. B.; Sive, B. C.; White, M. L.; Russo, R. S.; Ambrose, J. L.; Zhou, Y.; Talbot, R. W.

    2011-12-01

    Acetic acid is ubiquitously present in the ambient atmosphere. Acetic acid, along with formic acid, is the one of the most abundant gas phase organic acids with mixing ratios reaching into the tens of parts per billion by volume (ppbv) range, and can influence the pH of aerosols and precipitation. The magnitude of the sources and sinks of acetic acid in the environment is not well understood (~24 Tg/yr of missing emissions globally), as they are widely dispersed and measurements are relatively challenging to accomplish using established techniques. Here, the application of Proton Transfer Reaction Mass Spectrometry (PTR-MS) is explored as a technique for quantification of ambient acetic acid. Direct calibrations of PTR-MS instruments at low ppbv levels show good linearity and fast response, and during the ICARTT campaign, a PTR-MS measured acetic acid and a suite of other volatile organic compounds on Appledore Island, ME over a period of 6 weeks. During the campaign, the average mixing ratio of acetic acid on the island was 607.9 ± 341.8 (1σ) pptv with a median of 530 pptv. Mixing ratios of acetic acid observed on the island showed diurnal variations corresponding land breeze/sea breeze transport, similar to other pollutants including ozone and carbon monoxide, indicating that acetic acid was advected to the sample site, and not a product of local emissions. Additionally, no mixing ratio dependence on wind speed was found, indicating that at this location, loss due to dry deposition to the ocean during transport was minimal. Over the course of the campaign, acetic acid showed complex relationships with a range of other VOCs, indicating a diverse set of sources and further showing the utility of the PTR-MS technique for monitoring acetic acid. Mixing ratios of acetic acid showed correlations with different compounds at different times, indicating a complex source signature comprised of (1) anthropogenic emissions, (2) biomass burning, and (3) photochemical

  18. High-Energy Corona for destruction of volatile organic contaminants in process off-gases

    SciTech Connect

    Virden, J.W.; Heath, W.O.; Goheen, S.C.; Miller, M.C.; Mong, G.M.; Richardson, R.L.

    1992-08-01

    A small (2 scfm) High-Energy Corona (HEC) reactor was developed to produce a non-equilibrium plasma in a concentric-cylinder geometry. A volume-filling plasma was produced in a packed bed, and initial tests have demonstrated the ability to destroy up to 1500 ppM trichloroethylene at a flow rate of 1.4 scfm, with greater than 99% destruction observed. Destruction efficiency is examined as a function of inlet TCE concentration, bed height (residence time) and applied voltage. Hydrochloric acid appears to be the primary chlorinated byproduct, and can be removed by conventional wet or dry scrubbing.

  19. Organic compound destruction and removal efficiency (DRE) for plasma incinerator off-gases using an electrically heated secondary combustion chamber

    SciTech Connect

    Whitworth, C.G.; Babko-Malyi, S.; Battleson, D.M.; Olstad, S.J.

    1998-12-31

    The US Department of Energy (DOE) sponsored a series pilot-scale plasma incineration tests of simulated mixed wastes at the MSE Technology Applications, Inc. technology development test facility in Butte, MT. One of the objectives of the test series was to assess the ability of an electrically heated afterburner to destroy organic compounds that may be present in the off-gases resulting from plasma incineration of mixed wastes. The anticipated benefit of an electrically heated afterburner was to decrease total off-gas volume by 50% or more, relative to fossil fuel-fired afterburners. For the present test series, feeds of interest to the DOE Mixed Waste Focus Area (MWFA) were processed in a plasma centrifugal furnace while metering selected organic compounds upstream of the electrically heated afterburner. The plasma furnace was equipped with a transferred-mode torch and was operated under oxidizing conditions. Feeds consisted of various mixtures of soil, plastics, portland cement, silicate fines, diesel fuel, and scrap metals. Benzene, chloroform, and 1,1,1-trichloroethane were selected for injection as simulates of organics likely to be present in DOE mixed wastes, and because of their relative rankings on the US Environmental Protection Agency (EPA) thermal stability index. The organic compounds were injected into the off-gas system at a nominal concentration of 2,000 ppmv. The afterburner outlet gas stream was periodically sampled, and analyzed by gas chromatography/mass spectrometry. For the electrically heated afterburner, at operating temperatures of 1,800--1,980 F (982--1,082 C), organic compound destruction and removal efficiencies (DREs) for benzene, chloroform, and 1,1,1-trichloroethane were found to be > 99.99%.

  20. [Use of organic acids in acne and skin discolorations therapy].

    PubMed

    Kapuścińska, Alicja; Nowak, Izabela

    2015-01-01

    Acne is one of the most frequent skin disorders that occurs in puberty, but often adults also have acne. The most important factors responsible for acne are elevated production of sebum by hyperactive sebaceous glands and blockage of the follicle because of hyperkeratosis [14]. The third etiopathogenic factor of acne is excessive microflora reproduction [8]. The most significant bacterium that is responsible for formation of skin lesions is Propionibacterium acnes, a rod-shaped Gram-positive and aerotolerant anaerobic bacterium. It is estimated that P. acnes is responsible for acne in approximately 80% of people aged 11 to 30 [27,40]. Even healed skin lesions can often cause skin discolorations and scar formation [51]. Exfoliating chemical substances that are commonly used in dermatology and cosmetology are organic acids. Exfoliating treatment using organic acids is called "chemical peeling" and consists of controlled application of those substances on the skin [38]. The depth of exfoliation depends on organic acid concentration, type of substance and contact time with the skin [41]. Using exfoliating agents seems to be helpful in excessive keratinization - one of several factors responsible for acne. Moreover, epidermis exfoliation is a popular method of removing skin discoloration [22]. Considering chemical structure, exfoliating substances that are most often used in cosmetology contain alpha-hydroxyacids (glycolic acid, lactic acid, mandelic acid and citric acid), beta-hydroxyacids (salicylic acid) and other organic acids, such as trichloroacetic acid and pyruvic acid [47]. In this article, a literature review of use of organic acids in acne and skin discoloration therapy is presented. PMID:25811473

  1. In-vivo measurement of intrauterine gases and acid-base values early in human pregnancy.

    PubMed

    Jauniaux, E; Watson, A; Ozturk, O; Quick, D; Burton, G

    1999-11-01

    A new multiparameter sensor that combines electrochemical and fibre-optic technology was used for continuous in-vivo investigation of pH, carbon dioxide partial pressure (PCO(2)), oxygen partial pressure (PO(2)), bicarbonate concentration (HCO(3)(-)), base excess, and oxygen saturation (O(2)Sat) early in human pregnancy. The sensor was inserted into the amniotic cavity and the placental bed of 16 pregnancies at 10-15 weeks gestation, before termination under general anaesthesia. Amniotic fluid and retroplacental blood from the same site were also aspirated and analysed by means of cartridges and a portable blood gas analyser. Eleven series of measurements were obtained. The variation in measurements over the 5 min of monitoring was acid-base with a sensor is stable and accurate. Such technology will be helpful in improving our understanding of the fetoplacental metabolism in normal and complicated pregnancies. PMID:10548645

  2. Survey of organic acid eluents for anion chromatography

    SciTech Connect

    Book, D.E.

    1981-10-01

    Of all the potential eluents surveyed (including aromatic, sulfonic, phosphonic, among other acids), only the carboxylic acids and the nitrophenols are recommended as eluents for anion chromatography. The concentration of the eluent should be in the range 5 x 10/sup -5/ to 1 x 10/sup -3/ M. The eluent should have the same charge as inorganic anions, a higher charge than organic acid samples. Choice of eluents for separation of halides, chloride and sulfate, multivalent inorganic anions, small alkyl acids, and aromatic acids is discussed. (DLC)

  3. Potential effects of clean coal technologies on acid precipitation, greenhouse gases, and solid waste disposal

    SciTech Connect

    Blasing, T.J.; Miller, R.L.; McCold, L.N.

    1993-11-01

    The US Department of Energy`s (DOE`s) Clean Coal Technology Demonstration Program (CCTDP) was initially funded by Congress to demonstrate more efficient, economically feasible, and environmentally acceptable coal technologies. Although the environmental focus at first was on sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) because their relationship to acid precipitation, the CCTDP may also lead to reductions in carbon dioxide (CO{sub 2}) emissions and in the volume of solid waste produced, compared with conventional technologies. The environmental effects of clean coal technologies (CCTs) depend upon which (if any) specific technologies eventually achieve high acceptance in the marketplace. In general, the repowering technologies and a small group of retrofit technologies show the most promise for reducing C0{sub 2} emissions and solid waste. These technologies also compare favorably with other CCTs in terms of SO{sub 2} and NO{sub x} reductions. The upper bound for CO{sup 2} reductions in the year 2010 is only enough to reduce global ``greenhouse`` warming potential by about 1%. However, CO{sub 2} emissions come from such variety of sources around the globe that no single technological innovation or national policy change could realistically be expected to reduce these emissions by more than a few percent. Particular CCTs can lead to either increases or decreases in the amount of solid waste produced. However, even if decreases are not achieved, much of the solid waste from clean coal technologies would be dry and therefore easier to dispose of than scrubber sludge.

  4. Morphology of Mixed Primary and Secondary Organic Particles and the Adsorption of Spectator Organic Gases during Aerosol Formation

    SciTech Connect

    Vaden, Timothy D.; Song, Chen; Zaveri, Rahul A.; Imre, D.; Zelenyuk, Alla

    2010-04-13

    Traditional semi-empirical secondary organic aerosol (SOA) models assume that SOA mixes well with primary organic aerosols (POA), which significantly enhances the modeled SOA yields. These models further assume that the organic compounds in the gas phase do no condense on SOA as it forms. These assumptions were challenged through a detailed experimental investigation of the compositions and morphologies of SOA particles formed during ozonolysis of α-pinene in the presence of dioctyl phthalate (DOP) particles and DOP gas phase component using a single particle mass spectrometer. Ultraviolet (UV) laser depth-profiling experiments were used to characterize different types of mixed SOA/DOP particles: those formed by condensation of the oxidized α-pinene products on size-selected DOP particles and by condensation of DOP on size-selected α-pinene SOA particles. The results of these measurements conclusively show that the hydrophilic SOA and hydrophobic DOP do not mix, but instead form distinct phases. An examination of homogeneously-nucleated SOA particles formed in the presence of DOP shows them to be encapsulated by a thin DOP layer. Thus SOA can adsorb gas-phase DOP even though it has an extremely low vapor pressure (1.3×10-7 Torr), which has significant implications for SOA formation and fate in the atmosphere, where numerous organic compounds with various volatilities are present.

  5. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, S.; Kulkarni, S.S.

    1986-08-26

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  6. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, Santi; Kulkarni, Sudhir S.

    1986-01-01

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  7. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, S.

    1986-08-19

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  8. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, Santi

    1986-01-01

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  9. The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Chyba, C.

    1997-01-01

    Atmospheric mixing ratios of approximately 10(-5 +/- 1) for ammonia on the early Earth would have been sufficient, through the resulting greenhouse warming, to counteract the temperature effects of the faint early sun. One argument against such model atmospheres has been the short time scale for ammonia photodissociation by solar ultraviolet light. Here it is shown that ultraviolet absorption by steady-state amounts of high-altitude organic solids produced from methane photolysis may have shielded ammonia sufficiently that ammonia resupply rates were able to maintain surface temperatures above freezing.

  10. Acid dew and the role of chemistry in the dry deposition of reactive gases to wetted surfaces

    NASA Technical Reports Server (NTRS)

    Chameides, William L.

    1987-01-01

    A formalism is developed to describe the dry deposition of soluble reactive gases to wetted surfaces in terms of the relevant meteorological conditions, the surface roughness, the total amount of liquid water present on the surface, the rate of accumulation of this water, and the species' solubility and reactivity in the surface water. This formulation is then incorporated into a model designed to simulate the generation of acidic dew from the deposition of HNO3, SO2, S(IV) oxidants, H2O2, and O3. Similar to the observations of dew in the continental U.S., the model generates a dewdrop pH of about 4 by the end of the night; the pH can rapidly fall to toxic levels due to rapid evaporation after sunrise. Relatively low deposition velocities are predicted for the SO2 and O3 because of their lower solubilities and hence larger surface resistances than those of the other oxidants. Because the chemical lifetime of the SO2 in the dew is influenced by the atmospheric levels of H2O2, O3, and SO2, the SO2 deposition velocity is a strong function of these species' atmospheric abundances.

  11. Organic geochemistry of amino acids: Precambrian to recent

    SciTech Connect

    Engel, M.H.; Macko, S.A.

    1985-01-01

    Since the discovery of amino acids in fossils (Abelson, 1954), considerable effort has been made to elucidate the origin and distribution of amino acids in geologic materials. Racemization and decomposition reactions of amino acids and peptides derived via the natural hydrolysis of protein constituents of organisms have been extensively studied. While the ubiquity of amino acids presents a challenge for discerning their indigeneity in geologic samples, careful analyses have resulted in successful applications of amino acid racemization and decomposition reactions for investigations of geochronologic, paleoclimatic, stratigraphic, diagenetic and chemotaxonomic problems for Quaternary age samples. An investigation of amino acids in sediments from Baffin Island fjords indicates that their distribution may also provide data with respect to the relative contributions of marine and terrigenous organic matter to recent sediments. While the absence of unstable amino acids and the presence of racemic amino acids in a sample may preclude very recent contamination, the possibility of retardation of amino acid racemization rates subsequent to geopolymer formation must also be considered. Studies of amino acids in Paleozoic, Mesozoic and early Cenozoic age samples are limited. Precambrian samples, however, have received much attention, given the potential (however slight) for isolating compounds representative of the earliest living systems. A future approach for elucidating the origin(s) of amino acids in ancient samples may be analyses of their individual stable isotopic compositions.

  12. Association Mapping of Main Tomato Fruit Sugars and Organic Acids

    PubMed Central

    Zhao, Jiantao; Xu, Yao; Ding, Qin; Huang, Xinli; Zhang, Yating; Zou, Zhirong; Li, Mingjun; Cui, Lu; Zhang, Jing

    2016-01-01

    Association mapping has been widely used to map the significant associated loci responsible for natural variation in complex traits and are valuable for crop improvement. Sugars and organic acids are the most important metabolites in tomato fruits. We used a collection of 174 tomato accessions composed of Solanum lycopersicum (123 accessions) and S. lycopersicum var cerasiforme (51 accessions) to detect significantly associated loci controlling the variation of main sugars and organic acids. The accessions were genotyped with 182 SSRs spreading over the tomato genome. Association mapping was conducted on the main sugars and organic acids detected by gas chromatography-mass spectrometer (GC-MS) over 2 years using the mixed linear model (MLM). We detected a total of 58 significantly associated loci (P < 0.001) for the 17 sugars and organic acids, including fructose, glucose, sucrose, citric acid, malic acid. These results not only co-localized with several reported QTLs, including fru9.1/PV, suc9.1/PV, ca2.1/HS, ca3.1/PV, ca4.1/PV, and ca8.1/PV, but also provided a list of candidate significantly associated loci to be functionally validated. These significantly associated loci could be used for deciphering the genetic architecture of tomato fruit sugars and organic acids and for tomato quality breeding. PMID:27617019

  13. Association Mapping of Main Tomato Fruit Sugars and Organic Acids.

    PubMed

    Zhao, Jiantao; Xu, Yao; Ding, Qin; Huang, Xinli; Zhang, Yating; Zou, Zhirong; Li, Mingjun; Cui, Lu; Zhang, Jing

    2016-01-01

    Association mapping has been widely used to map the significant associated loci responsible for natural variation in complex traits and are valuable for crop improvement. Sugars and organic acids are the most important metabolites in tomato fruits. We used a collection of 174 tomato accessions composed of Solanum lycopersicum (123 accessions) and S. lycopersicum var cerasiforme (51 accessions) to detect significantly associated loci controlling the variation of main sugars and organic acids. The accessions were genotyped with 182 SSRs spreading over the tomato genome. Association mapping was conducted on the main sugars and organic acids detected by gas chromatography-mass spectrometer (GC-MS) over 2 years using the mixed linear model (MLM). We detected a total of 58 significantly associated loci (P < 0.001) for the 17 sugars and organic acids, including fructose, glucose, sucrose, citric acid, malic acid. These results not only co-localized with several reported QTLs, including fru9.1/PV, suc9.1/PV, ca2.1/HS, ca3.1/PV, ca4.1/PV, and ca8.1/PV, but also provided a list of candidate significantly associated loci to be functionally validated. These significantly associated loci could be used for deciphering the genetic architecture of tomato fruit sugars and organic acids and for tomato quality breeding. PMID:27617019

  14. Atmospheric Organic Gases from Fossil Fuel Extraction Activities: Analysis and Modeling

    NASA Astrophysics Data System (ADS)

    Blake, N. J.; Simpson, I. J.; Meinardi, S.; Barletta, B.; Schroeder, J.; Blake, D. R.; Apel, E. C.; Hornbrook, R. S.; Campos, T. L.; Emmons, L. K.; Townsend-Small, A.; Diskin, G. S.

    2015-12-01

    Volatile organic compounds (VOCs) are emitted into the atmosphere by a wide variety of anthropogenic and natural sources. Oil and natural gas extraction and distribution activities are a significant source of hydrocarbons, particularly of methane and alkanes, where they can impact atmospheric chemistry and air quality. This analysis will focus on four airborne data sets, namely INTEX-NA (2004), DC3 (2012), SEAC4RS (2013), and FRAPPÉ - C-130 (2014), as well as three ground-based data sets (Katzenstein et al., 2003, our global background monitoring data and FRAPPÉ - Ground). A broad suite of hydrocarbons were measured by UC-Irvine for all of these field campaigns. The NCAR Trace Organic Gas Analyzer (TOGA) also measured VOCs during DC-3 and FRAPPÉ. Oil and gas source signatures, identified by their characteristic emission ratios, were encountered during each of the US-based campaigns, especially over Colorado, Texas, and Oklahoma. The results from the campaigns and long-term trends will be compared to global model (CAM-chem) simulations with a view to improving emissions inventories for the oil and gas category.

  15. [Effect of organic composition of humic acids on Enterobacteria multiplication].

    PubMed

    Buzoleva, L S; Sidorenko, M L

    2001-01-01

    Enterobacteria have been found to be capable of active multiplication in humic acids isolated from bentonite clays containing carbohydrates, lipids and proteins. Humic acids fractions have been found to be heterogeneous by their molecular weight and organic composition; consequently, they have been found to produce different influence in the multiplication of bacteria. PMID:11548272

  16. EFFECT OF ACIDITY ON SECONDARY ORGANIC AEROSOL FORMATION FROM ISOPRENE

    EPA Science Inventory

    The effect of particle-phase acidity on secondary organic aerosol (SOA) formation from isoprene is investigated in a laboratory chamber study, in which the acidity of the inorganic seed aerosol was controlled systematically. The observed enhancement in SOA mass concentration is c...

  17. Acoustic properties of organic acid mixtures in water

    NASA Technical Reports Server (NTRS)

    Macavei, I.; Petrisor, V.; Auslaender, D.

    1974-01-01

    The variation of the rate of propagation of ultrasounds in organic acid mixtures in water points to structural changes caused by interactions that take place under conditions of thermal agitation, at different acid concentrations. At the same time, a difference is found in the changes in velocity as a function of the length of the carbon chain of the acids in the mixture as a result of their effect on the groups of water molecules associated by hydrogen bonds.

  18. The utilization of catalyst sorbent in scrubbing acid gases from incineration flue gas.

    PubMed

    Wey, Ming-Yen; Lu, Chi-Yuan; Tseng, Hui-Hsin; Fu, Cheng-Hao

    2002-04-01

    Catalyst sorbents based on alumina-supported CuO, CeO2, and CuO-CeO2 were applied to a dry scrubber to clean up the SO2/HCl/NO simultaneously from pilot-scale fluidized-bed incineration flue gas. In the presence of organic compounds, CO and the submicron particles SO2 and HCI removed by the fresh catalyst sorbents and NO reduced to N2 by NH3 under the catalysis of fresh and spent desulfurization/dechloridization (DeSO2/DeHCl) catalyst sorbents (copper compounds, Cu, CuO, and CuSO4) were evaluated in this paper. The fresh and spent catalyst sorbents were characterized by the Brunner-Emmett-Teller method (BET), X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), inductively coupled plasma-mass spectrometry (ICP-MS), and the elemental analyzer (EA). The study showed that the performances of CuO, CeO2, and CuO-CeO2/gamma-Al2O3 were better than that of Ca(OH)2. The removal efficiency of SO2 and HCl was 80-95% in the dry scrubber system. Under NH3/NO = 1, NO could not be reduced to N2 because it was difficult to control the ratio of air/fuel in the flue gas. For estimating the feasibility of regenerating the spent catalyst sorbents, BET and EA analyses were used. They indicated that the pore structures were nearly maintained and a small amount of carbon accumulated on their surface. PMID:12002190

  19. Metabolic evolution of Escherichia coli strains that produce organic acids

    DOEpatents

    Grabar, Tammy; Gong, Wei; Yocum, R Rogers

    2014-10-28

    This invention relates to the metabolic evolution of a microbial organism previously optimized for producing an organic acid in commercially significant quantities under fermentative conditions using a hexose sugar as sole source of carbon in a minimal mineral medium. As a result of this metabolic evolution, the microbial organism acquires the ability to use pentose sugars derived from cellulosic materials for its growth while retaining the original growth kinetics, the rate of organic acid production and the ability to use hexose sugars as a source of carbon. This invention also discloses the genetic change in the microorganism that confers the ability to use both the hexose and pentose sugars simultaneously in the production of commercially significant quantities of organic acids.

  20. Reactions Between Water Soluble Organic Acids and Nitrates in Atmospheric Aerosols: Recycling of Nitric Acid and Formation of Organic Salts

    SciTech Connect

    Wang, Bingbing; Laskin, Alexander

    2014-03-25

    Atmospheric particles often include a complex mixture of nitrate and secondary organic materials accumulated within the same individual particles. Nitrate as an important inorganic component can be chemically formed in the atmosphere. For instance, formation of sodium nitrate (NaNO3) and calcium nitrate Ca(NO3)2 when nitrogen oxide and nitric acid (HNO3) species react with sea salt and calcite, respectively. Organic acids contribute a significant fraction of photochemically formed secondary organics that can condense on the preexisting nitrate-containing particles. Here, we present a systematic microanalysis study on chemical composition of laboratory generated particles composed of water soluble organic acids and nitrates (i.e. NaNO3 and Ca(NO3)2) investigated using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and Fourier transform infrared micro-spectroscopy (micro-FTIR). The results show that water-soluble organic acids can react with nitrates releasing gaseous HNO3 during dehydration process. These reactions are attributed to acid displacement of nitrate with weak organic acids driven by the evaporation of HNO3 into gas phase due to its relatively high volatility. The reactions result in significant nitrate depletion and formation of organic salts in mixed organic acids/nitrate particles that in turn may affect their physical and chemical properties relevant to atmospheric environment and climate. Airborne nitrate concentrations are estimated by thermodynamic calculations corresponding to various nitrate depletions in selected organic acids of atmospheric relevance. The results indicate a potential mechanism of HNO3 recycling, which may further affect concentrations of gas- and aerosol-phase species in the atmosphere and the heterogeneous reaction chemistry between them.

  1. [Inhibition of growth of microscopic fungi with organic acids].

    PubMed

    Conková, E; Para, L; Kocisová, A

    1993-01-01

    Fungicidal effects of five selected organic acids (lactic, acetic, formic, oxalic, and propionic) in concentrations 3, 5, 10, 20 and 50 ml/l on nine selected species of moulds were tested. Lactic and oxalic acids did not prove the satisfactory fungicidal activity in any of the chosen concentrations. The antifungal effect of the other three acids, manifested by the growth inhibition of the tested moulds is shown in Tab. I and it can be expressed by sequence: propionic acid, formic acid, and acetic acid. These acids also had effects only in concentrations 20 ml/l and 50 ml/l. Propionic acid in concentration 20 ml/l inhibited the growth of five moulds (Penicillium glabrum, Aspergillus niger, Fusarium moniliforme, Aspergillus fumigatus, Cladosporium sphaerospermum). In testing of concentration 50 ml/l, the lower fungicidal ability was ascertained only in growth suppression of Aspergillus flavus. The fungicidal activity of formic acid was registered in concentration 20 ml/l in two cases and in concentration 50 ml/l in six cases. Acetic acid inhibited the growth in concentration 50 ml/l only in two cases. Tab. II shows the percentual evaluation of propionic acid and formic acid with regard to their inhibition abilities. The fungicidal efficiency of propionic acid resulting from the experiment is 88.9%. PMID:8122343

  2. Trapping Planetary Noble Gases During the Fischer-Tropsch-Type Synthesis of Organic Materials

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Johnson, N. M.; Meshik, A.

    2010-01-01

    When hydrogen, nitrogen and CO arc exposed to amorphous iron silicate surfaces at temperatures between 500 - 900K, a carbonaceous coating forms via Fischer-Tropsch type reactions!, Under normal circumstances such a catalytic coating would impede or stop further reaction. However, we find that this coating is a better catalyst than the amorphous iron silicates that initiate these rcactions:u . The formation of a self-perpetuating catalytic coating on grain surfaces could explain the rich deposits of macromolecular carbon found in primitive meteorites and would imply that protostellar nebulae should be rich in organic materiaL Many more experiments are needed to understand this chemical system and its application to protostellar nebulae.

  3. Mechanisms of Heat Transfer in Porous Crystals Containing Adsorbed Gases: Applications to Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Babaei, Hasan; Wilmer, Christopher E.

    2016-01-01

    We have studied the mechanisms of heat transfer in a porous crystal-gas mixture system, motivated by the not insignificant challenge of quickly dissipating heat generated in metal-organic frameworks (MOFs) due to gas adsorption. Our study reveals that the thermal conductance of the system (crystal and gas) is dominated by lattice thermal conductivity in the crystal, and that conductance is reduced as the concentration of gas in the pores increases. This mechanism was observed from classical molecular simulations of a monatomic gas in an idealized porous crystal structure. We show that the decreased conductivity associated with increased gas concentration is due to phonon scattering in the crystal due to interactions with gas molecules. Calculations of scattering rates for two phonon modes reveal that scattering of the lowest frequency mode scales linearly with gas density. This result suggests that the probability of a phonon-gas collision is simply proportional to the number of gas molecules in the pore.

  4. A capacitance sensor for water: trace moisture measurement in gases and organic solvents.

    PubMed

    Ohira, Shin-Ichi; Goto, Kayoko; Toda, Kei; Dasgupta, Purnendu K

    2012-10-16

    The determination of water in various matrices is one of the most important analytical measurements. We report on a high-resolution capacitance-based moisture sensor utilizing a thin film of a perfluorosulfonate ionomer (PFSI)-H(3)PO(4) composite in a flow-through configuration, for both gas and liquid samples. Incorporation of H(3)PO(4) into a PFSI sensing film improved the limit of detection (LOD) (signal-to-noise ratio, S/N = 3) by a factor of 16 in the gas phase to 0.075% relative humidity (RH) (dew point = -56 °C). The response time was dependent on the sensing film thickness and composition and was as low as ∼60 ms. The temperature dependence of the sensor response, and its relative selectivity over alcohol and various other solvents, are reported. Measurement of water in organic solvents was carried out in two different ways. In one procedure, the sample was vaporized and swept into the detector (e.g., in a gas chromatograph (GC) without a column); it permitted a throughput of 80 samples/h. This is well-suited for higher (%) levels of water. In the other method, a flow injection analysis system integrated to a tubular dialysis membrane pervaporizer (PV-FIA) was used; the LOD for water in ethanol was 0.019% (w/w). We demonstrated the temporal course of drying of ethanol by Drierite; the PV-FIA results showed excellent correspondence (r(2) > 0.99) with results from GC-thermal conductivity detection. The system can measure trace water in many types of organic solvents; no reagent consumption is involved. PMID:22962839

  5. Morphology of mixed primary and secondary organic particles and the adsorption of spectator organic gases during aerosol formation.

    PubMed

    Vaden, Timothy D; Song, Chen; Zaveri, Rahul A; Imre, Dan; Zelenyuk, Alla

    2010-04-13

    Primary organic aerosol (POA) and associated vapors can play an important role in determining the formation and properties of secondary organic aerosol (SOA). If SOA and POA are miscible, POA will significantly enhance SOA formation and some POA vapor will incorporate into SOA particles. When the two are not miscible, condensation of SOA on POA particles forms particles with complex morphology. In addition, POA vapor can adsorb to the surface of SOA particles increasing their mass and affecting their evaporation rates. To gain insight into SOA/POA interactions we present a detailed experimental investigation of the morphologies of SOA particles formed during ozonolysis of alpha-pinene in the presence of dioctyl phthalate (DOP) particles, serving as a simplified model of hydrophobic POA, using a single-particle mass spectrometer. Ultraviolet laser depth-profiling experiments were used to characterize two different types of mixed SOA/DOP particles: those formed by condensation of the oxidized alpha-pinene products on size-selected DOP particles and by condensation of DOP on size-selected alpha-pinene SOA particles. The results show that the hydrophilic SOA and hydrophobic DOP do not mix but instead form layered phases. In addition, an examination of homogeneously nucleated SOA particles formed in the presence of DOP vapor shows them to have an adsorbed DOP coating layer that is approximately 4 nm thick and carries 12% of the particles mass. These results may have implications for SOA formation and behavior in the atmosphere, where numerous organic compounds with various volatilities and different polarities are present. PMID:20194795

  6. Organic Acids Over Equatorial Africa: Results from DECAFE 88

    NASA Astrophysics Data System (ADS)

    Helas, Günter; Bingemer, Heinz; Andreae, Meinrat O.

    1992-04-01

    Gaseous short chain organic acids were measured during the dry season (February) in and above the rain forest of the northern Congo. Samples were taken at ground level and during several flights up to 4 km altitude. The organic acids were concentrated from the atmosphere by using "mist scrubbers," which expose a mist of deionized water to the air to be probed. The organic acids absorbed in the water were subsequently analyzed by ion chromatography. Formic, acetic, and pyruvic acids were identified in the samples. At ground level, average mixing ratios of gaseous formic and acetic acid of 0.5±0.6 and 0.6±0.7 parts per billion by volume (ppbv) (1 s), respectively, were found. Boundary layer mixing ratios, however, were significantly higher (3.7±1.0 and 2.7±0.9 ppbv). This indicates a downward net flux of these atmospheric trace components from the boundary layer to the surface. Free tropospheric samples taken above the cloud convection layer show lower mixing ratios again (0.9±0.3 and 0.7±0.1 ppbv). On the basis of this vertical distribution, direct emission by vegetation is not considered to be the dominant source. Biomass burning and photochemical oxidation of biogenic precursors are the major processes contributing to the enhancement of organic acids observed in the boundary layer. The organic acids parallel the profiles of ozone and CO, which suggests that their generation processes are closely related. Pyruvic acid is not correlated with formic acid, indicating that the oxidation of isoprene is not of major importance. In emissions from biomass fires, CO correlates well with formic and acetic acid, and thus some of the enhancement of organic acids in the boundary layer can be explained due to burning. However, an additional gas phase source for organic acids must exist to explain the observed ratio of formic to acetic acid. This is most likely the ozonolysis of olefins which were released as pyrolysis products from biomass burning.

  7. NOBLE GASES

    EPA Science Inventory

    The Noble Gases symposium, on which this report is based, provided comprehensive coverage of the noble gases. The coverage included, but was not limited to, the properties, biokinetics, bioeffects, production and release to the environment, detection techniques, standards, and ap...

  8. Effect of sorption on exposures to organic gases from environmental tobacco smoke (ETS)

    SciTech Connect

    Singer, B.C.; Hodgson, A.T.; Nazaroff, W.W.

    2002-01-01

    The effects of sorption processes on dynamic ETS organic gas concentrations and potential exposures were studied in a carpeted and furnished 50-m{sup 3} room ventilated at 0.6 h{sup -1}. Ten cigarettes were machine-smoked on six of every seven days over four weeks. Concentrations of ETS-specific tracers and regulated toxic compounds were quantified during daily smoking, post-smoking and background periods. Potential exposures were calculated by period and day. Large sorption effects were observed for the widely used tracers 3-ethenylpyridine and nicotine, and for several toxic compounds including naphthalene and cresol isomers. Short-term adsorption to indoor surfaces reduced concentrations and potential exposures during smoking, while later reemission increased concentrations and exposures hours after smoking ended. Concentrations during nonsmoking periods rose from day to day over the first few weeks, presumably from increased reemission associated with increased sorbed mass concentrations. For sorbing compounds, more than half of daily potential exposures occurred during nonsmoking periods.

  9. Permeability of acetic acid through organic films at the air-aqueous interface.

    PubMed

    Gilman, Jessica B; Vaida, Veronica

    2006-06-22

    Recent field studies of collected aerosol particles, both marine and continental, show that the outermost layers contain long-chain (C >or= 18) organics. The presence of these long-chain organics could impede the transport of gases and other volatile species across the interface. This could effect the particle's composition, lifetime, and heterogeneous chemistry. In this study, the uptake rate of acetic acid vapor across a clean interface and through films of long-chain organics into an aqueous subphase solution containing an acid-base indicator (bromocresol green) was measured under ambient conditions using visible absorption spectroscopy. Acetic acid is a volatile organic compound (VOC) and is an atmospherically relevant organic acid. The uptake of acetic acid through single-component organic films of 1-octadecanol (C(18)H(38)O), 1-triacontanol (C(30)H(62)O), cis-9-octadecen-1-ol (C(18)H(36)O), and nonacosane (C(29)H(60)) in addition to two mixed films containing equimolar 1-triacontanol/nonacosane and equimolar 1-triacontanol/cis-9-octadecen-1-ol was determined. These species represent long-chain organic compounds that reside at the air-aqueous interface of atmospheric aerosols. The cis-9-octadecen-1-ol film had little effect on the net uptake rate of acetic acid vapor into solution; however, the uptake rate was reduced by almost one-half by an interfacial film of 1-triacontanol. The measured uptake rates were used to calculate the permeability of acetic acid through the various films which ranged from 1.5 x 10(-3) cm s(-1) for 1-triacontanol, the least permeable film, to 2.5 x 10(-2) cm s(-1) for cis-9-octadecen-1-ol, the most permeable film. Both mixed films had permeabilities that were between that of the single-component films comprising the mixture. This shows that the permeability of a mixed film may not be solely determined by the most permeable species in the mixture. The permeabilities of all the films studied here are discussed in relation to their

  10. Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO3 radical chemistry, and N2O5 heterogeneous hydrolysis

    SciTech Connect

    Zaveri, R.A.; Kleinman, L.; Berkowitz, C. M.; Brechtel, F. J.; Gilles, M. K.; Hubbe, J. M.; Jayne, J. T.; Laskin, A.; Madronich, S.; Onasch, T. B.; Pekour, M. S.; Springston, S. R.; Thornton, J. A.; Tivanski, A. V.; Worsnop, D. R.

    2010-06-01

    Nighttime chemical evolution of aerosol and trace gases in a coal-fired power plant plume was monitored with the Department of Energy Grumman Gulfstream-1 aircraft during the 2002 New England Air Quality Study field campaign. Quasi-Lagrangian sampling in the plume at increasing downwind distances and processing times was guided by a constant-volume balloon that was released near the power plant at sunset. While no evidence of fly ash particles was found, concentrations of particulate organics, sulfate, and nitrate were higher in the plume than in the background air. The enhanced sulfate concentrations were attributed to direct emissions of gaseous H{sub 2}SO{sub 4}, some of which had formed new particles as evidenced by enhanced concentrations of nucleation-mode particles in the plume. The aerosol species were internally mixed and the particles were acidic, suggesting that particulate nitrate was in the form of organic nitrate. The enhanced particulate organic and nitrate masses in the plume were inferred as secondary organic aerosol, which was possibly formed from NO{sub 3} radical-initiated oxidation of isoprene and other trace organic gases in the presence of acidic sulfate particles. Microspectroscopic analysis of particle samples suggested that some sulfate was in the form of organosulfates. Microspectroscopy also revealed the presence of sp{sup 2} hybridized C = C bonds, which decreased with increasing processing time in the plume, possibly because of heterogeneous chemistry on particulate organics. Constrained plume modeling analysis of the aircraft and tetroon observations showed that heterogeneous hydrolysis of N{sub 2}O{sub 5} was negligibly slow. These results have significant implications for several issues related to the impacts of power plant emissions on air quality and climate.

  11. The Roles of Organic Acids in C4 Photosynthesis

    PubMed Central

    Ludwig, Martha

    2016-01-01

    Organic acids are involved in numerous metabolic pathways in all plants. The finding that some plants, known as C4 plants, have four-carbon dicarboxylic acids as the first product of carbon fixation showed these organic acids play essential roles as photosynthetic intermediates. Oxaloacetate (OAA), malate, and aspartate (Asp) are substrates for the C4 acid cycle that underpins the CO2 concentrating mechanism of C4 photosynthesis. In this cycle, OAA is the immediate, short-lived, product of the initial CO2 fixation step in C4 leaf mesophyll cells. The malate and Asp, resulting from the rapid conversion of OAA, are the organic acids delivered to the sites of carbon reduction in the bundle-sheath cells of the leaf, where they are decarboxylated, with the released CO2 used to make carbohydrates. The three-carbon organic acids resulting from the decarboxylation reactions are returned to the mesophyll cells where they are used to regenerate the CO2 acceptor pool. NADP-malic enzyme-type, NAD-malic enzyme-type, and phosphoenolpyruvate carboxykinase-type C4 plants were identified, based on the most abundant decarboxylating enzyme in the leaf tissue. The genes encoding these C4 pathway-associated decarboxylases were co-opted from ancestral C3 plant genes during the evolution of C4 photosynthesis. Malate was recognized as the major organic acid transferred in NADP-malic enzyme-type C4 species, while Asp fills this role in NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type plants. However, accumulating evidence indicates that many C4 plants use a combination of organic acids and decarboxylases during CO2 fixation, and the C4-type categories are not rigid. The ability to transfer multiple organic acid species and utilize different decarboxylases has been suggested to give C4 plants advantages in changing and stressful environments, as well as during development, by facilitating the balance of energy between the two cell types involved in the C4 pathway of CO2

  12. The Roles of Organic Acids in C4 Photosynthesis.

    PubMed

    Ludwig, Martha

    2016-01-01

    Organic acids are involved in numerous metabolic pathways in all plants. The finding that some plants, known as C4 plants, have four-carbon dicarboxylic acids as the first product of carbon fixation showed these organic acids play essential roles as photosynthetic intermediates. Oxaloacetate (OAA), malate, and aspartate (Asp) are substrates for the C4 acid cycle that underpins the CO2 concentrating mechanism of C4 photosynthesis. In this cycle, OAA is the immediate, short-lived, product of the initial CO2 fixation step in C4 leaf mesophyll cells. The malate and Asp, resulting from the rapid conversion of OAA, are the organic acids delivered to the sites of carbon reduction in the bundle-sheath cells of the leaf, where they are decarboxylated, with the released CO2 used to make carbohydrates. The three-carbon organic acids resulting from the decarboxylation reactions are returned to the mesophyll cells where they are used to regenerate the CO2 acceptor pool. NADP-malic enzyme-type, NAD-malic enzyme-type, and phosphoenolpyruvate carboxykinase-type C4 plants were identified, based on the most abundant decarboxylating enzyme in the leaf tissue. The genes encoding these C4 pathway-associated decarboxylases were co-opted from ancestral C3 plant genes during the evolution of C4 photosynthesis. Malate was recognized as the major organic acid transferred in NADP-malic enzyme-type C4 species, while Asp fills this role in NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type plants. However, accumulating evidence indicates that many C4 plants use a combination of organic acids and decarboxylases during CO2 fixation, and the C4-type categories are not rigid. The ability to transfer multiple organic acid species and utilize different decarboxylases has been suggested to give C4 plants advantages in changing and stressful environments, as well as during development, by facilitating the balance of energy between the two cell types involved in the C4 pathway of CO2

  13. Hydrothermal Mineral-Assisted Organic Transformations of Carboxylic Acids

    NASA Astrophysics Data System (ADS)

    Johnson, K. N.; Gould, I.; Williams, L. B.; Hartnett, H. E.; Shock, E.

    2014-12-01

    The purpose of our research is to probe the varieties of reactions possible in a hydrothermal system in which both organic compounds and minerals interact. We performed experiments at physical conditions representative of deep-sea and subsurface systems (300°C and 1000 bar) and analyzed the effect of the mineral magnetite (Fe3O4) in systems with carboxylic acids, either phenylacetic acid or hydrocinnamic acid (a.k.a., phenylpropanoic acid). Control experiments were also conducted with the same organic compounds in the absence of magnetite. Whereas previous studies of carboxylic acid reactivity with minerals have focused exclusively on simple molecules such as acetic acid and valeric acid (Bell et al. 1994; McCollom et al. 2003), the carboxylic acids used in our study differ from previous experimental compounds by the addition of a phenyl ring, which allows for the investigation of the specific mechanistic pathways of product formation. Decarboxylation (i.e., RCO2H → RH + CO2) is one of the major reaction pathways for carboxylic acids in hydrothermal conditions without minerals. Under our experimental conditions, decarboxylation leads to the ~80% conversion of phenylacetic acid into toluene within ~50 hours and the ~8% conversion of hydrocinnamic acid to ethyl benzene within ~190 hours. We found that magnetite had a different effect on the two organic compounds studied. In experiments with phenylacetic acid, the presence of magnetite did not enhance the rate of toluene production from decarboxylation but did activate additional product pathways that include diphenyl alkanes, alkenes, and ketones, as well as benzoic acid, a carboxylic acid one carbon length shorter than the parent compound. Magnetite had even more noticeable effects on the hydrocinnamic acid system leading to an increase of its consumption at 190 hours from ~9% in magnetite's absence to ~35% in the mineral's presence. Products of the experiments with magnetite included an enhanced rate of

  14. Organic acid contents in onion cultivars (Allium cepa L.).

    PubMed

    Rodríguez Galdón, Beatriz; Tascón Rodríguez, Catalina; Rodríguez Rodríguez, Elena; Díaz Romero, Carlos

    2008-08-13

    The following organic acids (glutamic, oxalic, pyruvic, malic, tartaric, citric, and fumaric), pungency, Brix degree, acidity, and pH were determined in onion cultivars (Texas, Guayonje, San Juan de la Rambla, Carrizal Alto, Carrizal Bajo, and Masca) harvested in the same agroclimatic conditions. Glutamic acid was the most abundant organic acid (325 +/- 133 mg/100 g) followed by citric acid (48.5 +/- 24.1 mg/100 g) and malic acid (43.6 +/- 10.4 mg/100 g). There were significant differences between the onion cultivars in the mean concentrations of all of the analyzed parameters. The San Juan de la Rambla and Masca cultivars presented, in general, higher concentrations of the organic acids than the other cultivars. Significant differences in most of the analyzed parameters were observed between the two seed origins for the Masca and San Juan de la Rambla cultivars. The onion samples tended to be classified according to the cultivar and, in the case of San Juan de la Rambla cultivar, according to the precedence of the seeds after applying discriminant analysis. PMID:18616262

  15. OH Reactivity and Potential SOA Yields from Volatile Organic Compounds and Other Trace Gases Measured in Controlled Laboratory Biomass Burns

    NASA Astrophysics Data System (ADS)

    Gilman, J. B.; Warneke, C.; Kuster, W. C.; Goldan, P. D.; Veres, P. R.; Roberts, J. M.; de Gouw, J. A.; Burling, I. R.; Yokelson, R. J.

    2010-12-01

    A comprehensive suite of instruments were used to characterize volatile organic compounds (VOCs) and other trace gases (e.g., CO, CH4, NO2, etc.) emitted from controlled burns of various fuel types common to the Southeastern and Southwestern United States. These laboratory-based measurements were conducted in February 2009 at the U.S. Department of Agriculture’s Fire Sciences Laboratory in Missoula, Montana. An on-line GC-MS provided highly speciated VOC measurements of alkenes, alkanes, oxygenates, aromatics, biogenics, and nitrogen-containing compounds during the flaming or smoldering phases of replicate burns. The speciated GC-MS “grab” samples were integrated with fast-response gas-phase measurements (e.g., PTR-MS, PTR-IT-MS, NI-PT-CIMS, and FTIR) in order to determine VOC emission ratios and the fraction of identified vs. unidentifiable mass detected by PTR-MS. Emission ratios were used to calculate OH reactivity, which is a measure of potential ozone formation, as well as potential secondary organic aerosol (SOA) yields from the various fuel types. Small oxygenated VOCs had the highest emission ratios of the compounds observed. Alkenes dominated the VOC OH reactivity, which occasionally exceeded 1000 s-1. Calculated SOA yields from known precursors were dominated by aromatic VOCs, such as toluene, naphthalene (C10H8), and 1,3-benzenediol (C6H6O2, resorcinol). The contribution of several compounds not typically reported in ambient air measurements, such as substituted furans (C4H4O), pyrroles (C4H5N), and unsaturated C9 aromatics (C9H10), on OH reactivity and SOA yields will be discussed.

  16. Interaction of biochar and organic residues from sugarcane industry in soil chemical attributes and greenhouse gases emissions.

    NASA Astrophysics Data System (ADS)

    Fernanda Abbruzzini, Thalita; Feola Conz, Rafaela; Pellegrino Cerri, Carlos Eduardo

    2014-05-01

    Researchers have highlighted the importance of providing soil quality in agricultural systems, besides mitigating greenhouse gases (GHG) emissions to the atmosphere and increasing soil carbon sequestration. Therefore, several studies have demonstrated the effectiveness of biochar as a soil conditioner, both in relation to increased C sequestration and improvements in soil chemical, physical and biological attributes, resulting in better conditions for plant growth. The aim of this study was to assess the impact of applying biochar produced from sugarcane straw to soils in relation to changes in soil chemical attributes and mitigation of greenhouse gases emissions into the atmosphere. To do so, we conducted a laboratory incubation under controlled environmental conditions (ie temperature and humidity) with and without the application of filter cake and vinasse (ie organic residues from sugarcane industry) and rates of biochar application (0, 10, 20 and 50 Mg ha-1). The fluxes of CO2, N2O and CH4 of each incubation unity were measured periodically (in days 1, 2, 5, 9, 13, 16, 20, 24, 28, 30, 47, 60, 91, 105, 123, 130, 138 and 150). Each treatment consisted of eight replicates with destructive samples evaluated at 30, 60, 90 and 150 days after incubation to characterize the chemical attributes of the incubated soil, besides GHG (CO2, N2O and CH4) emissions. In general, there was an increase in carbon dioxide (CO2) fluxes over time due to the application of filter cake and vinasse and increasing dose of biochar. Regarding nitrous oxide (N2O) emissions, there was an increase of 82.35% with the application of vinasse and filter cake compared to the control treatment. However, different doses of biochar (10, 20 and 50 Mg ha-1) reduced N2O emissions by 29, 38.7 and 70.9%, respectively. The methane (CH4) flux was negligible in all treatments. We observed improvements in soil chemical attributes, such as higher pH, a substantial increase in the soil CEC, reduced exchangeable

  17. Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO₃ radical chemistry, and N₂O₅ heterogeneous hydrolysis

    SciTech Connect

    Zaveri, Rahul A.; Berkowitz, Carl M.; Brechtel, Fred J.; Gilles, Marry K.; Hubbe, John M.; Jayne, J. T.; Kleinman, Lawrence I.; Laskin, Alexander; Madronich, Sasha; Onasch, Timothy B.; Pekour, Mikhail S.; Springston, Stephen R.; Thornton, Joel A.; Tivanski, Alexei V.; Worsnop, Douglas R.

    2010-06-22

    Chemical evolution of aerosols and trace gases in the Salem Harbor power plant plume was monitored with the DOE G-1 aircraft on the night of July 30-31, 2002. Quasi-Lagrangian sampling in the plume at increasing downwind distances/processing times was guided by a constant-volume tetroon that was released near the power plant at sunset. While no evidence of fly ash particles was found, concentrations of particulate organics, sulfate, and nitrate were higher in the plume than in the nearby background air. These species were internally mixed and the particles were acidic, suggesting that particulate nitrate was in the form of organic nitrate. The enhanced particulate organic and nitrate masses in the plume were inferred to be as secondary organic aerosol, possibly formed from the NO3 radical-initiated oxidation of isoprene and other trace organic gases in the presence of acidic sulfate particles. The enhanced particulate sulfate concentrations observed in the plume were attributed to direct emissions of gaseous SO3/H2SO4 from the power plant. Furthermore, concentration of nucleation mode particles was significantly higher in the plume than in background air, suggesting that some of the emitted H2SO4 had nucleated to form new particles. Spectromicroscopic analyses of particle samples suggested that some sulfate was likely in the form of organosulfates. Constrained Lagrangian model analysis of the aircraft and tetroon observations showed that heterogeneous hydrolysis of N2O5 was negligibly slow. These results have significant implications for several scientific and regulatory issues related to the impacts of power plant emissions on atmospheric chemistry, air quality, visibility, and climate.

  18. Organic acids emissions from natural-gas-fed engines

    NASA Astrophysics Data System (ADS)

    Zervas, Efthimios; Tazerout, Mohand

    A natural-gas-fed spark-ignition engine, operating under lean conditions, is used for the study of the organic acids exhaust emissions. These pollutants are collected by passing a sample of exhaust gas into deionised water. The final solution is directly analysed by HPLC/UV at 204 nm. Only formic acid is emitted in detectable concentration under the experimental conditions used. Its concentration decreases with the three engine operating parameters studied: spark advance, volumetric efficiency and fuel/air equivalence ratio. Exhaust formic acid concentration is also linked with exhaust oxygen concentration and exhaust temperature. A comparison with other engines (SI engines fed with gasoline and compression ignition engines) from bibliographic data proves that natural-gas-fed engines emit less organic acids than the other two types of engines.

  19. Measurement of trace gases and organic compounds in the smoke plume from a wildfire in Penedono (central Portugal)

    NASA Astrophysics Data System (ADS)

    Vicente, Ana; Alves, Célia; Monteiro, Cristina; Nunes, Teresa; Mirante, Fátima; Evtyugina, Margarita; Cerqueira, Mário; Pio, Casimiro

    2011-09-01

    Gas and particulate fractions were measured simultaneously from a wildfire in Penedono, central Portugal, which occurred in summer 2009. The total volatile hydrocarbons (THC) and carbon oxides (CO 2 and CO) collected in Tedlar bags were measured using automatic analysers with flame ionisation and non-dispersive infrared detectors, respectively. Carbonyls (formaldehyde and acetaldehyde) were sampled from the Tedlar bags in DNHP cartridges and analysed by high-performance liquid chromatography. Fine (PM 2.5) and coarse (PM 2.5-10) smoke particles were collected sequentially, on pre-fired quartz fibre filters, with a portable high-volume sampler. The detailed speciation of organic compounds in smoke samples was carried out by gas chromatography-mass spectrometry. The organic and elemental carbon content of particulate matter was analysed by a thermal-optical transmission technique. Average emission factors of 1.86 ± 0.80 and 0.063 ± 0.066 g kg -1 (dry basis) were obtained for acetaldehyde and formaldehyde, respectively. The THC, CO, CO 2, PM 2.5, PM 10, OC and EC emission factors (g kg -1 fuel burned, dry basis) were 260 ± 88, 268 ± 92, 1200 ± 172, 37 ± 12.2, 40 ± 12.6, 21 ± 6.7 and 0.44 ± 0.21, respectively. The chromatographically resolved organics included n-alkanes, n-alkenes, n-alkanoic acids, n-di-acids, unsaturated fatty acids, phenolic compounds, ketones, steroids, di- and triterpenoids, PAHs, with retene as the major compound, oxygenated PAH and anhydrosugars.

  20. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies. PMID:25902192

  1. Using organic acids to diagnose and manage recalcitrant patients.

    PubMed

    Rogers, Sherry A

    2006-01-01

    "Organic acids" refers to a broad class of compounds used in fundamental metabolic processes of the body. They provide valuable clues about functional nutrient deficiencies, mitochondrial energy production, intestinal dysbiosis, free radical overload, and more, including where to start when diagnosing a patient with complicated symptoms. Organic acids present a whole new exciting world of therapeutic options. They are one of the tools that enable us to identify and correct the underlying causes of disease, and not merely temporarily suppress symptoms with pharmaceuticals. The sicker the patient, the more they need this intervention: half the patients in intensive care units were found to be nutrient-deficient in studies that look at only 1 or a few of the many nutrients. Studies show that a patient's outcome is more dismal and his chances of dying are greater as undiagnosed nutrient deficiencies mount. Furthermore, studies confirm that giving pennies' worth of antioxidants to patients in intensive care can cut the death rate in half. What drug can accomplish this, much less for pennies a day? Doesn't it make more sense to individually determine the patients' deficiencies and correct them? Combined with companion tests of intracellular minerals, toxic elements (heavy metals), fatty acids, vitamins, and amino acids, organic acids testing can clearly indicate health challenges the patient will face in the future. In many cases, they are correctable and curable. This article explored only 5 categories of organic acids out of more than 9 and 29 organic acids out of more than 47. For physicians who want more information, there are several resources available. This knowledge, along with biochemical knowledge and patient experience, can further empower physicians to help truly heal their patients. PMID:16862742

  2. CO2-binding Organic Liquids, an Integrated Acid Gas Capture System

    SciTech Connect

    Heldebrant, David J; Koech, Phillip K; Rainbolt, James E; Zheng, Feng

    2011-04-01

    Amine systems are effective for CO2 capture, but they are still inefficient because the solvent regeneration energy is largely defined by the amount of water in the process. Most amines form heat-stable salts with SO2 and COS resulting in parasitic solvent loss and degradation. Stripping the CO2-rich solvent is energy intensive it requires temperatures above 100 °C due to the high specific heat and heat of vaporization of water. CO2-capture processes could be much more energy efficient in a water free amine process. In addition, if the capture-material is chemically compatible with other acid gases, less solvent would be lost to heat-stable salts and the process economics would be further improved. One such system that can address these concerns is Binding Organic Liquids (BOLs), a class of switchable ionic liquids.

  3. Bio-based production of organic acids with Corynebacterium glutamicum.

    PubMed

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-03-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, L- and D-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. PMID:23199277

  4. Molecular controls on kaolinite surface charge and organic acid adsorption

    SciTech Connect

    Brady, P.V.; Cygan, R.T.; Nagy, K.L.; Ward, D.B.

    1996-10-01

    pH-dependent multi-site kaolinite surface charge can be explained by proton donor-acceptor reactions occurring simultaneously on Si and Al sites exposed on edge sites. Si site acidity at the kaolinite-solution interface differs minimally from that of pure SiO{sub 2}, whereas Al sites became appreciably more acidic when a part of the kaolinite matrix. Independent evidence from scanning force microscopy points to a higher percentage of edge surface area due to thicker particles and basal surface steps than previously assumed. Molecular modeling of the proton-relaxed kaolinite structure has been used to establish the elevated acidity of edge Al sites, to independently confirm the crystallochemical controls on surface acidity, and to establish likely bonding geometries for adsorbed organic acids, such as oxalate.

  5. Structure of seven organic salts assembled from 2,6-diaminopyridine with monocarboxylic acids, dicarboxylic acids, and tetracarboxylic acids

    NASA Astrophysics Data System (ADS)

    Gao, Xingjun; Zhang, Huan; Wen, Xianhong; Liu, Bin; Jin, Shouwen; Wang, Daqi

    2015-08-01

    Studies concentrating on non-covalent interactions between the organic base of 2,6-diaminopyridine, and carboxylic acids have led to an increased understanding of the role 2,6-diaminopyridine in binding with carboxylic acid derivatives. Here anhydrous and hydrated multi-component organic acid-base salts of 2,6-diaminopyridine have been prepared with the carboxylic acids as nicotinic acid, o-chlorobenzoic acid, 1,3-benzodioxole-5-carboxylic acid, 3,5-dinitrosalicylic acid, 4-nitro-phthalic acid, 1,4-cyclohexanedicarboxylic acid, and butane-1,2,3,4-tetracarboxylic acid. The seven crystalline compounds were characterized by X-ray diffraction analysis, infrared (IR), melting point (mp), and elemental analysis. All structures adopted the hetero R22(8) supramolecular synthons. The supramolecular architectures bear extensive Nsbnd H⋯N, Osbnd H⋯N, Osbnd H⋯O, Nsbnd H⋯O, and CH⋯O associations as well as other nonbonding contacts as CHsbnd N, CH2sbnd O, π-π, C-π, O-π, Cl-π, Clsbnd O, and Osbnd O interactions. The role of weak and strong hydrogen bonding in the crystal packing is ascertained.

  6. ORGANIC ACIDITY IN MAINE (U.S.A.) LAKES AND IN HUMEX LAKE SKJERVATJERN (NORWAY)

    EPA Science Inventory

    Organic acids, a component of dissolved organic carbon can be a major factor in the acidity of many lakes and streams. n order to evaluate the importance of organic acidity, we fractionated (hydrophobic acids and neutrals, hydrophilic acids, bases, and neutrals) and isolated hydr...

  7. Removal of Particles and Acid Gases (SO2 or HCl) with a Ceramic Filter by Addition of Dry Sorbents

    SciTech Connect

    Hemmer, G.; Kasper, G.; Wang, J.; Schaub, G.

    2002-09-20

    The present investigation intends to add to the fundamental process design know-how for dry flue gas cleaning, especially with respect to process flexibility, in cases where variations in the type of fuel and thus in concentration of contaminants in the flue gas require optimization of operating conditions. In particular, temperature effects of the physical and chemical processes occurring simultaneously in the gas-particle dispersion and in the filter cake/filter medium are investigated in order to improve the predictive capabilities for identifying optimum operating conditions. Sodium bicarbonate (NaHCO{sub 3}) and calcium hydroxide (Ca(OH){sub 2}) are known as efficient sorbents for neutralizing acid flue gas components such as HCl, HF, and SO{sub 2}. According to their physical properties (e.g. porosity, pore size) and chemical behavior (e.g. thermal decomposition, reactivity for gas-solid reactions), optimum conditions for their application vary widely. The results presented concentrate on the development of quantitative data for filtration stability and overall removal efficiency as affected by operating temperature. Experiments were performed in a small pilot unit with a ceramic filter disk of the type Dia-Schumalith 10-20 (Fig. 1, described in more detail in Hemmer 2002 and Hemmer et al. 1999), using model flue gases containing SO{sub 2} and HCl, flyash from wood bark combustion, and NaHCO{sub 3} as well as Ca(OH){sub 2} as sorbent material (particle size d{sub 50}/d{sub 84} : 35/192 {micro}m, and 3.5/16, respectively). The pilot unit consists of an entrained flow reactor (gas duct) representing the raw gas volume of a filter house and the filter disk with a filter cake, operating continuously, simulating filter cake build-up and cleaning of the filter medium by jet pulse. Temperatures varied from 200 to 600 C, sorbent stoichiometric ratios from zero to 2, inlet concentrations were on the order of 500 to 700 mg/m{sup 3}, water vapor contents ranged from

  8. Acid rain effects on aluminum mobilization clarified by inclusion of strong organic acids

    USGS Publications Warehouse

    Lawrence, G.B.; Sutherland, J.W.; Boylen, C.W.; Nierzwicki-Bauer, S. W.; Momen, B.; Baldigo, Barry P.; Simonin, H.A.

    2007-01-01

    Assessments of acidic deposition effects on aquatic ecosystems have often been hindered by complications from naturally occurring organic acidity. Measurements of pH and ANCG, the most commonly used indicators of chemical effects, can be substantially influenced by the presence of organic acids. Relationships between pH and inorganic Al, which is toxic to many forms of aquatic biota, are also altered by organic acids. However, when inorganic Al concentrations are plotted against ANC (the sum of Ca2+, Mg 2+, Na+, and K+, minus SO42-, NO3-, and Cl-), a distinct threshold for Al mobilization becomes apparent. If the concentration of strong organic anions is included as a negative component of ANC, the threshold occurs at an ANC value of approximately zero, the value expected from theoretical charge balance constraints. This adjusted ANC is termed the base-cation surplus. The threshold relationship between the base-cation surplus and Al was shown with data from approximately 200 streams in the Adirondack region of New York, during periods with low and high dissolved organic carbon concentrations, and for an additional stream from the Catskill region of New York. These results indicate that (1) strong organic anions can contribute to the mobilization of inorganic Al in combination with SO42- and NO 3-, and (2) the presence of inorganic Al in surface waters is an unambiguous indication of acidic deposition effects. ?? 2007 American Chemical Society.

  9. Formation of Organic Tracers for Isoprene SOA under Acidic Conditions

    EPA Science Inventory

    The chemical compositions of a series of secondary organic aerosol (SOA) samples, formed by irradiating mixtures of isoprene and NO in a smog chamber in the absence or presence of acidic aerosols, were analyzed using derivatization-based GC-MS methods. In addition to the known is...

  10. Variability for free sugars and organic acids in Capsicum Chinense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit of 216 genotypes of Capsicum chinense Jacq. were analyzed for concentrations of the simple sugars sucrose, glucose, fructose, and the organic acids; citric, malic, succinic, fumaric and ascorbic. Concentrations [mg/100g Fresh Weight (FW) of whole fruit] of sucrose, glucose and fructose in fru...

  11. SOURCES OF ORGANIC ACIDS IN INDOOR AIR: A FIELD STUDY

    EPA Science Inventory

    Simultaneous indoor and outdoor measurements of organic acids were made at six residential houses located in suburban New Jersey area during the summer of 1992. ach house was measured for six days and controlled for ventilation and gas combustion conditions. he study presents the...

  12. Amylase activity of Aspergillus strains--producers of organic acids.

    PubMed

    Tsekova, K; Dentchev, D; Vicheva, A; Dekovska, M

    1993-01-01

    The ability of fungi from genus Aspergillus (producers of organic acids) to synthesize amylase enzymes (alpha-amylase and glucoamylase) was investigated. The productivity of the strains on Czapek-Dox agar and in liquid Czapec-Dox media with 3% soluble starch as a carbon source was established. PMID:8285132

  13. Indoor air chemistry: Formation of organic acids and aldehydes

    SciTech Connect

    Zhang, J.; Lioy, P.J. ||; Wilson, W.E.

    1994-12-31

    Laying emphasis on the formation of aldehydes and organic acids, the study has examined the gas-phase reactions of ozone with unsaturated VOCs. The formation of formaldehyde and formic acid was observed for all the three selected unsaturated VOCs: styrene, limonene, and 4-vinylcyclohexene. In addition, benzaldehyde was detected in the styrene-ozone-air reaction system, and acetic acid was also found in limonene-ozone-air system. The study has also examined the gas-phase reactions among formaldehyde, ozone, and nitrogen dioxide and found the formation of formic acid. The nitrate radical was suggested to play an important role in converting formaldehyde into formic acid. Experiments for all the reactions were conducted by using a 4.3 m{sup 3} Teflon chamber. Since the conditions for the reactions were similar to those for indoor environments, the results from the study can be implicated to real indoor situations and can be employed to support the findings and suggestions from the previous studies: certain aldehydes and organic acids could be generated by indoor chemistry.

  14. Acid composition of particles and gases in a ponderosa pine forest during the BEACHON-RoMBAS campaign

    NASA Astrophysics Data System (ADS)

    Stark, H.; Yatavelli, L.; Thompson, S.; Kimmel, J. R.; Palm, B. B.; Day, D. A.; Campuzano-Jost, P.; Cubison, M. J.; Jayne, J.; Worsnop, D. R.; Thornton, J. A.; Jimenez, J. L.

    2012-12-01

    We present results from the high mass-resolution analysis of gas-phase and aerosol spectra collected with a chemical ionization high-resolution time-of-flight mass spectrometer, equipped with a micro-orifice volatilization impactor ("MOVI-HRToF-CIMS", Yatavelli and Thornton AS&T, 2010; Yatavelli et al., AS&T, 2012) during the 2011 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study ("BEACHON-RoMBAS"). The study was conducted during July - August 2011 in a ponderosa pine forest in Colorado. Choosing acetate (CH3C(O)O-) as the reagent ion and developing analysis tools for formula identification and elemental analysis allowed us to identify hundreds of individual acids in aerosol spectra. Positive Matrix Factorization (PMF) analysis of the ion time series is useful to account for backgrounds in the different modes of operation and to separate several gas-phase and particulate factors with different volatility and composition. Results on aerosol composition, including nitrogen- and sulfur-containing species as well as information about elemental ratios (e.g. O:C, H:C) and average carbon oxidation state are presented. Most of the acids detected have between 1 and 10 carbons and average carbon oxidation states (OsC) between -1 and 1. This suggests the importance of monoterpenes and MBO as precursors of the measured acids. We will discuss these results with special consideration of fragmentation on the heated surfaces of the instrument.

  15. The abiotic degradation of soil organic matter to oxalic acid

    NASA Astrophysics Data System (ADS)

    Studenroth, Sabine; Huber, Stefan; Schöler, H. F.

    2010-05-01

    The abiotic degradation of soil organic matter to volatile organic compounds was studied intensely over the last years (Keppler et al., 2000; Huber et al., 2009). It was shown that soil organic matter is oxidised due to the presence of iron (III), hydrogen peroxide and chloride and thereby produces diverse alkyl halides, which are emitted into the atmosphere. The formation of polar halogenated compounds like chlorinated acetic acids which are relevant toxic environmental substances was also found in soils and sediments (Kilian et al., 2002). The investigation of the formation of other polar halogenated and non-halogenated compounds like diverse mono- and dicarboxylic acids is going to attain more and more importance. Due to its high acidity oxalic acid might have impacts on the environment e.g., nutrient leaching, plant diseases and negative influence on microbial growth. In this study, the abiotic formation of oxalic acid in soil is examined. For a better understanding of natural degradation processes mechanistic studies were conducted using the model compound catechol as representative for structural elements of the humic substances and its reaction with iron (III) and hydrogen peroxide. Iron is one of the most abundant elements on earth and hydrogen peroxide is produced by bacteria or through incomplete reduction of oxygen. To find suitable parameters for an optimal reaction and a qualitative and quantitative analysis method the following reaction parameters are varied: concentration of iron (III) and hydrogen peroxide, time dependence, pH-value and influence of chloride. Analysis of oxalic acid was performed employing an ion chromatograph equipped with a conductivity detector. The time dependent reaction shows a relatively fast formation of oxalic acid, the optimum yield is achieved after 60 minutes. Compared to the concentration of catechol an excess of hydrogen peroxide as well as a low concentration of iron (III) are required. In absence of chloride the

  16. A fiber optic sensor with a metal organic framework as a sensing material for trace levels of water in industrial gases.

    PubMed

    Ohira, Shin-Ichi; Miki, Yusuke; Matsuzaki, Toru; Nakamura, Nao; Sato, Yu-ki; Hirose, Yasuo; Toda, Kei

    2015-07-30

    Industrial gases such as nitrogen, oxygen, argon, and helium are easily contaminated with water during production, transfer and use, because there is a high volume fraction of water in the atmosphere (approximately 1.2% estimated with the average annual atmospheric temperature and relative humidity). Even trace water (<1 parts per million by volume (ppmv) of H2O, dew point < -76 °C) in the industrial gases can cause quality problems in the process such as production of semiconductors. Therefore, it is important to monitor and to control trace water levels in industrial gases at each supplying step, and especially during their use. In the present study, a fiber optic gas sensor was investigated for monitoring trace water levels in industrial gases. The sensor consists of a film containing a metal organic framework (MOF). MOFs are made of metals coordinated to organic ligands, and have mesoscale pores that adsorb gas molecules. When the MOF, copper benzene-1,3,5-tricarboxylate (Cu-BTC), was used as a sensing material, we investigated the color of Cu-BTC with water adsorption changed both in depth and tone. Cu-BTC crystals appeared deep blue in dry gases, and then changed to light blue in wet gases. An optical gas sensor with the Cu-BTC film was developed using a light emitting diode as the light source and a photodiode as the light intensity detector. The sensor showed a reversible response to trace water, did not require heating to remove the adsorbed water molecules. The sample gas flow rate did not affect the sensitivity. The obtained limit of detection was 40 parts per billion by volume (ppbv). The response time for sample gas containing 2.5 ppmvH2O was 23 s. The standard deviation obtained for daily analysis of 1.0 ppmvH2O standard gas over 20 days was 9%. Furthermore, the type of industrial gas did not affect the sensitivity. These properties mean the sensor will be applicable to trace water detection in various industrial gases. PMID:26320652

  17. Influence of pasture-based feeding systems on fatty acids, organic acids and volatile organic flavour compounds in yoghurt.

    PubMed

    Akbaridoust, Ghazal; Plozza, Tim; Trenerry, V Craige; Wales, William J; Auldist, Martin J; Ajlouni, Said

    2015-08-01

    The influence of different pasture-based feeding systems on fatty acids, organic acids and volatile organic flavour compounds in yoghurt was studied. Pasture is the main source of nutrients for dairy cows in many parts of the world, including southeast Australia. Milk and milk products produced in these systems are known to contain a number of compounds with positive effects on human health. In the current study, 260 cows were fed supplementary grain and forage according to one of 3 different systems; Control (a traditional pasture based diet offered to the cows during milking and in paddock), PMR1 (a partial mixed ration which contained the same supplement as Control but was offered to the cows as a partial mixed ration on a feedpad), PMR 2 (a differently formulated partial mixed ration compared to Control and PMR1 which was offered to the cows on a feedpad). Most of the yoghurt fatty acids were influenced by feeding systems; however, those effects were minor on organic acids. The differences in feeding systems did not lead to the formation of different volatile organic flavour compounds in yoghurt. Yet, it did influence the relative abundance of these components. PMID:26143651

  18. Organic acid modeling and model validation: Workshop summary. Final report

    SciTech Connect

    Sullivan, T.J.; Eilers, J.M.

    1992-08-14

    A workshop was held in Corvallis, Oregon on April 9--10, 1992 at the offices of E&S Environmental Chemistry, Inc. The purpose of this workshop was to initiate research efforts on the entitled ``Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and testing of the revised model using Independent data sources.`` The workshop was attended by a team of internationally-recognized experts in the fields of surface water acid-bass chemistry, organic acids, and watershed modeling. The rationale for the proposed research is based on the recent comparison between MAGIC model hindcasts and paleolimnological inferences of historical acidification for a set of 33 statistically-selected Adirondack lakes. Agreement between diatom-inferred and MAGIC-hindcast lakewater chemistry in the earlier research had been less than satisfactory. Based on preliminary analyses, it was concluded that incorporation of a reasonable organic acid representation into the version of MAGIC used for hindcasting was the logical next step toward improving model agreement.

  19. Organic acid modeling and model validation: Workshop summary

    SciTech Connect

    Sullivan, T.J.; Eilers, J.M.

    1992-08-14

    A workshop was held in Corvallis, Oregon on April 9--10, 1992 at the offices of E S Environmental Chemistry, Inc. The purpose of this workshop was to initiate research efforts on the entitled Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and testing of the revised model using Independent data sources.'' The workshop was attended by a team of internationally-recognized experts in the fields of surface water acid-bass chemistry, organic acids, and watershed modeling. The rationale for the proposed research is based on the recent comparison between MAGIC model hindcasts and paleolimnological inferences of historical acidification for a set of 33 statistically-selected Adirondack lakes. Agreement between diatom-inferred and MAGIC-hindcast lakewater chemistry in the earlier research had been less than satisfactory. Based on preliminary analyses, it was concluded that incorporation of a reasonable organic acid representation into the version of MAGIC used for hindcasting was the logical next step toward improving model agreement.

  20. Bio-based production of organic acids with Corynebacterium glutamicum

    PubMed Central

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-01-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, l-and d-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. Funding Information Work in the laboratories of the authors was supported by the Fachagentur Nachwachsende Rohstoffe (FNR) of the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV; FNR Grants 220-095-08A and 220-095-08D; Bio-ProChemBB project, ERA-IB programme), by the Deutsche Bundesstiftung Umwelt (DBU Grant AZ13040/05) and the Evonik Degussa AG. PMID

  1. Adsorption of chromate/organic-acid mixtures in aquifer materials

    SciTech Connect

    Fish, W.; Palmer, C.D.

    1991-07-15

    The overall objective of this project is to develop a fuller understanding of the interactions of mixtures of anionic co-contaminants with oxide-mineral surfaces. Our specific focus is on the competitive interactions of chromate and oxalic acid on ferric oxyhydroxide and on natural aquifer materials. Chromate and oxalate are of practical interest as widespread contaminants at many DOE facilities. However, these anions also are excellent model adsorbates for elucidating fundamental aspects of ionic adsorption processes, particularly with respect to organic acids.

  2. Various instrumental approaches for determination of organic acids in wines.

    PubMed

    Zeravik, Jiri; Fohlerova, Zdenka; Milovanovic, Miodrag; Kubesa, Ondrej; Zeisbergerova, Marta; Lacina, Karel; Petrovic, Aleksandar; Glatz, Zdenek; Skladal, Petr

    2016-03-01

    Biosensors based on lactate oxidase, sarcosine oxidase and mixture of fumarase and sarcosine oxidase were used for monitoring of organic acids in wine samples. Additionally, tartaric acid was determined by modified colorimetric method based on formation of the vanadate-tartrate complex. The above mentioned methods were used for the analysis of 31 wine samples and obtained data were compared with the results from capillary electrophoresis as a basic standard method. This comparison showed a certain degree of correlation between biosensors and capillary electrophoresis. The provided information pointed to the potential uses of biosensors in the field of winemaking. PMID:26471576

  3. Role of antioxidant enzymes in bacterial resistance to organic acids.

    PubMed

    Bruno-Bárcena, Jose M; Azcárate-Peril, M Andrea; Hassan, Hosni M

    2010-05-01

    Growth in aerobic environments has been shown to generate reactive oxygen species (ROS) and to cause oxidative stress in most organisms. Antioxidant enzymes (i.e., superoxide dismutases and hydroperoxidases) and DNA repair mechanisms provide protection against ROS. Acid stress has been shown to be associated with the induction of Mn superoxide dismutase (MnSOD) in Lactococcus lactis and Staphylococcus aureus. However, the relationship between acid stress and oxidative stress is not well understood. In the present study, we showed that mutations in the gene coding for MnSOD (sodA) increased the toxicity of lactic acid at pH 3.5 in Streptococcus thermophilus. The inclusion of the iron chelators 2,2'-dipyridyl (DIP), diethienetriamine-pentaacetic acid (DTPA), and O-phenanthroline (O-Phe) provided partial protection against 330 mM lactic acid at pH 3.5. The results suggested that acid stress triggers an iron-mediated oxidative stress that can be ameliorated by MnSOD and iron chelators. These findings were further validated in Escherichia coli strains lacking both MnSOD and iron SOD (FeSOD) but expressing a heterologous MnSOD from S. thermophilus. We also found that, in E. coli, FeSOD did not provide the same protection afforded by MnSOD and that hydroperoxidases are equally important in protecting the cells against acid stress. These findings may explain the ability of some microorganisms to survive better in acidified environments, as in acid foods, during fermentation and accumulation of lactic acid or during passage through the low pH of the stomach. PMID:20305033

  4. The hyporheic zone as a source of dissolved organic carbon and carbon gases to a temperate forested stream

    USGS Publications Warehouse

    Schindler, J.E.; Krabbenhoft, D.P.

    1998-01-01

    The objective of this study was to examine chemical changes in porewaters that occur over small scales (cm) as groundwater flows through the hyporheic zone and discharges to a stream in a temperate forest of northern Wisconsin. Hyporheic-zone porewaters were sampled at discrete depths of 2, 10, 15, 61, and 183 cm at three study sites in the study basin. Chemical profiles of dissolved organic carbon (DOC), CO2, CH4, and pH show dramatic changes between 61 cm sediment depth and the water-sediment interface. Unless discrete samples at small depth intervals are taken, these chemical profiles are not accounted for. Similar trends were observed at the three study locations, despite each site having very different hydraulic-flow regimes. Increases in DOC concentration by an order of magnitude from 61 to 15 cm depth with a corresponding decrease in pH and rapid decreases in the molecular weight of the DOC suggest that aliphatic compounds (likely organic acids) are being generated in the hyporheic zone. Estimated efflux rates of DOC, CO2, and CH4 to the stream are 6.2, 0.79, 0.13 moles m2 d-1, respectively, with the vast majority of these materials produced in the hyporheic zone. Very little of these materials are accounted for by sampling stream water, suggesting rapid uptake and/or volatilization.

  5. Separators and organics for lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Böhnstedt, Werner

    This review discusses various interactions between organic compounds, brought into the lead-acid battery via the separator, and their subsequent effect on battery performance. Historically, the interrelationship started with certain 'expander' actions on the lead morphology due to lignins, which leached out of the wooden separators of that time. Synthetic separator materials did not show this effect, but gained acceptance as they were far more stable in the hostile battery environment. The partially hydrophobic character of synthetic separators has been overcome by organic surfactants. Other organic compounds have been found to improve further the stability of separators against oxidation. Special organic molecules, namely aldehydes and ketones, have been identified to retard, or even suppress, the adverse effects of metals such as antimony, and thus prolong the cycle-life of traction batteries in heavy-duty applications or reduce water loss from automotive batteries. Knowledge about these interactions has opened ways to improve separators.

  6. Measurements of Acidic Gases and Aerosol Species Aboard the NASA DC-8 Aircraft During the Pacific Exploratory Mission in the Tropics (PEM-Tropics A)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    1999-01-01

    We received funding to provide measurements of nitric acid (HNO3), formic acid (HCOOH), acetic acid (CH3COOH), and the chemical composition of aerosols aboard the NASA Ames DC-8 research aircraft during the PEM-Tropics A mission. These measurements were successfully completed and the final data resides in the electronic archive (ftp-gte.larc.nasa.gov) at NASA Langley Research Center. For the PEM-Tropics A mission the University of New Hampshire group was first author of four different manuscripts. Three of these have now appeared in the Journal of Geophysical Research-Atmospheres, included in the two section sections on PEM-Tropics A. The fourth manuscript has just recently been submitted to this same journal as a stand alone paper. All four of these papers are included in this report. The first paper (Influence of biomass combustion emissions on the distribution of acidic trace gases over the Southern Pacific basin during austral springtime) describes the large-scale distributions of HNO3, HCOOH, and CH3COOH. Arguments were presented to show, particularly in the middle tropospheric region, that biomass burning emissions from South America and Africa were a major source of acidic gases over the South Pacific basin. The second paper (Aerosol chemical composition and distribution during the Pacific Exploratory Mission (PEM) Tropics) covers the aerosol aspects of our measurement package. Compared to acidic gases, O3, and selected hydrocarbons, the aerosol chemistry showed little influence from biomass burning emissions. The data collected in the marine boundary layer showed a possible marine source of NH3 to the troposphere in equatorial areas. This source had been speculated on previously, but our data was the first collected from an airborne platform to show its large-scale features. The third paper (Constraints on the age and dilution of Pacific Exploratory Mission-Tropics biomass burning plumes from the natural radionuclide tracer Pb-210) utilized the unexpectedly

  7. Estimating the contribution of organic acids to northern hemispheric continental organic aerosol

    NASA Astrophysics Data System (ADS)

    Yatavelli, Reddy L. N.; Mohr, Claudia; Stark, Harald; Day, Douglas A.; Thompson, Samantha L.; Lopez-Hilfiker, Felipe D.; Campuzano-Jost, Pedro; Palm, Brett B.; Vogel, Alexander L.; Hoffmann, Thorsten; Heikkinen, Liine; ńijälä, Mikko; Ng, Nga L.; Kimmel, Joel R.; Canagaratna, Manjula R.; Ehn, Mikael; Junninen, Heikki; Cubison, Michael J.; Petäjä, Tuukka; Kulmala, Markku; Jayne, John T.; Worsnop, Douglas R.; Jimenez, Jose L.

    2015-07-01

    Using chemical ionization mass spectrometry to detect particle-phase acids and aerosol mass spectrometry (AMS) measurements from Colorado, USA, and two studies in Hyytiälä, Finland, we quantify the fraction of organic aerosol (OA) mass that is composed of molecules with acid functional groups (facid). Molecules containing one or more carboxylic acid functionality contributed approximately 29% (45-51%) of the OA mass in Colorado (Finland). Organic acid mass concentration correlates well with AMS m/z 44 (primarily CO2+), a commonly used marker for highly oxidized aerosol. Using the average empirical relationship between AMS m/z 44 and organic acids in these three studies, together with m/z 44 data from 29 continental northern hemispheric (NH) AMS data sets, we estimate that molecules containing carboxylic acid functionality constitute on average 28% (range 10-50%) of NH continental OA mass with typically higher values at rural/remote sites and during summer and lower values at urban sites and during winter.

  8. Greenhouse Gases

    MedlinePlus

    ... Greenhouse Gases Come From Outlook for Future Emissions Recycling and Energy Nonrenewable Sources Oil and Petroleum Products ... Power Wave Power Ocean Thermal Energy Conversion Biomass Wood and Wood Waste Waste-to-Energy (MSW) Landfill ...

  9. Biochar: a green sorbent to sequester acidic organic contaminants

    NASA Astrophysics Data System (ADS)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2015-04-01

    Biochar is a carbon rich product of biomass pyrolysis that exhibits a high sorption potential towards a wide variety of inorganic and organic contaminants. Because it is a valuable soil additive and a potential carbon sink that can be produced from renewable resources, biochar has gained growing attention for the development of more sustainable remediation strategies. A lot of research efforts have been dedicated to the sorption of hydrophobic contaminants and metals to biochar. Conversely, the understanding of the sorption of acidic organic contaminants remains limited, and questions remain on the influence of biochar characteristics (e.g. ash content) on the sorption behaviour of acidic organic contaminants. To address this knowledge gap, sorption batch experiments were conducted with a series of structurally similar acidic organic contaminants covering a range of dissociation constant (2,4-D, MCPA, 2,4-DB and triclosan). The sorbents selected for experimentation included a series of 10 biochars covering a range of characteristics, multiwalled carbon nanotubes as model for pure carbonaceous phases, and an activated carbon as benchmark. Overall, sorption coefficient [L/kg] covered six orders of magnitude and generally followed the order 2,4-D < MCPA < 2,4-DB < triclosan. Combining comprehensive characterization of the sorbents with the sorption dataset allowed the discussion of sorption mechanisms and driving factors of sorption. Statistical analysis suggests that (i) partitioning was the main driver for sorption to sorbents with small specific surface area (< 25 m²/g), whereas (ii) specific mechanisms dominated sorption to sorbents with larger specific surface area. Results showed that factors usually not considered for the sorption of neutral contaminants play an important role for the sorption of organic acids. The pH dependent lipophilicity ratio (i.e. D instead of Kow), ash content and ionic strength are key factors influencing the sorption of acidic organic

  10. Capillary electrophoresis analysis of organic amines and amino acids in saline and acidic samples using the Mars organic analyzer.

    PubMed

    Stockton, Amanda M; Chiesl, Thomas N; Lowenstein, Tim K; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A

    2009-11-01

    The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pK(a) values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions. PMID:19968460

  11. DISTRIBUTION OF HYDROPHOBIC IONOGENIC ORGANIC COMPOUNDS BETWEEN OCTANOL AND WATER: ORGANIC ACIDS

    EPA Science Inventory

    The octanol-water distributions of 10 environmentally significant organic acid compounds were determined as a function of aqueous-phase salt concentration (0.05-0.2 M LiCl, NaCl, KCl, CaCl2, or MgCl2) and pH. he compounds were pentachlorophenol 2,3,4,5-tetrachlorophenol, (2,4,5-t...

  12. Chemical Gradient and Inter-hemispheric Distribution of Selected Organic Trace Gases in the Tropical Tropopause Layer Over the Western Pacific

    NASA Astrophysics Data System (ADS)

    Navarro, M. A.; Atlas, E. L.; Schauffler, S.; Donets, V.; Lueb, R.; Hendershot, R.; Gabbard, S.; Saiz-Lopez, A.; Rodriguez, X.; Kinnison, D. E.; Lamarque, J. F.; Zhu, X.; Pope, L.

    2014-12-01

    Hydrocarbons and short-lived species play an important role in the chemistry of the upper troposphere/lower stratosphere (UT/LS) region. Their distribution, vertical structure and variability provide information about emission sources and transport. Furthermore, the characterization of short-lived organic halogens defines the reactive halogen budget and the conditions for the stratospheric chemistry that affects ozone depletion rates. The chemical composition of the air masses entering the stratosphere depends on the chemical and physical processes that occur during their transitions through the Tropical Tropopause Layer (TTL). It is well known that convective systems effectively transport short-lived trace gases to the UT. However, the overall impact of these processes on the distribution and budget of trace gases is not well known since only high altitude aircraft can reach this region of the atmosphere (>13-14 Km) During the recent field campaign of the Airborne Tropical Tropopause Experiment (ATTREX) and the Convective Transport of Active Species in the Tropics (CONTRAST), carried out in Guam during January-March 2014, the Whole Air Samplers (GWAS and AWAS) collected approximately 1200 samples to examine the tropical convection of the west pacific and its influence on the distribution of the short-lived species from the bottom of the TTL to the lower stratosphere. Measurement of a wide range of hydrocarbons, halocarbons, organic nitrates and solvents were carried out in the field using a combination of gas chromatography with mass selective, flame ionization, and electron capture detectors. In addition, model simulations of selected hydrocarbon and organic trace gases were performed with the chemistry climate model CAM-Chem to evaluate the chemical gradients and inter-hemispheric distributions. In this presentation we will show the gradients and inter-hemispheric distributions from the measurements and compare them with the model results.

  13. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter

    NASA Astrophysics Data System (ADS)

    Ritchie, Jason D.; Perdue, E. Michael

    2003-01-01

    The acid-base properties of 14 standard and reference materials from the International Humic Substances Society (IHSS) were investigated by potentiometric titration. Titrations were conducted in 0.1 M NaCl under a nitrogen atmosphere, averaging 30 min from start to finish. Concentrations of carboxyl groups and phenolic groups were estimated directly from titration curves. Titration data were also fit to a modified Henderson-Hasselbalch model for two classes of proton-binding sites to obtain "best fit" parameters that describe proton-binding curves for the samples. The model was chosen for its simplicity, its ease of implementation in computer spreadsheets, and its excellent ability to describe the shapes of the titration curves. The carboxyl contents of the IHSS samples are in the general order: terrestrial fulvic acids > aquatic fulvic acids > Suwannee River natural organic matter (NOM) > aquatic humic acids > terrestrial humic acids. Overall, fulvic acids and humic acids have similar phenolic contents; however, all of the aquatically derived samples have higher phenolic contents than the terrestrially derived samples. The acid-base properties of reference Suwannee River NOM are surprisingly similar to those of standard Suwannee River humic acid. Results from titrations in this study were compared with other published results from both direct and indirect titrations. Typically, carboxyl contents for the IHSS samples were in agreement with the results from both methods of titration. Phenolic contents for the IHSS samples were comparable to those determined by direct titrations, but were significantly less than estimates of phenolic content that were based on indirect titrations with Ba(OH) 2 and Ca(OAc) 2. The average phenolic-to-carboxylic ratio of the IHSS samples is approximately 1:4. Models that assume a 1:2 ratio of phenolic-to-carboxylic groups may overestimate the relative contribution of phenolic groups to the acid-base chemistry of humic substances.

  14. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage.

    PubMed

    Bai, Cheng; Reilly, Charles C; Wood, Bruce W

    2006-02-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan. PMID:16415214

  15. Terpenylic acid and nine-carbon multifunctional compounds formed during the aging of β-pinene ozonolysis secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Sato, Kei; Jia, Tianyu; Tanabe, Kiyoshi; Morino, Yu; Kajii, Yoshizumi; Imamura, Takashi

    2016-04-01

    Recent field and laboratory studies suggest that forest aerosol particles contain more highly functionalized organic molecules than pinonic acid, a traditional molecular maker of secondary organic aerosol (SOA) particles. To investigate the reaction mechanisms during the aging of biogenic SOAs, the gases and particles formed from the ozonolysis of β- and α-pinene were exposed to OH radicals in a laboratory chamber. The particle samples were collected before and after OH exposure for analysis by liquid chromatography-negative electrospray ionization time-of-flight mass spectrometry. Pinic acid and terpenylic acid were abundant products in both β- and α-pinene ozonolysis SOA particles. Terpenylic acid and products with m/z 201.08 present in β-pinene SOA particles increased upon exposing SOA to OH radicals, whereas 3-methyl-1,2,3-butanetricarboxylic acid present in α-pinene SOA particles increased upon exposing SOA to OH radicals. The products with m/z 201.08 were suggested to be C9H14O5 compounds. Similar C9H14O5 compounds and terpenylic acid were also detected in SOA particles formed from the photooxidation of nopinone, a major first-generation product of β-pinene ozonolysis. The OH-initiated oxidation of nopinone will contribute to the formation of terpenylic acid and C9H14O5 compounds during the aging of β-pinene SOA. A formation mechanism for terpenylic acid via gas-phase diaterpenylic acid formation followed by self-dehydration in the condensed phase was suggested.

  16. Comparison of capillary pressure relationships of organic liquid water systems containing an organic acid or base

    NASA Astrophysics Data System (ADS)

    Lord, D. L.; Demond, A. H.; Hayes, K. F.

    2005-04-01

    The presence of surface-active solutes such as organic acids and bases may have a profound influence on the transport of organic liquid contaminants through their impact on the constitutive relationship of capillary pressure vs. saturation. This relationship is a function of the interfacial tension and wettability of the system, which, in turn, depend on the pH and the concentration of organic acids and bases that are present. This study examines the impact of pH and the concentration on the interfacial tension, contact angle, and capillary pressure of systems consisting of tetrachloroethylene, water, and quartz containing either octanoic acid or dodecylamine. In general, the ionic form of the solute tended to remain in the aqueous phase and reduced the capillary pressure through its impact on the interfacial tension and contact angle; on the other hand, the neutral form of the solute partitioned into the organic liquid phase and had a lesser impact on the capillary pressure for the same total mass of solute. A comparison of these data with data generated in previous research in similar systems where o-xylene was the organic liquid showed that the trends are analogous. Thus, the behavior of these two solvent systems seems to be driven primarily by the aqueous phase speciation of the solute, and the differences between the capillary pressure relationships for the two systems could be attributed to the pure system interfacial tension.

  17. Biofilters remove VOCs from stack gases

    SciTech Connect

    Not Available

    1993-10-01

    Weyerhaeuser's strandboard plant in Grayling, Mich., is using biofiltration to remove volatile organic compounds (VOCs) at the site. Primary constituents in the Weyerhaeuser stack gases are alcohols, aldehydes, organic acids, benzene and toluene. The alternative to biofiltration is incineration, but because the concentration of VOCs in the stack gases is so dilute, natural gas would be required. Incineration would be costly, and could introduce pollution problems by generating excess carbon dioxide (CO[sub 2]) and possibly nitrogen oxides. Two pilot biofilters, each about 20ft by 100ft in area, with 4-ft thick media of bark and ground trim ends, are using naturally occurring bacteria to destroy VOCs emanating from a wood panel press and a wood flake dryer. The press offgas biofilter, activated February 1993, had risen to 93% efficiency in removing VOCs by mid-May. The flake dryer exhaust biofilter, placed in service in April, already was more than 80% efficient.

  18. Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from temperate fuels common in the United States

    NASA Astrophysics Data System (ADS)

    Gilman, J. B.; Lerner, B. M.; Kuster, W. C.; Goldan, P. D.; Warneke, C.; Veres, P. R.; Roberts, J. M.; de Gouw, J. A.; Burling, I. R.; Yokelson, R. J.

    2015-08-01

    A comprehensive suite of instruments was used to quantify the emissions of over 200 organic gases, including methane and volatile organic compounds (VOCs), and 9 inorganic gases from 56 laboratory burns of 18 different biomass fuel types common in the southeastern, southwestern, or northern United States. A gas chromatograph-mass spectrometer (GC-MS) provided extensive chemical detail of discrete air samples collected during a laboratory burn and was complemented by real-time measurements of organic and inorganic species via an open-path Fourier transform infrared spectrometer (OP-FTIR) and 3 different chemical ionization-mass spectrometers. These measurements were conducted in February 2009 at the U.S. Department of Agriculture's Fire Sciences Laboratory in Missoula, Montana. The relative magnitude and composition of the gases emitted varied by individual fuel type and, more broadly, by the 3 geographic fuel regions being simulated. Emission ratios relative to carbon monoxide (CO) were used to characterize the composition of gases emitted by mass; reactivity with the hydroxyl radical, OH; and potential secondary organic aerosol (SOA) precursors for the 3 different US fuel regions presented here. VOCs contributed less than 0.78 ± 0.12 % of emissions by mole and less than 0.95 ± 0.07 % of emissions by mass (on average) due to the predominance of CO2, CO, CH4, and NOx emissions; however, VOCs contributed 70-90 (±16) % to OH reactivity and were the only measured gas-phase source of SOA precursors from combustion of biomass. Over 82 % of the VOC emissions by mole were unsaturated compounds including highly reactive alkenes and aromatics and photolabile oxygenated VOCs (OVOCs) such as formaldehyde. OVOCs contributed 57-68 % of the VOC mass emitted, 42-57 % of VOC-OH reactivity, and aromatic-OVOCs such as benzenediols, phenols, and benzaldehyde were the dominant potential SOA precursors. In addition, ambient air measurements of emissions from the Fourmile Canyon Fire

  19. Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US

    NASA Astrophysics Data System (ADS)

    Gilman, J. B.; Lerner, B. M.; Kuster, W. C.; Goldan, P. D.; Warneke, C.; Veres, P. R.; Roberts, J. M.; de Gouw, J. A.; Burling, I. R.; Yokelson, R. J.

    2015-12-01

    A comprehensive suite of instruments was used to quantify the emissions of over 200 organic gases, including methane and volatile organic compounds (VOCs), and 9 inorganic gases from 56 laboratory burns of 18 different biomass fuel types common in the southeastern, southwestern, or northern US. A gas chromatograph-mass spectrometry (GC-MS) instrument provided extensive chemical detail of discrete air samples collected during a laboratory burn and was complemented by real-time measurements of organic and inorganic species via an open-path Fourier transform infrared spectroscopy (OP-FTIR) instrument and three different chemical ionization-mass spectrometers. These measurements were conducted in February 2009 at the US Department of Agriculture's Fire Sciences Laboratory in Missoula, Montana and were used as the basis for a number of emission factors reported by Yokelson et al. (2013). The relative magnitude and composition of the gases emitted varied by individual fuel type and, more broadly, by the three geographic fuel regions being simulated. Discrete emission ratios relative to carbon monoxide (CO) were used to characterize the composition of gases emitted by mass; reactivity with the hydroxyl radical, OH; and potential secondary organic aerosol (SOA) precursors for the 3 different US fuel regions presented here. VOCs contributed less than 0.78 % ± 0.12 % of emissions by mole and less than 0.95 % × 0.07 % of emissions by mass (on average) due to the predominance of CO2, CO, CH4, and NOx emissions; however, VOCs contributed 70-90 (±16) % to OH reactivity and were the only measured gas-phase source of SOA precursors from combustion of biomass. Over 82 % of the VOC emissions by mole were unsaturated compounds including highly reactive alkenes and aromatics and photolabile oxygenated VOCs (OVOCs) such as formaldehyde. OVOCs contributed 57-68 % of the VOC mass emitted, 41-54 % of VOC-OH reactivity, and aromatic-OVOCs such as benzenediols, phenols, and benzaldehyde

  20. Crystal and molecular structure of eight organic acid-base adducts from 2-methylquinoline and different acids

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Jin, Shouwen; Tao, Lin; Liu, Bin; Wang, Daqi

    2014-08-01

    Eight supramolecular complexes with 2-methylquinoline and acidic components as 4-aminobenzoic acid, 2-aminobenzoic acid, salicylic acid, 5-chlorosalicylic acid, 3,5-dinitrosalicylic acid, malic acid, sebacic acid, and 1,5-naphthalenedisulfonic acid were synthesized and characterized by X-ray crystallography, IR, mp, and elemental analysis. All of the complexes are organic salts except compound 2. All supramolecular architectures of 1-8 involve extensive classical hydrogen bonds as well as other noncovalent interactions. The results presented herein indicate that the strength and directionality of the classical hydrogen bonds (ionic or neutral) between acidic components and 2-methylquinoline are sufficient to bring about the formation of binary organic acid-base adducts. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-8 displayed 2D-3D framework structure.

  1. Predictions of diagenetic reactions in the presence of organic acids

    NASA Astrophysics Data System (ADS)

    Harrison, Wendy J.; Thyne, Geoffrey D.

    1992-02-01

    Stability constants have been estimated for cation complexes with anions of monofunctional and difunctional acids (combinations of Ca, Mg, Fe, Al, Sr, Mn, U, Th, Pb, Cu, Zn with formate, acetate, propionate, oxalate, malonate, succinate, and salicylate) between 0 and 200°C. Difunctional acid anions form much more stable complexes than monofunctional acid anions with aluminum; the importance of the aluminum-acetate complex is relatively minor in comparison to aluminum oxalate and malonate complexes. Divalent metal cations such as Mg, Ca, and Fe form more stable complexes with acetate than with difunctional acid anions. Aluminum-oxalate can dominate the species distribution of aluminum under acidic pH conditions, whereas the divalent cation-acetate and oxalate complexes rarely account for more than 60% of the total dissolved cation, and then only in more alkaline waters. Mineral thermodynamic affinities were calculated using the reaction path model EQ3/6 for waters having variable organic acid anion (OAA) contents under conditions representative of those found during normal burial diagenesis. The following scenarios are possible: 1) K-feldspar and albite are stable, anorthite dissolves 2) All feldpars are stable 3) Carbonates can be very unstable to slightly unstable, but never increase in stability. Organic acid anions are ineffective at neutral to alkaline pH in modifying stabilities of aluminosilicate minerals whereas the anions are variably effective under a wide range of pH in modifying carbonate mineral stabilities. Reaction path calculations demonstrate that the sequence of mineral reactions occurring in an arkosic sandstone-fluid system is only slightly modified by the presence of OAA. A spectrum of possible sandstone alteration mineralogies can be obtained depending on the selected boundary conditions: EQ3/6 predictions include quartz overgrowth, calcite replacement of plagioclase, albitization of plagioclase, and the formation of porosity-occluding calcite

  2. Chromatographic analysis of amino and organic acids in physiological fluids to detect inborn errors of metabolism.

    PubMed

    Woontner, Michael; Goodman, Stephen I

    2006-11-01

    This unit describes methods for the preparation of samples for analysis of physiological amino acids and organic acids. Amino acids are analyzed by ion-exchange chromatography using an automated system. Organic acids are analyzed by gas-chromatography/mass spectrometry (GC-MS). Analysis of amino and organic acids is necessary to detect and monitor the treatment of many inborn errors of metabolism. PMID:18428392

  3. Field enhancement sample stacking for analysis of organic acids in traditional Chinese medicine by capillary electrophoresis.

    PubMed

    Zhu, Qianqian; Xu, Xueqin; Huang, Yuanyuan; Xu, Liangjun; Chen, Guonan

    2012-07-13

    A technique known as field enhancement sample stacking (FESS) and capillary electrophoresis (CE) separation has been developed to analyze and detect organic acids in the three traditional Chinese medicines (such as Portulaca oleracea L., Crataegus pinnatifida and Aloe vera L.). In FESS, a reverse electrode polarity-stacking mode (REPSM) was applied as on-line preconcentration strategy. Under the optimized condition, the baseline separation of eight organic acids (linolenic acid, lauric acid, p-coumaric acid, ascorbic acid, benzoic acid, caffeic acid, succinic acid and fumaric acid) could be achieved within 20 min. Validation parameters of this method (such as detection limits, linearity and precision) were also evaluated. The detection limits ranged from 0.4 to 60 ng/mL. The results indicated that the proposed method was effective for the separation of mixtures of organic acids. Satisfactory recoveries were also obtained in the analysis of these organic acids in the above traditional Chinese medicine samples. PMID:22381886

  4. Organic Acids as Hetrotrophic Energy Sources in Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Windman, T. O.; Zolotova, N.; Shock, E.

    2004-12-01

    Many thermophilic microbes are heterotrophs, but little is known about the organic compounds present in hydrothermal ecosystems. More is known about what these organisms will metabolize in lab experiments than what they do metabolize in nature. In an effort to bridge this gap, we have begun to incorporate organic analyses into ongoing research on Yellowstone hydrothermal ecosystems. After filtering at least a liter of hot spring water to minimize contamination, samples were collected into sixty-milliliter serum vials containing ultra-pure phosphoric acid, sodium hydroxide, or benzalkonium chloride. Approximately 80 sites were sampled spanning temperatures from 60 to 90°C and pH values from 2 to 9. Analytical data for organic acid anions (including formate, acetate, lactate, and succinate) were obtained by ion chromatography. Preliminary results indicate that concentrations of organic acids anions range from 5 to 300 ppb. These results can be used with other field and lab data (sulfate, sulfide, nitrate, ammonia, bicarbonate, pH, hydrogen) in thermodynamic calculations to evaluate the amounts of energy available in heterotrophic reactions. Preliminary results of such calculations show that sulfate reduction to sulfide coupled to succinate oxidation to bicarbonate yields about 6 kcal per mole of electrons transferred. When formate oxidation to bicarbonate or hydrogen oxidation to water is coupled to sulfate reduction there is less energy available by approximately a factor of two. A comparison with nitrate reduction to ammonia involving succinate and/or formate oxidation reveals several similarities. Using formate to reduce nitrate can yield about as much energy as nitrate reduction with hydrogen (typically 12 to 14 kcal per mole of electrons transferred), but using succinate can yield more than twice as much energy. In fact, reduction of nitrate with succinate can provide more energy than any of the inorganic nitrate reduction reactions involving sulfur, iron

  5. Engineering Porous Organic Cage Crystals with Increased Acid Gas Resistance.

    PubMed

    Zhu, Guanghui; Hoffman, Christopher D; Liu, Yang; Bhattacharyya, Souryadeep; Tumuluri, Uma; Jue, Melinda L; Wu, Zili; Sholl, David S; Nair, Sankar; Jones, Christopher W; Lively, Ryan P

    2016-07-25

    Both known and new CC3-based porous organic cages are prepared and exposed to acidic SO2 in vapor and liquid conditions. Distinct differences in the stability of the CC3 cages exist depending on the chirality of the diamine linkers used. The acid catalyzed CC3 degradation mechanism is probed via in situ IR and a degradation pathway is proposed and supported with computational results. CC3 crystals synthesized with racemic mixtures of diaminocyclohexane exhibited enhanced stability compared to CC3-R and CC3-S. Confocal fluorescent microscope images reveal that the stability difference in CC3 species originates from an abundance of mesoporous grain boundaries in CC3-R and CC3-S, allowing facile access of aqueous SO2 throughout the crystal, promoting decomposition. These grain boundaries are absent from CC3 crystals made with racemic linkers. PMID:27253350

  6. DC diaphragm discharge in water solutions of selected organic acids

    NASA Astrophysics Data System (ADS)

    Vyhnankova, Edita J.; Hammer, Malte U.; Reuter, Stephan; Krcma, Frantisek

    2015-07-01

    Effect of four simple organic acids water solution on a DC diaphragm discharge was studied. Efficiency of the discharge was quantified by the hydrogen peroxide production determined by UV-VIS spectrometry of a H2O2 complex formed with specific titanium reagent. Automatic titration was used to study the pH behaviour after the plasma treatment. Optical emission spectroscopy overview spectra were recorded and detailed spectra of OH band and Hβ line were used to calculate the rotational temperature and comparison of the line profile (reflecting electron concentration) in the acid solutions. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  7. Control of Meloidogyne incognita Using Mixtures of Organic Acids

    PubMed Central

    Seo, Yunhee; Kim, Young Ho

    2014-01-01

    This study sought to control the root-knot nematode (RKN) Meloidogyne incognita using benign organo-chemicals. Second-stage juveniles (J2) of RKN were exposed to dilutions (1.0%, 0.5%, 0.2%, and 0.1%) of acetic acid (AA), lactic acid (LA), and their mixtures (MX). The nematode bodies were disrupted severely and moderately by vacuolations in 0.5% of MX and single organic acids, respectively, suggesting toxicity of MX may be higher than AA and LA. The mortality of J2 was 100% at all concentrations of AA and MX and only at 1.0% and 0.5% of LA, which lowered slightly at 0.2% and greatly at 0.1% of LA. This suggests the nematicidal activity of MX may be mostly derived from AA together with supplementary LA toxicity. MX was applied to chili pepper plants inoculated with about 1,000 J2, for which root-knot gall formations and plant growths were examined 4 weeks after inoculation. The root gall formation was completely inhibited by 0.5% MX and standard and double concentrations of fosthiazate; and inhibited 92.9% and 57.1% by 0.2% and 0.1% MX, respectively. Shoot height, shoot weight, and root weight were not significantly (P ≤ 0.05) different among all treatments and the untreated and non-inoculated controls. All of these results suggest that the mixture of the organic acids may have a potential to be developed as an eco-friendly nematode control agent that needs to be supported by the more nematode control experiments in fields. PMID:25506312

  8. Control of Meloidogyne incognita Using Mixtures of Organic Acids.

    PubMed

    Seo, Yunhee; Kim, Young Ho

    2014-12-01

    This study sought to control the root-knot nematode (RKN) Meloidogyne incognita using benign organo-chemicals. Second-stage juveniles (J2) of RKN were exposed to dilutions (1.0%, 0.5%, 0.2%, and 0.1%) of acetic acid (AA), lactic acid (LA), and their mixtures (MX). The nematode bodies were disrupted severely and moderately by vacuolations in 0.5% of MX and single organic acids, respectively, suggesting toxicity of MX may be higher than AA and LA. The mortality of J2 was 100% at all concentrations of AA and MX and only at 1.0% and 0.5% of LA, which lowered slightly at 0.2% and greatly at 0.1% of LA. This suggests the nematicidal activity of MX may be mostly derived from AA together with supplementary LA toxicity. MX was applied to chili pepper plants inoculated with about 1,000 J2, for which root-knot gall formations and plant growths were examined 4 weeks after inoculation. The root gall formation was completely inhibited by 0.5% MX and standard and double concentrations of fosthiazate; and inhibited 92.9% and 57.1% by 0.2% and 0.1% MX, respectively. Shoot height, shoot weight, and root weight were not significantly (P ≤ 0.05) different among all treatments and the untreated and non-inoculated controls. All of these results suggest that the mixture of the organic acids may have a potential to be developed as an eco-friendly nematode control agent that needs to be supported by the more nematode control experiments in fields. PMID:25506312

  9. Compilation and evaluation of gas-phase diffusion coefficients of reactive trace gases in the atmosphere: volume 2. Organic compounds and Knudsen numbers for gas uptake calculations

    NASA Astrophysics Data System (ADS)

    Tang, M. J.; Shiraiwa, M.; Pöschl, U.; Cox, R. A.; Kalberer, M.

    2015-02-01

    Diffusion of organic vapours to the surface of aerosol or cloud particles is an important step for the formation and transformation of atmospheric particles. So far, however, a database of gas phase diffusion coefficients for organic compounds of atmospheric interest has not been available. In this work we have compiled and evaluated gas phase diffusivities (pressure-independent diffusion coefficients) of organic compounds reported by previous experimental studies, and we compare the measurement data to estimates obtained with Fuller's semi-empirical method. The difference between measured and estimated diffusivities are mostly < 10%. With regard to gas-particle interactions, different gas molecules, including both organic and inorganic compounds, exhibit similar Knudsen numbers (Kn) although their gas phase diffusivities may vary over a wide range. Knudsen numbers of gases with unknown diffusivity can be approximated by a simple function of particle diameter and pressure and can be used to characterize the influence of diffusion on gas uptake by aerosol or cloud particles. We use a kinetic multi-layer model of gas-particle interaction to illustrate the effects of gas phase diffusion on the condensation of organic compounds with different volatilities. The results show that gas-phase diffusion can play a major role in determining the growth of secondary organic aerosol particles by condensation of low-volatility organic vapours.

  10. 40 CFR 721.5465 - Amine salt of organic acid (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amine salt of organic acid (generic... Substances § 721.5465 Amine salt of organic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as amine salt of organic acid...

  11. 40 CFR 721.5465 - Amine salt of organic acid (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amine salt of organic acid (generic... Substances § 721.5465 Amine salt of organic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as amine salt of organic acid...

  12. 40 CFR 721.5465 - Amine salt of organic acid (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amine salt of organic acid (generic... Substances § 721.5465 Amine salt of organic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as amine salt of organic acid...

  13. 40 CFR 721.5465 - Amine salt of organic acid (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amine salt of organic acid (generic... Substances § 721.5465 Amine salt of organic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as amine salt of organic acid...

  14. 40 CFR 721.5465 - Amine salt of organic acid (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amine salt of organic acid (generic... Substances § 721.5465 Amine salt of organic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as amine salt of organic acid...

  15. Simple method of isolating humic acids from organic soils

    NASA Astrophysics Data System (ADS)

    Ahmed, O. H.; Susilawati, K.; Nik Muhamad, A. B.; Khanif, M. Y.

    2009-04-01

    Humic substances particularly humic acids (HA) play a major role in soil conditioning e.g. erosion control, soil cation exchange capacity, complexation of heavy metal ions and pesticides, carbon and nitrogen cycles, plant growth and reduction of ammonia volatilization from urea. Humified substances such as coal, composts, and peat soils have substantial amounts of HA but the isolation of these acids is expensive, laborious, and time consuming. Factors that affect the quality and yield of HA isolated from these materials include extraction, fractionation, and purification periods. This work developed a simple, rapid, and cost effective method of isolating HA from peat soils. There was a quadratic relationship between extraction period and HA yield. Optimum extraction period was estimated at 4 h instead of the usual range of 12 to 48 h. There was no relationship between fractionation period and HA yield. As such 2 h instead of the usual range of 12 to 24 h fractionation period could be considered optimum. Low ash content (5%), remarkable reduction in K, coupled with the fact that organic C, E4/E6, carboxylic COOH, phenolic OH, and total acidity values of the HA were consistent with those reported by other authors suggest that the HA dealt with were free from mineral matter. This was possible because the distilled water used to purify the HA served as Bronsted-Lowry acid during the purification process of the HA. Optimum purification period using distilled waster was 1 h instead of the usual range of 1 and 7 days (uses HF and HCl and dialysis). Humic acids could be isolated from tropical peat soils within 7 h (i.e. 4 h extraction, 2 h fractionation, and 1 h purification) instead of the existing period of 2 and 7 days. This could facilitate the idea of producing organic fertilizers such as ammonium-humate and potassium-humate from humified substances since techniques devised in this study did not alter the true nature of the HA. Besides, the technique is rapid, simple

  16. Organic acids in cloud water and rainwater at a mountain site in acid rain areas of South China.

    PubMed

    Sun, Xiao; Wang, Yan; Li, Haiyan; Yang, Xueqiao; Sun, Lei; Wang, Xinfeng; Wang, Tao; Wang, Wenxing

    2016-05-01

    To investigate the chemical characteristics of organic acids and to identify their source, cloud water and rainwater samples were collected at Mount Lu, a mountain site located in the acid rain-affected area of south China, from August to September of 2011 and March to May of 2012. The volume-weighted mean (VWM) concentration of organic acids in cloud water was 38.42 μeq/L, ranging from 7.45 to 111.46 μeq/L, contributing to 2.50 % of acidity. In rainwater samples, organic acid concentrations varied from 12.39 to 68.97 μeq/L (VWM of 33.39 μeq/L). Organic acids contributed significant acidity to rainwater, with a value of 17.66 %. Formic acid, acetic acid, and oxalic acid were the most common organic acids in both cloud water and rainwater. Organic acids had an obviously higher concentration in summer than in spring in cloud water, whereas there was much less discrimination in rainwater between the two seasons. The contribution of organic acids to acidity was lower during summer than during spring in both cloud water (2.20 % in summer vs 2.83 % in spring) and rainwater (12.24 % in summer vs 19.89 % in spring). The formic-to-acetic acid ratio (F/A) showed that organic acids were dominated by primary emissions in 71.31 % of the cloud water samples and whole rainwater samples. Positive matrix factorization (PMF) analysis determined four factors as the sources of organic acids in cloud water, including biogenic emissions (61.8 %), anthropogenic emissions (15.28 %), marine emissions (15.07 %) and soil emissions (7.85 %). The findings from this study imply an indispensable role of organic acids in wet deposition, but organic acids may have a limited capacity to increase ecological risks in local environments. PMID:26841776

  17. HPLC method for the simultaneous quantification of the major organic acids in Angeleno plum fruit

    NASA Astrophysics Data System (ADS)

    Wang, Yanwei; Wang, Jing; Cheng, Wei; Zhao, Zhilei; Cao, Jiankang

    2014-08-01

    A method was developed to profile major organic acids in Angeleno fruit by high performance liquid chromatography. Organic acids in plum were extracted by water with ultra- sonication at 50°C for 30 min. The extracts were chromatographed on Waters Atlantis T3 C18 column (4.6 mm×250 mm, 5 μm) with 0.01mol/L sulfuric acid and water as mobile phase, and flow rate was 0.5 ml/min. The column temperature was 40C, and chromatography was monitored by a diode array detector at 210 nm. The result showed that malic acid, citric acid, tartaric acid, oxalic acid, pyruvic acid, acetic acid, succinic acid in Angeleno plum, and the malic acid was the major organic acids. The coefficient of determination of the standard calibration curve is R2 > 0.999. The organic acids recovery ranged from 99.11% for Malic acid to 106.70% for Oxalic acid, and CV (n=6) ranged from 0.95% for Malic acid to 6.23% for Oxalic acid, respectively. The method was accurate, sensitive and feasible in analyzing the organic acids in Angeleno plum.

  18. Origins of geothermal gases at Yellowstone

    USGS Publications Warehouse

    Lowenstern, Jacob B.; Bergfeld, D.; Evans, William C.; Hunt, Andrew G.

    2015-01-01

    Gas emissions at the Yellowstone Plateau Volcanic Field (YPVF) reflect open-system mixing of gas species originating from diverse rock types, magmas, and crustal fluids, all combined in varying proportions at different thermal areas. Gases are not necessarily in chemical equilibrium with the waters through which they vent, especially in acid sulfate terrain where bubbles stream through stagnant acid water. Gases in adjacent thermal areas often can be differentiated by isotopic and gas ratios, and cannot be tied to one another solely by shallow processes such as boiling-induced fractionation of a parent liquid. Instead, they inherit unique gas ratios (e.g., CH4/He) from the dominant rock reservoirs where they originate, some of which underlie the Quaternary volcanic rocks. Steam/gas ratios (essentially H2O/CO2) of Yellowstone fumaroles correlate with Ar/He and N2/CO2, strongly suggesting that H2O/CO2 is controlled by addition of steam boiled from water rich in atmospheric gases. Moreover, H2O/CO2 varies systematically with geographic location, such that boiling is more enhanced in some areas than others. The δ13C and 3He/CO2 of gases reflect a dominant mantle origin for CO2 in Yellowstone gas. The mantle signature is most evident at Mud Volcano, which hosts gases with the lowest H2O/CO2, lowest CH4 concentrations and highest He isotope ratios (~16Ra), consistent with either a young subsurface intrusion or less input of crustal and meteoric gas than any other location at Yellowstone. Across the YPVF, He isotope ratios (3He/4He) inversely vary with He concentrations, and reflect varied amounts of long- stored, radiogenic He added to the magmatic endmember within the crust. Similarly, addition of CH4 from organic-rich sediments is common in the eastern thermal areas at Yellowstone. Overall, Yellowstone gases reflect addition of deep, high-temperature magmatic gas (CO2-rich), lower-temperatures crustal gases (4He- and CH4-bearing), and those gases (N2, Ne, Ar) added

  19. Origins of geothermal gases at Yellowstone

    NASA Astrophysics Data System (ADS)

    Lowenstern, Jacob B.; Bergfeld, Deborah; Evans, William C.; Hunt, Andrew G.

    2015-09-01

    Gas emissions at the Yellowstone Plateau Volcanic Field (YPVF) reflect open-system mixing of gas species originating from diverse rock types, magmas, and crustal fluids, all combined in varying proportions at different thermal areas. Gases are not necessarily in chemical equilibrium with the waters through which they vent, especially in acid sulfate terrain where bubbles stream through stagnant acid water. Gases in adjacent thermal areas often can be differentiated by isotopic and gas ratios, and cannot be tied to one another solely by shallow processes such as boiling-induced fractionation of a parent liquid. Instead, they inherit unique gas ratios (e.g., CH4/He) from the dominant rock reservoirs where they originate, some of which underlie the Quaternary volcanic rocks. Steam/gas ratios (essentially H2O/CO2) of Yellowstone fumaroles correlate with Ar/He and N2/CO2, strongly suggesting that H2O/CO2 is controlled by addition of steam boiled from water rich in atmospheric gases. Moreover, H2O/CO2 varies systematically with geographic location, such that boiling is more enhanced in some areas than others. The δ13C and 3He/CO2 of gases reflect a dominant mantle origin for CO2 in Yellowstone gas. The mantle signature is most evident at Mud Volcano, which hosts gases with the lowest H2O/CO2, lowest CH4 concentrations and highest He isotope ratios (~ 16Ra), consistent with either a young subsurface intrusion or less input of crustal and meteoric gas than any other location at Yellowstone. Across the YPVF, He isotope ratios (3He/4He) inversely vary with He concentrations, and reflect varied amounts of long-stored, radiogenic He added to the magmatic endmember within the crust. Similarly, addition of CH4 from organic-rich sediments is common in the eastern thermal areas at Yellowstone. Overall, Yellowstone gases reflect addition of deep, high-temperature magmatic gas (CO2-rich), lower-temperatures crustal gases (4He- and CH4-bearing), and those gases (N2, Ne, Ar) added

  20. Acidity of vapor plume from cooling tower mixed with flue gases emitted from coal-fired power plant.

    PubMed

    Hlawiczka, Stanislaw; Korszun, Katarzyna; Fudala, Janina

    2016-06-01

    Acidity of products resulting from the reaction of flue gas components emitted from a coal-fired power plant with water contained in a vapor plume from a wet cooling tower was analyzed in a close vicinity of a power plant (710 m from the stack and 315 m from the cooling tower). Samples of this mixture were collected using a precipitation funnel where components of the mixed plumes were discharged from the atmosphere with the rainfall. To identify situations when the precipitation occurred at the same time as the wind directed the mixed vapor and flue gas plumes above the precipitation funnel, an ultrasound anemometer designed for 3D measurements of the wind field located near the funnel was used. Precipitation samples of extremely high acidity were identified - about 5% of samples collected during 12 months showed the acidity below pH=3 and the lowest recorded pH was 1.4. During the measurement period the value of pH characterizing the background acidity of the precipitation was about 6. The main outcome of this study was to demonstrate a very high, and so far completely underestimated, potential of occurrence of episodes of extremely acid depositions in the immediate vicinity of a coal-fired power plant. PMID:26950639

  1. Gas-particle partitioning of organic acids during the Southern Oxidant and Aerosol Study (SOAS): measurements and modeling

    NASA Astrophysics Data System (ADS)

    Thompson, S.; Yatavelli, R.; Stark, H.; Kimmel, J.; Krechmer, J.; Day, D. A.; Isaacman, G. A.; Goldstein, A. H.; Khan, M. A. H.; Holzinger, R.; Lopez-Hilfiker, F.; Mohr, C.; Thornton, J. A.; Jayne, J. T.; Worsnop, D. R.; Jimenez, J. L.

    2014-12-01

    Gas-Particle partitioning measurements of organic acids were carried out during the Southern Oxidant and Aerosol Study (SOAS, June-July 2013) at the Centerville, AL Supersite in the Southeast US, a region with significant isoprene and terpene emissions. Organic acid measurements were made with a Chemical Ionization High Resolution Time-of-Flight Mass Spectrometer (HRToF-CIMS) with a Filter Inlet for Gases and AEROsols (FIGAERO) and acetate (CH3COO-) as the reagent ion. We investigate both individual species and bulk organic acids and partitioning to organic and water phases in the aerosol. Measured partitioning is compared to data from three other instruments that can also quantify gas-particle partitioning with high time resolution: another HRToF-CIMS using iodide (I-) as the reagent ion to ionize acids and other highly oxidized compounds, a Semivolatile Thermal Desorption Aerosol GC/MS (SV-TAG), and a Thermal Desorption Proton Transfer Time-of-Flight Mass Spectrometer (TD-PTRMS The partitioning measurements for three of the instruments are generally consistent, with results in the same range for most species and following similar temporal trends and diurnal cycles. The TD-PTRMS measures on average ½ the partitioning to the particle phase of the acetate CIMS. Both the measurements and the model of partitioning to the organic phase respond quickly to temperature, and the model agrees with the measured partitioning within the error of the measurement for multiple compounds, although many compounds do not match the modeled partitioning, especially at lower m/z. This discrepancy may be due to thermal decomposition of larger molecules into smaller ones when heated.

  2. Sulfuric acid vapor and other cloud-related gases in the Venus atmosphere - Abundances inferred from observed radio opacity

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.; Eshleman, V. R.

    1982-01-01

    It is suggested that the absorbing characteristics of sulfuric acid vapor appear to reconcile what had been thought to be an inconsistency among measurements and deductions regarding the constituents of the Venus atmosphere and radio occultation, radar reflection, and radio emission measurements of its opacity. Laboratory measurements of sulfuric acid, sulfur dioxide, water vapor, and carbon dioxide are used to model relative contributions to opacity as a function of height in a way that is consistent with observations of the constituents and absorbing properties of the atmosphere. It is concluded that sulfuric acid vapor is likely to be the principal microwave absorber in the 30-50 km altitude range of the middle atmosphere of Venus.

  3. IUPAC-NIST Solubility Data Series. 99. Solubility of Benzoic Acid and Substituted Benzoic Acids in Both Neat Organic Solvents and Organic Solvent Mixtures

    NASA Astrophysics Data System (ADS)

    Acree, William E.

    2013-09-01

    Solubility data are compiled and reviewed for benzoic acid and 63 substituted benzoic acids dissolved in neat organic solvents and well-defined binary and ternary organic solvent mixtures. The compiled solubility data were retrieved from the published chemical and pharmaceutical literature covering the period from 1900 to the beginning of 2013.

  4. Carbohydrate, Organic Acid, and Amino Acid Composition of Bacteroids and Cytosol from Soybean Nodules 1

    PubMed Central

    Streeter, John G.

    1987-01-01

    Metabolites in Bradyrhizobium japonicum bacteroids and in Glycine max (L.) Merr. cytosol from root nodules were analyzed using an isolation technique which makes it possible to estimate and correct for changes in concentration which may occur during bacteroid isolation. Bacteroid and cytosol extracts were fractionated on ion-exchange columns and were analyzed for carbohydrate composition using gas-liquid chromatography and for organic acid and amino acid composition using high performance liquid chromatography. Analysis of organic acids in plant tissues as the phenacyl derivatives is reported for the first time and this approach revealed the presence of several unknown organic acids in nodules. The time required for separation of bacteroids and cytosol was varied, and significant change in concentration of individual compounds during the separation of the two fractions was estimated by calculating the regression of concentration on time. When a statistically significant slope was found, the true concentration was estimated by extrapolating the regression line to time zero. Of 78 concentration estimates made, there was a statistically significant (5% level) change in concentration during sample preparation for only five metabolites: glucose, sucrose, and succinate in the cytosol and d-pinitol and serine in bacteroids. On a mass basis, the major compounds in bacteroids were (descending order of concentration): myo-inositol, d-chiro-inositol, α,α-trehalose, sucrose, aspartate, glutamate, d-pinitol, arginine, malonate, and glucose. On a proportional basis (concentration in bacteroid as percent of concentration in bacteroid + cytosol fractions), the major compounds were: α-aminoadipate (94), trehalose (66), lysine (58), and arginine (46). The results indicate that metabolite concentrations in bacteroids can be reliably determined. PMID:16665774

  5. Toxic gases.

    PubMed Central

    Matthews, G.

    1989-01-01

    An overview of the widespread use of gases and some volatile solvents in modern society is given. The usual circumstances in which undue exposure may occur are described. The most prominent symptoms and general principles of diagnosis and treatment are given and are followed by more specific information on the commoner, more toxic materials. While acute poisonings constitute the greater part of the paper, some indication of chronic disorders arising from repeated or prolonged exposure is also given. PMID:2687827

  6. Adsorption and Separation of Light Gases on an Amino-Functionalized Metal–Organic Framework: An Adsorption and In Situ XRD Study

    SciTech Connect

    Couck S.; Stavitski E.; Gobehiya, E.; Kirschhock, C.E.A.; Serra-Crespo, P.; Juan-Alcaniz, J.; Martinez Joaristi, A.; Gascon, J.; Kapteijn, F.; Baron, G. V.; Denayer J.F.M.

    2012-02-29

    The NH{sub 2}-MIL-53(Al) metal-organic framework was studied for its use in the separation of CO{sub 2} from CH{sub 4}, H{sub 2}, N{sub 2} C{sub 2}H{sub 6} and C{sub 3}H{sub 8} mixtures. Isotherms of methane, ethane, propane, hydrogen, nitrogen, and CO{sub 2} were measured. The atypical shape of these isotherms is attributed to the breathing properties of the material, in which a transition from a very narrow pore form to a narrow pore form and from a narrow pore form to a large pore form occurs, depending on the total pressure and the nature of the adsorbate, as demonstrated by in-situ XRD patterns measured during adsorption. Apart from CO{sub 2}, all tested gases interacted weakly with the adsorbent. As a result, they are excluded from adsorption in the narrow pore form of the material at low pressure. CO{sub 2} interacted much more strongly and was adsorbed in significant amounts at low pressure. This gives the material excellent properties to separate CO{sub 2} from other gases. The separation of CO{sub 2} from methane, nitrogen, hydrogen, or a combination of these gases has been demonstrated by breakthrough experiments using pellets of NH{sub 2}-MIL-53(Al). The effect of total pressure (1-30 bar), gas composition, temperature (303-403 K) and contact time has been examined. In all cases, CO{sub 2} was selectively adsorbed, whereas methane, nitrogen, and hydrogen nearly did not adsorb at all. Regeneration of the adsorbent by thermal treatment, inert purge gas stripping, and pressure swing has been demonstrated. The NH{sub 2}-MIL-53(Al) pellets retained their selectivity and capacity for more than two years.

  7. Noble Gases

    NASA Astrophysics Data System (ADS)

    Podosek, F. A.

    2003-12-01

    The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the

  8. Effects of CO2 enrichment on the metabolism of soluble amino acids and organic acids in barley primary leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Responses of soluble amino acids and organic acids to CO2 enrichment were determined with barley primary leaves (Hordeum vulgare L. cv. Brant) grown in controlled environment chambers. Total soluble amino acids were enhanced 33% by CO2 enrichment when determined 9 days after sowing (DAS). However,...

  9. Acidic gases and nitrate and sulfate particles in the atmosphere in the city of Guadalajara, México.

    PubMed

    Saldarriaga-Noreña, Hugo; Waliszewski, Stefan; Murillo-Tovar, Mario; Hernández-Mena, Leonel; de la Garza-Rodríguez, Iliana; Colunga-Urbina, Edith; Cuevas-Ordaz, Rosalva

    2012-05-01

    Atmospheric concentrations of nitrous acid, nitric acid, nitrate and sulfate particles were obtained in this study from April to June 2008 in the center of the city of Guadalajara, while concentrations of ozone, sulfur dioxide, nitrogen dioxide and meteorological parameters (temperature and relative humidity), were acquired by the Secretaría del Medio Ambiente para el Desarrollo Sustentable del Estado de Jalisco (SEMADES). The results showed that nitric acid (2.7 μg m(-3)) was 2.7 times higher than nitrous acid (1.0 μg m(-3)). The sulfur dioxide (SO(2)) concentration indicated an opposite trend to sulfate (SO(4) (2-)), with the average concentration of SO(2) (6.9 μg m(-3)) higher in almost the entire period of study. The sulfur conversion ratio (Fs, 24.9%) and nitrogen conversion ratio (Fn, 6.2%), were revealed to be similar to that reported in other urban areas during warm seasons. It is also noted that ozone is not the main oxidizer of nitrogen dioxide and sulfur dioxide. This determination was made by taking into account the slightly positively correlation determined for Fn (r(2) = 0.084) and Fs (r(2) = 0.092) with ozone that perhaps suggests there are other oxidizing species such as the radical OH, which are playing an important role in the processes of atmospheric oxidation in this area. PMID:22358115

  10. Hormonal Regulation of Organic and Phosphoric Acid Release by Barley Aleurone Layers and Scutella.

    PubMed Central

    Drozdowicz, Y. M.; Jones, R. L.

    1995-01-01

    The release of acid from the aleurone layer and scutellum of barley (Hordeum vulgare L. cv Himalaya) was investigated. Aleurone layers isolated from mature barley grains acidify the external medium by releasing organic and phosphoric acids. Gibberellic acid and abscisic acid stimulate acid release 2-fold over control tissue incubated in 10 mM CACl2. Gibberellic acid causes medium acidification by stimulating the release of phosphoric and citric acids, whereas abscisic acid stimulates the release of malic acid. The accumulation of these acids in the incubation medium buffers the medium against changes in pH, particularly between pH 4 and 5. The amounts of amino acids that accumulate in the medium are low (2-12 nmol/layer) compared to other organic and phosphoric acids (100-500 nmol/layer). The scutellum does not play a major role in medium acidification but participates in the uptake of organic acids. The organic acid composition of the starchy endosperm changes after 3 d of imbibition; malic, succinic, and lactic acids decrease, whereas citric and phosphoric acids remain unchanged or increase. These results indicate that during postgerminative growth, the acidity of the starchy endosperm is maintained by acid production by the aleurone layer. PMID:12228509

  11. Recoded organisms engineered to depend on synthetic amino acids.

    PubMed

    Rovner, Alexis J; Haimovich, Adrian D; Katz, Spencer R; Li, Zhe; Grome, Michael W; Gassaway, Brandon M; Amiram, Miriam; Patel, Jaymin R; Gallagher, Ryan R; Rinehart, Jesse; Isaacs, Farren J

    2015-02-01

    Genetically modified organisms (GMOs) are increasingly used in research and industrial systems to produce high-value pharmaceuticals, fuels and chemicals. Genetic isolation and intrinsic biocontainment would provide essential biosafety measures to secure these closed systems and enable safe applications of GMOs in open systems, which include bioremediation and probiotics. Although safeguards have been designed to control cell growth by essential gene regulation, inducible toxin switches and engineered auxotrophies, these approaches are compromised by cross-feeding of essential metabolites, leaked expression of essential genes, or genetic mutations. Here we describe the construction of a series of genomically recoded organisms (GROs) whose growth is restricted by the expression of multiple essential genes that depend on exogenously supplied synthetic amino acids (sAAs). We introduced a Methanocaldococcus jannaschii tRNA:aminoacyl-tRNA synthetase pair into the chromosome of a GRO derived from Escherichia coli that lacks all TAG codons and release factor 1, endowing this organism with the orthogonal translational components to convert TAG into a dedicated sense codon for sAAs. Using multiplex automated genome engineering, we introduced in-frame TAG codons into 22 essential genes, linking their expression to the incorporation of synthetic phenylalanine-derived amino acids. Of the 60 sAA-dependent variants isolated, a notable strain harbouring three TAG codons in conserved functional residues of MurG, DnaA and SerS and containing targeted tRNA deletions maintained robust growth and exhibited undetectable escape frequencies upon culturing ∼10(11) cells on solid media for 7 days or in liquid media for 20 days. This is a significant improvement over existing biocontainment approaches. We constructed synthetic auxotrophs dependent on sAAs that were not rescued by cross-feeding in environmental growth assays. These auxotrophic GROs possess alternative genetic codes that

  12. Qualitative urinary organic acid analysis: 10 years of quality assurance.

    PubMed

    Peters, Verena; Bonham, James R; Hoffmann, Georg F; Scott, Camilla; Langhans, Claus-Dieter

    2016-09-01

    Over the last 10 years, a total of 90 urine samples from patients with metabolic disorders and controls were circulated to different laboratories in Europe and overseas, starting with 67 laboratories in 2005 and reaching 101 in 2014. The participants were asked to analyse the samples in their usual way and to prepare a report as if to a non-specialist pediatrician. The performance for the detection of fumarase deficiency, glutaric aciduria type I, isovaleric aciduria, methylmalonic aciduria, mevalonic aciduria, phenylketonuria and propionic aciduria was excellent (98-100 %). Over the last few years, detection has clearly improved for tyrosinaemia type I (39 % in 2008 to over 80 % in 2011/2014), maple syrup urine disease (85 % in 2005 to 98 % in 2012), hawkinsinuria (62 % in 2010 to 88 % in 2014), aminoacylase I deficiency (43 % in 2009 to 73 % in 2012) and 3-methylcrotonyl-CoA carboxylase deficiency (60 % in 2005 to 93 % by 2011). Normal urines were mostly considered as normal (83-100 %), but laboratories often made additional diagnostic suggestions. When the findings were unambiguous, the reports were mostly clear. However, when they were less obvious, the content and quality of reports varied greatly. Repetition of organic acid measurements on a fresh sample was rarely suggested, while more complex or invasive diagnostic strategies, including further metabolic screening or biopsy were recommended. Surprisingly very few participants suggested referral from the general paediatrician to a specialist metabolic centre to confirm a diagnosis and, if applicable, to initiate treatment despite evidence suggesting that this improves the outcome for patients with inherited metabolic disorders. The reliability of qualitative organic acid analysis has improved over the last few years. However, several aspects of reporting to non-specialists may need discussion and clinicians need to be aware of the uncertainty inherent in all forms of laboratory diagnostic

  13. Use of Cavity Ring Down Spectroscopy to Characterize Organic Acids and Aerosols Emitted in Biomass Burning

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon; Fiddler, Marc; Singh, Sujeeta

    2012-02-01

    One poorly understood, but significant class of volatile organic compounds (VOC) present in biomass burning is gas-phase organic acids and inorganic acids. These acids are extremely difficult to measure because of their adsorptive nature. Particulates and aerosols are also produced during biomass burning and impact the radiation budget of the Earth and, hence, impact global climate. Use cavity ring down spectroscopy (CRD) to measure absorption cross sections for OH overtone induced photochemistry in some organic acids (acetic acid and peracetic acid) will be presented and planed measurements of optical properties of aerosols composed of mixtures of different absorbing and non-absorbing species using CRD will be discussed.

  14. Water-enhanced solubility of carboxylic acids in organic solvents and its applications to extraction processes

    SciTech Connect

    Starr, J.N.; King, C.J.

    1991-11-01

    The solubilities of carboxylic acids in certain organic solvents increase remarkably with an increasing amount of water in the organic phase. This phenomenon leads to a novel extract regeneration process in which the co-extracted water is selectively removed from an extract, and the carboxylic acid precipitates. This approach is potentially advantageous compared to other regeneration processes because it removes a minor component of the extract in order to achieve a large recovery of acid from the extract. Carboxylic acids of interest include adipic acid, fumaric acid, and succinic acid because of their low to moderate solubilities in organic solvents. Solvents were screened for an increase in acid solubility with increased water concentration in the organic phase. Most Lewis-base solvents were found to exhibit this increased solubility phenomena. Solvents that have a carbonyl functional group showed a very large increase in acid solubility. 71 refs., 52 figs., 38 tabs.

  15. Hydrogelation and Crystallization of Sodium Deoxycholate Controlled by Organic Acids.

    PubMed

    Li, Guihua; Hu, Yuanyuan; Sui, Jianfei; Song, Aixin; Hao, Jingcheng

    2016-02-16

    The gelation and crystallization behavior of a biological surfactant, sodium deoxycholate (NaDC), mixed with l-taric acid (L-TA) in water is described in detail. With the variation of molar ratio of L-TA to NaDC (r = nL-TA/nNaDC) and total concentration of the mixtures, the transition from sol to gel was observed. SEM images showed that the density of nanofibers gradually increases over the sol-gel transition. The microstructures of the hydrogels are three-dimensional networks of densely packed nanofibers with lengths extending to several micrometers. One week after preparation, regular crystallized nanospheres formed along the length of the nanofibers, and it was typical among the transparent hydrogels induced by organic acids with pKa1 value <3.4. Small-angle X-ray diffraction demonstrated differences in the molecular packing between transparent and turbid gels, indicating a variable hydrogen bond mode between NaDC molecules. PMID:26783993

  16. Effects of pH adjustment and sodium ions on sour taste intensity of organic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protonated organic acid species have been shown to be the primary stimuli responsible for sour taste of organic acids. However, we have observed that sour taste may be modulated when the pH of acid solutions is raised using sodium hydroxide. Objectives were to evaluate the effect of pH adjustment on...

  17. Isolation of organic acids from large volumes of water by adsorption chromatography

    USGS Publications Warehouse

    Aiken, George R.

    1984-01-01

    The concentrations of dissolved organic carbon from most natural waters ranges from 1 to 20 milligrams carbon per liter, of which approximately 75 percent are organic acids. These acids can be chromatographically fractionated into hydrophobic organic acids, such as humic substances, and hydrophilic organic acids. To effectively study any of these organic acids, they must be isolated from other organic and inorganic species, and concentrated. Usually, large volumes of water must be processed to obtain sufficient quantities of material, and adsorption chromatography on synthetic, macroporous resins has proven to be a particularly effective method for this purpose. The use of the nonionic Amberlite XAD-8 and Amberlite XAD-4 resins and the anion exchange resin Duolite A-7 for isolating and concentrating organic acids from water is presented.

  18. Evaluation of organic acids as fuel cell electrolytes

    SciTech Connect

    Ahmad, J.; Nguyen, T.H.; Foley, R.T.

    1981-11-01

    The electrochemical behavior of methanesulfonic acid, ethanesulfonic acid, and sulfoacetic acid as fuel cell electrolytes was studied in half-cell at various temperatures. The rate of the electro-oxidation of hydrogen at 115/degree/C was very high in methanesulfonic acid. The rate of the electro-oxidation of propane in all three acids was low even at 135/degree/C. Further, there is evidence for adsorption of these acids on the platinum electrode. It is concluded that anhydrous sulfonic acids are not good electrolytes; water solutions are required. Sulfonic acids containing unprotected carbon-hydrogen bonds are adsorbed on platinum and probably decompose during electrolysis. 9 refs.

  19. Dynamics of three organic acids (malic, acetic and succinic acid) in sunflower exposed to cadmium and lead.

    PubMed

    Niu, Zhixin; Li, Xiaodong; Sun, Lina; Sun, Tieheng

    2013-01-01

    Sunflower (Helianthus annuus L.) has been considered as a good candidate for bioaccumulation of heavy metals. In the present study, sunflower was used to enrich the cadmium and lead in sand culture during 90 days. Biomass, Cd and Pb uptake, three organic acids and pH in cultures were investigated. Results showed that the existence of Cd and Pb showed different interactions on the organic acids exudation. In single Cd treatments, malic and acetic acids in Cd10 showed an incremental tendency with time. In the mixed treatments of Cd and Pb, malic acids increased when 10 and 40 mg x L(-1) Cd were added into Pb50, but acetic acids in Pb50 were inhibited by Cd addition. The Cd10 supplied in Pb10 stimulated the secretion of malic and succinic acids. Moreover, the Cd or Pb uptake in sunflower showed various correlations with pH and some organic acids, which might be due to the fact that the Cd and Pb interfere with the organic acids secretion in rhizosphere of sunflower, and the changes of organic acids altered the form and bioavailability of Cd and Pb in cultures conversely. PMID:23819268

  20. Remarkable Impact of Acidic Ginsenosides and Organic Acids on Ginsenoside Transformation from Fresh Ginseng to Red Ginseng.

    PubMed

    Liu, Zhi; Xia, Juan; Wang, Chong-Zhi; Zhang, Jin-Qiu; Ruan, Chang-Chun; Sun, Guang-Zhi; Yuan, Chun-Su

    2016-07-01

    Panax ginseng contains many chemical components, including acidic ginsenosides and organic acids. However, whether these acidic substances play a role in ginsenoside transformation during steaming treatment has not yet been explored. In this paper, the content of neutral ginsenosides, acidic ginsenosides, and their degradation products in unsteamed and steamed P. ginseng were simultaneously quantified by high-performance liquid chromatography. We observed that neutral ginsenosides were converted to rare ginsenosides during the root steaming but not during the individual ginsenoside steaming. In contrast, acidic malonyl ginsenosides released malonic acid and acetic acid through demalonylation, decarboxylation, deacetylation reactions during the steaming at 120 °C. These malonyl ginsenosides not only were converted to rare ginsenosides but also promoted the degradation of neutral ginsenosides. Further studies indicated that a low concentration of organic acid was the determining factor for the ginsenoside conversion. The related mechanisms were deduced to be mainly acidic hydrolysis and dehydration. In summary, acidic ginsenosides and organic acids remarkably affected ginsenoside transformation during the steaming process. Our results provide useful information for precisely understanding the ginsenoside conversion pathways and mechanisms underlying the steaming process. PMID:27295137

  1. Hydrophobic treatment of organics against glass employing nonequilibrium atmospheric pressure pulsed plasmas with a mixture of CF{sub 4} and N{sub 2} gases

    SciTech Connect

    Inui, Hirotoshi; Takeda, Keigo; Ishikawa, Kenji; Sekine, Makoto; Hori, Masaru; Yara, Takuya; Uehara, Tsuyoshi

    2011-01-01

    A hydrophobic organics surface selectively against glass was realized by employing nonequilibrium atmospheric-pressure pulsed plasmas with a mixture of CF{sub 4} and N{sub 2} gases. The organic surface was drastically altered to have a high hydrophobicity, while the glass surface itself remained hydrophilic after the plasma treatment with the addition of a small amount of CF{sub 4} to the N{sub 2} gas. After 100 CF{sub 4}/N{sub 2} plasma treatments, no thin film deposition was observed on the organic material. To investigate the characteristics of the CF{sub 4}/N{sub 2} plasma, the exhaust gas from the plasma was measured by using ion attachment mass spectroscopy (IAMS). The IAMS spectrum indicated that the amounts of CF{sub 3} and F radicals were increased drastically with increasing addition of CF{sub 4}. A mechanism of the selective surface modification was clarified on a result of surface chemical bonding with the gas phase.

  2. Utility of monitoring mycophenolic acid in solid organ transplant patients.

    PubMed Central

    Oremus, Mark; Zeidler, Johannes; Ensom, Mary H H; Matsuda-Abedini, Mina; Balion, Cynthia; Booker, Lynda; Archer, Carolyn; Raina, Parminder

    2008-01-01

    OBJECTIVES To investigate whether monitoring concentrations of mycophenolic acid (MPA) in the serum or plasma of persons who receive a solid organ transplant will result in a lower incidence of transplant rejections and adverse events versus no monitoring of MPA. To investigate whether the incidence of rejection or adverse events differs according to MPA dose or frequency, type of MPA, the form of MPA monitored, the method of MPA monitoring, or sample characteristics. To assess whether monitoring is cost-effective versus no monitoring. DATA SOURCES The following databases were searched from their dates of inception (in brackets) until October 2007: MEDLINE (1966); BIOSIS Previews (1976); EMBASE (1980); Cochrane Database of Systematic Reviews (1995); and Cochrane Central Register of Controlled Trials (1995). REVIEW METHODS Studies identified from the data sources went through two levels of screening (i.e., title and abstract, full text) and the ones that passed were abstracted. Criteria for abstraction included publication in the English language, study design (i.e., randomized controlled trial [RCT], observational study with comparison group, case series), and patient receipt of allograft solid organ transplant. Additionally, any form of MPA had to be measured at least once in the plasma or serum using any method of measurement (e.g., AUC0-12, C0). Furthermore, these measures had to be linked to a health outcome (e.g., transplant rejection). Certain biomarkers (e.g., serum creatinine, glomular filtration rate) and all adverse events were also considered health outcomes. RESULTS The published evidence on MPA monitoring is inconclusive. Direct, head-to-head comparison of monitoring versus no monitoring is limited to one RCT in adult, kidney transplant patients. Inferences about monitoring can be made from some observational studies, although the evidence is equivocal for MPA dose and dose frequency, nonexistent for type of MPA, inconclusive for form of MPA monitored

  3. Bioremediation of Acidic and Metalliferous Drainage (AMD) through organic carbon amendment by municipal sewage and green waste.

    PubMed

    McCullough, Clint D; Lund, Mark A

    2011-10-01

    Pit lakes (abandoned flooded mine pits) represent a potentially valuable water resource in hot arid regions. However, pit lake water is often characterised by low pH with high dissolved metal concentrations resulting from Acidic and Metalliferous Drainage (AMD). Addition of organic matter to pit lakes to enhance microbial sulphate reduction is a potential cost effective remediation strategy. However, cost and availability of suitable organic substrates are often limiting. Nevertheless, large quantities of sewage and green waste (organic garden waste) are often available at mine sites from nearby service towns. We treated AMD pit lake water (pH 2.4) from tropical, North Queensland, Australia, with primary-treated sewage sludge, green waste, and a mixture of sewage and green waste (1:1) in a controlled microcosm experiment (4.5 L). Treatments were assessed at two different rates of organic loading of 16:1 and 32:1 pit water:organic matter by mass. Combined green waste and sewage treatment was the optimal treatment with water pH increased to 5.5 in only 145 days with decreases of dissolved metal concentrations. Results indicated that green waste was a key component in the pH increase and concomitant heavy metal removal. Water quality remediation was primarily due to microbially-mediated sulphate reduction. The net result of this process was removal of sulphate and metal solutes to sediment mainly as monosulfides. During the treatment process NH(3) and H(2)S gases were produced, albeit at below concentrations of concern. Total coliforms were abundant in all green waste-treatments, however, faecal coliforms were absent from all treatments. This study demonstrates addition of low-grade organic materials has promise for bioremediation of acidic waters and warrants further experimental investigation into feasibility at higher scales of application such as pit lakes. PMID:21616580

  4. Effects of organic acids, amino acids and ethanol on the radio-degradation of patulin in an aqueous model system

    NASA Astrophysics Data System (ADS)

    Yun, Hyejeong; Lim, Sangyong; Jo, Cheorun; Chung, Jinwoo; Kim, Soohyun; Kwon, Joong-Ho; Kim, Dongho

    2008-06-01

    The effects of organic acids, amino acids, and ethanol on the radio-degradation of patulin by gamma irradiation in an aqueous model system were investigated. The patulin, dissolved in distilled water at a concentration of 50 ppm, was practically degraded by the gamma irradiation at the dose of 1.0 kGy, while 33% of the patulin remained in apple juice. In the aqueous model system, the radio-degradation of patulin was partially inhibited by the addition of organic acids, amino acids, and ethanol. The proportions of remaining patulin after irradiation with the dose of 1.0 kGy in the 1% solution of malic acid, citric acid, lactic acid, acetic acid, ascorbic acid, and ethanol were 31.4%, 2.3%, 31.2%, 6.1%, 50.8%, and 12.5%, respectively. During 30 days of storage, the remaining patulin was reduced gradually in the solution of ascorbic acid and malic acid compared to being stable in other samples. The amino acids, serine, threonine, and histidine, inhibited the radio-degradation of patulin. In conclusion, it was suggested that 1 kGy of gamma irradiation (recommended radiation doses for radicidation and/or quarantine in fruits) is effective for the reduction of patulin, but the nutritional elements should be considered because the radio-degradation effects are environment dependent.

  5. The Photochemical Isomerization of Maleic to Fumaric Acid: An Undergraduate Organic Chemistry Experiment.

    ERIC Educational Resources Information Center

    Castro, Albert J.; And Others

    1983-01-01

    Describes an undergraduate organic chemistry experiment on the photochemical isomerization of maleic to fumaric acid. Background information, chemical reactions involved, and experimental procedures are included. (JN)

  6. Influence of organic acids on the pH and acid-neutralizing capacity of Adirondack Lakes

    NASA Astrophysics Data System (ADS)

    Munson, R. K.; Gherini, S. A.

    1993-04-01

    Past approaches for evaluating the effects of organic acids on the acid-base characteristics of surface waters have typically treated them solely as weak acids. Analysis of data collected by the Adirondack Lakes Survey Corporation (ALSC) from 1469 lakes throughout the Adirondack region shows that this approach is not valid. While the data indicate that natural organics contain a continuum of acid functional groups, many of which display weak acid characteristics, a significant fraction of the organic acid is strong (pKa < 3). Dissolved organic carbon (DOC) contributes 4.5-5 μeq/mg DOC of strong acid to solution. The associated anions make a negative contribution to Gran acid-neutralizing capacity (ANC). Because organic anions can produce negative Gran ANC values, the common practice of considering negative values of Gran ANC evidence of acidification solely by mineral acids is not valid. The strength of organic acids also influences the observed deviation between Gran ANC values and ANC values calculated as the difference between base cation and mineral acid anion concentrations (CB - CA). Ninety percent of the deviation is due to the presence of strong organics while the remaining 10% is due to DOC-induced curvature in the F1 Gran function. Organic acids can also strongly influence pH. Their largest effects were found in the 0-50 μeq/L Gran ANC range where they depressed pH by up to 1.5 units. In addition, a method for predicting changes in pH in response to changes in mineral acidity, DOC, or both without having to rely on inferred thermodynamic constants and the uncertainties associated with them has been developed. Using the predictive method, the response of representative lakes from four sensitive lake classes to a 15-μeq/L decrease in mineral acidity ranged from +0.17 to +0.38 pH units. If concurrent increases in DOC are considered, the pH changes would be even smaller.

  7. Effects of flow rate of atmosphere gases on the characteristics of Zn-doped ITO (ZITO) thin films for organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Jeong, Hwa-Kyun; Lee, Kyu-Mann

    2015-12-01

    We have investigated the effect of ambient gases on the structural, electrical, and optical characteristics of Zn-doped indium tin oxide (ZITO) thin films intended for use as anode contacts in organic light emitting diodes (OLED) devices. These ZITO thin films are deposited by radio frequency (RF) magnetron sputtering under different ambient gases (Ar, Ar + O2 and Ar + H2) at 300°C. In order to investigate the influences of the oxygen and hydrogen, the flow rate of oxygen and hydrogen in argon mixing gas has been changed from 0.1 sccm to 0.5 sccm and from 0.1 sccm to 1 sccm, respectively. The intensity of the (400) peak in the ZITO thin films increases with increasing H2 flow rate whilst the (400) peak was nearly invisible in an atmosphere of Ar + O2. The electrical resistivity of the ZITO thin films increases with increasing O2 flow rate, whereas the electrical resistivity decreases with increasing H2 flow rate. The change of electrical resistivity with changes in the ambient gas composition is mainly interpreted in terms of the charge carrier mobility and the charge carrier concentration. All the films show an average transmittance of over 80% in the visible range. The optical bandgap of the ZITO films increases with increasing H2 flow rates, whereas the optical bandgap of the ZITO films deposited in an O2 atmosphere decreases with increasing O2 flow rates. The current density and the luminance of the OLED devices with ZITO thin films deposited in 1 sccm of H2 ambient gas are the highest among all the films. The optical bandgap energy of ZITO thin films plays a major role in OLED device performance, especially the current density and luminance.

  8. Organ- and species-specific biological activity of rosmarinic acid.

    PubMed

    Iswandana, R; Pham, B T; van Haaften, W T; Luangmonkong, T; Oosterhuis, D; Mutsaers, H A M; Olinga, P

    2016-04-01

    Rosmarinic acid (RA), a compound found in several plant species, has beneficial properties, including anti-inflammatory and antibacterial effects. We investigated the toxicity, anti-inflammatory, and antifibrotic effects of RA using precision-cut liver slices (PCLS) and precision-cut intestinal slices (PCIS) prepared from human, mouse, and rat tissue. PCLS and PCIS were cultured up to 48h in the absence or presence of RA. Gene expression of the inflammatory markers: IL-6, IL-8/CXCL1/KC, and IL-1β, as well as the fibrosis markers: pro-collagen 1a1, heat shock protein 47, α-smooth muscle actin, fibronectin (Fn2) and plasminogen activator inhibitor-1 (PAI-1) were evaluated by qPCR. RA was only toxic in murine PCIS. RA failed to mitigate the inflammatory response in most models, while it clearly reduced IL-6 and CXCL1/KC gene expression in murine PCIS at non-toxic concentrations. With regard to fibrosis, RA decreased the gene levels of Fn2 and PAI-1 in murine PCLS, and Fn2 in murine PCIS. Yet, no effect was observed on the gene expression of fibrosis markers in human and rat PCIS. In conclusion, we observed clear organ- and species-specific effects of RA. RA had little influence on inflammation. However, our study further establishes RA as a potential candidate for the treatment of liver fibrosis. PMID:26804033

  9. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and fatty acids: Implications for atmospheric processing of organic aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Lin; Kawamura, Kimitaka; Cao, Fang; Lee, Meehye

    2016-04-01

    Stable carbon isotopic compositions (δ13C) were measured for 23 individual organic species including 9 dicarboxylic acids, 7 oxocarboxylic acids, 1 tricarboxylic acid, 2 α-dicarbonyls, and 4 fatty acids in the aerosols from Gosan background site in East Asia. δ13C values of particle phase glyoxal and methylglyoxal are significantly larger than those previously reported for isoprene and other precursors. The values are consistently less negative in oxalic acid (C2, average -14.1‰), glyoxylic acid (-13.8‰), pyruvic acid (-19.4‰), glyoxal (-13.5‰), and methylglyoxal (-18.6‰) compared to other organic species (e.g., palmitic acid, -26.3‰), which can be explained by the kinetic isotope effects during atmospheric oxidation of pre-aged precursors (e.g., isoprene) and the subsequent gas-particle partitioning after the evaporation of clouds or wet aerosols. The δ13C values of C2 is positively correlated with C2 to organic carbon ratio, indicating that photochemical production of C2 is more pronounced than its degradation during long-range atmospheric transport. The isotopic results also suggest that aqueous phase oxidation of glyoxal and methylglyoxal is a major formation process of oxalic acid via the intermediates such as glyoxylic acid and pyruvic acid. This study provides evidence that organic aerosols are intensively photochemically aged in the western North Pacific rim.

  10. Toxicity of Select Organic Acids to the Slightly Thermophilic Acidophile Acidithiobaccillus Caldus

    SciTech Connect

    John E Aston; William A Apel; Brady D Lee; Brent M Peyton

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 µM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 µM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids.

  11. Toxicity of select organic acids to the slightly thermophilic acidophile Acidithiobacillus caldus.

    PubMed

    Aston, John E; Apel, William A; Lee, Brady D; Peyton, Brent M

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 microM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 microM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids. PMID:18803441

  12. Influence of Organic Acids on Diltiazem HCl Release Kinetics from Hydroxypropyl Methyl Cellulose Matrix Tablets.

    PubMed

    Sateesha, Sb; Rajamma, Aj; Narode, Mk; Vyas, Bd

    2010-07-01

    The matrix tablets of diltiazem hydrochloride were prepared by direct compression using hydroxypropyl methyl cellulose (HPMC) and various amounts (2.5%, 5.0%, 10% and 20%) of citric acid, malic acid and succinic acid. The characterization of physical mixture of drug and organic acids was performed by Infra-red spectroscopy. An organic acid was incorporated to set up a system bringing about gradual release of this drug. The influence of organic acids on the release rate were described by the Peppas equation: M (t) /M(∞) = Kt (n) and Higuchi's equation: Q (t) = K(1)t(1/2). The addition of organic acids and the pH value of medium could notably influence the dissolution behavior and mechanism of drug-release from matrices. Increasing amounts of organic acid produced an increase in drug release rate, which showed a good linear relationship between contents of organic acid and drug accumulate release (%) in phosphate buffer, pH 7.4. The drug release increased significantly (P < 0.05) with use of succinic acid in tablet formulation. Increasing amounts of succinic acid above 10% produced decreasing values of n and increasing values of k, in a linear relationship, which indicated there was a burst release of drug from the matrix. Optimized formulations are found to be stable upon 3-month study. PMID:21042476

  13. Influence of Organic Acids on Diltiazem HCl Release Kinetics from Hydroxypropyl Methyl Cellulose Matrix Tablets

    PubMed Central

    Sateesha, SB; Rajamma, AJ; Narode, MK; Vyas, BD

    2010-01-01

    The matrix tablets of diltiazem hydrochloride were prepared by direct compression using hydroxypropyl methyl cellulose (HPMC) and various amounts (2.5%, 5.0%, 10% and 20%) of citric acid, malic acid and succinic acid. The characterization of physical mixture of drug and organic acids was performed by Infra-red spectroscopy. An organic acid was incorporated to set up a system bringing about gradual release of this drug. The influence of organic acids on the release rate were described by the Peppas equation: M t /M∞ = Kt n and Higuchi’s equation: Q t = K1t1/2. The addition of organic acids and the pH value of medium could notably influence the dissolution behavior and mechanism of drug-release from matrices. Increasing amounts of organic acid produced an increase in drug release rate, which showed a good linear relationship between contents of organic acid and drug accumulate release (%) in phosphate buffer, pH 7.4. The drug release increased significantly (P < 0.05) with use of succinic acid in tablet formulation. Increasing amounts of succinic acid above 10% produced decreasing values of n and increasing values of k, in a linear relationship, which indicated there was a burst release of drug from the matrix. Optimized formulations are found to be stable upon 3-month study. PMID:21042476

  14. CARBON CONTRIBUTION AND CHARACTERISTICS OF HUMIC ACID, FULVIC ACID, PARTICULATE ORGANIC MATTER AND GLOMALIN IN DIVERSE ECOSYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global climate change and soil carbon sequestration issues are entering the forefront of public policy, and emphasis is growing for research on carbon sinks and long-term terrestrial carbon stabilization. Humic acid (HA), fulvic acid (FA), humin and particulate organic matter (POM) have traditionall...

  15. [Determination of organic acids in rice wine by ion-exclusion chromatography].

    PubMed

    Lin, Xiaojie; Wei, Wei; He, Zhigang; Lin, Xiaozi

    2014-03-01

    An ion-exclusion chromatographic method for the simultaneous determination of organic acids in rice wine was developed. An IC-Pak Ion Exclusion column (300 mm x 7.8 mm, 7 microm) was used at 50 degrees C. The mobile phases were H2SO4 (phase A) and acetonitrile (phase B) (98:2, v/v) at a flow rate of 0.5 mL/min. The gradient elution program was as follows: 0-40 min, 0.01 mol/L H2SO4 to 0.02 mol/L H2SO4; 40-50 min, 0.01 mol/L H2SO4. The injection volume was 10 microL. The detection wavelength was set at 210 nm. The results showed that oxalic acid, maleic acid, citric acid, tartaric acid, malic acid, ascorbic acid, succinic acid, lactic, fumaric acid, acetic acid, propionic acid, isobutyric acid and butyric acid were completely separated and determined in 30 min. The linear correlation coefficients were above 0.999 7 in the range of 0.001- 1.000 g/L. Under the optimized conditions, the recoveries of organic acids in rice wine were in the range of 93.4% - 103.8% with the relative standard deviations (RSDs, n = 5) of 0.1% - 1.5%. This method is feasible, convenient, fast, accurate and applicable for the quantitative analysis of the organic acids in rice wine. PMID:24984473

  16. Organic Acid Excretion in Penicillium ochrochloron Increases with Ambient pH

    PubMed Central

    Vrabl, Pamela; Fuchs, Viktoria; Pichler, Barbara; Schinagl, Christoph W.; Burgstaller, Wolfgang

    2012-01-01

    Despite being of high biotechnological relevance, many aspects of organic acid excretion in filamentous fungi like the influence of ambient pH are still insufficiently understood. While the excretion of an individual organic acid may peak at a certain pH value, the few available studies investigating a broader range of organic acids indicate that total organic acid excretion rises with increasing external pH. We hypothesized that this phenomenon might be a general response of filamentous fungi to increased ambient pH. If this is the case, the observation should be widely independent of the organism, growth conditions, or experimental design and might therefore be a crucial key point in understanding the function and mechanisms of organic acid excretion in filamentous fungi. In this study we explored this hypothesis using ammonium-limited chemostat cultivations (pH 2–7), and ammonium or phosphate-limited bioreactor batch cultivations (pH 5 and 7). Two strains of Penicillium ochrochloron were investigated differing in the spectrum of excreted organic acids. Confirming our hypothesis, the main result demonstrated that organic acid excretion in P. ochrochloron was enhanced at high external pH levels compared to low pH levels independent of the tested strain, nutrient limitation, and cultivation method. We discuss these findings against the background of three hypotheses explaining organic acid excretion in filamentous fungi, i.e., overflow metabolism, charge balance, and aggressive acidification hypothesis. PMID:22493592

  17. Structural organization of fatty acid desaturase loci in linseed lines with contrasting linolenic acid contents.

    PubMed

    Thambugala, Dinushika; Ragupathy, Raja; Cloutier, Sylvie

    2016-07-01

    Flax (Linum usitatissimum L.), the richest crop source of omega-3 fatty acids (FAs), is a diploid plant with an estimated genome size of ~370 Mb and is well suited for studying genomic organization of agronomically important traits. In this study, 12 bacterial artificial chromosome clones harbouring the six FA desaturase loci sad1, sad2, fad2a, fad2b, fad3a and fad3b from the conventional variety CDC Bethune and the high linolenic acid line M5791 were sequenced, analysed and compared to determine the structural organization of these loci and to gain insights into the genetic mechanisms underlying FA composition in flax. With one gene every 3.2-4.6 kb, the desaturase loci have a higher gene density than the genome's average of one gene per 7.8-8.2 kb. The gene order and orientation across the two genotypes were generally conserved with the exception of the sad1 locus that was predicted to have additional genes in CDC Bethune. High sequence conservation in both genic and intergenic regions of the sad and fad2b loci contrasted with the significant level of variation of the fad2a and fad3 loci, with SNPs being the most frequently observed mutation type. The fad2a locus had 297 SNPs and 36 indels over ~95 kb contrasting with the fad2b locus that had a mere seven SNPs and four indels in ~110 kb. Annotation of the gene-rich loci revealed other genes of known role in lipid or carbohydrate metabolic/catabolic pathways. The organization of the fad2b locus was particularly complex with seven copies of the fad2b gene in both genotypes. The presence of Gypsy, Copia, MITE, Mutator, hAT and other novel repeat elements at the desaturase loci was similar to that of the whole genome. This structural genomic analysis provided some insights into the genomic organization and composition of the main desaturase loci of linseed and of their complex evolution through both tandem and whole genome duplications. PMID:27142663

  18. Characterization of organic photovoltaic devices with indium-tin-oxide anode treated by plasma in various gases

    NASA Astrophysics Data System (ADS)

    Hong, Z. R.; Liang, C. J.; Sun, X. Y.; Zeng, X. T.

    2006-11-01

    Indium-tin-oxide (ITO) anode treated by different gas plasma or UV ozone has been used for photovoltaic (PV) cells with structure of ITO/copper phthalocyanine (CuPc)/C60/bathocuproine/Al. Both surface energy and work function of the ITO substrates were affected by these treatments. However, the main performance parameters of PV cells, including short circuit current, open circuit voltage, power conversion efficiency, and fill factor, were almost unaffected. On the other hand, series and shunt resistances of the PV cells derived from numerical fitting of I-V curves were not significantly changed with different treatments. Therefore, no significant impact of substrate treatment on hole collection was concluded, although hole injection under forward bias showed strong dependence on treatment methods. It indicates that hole transfer from CuPc layer to ITO is not the bottleneck in the CuPc/C60 based organic solar cells.

  19. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and fatty acids: implications for atmospheric processing of organic aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Kawamura, K.; Cao, F.; Lee, M.

    2015-12-01

    Stable carbon isotopic compositions (δ13C) were measured for 23 individual organic species including 9 dicarboxylic acids, 7 oxocarboxylic acids, 1 tricarboxylic acid, 2 α-dicarbonyls and 4 fatty acids in the aerosols from Gosan background site in East Asia. δ13C of particle-phase glyoxal and methylglyoxal are significantly higher than those previously reported for isoprene and other precursors, associated with isotope fractionation during atmospheric oxidation. 13C is consistently more enriched for oxalic acid (C2), glyoxylic acid, pyruvic acid, glyoxal and methylglyoxal compared to other organic compounds identified, which can be explained by the kinetic isotope effects during aqueous-phase processing and the subsequent gas-particle partitioning after clouds or wet aerosols evaporation δ13C of C2 is positively correlated with C2 and organic carbon ratio, indicating that a photochemical production of C2 is more pronounced than its degradation process during long-range transport. The 13C results also suggest that aqueous-phase oxidation of glyoxal and methylglyoxal is major formation process of oxalic acid production via the major intermediates glyoxylic acid and pyruvic acid. This study provides evidence that organic aerosols are intensively photo-chemically aged in this region.

  20. Formic and Acetic Acid Observations over Colorado by Chemical Ionization Mass Spectrometry and Organic Acids' Role in Air Quality

    NASA Astrophysics Data System (ADS)

    Treadaway, V.; O'Sullivan, D. W.; Heikes, B.; Silwal, I.; McNeill, A.

    2015-12-01

    Formic acid (HFo) and acetic acid (HAc) have both natural and anthropogenic sources and a role in the atmospheric processing of carbon. These organic acids also have an increasing importance in setting the acidity of rain and snow as precipitation nitrate and sulfate concentrations have decreased. Primary emissions for both organic acids include biomass burning, agriculture, and motor vehicle emissions. Secondary production is also a substantial source for both acids especially from biogenic precursors, secondary organic aerosols (SOAs), and photochemical production from volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs). Chemical transport models underestimate organic acid concentrations and recent research has sought to develop additional production mechanisms. Here we report HFo and HAc measurements during two campaigns over Colorado using the peroxide chemical ionization mass spectrometer (PCIMS). Iodide clusters of both HFo and HAc were recorded at mass-to-charge ratios of 173 and 187, respectively. The PCIMS was flown aboard the NCAR Gulfstream-V platform during the Deep Convective Clouds and Chemistry Experiment (DC3) and aboard the NCAR C-130 during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE). The DC3 observations were made in May and June 2012 extending from the surface to 13 km over the central and eastern United States. FRAPPE observations were made in July and August 2014 from the surface to 7 km over Colorado. DC3 measurements reported here are focused over the Colorado Front Range and complement the FRAPPE observations. DC3 HFo altitude profiles are characterized by a decrease up to 6 km followed by an increase either back to boundary layer mixing ratio values or higher (a "C" shape). Organic acid measurements from both campaigns are interpreted with an emphasis on emission sources (both natural and anthropogenic) over Colorado and in situ photochemical production especially ozone precursors.

  1. Oxidation and reduction rates for organic carbon in the Amazon mainstream tributary and floodplain, inferred from distributions of dissolved gases

    NASA Technical Reports Server (NTRS)

    Richey, Jeffrey E.; Devol, Allan H.; Wofsy, Steven C.; Victoria, Reynaldo; Riberio, Maria N. G.

    1986-01-01

    Concentrations of CO2, O2, CH4, and N2O in the Amazon River system reflect an oxidation-reduction sequence in combination with physical mixing between the floodplain and the mainstem. Concentrations of CO2 ranged from 150 microM in the Amazon mainstem to 200 to 300 microM in aerobic waters of the floodplain, and up to 1000 microM in oxygen-depleted environments. Apparent oxygen utilization (AOU) ranged from 80 to 250 microM. Methane was highly supersaturated, with concentrations ranging from 0.06 microM in the mainstem to 100 microM on the floodplain. Concentrations of N2O were slightly supersaturated in the mainstem, but were undersaturated on the floodplain. Fluxes calculated from these concentrations indicated decomposition of 1600 g C sq m y(-1) of organic carbon in Amazon floodplain waters. Analysis of relationships between CH4, O2, and CO2 concentrations indicated that approximately 50 percent of carbon mineralization on the floodplain is anaerobic, with 20 percent lost to the atmoshphere as CH4. The predominance of anaerobic metabolism leads to consumption of N2O on the flood plane. Elevated concentrations of CH4 in the mainstem probably reflect imput from the floodplain, while high levels of CO2 in the mainstem are derived from a combination of varzea drainage and in situ respiration.

  2. Development and application of a hybrid inert/organic packing material for the biofiltration of composting off-gases mimics.

    PubMed

    Hernández, Jerónimo; Prado, Oscar J; Almarcha, Manuel; Lafuente, Javier; Gabriel, David

    2010-06-15

    The performance of three biofilters (BF1-BF3) packed with a new hybrid (inert/organic) packing material that consists of spherical argyle pellets covered with compost was examined in different operational scenarios and compared with a biofilter packed with pine bark (BF4). BF1, BF2 and BF4 were inoculated with an enriched microbial population, while BF3 was inoculated with sludge from a wastewater treatment plant. A gas mixture containing ammonia and six VOCs was fed to the reactors with N-NH(3) loads ranging from 0 to 10 g N/m(3)h and a VOCs load of around 10 g C/m(3)h. A profound analysis of the fate of nitrogen was performed in all four reactors. Results show that the biofilters packed with the hybrid packing material and inoculated with the microbial pre-adapted population (BF1 and BF2) achieved the highest nitrification rates and VOCs removal efficiencies. In BF3, nitratation was inhibited during most of the study, while only slight evidence of nitrification could be observed in BF4. All four reactors were able to treat the VOCs mixture with efficiencies greater than 80% during the entire experimental period, regardless of the inlet ammonia load. PMID:20188468

  3. Gram-scale, high-yield synthesis of a robust metal-organic framework for storing methane and other gases

    SciTech Connect

    Wilmer, CE; Farha, OK; Yildirim, T; Eryazici, I; Krungleviciute, V; Sarjeant, AA; Snurr, RQ; Hupp, JT

    2013-04-01

    We have synthesized and characterized a new metal-organic framework (MOF) material, NU-125, that, in the single-crystal limit, achieves a methane storage density at 58 bar (840 psi) and 298 K corresponding to 86% of that obtained with compressed natural gas tanks (CNG) used in vehicles today, when the latter are pressurized to 248 bar (3600 psi). More importantly, the deliverable capacity (58 bar to 5.8 bar) for NU-125 is 67% of the deliverable capacity of a CNG tank that starts at 248 bar. (For crystalline granules or powders, particle packing inefficiencies will yield densities and deliverable capacities lower than 86% and 67% of high-pressure CNG.) This material was synthesized in high yield on a gram-scale in a single-batch synthesis. Methane adsorption isotherms were measured over a wide pressure range (0.1-58 bar) and repeated over twelve cycles on the same sample, which showed no detectable degradation. Adsorption of CO2 and H-2 over a broad range of pressures and temperatures are also reported and agree with our computational findings.

  4. Dissolution behavior of Caldag lateritic nickel ore subjected to a sequential organic acid leaching method

    NASA Astrophysics Data System (ADS)

    Kursunoglu, Sait; Kaya, Muammer

    2015-11-01

    The dissolution behavior of Caldag lateritic nickel ore subjected to a sequential organic acid leaching method was investigated. The effects of the type of organic acid, acid concentration, leaching time, and leaching temperature on the lateritic nickel ore were examined. Organic acids were used individually prior to sequential leaching. Citric acid was more effective than the other two acids for the selective leaching of nickel and cobalt. An increase in the citric acid concentration negligibly affected the dissolution of the metals, whereas temperature exhibited a strong beneficial effect. Oxalic acid was determined to be the most appropriate organic acid for the second leaching step. After 8 h (4 h + 4 h) of leaching with organic acids (0.5 M citric + 0.5 M oxalic) in sequence at 90°C, 89.63% Ni, 82.89% Co, and 69.63% Fe were leached from the lateritic nickel ore. A sequential citric + oxalic acid leaching method could represent a viable alternative for the dissolution of metals from lateritic nickel ore.

  5. OXIDATIVE DEGRADATION OF ORGANIC ACIDS CONJUGATED WITH SULFITE OXIDATION IN FLUE GAS DESULFURIZATION

    EPA Science Inventory

    The report gives results of a study of organic acid degradation conjugated with sulfite oxidation under flue gas desulfurization (FGD) conditions. The oxidative degradation constant, k12, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate times th...

  6. Production of organic acid esters from biomass - novel processes and concepts

    SciTech Connect

    Datta, R.

    1981-01-01

    After low cost, low energy pretreatment, lignocellulose can be converted directly to volatile (C/sub 2/-C/sub 6/) organic acids by mixed-culture acidogenic fermentation. The principal components of lignocellulose (pectins, hemicellulose, cellulose, and lignin) are all converted to organic acids in high yields. Esterification from dilute aqueous solutions using novel techniques based on adsorption, solvent extraction, or biochemical conversion could be an important method for recovering these acids and simultaneously producing liquid fuels or chemical feedstocks. Uses of organic acid esters and conceptual biomass conversion processes are outlined. The significance of these processes for substantially increasing liquid fuel productivity from biomass feedstocks are discussed.

  7. Organic acids enhanced decoloration of azo dye in gas phase surface discharge plasma system.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-01-25

    A gas phase surface discharge plasma combined with organic acids system was developed to enhance active species mass transfer and dye-containing wastewater treatment efficacy, with Acid Orange II (AO7) as the model pollutant. The effects of discharge voltage and various organic acid additives (acetic acid, lactic acid and nonoic acid) on AO7 decoloration efficiency were evaluated. The experimental results showed that an AO7 decoloration efficiency of approximately 69.0% was obtained within 4 min of discharge plasma treatment without organic acid addition, which was improved to 82.8%, 83.5% and 88.6% within the same treatment time with the addition of acetic acid, lactic acid and nonoic acid, respectively. The enhancement effects on AO7 decoloration efficiency could be attributed to the decrease in aqueous surface tension, improvement in bubble distribution and shape, and increase in ozone equivalent concentration. The AO7 wastewater was biodegradable after discharge plasma treatment with the addition of organic acid. AO7 decomposition intermediates were analyzed by UV-vis spectrometry and GC-MS; 2-naphthol, 1,4-benzoquinone, phthalic anhydride, coumarin, 1,2-naphthoquinone, and 2-formyl-benzoic acid were detected. A possible pathway for AO7 decomposition in this system was proposed. PMID:26444488

  8. Thermophysical properties of starch and whey protein composite prepared in presence of organic acid and esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, we prepared starch and protein composite by reactive mixing in presence of various organic acids and found that use of these acid esters resulted in composites with good mechanical properties. In this study, concentration (% w/w) of acid citrates in the starch-protein composites were var...

  9. Effects of simulated acid precipitation on decomposition and leaching of organic carbon in forest soils

    SciTech Connect

    Chang, F.H.; Alexander, M.

    1984-09-01

    Soil samples from three watersheds of New York State were treated with simulated rain at pH 3.5, 4.1, and 5.6 daily for 14 d, at 12 3-d intervals in three separate tests, or at 22 7-d intervals. Except for one system of treating the three forest soils, simulated acid rain reduced the amount of organic matter leached from samples of soil from which more than 0.05% of the organic carbon was leached during the exposure period. In the soil samples representing the exceptions, acid rain enhanced the leaching of organic matter. Samples from the organic layer of the treated samples of acid soil were taken at two equal depths, and the rates of organic matter decomposition in the two layers were studied. As compared with simulated rain at pH 5.6, simulated acid rain reduced the decomposition of organic matter in the three soils at both depths in three of the five tests and at both depths of two of the soils in the fourth test. In some instances, organic matter decomposition was enhanced by the simulated acid rain. Except for the sample of soil at the highest initial pH, carbon mineralization was inhibited in soils and treatments in which simulated acid rain reduced the amount of organic carbon leached, and it was stimulated in soils and treatments in which the quantity of organic carbon leached was increased by the simulated acid rain. 12 references, 3 figures, 8 tables.

  10. Structure of six organic acid-base adducts from 6-bromobenzo[d]thiazol-2-amine and acidic compounds

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Zhang, Jing; Wang, Daqi; Tao, Lin; Zhou, Mengjian; Shen, Yinyan; Chen, Quan; Lin, Zhanghui; Gao, Xingjun

    2014-05-01

    Six anhydrous organic acid-base adducts of 6-bromobenzo[d]thiazol-2-amine were prepared with organic acids as 2,4,6-trinitrophenol, salicylic acid, 3,5-dinitrobenzoic acid, 3,5-dinitrosalicylic acid, malonic acid and sebacic acid. The compounds 1-6 were characterized by X-ray diffraction analysis, IR, and elemental analysis. The melting points of all the adducts were given. Of the six adducts, 1, 3, 4, and 5 are organic salts, while 2, and 6 are cocrystals. The supramolecular arrangement in the crystals 2-6 is based on the R22(8) synthon. Analysis of the crystal packing of 1-6 suggests that there are strong NH⋯O, OH⋯N, and OH⋯O hydrogen bonds (charge assisted or neutral) between acid and base components in the supramolecular assemblies. When the hydroxyl group is present in the ortho position of the carboxy, the intramolecular S6 synthon is present, as expected. Besides the classical hydrogen bonding interactions, other noncovalent interactions also play important roles in structure extension. Due to the synergetic effect of these weak interactions, compounds 1-6 display 1D-3D framework structure.

  11. Evidence of rapid production of organic acids in an urban air mass

    NASA Astrophysics Data System (ADS)

    Veres, Patrick R.; Roberts, James M.; Cochran, Anthony K.; Gilman, Jessica B.; Kuster, William C.; Holloway, John S.; Graus, Martin; Flynn, James; Lefer, Barry; Warneke, Carsten; de Gouw, Joost

    2011-09-01

    Gas-phase acids (nitric, formic, acrylic, methacrylic, propionic, and pyruvic/butryic acid) were measured using negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) in Pasadena, CA as part of the CalNex 2010 (Research at the Nexus of Air Quality and Climate Change) study in May-June 2010. Organic acid concentrations ranged from a few parts per trillion by volume (pptv) to several parts per billion by volume (ppbv), with the largest concentrations observed for formic and propionic acids. Photochemically processed urban emissions transported from Los Angeles were frequently sampled during the day. Analysis of transported emissions demonstrates a strong correlation of organic acid concentrations with both nitric acid and odd oxygen (Ox = O3 + NO2) showing that the organic acids are photochemically and rapidly produced from urban emissions.

  12. Field and Laboratory Studies of Reactions between Atmospheric Water Soluble Organic Acids and Inorganic Particles

    SciTech Connect

    Wang, Bingbing; Kelly, Stephen T.; Sellon, Rachel E.; Shilling, John E.; Tivanski, Alexei V.; Moffet, Ryan C.; Gilles, Mary K.; Laskin, Alexander

    2013-06-25

    Atmospheric inorganic particles undergo complex heterogeneous reactions that change their physicochemical properties. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of chlorides with inorganic acids, such as nitric and sulfuric acids [1-2]. Recently, we showed that NaCl can react with water soluble organic acids (WSOA) and release gaseous hydrochloric acid (HCl) resulting in formation of organic salts [3]. A similar mechanism is also applicable to mixed WSOA/nitrate particles where multi-phase reactions are driven by the volatility of nitric acid. Furthermore, secondary organic material, which is a complex mixture of carboxylic acids, exhibits the same reactivity towards chlorides and nitrates. Here, we present a systematic study of reactions between atmospheric relevant WSOA, SOM, and inorganic salts including NaCl, NaNO3, and Ca(NO3)2 using complementary micro-spectroscopy analysis.

  13. Aqueous leaching of organic acids and dissolved organic carbon from various biochars prepared at different temperatures.

    PubMed

    Liu, Peng; Ptacek, Carol J; Blowes, David W; Berti, William R; Landis, Richard C

    2015-03-01

    Biochar has been used as a soil amendment, as a water treatment material, and for carbon (C) sequestration. Thirty-six biochars, produced from wood, agricultural residue, and manure feedstocks at different temperatures, were evaluated for the aqueous leaching of different forms of soluble C. The release of inorganic C (alkalinity), organic acids (OAs), and total dissolved organic C (DOC) was highly variable and dependent on the feedstock and pyrolysis temperature. The pH and alkalinity increased for the majority of samples. Higher pH values were associated with high-temperature (high-T) (600 and 700°C) biochars. Statistically significant differences in alkalinity were not observed between low-temperature (low-T) (300°C) and high-T biochars, whereas alkalinity released from wood-based biochar was significantly lower than from others. Concentrations of OAs and DOC released from low-T biochars were greater than from high-T biochars. The C in the OAs represented 1 to 60% of the total DOC released, indicating the presence of other DOC forms. The C released as DOC represented up to 3% (majority <0.1%) of the total C in the biochar. Scanning electron microscopy with energy dispersive X-ray spectroscopy showed the high-T biochars had a greater proportion of micropores. Fourier transform infrared spectroscopy showed that hydroxyl, aliphatic, and quinone were the predominant functional groups of all biochars and that the abundance of other functional groups was dependent on the feedstock. The release of DOC, especially bioavailable forms such as OAs, may promote growth of organisms and heavy metal complexation and diminish the potential effectiveness of various biochars for C sequestration. PMID:26023986

  14. Concentration and fractionation of hydrophobic organic acid constituents from natural waters by liquid chromatography

    USGS Publications Warehouse

    Thurman, E.M.; Malcolm, R.L.

    1979-01-01

    A scheme is presented which used adsorption chromatography with pH gradient elution and size-exclusion chromatography to concentrate and separate hydrophobic organic acids from water. A review of chromatographic processes involved in the flow scheme is also presented. Organic analytes which appear in each aqueous fraction are quantified by dissolved organic carbon analysis. Hydrophobic organic acids in a water sample are concentrated on a porous acrylic resin. These acids usually constitute approximately 30-50 percent of the dissolved organic carbon in an unpolluted water sample and are eluted with an aqueous eluent (dilute base). The concentrate is then passed through a column of polyacryloylmorpholine gel, which separates the acids into high- and low-molecular-weight fractions. The high- and low-molecular-weight eluates are reconcentrated by adsorption chromatography, then are eluted with a pH gradient into strong acids (predominately carboxylic acids) and weak acids (predominately phenolic compounds). For standard compounds and samples of unpolluted waters, the scheme fractionates humic substances into strong and weak acid fractions that are separated from the low molecular weight acids. A new method utilizing conductivity is also presented to estimate the acidic components in the methanol fraction.

  15. Insights into Surface Interactions between Metal Organic Frameworks and Gases during Transient Adsorption and Diffusion by In-Situ Small Angle X-ray Scattering.

    PubMed

    Dumée, Ludovic F; He, Li; Hodgson, Peter; Kong, Lingxue

    2016-01-01

    The fabrication of molecular gas sieving materials with specific affinities for a single gas species and able to store large quantities of materials at a low or atmospheric pressure is desperately required to reduce the adverse effects of coal and oil usage in carbon capture. Fundamental understanding of the dynamic adsorption of gas, the diffusion mechanisms across thin film membranes, and the impact of interfaces play a vital role in developing these materials. In this work, single gas permeation tests across micro-porous membrane materials, based on metal organic framework crystals grown on the surface of carbon nanotubes (ZiF-8@CNT), were performed for the first time in-situ at the Australian Synchrotron on the small angle X-ray scattering beamline in order to reveal molecular sieving mechanisms and gas adsorption within the material. The results show that specific chemi-sorption of CO₂ across the ZiF-8 crystal lattices affected the morphology and unit cell parameters, while the sieving of other noble or noble like gases across the ZiF-8@CNT membranes was found to largely follow Knudsen diffusion. This work demonstrates for the first time a novel and effective technique to assess molecular diffusion at the nano-scale across sub-nano-porous materials by probing molecular flexibility across crystal lattice and single cell units. PMID:27598211

  16. Desorption of copper and cadmium from soils enhanced by organic acids.

    PubMed

    Yuan, Songhu; Xi, Zhimin; Jiang, Yi; Wan, Jinzhong; Wu, Chan; Zheng, Zhonghua; Lu, Xiaohua

    2007-07-01

    The adsorption/desorption behavior of copper and cadmium on soils was investigated in this study. The adsorption isotherm of copper and cadmium conformed to Langmuir equation better than Freundlich equation. The effect of ionic strength, pH, and organic acid, including ethylenediamine tetraacetic disodium acid salt (EDTA), citric acid, oxalic acid and tartaric acid, on the desorption of copper and cadmium was studied. The desorption of copper and cadmium increased with the increase of ionic strength, while the desorption decreased with the rise of pH. The desorption of copper and cadmium enhanced by organic acids was influenced by pH. EDTA showed excellent enhancement on the desorption of both copper and cadmium; citric acid demonstrated great enhancement on the desorption of copper but negligible enhancement on the desorption of cadmium; oxalic acid enhanced the desorption of copper only at pH around 6.4 and enhanced the desorption of cadmium in the pH range from 6.4 to 10.7; tartaric acid slightly enhanced the desorption of copper but negligibly enhanced the desorption of cadmium. The desorption mechanism in the presence of organic acids were explained as the competition of complexation, adsorption and precipitation. The net effect determined the desorption efficiency. This study provided guidance for the selection of organic acids to enhance the electrokinetic (EK) remediation of copper and cadmium from contaminated soils. PMID:17349675

  17. Some organic acids attenuate the effects of furosemide on the endocochlear potential.

    PubMed

    Rybak, L P; Whitworth, C

    1987-01-01

    A series of organic acid transport inhibitors significantly reduced the endocochlear potential (EP) decline produced by furosemide in the chinchilla. Probenecid, sodium salicylate and penicillin G were much more effective than novobiocin, meclofenamate or diatrizoate. Inhibitors of organic base transport, choline and N-methyl nicotinamide, had no effect on the furosemide-induced drop of the EP. These findings suggest that at least part of furosemide ototoxicity may be mediated by organic acid transport. PMID:2951360

  18. Sorption of vapors of some organic liquids on soil humic acid and its relation to partitioning of organic compounds in soil organic matter

    USGS Publications Warehouse

    Chlou, G.T.; Kile, D.E.; Malcolm, R.L.

    1988-01-01

    Vapor sorption of water, ethanol, benzene, hexane, carbon tetrachloride, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and 1,2-dibromoethane on (Sanhedron) soil humic acid has been determined at room temperature. Isotherms for all organic liquids are highly linear over a wide range of relative pressure (P/P??), characteristic of the partitioning (dissolution) of the organic compounds in soil humic acid. Polar liquids exhibit markedly greater sorption capacities on soil humic acid than relatively nonpolar liquids, in keeping with the polar nature of the soil humic acid as a partition medium. The limiting sorption (partition) capacities of relatively non-polar liquids are remarkably similar when expressed in terms of volumes per unit weight of soil humic acid. The soil humic acid is found to be about half as effective as soil organic matter in sorption of relatively nonpolar organic compounds. The nearly constant limiting sorption capacity for nonpolar organic liquids with soil humic acid on a volume-to-weight basis and its efficiency in sorption relative to soil organic matter provide a basis for predicting the approximate sorption (partition) coefficients of similar compounds in uptake by soil in aqueous systems.

  19. [Inhibitory effects of organic acids and salts on selected micromycetes].

    PubMed

    Láníková, A; Toulová, M

    1992-12-01

    Inhibitory effects of two fungistatic preparations (A and B) and of propionic acid were tested in a complete feed mixture for broiler chickens (starter mixture). The water content of this mixture was 25.4%, environmental temperature was 24 degrees C and relative air humidity 90%. Propionic acid, which has a high fungistatic effect, served as a standard. The composition of the preparation A was as follows: propionic acid, acetic acid, sorbic acid, citric acid and calcium propionate. The preparation B contained: sorbic acid, citric acid and calcium propionate. Examinations were performed in a naturally contaminated and subsequently sterilized (25 kGy) feed mixture; it was then infected with Aspergillus fumigatus, A. niger, A. parasiticus and Penicillium purpurogenum from the Collection of Animal Pathogenic Microorganisms, Brno. A. flavus, A. fumigatus, A. glaucus, Penicillium sp., Absidia corymbifera, Mucor sp., Rhizomucor pusillus were detected in the naturally contaminated feed mixture. The mycoflora which was found in the native substrate was resistant to both tested fungistatic preparations; and this resulted in mycelium growth from 7th day of incubation. The efficiency of the preparations A,B and of propionic acid in the feed mixture was identical at concentrations of 4 mg/kg, 7 mg/kg and 3 mg/kg, respectively, and their inhibitory effects were lowest at these concentrations (Fig. 2). A high water content in the nutrient substrate resulted in the rapid growth of fungi of the Mucorales species. The relative humidity of the environment (90%) and water content of tested samples affected markedly micromycetes growth in this experiment.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1297244

  20. Toxicity of perfluorinated carboxylic acids for aquatic organisms.

    PubMed

    Tichý, Miloň; Valigurová, Radka; Cabala, Radomír; Uzlová, Rut; Rucki, Marián

    2010-06-01

    Toxicity of perfluorinated carboxylic acids with carbon chain C(8) to C(12) were tested with oligochaeta Tubifex tubifex. Toxicity was evaluated as the exposure time ET(50) from onset of damage of the oligochaeta in saturated aqueous solutions. The ET(50) fluctuated between 25 and 257 minutes. No statistically significant difference was found among the C(8), C(9) and C(12) acids (ET(50) between 143 and 257 minutes with large standard deviation). The acids with carbon chain C(10) and C(11) induced the effect significantly quicker (25 to 47 minutes). No acute toxicity measured in the three-minute test was observed in any case. PMID:21217876

  1. Organosulfates and organic acids in Arctic aerosols: speciation, annual variation and concentration levels

    NASA Astrophysics Data System (ADS)

    Hansen, A. M. K.; Kristensen, K.; Nguyen, Q. T.; Zare, A.; Cozzi, F.; Nøjgaard, J. K.; Skov, H.; Brandt, J.; Christensen, J. H.; Ström, J.; Tunved, P.; Krejci, R.; Glasius, M.

    2014-02-01

    Sources, composition and occurrence of secondary organic aerosols (SOA) in the Arctic were investigated at Zeppelin Mountain, Svalbard, and Station Nord, northeast Greenland, during the full annual cycle of 2008 and 2010 respectively. We focused on the speciation of three types of SOA tracers: organic acids, organosulfates and nitrooxy organosulfates from both anthropogenic and biogenic precursors, here presenting organosulfate concentrations and compositions during a full annual cycle and chemical speciation of organosulfates in Arctic aerosols for the first time. Aerosol samples were analysed using High Performance Liquid Chromatography coupled to a quadrupole Time-of-Flight mass spectrometer (HPLC-q-TOF-MS). A total of 11 organic acids (terpenylic acid, benzoic acid, phthalic acid, pinic acid, suberic acid, azelaic acid, adipic acid, pimelic acid, pinonic acid, diaterpenylic acid acetate (DTAA) and 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA)), 12 organosulfates and one nitrooxy organosulfate were identified at the two sites. Six out of the 12 organosulfates are reported for the first time. Concentrations of organosulfates follow a distinct annual pattern at Station Nord, where high concentration were observed in late winter and early spring, with a mean total concentration of 47 (±14) ng m-3, accounting for 7 (±2)% of total organic matter, contrary to a considerably lower organosulfate mean concentration of 2 (±3) ng m-3 (accounting for 1 (±1)% of total organic matter) observed during the rest of the year. The organic acids followed the same temporal trend as the organosulfates at Station Nord; however the variations in organic acid concentrations were less pronounced, with a total mean organic acid concentration of 11.5 (±4) ng m-3 (accounting for 1.7 (±0.6)% of total organic matter) in late winter and early spring, and 2.2 (±1) ng m-3 (accounting for 0.9 (±0.4)% of total organic matter) during the rest of the year. At Zeppelin Mountain

  2. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum.

    PubMed

    Tesfaye, M; Temple, S J; Allan, D L; Vance, C P; Samac, D A

    2001-12-01

    Al toxicity is a severe impediment to production of many crops in acid soil. Toxicity can be reduced through lime application to raise soil pH, however this amendment does not remedy subsoil acidity, and liming may not always be practical or cost-effective. Addition of organic acids to plant nutrient solutions alleviates phytotoxic Al effects, presumably by chelating Al and rendering it less toxic. In an effort to increase organic acid secretion and thereby enhance Al tolerance in alfalfa (Medicago sativa), we produced transgenic plants using nodule-enhanced forms of malate dehydrogenase and phosphoenolpyruvate carboxylase cDNAs under the control of the constitutive cauliflower mosaic virus 35S promoter. We report that a 1.6-fold increase in malate dehydrogenase enzyme specific activity in root tips of selected transgenic alfalfa led to a 4.2-fold increase in root concentration as well as a 7.1-fold increase in root exudation of citrate, oxalate, malate, succinate, and acetate compared with untransformed control alfalfa plants. Overexpression of phosphoenolpyruvate carboxylase enzyme specific activity in transgenic alfalfa did not result in increased root exudation of organic acids. The degree of Al tolerance by transformed plants in hydroponic solutions and in naturally acid soil corresponded with their patterns of organic acid exudation and supports the concept that enhancing organic acid synthesis in plants may be an effective strategy to cope with soil acidity and Al toxicity. PMID:11743127

  3. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, A.J.; Dodge, C.; Chendrayan, K.; Quinby, H.L.

    1987-04-16

    The present invention related to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rat of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 ..mu..moles of lead as lead oxide was 0.042 ..mu..moles m1/sup /-/1/ hr/sup /-/1/. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of the strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids. 4 figs., 3 tabs.

  4. Ozonolysis mechanism of lignin model compounds and microbial treatment of organic acids produced.

    PubMed

    Nakamura, Y; Daidai, M; Kobayashi, F

    2004-01-01

    Treatment methods comprising ozonolysis and microbial treatment of lignin discharged from the pulp manufacture industries were investigated by using a sulfite pulp wastewater and a lignin model compound, i.e. sodium lignosulfonate. Dynamic behaviors for the formations of intermediate derivatives such as muconic acid, maleic acid, and oxalic acid produced from the ozonolysis of sulfite pulp wastewater were observed from data of UV absorption at 280 nm by a spectrophotometer and at 210 nm by high performance liquid chromatography. The microorganisms that were isolated by the enrichment culture method were used to degrade the organic acids such as oxalic acid and acetic acid. Time courses of biological degradation of these organic acids indicated diauxic growth, which was found in a culture with mixed substrates. In the treatment of sodium lignosulfonate, the ozonolysis and microbial treatment using activated sludge converted sodium lignosulfonate into carbon dioxide and water almost completely. PMID:15461411

  5. Phase equilibria and distribution constants of metal ions in diantipyryl alkane-organic acid-hydrochloric acid-water systems

    NASA Astrophysics Data System (ADS)

    Degtev, M. I.; Popova, O. N.; Yuminova, A. A.

    2014-08-01

    The ability of antipyrine and its derivatives (diantipyryl alkanes) to form separating systems in the presence of salicylic (sulfosalicylic) acid and hydrochloric acid and water is studied. The optimum volume of the organic phase, the composition of complexes, and the mechanism for the distribution of metal ions are determined, depending on the concentrations of the main components and the salting-out agent. The complex distribution and extraction constants are calculated.

  6. An enhanced procedure for measuring organic acids and methyl esters in PM2.5

    NASA Astrophysics Data System (ADS)

    Liu, F.; Duan, F. K.; He, K. B.; Ma, Y. L.; Rahn, K. A.; Zhang, Q.

    2015-11-01

    A solid-phase extraction (SPE) pretreatment procedure allowing organic acids to be separated from methyl esters in fine aerosol has been developed. The procedure first separates the organic acids from fatty acid methyl esters (FAMEs) and other nonacid organic compounds by aminopropyl-based SPE cartridge and then quantifies them by gas chromatography/mass spectrometry. The procedure prevents the fatty acids and dimethyl phthalate from being overestimated, and so allows us to accurately quantify the C4-C11 dicarboxylic acids (DCAs) and the C8-C30 monocarboxylic acids (MCAs). Results for the extraction of DCAs, MCAs, and AMAs in eluate and FAMEs in effluate by SAX and NH2 SPE cartridges exhibited that the NH2 SPE cartridge gave higher extraction efficiency than the SAX cartridge. The recoveries of analytes ranged from 67.5 to 111.3 %, and the RSD ranged from 0.7 to 10.9 %. The resulting correlations between the aliphatic acids and FAMEs suggest that the FAMEs had sources similar to those of the carboxylic acids, or were formed by esterifying carboxylic acids, or that aliphatic acids were formed by hydrolyzing FAMEs. Through extraction and cleanup using this procedure, 17 aromatic acids in eluate were identified and quantified by gas chromatography/tandem mass spectrometry, including five polycyclic aromatic hydrocarbon (PAH): acids 2-naphthoic, biphenyl-4-carboxylic, 9-oxo-9H-fluorene-1-carboxylic, biphenyl-4,4´-dicarboxylic, and phenanthrene-1-carboxylic acid, plus 1,8-naphthalic anhydride. Correlations between the PAH acids and the dicarboxylic and aromatic acids suggested that the first three acids and 1,8-naphthalic anhydride were secondary atmospheric photochemistry products and the last two mainly primary.

  7. Relative efficacy of organic acids and antibiotics as growth promoters in broiler chicken

    PubMed Central

    Bagal, Vikrant Laxman; Khatta, Vinod Kumar; Tewatia, Bachu Singh; Sangwan, Sandeep Kumar; Raut, Subhash Shamrao

    2016-01-01

    Aim: The objective of this study was to evaluate the effect of organic acids as replacer to antibiotics in their various combinations on feed consumption, body weight gain, and feed conversion ratio (FCR) in broiler chicks during different phases of growth. Materials and Methods: Antibiotics and organic acids were incorporated into boiler feed in different combinations to form 10 maize based test diets (T1 to T10). Each test diet was offered to four replicates of 10 birds each constituting a total of 400 birds kept for 45 days. Results: Significantly better effect in terms of body weight gain from supplementation of 1% citric acid and 1% citric acid along with antibiotic was observed throughout the entire study, whereas the effect of tartaric acid supplementation was similar to control group. Citric acid (1%) along with antibiotic supplementation showed highest feed intake during the experimental period. Significantly better FCR was observed in groups supplemented with 1% citric acid and 1% citric acid along with antibiotic followed by antibiotic along with organic acids supplemented group. Conclusion: Growth performance of birds in terms of body weight, body weight gain, and FCR improved significantly in 1% citric acid which was significantly higher than antibiotic supplemented group. 1% citric acid can effectively replace antibiotic growth promoter (chlortetracycline) without affecting growth performance of birds. PMID:27182133

  8. INFLUENCE OF AQUEOUS ALUMINUM AND ORGANIC ACIDS ON MEASUREMENT OF ACID NEUTRALIZING CAPACITY IN SURFACE WATERS

    EPA Science Inventory

    Acid neutralizing capacity (ANC) is used to quantify the acid-base status of surface waters. Acidic waters have bean defined as having ANC values less than zero, and acidification is often quantified by decreases in ANC. Measured and calculated values of ANC generally agree, exce...

  9. Top value platform chemicals: bio-based production of organic acids.

    PubMed

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation. PMID:26360870

  10. The Role of Organic Acids in the Acid-Base Status of Surface Waters at Bickford Watershed, Massachusetts

    NASA Astrophysics Data System (ADS)

    Eshleman, K. N.; Hemond, H. F.

    1985-10-01

    An experimental field study of the alkalinity and major ion budgets of Bickford watershed in central Massachusetts indicates that organic acid production by the ecosystem contributes measurably to surface water acidification. Applying the concepts of alkalinity, electroneutrality of solutions, and mass balance, organic acids were found to comprise 20% of all strong acid sources on one subcatchment annually, a value half as large as the measured bulk mineral acid deposition. Inorganic cation to anion ratios in Provencial Brook varied between 1.0 in winter and 1.6 during summer, suggesting the presence of up to 100 μeq/L of unmeasured charge from organic anions during the growing season. Base titrations and ultraviolet photooxidation experiments confirmed the existence of low pKa (3.5-5.0) acidic functional groups. A positive linear relationship between dissolved organic carbon (DOC) and anion deficit for a group of surface and groundwater samples indicates the DOC contains about 7.5 meq carboxylic groups per gram C. Biological factors related to both upland and wetland carbon metabolism apparently control this natural acidification phenomenon, which has not been documented on other watersheds in the northeastern United States for which annual alkalinity budgets have been determined.

  11. Aliphatic, Cyclic, and Aromatic Organic Acids, Vitamins, and Carbohydrates in Soil: A Review

    PubMed Central

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-01-01

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research. PMID:24319374

  12. Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review.

    PubMed

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-01-01

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research. PMID:24319374

  13. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland; Chendrayan, Krishnachetty; Quinby, Helen L.

    1988-01-01

    The present invention relates to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rate of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 .mu.moles of lead as lead oxide was 0.042 .mu.moles ml.sup.-1 hr.sup.-1. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids.

  14. Microgravity Compatible Reagentless Instrumentation for Detection of Dissolved Organic Acids and Alcohols in Potable Water

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Jan, Darrell L. (Technical Monitor)

    2002-01-01

    The Organic Acid and Alcohol Monitor (OAAM) program has resulted in the successful development of a computer controlled prototype analyzer capable of accurately determining aqueous organic acids and primary alcohol concentrations over a large dynamic range with high sensitivity. Formic, acetic, and propionic acid were accurately determined at concentrations as low as 5 to 10 micrograms/L in under 20 minutes, or as high as 10 to 20 mg/L in under 30 minutes. Methanol, ethanol, and propanol were determined at concentrations as low as 20 to 100 micrograms/L, or as high as 10 mg/L in under 30 minutes. Importantly for space based application, the OAAM requires no reagents or hazardous chemicals to perform these analyses needing only power, water, and CO2 free purge gas. The OAAM utilized two membrane processes to segregate organic acids from interfering ions. The organic acid concentration was then determined based upon the conductiometric signal. Separation of individual organic acids was accomplished using a chromatographic column. Alcohols are determined in a similar manner after conversion to organic acids by sequential biocatalytic and catalytic oxidation steps. The OAAM was designed to allow the early diagnosis of under performing or failing sub-systems within the Water Recovery System (WRS) baselined for the International Space Station (ISS). To achieve this goal, several new technologies were developed over the course of the OAAM program.

  15. Role of organic acids in promoting colloidal transport of mercury from mine tailings

    USGS Publications Warehouse

    Slowey, A.J.; Johnson, S.B.; Rytuba, J.J.; Brown, Gordon E., Jr.

    2005-01-01

    A number of factors affect the transport of dissolved and paniculate mercury (Hg) from inoperative Hg mines, including the presence of organic acids in the rooting zone of vegetated mine waste. We examined the role of the two most common organic acids in soils (oxalic and citric acid) on Hg transport from such waste by pumping a mixed organic acid solution (pH 5.7) at 1 mL/min through Hg mine tailings columns. For the two total organic acid concentrations investigated (20 ??M and 1 mM), particle-associated Hg was mobilized, with the onset of paniculate Hg transport occurring later for the lower organic acid concentration. Chemical analyses of column effluent indicate that 98 wt % of Hg mobilized from the column was paniculate. Hg speciation was determined using extended X-ray absorption fine structure spectroscopy and transmission electron microscopy, showing that HgS minerals are dominant in the mobilized particles. Hg adsorbed to colloids is another likely mode of transport due to the abundance of Fe-(oxyhydr)oxides, Fe-sulfides, alunite, and jarosite in the tailings to which Hg(II) adsorbs. Organic acids produced by plants are likely to enhance the transport of colloid-associated Hg from vegetated Hg mine tailings by dissolving cements to enable colloid release. ?? 2005 American Chemical Society.

  16. Mobilization of soil-borne arsenic by three common organic acids: Dosage and time effects.

    PubMed

    Onireti, Olaronke O; Lin, Chuxia

    2016-03-01

    A batch experiment was conducted to investigate the mobilization of soil-borne arsenic by three common low-molecular-weight organic acids with a focus on dosage and time effects. The results show that oxalic acid behaved differently from citric acid and malic acid in terms of mobilizing As that was bound to iron compounds. At an equivalent molar concentration, reactions between oxalic acid and soil-borne Fe were kinetically more favourable, as compared to those between either citric acid or malic acid and the soil-borne Fe. It was found that reductive dissolution of soil-borne Fe played a more important role in liberating As, as compared to non-reductive reactions. Prior to the 7th day of the experiment, As mobility increased with increasing dose of oxalic acid while there was no significant difference (P > 0.05) in mobilized As among the treatments with different doses of citric acid or malic acid. The dosage effect on soil-borne As mobilization in the citric acid and malic acid treatments became clear only after the 7th day of the experiment. Soluble Ca present in the soils could cause re-immobilization of As by competing with solution-borne Fe for available organic ligands to form practically insoluble organic compounds of calcium (i.e. calcium oxalate). This resulted in transformation of highly soluble organic complexes of iron (i.e. iron oxalate complexes) into slightly soluble organic compounds of iron (i.e. iron oxalate) or free ferric ion, which then reacted with the solution-borne arsenate ions to form practically insoluble iron arsenates in the latter part of the experiment. PMID:26774299

  17. An enhanced procedure for measuring organic acids and methyl esters in PM2.5

    NASA Astrophysics Data System (ADS)

    Liu, F.; Duan, F.; He, K.; Ma, Y.; Rahn, K. A.; Zhang, Q.

    2015-03-01

    We have developed an enhanced analytical procedure to measure organic acids and methyl esters in fine aerosol with much greater specificity and sensitivity than previously available. This capability is important because of these species and their low concentrations, even in highly polluted atmospheres like Beijing, China. The procedure first separates the acids and esters from the other organic compounds with anion-exchange solid- phase extraction (SPE), then, quantifies them by gas chromatography coupled with mass spectrometry. This allows us to accurately quantify the C4-C11 dicarboxylic and the C8-C30 monocarboxylic acids. Then the acids are separated from the esters on an aminopropyl SPE cartridge, whose weak retention isolates and enriches the acids from esters prevents the fatty acids and dimethyl phthalate from being overestimated. The resulting correlations between the aliphatic acids and fatty acid methyl esters (FAMEs) suggest that FAMEs had sources similar to those of the carboxylic acids, or were formed by esterifying carboxylic acids, or that aliphatic acids were formed by hydrolyzing FAMEs. In all, 17 aromatic acids were identified and quantified using this procedure coupled with gas chromatography-tandem mass spectrometry, including the five polycyclic aromatic hydrocarbon (PAH) acids 2-naphthoic, biphenyl-4-carboxylic, 9-oxo-9H-fluorene-1-carboxylic, biphenyl-4,4´-dicarboxylic, and phenanthrene-1-carboxylic acid, plus 1,8-naphthalic anhydride. Correlations between the PAH-acids and the dicarboxylic and aromatic acids indicated that the first three acids and 1,8-naphthalic anhydride were mainly secondary, the last two mainly primary.

  18. Influence of organic acids on the transport of heavy metals in soil.

    PubMed

    Schwab, A P; Zhu, D S; Banks, M K

    2008-06-01

    Vegetation historically has been an important part of reclamation of sites contaminated with metals, whether the objective was to stabilize the metals or remove them through phytoremediation. Understanding the impact of organic acids typically found in the rhizosphere would contribute to our knowledge of the impact of plants in contaminated environments. Heavy metal transport in soils in the presence of simple organic acids was assessed in two laboratory studies. In the first study, thin layer chromatography (TLC) was used to investigate Zn, Cd, and Pb movement in a sandy loam soil as affected by soluble organic acids in the rhizosphere. Many of these organic acids enhanced heavy metal movement. For organic acid concentrations of 10mM, citric acid had the highest R(f) values (frontal distance moved by metal divided by frontal distance moved by the solution) for Zn, followed by malic, tartaric, fumaric, and glutaric acids. Citric acid also has the highest R(f) value for Cd movement followed by fumaric acid. Citric acid and tartaric acid enhanced Pb transport to the greatest degree. For most organic acids studied, R(f) values followed the trend Zn>Cd>Pb. Citric acid (10mM) increased R(f) values of Zn and Cd by approximately three times relative to water. In the second study, small soil columns were used to test the impact of simple organic acids on Zn, Cd, and Pb leaching in soils. Citric acid greatly enhanced Zn and Cd movement in soils but had little influence on Pb movement. The Zn and Cd in the effluents from columns treated with 10mM citric acid attained influent metal concentrations by the end of the experiment, but effluent metal concentrations were much less than influent concentrations for citrate <10mM. Exchangeable Zn in the soil columns was about 40% of total Zn, and approximately 80% total Cd was in exchangeable form. Nearly all of the Pb retained by the soil columns was exchangeable. PMID:18482743

  19. Adsorption of small weak organic acids on goethite: Modeling of mechanisms

    SciTech Connect

    Filius, J.D.; Hiemstra, T.; Riemsdijk, W.H. Van

    1997-11-15

    The adsorption of lactate, oxalate, malonate, phthalate, and citrate has been determined experimentally as a function of concentration, pH, and ionic strength. The data have been described with the CD-MUSIC model of Hiemstra and Van Riemsdijk which allows a distribution of charge of the organic molecule over the surface and the Stern layer. Simultaneously, the concentration, pH, and salt dependency as well as the basic charging behavior of goethite could be described well. On the basis of model calculations, a distinction is made between inner and outer sphere complexation of weak organic acids by goethite. The results indicate that the affinity of the organic acids is dominated by the electrostatic attraction. The intrinsic affinity constants for the exchange reaction of surface water groups and organic acids, expressed per bond, increases with increasing number of reactive groups on the organic molecule. Ion pair formation between noncoordinated carboxylic groups of adsorbed organic acids and cations of the background electrolyte proved to be important for the salt dependency. The knowledge obtained may contribute to the interpretation of the binding of larger organic acids like fulvic and humic acids.

  20. Agricultural fires in the southeastern U.S. during SEAC4RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxi; Zhang, Y.; Huey, L. G.; Yokelson, R. J.; Wang, Y.; Jimenez, J. L.; Campuzano-Jost, P.; Beyersdorf, A. J.; Blake, D. R.; Choi, Y.; St. Clair, J. M.; Crounse, J. D.; Day, D. A.; Diskin, G. S.; Fried, A.; Hall, S. R.; Hanisco, T. F.; King, L. E.; Meinardi, S.; Mikoviny, T.; Palm, B. B.; Peischl, J.; Perring, A. E.; Pollack, I. B.; Ryerson, T. B.; Sachse, G.; Schwarz, J. P.; Simpson, I. J.; Tanner, D. J.; Thornhill, K. L.; Ullmann, K.; Weber, R. J.; Wennberg, P. O.; Wisthaler, A.; Wolfe, G. M.; Ziemba, L. D.

    2016-06-01

    Emissions from 15 agricultural fires in the southeastern U.S. were measured from the NASA DC-8 research aircraft during the summer 2013 Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. This study reports a detailed set of emission factors (EFs) for 25 trace gases and 6 fine particle species. The chemical evolution of the primary emissions in seven plumes was examined in detail for ~1.2 h. A Lagrangian plume cross-section model was used to simulate the evolution of ozone (O3), reactive nitrogen species, and organic aerosol (OA). Observed EFs are generally consistent with previous measurements of crop residue burning, but the fires studied here emitted high amounts of SO2 and fine particles, especially primary OA and chloride. Filter-based measurements of aerosol light absorption implied that brown carbon (BrC) was ubiquitous in the plumes. In aged plumes, rapid production of O3, peroxyacetyl nitrate (PAN), and nitrate was observed with ΔO3/ΔCO, ΔPAN/ΔNOy, and Δnitrate/ΔNOy reaching ~0.1, ~0.3, and ~0.3. For five selected cases, the model reasonably simulated O3 formation but underestimated PAN formation. No significant evolution of OA mass or BrC absorption was observed. However, a consistent increase in oxygen-to-carbon (O/C) ratios of OA indicated that OA oxidation in the agricultural fire plumes was much faster than in urban and forest fire plumes. Finally, total annual SO2, NOx, and CO emissions from agricultural fires in Arkansas, Louisiana, Mississippi, and Missouri were estimated (within a factor of ~2) to be equivalent to ~2% SO2 from coal combustion and ~1% NOx and ~9% CO from mobile sources.

  1. Sensitive Amino Acid Composition and Chirality Analysis with the Mars Organic Analyzer (MOA)

    NASA Technical Reports Server (NTRS)

    Skelley, Alison M.; Scherer, James R.; Aubrey, Andrew D.; Grover, William H.; Ivester, Robin H. C.; Ehrenfreund, Pascale; Grunthaner, Frank J.; Bada, Jeffrey L.; Mathies, Richard A.

    2005-01-01

    Detection of life on Mars requires definition of a suitable biomarker and development of sensitive yet compact instrumentation capable of performing in situ analyses. Our studies are focused on amino acid analysis because amino acids are more resistant to decomposition than other biomolecules, and because amino acid chirality is a well-defined biomarker. Amino acid composition and chirality analysis has been previously demonstrated in the lab using microfabricated capillary electrophoresis (CE) chips. To analyze amino acids in the field, we have developed the Mars Organic Analyzer (MOA), a portable analysis system that consists of a compact instrument and a novel multi-layer CE microchip.

  2. Protected Organic Acid Blends as an Alternative to Antibiotics in Finishing Pigs

    PubMed Central

    Upadhaya, S. D.; Lee, K. Y.; Kim, I. H.

    2014-01-01

    A total of 120 finishing pigs ([Yorkshire×Landrace]×Duroc) with an average body weight (BW) of 49.72 ±1.72 kg were used in 12-wk trial to evaluate the effects of protected organic acids on growth performance, nutrient digestibility, fecal micro flora, meat quality and fecal gas emission. Pigs were randomly allotted to one of three dietary treatments (10 replication pens with 4 pigs per pen) in a randomly complete block design based on their initial BW. Each dietary treatment consisted of: Control (CON/basal diet), OA1 (basal diet+0.1% organic acids) and OA2 (basal diet+0.2% organic acids). Dietary treatment with protected organic acid blends linearly improved (p<0.001) average daily gain during 0 to 6 week, 6 to 12 week as well as overall with the increase in their inclusion level in the diet. The dry matter, N, and energy digestibility was higher (linear effect, p<0.001) with the increase in the dose of protected organic acid blends during 12 week. During week 6, a decrease (linear effect, p = 0.01) in fecal ammonia contents was observed with the increase in the level of protected organic acid blends on d 3 and d 5 of fermentation. Moreover, acetic acid emission decreased linearly (p = 0.02) on d7 of fermentation with the increase in the level of protected organic acid blends. During 12 weeks, linear decrease (p<0.001) in fecal ammonia on d 3 and d 5 and acetic acid content on d 5 of fermentation was observed with the increase in the level of protected organic acid blends. Supplementation of protected organic acid blends linearly increased the longissimus muscle area with the increasing concentration of organic acids. Moreover, color of meat increased (linear effect, quadratic effect, p<0.001, p<0.002 respectively) and firmness of meat showed quadratic effect (p = 0.003) with the inclusion of increasing level of protected organic acid in the diet. During the 6 week, increment in the level of protected organic acid blends decreased (linear effect, p = 0

  3. Students' Understanding of Acids/Bases in Organic Chemistry Contexts

    ERIC Educational Resources Information Center

    Cartrette, David P.; Mayo, Provi M.

    2011-01-01

    Understanding key foundational principles is vital to learning chemistry across different contexts. One such foundational principle is the acid/base behavior of molecules. In the general chemistry sequence, the Bronsted-Lowry theory is stressed, because it lends itself well to studying equilibrium and kinetics. However, the Lewis theory of…

  4. The sensory interactions of organic acids and various flavors in ramen soup systems.

    PubMed

    Kang, M-W; Chung, S-J; Lee, H-S; Kim, Y; Kim, K-O

    2007-11-01

    This study was conducted to investigate the sensory interactions between various organic acids and flavorants in 3 types of ramen soup ('beef,' seafood, and 'kimchi') when types and levels of organic acids (citric, malic, and lactic) varied. For 'beef' and seafood ramen soup, weak suprathreshold levels of acids (0.0039% to 0.0071%) were applied to the system and medium suprathreshold of acids (0.0128% to 0.0299%) were applied to the kimchi ramen soup. The amount of acid applied to each system was chosen based on the equiweight level. Descriptive analyses were performed separately for each ramen soup system using 8 trained panelists. A total of 11, 13, and 12 flavor descriptors were generated for 'beef,' seafood, and 'kimchi' soup, respectively. Analysis of variance was conducted to evaluate the effect of organic acid on the sensory characteristics of ramen soup. Principal component analysis was conducted to summarize the relationship between the soup samples and attributes. The effect of organic acids on the flavor attributes of ramen soup was dependent on the soup system as well as adding levels of acid. Addition of lactic acid power (at 0.0066%) in 'beef'ramen soup showed enhancement effect on the sour, salty, beefy, 'mushroom' flavor, and fermented soybean paste soup flavor, whereas lactic acid powder (at 0.0071%) showed enhancement effect only on the sour and fermented soybean paste soup flavor in seafood ramen soup due to the strong 'hot' flavor characteristics of the soup. In kimchi ramen soup, flavor attributes congruent to sourness were enhanced by the addition of organic acids to the system. PMID:18034748

  5. Online technique for isotope and mixing ratios of CH4, N2O, Xe and mixing ratios of organic trace gases on a single ice core sample

    NASA Astrophysics Data System (ADS)

    Schmitt, J.; Seth, B.; Bock, M.; Fischer, H.

    2014-03-01

    Polar ice cores enclosing trace gas species offer a unique archive to study changes in the past atmosphere and in terrestrial/marine source regions. Here we present a new online technique for ice core and air samples to measure a suite of isotope ratios and mixing ratios of trace gas species on a single small sample. Isotope ratios are determined on methane, nitrous oxide and xenon with reproducibilities for ice core samples of 0.15‰ for δ13C-CH4, 0.22‰ for δ15N-N2O, 0.34 ‰ for δ18O-N2O, and 0.05‰ for δ136Xe. Mixing ratios are determined on methane, nitrous oxide, xenon, ethane, propane, methyl chloride and dichloro-difluoromethane with reproducibilities of 7 ppb for CH4, 3 ppb for N2O, 50 ppt for 136Xe, 70 ppt for C2H6, 70 ppt for C3H8, 20 ppt for CH3Cl, and 2 ppt for CCl2F2. The system consists of a vacuum extraction device, a preconcentration unit and a gas chromatograph coupled to an isotope ratio mass spectrometer. CH4 is combusted to CO2 prior to detection while we bypassed the oven for all other species. The highly automated system uses only ~160 g ice, equivalent to ~16 mL air, which is less than previous methods. This large suite of parameters on a single ice sample is new and helpful to study phase relationships of parameters which are usually not measured together. A multi-parameter dataset is also key to understand in situ production processes of organic species in the ice, a critical issue observable in many organic trace gases. Novel is the determination of xenon isotope ratios using doubly charged Xe ions. The attained precision for δ136Xe is suitable to correct the isotopic ratios and mixing ratios for gravitational firn effects, with the benefit that this information is derived from the same sample. Lastly, anomalies in the Xe mixing ratio, δXe/air, can be used to detect melt layers.

  6. Online technique for isotope and mixing ratios of CH4, N2O, Xe and mixing ratios of organic trace gases on a single ice core sample

    NASA Astrophysics Data System (ADS)

    Schmitt, J.; Seth, B.; Bock, M.; Fischer, H.

    2014-08-01

    Firn and polar ice cores enclosing trace gas species offer a unique archive to study changes in the past atmosphere and in terrestrial/marine source regions. Here we present a new online technique for ice core and air samples to measure a suite of isotope ratios and mixing ratios of trace gas species on a single sample. Isotope ratios are determined on methane, nitrous oxide and xenon with reproducibilities for ice core samples of 0.15‰ for δ13C-CH4, 0.22‰ for δ15N-N2O, 0.34‰ for δ18O-N2O, and 0.05‰ per mass difference for δ136Xe for typical concentrations of glacial ice. Mixing ratios are determined on methane, nitrous oxide, xenon, ethane, propane, methyl chloride and dichlorodifluoromethane with reproducibilities of 7 ppb for CH4, 3 ppb for N2O, 70 ppt for C2H6, 70 ppt for C3H8, 20 ppt for CH3Cl, and 2 ppt for CCl2F2. However, the blank contribution for C2H6 and C3H8 is large in view of the measured values for Antarctic ice samples. The system consists of a vacuum extraction device, a preconcentration unit and a gas chromatograph coupled to an isotope ratio mass spectrometer. CH4 is combusted to CO2 prior to detection while we bypass the oven for all other species. The highly automated system uses only ~ 160 g of ice, equivalent to ~ 16 mL air, which is less than previous methods. The measurement of this large suite of parameters on a single ice sample is new and key to understanding phase relationships of parameters which are usually not measured together. A multi-parameter data set is also key to understand in situ production processes of organic species in the ice, a critical issue observed in many organic trace gases. Novel is the determination of xenon isotope ratios using doubly charged Xe ions. The attained precision for δ136Xe is suitable to correct the isotopic ratios and mixing ratios for gravitational firn diffusion effects, with the benefit that this information is derived from the same sample. Lastly, anomalies in the Xe mixing ratio,

  7. The effect of low solublility organic acids on the hygroscopicity of sodium halide aerosols

    NASA Astrophysics Data System (ADS)

    Miñambres, L.; Méndez, E.; Sánchez, M. N.; Castaño, F.; Basterretxea, F. J.

    2014-02-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be performed in this study. The hygroscopic properties of sodium halide submicrometer particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, Scanning Electron Microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion: whereas the organic covering has little effect in NaBr particles, NaCl and NaI covered particles change their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

  8. The effect of low solubility organic acids on the hygroscopicity of sodium halide aerosols

    NASA Astrophysics Data System (ADS)

    Miñambres, L.; Méndez, E.; Sánchez, M. N.; Castaño, F.; Basterretxea, F. J.

    2014-10-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be investigated in this study. The hygroscopic properties of sodium halide sub-micrometre particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, scanning electron microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion, whereas the organic surfactant has little effect in NaBr particles, NaCl and NaI covered particles experience appreciable shifts in their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

  9. Resource recovery from waste LCD panel by hydrothermal transformation of polarizer into organic acids.

    PubMed

    Li, Feng; Bai, Lan; He, Wenzhi; Li, Guangming; Huang, Juwen

    2015-12-15

    Based on the significant advantages of hydrothermal technology, it was applied to treat polarizer from the waste LCD panel with the aim of transforming it into organic acids (mainly acetic acid and lactic acid). Investigation was done to evaluate the effects of different factors on yields of organic acids, including the reaction temperature, reaction time and H2O2 supply, and the degradation process of polarizer was analyzed. Liquid samples were analyzed by GC/MS and HPLC, and solid-phase products were characterized by SEM and FTIR. Results showed that at the condition of temperature 300 °C and reaction time 5 min, the organic materials reached its highest conversion rate of 71.47% by adding 0.2 mL H2O2 and acetic acid was dominant in the products of organic acids with the yield of 6.78%. When not adding H2O2 to the system, the yields of lactic and acetic acid were respectively 4.24% and 3.80% at a nearly equal degree, they are suitable for esterification to form ethyl lactate instead of separating them for this case. In the hydrothermal process, polarizer was first decomposed to monosaccharides, alkane, etc., and then furfural and acids are produced with further decomposition. PMID:26094243

  10. Isolation of hydrophilic organic acids from water using nonionic macroporous resins

    USGS Publications Warehouse

    Aiken, G.R.; McKnight, Diane M.; Thorn, K.A.; Thurman, E.M.

    1992-01-01

    A method has been developed for the isolation of hydrophilic organic acids from aquatic environments using Amberlite* * Use of trade names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. XAD-4 resin. The method uses a two column array of XAD-8 and XAD-4 resins in series. The hydrophobic organic acids, composed primarily of aquatic fulvic acid, are removed from the sample on XAD-8, followed by the isolation of the more hydrophilic organic acids on XAD-4. For samples from a number of diverse environments, more of the dissolved organic carbon was isolated on the XAD-8 resin (23-58%) than on the XAD-4 resin (7-25%). For these samples, the hydrophilic acids have lower carbon and hydrogen contents, higher oxygen and nitrogen contents, and are lower in molecular weight than the corresponding fulvic acids. 13C NMR analyses indicate that the hydrophilic acids have a lower concentration of aromatic carbon and greater heteroaliphatic, ketone and carboxyl content than the fulvic acid. ?? 1992.

  11. Usnic Acid and the Intramolecular Hydrogen Bond: A Computational Experiment for the Organic Laboratory

    ERIC Educational Resources Information Center

    Green, Thomas K.; Lane, Charles A.

    2006-01-01

    A computational experiment is described for the organic chemistry laboratory that allows students to estimate the relative strengths of the intramolecular hydrogen bonds of usnic and isousnic acids, two related lichen secondary metabolites. Students first extract and purify usnic acid from common lichens and obtain [superscript 1]H NMR and IR…

  12. Physicochemical aspects of inhibition of acid corrosion of metals by unsaturated organic compounds

    NASA Astrophysics Data System (ADS)

    Avdeev, Ya G.; Kuznetsov, Yurii I.

    2012-12-01

    The state-of-the-art in the development and improvement of methods for protecting metals from corrosion in mineral acid solutions using unsaturated organic compounds is considered. Characteristic features of the mechanism of their protective action on metal corrosion in acidic media are discussed. The bibliography includes 203 references.

  13. Oxidative degradation of organic acids conjugated with sulfite oxidation in flue gas desulfurization

    SciTech Connect

    Lee, Y.I.

    1986-01-01

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (EGD) conditions. The oxidative degradation constant, k/sub 12/, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate after being normalized by the concentrations of organic acid and dissolved S(IV). K/sub 12/, not significantly affected by pH or dissolved oxygen, is around 10/sup -3/ in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Co, Ni, and Fe and is decreased by Mn and halides. Lower dissolved S(IV) magnified these effects. No k/sub 12/ greater than 4 x 10/sup -3/ or smaller than 0.1 x 10/sup -3/ has been observed. A free radical mechanism was proposed to describe the kinetics: (1) sulfate free radical is the major radical responsible to the degradation of organic acid; (2) ferrous generates sulfate radical by reacting with monoxypersulfate to enhance k/sub 12/; (3) manganous consumes sulfate radical to decrease k/sub 12/; (4) dissolved S(IV) competes with ferrous for monoxypersulfate and with manganous for sulfate radical to demonstrate the effects of dissolved S(IV) on k/sub 12/. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product, glutaric semialdehyde - the major retained product with low manganese, glutaric acid and valeric acids - the major retained product with high manganese, lower molecular weight mono- and dicarboxylic acids, other carbonyl compounds, and hydrocarbons.

  14. Carbon dioxide and organic acids: origin and role in burial diagenesis (Texas Gulf Coast Tertiary)

    SciTech Connect

    Lundegard, P.D.

    1985-01-01

    Carbon dioxide produced by decarboxylation of organic matter is not a dominant factor in secondary porosity development. Material balance calculations indicate the amount of feldspar and carbonate dissolution that has taken place in Tertiary sandstones of the Texas Gulf Coast far exceeds that which is explainable by decarboxylation. Other potential sources of acid for dissolution reactions include reverse weathering reactions in shales, an hydrous pyrolysis reactions between organic carbon and oxygen in H/sub 2/O to yield CO/sub 2/ or organic acids. Considerations of CO/sub 2/ solubility and the temperature distribution of organic acids imply that these species must be generated locally to cause significant dissolution. The CO/sub 2/ content of gas from Gulf Coast Tertiary sandstones is proportional to reservoir age, and increases with depth and temperature at a rate that is approximately exponential. In the Wilcox Formation the increase in CO/sub 2/ content continues beyond depths where dissolved organic acids are abundant and where kerogen has lost its oxygen from functional groups that are readily liberated as CO/sub 2/. In this formation the /sup 13/C of CO/sub 2/ and CH/sub 4/ are proportional to temperature and to each other. Either mixing with fluids derived from the Mesozoic carbonate section of deep CO/sub 2/ generation by kinetically controlled organic reactions may explain these data. Organic acid concentration with depth and temperature indicates a non-biological origin by thermal cracking of kerogen during burial. Continued burial leads to their thermal decomposition. Cessation of burial may lead to meteoric water invasion and organic acid destruction by biological processes. The effect of time on organic acid production is minor compared to temperature.

  15. Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry

    USGS Publications Warehouse

    McMahon, P.B.; Chapelle, F.H.

    1991-01-01

    MICROBIAL activity in aquifers plays an important part in the chemical evolution of ground water1-5. The most important terminal electron-accepting microbial processes in deeply buried anaerobic aquifers are iron reduction, sulphate reduction and methanogenesis5-8, each of which requires simple organic compounds or hydrogen (H2) as electron donors. Until now, the source of these compounds was unknown because the concentrations of dissolved organic carbon and sedimentary organic carbon in aquifers are extremely low9-11. Here we show that rates of microbial fermentation exceed rates of respiration in organic-rich aquitards (low-permeability sediments stratigraphically adjacent to higher-permeability aquifer sediments), resulting in a net accumulation of simple organic acids in pore waters. In aquifers, however, respiration outpaces fermentation, resulting in a net consumption of organic acids. The concentration gradient that develops in response to these two processes drives a net diffusive flux of organic acids from aquitards to aquifers. Diffusion calculations demonstrate that rates of organic acid transport are sufficient to account for observed rates of microbial respiration in aquifers. This overall process effectively links the large pool of sedimentary organic carbon in aquitards to microbial respiration in aquifers, and is a principal mechanism driving groundwater chemistry changes in aquifers.

  16. Analyzing Gases From Decomposing Electrical Insulation

    NASA Technical Reports Server (NTRS)

    Moffett, Gary; Shelley, Timothy J.; Morelli, John J.

    1995-01-01

    Test fixture holds insulated wire and traps gases emitted by heating of wire. Used with gas chromatograph and/or mass spectrometer, to analyze gases emitted by insulation on wire when wire heated with controlled current in controlled atmosphere to simulate pyrolysis, combustion, and arc tracking. Small, inexpensive, easily maintained, and relatively nonreactive to organic compounds produced during breakdown of insulation.

  17. Recovery of nickel and cobalt from organic acid complexes: adsorption mechanisms of metal-organic complexes onto aminophosphonate chelating resin.

    PubMed

    Deepatana, A; Valix, M

    2006-09-21

    This study examined the recovery of nickel and cobalt from organic acid complexes using a chelating aminophosphonate Purolite S950 resin. These metal complexes are generated by bioleaching nickel laterite ores, a commercial nickel and cobalt mineral oxide, with heterotrophic organism and their metabolites or organic acid products. Equilibrium adsorption tests were conducted as a function of Ni and Co concentrations (15-2000 mg/L), solution pH (0.01 and 0.1 M acids) and three metabolic complexing agents (citrate, malate and lactate). It was shown that the adsorption of the various Ni- and Co-complexes on Purolite were quite low, 16-18 and 5.4-9 mg/g of resin, respectively, in comparison to the smaller nickel ions and nickel sulfate. This was attributed to the bulky organic ligands which promoted crowding effect or steric hindrance. The adsorption of these complexes was further hampered by the strong affinity of the resin to H+ ions under acidic conditions. Mechanisms of adsorption, as inferred from the fitted empirical Langmuir and Freundlich models, were correlated to the proposed steric hindrance and competitive adsorption effects. Nickel and cobalt elution from the resin were found be effective and were independent of the type of metal complexes and metal concentrations. This study demonstrated the relative challenges involved in recovering nickel and cobalt from bioleaching solutions. PMID:16698178

  18. Isotherm-Based Thermodynamic Models for Solute Activities of Organic Acids with Consideration of Partial Dissociation.

    PubMed

    Nandy, Lucy; Ohm, Peter B; Dutcher, Cari S

    2016-06-23

    Organic acids make up a significant fraction of the organic mass in atmospheric aerosol particles. The calculation of gas-liquid-solid equilibrium partitioning of the organic acid is therefore critical for accurate determination of atmospheric aerosol physicochemical properties and processes such as new particle formation and activation to cloud condensation nuclei. Previously, an adsorption isotherm-based statistical thermodynamic model was developed for capturing solute concentration-activity relationships for multicomponent aqueous solutions over the entire concentration range (Dutcher et al. J. Phys. Chem. C/A 2011, 2012, 2013), with model parameters for energies of adsorption successfully related to dipole-dipole electrostatic forces in solute-solvent and solvent-solvent interactions for both electrolytes and organics (Ohm et al. J. Phys. Chem. A 2015). However, careful attention is needed for weakly dissociating semivolatile organic acids. Dicarboxylic acids, such as malonic acid and glutaric acid are treated here as a mixture of nondissociated organic solute (HA) and dissociated solute (H(+) + A(-)). It was found that the apparent dissociation was greater than that predicted by known dissociation constants alone, emphasizing the effect of dissociation on osmotic and activity coefficient predictions. To avoid additional parametrization from the mixture approach, an expression was used to relate the Debye-Hückel hard-core collision diameter to the adjustable solute-solvent intermolecular distance. An improved reference state treatment for electrolyte-organic aqueous mixtures, such as that observed here with partial dissociation, has also been proposed. This work results in predictive correlations for estimation of organic acid and water activities for which there is little or no activity data. PMID:27222917

  19. A review of the effects of dietary organic acids fed to swine.

    PubMed

    Suiryanrayna, Mocherla V A N; Ramana, J V

    2015-01-01

    Animal production depends on nutrient utilization and if done there is an accelerated momentum towards growth with a low cost to feed ratio Public concern over the consumption of pork with antibiotic residues of the animals fed with antibiotic growth promoters (AGP) has paved the way to use other additives like herbs and their products, probiotics, prebiotics etc. Numerous feed additives are in vogue for achieving this target and one such classical example is the usage of organic acids and their salts. Usage of organic acids was in progress for over four decades. Early weaned piglets are (3-4 weeks age) exposed to stress with a reduced feed intake, little or no weight gain. This post weaning lag period is due to a limited digestive and absorptive capacity due to insufficient production of hydrochloric acid, pancreatic enzymes and sudden changes in feed consistency and intake. Lowering dietary pH by weak organic acids was found to overcome these problems. The main activity of organic acids is associated with a reduction in gastric pH converting the inactive pepsinogen to active pepsin for effective protein hydrolysis. Organic acids are both bacteriostatic and bactericidal. Lactic acid has been reported to reduce gastric pH and delay the multiplication of an enterotoxigenic E. coli. These acids are the intermediary products in Kreb's cycle and thus act as an energy source preventing the tissue breakdown resulting from gluconeogenesis and lipolysis. Excretion of supplemental minerals and nitrogen are minimized with organic acids as these form complexes with minerals and aids for their bio-availability. Short chain fatty cids like acetic, propionic and n-butyric acid produced by microbial fermentation of dietary fibre in the large intestines may increase the proliferation of epithelial cells and have stimulatory effects on both endocrine and exocrine pancreatic secretions in pigs. Organic acids also enhances apparent total tract digestibility and improves growth

  20. Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01

    SciTech Connect

    Zaldivar, J.; Ingram, L.O.

    1999-07-01

    Hemicellulose residues can be hydrolyzed into a sugar syrup using dilute mineral acids. Although this syrup represents a potential feedstock for biofuel production, toxic compounds generated during hydrolysis limit microbial metabolism. Escherichia coli LY01, an ethanologenic biocatalyst engineered to ferment the mixed sugars in hemicellulose syrups, has been tested for resistance to selected organic acids that re present in hemicellulose hydrolysates. Compounds tested include aromatic acids derived from lignin (ferulic, gallic, 4-hydroxybenzoic, syringic, and vanillic acids), acetic acid from the hydrolysis of acetylxylan, and others derived from sugar destruction (furoic, formic, levulinic, and caproic acids). Toxicity was related to hydrophobicity. Combinations of acids were roughly additive as inhibitors of cell growth. When tested at concentrations that inhibited growth by 80%, none appeared to strongly inhibit glycolysis and energy generation, or to disrupt membrane integrity. Toxicity was not markedly affected by inoculum size or incubation temperature. The toxicity of all acids except gallic acid was reduced by an increase in initial pH (from pH 6.0 to pH 7.0 to pH 8.0). Together, these results are consistent with the hypothesis that both aliphatic and mononuclear organic acids inhibit growth and ethanol production in LY01 by collapsing ion gradients and increasing internal anion concentrations.

  1. Halogenated methanesulfonic acids: A new class of organic micropollutants in the water cycle.

    PubMed

    Zahn, Daniel; Frömel, Tobias; Knepper, Thomas P

    2016-09-15

    Mobile and persistent organic micropollutants may impact raw and drinking waters and are thus of concern for human health. To identify such possible substances of concern nineteen water samples from five European countries (France, Switzerland, The Netherlands, Spain and Germany) and different compartments of the water cycle (urban effluent, surface water, ground water and drinking water) were enriched with mixed-mode solid phase extraction. Hydrophilic interaction liquid chromatography - high resolution mass spectrometry non-target screening of these samples led to the detection and structural elucidation of seven novel organic micropollutants. One structure could already be confirmed by a reference standard (trifluoromethanesulfonic acid) and six were tentatively identified based on experimental evidence (chloromethanesulfonic acid, dichloromethanesulfonic acid, trichloromethanesulfonic acid, bromomethanesulfonic acid, dibromomethanesulfonic acid and bromochloromethanesulfonic acid). Approximated concentrations for these substances show that trifluoromethanesulfonic acid, a chemical registered under the European Union regulation REACH with a production volume of more than 100 t/a, is able to spread along the water cycle and may be present in concentrations up to the μg/L range. Chlorinated and brominated methanesulfonic acids were predominantly detected together which indicates a common source and first experimental evidence points towards water disinfection as a potential origin. Halogenated methanesulfonic acids were detected in drinking waters and thus may be new substances of concern. PMID:27267477

  2. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    PubMed Central

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K.; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P.; Rondo, Linda; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S.; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M.; Worsnop, Douglas R.

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  3. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules.

    PubMed

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P; Rondo, Linda; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M; Worsnop, Douglas R

    2013-10-22

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  4. Control of Listeria monocytogenes in Turkey Deli Loaves using Organic Acids as Formulation Ingredients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The growth of Listeria monocytogenes (LM) in further processed meat products has become a major concern and an important food safety issue. The meat and poultry industries have incorporated interventions such as organic acids in marinades in order to inhibit the growth of LM. In this study, organic...

  5. PH BUFFERING IN FOREST SOIL ORGANIC HORIZONS: RELEVANCE TO ACID PRECIPITATION

    EPA Science Inventory

    Samples of organic surface horizons (Oi, Oe, Oa) from New York State forest soils were equilibrated with 0 to 20 cmol HNO3 Kg(-1) soil in the laboratory by a batch technique designed to simulate reactions of acid precipitation with forest floors. Each organic horizon retained a c...

  6. EFFECT OF ACID TREATMENT ON DISSOLVED ORGANIC CARBON RETENTION BY A SPODIC HORIZON

    EPA Science Inventory

    Processes involving the movement of organic substances in forest soils are not well understood. This study was conducted to examine the role of acidic inputs on dissolved organic carbon (DOC) mobility, processes affecting the retention of DOV by a B horizon, and SO2-4 adsorption....

  7. Acid-Base Learning Outcomes for Students in an Introductory Organic Chemistry Course

    ERIC Educational Resources Information Center

    Stoyanovich, Carlee; Gandhi, Aneri; Flynn, Alison B.

    2015-01-01

    An outcome-based approach to teaching and learning focuses on what the student demonstrably knows and can do after instruction, rather than on what the instructor teaches. This outcome-focused approach can then guide the alignment of teaching strategies, learning activities, and assessment. In organic chemistry, mastery of organic acid-base…

  8. Yearly trend of dicarboxylic acids in organic aerosols from south of Sweden and source attribution

    NASA Astrophysics Data System (ADS)

    Hyder, Murtaza; Genberg, Johan; Sandahl, Margareta; Swietlicki, Erik; Jönsson, Jan Åke

    2012-09-01

    Seven aliphatic dicarboxylic acids (C3-C9) along with phthalic acid, pinic acid and pinonic acid were determined in 35 aerosol (PM10) samples collected over the year at Vavihill sampling station in south of Sweden. Mixture of dichloromethane and methanol (ratio 1:3) was preferred over water for extraction of samples and extraction was assisted by ultrasonic agitation. Analytes were derivatized using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) containing 1% trimethylsilyl chloride and analyzed using gas chromatography/mass spectrometry. Among studied analytes, azelaic acid was found maximum with an average concentration of 6.0 ± 3.6 ng m-3 and minimum concentration was found for pimelic acid (1.06 ± 0.63 ng m-3). A correlation coefficients analysis was used for defining the possible sources of analytes. Higher dicarboxylic acids (C7-C9) showed a strong correlation with each other (correlation coefficients (r) range, 0.96-0.97). Pinic and pinonic acids showed an increase in concentration during summer. Lower carbon number dicarboxylic acids (C3-C6) and phthalic acid were found strongly correlated, but showed a poor correlation with higher carbon number dicarboxylic acids (C7-C9), suggesting a different source for them. Biomass burning, vehicle exhaust, photo-oxidation of volatile organic compounds (natural and anthropogenic emissions) were possible sources for dicarboxylic acids.

  9. Six hydrogen-bonded supramolecular frameworks assembled from organic acids and p-dimethylaminobenzaldehyde

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Wang, Lanqing; Lou, Yulei; Liu, Li; Li, Bin; Li, Linyu; Feng, Chao; Liu, Hui; Wang, Daqi

    2016-03-01

    Cocrystallization of the commonly available organic compound, p-dimethylaminobenzaldehyde, with a series of organic acids gave a total of six molecular adducts with the compositions: p-dimethylaminobenzaldehyde : (3,5-dinitrosalicylic acid) [(L) · (Hdsa), Hdsa = 3,5-dinitrosalicylic acid] (1), p-dimethylaminobenzaldehyde : (3-nitrophthalic acid) [(L) · (3-H2npa), 3-H2npa = 3-nitrophthalic acid] (2), p-dimethylaminobenzaldehyde : (4-nitrophthalic acid) [(L) · (4-H2npa), 4-H2npa = 4-nitrophthalic acid] (3), p-dimethylaminobenzaldehyde : (1,5-naphthalenedisulfonic acid) : (NH3)2 [NH4 · (HL) · (nds2-) · NH3, nds- = 1,5-naphthalenedisulfonate] (4), p-dimethylaminobenzaldehyde : (oxalic acid)0.5 [(L) · (H2oa)0.5, H2oa = oxalic acid] (5), and p-dimethylaminobenzaldehyde : (fumaric acid)0.5 [(L) · (H2fum)0.5, H2fum = fumaric acid] (6). The six molecular adducts have been characterized by X-ray diffraction technique, IR, and elemental analysis, and the melting points of all adducts were also reported. And their structural and supramolecular aspects are fully analyzed. Of the six adducts, only 4 is an organic salt and the other five are cocrystals. The crystal packing is interpreted in terms of the strong classical hydrogen bonds as well as other weak non-classical hydrogen bonds. The different families of non-covalent bonds contribute to the stabilization and expansion of the total high-dimensional (2D-3D) frameworks.

  10. Effect of organic acids found in cottonseed hull hydrolysate on the xylitol fermentation by Candida tropicalis.

    PubMed

    Wang, Le; Wu, Dapeng; Tang, Pingwah; Yuan, Qipeng

    2013-08-01

    Five organic acids (acetic, ferulic, 4-hydroxybenzoic, formic and levulinic acids) typically associated in the hemicellulose hydrolysate were selected to study their effects on the xylitol fermentation. The effects of individual and combined additions were independently evaluated on the following parameters: inhibitory concentration; initial cell concentration; pH value; and membrane integrity. The results showed that the toxicities of organic acids were related to their hydrophobility and significantly affected by the fermentative pH value. In addition, it was revealed that the paired combinations of organic acids did not impose synergetic inhibition. Moreover, it was found that the fermentation inhibition could be alleviated with the simple manipulations by increasing the initial cell concentration, raising the initial pH value and minimizing furfural levels by evaporation during the concentration of hydrolysates. The proposed strategies for minimizing the negative effects could be adopted to improve the xylitol fermentation in the industrial applications. PMID:23138642

  11. In vitro susceptibility of Brachyspira hyodysenteriae to organic acids and essential oil components

    PubMed Central

    VANDE MAELE, Lien; HEYNDRICKX, Marc; MAES, Dominiek; DE PAUW, Nele; MAHU, Maxime; VERLINDEN, Marc; HAESEBROUCK, Freddy; MARTEL, An; PASMANS, Frank; BOYEN, Filip

    2015-01-01

    The antibacterial potential of organic acids and essential oil components against Brachyspira hyodysenteriae, the causative pathogen of swine dysentery, was evaluated. Minimum inhibitory concentrations (MIC) of 15 compounds were determined at pH 7.2 and pH 6.0, using a broth microdilution assay. In addition, possible synergism was determined. MIC values for the three tested strains were similar. For organic acids, MIC values at pH 6.0 were lower than at pH 7.2. B. hyodysenteriae was most sensitive to cinnamaldehyde and lauric acid, with MIC values <1.5 mM. Most antibacterial effects of binary combinations were additive, however, for thymol and carvacrol, synergism could be observed. In vitro results demonstrate the antibacterial action of certain essential oil components and organic acids against B. hyodysenteriae. PMID:26369432

  12. Five organic salts assembled from carboxylic acids and bis-imidazole derivatives through collective noncovalent interactions

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Guo, Jianzhong; Liu, Li; Wang, Daqi

    2011-10-01

    Five multicomponent crystals of bis(imidazole) derivatives have been prepared with 5-nitrosalicylic acid, 5-sulfosalicylic acid, and phthalic acid. The five crystalline forms reported are organic salts of which the crystal structures have all been determined by X-ray diffraction. The results presented herein indicate that the strength and directionality of the N sbnd H⋯O, O sbnd H⋯O, and N sbnd H⋯N hydrogen bonds (ionic or neutral) between carboxylic acids and ditopic imidazoles are sufficient to bring about the formation of binary organic salts. All supramolecular architectures of the organic salts 1- 5 involve extensive O sbnd H⋯O, and N sbnd H⋯O hydrogen bonds as well as other noncovalent interactions. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These noncovalent interactions combined, all the complexes displayed 3D framework structure.

  13. In vitro susceptibility of Brachyspira hyodysenteriae to organic acids and essential oil components.

    PubMed

    Vande Maele, Lien; Heyndrickx, Marc; Maes, Dominiek; De Pauw, Nele; Mahu, Maxime; Verlinden, Marc; Haesebrouck, Freddy; Martel, An; Pasmans, Frank; Boyen, Filip

    2016-02-01

    The antibacterial potential of organic acids and essential oil components against Brachyspira hyodysenteriae, the causative pathogen of swine dysentery, was evaluated. Minimum inhibitory concentrations (MIC) of 15 compounds were determined at pH 7.2 and pH 6.0, using a broth microdilution assay. In addition, possible synergism was determined. MIC values for the three tested strains were similar. For organic acids, MIC values at pH 6.0 were lower than at pH 7.2. B. hyodysenteriae was most sensitive to cinnamaldehyde and lauric acid, with MIC values <1.5 mM. Most antibacterial effects of binary combinations were additive, however, for thymol and carvacrol, synergism could be observed. In vitro results demonstrate the antibacterial action of certain essential oil components and organic acids against B. hyodysenteriae. PMID:26369432

  14. Deployment of a ground-based CIMS apparatus for the detection of organic gases in the boreal forest during the QUEST campaign

    NASA Astrophysics Data System (ADS)

    Sellegri, K.; Umann, B.; Hanke, M.; Arnold, F.

    2004-07-01

    Measurements of atmospheric volatile organic compounds were performed in the Finnish Boreal forest atmosphere during spring 2003, as part of the project QUEST (Quantification of Aerosol Nucleation in the European Boundary Layer), using a ground-based Chemical Ionization Mass Spectrometer (CIMS) instrument. Based on the study of their hydrate distribution, Methanol, Acetonitrile, Acetaldehyde, Dimethyl Amine (DMA), Ethanol/Formic Acid, Acetone, Trimethyl Amine TMA, Propanol/Acetic Acid, Methyl Vinyl Ketone (MVK) and Metacrolein (MaCR), Monoterpenes, Cis-3-hexenyl Acetate and Monoterpene Oxidation Products (MTOP) are proposed as candidates for masses 33, 41, 44, 45, 46, 58, 59, 60, 70, 136, 142 and 168 amu, respectively. It would be, to our knowledge, the first time DMA, TMA, MTOP and Cis-3-hexenyl Acetate are measured with this method. A compound with mass 68 amu, which could be Isoprene has also been identified. Most compounds show a clear diurnal variation with higher concentrations at night, starting at the onset of the nocturnal inversion and in agreement with independent measurements of CO. Biogenic compounds are highly correlated with each other and the ratio monoterpene/oxidation product shows a typical daily pattern of nighttime maxima. Cis-3-hexenyl Acetate has a diurnal variation similar to the ones of Isoprene and Monoterpenes, and especially close to the diurnal variation of their oxidation products.

  15. Deployment of a ground-based CIMS apparatus for the detection of organic gases in the boreal forest during the QUEST campaign

    NASA Astrophysics Data System (ADS)

    Sellegri, K.; Umann, B.; Hanke, M.; Arnold, F.

    2005-02-01

    Measurements of atmospheric volatile organic compounds were performed in the Finnish Boreal forest atmosphere during spring 2003, as part of the project QUEST (Quantification of Aerosol Nucleation in the European Boundary Layer), using a ground-based Chemical Ionization Mass Spectrometer (CIMS) instrument. Based on the study of their hydrate distribution, methanol, acetonitrile, acetaldehyde, dimethyl amine (DMA), ethanol/formic acid, acetone, trimethyl amine (TMA), propanol/acetic acid, isoprene, methyl vinyl ketone (MVK) and metacrolein (MaCR), monoterpenes and monoterpene oxidation product (MTOP) are proposed as candidates for masses 32, 41, 44, 45, 46, 58, 59, 60, 68, 70, 136, and 168amu, respectively. It would be, to our knowledge, the first time DMA, TMA and MTOP are measured with this method. Most compounds show a clear diurnal variation with a maximum in the early night, corresponding to the onset of the noctural inversion and in agreement with independant measurements of CO. Biogenic compounds are highly correlated with each other and the ratio monoterpene/oxidation product shows a typical daily pattern of nightime maxima. However, because isoprene mixing ratios are also maximum during the early night, it is likely that it suffers of the interference from another unidentified biogenic compound. Hence mass 68amu is identified as isoprene+compound X.

  16. Amphiphilic calixresorcinarene associates as effective solubilizing agents for hydrophobic organic acids: construction of nano-aggregates.

    PubMed

    Morozova, Ju E; Syakaev, V V; Kazakova, E Kh; Shalaeva, Ya V; Nizameev, I R; Kadirov, M K; Voloshina, A D; Zobov, V V; Konovalov, A I

    2016-07-01

    Here we represent the first example of the formation of mixed nanoscale associates, constructed from amphiphilic calixresorcinarenes and hydrophobic carboxylic acids including drugs. The amidoamino-calixresorcinarene self-associates effectively solubilize hydrophobic carboxylic acids - drugs such as naproxen, ibuprofen, ursodeoxycholic acid and aliphatic dodecanoic acid - with the formation of the mixed aggregates with the macrocycle/substrate stoichiometry from 1/1 to 1/7. The ionization of organic acids and the peripheral nitrogen atoms of the macrocycles with the subsequent inclusion of hydrophobic acids into the macrocycle self-associates is the driving force of solubilization. In some cases, this leads to the co-assembly of the macrocycle polydisperse associates into supramolecular monodisperse nanoparticles with the diameter of about 100 nm. The efficiency of drug loading into the nanoparticles is up to 45% and depends on the structure of organic acid. The dissociation of the mixed aggregates and release of organic acid are attained by decreasing pH. PMID:27252123

  17. Microbial production of specialty organic acids from renewable and waste materials.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2015-01-01

    Microbial production of organic acids has become a fast-moving field due to the increasing role of these compounds as platform chemicals. In recent years, the portfolio of specialty fermentation-derived carboxylic acids has increased considerably, including the production of glyceric, glucaric, succinic, butyric, xylonic, fumaric, malic, itaconic, lactobionic, propionic and adipic acid through innovative fermentation strategies. This review summarizes recent trends in the use of novel microbial platforms as well as renewable and waste materials for efficient and cost-effective bio-based production of emerging high-value organic acids. Advances in the development of robust and efficient microbial bioprocesses for producing carboxylic acids from low-cost feedstocks are also discussed. The industrial market scenario is also reviewed, including the latest information on the stage of development for producing these emerging bio-products via large-scale fermentation. PMID:24754448

  18. Alteration of organic matter during infaunal polychaete gut passage and links to sediment organic geochemistry. Part I: Amino acids

    NASA Astrophysics Data System (ADS)

    Woulds, Clare; Middelburg, Jack J.; Cowie, Greg L.

    2012-01-01

    Of the factors which control the quantity and composition of organic matter (OM) buried in marine sediments, the links between infaunal ingestion and gut passage and sediment geochemistry have received relatively little attention. This study aimed to use feeding experiments and novel isotope tracing techniques to quantify amino acid net accumulation and loss during polychaete gut passage, and to link this to patterns of selective preservation and decay in sediments. Microcosms containing either Arenicolamarina or Hediste (formerly Nereis) diversicolor were constructed from defaunated sediment and filtered estuarine water, and maintained under natural temperature and light conditions. They were fed with 13C-labelled diatoms daily for 8 days, and animals were transferred into fresh, un-labelled sediment after ∼20 days. Samples of fauna, microcosm sediment and faecal matter were collected after 8, ∼20 and ∼40 days, and analysed for their bulk isotopic signatures and 13C-labelled amino acid compositions. Bulk isotopic data showed that, consistent with their feeding modes, Hediste assimilated added 13C more quickly, and attained a higher labelling level than Arenicola. Both species retained the added 13C in their biomass even after removal from the food. A principal component analysis of 13C-labelled amino acid mole percentages showed clear differences in composition between the algae, faunal tissues, and sediment plus faecal matter. Further, the two species of polychaete showed different compositions in their tissues. The amino acids phenylalanine, valine, leucine, iso-leucine, threonine and proline showed net accumulation in polychaete tissues. Serine, methionine, lysine, aspartic and glutamic acids and tyrosine were rapidly lost through metabolism, consistent with their presence in easily digestible cell components (as opposed to cell walls which offer physical protection). All sample types (polychaete tissues, sediments and faecal matter) were enriched in

  19. Protocatechuic Acid Levels Discriminate Between Organic and Conventional Wheat from Denmark.

    PubMed

    Weesepoel, Yannick; Heenan, Samuel; Boerrigter-Eenling, Rita; Venderink, Tjerk; Blokland, Marco; van Ruth, Saskia

    2016-01-01

    Organic wheat retails at higher market prices than the conventionally grown counterparts. In view of fair competition and sustainable consumer confidence, the organic nature of organic wheat needs to be assured. Amongst other controls this requires analytical tests based on discriminating traits. In this paper, phenolic acids were examined by liquid chromatography analysis as biomarkers for discriminating between the two groups by means of a controlled grown full factorial design Danish wheat sample set. By combining baseline and retention-time correction pre-treatments and principal component analysis, discrimination between organic and conventional produce was found to be expressed in the first principal component (93%), whilst the second principal component accounted for the production year (4%). Upon examination of the loadings plot, a single chromatographic peak was found to account for a large part in the discrimination between the two wheat production systems. This was further underpinned by statistically significant differences found in concentrations between the organic and conventional production systems of this phenolic acid (ANOVA, P<0.05). The phenolic acid was tentatively identified as protocatechuic acid by negative mode mass spectrometry. The results obtained implied that protocatechuic acid may serve as a single marker for discrimination between organic and conventional produced wheat. PMID:27198816

  20. A note on the prebiotic synthesis of organic acids in carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Kerridge, John F.

    1991-01-01

    Strong similarities between monocarboxylic and hydrocarboxylic acids in the Murchison meteorite suggest corresponding similarities in their origins. However, various lines of evidence apparently implicate quite different precursor compounds in the synthesis of the different acids. These seeming inconsistencies can be resolved by postulating that the apparent precursors also share a related origin. Pervasive D enrichment indicates that this origin was in a presolar molecular cloud. The organic acids themselves were probably synthesized in an aqueous environment on an asteroidal parent body, the hydroxy (and amino) acids by means of the Strecker cyanohydrin reaction.

  1. Bifunctional Organic Polymeric Catalysts with a Tunable Acid-Base Distance and Framework Flexibility

    NASA Astrophysics Data System (ADS)

    Chen, Huanhui; Wang, Yanan; Wang, Qunlong; Li, Junhui; Yang, Shiqi; Zhu, Zhirong

    2014-09-01

    Acid-base bifunctional organic polymeric catalysts were synthesized with tunable structures. we demonstrated two synthesis approaches for structural fine-tune. In the first case, the framework flexibility was tuned by changing the ratio of rigid blocks to flexible blocks within the polymer framework. In the second case, we precisely adjusted the acid-base distance by distributing basic monomers to be adjacent to acidic monomers, and by changing the chain length of acidic monomers. In a standard test reaction for the aldol condensation of 4-nitrobenzaldehyde with acetone, the catalysts showed good reusability upon recycling and maintained relatively high conversion percentage.

  2. Uric Acid Spherulites in the Reflector Layer of Firefly Light Organ

    PubMed Central

    Goh, King-Siang; Sheu, Hwo-Shuenn; Hua, Tzu-En; Kang, Mei-Hua; Li, Chia-Wei

    2013-01-01

    Background In firefly light organs, reflector layer is a specialized tissue which is believed to play a key role for increasing the bioluminescence intensity through reflection. However, the nature of this unique tissue remains elusive. In this report, we investigated the role, fine structure and nature of the reflector layer in the light organ of adult Luciola cerata. Principal Findings Our results indicated that the reflector layer is capable of reflecting bioluminescence, and contains abundant uric acid. Electron microscopy (EM) demonstrated that the cytosol of the reflector layer's cells is filled with densely packed spherical granules, which should be the uric acid granules. These granules are highly regular in size (∼700 nm in diameter), and exhibit a radial internal structure. X-ray diffraction (XRD) analyses revealed that an intense single peak pattern with a d-spacing value of 0.320 nm is specifically detected in the light organ, and is highly similar to the diffraction peak pattern and d-spacing value of needle-formed crystals of monosodium urate monohydrate. However, the molar ratio evaluation of uric acid to various cations (K+, Na+, Ca2+ and Mg2+) in the light organ deduced that only a few uric acid molecules were in the form of urate salts. Thus, non-salt uric acid should be the source of the diffraction signal detected in the light organ. Conclusions In the light organ, the intense single peak diffraction signal might come from a unique needle-like uric acid form, which is different from other known structures of non-salt uric acid form. The finding of a radial structure in the granules of reflector layer implies that the spherical uric acid granules might be formed by the radial arrangement of needle-formed packing matter. PMID:23441187

  3. The effects of different thermal treatments and organic acid levels on nutrient digestibility in broilers.

    PubMed

    Goodarzi Boroojeni, F; Mader, A; Knorr, F; Ruhnke, I; Röhe, I; Hafeez, A; Männer, K; Zentek, J

    2014-05-01

    Poultry feed is a potential vector for pathogens. Heat processing and organic acid treatments may decontaminate feed and can affect bird performance as well as feed digestibility. The present study was performed to investigate the effect of different thermal treatments including pelleting (P), long-term conditioning at 85°C for 3 min (L), or expanding at 110°C (E110) and 130°C for 3 to 5 s (E130) without or with 0.75 and 1.5% organic acid supplementation (63.75% formic acid, 25.00% propionic acid, and 11.25% water) on performance, nutrient digestibility, and organ weights of broilers. In total, 960 one-day-old broiler chicks were randomly assigned to 8 replicates using a 3 × 4 factorial arrangement. Performance variables were determined, and the relative organ weights and ileal and total amino acid (AA) digestibilities were measured at d 35. The organic acid inclusion linearly improved feed efficiency in the first week (P ≤ 0.05). The acid inclusion levels and thermal treatments had no significant effect on the performance variables at later intervals of the growing period of the birds. The L group showed the lowest ileal AA and CP digestibility. The inclusion of organic acids had a quadratic effect on total and ileal digestibility of isoleucine (P ≤ 0.05), whereas it had no significant effect on the ileal digestibility of other AA and nutrients. The relative weights of the jejunum and small intestine were significantly higher in the E130 group compared with P and L (P ≤ 0.05). In conclusion, our study demonstrated that long-term heat conditioning can decrease ileal nutrient digestibility, whereas pelleting and expansion, independently of organic acid addition, seemed to have no negative impact on broiler performance and nutrient digestibilities. Moreover, adding a blend of organic acids to broiler diets had neither positive nor negative effects on nutrient digestibility and final broiler performance. This indicates the feasibility of short-term thermal

  4. Role of Organic Acids in Bioformation of Kaolinite: Results of Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Bontognali, T. R. R.; Vasconcelos, C.; McKenzie, J. A.

    2012-04-01

    Clay minerals and other solid silica phases have a broad distribution in the geological record and greatly affect fundamental physicochemical properties of sedimentary rocks, including porosity. An increasing number of studies suggests that microbial activity and microbially produced organic acids might play an important role in authigenic clay mineral formation, at low temperatures and under neutral pH conditions. In particular, early laboratory experiments (Linares and Huertas, 1971) reported the precipitation of kaolinite in solutions of SiO2 and Al2O3 with different molar ratios SiO2/Al2O3, together with fulvic acid (a non-characterized mixture of many different acids containing carboxyl and phenolate groups) that was extracted from peat soil. Despite many attempts, these experiments could not be reproduced until recently. Fiore et al. (2011) hypothesized that the non-sterile fulvic acid might have contained microbes that participated in the formation of kaolinite. Using solutions saturated with Si and Al and containing oxalate and/or mixed microbial culture extracted from peat-moss soil, they performed incubation experiments, which produced kaolinite exclusively in solutions containing oxalate and microbes. We proposed to test the role of specific organic acids for kaolinite formation, conducting laboratory experiments at 25˚C, with solutions of sodium silicate, aluminum chloride and various organic compounds (i.e. EDTA, citric acid, succinic acid and oxalic acid). Specific organic acids may stabilize aluminum in octahedral coordination positions, which is crucial for the initial nucleation step. In our experiments, a poorly crystalline mineral that is possibly a kaolinite precursor formed exclusively in the presence of succinic acid. In experiments with other organic compounds, no incorporation of Al was observed, and amorphous silica was the only precipitated phase. In natural environments, succinic acid is produced by a large variety of microbes as an

  5. Expanding the modular ester fermentative pathways for combinatorial biosynthesis of esters from volatile organic acids.

    PubMed

    Layton, Donovan S; Trinh, Cong T

    2016-08-01

    Volatile organic acids are byproducts of fermentative metabolism, for example, anaerobic digestion of lignocellulosic biomass or organic wastes, and are often times undesired inhibiting cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used as flavors, fragrances, solvents, and biofuels. This framework employs the acid-to-ester modules, consisting of an AAT (alcohol acyltransferase) plus ACT (acyl CoA transferase) submodule and an alcohol submodule, for co-fermentation of sugars and organic acids to acyl CoAs and alcohols to form a combinatorial library of esters. By assembling these modules with the engineered Escherichia coli modular chassis cell, we developed microbial manufacturing platforms to perform the following functions: (i) rapid in vivo screening of novel AATs for their catalytic activities; (ii) expanding combinatorial biosynthesis of unique fermentative esters; and (iii) upgrading volatile organic acids to esters using single or mixed cell cultures. To demonstrate this framework, we screened for a set of five unique and divergent AATs from multiple species, and were able to determine their novel activities as well as produce a library of 12 out of the 13 expected esters from co-fermentation of sugars and (C2-C6) volatile organic acids. We envision the developed framework to be valuable for in vivo characterization of a repertoire of not-well-characterized natural AATs, expanding the combinatorial biosynthesis of fermentative esters, and upgrading volatile organic acids to high-value esters. Biotechnol. Bioeng. 2016;113: 1764-1776. © 2016 Wiley Periodicals, Inc. PMID:26853081

  6. Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids

    USGS Publications Warehouse

    Scott, D.T.; Runkel, R.L.; McKnight, Diane M.; Voelker, B.M.; Kimball, B.A.; Carraway, E.R.

    2003-01-01

    An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

  7. Cationic RAFT polymerization using ppm concentrations of organic acid.

    PubMed

    Uchiyama, Mineto; Satoh, Kotaro; Kamigaito, Masami

    2015-02-01

    A metal-free, cationic, reversible addition-fragmentation chain-transfer (RAFT) polymerization was proposed and realized. A series of thiocarbonylthio compounds were used in the presence of a small amount of triflic acid for isobutyl vinyl ether to give polymers with controlled molecular weight of up to 1×10(5) and narrow molecular-weight distributions (Mw /Mn <1.1). This "living" or controlled cationic polymerization is applicable to various electron-rich monomers including vinyl ethers, p-methoxystyrene, and even p-hydroxystyrene that possesses an unprotected phenol group. A transformation from cationic to radical RAFT polymerization enables the synthesis of block copolymers between cationically and radically polymerizable monomers, such as vinyl ether and vinyl acetate or methyl acrylate. PMID:25511364

  8. Modulation of sialic acid levels among some organs during insulin resistance or hyperglycemic states.

    PubMed

    Ibrahim, Mohammed Auwal; Abdulkadir, Aisha; Onojah, Alice; Sani, Lawal; Adamu, Auwal; Abdullahi, Hadiza

    2016-01-01

    Previous studies have suggested a possible connection between insulin resistance and chronic hyperglycemia with membrane sialic acid content. In this study, the effects of high (20% ad libitum) fructose and glucose feeding on the sialic acid levels of some organs were investigated in rats. The blood glucose levels of the high fructose- and glucose-fed rats were consistently and significantly (P < 0.05) higher than the normal control throughout the experiment. Free serum sialic acid and total hepatic sialic acid levels were elevated in the high fructose- and glucose-fed rats compared to normal control, but only the data for the high glucose-fed group were significantly (P < 0.05) different from the normal control. Conversely, a significant (P < 0.05) decrease in the pancreatic sialic acid level was observed in high glucose-fed group compared to normal control. Also, the high fructose-fed rats had lower, but insignificant (P > 0.05), pancreatic sialic acid level than the normal control. On the other hand, high fructose and glucose feeding did not significantly (P > 0.05) affect the sialic acid levels of the skeletal muscle and heart, though a tendency to increase the sialic acid level was evident in the heart. In the kidney, the sialic acid level was significantly (P < 0.05) increased in both high fructose- and glucose-fed groups. It was concluded that the liver and kidney tend to stimulate sialic acid synthesis, while the pancreas downregulate sialic acids synthesis and/or promote sialic acid release from glycoconjugates. Also, these organs may contribute to high-serum sialic acid level observed during diabetes. PMID:26468092

  9. Spatially-Interactive Biomolecular Networks Organized by Nucleic Acid Nanostructures

    PubMed Central

    Fu, Jinglin; Liu, Minghui; Liu, Yan; Yan, Hao

    2013-01-01

    Conspectus Living systems have evolved a variety of nanostructures to control the molecular interactions that mediate many functions including the recognition of targets by receptors, the binding of enzymes to substrates, and the regulation of enzymatic activity. Mimicking these structures outside of the cell requires methods that offer nanoscale control over the organization of individual network components. Advances in DNA nanotechnology have enabled the design and fabrication of sophisticated one-, two- and three-dimensional (1D, 2D and 3D) nanostructures that utilize spontaneous and sequence specific DNA hybridization. Compared to other self-assembling biopolymers, DNA nanostructures offer predictable and programmable interactions, and surface features to which other nanoparticles and bio-molecules can be precisely positioned. The ability to control the spatial arrangement of the components while constructing highly-organized networks will lead to various applications of these systems. For example, DNA nanoarrays with surface displays of molecular probes can sense noncovalent hybridization interactions with DNA, RNA, and proteins and covalent chemical reactions. DNA nanostructures can also align external molecules into well-defined arrays, which may improve the resolution of many structural determination methods, such as X-ray diffraction, cryo-EM, NMR, and super-resolution fluorescence. Moreover, by constraining target entities to specific conformations, self-assembled DNA nanostructures can serve as molecular rulers to evaluate conformation-dependent activities. This Account describes the most recent advances in the DNA nanostructure directed assembly of biomolecular networks and explores the possibility of applying this technology to other fields of study. Recently, several reports have demonstrated the DNA nanostructure directed assembly of spatially-interactive biomolecular networks. For example, researchers have constructed synthetic multi-enzyme cascades

  10. Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment.

    PubMed

    Ellis, D A; Mabury, S A; Martin, J W; Muir, D C

    2001-07-19

    Following the introduction of hydrochlorofluorocarbon (HCFCs) and hydrofluorocarbon (HFCs) gases as replacements for the ozone-destroying chlorofluorocarbons (CFCs), it has been discovered that HCFCs/HFCs can degrade in the atmosphere to produce trifluoroacetic acid, a compound with no known loss mechanisms in the environment, and higher concentrations in natural waters have been shown to be mildly phytotoxic. Present environmental levels of trifluooracetic acid are not accounted by HCFC/HFC degradation alone. Here we report that thermolysis of fluorinated polymers, such as the commercial polymers Teflon and Kel-F, can also produce trifluoroacetate and the similar compound chlorodifluoroacetate. This can occur either directly, or indirectly via products that are known to degrade to these haloacetates in the atmosphere. The environmental significance of these findings is confirmed by modelling, which indicates that the thermolysis of fluoropolymers in industrial and consumer high-temperature applications (ovens, non-stick cooking utensils and combustion engines) is likely to be a significant source of trifluoroacetate in urban rain water ( approximately 25 ng l-1, as estimated for Toronto). Thermolysis also leads to longer chain polyfluoro- and/or polychlorofluoro- (C3-C14) carboxylic acids which may be equally persistent. Some of these products have recently been linked with possible adverse health and environmental impacts and are being phased out of the US market. Furthermore, we detected CFCs and fluorocarbons-groups that can destroy ozone and act as greenhouse gases, respectively-among the other thermal degradation products, suggesting that continued use of fluoropolymers may also exacerbate stratospheric ozone-depletion and global warming. PMID:11460160

  11. The effect of several organic acids on phytate phosphorus hydrolysis in broiler chicks.

    PubMed

    Liem, A; Pesti, G M; Edwards, H M

    2008-04-01

    Supplementation of some organic acids to a P-deficient diet has been shown to improve phytate P utilization. Two experiments were conducted from 0 to 16 d in battery brooders to determine the effect of various organic acids supplementation on phytate P utilization. In both experiments, birds were fed P-deficient corn and soybean meal-based diets. In experiment 1, citric acid, malic acid, fumaric acid, and EDTA were supplemented. Experiment 2 had a 2 x 2 factorial design with 2 sources of Met, 2-hydroxy-4-(methylthio) butanoic acid (HMB) and dl-Met, with or without 500 U/kg of phytase. In experiment 1, the addition of citric, malic, and fumaric acids increased percentage of bone ash, but only the effect of citric acid was significant. The addition of citric and malic acids also significantly increased the retention of P and phytate P (P<0.05). In experiment 2, the addition of phytase to the diet significantly increased 16-d BW gain, feed intake, percentage of bone ash, milligrams of bone ash, phytate P disappearance, and decreased the incidence of P-deficiency rickets. Methionine source did not affect 16-d BW gain, feed intake, feed efficiency, milligrams of bone ash, or P rickets incidence. However, the birds fed HMB had a higher percentage of bone ash and phytate P disappearance compared with the groups fed dl-Met only when phytase was added to the diets. The additions of citric acid and HMB improved phytate P utilization. However, the reason why some organic acids are effective whereas others are not is not apparent. PMID:18339989

  12. Broiler skin color as affected by organic acids: influence of concentration and method of application.

    PubMed

    Bilgili, S F; Conner, D E; Pinion, J L; Tamblyn, K C

    1998-05-01

    Color of broiler skin was evaluated after exposure to organic acids under various concentrations and simulated potential plant application conditions. Breast skin from chilled broiler carcasses was treated with acetic (AA), citric (CA), lactic (LA), malic (ML), mandelic (MN), propionic (PA), or tartaric (TA) acids at 0.5, 1, 2, 4, and 6% concentrations. Each acid and concentration was applied in simulated dip (23 C for 15 s), scalder (50 C for 2 min), and immersion chiller (1 C for 60 min) conditions. A tap water control was included with each application method. Objective color values of L* (lightness), a* (redness), and b* (yellowness) were measured before and after the treatments to calculate color differentials under a factorial arrangement of organic acids and concentrations. Skin lightness increased (P < 0.01) in simulated chiller as compared to dip and scalder applications. Skin redness was reduced significantly in scalder, and yellowness in dip and scalder applications, respectively. In simulated dip application, with the exception of PA, all acids decreased lightness and increased redness and yellowness values. Propionic acid had little affect on lightness and redness values, but decreased yellowness values. In simulated scalder application, with the exception of PA, all acids decreased lightness with increasing concentration. The redness values changed little in scalder application. However, yellowness values were increased with all acids, except for PA, which decreased yellowness values. In simulated chiller conditions, all acids, except for PA, decreased lightness and redness and increased yellowness values. Propionic acid increased lightness and decreased yellowness values significantly in chiller conditions. Alterations in skin color should be taken into account in the selection and application of organic acids as carcass disinfectants. PMID:9603365

  13. Isotopic composition of Murchison organic compounds: Intramolecular carbon isotope fractionation of acetic acid. Simulation studies of cosmochemical organic syntheses

    NASA Technical Reports Server (NTRS)

    Yuen, G. U.; Cronin, J. R.; Blair, N. E.; Desmarais, D. J.; Chang, S.

    1991-01-01

    Recently, in our laboratories, samples of Murchison acetic acid were decarboxylated successfully and the carbon isotopic composition was measured for the methane released by this procedure. These analyses showed significant differences in C-13/C-12 ratios for the methyl and carboxyl carbons of the acetic acid molecule, strongly suggesting that more than one carbon source may be involved in the synthesis of the Murchison organic compounds. On the basis of this finding, laboratory model systems simulating cosmochemical synthesis are being studied, especially those processes capable of involving two or more starting carbon sources.

  14. Inhibitory Effects of Caffeic Acid, a Coffee-Related Organic Acid, on the Propagation of Hepatitis C Virus.

    PubMed

    Tanida, Isei; Shirasago, Yoshitaka; Suzuki, Ryosuke; Abe, Ryo; Wakita, Takaji; Hanada, Kentaro; Fukasawa, Masayoshi

    2015-01-01

    Multipurpose cohort studies have demonstrated that coffee consumption reduces the risk of hepatocellular carcinoma (HCC). Given that one of the main causes of HCC is hepatitis C virus (HCV) infection, we examined the effect of caffeic acid, a major organic acid derived from coffee, on the propagation of HCV using an in vitro naïve HCV particle-infection and production system within human hepatoma-derived Huh-7.5.1-8 cells. When cells were treated with 1% coffee extract or 0.1% caffeic acid for 1-h post HCV infection, the amount of HCV particles released into the medium at 3 and 4 days post-infection considerably decreased. In addition, HCV-infected cells cultured with 0.001% caffeic acid for 4 days, also released less HCV particles into the medium. Caffeic acid treatment inhibited the initial stage of HCV infection (i.e., between virion entry and the translation of the RNA genome) in both HCV genotypes 1b and 2a. These results suggest that the treatment of cells with caffeic acid may inhibit HCV propagation. PMID:25672401

  15. Direct activation of GABAA receptors by substances in the organic acid fraction of Japanese sake.

    PubMed

    Izu, Hanae; Shigemori, Kensuke; Eguchi, Masaya; Kawane, Shuhei; Fujii, Shouko; Kitamura, Yuji; Aoshima, Hitoshi; Yamada, Yasue

    2017-01-01

    We investigated the effect of substances present in Japanese sake on the response of ionotropic γ-aminobutyric acid (GABA)A receptors expressed in Xenopus oocytes. Sake was fractionated by ion-exchange chromatography. The fraction containing organic acids (OA fraction) showed agonist activities on the GABAA receptor. OA fractions from sake were analyzed by capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Of the 64 compounds identified, 13 compounds showed GABAA receptor agonist activities. Especially, l-lactic acid showed high agonist activity and its EC50 value was 37μM. Intraperitoneal injections of l-lactic acid, gluconic acid, and pyruvic acid (10, 10, and 5mg/kg BW, respectively), which showed agonistic activity on the GABAA receptor, led to significant anxiolytic effects during an elevated plus-maze test in mice. PMID:27507485

  16. Determination of sugars, organic acids, aroma components, and carotenoids in grapefruit pulps.

    PubMed

    Zheng, Huiwen; Zhang, Qiuyun; Quan, Junping; Zheng, Qiao; Xi, Wanpeng

    2016-08-15

    The composition and content of sugars, organic acids, volatiles and carotenoids, in the pulps of six grapefruit cultivars, were examined by HPLC and GC-MS. The results showed that sucrose was the dominant sugar in grapefruit, making up 40.08-59.68% of the total sugars, and the ratio of fructose to glucose was almost 1:1. Citric acid was the major organic acid and represented 39.10-63.55% of the total organic acids, followed by quininic acid. The ratios of individual sugars and organic acids play an important role in grapefruit taste determination. Monoterpenes and sesquiterpenes were the predominant volatiles in grapefruit, in particular d-limonene and caryophyllene. Caryophyllene, α-humulene, humulen-(v1), β-linalool and tert-butyl 2-methylpropanoate are the characteristic aroma compounds of grapefruit. Although β-carotene is the primary carotenoid in grapefruit, the pulp color is mainly determined by the ratios of zeaxanthin, β-cryptoxanthin and lycopene. Our results provide the first complete chemical characterization of the taste, aroma and color of grapefruit. PMID:27006221

  17. Stable carbon isotopic compositions of organic acids in total suspended particles and dusts from Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Ma, Shexia; Peng, Ping'an; Song, Jianzhong; Zhao, Jinping; He, Lulu; Sheng, Guoying; Fu, Jiamo

    2010-10-01

    Stable carbon isotopic compositions of individual organic acids were determined in total suspended particles and dusts from Guangzhou. The δ 13C values of high molecular weight n-alkanoic acids (C 20-C 28) varied from -34.1‰ to -32.4‰ and tended to be heavier in summer and lighter in winter. These δ 13C values indicate that high molecular weight n-alkanoic acids were derived mainly from emission by C 3 plants. Reduced biological synthesis of high molecular weight n-alkanoic acids in winter may be the reason for the light carbon isotopic composition. The δ 13C values of low molecular weight n-alkanoic acids (C 10-C 18) changed from -31.7‰ to -30.3‰ and exhibited a reverse seasonal trend, i.e., heavier in winter and lighter in summer. Slightly heavier δ 13C values of low molecular weight n-alkanoic acids than those of high molecular weight n-alkanoic acids suggested that they may be emitted from blended sources, e.g., anthropogenic sources and vegetation waxes. Lighter δ 13C values in summer may be attributed to relatively low anthropogenic sources and high botanic sources in summer. Dicarboxylic acids and aromatic acids have been proposed as secondary products from photochemical degradation. The average δ 13C values of dicarboxylic acids and aromatic acids were heavier, and ranged from -25.2‰ to -22.9‰ and from -30.0‰ to -27.6‰, respectively. Both dicarboxylic acids and aromatic acids displayed the same temporal variations in the δ 13C values, i.e., negative δ 13C in the summer samples and positive in the winter samples, which may be controlled by photochemical reactions; they are generally severe in winter in Guangzhou under the monsoon weather system. The heaviest δ 13C values were observed in dicarboxylic acids, indicating that dicarboxylic acids were formed by fast and more complete oxidation reactions. These results indicate that the stable carbon isotopic composition of organic acids may provide important information about sources and

  18. Relationship between cadmium, zinc, Cd-peptide, and organic acid in tobacco suspension cells

    SciTech Connect

    Krotz, R.M.; Evangelou, B.P.; Wagner, G.J. )

    1989-10-01

    Responses of tobacco (Nicotiana tabacum) suspension cells to Cd and Zn were studied in the presence and absence of ligand of Cd-peptide in order to understand the role of this peptide versus other mechanisms in Cd and Zn accumulation and accommodation in plants. With 45 micromolar Cd and 300 micromolar Zn (non-growth-inhibiting levels), metals appeared rapidly within cells, and intracellular Cd and Zn reached medium concentrations after 6 to 10 hours. Cd-peptide was observed in response to Cd after 2 hours, but this form only accounted for {approximately}30% of soluble Cd after 24 hours. Peptide was not observed in cells exposed to 300 micromolar Zn for up to 7 days. Organic acid-to-metal stoichiometry indicated that endogenous organic acid content of cells was more than sufficient to complex absorbed metals and no evidence was found for stimulation of organic acid biosynthesis by Cd or Zn. Metal-complexing potential of organic acids for Cd and Zn versus endogenous cations is discussed as is vacuolar-extravacuolar distribution of metals. The absence of Cd-peptide does not limit Cd-accumulation in the system studied. Results suggest that tobacco suspension cells accommodte the presence of non-growth-inhibiting and growth-inhibiting levels of Cd and Zn by sequestration in the vacuole as complexes with endogenous organic acids and that this may be a principal means for accommodation of Cd as well as Zn in the presence and absence of Cd-peptide.

  19. Protecting cell walls from binding aluminum by organic acids contributes to aluminum resistance.

    PubMed

    Li, Ya-Ying; Zhang, Yue-Jiao; Zhou, Yuan; Yang, Jian-Li; Zheng, Shao-Jian

    2009-06-01

    Aluminum-induced secretion of organic acids from the root apex has been demonstrated to be one major Al resistance mechanism in plants. However, whether the organic acid concentration is high enough to detoxify Al in the growth medium is frequently questioned. The genotypes of Al-resistant wheat, Cassia tora L. and buckwheat secrete malate, citrate and oxalate, respectively. In the present study we found that at a 35% inhibition of root elongation, the Al activities in the solution were 10, 20, and 50 muM with the corresponding malate, citrate, and oxalate exudation at the rates of 15, 20 and 21 nmol/cm(2) per 12 h, respectively, for the above three plant species. When exogenous organic acids were added to ameliorate Al toxicity, twofold and eightfold higher oxalate and malate concentrations were required to produce the equal effect by citrate. After the root apical cell walls were isolated and preincubated in 1 mM malate, oxalate or citrate solution overnight, the total amount of Al adsorbed to the cell walls all decreased significantly to a similar level, implying that these organic acids own an equal ability to protect the cell walls from binding Al. These findings suggest that protection of cell walls from binding Al by organic acids may contribute significantly to Al resistance. PMID:19522816

  20. Statistical Thermodynamic Model for Surface Tension of Aqueous Organic Acids with Consideration of Partial Dissociation.

    PubMed

    Boyer, Hallie C; Dutcher, Cari S

    2016-06-30

    With statistical mechanics, an isotherm-based surface tension model for single solute aqueous solutions was derived previously (Wexler et al. J. Phys. Chem. Lett. 2013) for the entire concentration range, from infinite dilution to pure liquid solute, as a function of solute activity. In recent work (Boyer et al. J. Phys. Chem. Lett. 2015), empirical model parameters were reduced through physicochemical interpretations of both electrolyte and organic solutes, enabling surface tension predictions for systems where there is little or no data. The prior binary model is extended in the current work for the first time to treat multicomponent systems to predict surface tensions of partially dissociating organic acids (acetic, butyric, citric, formic, glutaric, maleic, malic, malonic, oxalic, propionic, and succinic acids). These organic acids are especially applicable to the study of atmospheric aqueous aerosols, due to their abundance in the atmosphere. In the model developed here, surface tension depends explicitly on activities of both the neutral organic and deprotonated components of the acid. The relative concentrations of the nondissociated and dissociated mole fractions are found using known dissociation constants. Model parameters strongly depend on molecular size, number of functional groups, O:C ratio, and number of carbons. For all organic acids in this study, fully predictive modeling of surface tensions is demonstrated. PMID:27219322

  1. The effect of organic acids on plagioclase dissolution rates and stoichiometry

    NASA Astrophysics Data System (ADS)

    Welch, Susan A.; Ullman, William J.

    1993-06-01

    The rates of plagioclase dissolution in solutions containing organic acids are up to ten times greater than the rates determined in solutions containing inorganic acids at the same acidity. Initial rates of dissolution are poorly reproduced in replicate experiments. After a day, however, the rates of plagioclase dissolution calculated from the rates of silicon release are reproducible and constant for up to nineteen days. Steady-state rates of dissolution are highest (up to 1.3 × 10 -8 mol/m 2/sec) in acidic solutions (pH ≈ 3) and decrease (to 1 × 10 -11 mol/m 2/sec) as acidity decreases toward neutral pH. The polyfunctional acids, oxalate, citrate, succinate, pyruvate, and 2-ketoglutarate, are the most effective at promoting dissolution. Acetate and propionate are not as effective as the other organic acids but are nonetheless more effective than solutions containing only inorganic acids. The degree of ligand-promoted enhancement of dissolution rate (rate in organic-containing solution/rate in inorganic solution at the same pH) decreases as acidity increases, indicating that the ligand-promoted dissolution mechanism becomes relatively more important as the rate of proton-promoted dissolution decreases. The stoichiometry of release to solution indicates that dissolution is selective even after the rates of dissolution become constant. As in previously published studies, Na and Ca are rapidly released from the plagioclase feldspar, leaving a surface enriched in Si and/or Al. The ratio of Al/Si released to solution indicates that the stoichiometry of the residual plagioclase surface is a function of pH and the nature of the organic ligand. The ligands which remove Al in preference to Si from the dissolving mineral surface are also those which enhance overall plagioclase dissolution rates.

  2. Deoxyribonucleic acid methylation and chromatin organization in Tetrahymena thermophila.

    PubMed Central

    Pratt, K; Hattman, S

    1981-01-01

    Deoxyribonucleic acid (DNA) of the transcriptionally active macronucleus of Tetrahymena thermophila is methylated at the N6 position of adenine to produce methyladenine (MeAde); approximately 1 in every 125 adenine residues (0.8 mol%) is methylated. Transcriptionally inert micronuclear DNA is not methylated (< or = 0.01 mol% MeAde; M. A. Gorovsky, S. Hattman, and G. L. Pleger, J. Cell Biol. 56:697-701, 1973). There is no detectable cytosine methylation in macronuclei in Tetrahymena DNA (< or = 0.01 mol% 5-methylcytosine). MeAde-containing DNA sequences in macronuclei are preferentially digested by both staphylococcal nuclease and pancreatic deoxyribonuclease I. In contrast, there is no preferential release of MeAde during digestion of purified DNA. These results indicate that MeAde residues are predominantly located in "linker DNA" and perhaps have a function in transcription. Pulse-chase studies showed that labeled MeAde remains preferentially in linker DNA during subsequent rounds of DNA replication; i.e., there is little, if any, movement of nucleosomes during chromatin replication. This implies that nucleosomes may be phased with respect to DNA sequence. PMID:9279374

  3. [Relationships between cadmium accumulation and organic acids in leaves of Solanum nigrum L. as a cadmium-hyperaccumulator].

    PubMed

    Sun, Rui-lian; Zhou, Qi-xing; Wang, Xin

    2006-04-01

    The influence of different cadmium concentrations on the organic acid level in leaves of the Cd hyperaccumulator, Solanum nigrum L., in particular, the relationship of organic acids with Cd accumulation in S. nigrum was investigated based on the pot-culture experiment. The results showed that the Cd concentration in S. nigrum leaves exceeded 100 microg x g(-1), the threshold value used to define Cd-hyperaccumulators, and the bioaccumulation coefficient of cadmium in shoots of S. nigrum was higher than 1 when Cd concentration in soil was 25 microg x g(-1). The level of organic acids in leaves of S. nigrum had significant differences between the seedling stage and the mature stage. At the seedling stage, the sequence of organic acids in leaves of S. nigrum was acetic acid> tartaric acid> malic acid> citric acid. On the contrary, the accumulation of organic acids in S. nigrum at the mature stage was approximately in the following sequence malic acid> tartaric acid, acetic acid> citric acid. The significant positive correlation between Cd accumulation in leaves of S. nigrum and the concentration of tartaric acid in leaves of S. nigrum was observed at the seedling stage, whereas there was a significant positive correlation between Cd accumulation in leaves of S. nigrum and both acetic and citric acid concentrations at the mature stage. These results indicated that tartaric, acetic and citric acids in leaves of S. nigrum might act as the indication of Cd hyperaccumulation. PMID:16768003

  4. Measurements of Gases and Aerosols during 2010Cal-Mex

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Zhang, R.; Molina, L.

    2012-04-01

    The major goal of the collaborative Cal-Mex 2010 research project is to assess the sources and processing of emissions along the California-Mexico border region and their effects on regional air quality and climate in order to provide scientific information to decision makers of both nations when addressing these two inter-related issues. During the Cal-Mex 2010 field study, the TAMU teams have collected extensive data sets from Tijuana/San Diego border, including volatile organic compounds (VOCs), gaseous sulfuric acid (H2SO4) and a suite set of physical and chemical parameters of aerosols. This comprehensive data set requires additional effort to process and analyze the measurements of gases and aerosols during Cal-Mex 2010. In this talk, preliminary data analysis of gases and aerosols will be presented, including VOCs and particle mixing states, morphology, and effective densities.

  5. Generation of organic acids and monosaccharides by hydrolytic and oxidative transformation of food processing residues.

    PubMed

    Fischer, Klaus; Bipp, Hans-Peter

    2005-05-01

    Carbohydrate-rich biomass residues, i.e. sugar beet molasses, whey powder, wine yeast, potato peel sludge, spent hops, malt dust and apple marc, were tested as starting materials for the generation of marketable chemicals, e.g. aliphatic acids, sugar acids and mono-/disaccharides. Residues were oxidized or hydrolyzed under acidic or alkaline conditions applying conventional laboratory digestion methods and microwave assisted techniques. Yields and compositions of the oxidation products differed according to the oxidizing agent used. Main products of oxidation by 30% HNO(3) were acetic, glucaric, oxalic and glycolic acids. Applying H(2)O(2)/CuO in alkaline solution, the organic acid yields were remarkably lower with formic, acetic and threonic acids as main products. Gluconic acid was formed instead of glucaric acid throughout. Reaction of a 10% H(2)O(2) solution with sugar beet molasses generated formic and lactic acids mainly. Na(2)S(2)O(8) solutions were very inefficient at oxidizing the residues. Glucose, arabinose and galactose were formed during acidic hydrolysis of malt dust and apple marc. The glucose content reached 0.35 g per gram of residue. Important advantages of the microwave application were lower reaction times and reduced reagent demands. PMID:15607197

  6. Non-covalent bonded 2D-3D supramolecular architectures based on 4-dimethylaminopyridine and organic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Huan; Jin, Shouwen; Wen, Xianhong; Liu, Bin; Fang, Yang; Zhang, Yani; Wang, Daqi

    2015-07-01

    Studies concentrating on non-covalent weak interactions between the organic base of 4-dimethylaminopyridine, and acidic derivatives have led to an increased understanding of the role 4-dimethylaminopyridine has in binding with the organic acid derivatives. Here anhydrous and hydrous multicomponent organic acid-base adducts of 4-dimethylaminopyridine have been prepared with organic acids such as 1,3-benzodioxole-5-carboxylic acid, p-aminobenzoic acid, 2,4-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 5-chlorosalicylic acid, 5-bromosalicylic acid, 5-nitrosalicylic acid, and 5-sulfosalicylic acid. The 4-dimethylaminopyridine is only monoprotonated. All compounds are organic salts with the 1:1 ratio of the cation and the anion. For the 5-sulfosalicylic acid only one H is ionized to exhibit the valence number of -1. The eight crystalline complexes were characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. These structures adopted the hetero supramolecular synthons. Analysis of the crystal packing of 1-8 suggests that there are Nsbnd H⋯O, Osbnd H⋯O, and Osbnd H⋯S hydrogen bonds (charge assisted or neutral) between the organic acid and the 4-dimethylaminopyridine moieties in the studied compounds. Except the classical hydrogen bonding interactions, the secondary propagating interactions also play important roles in structure extension. For the synergistic effect of the various non-covalent interactions, the complexes displayed 2D-3D framework structures.

  7. Fractionation of Fe isotopes by soil microbes and organic acids

    USGS Publications Warehouse

    Brantley, Susan L.; Liermann, Laura; Bullen, Thomas D.

    2001-01-01

    Small natural variations in Fe isotopes have been attributed to biological cycling. However, without understanding the mechanism of fractionation, it is impossible to interpret such variations. Here we show that the δ56Fe of Fe dissolved from a silicate soil mineral by siderophore-producing bacteria is as much as 0.8% lighter than bulk Fe in the mineral. A smaller isotopic shift is observed for Fe released abiotically by two chelates, and the magnitude of the shift increases with affinity of the ligand for Fe, consistent with a kinetic isotope effect during hydrolysis of Fe at the mineral surface. Fe dissolved abiotically without chelates shows no isotopic shift. The δ56Fe of the exchange fraction on soil grains is also lighter by ~0.6%-1% than Fe from both hornblende and iron oxyhydroxides. The kinetic isotope effect is therefore preserved in open systems such as soils. when recorded in the rock record, Fe isotopic fractionation could document Fe transport by organic molecules or by microbes where such entities were present in the geologic past.

  8. Organic acids from lignocellulose: Candida lignohabitans as a new microbial cell factory.

    PubMed

    Bellasio, Martina; Mattanovich, Diethard; Sauer, Michael; Marx, Hans

    2015-05-01

    Biorefinery applications require microbial cell factories for the conversion of various sugars derived from lignocellulosic material into value-added chemicals. Here, the capabilities of the yeast Candida lignohabitans to utilize a range of such sugars is characterized. Substrates efficiently converted by this yeast include the pentoses xylose and arabinose. Genetic engineering of C. lignohabitans with the isolated endogenous GAP promoter and GAP terminator was successful. GFP expression was used as a proof of functionality for the isolated transcription elements. Expression of lactate dehydrogenase and cis-aconitate decarboxylase resulted in stable and reproducible production of lactic acid and itaconic acid, respectively. The desired organic acids were accumulated converting pure sugars as well as lignocellulosic hydrolysates. C. lignohabitans proved therefore to be a promising reliable microbial host for production of organic acids from lignocellulosic material. PMID:25651876

  9. Uptake of Small Organic Compounds by Sulfuric Acid Aerosols: Dissolution and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Michelsen, R. R.; Ashbourn, S. F. M.; Staton, S. J. R.

    2003-01-01

    To assess the role of oxygenated volatile organic compounds in the upper troposphere and lower stratosphere, the interactions of a series of small organic compounds with low-temperature aqueous sulfuric acid will be evaluated. The total amount of organic material which may be taken up from the gas phase by dissolution, surface layer formation, and reaction during the particle lifetime will be quantified. Our current results for acetaldehyde uptake on 40 - 80 wt% sulfuric acid solutions will be compared to those of methanol, formaldehyde, and acetone to investigate the relationships between chemical functionality and heterogeneous activity. Where possible, equilibrium uptake will be ascribed to component pathways (hydration, protonation, etc.) to facilitate evaluation of other species not yet studied in low temperature aqueous sulfuric acid.

  10. Gas chromatographic organic acid profiling analysis of brandies and whiskeys for pattern recognition analysis.

    PubMed

    Park, Y J; Kim, K R; Kim, J H

    1999-06-01

    An efficient gas chromatographic profiling and pattern recognition method is described for brandy and whiskey samples according to their organic acid contents. It involves solid-phase extraction of organic acids using Chromosorb P with subsequent conversion to stable tert-butyldimethylsilyl derivatives for the direct analysis by capillary column gas chromatography and gas chromatography-mass spectrometry. A total of 12 organic acids were reproducibly identified in liquor samples (1 mL). When the GC profiles were simplified to their retention index spectra, characteristic patterns were obtained for each liquor sample as well as for each group average. Stepwise discriminant analysis provided star symbols characteristic for each liquor sample and group average. As expected, canonical discriminant analysis correctly classified 23 liquor samples studied into two groups of either brandy or whiskey. PMID:10794629

  11. [Determination of organic acids in cane vinasse by micellar electrokinetic capillary chromatography with indirect ultraviolet detection].

    PubMed

    Xu, Yuanjin; Xu, Guiping; Wei, Yuanan

    2006-01-01

    Micellar electrokinetic capillary chromatography (MECC) with indirect ultraviolet (UV) detection method for the separation and determination of several organic acids in cane vinasse, including malonic, formic, tartaric, malic, succinic, glutaric, acetic, lactic and glutamic acids, were developed. Electrophoretic conditions were as follows: uncoated fused silica capillary (56 cm/ 64 cm (effective/total length), 50 microm i. d. ), 7.5 mmol/L potassium acid phthalate-1. 5 mmol/L cetyltrimethyl-ammonium bromide (CTAB) at pH = 6.50 as buffer solution, applied voltage -25 kV, temperature 25 degrees C, detection wavelength 300 nm, reference wavelength 210 nm. Good linearities were obtained for nine organic acids, and the detection limits were 0.5 mg/L, 0.3 mg/L, 1.5 mg/L, 1.5 mg/L, 0.3 mg/L, 0.3 mg/L, 0.4 mg/L, 0.4 mg/L, 0.4 mg/L for malonic, formic, tartaric, malic, succinic, glutaric, acetic, lactic and glutamic acid, respectively. The relative standard deviations (RSDs) for migration times and peak areas of nine organic acids within a day were 0.4% - 0.6% and 2.3% - 4.8%, respectively. The corresponding data for five days were 0.5% -0.7% and 3.3% - 5.2%. The recoveries of acid standards were above 93%. The method can be applied to determine the organic acids in cane vinasse with satisfactory results. PMID:16827307

  12. The secretion of organic acids is also regulated by factors other than aluminum.

    PubMed

    Ding, Haiyan; Wen, Danni; Fu, Zhengwei; Qian, Haifeng

    2014-02-01

    As a result of natural processes and human activities, aluminum (Al) toxicity is recognized as a major limiting factor for plant productivity, and the secretion of organic acids facilitated by channel proteins is one of the most important Al resistance mechanisms in plants. The objective of this study was to evaluate the effects of several types of stress, including herbicide (imazethapyr (IM) and diclofop-methyl (DM)), heavy metal (Al and Cu), salt stress (NaCl), and proton stress (HCl), on the release of organic acids in rice. The results showed that 0.05 mg/L IM, 0.1 mg/L DM, 4680 mg/L NaCl, 0.5 mg/L CuSO4, and 18 mg/L AlCl3 significantly inhibited rice root elongation and the root fresh weight. In contrast, no significant inhibitory effects on rice growth were found with HCl (pH = 4.5). Similar to the effect of AlCl3 on organic acid induction, treatment with IM, DM, NaCl, and CuSO4 also induced the synthesis of endogenous citric acid and oxalic acid but decreased endogenous malic acid synthesis in the seedlings, though only citric acid was released into the environment after these treatments. We also analyzed the transcripts of three citrate channel proteins and found they were up-regulated by NaCl, CuSO4, and AlCl3 but not by IM or DM. This study clarified that organic acid secretion in plants might be a common phenomenon when plants are exposed to environmental stress other than Al toxicity. PMID:24097010

  13. Effects of organic acids on cadmium and copper sorption and desorption by two calcareous soils.

    PubMed

    Najafi, Sarvenaz; Jalali, Mohsen

    2015-09-01

    Low molecular weight organic acids (LMWOAs) present in soil alter equilibrium pH of soil, and consequently, affect heavy metal sorption and desorption on soil constitutes. This study was conducted to investigate the effects of different concentrations (0.1, 1, 2.5, 5, 10, 30, 40, 50, 70, and 100 mM) of citric, malic, and oxalic acids on sorption and desorption of cadmium (Cd) and copper (Cu) in two calcareous soils. Increasing the concentrations of three LMWOAs decreased the equilibrium pH of soil solutions. The results indicated that increase in organic acids concentrations generally reduced Cd and Cu sorption in soils. Increase concentrations of LMWOAs generally promoted Cd and Cu desorption from soils. A valley-like curve was observed for desorption of Cu after the citric acid concentration increment in soil 2. Increasing the concentrations of three LMWOAs caused a marked decrease in Kd(sorp) values of Cd and Cu in soils. In general, citric acid was the most effective organic acid in reducing sorption and increasing desorption of both metals, and oxalic acid had the minimal impact. The results indicated that LMWOAs had a greater impact on Cu sorption and desorption than Cd, which can be attributed to higher stability constants of organic acids complexes with Cu compared to Cd. It can be concluded that by selecting suitable type and concentration of LMWOAs, mobility, and hence, bioavailability of heavy metals can be changed. So, environmental implications concerning heavy metals mobility might be derived from these findings. PMID:26298186

  14. Crystal and molecular structures of twelve salts from isopropylamine and different organic acids

    NASA Astrophysics Data System (ADS)

    Wen, Xianhong; Zhang, Huan; Xu, Kai; Sun, JiaHui; Ye, Jiaying; Jin, Shouwen; Wang, Daqi

    2015-08-01

    Twelve isopropylamine derived supramolecular complexes isopropylamine: (m-toluic acid) [(Hipa)+ ṡ (mtua-), mtua- = m-toluate] (1), isopropylamine: (p-toluic acid) [(Hipa)+ ṡ (ptua-), ptua- = p-toluate] (2), isopropylamine: (p-methoxybenzoic acid) [(Hipa)+ ṡ (pmba-), pmba- = p-methoxybenzoate] (3), (isopropylamine): (3,4-methylenedioxybenzoic acid) [(Hipa)+ ṡ (mba)-, mba = 3,4-methylenedioxybenzoate] (4), (isopropylamine): (2-methyl-2-phenoxypropanoic acid) [(Hipa)+ ṡ (mpa-), mpa- = 2-methyl-2-phenoxypropionate] (5), (isopropylamine): (4-chlorophenoxyacetic acid) [(Hipa)+ ṡ (cpa-), cpa- = 4-chlorophenoxyacetate] (6), (isopropylamine): (3,5-dinitrobenzoic acid) [(Hipa)+ ṡ (dnba-), dnba- = 3,5-dinitrobenzoate] (7), (isopropylamine): (2-furoic acid) [(Hipa)+ ṡ (fura-), fura- = 2-furoate] (8), (isopropylamine): (1-hydroxy-2-naphthoic acid) [(Hipa)+ ṡ (hna), hna = 1-hydroxy-2-naphthoate] (9), (isopropylamine): (4-nitrophthalic acid) [(Hipa)2+ ṡ (npa2-), npa2- = 4-nitrophthalate] (10), (isopropylamine)2: (2,5-bis-isopropylcarbamoyl-terephthalic acid): 2H2O [(Hipa)2+ ṡ (bta2-) ṡ 2H2O, bta2- = 2,5-bis-isopropylcarbamoyl-terephthalate] (11), and (isopropylamine)2: (1,5-naphthalenedisulfonic acid) [(Hipa)2+ ṡ (nds2-), nds2- = 1,5-naphthalenedisulfonate] (12) were synthesized and structurally characterized by X-ray crystallography. All supramolecular architectures of 1-12 involve extensive classical hydrogen bonds as well as other non-covalent interactions. The results presented herein indicate that the strength and directionality of the Nsbnd H⋯O, Osbnd H⋯O, and Osbnd H⋯S hydrogen bonds between the acidic components and isopropylamine are sufficient to bring about the formation of binary organic salts. The role of weak and strong non-covalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-12 displayed 1D-3D framework structure.

  15. Rapid simultaneous determination of amines and organic acids in citrus using high-performance liquid chromatography.

    PubMed

    Uckoo, Ram M; Jayaprakasha, Guddadarangavvanahally K; Nelson, Shad D; Patil, Bhimanagouda S

    2011-01-15

    Rapid analytical method for the simultaneous separation and determination of amines and organic acids is a vital interest for quality control of citrus and their products. In the present study, a simultaneous high performance liquid chromatography (HPLC) method for the rapid separation of three amines and two organic acids was developed. Chromatographic separation of compounds was achieved using Xbridge C(18) column at ambient temperature, with an isocratic mobile phase of 3mM phosphoric acid at a flow rate of 1.0 mL min(-1). A photodiode array (PDA) detector was used to monitor the eluent at 223 nm and 254 nm with a total analysis time of 10 min. Extraction of amines and organic acids from citrus juice was optimized. The method was validated by tests of linearity, recovery, precision and ruggedness. The limit of detection (LOD) and limit of quantification (LOQ) for amines and ascorbic acid were determined to be 5 ng and 9.8 ng, respectively. All calibration curves showed good linearity (R(2) ≥ 0.9999) within the test ranges. The recoveries of the amines and organic acids ranged between 84% and 117%. The identity of each peak was confirmed by mass spectral (MS) analysis. The developed method was successfully applied to analyze the content of amines and organic acids in six different species and two varieties of citrus. Results indicate that mandarin and Marrs sweet orange contain high level of amines, while pummelo and Rio Red grapefruit had high content of ascorbic acid (137-251 μg mL(-1)) and citric acid (5-22 mg mL(-1)). Synephrine was the major amine present in Clementine (114 μg mL(-1)) and Marrs sweet orange (85 μg mL(-1)). To the best of our knowledge, this is the first report on simultaneous separation and quantification of amines and organic acids in Marrs sweet orange, Meyer lemon, Nova tangerine, Clementine, Ugli tangelo and Wekiwa tangelo. PMID:21147342

  16. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    PubMed

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China. PMID:26657252

  17. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids

    USGS Publications Warehouse

    Chiou, C.T.; Malcolm, R.L.; Brinton, T.I.; Kile, D.E.

    1986-01-01

    Water solubility enhancements by dissolved humic and fulvic acids from soil and aquatic origins and by synthetic organic polymers have been determined for selected organic pollutants and pesticides (p,p???-DDT, 2,4,5,2???,5???-PCB, 2,4,4???-PCB, 1,2,3-trichlorobenzene, and lindane). Significant solubility enhancements of relatively water-insoluble solutes by dissolved organic matter (DOM) of soil and aquatic origins may be described in terms of a partition-like interaction of the the solutes with the microscopic organic environment of the high-molecular-weight DOM species; the apparent solute solubilities increase linearly with DOM concentration and show no competitive effect between solutes. With a given DOM sample, the solute partition coefficient (Kdom) increases with a decrease of solute solubility (Sw) or with an increase of the solute's octanol-water partition coefficient (Kow). The Kdom values of solutes with soil-derived humic acid are approximately 4 times greater than with soil fulvic acid and 5-7 times greater than with aquatic humic and fulvic acids. The effectiveness of DOM in enhancing solute solubility appears to be largely controlled by the DOM molecular size and polarity. The relative inability of high-molecular-weight poly(acrylic acids) to enhance solute solubility is attributed to their high polarities and extended chain structures that do not permit the formation of a sizable intramolecular nonpolar environment.

  18. Volatility of Organic Aerosol: Evaporation of Ammonium Sulfate/Succinic Acid Aqueous Solution Droplets

    PubMed Central

    2013-01-01

    Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol. PMID:24107221

  19. Dietary Omega-3 Fatty Acids Modulate Large-Scale Systems Organization in the Rhesus Macaque Brain

    PubMed Central

    Kroenke, Christopher D.; Neuringer, Martha; Fair, Damien A.

    2014-01-01

    Omega-3 fatty acids are essential for healthy brain and retinal development and have been implicated in a variety of neurodevelopmental disorders. This study used resting-state functional connectivity MRI to define the large-scale organization of the rhesus macaque brain and changes associated with differences in lifetime ω-3 fatty acid intake. Monkeys fed docosahexaenoic acid, the long-chain ω-3 fatty acid abundant in neural membranes, had cortical modular organization resembling the healthy human brain. In contrast, those with low levels of dietary ω-3 fatty acids had decreased functional connectivity within the early visual pathway and throughout higher-order associational cortex and showed impairment of distributed cortical networks. Our findings illustrate the similarity in modular cortical organization between the healthy human and macaque brain and support the notion that ω-3 fatty acids play a crucial role in developing and/or maintaining distributed, large-scale brain systems, including those essential for normal cognitive function. PMID:24501348

  20. High concentrations of furan fatty acids in organic butter samples from the German market.

    PubMed

    Wendlinger, Christine; Vetter, Walter

    2014-08-27

    Furan fatty acids (F-acids) are valuable antioxidants containing a furan moiety in the central part of the molecule. They occur in the lipids of different foodstuffs and plants, with grass being the main source for their presence in milk fat and butter. Because cows from organic farming receive higher portions of grass-based feed, it was tested whether organic butter samples (n = 26) contain more F-acids than conventional ones (n = 25) in Germany. For this purpose, samples were melted, and the lipid phase was separated and transesterified into methyl esters, which were enriched using silver ion chromatography and analyzed by GC-EI/MS in the selected ion monitoring (SIM) mode. Levels of F-acids in butter were higher in summer than in winter, and in both seasons, organic samples contained significantly higher levels of F-acids than conventional ones (one-way ANOVA: p < 0.001). Furthermore, the daily intake of F-acids via milk fat and other foodstuffs was calculated. PMID:25098958

  1. Heterogeneous Chemistry of Carbonyls and Alcohols With Sulfuric Acid: Implications for Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Levitt, N.; Zhang, R.

    2006-12-01

    Recent environmental chamber studies have suggested that acid-catalyzed particle-phase reactions of organic carbonyls lead to multifold increases in secondary organic aerosol (SOA) mass and acid-catalyzed reactions between alcohols and aldehydes in the condensed phase lead to the formation of hemiacetals and acetals, also enhancing secondary organic aerosol growth. The kinetics and mechanism of the heterogeneous chemistry of carbonyls and alcohols with sulfuric acid, however, remain largely uncertain. In this talk, we present measurements of heterogeneous uptake of several carbonyls and alcohols on liquid H2SO4 in a wide range of acid concentrations and temperatures. The results indicate that uptake of larger carbonyls is explained by aldol condensation. For small dicarbonyls, heterogeneous reactions are shown to decrease with acidity and involve negligible formation of sulfate esters. Hydration and polymerization likely explain the measured uptake of such small dicarbonyls on H2SO4 and the measurements do not support an acid- catalyzed uptake. Atmospheric implications from our findings will be discussed.

  2. Study of the organic acids composition of quince (Cydonia oblonga Miller) fruit and jam.

    PubMed

    Silva, Branca M; Andrade, Paula B; Mendes, Gisela C; Seabra, Rosa M; Ferreira, Margarida A

    2002-04-10

    The organic acids present in several samples of quince fruit (pulp and peel) and quince jam (homemade and industrially manufactured) were analyzed by HPLC. The sample preparation was simple, involving only extraction with methanol (40 degrees C) and filtration through a Sep-pack C18 cartridge. The chromatographic separation was achieved using an ion exclusion column, Nucleogel Ion 300 OA (300 x 7.7 mm), in conjunction with a column heating device at 30 degrees C. An isocratic elution with H(2)SO(4) 0.01 N as the mobile phase, with a flow rate of 0.1 mL/min, and UV detection at 214 nm were used. These analyses showed that all samples presented a similar profile composed of at least six identified organic acids: citric, ascorbic, malic, quinic, shikimic, and fumaric acids. Several samples also contained oxalic acid. This study suggests that the organic acids levels and ratios may be useful for the determination of percent fruit content of quince jams. The citric acid value can also be used in the differentiation of the type of manufacture of the commercial quince jams (homemade or industrially manufactured). PMID:11929290

  3. Organic acids as cloud condensation nuclei: Laboratory studies of highly soluble and insoluble species

    NASA Astrophysics Data System (ADS)

    Pradeep Kumar, P.; Broekhuizen, K.; Abbatt, J. P. D.

    2003-05-01

    The ability of sub-micron-sized organic acid particles to act as cloud condensation nuclei (CCN) has been examined at room temperature using a newly constructed continuous-flow, thermal-gradient diffusion chamber (TGDC). The organic acids studied were: oxalic, malonic, glutaric, oleic and stearic. The CCN properties of the highly soluble acids - oxalic, malonic and glutaric - match very closely Köhler theory predictions which assume full dissolution of the dry particle and a surface tension of the growing droplet equal to that of water. In particular, for supersaturations between 0.3 and 0.6, agreement between the dry particle diameter which gives 50% activation and that calculated from Köhler theory is to within 3nm on average. In the course of the experiments, considerable instability of glutaric acid particles was observed as a function of time and there is evidence that they fragment to some degree to smaller particles. Stearic acid and oleic acid, which are both highly insoluble in water, did not activate at supersaturations of 0.6% with dry diameters up to 140nm. Finally, to validate the performance of the TGDC, we present results for the activation of ammonium sulfate particles that demonstrate good agreement with Köhler theory if solution non-ideality is considered. Our findings support earlier studies in the literature that showed highly soluble organics to be CCN active but insoluble species to be largely inactive.

  4. [Effects of simulated acid rain on decomposition of soil organic carbon and crop straw].

    PubMed

    Zhu, Xue-Zhu; Huang, Yao; Yang, Xin-Zhong

    2009-02-01

    To evaluate the effects of acid rain on the organic carbon decomposition in different acidity soils, a 40-day incubation test was conducted with the paddy soils of pH 5.48, 6.70 and 8.18. The soils were amended with 0 and 15 g x kg(-1) of rice straw, adjusted to the moisture content of 400 g x kg(-1) air-dried soil by using simulated rain of pH 6.0, 4.5, and 3.0, and incubated at 20 degrees C. The results showed that straw, acid rain, and soil co-affected the CO2 emission from soil system. The amendment of straw increased the soil CO2 emission rate significantly. Acid rain had no significant effects on soil organic carbon decomposition, but significantly affected the straw decomposition in soil. When treated with pH 3.0 acid rain, the amount of decomposed straw over 40-day incubation in acid (pH 5.48) and alkaline (pH 8.18) soils was 8% higher, while that in neutral soil (pH 6.70) was 15% lower, compared to the treatment of pH 6.0 rain. In the treatment of pH 3.0 acid rain, the decomposition rate of soil organic C in acid (pH 5.48) soil was 43% and 50% (P < 0.05) higher than that in neutral (pH 6.70) and alkaline (pH 8.18) soils, while the decomposition rate of straw in neutral soil was 17% and 16% (P < 0.05) lower than that in acid and alkaline soils, respectively. PMID:19459394

  5. Seasonal and spatial changes of free and bound organic acids in total suspended particles in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Ma, Shexia; Peng, Ping'an; Song, Jianzhong; Bi, Xinhui; Zhao, Jinping; He, Lulu; Sheng, Guoying; Fu, Jiamo

    2010-12-01

    The concentrations and compositions of free and bound organic acids in total suspended particles from typical urban, suburban and forest park sites of Guangzhou were determined in this study. The free form of organic acids (solvent extractable) in aerosols in Guangzhou varied with site and season. The suburban samples contained the highest contents of alkanoic, alkenoic and dicarboxylic acids. These findings were consistent with a higher supply of hydrocarbons and NOx in the suburban area. However, concentrations of aromatic acids were similar in the urban, suburban and forest park sites. Generally, winter season samples of the acids from anthropogenic sources contained more organic acids than summer season samples due to stronger removal by wet deposition in the summer. For the acids from botanic sources, the summer season samples were higher. In addition to the free acids, bound acids (solvent non-extractable) mainly formed by esterification of free acids were also found in the samples. In general, bound acids were higher than free acids. Esterification is mainly controlled by the pKa of organic acids and the atmospheric pH value. This explains why aromatic and dicarboxylic acids occur mainly as bound forms and why the samples from urban sites contained high levels of bound acids as the pH of rain water can reach 4.53. Concentrations of alkanoic and alkenoic acids in the aerosols of Guangzhou were much higher than those in the other areas studied.

  6. Poly(isophthalic acid)(ethylene oxide) as a Macromolecular Modulator for Metal-Organic Polyhedra.

    PubMed

    Chen, Teng-Hao; Wang, Le; Trueblood, Jonathan V; Grassian, Vicki H; Cohen, Seth M

    2016-08-01

    A new strategy was developed by using a polymer ligand, poly(isophthalic acid)(ethylene oxide), to modulate the growth of metal-organic polyhedra (MOP) crystals. This macromolecular modulator can effectively control the crystal habit of several different Cu24L24 (L = isophthalic acid derivatives) MOPs. The polymer also directed the formation of MOP structures under reaction conditions that only produce metal-organic frameworks in the absence of modulator. Moreover, the polymer also enabled the deposition of MOP crystals on glass surfaces. This macromolecular modulator strategy provides an innovative approach to control the morphology and assembly of MOP particles. PMID:27400759

  7. Highly efficient inverted organic solar cells using amino acid modified indium tin oxide as cathode

    SciTech Connect

    Li, Aiyuan; Nie, Riming; Deng, Xianyu; Wei, Huaixin; Li, Yanqing; Tang, Jianxin; Zheng, Shizhao; Wong, King-Young

    2014-03-24

    In this paper, we report that highly efficient inverted organic solar cells were achieved by modifying the surface of indium tin oxide (ITO) using an amino acid, Serine (Ser). With the modification of the ITO surface, device efficiency was significantly enhanced from 0.63% to 4.17%, accompanied with an open circuit voltage (Voc) that was enhanced from 0.30 V to 0.55 V. Ultraviolet and X-ray photoelectron spectroscopy studies indicate that the work function reduction induced by the amino acid modification resulting in the decreased barrier height at the ITO/organic interface played a crucial role in the enhanced performances.

  8. Recovery Processes of Organic Acids from Fermentation Broths in the Biomass-Based Industry.

    PubMed

    Li, Qian-Zhu; Jiang, Xing-Lin; Feng, Xin-Jun; Wang, Ji-Ming; Sun, Chao; Zhang, Hai-Bo; Xian, Mo; Liu, Hui-Zhou

    2016-01-01

    The new movement towards green chemistry and renewable feedstocks makes microbial production of chemicals more competitive. Among the numerous chemicals, organic acids are more attractive targets for process development efforts in the renewable-based biorefinery industry. However, most of the production costs in microbial processes are higher than that in chemical processes, among which over 60% are generated by separation processes. Therefore, the research of separation and purification processes is important for a promising biorefinery industry. This review highlights the progress of recovery processes in the separation and purification of organic acids, including their advantages and disadvantages, current situation, and future prospects in terms of recovery yields and industrial application. PMID:26403818

  9. Integrated process of distillation with side reactors for synthesis of organic acid esters

    SciTech Connect

    Panchal, Chandrakant B; Prindle, John C; Kolah, Aspri; Miller, Dennis J; Lira, Carl T

    2015-11-04

    An integrated process and system for synthesis of organic-acid esters is provided. The method of synthesizing combines reaction and distillation where an organic acid and alcohol composition are passed through a distillation chamber having a plurality of zones. Side reactors are used for drawing off portions of the composition and then recycling them to the distillation column for further purification. Water is removed from a pre-reactor prior to insertion into the distillation column. An integrated heat integration system is contained within the distillation column for further purification and optimizing efficiency in the obtaining of the final product.

  10. [Progress in engineering Escherichia coli for production of high-value added organic acids and alcohols].

    PubMed

    Wang, Jiming; Liu, Wei; Xu, Xin; Zhang, Haibo; Xian, Mo

    2013-10-01

    Confronted with the gradual exhaustion of the earth's fossil energy resources and the grimmer environmental deterioration, the bio-based process to produce high-value added platform chemicals from renewable biomass is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to various advantages, such as clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. This review focuses on recent progresses in metabolic engineering of E. coli that lead to efficient recombinant biocatalysts for production of high-value organic acids such as succinic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like glycerol and xylitol. Besides, this review also discusses several other platform chemicals, including 2,5-furan dicarboxylic acid, aspartic acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxy-gamma-butyrolactone and sorbitol, which have not been produced by E. coli until now. PMID:24432652

  11. Crystallization and immersion freezing ability of oxalic and succinic acid in multicomponent aqueous organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Wagner, Robert; Höhler, Kristina; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin

    2015-04-01

    This study reports on heterogeneous ice nucleation efficiency of immersed oxalic and succinic acid crystals in the temperature range from 245 to 215 K, as investigated with expansion cooling experiments using suspended particles. In contrast to previous laboratory work with emulsified solution droplets where the precipitation of solid inclusions required a preceding freezing/evaporation cycle, we show that immersed solids readily form by homogeneous crystallization within aqueous solution droplets of multicomponent organic mixtures, which have noneutonic compositions with an excess of oxalic or succinic acid. Whereas succinic acid crystals did not act as heterogeneous ice nuclei, immersion freezing by oxalic acid dihydrate crystals led to a reduction of the ice saturation ratio at freezing onset by 0.066-0.072 compared to homogeneous freezing, which is by a factor of 2 higher than previously reported laboratory data. These observations emphasize the importance of oxalic acid in heterogeneous ice nucleation.

  12. Salicylic Acid-Based Organic Dyes Acting as the Photosensitizer for Solar Cells.

    PubMed

    Hong, Sungjun; Park, Jae-Hyeong; Han, Ah-Reum; Ko, Kwan-Woo; Eom, Jin Hee; Namgoong, Sung Keon; Lo, Alvie S V; Gordon, Keith C; Yoon, Sungho; Han, Chi-Hwan

    2016-05-01

    A D-π-A metal-free organic dye, featuring salicylic acid as a novel acceptor/anchoring unit, has been designed, synthesized and applied to dye-sensitized solar cell. The detailed photophysical, electrochemical, photovoltaic and sensitizing properties of the organic dye were investigated, in addition to the computational studies of the dye and dye-(TiO2)6 system. A solar cell device using this new organic dye as a sensitizer produced a solar to electric power conversion efficiency (PCE) of 3.49% (J(sc) = 6.69 mAcm-2, V(oc) = 0.74 V and ff = 0.70) under 100 mWcm(-2) simulated AM 1.5 G solar irradiation, demonstrating that the salicylic acid-based organic dye is a suitable alternative to currently used organometallic dyes. PMID:27483839

  13. Uptake of Amino Acids and Other Organic Compounds by Lemna paucicostata Hegelm. 6746

    PubMed Central

    Datko, Anne H.; Mudd, S. Harvey

    1985-01-01

    A survey of the capacity of Lemna paucicostata to take up organic compounds such as might be present in the natural environment of this plant has identified eight discrete transport systems. Reciprocal inhibition studies defined the preferred substrates for these systems as follows: (a) neutral l-α-amino acids, (b) basic amino acids, (c) purine bases, (d) choline, (e) ethanolamine, (f) tyramine, (g) urea, and (h) aldohexoses. Each of these systems takes up its preferred substrates at high rates. At low concentrations, each Lemna frond during each minute takes up amounts which would be found in volumes ranging from 0.4 (tyramine) to 3.9 (urea) times its own volume. The two systems for amino acid transport both showed kinetics of the biphasic type, so that uptake by each can be described as the composite result of two Michaelis-Menten processes. The neutral amino acid system neither transports basic amino acids nor is inhibited by these compounds. The basic amino acid system does not transport neutral amino acids but is strongly inhibited by some, but not all, of these compounds. It is argued that the maintenance of these active, specific, and discrete systems in Lemna suggests they play important roles permitting this plant to utilize organic compounds occurring naturally in its environment. PMID:16664132

  14. The Production of Amino Acids in Interstellar Ices: Implications for Meteoritic Organics

    NASA Technical Reports Server (NTRS)

    Sandford, A.; Bernstein, M. P.; Dworkin, J. P.; Cooper, G. W.; Allamandola, L. J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Indigenous amino acids have been detected in a number of meteorites, over 70 in the Murchison meteorite alone. It has been generally accepted that the amino acids in meteorites formed in liquid water on an asteroid or comet parent-body. However, the water in the Murchison meteorite, for example, was depleted of deuterium, making the distribution of deuterium in organic acids in Murchison difficult to explain. Similarly, occasional but consistent meteoritic biases for non-terrestrial L amino acids cannot be reasonably rationalized by liquid water parent-body reactions. We will present the results of a laboratory demonstration showing that the amino acids glycine, alanine, and serine should result from the UV (ultraviolet) photolysis of interstellar ice grains. This suggests that some meteoritic amino acids may be the result of interstellar ice photochemistry, rather than having formed by reactions in liquid water. We will describe some of the potential implications of these findings for the organic materials found in primitive meteorites, in particular how interstellar ice synthesis might more easily accommodate the presence and distribution of deuterium, and the meteoritic bias for L amino acids.

  15. Adsorption behavior of antimony(III) oxyanions on magnetite surface in aqueous organic acid environment

    NASA Astrophysics Data System (ADS)

    Mittal, Vinit K.; Bera, Santanu; Narasimhan, S. V.; Velmurugan, S.

    2013-02-01

    Antimony(III) adsorption is observed on magnetite (Fe3O4) surface under acidic and reducing condition through surface hydroxyl (SOH) groups bonding on Fe3O4 surface. Desorption of adsorbed Sb(III) is observed from Fe3O4 surface along with iron release in organic acid at 85 °C after 5 h of experiment. Tartaric acid (TA) shows minimum Sb(III) adsorption on Fe3O4 among the organic acid studied. The reason is TA having two sets of adjacent functional groups viz. Odbnd Csbnd OH and Csbnd OH which are responsible for the formation of five-membered bidendate chelate with Sb(III). Other oxyanions, cations or complexing agents along with TA influences the Sb(III) adsorption on Fe3O4. The surface of magnetite is modified by the addition of fatty acids viz. Lauric acid, benzoic acid to bind the Ssbnd OH groups present on the surface. This results in delaying the process of adsorption without changing the quantity of saturation adsorption of Sb(III) on Fe3O4 surface.

  16. Effects of CO2 enrichment on soluble amino acids and organic acids in barley primary leaves as a function of age, photoperiod, and chlorosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Responses of soluble amino acids and organic acids to CO2 enrichment were determined using barley primary leaves (Hordeum vulgare L. cv. Brant). Plants were grown in controlled environment chambers using either ambient (36 Pa) or elevated (100 Pa) CO2 treatments. Total soluble amino acids were inc...

  17. Microbial production of glyceric acid, an organic acid that can be mass produced from glycerol.

    PubMed

    Habe, Hiroshi; Shimada, Yuko; Yakushi, Toshiharu; Hattori, Hiromi; Ano, Yoshitaka; Fukuoka, Tokuma; Kitamoto, Dai; Itagaki, Masayuki; Watanabe, Kunihiro; Yanagishita, Hiroshi; Matsushita, Kazunobu; Sakaki, Keiji

    2009-12-01

    Glyceric acid (GA), an unfamiliar biotechnological product, is currently produced as a small by-product of dihydroxyacetone production from glycerol by Gluconobacter oxydans. We developed a method for the efficient biotechnological production of GA as a target compound for new surplus glycerol applications in the biodiesel and oleochemical industries. We investigated the ability of 162 acetic acid bacterial strains to produce GA from glycerol and found that the patterns of productivity and enantiomeric GA compositions obtained from several strains differed significantly. The growth parameters of two different strain types, Gluconobacter frateurii NBRC103465 and Acetobacter tropicalis NBRC16470, were optimized using a jar fermentor. G. frateurii accumulated 136.5 g/liter of GA with a 72% d-GA enantiomeric excess (ee) in the culture broth, whereas A. tropicalis produced 101.8 g/liter of d-GA with a 99% ee. The 136.5 g/liter of glycerate in the culture broth was concentrated to 236.5 g/liter by desalting electrodialysis during the 140-min operating time, and then, from 50 ml of the concentrated solution, 9.35 g of GA calcium salt was obtained by crystallization. Gene disruption analysis using G. oxydans IFO12528 revealed that the membrane-bound alcohol dehydrogenase (mADH)-encoding gene (adhA) is required for GA production, and purified mADH from G. oxydans IFO12528 catalyzed the oxidation of glycerol. These results strongly suggest that mADH is involved in GA production by acetic acid bacteria. We propose that GA is potentially mass producible from glycerol feedstock by a biotechnological process. PMID:19837846

  18. Understanding the effect low molecular weight organic acids on the desorption and availability of soil phosphorus

    NASA Astrophysics Data System (ADS)

    Blackburn, Daniel; Zhang, Hao; Stutter, Marc; Giles, Courtney; George, Timothy; Shand, Charles; Lumsdon, David; Cooper, Pat; Wendler, Renate; Brown, Lawrie; Blackwell, Martin; Darch, Tegan; Wearing, Catherine; Haygarth, Philip

    2016-04-01

    The mobility and resupply of inorganic phosphorus (P) from the soil solid phase after equilibration with increasing doses of citric acid (CA) and oxalic acid (OA) were studied in 2 soils with contrasting P status. The combined methods of diffusive gradients in thin films (DGT), diffusive equilibration in thin films (DET) and the DGT-induced fluxes in sediments model (DIFS) were used as tools to evaluate the changes in solid-to-solution interchange kinetics. A significant effect of CA and OA in soil solution P was observed only for doses over 1 mMol kg-1. Curiously, low organic acid doses (0.5-1 mMol kg-1) were associated with a steep increase in microbial biomass P, which was not seen for doses over 2 mMol kg-1. The trivalent CA was able to promote a higher increase in soil solution P than the bivalent OA for both soils. Organic phosphorus was only significantly mobilized by organic acids in the low P soil, possibly because in the high P soil these P forms were less labile than inorganic P. Both CA and OA promoted a decrease in the adsorbed-to-solution distribution coefficient, desorption rate constants and an increase in the response time of solution P equilibration. The extent of this effect was shown to be both soil specific and organic acid specific. Since both organic acids negatively affected the kinetics of P interchange between the soil matrix and the soil solution, their net effect on P bioavailability is expected to be much lower than the observed increase in solution concentration.

  19. Determination of primary and secondary sources of organic acids and carbonaceous aerosols using stable carbon isotopes

    NASA Astrophysics Data System (ADS)

    Fisseha, Rebeka; Saurer, Matthias; Jäggi, Maya; Siegwolf, Rolf T. W.; Dommen, Josef; Szidat, Sönke; Samburova, Vera; Baltensperger, Urs

    Stable carbon isotope ratio ( δ13C) data can provide important information regarding the sources and the processing of atmospheric organic carbon species. Formic, acetic and oxalic acid were collected from Zurich city in August-September 2002 and March 2003 in the gas and aerosol phase, and the corresponding δ13C analysis was performed using a wet oxidation method followed by isotope ratio mass spectrometry. In August, the δ13C values of gas phase formic acid showed a significant correlation with ozone (coefficient of determination ( r2) = 0.63) due to the kinetic isotope effect (KIE). This indicates the presence of secondary sources (i.e. production of organic acids in the atmosphere) in addition to direct emission. In March, both gaseous formic and acetic acid exhibited similar δ13C values and did not show any correlation with ozone, indicating a predominantly primary origin. Even though oxalic acid is mainly produced by secondary processes, the δ13C value of particulate oxalic acid was not depleted and did not show any correlation with ozone, which may be due to the enrichment of 13C during the gas - aerosol partitioning. The concentrations and δ13C values of the different aerosol fractions (water soluble organic carbon, water insoluble organic carbon, carbonate and black carbon) collected during the same period were also determined. Water soluble organic carbon (WSOC) contributed about 60% to the total carbon and was enriched in 13C compared to other fractions indicating a possible effect of gas - aerosol partitioning on δ13C of carbonaceous aerosols. The carbonate fraction in general was very low (3% of the total carbon).

  20. Amino acid diagenesis, organic carbon and nitrogen mineralization in surface sediments from the inner Oslofjord, Norway

    SciTech Connect

    Haugen, J.E. ); Lichtentaler, R. )

    1991-06-01

    Total hydrolyzed amino acids (THAA), total organic carbon (TOC), and total nitrogen (TN) have been measured in an oxic and anoxic surface sediment from the inner Oslofjord. Downcore variations of these parameters are ascribed to both diagenesis and changes in organic matter supply, the latter being most important. These changes are most prominent in the anoxic sediment, which reflects the eutrophication history of the innermost part of the fjord. Downcore, THAA content decreased from 3.8 to 2.0 mg/g (salt-free dry weight) in the oxic sediment and from 22.3 to 3.8 mg/g in the anoxic sediment. Total amino acid nitrogen varied between 17 and 34% of total nitrogen in the oxic, and 25 and 54% in the anoxic, sediment. Organic carbon and organic nitrogen accumulation rates and depth integrated mineralization rates are about three times higher in the anoxic sediment than in the oxic sediment. Recycling of amino acids accounted for 4 to 12% of the total organic carbon and 13 to 40% of the total organic nitrogen regenerated in these sediments.

  1. Ethanol exposure affects gene expression in the embryonic organizer and reduces retinoic acid levels.

    PubMed

    Yelin, Ronit; Schyr, Racheli Ben-Haroush; Kot, Hadas; Zins, Sharon; Frumkin, Ayala; Pillemer, Graciela; Fainsod, Abraham

    2005-03-01

    Fetal Alcohol Spectrum Disorder (FASD) is a set of developmental malformations caused by alcohol consumption during pregnancy. Fetal Alcohol Syndrome (FAS), the strongest manifestation of FASD, results in short stature, microcephally and facial dysmorphogenesis including microphthalmia. Using Xenopus embryos as a model developmental system, we show that ethanol exposure recapitulates many aspects of FAS, including a shortened rostro-caudal axis, microcephally and microphthalmia. Temporal analysis revealed that Xenopus embryos are most sensitive to ethanol exposure between late blastula and early/mid gastrula stages. This window of sensitivity overlaps with the formation and early function of the embryonic organizer, Spemann's organizer. Molecular analysis revealed that ethanol exposure of embryos induces changes in the domains and levels of organizer-specific gene expression, identifying Spemann's organizer as an early target of ethanol. Ethanol also induces a defect in convergent extension movements that delays gastrulation movements and may affect the overall length. We show that mechanistically, ethanol is antagonistic to retinol (Vitamin A) and retinal conversion to retinoic acid, and that the organizer is active in retinoic acid signaling during early gastrulation. The model suggests that FASD is induced in part by an ethanol-dependent reduction in retinoic acid levels that are necessary for the normal function of Spemann's organizer. PMID:15708568

  2. CHEMISTRY OF DISSOLVED ORGANIC CARBON AND ORGANIC ACIDS IN TWO STREAMS DRAINING FORESTED WATERSHEDS

    EPA Science Inventory

    The concentration, major fractions, and contribution of dissolved organic carbon (DOG) to stream chemistry were examined in two paired streams draining upland catchments in eastern Maine. oncentrations of DOC in East and West Bear Brooks were 183 +/- 73 and 169 +/- 70 umol CL-1 (...

  3. Analysis of Organic Acids, Deacetyl Asperulosidic Acid and Polyphenolic Compounds as a Potential Tool for Characterization of Noni (Morinda citrifolia) Products.

    PubMed

    Bittová, Miroslava; Hladůkova, Dita; Roblová, Vendula; Krácmar, Stanislav; Kubán, Petr; Kubán, Vlastimil

    2015-11-01

    Organic acids, deacetyl asperulosidic acid (DAA) and polyphenolic compounds in various noni (Morinda citrifolia L.) products (4 juices, 4 dry fruit powders and 2 capsules with dry fruit powder) were analyzed. Reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a variable wavelength detector (VWD) and electrospray ionization time-of-flight mass spectrometer (ESI-TOF MS) was applied for simultaneous analysis of organic acids (malic, lactic, citric and succinic acid) and DAA. An RP-HPLC method with diode-array detector (DAD) was developed for the analysis of polyphenolic compound content (rutin, catechin, quercitrin, kaempferol, gallic acid, caffeic acid and p-coumaric acid). The developed methods can contribute to better characterization of available noni products that is required from the consumers. In our study, we discovered significant dissimilarities in the content of DAA, citric acid and several phenolic compounds in some samples. PMID:26749805

  4. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    SciTech Connect

    White, T. L.; Wiedenman, B. J.; Lambert, D. P.; Crump, S. L.; Fondeur, F. F.; Papathanassiu, A. E.; Kot, W. K.; Pegg, I. L.

    2013-10-01

    The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tank farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts

  5. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis

    PubMed Central

    Oliveira, Flora Magno de Jesus; Burth, Patrícia; Bozza, Patrícia Torres; Castro Faria, Mauro Velho; Silva, Adriana Ribeiro; de Castro-Faria-Neto, Hugo Caire

    2016-01-01

    Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK) expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA). PMID:27078880

  6. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis.

    PubMed

    Gonçalves-de-Albuquerque, Cassiano Felippe; Medeiros-de-Moraes, Isabel Matos; Oliveira, Flora Magno de Jesus; Burth, Patrícia; Bozza, Patrícia Torres; Castro Faria, Mauro Velho; Silva, Adriana Ribeiro; Castro-Faria-Neto, Hugo Caire de

    2016-01-01

    Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK) expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA). PMID:27078880

  7. Effects of Water Stress on the Organic Acid and Carbohydrate Compositions of Cotton Plants

    PubMed Central

    Timpa, Judy D.; Burke, John J.; Quisenberry, Jerry E.; Wendt, Charles W.

    1986-01-01

    Two photoperiodic cotton (Gossypium hirsutum L.) strains (T185 and T466) which had been empirically selected because of poor performance and two strains (T25 and T256) selected because of enhanced performance under field water stress were evaluated for stress-induced changes in their organic acids and carbohydrates. Profiles and quantitation of organic acids and carbohydrates from aqueous extractions of cotton leaf tissue were determined by high performance liquid chromatography. In all cases, the water-stressed plants showed two to five times greater amounts of organic acids and carbohydrates over the values determined for the irrigated samples. Under stress, sucrose accumulation was observed in wilting strains (poor performers) probably related to rate of translocation out of the leaf. The most dramatic response to water stress was the accumulation of citric acid in strains T25 and T256 as compared to T185 and T466. Citric/malic acid ratios for both the irrigated and water-stressed samples of T25 and T256 were twice those of T185 and T466. PMID:16665100

  8. Forward osmosis filtration for removal of organic foulants: Effects of combined tannic and alginic acids.

    PubMed

    Wang, Lin; Zhang, Wanzhu; Chu, Huaqiang; Dong, Bingzhi

    2016-03-15

    The filtration performance of combined organic foulants by forward osmosis (FO) in active-layer-facing-the-draw-solution (AL-facing-DS) orientation was investigated systematically. Tannic acid and alginate were used as model organic foulants for polysaccharides and humic dissolved organic matters, respectively. The FO could reject combined and single tannic acid and alginate foulants effectively. The more severe fouling flux decline, accompanied with lower combined foulants' retention, was observed with increasing proportions of tannic acid in the combined foulants-containing feed, which was ascribed mainly to the more severe fouling resulting from tannic acid adsorption within the porous support layer of the FO membrane compared to minor alginate deposition on the membrane surface. It was found that the higher the initial flux level and cross flow velocity, the faster the flux decline with lower mixed foulants retention. It was also revealed that the calcium ions in a basic solution enhanced the combined fouling flux reduction and combined foulants retention. As the major constituent of the combined fouling layer, the adsorption of tannic acid might play a more significant role in the mixed fouling of the FO membrane, which was probably influenced by permeation drag caused by water flux and chemical interactions induced by feed solution pH and calcium ion concentration. PMID:26803261

  9. Dissolved total hydrolyzable enantiomeric amino acids in precipitation: Implications on bacterial contributions to atmospheric organic matter

    NASA Astrophysics Data System (ADS)

    Yan, Ge; Kim, Guebuem; Kim, Jeonghyun; Jeong, Yu-Sik; Kim, Young Il

    2015-03-01

    We analyzed dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved enantiomeric amino acids in precipitation samples collected at two sites in Korea over a one-year period. The average concentrations of DOC, DON, and total hydrolyzable amino acids at Seoul (an inland urban area) were lower than those at Uljin (a coastal rural area). The different bulk compositions of dissolved organic matter (DOM) at these two sites (reflected by qualitative indicators) were mainly attributed to differences in contributing sources. The D-enantiomers of four individual amino acids (aspartic acid, glutamic acid, serine, and alanine) were ubiquitously present, with average enantiomeric (D/L) ratios of 0.34, 0.26, 0.21, and 0.61 for Seoul, and 0.18, 0.11, 0.09, and 0.31 for Uljin, respectively. The much higher D/L ratios observed at Seoul than at Uljin might result from more advanced diagenetic stages as well as higher contributions from bacteria inhabiting terrestrial environments. The C- and N-normalized yields of D-alanine in DOM of our samples were found to be comparable to literature values reported for aquatic systems, where a significant portion of DOM was suggested to be of bacterial origin. Our study suggests that bacteria and their remnants might constitute an important fraction of OM in the atmosphere, contributing significantly to the quality of atmospheric OM and its post-depositional bioavailability in the surface ecosystems.

  10. Sulfation of metal-organic framework: Opportunities for acid catalysis and proton conductivity

    SciTech Connect

    Goesten, M.G.; Stavitski, E.; Juan-Alcaniz, J.; Ramos-Fernandez, E.V.; Sai Sankar Gupta, K.B.; van Bekkum, H.; Gascon, J. and Kapteijn, F.

    2011-05-24

    A new post-functionalization method for metal-organic frameworks (MOFs) has been developed to introduce acidity for catalysis. Upon treatment with a mixture of triflic anhydride and sulfuric acid, chemically stable MOF structures MIL-101(Cr) and MIL-53(Al) can be sulfated, resulting in a Broensted sulfoxy acid group attached to up to 50% of the aromatic terephthalate linkers of the structure. The sulfated samples have been extensively characterized by solid-state NMR, XANES, and FTIR spectroscopy. The functionalized acidic frameworks show catalytic activity similar to that of acidic polymers like Nafion{reg_sign} display in the esterification of n-butanol with acetic acid (TOF {approx} 1 min{sup -1} {at} 343 K). Water adsorbs strongly up to 4 molecules per sulfoxy acid group, and an additional 2 molecules are taken up at lower temperatures in the 1-D pore channels of S-MIL-53(Al). The high water content and Broensted acidity provide the structure S-MIL-53(Al) a high proton conductivity up to moderate temperatures.

  11. Hygroscopicity of water-soluble organic compounds in atmospheric aerosols: amino acids and biomass burning derived organic species.

    PubMed

    Chan, Man Nin; Choi, Man Yee; Ng, Nga Lee; Chan, Chak K

    2005-03-15

    Amino acids and organic species derived from biomass burning can potentially affect the hygroscopicity and cloud condensation activities of aerosols. The hygroscopicity of seven amino acids (glycine, alanine, serine, glutamine, threonine, arginine, and asparagine) and three organic species most commonly detected in biomass burning aerosols (levoglucosan, mannosan, and galactosan) were measured using an electrodynamic balance. Crystallization was observed in the glycine, alanine, serine, glutamine, and threonine particles upon evaporation of water, while no phase transition was observed in the arginine and asparagine particles even at 5% relative humidity (RH). Water activity data from these aqueous amino acid particles, except arginine and asparagine, was used to revise the interaction parameters in UNIQUAC functional group activity coefficients to give predictions to within 15% of the measurements. Levoglucosan, mannosan, and galactosan particles did not crystallize nor did they deliquesce. They existed as highly concentrated liquid droplets at low RH, suggesting that biomass burning aerosols retain water at low RH. In addition, these particles follow a very similar pattern in hygroscopic growth. A generalized growth law (Gf = (1 - RH/100)-0.095) is proposed for levoglucosan, mannosan, and galactosan particles. PMID:15819209

  12. COMPOSITIONAL AND FUNCTIONAL FEATURES OF HUMIC ACIDS FROM ORGANIC AMENDMENTS AND AMENDED SOILS IN MINNESOTA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of organic amendments requires an adequate control of the chemical quality of their humic acid (HA)-like fractions and of the effects that these materials may have on the status, quality, chemistry and functions of native soil HAs. In this work, the compositional, functional and structural p...

  13. A Green Polymerization of Aspartic Acid for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Bennett, George D.

    2005-01-01

    The green polymerization of aspartic acid carried out during an organic-inorganic synthesis laboratory course for undergraduate students is described. The procedure is based on work by Donlar Corporation, a Peru, Illinois-based company that won a Green Chemistry Challenge Award in 1996 in the Small Business category for preparing thermal…

  14. Determination of low molecular weight organic acids in soil, plants, and water by capillary zone electrophoresis.

    PubMed

    Li, Ying-Hui; Huang, Bi-Xia; Shan, Xiao-Quan

    2003-03-01

    Determination of low molecular weight organic acids in soils and plants by capillary zone electrophoresis was accomplished using a phthalate buffer and indirect UV detection mode. The influence of some crucial parameters, such as pH, buffer concentration and surfactant were investigated. A good separation of seven organic acids was achieved within 5 min using an electrolyte containing 15 mmol L(-1) potassium hydrogen phthalate, 0.5 mmol L(-1) myristyltrimethylammonium bromide (MTAB), and 5% methanol (MeOH) (v/v) at pH 5.60, separation voltage -20 kV, and temperature 25 degrees C. The relative standard deviation (n=5) of the method was found to be in range 0.18-0.56% for migration time and 3.2-4.8% for peak area. The limit of detection ranged between 0.5 micro mol L(-1) to 6 micro mol L(-1) at a signal-to-noise ratio of 3. The recovery of standard organic acids added to real samples ranged from 87 to 119%. This method was simple, rapid and reproducible, and could be applied to the simultaneous determination of organic acids in environmental samples. PMID:12664177

  15. Control of Listeria monocytogenes in Ham Deli Loaves using Organic Acids as Formulation Ingredients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic acids are popular preservatives and are utilized in the industry to inhibit the growth of Listeria monocytogenes (LM) in ready-to-eat (RTE) products. In this study, sodium lactate (SL), potassium lactate (PL) and sodium diacetate (SD) were utilized alone or in combination in the raw product...

  16. 40 CFR 747.115 - Mixed mono and diamides of an organic acid.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for product containing P-84-529) has been regulated by the Environmental Protection Agency, at 40 CFR... substance known to cause cancer in laboratory animals. The mixed mono and diamides of an organic acid has... to cause cancer. This product is designed to be used without nitrites. (iii) The first work of...

  17. Influence of aluminum on growth, mineral nutrition and organic acid exudation of rambutan (Nephelium lappaceum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A randomized complete block design experiment with six aluminum (Al) concentrations was carried out to evaluate the effect of aluminum on nutrient content, plant growth, dry matter production and Al-induced organic acid exudation in rambutan (Nephelium lappaceum). One rambutan cultivar was grown in...

  18. 40 CFR 747.115 - Mixed mono and diamides of an organic acid.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for product containing P-84-529) has been regulated by the Environmental Protection Agency, at 40 CFR... substance known to cause cancer in laboratory animals. The mixed mono and diamides of an organic acid has... to cause cancer. This product is designed to be used without nitrites. (iii) The first work of...

  19. 40 CFR 747.115 - Mixed mono and diamides of an organic acid.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for product containing P-84-529) has been regulated by the Environmental Protection Agency, at 40 CFR... substance known to cause cancer in laboratory animals. The mixed mono and diamides of an organic acid has... to cause cancer. This product is designed to be used without nitrites. (iii) The first work of...

  20. SEMIVOLATILE ORGANIC ACIDS AND LEVOGLUCOSAN IN NEW YORK CITY AIR FOLLOWING 9/11/2001

    EPA Science Inventory

    Organic acid compounds and levoglucosan, an important molecular marker of burning cellulose, are detected in New York City air collected between 9/26/01 and 10/24/01 500 m from Ground Zero. Sampling of Ground Zero emissions at our site is commensurate with a southwesterly wind f...

  1. Adsorption of short-chain organic acids onto nearshore marine sediments

    NASA Astrophysics Data System (ADS)

    Sansone, Francis J.; Andrews, Christine C.; Okamoto, Mauri Y.

    1987-07-01

    The adsorption of acetate, butyrate, lactate, and stearate was measured using a clastic mud from Cape Lookout Bight N.C. (CLB), a lateritic muddy sand from Kahana Stream, Oahu, Hawaii (KS), and a fine carbonate sand from Waimanalo Beach, Oahu, (WB). Partition coefficients ( Kd, moles adsorbed per g of solid phase/moles dissolved per ml of porewater) ranged from 10 2.3 to ≤10 -3.0, and displayed the following trends: CLB > KS > WB, and stearate > acetate ˜- butyrate > lactate. The percent adsorption of the sediment organic acid pools showed similar trends: stearate, 99%; acetate, 9-23%; butyrate, 5-23%; lactate, ≤0.2-7%. These results reflected the relatively nonpolar nature of the sand surfaces in WB and KS sediments, and the polarities of the organic acids. Kd was approximately constant for each organic acid-sediment combination over a dissolved organic acid concentration range of 10 7, using concentrations between 1M and 10 -14 M. This constancy over a wide porewater concentration range suggested that adsorption was not limited by the availability of surface adsorption sites.

  2. Effects of organic acid-surfactant mixtures on levels of bacteria and beef quality traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Organic acid efficacy as an antimicrobial treatment of beef carcass surfaces may be increased through the addition of surfactants. However, the effects of antimicrobial-surfactant mixtures on beef quality traits such as flavor and color stability may make their use unacceptable. Purp...

  3. Surfactant enhanced disinfection of the human norovirus surrogate, tulane virus with organic acids and surfactant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human infection with foodborne viruses can occur following consumption of contaminated food, person-to-person body contact, or release of aerosols. Combinatorial treatments of surfactants and organic acids may have synergistic or additive mechanisms to inactivate foodborne viruses and prevent outbr...

  4. Nitric acid-organic mixtures surveyed for use in separation by anion exchange methods

    NASA Technical Reports Server (NTRS)

    Bloomquist, C. A. A.; Faris, J. P.; Stewart, D. C.

    1968-01-01

    Column elution-spectrographic analysis technique compares certain solvents directly to the methanol system, using inert rare earths instead of actinides. Distribution ratios for americium between 90 percent solvent, 10 percent 5 M nitric acid and Dowex 1 nitrate form resin for a large group of organics miscible in water was determined.

  5. Aquatic photolysis: photolytic redox reactions between goethite and adsorbed organic acids in aqueous solutions

    USGS Publications Warehouse

    Goldberg, M.C.; Cunningham, K.M.; Weiner, Eugene R.

    1993-01-01

    Photolysis of mono and di-carboxylic acids that are adsorbed onto the surface of the iron oxyhydroxide (goethite) results in an oxidation of the organic material and a reduction from Fe(III) to Fe(II) in the iron complex. There is a subsequent release of Fe2+ ions into solution. At constant light flux and constant solution light absorption, the factors responsible for the degree of photolytic reaction include: the number of lattice sites that are bonded by the organic acid; the rate of acid readsorption to the surface during photolysis; the conformation and structure of the organic acid; the degree of oxidation of the organic acid; the presence or absence of an ??-hydroxy group on the acid, the number of carbons in the di-acid chain and the conformation of the di-acid. The ability to liberate Fe(III) at pH 6.5 from the geothite lattice is described by the lyotropic series: tartrate>citrate> oxalate > glycolate > maleate > succinate > formate > fumarate > malonate > glutarate > benzoate = butanoate = control. Although a larger amount of iron is liberated, the series is almost the same at pH 5.5 except that oxalate > citrate and succinate > maleate. A set of rate equations are given that describe the release of iron from the goethite lattice. It was observed that the pH of the solution increases during photolysis if the solutions are not buffered. There is evidence to suggest the primary mechanism for all these reactions is an electron transfer from the organic ligand to the Fe(III) in the complex. Of all the iron-oxyhydroxide materials, crystalline goethite is the least soluble in water; yet, this study indicates that in an aqueous suspension, iron can be liberated from the goethite lattice. Further, it has been shown that photolysis can occur in a multiphase system at the sediment- water interface which results in an oxidation of the organic species and release of Fe2+ to solution where it becomes available for further reaction. ?? 1993.

  6. Emissions of organic aerosol mass, black carbon, particle number, and regulated and unregulated gases from scooters and light and heavy duty vehicles with different fuels

    NASA Astrophysics Data System (ADS)

    Chirico, R.; Clairotte, M.; Adam, T. W.; Giechaskiel, B.; Heringa, M. F.; Elsasser, M.; Martini, G.; Manfredi, U.; Streibel, T.; Sklorz, M.; Zimmermann, R.; DeCarlo, P. F.; Astorga, C.; Baltensperger, U.; Prevot, A. S. H.

    2014-06-01

    A sampling campaign with seven different types of vehicles was conducted in 2009 at the vehicle test facilities of the Joint Research Centre (JRC) in Ispra (Italy). The vehicles chosen were representative of some categories circulating in Europe and were fueled either with standard gasoline or diesel and some with blends of rapeseed methyl ester biodiesel. The aim of this work was to improve the knowledge about the emission factors of gas phase and particle-associated regulated and unregulated species from vehicle exhaust. Unregulated species such as black carbon (BC), primary organic aerosol (OA) content, particle number (PN), monocyclic and polycyclic aromatic hydrocarbons (PAHs) and a~selection of unregulated gaseous compounds, including nitrous acid (N2O), ammonia (NH3), hydrogen cyanide (HCN), formaldehyde (HCHO), acetaldehyde (CH3CHO), sulfur dioxide (SO2), and methane (CH4), were measured in real time with a suite of instruments including a high-resolution aerosol time-of-flight mass spectrometer, a resonance enhanced multi-photon ionization time-of-flight mass spectrometer, and a high resolution Fourier transform infrared spectrometer. Diesel vehicles, without particle filters, featured the highest values for particle number, followed by gasoline vehicles and scooters. The particles from diesel and gasoline vehicles were mostly made of BC with a low fraction of OA, while the particles from the scooters were mainly composed of OA. Scooters were characterized by super high emissions factors for OA, which were orders of magnitude higher than for the other vehicles. The heavy duty diesel vehicle (HDDV) featured the highest nitrogen oxides (NOx) emissions, while the scooters had the highest emissions for total hydrocarbons and aromatic compounds due to the unburned and partially burned gasoline and lubricant oil mixture. Generally, vehicles fuelled with biodiesel blends showed lower emission factors of OA and total aromatics than those from the standard fuels

  7. Involvement of Sialic Acid on Endothelial Cells in Organ-Specific Lymphocyte Recirculation

    NASA Astrophysics Data System (ADS)

    Rosen, Steven D.; Singer, Mark S.; Yednock, Ted A.; Stoolman, Lloyd M.

    1985-05-01

    Mouse lymphocytes incubated on cryostat-cut sections of lymphoid organs (lymph nodes and Peyer's patches) specifically adhere to the endothelium of high endothelial venules (HEV), the specialized blood vessels to which recirculating lymphocytes attach as they migrate from the blood into the parenchyma of the lymphoid organs. Treatment of sections with sialidase eliminated the binding of lymphocytes to peripheral lymph node HEV, had no effect on binding to Peyer's patch HEV, and had an intermediate effect on mesenteric lymph node HEV. These results suggest that sialic acid on endothelial cells may be an organ-specific recognition determinant for lymphocyte attachment.

  8. HPLC-Profiles of Tocopherols, Sugars, and Organic Acids in Three Medicinal Plants Consumed as Infusions.

    PubMed

    Roriz, Custódio Lobo; Barros, Lillian; Carvalho, Ana Maria; Ferreira, Isabel C F R

    2014-01-01

    Pterospartum tridentatum (L.) Willk, Gomphrena globosa L., and Cymbopogon citratus (DC.) Stapf are medicinal plants that require a more detailed chemical characterization, given the importance of their consumption as infusions. Therefore, the individual profiles in tocopherols, free sugars, and organic acids were obtained by high performance liquid chromatography (HPLC) coupled to different detectors (fluorescence, refraction index, and photodiode array, resp.). C. citratus revealed the highest content of α-, and total tocopherols, glucose, sucrose, succinic, and ascorbic acids. P. tridentatum presented the highest fructose and total sugars content. Otherwise, G. globosa showed the highest organic acids concentration. As far as we know, this is the first study reporting the mentioned chemical compounds in G. globosa and C. citratus. PMID:26904623

  9. A closed loop for municipal organic solid waste by lactic acid fermentation.

    PubMed

    Probst, Maraike; Walde, Janette; Pümpel, Thomas; Wagner, Andreas Otto; Insam, Heribert

    2015-01-01

    In order to investigate the feasibility of producing lactic acid from municipal organic solid waste different pH values (4-7) and temperatures (37°C and 55°C) were tested. For the evaluation of fermentation conditions the chemical, physical, and microbial characters were monitored over a period of 7days. Quantitative real time PCR, PCR-DGGE, and next generation sequencing of a 16S rRNA gene library were applied to identify the key players of the lactic acid production and their association. Lactobacillus acidophilus and its closest relatives were found to be efficient lactic acid producers (>300mM) under most suitable fermentation conditions tested in this study: 37°C with either uncontrolled pH or at a pH of 5. These data provide the first step in the realization of the idea "reuse, reduce, and recycle" of municipal organic solid waste. PMID:25459815

  10. Reevaluating the contribution of sulfuric acid and the origin of organic compounds in atmospheric nanoparticle growth

    NASA Astrophysics Data System (ADS)

    Vakkari, Ville; Tiitta, Petri; Jaars, Kerneels; Croteau, Philip; Beukes, Johan Paul; Josipovic, Miroslav; Kerminen, Veli-Matti; Kulmala, Markku; Venter, Andrew D.; Zyl, Pieter G.; Worsnop, Douglas R.; Laakso, Lauri

    2015-12-01

    Aerosol particles formed in the atmosphere are important to the Earth's climate system due to their ability to affect cloud properties. At present, little is known about the atmospheric chemistry responsible for the growth of newly formed aerosol particles to climate-relevant sizes. Here combining detailed aerosol measurements with a theoretical framework we found that depending on the gaseous precursors and size of the newly formed particles, the growth was dominated by either sulfuric acid accompanied by ammonium or organic compounds originating in either biogenic emissions or savannah fires. The contribution of sulfuric acid was larger during the early phases of the growth, but in clean conditions organic compounds dominated the growth from 1.5 nm up to climatically relevant sizes. Furthermore, our analysis indicates that in polluted environments the contribution of sulfuric acid to the growth may have been underestimated by up to a factor of 10.

  11. HPLC-Profiles of Tocopherols, Sugars, and Organic Acids in Three Medicinal Plants Consumed as Infusions

    PubMed Central

    Roriz, Custódio Lobo; Barros, Lillian; Carvalho, Ana Maria; Ferreira, Isabel C. F. R.

    2014-01-01

    Pterospartum tridentatum (L.) Willk, Gomphrena globosa L., and Cymbopogon citratus (DC.) Stapf are medicinal plants that require a more detailed chemical characterization, given the importance of their consumption as infusions. Therefore, the individual profiles in tocopherols, free sugars, and organic acids were obtained by high performance liquid chromatography (HPLC) coupled to different detectors (fluorescence, refraction index, and photodiode array, resp.). C. citratus revealed the highest content of α-, and total tocopherols, glucose, sucrose, succinic, and ascorbic acids. P. tridentatum presented the highest fructose and total sugars content. Otherwise, G. globosa showed the highest organic acids concentration. As far as we know, this is the first study reporting the mentioned chemical compounds in G. globosa and C. citratus. PMID:26904623

  12. Glyoxylate cycle and metabolism of organic acids in the scutellum of barley seeds during germination.

    PubMed

    Ma, Zhenguo; Marsolais, Frédéric; Bernards, Mark A; Sumarah, Mark W; Bykova, Natalia V; Igamberdiev, Abir U

    2016-07-01

    During the developmental processes from dry seeds to seedling establishment, the glyoxylate cycle becomes active in the mobilization of stored oils in the scutellum of barley (Hordeum vulgare L.) seeds, as indicated by the activities of isocitrate lyase and malate synthase. The succinate produced is converted to carbohydrates via phosphoenolpyruvate carboxykinase and to amino acids via aminotransferases, while free organic acids may participate in acidifying the endosperm tissue, releasing stored starch into metabolism. The abundant organic acid in the scutellum was citrate, while malate concentration declined during the first three days of germination, and succinate concentration was low both in scutellum and endosperm. Malate was more abundant in endosperm tissue during the first three days of germination; before citrate became predominant, indicating that malate may be the main acid acidifying the endosperm. The operation of the glyoxylate cycle coincided with an increase in the ATP/ADP ratio, a buildup of H2O2 and changes in the redox state of ascorbate and glutathione. It is concluded that operation of the glyoxylate cycle in the scutellum of cereals may be important not only for conversion of fatty acids to carbohydrates, but also for the acidification of endosperm and amino acid synthesis. PMID:27181945

  13. Correlation between organic acid exudation and metal uptake by ectomycorrhizal fungi grown on pond ash in vitro.

    PubMed

    Ray, Prasun; Adholeya, Alok

    2009-04-01

    Experiments were conducted to investigate the effect of coal ash on organic acid exudation and subsequent metal uptake by ectomycorrhizal fungi. Four isolates of ectomycorrhizal fungi namely, Pisolithus tinctorius (EM-1293 and EM-1299), Scleroderma verucosum (EM-1283) and Scleroderma cepa (EM-1233) were grown on pond ash moistened with Modified Melin-Norkans medium in vitro. Exudation of formic acid, malic acid and succinic acid by these fungi were detected by HPLC. Mycelial accumulation of Al, As, Cd, Cr, Ni and Pb by these fungi was assayed by atomic absorption spectrophotometer. Relationship between organic acid exudation and metal uptake was determined using classical multivariate linear regression model. Correlation between organic acid exudation and metal uptake could be substantiated when several metals are considered collectively. The finding supports the widespread role of low molecular weight organic acid as a function of tolerance, when exposed to metals in vitro. PMID:18800194

  14. On-line electrodialytic matrix isolation for chromatographic determination of organic acids in wine.

    PubMed

    Ohira, Shin-Ichi; Kuhara, Kenta; Shigetomi, Aki; Yamasaki, Takayuki; Kodama, Yuko; Dasgupta, Purnendu K; Toda, Kei

    2014-10-31

    Chromatographic determination of organic acids is widely performed, but the matrix often calls for lengthy and elaborate sample preparation prior to actual analysis. Matrix components, e.g., proteins, non-ionics, lipids etc. are typically removed by a combination of centrifugation/filtration and solid phase extraction (SPE) that may include the use of ion-exchange media. Here we report the quantitative electrodialytic transfer of organic acids from complex samples to ultrapure water in seconds using cellulose membranes modified with N,N-dimethylaminoethyl methacrylate, which essentially eliminates the negative ζ-potential of a regenerated cellulose membrane surface. The transfer characteristics of the ion transfer device (ITD) were evaluated with linear carboxylic acids. While the ion transfer efficiencies may be affected by the acid dissociation constants, in most cases it is possible to achieve quantitative transfer under optimized device residence time (solution flow rate) and the applied voltage. In addition, the transfer efficiency was unaffected by the wide natural variation of pH represented in real samples. The approach was applied to organic acids in various samples, including red wine, considered to represent an especially difficult matrix. While quantitative transfer of the organic acids (as judged by agreement with standard pretreatment procedures involving SPE) was achieved, transfer of other matrix components was <5%. The processed samples could then be chromatographically analyzed in a straightforward manner. We used ion exclusion chromatography with direct UV detection; in treated samples; there was a dramatic reduction of the large early peaks observed compared to only 0.45μm membrane filtered samples. PMID:25465003

  15. Effect of pH and organic acids on nitrogen transformations and metal dissolution in soils

    SciTech Connect

    Fu, Minhong.

    1989-01-01

    The effect of pH (4, 6, and 8) on nitrogen mineralization was evaluated in three Iowa surface soils treated with crop residues (corn (Zea mays L.), soybean (Glycine max (L.) Merr.), and sorghum (Sorghum vulgare Pers.), or alfalfa (Medicago sativa L.)) and incubated in leaching columns under aerobic conditions at 30C for 20 weeks. In general, N mineralization was significantly depressed at soil pH 4, compared with pH 6 or 8. The types of crop residues added influenced the pattern and amount of N mineralization. A study on the effect of 19 trace elements on the nitrate red activity of four Iowa surface soils showed that most trace elements inhibited this enzyme in acid and neutral soils. The trace elements Ag(I), Cd(II), Se(IV), As(V), and W(VI) were the most effective inhibitors, with >75% inhibition. Mn(II) was the least effective inhibitor, with <10% inhibition. Other trace elements included Cu(I), Co(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), Al(III), As(III), Cr(III), Fe(III), V(IV), Mo(VI), and Se(VI). The application of high-performance liquid chromatography (HPLC) showed that, when coupled to a refractive index detector, it is a rapid, sensitive, and accurate method for determining organic acids in soils. Three organic acids, acetic (2-20 mM), propionic (0-3 mM), and n-butyric (0-1.4 mM), were identified with HPLC and confirmed by gas chromatography in crop-residue-treated soils incubated under waterlogged conditions at 25C for 72 h. No organic acids were detected under aerobic conditions. Four mineral acids and 29 organic acids were studied for their effect on N mineralization and metal dissolution in soils incubated under waterlogged conditions at 30C for 10 days.

  16. Organic analysis of the returned lunar sample.

    PubMed

    Abell, P I; Draffan, G H; Eglinton, G; Hayes, J M; Maxwell, J R; Pillinger, C T

    1970-01-30

    Lunar fines have been examined for organic compounds by crushing, programmed heating, hydrofluoric acid etching, and solvent extraction. Products were examined by mass spectroscopy. A variety of small organic molecules, including methane and other hydrocarbons, accompanied the release of the rare gases when the sample was heated in a stepwise fashion to 900 degrees C under vacuum. Methane is more abundant (abundance on the order of 1 part per million) than argon in the matrix-entrapped gases liberated by hydrofluoric acid etching of lunar fines. Methane is also present in a dark portion of the gas-rich meteorite Kapoeta. PMID:17781581

  17. Regeneration of carboxylic acid-laden basic sorbents by leaching with a volatile base in an organic solvent

    DOEpatents

    King, C. Judson; Husson, Scott M.

    1999-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with an organic solution of alkylamine thus forming an alkylamine/carboxylic acid complex which is decomposed with improved efficiency to the desired carboxylic acid and the alkylamine. Carbon dioxide addition can be used to improve the adsorption or the carboxylic acids by the solid phase sorbent.

  18. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    DOEpatents

    Balazs, G.B.; Chiba, Z.; Lewis, P.R.; Nelson, N.; Steward, G.A.

    1999-06-15

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the med