Science.gov

Sample records for acid generation potential

  1. Potential role of sea spray generation in the atmospheric transport of perfluorocarboxylic acids.

    PubMed

    Webster, Eva; Ellis, David A

    2010-08-01

    The observed environmental concentrations of perfluorooctanoic acid (PFOA) and its conjugate base (PFO) in remote regions such as the Arctic have been primarily ascribed to the atmospheric transport and degradation of fluorotelomer alcohols (FTOHs) and to direct PFO transport in ocean currents. These mechanisms are each capable of only partially explaining observations. Transport within marine aerosols has been proposed and may explain transport over short distances but will contribute little over longer distances. However, PFO(A) has been shown to have a very short half-life in aqueous aerosols and thus sea spray was proposed as a mechanism for the generation of PFOA in the gas phase from PFO in a water body. Using the observed PFO concentrations in oceans of the Northern Hemisphere and estimated spray generation rates, this mechanism is shown to have the potential for contributing large amounts of PFOA to the atmosphere and may therefore contribute significantly to the concentrations observed in remote locations. Specifically, the rate of PFOA release into the gas phase from oceans in the Northern Hemisphere is calculated to be potentially comparable to global stack emissions to the atmosphere. The subsequent potential for atmospheric degradation of PFOA and its global warming potential are considered. Observed isomeric ratios and predicted atmospheric concentrations due to FTOH degradation are used to elucidate the likely relative importance of transport pathways. It is concluded that gas phase PFOA released from oceans may help to explain observed concentrations in remote regions. The model calculations performed in the present study strongly suggest that oceanic aerosol and gas phase field monitoring is of vital importance to obtain a complete understanding of the global dissemination of PFCAs.

  2. Evaluation of selected static methods used to estimate element mobility, acid-generating and acid-neutralizing potentials associated with geologically diverse mining wastes

    USGS Publications Warehouse

    Hageman, Philip L.; Seal, Robert R.; Diehl, Sharon F.; Piatak, Nadine M.; Lowers, Heather

    2015-01-01

    , quantitative tools that can be used to provide rapid, reliable information about the leachability of metals and other constituents of concern, and the acid-generating potential of metal mining waste.

  3. Evaluation of seepage and acid generation potential from evaporation ponds, Iron Duke Pyrite Mine, Mazowe Valley, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Ravengai, Seedwel; Owen, Richard; Love, David

    Iron Duke Pyrite Mine lies in the Mazowe Valley of northern Zimbabwe. Several urban areas and commercial farmers are major water users in the catchment. Accordingly, managing the impact of mining operations on water quality in the Mazowe Valley must be a major priority for sustainable development in this area. The mine disposes of its waste water via evaporation ponds. Some of the water in the ponds evaporates and some is lost through seepage to groundwater. Results of a water budget analysis of the ponds showed that 160.5 m 3 per day of acidic effluent with a pH of 2 and elevated levels of iron and sulphate was being lost through seepage. As the wastewater evaporates, the secondary minerals melanterite and hexahydrite precipitate. The solid material in the pond was found to contain 20% iron and 14% sulphate, which is far more than was found dissolved within the pond water. Despite this, the pond water is undersaturated with respect to both iron and sulphate. Acid generation tests on the solid material in the pond indicate a minimum of 540,000 mol and a maximum of 1,610,309 mol of acid are generated. The variation can be related to exposure to oxygen: material near the edges of the pond is more exposed to oxygen and has already reacted further than material from the centre of the pond; accordingly less acid can be generated. The acidity generated by the pond is due to the unreacted pyrite that is found in fine particles suspended in mine waters. Based on these results, between 20 and 60 metric tonnes of lime are required for complete neutralisation of the sediments in the pond. Although the ponds were decommissioned after the conclusion of this study, it is necessary to prevent formation of further acid mine drainage from existing sediments in the evaporation pond. This could be done by the use of reactive covers, whose compositions affect the chemistry of infiltrating water. A good reactive cover could be constructed from lime, overlain by topsoil rich in organic

  4. Prediction of acid mine drainage generation potential of various lithologies using static tests: Etili coal mine (NW Turkey) as a case study.

    PubMed

    Yucel, Deniz Sanliyuksel; Baba, Alper

    2016-08-01

    The Etili neighborhood in Can County (northwestern Turkey) has large reserves of coal and has been the site of many small- to medium-scale mining operations since the 1980s. Some of these have ceased working while others continue to operate. Once activities cease, the mining facilities and fields are usually abandoned without rehabilitation. The most significant environmental problem is acid mine drainage (AMD). This study was carried out to determine the acid generation potential of various lithological units in the Etili coal mine using static test methods. Seventeen samples were selected from areas with high acidic water concentrations: from different alteration zones belonging to volcanic rocks, from sedimentary rocks, and from coals and mine wastes. Static tests (paste pH, standard acid-base accounting, and net acid generation tests) were performed on these samples. The consistency of the static test results showed that oxidation of sulfide minerals, especially pyrite-which is widely found not only in the alteration zones of volcanic rocks but also in the coals and mine wastes-is the main factor controlling the generation of AMD in this mine. Lack of carbonate minerals in the region also increases the occurrence of AMD.

  5. Prediction of acid mine drainage generation potential of various lithologies using static tests: Etili coal mine (NW Turkey) as a case study.

    PubMed

    Yucel, Deniz Sanliyuksel; Baba, Alper

    2016-08-01

    The Etili neighborhood in Can County (northwestern Turkey) has large reserves of coal and has been the site of many small- to medium-scale mining operations since the 1980s. Some of these have ceased working while others continue to operate. Once activities cease, the mining facilities and fields are usually abandoned without rehabilitation. The most significant environmental problem is acid mine drainage (AMD). This study was carried out to determine the acid generation potential of various lithological units in the Etili coal mine using static test methods. Seventeen samples were selected from areas with high acidic water concentrations: from different alteration zones belonging to volcanic rocks, from sedimentary rocks, and from coals and mine wastes. Static tests (paste pH, standard acid-base accounting, and net acid generation tests) were performed on these samples. The consistency of the static test results showed that oxidation of sulfide minerals, especially pyrite-which is widely found not only in the alteration zones of volcanic rocks but also in the coals and mine wastes-is the main factor controlling the generation of AMD in this mine. Lack of carbonate minerals in the region also increases the occurrence of AMD. PMID:27435620

  6. Targeting the S1 and S3 subsite of trypsin with unnatural cationic amino acids generates antimicrobial peptides with potential for oral administration.

    PubMed

    Karstad, Rasmus; Isaksen, Geir; Wynendaele, Evelien; Guttormsen, Yngve; De Spiegeleer, Bart; Brandsdal, Bjørn-Olav; Svendsen, John Sigurd; Svenson, Johan

    2012-07-26

    This study investigates how the S1 and S3 site of trypsin can be challenged with cationic amino acid analogues to yield active antimicrobial peptides with stability toward tryptic degradation. It is shown that unnatural analogues can be incorporated to generate stable peptides with maintained bioactivity to allow for a potential oral uptake. Selected peptides were studied using isothermal calorimetry and computational methods. Both stable and unstable peptides were found to bind stoichiometrically to trypsin with dissociation constants ranging 2-60 μM, suggesting several different binding modes. The stability of selected peptides was analyzed in whole organ extracts and the incorporation of homoarginine and 2-amino-(3-guanidino)propanoic acid resulted in a 14- and 50-fold increase in duodenal stability. In addition, a 40- and 70-fold increase in stomach stability is also reported. Overall, these results illustrate how the incorporation of cationic side chains can be employed to generate bioactive peptides with significant systemic stability.

  7. Draining and salting as responsible key steps in the generation of the acid-forming potential of cheese: Application to a soft blue-veined cheese.

    PubMed

    Gore, Ecaterina; Mardon, Julie; Lebecque, Annick

    2016-09-01

    A disregarded nutritional feature of cheeses is their high acid-forming potential when ingested, which is associated with deleterious effects on consumers' health. This work aimed to characterize the acid-forming potential of a blue-veined cheese during manufacturing to identify the main steps of the process involved in this phenomenon. Sampling was performed on 3 batches at 10 steps of the cheese-making process: reception of raw milk, pasteurization, maturation of milk, coagulation, stirring, draining of the curds, and 4 ripening stages: 21, 28, 42, and 56d. The acid-forming potential of each sample was evaluated by (1) the calculation of the potential renal acid load (PRAL) index (considering protein, Cl, P, Na, K, Mg, and Ca contents), and (2) its organic anion content (lactate and citrate), considered as alkalinizing elements. Draining and salting were identified as the main steps responsible for generation of the acid-forming potential of cheese. The draining process induced an increase in the PRAL index from 1.2mEq/100g in milk to 10.4mEq/100g in drained curds due to the increase in dry matter and the loss of alkaline minerals into the whey. The increase in PRAL value (20.3mEq/100g at d 56) following salting resulted from an imbalance between the strong acidogenic elements (Cl, P, and proteins) and the main alkalinizing ones (Na and Ca). Particularly, Cl had a major effect on the PRAL value. Regarding organic anions, draining induced a loss of 93% of the citrate content in initial milk. The lactate content increased as fermentation occurred (1,297.9mg/100g in drained curds), and then decreased during ripening (519.3mg/100g at d 56). This lactate level probably helps moderate the acidifying potential of end products. Technological strategies aimed at limiting the acid-forming potential of cheeses are proposed and deserve further research to evaluate their nutritional relevance.

  8. Polymer matrix effects on acid generation

    NASA Astrophysics Data System (ADS)

    Fedynyshyn, Theodore H.; Goodman, Russell B.; Roberts, Jeanette

    2008-03-01

    We have measured the acid generation efficiency with EUV exposure of a PAG in different polymer matrixes representing the main classes of resist polymers as well as some previously described fluoropolymers for lithographic applications. The polymer matrix was found to have a significant effect on the acid generation efficiency of the PAG studied. A linear relationship exists between the absorbance of the resist and the acid generation efficiency. A second inverse relationship exists between Dill C and aromatic content of the resist polymer. It was shown that polymer sensitization is important for acid generation with EUV exposure and the Dill C parameter can be increased by up to five times with highly absorbing non-aromatic polymers, such as non-aromatic fluoropolymers, over an ESCAP polymer. The increase in the Dill C value will lead to an up to five fold increase in resist sensitivity. It is our expectation that these insights into the nature of polymer matrix effects on acid generation could lead to increased sensitivity for EUV resists.

  9. Realizing the potential of dielectric elastomer generators

    NASA Astrophysics Data System (ADS)

    McKay, Thomas; O'Brien, Benjamin; Calius, Emilio; Anderson, Iain

    2011-04-01

    The global demand for renewable energy is growing, and ocean waves and wind are renewable energy sources that can provide large amounts of power. A class of variable capacitor power generators called Dielectric Elastomer Generators (DEG), show considerable promise for harvesting this energy because they can be directly coupled to large broadband motions without gearing while maintaining a high energy density, have few moving parts, and are highly flexible. At the system level DEG cannot currently realize their full potential for flexibility, simplicity and low mass because they require rigid and bulky external circuitry. This is because a typical generation cycle requires high voltage charge to be supplied or drained from the DEG as it is mechanically deformed. Recently we presented the double Integrated Self-Priming Circuit (ISPC) generator that minimized external circuitry. This was done by using the inherent capacitance of DEG to store excess energy. The DEG were electrically configured to form a pair of charge pumps. When the DEG were cyclically deformed, the charge pumps produced energy and converted it to a higher charge form. In this paper we present the single ISPC generator that contains just one charge pump. The ability of the new generator to increase its voltage through the accumulation of generated energy did not compare favourably with that of the double ISPC generator. However the single ISPC generator can operate in a wider range of operating conditions and the mass of its external circuitry is 50% that of the double ISPC generator.

  10. Acid generation efficiency: EUV photons versus photoelectrons

    NASA Astrophysics Data System (ADS)

    Goldfarb, Dario L.; Afzali-Ardakani, Ali; Glodde, Martin

    2016-03-01

    EUV photoacid generation efficiency has been described primarily in terms of the EUV photon absorption by the PAG or the resist matrix and the production of low energy photoelectrons, which are reported as being ultimately responsible for the high quantum efficiencies reported in EUV resists (<1). Such observation led to a number of recent studies on PAGs with variable electron affinity (EA) and reduction potential (Ered) presumably conducive to a differential EUV photoelectron harvesting efficiency. However, such studies either did not disclose the PAG chemical structures, replaced the EUV source with an e-beam source, or lacked a fundamental discussion of the underlying physical mechanisms behind EUV PAG decomposition. In this work, we report the EUV photospeed of a methacrylatebased resist formulated with a battery of openly disclosed isostructural sulfonium PAGs covering a wide range of EA's and Ered's, to unveil any preferential photoelectron scavenging effect. In parallel, several iodonium PAGs are also tested in order to compare the direct EUV photon absorption route to the photoelectron-based decomposition path. Contrarily to what has been widely reported, we have found no direct correlation whatsoever between photospeed and the calculated EA's or experimental Ered's for the isostructural sulfonium PAGs studied. Instead, we found that iodonium PAGs make more efficient use of the available EUV power due to their higher photoabsorption cross-section. Additionally, we determined a cation size effect for both PAG groups, which is able to further modulate the acid generation efficiency. Finally, we present a formal explanation for the unselective response towards photoelectron harvesting based on the stabilization of the PAG cation by bulky substituent groups, the spatial and temporal range of the transient photoelectron and the differences in electron transfer processes for the different systems studied.

  11. Membrane Potential Generated by Ion Adsorption

    PubMed Central

    Tamagawa, Hirohisa; Morita, Sachi

    2014-01-01

    It has been widely acknowledged that the Goldman-Hodgkin-Katz (GHK) equation fully explains membrane potential behavior. The fundamental facet of the GHK equation lies in its consideration of permeability of membrane to ions, when the membrane serves as a separator for separating two electrolytic solutions. The GHK equation describes that: variation of membrane permeability to ion in accordance with ion species results in the variation of the membrane potential. However, nonzero potential was observed even across the impermeable membrane (or separator) separating two electrolytic solutions. It gave rise to a question concerning the validity of the GHK equation for explaining the membrane potential generation. In this work, an alternative theory was proposed. It is the adsorption theory. The adsorption theory attributes the membrane potential generation to the ion adsorption onto the membrane (or separator) surface not to the ion passage through the membrane (or separator). The computationally obtained potential behavior based on the adsorption theory was in good agreement with the experimentally observed potential whether the membrane (or separator) was permeable to ions or not. It was strongly speculated that the membrane potential origin could lie primarily in the ion adsorption on the membrane (or separator) rather than the membrane permeability to ions. It might be necessary to reconsider the origin of membrane potential which has been so far believed explicable by the GHK equation. PMID:24957176

  12. Influence of the Trojan Nickel Mine on surface water quality, Mazowe valley, Zimbabwe: Runoff chemistry and acid generation potential of waste rock

    NASA Astrophysics Data System (ADS)

    Lupankwa, Keretia; Love, David; Mapani, Benjamin; Mseka, Stephen; Meck, Maideyi

    The impacts of mining on the environment depend on the nature of the ore body, the type of mining and the size of operation. The focus of this study is on Trojan Nickel Mine which is located 90 km north of Harare, Zimbabwe. It produces nickel from iron, iron-nickel and copper-nickel sulphides and disposes of waste rock in a rock dump. Surface water samples were taken at 11 points selected from a stream which drains the rock dump, a stream carrying underground water and the river into which these streams discharge. Samples were analysed for metals using atomic absorption spectrometry, for sulphates by gravitation and for carbonates and bicarbonates by back titration. Ninteen rock samples were collected from the dump and static tests were performed using the Sobek acid base accounting method. The results show that near neutral runoff (pH 7.0-8.5) with high concentrations of sulphate (over 100 mg/L) and some metals (Pb > 1.0 mg/L and Ni > 0.2 mg/L) emanates from the dump. This suggests that acid mine drainage is buffered in the dump (probably by carbonates). This is supported by the static tests, which show that the fine fraction of dump material neutralises acid. Runoff from the dump flows into a pond. Concentrations of sulphates and metals decrease after the dump runoff enters the pond, but sufficient remains to increase levels of calcium, sulphate, bicarbonate, iron and lead in the Pote River. The drop in concentrations at the pond indicates that the settling process has a positive effect on water quality. This could be enhanced by treating the pond water to raise pH, thus precipitating out metals and decreasing their concentrations in water draining from the pond.

  13. Power generation potential of biomass gasification systems

    SciTech Connect

    Kinoshita, C.M.; Turn, S.Q.; Overend, R.P.; Bain, R.L.

    1996-10-01

    Biomass has the potential to contribute a significant portion of the electricity consumed in industrialized nations and a major share of the power mix in developing countries. In addition to providing an alternative to fossil-fuel-based energy and creating new markets for agriculture, a renewable resource like biomass used in a sustainable fashion facilitates closure of the carbon cycle. To realize these benefits, particularly in the shadow of uncertainties cast by deregulation and recent changes in federal energy and agricultural policies, biomass power systems must be competitive with incumbent power-generation technologies in terms of generation efficiency and overall cost. Anticipated performance and cost of biomass-based integrated gasification, combined-cycle power systems are discussed. The electric power that can be generated worldwide using existing biomass resources (primarily crop residues and wastes) and the potential amount that could be generated from crops grown specifically for electricity generation are projected. Technical and economic obstacles which must be overcome before advanced biomass-power systems based on aeroderivative turbines or fuel cells can become fully commercial are identified. Research, development, and demonstration efforts underway or being planned to overcome those obstacles are described; developments in a major biomass gasification demonstration project taking place in Hawaii under the auspices of the US Department of Energy and the State of Hawaii are detailed.

  14. Power generation potential of biomass gasification systems

    SciTech Connect

    Kinoshita, C.M.; Turn, S.Q.; Overend, R.P.; Bain, R.L.

    1997-12-01

    Biomass has the potential to contribute a significant portion of the electricity consumed in industrialized nations and a major share of the power mix in developing countries. In addition to providing an alternative to fossil-fuel-based energy and creating new markets for agriculture, a renewable resource like biomass used in a sustainable fashion facilitates closure of the carbon cycle. To realize these benefits, particularly in the shadow of uncertainties cast by deregulation and recent changes in federal energy and agricultural policies, biomass power systems must be competitive with incumbent power-generation technologies in terms of generation efficiency and overall cost. Anticipated performance and cost of biomass-based integrated gasification, combined-cycle power systems are discussed. The electric power that can be generated worldwide using existing biomass resources (primarily crop residues and wastes) and the potential amount that could be generated from crops grown specifically for electricity generation are projected. Technical and economic obstacles that must be overcome before advanced biomass-power systems based on aeroderivative turbines or fuel cells can become fully commercial are identified. Research, development, and demonstration efforts under way or being planned to overcome those obstacles are described; developments in a major biomass gasification demonstration project taking place in Hawaii under the auspices of the US Department of Energy and the State of Hawaii are detailed.

  15. Potential bronchoconstrictor stimuli in acid fog.

    PubMed

    Balmes, J R; Fine, J M; Gordon, T; Sheppard, D

    1989-02-01

    Acid fog is complex and contains multiple stimuli that may be capable of inducing bronchoconstriction. These stimuli include sulfuric and niric acids, the principal inorganic acids present; sulfites, formed in the atmosphere as a reaction product of sulfur dioxide and water droplets; fog water itself, a hypoosmolar aerosol; the organic acid hydroxymethanesulfonate, the bisulfite adduct of formaldehyde; and gaseous pollutants, e.g., sulfur dioxide, oxides of nitrogen, ozone. Given this complexity, evaluation of the respiratory health effects of naturally occurring acid fog requires assessment of the bronchoconstrictor potency of each component stimulus and possible interactions among these stimuli. We summarize the results of three studies that involve characterization of the bronchoconstrictor potency of acid fog stimuli and/or their interaction in subjects with asthma. The results of the first study indicate that titratable acidity appears to be a more important stimulus to bronchoconstriction than is pH. The results of the second study demonstrate that sulfite species are capable of inducing bronchoconstriction, especially when inhaled at acid pH. The results of the third study suggest that acidity can potentiate hypoosmolar fog-induced bronchoconstriction.

  16. Potential bronchoconstrictor stimuli in acid fog

    SciTech Connect

    Balmes, J.R.; Fine, J.M.; Gordon, T.; Sheppard, D.

    1989-02-01

    Acid fog is complex and contains multiple stimuli that may be capable of inducing bronchoconstriction. These stimuli include sulfuric and nitric acids, the principal inorganic acids present; sulfites, formed in the atmosphere as a reaction product of sulfur dioxide and water droplets; fog water itself, a hypoosmolar aerosol; the organic acid hydroxymethanesulfonate, the bisulfite adduct of formaldehyde; and gaseous pollutants, e.g., sulfur dioxide, oxides of nitrogen, ozone. Given this complexity, evaluation of the respiratory health effects of naturally occurring acid fog requires assessment of the bronchoconstrictor potency of each component stimulus and possible interactions among these stimuli. We summarize the results of three studies that involve characterization of the bronchoconstrictor potency of acid fog stimuli and/or their interaction in subjects with asthma. The results of the first study indicate that titratable acidity appears to be a more important stimulus to bronchoconstriction than is pH. The results of the second study demonstrate that sulfite species are capable of inducing bronchoconstriction, especially when inhaled at acid pH. The results of the third study suggest that acidity can potentiate hypoosmolar fog-induced bronchoconstriction.

  17. Biosynthesis of mercapturic acid derivative of the labdane-type diterpene, cyslabdan that potentiates imipenem activity against methicillin-resistant Staphylococcus aureus: cyslabdan is generated by mycothiol-mediated xenobiotic detoxification.

    PubMed

    Ikeda, Haruo; Shin-Ya, Kazuo; Nagamitsu, Tohru; Tomoda, Hiroshi

    2016-03-01

    Genome mining of cyslabdan-producing Streptomyces cyslabdanicus K04-0144 revealed that a set of four genes, cldA, cldB, cldC, and cldD (the cld cluster), which formed a single transcriptional unit, were involved in the biosynthesis of cyslabdan that potentiates imipenem activity against methicillin-resistant Staphylococcus aureus. Experimental studies supported the heterologous expression of the cld cluster of S. cyslabdanicus K04-0144 in S. avermitilis SUKA22, and transformants carrying the cld cluster produced not only cyslabdan A (1), but also its new derivatives, 17-hydroxyl-1 (2) and 2-hydroxyl-1 (3), in the culture broth. An analysis of diterpene metabolites in the mycelia showed that a large amount of a novel intermediate had accumulated and its structure was elucidated as (7S, 8S, 12E)-8,17-epoxy-7-hydroxylabda-12,14-diene (4). The cld-like cluster (rmn cluster) was also detected in the genome of S. anulatus GM95 by searching our in-house genome databases, and the heterologous expression of the rmn cluster in S. avermitilis SUAK22 demonstrated that the rmn cluster was involved in the biosynthesis of the labdane-type bicyclic diterpene, raimonol (7). CldA/RmnA catalyzed the generation of geranylgeranyl diphosphate (GGPP) from dimethylallyl diphosphate and isopentenyl diphosphate. CldB/RmnB converted GGPP to (+)-copalyl diphosphate, and CldD/RmnD generated labda-8(17),12(E),14-triene (5). CldC introduced two oxygen atoms at C-7 and C-8,17 to generate 4, while RmnC hydroxylated 5 at C-7 to generate 7. The heterologous expression of the cld cluster suggested that four gene products catalyzed to generate 4, but not 1. The deletion mutant of the gene encoding the mycothiol (MSH)-S-conjugate amidase (mca) of S. avermitilis SUKA22 carrying the cld cluster failed to produce 1, but accumulated 4 in the mycelia, whereas S. avermitilis SUKA22 and its mca-deletion mutant carrying the cld cluster both produced the MSH-S-conjugate of 4. The intermediate 4 was converted

  18. Generation of a novel exactly solvable potential

    NASA Astrophysics Data System (ADS)

    Bougie, Jonathan; Gangopadhyaya, Asim; Mallow, Jeffry V.; Rasinariu, Constantin

    2015-10-01

    We report a new shape-invariant (SI) isospectral extension of the Morse potential. Previous investigations have shown that the list of "conventional" SI superpotentials that do not depend explicitly on Planck's constant ħ is complete. Additionally, a set of "extended" superpotentials has been identified, each containing a conventional superpotential as a kernel and additional ħ-dependent terms. We use the partial differential equations satisfied by all SI superpotentials to find a SI extension of Morse with novel properties. It has the same eigenenergies as Morse but different asymptotic limits, and does not conform to the standard generating structure for isospectral deformations.

  19. Exploring potential Pluto-generated neutral tori

    NASA Astrophysics Data System (ADS)

    Smith, Howard T.; Hill, Matthew; KollMann, Peter; McHutt, Ralph

    2015-11-01

    The NASA New Horizons mission to Pluto is providing unprecedented insight into this mysterious outer solar system body. Escaping molecular nitrogen is of particular interest and possibly analogous to similar features observed at moons of Saturn and Jupiter. Such escaping N2 has the potential of creating molecular nitrogen and N (as a result of molecular dissociation) tori or partial toroidal extended particle distributions. The presence of these features would present the first confirmation of an extended toroidal neutral feature on a planetary scale in our solar system. While escape velocities are anticipated to be lower than those at Enceladus, Io or even Europa, particle lifetimes are much longer in Pluto’s orbit because as a result of much weaker solar interaction processes along Pluto’s orbit (on the order of tens of years). Thus, with a ~248 year orbit, Pluto may in fact be generating an extended toroidal feature along it orbit.For this work, we modify and apply our 3-D Monte Carlo neutral torus model (previously used at Saturn, Jupiter and Mercury) to study/analyze the theoretical possibility and scope of potential Pluto-generated neutral tori. Our model injects weighted particles and tracks their trajectories under the influence of all gravitational fields with interactions with other particles, solar photons and Pluto collisions. We present anticipated N2 and N tori based on current estimates of source characterization and environmental conditions. We also present an analysis of sensitivity to assumed initial conditions. Such results can provide insight into the Pluto system as well as valuable interpretation of New Horizon’s observational data.

  20. Prospects of boswellic acids as potential pharmaceutics.

    PubMed

    Du, Zhiyong; Liu, Zhenli; Ning, Zhangchi; Liu, Yuanyan; Song, Zhiqian; Wang, Chun; Lu, Aiping

    2015-03-01

    Boswellic acids have long been considered the main bioactive components of frankincense, and many studies in vitro and in animals as well as several clinical studies have confirmed their various bioactivities. In particular, a large number of mechanistic studies have confirmed their anti-inflammatory and antitumor activities. However, not every boswellic acid exhibits a satisfactory pharmacological performance, which depends on the chemical structure and functional groups of the acid. To enhance the pharmacological values of boswellic acids, derivatization has been specifically applied with the aim of discovering more active derivatives of BAs. In addition, the preliminary pharmacokinetic studies of these compounds using various standard methods show their poor bioavailability in humans and rodents, which has led to questions of their pharmacological relevance and potentially limits their use in clinical practice and pharmaceutical development. To improve these effects, some approaches have shown some improvements in effectiveness, and the new formula compatibility approach is considered a very reasonable method for improving the bioavailability of boswellic acids. PMID:25714728

  1. The stability and generation pattern of thermally formed isocyanic acid (ICA) in air - potential and limitations of proton transfer reaction-mass spectrometry (PTR-MS) for real-time workroom atmosphere measurements.

    PubMed

    Jankowski, Mikolaj Jan; Olsen, Raymond; Thomassen, Yngvar; Molander, Paal

    2016-07-13

    Isocyanic acid (ICA) in vapour phase has been reported to be of unstable nature, making the occupational hygienic relevance of ICA questionable. The stability of pure ICA in clean air at different humidity conditions was investigated by Fourier transform-infrared spectrometric (FT-IR) measurements. Furthermore, the stability of ICA in a complex atmosphere representative thermal degradation hot-work procedures were examined by performing parallel measurements by proton transfer reaction-mass spectrometric (PTR-MS) instrumentation and off-line denuder air sampling using di-n-butylamine (as a derivatization agent prior to liquid chromatography mass spectrometric (LC-MS) determination). The apparent half-life of ICA in pure ICA atmospheres was 16 to 4 hours at absolute humidity (AH) in the range 4.2 to 14.6 g m(-3), respectively. In a complex atmosphere at an initial AH of 9.6 g m(-3) the apparent half-life of ICA was 8 hours, as measured with the denuder method. Thus, thermally formed ICA is to be considered as a potential occupational hazard with regard to inhalation. The generation pattern of ICA formed during controlled gradient (100-540 °C) thermal decomposition of different polymers in the presence of air was examined by parallel PTR-MS and denuder air sampling. According to measurement by denuder sampling ICA was the dominant aliphatic isocyanate formed during the thermal decomposition of all polymers. The real-time measurements of the decomposed polymers revealed different ICA generation patterns, with initial appearance of thermally released ICA in the temperature range 200-260 °C. The PTR-MS ICA measurements was however affected by mass overlap from other decomposition products at m/z 44, illustrated by a [ICA]Denuder/[ICA]PTR-MS ratio ranging from 0.04 to 0.90. These findings limits the potential use of PTR-MS for real time measurements of thermally released ICA in field, suggesting parallel sampling with short-term sequential off-line methodology. PMID

  2. Potential human health effects of acid rain

    SciTech Connect

    Not Available

    1984-01-01

    Adverse human health effects, namely acute and chronic respiratory effects, can occur from the pre-deposition phase of the acid rain phenomenon due to inhalation of acidic particles and gases. State-of-the-art methodology to evaluate these effects is just now being applied to this question. The major post-deposition effect of the acid rain phenomenon is to acidify water, increasing solubility and subsequent human exposure to mercury, lead, cadmium, and aluminum. Acidification increases bioconversion of mercury to methylmercury, a highly toxic compound, which accumulates in fish, increasing the risk to toxicity in people who eat fish. Increase in water and soil content of lead and cadmium increases human exposure to these metals which become additive to other sources presently under regulatory control. The potential adverse health effects of increased human exposure to aluminum is not known at the present time. Deficiencies in the identification of the contribution of pre-deposition of air pollutants and post-deposition mobilization of toxic metals to the recognized potential health effects of the involved toxic substances is due to the fact that scientists have not addressed these specific questions. 113 references, 4 figures, 2 tables.

  3. Modeling acid-gas generation from boiling chloride brines

    PubMed Central

    2009-01-01

    Background This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Results Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150°C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. Conclusion The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation

  4. Modeling acid-gas generation from boiling chloride brines

    SciTech Connect

    Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

    2009-11-16

    This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent

  5. Acid drainage generation and associated Ca-Fe-SO 4 minerals in a periglacial environment, Eagle Plains, Northern Yukon, Canada: A potential analogue for low-temperature sulfate formation on Mars

    NASA Astrophysics Data System (ADS)

    Lacelle, Denis; Léveillé, Richard

    2010-03-01

    Near Eagle Plains, northern Yukon, Canada, acidic Ca-Fe-Mg sulfate waters are discharging year-long from disturbed permafrosted sandstone bedrock overlying pyritiferous black shales. These acidic waters are precipitating gypsum with minor amounts of jarosite-K (Na), schwertmannite and hematite. This mineral assemblage is similar to that observed at Meridiani Planum (and other location on Mars), making this site a valuable analogue for low-temperature sulfate geochemistry and mineral formation on Mars. Stable O-S isotope analysis of the acidic waters near Eagle Plains revealed that the oxygen in the dissolved sulfate is mostly derived from water (ca. 70%), suggesting that the sulfide oxidation process could be in part biomediated (i.e., accelerated by acidophilic Fe-oxidizing bacteria). However, unlike the dissolved sulfate in the waters, the formation of the Ca-Fe-SO 4 minerals appears to be purely abiotic. The stable O-S isotope composition of the sulfate minerals is well within the predicted equilibrium range at low temperature, suggesting that they formed through physico-chemical processes (i.e., evaporation or freezing). Low-temperature geochemical modeling with FREZCHEM and PHREEQC suggests that the mineral assemblage at Eagle Plains precipitated mainly through the freezing of Ca-Fe-Mg-SO 4 acidic waters, rather than through evaporation during the dry summer season, although the latter is still possible. This suggests that the sulfate mineral assemblage observed on Mars could have also formed under a periglacial-type climate. Considering that the active layer in the zone affected by acid drainage does not freeze-over during winter, the residual talik offers a localized niche environment to support acidophilic microorganisms. Overall, the fact that acid drainage is presently active near Eagle Plains allows the direct observation of the low-temperature geochemical processes responsible for generating acid drainage conditions and precipitation of gypsum

  6. Investigations of new potential photo-acid generators: crystal structures of 2-[(E)-2-phenyl­ethen­yl]phenol (ortho­rhom­bic polymorph) and (2E)-3-(2-bromo­phen­yl)-2-phenyl­prop-2-enoic acid

    PubMed Central

    Harrison, William T. A.; Plater, M. John; Yin, Lee J.

    2016-01-01

    The title compounds, C14H12O, (I), and C15H11BrO2, (II), were prepared and characterized as part of our studies of potential new photo-acid generators. In (I), which crystallizes in the ortho­rhom­bic space group Pca21, compared to P21/n for the previously known monoclinic polymorph [Cornella & Martin (2013 ▸). Org. Lett. 15, 6298–6301], the dihedral angle between the aromatic rings is 4.35 (6)° and the OH group is disordered over two sites in a 0.795 (3):0.205 (3) ratio. In the crystal of (I), mol­ecules are linked by O—H⋯π inter­actions involving both the major and minor –OH disorder components, generating [001] chains as part of the herringbone packing motif. The asymmetric unit of (II) contains two mol­ecules with similar conformations (weighted r.m.s. overlay fit = 0.183 Å). In the crystal of (II), both mol­ecules form carboxyl­ate inversion dimers linked by pairs of O—H⋯O hydrogen bonds, generating R 2 2(8) loops in each case. The dimers are linked by pairs of C—H⋯O hydrogen bonds to form [010] chains. PMID:27006818

  7. Investigations of new potential photo-acid generators: crystal structures of 2-[(E)-2-phenyl-ethen-yl]phenol (ortho-rhom-bic polymorph) and (2E)-3-(2-bromo-phen-yl)-2-phenyl-prop-2-enoic acid.

    PubMed

    Harrison, William T A; Plater, M John; Yin, Lee J

    2016-03-01

    The title compounds, C14H12O, (I), and C15H11BrO2, (II), were prepared and characterized as part of our studies of potential new photo-acid generators. In (I), which crystallizes in the ortho-rhom-bic space group Pca21, compared to P21/n for the previously known monoclinic polymorph [Cornella & Martin (2013 ▸). Org. Lett. 15, 6298-6301], the dihedral angle between the aromatic rings is 4.35 (6)° and the OH group is disordered over two sites in a 0.795 (3):0.205 (3) ratio. In the crystal of (I), mol-ecules are linked by O-H⋯π inter-actions involving both the major and minor -OH disorder components, generating [001] chains as part of the herringbone packing motif. The asymmetric unit of (II) contains two mol-ecules with similar conformations (weighted r.m.s. overlay fit = 0.183 Å). In the crystal of (II), both mol-ecules form carboxyl-ate inversion dimers linked by pairs of O-H⋯O hydrogen bonds, generating R 2 (2)(8) loops in each case. The dimers are linked by pairs of C-H⋯O hydrogen bonds to form [010] chains.

  8. Therapeutic Potential of Dietary Phenolic Acids

    PubMed Central

    Saibabu, Venkata; Fatima, Zeeshan; Khan, Luqman Ahmad; Hameed, Saif

    2015-01-01

    Although modern lifestyle has eased the quality of human life, this lifestyle's related patterns have imparted negative effects on health to acquire multiple diseases. Many synthetic drugs are invented during the last millennium but most if not all of them possess several side effects and proved to be costly. Convincing evidences have established the premise that the phytotherapeutic potential of natural compounds and need of search for novel drugs from natural sources are of high priority. Phenolic acids (PAs) are a class of secondary metabolites spread throughout the plant kingdom and generally involved in plethora of cellular processes involved in plant growth and reproduction and also produced as defense mechanism to sustain various environmental stresses. Extensive research on PAs strongly suggests that consumption of these compounds hold promise to offer protection against various ailments in humans. This paper focuses on the naturally derived PAs and summarizes the action mechanisms of these compounds during disease conditions. Based on the available information in the literature, it is suggested that use of PAs as drugs is very promising; however more research and clinical trials are necessary before these bioactive molecules can be made for treatment. Finally this review provides greater awareness of the promise that natural PAs hold for use in the disease prevention and therapy. PMID:26442119

  9. Global potential for wind-generated electricity

    PubMed Central

    Lu, Xi; McElroy, Michael B.; Kiviluoma, Juha

    2009-01-01

    The potential of wind power as a global source of electricity is assessed by using winds derived through assimilation of data from a variety of meteorological sources. The analysis indicates that a network of land-based 2.5-megawatt (MW) turbines restricted to nonforested, ice-free, nonurban areas operating at as little as 20% of their rated capacity could supply >40 times current worldwide consumption of electricity, >5 times total global use of energy in all forms. Resources in the contiguous United States, specifically in the central plain states, could accommodate as much as 16 times total current demand for electricity in the United States. Estimates are given also for quantities of electricity that could be obtained by using a network of 3.6-MW turbines deployed in ocean waters with depths <200 m within 50 nautical miles (92.6 km) of closest coastlines. PMID:19549865

  10. Global potential for wind-generated electricity.

    PubMed

    Lu, Xi; McElroy, Michael B; Kiviluoma, Juha

    2009-07-01

    The potential of wind power as a global source of electricity is assessed by using winds derived through assimilation of data from a variety of meteorological sources. The analysis indicates that a network of land-based 2.5-megawatt (MW) turbines restricted to nonforested, ice-free, nonurban areas operating at as little as 20% of their rated capacity could supply >40 times current worldwide consumption of electricity, >5 times total global use of energy in all forms. Resources in the contiguous United States, specifically in the central plain states, could accommodate as much as 16 times total current demand for electricity in the United States. Estimates are given also for quantities of electricity that could be obtained by using a network of 3.6-MW turbines deployed in ocean waters with depths <200 m within 50 nautical miles (92.6 km) of closest coastlines.

  11. Generating and maintaining jasmonic acid in Arabidopsis.

    PubMed

    Hyun, Youbong; Lee, Ilha

    2008-10-01

    Jasmonic acid (JA) is a lipid-derived plant hormone that mediates diverse biological phenomena. It is one of major goals in JA research field to elucidate the regulatory mechanism of JA level. Recently we have demonstrated cooperative and differentiated roles of two chloroplast localized galactolipases, DGL (DONGLE) and DAD1 (DEFECTIVE IN ANTHER DEHISCENCE 1), for the regulation of JA content. The DGL maintains a basal level of JA in unwounded vegetative tissues, while the DAD1 is involved in JA production in floral tissues. The JA in vegetative tissues regulates cell expansion while the JA produced in flowers regulates pollen maturation. After wounding, the cooperative function of DGL and DAD1 causes drastic increase of JA. The analysis of induction kinetics showed that the two enzymes have temporally separated roles in wound response; DGL in early phase and DAD1 in late phase of JA production. In this addendum, we discuss the implications of our recent findings and extend our working model for JA homeostasis in plants.

  12. Prediction of AMD generation potential in mining waste piles, in the Sarcheshmeh porphyry copper deposit, Iran.

    PubMed

    Modabberi, Soroush; Alizadegan, Ali; Mirnejad, Hassan; Esmaeilzadeh, Esmat

    2013-11-01

    This study investigates the possibility of acid mine drainage (AMD) generation in active and derelict mine waste piles in Sarcheshmeh Copper Mine produced in several decades, using static tests including acid-base accounting (ABA) and net acid-generating pH (NAGpH). In this study, 51 composite samples were taken from 11 waste heaps, and static ABA and NAGpH tests were carried out on samples. While some piles are acid producing at present and AMD is discharging from the piles, most of them do not show any indication on their AMD potential, and they were investigated to define their acid-producing potential. The analysis of data indicates that eight waste piles are potentially acid generating with net neutralization potentials (NNPs) of -56.18 to -199.3, net acid generating of 2.19-3.31, and NPRs from 0.18 to 0.44. Other waste piles exhibited either a very low sulfur, high carbonate content or excess carbonate over sulfur; hence, they are not capable of acid production or they can be considered as weak acid producers. Consistency between results of ABA and NAGpH tests using a variety of classification criteria validates these tests as powerful means for preliminary evaluation of AMD/ARD possibilities in any mining district. It is also concluded that some of the piles with very negative NNPs are capable to produce AMD naturally, and they can be used in heap leaching process for economic recovery of trace amounts of metals without applying any biostimulation methods. PMID:23813094

  13. The specific amino acid sequence between helices 7 and 8 influences the binding specificity of human apolipoprotein A-I for high density lipoprotein (HDL) subclasses: a potential for HDL preferential generation.

    PubMed

    Carnemolla, Ronald; Ren, Xuefeng; Biswas, Tapan K; Meredith, Stephen C; Reardon, Catherine A; Wang, Jianjun; Getz, Godfrey S

    2008-06-01

    Humans have two major high density lipoprotein (HDL) sub-fractions, HDL(2) and HDL(3), whereas mice have a monodisperse HDL profile. Epidemiological evidence has suggested that HDL(2) is more atheroprotective; however, currently there is no direct experimental evidence to support this postulate. The amino acid sequence of apoA-I is a primary determinant of HDL subclass formation. The majority of the alpha-helical repeats in human apoA-I are proline-punctuated. A notable exception is the boundary between helices 7 and 8, which is located in the transitional segment between the stable N-terminal domain and the C-terminal hydrophobic domain. In this study we ask whether the substitution of a proline-containing sequence (PCS) separating other helices in human apoA-I for the non-proline-containing sequence (NPCS) between helices 7 and 8 (residues 184-190) influences HDL subclass association. The human apoA-I mutant with PCS2 replacing NPCS preferentially bound to HDL(2). In contrast, the mutant where PCS3 replaced NPCS preferentially associated with HDL(3). Thus, the specific amino acid sequence between helices 7 and 8 influences HDL subclass association. The wild-type and mutant proteins exhibited similar physicochemical properties except that the two mutants displayed greater lipid-associated stability versus wild-type human apoA-I. These results focus new attention on the influence of the boundary between helices 7 and 8 on the properties of apoA-I. The expression of these mutants in mice may result in the preferential generation of HDL(2) or HDL(3) and allow us to examine experimentally the anti-atherogenicity of the HDL subclasses.

  14. 2nd Generation Reusable Launch Vehicle Potential Commercial Development Scenarios

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Rogacki, John R. (Technical Monitor)

    2001-01-01

    The presentation will discuss potential commercial development scenarios for a Second Generation Reusable Launch Vehicle. The analysis of potential scenarios will include commercial rates of return, government return on investment, and market considerations. The presentation will include policy considerations in addition to analysis of Second Generation Reusable Launch Vehicle economics. The data discussed is being developed as a part of NASA's Second Generation Reusable Launch Vehicle Program, for consideration as potential scenarios for enabling a next generation system. Material will include potential scenarios not previously considered by NASA or presented at other conferences. Candidate paper has not been presented at a previous meeting, and conference attendance of the author has been approved by NASA.

  15. Polyunsaturated lysophosphatidic acid as a potential asthma biomarker

    PubMed Central

    Ackerman, Steven J; Park, Gye Young; Christman, John W; Nyenhuis, Sharmilee; Berdyshev, Evgeny; Natarajan, Viswanathan

    2016-01-01

    Lysophosphatidic acid (LPA), a lipid mediator in biological fluids and tissues, is generated mainly by autotaxin that hydrolyzes lysophosphatidylcholine to LPA and choline. Total LPA levels are increased in bronchoalveolar lavage fluid from asthmatic lung, and are strongly induced following subsegmental bronchoprovocation with allergen in subjects with allergic asthma. Polyunsaturated molecular species of LPA (C22:5 and C22:6) are selectively synthesized in the airways of asthma subjects following allergen challenge and in mouse models of allergic airway inflammation, having been identified and quantified by LC/MS/MS lipidomics. This review discusses current knowledge of LPA production in asthmatic lung and the potential utility of polyunsaturated LPA molecular species as novel biomarkers in bronchoalveolar lavage fluid and exhaled breath condensate of asthma subjects. PMID:26808693

  16. Caffeic Acid Phenethyl Ester and Therapeutic Potentials

    PubMed Central

    Karim, Sabiha; Akram, Muhammad Rouf; Khan, Shujaat Ali; Azhar, Saira; Mumtaz, Amara; Bin Asad, Muhammad Hassham Hassan

    2014-01-01

    Caffeic acid phenethyl ester (CAPE) is a bioactive compound of propolis extract. The literature search elaborates that CAPE possesses antimicrobial, antioxidant, anti-inflammatory, and cytotoxic properties. The principal objective of this review article is to sum up and critically assess the existing data about therapeutic effects of CAPE in different disorders. The findings elaborate that CAPE is a versatile therapeutically active polyphenol and an effective adjuvant of chemotherapy for enhancing therapeutic efficacy and diminishing chemotherapy-induced toxicities. PMID:24971312

  17. Furnace-generated acid aerosols: speciation and pulmonary effects.

    PubMed

    Amdur, M O; Chen, L C

    1989-02-01

    Guinea pigs were exposed to ultrafine aerosols (less than 0.1 micron) of zinc oxide with a surface layer of sulfuric acid. These acid-coated aerosols are typical of primary emissions from smelters and coal combustors. Repeated daily 3-hr exposures for 5 days produce decrements in lung volumes and pulmonary diffusing capacity and elevations of lung weight/body weight ratio, protein, and number of neutrophils in pulmonary lavage fluid at concentrations of 20 micrograms/m3. A single 1-hr exposure to 20 micrograms/m3 causes increased bronchial reactivity. Higher concentrations of conventionally generated sulfuric acid mist are required to produce responses of similar magnitude.

  18. Independence divergence-generated binary trees of amino acids.

    PubMed

    Tusnády, G E; Tusnády, G; Simon, I

    1995-05-01

    The discovery of the relationship between amino acids is important in terms of the replacement ability, as used in protein engineering homology studies, and gaining a better understanding of the roles which various properties of the residues play in the creation of a unique, stable, 3-D protein structure. Amino acid sequences of proteins edited by evolution are anything but random. The measure of nonrandomness, i.e. the level of editing, can be characterized by an independence divergence value. This parameter is used to generate binary tree relationships between amino acids. The relationships of residues presented in this paper are based on protein building features and not on the physico-chemical characteristics of amino acids. This approach is not biased by the tautology present in all sequence similarity-based relationship studies. The roles which various physico-chemical characteristics play in the determination of the relationships between amino acids are also discussed.

  19. Antioxidant and DNA damage protection potentials of selected phenolic acids.

    PubMed

    Sevgi, Kemal; Tepe, Bektas; Sarikurkcu, Cengiz

    2015-03-01

    In this study, ten different phenolic acids (caffeic, chlorogenic, cinnamic, ferulic, gallic, p-hydroxybenzoic, protocatechuic, rosmarinic, syringic, and vanillic acids) were evaluated for their antioxidant and DNA damage protection potentials. Antioxidant activity was evaluated by using four different test systems named as β-carotene bleaching, DPPH free radical scavenging, reducing power and chelating effect. In all test systems, rosmarinic acid showed the maximum activity potential, while protocatechuic acid was determined as the weakest antioxidant in β-carotene bleaching, DPPH free radical scavenging, and chelating effect assays. Phenolic acids were also screened for their protective effects on pBR322 plasmid DNA against the mutagenic and toxic effects of UV and H2O2. Ferulic acid was found as the most active phytochemical among the others. Even at the lowest concentration value (0.002 mg/ml), ferulic acid protected all of the bands in the presence of H2O2 and UV. It is followed by caffeic, rosmarinic, and vanillic acids. On the other hand, cinnamic acid (at 0.002 mg/ml), gallic acid (at 0.002 mg/ml), p-hydroxybenzoic acid (at 0.002 and 0.004 mg/ml), and protocatechuic acid (at 0.002 and 0.004 mg/ml) could not protect plasmid DNA. PMID:25542528

  20. Band structures in transmission coefficients generated by Dirac comb potentials

    NASA Astrophysics Data System (ADS)

    Dharani, M.; Shastry, C. S.

    2016-11-01

    Using the threshold conditions and bound state energies investigated earlier by us as a critical input we systematically study the nature of band formation in the transmission coefficient generated by Dirac comb potentials having equispaced (i) attractive, (ii) repulsive and (iii) alternating attractive and repulsive delta terms having same strength and confined within a fixed range. We find that positions of the peaks of transmission coefficient generated by a combination of one attractive and one repulsive delta terms having same strength and separated by gap a is independent of the potential strength and coincide with the energy eigenvalues of 1D box of range a. We further study analytically and numerically the transmission across Dirac comb potentials containing two or three delta terms and these results are useful in the analysis of the transmission in the general case. In the case of Dirac comb potentials containing Na attractive delta terms we find that the nature of the first band and higher bands of the transmission coefficient are different, and if such a potential generates Nb number of bound states, the first band in the transmission coefficient generated by the potential has NT1 =Na -Nb peaks. In the case of higher bands generated by delta comb potential having N delta terms each band has N - 1 peaks. Further we systematically study the behavior of band gaps and band spread as a function of potential strength and number of terms in the Dirac comb. The results obtained by us provide a relation between bound state spectrum, number of delta terms in the Dirac comb and the band pattern which can be explored for potential applications.

  1. Reactive Transport Modeling of Acid Gas Generation and Condensation

    SciTech Connect

    G. Zhahg; N. Spycher; E. Sonnenthal; C. Steefel

    2005-01-25

    Pulvirenti et al. (2004) recently conducted a laboratory evaporation/condensation experiment on a synthetic solution of primarily calcium chloride. This solution represents one potential type of evaporated pore water at Yucca Mountain, Nevada, a site proposed for geologic storage of high-level nuclear waste. These authors reported that boiling this solution to near dryness (a concentration factor >75,000 relative to actual pore waters) leads to the generation of acid condensate (pH 4.5) presumably due to volatilization of HCl (and minor HF and/or HNO{sub 3}). To investigate the various processes taking place, including boiling, gas transport, and condensation, their experiment was simulated by modifying an existing multicomponent and multiphase reactive transport code (TOUGHREACT). This code was extended with a Pitzer ion-interaction model to deal with high ionic strength. The model of the experiment was set-up to capture the observed increase in boiling temperature (143 C at {approx}1 bar) resulting from high concentrations of dissolved salts (up to 8 m CaCl{sub 2}). The computed HCI fugacity ({approx} 10{sup -4} bars) generated by boiling under these conditions is not sufficient to lower the pH of the condensate (cooled to 80 and 25 C) down to observed values unless the H{sub 2}O mass fraction in gas is reduced below {approx}10%. This is because the condensate becomes progressively diluted by H{sub 2}O gas condensation. However, when the system is modeled to remove water vapor, the computed pH of instantaneous condensates decreases to {approx}1.7, consistent with the experiment (Figure 1). The results also show that the HCl fugacity increases, and calcite, gypsum, sylvite, halite, MgCl{sub 2}4H{sub 2}O and CaCl{sub 2} precipitate sequentially with increasing concentration factors.

  2. Analysis of the generating action of the acid from PAG using acid sensitive dyes

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Atsushi; Matsumoto, Yoko; Konishi, Hiroko; Moriyasu, Kengo; Morimoto, Yukihiro

    2011-04-01

    The use of acid sensitive dyes to determine the quantity of acid generated from PAG and in the analysis of acid-generating reaction is currently being studied. The method would allow an easy understanding of the PAG acid-generating reaction simply by adding an acid sensitive dye to the resist. In the conventional method, a resist containing a chromogenic substance is applied to a quartz substrate, which is then exposed. Following the exposure, the absorbance of chromogenic component near 530 nm is measured and evaluated with a spectroscope. The rate constant for acid generation (Dill's C parameter) during the exposure is determined based on the relationship between transmittance at 530 nm and the exposure dose. However, the chromogenic substance used in this method degrades over time (fading reaction) after the exposure, resulting in variations in transmittance measurements due to the effects of time between the completion of the exposure and the measurement of transmittance. We devised a prototype instrument capable of in situ measurements of absorbance at 530 nm while irradiating a 193-nm light beam. Using this instrument, we obtained rate constants for acid generation (Dill's C parameter) and examined the differing results obtained with ArF resist polymers of differing PAG concentrations and structures as well as dependence on the quantity of the chromogenic substance.

  3. Relationships between coal properties and respirable dust generation potential

    SciTech Connect

    Srikanth, R.; Zhao, R.; Ramani, R.V.

    1995-12-31

    A two-part study was conducted to understand the factors affecting respirable dust generation potential or dustiness of coal seams. In the first part, the data from three prior comprehensive laboratory studies was analyzed to establish quantitative relationships between respirable dust generation potential and coal characteristics. This analysis indicates that respirable dust generation rate is positively correlated with Hardgrove Grindability Index. (HGI), fuel ratio (fixed carbon/volatile matter), Vitrinite Reflectance (VR), and Level of Organic Metamorphism (LOM). In the second part, specially-designed single breakage experiments were conducted to determine the primary dust generation potential of 17 coal samples obtained from four continuous miner sections, three longwall sections, and the Penn State Coal Data Bank. The single breakage study indicates that primary dust generation rate is positively correlated with fixed carbon content, fuel ratio (fixed carbon/volatile matter), VR, and LOM. Since VR and LOM are strongly influenced by the process of coalification, differences in respirable dust generation rates in different coal seams may be explained by the thermal metamorphism of sedimentary organic matter during subsurface burial.

  4. Chemical Sintering Generates Uniform Porous Hyaluronic Acid Hydrogels

    PubMed Central

    Cam, Cynthia; Segura, Tatiana

    2014-01-01

    Implantation of scaffolds for tissue repair has been met with limited success primarily due to the inability to achieve vascularization within the construct. Many strategies have shifted to incorporate pores into these scaffolds to encourage rapid cellular infiltration and subsequent vascular ingrowth. We utilized an efficient chemical sintering technique to create a uniform network of polymethyl methacrylate (PMMA) microspheres for porous hyaluronic acid hydrogel formation. The porous hydrogels generated from chemical sintering possessed comparable pore uniformity and interconnectivity as the commonly used non- and heat sintering techniques. Moreover, similar cell response to the porous hydrogels generated from each sintering approach was observed in cell viability, spreading, proliferation in vitro, as well as, cellular invasion in vivo. We propose chemical sintering of PMMA microspheres using a dilute acetone solution as an alternative method to generating porous hyaluronic acid hydrogels since it requires equal or ten-fold less processing time as the currently used non-sintering or heat sintering technique, respectively. PMID:24120847

  5. Potential effects of chlorogenic acids on platelet activiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coffee (Coffea sp) is a most consumed beverage world-wide. Chlorogenic acids (CHAs) are naturally occurring phenolic acid esters abundantly found in coffee. They are reported to have potential health effects on several chronic diseases such as obesity, diabetes and cardiovascular diseases (CVD). At...

  6. Acid rain, storm period chemistry and their potential impact on stream communities in Hong Kong.

    PubMed

    Peart, M R

    2000-07-01

    Hong Kong experiences acid deposition, however, little is known about the potential impact upon aquatic ecosystems. In a small drainage basin observations reveal that despite acid rain runoff, both baseflow and stormflow, was close to neutral in terms of pH. During storm events chemical analysis reveals that calcium (Ca) concentrations tended to rise. It also appears that the input of acid rain may increase aluminium (Al) levels in the stream. Due to the increased levels of Ca and only slight changes in pH acid deposition may not be generating problems in this stream. The presence of mayflies reported elsewhere may further support the results of the chemical study.

  7. A physical action potential generator: design, implementation and evaluation

    PubMed Central

    Latorre, Malcolm A.; Chan, Adrian D. C.; Wårdell, Karin

    2015-01-01

    The objective was to develop a physical action potential generator (Paxon) with the ability to generate a stable, repeatable, programmable, and physiological-like action potential. The Paxon has an equivalent of 40 nodes of Ranvier that were mimicked using resin embedded gold wires (Ø = 20 μm). These nodes were software controlled and the action potentials were initiated by a start trigger. Clinically used Ag-AgCl electrodes were coupled to the Paxon for functional testing. The Paxon's action potential parameters were tunable using a second order mathematical equation to generate physiologically relevant output, which was accomplished by varying the number of nodes involved (1–40 in incremental steps of 1) and the node drive potential (0–2.8 V in 0.7 mV steps), while keeping a fixed inter-nodal timing and test electrode configuration. A system noise floor of 0.07 ± 0.01 μV was calculated over 50 runs. A differential test electrode recorded a peak positive amplitude of 1.5 ± 0.05 mV (gain of 40x) at time 196.4 ± 0.06 ms, including a post trigger delay. The Paxon's programmable action potential like signal has the possibility to be used as a validation test platform for medical surface electrodes and their attached systems. PMID:26539072

  8. Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite?

    PubMed Central

    Choi, Stephen Yiu Chuen; Collins, Colin C; Gout, Peter W; Wang, Yuzhuo

    2013-01-01

    The common preference of cancers for lactic acid-generating metabolic energy pathways has led to proposals that their reprogrammed metabolism confers growth advantages such as decreased susceptibility to hypoxic stress. Recent observations, however, suggest that it generates a novel way for cancer survival. There is increasing evidence that cancers can escape immune destruction by suppressing the anti-cancer immune response through maintaining a relatively low pH in their micro-environment. Tumours achieve this by regulating lactic acid secretion via modification of glucose/glutamine metabolisms. We propose that the maintenance by cancers of a relatively low pH in their micro-environment, via regulation of their lactic acid secretion through selective modification of their energy metabolism, is another major mechanism by which cancers can suppress the anti-cancer immune response. Cancer-generated lactic acid could thus be viewed as a critical, immunosuppressive metabolite in the tumour micro-environment rather than a ‘waste product’. This paradigm shift can have major impact on therapeutic strategy development. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:23729358

  9. Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite?

    PubMed

    Choi, Stephen Yiu Chuen; Collins, Colin C; Gout, Peter W; Wang, Yuzhuo

    2013-08-01

    The common preference of cancers for lactic acid-generating metabolic energy pathways has led to proposals that their reprogrammed metabolism confers growth advantages such as decreased susceptibility to hypoxic stress. Recent observations, however, suggest that it generates a novel way for cancer survival. There is increasing evidence that cancers can escape immune destruction by suppressing the anti-cancer immune response through maintaining a relatively low pH in their micro-environment. Tumours achieve this by regulating lactic acid secretion via modification of glucose/glutamine metabolisms. We propose that the maintenance by cancers of a relatively low pH in their micro-environment, via regulation of their lactic acid secretion through selective modification of their energy metabolism, is another major mechanism by which cancers can suppress the anti-cancer immune response. Cancer-generated lactic acid could thus be viewed as a critical, immunosuppressive metabolite in the tumour micro-environment rather than a 'waste product'. This paradigm shift can have major impact on therapeutic strategy development.

  10. First Generation College Student Leadership Potential: A Mixed Methods Analysis

    ERIC Educational Resources Information Center

    Hojan-Clark, Jane M.

    2010-01-01

    This mixed methods research compared the leadership potential of traditionally aged first generation college students to that of college students whose parents are college educated. A college education provides advantages to those who can obtain it (Baum & Payea, 2004; Black Issues in Higher Education, 2005; Education and the Value of Knowledge,…

  11. Generation of hydroxyl radicals from metal-loaded humic acids

    SciTech Connect

    Paciolla, M.D.; Jansen, S.A.; Davies, G.

    1999-06-01

    Humic acids (HAs) are naturally occurring biopolymers that are ubiquitous in the environment. They are most commonly found in the soil, drinking water, and a variety of plants. Pharmacological and therapeutic studies involving humic acids have been reported to some extent. However, when certain transition metals are bound to humic acids, e.g., iron and copper, they can be harmful to biological organisms. For this study, humic acids were extracted from German, Irish, and New Hampshire soils that were selectively chosen because of their reich abundance in humic material. Each sample was treated at room temperature with 0.1 M ferric and cupric solutions for 48 h. The amount of iron and copper adsorbed by humic acid was accurately quantitated using atomic absorption spectroscopy. The authors further demonstrate that these metal-loaded humic acids can produce deleterious oxidizing species such as the hydroxyl radical (HO*) through the metal-driven Fenton reaction. Electron paramagnetic resonance (EPR) employing spin trapping techniques with 5,5-dimethylpyrroline N-oxide (DMPO) is used to confirm the generation of hydroxyl radicals. The DMPO-OH adduct with hyperfine splitting constants A{sub N} = A{sub H} = 14.9 G is observed upon the addition of exogenous hydrogen peroxide. The concentration of hydroxyl radical was determined using 4-hydroxytempo (TEMPO-OH) as a spin standard. The presence of another oxidizing species, Fe{double_bond}O{sup 2+}, is also proposed in the absence of hydrogen peroxide.

  12. Assessing Vulnerability of Electricity Generation Under Potential Future Droughts

    NASA Astrophysics Data System (ADS)

    Yan, E.; Tidwell, V. C.; Wigmosta, M. S.

    2014-12-01

    In the past few decades, the western US experienced increased sever, frequent, and prolonged droughts resulting in significant water availability issues, which raised questions as to how electricity sector might be vulnerable to future droughts. To improve our understanding of potential risks of electricity generation curtailment due to drought, an impact analysis was performed with a series of modeling tools including climate downscaling, competitive water-use calculator, hydrologic model for various hydrologic processes, and power-plant specific models. This presentation will demonstrate the predicted effects of potential droughts on power generation at a local level of the USGS 8-digit watersheds and individual power plants within the context of current and future characteristics of power system and water resource system.The study identified three potential drought scenarios based on historical drought records and projected climate changes from the GFDL and the PCM global climate models, for greenhouse gas emission scenarios A1B, A2, and B1 defined by the IPCC. The potential impacts under these three drought scenarios were evaluated with a hydrologic model constructed for the Pacific Northwest River Basin and California River Basin. The hydrologic model incorporates competitive water uses, climate forcing data corresponding to each of drought scenarios, and all major reservoirs that are currently supporting water withdrawal for various sectors and hydroelectric power generation. The hydrologic responses to drought scenarios predicted for each of the USGS 8-digit watersheds and reservoirs are used as input to power-plant specific models to quantify potential risk of curtailment at each power plant. The key findings from this study will help to improve understanding of spatial distribution of vulnerable power plants and watersheds as well as the scale of potential reduction of electricity generation under various drought scenarios. Beyond impacts to the existing

  13. Impacts of Potential Future Droughts on Electricity Generation

    NASA Astrophysics Data System (ADS)

    Yan, E.; Wigmosta, M. S.; Tidwell, V. C.; King, C. W.

    2013-12-01

    In 2011, the state of Texas experienced the worst single-year drought on record. This recent extreme climate event raised questions as to how future droughts might impact ERCOT operations. To improve our understanding of potential risks of electricity generation curtailment due to drought, an impact analysis was performed with a series of modeling tools including climate downscaling, competitive water-use calculator, hydrologic model for various hydrologic processes, and power-plant specific models. This presentation will demonstrate the predicted effects of potential future droughts on power generation at a local level of the USGS 8-digit watersheds and power plants within the context of long-term transmission planning. The study identified three potential drought scenarios (single- and multiple-year droughts) based on historical drought records and projected climate changes from the GFDL and the PCM global climate models, for greenhouse gas emission scenarios A1B, A2, and B1 defined by the IPCC. The potential impacts under these three drought scenarios were evaluated with a hydrologic model constructed for the Texas-Gulf river basin. The Texas-Gulf hydrologic model incorporates competitive water uses, climate forcing data corresponding to each of drought scenarios, and 125 reservoirs that are currently supporting water withdrawal for various sectors and cooling water for power generation. The hydrologic responses to drought scenarios predicted for each of the USGS 8-digit watersheds (such as evapotranspiration, soil water, water yield from watersheds, stream flow, and water storage in reservoirs) provide a bases to assess if power plants potentially at risk of being of derated and watersheds are vulnerable to droughts. The key findings from this study will help to improve understanding of spatial distribution of power plants at risk and vulnerable watersheds as well as the scale of potential reduction of electricity generation. Beyond impacts to the existing

  14. Silicon tetrafluoride generation. [Patent application; from hexafluorosilicic acid

    SciTech Connect

    Hansen, K.C.; Yaws, C.L.

    1982-01-03

    This invention is directed to a process of generating silicon tetrafluoride (SiF/sub 4/) from aqueous solutions of hexafluorosilicic acid (H/sub 2/SiF/sub 6/), comprising reacting an aqueous solution of H/sub 2/SiF/sub 6/ with a concentrated aqueous salt solution to produce a precipitate, separating and drying the precipitate, and heating the precipitate in an inert atmosphere to decompose the precipitate producing SiF/sub 4/.

  15. Generating functionals for quantum field theories with random potentials

    NASA Astrophysics Data System (ADS)

    Jain, Mudit; Vanchurin, Vitaly

    2016-01-01

    We consider generating functionals for computing correlators in quantum field theories with random potentials. Examples of such theories include cosmological systems in context of the string theory landscape (e.g. cosmic inflation) or condensed matter systems with quenched disorder (e.g. spin glass). We use the so-called replica trick to define two different generating functionals for calculating correlators of the quantum fields averaged over a given distribution of random potentials. The first generating functional is appropriate for calculating averaged (in-out) amplitudes and involves a single replica of fields, but the replica limit is taken to an (unphysical) negative one number of fields outside of the path integral. When the number of replicas is doubled the generating functional can also be used for calculating averaged probabilities (squared amplitudes) using the in-in construction. The second generating functional involves an infinite number of replicas, but can be used for calculating both in-out and in-in correlators and the replica limits are taken to only a zero number of fields. We discuss the formalism in details for a single real scalar field, but the generalization to more fields or to different types of fields is straightforward. We work out three examples: one where the mass of scalar field is treated as a random variable and two where the functional form of interactions is random, one described by a Gaussian random field and the other by a Euclidean action in the field configuration space.

  16. ACID-BASE ACCOUNT EFFECTIVENESS FOR DETERMINATION OF MINE WASTE POTENTIAL ACIDITY. (R825549C048)

    EPA Science Inventory

    The oxidation of sulfide minerals in mine waste is a widespread source of resource degradation, often resulting in the generation of acidic water and mobilization of heavy metals. The quantity of acid forming minerals present in mine waste, dominantly as pyrite (FeS2

  17. VLDL hydrolysis by LPL activates PPAR-alpha through generation of unbound fatty acids.

    PubMed

    Ruby, Maxwell A; Goldenson, Benjamin; Orasanu, Gabriela; Johnston, Thomas P; Plutzky, Jorge; Krauss, Ronald M

    2010-08-01

    Recent evidence suggests that lipoproteins serve as circulating reservoirs of peroxisomal proliferator activated receptor (PPAR) ligands that are accessible through lipolysis. The present study was conducted to determine the biochemical basis of PPAR-alpha activation by lipolysis products and their contribution to PPAR-alpha function in vivo. PPAR-alpha activation was measured in bovine aortic endothelial cells following treatment with human plasma, VLDL lipolysis products, or oleic acid. While plasma failed to activate PPAR-alpha, oleic acid performed similarly to VLDL lipolysis products. Therefore, fatty acids are likely to be the PPAR-alpha ligands generated by VLDL lipolysis. Indeed, unbound fatty acid concentration determined PPAR-alpha activation regardless of fatty acid source, with PPAR-alpha activation occurring only at unbound fatty acid concentrations that are unachievable under physiological conditions without lipase action. In mice, a synthetic lipase inhibitor (poloxamer-407) attenuated fasting-induced changes in expression of PPAR-alpha target genes. Apolipoprotein CIII (apoCIII), an endogenous inhibitor of lipoprotein and hepatic lipase, regulated access to the lipoprotein pool of PPAR-alpha ligands, because addition of exogenous apoCIII inhibited, and removal of endogenous apoCIII potentiated, lipolytic PPAR-alpha activation. These data suggest that the PPAR-alpha response is generated by unbound fatty acids released locally by lipase activity and not by circulating plasma fatty acids.

  18. Third-harmonic generation susceptibility spectroscopy in free fatty acids

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Cheng; Hsu, Hsun-Chia; Lee, Chien-Ming; Sun, Chi-Kuang

    2015-09-01

    Lipid-correlated disease such as atherosclerosis has been an important medical research topic for decades. Many new microscopic imaging techniques such as coherent anti-Stokes Raman scattering and third-harmonic generation (THG) microscopy were verified to have the capability to target lipids in vivo. In the case of THG microscopy, biological cell membranes and lipid bodies in cells and tissues have been shown as good sources of contrast with a laser excitation wavelength around 1200 nm. We report the THG excitation spectroscopy study of two pure free fatty acids including oleic acid and linoleic acid from 1090 to 1330 nm. Different pure fatty acids presented slightly-different THG χ(3) spectra. The measured peak values of THG third-order susceptibility χ(3) in both fatty acids were surprisingly found not to match completely with the resonant absorption wavelengths around 1190 to 1210 nm, suggesting possible wavelengths selection for enhanced THG imaging of lipids while avoiding laser light absorption. Along with the recent advancement in THG imaging, this new window between 1240 to 1290 nm may offer tremendous new opportunities for sensitive label-free lipid imaging in biological tissues.

  19. Possible ways of reducing dental erosive potential of acidic beverages.

    PubMed

    Stefański, T; Postek-Stefańska, L

    2014-09-01

    Frequent consumption of acidic beverages is related to excessive tooth wear, namely dental erosion. Preventive measures may involve reduction or elimination of acidic drink consumption. However, the success of this approach is difficult to achieve as it is highly dependent on patient compliance. Therefore, a practical way of minimizing the erosive potential of popular acidic drinks may be their chemical modification. The aim of this article was to review the different methods of modification and their shortcomings. The available literature demonstrates that the erosive potential of most acidic beverages could be reduced. To date, the effectiveness of soluble calcium salts supplementation is the best established. However, modification can reduce the sensorial quality of the drink and shorten its shelf-life. There is also a need to evaluate the lowest effective and safe dose of the additive.

  20. Cloud-generated radiative heating and its generation of available potential energy

    NASA Technical Reports Server (NTRS)

    Stuhlmann, R.; Smith, G. L.

    1989-01-01

    The generation of zonal available potential energy (APE) by cloud radiative heating is discussed. The APE concept was mathematically formulated by Lorenz (1955) as a measure of the maximum amount of total potential energy that is available for conversion by adiabatic processes to kinetic energy. The rate of change of APE is the rate of the generation of APE minus the rate of conversion between potential and kinetic energy. By radiative transfer calculations, a mean cloud-generated radiative heating for a well defined set of cloud classes is derived as a function of cloud optical thickness. The formulation is suitable for using a general cloud parameter data set and has the advantage of taking into account nonlinearities between the microphysical and macrophysical cloud properties and the related radiation field.

  1. Chromatographic Separation of Selenium and Arsenic: A Potential 72Se/72As Generator

    PubMed Central

    Wycoff, Donald E.; Gott, Matthew D.; DeGraffenreid, Anthony J.; Morrow, Ryan P.; Sisay, Nebiat; Embree, Mary F.; Ballard, Beau; Fassbender, Michael E.; Cutler, Cathy S.; Ketring, Alan R.; Jurisson, Silvia S.

    2014-01-01

    Summary An anion exchange method was developed to separate selenium and arsenic for potential utility in a 72Se/72As generator. The separation of the daughter 72As from the 72Se parent is based on the relative acid-base behavior of the two oxo-anions in their highest oxidation states. At pH 1.5, selenate is retained on strongly basic anion exchange resin as HSeO4− and SeO42−, while neutral arsenic acid, H3AsO4, is eluted. PMID:24679827

  2. Chromatographic separation of selenium and arsenic: A potential (72)Se/(72)As generator.

    PubMed

    Wycoff, Donald E; Gott, Matthew D; DeGraffenreid, Anthony J; Morrow, Ryan P; Sisay, Nebiat; Embree, Mary F; Ballard, Beau; Fassbender, Michael E; Cutler, Cathy S; Ketring, Alan R; Jurisson, Silvia S

    2014-05-01

    An anion exchange method was developed to separate selenium and arsenic for potential utility in a (72)Se/(72)As generator. The separation of the daughter (72)As from the (72)Se parent is based on the relative acid-base behavior of the two oxo-anions in their highest oxidation states. At pH 1.5, selenate is retained on strongly basic anion exchange resin as HSeO4(-) and SeO4(2-), while neutral arsenic acid, H3AsO4, is eluted. PMID:24679827

  3. Phenylboronic-acid-modified nanoparticles: potential antiviral therapeutics.

    PubMed

    Khanal, Manakamana; Vausselin, Thibaut; Barras, Alexandre; Bande, Omprakash; Turcheniuk, Kostiantyn; Benazza, Mohammed; Zaitsev, Vladimir; Teodorescu, Cristian Mihail; Boukherroub, Rabah; Siriwardena, Aloysius; Dubuisson, Jean; Szunerits, Sabine

    2013-12-11

    Phenylboronic-acid-modified nanoparticles (NPs) are attracting considerable attention for biological and biomedical applications. We describe here a convenient and general protocol for attaching multiple copies of para-substituted phenylboronic acid moieties onto either iron-oxide-, silica- or diamond-derived NPs. The boronic acid functionalized NPs are all fabricated by first modifying the surface of each particle type with 4-azidobenzoic ester functions. These azide-terminated nanostructures were then reacted with 4-[1-oxo-4-pentyn-1-yl) amino]phenylboronic acid units via a Cu(I) catalyzed Huisgen cycloaddition to furnish, conveniently, the corresponding boronic-acid modified NPs (or "borono-lectins") targeted in this work. The potential of these novel "borono-lectins" as antiviral inhibitors was investigated against the Hepatitis C virus (HCV) exploiting a bioassay that measures the potential of drugs to interfere with the ability of cell-culture-derived JFH1 virus particles to infect healthy hepatocytes. As far as we are aware, this is the first report that describes NP-derived viral entry inhibitors and thus serves as a "proof-of-concept" study. The novel viral entry activity demonstrated, and the fact that the described boronic-acid-functionalized NPs all display much reduced cellular toxicities compared with alternate NPs, sets the stage for their further investigation. The data supports that NP-derived borono-lectins should be pursued as a potential therapeutic strategy for blocking viral entry of HCV.

  4. Formic Acid Free Flowsheet Development To Eliminate Catalytic Hydrogen Generation In The Defense Waste Processing

    SciTech Connect

    Lambert, Dan P.; Stone, Michael E.; Newell, J. David; Fellinger, Terri L.; Bricker, Jonathan M.

    2012-09-14

    The Defense Waste Processing Facility (DWPF) processes legacy nuclear waste generated at the Savannah River Site (SRS) during production of plutonium and tritium demanded by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass canisters is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. Testing was initiated to determine whether the elimination of formic acid from the DWPF's chemical processing flowsheet would eliminate catalytic hydrogen generation. Historically, hydrogen is generated in chemical processing of alkaline High Level Waste sludge in DWPF. In current processing, sludge is combined with nitric and formic acid to neutralize the waste, reduce mercury and manganese, destroy nitrite, and modify (thin) the slurry rheology. The noble metal catalyzed formic acid decomposition produces hydrogen and carbon dioxide. Elimination of formic acid by replacement with glycolic acid has the potential to eliminate the production of catalytic hydrogen. Flowsheet testing was performed to develop the nitric-glycolic acid flowsheet as an alternative to the nitric-formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be reduced and removed by steam stripping in DWPF with no catalytic hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Ten DWPF tests were performed with nonradioactive simulants designed to cover a broad compositional range. No hydrogen was generated in testing without formic acid.

  5. Applicability Comparison of Methods for Acid Generation Assessment of Rock Samples

    NASA Astrophysics Data System (ADS)

    Oh, Chamteut; Ji, Sangwoo; Yim, Giljae; Cheong, Youngwook

    2014-05-01

    Minerals including various forms of sulfur could generate AMD (Acid Mine Drainage) or ARD (Acid Rock Drainage), which can have serious effects on the ecosystem and even on human when exposed to air and/or water. To minimize the hazards by acid drainage, it is necessary to assess in advance the acid generation possibility of rocks and estimate the amount of acid generation. Because of its relatively simple and effective experiment procedure, the method of combining the results of ABA (Acid Base Accounting) and NAG (Net Acid Generation) tests have been commonly used in determining acid drainage conditions. The simplicity and effectiveness of the above method however, are derived from massive assumptions of simplified chemical reactions and this often leads to results of classifying the samples as UC (Uncertain) which would then require additional experimental or field data to reclassify them properly. This paper therefore, attempts to find the reasons that cause samples to be classified as UC and suggest new series of experiments where samples can be reclassified appropriately. Study precedents on evaluating potential acid generation and neutralization capacity were reviewed and as a result three individual experiments were selected in the light of applicability and compatibility of minimizing unnecessary influence among other experiments. The proposed experiments include sulfur speciation, ABCC (Acid Buffering Characteristic Curve), and Modified NAG which are all improved versions of existing experiments of Total S, ANC (Acid Neutralizing Capacity), and NAG respectively. To assure the applicability of the experiments, 36 samples from 19 sites with diverse geologies, field properties, and weathering conditions were collected. The samples were then subject to existing experiments and as a result, 14 samples which either were classified as UC or could be used as a comparison group had been selected. Afterwards, the selected samples were used to conduct the suggested

  6. Stromal uptake and transmission of acid is a pathway for venting cancer cell-generated acid.

    PubMed

    Hulikova, Alzbeta; Black, Nicholas; Hsia, Lin-Ting; Wilding, Jennifer; Bodmer, Walter F; Swietach, Pawel

    2016-09-01

    Proliferation and invasion of cancer cells require favorable pH, yet potentially toxic quantities of acid are produced metabolically. Membrane-bound transporters extrude acid from cancer cells, but little is known about the mechanisms that handle acid once it is released into the poorly perfused extracellular space. Here, we studied acid handling by myofibroblasts (colon cancer-derived Hs675.T, intestinal InMyoFib, embryonic colon-derived CCD-112-CoN), skin fibroblasts (NHDF-Ad), and colorectal cancer (CRC) cells (HCT116, HT29) grown in monoculture or coculture. Expression of the acid-loading transporter anion exchanger 2 (AE2) (SLC4A2 product) was detected in myofibroblasts and fibroblasts, but not in CRC cells. Compared with CRC cells, Hs675.T and InMyoFib myofibroblasts had very high capacity to absorb extracellular acid. Acid uptake into CCD-112-CoN and NHDF-Ad cells was slower and comparable to levels in CRC cells, but increased alongside SLC4A2 expression under stimulation with transforming growth factor β1 (TGFβ1), a cytokine involved in cancer-stroma interplay. Myofibroblasts and fibroblasts are connected by gap junctions formed by proteins such as connexin-43, which allows the absorbed acid load to be transmitted across the stromal syncytium. To match the stimulatory effect on acid uptake, cell-to-cell coupling in NHDF-Ad and CCD-112-CoN cells was strengthened with TGFβ1. In contrast, acid transmission was absent between CRC cells, even after treatment with TGFβ1. Thus, stromal cells have the necessary molecular apparatus for assembling an acid-venting route that can improve the flow of metabolic acid through tumors. Importantly, the activities of stromal AE2 and connexin-43 do not place an energetic burden on cancer cells, allowing resources to be diverted for other activities. PMID:27543333

  7. Stromal uptake and transmission of acid is a pathway for venting cancer cell-generated acid

    PubMed Central

    Hulikova, Alzbeta; Black, Nicholas; Hsia, Lin-Ting; Wilding, Jennifer; Bodmer, Walter F.; Swietach, Pawel

    2016-01-01

    Proliferation and invasion of cancer cells require favorable pH, yet potentially toxic quantities of acid are produced metabolically. Membrane-bound transporters extrude acid from cancer cells, but little is known about the mechanisms that handle acid once it is released into the poorly perfused extracellular space. Here, we studied acid handling by myofibroblasts (colon cancer-derived Hs675.T, intestinal InMyoFib, embryonic colon-derived CCD-112-CoN), skin fibroblasts (NHDF-Ad), and colorectal cancer (CRC) cells (HCT116, HT29) grown in monoculture or coculture. Expression of the acid-loading transporter anion exchanger 2 (AE2) (SLC4A2 product) was detected in myofibroblasts and fibroblasts, but not in CRC cells. Compared with CRC cells, Hs675.T and InMyoFib myofibroblasts had very high capacity to absorb extracellular acid. Acid uptake into CCD-112-CoN and NHDF-Ad cells was slower and comparable to levels in CRC cells, but increased alongside SLC4A2 expression under stimulation with transforming growth factor β1 (TGFβ1), a cytokine involved in cancer–stroma interplay. Myofibroblasts and fibroblasts are connected by gap junctions formed by proteins such as connexin-43, which allows the absorbed acid load to be transmitted across the stromal syncytium. To match the stimulatory effect on acid uptake, cell-to-cell coupling in NHDF-Ad and CCD-112-CoN cells was strengthened with TGFβ1. In contrast, acid transmission was absent between CRC cells, even after treatment with TGFβ1. Thus, stromal cells have the necessary molecular apparatus for assembling an acid-venting route that can improve the flow of metabolic acid through tumors. Importantly, the activities of stromal AE2 and connexin-43 do not place an energetic burden on cancer cells, allowing resources to be diverted for other activities. PMID:27543333

  8. Potential anti-inflammatory actions of the elmiric (lipoamino) acids

    PubMed Central

    Burstein, Sumner H.; Adams, Jeffrey K.; Bradshaw, Heather B.; Fraioli, Cristian; Rossetti, Ronald G.; Salmonsen, Rebecca A.; Shaw, John W.; Walker, J. Michael; Zipkin, Robert E.; Zurier, Robert B.

    2007-01-01

    A library of amino acid-fatty acid conjugates (elmiric acids) was synthesized and evaluated for activity as potential anti-inflammatory agents. The compounds were tested in vitro for their effects on cell proliferation and prostaglandin production and compared with their effects on in vivo models of inflammation. LPS stimulated RAW 267.4 mouse macrophage cells was the in vitro model and phorbol ester-induced mouse ear edema served as the principal in vivo model. The prostaglandin responses were found to be strongly dependent on the nature of the fatty acid part of the molecule. Polyunsaturated acid conjugates produced a marked increase in media levels of i15-deoxy-PGJ2 with minimal effects on PGE production. It is reported in the literature that prostaglandin ratios in which the J series predominates over the E series promote the resolution of inflammatory conditions. Several of the elmiric acids tested here produced such favorable ratios suggesting that their potential anti-inflammatory activity occurs via a novel mechanism of action. The ear edema assay results were generally in agreement with the prostaglandin assay findings indicating a connection between them. PMID:17383881

  9. Potential for electricity generation from biomass residues in Cuba

    SciTech Connect

    Lora, E.S.

    1995-11-01

    The purpose of this paper is the study of the availability of major biomass residues in Cuba and the analysis of the electricity generation potential by using different technologies. An analysis of the changes in the country`s energy balance from 1988 up to date is presented, as well as a table with the availability study results and the energy equivalent for the following biomass residues: sugar cane bagasse and trash, rice and coffee husk, corn an cassava stalks and firewood. A total equivalent of 4.42 10{sup 6} tons/year of fuel-oil was obtained. Possible scenarios for the electricity production increase in the sugar industry are presented too. The analysis is carried out for a high stream parameter CEST and two BIG/GT system configurations. Limitations are introduced about the minimal milling capacity of the sugar mills for each technology. The calculated {open_quotes}real{close_quotes} electricity generation potential for BIG/GT systems, based on GE LM5000 CC gas turbines, an actual cane harvest of 58.0 10{sup 6} tons/year, half the available trash utilization and an specific steam consumption of 210 kg/tc, was 18601,0 GWh/year. Finally different alternatives are presented for low-scale electricity generation based on the other available agricultural residues.

  10. Variation potential in higher plants: Mechanisms of generation and propagation

    PubMed Central

    Vodeneev, Vladimir; Akinchits, Elena; Sukhov, Vladimir

    2015-01-01

    Long-distance intercellular electrical signals, including variation potential (VP) in higher plants, are a potential mechanism of coordinate functional responses in different plant cells under action of stressors. VP, which is caused by damaging factors (e.g., heating, crushing), is transient depolarization with an irregular shape. It can include a long-term depolarization and fast impulse depolarization (‘AP-like’ spikes). Mechanisms of VP generation and propagation are still under investigation. It is probable that VP is a local electrical response induced by propagation of hydraulic wave and (or) chemical agent. Both hypotheses are based on numerous experimental results but they predict VP velocities which are not in a good accordance with speed of variation potential propagation. Thus combination of hydraulic and chemical signals is the probable mechanism of VP propagation. VP generation is traditionally connected with transient H+-ATPase inactivation, but AP-like spikes are also connected with passive ions fluxes. Ca2+ influx is a probable mechanism which triggers H+-ATPase inactivation and ions channels activation at VP. PMID:26313506

  11. Fungal Peptaibiotics: Assessing Potential Meteoritic Amino Acid Contamination

    NASA Technical Reports Server (NTRS)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Bruckner, H.

    2010-01-01

    The presence of non-protein alpha-dialkyl-amino acids such as alpha-aminoisobutyric acid (alpha-A1B) and isovaline (Iva), which are relatively rare in the terrestrial biosphere, has long been used as an indication of the indigeneity of meteoritic amino acids, however, the discovery of alpha-AIB in peptides producers by a widespread group of filamentous fungi indicates the possibility of a terrestrial biotic source for the alpha-AIB observed in some meteorites. The alpha-AIB-containing peptides produced by these fungi are dubbed peptaibiotics. We measured the molecular distribution and stable carbon and nitrogen isotopic ratios for amino acids found in the total hydrolysates of four biologically synthesized peptaibiotics. We compared these aneasurenetts with those from the CM2 carbonaceous chondrite Murchison and from three Antarctic CR2 carbonaceous chondrites in order to understand the peptaibiotics as a potential source of meteoritic contamination.

  12. Hydrogen generation from weak acids: electrochemical and computational studies of a diiron hydrogenase mimic.

    PubMed

    Felton, Greg A N; Vannucci, Aaron K; Chen, Jinzhu; Lockett, L Tori; Okumura, Noriko; Petro, Benjamin J; Zakai, Uzma I; Evans, Dennis H; Glass, Richard S; Lichtenberger, Dennis L

    2007-10-17

    Extended investigation of electrocatalytic generation of dihydrogen using [(mu-1,2-benzenedithiolato)][Fe(CO)3]2 has revealed that weak acids, such as acetic acid, can be used. The catalytic reduction producing dihydrogen occurs at approximately -2 V for several carboxylic acids and phenols resulting in overpotentials of only -0.44 to -0.71 V depending on the weak acid used. This unusual catalytic reduction occurs at a potential at which the starting material, in the absence of a proton source, does not show a reduction peak. The mechanism for this process and structures for the intermediates have been discerned by electrochemical and computational analysis. These studies reveal that the catalyst is the monoanion of the starting material and an ECEC mechanism occurs. PMID:17894491

  13. Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates.

    PubMed

    Fritsch, Caroline; Heinrich, Veronika; Vogel, Rudi F; Toelstede, Simone

    2016-08-01

    Sunflower flour provides a high content of protein with a well-balanced amino acid composition and is therefore regarded as an attractive source for protein. The use for human nutrition is hindered by phenolic compounds, mainly chlorogenic acid, which can lead under specific circumstances to undesirable discolorations. In this study, growth behavior and degradation ability of chlorogenic acid of four lactic acid bacteria were explored. Data suggested that significant higher fermentation performances on sunflower flour as compared to sunflower protein concentrate were reached by Lactobacillus plantarum, Pediococcus pentosaceus, Lactobacillus gasseri and Bifidobacterium animalis subsp. lactis. In fermentation with the latter two strains reduced amounts of chlorogenic acid were observed in sunflower flour (-11.4% and -19.8%, respectively), which were more pronounced in the protein concentrate (-50.7% and -95.6%, respectively). High tolerances against chlorogenic acid and the cleavage product quinic acid with a minimum inhibitory concentration (MIC) of ≥20.48 mg/ml after 48 h were recorded for all strains except Bifidobacterium animalis subsp. lactis, which was more sensitive. The second cleavage compound, caffeic acid revealed a higher antimicrobial potential with MIC values of 0.64-5.12 mg/ml. In this proof of concept study, degradation versus inhibitory effect suggest the existence of basic mechanisms of interaction between phenolic acids in sunflower and lactic acid bacteria and a feasible way to reduce the chlorogenic acid content, which may help to avoid undesired color changes.

  14. Potential Atmospheric Impact Generated by Space Launches Worldwide

    NASA Astrophysics Data System (ADS)

    Brady, B. B.; Desain, J. D.; Curtiss, T. J.

    2010-12-01

    This paper evaluates the exhaust products generated from launch vehicles worldwide. Information on atmospheric deposition of carbon dioxide, water vapor, nitrogen dioxide, sulfates, inorganic chlorine and alumina particulates due to launch vehicles is presented. The potential for environmental impact from ozone destruction and global climate change due to space launches from worldwide sources is discussed. The exhaust from launch vehicles contains many components that have the potential to effect atmospheric concentrations of greenhouse gases. These greenhouse gases absorb and emit radiation within the thermal infrared range. The loss or gain of greenhouse gases has the net effect of changing the total global radiative balance. Launch vehicles are different than many other anthropogenic sources of these exhaust components (primarily the burning of fossil fuels), because vehicles deposit these exhaust components at all levels of the Earth’s atmosphere rather than just the lower troposphere.

  15. Dilute acid pretreatment of rapeseed straw for fermentable sugar generation.

    PubMed

    Castro, Eulogio; Díaz, Manuel J; Cara, Cristóbal; Ruiz, Encarnación; Romero, Inmaculada; Moya, Manuel

    2011-01-01

    The influence of the main pretreatment variables on fermentable sugar generation from rapeseed straw is studied using an experimental design approach. Low and high levels for pretreatment temperature (140-200 °C), process time (0-20 min) and concentration of sulfuric acid (0.5-2% w/v) were selected according to previous results. Glucose and xylose composition, as well as sugar degradation, were monitored and adjusted to a quadratic model. Non-sugar components of the hydrolysates were also determined. Enzymatic hydrolysis yields were used for assessing pretreatment performance. Optimization based on the mathematical model show that total conversion of cellulose from pretreated solids can be achieved at pretreatment conditions of 200 °C for 27 min and 0.40% free acid concentration. If optimization criteria were based on maximization of hemicellulosic sugars recovery in the hydrolysate along with cellulose preservation in the pretreated solids, milder pretreatment conditions of 144 °C, 6 min and 2% free acid concentration should be used.

  16. Potential impact of acid precipitation on arsenic and selenium.

    PubMed Central

    Mushak, P

    1985-01-01

    The potential impact of acidic precipitation on the environmental mobility of the metalloids arsenic (As) and selenium (Se) has not been given much attention and is poorly understood. As with other elements, the interest here is the potential effect of environmental acidification on environmental behavior in ways that are relevant to human exposure to these metalloids. Available information on acid precipitation and the environmental behavior of these metalloids do, however, permit some preliminary conclusions to be drawn. Both As and Se appear to be mobilized from household plumbing into tap water by the corrosive action of soft, mildly acidic water, while surface water catchment systems in areas impacted by acidic deposition may contain elevated soluble As levels. Acidification of aquatic ecosystems that are drinking water sources may pose the prospect of enhanced release of As from sediment to water as well as reduction in water levels of Se. Acidification of ground waters, where As appears to be especially mobile, is of particular concern in this regard. The potential impact of acidic deposition on As and Se in soils cannot readily be assessed with respect to human exposure, but it would appear that the behavior of these metalloids in poorly buffered, poorly immobilizing soils, e.g., sandy soils of low metal hydrous oxide content, would be most affected. The effect is opposite for the two elements; lowered pH would appear to enhance As mobility and to reduce Se availability. Altered acidity of both soil and aquatic systems poses a risk for altered biotransformation processes involving both As and Se, thereby affecting the relative amounts of different chemical forms varying in their toxicity to humans as well as influencing biogeochemical cycling. PMID:4076075

  17. Potential impact of acid precipitation on arsenic and selenium.

    PubMed

    Mushak, P

    1985-11-01

    The potential impact of acidic precipitation on the environmental mobility of the metalloids arsenic (As) and selenium (Se) has not been given much attention and is poorly understood. As with other elements, the interest here is the potential effect of environmental acidification on environmental behavior in ways that are relevant to human exposure to these metalloids. Available information on acid precipitation and the environmental behavior of these metalloids do, however, permit some preliminary conclusions to be drawn. Both As and Se appear to be mobilized from household plumbing into tap water by the corrosive action of soft, mildly acidic water, while surface water catchment systems in areas impacted by acidic deposition may contain elevated soluble As levels. Acidification of aquatic ecosystems that are drinking water sources may pose the prospect of enhanced release of As from sediment to water as well as reduction in water levels of Se. Acidification of ground waters, where As appears to be especially mobile, is of particular concern in this regard. The potential impact of acidic deposition on As and Se in soils cannot readily be assessed with respect to human exposure, but it would appear that the behavior of these metalloids in poorly buffered, poorly immobilizing soils, e.g., sandy soils of low metal hydrous oxide content, would be most affected. The effect is opposite for the two elements; lowered pH would appear to enhance As mobility and to reduce Se availability. Altered acidity of both soil and aquatic systems poses a risk for altered biotransformation processes involving both As and Se, thereby affecting the relative amounts of different chemical forms varying in their toxicity to humans as well as influencing biogeochemical cycling.

  18. Acousto-optically generated potential energy landscapes: potential mapping using colloids under flow.

    PubMed

    Juniper, Michael P N; Besseling, Rut; Aarts, Dirk G A L; Dullens, Roel P A

    2012-12-17

    Optical potential energy landscapes created using acousto-optical deflectors are characterized via solvent-driven colloidal particles. The full potential energy of both single optical traps and complex landscapes composed of multiple overlapping traps are determined using a simple force balance argument. The potential of a single trap is shown to be well described by a Gaussian trap with stiffness found to be consistent with those obtained by a thermal equilibrium method. We also obtain directly the depth of the well, which (as with stiffness) varies with laser power. Finally, various complex systems ranging from double-well potentials to random landscapes are generated from individually controlled optical traps. Predictions of these landscapes as a sum of single Gaussian wells are shown to be a good description of experimental results, offering the potential for fully controlled design of optical landscapes, constructed from single optical traps.

  19. Modelling Action Potential Generation and Propagation in Fibroblastic Cells

    NASA Astrophysics Data System (ADS)

    Torres, J. J.; Cornelisse, L. N.; Harks, E. G. A.; Theuvenet, A. P. R.; Ypey, D. L.

    2003-04-01

    Using a standard Hodgkin-Huxley (HH) formalism, we present a mathematical model for action potential (AP) generation and intercellular AP propagation in quiescent (serum-deprived) normal rat kidney (NRK) fibroblasts [1], based on the recent experimental identification of the ion channels involved [2]. The principal ion channels described are those of an inwardly rectifying K+ conductance (GKIR), an L-type calcium conductance (GCaL), an intracellular calcium activated Cl- conductance (GCl(Ca)), a residual leak conductance Gleak, and gap junctional channels between the cells (Ggj). The role of each one of these components in the particular shape of the AP wave-form has been analyzed and compared with experimental observations. In addition, we have studied the role of subcellular processes like intracellular calcium dynamics and calcium buffering in AP generation. AP propagation between cells was reconstructed in a hexagonal model of cells coupled by Ggj with physiological conductance values. The model revealed an excitability mechanism of quiescent NRK cells with a particular role of intracellular calcium dynamics. It allows further explorations of the mechanism of signal generation and transmission in NRK cell cultures and its dependence on growth conditions.

  20. Distributed generation from biomass resources: Emerging potential for utilities

    SciTech Connect

    Whittier, J.; Haase, S.; Badger, P.C.

    1996-12-31

    Distributed generation (DG) offers potential to enhance the range of services provided by electric utilities. Competitive pressures experienced by the utility industry are sending simultaneous, and often conflicting, signals to planners concerned with busbar costs, market share and customer retention. DG technologies allow planners to address concurrent utility and customer concerns. DG will also open markets for additional commercial applications of diverse biomass technologies. Distributed generation offers multiple benefits both to utilities and to end users. Utilities may site new power production resources more readily and with lower capital costs and reduced financial risk than with larger power generation systems. Important benefits may accrue to the transmission and distribution (T&D) system including various forms of grid support (e.g., reduced line losses, voltage support, and power quality improvement), deferral of upgrades to substations, and provision of power in increments that match projected demand patterns. Other DG benefits may include assistance with customer waste disposal problems, fuel diversity, reduction in emissions of NO{sub x}, SO{sub x}, and CO{sub 2}, and increases in system reliability. Substantial changes in utility planning practices are required to accommodate DG. The utility must re-think planning procedures to begin from the customer and extend back to the system rather than beginning from comprehensive system planning at the power plant level. As competitive pressures encourage utilities to redefine business practices, DG may help to focus strategic responses to the market.

  1. On a hypothetical generational relationship between HCN and constituents of the reductive citric acid cycle.

    PubMed

    Eschenmoser, Albert

    2007-04-01

    Encouraged by observations made on the course of reactions the HCN-tetramer can undergo with acetaldehyde, I delineate a constitutional and potentially generational relationship between HCN and those constituents of the reductive citric acid cycle that are direct precursors of amino acids in contemporary metabolism. In this context, the robustness postulate of classical prebiotic chemistry is questioned, and, by an analysis of the (hypothetical) reaction-tree of a stepwise hydrolysis of the HCN-tetramer, it is shown how such a non-robust chemical reaction platform could harbor the potential for the emergence of autocatalytic cycles. It is concluded that the chemistry of HCN should be revisited by focussing on its non-robust parts in order to demonstrate its full potential as one of the possible roots of prebiotic self-organizing chemical processes.

  2. The potential impact of washing machines on laundry malodour generation.

    PubMed

    Stapleton, K; Hill, K; Day, K; Perry, J D; Dean, J R

    2013-04-01

    A multidisciplinary approach has been adopted to investigate and identify the source of malodour in washing machines and the potential for cross-contamination of laundry. Four washing machines were olfactively graded, and the number of colony-forming units (CFUs) bacteria was determined in four specific locations. Then, samples of terry-towel and fleece were washed, without the use of detergent, in the machines, and the occurrence of malodour over a 52-h period was assessed. Analysis of the scrapings from the four locations in the two malodorous machines identified a plethora of volatile organic compounds (VOCs) by either olfactory detection or mass spectral identification post-gas chromatographic separation. In addition, microbiological analysis from the swabs from the four locations within all four washing machines was carried out. Quantitative analysis of VOCs from 66 microbiological isolates from either the washing machines or fabrics was carried out. In total, 10 VOCs were identified: dimethyl disulfide, 3-methyl-1-butanol, 2,4-dithiapentane, dimethyl trisulfide, 2-tridecanone, indole, 2-phenylethanol, isovaleric acid, isobutyric acid and 1-undecene.

  3. The effect of limestone treatments on the rate of acid generation from pyritic mine gangue.

    PubMed

    Burt, R A; Caruccio, F T

    1986-09-01

    Surface water enters the Haile Gold Mine, Lancaster County, South Carolina by means of a small stream and is ponded behind a dam and in an abandoned pit. This water is affected by acidic drainage. In spite of the large exposures of potentially acid producing pyritic rock, the flux of acid to the water is relatively low. Nevertheless, the resulting pH values of the mine water are low (around 3.5) due to negligible buffering capacity. In view of the observed low release of acidity, the potential for acid drainage abatement by limestone ameliorants appears feasible.This study investigated the effects of limestone treatment on acid generation rates of the Haile mine pyritic rocks through a series of leaching experiments. Below a critical alkalinity threshold value, solutions of dissolved limestone were found consistently to accelerate the rate of pyrite oxidation by varying degrees. The oxidation rates were further accelerated by admixing solid limestone with the pyritic rock. However, after a period of about a month, the pyrite oxidation rate of the admixed samples declined to a level lower than that of untreated pyrite. Leachates produced by the pyrite and limestone mixtures contained little if any iron. Further, in the mixtures, an alteration of the pyrite surface was apparent.The observed behaviour of the treated pyrite appears to be related to the immersion of the pyrite grains within a high alkalinity/high pH environment. The high pH increases the rate of oxidation of ferrous iron which results in a higher concentration of ferric iron at the pyrite surface. This, in turn, increases the rate of pyrite oxidation. Above a threshold alkalinity value, the precipitation of hydrous iron oxides at the pyrite surface eventually outpaces acid generation and coats the pyrite surface, retarding the rate of pyrite oxidation. PMID:24214013

  4. Biological potential of methane generation from poultry wastes. Final report

    SciTech Connect

    Shih, J.C.H.

    1981-06-20

    Anaerobic digestion of animal waste is an attractive process because it degrades organic matter for pollution control and simultaneously produces methane gas for an alternate energy source. The biological potentials of methane generation from the two major kinds of poultry wastes, the litter of broiler chickens and the manure of laying hens have been systematically investigated. Using these wastes to prepare media for bacterial growth, thermophilic anaerobic cultures were initiated by inoculations of bacteria from different natural environments. After a period of acclimation, they were then challenged with various combinations of operational variables such as retention times, volatile solid concentrations, temperatures, and pH values. The most efficient culture and conditions were selected based on the highest gas rate. The results have demonstrated that the broiler litter is a substrate of very low potential. This seems due to the high content of wood shavings resistant to bacterial degradation. On the other hand, the layer manure is a high-potential substrate, which supported both a high methane rate (3.5 1/1/day) and a high methane yield (250 1/kg VS) under the selected conditions. Compared with other types of animal wastes, the manure of laying hens is one of the best substrates for methane production. Based on the data obtained in the laboratory, an anaerobic digester is under construction on the University research farm. A large digester will help answer other questions such as energy balance, economic evaluation and engineering design.

  5. Perceptual learning of acoustic noise generates memory-evoked potentials.

    PubMed

    Andrillon, Thomas; Kouider, Sid; Agus, Trevor; Pressnitzer, Daniel

    2015-11-01

    Experience continuously imprints on the brain at all stages of life. The traces it leaves behind can produce perceptual learning [1], which drives adaptive behavior to previously encountered stimuli. Recently, it has been shown that even random noise, a type of sound devoid of acoustic structure, can trigger fast and robust perceptual learning after repeated exposure [2]. Here, by combining psychophysics, electroencephalography (EEG), and modeling, we show that the perceptual learning of noise is associated with evoked potentials, without any salient physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials appeared whenever a memory trace was observed behaviorally. Such memory-evoked potentials were characterized by early latencies and auditory topographies, consistent with a sensory origin. Furthermore, they were generated even on conditions of diverted attention. The EEG waveforms could be modeled as standard evoked responses to auditory events (N1-P2) [3], triggered by idiosyncratic perceptual features acquired through learning. Thus, we argue that the learning of noise is accompanied by the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, within sensory regions. Such a mechanism bridges the gap between the short-term and longer-term plasticity observed in the learning of noise [2, 4-6]. It could also be key to the processing of natural sounds within auditory cortices [7], suggesting that the neural code for sound source identification will be shaped by experience as well as by acoustics.

  6. Theobromine Inhibits Uric Acid Crystallization. A Potential Application in the Treatment of Uric Acid Nephrolithiasis

    PubMed Central

    Grases, Felix; Rodriguez, Adrian; Costa-Bauza, Antonia

    2014-01-01

    Purpose To assess the capacity of methylxanthines (caffeine, theophylline, theobromine and paraxanthine) to inhibit uric acid crystallization, and to evaluate their potential application in the treatment of uric acid nephrolithiasis. Materials and Methods The ability of methylxathines to inhibit uric acid nucleation was assayed turbidimetrically. Crystal morphology and its modification due to the effect of theobromine were evaluated by scanning electron microscopy (SEM). The ability of theobromine to inhibit uric acid crystal growth on calculi fragments resulting from extracorporeal shock wave lithotripsy (ESWL) was evaluated using a flow system. Results The turbidimetric assay showed that among the studied methylxanthines, theobromine could markedly inhibit uric acid nucleation. SEM images showed that the presence of theobromine resulted in thinner uric acid crystals. Furthermore, in a flow system theobromine blocked the regrowth of post-ESWL uric acid calculi fragments. Conclusions Theobromine, a natural dimethylxanthine present in high amounts in cocoa, acts as an inhibitor of nucleation and crystal growth of uric acid. Therefore, theobromine may be clinically useful in the treatment of uric acid nephrolithiasis. PMID:25333633

  7. Accumulation potentials of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays).

    PubMed

    Krippner, Johanna; Falk, Sandy; Brunn, Hubertus; Georgii, Sebastian; Schubert, Sven; Stahl, Thorsten

    2015-04-15

    Uptake of perfluoroalkyl acids (PFAAs) by maize represents a potential source of exposure for humans, either directly or indirectly via feed for animals raised for human consumption. The aim of the following study was, therefore, to determine the accumulation potential of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays). Two different concentrations of PFAAs were applied as aqueous solution to the soil to attain target concentrations of 0.25 mg or 1.00 mg of PFAA per kg of soil. Maize was grown in pots, and after harvesting, PFAA concentrations were measured in the straw and kernels of maize. PFCA and PFSA concentrations of straw decreased significantly with increasing chain length. In maize kernels, only PFCAs with a chain length ≤ C8 as well as perfluorobutanesulfonic acid (PFBS) were detected. The highest soil-to-plant transfer for both straw and kernels was determined for short-chained PFCAs and PFSAs.

  8. Retinoic acid from the meninges regulates cortical neuron generation.

    PubMed

    Siegenthaler, Julie A; Ashique, Amir M; Zarbalis, Konstantinos; Patterson, Katelin P; Hecht, Jonathan H; Kane, Maureen A; Folias, Alexandra E; Choe, Youngshik; May, Scott R; Kume, Tsutomu; Napoli, Joseph L; Peterson, Andrew S; Pleasure, Samuel J

    2009-10-30

    Extrinsic signals controlling generation of neocortical neurons during embryonic life have been difficult to identify. In this study we demonstrate that the dorsal forebrain meninges communicate with the adjacent radial glial endfeet and influence cortical development. We took advantage of Foxc1 mutant mice with defects in forebrain meningeal formation. Foxc1 dosage and loss of meninges correlated with a dramatic reduction in both neuron and intermediate progenitor production and elongation of the neuroepithelium. Several types of experiments demonstrate that retinoic acid (RA) is the key component of this secreted activity. In addition, Rdh10- and Raldh2-expressing cells in the dorsal meninges were either reduced or absent in the Foxc1 mutants, and Rdh10 mutants had a cortical phenotype similar to the Foxc1 null mutants. Lastly, in utero RA treatment rescued the cortical phenotype in Foxc1 mutants. These results establish RA as a potent, meningeal-derived cue required for successful corticogenesis.

  9. Iron-sulfur protein in mitochondrial complexes of Spodoptera litura as potential site for ROS generation.

    PubMed

    Li, Liangde; Dong, Xiaolin; Shu, Benshui; Wang, Zheng; Hu, Qiongbo; Zhong, Guohua

    2014-12-01

    Mitochondrial complex I is the main source of reactive oxygen species (ROS) production, but the exact site of superoxide generation or their relative contribution is not clear. This study aims to determine the function of iron-sulfur clusters (ISCU) in the initiation of ROS generation. ISCU2 and ISCU8 were cloned from Spodoptera litura which shared the conserved amino acid sequence with other insects. The expressions of the two genes were ubiquitous throughout the whole development stages and tissues. Knockdown of ISCU2 and ISCU8 resulted in the decline of the ROS, whereas rotenone and azadirachtin treatment up-regulated ROS levels by increasing mRNA expression. Furthermore, antioxidant enzyme activity of SOD and POD were up-regulated by rotenone and azadirachtin treatment and then declined after ISCU was silenced. Our results suggest the possibility that the molecules of ISCU2 and ISCU8 in complex I may serve as potential sites in the initiation of ROS generation.

  10. Electromagnetic fields and potentials generated by massless charged particles

    SciTech Connect

    Azzurli, Francesco; Lechner, Kurt

    2014-10-15

    We provide for the first time the exact solution of Maxwell’s equations for a massless charged particle moving on a generic trajectory at the speed of light. In particular we furnish explicit expressions for the vector potential and the electromagnetic field, which were both previously unknown, finding that they entail different physical features for bounded and unbounded trajectories. With respect to the standard Liénard–Wiechert field the electromagnetic field acquires singular δ-like contributions whose support and dimensionality depend crucially on whether the motion is (a) linear, (b) accelerated unbounded, (c) accelerated bounded. In the first two cases the particle generates a planar shock-wave-like electromagnetic field traveling along a straight line. In the second and third cases the field acquires, in addition, a δ-like contribution supported on a physical singularity-string attached to the particle. For generic accelerated motions a genuine radiation field is also present, represented by a regular principal-part type distribution diverging on the same singularity-string. - Highlights: • First exact solution of Maxwell’s equations for massless charges in arbitrary motion. • Explicit expressions of electromagnetic fields and potentials. • Derivations are rigorous and based on distribution theory. • The form of the field depends heavily on whether the motion is bounded or unbounded. • The electromagnetic field contains unexpected Dirac-delta-function contributions.

  11. Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates.

    PubMed

    Fritsch, Caroline; Heinrich, Veronika; Vogel, Rudi F; Toelstede, Simone

    2016-08-01

    Sunflower flour provides a high content of protein with a well-balanced amino acid composition and is therefore regarded as an attractive source for protein. The use for human nutrition is hindered by phenolic compounds, mainly chlorogenic acid, which can lead under specific circumstances to undesirable discolorations. In this study, growth behavior and degradation ability of chlorogenic acid of four lactic acid bacteria were explored. Data suggested that significant higher fermentation performances on sunflower flour as compared to sunflower protein concentrate were reached by Lactobacillus plantarum, Pediococcus pentosaceus, Lactobacillus gasseri and Bifidobacterium animalis subsp. lactis. In fermentation with the latter two strains reduced amounts of chlorogenic acid were observed in sunflower flour (-11.4% and -19.8%, respectively), which were more pronounced in the protein concentrate (-50.7% and -95.6%, respectively). High tolerances against chlorogenic acid and the cleavage product quinic acid with a minimum inhibitory concentration (MIC) of ≥20.48 mg/ml after 48 h were recorded for all strains except Bifidobacterium animalis subsp. lactis, which was more sensitive. The second cleavage compound, caffeic acid revealed a higher antimicrobial potential with MIC values of 0.64-5.12 mg/ml. In this proof of concept study, degradation versus inhibitory effect suggest the existence of basic mechanisms of interaction between phenolic acids in sunflower and lactic acid bacteria and a feasible way to reduce the chlorogenic acid content, which may help to avoid undesired color changes. PMID:27052717

  12. Evaluation of UV-radiation induced singlet oxygen generation potential of selected drugs.

    PubMed

    Pandey, R; Mehrotra, S; Ray, R S; Joshi, P C; Hans, R K

    2002-05-01

    Photosensitization reaction of drugs leading to the formation of reactive oxygen species under ultraviolet radiation (UVR) can cause tissue injury, resulting in damage to various cellular macromolecules. The aim of this study was to determine the singlet oxygen generation potential of some commonly used antibiotics so that due precautions can be exercised to minimize their photosensitizing action and oxidative stress potential. The selected antibiotics were examined for their ability to produce singlet oxygen (1O2) under artificial UVA (320-400 nm). Singlet oxygen generation of various screened antibiotics under UVA is of the following order: Nalidixic acid > Amphotericin-B > Cephradine > Cefazolin > Nafcillin > Cephalothin > Ampicillin > Cephalexin > Puromycin > Kanamycin > Lincomycin > Tetracycline > Nystatin > Gentamicin sulphate. Nalidixic acid, the most potent generator of 1O2 among the screened antibiotics, was selected to carry out further studies. Certain specific quenchers of 1O2 such as beta-carotene, 1,4-diazabicyclo[2.2.2] octane (DABCO), and sodium azide (NaN3) accorded significant inhibition in the production of 1O2. The results suggest that precautions are necessary to avoid ultraviolet radiation after the intake of photoreactive drugs, especially in tropical countries such as India. These findings are significant because UVB radiation is reportedly increasing on earth surface in part due to depletion of stratospheric ozone layer. The selected drugs are commonly used for the treatment of various diseases. Thus, the synergistic action of both can lead to undesirable phototoxic responses.

  13. Acidic pH Is a Metabolic Switch for 2-Hydroxyglutarate Generation and Signaling.

    PubMed

    Nadtochiy, Sergiy M; Schafer, Xenia; Fu, Dragony; Nehrke, Keith; Munger, Joshua; Brookes, Paul S

    2016-09-16

    2-Hydroxyglutarate (2-HG) is an important epigenetic regulator, with potential roles in cancer and stem cell biology. The d-(R)-enantiomer (d-2-HG) is an oncometabolite generated from α-ketoglutarate (α-KG) by mutant isocitrate dehydrogenase, whereas l-(S)-2-HG is generated by lactate dehydrogenase and malate dehydrogenase in response to hypoxia. Because acidic pH is a common feature of hypoxia, as well as tumor and stem cell microenvironments, we hypothesized that pH may regulate cellular 2-HG levels. Herein we report that cytosolic acidification under normoxia moderately elevated 2-HG in cells, and boosting endogenous substrate α-KG levels further stimulated this elevation. Studies with isolated lactate dehydrogenase-1 and malate dehydrogenase-2 revealed that generation of 2-HG by both enzymes was stimulated severalfold at acidic pH, relative to normal physiologic pH. In addition, acidic pH was found to inhibit the activity of the mitochondrial l-2-HG removal enzyme l-2-HG dehydrogenase and to stimulate the reverse reaction of isocitrate dehydrogenase (carboxylation of α-KG to isocitrate). Furthermore, because acidic pH is known to stabilize hypoxia-inducible factor (HIF) and 2-HG is a known inhibitor of HIF prolyl hydroxylases, we hypothesized that 2-HG may be required for acid-induced HIF stabilization. Accordingly, cells stably overexpressing l-2-HG dehydrogenase exhibited a blunted HIF response to acid. Together, these results suggest that acidosis is an important and previously overlooked regulator of 2-HG accumulation and other oncometabolic events, with implications for HIF signaling.

  14. Mitigating secondary aerosol generation potentials from biofuel use in the energy sector.

    PubMed

    Tiwary, Abhishek; Colls, Jeremy

    2010-01-01

    This paper demonstrates secondary aerosol generation potential of biofuel use in the energy sector from the photochemical interactions of precursor gases on a life cycle basis. The paper is divided into two parts-first, employing life cycle analysis (LCA) to evaluate the extent of the problem for a typical biofuel based electricity production system using five baseline scenarios; second, proposing adequate mitigation options to minimise the secondary aerosol generation potential on a life cycle basis. The baseline scenarios cover representative technologies for 2010 utilising energy crop (miscanthus), short rotation coppiced chips and residual/waste wood in different proportions. The proposed mitigation options include three approaches-biomass gasification prior to combustion, delaying the harvest of biomass, and increasing the geographical distance between the biomass plant and the harvest site (by importing the biofuels). Preliminary results indicate that the baseline scenarios (assuming all the biomass is sourced locally) bear significant secondary aerosol formation potential on a life cycle basis from photochemical neutralisation of acidic emissions (hydrogen chloride and sulphur dioxide) with ammonia. Our results suggest that gasification of miscanthus biomass would provide the best option by minimising the acidic emissions from the combustion plant whereas the other two options of delaying the harvest or importing biofuels from elsewhere would only lead to marginal reduction in the life cycle aerosol loadings of the systems.

  15. Mitigating secondary aerosol generation potentials from biofuel use in the energy sector.

    PubMed

    Tiwary, Abhishek; Colls, Jeremy

    2010-01-01

    This paper demonstrates secondary aerosol generation potential of biofuel use in the energy sector from the photochemical interactions of precursor gases on a life cycle basis. The paper is divided into two parts-first, employing life cycle analysis (LCA) to evaluate the extent of the problem for a typical biofuel based electricity production system using five baseline scenarios; second, proposing adequate mitigation options to minimise the secondary aerosol generation potential on a life cycle basis. The baseline scenarios cover representative technologies for 2010 utilising energy crop (miscanthus), short rotation coppiced chips and residual/waste wood in different proportions. The proposed mitigation options include three approaches-biomass gasification prior to combustion, delaying the harvest of biomass, and increasing the geographical distance between the biomass plant and the harvest site (by importing the biofuels). Preliminary results indicate that the baseline scenarios (assuming all the biomass is sourced locally) bear significant secondary aerosol formation potential on a life cycle basis from photochemical neutralisation of acidic emissions (hydrogen chloride and sulphur dioxide) with ammonia. Our results suggest that gasification of miscanthus biomass would provide the best option by minimising the acidic emissions from the combustion plant whereas the other two options of delaying the harvest or importing biofuels from elsewhere would only lead to marginal reduction in the life cycle aerosol loadings of the systems. PMID:19878969

  16. Analysis of acid-generating action of PAG in an EUV resist using acid-sensitive dyes

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Atsushi; Matsumoto, Yoko; Biafore, John J.

    2013-03-01

    Researchers are currently examining various methods for determining the quantity of acid generated by a photoacid generator (PAG) and for analyzing acid-generating reactions using acid-sensitive dyes that react with acid and generate a color. Adding an acid-sensitive dye to the resist gives a clear grasp of the acid-generating action. The process involves applying a resist containing an acid-sensitive dye to a quartz substrate; exposing the substrate; and measuring and evaluating the absorbance of a chromogenic substance near 530 nm using a spectroscope. The method determines the rate constant for acid generation (Dill C parameter) during exposure based on the relationship between transmissivity at 530 nm and exposure dose. Using this method, we obtained and compared rate constants for acid generation (C parameters) as part of our study of dependence on the quantity of quencher in the EUV resist. Our results indicate a new model that accounts for the quencher concentration parameter would be useful in analyzing dependence on the quantity of quencher. This paper presents these findings, together with the results of studies of profile simulations using the quencher concentration parameter obtained in the experiments.

  17. Technological and economic potential of poly(lactic acid) and lactic acid derivatives

    SciTech Connect

    Datta, R.; Tsai, S.P.; Bonsignore, P.; Moon, S.H.; Frank, J.R.

    1993-10-01

    Lactic acid has been an intermediate-volume specialty chemical (world production {approximately}40,000 tons/yr) used in a wide range of food processing and industrial applications. lactic acid h,as the potential of becoming a very large volume, commodity-chemical intermediate produced from renewable carbohydrates for use as feedstocks for biodegradable polymers, oxygenated chemicals, plant growth regulators, environmentally friendly ``green`` solvents, and specially chemical intermediates. In the past, efficient and economical technologies for the recovery and purification of lactic acid from crude fermentation broths and the conversion of tactic acid to the chemical or polymer intermediates had been the key technology impediments and main process cost centers. The development and deployment of novel separations technologies, such as electrodialysis (ED) with bipolar membranes, extractive distillations integrated with fermentation, and chemical conversion, can enable low-cost production with continuous processes in large-scale operations. The use of bipolar ED can virtually eliminate the salt or gypsum waste produced in the current lactic acid processes. In this paper, the recent technical advances in tactic and polylactic acid processes are discussed. The economic potential and manufacturing cost estimates of several products and process options are presented. The technical accomplishments at Argonne National Laboratory (ANL) and the future directions of this program at ANL are discussed.

  18. Microbial community potentially responsible for acid and metal release from an Ostrobothnian acid sulfate soil

    PubMed Central

    Wu, Xiaofen; Lim Wong, Zhen; Sten, Pekka; Engblom, Sten; Österholm, Peter; Dopson, Mark; Nakatsu, Cindy

    2013-01-01

    Soils containing an approximately equal mixture of metastable iron sulfides and pyrite occur in the boreal Ostrobothnian coastal region of Finland, termed ‘potential acid sulfate soil materials’. If the iron sulfides are exposed to air, oxidation reactions result in acid and metal release to the environment that can cause severe damage. Despite that acidophilic microorganisms catalyze acid and metal release from sulfide minerals, the microbiology of acid sulfate soil (ASS) materials has been neglected. The molecular phylogeny of a depth profile through the plough and oxidized ASS layers identified several known acidophilic microorganisms and environmental clones previously identified from acid- and metal-contaminated environments. In addition, several of the 16S rRNA gene sequences were more similar to sequences previously identified from cold environments. Leaching of the metastable iron sulfides and pyrite with an ASS microbial enrichment culture incubated at low pH accelerated metal release, suggesting microorganisms capable of catalyzing metal sulfide oxidation were present. The 16S rRNA gene analysis showed the presence of species similar to Acidocella sp. and other clones identified from acid mine environments. These data support that acid and metal release from ASSs was catalyzed by indigenous microorganisms adapted to low pH. PMID:23369102

  19. [Potential difference across the membrane of subcellular particles. V. Generation of potential differences by mitochondria and submitochondrial particles under anaerobic conditions].

    PubMed

    Liberman, E A; Vladimirova, M A; Tsofina, L M

    1977-01-01

    It is shown by the mehtod of penetrating ions that Site O and I of the respiratory chain of submitochondrial particles are able to generate a membrane potential of the normal value under anaerobic conditons. When succinate is an electron donor and ferricyanide-an acceptor (Site II), the oxygen addition sharply increases the membrane potential at pH above 7.5 and does not change or even decreases it in reaction conditions more acid than pH 6.5. The generation of the membrane potential at low pH and in the absence of oxygen is predicted by the chemielectric hypothesis and cannot be explained by the chemiosmotic one. Mitochondria usually generate the membrane potential without O2 at pH 7.5 in the presence of ferricyanide when the substrate concentration exceeds 5 mM.

  20. Electromagnetic fields and potentials generated by massless charged particles

    NASA Astrophysics Data System (ADS)

    Azzurli, Francesco; Lechner, Kurt

    2014-10-01

    We provide for the first time the exact solution of Maxwell’s equations for a massless charged particle moving on a generic trajectory at the speed of light. In particular we furnish explicit expressions for the vector potential and the electromagnetic field, which were both previously unknown, finding that they entail different physical features for bounded and unbounded trajectories. With respect to the standard Liénard-Wiechert field the electromagnetic field acquires singular δ-like contributions whose support and dimensionality depend crucially on whether the motion is (a) linear, (b) accelerated unbounded, (c) accelerated bounded. In the first two cases the particle generates a planar shock-wave-like electromagnetic field traveling along a straight line. In the second and third cases the field acquires, in addition, a δ-like contribution supported on a physical singularity-string attached to the particle. For generic accelerated motions a genuine radiation field is also present, represented by a regular principal-part type distribution diverging on the same singularity-string.

  1. Anacardic acid-mediated changes in membrane potential and pH gradient across liposomal membranes.

    PubMed

    Toyomizu, Masaaki; Okamoto, Katsuyuki; Akiba, Yukio; Nakatsu, Tetsuo; Konishi, Tetsuya

    2002-01-01

    We have previously shown that anacardic acid has an uncoupling effect on oxidative phosphorylation in rat liver mitochondria using succinate as a substrate (Life Sci. 66 (2000) 229-234). In the present study, for clarification of the physicochemical characteristics of anacardic acid, we used a cyanine dye (DiS-C3(5)) and 9-aminoacridine (9-AA) to determine changes of membrane potential (DeltaPsi) and pH difference (DeltapH), respectively, in a liposome suspension in response to the addition of anacardic acid to the suspension. The anacardic acid quenched DiS-C3(5) fluorescence at concentrations higher than 300 nM, with the degree of quenching being dependent on the log concentration of the acid. Furthermore, the K(+) diffusion potential generated by the addition of valinomycin to the suspension decreased for each increase in anacardic acid concentration used over 300 nM, but the sum of the anacardic acid- and valinomycin-mediated quenching was additively increasing. This indicates that the anacardic acid-mediated quenching was not due simply to increments in the K(+) permeability of the membrane. Addition of anacardic acid in the micromolar range to the liposomes with DeltaPsi formed by valinomycin-K(+) did not significantly alter 9-AA fluorescence, but unexpectedly dissipated DeltaPsi. The DeltaPsi preformed by valinomycin-K(+) decreased gradually following the addition of increasing concentrations of anacardic acid. The DeltaPsi dissipation rate was dependent on the pre-existing magnitude of DeltaPsi, and was correlated with the logarithmic concentration of anacardic acid. Furthermore, the initial rate of DeltapH dissipation increased with logarithmic increases in anacardic acid concentration. These results provide the evidence for a unique function of anacardic acid, dissimilar to carbonylcyanide p-trifluoromethoxyphenylhydrazone or valinomycin, in that anacardic acid behaves as both an electrogenic (negative) charge carrier driven by DeltaPsi, and a 'proton

  2. Potential SSP Perfluorooctanoic Acid Related Fluoropolymer Materials Obsolescence

    NASA Technical Reports Server (NTRS)

    Segars, Matt G.

    2006-01-01

    The Shuttle Environmental Assurance Initiative (SEA) has identified a potential for the Space Shuttle Program (SSP) to incur materials obsolescence issues due to agreements between the fluoro-chemical industry and the United States Environmental Protection Agency (USEPA) to participate in a Global Stewardship Program for perfluorooctanoic acid (PFOA). This presentation will include discussions of the chemistry, regulatory drivers, affected types of fluoropolymer and fluoroelastomer products, timeline for reformulations, and methodology for addressing the issue. It will cover the coordination of assessment efforts with the International Space Station and Head Quarters Air Force Space Command, along with some examples of impacted materials. The presentation is directed at all members of the international aerospace community concerned with identifying potential environmentally driven materials obsolescence issues.

  3. Bioprotective potential of lactic acid bacteria in malting and brewing.

    PubMed

    Rouse, Susan; van Sinderen, Douwe

    2008-08-01

    Lactic acid bacteria (LAB) are naturally associated with many foods or their raw ingredients and are popularly used in food fermentation to enhance the sensory, aromatic, and textural properties of food. These microorganisms are well recognized for their biopreservative properties, which are achieved through the production of antimicrobial compounds such as lactic acid, diacetyl, bacteriocins, and other metabolites. The antifungal activity of certain LAB is less well characterized, but organic acids, as yet uncharacterized proteinaceous compounds, and cyclic dipeptides can inhibit the growth of some fungi. A variety of microbes are carried on raw materials used in beer brewing, rendering the process susceptible to contamination and often resulting in spoilage or inferior quality of the finished product. The application of antimicrobial-producing LAB at various points in the malting and brewing process could help to negate this problem, providing an added hurdle for spoilage organisms to overcome and leading to the production of a higher quality beer. This review outlines the bioprotective potential of LAB and its application with specific reference to the brewing industry.

  4. Iron sulfide oxidation and the chemistry of acid generation

    SciTech Connect

    Sullivan, P.J.; Yelton, J.L. ); Reddy, K.J. )

    1988-06-01

    Acid mine drainage, produced from the oxidation of iron sulfides, often contains elevated levels of dissolved aluminum (Al), iron (Fe), and sulfate (SO{sub 4}) and low pH. Understanding the interactions of these elements associated with acid mine drainage is necessary for proper solid waste management planning. Two eastern oil shales were leached using humidity cell methods. This study used a New Albany Shale (4.6% pyrite) and a Chattanooga Shale (1.5% pyrite) were used. The leachates from the humidity cells were filtered, and the filtrates were analyzed for total concentrations of cations and anions. After correcting for significant solution species and complexes, ion activities were calculated from total concentrations. The results show that the activities of Fe{sup 3+}, Fe{sup 2+}, Al{sup 3+}, and SO{sub 4}{sup 2{minus}} increased due to the oxidation of pyrite. Furthermore, the oxidation of pyrite resulted in a decreased pH and an increased pe + pH (redox-potential). The Fe{sup 3+} and Fe{sup 2+} activities appeared to be controlled by amorphous Fe(OH){sub 3} solid phase above a pH of 6.0 and below pe + pH 11.0. The Fe{sup 3+}, Fe{sup 2+}, and SO{sub 4}{sup 2{minus}} activities reached saturation with respect to FeOHSO{sub 4} solid phase between pH 3.0 and 6.0 and below pe + pH 11.0. Below a pH of 3.0 and above a pe + pH of 11.0, Fe{sup 2+}, Fe{sup 3+}, and SO{sub 4}{sup 2{minus}} activities are supported by FeSO{sub 4}{center dot}7H{sub 2}O solid phase. Above a pH of 6.0, the Al{sup 3+} activity showed an equilibrium with amorphous Al(OH){sub 3} solid phase. Below pH 6.0, Al{sup 3+} and SO{sub 4}{sup 2{minus}} activities are regulated by the AlOHSO{sub 4} solid phase, irrespective of pe + pH. The results of this study suggest that under oxidizing conditions with low to high leaching potential, activities of Al and Fe can be predicted on the basis of secondary mineral formation over a wide range of pH and redox.

  5. Tetranitroacetimidic acid: a high oxygen oxidizer and potential replacement for ammonium perchlorate.

    PubMed

    Vo, Thao T; Parrish, Damon A; Shreeve, Jean'ne M

    2014-08-27

    Considerable work has been focused on developing replacements for ammonium perchlorate (AP), a primary choice for solid rocket and missile propellants, due to environmental concerns resulting from the release of perchlorate into groundwater systems [corrected]. Additionally, the generation of hydrochloric acid contributes to high concentrations of acid rain and to ozone layer depletion. En route to synthesizing salts that contain cationic FOX-7, a novel, high oxygen-containing oxidizer, tetranitroacetimidic acid (TNAA), has been synthesized and fully characterized. The properties of TNAA were found to be exceptional, with a calculated specific impulse exceeding that of AP, leading to its high potential as a replacement for AP. TNAA can be synthesized easily in a one-step process by the nitration of FOX-7 in high yield (>93%). The synthesis, properties, and chemical reactivity of TNAA have been examined.

  6. Oleic Acid: Natural variation and potential enhancement in oilseed crops.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleic acid is a monounsaturated omega 9 fatty acid (MUFA, C18:1) which can be found in various plant lipids and animal fats. Unlike omega 3 (a-linolenic acid, C18:3) and omega 6 (linoleic acid, C18:2) fatty acids which are essential because they cannot be synthesized by humans and must be obtained f...

  7. Potential of fly ash for neutralisation of acid mine drainage.

    PubMed

    Qureshi, Asif; Jia, Yu; Maurice, Christian; Öhlander, Björn

    2016-09-01

    Lignite (PK), bituminous (FI) and biomass (SE) fly ashes (FAs) were mineralogically and geochemically characterised, and their element leachability was studied with batch leaching tests. The potential for acid neutralisation (ANP) was quantified by their buffering capacity, reflecting their potential for neutralisation of acid mine drainage. Quartz was the common mineral in FAs detected by XRD with iron oxide, anhydrite, and magnesioferrite in PK, mullite and lime in FI, and calcite and anorthite in SE. All the FAs had high contents of major elements such as Fe, Si, Al and Ca. The Ca content in SE was six and eight times higher compared to PK and FI, respectively. Sulphur content in PK and SE was one magnitude higher than FI. Iron concentrations were higher in PK. The trace element concentrations varied between the FAs. SE had the highest ANP (corresponding to 275 kg CaCO3 tonne(-1)) which was 15 and 10 times higher than PK and FI, respectively. The concentrations of Ca(2+), SO4 (2-), Na(+) and Cl(-) in the leachates were much higher compared to other elements from all FA samples. Iron, Cu and Hg were not detected in any of the FA leachates because of their mild to strong alkaline nature with pH ranging from 9 to 13. Potassium leached in much higher quantity from SE than from the other ashes. Arsenic, Mn and Ni leached from PK only, while Co and Pb from SE only. The concentrations of Zn were higher in the leachates from SE. The FAs used in this study have strong potential for the neutralisation of AMD due to their alkaline nature. However, on the other hand, FAs must be further investigated, with scaled-up experiments before full-scale application, because they might leach pronounced concentrations of elements of concern with decreasing pH while neutralising AMD. PMID:27209637

  8. Linking Inflammation and Parkinson Disease: Hypochlorous Acid Generates Parkinsonian Poisons.

    PubMed

    Jeitner, Thomas M; Kalogiannis, Mike; Krasnikov, Boris F; Gomlin, Irving; Peltier, Morgan R; Moran, Graham R

    2016-06-01

    Inflammation is a common feature of Parkinson Disease and other neurodegenerative disorders. Hypochlorous acid (HOCl) is a reactive oxygen species formed by neutrophils and other myeloperoxidase-containing cells during inflammation. HOCl chlorinates the amine and catechol moieties of dopamine to produce chlorinated derivatives collectively termed chlorodopamine. Here, we report that chlorodopamine is toxic to dopaminergic neurons both in vivo and in vitro Intrastriatal administration of 90 nmol chlorodopamine to mice resulted in loss of dopaminergic neurons from the substantia nigra and decreased ambulation-results that were comparable to those produced by the same dose of the parkinsonian poison, 1-methyl-4-phenylpyridinium (MPP+). Chlorodopamine was also more toxic to differentiated SH SY5Y cells than HOCl. The basis of this selective toxicity is likely mediated by chlorodopamine uptake through the dopamine transporter, as expression of this transporter in COS-7 cells conferred sensitivity to chlorodopamine toxicity. Pharmacological blockade of the dopamine transporter also mitigated the deleterious effects of chlorodopamine in vivo The cellular actions of chlorodopamine included inactivation of the α-ketoglutarate dehydrogenase complex, as well as inhibition of mitochondrial respiration. The latter effect is consistent with inhibition of cytochrome c oxidase. Illumination at 670 nm, which stimulates cytochrome c oxidase, reversed the effects of chlorodopamine. The observed changes in mitochondrial biochemistry were also accompanied by the swelling of these organelles. Overall, our findings suggest that chlorination of dopamine by HOCl generates toxins that selectively kill dopaminergic neurons in the substantia nigra in a manner comparable to MPP+. PMID:27026709

  9. Potential mechanisms for low uric acid in Parkinson disease.

    PubMed

    Sampat, Radhika; Young, Sarah; Rosen, Ami; Bernhard, Douglas; Millington, David; Factor, Stewart; Jinnah, H A

    2016-04-01

    Several epidemiologic studies have described an association between low serum uric acid (UA) and Parkinson disease (PD). Uric acid is a known antioxidant, and one proposed mechanism of neurodegeneration in PD is oxidative damage of dopamine neurons. However, other complex metabolic pathways may contribute. The purpose of this study is to elucidate potential mechanisms of low serum UA in PD. Subjects who met diagnostic criteria for definite or probable PD (n = 20) and controls (n = 20) aged 55-80 years were recruited. Twenty-four hour urine samples were collected from all participants, and both uric acid and allantoin were measured and corrected for body mass index (BMI). Urinary metabolites were compared using a twoway ANOVA with diagnosis and sex as the explanatory variables. There were no significant differences between PD and controls for total UA (p = 0.60), UA corrected for BMI (p = 0.37), or in the interaction of diagnosis and sex on UA (p = 0.24). Similarly, there were no significant differences between PD and controls for allantoin (p = 0.47), allantoin corrected for BMI (p = 0.57), or in the interaction of diagnosis and sex on allantoin (p = 0.78). Allantoin/UA ratios also did not significantly differ by diagnosis (p = 0.99). Our results imply that low serum UA in PD may be due to an intrinsic mechanism that alters the homeostatic set point for serum UA in PD, and may contribute to relatively lower protection against oxidative damage. These findings provide indirect support for neuroprotection trials aimed at raising serum UA.

  10. Potential of lactic acid bacteria in aflatoxin risk mitigation.

    PubMed

    Ahlberg, Sara H; Joutsjoki, Vesa; Korhonen, Hannu J

    2015-08-17

    Aflatoxins (AF) are ubiquitous mycotoxins contaminating food and feed. Consumption of contaminated food and feed can cause a severe health risk to humans and animals. A novel biological method could reduce the health risks of aflatoxins through inhibiting mold growth and binding aflatoxins. Lactic acid bacteria (LAB) are commonly used in fermented food production. LAB are known to inhibit mold growth and, to some extent, to bind aflatoxins in different matrices. Reduced mold growth and aflatoxin production may be caused by competition for nutrients between bacterial cells and fungi. Most likely, binding of aflatoxins depends on environmental conditions and is strain-specific. Killed bacteria cells possess consistently better binding abilities for aflatoxin B1 (AFB1) than viable cells. Lactobacilli especially are relatively well studied and provide noticeable possibilities in binding of aflatoxin B1 and M1 in food. It seems that binding is reversible and that bound aflatoxins are released later on (Haskard et al., 2001; Peltonen et al., 2001). This literature review suggests that novel biological methods, such as lactic acid bacteria, show potential in mitigating toxic effects of aflatoxins in food and feed.

  11. Ursolic acid (UA): A metabolite with promising therapeutic potential.

    PubMed

    Kashyap, Dharambir; Tuli, Hardeep Singh; Sharma, Anil K

    2016-02-01

    Plants are known to produce a variety of bioactive metabolites which are being used to cure various life threatening and chronic diseases. The molecular mechanism of action of such bioactive molecules, may open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle dreadful diseases such as cancer and cardiovascular and neurodegenerative disorders. Ursolic acid (UA) is one among the categories of such plant-based therapeutic metabolites having multiple intracellular and extracellular targets that play role in apoptosis, metastasis, angiogenesis and inflammatory processes. Moreover, the synthetic derivatives of UA have also been seen to be involved in a range of pharmacological applications, which are associated with prevention of diseases. Evidences suggest that UA could be used as a potential candidate to develop a comprehensive competent strategy towards the treatment and prevention of health disorders. The review article herein describes the possible therapeutic effects of UA along with putative mechanism of action. PMID:26775565

  12. Fatty Acid Ethyl Esters Are Less Toxic Than Their Parent Fatty Acids Generated during Acute Pancreatitis.

    PubMed

    Patel, Krutika; Durgampudi, Chandra; Noel, Pawan; Trivedi, Ram N; de Oliveira, Cristiane; Singh, Vijay P

    2016-04-01

    Although ethanol causes acute pancreatitis (AP) and lipolytic fatty acid (FA) generation worsens AP, the contribution of ethanol metabolites of FAs, ie, FA ethyl esters (FAEEs), to AP outcomes is unclear. Previously, pancreata of dying alcoholics and pancreatic necrosis in severe AP, respectively, showed high FAEEs and FAs, with oleic acid (OA) and its ethyl esters being the most abundant. We thus compared the toxicities of FAEEs and their parent FAs in severe AP. Pancreatic acini and peripheral blood mononuclear cells were exposed to FAs or FAEEs in vitro. The triglyceride of OA (i.e., glyceryl tri-oleate) or OAEE was injected into the pancreatic ducts of rats, and local and systemic severities were studied. Unsaturated FAs at equimolar concentrations to FAEEs induced a larger increase in cytosolic calcium, mitochondrial depolarization, and necro-apoptotic cell death. Glyceryl tri-oleate but not OAEE resulted in 70% mortality with increased serum OA, a severe inflammatory response, worse pancreatic necrosis, and multisystem organ failure. Our data show that FAs are more likely to worsen AP than FAEEs. Our observations correlate well with the high pancreatic FAEE concentrations in alcoholics without pancreatitis and high FA concentrations in pancreatic necrosis. Thus, conversion of FAs to FAEE may ameliorate AP in alcoholics.

  13. Generation of directional EOF by interactive oscillatory zeta potential.

    PubMed

    Kuo, Chih-Yu; Wang, Chang-Yi; Chang, Chien-Cheng

    2008-11-01

    A steady directional EOF due to a nonlinear interaction between oscillatory axial electrical fields and oscillatory wall potentials (zeta potentials) is presented. This is a new mechanism to produce such a mean flow. It is found that the flow velocity depends not on the external driving frequency but on the phase angle difference between the electric fields and the zeta potentials. The formulation can also be reduced to the static EOF straightforwardly. For the purpose of theoretical demonstration, we use the Debye-Huckel approximation for the zeta potential. Results of planar and cylindrical capillaries are given.

  14. An Investigation of the Acid Rock Drainage Generation from the Road Cut Slope in the Middle Part of South Korea

    NASA Astrophysics Data System (ADS)

    Ji, S.; Cheong, Y.; Yim, G.

    2006-05-01

    To examine the Acid Rock Drainage (ARD) generation from the road cut slope, a prediction study including Acid-Base Accounting (ABA) test and Net Acid Generation (NAG) test was performed for road cut rock samples (20 samples) at the new construction site of a highway in the middle part of South Korea. This slope is composed of slate and phyllite. It was a pit wall which was operated as a quarry which produced materials for roofing. pH1:2 and EC1:2 measurements were performed to evaluate free hydrogen ion contents and salts in samples. ABA test was performed to estimate the balance of the acid generating minerals (mainly pyrite) and the acid neutralizing minerals (mainly carbonates) in rock samples. Total sulfur was analyzed by sulfur analyzer, and then the maximum potential acidity (MPA, kg H2SO4/t) was calculated. X-ray diffraction (XRD) analysis was performed to identify the mineral composition of rock samples. Acid neutralizing capacity (ANC) test, after the Sobek et al. (1978), was performed to estimate the amount of acid originated from the oxidation of sulfide minerals. NAPP (Net Acid Producing Potential) was calculated by total sulfur (MPA) and ANC. NAG test was performed with grounded samples and 15 % hydrogen peroxide, and then NAG was analyzed by measuring pH (NAGpH) of the mixed solution. pH1:2 and EC1:2 ranged from 2.95 to 7.23 and 17.1 to 3070.0 ¥ìS/cm, respectively. MPA of samples was ranged from 0.0 to 79.9 kg H2SO4/t. From the XRD analysis pyrite was found at the most samples. In the sample from highly weathered dike, goethite was found. Results of the ANC tests indicated that the value of ANC reached up to 59.36 kg H2SO4/t. Rock samples could be classified as Potential Acid Forming rock (PAF) and Non- Acid Forming rock (NAF) by plotting NAPP versus NAGpH. In this study 17 samples were classified as PAF rock. It means that this slope would generate ARD when they reacted with rain. Two samples were grouped as NAF. By application this ARD prediction

  15. UVA irradiation of fatty acids and their oxidized products substantially increases their ability to generate singlet oxygen.

    PubMed

    Regensburger, Johannes; Maisch, Tim; Knak, Alena; Gollmer, Anita; Felgentraeger, Ariane; Lehner, Karin; Baeumler, Wolfgang

    2013-10-28

    UVA radiation plays an important role for adverse reactions in human tissue. UVA penetrates epidermis and dermis of skin being absorbed by various biomolecules, especially endogenous photosensitizers. This may generate deleterious singlet oxygen ((1)O2) that oxidizes fatty acids in cell membranes, lipoproteins, and other lipid-containing structures such as the epidermal barrier. Indications exist that fatty acids are not only the target of (1)O2 but also act as potential photosensitizers under UVA irradiation, if already oxidized. Five different fatty acids in ethanol solution (stearic, oleic, linoleic, linolenic and arachidonic acid) were exposed to UVA radiation (355 nm, 100 mW) for 30 seconds. (1)O2 luminescence was detected time-resolved at 1270 nm and confirmed in spectrally-resolved experiments. The more double bonds fatty acids have the more (1)O2 photons were detected. In addition, fatty acids were continuously exposed to broadband UVA for up to 240 min. During that time span, UVA absorption and (1)O2 luminescence substantially increased with irradiation time, reached a maximum and decreased again. HPLC-MS analysis showed that the amount of peroxidized fatty acids and the (1)O2 generation increased and decreased in parallel. This indicates the high potential of peroxidized fatty acids to produce (1)O2 under UVA irradiation. In conclusion, fatty acids along with peroxidized products are weak endogenous photosensitizers but become strong photosensitizers under continuous UVA irradiation. Since fatty acids and their oxidized products are ubiquitous in living cells and in skin, which is frequently and long-lasting exposed to UVA radiation, this photosensitizing effect may contribute to initiation of deleterious photooxidative processes in tissue.

  16. Evaluation of global onshore wind energy potential and generation costs.

    PubMed

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon

    2012-07-17

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  17. Evaluation of global onshore wind energy potential and generation costs.

    PubMed

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon

    2012-07-17

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power. PMID:22715929

  18. Pd/C Synthesized with Citric Acid: An Efficient Catalyst for Hydrogen Generation from Formic Acid/Sodium Formate

    PubMed Central

    Wang, Zhi-Li; Yan, Jun-Min; Wang, Hong-Li; Ping, Yun; Jiang, Qing

    2012-01-01

    A highly efficient hydrogen generation from formic acid/sodium formate aqueous solution catalyzed by in situ synthesized Pd/C with citric acid has been successfully achieved at room temperature. Interestingly, the presence of citric acid during the formation and growth of the Pd nanoparticles on carbon can drastically enhance the catalytic property of the resulted Pd/C, on which the conversion and turnover frequency for decomposition of formic acid/sodium formate system can reach the highest values ever reported of 85% within 160 min and 64 mol H2 mol−1 catalyst h−1, respectively, at room temperature. The present simple, low cost, but highly efficient CO-free hydrogen generation system at room temperature is believed to greatly promote the practical application of formic acid system on fuel cells. PMID:22953041

  19. Nonthermal Argon Plasma Generator and Some Potential Applications

    NASA Astrophysics Data System (ADS)

    Bunoiu, M.; Jugunaru, I.; Bica, I.; Balasoiu, M.

    2015-12-01

    A laboratory - made nonthermal plasma generator is presented. It has a diameter of 0.020 m and length of 0.155 m and contains two electrodes. The first electrode is a 2% Th-W alloy, 0.002 m in diameter bar, centred inside the generator's body by means of a four channel teflon piece; the other three channels, 0.003 m in diameter, are used for Ar supply. The second electrode is a nozzle of 0.002 m - 0.008 m diameter and 0.005m length. A ~500 kV/m electric field is generated between the two electrodes by a high frequency source (13.56 MHz ±5%), equipped with a OT-1000 (Tungsram) power triode. For Ar flows ranging from 0.00008 m3/s to 0.00056 m3/s, a plasma jet of length not exceeding 0.015 m and temperature below 315 K is obtained. Anthurium andraeanumis sample , blood matrix, human hair and textile fibers may be introduced in the plasma jet. For time periods of 30 s and 60 s, various effects like, cell detexturization, fast blood coagulation or textile fiber or hair cleaning and smoothing are obtained. These effects are presented and discussed in the paper.

  20. Iron-sulfur protein in mitochondrial complexes of Spodoptera litura as potential site for ROS generation.

    PubMed

    Li, Liangde; Dong, Xiaolin; Shu, Benshui; Wang, Zheng; Hu, Qiongbo; Zhong, Guohua

    2014-12-01

    Mitochondrial complex I is the main source of reactive oxygen species (ROS) production, but the exact site of superoxide generation or their relative contribution is not clear. This study aims to determine the function of iron-sulfur clusters (ISCU) in the initiation of ROS generation. ISCU2 and ISCU8 were cloned from Spodoptera litura which shared the conserved amino acid sequence with other insects. The expressions of the two genes were ubiquitous throughout the whole development stages and tissues. Knockdown of ISCU2 and ISCU8 resulted in the decline of the ROS, whereas rotenone and azadirachtin treatment up-regulated ROS levels by increasing mRNA expression. Furthermore, antioxidant enzyme activity of SOD and POD were up-regulated by rotenone and azadirachtin treatment and then declined after ISCU was silenced. Our results suggest the possibility that the molecules of ISCU2 and ISCU8 in complex I may serve as potential sites in the initiation of ROS generation. PMID:25257538

  1. Generation of cloned transgenic pigs rich in omega-3 fatty acids.

    PubMed

    Lai, Liangxue; Kang, Jing X; Li, Rongfeng; Wang, Jingdong; Witt, William T; Yong, Hwan Yul; Hao, Yanhong; Wax, David M; Murphy, Clifton N; Rieke, August; Samuel, Melissa; Linville, Michael L; Korte, Scott W; Evans, Rhobert W; Starzl, Thomas E; Prather, Randall S; Dai, Yifan

    2006-04-01

    Meat products are generally low in omega-3 (n-3) fatty acids, which are beneficial to human health. We describe the generation of cloned pigs that express a humanized Caenorhabditis elegans gene, fat-1, encoding an n-3 fatty acid desaturase. The hfat-1 transgenic pigs produce high levels of n-3 fatty acids from n-6 analogs, and their tissues have a significantly reduced ratio of n-6/n-3 fatty acids (P < 0.001).

  2. Evaluation of the toxic and genotoxic potential of acid mine drainage using physicochemical parameters and bioassays.

    PubMed

    Netto, E; Madeira, R A; Silveira, F Z; Fiori, M A; Angioleto, E; Pich, C T; Geremias, R

    2013-05-01

    Carboniferous activity generates acid mine drainage (AMD) which is capable of unleashing toxic effects on the exposed biota. The aim of this study was to evaluate the toxic and genotoxic potential of untreated-AMD and AMD treated with calcinated sediment, using physicochemical parameters and bioassays. Results revealed that untreated-AMD presented low pH values and elevated concentrations of the metals Fe, Al, Mn, Zn and Cu. High acute toxicity was observed in Artemia sp. and Daphnia magna, and sub-chronic toxicity and genotoxicity in Allium cepa L. as well as scission of plasmid DNA exposed to untreated-AMD. Treatment of AMD with calcinated sediment promoted the reduction of acidity and the removal of metals, as well as a reduction in toxic and genotoxic effects. In conclusion, the calcinated sediment can be used as an alternative AMD treatment.

  3. Evaluation of the toxic and genotoxic potential of acid mine drainage using physicochemical parameters and bioassays.

    PubMed

    Netto, E; Madeira, R A; Silveira, F Z; Fiori, M A; Angioleto, E; Pich, C T; Geremias, R

    2013-05-01

    Carboniferous activity generates acid mine drainage (AMD) which is capable of unleashing toxic effects on the exposed biota. The aim of this study was to evaluate the toxic and genotoxic potential of untreated-AMD and AMD treated with calcinated sediment, using physicochemical parameters and bioassays. Results revealed that untreated-AMD presented low pH values and elevated concentrations of the metals Fe, Al, Mn, Zn and Cu. High acute toxicity was observed in Artemia sp. and Daphnia magna, and sub-chronic toxicity and genotoxicity in Allium cepa L. as well as scission of plasmid DNA exposed to untreated-AMD. Treatment of AMD with calcinated sediment promoted the reduction of acidity and the removal of metals, as well as a reduction in toxic and genotoxic effects. In conclusion, the calcinated sediment can be used as an alternative AMD treatment. PMID:23518284

  4. Bioassay for estimating the biogenic methane-generating potential of coal samples

    USGS Publications Warehouse

    Jones, E.J.P.; Voytek, M.A.; Warwick, P.D.; Corum, M.D.; Cohn, A.; Bunnell, J.E.; Clark, A.C.; Orem, W.H.

    2008-01-01

    Generation of secondary biogenic methane in coal beds is likely controlled by a combination of factors such as the bioavailability of coal carbon, the presence of a microbial community to convert coal carbon to methane, and an environment supporting microbial growth and methanogenesis. A set of treatments and controls was developed to bioassay the bioavailability of coal for conversion to methane under defined laboratory conditions. Treatments included adding a well-characterized consortium of bacteria and methanogens (enriched from modern wetland sediments) and providing conditions to support endemic microbial activity. The contribution of desorbed methane in the bioassays was determined in treatments with bromoethane sulfonic acid, an inhibitor of microbial methanogenesis. The bioassay compared 16 subbituminous coal samples collected from beds in Texas (TX), Wyoming (WY), and Alaska (AK), and two bituminous coal samples from Pennsylvania (PA). New biogenic methane was observed in several samples of subbituminous coal with the microbial consortium added, but endemic activity was less commonly observed. The highest methane generation [80????mol methane/g coal (56??scf/ton or 1.75??cm3/g)] was from a south TX coal sample that was collected from a non-gas-producing well. Subbituminous coals from the Powder River Basin, WY and North Slope Borough, AK contained more sorbed (original) methane than the TX coal sample and generated 0-23????mol/g (up to 16??scf/ton or 0.5??cm3/g) new biogenic methane in the bioassay. Standard indicators of thermal maturity such as burial depth, nitrogen content, and calorific value did not explain differences in biogenic methane among subbituminous coal samples. No original methane was observed in two bituminous samples from PA, nor was any new methane generated in bioassays of these samples. The bioassay offers a new tool for assessing the potential of coal for biogenic methane generation, and provides a platform for studying the

  5. Astatine standard redox potentials and speciation in acidic medium.

    PubMed

    Champion, J; Alliot, C; Renault, E; Mokili, B M; Chérel, M; Galland, N; Montavon, G

    2010-01-14

    A combined experimental and theoretical approach is used to define astatine (At) speciation in acidic aqueous solution and to answer the two main questions raised from literature data: does At(0) exist in aqueous solution and what is the chemical form of At(+III), if it exists. The experimental approach considers that a given species is characterized by its distribution coefficient (D) experimentally determined in a biphasic system. The change in speciation arising from a change in experimental conditions is observed by a change in D value. The theoretical approach involves quasi-relativistic quantum chemistry calculations. The results show that At at the oxidation state 0 cannot exist in aqueous solution. The three oxidation states present in the range of water stability are At(-I), At(+I), and At(+III) and exist as At(-), At(+), and AtO(+), respectively, in the 1-2 pH range. The standard redox potentials of the At(+)/At(-) and AtO(+)/At(+) couples have been determined, the respective values being 0.36 +/- 0.01 and 0.74 +/- 0.01 V vs NHE. PMID:20014840

  6. Astatine standard redox potentials and speciation in acidic medium.

    PubMed

    Champion, J; Alliot, C; Renault, E; Mokili, B M; Chérel, M; Galland, N; Montavon, G

    2010-01-14

    A combined experimental and theoretical approach is used to define astatine (At) speciation in acidic aqueous solution and to answer the two main questions raised from literature data: does At(0) exist in aqueous solution and what is the chemical form of At(+III), if it exists. The experimental approach considers that a given species is characterized by its distribution coefficient (D) experimentally determined in a biphasic system. The change in speciation arising from a change in experimental conditions is observed by a change in D value. The theoretical approach involves quasi-relativistic quantum chemistry calculations. The results show that At at the oxidation state 0 cannot exist in aqueous solution. The three oxidation states present in the range of water stability are At(-I), At(+I), and At(+III) and exist as At(-), At(+), and AtO(+), respectively, in the 1-2 pH range. The standard redox potentials of the At(+)/At(-) and AtO(+)/At(+) couples have been determined, the respective values being 0.36 +/- 0.01 and 0.74 +/- 0.01 V vs NHE.

  7. Skin tumorigenic potential of benzanthrone: prevention by ascorbic acid.

    PubMed

    Dwivedi, Neelam; Kumar, Sandeep; Ansari, Kausar M; Khanna, S K; Das, Mukul

    2013-09-01

    Benzanthrone (BA) exposed occupational workers have been found to exhibit toxicological manifestations in the skin, thus it is quite likely that long term exposure may lead to skin tumorigenicity. Thus, attempts were made to elucidate the tumor initiating and promoting potentials of pure (PBA) and commercial benzanthrone (CBA). Additionally, the preventive role of ascorbic acid (AsA) was also assessed. PBA showed tumor initiating activity while CBA demonstrated tumor initiating as well as promoting activities in two-stage mouse skin tumor protocol. Further, prior treatment of AsA to PBA and CBA followed by twice weekly application of 12-o-tetradecanoyl phorbal myristate acetate (TPA) resulted into delayed onset of tumor formation and similarly single application of 7,12-dimethylbenz [α] anthracene (DMBA) followed by twice weekly application of AsA and CBA showed an increase in the latency period. Thus, AsA showed a protective effect against CBA promoted skin tumor. Furthermore, the topical application of CBA significantly increased the levels of xenobiotic enzymes. The animals topically treated with AsA along with topical application of CBA, restored all the impairment observed in enzyme activities. Thus, this study suggested that AsA can be useful in preventing PBA and CBA induced skin tumorigenicity.

  8. Dietary potential renal Acid load in venezuelan children.

    PubMed

    López-Sayers, Mayerling; Bernal, Jennifer; López, Michelle

    2015-05-01

    Objetivo: Determinar y analizar la carga acida potencial renal de la dieta (Potential Renal Acid Load PRAL) y el patron de alimentacion de ninos entre 1 a 6 anos aparentemente sanos. Métodos: Se seleccionaron segun conveniencia a padres de 52 ninos asistentes a una consulta de ninos sanos. La calidad de la dieta y el patron de alimentacion se evaluo mediante un recordatorio de 24 horas y un cuestionario de frecuencia de alimentos. Se calculo la ingesta de macronutrientes y grupos de alimentos, como carnes, lacteos, frutas y verduras. La ingesta de nutrientes se comparo con las recomendaciones de energia y nutrientes. El PRAL se determino segun el metodo de Remer y Manz, para determinar la carga acida de la dieta. Se aplico estadistica descriptiva y correlaciones entre el PRAL, nutrientes y grupos de alimentos. Resultados: La ingesta de proteinas, de leche y de carnes fue elevada, mientras que la ingesta de rutas y hortalizas fue baja. El PRAL fue positivo en 92% de los ninos, se asocio con mayor ingesta de energia, proteinas, grasas, carne y lacteos. La ingesta de proteinas fue > 2,5 g/kg/ dia en 46,2% de los ninos. Los grupos de alimentos con mayor desequilibrio debido a exceso fueron la carne y los productos lacteos, mientras que por deficit fue el grupo de frutas y hortalizas. Conclusión: La dieta se caracteriza por una elevada carga de acido o PRAL, lo que aumenta el riesgo de acidosis sistemica y sus consecuencias metabolicas.

  9. The myeloperoxidase product hypochlorous acid generates irreversible high-density lipoprotein receptor inhibitors

    PubMed Central

    Binder, Veronika; Ljubojevic, Senka; Haybaeck, Johannes; Holzer, Michael; El-Gamal, Dalia; Schicho, Rudolf; Pieske, Burkert; Heinemann, Akos; Marsche, Gunther

    2014-01-01

    Objective Elevated levels of advanced oxidation protein products (AOPPs) have been described in several chronic inflammatory diseases, like chronic renal insufficiency, rheumatoid arthritis and atherosclerosis. Recent findings revealed that AOPPs are inhibitors of the major high-density lipoprotein (HDL) receptor, scavenger receptor class B, type 1 (SR-BI). Here we investigated what oxidation induced structural alterations convert plasma albumin into an HDL-receptor inhibitor. Approach and Results Exposure of albumin to the physiological oxidant, hypochlorous acid, generated high affinity SR-BI ligands. Protection of albumin lysine-residues prior exposure to hypochlorous acid as well as regeneration of N-chloramines after oxidation of albumin completely prevented binding of oxidized albumin to SR-BI, indicating that modification of albumin lysine-residues is required to generate SR-BI ligands. Of particular interest, N-chloramines within oxidized albumin promoted irreversible binding to SR-BI, resulting in permanent receptor blockade. We observed that the SR-BI inhibitory activity of albumin isolated from chronic kidney disease patients correlated with the content of the myeloperoxidase-specific oxidation product 3-chlorotyrosine and was associated with alterations in the composition of HDL. Conclusion Given that several potential atheroprotective activities of HDL are mediated by SR-BI, the present results raise the possibility that oxidized plasma albumin, through permanent SR-BI blockade, contributes to the pathophysiology of cardiovascular disease. PMID:23493288

  10. Acid sphingomyelinase is activated in sickle cell erythrocytes and contributes to inflammatory microparticle generation in SCD.

    PubMed

    Awojoodu, Anthony O; Keegan, Philip M; Lane, Alicia R; Zhang, Yuying; Lynch, Kevin R; Platt, Manu O; Botchwey, Edward A

    2014-09-18

    Sphingolipids are a class of lipids containing a backbone of sphingoid bases that can be produced de novo through the reaction of palmitate and serine and further metabolized through the activity of various enzymes to produce intermediates with diverse roles in cellular processes and signal transduction. One of these intermediates, sphingosine 1-phosphate (S1P), is stored at high concentrations (1 μM) in red blood cells (RBCs) and directs a wide array of cellular processes mediated by 5 known G-protein coupled receptors (S1P1-S1P5). In this study, we show that RBC membrane alterations in sickle cell disease enhance the activation acid sphingomyelinase by 13%, resulting in increased production and storage of sphingosine (2.6-fold) and S1P (3.5-fold). We also show that acid sphingomyelinase enhances RBC-derived microparticle (MP) generation. These MPs are internalized by myeloid cells and promote proinflammatory cytokine secretion and endothelial cell adhesion, suggesting that potential crosstalk between circulating inflammatory cells and MPs may contribute to the inflammation-rooted pathogenesis of the disease. Treatment with amitriptyline reduces MP generation in vitro and in vivo and might be used to mitigate inflammatory processes in sickle cell disease. PMID:25075126

  11. Assessment of Distributed Generation Potential in JapaneseBuildings

    SciTech Connect

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida,Masaru

    2005-05-25

    To meet growing energy demands, energy efficiency, renewable energy, and on-site generation coupled with effective utilization of exhaust heat will all be required. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems (or microgrids). This research investigates a method of choosing economically optimal DER, expanding on prior studies at the Berkeley Lab using the DER design optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM finds the optimal combination of installed equipment from available DER technologies, given prevailing utility tariffs, site electrical and thermal loads, and a menu of available equipment. It provides a global optimization, albeit idealized, that shows how the site energy loads can be served at minimum cost by selection and operation of on-site generation, heat recovery, and cooling. Five prototype Japanese commercial buildings are examined and DER-CAM applied to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Based on the optimization results, energy and emission reductions are evaluated. Furthermore, a Japan-U.S. comparison study of policy, technology, and utility tariffs relevant to DER installation is presented. Significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the DER-CAM results. Savings were most noticeable in the sports facility (a very favourable CHP site), followed by the hospital, hotel, and office building.

  12. Acid gradient across plasma membrane can drive phosphate bond synthesis in cancer cells: acidic tumor milieu as a potential energy source.

    PubMed

    Dhar, Gautam; Sen, Suvajit; Chaudhuri, Gautam

    2015-01-01

    Aggressive cancers exhibit an efficient conversion of high amounts of glucose to lactate accompanied by acid secretion, a phenomenon popularly known as the Warburg effect. The acidic microenvironment and the alkaline cytosol create a proton-gradient (acid gradient) across the plasma membrane that represents proton-motive energy. Increasing experimental data from physiological relevant models suggest that acid gradient stimulates tumor proliferation, and can also support its energy needs. However, direct biochemical evidence linking extracellular acid gradient to generation of intracellular ATP are missing. In this work, we demonstrate that cancer cells can synthesize significant amounts of phosphate-bonds from phosphate in response to acid gradient across plasma membrane. The noted phenomenon exists in absence of glycolysis and mitochondrial ATP synthesis, and is unique to cancer. Biochemical assays using viable cancer cells, and purified plasma membrane vesicles utilizing radioactive phosphate, confirmed phosphate-bond synthesis from free phosphate (Pi), and also localization of this activity to the plasma membrane. In addition to ATP, predominant formation of pyrophosphate (PPi) from Pi was also observed when plasma membrane vesicles from cancer cells were subjected to trans-membrane acid gradient. Cancer cytosols were found capable of converting PPi to ATP, and also stimulate ATP synthesis from Pi from the vesicles. Acid gradient created through glucose metabolism by cancer cells, as observed in tumors, also proved critical for phosphate-bond synthesis. In brief, these observations reveal a role of acidic tumor milieu as a potential energy source and may offer a novel therapeutic target.

  13. Trihalomethane formation potential of aquatic and terrestrial fulvic and humic acids: Sorption on activated carbon.

    PubMed

    Abouleish, Mohamed Y Z; Wells, Martha J M

    2015-07-15

    Humic substances (HSs) are precursors for the formation of hazardous disinfection by-products (DBPs) during chlorination of water. Various surrogate parameters have been used to investigate the generation of DBPs by HS precursors and the removal of these precursors by activated carbon treatment. Dissolved organic carbon (DOC)- and ultraviolet absorbance (UVA254)-based isotherms are commonly reported and presumed to be good predictors of the trihalomethane formation potential (THMFP). However, THMFP-based isotherms are rarely published such that the three types of parameters have not been compared directly. Batch equilibrium experiments on activated carbon were used to generate constant-initial-concentration sorption isotherms for well-characterized samples obtained from the International Humic Substances Society (IHSS). HSs representing type (fulvic acid [FA], humic acid [HA]), origin (aquatic, terrestrial), and geographical source (Nordic, Suwannee, Peat, Soil) were examined at pH6 and pH9. THMFP-based isotherms were generated and compared to determine if DOC- and UVA254-based isotherms were good predictors of the THMFP. The sorption process depended on the composition of the HSs and the chemical nature of the activated carbon, both of which were influenced by pH. Activated carbon removal of THM-precursors was pH- and HS-dependent. In some instances, the THMFP existed after UVA254 was depleted.

  14. Potential improvements in SiGe radioisotope thermoelectric generator performance

    SciTech Connect

    Mowery, A.L.

    1999-01-01

    In accordance with NASA{close_quote}s slogan: {open_quotes}Better, Cheaper, Faster,{close_quotes} this paper will address potential improvements to SiGe RTG technology to make them Better. RTGs are doubtless cheaper than {open_quotes}paper designs{close_quotes} which are better and cheaper until development, performance and safety test costs are considered. RTGs have the advantage of being fully developed and tested in the rigors of space for over twenty years. Further, unless a new system can be accelerated tested, as were the RTGs, they cannot be deployed reliably unless a number of systems have succeeded for test periods exceeding the mission lifetime. Two potential developments are discussed that can improve the basic RTG performance by 10 to 40{sup +}{percent} depending on the mission profile. These improvements could be demonstrated in years. Accelerated testing could also be performed in this period to preserve existing RTG reliability. Data from a qualification tested RTG will be displayed, while not definitive, to support the conclusions. Finally, it is anticipated that other investigators will be encouraged to suggest further modifications to the basic RTG design to improve its performance. {copyright} {ital 1999 American Institute of Physics.}

  15. Dicarboxylic acids generated by thermal alteration of kerogen and humic acids

    NASA Technical Reports Server (NTRS)

    Kawamura, Kimitaka; Kaplan, I. R.

    1987-01-01

    Significant amounts (up to 2 percent of organic geopolymers) of low-molecular-weight (LMW) dicarboxylic acids (C2-C10) have been detected during thermal alteration (270 C, 2 h) of kerogens and humic acids isolated from young or ancient lithified sediments. Their distribution is characterized by the predominance of oxalic acid followed by succinic, fumaric, and methylsuccinic acids. These acids are probably released by the breakdown of macromolecular structures, which have incorporated biogenic organic compounds, including diacids, during early digenesis in sediments. Because of their reactivity, LMW diacids may play geochemically important roles under natural conditions.

  16. Hypochlorous Acid as a Potential Wound Care Agent

    PubMed Central

    Wang, L; Bassiri, M; Najafi, R; Najafi, K; Yang, J; Khosrovi, B; Hwong, W; Barati, E; Belisle, B; Celeri, C; Robson, MC

    2007-01-01

    Objective: Hypochlorous acid (HOCl), a major inorganic bactericidal compound of innate immunity, is effective against a broad range of microorganisms. Owing to its chemical nature, HOCl has never been used as a pharmaceutical drug for treating infection. In this article, we describe the chemical production, stabilization, and biological activity of a pharmaceutically useful formulation of HOCl. Methods: Stabilized HOCl is in the form of a physiologically balanced solution in 0.9% saline at a pH range of 3.5 to 4.0. Chlorine species distribution in solution is a function of pH. In aqueous solution, HOCl is the predominant species at the pH range of 3 to 6. At pH values less than 3.5, the solution exists as a mixture of chlorine in aqueous phase, chlorine gas, trichloride (Cl3−), and HOCl. At pH greater than 5.5, sodium hypochlorite (NaOCl) starts to form and becomes the predominant species in the alkaline pH. To maintain HOCl solution in a stable form, maximize its antimicrobial activities, and minimize undesirable side products, the pH must be maintained at 3.5 to 5. Results: Using this stabilized form of HOCl, the potent antimicrobial activities of HOCl are demonstrated against a wide range of microorganisms. The in vitro cytotoxicity profile in L929 cells and the in vivo safety profile of HOCl in various animal models are described. Conclusion: On the basis of the antimicrobial activity and the lack of animal toxicity, it is predicted that stabilized HOCl has potential pharmaceutical applications in the control of soft tissue infection. PMID:17492050

  17. Large wind turbine generators. [NASA program status and potential costs

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Donovon, R. M.

    1978-01-01

    The large wind turbine portion of the Federal Wind Energy Program consists of two major project efforts: (1) the Mod-0 test bed project for supporting research technology, and (2) the large experimental wind turbines for electric utility applications. The Mod-0 has met its primary objective of providing the entire wind energy program with early operations and performance data. The large experimental wind turbines to be tested in utility applications include three of the Mod-0A (200 kW) type, one Mod-1 (2000 kW), and possibly several of the Mod-2 (2500 kW) designs. This paper presents a description of these wind turbine systems, their programmatic status, and a summary of their potential costs.

  18. Potential heat exchange fluids for use in sulfuric acid vaporizers

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Petersen, G. R.

    1979-01-01

    A series of perhalocarbons are proposed as candidate heat exchange fluids for service in thermochemical cycles for hydrogen production that involve direct contact of the fluid with sulfuric acid and vaporization of the acid. The required chemical and physical criteria of the liquids are described and the results of some preliminary high temperature test data are presented.

  19. Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting.

    PubMed

    Flege, Christian; Vogt, Felix; Höges, Simon; Jauer, Lucas; Borinski, Mauricio; Schulte, Vera A; Hoffmann, Rainer; Poprawe, Reinhart; Meiners, Wilhelm; Jobmann, Monika; Wissenbach, Konrad; Blindt, Rüdiger

    2013-01-01

    In-stent restenosis is still an important issue and stent thrombosis is an unresolved risk after coronary intervention. Biodegradable stents would provide initial scaffolding of the stenosed segment and disappear subsequently. The additive manufacturing technology Selective Laser Melting (SLM) enables rapid, parallel, and raw material saving generation of complex 3- dimensional structures with extensive geometric freedom and is currently in use in orthopedic or dental applications. Here, SLM process parameters were adapted for poly-L-lactid acid (PLLA) and PLLA-co-poly-ε-caprolactone (PCL) powders to generate degradable coronary stent prototypes. Biocompatibility of both polymers was evidenced by assessment of cell morphology and of metabolic and adhesive activity at direct and indirect contact with human coronary artery smooth muscle cells, umbilical vein endothelial cells, and endothelial progenitor cells. γ-sterilization was demonstrated to guarantee safety of SLM-processed parts. From PLLA and PCL, stent prototypes were successfully generated and post-processing by spray- and dip-coating proved to thoroughly smoothen stent surfaces. In conclusion, for the first time, biodegradable polymers and the SLM technique were combined for the manufacturing of customized biodegradable coronary artery stent prototypes. SLM is advocated for the development of biodegradable coronary PLLA and PCL stents, potentially optimized for future bifurcation applications.

  20. Generation of benzyne from benzoic acid using C-H activation.

    PubMed

    Cant, Alastair A; Roberts, Lee; Greaney, Michael F

    2010-12-01

    ortho C-H activation of benzoic acids with Pd(II) generates an oxapalladacycle that can decarboxylate to produce a palladium-associated aryne. The arynes then undergo [2+2+2] trimerisation to afford triphenylenes.

  1. Iodometric determination of ascorbic acid by controlled potential coulometry.

    PubMed

    Karlsson, R

    1975-12-01

    An iodometric method for the determination of ascorbic acid has been devised. The method is based on previously developed coulometric instrumentation. The stability of different ascorbic acid solutions has been studied and the best conditions have been established. Ascorbic acid has been determined in different kinds of samples but with the main interest on pharmaceutical preparations. Speqial regard has also been paid to the other constituents in such samples, with respect to possible interferences. The error of the coulometric method is about 0.1% and the time of an analysis is in the range 2-6 min.

  2. Diabatic heating fields and the generation of available potential energy during FGGE

    NASA Technical Reports Server (NTRS)

    Salstein, David A.; Rosen, Richard D.; Baker, Wayman E.; Kalnay, Eugenia

    1986-01-01

    Global diabatic heating is estimated using fields of directly computed heating components, in particular those due to shortwave radiation, longwave radiation, sensible heating, and latent heating produced every 6 hours. The role of average fields of diabatic heating in the generation of available potential energy is examined. It is observed that latent heating is most significant in generating available potential energy.

  3. A Review on Protocatechuic Acid and Its Pharmacological Potential

    PubMed Central

    Kakkar, Sahil; Bais, Souravh

    2014-01-01

    Flavonoids and polyphenols are heterocyclic molecules that have been associated with beneficial effects on human health, such as reducing the risk of various diseases like cancer, diabetes, and cardiovascular and brain diseases. Protocatechuic acid (PCA) is a type of widely distributed naturally occurring phenolic acid. PCA has structural similarity with gallic acid, caffeic acid, vanillic acid, and syringic acid which are well-known antioxidant compounds. More than 500 plants contain PCA as active constituents imparting various pharmacological activity and these effects are due to their antioxidant activities, along with other possible mechanisms, such as anti-inflammatory properties and interaction with several enzymes. Over the past two decades, there have been an increasing number of publications on polyphenols and flavonoids, which demonstrate the importance of understanding the chemistry behind the antioxidant activities of both natural and synthesized compounds, considering the benefits from their dietary ingestion as well as pharmacological use. This work aims to review the pharmacological effects of PCA molecules in humans and the structural aspects that contribute to these effects. PMID:25006494

  4. The potential economic impact of constructing and operating solar power generation facilities in Nevada

    SciTech Connect

    Schwer, R. K.; Riddel, M.

    2004-02-01

    Nevada has a vast potential for electricity generation using solar power. An examination of the stock of renewable resources in Nevada proves that the state has the potential to be a leader in renewable-electric generation--one of the best in the world. This study provides estimates on the economic impact in terms of employment, personal income, and gross state product (GSP) of developing a portion of Nevada's solar energy generation resources.

  5. On the potential high acid deposition in northeastern China

    NASA Astrophysics Data System (ADS)

    Cao, Junji; Tie, Xuexi; Dabberdt, Walter F.; Jie, Tang; Zhao, Zhuzi; An, Zhisheng; Shen, Zhenxing; Feng, Yinchang

    2013-05-01

    is an acid deposition conundrum in China: contrary to conventional wisdom, extremely high ambient sulfate concentrations in northeastern China are not always accompanied by correspondingly high acidities. To investigate this discrepancy, data from two independent sets of in situ field measurements were analyzed along with Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite observations and Model for Ozone and Related chemical Tracers (MOZART) chemical transport model calculations. The field measurements included soluble aerosol ion concentrations and pH and particulate data from 11 cities, as well as pH measurement data from 74 sites in China. This study explores the basis for and the impacts of the large discrepancy in northeastern China between the major acidity precursors (SO2 and NOx) and measured acidity levels as indicated by pH values. There are extremely high SO2 emissions and ambient concentrations in northeastern China, while the corresponding acidity is unusually low (high pH) in this region. This is inconsistent with the usual situation where high-acidity precursor pollutants result in low pH (high acidity) values and acid rain conditions. In other regions, such as southern China and the United States, high SO2 concentrations are typically well correlated with high acidities. Using measured soluble particle measurements (including both positively and negatively charged ions), it is seen that there are high values of alkaline ions in northeastern China that play an important role in neutralizing acidity in this region. This result strongly suggests that the high alkaline concentrations, especially Ca2+, increase warm season pH values by about 0.5 in northern China, partially explaining the inconsistency between sulfate concentrations and acidity. This has a very important implication for acid rain mitigation—especially in northeastern China. However, there are additional issues pertaining to the precursor-acidity

  6. Potential of chiral anion-exchangers operated in various subcritical fluid chromatography modes for resolution of chiral acids.

    PubMed

    Pell, Reinhard; Lindner, Wolfgang

    2012-07-01

    Anion-exchange-type chiral stationary phases (CSPs) derived from quinine or quinidine were applied in subcritical fluid chromatography (SFC) for the direct separation of chiral acidic compounds. Employing subcritical (sc) mobile phase modes (CO₂ + methanol as co-solvent and acids and bases as additives) first the influence of type and amount of acidic and basic additives on separation performance was investigated. Secondly, water was tested as a neutral additive and the influence of temperature variation on enantioselectivity was studied. Thirdly, we could chromatographically confirm that the often verbalized "inherent acidity" of sc CO₂ + methanol is manifested by the in situ formation of methylcarbonic acids in the sc mobile phase and thus functioning as acidic additive. Accordingly the dissociated methylcarbonic acid, acting as a counterion, enables an anion exchange mechanism between the cationic CSP and the corresponding acidic analyte. In the absence of a dissociable acid in the mobile phase such an ion exchange mode would not work following a stoichiometric displacement model. This finding is further corroborated by the use of ammonia in methanol as co-solvent thus generating in situ the ammonium salt of methylcarbonic acid. In summary, we report on ion-exchange mediated chromatographic separations in SFC modes by merely using (i) sc CO₂ and MeOH, (ii) sc CO₂ and ammonia in MeOH, and (iii) sc CO₂ and MeOH plus acids and bases as additives. Comparisons to HPLC mode have been undertaken to evaluate merits and limitations. This mode exhibits high potential for preparative chromatography of chiral acids combining pronounced enantioselectivity with high column loadability and avoiding possibly troublesome mobile phase additives, as the in situ formed methylcarbonic acid disintegrates to CO₂ and methanol upon pressure release.

  7. Hypochlorous Acid Generated by Neutrophils Inactivates ADAMTS13

    PubMed Central

    Wang, Yi; Chen, Junmei; Ling, Minhua; López, José A.; Chung, Dominic W.; Fu, Xiaoyun

    2015-01-01

    ADAMTS13 is a plasma metalloproteinase that cleaves large multimeric forms of von Willebrand factor (VWF) to smaller, less adhesive forms. ADAMTS13 activity is reduced in systemic inflammatory syndromes, but the cause is unknown. Here, we examined whether neutrophil-derived oxidants can regulate ADAMTS13 activity. We exposed ADAMTS13 to hypochlorous acid (HOCl), produced by a myeloperoxidase-H2O2-Cl− system, and determined its residual proteolytic activity using both a VWF A2 peptide substrate and multimeric plasma VWF. Treatment with 25 nm myeloperoxidase plus 50 μm H2O2 reduced ADAMTS13 activity by >85%. Using mass spectrometry, we demonstrated that Met249, Met331, and Met496 in important functional domains of ADAMTS13 were oxidized to methionine sulfoxide in an HOCl concentration-dependent manner. The loss of enzyme activity correlated with the extent of oxidation of these residues. These Met residues were also oxidized in ADAMTS13 exposed to activated human neutrophils, accompanied by reduced enzyme activity. ADAMTS13 treated with either neutrophil elastase or plasmin was inhibited to a lesser extent, especially in the presence of plasma. These observations suggest that oxidation could be an important mechanism for ADAMTS13 inactivation during inflammation and contribute to the prothrombotic tendency associated with inflammation. PMID:25422322

  8. Potential heat exchange fluids for use in sulfuric acid vaporizers

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Petersen, G. R.

    1981-01-01

    A series of liquids have been screened as candidate heat exchange fluids for service in thermochemical cycles that involve the vaporization of sulfuric acid. The required chemical and physical criteria of the liquids is described with the results of some preliminary high temperature test data presented.

  9. Structurally modified fatty acids - clinical potential as tracers of metabolism

    SciTech Connect

    Dudczak, R.; Schmoliner, R.; Angelberger, P.; Knapp, F.F.; Goodman, M.M.

    1985-01-01

    Recently 15-p-iodophenyl-betamethyl-pentadecanoic acid (BMPPA) was proposed for myocardial scintigraphy, as possible probe of metabolic processes other than ..beta..-oxidation. In 19 patients myocardial scintigraphy was done after i.v. BMPPA (2 to 4 mCi). Data were collected (LAO 45/sup 0//14; anterior/5) for 100 minutes in the fasted patients. From heart (H) and liver (L) organ to background (BG) ratios were calculated, and the elimination (E) behavior was analyzed from BG (V. cava region) corrected time activity curves. In 10 patients plasma and urine were examined. By CHCl/sub 3//MeOH extraction of plasma samples (90 min. pi) both in water and in organic medium soluble catabolites were found. TLC fractionation showed that those were co-migrating, compared to standards, with benzoic acid, BMPPA and triglycerides. In urine (0 to 2h pi: 4.1% dose) hippuric acid was found. It is concluded that BMPPA is a useful agent for myocardial scintigraphy. Its longer retention in the heart compared to unbranched radioiodinated fatty acids may facilitate SPECT studies. Rate of elimination and plasma analysis indicate the metabolic breakdown of BMPPA. Yet, the complexity of the supposed mechanism may impede curve interpretation in terms of specific metabolic pathways. 19 refs., 5 tabs.

  10. System-level understanding of the potential acid-tolerance components of Acidithiobacillus thiooxidans ZJJN-3 under extreme acid stress.

    PubMed

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2015-09-01

    In previous study, two extremely acidophilic strains Acidithiobacillus thiooxidans ZJJN-3 (collection site: bioleaching leachate) and ZJJN-5 (collection site: bioleaching wastewater) were isolated from a typical industrial bio-heap in China. Here, we unraveled the potential acid-tolerance components of ZJJN-3 by comparing the physiological differences with ZJJN-5 under different acid stresses. The parameters used for comparison included intracellular pH (pHin), capsule morphology, fatty acid composition of cell membrane, transcription of key molecular chaperones, H(+)-ATPase activities and NAD(+)/NADH ratio. It was indicated that the acid-tolerance of A. thiooxidans ZJJN-3 was systematically regulated. Capsule first thickened and then shed off along with increased acid stress. Cell membrane maintained the intracellular stability by up-regulating the proportion of unsaturated fatty acid and cyclopropane fatty acids. Meanwhile, the transcription of key repair molecular chaperones (GrpE-DnaK-DnaJ) was up-regulated by 2.2-3.5 folds for ensuring the proper folding of peptide. Moreover, low pHin promoted ZJJN-3 to biosynthesize more H(+)-ATPase for pumping H(+) out of cells. Furthermore, the NAD(+)/NADH ratio increased due to the decreased H(+) concentration. Based on the above physiological analysis, the potential acid-tolerance components of A. thiooxidans ZJJN-3 were first proposed and it would be useful for better understanding how these extremophiles responded to the high acid stress.

  11. Oxygen dependency of one-electron reactions generating ascorbate radicals and hydrogen peroxide from ascorbic acid.

    PubMed

    Boatright, William L

    2016-04-01

    The effect of oxygen on the two separate one-electron reactions involved in the oxidation of ascorbic acid was investigated. The rate of ascorbate radical (Asc(-)) formation (and stability) was strongly dependent on the presence of oxygen. A product of ascorbic acid oxidation was measurable levels of hydrogen peroxide, as high as 32.5 μM from 100 μM ascorbic acid. Evidence for a feedback mechanism where hydrogen peroxide generated during the oxidation of ascorbic acid accelerates further oxidation of ascorbic acid is also presented. The second one-electron oxidation reaction of ascorbic acid leading to the disappearance of Asc(-) was also strongly inhibited in samples flushed with argon. In the range of 0.05-1.2 mM ascorbic acid, maximum levels of measurable hydrogen peroxide were achieved with an initial concentration of 0.2 mM ascorbic acid. Hydrogen peroxide generation was greatly diminished at ascorbic acid levels of 0.8 mM or above.

  12. Envisioning an enzymatic Diels-Alder reaction by in situ acid-base catalyzed diene generation.

    PubMed

    Linder, Mats; Johansson, Adam Johannes; Manta, Bianca; Olsson, Philip; Brinck, Tore

    2012-06-01

    We present and evaluate a new and potentially efficient route for enzyme-mediated Diels-Alder reactions, utilizing general acid-base catalysis. The viability of employing the active site of ketosteroid isomerase is demonstrated.

  13. The anti-tumor potential of zoledronic acid.

    PubMed

    Croucher, P; Jagdev, S; Coleman, R

    2003-08-01

    Bone is a favorable microenvironment for tumor cell colonization because of abundant growth factors released during active bone resorption. Bisphosphonates can dramatically affect the ability of tumor cells to grow in bone by inhibiting osteoclast-mediated bone resorption and by depriving tumors of growth-promoting signals. Moreover, bisphosphonates have direct anti-tumor effects in vitro via induction of apoptosis. Zoledronic acid is a nitrogen-containing bisphosphonate that has demonstrated potent anti-tumor activity in vitro and in vivo. In vitro studies have provided important clues as to the molecular mechanisms by which zoledronic acid induces apoptosis of human breast cancer cell lines. Studies in multiple myeloma and breast cancer models have shed further light on the possible mechanisms underlying the in vivo anti-tumor effects of zoledronic acid. These studies have led to the development of novel strategies to target specific molecular pathways involved in osteoclast maturation and activity, tumor cell metastasis, and tumor growth and survival. The clinical application of these strategies may ultimately prevent bone metastasis.

  14. Phytic acid suppresses ischemia-induced hydroxyl radical generation in rat myocardium.

    PubMed

    Obata, Toshio; Nakashima, Michiko

    2016-03-01

    The present study examined whether ischemia-reperfusion-induced hydroxyl radical (·OH) generation was attenuated by myo-inositol hexaphosphoric acid (phytic acid). A flexibly mounted microdialysis technique was used to detect the generation of ·OH in in vivo rat hearts. To measure the level of ·OH, sodium salicylate in Ringer's solution (0.5mM or 0.5 nmol/μl/min) was infused directly through a microdialysis probe to detect the generation of ·OH as reflected by the nonenzymatic formation of 2,3-dihydroxybenzoic acid (2,3-DHBA). To confirm the generation of ·OH by Fenton-type reaction, iron(II) was infused through a microdialysis probe. A positive linear correlation between iron(II) and the formation of 2,3-DHBA (R(2)=0.983) was observed. However, the level of 2,3-DHBA in norepinephrine (100 μM) plus phytic acid (100 μM) treated group were significantly lower than those observed in norepinephrine-only-treated group (n=6, *p<0.05). To examine the effect of phytic acid on ischemia-reperfusion-induced ·OH generation, the heart was subjected to myocardial ischemia for 15 min by occlusion of the left anterior descending coronary artery (LAD). When the heart was reperfused, the normal elevation of 2,3-DHBA in the heart dialysate was not observed in animals pretreated with phytic acid. These results suggest that phytic acid is associated with antioxidant effect due to the suppression of iron-induced ·OH generation.

  15. Antiviral Potential of Selected Starter Cultures, Bacteriocins and D,L-Lactic Acid.

    PubMed

    Lange-Starke, Anett; Petereit, A; Truyen, U; Braun, P G; Fehlhaber, K; Albert, T

    2014-03-01

    The antiviral potential of selected bacteria species [lactic acid bacteria (LAB) and micrococcaceae] was examined. By this, the effect of their cell-free supernatants as well as of certain species-related metabolites (sakacin A, nisin, and lactic acid) was investigated on different viruses after exposure at 24 °C for 3 days. Viruses were incubated with supernatants and metabolites in a dilution ratio of 1:10. Data for antiviral effects towards murine norovirus S99 (MNV), influenza A virus A/WSN/33 (H1N1), Newcastle disease virus Montana (NDV) and feline herpesvirus KS 285 (FHV) were generated in vitro simulating pH and temperature conditions according to raw sausage fermentations. Investigations showed no antiviral effect of sakacin A and nisin on MNV, H1N1, FHV and NDV. Furthermore, the antiviral potential of D,L-lactic acid was determined for MNV and H1N1. At raw sausage-related pH values (5.0-6.2) it could be shown that the virus titre for MNV and H1N1 was reduced by a maximum of 3.25 log and 2.5 log units, respectively. In addition, 29 culture supernatants of different bacteria species, mainly LAB and staphylococci, were tested for their antiviral activity against MNV. Only the cell-free supernatant of a Lb. curvatus strain showed a higher virus titre reduction of MNV by 1.25 log units compared to the control. Further studies on the characterisation of this cell-free supernatant were carried out, however, the antiviral substance could not be identified so far. PMID:24297091

  16. Green synthesis of covellite nanocrystals using biologically generated sulfide: potential for bioremediation systems.

    PubMed

    da Costa, J P; Girão, Ana Violeta; Lourenço, João P; Monteiro, O C; Trindade, Tito; Costa, Maria Clara

    2013-10-15

    This work describes the synthesis of CuS powders in high yield and via an environmentally friendly and straightforward process, under ambient conditions (temperature and pressure), by adding to aqueous copper (II) a nutrient solution containing biologically generated sulfide from sulfate-reducing bacteria (SRB). The powders obtained were composed of CuS (covellite) nanoparticles (NPs) exhibiting a spheroid morphology (<5 nm). The relevance of this method to obtain CuS supported solid substrates has been demonstrated by performing the synthesis in the presence of TiO2 and SiO2 submicron particles. We further extended the work carried out, which substantiates the potential of using biogenic sulfide for the production of covellite nanocrystals and composites, using the effluent of a bioremediation column. Hence, such process results in the synthesis of added value products obtained from metal rich effluents, such as metallurgical and industrial ones, or Acid Mine Drainage (AMD), when associated with bioremediation processes. PMID:23747373

  17. Potential adverse effects of omega-3 Fatty acids in dogs and cats.

    PubMed

    Lenox, C E; Bauer, J E

    2013-01-01

    Fish oil omega-3 fatty acids, mainly eicosapentaenoic acid and docosahexaenoic acid, are used in the management of several diseases in companion animal medicine, many of which are inflammatory in nature. This review describes metabolic differences among omega-3 fatty acids and outlines potential adverse effects that may occur with their supplementation in dogs and cats with a special focus on omega-3 fatty acids from fish oil. Important potential adverse effects of omega-3 fatty acid supplementation include altered platelet function, gastrointestinal adverse effects, detrimental effects on wound healing, lipid peroxidation, potential for nutrient excess and toxin exposure, weight gain, altered immune function, effects on glycemic control and insulin sensitivity, and nutrient-drug interactions.

  18. Electrostatic effects of surface acidic amino acid residues on the oxidation-reduction potentials of the flavodoxin from Desulfovibrio vulgaris (Hildenborough).

    PubMed

    Zhou, Z; Swenson, R P

    1995-03-14

    The flavodoxin from Desulfovibrio vulgaris (Hildenborough) is a member of a family of small, acidic proteins that contain a single noncovalently bound flavin mononucleotide (FMN) cofactor. These proteins function as low-potential one-electron transferases in bacteria. A distinguishing feature of these flavoproteins is the dramatic decrease in the midpoint potential of the semiquinone/hydroquinone couple of the FMN upon binding to the apoprotein (-172 mV for FMN free in solution versus -443 mV when bound), a perturbation thought to be essential for physiological function. The structural basis of this phenomenon is not yet thoroughly understood. In this study, the contribution of six acidic residues (Asp62, Asp63, Glu66, Asp95, Glu99, and Asp106) to the perturbation of the redox properties of the cofactor has been investigated. These residues are clustered about the FMN binding site within 13 A of the N(1) atom of the cofactor. Using oligonucleotide-directed mutagenesis, these residues were neutralized in various combinations through the substitution of asparagine for aspartate and glutamine for glutamate. Seventeen mutant flavodoxins were generated in which one to all six acidic residues were systematically neutralized, often in various spatial configurations. There was no obvious correlation between the midpoint potentials for the oxidized/semiquinone couple and general electrostatic environment, although some differences were noted. However, the midpoint potential for the semiquinone/hydroquinone couple for each of the mutants was less negative than that of the wild type. These increases are strongly correlated with the number of acid to amide substitutions, with an average contribution of about 15 mV per substitution. Collectively, the unfavorable electrostatic environment provided by these acidic residues accounts for approximately one-third of the large midpoint potential shift for the semiquinone/hydroquinone couple that typifies the flavodoxin family

  19. Electrokinetic power generation by means of streaming potentials: a mobile-ion-drain method to increase the streaming potentials.

    PubMed

    Yang, Jun; Lu, Fuzhi; Kostiuk, Larry W; Kwok, Daniel Y

    2005-04-01

    We show, by natural occurring phenomena of charge separation near the solid-liquid interface in microchannels, that electricity can be generated by forcing water through a ceramic rod with no moving part and emission. A single hand push on a syringe is our source of power which easily generates a streaming potential of over 20 V and a streaming current of 30 microA. By means of streaming potentials, two capacitors were charged and discharged alternatively to light-up two Light-Emitting-Diodes in every ten seconds. From our specific choice of liquid/solid pair, an efficiency of 0.8% was obtained. A mobile-ion-drain method is also demonstrated to increase the streaming potential.

  20. Hanford waste vitrification plant hydrogen generation study: Preliminary evaluation of alternatives to formic acid

    SciTech Connect

    King, R.B.; Bhattacharyya, N.K.; Kumar, V.

    1996-02-01

    Oxalic, glyoxylic, glycolic, malonic, pyruvic, lactic, levulinic, and citric acids as well as glycine have been evaluated as possible substitutes for formic acid in the preparation of feed for the Hanford waste vitrification plant using a non-radioactive feed stimulant UGA-12M1 containing substantial amounts of aluminum and iron oxides as well as nitrate and nitrite at 90C in the presence of hydrated rhodium trichloride. Unlike formic acid none of these carboxylic acids liberate hydrogen under these conditions and only malonic and citric acids form ammonia. Glyoxylic, glycolic, malonic, pyruvic, lactic, levulinic, and citric acids all appear to have significant reducing properties under the reaction conditions of interest as indicated by the observation of appreciable amounts of N{sub 2}O as a reduction product of,nitrite or, less likely, nitrate at 90C. Glyoxylic, pyruvic, and malonic acids all appear to be unstable towards decarboxylation at 90C in the presence of Al(OH){sub 3}. Among the carboxylic acids investigated in this study the {alpha}-hydroxycarboxylic acids glycolic and lactic acids appear to be the most interesting potential substitutes for formic acid in the feed preparation for the vitrification plant because of their failure to produce hydrogen or ammonia or to undergo decarboxylation under the reaction conditions although they exhibit some reducing properties in feed stimulant experiments.

  1. The Next Generation MOD: A Microchip Amino Acid Analyzer for Detecting Extraterrestrial Life

    NASA Technical Reports Server (NTRS)

    Mathies, R. A.; Hutt, L. D.; Bada, J. L.; Glavin, D.; Grunthaner, F. J.; Grunthaner, P. J.

    2000-01-01

    of an abiotic origin, although we have to consider the possibility that the racemic amino acids were generated from the racemization of biotically produced amino acids.

  2. Generation of aliphatic acid anions and carbon dioxide by hydrous pyrolysis of crude oils

    USGS Publications Warehouse

    Kharaka, Y.K.; Lundegard, P.D.; Ambats, G.; Evans, William C.; Bischoff, J.L.

    1993-01-01

    Two crude oils with relatively high (0.60 wt%) and low (0.18 wt%) oxygen contents were heated in the presence of water in gold-plated reactors at 300??C for 2348 h. The high-oxygen oil was also heated at 200??C for 5711 h. The compositions of aqueous organic acid anions of the oils and of the headspace gases were monitored inn order to investigate the distribution of organic acids that can be generated from liquid petroleum. The oil with higher oxygen content generated about five times as much organic anions as the other oil. The dominant organic anions produced were acetate, propionate and butyrate. Small amounts of formate, succinate, methyl succinate and oxalate were also produced. The dominant oxygen-containing product was CO2, as has been observed in similar studies on the hydrous pyrolysis of kerogen. These results indicate that a significant portion (10-30%) of organic acid anions reported i be generated by thermal alteration of oils in reservoir rocks. The bulk of organic acid anions present in formation waters, however, is most likely generated by thermal alteration of kerogen in source rocks. Kerogen is more abundant than oil in sedimentary basins and the relative yields of organic acid anions reported from the hydrous pyrolysis of kerogen are much higher than the yields obtained for the two oils. ?? 1993.

  3. Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system

    DOEpatents

    Knapp, F.F. Jr.; Lisic, E.C.; Mirzadeh, S.; Callahan, A.P.

    1993-02-16

    A generator system for providing a carrier-free radioisotope in the form of an acid comprises a chromatography column in tandem fluid connection with an ion exchange column, the chromatography column containing a charge of a radioactive parent isotope. The chromatography column, charged with a parent isotope, is eluted with an alkali metal salt solution to generate the radioisotope in the form of an intermediate solution, which is passed through the ion-exchange column to convert the radioisotope to a carrier-free acid form.

  4. Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system

    DOEpatents

    Knapp, Jr., Furn F.; Lisic, Edward C.; Mirzadeh, Saed; Callahan, Alvin P.

    1993-01-01

    A generator system for providing a carrier-free radioisotope in the form of an acid comprises a chromatography column in tandem fluid connection with an ion exchange column, the chromatography column containing a charge of a radioactive parent isotope. The chromatography column, charged with a parent isotope, is eluted with an alkali metal salt solution to generate the radioisotope in the form of an intermediate solution, which is passed through the ion-exchange column to convert the radioisotope to a carrier-free acid form.

  5. Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system

    DOEpatents

    Knapp, F.F. Jr.; Lisic, E.C.; Mirzadeh, S.; Callahan, A.P.

    1994-01-04

    A generator system has been invented for providing a carrier-free radioisotope in the form of an acid comprises a chromatography column in tandem fluid connection with an ion exchange column, the chromatography column containing a charge of a radioactive parent isotope. The chromatography column, charged with a parent isotope, is eluted with an alkali metal salt solution to generate the radioisotope in the form of an intermediate solution, which is passed through the ion-exchange column to convert the radioisotope to a carrier-free acid form. 1 figure.

  6. Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system

    DOEpatents

    Knapp, Jr., Furn F.; Lisic, Edward C.; Mirzadeh, Saed; Callahan, Alvin P.

    1994-01-01

    A generator system for providing a carrier-free radioisotope in the form of an acid comprises a chromatography column in tandem fluid connection with an ion exchange column, the chromatography column containing a charge of a radioactive parent isotope. The chromatography column, charged with a parent isotope, is eluted with an alkali metal salt solution to generate the radioisotope in the form of an intermediate solution, which is passed through the ion-exchange column to convert the radioisotope to a carrier-free acid form.

  7. Nucleic Acid Aptamers as Potential Therapeutic and Diagnostic Agents for Lymphoma

    PubMed Central

    Shum, Ka-To; Zhou, Jiehua; Rossi, John J.

    2014-01-01

    Lymphomas are cancers that arise from white blood cells and usually present as solid tumors. Treatment of lymphoma often involves chemotherapy, and can also include radiotherapy and/or bone marrow transplantation. There is an un-questioned need for more effective therapies and diagnostic tool for lymphoma. Aptamers are single stranded DNA or RNA oligonucleotides whose three-dimensional structures are dictated by their sequences. The immense diversity in function and structure of nucleic acids enable numerous aptamers to be generated through an iterative in vitro selection technique known as Systematic Evolution of Ligands by EXponential enrichment (SELEX). Aptamers have several biochemical properties that make them attractive tools for use as potential diagnostic and pharmacologic agents. Isolated aptamers may directly inhibit the function of target proteins, or they can also be formulated for use as delivery agents for other therapeutic or imaging cargoes. More complex aptamer identification methods, using whole cancer cells (Cell-SELEX), may identify novel targets and aptamers to affect them. This review focuses on recent advances in the use of nucleic acid aptamers as diagnostic and therapeutic agents and as targeted delivery carriers that are relevant to lymphoma. Some representative examples are also discussed. PMID:25057429

  8. Pyrite microencapsulation: Potential for abatement of acid mine drainage

    SciTech Connect

    Seta, A.K.; Evangelou, V.P.

    1996-12-31

    Oxidation of pyrite in mining waste or overburden is the main source of acid mine drainage (AMD) production which causes major environmental pollution. Presently, the most common method of controlling AMD problems is through the mixing alkaline substances, such as limestone, with the AMD producing materials. However, the effectiveness of this method is still questionable. The main reason for this is that the surface of pyrite particles in mining waste are still exposed to the atmospheric O{sub 2} after treatment. Experimental evidence on novel pyrite microencapsulation technologies currently under development in our laboratory are presented. It was demonstrated that these technologies, which include ferric hydroxide-phosphate-coatings and ferric-hydroxide-silica coatings, could effectively protect pyrite from oxidation.

  9. Assessment of nanofiltration and reverse osmosis potentialities to recover metals, sulfuric acid, and recycled water from acid gold mining effluent.

    PubMed

    Ricci, Bárbara C; Ferreira, Carolina D; Marques, Larissa S; Martins, Sofia S; Amaral, Míriam C S

    2016-01-01

    This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (<88%) when conducted in pH values higher than 1. Thus, sequential use of NF and RO was proved to be a promising treatment for sulfuric acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water. PMID:27438241

  10. The Streaming Potential Generated by Flow of Wet Steam in Capillary Tubes

    SciTech Connect

    Marsden, S.S. Jr.; Tyran, Craig K.

    1986-01-21

    For a constant pressure differential, the flow of wet steam generated electric potentials which increased with time and did not reach equilibrium values. These potentials were found to increase to values greater than 100 volts. The reason for this kind of potential build-up behavior was the presence of tiny flowing water slugs which were interspersed with electrically nonconductive steam vapor slugs. The measured electric potential for wet steam increased with pressure differential, but the relationship was not linear. The increase in potential with pressure drop was attributed both to an increase in fluid flow rate and changes in the wet steam quality.

  11. Natural acidity of waters in podzolized soils and potential impacts from acid precipitation

    SciTech Connect

    Stednick, J.D.; Johnson, D.W.

    1982-01-01

    Nutrient movements through sites in southeast Alaska and Washington were documented to determine net changes in chemical composition of precipitation water as it passed through a forest soil and became stream-flow. These sites were not subject to acid precipitation (rainfall pH 5.8 to 7.2), yet soil water was acidified to 4.2 by natural organic acid-forming processes in the podzol soils. Organic acids precipitated in the subsoils, allowing a pH increase. Streamwater pH ranged from 6.5 to 7.2 indicating a natural buffering capacity that may exceed any additional acid input from acid rain. Precipitation composition was dominated by calcium, magnesium, sodium, and chloride due to the proximity of the ocean at the southeast Alaska site. Anionic constituents of the precipitation were dominated by bicarbonate at the Washington site. Soil podzolization processes concurrently increased solution color and iron concentrations in the litter and surface horizons leachates. The anion flux through the soil profile was dominated by chloride and sulfate at the southeast Alaska site, whereas at the Washington site anion flux appeared to be dominated by organic acids. Electroneutrality calculations indicated a cation deficit for the southeast Alaska site.

  12. Natural acidity of waters in podzolized soils and potential impacts from acid precipitation

    SciTech Connect

    Stednick, J.D.; Johnson, D.W.

    1982-01-01

    Nutrient movements through sites in southeast Alaska and Washington were documented to determine net changes in chemical composition of precipitation water as it passed through a forest soil and became stream flow. These sites were not subject to acid precipitation (rainfall pH 5.8 to 7.2), yet soil water was acidified to 4.2 by natural organic acid forming processes in the podzol soils. Organic acids precipitated in the subsoils, allowing a pH increase. Stream water pH ranged from 6.5 to 7.2 indicating a natural buffering capacity that may exceed any additional acid input from acid rain. Precipitation composition was dominated by magnesium, sodium, and chloride due to the proximity of the ocean at the southeast Alaska site. Anionic constituents of the precipitation were dominated by bicarbonate at the Washington site. Soil podzolization processes concurrently increased solution color and iron concentrations in the litter and surface horizons leachates. The anion flux through the soil profile was dominated by chloride and sulfate at the southwast Alaska site, whereas at the Washington site anion flux appeared to be dominated by organic acids. Electroneutrality calculations indicated a cation deficit for the southeast Alaska site. 10 references, 2 tables.

  13. Espresso coffees, caffeine and chlorogenic acid intake: potential health implications.

    PubMed

    Crozier, Thomas W M; Stalmach, Angelique; Lean, Michael E J; Crozier, Alan

    2012-01-01

    HPLC analysis of 20 commercial espresso coffees revealed 6-fold differences in caffeine levels, a 17-fold range of caffeoylquinic acid contents, and 4-fold differences in the caffeoylquinic acid : caffeine ratio. These variations reflect differences in batch-to-batch bean composition, possible blending of arabica with robusta beans, as well as roasting and grinding procedures, but the predominant factor is likely to be the amount of beans used in the coffee-making/barista processes. The most caffeine in a single espresso was 322 mg and a further three contained >200 mg, exceeding the 200 mg day(-1) upper limit recommended during pregnancy by the UK Food Standards Agency. This snap-shot of high-street expresso coffees suggests the published assumption that a cup of strong coffee contains 50 mg caffeine may be misleading. Consumers at risk of toxicity, including pregnant women, children and those with liver disease, may unknowingly ingest excessive caffeine from a single cup of espresso coffee. As many coffee houses prepare larger volume coffees, such as Latte and Cappuccino, by dilution of a single or double shot of expresso, further study on these products is warranted. New data are needed to provide informative labelling, with attention to bean variety, preparation, and barista methods.

  14. Chitosan grafted monomethyl fumaric acid as a potential food preservative.

    PubMed

    Khan, Imran; Ullah, Shafi; Oh, Deog-Hwan

    2016-11-01

    The present study aims at in vitro antibacterial and antioxidant activity evaluation of chitosan modified with monomethyl fumaric acid (MFA) using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as mediator. Three different kinds of chitosan derivatives Ch-Ds-1,Ch-Ds-2 and Ch-Ds-3 were synthesized by feeding different concentration of MFA. The chemical structures of resulting materials were characterized by (1)H NMR, (13)C NMR, HR-XRD, FT-IR and TNBS assay. The results showed that Ch-Ds-1, Ch-Ds-2 and Ch-Ds-3 were successfully synthesized. The % amino groups of chitosan modified by MFA were evaluated by TNBS assay and ranging from 1.82±0.05% to 7.88±0.04%. All the chitosan derivatives are readily soluble in water and swelled by dimethyl sulfoxide (DMSO), toluene and dimethyl formamide (DMF). The antioxidant activity for all the chitosan derivatives have been significantly improved (P<0.05) compared to the chitosan. Upon antibacterial activity at pH 4.0, all the chitosan derivatives showed significant (P<0.05) antibacterial activity against Gram positive Staphylococcus aureus, Listeria monocytogenes strains and Gram negative Escherichia coli and Salmonella enteritidis strains compared to chitosan. In conclusion, MFA modified chitosan has shown enhanced activities along with solubility, and could be used as a novel food preservative and packaging material for long time food safety and security.

  15. Ferulic Acid: Therapeutic Potential Through Its Antioxidant Property

    PubMed Central

    Srinivasan, Marimuthu; Sudheer, Adluri R.; Menon, Venugopal P.

    2007-01-01

    There has been considerable public and scientific interest in the use of phytochemicals derived from dietary components to combat human diseases. They are naturally occurring substances found in plants. Ferulic acid (FA) is a phytochemical commonly found in fruits and vegetables such as tomatoes, sweet corn and rice bran. It arises from metabolism of phenylalanine and tyrosine by Shikimate pathway in plants. It exhibits a wide range of therapeutic effects against various diseases like cancer, diabetes, cardiovascular and neurodegenerative. A wide spectrum of beneficial activity for human health has been advocated for this phenolic compound, at least in part, because of its strong antioxidant activity. FA, a phenolic compound is a strong membrane antioxidant and known to positively affect human health. FA is an effective scavenger of free radicals and it has been approved in certain countries as food additive to prevent lipid peroxidation. It effectively scavenges superoxide anion radical and inhibits the lipid peroxidation. It possesses antioxidant property by virtue of its phenolic hydroxyl group in its structure. The hydroxy and phenoxy groups of FA donate electrons to quench the free radicals. The phenolic radical in turn forms a quinone methide intermediate, which is excreted via the bile. The past few decades have been devoted to intense research on antioxidant property of FA. So, the present review deals with the mechanism of antioxidant property of FA and its possible role in therapeutic usage against various diseases. PMID:18188410

  16. Chitosan grafted monomethyl fumaric acid as a potential food preservative.

    PubMed

    Khan, Imran; Ullah, Shafi; Oh, Deog-Hwan

    2016-11-01

    The present study aims at in vitro antibacterial and antioxidant activity evaluation of chitosan modified with monomethyl fumaric acid (MFA) using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as mediator. Three different kinds of chitosan derivatives Ch-Ds-1,Ch-Ds-2 and Ch-Ds-3 were synthesized by feeding different concentration of MFA. The chemical structures of resulting materials were characterized by (1)H NMR, (13)C NMR, HR-XRD, FT-IR and TNBS assay. The results showed that Ch-Ds-1, Ch-Ds-2 and Ch-Ds-3 were successfully synthesized. The % amino groups of chitosan modified by MFA were evaluated by TNBS assay and ranging from 1.82±0.05% to 7.88±0.04%. All the chitosan derivatives are readily soluble in water and swelled by dimethyl sulfoxide (DMSO), toluene and dimethyl formamide (DMF). The antioxidant activity for all the chitosan derivatives have been significantly improved (P<0.05) compared to the chitosan. Upon antibacterial activity at pH 4.0, all the chitosan derivatives showed significant (P<0.05) antibacterial activity against Gram positive Staphylococcus aureus, Listeria monocytogenes strains and Gram negative Escherichia coli and Salmonella enteritidis strains compared to chitosan. In conclusion, MFA modified chitosan has shown enhanced activities along with solubility, and could be used as a novel food preservative and packaging material for long time food safety and security. PMID:27516253

  17. Antidiabetic potential of oleanolic acid from Ligustrum lucidum Ait.

    PubMed

    Gao, Dawei; Li, Qingwang; Li, Ying; Liu, Zhihua; Liu, Zhiwei; Fan, Yusheng; Han, Zengsheng; Li, Jian; Li, Kun

    2007-11-01

    Ligustrum lucidum Ait. has been used in traditional Chinese medicine for over 1000 years because of its anti-tumor, antimutagenic, antidiabetic, and hepatoprotective properties. The aim of this study was to determine whether oleanolic acid (OA) is the principal active compound of L. lucidum responsible for its antidiabetic properties, and to examine its effect on the expression of thyroid hormones and insulin secretion, thus revealing the mechanism by which L. lucidum modulates insulin levels in diabetes. When rats with streptozotocin-induced diabetes were treated with OA (100 and 200 mg/kg body mass per day, for 40 days), the changes in blood glucose levels and in oral glucose tolerance tests showed that hypoglycemia was more pronounced in OA-treated groups than in the diabetic control rats, and that the levels of triglyceride, total cholesterol, and low-density lipoportein cholesterol in OA-treated rats were lower than those in the diabetic control rats, whose high-density lipoprotein cholesterol increased. OA-treated rats also gained weight, and exhibited increased serum insulin levels. In contrast, OA treatment did not effect the levels of thyroid hormone or TSH in rats with streptozotocin-induced diabetes. These results indicate that OA has hypoglycemic and hypolipidemic effects. OA treatment might stimulate insulin release, and consequently, results in the modulation of glucose levels and regulation of lipid metabolism. PMID:18066109

  18. Nucleic acid reactivity: challenges for next-generation semiempirical quantum models.

    PubMed

    Huang, Ming; Giese, Timothy J; York, Darrin M

    2015-07-01

    Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical (QM)/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic differential overlap and self-consistent density-functional tight-binding semiempirical models are evaluated against high-level QM benchmark calculations for seven biologically important datasets. The datasets include: proton affinities, polarizabilities, nucleobase dimer interactions, dimethyl phosphate anion, nucleoside sugar and glycosidic torsion conformations, and RNA phosphoryl transfer model reactions. As an additional baseline, comparisons are made with several commonly used density-functional models, including M062X and B3LYP (in some cases with dispersion corrections). The results show that, among the semiempirical models examined, the AM1/d-PhoT model is the most robust at predicting proton affinities. AM1/d-PhoT and DFTB3-3ob/OPhyd reproduce the MP2 potential energy surfaces of 6 associative RNA phosphoryl transfer model reactions reasonably well. Further, a recently developed linear-scaling "modified divide-and-conquer" model exhibits the most accurate results for binding energies of both hydrogen bonded and stacked nucleobase dimers. The semiempirical models considered here are shown to underestimate the isotropic polarizabilities of neutral molecules by approximately 30%. The semiempirical models also fail to adequately describe torsion profiles for the dimethyl phosphate anion, the nucleoside sugar ring puckers, and the rotations about the nucleoside glycosidic bond. The modeling of pentavalent phosphorus, particularly with thio substitutions often used experimentally as mechanistic

  19. Palladium nanoparticles synthesized by reducing species generated during a successive acidic/alkaline treatment of sucrose

    NASA Astrophysics Data System (ADS)

    Amornkitbamrung, Lunjakorn; Pienpinijtham, Prompong; Thammacharoen, Chuchaat; Ekgasit, Sanong

    2014-03-01

    Uniform spherical palladium nanoparticles with an average particle size of 4.3 ± 0.5 nm were successfully synthesized by reducing H2PdCl4 with intermediates in situ generated during a successive acidic/alkaline treatment of sucrose. A successive acidic/alkaline treatment plays an important role on converting the non-reducing sucrose into efficient reducing species containing aldehyde functionality. The Benedict's test corroborates the development and vanishing of the in situ generated reducing species upon prolonged degradation. An increase in alkalinity drastically improves the reduction efficiency. ATR FT-IR spectroscopy indicated spontaneous development of carboxylate after the alkaline treatment. Under the employed condition, small organic species with carbonyl groups (aldehyde, acid, and acid salt) were generated through the sucrose degradation before being oxidized to carbonate after an hour of the treatment. Sucrose was completely decomposed into carbonate after a 24-h successive acidic/alkaline treatment. The synthesized palladium nanoparticles express a good catalytic activity in the decolorization process of Congo red by sodium borohydride.

  20. Palladium nanoparticles synthesized by reducing species generated during a successive acidic/alkaline treatment of sucrose.

    PubMed

    Amornkitbamrung, Lunjakorn; Pienpinijtham, Prompong; Thammacharoen, Chuchaat; Ekgasit, Sanong

    2014-03-25

    Uniform spherical palladium nanoparticles with an average particle size of 4.3±0.5 nm were successfully synthesized by reducing H2PdCl4 with intermediates in situ generated during a successive acidic/alkaline treatment of sucrose. A successive acidic/alkaline treatment plays an important role on converting the non-reducing sucrose into efficient reducing species containing aldehyde functionality. The Benedict's test corroborates the development and vanishing of the in situ generated reducing species upon prolonged degradation. An increase in alkalinity drastically improves the reduction efficiency. ATR FT-IR spectroscopy indicated spontaneous development of carboxylate after the alkaline treatment. Under the employed condition, small organic species with carbonyl groups (aldehyde, acid, and acid salt) were generated through the sucrose degradation before being oxidized to carbonate after an hour of the treatment. Sucrose was completely decomposed into carbonate after a 24-h successive acidic/alkaline treatment. The synthesized palladium nanoparticles express a good catalytic activity in the decolorization process of Congo red by sodium borohydride. PMID:24309181

  1. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen.

    PubMed

    Dahiya, Shikha; Sarkar, Omprakash; Swamy, Y V; Mohan, S Venkata

    2015-04-01

    Fermentation experiments were designed to elucidate the functional role of the redox microenvironment on volatile fatty acid (VFA, short chain carboxylic acid) production and co-generation of biohydrogen (H2). Higher VFA productivity was observed at pH 10 operation (6.3g/l) followed by pH 9, pH 6, pH 5, pH 7, pH 8 and pH 11 (3.5 g/l). High degree of acidification, good system buffering capacity along with co-generation of higher H2 production from food waste was also noticed at alkaline condition. Experiments illustrated the role of initial pH on carboxylic acids synthesis. Alkaline redox conditions assist solubilization of carbohydrates, protein and fats and also suppress the growth of methanogens. Among the carboxylic acids, acetate fraction was higher at alkaline condition than corresponding neutral or acidic operations. Integrated process of VFA production from waste with co-generation of H2 can be considered as a green and sustainable platform for value-addition.

  2. Near-infrared laser-induced generation of three rare conformers of glycolic acid.

    PubMed

    Halasa, Anna; Lapinski, Leszek; Reva, Igor; Rostkowska, Hanna; Fausto, Rui; Nowak, Maciej J

    2014-07-31

    Structural transformations were induced in conformers of glycolic acid by selective excitation with monochromatic tunable near-infrared laser light. For the compound isolated in Ar matrixes, near-IR excitation led to generation of two higher-energy conformers (GAC; AAT) differing from the most stable SSC form by 180° rotation around the C-C bond. A detailed investigation of this transformation revealed that one conformer (GAC) is produced directly from the near-IR-excited most stable conformer. The other higher-energy conformer (AAT) was effectively generated only upon excitation of the primary photoproduct (GAC) with another near-IR photon. Once these higher-energy conformers of glycolic acid were generated in an Ar matrix, they could be subsequently transformed into one another upon selective near-IR excitations. Interestingly, no repopulation of the initial most stable SSC conformer occurred upon near-IR excitation of the higher-energy forms of the compound isolated in solid Ar. A dramatically different picture of near-IR-induced conformational transformations was observed for glycolic acid isolated in N2 matrixes. In this case, upon near-IR excitation, the most stable SSC form converted solely into a new conformer (SST), where the acid OH group is rotated by 180°. This conformational transformation was found to be photoreversible. Moreover, SST conformer, photoproduced in the N2 matrix, spontaneously converted to the most stable SSC form of glycolic acid, when the matrix was kept at cryogenic temperature and in the dark.

  3. Clavulanic acid inhibits MPP⁺-induced ROS generation and subsequent loss of dopaminergic cells.

    PubMed

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2012-08-21

    Clavulanic acid is a psychoactive compound that has been shown to modulate central nervous system activity. Importantly, in neurotoxin-induced animal models, clavulanic acid has been shown to improve motor function (Huh et al., 2010) suggesting that it can be neuroprotective; however, the mechanism as how clavulanic acid can induce neuroprotection is not known. We demonstrate here that clavulanic acid abrogates the effects of the neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) which mimics Parkinson's disease (PD) by inducing neurodegeneration. To further establish the mechanism we identified that clavulanic acid inhibits neurotoxin-induced loss of mitochondrial membrane potential and ROS production. Consistent with these results, neurotoxin-induced increase in Bax levels was also decreased in clavulanic acid treated cells. Importantly, neurotoxin-induced release of cytochrome c levels as well as caspase activation was also inhibited in clavulanic acid treated cells. In addition, Bcl-xl levels were also restored and the Bcl-xl/Bax ratio that is critical for inducing apoptosis was increased in clavulanic acid treated cells. Overall, these results suggest that clavulanic acid is intimately involved in inhibiting neurotoxin-induced loss of mitochondrial function and induction of apoptosis that contributes towards neuronal survival.

  4. Clavulanic acid inhibits MPP+-induced ROS generation and subsequent loss of dopaminergic cells☆

    PubMed Central

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B.

    2013-01-01

    Clavulanic acid is a psychoactive compound that has been shown to modulate central nervous system activity. Importantly, in neurotoxin-induced animal models, clavulanic acid has been shown to improve motor function (Huh et al., 2010) suggesting that it can be neuroprotective; however, the mechanism as how clavulanic acid can induce neuroprotection is not known. We demonstrate here that clavulanic acid abrogates the effects of the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) which mimics Parkinson’s disease (PD) by inducing neurodegeneration. To further establish the mechanism we identified that clavulanic acid inhibits neurotoxin-induced loss of mitochondrial membrane potential and ROS production. Consistent with these results, neurotoxin-induced increase in Bax levels was also decreased in clavulanic acid treated cells. Importantly, neurotoxin-induced release of cytochrome c levels as well as caspase activation was also inhibited in clavulanic acid treated cells. In addition, Bcl-xl levels were also restored and the Bcl-xl/Bax ratio that is critical for inducing apoptosis was increased in clavulanic acid treated cells. Overall, these results suggest that clavulanic acid is intimately involved in inhibiting neurotoxin-induced loss of mitochondrial function and induction of apoptosis that contributes towards neuronal survival. PMID:22750587

  5. Fluoxetine potentiation of omega-3 fatty acid antidepressant effect: evaluating pharmacokinetic and brain fatty acid-related aspects in rodents.

    PubMed

    Laino, Carlos Horacio; Garcia, Pilar; Podestá, María Fernanda; Höcht, Christian; Slobodianik, Nora; Reinés, Analía

    2014-10-01

    We previously reported that combined fluoxetine administration at antidepressant doses renders additive antidepressant effects, whereas non-antidepressant doses potentiate the omega-3 fatty acid antidepressant effect. In the present study, we aimed to evaluate putative pharmacokinetic and brain omega-3 fatty acid-related aspects for fluoxetine potentiation of omega-3 fatty acid antidepressant effect in rats. Coadministration of omega-3 fatty acids with a non-antidepressant dose of fluoxetine (1 mg/kg day) failed to affect both brain fluoxetine concentration and norfluoxetine plasma concentration profile. Fluoxetine plasma concentrations remained below the sensitivity limit of the detection method. Either antidepressant (10 mg/kg day) or non-antidepressant (1 mg/kg day) doses of fluoxetine in combination with omega-3 fatty acids increased hippocampal docosapentaenoic acid (DPA, 22:5 omega-3) levels. Although individual treatments had no effects on DPA concentration, DPA increase was higher when omega-3 were combined with the non-antidepressant dose of fluoxetine. Chronic DPA administration exerted antidepressant-like effects in the forced swimming test while increasing hippocampal docosahexaenoic (22:6 omega-3) and DPA levels. Our results suggest no pharmacokinetic interaction and reveal specific hippocampal DPA changes after fluoxetine and omega-3 combined treatments in our experimental conditions. The DPA role in the synergistic effect of fluoxetine and omega-3 combined treatments will be for sure the focus of future studies. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:3316-3325, 2014.

  6. Acceleration of Enantioselective Cycloadditions Catalyzed by Second-Generation Chiral Oxazaborolidinium Triflimidates by Biscoordinating Lewis Acids.

    PubMed

    Thirupathi, Barla; Breitler, Simon; Mahender Reddy, Karla; Corey, E J

    2016-08-31

    The activation of second-generation fluorinated oxazaborolidines by the strong acid triflimide (Tf2NH) in CH2Cl2 solution leads to highly active chiral Lewis acids that are very effective catalysts for (4 + 2) cycloaddition. We report herein that this catalytic activity can be further enhanced by the use of Tf2NH in combination with the biscoordinating Lewis acid TiCl4 or SnCl4 as a coactivator. The effective increase in acidity of an exceedingly strong protic acid is greater for biscoordinating TiCl4 and SnCl4 than for monocoordinating salts, even the strong Lewis acids AlBr3 and BBr3 in CH2Cl2 or CH2Cl2/toluene. The increase in the effective acidity of Tf2NH can be understood in terms of a stabilized cyclic anionic complex of Tf2N(-) and TiCl4, which implies a broader utility than that described here. The utility of Tf2NH-TiCl4 activation of fluorinated oxazaborolidines is documented by examples including the first enantioselective (4 + 2) cycloaddition to α,β-unsaturated acid chlorides.

  7. Effect of carbonaceous soil amendments on potential mobility of weak acid herbicides in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of carbonaceous amendments in soil has been proposed to decrease potential offsite transport of weak acid herbicides and metabolites by increasing their sorption to soil. The effects of organic olive mill waste, biochars from different feed stocks, and humic acid bound to clay on sorption of MCP...

  8. Mine Waste Technology Program. In Situ Source Control Of Acid Generation Using Sulfate-Reducing Bacteria

    EPA Science Inventory

    This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 3, In Situ Source Control of Acid Generation Using Sulfate-Reducing Bacteria, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S....

  9. PREVENTION OF ACID MINE DRAINAGE GENERATION FROM OPEN-PIT MINE HIGHWALLS

    EPA Science Inventory



    Exposed, open pit mine highwalls contribute significantly to the production of acid mine

    drainage (AMD) thus causing environmental concerns upon closure of an operating mine. Available information on the generation of AMD from open-pit mine highwalls is very limit...

  10. MINE WASTE TECHNOLOGY PROGRAM PREVENTION OF ACID MINE DRAINAGE GENERATION FROM OPEN-PIT HIGHWALLS

    EPA Science Inventory

    This document summarizes the results of Mine Waste Technology Program Activity III, Project 26, Prevention of Acid Mine Drainage Generation from Open-Pit Highwalls. The intent of this project was to obtain performance data on the ability of four technologies to prevent the gener...

  11. A meteorological potential forecast model for acid rain in Fujian Province, China.

    PubMed

    Cai, Yi Yong; Lin, Chang Cheng; Liu, Jing Xiong; Wu, De Hui; Lian, Dong Ying; Chen, Bin Bin

    2010-05-01

    Based on the acid rain and concurrent meteorological observational data during the past 10 years in Fujian Province, China, the dependence of distribution characteristics of acid rain on season, rain rate, weather pattern and dominant airflow in four regions of Fujian Province is analyzed. On the annual average, the acid rain frequency is the highest (above 40%) in the southern and mid-eastern regions, and the lowest (16.2%) in the western region. The acid rain occurs most frequently in spring and winter, and least frequent in summer. The acid rain frequency in general increases with the increase of precipitation. It also depend on the direction of dominant airflows at 850 hPa. In the mid-eastern region, more than 40% acid rains appear when the dominant wind directions are NW, W, SW, S and SE. In the southern region, high acid rain occurrence happens when the dominant wind directions are NW, W, SW and S. In the northern region, 41.8% acid rains occur when the southwesterly is pronounced. In the western region, the southwesterly is associated with a 17% acid rain rate. The examination of meteorological sounding conditions over Fuzhou, Xiamen and Shaowu cities shows that the acid rain frequency increases with increased inversion thickness. Based on the results above, a meteorological potential forecast model for acid rain is established and tested in 2007. The result is encouraging. The model provides an objective basis for the development of acid rain forecasting operation in the province.

  12. Mechanisms and potential therapeutic targets for folic acid in cardiovascular disease.

    PubMed

    Moens, An L; Vrints, Christiaan J; Claeys, Marc J; Timmermans, Jean-Pierre; Champion, Hunter C; Kass, David A

    2008-05-01

    Folic acid (FA) is a member of the B-vitamin family with cardiovascular roles in homocysteine regulation and endothelial nitric oxide synthase (eNOS) activity. Its interaction with eNOS is thought to be due to the enhancement of tetrahydrobiopterin bioavailability, helping maintain eNOS in its coupled state to favor the generation of nitric oxide rather than oxygen free radicals. FA also plays a role in the prevention of several cardiac and noncardiac malformations, has potent direct antioxidant and antithrombotic effects, and can interfere with the production of the endothelial-derived hyperpolarizing factor. These multiple mechanisms of action have led to studies regarding the therapeutic potential of FA in cardiovascular disease. To date, studies have demonstrated that FA ameliorates endothelial dysfunction and nitrate tolerance and can improve pathological features of atherosclerosis. These effects appear to be homocysteine independent but rather related to their role in eNOS function. Given the growing evidence that nitric oxide synthase uncoupling plays a major role in many cardiovascular disorders, the potential of exogenous FA as an inexpensive and safe oral therapy is intriguing and is stimulating ongoing investigations.

  13. Distribution of thiobacillus ferrooxidans and leptospirillum ferrooxidans: implications for generation of acid mine drainage

    PubMed

    Schrenk; Edwards; Goodman; Hamers; Banfield

    1998-03-01

    Although Thiobacillus ferrooxidans and Leptospirillum ferrooxidans are widely considered to be the microorganisms that control the rate of generation of acid mine drainage, little is known about their natural distribution and abundance. Fluorescence in situ hybridization studies showed that at Iron Mountain, California, T. ferrooxidans occurs in peripheral slime-based communities (at pH over 1.3 and temperature under 30 degreesC) but not in important subsurface acid-forming environments (pH 0.3 to 0.7, temperature 30 degrees to 50 degreesC). Leptospirillum ferrooxidans is abundant in slimes and as a planktonic organism in environments with lower pH. Thiobacillus ferrooxidans affects the precipitation of ferric iron solids but plays a limited role in acid generation, and neither species controls direct catalysis at low pH at this site. PMID:9488647

  14. [Effect of the initial anode potential on electricity generation in microbial fuel cell].

    PubMed

    Fan, Ming-Zhi; Liang, Peng; Cao, Xiao-Xin; Huang, Xia

    2008-01-01

    The initial anode potential of the microbial fuel cell (MFC) was changed by additional circuit in the anode chamber, and the influence of the initial anode potential on the electricigens was studied. When the initial anode potential was 350 mV (vs Hg/Hg2 Cl2), the growth of microorganisms was much slower than that of the microorganisms which grew on the anode with an initial potential of -200 mV or 200 mV (vs Hg/Hg2 Cl2). After stable electricity generation, the anode resistances of the three MFCs, which had initial anode potentials of 350 mV, 200 mV and -200 mV respectively, were 71 Omega, 43 Omega and 80 Omega. The community structures in MFCs, before and after the electricity generation, were also studied by denaturing gradient gel electrophoresis (DGGE). Clostridium sticklandii, Pseudomonas mendocina and Paenibacillus taejonensis were the three most enriched strains on the anode.

  15. Acid extraction of molybdenum, nickel and cobalt from mineral sludge generated by rainfall water at a metal recycling plant.

    PubMed

    Vemic, M; Bordas, F; Guibaud, G; Comte, S; Joussein, E; Lens, P N L; Van Hullebusch, E D

    2016-01-01

    This study investigated the leaching yields of Mo, Ni and Co from a mineral sludge of a metal recycling plant generated by rainfalls. The investigated mineral sludge had a complex heterogeneous composition, consisting of particles of settled soil combined with metal-bearing particles (produced by catalysts, metallic oxides and battery recycling). The leaching potential of different leaching reagents (stand-alone strong acids (HNO3 (68%), H2SO4 (98%) and HCl (36%)) and acid mixtures (aqua regia (nitric + hydrochloric (1:3)), nitric + sulphuric (1:1) and nitric + sulphuric + hydrochloric (2:1:1)) was investigated at changing operational parameters (solid-liquid (S/L) ratio, leaching time and temperature), in order to select the leaching reagent which achieves the highest metal leaching yields. Sulphuric acid (98% H2SO4) was found to be the leachant with the highest metal leaching potential. The optimal leaching conditions were a three-stage successive leaching at 80 °C with a leaching time of 2 h and S/L ratio of 0.25 g L(-1). Under these conditions, the achieved mineral sludge sample leaching yields were 85.5%, 40.5% and 93.8% for Mo, Ni and Co, respectively. The higher metal leaching potential of H2SO4 in comparison with the other strong acids/acid mixtures is attributed to the fact that H2SO4 is a diacidic compound, thus it has more H(+) ions, resulting in its stronger oxidizing power and corrosiveness.

  16. Acid extraction of molybdenum, nickel and cobalt from mineral sludge generated by rainfall water at a metal recycling plant.

    PubMed

    Vemic, M; Bordas, F; Guibaud, G; Comte, S; Joussein, E; Lens, P N L; Van Hullebusch, E D

    2016-01-01

    This study investigated the leaching yields of Mo, Ni and Co from a mineral sludge of a metal recycling plant generated by rainfalls. The investigated mineral sludge had a complex heterogeneous composition, consisting of particles of settled soil combined with metal-bearing particles (produced by catalysts, metallic oxides and battery recycling). The leaching potential of different leaching reagents (stand-alone strong acids (HNO3 (68%), H2SO4 (98%) and HCl (36%)) and acid mixtures (aqua regia (nitric + hydrochloric (1:3)), nitric + sulphuric (1:1) and nitric + sulphuric + hydrochloric (2:1:1)) was investigated at changing operational parameters (solid-liquid (S/L) ratio, leaching time and temperature), in order to select the leaching reagent which achieves the highest metal leaching yields. Sulphuric acid (98% H2SO4) was found to be the leachant with the highest metal leaching potential. The optimal leaching conditions were a three-stage successive leaching at 80 °C with a leaching time of 2 h and S/L ratio of 0.25 g L(-1). Under these conditions, the achieved mineral sludge sample leaching yields were 85.5%, 40.5% and 93.8% for Mo, Ni and Co, respectively. The higher metal leaching potential of H2SO4 in comparison with the other strong acids/acid mixtures is attributed to the fact that H2SO4 is a diacidic compound, thus it has more H(+) ions, resulting in its stronger oxidizing power and corrosiveness. PMID:26369315

  17. Field assessment of yeast- and oxalic Acid-generated carbon dioxide for mosquito surveillance.

    PubMed

    Harwood, James F; Richardson, Alec G; Wright, Jennifer A; Obenauer, Peter J

    2014-12-01

    Carbon dioxide (CO2) sources improve the efficacy of mosquito traps. However, traditional CO2 sources (dry ice or compressed gas) may be difficult to acquire for vector surveillance during military contingency operations. For this reason, a new and convenient source of CO2 is required. Two novel CO2 generators were evaluated in order to address this capability gap: 1) an electrolyzer that converts solid oxalic acid into CO2 gas, and 2) CO2 produced by yeast as it metabolizes sugar. The flow rate and CO2 concentration produced by each generator were measured, and each generator's ability to attract mosquitoes to BG-Sentinel™ traps during day surveillance and to Centers for Disease Control and Prevention light traps with incandescent bulbs during night surveillance was compared to dry ice and compressed gas in Jacksonville, FL. The electrolyzed oxalic acid only slightly increased the number of mosquitoes captured compared to unbaited traps. Based on the modest increase in mosquito collection for traps paired with the oxalic acid, it is not a suitable stand-in for either of the 2 traditional CO2 sources. Conversely, the yeast-generated CO2 resulted in collections with mosquito abundance and species richness more closely resembling those of the traditional CO2 sources, despite achieving a lower CO2 flow rate. Therefore, if dry ice or compressed gas cannot be acquired for vector surveillance, yeast-generated CO2 can significantly improve trap capability. PMID:25843133

  18. Utilization of biologically generated acid for drilling fluid damage removal and uniform acid placement across long formation intervals

    SciTech Connect

    Almond, S.W.; Harris, R.E.; Penny, G.S.

    1995-12-31

    A method of drilling damage removal is presented which uses biologically generated acid (BGA) as the stimulation fluid. The BGA solution is not reactive during the actual pumping stage which allows its displacement into the reservoir to be controlled by the relatively low permeability of the near wellbore damage. Catalytic generation of acid occurs at a controlled rate once the BGA has been injected into the formation and results in uniform damage removal around the near wellbore region. The ability of BGA to be generated under a variety of temperature and pressure conditions and the compatibility evaluation of BGA with a variety of commonly used oil and water based drilling muds is first presented to establish some of the operational guidelines for BGA use. Drilling damage removal studies utilizing the modified API linear conductivity flow cell and carbonate material with BGA is presented to demonstrate the effectiveness of this stimulation fluid. Dual core flow test data is then presented which shows BGA`s ability and HCL`s inability to remove drilling damage over long horizontal intervals in carbonate formations.

  19. Phenolic Acid Composition, Antiatherogenic and Anticancer Potential of Honeys Derived from Various Regions in Greece

    PubMed Central

    Spilioti, Eliana; Jaakkola, Mari; Tolonen, Tiina; Lipponen, Maija; Virtanen, Vesa; Chinou, Ioanna; Kassi, Eva; Karabournioti, Sofia; Moutsatsou, Paraskevi

    2014-01-01

    The phenolic acid profile of honey depends greatly on its botanical and geographical origin. In this study, we carried out a quantitative analysis of phenolic acids in the ethyl acetate extract of 12 honeys collected from various regions in Greece. Our findings indicate that protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid and p-coumaric acid are the major phenolic acids of the honeys examined. Conifer tree honey (from pine and fir) contained significantly higher concentrations of protocatechuic and caffeic acid (mean: 6640 and 397 µg/kg honey respectively) than thyme and citrus honey (mean of protocatechuic and caffeic acid: 437.6 and 116 µg/kg honey respectively). p-Hydroxybenzoic acid was the dominant compound in thyme honeys (mean: 1252.5 µg/kg honey). We further examined the antioxidant potential (ORAC assay) of the extracts, their ability to influence viability of prostate cancer (PC-3) and breast cancer (MCF-7) cells as well as their lowering effect on TNF- α-induced adhesion molecule expression in endothelial cells (HAEC). ORAC values of Greek honeys ranged from 415 to 2129 µmol Trolox equivalent/kg honey and correlated significantly with their content in protocatechuic acid (p<0.001), p-hydroxybenzoic acid (p<0.01), vanillic acid (p<0.05), caffeic acid (p<0.01), p-coumaric acid (p<0.001) and their total phenolic content (p<0.001). Honey extracts reduced significantly the viability of PC-3 and MCF-7 cells as well as the expression of adhesion molecules in HAEC. Importantly, vanillic acid content correlated significantly with anticancer activity in PC-3 and MCF-7 cells (p<0.01, p<0.05 respectively). Protocatechuic acid, vanillic acid and total phenolic content correlated significantly with the inhibition of VCAM-1 expression (p<0.05, p<0.05 and p<0.01 respectively). In conclusion, Greek honeys are rich in phenolic acids, in particular protocatechuic and p-hydroxybenzoic acid and exhibit significant antioxidant, anticancer and

  20. Phenolic acid composition, antiatherogenic and anticancer potential of honeys derived from various regions in Greece.

    PubMed

    Spilioti, Eliana; Jaakkola, Mari; Tolonen, Tiina; Lipponen, Maija; Virtanen, Vesa; Chinou, Ioanna; Kassi, Eva; Karabournioti, Sofia; Moutsatsou, Paraskevi

    2014-01-01

    The phenolic acid profile of honey depends greatly on its botanical and geographical origin. In this study, we carried out a quantitative analysis of phenolic acids in the ethyl acetate extract of 12 honeys collected from various regions in Greece. Our findings indicate that protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid and p-coumaric acid are the major phenolic acids of the honeys examined. Conifer tree honey (from pine and fir) contained significantly higher concentrations of protocatechuic and caffeic acid (mean: 6640 and 397 µg/kg honey respectively) than thyme and citrus honey (mean of protocatechuic and caffeic acid: 437.6 and 116 µg/kg honey respectively). p-Hydroxybenzoic acid was the dominant compound in thyme honeys (mean: 1252.5 µg/kg honey). We further examined the antioxidant potential (ORAC assay) of the extracts, their ability to influence viability of prostate cancer (PC-3) and breast cancer (MCF-7) cells as well as their lowering effect on TNF- α-induced adhesion molecule expression in endothelial cells (HAEC). ORAC values of Greek honeys ranged from 415 to 2129 µmol Trolox equivalent/kg honey and correlated significantly with their content in protocatechuic acid (p<0.001), p-hydroxybenzoic acid (p<0.01), vanillic acid (p<0.05), caffeic acid (p<0.01), p-coumaric acid (p<0.001) and their total phenolic content (p<0.001). Honey extracts reduced significantly the viability of PC-3 and MCF-7 cells as well as the expression of adhesion molecules in HAEC. Importantly, vanillic acid content correlated significantly with anticancer activity in PC-3 and MCF-7 cells (p<0.01, p<0.05 respectively). Protocatechuic acid, vanillic acid and total phenolic content correlated significantly with the inhibition of VCAM-1 expression (p<0.05, p<0.05 and p<0.01 respectively). In conclusion, Greek honeys are rich in phenolic acids, in particular protocatechuic and p-hydroxybenzoic acid and exhibit significant antioxidant, anticancer and

  1. Energy generation potential from coals of the Charqueadas Coalfield, RS, Brazil

    NASA Astrophysics Data System (ADS)

    Correa da Silva, Z. C.; Heemann, R.; Castro, L.; Ketzer, J. M.

    2009-04-01

    Three coal seams, I2B (Inferior 2), I1F (Inferior 1) and MB, from the Charqueadas Coalfield located in the central-east region of the State of Rio Grande do Sul, Southern Brazil were studied on the basis of geological, petrographic, chemical and geochemical techniques and correlated to the SR1, SR2 and SR3 coal seams from the Santa Rita Coalfield. The Charqueadas Coalfield reserves reach 2,993x106 metric tons of coal distributed in six coal seams. The study of sedimentary and organic facies is made on the subsurface data from five boreholes drilled in the area. There show a well marked lateral facies change from sub aquatic to sub aerial environment, conditioned by both the water level variations and the irregular palaeotopography of the basement. The coals change from limnic to forest-terrestrial moor types characterized by variations of composition in terms of macerals, microlithotypes and mineral matter. The coals are rich in mineral matter (28 to 40%); the vitrinite content reaches 50 %, inertinite 44 % and liptinite varies from 10 to 30 %, in mineral matter free basis. Among the microlithotypes carbominerite and vitrite are predominant. Rank studies carried out by different methods (vitrinite reflectance, max and red-green quotient among others) gave conflicting results, which are explained by the strong bituminization of the vitrinite. However, agreement between fluorescence measurements and organic geochemical parameters (e.g. CPI values) confirm that the coals are of a High Volatile Bituminous B/C (ASTM) or Gasflammkohle (DIN) rank. Based on these characteristics, the Charqueadas coal seams show great potential for use in Underground Coal Gasification (UCG) and Enhanced Coalbed Methane (ECBM) projects. Nowadays the state of Rio Grande do Sul is rapidly growing and needs to increase the energy efficiency to attend the industrial demands, filling the gap between supply and energy generation. As with conventional IGCC, UCG gas can be used to generate

  2. Potential environmental influence of amino acids on the behavior of ZnO nanoparticles.

    PubMed

    Molina, Rodrigo; Al-Salama, Yasser; Jurkschat, Kerstin; Dobson, Peter J; Thompson, Ian P

    2011-04-01

    The fate of nanomaterials when they enter the environment is an issue of increasing concern and thus it is important to know how they interact with natural organic molecules since this may have a significant impact on the particles' behavior. Because of our poor knowledge in this regard, the interaction of ZnO nanoparticles with amino acids of contrasting surface charge, including Histidine (HIS), Glycine (GLY), Aspartic acid (ASP) and Glutamic acid (GLU) which occur commonly in natural habitats, such as the plant root zone, was investigated over a range of pH conditions and concentrations. The addition of the individual amino acid led to significant changes in nanoparticle colloidal zeta potential stability, particle size distribution and the extent of agglomeration. Variations in pH resulted in considerable changes in nanoparticle surface charge and hydrodynamic size. In general, the particle size distribution decreased as the amino acid concentration increased, with more acidic conditions exacerbating this effect. In addition, increased concentrations of amino acids resulted in more stable nanoparticles in aqueous suspensions. Histidine had the greatest effect on colloidal stability, followed by Glycine, Aspartic acid and finally Glutamic acid. This study illustrates how nanoparticle behavior may change in the presence of naturally occurring amino acids, an important consideration when assessing the fate of nanoparticles in the environment. Additionally, utilization of amino acids in industrial processes could reduce particle agglomeration and it could lead to a way of employing more sustainable reagents. PMID:21220148

  3. Molecular mechanism and functional significance of acid generation in the Drosophila midgut

    PubMed Central

    Overend, Gayle; Luo, Yuan; Henderson, Louise; Douglas, Angela E.; Davies, Shireen A.; Dow, Julian A. T.

    2016-01-01

    The gut of Drosophila melanogaster includes a proximal acidic region (~pH 2), however the genome lacks the H+/K+ ATPase characteristic of the mammalian gastric parietal cell, and the molecular mechanisms of acid generation are poorly understood. Here, we show that maintenance of the low pH of the acidic region is dependent on H+ V-ATPase, together with carbonic anhydrase and five further transporters or channels that mediate K+, Cl− and HCO3− transport. Abrogation of the low pH did not influence larval survival under standard laboratory conditions, but was deleterious for insects subjected to high Na+ or K+ load. Insects with elevated pH in the acidic region displayed increased susceptibility to Pseudomonas pathogens and increased abundance of key members of the gut microbiota (Acetobacter and Lactobacillus), suggesting that the acidic region has bacteriostatic or bacteriocidal activity. Conversely, the pH of the acidic region was significantly reduced in germ-free Drosophila, indicative of a role of the gut bacteria in shaping the pH conditions of the gut. These results demonstrate that the acidic gut region protects the insect and gut microbiome from pathological disruption, and shed light on the mechanisms by which low pH can be maintained in the absence of H+, K+ ATPase. PMID:27250760

  4. Free amino acid quantification by LC-MS/MS using derivatization generated isotope-labelled standards.

    PubMed

    Johnson, David W

    2011-05-15

    The further development of derivatizing reagents for plasma amino acid quantification by tandem mass spectrometry is described. The succinimide ester of 4-methylpiperazineacetic acid (MPAS), the iTRAQ reagent, was systematically modified to improve tandem mass spectrometer (MS/MS) product ion intensity. 4-Methylpiperazinebutyryl succinimide (MPBS) and dimethylaminobutyryl succinimide (DMABS) afforded one to two orders of magnitude greater MS/MS product ion signal intensity than the MPAS derivative for simple amino acids. CD(3) analogues of the modified derivatizing reagents were evaluated for preparation of amino acid isotope-labelled quantifying standards. Acceptable accuracy and precision was obtained with d(3)-DMABS as the amino acid standards derivatizing reagent. The product ion spectra of the DMABS amino acid derivatives are diagnostic for structural isomers including valine/norvaline, alanine/sarcosine and leucine/isoleucine. Improved analytical sensitivity and specificity afforded by these derivatives may help to establish liquid chromatography tandem mass spectrometry (LC-MS/MS) with derivatization generated isotope-labelled standards a viable alternative to amino acids analysers.

  5. Analysis of the potential of the electrofluid dynamic wind-driven generator

    SciTech Connect

    Mitchell, R.

    1983-01-01

    The Electrofluid Dynamic wind-driven generator has been investigated under government supported programs since 1975. The concept features the direct conversion of wind energy into electrical power with virtually no moving parts. Research on this concept has resulted in a detailed operational theory of electrofluid systems and a preliminary conceptual design of a full-scale generator. Analysis of the potential of this concept has established a range for the value indicators and an understanding of its optimization potential and uncertainty. A comparison is made between the value indicators for the Electrofluid Dynamic concept and those of several conventional WECS.

  6. Prospects of Graphene as a Potential Carrier-Transport Material in Third-Generation Solar Cells.

    PubMed

    Chowdhury, Towhid H; Islam, Ashraful; Mahmud Hasan, A K; Terdi, M Asri Mat; Arunakumari, M; Prakash Singh, Surya; Alam, Md Khorshed; Bedja, Idriss M; Hafidz Ruslan, Mohd; Sopian, Kamaruzzaman; Amin, Nowshad; Akhtaruzzaman, Md

    2016-04-01

    Third-generation solar cells are understood to be the pathway to overcoming the issues and drawbacks of the existing solar cell technologies. Since the introduction of graphene in solar cells, it has been providing attractive properties for the next generation of solar cells. Currently, there are more theoretical predictions rather than practical recognitions in third-generation solar cells. Some of the potential of graphene has been explored in organic photovoltaics (OPVs) and dye-sensitized solar cells (DSSCs), but it has yet to be fully comprehended in the recent third-generation inorganic-organic hybrid perovskite solar cells. In this review, the diverse role of graphene in third-generation OPVs and DSSCs will be deliberated to provide an insight on the prospects and challenges of graphene in inorganic-organic hybrid perovskite solar cells. PMID:26816190

  7. Coupled generator and combustor performance calculations for potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Dellinger, T. C.; Hnat, J. G.; Marston, C. H.

    1979-01-01

    A parametric study of the performance of the MHD generator and combustor components of potential early commercial open-cycle MHD/steam power plants is presented. Consideration is given to the effects of air heater system concept, MHD combustor type, coal type, thermal input power, oxygen enrichment of the combustion, subsonic and supersonic generator flow and magnetic field strength on coupled generator and combustor performance. The best performance is found to be attained with a 3000 F, indirectly fired air heater, no oxygen enrichment, Illinois no. 6 coal, a two-stage cyclone combustor with 85% slag rejection, a subsonic generator, and a magnetic field configuration yielding a constant transverse electric field of 4 kV/m. Results indicate that optimum net MHD generator power is generally compressor-power-limited rather than electric-stress-limited, with optimum net power a relatively weak function of operating pressure.

  8. Prospects of Graphene as a Potential Carrier-Transport Material in Third-Generation Solar Cells.

    PubMed

    Chowdhury, Towhid H; Islam, Ashraful; Mahmud Hasan, A K; Terdi, M Asri Mat; Arunakumari, M; Prakash Singh, Surya; Alam, Md Khorshed; Bedja, Idriss M; Hafidz Ruslan, Mohd; Sopian, Kamaruzzaman; Amin, Nowshad; Akhtaruzzaman, Md

    2016-04-01

    Third-generation solar cells are understood to be the pathway to overcoming the issues and drawbacks of the existing solar cell technologies. Since the introduction of graphene in solar cells, it has been providing attractive properties for the next generation of solar cells. Currently, there are more theoretical predictions rather than practical recognitions in third-generation solar cells. Some of the potential of graphene has been explored in organic photovoltaics (OPVs) and dye-sensitized solar cells (DSSCs), but it has yet to be fully comprehended in the recent third-generation inorganic-organic hybrid perovskite solar cells. In this review, the diverse role of graphene in third-generation OPVs and DSSCs will be deliberated to provide an insight on the prospects and challenges of graphene in inorganic-organic hybrid perovskite solar cells.

  9. Calcium ion binding to a soil fulvic acid using a donnan potential model

    USGS Publications Warehouse

    Marinsky, J.A.; Mathuthu, A.; Ephraim, J.H.; Reddy, M.M.

    1999-01-01

    Calcium ion binding to a soil fulvic acid (Armadale Bh Horizon) was evaluated over a range of calcium ion concentrations, from pH 3.8 to 7.3, using potentiometric titrations and calcium ion electrode measurements. Fulvic acid concentration was constant (100 milligrams per liter) and calcium ion concentration varied up to 8 X 10-4 moles per liter. Experiments discussed here included: (1) titrations of fulvic acid-calcium ion containing solutions with sodium hydroxide; and (2) titrations of fully neutralized fulvic acid with calcium chloride solutions. Apparent binding constants (expressed as the logarithm of the value, log ??app) vary with solution pH, calcium ion concentration, degree of acid dissociation, and ionic strength (from log ??app = 2.5 to 3.9) and are similar to those reported by others. Fulvic acid charge, and the associated Donnan Potential, influences calcium ion-fulvic acid ion pair formation. A Donnan Potential corrrection term allowed calculation of intrinsic calcium ion-fulvic acid binding constants. Intrinsic binding constants vary from 1.2 to 2.5 (the average value is about log??= 1.6) and are similar to, but somewhat higher than, stability constants for calcium ion-carboxylic acid monodentate complexes. ?? by Oldenbourg Wissenschaftsverlag, Mu??nchen.

  10. Melatonin prevents myeloperoxidase heme destruction and the generation of free iron mediated by self-generated hypochlorous acid.

    PubMed

    Shaeib, Faten; Khan, Sana N; Ali, Iyad; Najafi, Tohid; Maitra, Dhiman; Abdulhamid, Ibrahim; Saed, Ghassan M; Pennathur, Subramaniam; Abu-Soud, Husam M

    2015-01-01

    Myeloperoxidase (MPO) generated hypochlorous acid (HOCl) formed during catalysis is able to destroy the MPO heme moiety through a feedback mechanism, resulting in the accumulation of free iron. Here we show that the presence of melatonin (MLT) can prevent HOCl-mediated MPO heme destruction using a combination of UV-visible photometry, hydrogen peroxide (H2O2)-specific electrode, and ferrozine assay techniques. High performance liquid chromatography (HPLC) analysis showed that MPO heme protection was at the expense of MLT oxidation. The full protection of the MPO heme requires the presence of a 1:2 MLT to H2O2 ratio. Melatonin prevents HOCl-mediated MPO heme destruction through multiple pathways. These include competition with chloride, the natural co-substrate; switching the MPO activity from a two electron oxidation to a one electron pathway causing the buildup of the inactive Compound II, and its subsequent decay to MPO-Fe(III) instead of generating HOCl; binding to MPO above the heme iron, thereby preventing the access of H2O2 to the catalytic site of the enzyme; and direct scavenging of HOCl. Collectively, in addition to acting as an antioxidant and MPO inhibitor, MLT can exert its protective effect by preventing the release of free iron mediated by self-generated HOCl. Our work may establish a direct mechanistic link by which MLT exerts its antioxidant protective effect in chronic inflammatory diseases with MPO elevation. PMID:25835505

  11. Transition metal ion-assisted photochemical generation of alkyl halides and hydrocarbons from carboxylic acids

    SciTech Connect

    Carraher, Jack; Pestovsky, Oleg; Bakac, Andreja

    2012-03-14

    Near-UV photolysis of aqueous solutions of propionic acid and aqueous Fe3+ in the absence of oxygen generates a mixture of hydrocarbons (ethane, ethylene and butane), carbon dioxide, and Fe2+. The reaction becomes mildly catalytic (about five turnovers) in the presence of oxygen which converts a portion of alkyl radicals to oxidizing intermediates that reoxidize Fe2+. The photochemistry in the presence of halide ions (X− = Cl−, Br−) generates ethyl halides via halogen atom abstraction from FeXn3−n by ethyl radicals. Near-quantitative yields of C2H5X are obtained at ≥0.05 M X−. Competition experiments with Co(NH3)5Br2+ provided kinetic data for the reaction of ethyl radicals with FeCl2+ (k = (4.0 ± 0.5) × 106 M−1 s−1) and with FeBr2+ (k = (3.0 ± 0.5) × 107 M−1 s−1). Photochemical decarboxylation of propionic acid in the presence of Cu2+ generates ethylene and Cu+. Longer-chain acids also yield alpha olefins as exclusive products. These reactions become catalytic under constant purge with oxygen which plays a dual role. It reoxidizes Cu+ to Cu2+, and removes gaseous olefins to prevent accumulation of Cu+(olefin) complexes and depletion of Cu2+. The results underscore the profound effect that the choice of metal ions, the medium, and reaction conditions exert on the photochemistry of carboxylic acids.

  12. Polyaminocarboxylic acids as potential candidates for trivalent actinide/lanthanide separations

    NASA Astrophysics Data System (ADS)

    Kissel, Daniel S.

    Nuclear energy, which has historically been considered an alternative energy solution in the United States, is regaining support as an efficient means of energy production. The viability of nuclear energy for the future, however, will remain suspect until issues involving the waste created are fully addressed in the next generation of advanced nuclear fuel cycles. The TALSPEAK process, developed at Oak Ridge National Laboratory, is a classic solvent extraction technique that employs a series of analytical separations in an effort to remove radioactive contaminants from spent nuclear fuel (SNF) and recover uranium in high purity. This separation utilizes a polyaminocarboxylic acid and a phosphorous extractant to separate trivalent actinides (An(III)s) from trivalent lanthanides (Ln(III)s). Conversely, issues with these reagents have hampered TALSPEAK's implementation as an industrial scale solution. The process requires a high concentration of lactic acid to facilitate phase separations, and the An(III)/Ln(III) separation factor is too low to achieve the purity required for artificial transmutation. Artificial transmutation involves steady neutron irradiation, which is impossible in the presence of Ln(III)s because of large neutron capture cross-sections. It is therefore critical to develop superior solvent extractants that effectively separate An(III)s from Ln(III)s. The present study focuses on the design, synthesis, characterization and analysis of advanced polyaminocarboxylic acids and their metal complexes in an effort to identify potential TALSPEAK-type extractants with superior separation properties. A facile, higher yield synthesis of these ligands and their complexation of trivalent metal ions (Co(III), Al(III), Ga(III), and In(III)), and selected lanthanides are reported. The polyaminocarboxylic acids and their trivalent metal complexes were characterized by elemental analysis, mass spectrometry, IR spectroscopy and NMR spectroscopy. Quantum mechanical

  13. Increased saccharification yields from aspen biomass upon treatment with enzymatically generated peracetic acid.

    PubMed

    Duncan, Shona; Jing, Qing; Katona, Adrian; Kazlauskas, Romas J; Schilling, Jonathan; Tschirner, Ulrike; Aldajani, Waleed Wafa

    2010-03-01

    The recalcitrance of lignocellulosic biomass to enzymatic release of sugars (saccharification) currently limits its use as feedstock for biofuels. Enzymatic hydrolysis of untreated aspen wood releases only 21.8% of the available sugars due primarily to the lignin barrier. Nature uses oxidative enzymes to selectively degrade lignin in lignocellulosic biomass, but thus far, natural enzymes have been too slow for industrial use. In this study, oxidative pretreatment with commercial peracetic acid (470 mM) removed 40% of the lignin (from 19.9 to 12.0 wt.% lignin) from aspen and enhanced the sugar yields in subsequent enzymatic hydrolysis to about 90%. Increasing the amount of lignin removed correlated with increasing yields of sugar release. Unfortunately, peracetic acid is expensive, and concentrated forms can be hazardous. To reduce costs and hazards associated with using commercial peracetic acid, we used a hydrolase to catalyze the perhydrolysis of ethyl acetate generating 60-70 mM peracetic acid in situ as a pretreatment to remove lignin from aspen wood. A single pretreatment was insufficient, but multiple cycles (up to eight) removed up to 61.7% of the lignin enabling release of >90% of the sugars during saccharification. This value corresponds to a predicted 581 g of fermentable sugars from 1 kg of aspen wood. Improvements in the enzyme stability are needed before the enzymatically generated peracetic acid is a commercially viable alternative.

  14. Site-specific study on stabilization of acid-generating mine tailings using coal fly ash

    SciTech Connect

    Shang, J.Q.; Wang, H.L.; Kovac, V.; Fyfe, J.

    2006-03-15

    A site-specific study on stabilizing acid-generating mine tailings from Sudbury Mine using a coal fly ash from Nanticoke Generating Station is presented in this paper. The objective of the study is to evaluate the feasibility of codisposal of the fly ash and mine tailings to reduce environmental impacts of Sudbury tailings disposal sites. The study includes three phases, i.e., characterization of the mine tailings, and coal fly ash, oxidation tests on the mine tailings and kinetic column permeation tests. The results of the experiments indicate that when permeated with acid mine drainage, the hydraulic conductivity of Nanticoke coal fly ash decreased more than three orders of magnitude (from 1 x 10{sup -6} to 1 x 10{sup -9} cm/s), mainly due to chemical reactions between the ash solids and acid mine drainage. Furthermore, the hydraulic gradient required for acid mine drainage to break through the coal fly ash is increased up to ten times (from 17 to 150) as compared with that for water. The results also show that the leachate from coal fly ash neutralizes the acidic pore fluid of mine tailings. The concentrations of trace elements in effluents from all kinetic column permeation tests indicated that coplacement of coal fly ash with mine tailings has the benefit of immobilizing trace elements, especially heavy metals. All regulated element concentrations from effluent during testing are well below the leachate quality criteria set by the local regulatory authority.

  15. An acid-labile block copolymer of PDMAEMA and PEG as potential carrier for intelligent gene delivery systems.

    PubMed

    Lin, Song; Du, Fusheng; Wang, Yang; Ji, Shouping; Liang, Dehai; Yu, Lei; Li, Zichen

    2008-01-01

    Intelligent gene delivery systems based on physiologically triggered reversible shielding technology have evinced enormous interest due to their potential in vivo applications. In the present work, an acid-labile block copolymer consisting of poly(ethylene glycol) and poly(2-(dimethylamino)ethyl methacrylate) segments connected through a cyclic ortho ester linkage (PEG- a-PDMAEMA) was synthesized by atom transfer radical polymerization of DMAEMA using a PEG macroinitiator with an acid-cleavable end group. PEG- a-PDMAEMA condensed with plasmid DNA formed polyplex nanoparticles with an acid-triggered reversible PEG shield. The pH-dependent shielding/deshielding effect of PEG chains on the polyplex particles were evaluated by zeta potential and size measurements. At pH 7.4, polyplexes generated from PEG- a-PDMAEMA exhibited smaller particle size, lower surface charge, reduced interaction with erythrocytes, and less cytotoxicity compared to PDMAEMA-derived polyplexes. At pH 5.0, zeta potential of polyplexes formed from PEG- a-PDMAEMA increased, leveled up after 2 h of incubation and gradual aggregation occurred in the presence of bovine serum albumin (BSA). In contrast, the stably shielded polyplexes formed by DNA and an acid-stable block copolymer, PEG- b-PDMAEMA, did not change in size and zeta potential in 6 h. In vitro transfection efficiency of the acid-labile copolymer greatly increased after 6 h incubation at pH 5.0, approaching the same level of PDMAEMA, whereas there was only slight increase in efficiency for the stable copolymer, PEG- b-PDMAEMA.

  16. An economic analysis of the electricity generation potential from biogas resources in the state of Indiana

    NASA Astrophysics Data System (ADS)

    Giraldo, Juan S.

    Anaerobic digestion is a process that is a common part of organic waste management systems and is used in concentrated animal feeding operations (CAFOs), wastewater treatment plants (WWTPs), and municipal solid waste (MSW) landfills. The process produces biogas, which contains methane, and it can be burned to generate electricity. Previous reports have indicated that based on the availability of feedstocks there is a large potential for biogas production and use for electricity generation in the state of Indiana. However, these reports varied in their consideration of important factors that affect the technical and economic feasibility of being able to develop the resources available. The goal of this thesis is to make a more targeted assessment of the electricity generation potential from biogas resources at CAFOs, WWTPs, and MSW landfills in Indiana. A capital budgeting model is used to estimate the net present value (NPV) of biogas electricity projects at facilities that are identified as technically suitable. A statewide estimate of the potential generation capacity is made by estimating the number of facilities that could profitably undertake a biogas electricity project. In addition this thesis explored the impact that different incentive policies would have on the economic viability of these projects. The results indicated that the electricity generation potential is much smaller when technical and economic factors are taken into account in addition to feedstock availability. In particular it was found that projects at hog farms are unlikely to be economically feasible in the present even when financial incentives are considered. In total, 47.94 MW of potential generating capacity is estimated from biogas production at CAFOs, WWTPs, and MSW landfills. Though results indicated that 37.10 MW of capacity are economically feasible under current operating conditions, sensitivity analysis reveals that these projects are very sensitive to capital cost assumptions

  17. A ruthenium-based biomimetic hydrogen cluster for efficient photocatalytic hydrogen generation from formic acid.

    PubMed

    Chang, Chin-Hao; Chen, Mei-Hua; Du, Wan-Shan; Gliniak, Jacek; Lin, Jia-Hoa; Wu, Hsin-Hua; Chan, Hsin-Fang; Yu, Jen-Shiang K; Wu, Tung-Kung

    2015-04-20

    A ruthenium-based biomimetic hydrogen cluster, [Ru2 (CO)6 (μ-SCH2 CH2 CH2 S)] (1), has been synthesized and, in the presence of the P ligand tri(o-tolyl)phosphine, demonstrated efficient photocatalytic hydrogen generation from formic acid decomposition. Turnover frequencies (TOFs) of 5500 h(-1) and turnover numbers (TONs) over 24 700 were obtained with less than 50 ppm of the catalyst, thus representing the highest TOFs for ruthenium complexes as well as the best efficiency for photocatalytic hydrogen production from formic acid. Moreover, 1 showed high stability with no significant degradation of the photocatalyst observed after prolonged photoirradiation at 90 °C.

  18. Evaluation of Hanford high level waste vitrification chemistry for an NCAW simulant -- FY 1994: Potential exothermic reactions in the presence of formic acid, glycolic acid, and oxalic acid

    SciTech Connect

    Sills, J.A.

    1995-07-01

    A potential for an uncontrollable exothermic reaction between nitrate and organic salts during preparation of a high level waste melter feed has been identified. In order to examine this potential more closely, the thermal behavior of simulated neutralized current acid waste (NCAW) treated with various organic reductants was studied. Differential scanning calorimetry (DSC) measurements were collected on simulated waste samples and their supernates treated with organics. Organic reductants used were formic acid, glycolic acid, and oxalic acid. For comparison, samples of untreated simulant and untreated simulant with added noble metals were tested. When heated, untreated simulant samples both with and without noble metals showed no exothermic behavior. All of the treated waste simulant samples showed exothermic behavior. Onset temperatures of exothermic reactions were 120 C to 210 C. Many onset temperatures, particularly those for formic acid treated samples, are well below 181 C, the estimated maximum steam coil temperature (considered to be a worst case maximum temperature for chemical process tank contents). The enthalpies of the reactions were {minus}180 {times} 10{sup {minus}3} J/Kg supernate ({minus}181 J/g) for the oxalic acid treated simulant supernate to {minus}1,150 {times} 10{sup {minus}3} J/Kg supernate ({minus}1,153 J/g) for the formic acid treated simulant supernate.

  19. Generation of slow wave type action potentials in the mouse small intestine involves a non-L-type calcium channel.

    PubMed

    Malysz, J; Richardson, D; Farraway, L; Christen, M O; Huizinga, J D

    1995-10-01

    Intrinsic electrical activities in various isolated segments of the mouse small intestine were recorded (i) to characterize action potential generation and (ii) to obtain a profile on the ion channels involved in initiating the slow wave type action potentials (slow waves). Gradients in slow wave frequency, resting membrane potential, and occurrence of spiking activity were found, with the proximal intestine exhibiting the highest frequency, the most hyperpolarized cell membrane, and the greatest occurrence of spikes. The slow waves were only partially sensitive to L-type calcium channel blockers. Nifedipine, verapamil, and pinaverium bromide abolished spikes that occurred on the plateau phase of the slow waves in all tissues. The activity that remained in the presence of L-type calcium channel blockers, the upstroke potential, retained a similar amplitude to the original slow wave and was of identical frequency. The upstroke potential was not sensitive to a reduction in extracellular chloride or to the sodium channel blockers tetrodotoxin and mexiletine. Abolishment of the Na+ gradient by removal of 120 mM extracellular Na+ reduced the upstroke potential frequency by 13 - 18% and its amplitude by 50 - 70% in the ileum. The amplitude was similarly reduced by Ni2+ (up to 5 mM), and by flufenamic acid (100 mu M), a nonspecific cation and chloride channel blocker. Gadolinium, a nonspecific blocker of cation and stretch-activated channels, had no effect. Throughout these pharmacological manipulations, a robust oscillation remained at 5 - 10 mV. This oscillation likely reflects pacemaker activity. It was rapidly abolished by removal of extracellular calcium but not affected by L-type calcium channel blockers. In summary, the mouse small intestine has been established as a model for research into slow wave generation and electrical pacemaker activity. The upstroke part of the slow wave has two components, the pacemaker component involves a non-L-type calcium channel

  20. Effect of Humic Acid and Sunlight on the Generation of aqu/C60

    EPA Science Inventory

    Little is known about the effect of sunlight and natural organic matter, such as humic acid, on the aqueous suspension of fullerene C60. This knowledge gap limits our ability to determine the environmental impact of potential environmental releases of these materials. Aqueous sus...

  1. Household hazardous wastes as a potential source of pollution: a generation study.

    PubMed

    Ojeda-Benítez, Sara; Aguilar-Virgen, Quetzalli; Taboada-González, Paul; Cruz-Sotelo, Samantha E

    2013-12-01

    Certain domestic wastes exhibit characteristics that render them dangerous, such as explosiveness, flammability, spontaneous combustion, reactivity, toxicity and corrosiveness. The lack of information about their generation and composition hinders the creation of special programs for their collection and treatment, making these wastes a potential threat to human health and the environment. We attempted to quantify the levels of hazardous household waste (HHW) generated in Mexicali, Mexico. The analysis considered three socioeconomic strata and eight categories. The sampling was undertaken on a house-by-house basis, and hypothesis testing was based on differences between two proportions for each of the eight categories. In this study, HHW comprised 3.49% of the total generated waste, which exceeded that reported in previous studies in Mexico. The greatest quantity of HHW was generated by the middle stratum; in the upper stratum, most packages were discarded with their contents remaining. Cleaning products represent 45.86% of the HHW generated. Statistical differences were not observed for only two categories among the three social strata. The scarcity of studies on HHW generation limits direct comparisons. Any decrease in waste generation within the middle social stratum will have a large effect on the total amount of waste generated, and decrease their impact on environmental and human health. PMID:24293231

  2. Hydrogen generation during treatment of simulated high-level radioactive waste with formic acid

    SciTech Connect

    Ritter, J.A.; Zamecnik, J.R.; Hsu, C.W.

    1992-01-01

    The Integrated Defense Waste Processing Facility (DWPF) Melter System (IDMS), operated by the Savannah River Laboratory, is a one-fifth scale pilot facility used in support of the start-up and operation of the Department of Energy's DWPF. Five IDMS runs determined the effect of the presence of noble metals in HLW sludge on the H{sub 2} generation rate during the preparation of melter feed with formic acid. Overall, the results clearly showed that H{sub 2} generation in the DWPF SRAT could, at times, exceed the lower flammable limit of H{sub 2} in air (4 vol%), depending on such factors as offgas generation and air inleakage of the DWPF vessels. Therefore, the installation of a forced air purge system and H{sub 2} monitors were recommended to the DWPF to control the generation of H{sub 2} during melter feed preparation by fuel dilution.

  3. Hydrogen generation during treatment of simulated high-level radioactive waste with formic acid

    SciTech Connect

    Ritter, J.A.; Zamecnik, J.R.; Hsu, C.W.

    1992-05-01

    The Integrated Defense Waste Processing Facility (DWPF) Melter System (IDMS), operated by the Savannah River Laboratory, is a one-fifth scale pilot facility used in support of the start-up and operation of the Department of Energy`s DWPF. Five IDMS runs determined the effect of the presence of noble metals in HLW sludge on the H{sub 2} generation rate during the preparation of melter feed with formic acid. Overall, the results clearly showed that H{sub 2} generation in the DWPF SRAT could, at times, exceed the lower flammable limit of H{sub 2} in air (4 vol%), depending on such factors as offgas generation and air inleakage of the DWPF vessels. Therefore, the installation of a forced air purge system and H{sub 2} monitors were recommended to the DWPF to control the generation of H{sub 2} during melter feed preparation by fuel dilution.

  4. Comparison of phenolic acids profile and antioxidant potential of six varieties of spelt (Triticum spelta L.).

    PubMed

    Gawlik-Dziki, Urszula; Świeca, Michał; Dziki, Dariusz

    2012-05-01

    Phenolic acids profile and antioxidant activity of six diverse varieties of spelt are reported. Antioxidant activity was assessed using eight methods based on different mechanism of action. Phenolic acids composition of spelt differed significantly between varieties and ranged from 506.6 to 1257.4 μg/g DW. Ferulic and sinapinic acids were the predominant phenolic acids found in spelt. Total ferulic acid content ranged from 144.2 to 691.5 μg/g DW. All analyzed spelt varieties possessed high antioxidant potential. In spite of the fact that bound phenolic acids possessed higher antioxidant activities, analysis of antioxidant potential and their relationship with phenolic acid content showed that free phenolics were more effective. Eight antioxidant methods were integrated to obtain a total antioxidant capacity index that may be used for comparison of total antioxidant capacity of spelt varieties. Total antioxidant potential of spelt cultivars were ordered as follows: Ceralio > Spelt INZ ≈ Ostro > Oberkulmer Rotkorn > Schwabenspelz > Schwabenkorn.

  5. A Novel Approach to Teach the Generation of Bioelectrical Potentials from a Descriptive and Quantitative Perspective

    ERIC Educational Resources Information Center

    Rodriguez-Falces, Javier

    2013-01-01

    In electrophysiology studies, it is becoming increasingly common to explain experimental observations using both descriptive methods and quantitative approaches. However, some electrophysiological phenomena, such as the generation of extracellular potentials that results from the propagation of the excitation source along the muscle fiber, are…

  6. [Discovery of potential nicotinic acid receptor agonists from Chinese herbal medicines based on molecular simulation].

    PubMed

    Jiang, Lu-Di; He, Yu-Su; Zhang, Yan-Ling

    2014-12-01

    Nicotinic acid could increase high density lipoprotein and reduce serum total cholesterol, low density lipoprotein cholesterol and triglycerides in human bodies, thus is frequently applied in treating low high-density lipoprotein cholesterol and hypertriglyceridemia in clinic. However, according to the findings, nicotinic acid could also cause adverse effects, such as skin flush, beside its curative effects. In this study, bioisosterism, fragment-based search and Lipinski's Rule of Five were used to preliminarily screen out potential TCM ingredients that may have similar pharmacological effects with nicotinic acid from Traditional Chinese medicine database (TCMD). Afterwards, homology modeling and flexible docking were used to further screen out potential nicotinic acid receptor agonists. As a result, eleven candidate compounds were derived from eight commonly used traditional Chinese medicines. Specifically, all of the candidate compounds' interaction with nicotinic acid receptor was similar to nicotinic acid, and their docking scores were all higher than that of nicotinic acid, but their druggability remained to be further studied. Some of the eight source traditional Chinese medicines were used to lower lipid according to literature studies, implying that they may show effect through above means. In summary, this study provides basis and reference for extracting new nicotinic acid receptor agonists from traditional Chinese medicines and improving the medication status of hyperlipidemia.

  7. Increased Rat Placental Fatty Acid, but Decreased Amino Acid and Glucose Transporters Potentially Modify Intrauterine Programming.

    PubMed

    Nüsken, Eva; Gellhaus, Alexandra; Kühnel, Elisabeth; Swoboda, Isabelle; Wohlfarth, Maria; Vohlen, Christina; Schneider, Holm; Dötsch, Jörg; Nüsken, Kai-Dietrich

    2016-07-01

    Regulation of placental nutrient transport significantly affects fetal development and may modify intrauterine growth restriction (IUGR) and fetal programming. We hypothesized that placental nutrient transporters are differentially affected both by utero-placental insufficiency and prenatal surgical stress. Pregnant rats underwent bilateral uterine artery and vein ligation (LIG), sham operation (SOP) or no operation (controls, C) on gestational day E19. Placentas were obtained by caesarean section 4 h (LIG, n=20 placentas; SOP, n=24; C, n=12), 24 h (LIG, n=28; SOP, n=20; C, n=12) and 72 h (LIG, n=20; SOP, n=20; C, n=24) after surgery. Gene and protein expression of placental nutrient transporters for fatty acids (h-FABP, CD36), amino acids (SNAT1, SNAT2) and glucose (GLUT-1, Connexin 26) were examined by qRT-PCR, western blot and immunohistochemistry. Interestingly, the mean protein expression of h-FABP was doubled in placentas of LIG and SOP animals 4, 24 (SOP significant) and 72 h (SOP significant) after surgery. CD36 protein was significantly increased in LIG after 72 h. SNAT1 and SNAT2 protein and gene expressions were significantly reduced in LIG and SOP after 24 h. Further significantly reduced proteins were GLUT-1 in LIG (4 h, 72 h) and SOP (24 h), and Connexin 26 in LIG (72 h). In conclusion, placental nutrient transporters are differentially affected both by reduced blood flow and stress, probably modifying the already disturbed intrauterine milieu and contributing to IUGR and fetal programming. Increased fatty acid transport capacity may affect energy metabolism and could be a compensatory reaction with positive effects on brain development. J. Cell. Biochem. 117: 1594-1603, 2016. © 2015 Wiley Periodicals, Inc.

  8. Estimates of the generation of available potential energy by infrared radiation

    NASA Technical Reports Server (NTRS)

    Hansen, A. R.; Nagle, R. L.

    1984-01-01

    Data from the National Meteorological Center and net outgoing infrared radiation (IR) data measured by NOAA satellites for January 1977 are used to compute estimates of the spectral and spatial contributions to the net generation of available potential energy in the Northern Hemisphere due to infrared radiation. Although these estimates are necessarily crude, the results obtained indicate that IR causes destruction of both zonal and eddy available potential energy. The contributions from midlatitudes to the zonal and eddy generation are about -5.0 W/sq m and about -0.6 W/sq m, respectively. The eddy generation is due almost entirely to stationary wavenumbers one and two. Comparison with earlier studies and computation of Newtonian cooling coefficients are discussed.

  9. Attenuation of niacin-induced prostaglandin D2 generation by omega-3 fatty acids in THP-1 macrophages and Langerhans dendritic cells

    PubMed Central

    VanHorn, Justin; Altenburg, Jeffrey D; Harvey, Kevin A; Xu, Zhidong; Kovacs, Richard J; Siddiqui, Rafat A

    2012-01-01

    Niacin, also known as nicotinic acid, is an organic compound that has several cardio-beneficial effects. However, its use is limited due to the induction of a variable flushing response in most individuals. Flushing occurs from a niacin receptor mediated generation of prostaglandins from arachidonic acid metabolism. This study examined the ability of docosahexaenoic acid, eicosapentaenoic acid, and omega-3 polyunsaturated fatty acids (PUFAs), to attenuate niacin-induced prostaglandins in THP-1 macrophages. Niacin induced both PGD2 and PGE2 generation in a dose-dependent manner. Niacin also caused an increase in cytosolic calcium and activation of cytosolic phospholipase A2. The increase in PGD2 and PGE2 was reduced by both docosahexaenoic acid and eicosapentaenoic acid, but not by oleic acid. Omega-3 PUFAs efficiently incorporated into cellular phospholipids at the expense of arachidonic acid, whereas oleic acid incorporated to a higher extent but had no effect on arachidonic acid levels. Omega-3 PUFAs also reduced surface expression of GPR109A, a human niacin receptor. Furthermore, omega-3 PUFAs also inhibited the niacin-induced increase in cytosolic calcium. Niacin and/or omega-3 PUFAs minimally affected cyclooxygenase-1 activity and had no effect on cyclooxygenase -2 activity. The effects of niacin on PGD2 generation were further confirmed using Langerhans dendritic cells. Results of the present study indicate that omega-3 PUFAs reduced niacin-induced prostaglandins formation by diminishing the availability of their substrate, as well as reducing the surface expression of niacin receptors. In conclusion, this study suggests that the regular use of omega-3 PUFAs along with niacin can potentially reduce the niacin-induced flushing response in sensitive patients. PMID:22442634

  10. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential.

    PubMed

    Desbois, Andrew P; Smith, Valerie J

    2010-02-01

    Amongst the diverse and potent biological activities of free fatty acids (FFAs) is the ability to kill or inhibit the growth of bacteria. The antibacterial properties of FFAs are used by many organisms to defend against parasitic or pathogenic bacteria. Whilst their antibacterial mode of action is still poorly understood, the prime target of FFA action is the cell membrane, where FFAs disrupt the electron transport chain and oxidative phosphorylation. Besides interfering with cellular energy production, FFA action may also result from the inhibition of enzyme activity, impairment of nutrient uptake, generation of peroxidation and auto-oxidation degradation products or direct lysis of bacterial cells. Their broad spectrum of activity, non-specific mode of action and safety makes them attractive as antibacterial agents for various applications in medicine, agriculture and food preservation, especially where the use of conventional antibiotics is undesirable or prohibited. Moreover, the evolution of inducible FFA-resistant phenotypes is less problematic than with conventional antibiotics. The potential for commercial or biomedical exploitation of antibacterial FFAs, especially for those from natural sources, is discussed.

  11. In situ volatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion.

    PubMed

    Xu, Zhiyang; Zhao, Mingxing; Miao, Hengfeng; Huang, Zhenxing; Gao, Shumei; Ruan, Wenquan

    2014-07-01

    Anaerobic digestion is considered to be an efficient way of disposing kitchen wastes, which can not only reduce waste amounts, but also produce biogas. However, the excessive accumulation of volatile fatty acids (VFA) caused by high organic loads will inhibit anaerobic digestion intensively. Effects of the VFA composition on biogas generation and microbial community are still required for the investigation under various organic loads of kitchen wastes. Our results showed that the maximum specific methane production was 328.3 ml g TS(-1), and acetic acid was the main inhibitor in methanogenesis. With the increase of organic load, aceticlastic methanogenesis was more sensitive to acetic acid than hydrogenotrophic methanogenesis. Meanwhile, methanogenic microbial community changed significantly, and few species grew well under excessive organic loads. This study provides an attempt to reveal the mechanism of VFA inhibition in anaerobic digestion of kitchen wastes.

  12. VDAC electronics: 2. A new, anaerobic mechanism of generation of the membrane potentials in mitochondria.

    PubMed

    Lemeshko, Victor V

    2014-07-01

    Mitochondrial hexokinase (HK) and creatine kinase (CK) known to form complexes with a voltage dependent anion channel (VDAC) have been reported to increase cell death resistance under hypoxia/anoxia. In this work we propose a new, non-Mitchell mechanism of generation of the inner and outer membrane potentials at anaerobic conditions. The driving force is provided by the Gibbs free energy of the HK and CK reactions associated with the VDAC-HK and the ANT (adenine nucleotide translocator)-CK-VDAC complexes, respectively, both functioning as voltage generators. In the absence of oxygen, the cytosolic creatine phosphate can be directly used by the ANT-CK-VDAC contact sites to produce ATP from ADP in the mitochondrial matrix. After that, ATP released through the fraction of unbound ANTs in exchange for ADP is used in the mitochondrial intermembrane space by the outer membrane VDAC-HK electrogenic complexes to convert cytosolic glucose into glucose-6-phosphate. A simple computational model based on the application of Ohm's law to an equivalent electrical circuit showed a possibility of generation of the inner membrane potential up to -160mV, under certain conditions, and of relatively high outer membrane potential without wasting of ATP that normally leads to cell death. The calculated membrane potentials depended on the restriction of ATP/ADP diffusion in narrow cristae and through the cristae junctions. We suggest that high inner membrane potential and calcium extrusion from the mitochondrial intermembrane space by generated positive outer membrane potential prevent mitochondrial permeability transition, thus allowing the maintenance of mitochondrial integrity and cell survival in the absence of oxygen.

  13. Nucleic acid reactivity : challenges for next-generation semiempirical quantum models

    PubMed Central

    Huang, Ming; Giese, Timothy J.; York, Darrin M.

    2016-01-01

    Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity in order to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic diffierential overlap (NDDO) and self-consistent density-functional tight-binding (SCC-DFTB) semiempirical models are evaluated against high-level quantum mechanical benchmark calculations for seven biologically important data sets. The data sets include: proton affinities, polarizabilities, nucleobase dimer interactions, dimethyl phosphate anion, nucleoside sugar and glycosidic torsion conformations, and RNA phosphoryl transfer model reactions. As an additional baseline, comparisons are made with several commonly used density-functional models, including M062X and B3LYP (in some cases with dispersion corrections). The results show that, among the semiempirical models examined, the AM1/d-PhoT model is the most robust at predicting proton affinities. AM1/d-PhoT and DFTB3-3ob/OPhyd reproduce the MP2 potential energy surfaces of 6 associative RNA phosphoryl transfer model reactions reasonably well. Further, a recently developed linear-scaling “modified divide-and-conquer” model exhibits the most accurate results for binding energies of both hydrogen bonded and stacked nucleobase dimers. The semiempirical models considered here are shown to underestimate the isotropic polarizabilities of neutral molecules by approximately 30%. The semiempirical models also fail to adequately describe torsion profiles within the dimethyl phosphate anion, the nucleoside sugar ring puckers, and the rotations about the nucleoside glycosidic bond. The modeling of pentavalent phosphorus, particularly with thio

  14. Nucleic acid reactivity: challenges for next-generation semiempirical quantum models.

    PubMed

    Huang, Ming; Giese, Timothy J; York, Darrin M

    2015-07-01

    Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical (QM)/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic differential overlap and self-consistent density-functional tight-binding semiempirical models are evaluated against high-level QM benchmark calculations for seven biologically important datasets. The datasets include: proton affinities, polarizabilities, nucleobase dimer interactions, dimethyl phosphate anion, nucleoside sugar and glycosidic torsion conformations, and RNA phosphoryl transfer model reactions. As an additional baseline, comparisons are made with several commonly used density-functional models, including M062X and B3LYP (in some cases with dispersion corrections). The results show that, among the semiempirical models examined, the AM1/d-PhoT model is the most robust at predicting proton affinities. AM1/d-PhoT and DFTB3-3ob/OPhyd reproduce the MP2 potential energy surfaces of 6 associative RNA phosphoryl transfer model reactions reasonably well. Further, a recently developed linear-scaling "modified divide-and-conquer" model exhibits the most accurate results for binding energies of both hydrogen bonded and stacked nucleobase dimers. The semiempirical models considered here are shown to underestimate the isotropic polarizabilities of neutral molecules by approximately 30%. The semiempirical models also fail to adequately describe torsion profiles for the dimethyl phosphate anion, the nucleoside sugar ring puckers, and the rotations about the nucleoside glycosidic bond. The modeling of pentavalent phosphorus, particularly with thio substitutions often used experimentally as mechanistic

  15. Amino acids generated from hydrated Titan tholins: Comparison with Miller-Urey electric discharge products

    NASA Astrophysics Data System (ADS)

    Cleaves, H. James; Neish, Catherine; Callahan, Michael P.; Parker, Eric; Fernández, Facundo M.; Dworkin, Jason P.

    2014-07-01

    Various analogues of Titan haze particles (termed ‘tholins’) have been made in the laboratory. In certain geologic environments on Titan, these haze particles may come into contact with aqueous ammonia (NH3) solutions, hydrolyzing them into molecules of astrobiological interest. A Titan tholin analogue hydrolyzed in aqueous NH3 at room temperature for 2.5 years was analyzed for amino acids using highly sensitive ultra-high performance liquid chromatography coupled with fluorescence detection and time-of-flight mass spectrometry (UHPLC-FD/ToF-MS) analysis after derivatization with a fluorescent tag. We compare here the amino acids produced from this reaction sequence with those generated from room temperature Miller-Urey (MU) type electric discharge reactions. We find that most of the amino acids detected in low temperature MU CH4/N2/H2O electric discharge reactions are generated in Titan simulation reactions, as well as in previous simulations of Triton chemistry. This argues that many processes provide very similar mixtures of amino acids, and possibly other types of organic compounds, in disparate environments, regardless of the order of hydration. Although it is unknown how life began, it is likely that given reducing conditions, similar materials were available throughout the early Solar System and throughout the universe to facilitate chemical evolution.

  16. Amino Acids Generated from Hydrated Titan Tholins: Comparison with Miller-Urey Electric Discharge Products

    NASA Technical Reports Server (NTRS)

    Cleaves, H. James, II; Neish, Catherine; Callahan, Michael P.; Parker, Eric; Fernandez, Facundo M.; Dworkin, Jason P.

    2014-01-01

    Various analogues of Titan haze particles (termed tholins) have been made in the laboratory. In certain geologic environments on Titan, these haze particles may come into contact with aqueous ammonia (NH3) solutions, hydrolyzing them into molecules of astrobiological interest. A Titan tholin analogue hydrolyzed in aqueous NH3 at room temperature for 2.5 years was analyzed for amino acids using highly sensitive ultra-high performance liquid chromatography coupled with fluorescence detection and time-of-flight mass spectrometry (UHPLC-FDToF-MS) analysis after derivatization with a fluorescent tag. We compare here the amino acids produced from this reaction sequence with those generated from room temperature Miller-Urey (MU) type electric discharge reactions. We find that most of the amino acids detected in low temperature MU CH4N2H2O electric discharge reactions are generated in Titan simulation reactions, as well as in previous simulations of Triton chemistry. This argues that many processes provide very similar mixtures of amino acids, and possibly other types of organic compounds, in disparate environments, regardless of the order of hydration. Although it is unknown how life began, it is likely that given reducing conditions, similar materials were available throughout the early Solar System and throughout the universe to facilitate chemical evolution.

  17. Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action Potential Generation

    PubMed Central

    Hiester, Brian G.; Jones, Kevin R.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates both action potential (AP) generation and neuron morphology. However, whether BDNF-induced changes in neuron morphology directly impact AP generation is unclear. We quantified BDNF’s effect on cultured cortical neuron morphological parameters and found that BDNF stimulates dendrite growth and addition of dendrites while increasing both excitatory and inhibitory presynaptic inputs in a spatially restricted manner. To gain insight into how these combined changes in neuron structure and synaptic input impact AP generation, we used the morphological parameters we gathered to generate computational models. Simulations suggest that BDNF-induced neuron morphologies generate more APs under a wide variety of conditions. Synapse and dendrite addition have the greatest impact on AP generation. However, subtle alterations in excitatory/inhibitory synapse ratio and strength have a significant impact on AP generation when synaptic activity is low. Consistent with these simulations, BDNF rapidly enhances spontaneous activity in cortical cultures. We propose that BDNF promotes neuron morphologies that are intrinsically more efficient at translating barrages of synaptic activity into APs, which is a previously unexplored aspect of BDNF’s function. PMID:27683544

  18. Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action Potential Generation.

    PubMed

    Galati, Domenico F; Hiester, Brian G; Jones, Kevin R

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates both action potential (AP) generation and neuron morphology. However, whether BDNF-induced changes in neuron morphology directly impact AP generation is unclear. We quantified BDNF's effect on cultured cortical neuron morphological parameters and found that BDNF stimulates dendrite growth and addition of dendrites while increasing both excitatory and inhibitory presynaptic inputs in a spatially restricted manner. To gain insight into how these combined changes in neuron structure and synaptic input impact AP generation, we used the morphological parameters we gathered to generate computational models. Simulations suggest that BDNF-induced neuron morphologies generate more APs under a wide variety of conditions. Synapse and dendrite addition have the greatest impact on AP generation. However, subtle alterations in excitatory/inhibitory synapse ratio and strength have a significant impact on AP generation when synaptic activity is low. Consistent with these simulations, BDNF rapidly enhances spontaneous activity in cortical cultures. We propose that BDNF promotes neuron morphologies that are intrinsically more efficient at translating barrages of synaptic activity into APs, which is a previously unexplored aspect of BDNF's function. PMID:27683544

  19. Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action Potential Generation

    PubMed Central

    Hiester, Brian G.; Jones, Kevin R.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates both action potential (AP) generation and neuron morphology. However, whether BDNF-induced changes in neuron morphology directly impact AP generation is unclear. We quantified BDNF’s effect on cultured cortical neuron morphological parameters and found that BDNF stimulates dendrite growth and addition of dendrites while increasing both excitatory and inhibitory presynaptic inputs in a spatially restricted manner. To gain insight into how these combined changes in neuron structure and synaptic input impact AP generation, we used the morphological parameters we gathered to generate computational models. Simulations suggest that BDNF-induced neuron morphologies generate more APs under a wide variety of conditions. Synapse and dendrite addition have the greatest impact on AP generation. However, subtle alterations in excitatory/inhibitory synapse ratio and strength have a significant impact on AP generation when synaptic activity is low. Consistent with these simulations, BDNF rapidly enhances spontaneous activity in cortical cultures. We propose that BDNF promotes neuron morphologies that are intrinsically more efficient at translating barrages of synaptic activity into APs, which is a previously unexplored aspect of BDNF’s function.

  20. Acidization of a Direct Heat Hydrothermal Well and its Potential in Developing Additional Direct Heat Projects

    SciTech Connect

    Dolenc, M.R.; Strawn, J. A.; Prestwich, S.M.

    1981-01-01

    A matrix acid treatment on a limestone formation in a low temperature hydrothermal production well in South Dakota has resulted in a 40% increase in heat (BTU) available for use in space heating a hospital. The results of this experimental treatment on the Madison Limestone suggest a significant potential may exist for similar applications, particularly throughout the western United States. This paper presents the results of the acid treatment, suggests other possible areas for similar application, and analyzes the economics for successful treatments.

  1. Acid mine drainage potential of raw, retorted, and combusted Eastern oil shale: Final report

    SciTech Connect

    Sullivan, P.J.; Yelton, J.L.; Reddy, K.J.

    1987-09-01

    In order to manage the oxidation of pyritic materials effectively, it is necessary to understand the chemistry of both the waste and its disposal environment. The objective of this two-year study was to characterize the acid production of Eastern oil shale waste products as a function of process conditions, waste properties, and disposal practice. Two Eastern oil shales were selected, a high pyrite shale (unweathered 4.6% pyrite) and a low pyrite shale (weathered 1.5% pyrite). Each shale was retorted and combusted to produce waste products representative of potential mining and energy conversion processes. By using the standard EPA leaching tests (TCLP), each waste was characterized by determining (1) mineralogy, (2) trace element residency, and (3) acid-base account. Characterizing the acid producing potential of each waste and potential trace element hazards was completed with laboratory weathering studies. 32 refs., 21 figs., 12 tabs.

  2. Tantalum-178--a short-lived nuclide for nuclear medicine: development of a potential generator system.

    PubMed

    Neirinckx, R D; Jones, A G; Davis, M A; Harris, G I; Holman, B L

    1978-05-01

    We describe a chemical separation that may form the basis of a generator system for the short-lived radionuclide Ta-178 (T 1/2 = 9 min). The parent nuclide W-178 (T 1/2 = 21.7 days) is loaded on an anion-exchange column and the daughter eluted with a mixture of dilute hydrochloric acid and hydrogen peroxide. The yields of tantalum and the breakthrough of the tungsten parent as a function of the eluting conditions are discussed, and preliminary animal distribution data are presented for various treatments of the eluant solution. PMID:641574

  3. Feasibility and performance evaluation of generating and recording visual evoked potentials using ambulatory Bluetooth based system.

    PubMed

    Ellingson, Roger M; Oken, Barry

    2010-01-01

    Report contains the design overview and key performance measurements demonstrating the feasibility of generating and recording ambulatory visual stimulus evoked potentials using the previously reported custom Complementary and Alternative Medicine physiologic data collection and monitoring system, CAMAS. The methods used to generate visual stimuli on a PDA device and the design of an optical coupling device to convert the display to an electrical waveform which is recorded by the CAMAS base unit are presented. The optical sensor signal, synchronized to the visual stimulus emulates the brain's synchronized EEG signal input to CAMAS normally reviewed for the evoked potential response. Most importantly, the PDA also sends a marker message over the wireless Bluetooth connection to the CAMAS base unit synchronized to the visual stimulus which is the critical averaging reference component to obtain VEP results. Results show the variance in the latency of the wireless marker messaging link is consistent enough to support the generation and recording of visual evoked potentials. The averaged sensor waveforms at multiple CPU speeds are presented and demonstrate suitability of the Bluetooth interface for portable ambulatory visual evoked potential implementation on our CAMAS platform.

  4. Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies

    SciTech Connect

    Shaoan Cheng; Brian A. Dempsey; Bruce E. Logan

    2007-12-15

    Acid-mine drainage (AMD) is difficult and costly to treat. We investigated a new approach to AMD treatment using fuel cell technologies to generate electricity while removing iron from the water. Utilizing a recently developed microbial fuel cell architecture, we developed an acid-mine drainage fuel cell (AMD-FC) capable of abiotic electricity generation. The AMD-FC operated in fed-batch mode generated a maximum power density of 290 mW/m{sup 2} at a Coulombic efficiency greater than 97%. Ferrous iron was completely removed through oxidation to insoluble Fe(III), forming a precipitate in the bottom of the anode chamber and on the anode electrode. Several factors were examined to determine their effect on operation, including pH, ferrous iron concentration, and solution chemistry. Optimum conditions were a pH of 6.3 and a ferrous iron concentration above about 0.0036 M. These results suggest that fuel cell technologies can be used not only for treating AMD through removal of metals from solution, but also for producing useful products such as electricity and recoverable metals. Advances being made in wastewater fuel cells will enable more efficient power generation and systems suitable for scale-up. 35 refs., 8 figs.

  5. Generation and Dietary Modulation of Anti-Inflammatory Electrophilic Omega-3 Fatty Acid Derivatives

    PubMed Central

    Cipollina, Chiara; Salvatore, Sonia R.; Muldoon, Matthew F.; Freeman, Bruce A.; Schopfer, Francisco J.

    2014-01-01

    Dietary ω-3 polyunsaturated fatty acids (PUFAs) decrease cardiovascular risk via suppression of inflammation. The generation of electrophilic α,β-unsaturated ketone derivatives of the ω-3 PUFAs docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) in activated human macrophages is catalyzed by cyclooxygenase-2 (Cox-2). These derivatives are potent pleiotropic anti-inflammatory signaling mediators that act via mechanisms including the activation of Nrf2-dependent phase 2 gene expression and suppression of pro-inflammatory NF-κB-driven gene expression. Herein, the endogenous generation of ω-3 PUFAs electrophilic ketone derivatives and their hydroxy precursors was evaluated in human neutrophils. In addition, their dietary modulation was assessed through a randomized clinical trial. Methods Endogenous generation of electrophilic omega-3 PUFAs and their hydroxy precursors was evaluated by mass spectrometry in neutrophils isolated from healthy subjects, both at baseline and upon stimulation with calcium ionophore. For the clinical trial, participants were healthy adults 30–55 years of age with a reported EPA+DHA consumption of ≤300 mg/day randomly assigned to parallel groups receiving daily oil capsule supplements for a period of 4 months containing either 1.4 g of EPA+DHA (active condition, n = 24) or identical appearing soybean oil (control condition, n = 21). Participants and laboratory technicians remained blinded to treatment assignments. Results 5-lypoxygenase-dependent endogenous generation of 7-oxo-DHA, 7-oxo-DPA and 5-oxo-EPA and their hydroxy precursors is reported in human neutrophils stimulated with calcium ionophore and phorbol 12-myristate 13-acetate (PMA). Dietary EPA+DHA supplementation significantly increased the formation of 7-oxo-DHA and 5-oxo-EPA, with no significant modulation of arachidonic acid (AA) metabolite levels. Conclusions The endogenous detection of these electrophilic ω-3 fatty acid ketone derivatives supports the

  6. Generation, migration, and resource potential for hydrocarbons in accretionary subduction systems - a large, unconventional hydrocarbon resource

    SciTech Connect

    Stevenson, A.J. )

    1993-01-01

    Methane and other gaseous and liquid hydrocarbons are common components of accretionary complexes and have been observed in all environments within modern and fossil accretionary accumulations. Methane is generated in this setting by both microbial and thermal processes, but the limited number of samples analyzed prevents an accurate assessment of the relative importance of these two gas generation mechanisms. Large accretionary prisms are geologic settings which, owing to the large amounts of organic detritus cycling through them, represent a large potential source of methane. Organic detritus in accretionary systems is primarily terrestrial in origin and thus gas prone. Variations in the sediment input, thermal structure, fluid flow regime, and structural style of accretionary prisms have a substantial effect on the amount of sediment that enters the gas generation window and on the amount and type of hydrocarbons generated. Factors favorable for maximum evolution of gas include a large, thick accretionary prism, a thick incoming sedimentary section, substantial axial trench sedimentation fed with continental detritus, development of the decollement near the top of the incoming section, substantial underplating, a young subducting plate, and slow to moderate plate convergence rates. On a worldwide basis, long-term methane generation potential is estimated at 1.5x10[sup 10] m[sup 3] (0.5 trillion cubic feet or Tcf) per year in the accretionary subduction setting. No commercial accumulations of gas have yet been identified in this setting; this lack of accumulations implies that much of the gas generated may escape to the oceans and the atmosphere. However, accretionary complexes have not been extensively explored for hydrocarbons, and the trapping of even a small part of the gas generated could result in a substantial commercial resource. 37 refs., 5 figs.

  7. CycloPs: generating virtual libraries of cyclized and constrained peptides including nonnatural amino acids.

    PubMed

    Duffy, Fergal J; Verniere, Mélanie; Devocelle, Marc; Bernard, Elise; Shields, Denis C; Chubb, Anthony J

    2011-04-25

    We introduce CycloPs, software for the generation of virtual libraries of constrained peptides including natural and nonnatural commercially available amino acids. The software is written in the cross-platform Python programming language, and features include generating virtual libraries in one-dimensional SMILES and three-dimensional SDF formats, suitable for virtual screening. The stand-alone software is capable of filtering the virtual libraries using empirical measurements, including peptide synthesizability by standard peptide synthesis techniques, stability, and the druglike properties of the peptide. The software and accompanying Web interface is designed to enable the rapid generation of large, structurally diverse, synthesizable virtual libraries of constrained peptides quickly and conveniently, for use in virtual screening experiments. The stand-alone software, and the Web interface for evaluating these empirical properties of a single peptide, are available at http://bioware.ucd.ie .

  8. Devices and approaches for generating specific high-affinity nucleic acid aptamers

    NASA Astrophysics Data System (ADS)

    Szeto, Kylan; Craighead, Harold G.

    2014-09-01

    High-affinity and highly specific antibody proteins have played a critical role in biological imaging, medical diagnostics, and therapeutics. Recently, a new class of molecules called aptamers has emerged as an alternative to antibodies. Aptamers are short nucleic acid molecules that can be generated and synthesized in vitro to bind to virtually any target in a wide range of environments. They are, in principal, less expensive and more reproducible than antibodies, and their versatility creates possibilities for new technologies. Aptamers are generated using libraries of nucleic acid molecules with random sequences that are subjected to affinity selections for binding to specific target molecules. This is commonly done through a process called Systematic Evolution of Ligands by EXponential enrichment, in which target-bound nucleic acids are isolated from the pool, amplified to high copy numbers, and then reselected against the desired target. This iterative process is continued until the highest affinity nucleic acid sequences dominate the enriched pool. Traditional selections require a dozen or more laborious cycles to isolate strongly binding aptamers, which can take months to complete and consume large quantities of reagents. However, new devices and insights from engineering and the physical sciences have contributed to a reduction in the time and effort needed to generate aptamers. As the demand for these new molecules increases, more efficient and sensitive selection technologies will be needed. These new technologies will need to use smaller samples, exploit a wider range of chemistries and techniques for manipulating binding, and integrate and automate the selection steps. Here, we review new methods and technologies that are being developed towards this goal, and we discuss their roles in accelerating the availability of novel aptamers.

  9. The Mirrortron experiment: A proof of principle test for a method of generating high transient potentials

    SciTech Connect

    Douglass, S.R.

    1993-09-01

    The Mirrortron is a concept in which heavy ions are accelerated by a large local transient space potential that is produced in a hot electron plasma. The purpose of this experiment is to begin a proof of principle experiment to investigate the feasibility of producing this space potential and its associated electric field. If a large magnetic field is suddenly generated in a hot electron plasma with a loss-cone distribution, then potentials on the order of the electron temperature are expected. This potential lasts a few tens of nanoseconds. The investigation begins with a theoretical analysis of this phenomenon giving the space potential as a function of the applied magnetic field. The theory is further extended to cases of relativistic electron distributions. This is then followed by design work on a mirror confinement system for hot electrons. In this experiment a 50--100 keV electron temperature plasma is created with electron cyclotron resonance heating using two frequencies of relatively low microwave power. The microwaves are coupled to resonant frequencies of the vacuum chamber. The volume averaged plasma density is measured to be in the 10{sup 9} cm{sup {minus}3} range. A strap coil and a flat Blumlein transmission line pulse generator were developed to produce a 150 gauss field within 70 ns. The strap coil was placed at the midplane of the mirror field, where the field is 700 gauss. Based on theoretical estimates and computer simulations a 20 kV potential is expected. Measurement of this potential is derived from the modulation of the current of a monoenergetic electron beam after it passes through the high potential region. The variation in the beam energy allows bunching to occur in transit to the detector.

  10. Second generation bioethanol potential from selected Malaysia's biodiversity biomasses: A review.

    PubMed

    Aditiya, H B; Chong, W T; Mahlia, T M I; Sebayang, A H; Berawi, M A; Nur, Hadi

    2016-01-01

    Rising global temperature, worsening air quality and drastic declining of fossil fuel reserve are the inevitable phenomena from the disorganized energy management. Bioethanol is believed to clear out the effects as being an energy-derivable product sourced from renewable organic sources. Second generation bioethanol interests many researches from its unique source of inedible biomass, and this paper presents the potential of several selected biomasses from Malaysia case. As one of countries with rich biodiversity, Malaysia holds enormous potential in second generation bioethanol production from its various agricultural and forestry biomasses, which are the source of lignocellulosic and starch compounds. This paper reviews potentials of biomasses and potential ethanol yield from oil palm, paddy (rice), pineapple, banana and durian, as the common agricultural waste in the country but uncommon to be served as bioethanol feedstock, by calculating the theoretical conversion of cellulose, hemicellulose and starch components of the biomasses into bioethanol. Moreover, the potential of the biomasses as feedstock are discussed based on several reported works.

  11. Second generation bioethanol potential from selected Malaysia's biodiversity biomasses: A review.

    PubMed

    Aditiya, H B; Chong, W T; Mahlia, T M I; Sebayang, A H; Berawi, M A; Nur, Hadi

    2016-01-01

    Rising global temperature, worsening air quality and drastic declining of fossil fuel reserve are the inevitable phenomena from the disorganized energy management. Bioethanol is believed to clear out the effects as being an energy-derivable product sourced from renewable organic sources. Second generation bioethanol interests many researches from its unique source of inedible biomass, and this paper presents the potential of several selected biomasses from Malaysia case. As one of countries with rich biodiversity, Malaysia holds enormous potential in second generation bioethanol production from its various agricultural and forestry biomasses, which are the source of lignocellulosic and starch compounds. This paper reviews potentials of biomasses and potential ethanol yield from oil palm, paddy (rice), pineapple, banana and durian, as the common agricultural waste in the country but uncommon to be served as bioethanol feedstock, by calculating the theoretical conversion of cellulose, hemicellulose and starch components of the biomasses into bioethanol. Moreover, the potential of the biomasses as feedstock are discussed based on several reported works. PMID:26253329

  12. An enzymatic mechanism for generating the precursor of endogenous 13-cis retinoic acid in the brain.

    PubMed

    Takahashi, Yusuke; Moiseyev, Gennadiy; Chen, Ying; Farjo, Krysten; Nikolaeva, Olga; Ma, Jian-Xing

    2011-04-01

    13-cis Retinoic acid (13cRA), a stereoisomeric form of retinoic acid, is naturally generated in the body and is also used clinically to treat acute promyelocytic leukemia, some skin diseases and cancer. Furthermore, it has been suggested that 13cRA modulates brain neurochemical systems because increased 13cRA levels are correlated with depression and increased suicidal tendencies. However, the mechanism for the generation of endogenous 13cRA is not well understood. The present study identified and characterized a novel enzyme in zebrafish brain, 13-cis isomerohydrolase (13cIMH) (EC 5.2.1.7), which exclusively generated 13-cis retinol and can be oxidized to 13cRA. 13cIMH shares 74% amino acid sequence identity with human retinal pigment epithelium specific 65 kDa protein (RPE65), an 11-cis isomerohydrolase in the visual cycle, and retains the key residues essential for the isomerohydrolase activity of RPE65. Similar to RPE65, 13cIMH is a membrane-associated protein, requires all-trans retinyl ester as its intrinsic substrate, and its enzymatic activity is dependent on iron. The purified 13cIMH converted all-trans retinyl ester exclusively to 13-cis retinol with K(m)  = 2.6 μm and k(cat) = 4.4 × 10(-4) ·s(-1) . RT-PCR, western blot analysis and immunohistochemistry detected 13cIMH expression in the brain. These results suggest that 13cIMH may play a key role in the generation of 13cRA, as well as in the modulation of neuronal functions in the brain.

  13. Determination of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid in cereals by hydride generation atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Matos Reyes, M. N.; Cervera, M. L.; Campos, R. C.; de la Guardia, M.

    2007-09-01

    A fast, sensitive and simple non-chromatographic analytical method was developed for the speciation analysis of toxic arsenic species in cereal samples, namely rice and wheat semolina. An ultrasound-assisted extraction of the toxic arsenic species was performed with 1 mol L - 1 H 3PO 4 and 0.1% (m/v) Triton XT-114. After extraction, As(III), As(V), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) concentrations were determined by hydride generation atomic fluorescence spectrometry using a series of proportional equations corresponding to four different experimental reduction conditions. The detection limits of the method were 1.3, 0.9, 1.5 and 0.6 ng g - 1 for As(III), As(V), DMA and MMA, respectively, expressed in terms of sample dry weight. Recoveries were always greater than 90%, and no species interconversion occurred. The speciation analysis of a rice flour reference material certified for total arsenic led to coherent results, which were also in agreement with other speciation studies made on the same certified reference material.

  14. Novel cinnamic acid/4-aminoquinoline conjugates bearing non-proteinogenic amino acids: towards the development of potential dual action antimalarials.

    PubMed

    Pérez, Bianca C; Teixeira, Cátia; Figueiras, Marta; Gut, Jiri; Rosenthal, Philip J; Gomes, José R B; Gomes, Paula

    2012-08-01

    A series of cinnamic acid/4-aminoquinoline conjugates conceived to link, through a proper retro-enantio dipeptide, a heterocyclic core known to prevent hemozoin formation, to a trans-cinnamic acid motif capable of inhibiting enzyme catalytic Cys residues, were synthesized as potential dual-action antimalarials. The effect of amino acid configuration and the absence of the dipeptide spacer were also assessed. The replacement of the D-amino acids by their natural L counterparts led to a decrease in both anti-plasmodial and falcipain-inhibitory activity, suggesting that the former are preferable. Molecules with such spacer were active against blood-stage Plasmodium falciparum, in vitro, and hemozoin formation, implying that the dipeptide has a key role in mediating these two activities. In turn, compounds without spacer were better falcipain-2 inhibitors, likely because these compounds are smaller and have their vinyl bonds in closer vicinity to the catalytic Cys, as suggested by molecular modeling calculations. These novel conjugates constitute promising leads for the development of new antiplasmodials targeted at blood-stage malaria parasites.

  15. Mesoscale generation of available potential energy in the warm sector of an extratropical cyclone

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Ruminski, M. G.; Starr, D. OC.

    1985-01-01

    The generation of available potential energy (APE) was evaluated in the warm sector of an extratropical cyclone containing intense convective activity. Mesoscale rawinsonde data from AVE-SESAME '79 was employed. Parametrization techniques were used for latent and sensible heating components, and variations for the Kuo scheme provided convective latent heat release. Radiative transfer models were used to obtain estimates of infrared and solar processes. The results indicated that solar heating was greater than IR cooling near midday. An extensive low-level cloud deck was the most radiatively active area. Negative generation of APE occurred during most of the period for the SESAME domain as a whole. The leading contributor was convective latent heating located primarily in regions of negative efficiency. Infrared cooling was the only component to consistently produce positive generation. Sensible heating provided an important sink of APE in the low levels during the afternoon.

  16. Hypergraph-based saliency map generation with potential region-of-interest approximation and validation

    NASA Astrophysics Data System (ADS)

    Liang, Zhen; Fu, Hong; Chi, Zheru; Feng, Dagan

    2012-01-01

    A novel saliency model is proposed in this paper to automatically process images in the similar way as the human visual system which focuses on conspicuous regions that catch human beings' attention. The model combines a hypergraph representation and a partitioning process with potential region-of-interest (p-ROI) approximation and validation. Experimental results demonstrate that the proposed method shows considerable improvement in the performance of saliency map generation.

  17. A new field method to characterise the runoff generation potential of burned hillslopes

    NASA Astrophysics Data System (ADS)

    Sheridan, Gary; Lane, Patrick; Langhans, Christoph

    2016-04-01

    The prediction of post fire runoff generation is critical for the estimation of post fire erosion processes and rates. Typical field measures for determining infiltration model parameters include ring infiltrometers, tension infiltrometers, rainfall simulators and natural runoff plots. However predicting the runoff generating potential of post-fire hillslopes is difficult due to the high spatial variability of soil properties relative to the size of the measurement method, the poorly understood relationship between water repellence and runoff generation, known scaling issues with all the above hydraulic measurements, and logistical limitations for measurements in remote environments. In this study we tested a new field method for characterizing surface runoff generation potential that overcomes these limitations and is quick, simple and cheap to apply in the field. The new field method involves the manual application of a 40mm depth of Brilliant Blue FCF food dye along a 10cm wide and 5m long transect along the contour under slightly-ponded conditions. After 24 hours the transect is excavated to a depth of 10cm and the percentage dyed area within the soil profile recorded manually. The dyed area is an index of infiltration potential of the soil during intense rainfall events, and captures both spatial variability and water repellence effects. The dye measurements were made adjacent to long term instrumented post fire rainfall-runoff plots on 7 contrasting soil types over a 6 month period, and the results show surprisingly strong correlations (r2 = 0.9) between the runoff-ratio from the plots and the dyed area. The results are used to develop an initial conceptual model that links the dye index with an infiltration model and parameters suited to burnt hillslopes. The capacity of this method to provide a simple, and reliable indicator of post fire runoff potential from different fire severities, soil types and treatments is explored in this presentation.

  18. Generation of Available Potential Energy and Other Diagnostic Studies During FGGE

    NASA Technical Reports Server (NTRS)

    Salstein, D. A.; Rosen, R. D.

    1984-01-01

    The energy cycle of the atmosphere was examined by utilizing gridded analyses of the state of the atmosphere produced by a special objective analysis system and the GLAS fourth order general circulation model. The analyses of a month period during the first special observing period of FGGE are produced at GLAS. The various diabatic heating fields necessary for direct computation of the generation of available potential energy (P) are recorded.

  19. Novel Halomonas sp. B15 isolated from Larnaca Salt Lake in Cyprus that generates vanillin and vanillic acid from ferulic acid.

    PubMed

    Vyrides, Ioannis; Agathangelou, Maria; Dimitriou, Rodothea; Souroullas, Konstantinos; Salamex, Anastasia; Ioannou, Aristostodimos; Koutinas, Michalis

    2015-08-01

    Vanillin is a high value added product with many applications in the food, fragrance and pharmaceutical industries. A natural and low-cost method to produce vanillin is by microbial bioconversions through ferulic acid. Until now, limited microorganisms have been found capable of bioconverting ferulic acid to vanillin at high yield. This study aimed to screen halotolerant strains of bacteria from Larnaca Salt Lake which generate vanillin and vanillic acid from ferulic acid. From a total of 50 halotolenant/halophilic strains 8 grew in 1 g/L ferulic acid and only 1 Halomonas sp. B15 and 3 Halomonas elognata strains were capable of bioconverting ferulic acid to vanillic acid at 100 g NaCl/L. The highest vanillic acid (365 mg/L) at these conditions generated by Halomonas sp. B15 which corresponds to ferulic acid bioconversion yield of 36.5%. Using the resting cell technique with an initial ferulic acid concentration of 0.5 g/L at low salinity, the highest production of vanillin (245 mg/L) took place after 48 h, corresponding to a bioconversion yield of 49%. This is the first reported Halomonas sp. with high yield of vanillin production from ferulic acid at low salinity.

  20. Carbonate-based Janus micromotors moving in ultra-light acidic environment generated by HeLa cells in situ

    PubMed Central

    Guix, Maria; Meyer, Anne K.; Koch, Britta; Schmidt, Oliver G.

    2016-01-01

    Novel approaches to develop naturally-induced drug delivery in tumor environments in a deterministic and controlled manner have become of growing interest in recent years. Different polymeric-based microstructures and other biocompatible substances have been studied taking advantage of lactic acidosis phenomena in tumor cells, which decrease the tumor extracellular pH down to 6.8. Micromotors have recently demonstrated a high performance in living systems, revealing autonomous movement in the acidic environment of the stomach or moving inside living cells by using acoustic waves, opening the doors for implementation of such smart microengines into living entities. The need to develop biocompatible motors which are driven by natural fuel sources inherently created in biological systems has thus become of crucial importance. As a proof of principle, we here demonstrate calcium carbonate Janus particles moving in extremely light acidic environments (pH 6.5), whose motion is induced in conditioned acidic medium generated by HeLa cells in situ. Our system not only obviates the need for an external fuel, but also presents a selective activation of the micromotors which promotes their motion and consequent dissolution in presence of a quickly propagating cell source (i.e. tumor cells), therefore inspiring new micromotor configurations for potential drug delivery systems. PMID:26905939

  1. Carbonate-based Janus micromotors moving in ultra-light acidic environment generated by HeLa cells in situ.

    PubMed

    Guix, Maria; Meyer, Anne K; Koch, Britta; Schmidt, Oliver G

    2016-01-01

    Novel approaches to develop naturally-induced drug delivery in tumor environments in a deterministic and controlled manner have become of growing interest in recent years. Different polymeric-based microstructures and other biocompatible substances have been studied taking advantage of lactic acidosis phenomena in tumor cells, which decrease the tumor extracellular pH down to 6.8. Micromotors have recently demonstrated a high performance in living systems, revealing autonomous movement in the acidic environment of the stomach or moving inside living cells by using acoustic waves, opening the doors for implementation of such smart microengines into living entities. The need to develop biocompatible motors which are driven by natural fuel sources inherently created in biological systems has thus become of crucial importance. As a proof of principle, we here demonstrate calcium carbonate Janus particles moving in extremely light acidic environments (pH 6.5), whose motion is induced in conditioned acidic medium generated by HeLa cells in situ. Our system not only obviates the need for an external fuel, but also presents a selective activation of the micromotors which promotes their motion and consequent dissolution in presence of a quickly propagating cell source (i.e. tumor cells), therefore inspiring new micromotor configurations for potential drug delivery systems. PMID:26905939

  2. DDQ-promoted dehydrogenation from natural rigid polycyclic acids or flexible alkyl acids to generate lactones by a radical ion mechanism.

    PubMed

    Ding, Ye; Huang, Zhangjian; Yin, Jian; Lai, Yisheng; Zhang, Shibo; Zhang, Zhiguo; Fang, Lei; Peng, Sixun; Zhang, Yihua

    2011-09-01

    A novel and facile DDQ-mediated dehydrogenation from natural rigid polycyclic acids or flexible alkyl acids to generate lactones is described. The formation of lactones proceeds by a radical ion mechanism, which has been established by DPPH˙-mediated chemical identification, ESR spectroscopy and an enol intermediate trapping. PMID:21766102

  3. The Potential for Low-Temperature Abiotic Hydrogen Generation and a Hydrogen-Driven Deep Biosphere

    PubMed Central

    Huang, Shanshan; Thorseth, Ingunn H.

    2011-01-01

    Abstract The release and oxidation of ferrous iron during aqueous alteration of the mineral olivine is known to reduce aqueous solutions to such extent that molecular hydrogen, H2, forms. H2 is an efficient energy carrier and is considered basal to the deep subsurface biosphere. Knowledge of the potential for H2 generation is therefore vital to understanding the deep biosphere on Earth and on extraterrestrial bodies. Here, we provide a review of factors that may reduce the potential for H2 generation with a focus on systems in the core temperature region for thermophilic to hyperthermophilic microbial life. We show that aqueous sulfate may inhibit the formation of H2, whereas redox-sensitive compounds of carbon and nitrogen are unlikely to have significant effect at low temperatures. In addition, we suggest that the rate of H2 generation is proportional to the dissolution rate of olivine and, hence, limited by factors such as reactive surface areas and the access of water to fresh surfaces. We furthermore suggest that the availability of water and pore/fracture space are the most important factors that limit the generation of H2. Our study implies that, because of large heat flows, abundant olivine-bearing rocks, large thermodynamic gradients, and reduced atmospheres, young Earth and Mars probably offered abundant systems where microbial life could possibly have emerged. Key Words: Serpentinization—Olivine—Hydrogen—Deep biosphere—Water—Mars. Astrobiology 11, 711–724. PMID:21923409

  4. Generation of the sedimentation potential by rapid deceleration of a fluid jet

    NASA Astrophysics Data System (ADS)

    Park, Han Jung; Tang, Ziyao; Diebold, Gerald; University of Tennessee at Chattanooga Team; Brown University Team

    2015-04-01

    The sedimentation potential refers to the generation of a voltage in an ionic or colloidal solution as a result of motion of the ions or colloidal particles relative to the surrounding fluid. In the case of colloidal suspensions, where the density of the colloidal particles differs from that of the fluid, the effect of a body force on the suspension, generated typically either in a centrifuge or the earth's gravitational field, is to give different motion to the charged particles and the fluid, producing a distortion of the normally spherical counter charge distribution around the colloidal particles. As a result of the opposing charges attached to the particles and in the double layer in the surrounding fluid, dipoles are generated at the sites of the particles, which add to give a macroscopic voltage in the fluid. Experiments reported here show that the sedimentation potential can be generated by the rapid deceleration of a jet of colloid at a rigid surface where, again, the differential acceleration of the particles and fluid gives rise to a voltage. The voltages between a conducting surface and a metallic tube used to form the jet are found to have large signal-to-noise ratios.

  5. Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation.

    PubMed

    Rohr, Annette C; Campleman, Sharan L; Long, Christopher M; Peterson, Michael K; Weatherstone, Susan; Quick, Will; Lewis, Ari

    2015-07-22

    Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S) concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios--pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended.

  6. Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation

    PubMed Central

    Rohr, Annette C.; Campleman, Sharan L.; Long, Christopher M.; Peterson, Michael K.; Weatherstone, Susan; Quick, Will; Lewis, Ari

    2015-01-01

    Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S) concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios—pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended. PMID:26206568

  7. Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation.

    PubMed

    Rohr, Annette C; Campleman, Sharan L; Long, Christopher M; Peterson, Michael K; Weatherstone, Susan; Quick, Will; Lewis, Ari

    2015-07-01

    Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S) concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios--pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended. PMID:26206568

  8. Simulation of acid mine drainage generation around Küre VMS Deposits, Northern Turkey

    NASA Astrophysics Data System (ADS)

    Demirel, Cansu; Kurt, Mehmet Ali; Çelik Balci, Nurgül

    2015-04-01

    This study investigated comparative leaching characteristics of acidophilic bacterial strains under shifting environmental conditions at proposed two stages as formation stage or post acidic mine drainage (AMD) generation. At the first stage, initial reactions associated with AMD generation was simulated in shaking flasks containing massive pyritic chalcopyrite ore by using a pure strain Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus sp. mostly dominated by A. ferrooxidans and A. thiooxidans at 26oC. At the second stage, long term bioleaching experiments were carried out with the same strains at 26oC and 40oC to investigate the leaching characteristics of pyritic chalcopyrite ore under elevated heavy metal and temperature conditions. During the experiments, physicochemical characteristics (e.i. Eh, pH, EC) metal (Fe, Co, Cu, Zn) and sulfate concentration of the experimental solution were monitored during 180 days. Significant acid generation and sulfate release were determined during bioleaching of the ore by mixed acidophilic cultures containing both iron and sulfur oxidizers. In the early stage of the experiments, heavy metal release from the ore was caused by generation of acid due to accelerated bacterial oxidation of the ore. Generally high concentrations of Co and Cu were released into the solution from the experiments conducted by pure cultures of Acidithiobacillus ferrooxidans whereas high Zn and Fe was released into the solution from the mixed culture experiments. In the later stage of AMD generation and post AMD, chemical oxidation is accelerated causing excessive amounts of contamination, even exceeding the amounts resulted from bacterial oxidation by mixed cultures. Acidithibacillus ferrooxidans was found to be more effective in leaching Cu, Fe and Co at higher temperatures in contrary to mixed acidophiles that are more prone to operate at optimal moderate conditions. Moreover, decreasing Fe values are noted in bioleaching

  9. Uric Acid Induces Hepatic Steatosis by Generation of Mitochondrial Oxidative Stress

    PubMed Central

    Lanaspa, Miguel A.; Sanchez-Lozada, Laura G.; Choi, Yea-Jin; Cicerchi, Christina; Kanbay, Mehmet; Roncal-Jimenez, Carlos A.; Ishimoto, Takuji; Li, Nanxing; Marek, George; Duranay, Murat; Schreiner, George; Rodriguez-Iturbe, Bernardo; Nakagawa, Takahiko; Kang, Duk-Hee; Sautin, Yuri Y.; Johnson, Richard J.

    2012-01-01

    Metabolic syndrome represents a collection of abnormalities that includes fatty liver, and it currently affects one-third of the United States population and has become a major health concern worldwide. Fructose intake, primarily from added sugars in soft drinks, can induce fatty liver in animals and is epidemiologically associated with nonalcoholic fatty liver disease in humans. Fructose is considered lipogenic due to its ability to generate triglycerides as a direct consequence of the metabolism of the fructose molecule. Here, we show that fructose also stimulates triglyceride synthesis via a purine-degrading pathway that is triggered from the rapid phosphorylation of fructose by fructokinase. Generated AMP enters into the purine degradation pathway through the activation of AMP deaminase resulting in uric acid production and the generation of mitochondrial oxidants. Mitochondrial oxidative stress results in the inhibition of aconitase in the Krebs cycle, resulting in the accumulation of citrate and the stimulation of ATP citrate lyase and fatty-acid synthase leading to de novo lipogeneis. These studies provide new insights into the pathogenesis of hepatic fat accumulation under normal and diseased states. PMID:23035112

  10. Screening of potential probiotic lactic acid bacteria based on gastrointestinal properties and perfluorooctanoate toxicity.

    PubMed

    Xing, Jiali; Wang, Fan; Xu, Qi; Yin, Boxing; Fang, Dongsheng; Zhao, Jianxin; Zhang, Hao; Chen, Yong Q; Wang, Gang; Chen, Wei

    2016-08-01

    The consumption of lactic acid bacteria capable of binding or degrading food-borne carcinogens may reduce human exposure to these deleterious compounds. In this study, 25 Lactobacillus strains isolated from human, plant, or dairy environments were investigated for their potential probiotic capacity against perfluorooctanoate (PFOA) toxicity. The PFOA binding, tolerance ability, and acid and bile salt tolerance were investigated and assessed by principal component analysis. Additionally, the effect of different pH levels and binding times was assessed. These strains exhibited different degrees of PFOA binding; the strain with the highest PFOA binding capability was Lactobacillus plantarum CCFM738, which bound to 49.40 ± 1.5 % of available PFOA. This strain also exhibited relatively good cellular antioxidative properties, acid and bile salt tolerance, and adhesion to Caco-2 cells. This study suggests that L. plantarum CCFM738 could be used as a potential probiotic in food applications against PFOA toxicity. PMID:27094185

  11. Synthesis, activity, and docking study of phenylthiazole acids as potential agonists of PPARγ

    PubMed Central

    Ma, Liang; Wang, Taijin; Shi, Min; Ye, Haoyu

    2016-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-mediated transcription factor playing key roles in glucose and lipid homeostasis, and PPARγ ligands possess therapeutic potential in these as well as other areas. In this study, a series of phenylthiazole acids have been synthesized and evaluated for agonistic activity by a convenient fluorescence polarization-based PPARγ ligand screening assay. Compound 4t, as a potential PPARγ agonist with half maximal effective concentration (EC50) 0.75±0.20 μM, exhibited in vitro potency comparable with a 0.83±0.14 μM of the positive control rosiglitazone. Molecular docking and molecular dynamics simulations indicated that phenylthiazole acid 4t interacted with the amino acid residues of the active site of the PPARγ complex in a stable manner, consistent with the result of the in vitro ligand assay. PMID:27313447

  12. Potential human health effects of acid rain: report of a workshop.

    PubMed

    Goyer, R A; Bachmann, J; Clarkson, T W; Ferris, B G; Graham, J; Mushak, P; Perl, D P; Rall, D P; Schlesinger, R; Sharpe, W

    1985-05-01

    This report summarizes the potential impact of the acid precipitation phenomenon on human health. There are two major components to this phenomenon: the predepositional phase, during which there is direct human exposure to acidic substances from ambient air, and the post-depositional phase, in which the deposition of acid materials on water and soil results in the mobilization, transport, and even chemical transformation of toxic metals. Acidification increases bioconversion of mercury to methylmercury, which accumulates in fish, increasing the risk to toxicity in people who eat fish. Increase in water and soil content of lead and cadmium increases human exposure to these metals which become additive to other sources presently under regulatory control. The potential adverse health effects of increased human exposure to aluminum is not known at the present time.

  13. Potential human health effects of acid rain: report of a workshop

    PubMed Central

    Goyer, Robert A.; Bachmann, John; Clarkson, Thomas W.; Ferris, Benjamin G.; Graham, Judith; Mushak, Paul; Perl, Daniel P.; Rall, David P.; Schlesinger, Richard; Sharpe, William; Wood, John M.

    1985-01-01

    This report summarizes the potential impact of the acid precipitation phenomenon on human health. There are two major components to this phenomenon: the predepositional phase, during which there is direct human exposure to acidic substances from ambient air, and the post-depositional phase, in which the deposition of acid materials on water and soil results in the mobilization, transport, and even chemical transformation of toxic metals. Acidification increases bioconversion of mercury to methylmercury, which accumulates in fish, increasing the risk to toxicity in people who eat fish. Increase in water and soil content of lead and cadmium increases human exposure to these metals which become additive to other sources presently under regulatory control. The potential adverse health effects of increased human exposure to aluminum is not known at the present time. PMID:3896772

  14. Communication: Physical origins of ionization potential shifts in mixed carboxylic acids and water complexes.

    PubMed

    Gu, Quanli; Tang, Zhen; Su, Peifeng; Wu, Wei; Yang, Zhijun; Trindle, Carl O; Knee, Joseph L

    2016-08-01

    The ionization potential (IP) of the aromatic alpha hydroxy carboxylic acid, 9-hydroxy-9-fluorene carboxylic acid (9HFCA), is shifted by complexation with hydrogen bonding ligands such as water and formic acid. Generalized Kohn-Sham energy decomposition analysis decomposes the intermolecular binding energies into a frozen energy term, polarization, correlation, and/or dispersion energy terms, as well as terms of geometric relaxation and zero point energy. We observe that in each dimer the attractive polarization always increases upon ionization, enhancing binding in the cation and shifting the IP toward the red. For 9HFCA-H2O, a substantial decrease of the repulsive frozen energy in cation further shifts the IP toward red. For 9HFCA-HCOOH, the increase of the frozen energy actually occurs in the cation and shifts the IP toward blue. Consistent with the experimental measurements, our analysis provides new, non-intuitive perspectives on multiple hydrogen bonds interactions in carboxylic acids and water complexes.

  15. Communication: Physical origins of ionization potential shifts in mixed carboxylic acids and water complexes

    NASA Astrophysics Data System (ADS)

    Gu, Quanli; Tang, Zhen; Su, Peifeng; Wu, Wei; Yang, Zhijun; Trindle, Carl O.; Knee, Joseph L.

    2016-08-01

    The ionization potential (IP) of the aromatic alpha hydroxy carboxylic acid, 9-hydroxy-9-fluorene carboxylic acid (9HFCA), is shifted by complexation with hydrogen bonding ligands such as water and formic acid. Generalized Kohn-Sham energy decomposition analysis decomposes the intermolecular binding energies into a frozen energy term, polarization, correlation, and/or dispersion energy terms, as well as terms of geometric relaxation and zero point energy. We observe that in each dimer the attractive polarization always increases upon ionization, enhancing binding in the cation and shifting the IP toward the red. For 9HFCA—H2O, a substantial decrease of the repulsive frozen energy in cation further shifts the IP toward red. For 9HFCA—HCOOH, the increase of the frozen energy actually occurs in the cation and shifts the IP toward blue. Consistent with the experimental measurements, our analysis provides new, non-intuitive perspectives on multiple hydrogen bonds interactions in carboxylic acids and water complexes.

  16. Lipids and Fatty Acids of Nudibranch Mollusks: Potential Sources of Bioactive Compounds

    PubMed Central

    Zhukova, Natalia V.

    2014-01-01

    The molecular diversity of chemical compounds found in marine animals offers a good chance for the discovery of novel bioactive compounds of unique structures and diverse biological activities. Nudibranch mollusks, which are not protected by a shell and produce chemicals for various ecological uses, including defense against predators, have attracted great interest for their lipid composition. Lipid analysis of eight nudibranch species revealed dominant phospholipids, sterols and monoalkyldiacylglycerols. Among polar lipids, 1-alkenyl-2-acyl glycerophospholipids (plasmalogens) and ceramide-aminoethyl phosphonates were found in the mollusks. The fatty acid compositions of the nudibranchs differed greatly from those of other marine gastropods and exhibited a wide diversity: very long chain fatty acids known as demospongic acids, a series of non-methylene-interrupted fatty acids, including unusual 21:2∆7,13, and an abundance of various odd and branched fatty acids typical of bacteria. Symbiotic bacteria revealed in some species of nudibranchs participate presumably in the production of some compounds serving as a chemical defense for the mollusks. The unique fatty acid composition of the nudibranchs is determined by food supply, inherent biosynthetic activities and intracellular symbiotic microorganisms. The potential of nudibranchs as a source of biologically active lipids and fatty acids is also discussed. PMID:25196731

  17. Lipids and fatty acids of nudibranch mollusks: potential sources of bioactive compounds.

    PubMed

    Zhukova, Natalia V

    2014-08-01

    The molecular diversity of chemical compounds found in marine animals offers a good chance for the discovery of novel bioactive compounds of unique structures and diverse biological activities. Nudibranch mollusks, which are not protected by a shell and produce chemicals for various ecological uses, including defense against predators, have attracted great interest for their lipid composition. Lipid analysis of eight nudibranch species revealed dominant phospholipids, sterols and monoalkyldiacylglycerols. Among polar lipids, 1-alkenyl-2-acyl glycerophospholipids (plasmalogens) and ceramide-aminoethyl phosphonates were found in the mollusks. The fatty acid compositions of the nudibranchs differed greatly from those of other marine gastropods and exhibited a wide diversity: very long chain fatty acids known as demospongic acids, a series of non-methylene-interrupted fatty acids, including unusual 21:2∆7,13, and an abundance of various odd and branched fatty acids typical of bacteria. Symbiotic bacteria revealed in some species of nudibranchs participate presumably in the production of some compounds serving as a chemical defense for the mollusks. The unique fatty acid composition of the nudibranchs is determined by food supply, inherent biosynthetic activities and intracellular symbiotic microorganisms. The potential of nudibranchs as a source of biologically active lipids and fatty acids is also discussed.

  18. Lipids and fatty acids of nudibranch mollusks: potential sources of bioactive compounds.

    PubMed

    Zhukova, Natalia V

    2014-08-01

    The molecular diversity of chemical compounds found in marine animals offers a good chance for the discovery of novel bioactive compounds of unique structures and diverse biological activities. Nudibranch mollusks, which are not protected by a shell and produce chemicals for various ecological uses, including defense against predators, have attracted great interest for their lipid composition. Lipid analysis of eight nudibranch species revealed dominant phospholipids, sterols and monoalkyldiacylglycerols. Among polar lipids, 1-alkenyl-2-acyl glycerophospholipids (plasmalogens) and ceramide-aminoethyl phosphonates were found in the mollusks. The fatty acid compositions of the nudibranchs differed greatly from those of other marine gastropods and exhibited a wide diversity: very long chain fatty acids known as demospongic acids, a series of non-methylene-interrupted fatty acids, including unusual 21:2∆7,13, and an abundance of various odd and branched fatty acids typical of bacteria. Symbiotic bacteria revealed in some species of nudibranchs participate presumably in the production of some compounds serving as a chemical defense for the mollusks. The unique fatty acid composition of the nudibranchs is determined by food supply, inherent biosynthetic activities and intracellular symbiotic microorganisms. The potential of nudibranchs as a source of biologically active lipids and fatty acids is also discussed. PMID:25196731

  19. Raman spectroscopic identification of usnic acid in hydrothermal minerals as a potential Martian analogue

    NASA Astrophysics Data System (ADS)

    Osterrothová, Kateřina; Jehlička, Jan

    2009-08-01

    Raman spectroscopy using 785 nm excitation was tested as a nondestructive method for determining the presence of the potential biomarker, usnic acid, in experimentally prepared mineral matrices. Investigated samples consisting of usnic acid mixed with powdered hydrothermal minerals, gypsum and calcite were studied. Various concentrations of usnic acid in the mineral matrix were studied to determine the detection limits of this biomarker. Usnic acid was mixed with gypsum (respectively, calcite) and covered by a UV-transparent crystal of gypsum (CaSO 4·2H 2O), thereby creating artificial inclusions similar to those which could be present in Martian minerals. A Raman usnic acid signal at the concentration level as low as 1 g kg -1 was obtained in the powdered mineral matrix and 5 g kg -1 when analyzed through the monocrystal. The number of registered usnic acid key Raman bands was dependent on the particular mineral matrix. If a similar concentration of usnic acid could persist in Martian samples, then Raman spectroscopy will be able to identify it. Obtained results will aid both in situ Raman analyses on Mars and on Earth.

  20. Neuraminidase inhibition of Dietary chlorogenic acids and derivatives - potential antivirals from dietary sources.

    PubMed

    Gamaleldin Elsadig Karar, Mohamed; Matei, Marius-Febi; Jaiswal, Rakesh; Illenberger, Susanne; Kuhnert, Nikolai

    2016-04-01

    Plants rich in chlorogenic acids (CGAs), caffeic acids and their derivatives have been found to exert antiviral effects against influenza virus neuroaminidase. In this study several dietary naturally occurring chlorogenic acids, phenolic acids and derivatives were screened for their inhibitory activity against neuroaminidases (NAs) from C. perfringens, H5N1 and recombinant H5N1 (N-His)-Tag using a fluorometric assay. There was no significant difference in inhibition between the different NA enzymes. The enzyme inhibition results indicated that chlorogenic acids and selected derivatives, exhibited high activities against NAs. It seems that the catechol group from caffeic acid was important for the activity. Dietary CGA therefore show promise as potential antiviral agents. However, caffeoyl quinic acids show low bioavailibility and are intensly metabolized by the gut micro flora, only low nM concentrations are observed in plasma and urine, therefore a systemic antiviral effect of these compounds is unlikely. Nevertheless, gut floral metabolites with a catechol moiety or structurally related dietary phenolics with a catechol moiety might serve as interesting compounds for future investigations. PMID:27010419

  1. Modulatory effects of alpha-linolenic acid on generation of reactive oxygen species in elaidic acid enriched peritoneal macrophages in rats.

    PubMed

    Rao, Y Poorna Chandra; Lokesh, B R

    2014-09-01

    Fatty acids are known to influence the ability of macrophages to generate reactive oxygen species (ROS). However the effect of elaidic acid (EA, 18:1 trans fatty acid) on ROS generation is not well studied. Rat peritoneal macrophages were enriched with elaidic acid by incubating the cells with 80 1M EA. The macrophages containing EA generated higher amounts of superoxide anion (O2*-), hydrogen peroxide (H2O2) and nitric oxide (NO) by 54, 123 and 237%, respectively as compared to control cells which did not contain EA. To study the competition of other C18 fatty acids with EA macrophages were incubated with EA along with stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2) and alpha-linolenic acid (ALA, 18:3). ALA significantly reduced the incorporation of EA into macrophage lipids. This also significantly reduced the generation of O2*-, H2O2, NO by macrophages. Studies were also conducted by feeding rats with diet containing partially hydrogenated vegetable fat (PHVF) as a source for EA and linseed oil (LSO) as a source for ALA. The rats were fed AIN-93 diet containing PHVF with 17% EA and incremental amounts of linseed oil for 10 weeks. The peritoneal macrophages from rats fed partially hydrogenated vegetable fat generated higher levels of O2*-, H2O2, NO by 46, 161 and 76% respectively, when compared to rats fed control diets containing ground nut oil. Macrophages from rats fed PHVF with incremental amounts of LSO produced significantly lower levels ROS in a dose dependent manner. Thus ALA reduces the higher levels of ROS generated by macrophages containing EA.

  2. Spontaneous miniature hyperpolarizations affect threshold for action potential generation in mudpuppy cardiac neurons.

    PubMed

    Parsons, Rodney L; Barstow, Karen L; Scornik, Fabiana S

    2002-09-01

    Mudpuppy parasympathetic neurons exhibit spontaneous miniature hyperpolarizations (SMHs) that are generated by potassium currents, which are spontaneous miniature outward currents (SMOCs), flowing through clusters of large conductance voltage- and calcium (Ca(2+))-activated potassium (BK) channels. The underlying SMOCs are initiated by a Ca(2+)-induced Ca(2+) release (CICR) mechanism. Perforated-patch whole cell voltage recordings were used to determine whether activation of SMHs contributed to action potential (AP) repolarization or affected the latency to AP generation. Blockade of BK channels by iberiotoxin (IBX, 100 nM) slowed AP repolarization and increased AP duration. Treatment with omega-conotoxin GVIA (3 microM) or nifedipine (10 microM) to inhibit Ca(2+) influx through N- or L-type voltage-dependent calcium channels (VDCCs), respectively, also decreased the rate of AP repolarization and increased AP duration. Elimination of CICR by treatment with either thapsigargin (1 microM) or ryanodine (10 microM) produced no significant change in AP repolarization or duration. Blockade of BK channels with IBX and inhibition of N-type VDCCs with omega-conotoxin GVIA, but not inhibition of L-type VDCCs with nifedipine, decreased the latency of AP generation. A decrease in latency to AP generation occurred with elimination of SMHs by inhibition of CICR following treatment with thapsigargin. Ryanodine treatment decreased AP latency in three of six cells. Apamin (100 nM) had no affect on AP repolarization, duration, or latency to AP generation, but did decrease the hyperpolarizing afterpotential (HAP). Inhibition of L-type VDCCs by nifedipine also decreased HAP amplitude. Inhibition of CICR by either thapsigargin or ryanodine treatment increased the number of APs generated with long depolarizing current pulses, whereas exposure to IBX or omega-conotoxin GVIA depressed excitability. We conclude that CICR, the process responsible for SMH generation, represents a unique

  3. pfSNP: An integrated potentially functional SNP resource that facilitates hypotheses generation through knowledge syntheses.

    PubMed

    Wang, Jingbo; Ronaghi, Mostafa; Chong, Samuel S; Lee, Caroline G L

    2011-01-01

    Currently, >14,000,000 single nucleotide polymorphisms (SNPs) are reported. Identifying phenotype-affecting SNPs among these many SNPs pose significant challenges. Although several Web resources are available that can inform about the functionality of SNPs, these resources are mainly annotation databases and are not very comprehensive. In this article, we present a comprehensive, well-annotated, integrated pfSNP (potentially functional SNPs) Web resource (http://pfs.nus.edu.sg/), which is aimed to facilitate better hypothesis generation through knowledge syntheses mediated by better data integration and a user-friendly Web interface. pfSNP integrates >40 different algorithms/resources to interrogate >14,000,000 SNPs from the dbSNP database for SNPs of potential functional significance based on previous published reports, inferred potential functionality from genetic approaches as well as predicted potential functionality from sequence motifs. Its query interface has the user-friendly "auto-complete, prompt-as-you-type" feature and is highly customizable, facilitating different combination of queries using Boolean-logic. Additionally, to facilitate better understanding of the results and aid in hypotheses generation, gene/pathway-level information with text clouds highlighting enriched tissues/pathways as well as detailed-related information are also provided on the results page. Hence, the pfSNP resource will be of great interest to scientists focusing on association studies as well as those interested to experimentally address the functionality of SNPs.

  4. Generation of Vascular Graft Biomaterials via the Modification of Polyurethane with Hyaluronic Acid

    NASA Astrophysics Data System (ADS)

    Ruiz, Amaliris

    Cardiovascular disease is the leading cause of mortality in the United States, necessitating surgical interventions such as small diameter (I.D. <6 mm) bypass grafting. Although the use of autologous veins as small diameter grafts produces favorable results, their limited availability provides a significant obstacle. Meanwhile, several synthetic materials have demonstrated success as large-diameter vascular grafts, but exhibit poor patency and high failure rates in small-diameter applications. Based on these limitations and the clinical issues associated with them, it is clear that there is a significant need to develop new materials for cardiovascular and blood-contacting applications that could be used to fabricate small-diameter vascular grafts. Thus, in this thesis we have designed and characterized a new polymer that is composed of both synthetic and natural elements with the goal of generating a material that is appropriate for use in cardiovascular applications. Specifically, we describe the modification of polyurethane (PU), a synthetic polymer with many favorable physical characteristics, with hyaluronic acid (HA), a native glycosaminoglycan that possesses anti-thrombotic properties as well as the ability to modulate endothelial cell proliferation in a molecular weight-dependent manner. The goal of the present work was to assess in detail the impact of 1) HA molecular weight, 2) HA quantity, and 3) the method of HA incorporation (bulk vs. surface-grafted) on the vascular-specific performance of polyurethane-HA (PU-HA) materials, under static conditions and upon exposure to physiological shear stresses. The initial findings presented in this thesis indicate that these PU-HA materials possess many of the physical and biological properties that are necessary for implementation in vascular applications. These materials were able to simultaneously address the three major design criteria in vascular graft fabrication: hemocompatibility, endothelialization, and

  5. Analytical expression of the potential generated by a massive inhomogeneous straight segment

    NASA Astrophysics Data System (ADS)

    Najid, N.-E.; Elourabi, E.

    2011-12-01

    Potential calculation is an important task to study dynamical behavior of test particles around celestial bodies. Gravitational potential of irregular bodies is of great importance since the discoveries of binary asteroids, this opened a new field of research. A simple model to describe the motion of a test particle, in that case, is to consider a finite homogeneous straight segment. In our work, we take this model by adding an inhomogeneous distribution of mass. To be consistent with the geometrical shape of the asteroid, we explore a parabolic profile of the density. We establish the closet analytical form of the potential generated by this inhomogeneous massive straight segment. The study of the dynamical behavior is fulfilled by the use of Lagrangian formulation, which allowed us to give some two and three dimensional orbits.

  6. Role of intestinal microbiota in the generation of polyphenol derived phenolic acid mediated attenuation of Alzheimer’s disease β-amyloid oligomerization

    PubMed Central

    Wang, Dongjie; Ho, Lap; Faith, Jeremiah; Ono, Kenjiro; Janle, Elsa M.; Lachcik, Pamela J.; Cooper, Bruce R.; Jannasch, Amber H.; D’Arcy, Bruce R.; Williams, Barbara A.; Ferruzzi, Mario G.; Levine, Samara; Zhao, Wei; Dubner, Lauren; Pasinetti, Giulio M.

    2015-01-01

    Scope Grape seed polyphenol extract (GSPE) is receiving increasing attention for its potential preventative and therapeutic roles in Alzheimer’s disease (AD) and other age-related neurodegenerative disorders. The intestinal microbiota is known to actively convert many dietary polyphenols, including GSPE, to phenolic acids. There is limited information on the bioavailability and bioactivity of GSPE-derived phenolic acid in the brain. Methods and Results We orally administered GSPE to rats and investigated the bioavailability of 12 phenolic acids known to be generated by microbiota metabolism of anthocyanidins. GSPE treatment significantly increased the content of 2 of the phenolic acids in the brain: 3-hydroxybenzoic acid (3-HBA) and 3-(3′-hydroxyphenyl) propionic acid (3-HPP), resulting in the brain accumulations of the two phenolic acids at μM concentrations. We also provided evidence that 3-HBA and 3-HPP potently interfere with the assembly of β-amyloid (Aβ) peptides into neurotoxic Aβ aggregates that play key roles in AD pathogenesis. Conclusion Our observation suggests important contribution of the intestinal microbiota to the protective activities of GSPE (as well as other polyphenol preparations) in AD. Outcomes from our studies support future preclinical and clinical investigations exploring the potential contributions of the intestinal microbiota in protecting against the onset/progression of AD and other neurodegenerative conditions. PMID:25689033

  7. Incorporating Geochemical And Microbial Kinetics In Reactive Transport Models For Generation Of Acid Rock Drainage

    NASA Astrophysics Data System (ADS)

    Andre, B. J.; Rajaram, H.; Silverstein, J.

    2010-12-01

    Acid mine drainage, AMD, results from the oxidation of metal sulfide minerals (e.g. pyrite), producing ferrous iron and sulfuric acid. Acidophilic autotrophic bacteria such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans obtain energy by oxidizing ferrous iron back to ferric iron, using oxygen as the electron acceptor. Most existing models of AMD do not account for microbial kinetics or iron geochemistry rigorously. Instead they assume that oxygen limitation controls pyrite oxidation and thus focus on oxygen transport. These models have been successfully used for simulating conditions where oxygen availability is a limiting factor (e.g. source prevention by capping), but have not been shown to effectively model acid generation and effluent chemistry under a wider range of conditions. The key reactions, oxidation of pyrite and oxidation of ferrous iron, are both slow kinetic processes. Despite being extensively studied for the last thirty years, there is still not a consensus in the literature about the basic mechanisms, limiting factors or rate expressions for microbially enhanced oxidation of metal sulfides. An indirect leaching mechanism (chemical oxidation of pyrite by ferric iron to produce ferrous iron, with regeneration of ferric iron by microbial oxidation of ferrous iron) is used as the foundation of a conceptual model for microbially enhanced oxidation of pyrite. Using literature data, a rate expression for microbial consumption of ferrous iron is developed that accounts for oxygen, ferrous iron and pH limitation. Reaction rate expressions for oxidation of pyrite and chemical oxidation of ferrous iron are selected from the literature. A completely mixed stirred tank reactor (CSTR) model is implemented coupling the kinetic rate expressions, speciation calculations and flow. The model simulates generation of AMD and effluent chemistry that qualitatively agrees with column reactor and single rock experiments. A one dimensional reaction

  8. Electricity generation by microorganisms in the sediment-water interface of an extreme acidic microcosm.

    PubMed

    García-Muñoz, Juan; Amils, Ricardo; Fernández, Víctor M; De Lacey, Antonio L; Malki, Moustafa

    2011-06-01

    The attachment of microorganisms to electrodes is of great interest for electricity generation in microbial fuel cells (MFC) or other applications in bioelectrochemical systems (BES). In this work, a microcosm of the acidic ecosystem of Río Tinto was built and graphite electrodes were introduced at different points. This allowed the study of electricity generation in the sediment/water interface and the involvement of acidophilic microorganisms as biocatalysts of the anodic and cathodic reactions in a fuel-cell configuration. Current densities and power outputs of up to 3.5 A/m² and 0.3 W/m², respectively, were measured at pH 3. Microbial analyses of the electrode surfaces showed that Acidiphilium spp., which uses organic compounds as electron donors, were the predominant biocatalysts of the anodic reactions, whereas the aerobic iron oxidizers Acidithiobacillus ferrooxidans and Leptospirillum spp. were detected mainly on the cathode surface.

  9. Peracetic Acid Treatment Generates Potent Inactivated Oral Vaccines from a Broad Range of Culturable Bacterial Species

    PubMed Central

    Moor, Kathrin; Wotzka, Sandra Y.; Toska, Albulena; Diard, Médéric; Hapfelmeier, Siegfried; Slack, Emma

    2016-01-01

    Our mucosal surfaces are the main sites of non-vector-borne pathogen entry, as well as the main interface with our commensal microbiota. We are still only beginning to understand how mucosal adaptive immunity interacts with commensal and pathogenic microbes to influence factors such as infectivity, phenotypic diversity, and within-host evolution. This is in part due to difficulties in generating specific mucosal adaptive immune responses without disrupting the mucosal microbial ecosystem itself. Here, we present a very simple tool to generate inactivated mucosal vaccines from a broad range of culturable bacteria. Oral gavage of 1010 peracetic acid-inactivated bacteria induces high-titer-specific intestinal IgA in the absence of any measurable inflammation or species invasion. As a proof of principle, we demonstrate that this technique is sufficient to provide fully protective immunity in the murine model of invasive non-typhoidal Salmonellosis, even in the face of severe innate immune deficiency. PMID:26904024

  10. Peracetic Acid Treatment Generates Potent Inactivated Oral Vaccines from a Broad Range of Culturable Bacterial Species.

    PubMed

    Moor, Kathrin; Wotzka, Sandra Y; Toska, Albulena; Diard, Médéric; Hapfelmeier, Siegfried; Slack, Emma

    2016-01-01

    Our mucosal surfaces are the main sites of non-vector-borne pathogen entry, as well as the main interface with our commensal microbiota. We are still only beginning to understand how mucosal adaptive immunity interacts with commensal and pathogenic microbes to influence factors such as infectivity, phenotypic diversity, and within-host evolution. This is in part due to difficulties in generating specific mucosal adaptive immune responses without disrupting the mucosal microbial ecosystem itself. Here, we present a very simple tool to generate inactivated mucosal vaccines from a broad range of culturable bacteria. Oral gavage of 10(10) peracetic acid-inactivated bacteria induces high-titer-specific intestinal IgA in the absence of any measurable inflammation or species invasion. As a proof of principle, we demonstrate that this technique is sufficient to provide fully protective immunity in the murine model of invasive non-typhoidal Salmonellosis, even in the face of severe innate immune deficiency.

  11. Peracetic Acid Treatment Generates Potent Inactivated Oral Vaccines from a Broad Range of Culturable Bacterial Species.

    PubMed

    Moor, Kathrin; Wotzka, Sandra Y; Toska, Albulena; Diard, Médéric; Hapfelmeier, Siegfried; Slack, Emma

    2016-01-01

    Our mucosal surfaces are the main sites of non-vector-borne pathogen entry, as well as the main interface with our commensal microbiota. We are still only beginning to understand how mucosal adaptive immunity interacts with commensal and pathogenic microbes to influence factors such as infectivity, phenotypic diversity, and within-host evolution. This is in part due to difficulties in generating specific mucosal adaptive immune responses without disrupting the mucosal microbial ecosystem itself. Here, we present a very simple tool to generate inactivated mucosal vaccines from a broad range of culturable bacteria. Oral gavage of 10(10) peracetic acid-inactivated bacteria induces high-titer-specific intestinal IgA in the absence of any measurable inflammation or species invasion. As a proof of principle, we demonstrate that this technique is sufficient to provide fully protective immunity in the murine model of invasive non-typhoidal Salmonellosis, even in the face of severe innate immune deficiency. PMID:26904024

  12. Generation of spatiotemporally correlated spike trains and local field potentials using a multivariate autoregressive process.

    PubMed

    Gutnisky, Diego A; Josić, Kresimir

    2010-05-01

    Experimental advances allowing for the simultaneous recording of activity at multiple sites have significantly increased our understanding of the spatiotemporal patterns in neural activity. The impact of such patterns on neural coding is a fundamental question in neuroscience. The simulation of spike trains with predetermined activity patterns is therefore an important ingredient in the study of potential neural codes. Such artificially generated spike trains could also be used to manipulate cortical neurons in vitro and in vivo. Here, we propose a method to generate spike trains with given mean firing rates and cross-correlations. To capture this statistical structure we generate a point process by thresholding a stochastic process that is continuous in space and discrete in time. This stochastic process is obtained by filtering Gaussian noise through a multivariate autoregressive (AR) model. The parameters of the AR model are obtained by a nonlinear transformation of the point-process correlations to the continuous-process correlations. The proposed method is very efficient and allows for the simulation of large neural populations. It can be optimized to the structure of spatiotemporal correlations and generalized to nonstationary processes and spatiotemporal patterns of local field potentials and spike trains. PMID:20032244

  13. Heat generates oxidized linoleic acid metabolites that activate TRPV1 and produce pain in rodents.

    PubMed

    Patwardhan, Amol M; Akopian, Armen N; Ruparel, Nikita B; Diogenes, Anibal; Weintraub, Susan T; Uhlson, Charis; Murphy, Robert C; Hargreaves, Kenneth M

    2010-05-01

    The transient receptor potential vanilloid 1 (TRPV1) channel is the principal detector of noxious heat in the peripheral nervous system. TRPV1 is expressed in many nociceptors and is involved in heat-induced hyperalgesia and thermoregulation. The precise mechanism or mechanisms mediating the thermal sensitivity of TRPV1 are unknown. Here, we have shown that the oxidized linoleic acid metabolites 9- and 13-hydroxyoctadecadienoic acid (9- and 13-HODE) are formed in mouse and rat skin biopsies by exposure to noxious heat. 9- and 13-HODE and their metabolites, 9- and 13-oxoODE, activated TRPV1 and therefore constitute a family of endogenous TRPV1 agonists. Moreover, blocking these substances substantially decreased the heat sensitivity of TRPV1 in rats and mice and reduced nociception. Collectively, our results indicate that HODEs contribute to the heat sensitivity of TRPV1 in rodents. Because oxidized linoleic acid metabolites are released during cell injury, these findings suggest a mechanism for integrating the hyperalgesic and proinflammatory roles of TRPV1 and linoleic acid metabolites and may provide the foundation for investigating new classes of analgesic drugs.

  14. Threshold conditions, energy spectrum and bands generated by locally periodic Dirac comb potentials

    NASA Astrophysics Data System (ADS)

    Dharani, M.; Shastry, C. S.

    2016-01-01

    We derive expressions for polynomials governing the threshold conditions for different types of locally periodic Dirac comb potentials comprising of attractive and combination of attractive and repulsive delta potential terms confined symmetrically inside a one dimensional box of fixed length. The roots of these polynomials specify the conditions on the potential parameters in order to generate threshold energy bound states. The mathematical and numerical methods used by us were first formulated in our earlier works and it is also very briefly summarized in this paper. We report a number of mathematical results pertaining to the threshold conditions and these are useful in controlling the number of negative energy states as desired. We further demonstrate the correlation between the distribution of roots of these polynomials and negative energy eigenvalues. Using these results as basis, we investigate the energy bands in the positive energy spectrum for the above specified Dirac comb potentials and also for the corresponding repulsive case. In the case of attractive Dirac comb the base energy of the each band excluding the first band coincides with specific eigenvalue of the confining box whereas in the repulsive case it coincides with the band top. We deduce systematic correlation between band gaps, band spreads and box eigenvalues and explain the physical reason for the vanishing of band pattern at higher energies. In the case of Dirac comb comprising of orderly arranged attractive and repulsive delta potentials, specific box eigenvalues occur in the middle of each band excluding the first band. From our study we find that by controlling the number and strength parameters of delta terms in the Dirac comb and the size of confining box it is possible to generate desired types of band formations. We believe the results from our systematic analysis are useful and relevant in the study of various one dimensional systems of physical interest in areas like nanoscience.

  15. Polyunsaturated Fatty Acids of Marine Macroalgae: Potential for Nutritional and Pharmaceutical Applications

    PubMed Central

    Pereira, Hugo; Barreira, Luísa; Figueiredo, Filipe; Custódio, Luísa; Vizetto-Duarte, Catarina; Polo, Cristina; Rešek, Eva; Engelen, Aschwin; Varela, João

    2012-01-01

    As mammals are unable to synthesize essential polyunsaturated fatty acids (PUFA), these compounds need to be taken in through diet. Nowadays, obtaining essential PUFA in diet is becoming increasingly difficult; therefore this work investigated the suitability of using macroalgae as novel dietary sources of PUFA. Hence, 17 macroalgal species from three different phyla (Chlorophyta, Phaeophyta and Rhodophyta) were analyzed and their fatty acid methyl esters (FAME) profile was assessed. Each phylum presented a characteristic fatty acid signature as evidenced by clustering of PUFA profiles of algae belonging to the same phylum in a Principal Components Analysis. The major PUFA detected in all phyla were C18 and C20, namely linoleic, arachidonic and eicosapentaenoic acids. The obtained data showed that rhodophytes and phaeophytes have higher concentrations of PUFA, particularly from the n-3 series, thereby being a better source of these compounds. Moreover, rhodophytes and phaeophytes presented “healthier” ∑n-6/∑n-3 and PUFA/saturated fatty acid ratios than chlorophytes. Ulva was an exception within the Chlorophyta, as it presented high concentrations of n-3 PUFA, α-linolenic acid in particular. In conclusion, macroalgae can be considered as a potential source for large-scale production of essential PUFA with wide applications in the nutraceutical and pharmacological industries. PMID:23118712

  16. Potential biological applications of bio-based anacardic acids and their derivatives.

    PubMed

    Hamad, Fatma B; Mubofu, Egid B

    2015-01-01

    Cashew nut shells (CNS), which are agro wastes from cashew nut processing factories, have proven to be among the most versatile bio-based renewable materials in the search for functional materials and chemicals from renewable resources. CNS are produced in the cashew nut processing process as waste, but they contain cashew nut shell liquid (CNSL) up to about 30-35 wt. % of the nut shell weight depending on the method of extraction. CNSL is a mixture of anacardic acid, cardanol, cardol, and methyl cardol, and the structures of these phenols offer opportunities for the development of diverse products. For anacardic acid, the combination of phenolic, carboxylic, and a 15-carbon alkyl side chain functional group makes it attractive in biological applications or as a synthon for the synthesis of a multitude of bioactive compounds. Anacardic acid, which is about 65% of a CNSL mixture, can be extracted from the agro waste. This shows that CNS waste can be used to extract useful chemicals and thus provide alternative green sources of chemicals, apart from relying only on the otherwise declining petroleum based sources. This paper reviews the potential of anacardic acids and their semi-synthetic derivatives for antibacterial, antitumor, and antioxidant activities. The review focuses on natural anacardic acids from CNS and other plants and their semi-synthetic derivatives as possible lead compounds in medicine. In addition, the use of anacardic acid as a starting material for the synthesis of various biologically active compounds and complexes is reported. PMID:25894225

  17. Potential biological applications of bio-based anacardic acids and their derivatives.

    PubMed

    Hamad, Fatma B; Mubofu, Egid B

    2015-01-01

    Cashew nut shells (CNS), which are agro wastes from cashew nut processing factories, have proven to be among the most versatile bio-based renewable materials in the search for functional materials and chemicals from renewable resources. CNS are produced in the cashew nut processing process as waste, but they contain cashew nut shell liquid (CNSL) up to about 30-35 wt. % of the nut shell weight depending on the method of extraction. CNSL is a mixture of anacardic acid, cardanol, cardol, and methyl cardol, and the structures of these phenols offer opportunities for the development of diverse products. For anacardic acid, the combination of phenolic, carboxylic, and a 15-carbon alkyl side chain functional group makes it attractive in biological applications or as a synthon for the synthesis of a multitude of bioactive compounds. Anacardic acid, which is about 65% of a CNSL mixture, can be extracted from the agro waste. This shows that CNS waste can be used to extract useful chemicals and thus provide alternative green sources of chemicals, apart from relying only on the otherwise declining petroleum based sources. This paper reviews the potential of anacardic acids and their semi-synthetic derivatives for antibacterial, antitumor, and antioxidant activities. The review focuses on natural anacardic acids from CNS and other plants and their semi-synthetic derivatives as possible lead compounds in medicine. In addition, the use of anacardic acid as a starting material for the synthesis of various biologically active compounds and complexes is reported.

  18. Potential Biological Applications of Bio-Based Anacardic Acids and Their Derivatives

    PubMed Central

    Hamad, Fatma B.; Mubofu, Egid B.

    2015-01-01

    Cashew nut shells (CNS), which are agro wastes from cashew nut processing factories, have proven to be among the most versatile bio-based renewable materials in the search for functional materials and chemicals from renewable resources. CNS are produced in the cashew nut processing process as waste, but they contain cashew nut shell liquid (CNSL) up to about 30–35 wt. % of the nut shell weight depending on the method of extraction. CNSL is a mixture of anacardic acid, cardanol, cardol, and methyl cardol, and the structures of these phenols offer opportunities for the development of diverse products. For anacardic acid, the combination of phenolic, carboxylic, and a 15-carbon alkyl side chain functional group makes it attractive in biological applications or as a synthon for the synthesis of a multitude of bioactive compounds. Anacardic acid, which is about 65% of a CNSL mixture, can be extracted from the agro waste. This shows that CNS waste can be used to extract useful chemicals and thus provide alternative green sources of chemicals, apart from relying only on the otherwise declining petroleum based sources. This paper reviews the potential of anacardic acids and their semi-synthetic derivatives for antibacterial, antitumor, and antioxidant activities. The review focuses on natural anacardic acids from CNS and other plants and their semi-synthetic derivatives as possible lead compounds in medicine. In addition, the use of anacardic acid as a starting material for the synthesis of various biologically active compounds and complexes is reported. PMID:25894225

  19. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance

    PubMed Central

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents. PMID:27525414

  20. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance.

    PubMed

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents. PMID:27525414

  1. Potential antibacterial activity of coumarin and coumarin-3-acetic acid derivatives.

    PubMed

    Chattha, Fauzia Anjum; Munawar, Munawar Ali; Nisa, Mehrun; Ashraf, Mohammad; Kousar, Samina; Arshad, Shafia

    2015-05-01

    Coumarin and coumarin-3-acetic acid derivatives were synthesized by reacting phenols with malic acid, ethyl acetoacetate and ethyl acetylsuccinate in appropriate reaction conditions. All synthesized compounds were subjected to test for their antimicrobial activities against variety of gram positive (Bacillus subtilis, Staphylococcus aureus) and gram negative bacterial stains (Shigella sonnei, Escherichia coli) by agar dilution method. Several of them exhibited appreciable good antibacterial activity against the different strains of gram positive and gram negative bacteria. These findings suggest a great potential of these compounds for screening and use as antibacterial agents for further studies with a battery of bacteria.

  2. Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis

    PubMed Central

    Martínez, Laura; Torres, Sandra; Baulies, Anna; Alarcón-Vila, Cristina; Elena, Montserrat; Fabriàs, Gemma; Casas, Josefina; Caballeria, Joan; Fernandez-Checa, Jose C.; García-Ruiz, Carmen

    2015-01-01

    Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy. PMID:26539645

  3. Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis.

    PubMed

    Martínez, Laura; Torres, Sandra; Baulies, Anna; Alarcón-Vila, Cristina; Elena, Montserrat; Fabriàs, Gemma; Casas, Josefina; Caballeria, Joan; Fernandez-Checa, Jose C; García-Ruiz, Carmen

    2015-12-01

    Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy.

  4. The Potential of Energy Storage Systems with Respect to Generation Adequacy and Economic Viability

    NASA Astrophysics Data System (ADS)

    Bradbury, Kyle Joseph

    Intermittent energy resources, including wind and solar power, continue to be rapidly added to the generation fleet domestically and abroad. The variable power of these resources introduces new levels of stochasticity into electric interconnections that must be continuously balanced in order to maintain system reliability. Energy storage systems (ESSs) offer one potential option to compensate for the intermittency of renewables. ESSs for long-term storage (1-hour or greater), aside from a few pumped hydroelectric installations, are not presently in widespread use in the U.S. The deployment of ESSs would be most likely driven by either the potential for a strong internal rate of return (IRR) on investment and through significant benefits to system reliability that independent system operators (ISOs) could incentivize. To assess the potential of ESSs three objectives are addressed. (1) Evaluate the economic viability of energy storage for price arbitrage in real-time energy markets and determine system cost improvements for ESSs to become attractive investments. (2) Estimate the reliability impact of energy storage systems on the large-scale integration of intermittent generation. (3) Analyze the economic, environmental, and reliability tradeoffs associated with using energy storage in conjunction with stochastic generation. First, using real-time energy market price data from seven markets across the U.S. and the physical parameters of fourteen ESS technologies, the maximum potential IRR of each technology from price arbitrage was evaluated in each market, along with the optimal ESS system size. Additionally, the reductions in capital cost needed to achieve a 10% IRR were estimated for each ESS. The results indicate that the profit-maximizing size of an ESS is primarily determined by its technological characteristics (round-trip charge/discharge efficiency and self-discharge) and not market price volatility, which instead increases IRR. This analysis demonstrates

  5. Three dimensional potential and current distributions in a Hall generator with assumed velocity profiles

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.; Palmer, R. W.

    1972-01-01

    Three-dimensional potential and current distributions in a Faraday segmented MHD generator operating in the Hall mode are computed. Constant conductivity and a Hall parameter of 1.0 is assumed. The electric fields and currents are assumed to be coperiodic with the electrode structure. The flow is assumed to be fully developed and a family of power-law velocity profiles, ranging from parabolic to turbulent, is used to show the effect of the fullness of the velocity profile. Calculation of the square of the current density shows that nonequilibrium heating is not likely to occur along the boundaries. This seems to discount the idea that the generator insulating walls are regions of high conductivity and are therefore responsible for boundary-layer shorting, unless the shorting is a surface phenomenon on the insulating material.

  6. A computational model for generation of the P300 evoked potential component.

    PubMed

    Bonala, Bharat K; Jansen, Ben H

    2012-09-01

    The P300 is an endogenously evoked potential with amplitude and latency depending on the amount of information carried by the stimulus rather than its physical characteristics. It has been suggested that P300 is a manifestation of the context updating mechanism in the human working memory. We present a neural network-based model that mimics the learning and forgetting mechanisms of external stimuli in the human working memory that are believed to be responsible for P300 generation. A modified version of the Hebbian learning rule has been devised to govern the weight dynamics of the network. The model was validated by comparing the characteristics of simulated P300 with actual experimental findings such as the relationship between P300 amplitude and stimulus probability, and task relevance. The results show that the proposed P300 model mimics many aspects of the nervous system responsible for P300 generation. PMID:22974337

  7. Generation of available potential energy and the energy cycle during the global weather experiment

    NASA Technical Reports Server (NTRS)

    Salstein, D. A.; Rosen, R. D.

    1985-01-01

    Two parallel sets of analyses, which in one case included and in the other omitted data observed by satellite based and other FGGE special observing systems are examined. The results of our previous work is extended in two separate, but not unrelated, ways. First, from these two parallel analyses, which are labeled FGGE (full FGGE system) and NOSAT (satellite omitted), it was discovered that the two sets of fields were quite close over much of the globe. Locally the influence of satellite based systems led to some differences, particularly over the Southern Hemisphere Oceans. The diabatic heating fields generated by the GLA FGGE analysis was also examined. From these fields, one can ascertain the role of total diabatic heating and of the various diabatic heating components in the atmospheric energy cycle, in particular in the generation of available potential energy.

  8. Sensitivity of Second Harmonic Generation from Styryl Dyes to Transmembrane Potential

    PubMed Central

    Millard, Andrew C.; Jin, Lei; Wei, Mei-de; Wuskell, Joseph P.; Lewis, Aaron; Loew, Leslie M.

    2004-01-01

    In this article we present results from the simultaneous nonlinear (second harmonic generation and two-photon excitation fluorescence) imaging and voltage clamping of living cells. Specifically, we determine the sensitivity to transmembrane potential of second harmonic generation by ANEP-chromophore styryl dyes as a function of excitation wavelength and dye structure. We have measured second harmonic sensitivities of up to 43% per 100 mV, more than a factor of four better than the nominal voltage sensitivity of the dyes under “one-photon” fluorescence. We find a dependence of voltage sensitivity on excitation wavelength that is consistent with a two-photon resonance, and there is a significant dependence of voltage sensitivity on the structure of the nonchromophore portion of the dyes. PMID:14747351

  9. Linear-scaling generation of potential energy surfaces using a double incremental expansion

    NASA Astrophysics Data System (ADS)

    König, Carolin; Christiansen, Ove

    2016-08-01

    We present a combination of the incremental expansion of potential energy surfaces (PESs), known as n-mode expansion, with the incremental evaluation of the electronic energy in a many-body approach. The application of semi-local coordinates in this context allows the generation of PESs in a very cost-efficient way. For this, we employ the recently introduced flexible adaptation of local coordinates of nuclei (FALCON) coordinates. By introducing an additional transformation step, concerning only a fraction of the vibrational degrees of freedom, we can achieve linear scaling of the accumulated cost of the single point calculations required in the PES generation. Numerical examples of these double incremental approaches for oligo-phenyl examples show fast convergence with respect to the maximum number of simultaneously treated fragments and only a modest error introduced by the additional transformation step. The approach, presented here, represents a major step towards the applicability of vibrational wave function methods to sizable, covalently bound systems.

  10. Curtailing the hydroxylaminobarbituric acid-hydantoin rearrangement to favor HNO generation.

    PubMed

    Guthrie, Daryl A; Nourian, Saghar; Takahashi, Cyrus G; Toscano, John P

    2015-02-01

    Due to its inherent reactivity, HNO must be generated in situ through the use of donor compounds. One of the primary strategies for the development of new HNO donors has been modifying hydroxylamines with good leaving groups. A recent example of this strategy is the (hydroxylamino)barbituric acid (HABA) class of HNO donors. In this case, however, an undesired intramolecular rearrangement pathway to the corresponding hydantoin derivative competes with HNO formation, particularly in the absence of chemical traps for HNO. This competitive non-HNO-producing pathway has restricted the development of the HABA class to examples with fast HNO release profiles at physiological pH and temperature (t(1/2) < 1 min). Herein, the factors that favor the rearrangement pathway have been examined and two independent strategies that protect against rearrangement to favor HNO generation have been developed. The timecourse and stoichiometry for the in vitro conversion of these compounds to HNO (trapped as a phosphine aza-ylide) and the corresponding barbituric acid (BA) byproduct have been determined by (1)H NMR spectroscopy under physiologically relevant conditions. These results confirm the successful extension of the HABA class of pure HNO donors with half-lives at pH 7.4, 37 °C ranging from 19 to 107 min. PMID:25585151

  11. Fatty acids and TxA2 generation, in the absence of platelet-COX-1 activity

    PubMed Central

    DeFilippis, A.P.; Rai, S.N.; Cambon, A.; Miles, R.J.; Jaffe, A.S.; Moser, A.B.; Jones, R.O.; Bolli, R.; Schulman, S.P.

    2015-01-01

    Background and aims Omega-3 fatty acids suppress Thromboxane A2 (TxA2) generation via mechanisms independent to that of aspirin therapy. We sought to evaluate whether baseline omega-3 fatty acid levels influence arachidonic acid proven platelet-cyclooxygenase-1 (COX-1) independent TxA2 generation (TxA2 generation despite adequate aspirin use). Methods and results Subjects with acute myocardial infarction, stable CVD or at high risk for CVD, on adequate aspirin therapy were included in this study. Adequate aspirin action was defined as complete inhibition of platelet-COX-1 activity as assessed by <10% change in light transmission aggregometry to ≥1 mmol/L arachidonic acid. TxA2 production was measured via liquid chromatography–tandem mass spectrometry for the stable TxA2 metabolite 11-dehydro-thromboxane B2 (UTxB2) in urine. The relationship between baseline fatty acids, demographics and UTxB2 were evaluated. Baseline omega-3 fatty acid levels were not associated with UTxB2 concentration. However, smoking was associated with UTxB2 in this study. Conclusion Baseline omega-3 fatty acid levels do not influence TxA2 generation inpatients with or at high risk for CVD receiving adequate aspirin therapy. The association of smoking and TxA2 generation, in the absence of platelet COX-1 activity, among aspirin treated patients warrants further study. PMID:24370448

  12. Thrombography reveals thrombin generation potential continues to deteriorate following cardiopulmonary bypass surgery despite adequate hemostasis.

    PubMed

    Wong, Raymond K; Sleep, Joseph R; Visner, Allison J; Raasch, David J; Lanza, Louis A; DeValeria, Patrick A; Torloni, Antonio S; Arabia, Francisco A

    2011-03-01

    The intrinsic and extrinsic activation pathways of the hemostatic system converge when prothrombin is converted to thrombin. The ability to generate an adequate thrombin burst is the most central aspect of the coagulation cascade. The thrombin-generating potential in patients following cardiopulmonary bypass (CPB) may be indicative of their hemostatic status. In this report, thrombography, a unique technique for directly measuring the potential of patients' blood samples to generate adequate thrombin bursts, is used to characterize the coagulopathic profile in post-CPB patients. Post-CPB hemostasis is typically achieved with protamine reversal of heparin anticoagulation and occasionally supplemented with blood product component transfusions. In this pilot study, platelet poor plasma samples were derived from 11 primary cardiac surgery patients at five time points: prior to CPB, immediately post-protamine, upon arrival to the intensive care unit (ICU), 3 hours post-ICU admission, and 24 hours after ICU arrival. Thrombography revealed that the Endogenous Thrombin Potential (ETP) was not different between [Baseline] and [PostProtamine] but proceeded to deteriorate in the immediate postoperative period. At the [3HourPostICU] time point, the ETP was significantly lower than the [Baseline] values, 1233 +/- 591 versus 595 +/- 379 nM.min (mean +/- SD; n=9, p < .005), despite continued adequacy of hemostasis. ETPs returned to baseline values the day after surgery. Transfusions received, conventional blood coagulation testing results, and blood loss volumes are also presented. Despite adequate hemostasis, thrombography reveals an underlying coagulopathic process that could put some cardiac surgical patients at risk for postoperative bleeding. Thrombography is a novel technique that could be developed into a useful tool for perfusionists and physicians to identify coagulopathies and optimize blood management following CPB. PMID:21449230

  13. A combined supplementation of vitamin B12 and omega-3 fatty acids across two generations improves cardiometabolic variables in rats.

    PubMed

    Khaire, Amrita; Rathod, Richa; Randhir, Karuna; Kale, Anvita; Joshi, Sadhana

    2016-09-14

    Our earlier studies indicate that micronutrients (vitamin B12, folic acid) and omega-3 fatty acids especially docosahexaenoic acid (DHA) are interlinked in one carbon cycle. The present study examines the effects of a sustained vitamin B12 deficiency/supplementation in the presence of omega-3 fatty acids across two generations on the pregnancy outcome and cardiometabolic profile [blood pressure, plasma lipid profile (cholesterol and triglycerides), plasma/liver fatty acid profile and hepatic lipid metabolism] in the second generation adult Wistar rat offspring. Two generations of animals were fed the following diets: control; vitamin B12 deficient; vitamin B12 supplemented; vitamin B12 deficient diet supplemented with omega-3 fatty acids; vitamin B12 and omega-3 fatty acid supplemented diets. Male offspring were sacrificed at 3 months of age. Vitamin B12 deficiency lowered the weight gain (p < 0.01) during pregnancy, increased systolic (p < 0.05) and diastolic (p < 0.01) blood pressure, and lowered the levels of plasma/liver DHA (p < 0.05 for both) but did not affect the lipid profile. Vitamin B12 supplementation showed weight gain, blood pressure and the fatty acid profile similar to the control. However, it increased (p < 0.05) the levels of plasma triglycerides. Omega-3 fatty acid supplementation to the vitamin B12 deficient group lowered the weight gain although the levels of cardiometabolic variables were comparable to the control. Omega-3 fatty acid supplementation in the presence of vitamin B12 improved the pregnancy outcome and all cardio-metabolic variables. Our study highlights the adverse effects of sustained vitamin B12 deficiency across two generations on the pregnancy outcome, fatty acid profile and blood pressure while a combined supplementation of vitamin B12 and omega-3 fatty acids is beneficial.

  14. A combined supplementation of vitamin B12 and omega-3 fatty acids across two generations improves cardiometabolic variables in rats.

    PubMed

    Khaire, Amrita; Rathod, Richa; Randhir, Karuna; Kale, Anvita; Joshi, Sadhana

    2016-09-14

    Our earlier studies indicate that micronutrients (vitamin B12, folic acid) and omega-3 fatty acids especially docosahexaenoic acid (DHA) are interlinked in one carbon cycle. The present study examines the effects of a sustained vitamin B12 deficiency/supplementation in the presence of omega-3 fatty acids across two generations on the pregnancy outcome and cardiometabolic profile [blood pressure, plasma lipid profile (cholesterol and triglycerides), plasma/liver fatty acid profile and hepatic lipid metabolism] in the second generation adult Wistar rat offspring. Two generations of animals were fed the following diets: control; vitamin B12 deficient; vitamin B12 supplemented; vitamin B12 deficient diet supplemented with omega-3 fatty acids; vitamin B12 and omega-3 fatty acid supplemented diets. Male offspring were sacrificed at 3 months of age. Vitamin B12 deficiency lowered the weight gain (p < 0.01) during pregnancy, increased systolic (p < 0.05) and diastolic (p < 0.01) blood pressure, and lowered the levels of plasma/liver DHA (p < 0.05 for both) but did not affect the lipid profile. Vitamin B12 supplementation showed weight gain, blood pressure and the fatty acid profile similar to the control. However, it increased (p < 0.05) the levels of plasma triglycerides. Omega-3 fatty acid supplementation to the vitamin B12 deficient group lowered the weight gain although the levels of cardiometabolic variables were comparable to the control. Omega-3 fatty acid supplementation in the presence of vitamin B12 improved the pregnancy outcome and all cardio-metabolic variables. Our study highlights the adverse effects of sustained vitamin B12 deficiency across two generations on the pregnancy outcome, fatty acid profile and blood pressure while a combined supplementation of vitamin B12 and omega-3 fatty acids is beneficial. PMID:27528436

  15. Reduction of Dietary Acid Load as a Potential Countermeasure for Bone Loss Associated with Spaceflight

    NASA Technical Reports Server (NTRS)

    Zwart, S. R.; Watts, S. M.; Sams, C. F.; Whitson, P. A.; Smith, S. M.

    2006-01-01

    In several studies we tested the concepts that diet can alter acid-base balance and that reducing the dietary acid load has a positive effect on maintenance of bone. In study 1, (n = 11, 60-90 d bed rest), the renal acid load of the diet was estimated from its chemical composition, and was positively correlated with urinary markers of bone resorption (P less than 0.05); that is, the greater the acid load, the greater the excretion of bone resorption markers. In study 2, in males (n = 8, 30 d bed rest), an estimate of the ratio of nonvolatile acid precursors to base precursors in the diet was positively correlated (P less than 0.05) with markers of bone resorption. In study 3, for 28 d subjects received either a placebo (n = 6) or an essential amino acid supplement (n = 7) that included methionine, a known acid precursor. During bed rest (28 d), urinary calcium was greater than baseline levels in the supplemented group but not the control group (P less than 0.05), and in the supplemented group, urinary pH decreased (P less than 0.05). In study 4, less bone resorption occurred in space crew members who received potassium citrate (n = 6) during spaceflight of 4-6 months than in crew members who received placebo or were not in the study (n = 8) (P less than 0.05). Reducing acid load has the potential to mitigate increased bone resorption during spaceflight, and may serve as a bone loss countermeasure.

  16. Carbon dioxide generated from carbonates and acids for sampling blood-feeding arthropods.

    PubMed

    Burkett-Cadena, Nathan D; Blosser, Erik M; Young, Ryan M; Toé, Laurent D; Unnasch, Thomas R

    2015-09-01

    Carbon dioxide (CO2) is utilized to attract mosquitoes and other blood-feeding arthropods to traps around the world. Commercial forms of CO2 (e.g., dry ice and compressed gas) are often unavailable or extremely expensive in developing nations, where vector surveillance is essential to make life-saving decisions. We developed and tested inexpensive and reproducible methods of CO2 production from the combination of acids and carbonates, ranging from very basic (crushed seashells and vinegar) to relatively elaborate (a device that controls the timing of the acid-carbonate reaction and extends the reaction over several hours). When utilized with mosquito traps in Florida, USA and black fly traps in Region des Cascades, Burkina Faso, these carbonate-acid CO2 sources attracted significantly greater numbers of both vector groups, than did unbaited traps. CO2 was generated for more than four hours at levels sufficient to attract vectors over the entire period. The utility of this simple methodology in developing nations should be further evaluated.

  17. Carbon dioxide generated from carbonates and acids for sampling blood-feeding arthropods.

    PubMed

    Burkett-Cadena, Nathan D; Blosser, Erik M; Young, Ryan M; Toé, Laurent D; Unnasch, Thomas R

    2015-09-01

    Carbon dioxide (CO2) is utilized to attract mosquitoes and other blood-feeding arthropods to traps around the world. Commercial forms of CO2 (e.g., dry ice and compressed gas) are often unavailable or extremely expensive in developing nations, where vector surveillance is essential to make life-saving decisions. We developed and tested inexpensive and reproducible methods of CO2 production from the combination of acids and carbonates, ranging from very basic (crushed seashells and vinegar) to relatively elaborate (a device that controls the timing of the acid-carbonate reaction and extends the reaction over several hours). When utilized with mosquito traps in Florida, USA and black fly traps in Region des Cascades, Burkina Faso, these carbonate-acid CO2 sources attracted significantly greater numbers of both vector groups, than did unbaited traps. CO2 was generated for more than four hours at levels sufficient to attract vectors over the entire period. The utility of this simple methodology in developing nations should be further evaluated. PMID:26103427

  18. Membrane growth can generate a transmembrane pH gradient in fatty acid vesicles.

    PubMed

    Chen, Irene A; Szostak, Jack W

    2004-05-25

    Electrochemical proton gradients are the basis of energy transduction in modern cells, and may have played important roles in even the earliest cell-like structures. We have investigated the conditions under which pH gradients are maintained across the membranes of fatty acid vesicles, a model of early cell membranes. We show that pH gradients across such membranes decay rapidly in the presence of alkali-metal cations, but can be maintained in the absence of permeable cations. Under such conditions, when fatty acid vesicles grow through the incorporation of additional fatty acid, a transmembrane pH gradient is spontaneously generated. The formation of this pH gradient captures some of the energy released during membrane growth, but also opposes and limits further membrane area increase. The coupling of membrane growth to energy storage could have provided a growth advantage to early cells, once the membrane composition had evolved to allow the maintenance of stable pH gradients.

  19. Generation of Acid Mine Lakes Associated with Abandoned Coal Mines in Northwest Turkey.

    PubMed

    Sanliyuksel Yucel, Deniz; Balci, Nurgul; Baba, Alper

    2016-05-01

    A total of five acid mine lakes (AMLs) located in northwest Turkey were investigated using combined isotope, molecular, and geochemical techniques to identify geochemical processes controlling and promoting acid formation. All of the investigated lakes showed typical characteristics of an AML with low pH (2.59-3.79) and high electrical conductivity values (1040-6430 μS/cm), in addition to high sulfate (594-5370 mg/l) and metal (aluminum [Al], iron [Fe], manganese [Mn], nickel [Ni], and zinc [Zn]) concentrations. Geochemical and isotope results showed that the acid-generation mechanism and source of sulfate in the lakes can change and depends on the age of the lakes. In the relatively older lakes (AMLs 1 through 3), biogeochemical Fe cycles seem to be the dominant process controlling metal concentration and pH of the water unlike in the younger lakes (AMLs 4 and 5). Bacterial species determined in an older lake (AML 2) indicate that biological oxidation and reduction of Fe and S are the dominant processes in the lakes. Furthermore, O and S isotopes of sulfate indicate that sulfate in the older mine lakes may be a product of much more complex oxidation/dissolution reactions. However, the major source of sulfate in the younger mine lakes is in situ pyrite oxidation catalyzed by Fe(III) produced by way of oxidation of Fe(II). Consistent with this, insignificant fractionation between δ(34) [Formula: see text] and δ(34) [Formula: see text] values indicated that the oxidation of pyrite, along with dissolution and precipitation reactions of Fe(III) minerals, is the main reason for acid formation in the region. Overall, the results showed that acid generation during early stage formation of an AML associated with pyrite-rich mine waste is primarily controlled by the oxidation of pyrite with Fe cycles becoming the dominant processes regulating pH and metal cycles in the later stages of mine lake development. PMID:26987541

  20. Survey of insulation used in nuclear power plants and the potential for debris generation

    SciTech Connect

    Kolbe, R.; Gahan, E.

    1982-05-01

    In support of Unresolved Safety Issue, USI A-43, Containment emergency Sump Performance, 8 additional nuclear power plants (representative of different US reactor manufacturers and architect-engineers) were surveyed to identify and document the types and amounts of insulation used, location within containment, components insulated, material characteristics, and methods of installation and attachment. These plants were selected to obtain survey information on older plants and supplements information previously reported in NUREG/CR-2403. In addition, a preliminary assessment was made of the potential for migration to the emergency sump of the insulation debris which might be generated as a result of the postulated loss-of-coolant accident (pipe break).

  1. A Streaming Potential/Current-Based Microfluidic Direct Current Generator for Self-Powered Nanosystems.

    PubMed

    Zhang, Rui; Wang, Sihong; Yeh, Min-Hsin; Pan, Caofeng; Lin, Long; Yu, Ruomeng; Zhang, Yan; Zheng, Li; Jiao, Zongxia; Wang, Zhong Lin

    2015-11-01

    A simple but practical method to convert the hydroenergy of microfluids into continuous electrical output is reported. Based on the principle of streaming potential/current, a microfluidic generator (MFG) is demonstrated using patterned micropillar arrays as a quasi-porous flow channel. The continuous electrical output makes this MFG particularly suitable as a power source in self-powered systems. Using the proposed MFG to power a single nanowire-based pH sensor, a self-powered fluid sensor system is demonstrated.

  2. Adsorption of tannic acid on polyelectrolyte monolayers determined in situ by streaming potential measurements.

    PubMed

    Oćwieja, M; Adamczyk, Z; Morga, M

    2015-01-15

    Physicochemical characteristics of tannic acid (tannin) suspensions comprising its stability for a wide range of ionic strength and pH were thoroughly investigated using UV-vis spectrophotometry, dynamic light scattering and microelectrophoretic measurements. These studies allowed to determine the hydrodynamic diameter of the tannic acid that was 1.63 nm for the pH range 3.5-5.5. For pH above 6.0 the hydrodynamic diameter significantly decreased as a result of the tannin hydrolysis. The electrophoretic mobility measurements confirmed that tannic acid is negatively charged for these values of pH and ionic strength 10(-4)-10(-2) M. Therefore, in order to promote adsorption of tannin molecules on negatively charged mica, the poly(allylamine hydrochloride) (PAH) supporting monolayers were first adsorbed under diffusion transport conditions. The coverage of polyelectrolyte monolayers was regulated by changing bulk concentration of PAH and the adsorption time. The electrokinetic characteristics of bare and PAH-covered mica were determined using the streaming potential measurements. The zeta potential of these PAH monolayers was highly positive, equal to 46 mV for ionic strength of 10(-2) M. The kinetics of tannin adsorption on these PAH supporting monolayers was evaluated by the in situ the streaming potential measurements. The zeta potential of PAH monolayers abruptly decreases with the adsorption of tannin molecules that was quantitatively interpreted in terms of the three-dimensional electrokinetic model. The acid-base characteristics of tannin monolayers were acquired via the streaming potential measurements for a broad range of pH. The obtained results indicate that it is possible to control adsorption of tannin on positively charged surfaces in order to designed new multilayer structures of desirable electrokinetic properties and stability.

  3. Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors.

    PubMed

    Wang, Zhanyun; Cousins, Ian T; Scheringer, Martin; Hungerbühler, Konrad

    2013-10-01

    Since 2000 there has been an on-going industrial transition to replace long-chain perfluoroalkyl carboxylic acids(PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their precursors. To date, information on these replacements including their chemical identities, however, has not been published or made easily accessible to the public, hampering risk assessment and management of these chemicals. Here we review information on fluorinated alternatives in the public domain. We identify over 20 fluorinated substances that are applied in [i] fluoropolymer manufacture, [ii] surface treatment of textile, leather and carpets, [iii] surface treatment of food contact materials,[iv] metal plating, [v] fire-fighting foams, and [vi] other commercial and consumer products.We summarize current knowledge on their environmental releases, persistence, and exposure of biota and humans. Based on the limited information available, it is unclear whether fluorinated alternatives are safe for humans and the environment.We identify three major data gaps that must be filled to perform meaningful risk assessments and recommend generation of the missing data through cooperation among all stakeholders (industry, regulators, academic scientists and the public).

  4. Reticular activating system of a central pattern generator: premovement electrical potentials.

    PubMed

    Tapia, Jesus A; Trejo, Argelia; Linares, Pablo; Alva, J Manuel; Kristeva, Rumyana; Manjarrez, Elias

    2013-10-01

    For the first time, here we characterize a bulbar reticular activating system (RAS) of neurons in decerebrate, deafferented and decerebellated cats producing a premovement electrical potential that we named obex slow potential (OSP). The OSP occurs about 0.8 ± 0.4 sec prior to the onset of a fictive-scratching-episode. Here, we describe two classes of bulbar neurons, off-on, which are silent but exhibit a 80 ± 56 Hz firing discharge at the beginning of (and during) the OSP, and on-off interneurons, with a 27 ± 14 Hz firing activity that stops at the beginning of (and during) the OSP. We suggest that these OSP-associated neurons belong to a descending RAS, which contributes to the activation of the spinal central pattern generators.

  5. Characteristics of the NASA Lewis bumpy-torus plasma generated with positive applied potentials

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Gerdin, G. A.; Richardson, R. W.

    1976-01-01

    Experimental observations were made during steady-state operation of a bumpy-torus plasma at input powers up to 150 kW in deuterium and helium gas and with positive potentials applied to the midplane electrodes. In this steady-state ion heating method a modified Penning discharge is operated such that the plasma is acted upon by a combination of strong electric and magnetic fields. Experimental investigation of a deuterium plasma revealed electron temperatures from 14 to 140 eV and ion kinetic temperatures from 160 to 1785 eV. At least two distinct modes of operation exist. Experimental data shows that the average ion residence time in the plasma is virtually independent of the magnetic field strength. Data was taken when all 12 anode rings were at high voltage, and in other symmetric configurations in which the toroidal plasma was generated by applying positive potentials to six anode rings, three anode rings, and a single anode ring.

  6. Reticular activating system of a central pattern generator: premovement electrical potentials

    PubMed Central

    Tapia, Jesus A; Trejo, Argelia; Linares, Pablo; Alva, J Manuel; Kristeva, Rumyana; Manjarrez, Elias

    2013-01-01

    For the first time, here we characterize a bulbar reticular activating system (RAS) of neurons in decerebrate, deafferented and decerebellated cats producing a premovement electrical potential that we named obex slow potential (OSP). The OSP occurs about 0.8 ± 0.4 sec prior to the onset of a fictive-scratching-episode. Here, we describe two classes of bulbar neurons, off-on, which are silent but exhibit a 80 ± 56 Hz firing discharge at the beginning of (and during) the OSP, and on-off interneurons, with a 27 ± 14 Hz firing activity that stops at the beginning of (and during) the OSP. We suggest that these OSP-associated neurons belong to a descending RAS, which contributes to the activation of the spinal central pattern generators. PMID:24303193

  7. System and method for generating and/or screening potential metal-organic frameworks

    DOEpatents

    Wilmer, Christopher E; Leaf, Michael; Snurr, Randall Q; Farha, Omar K; Hupp, Joseph T

    2014-12-02

    A system and method for systematically generating potential metal-organic framework (MOFs) structures given an input library of building blocks is provided herein. One or more material properties of the potential MOFs are evaluated using computational simulations. A range of material properties (surface area, pore volume, pore size distribution, powder x-ray diffraction pattern, methane adsorption capability, and the like) can be estimated, and in doing so, illuminate unidentified structure-property relationships that may only have been recognized by taking a global view of MOF structures. In addition to identifying structure-property relationships, this systematic approach to identify the MOFs of interest is used to identify one or more MOFs that may be useful for high pressure methane storage.

  8. System and method for generating and/or screening potential metal-organic frameworks

    DOEpatents

    Wilmer, Christopher E; Leaf, Michael; Snurr, Randall Q; Farha, Omar K; Hupp, Joseph T

    2015-04-21

    A system and method for systematically generating potential metal-organic framework (MOFs) structures given an input library of building blocks is provided herein. One or more material properties of the potential MOFs are evaluated using computational simulations. A range of material properties (surface area, pore volume, pore size distribution, powder x-ray diffraction pattern, methane adsorption capability, and the like) can be estimated, and in doing so, illuminate unidentified structure-property relationships that may only have been recognized by taking a global view of MOF structures. In addition to identifying structure-property relationships, this systematic approach to identify the MOFs of interest is used to identify one or more MOFs that may be useful for high pressure methane storage.

  9. Generation Mechanism of Earth Potential Difference Signal during Seismic Wave Propagation and its Observation Condition

    NASA Astrophysics Data System (ADS)

    Okubo, Kan; Yamamoto, Keisuke; Takayama, Masakazu; Takeuchi, Nobunao

    We have observed the co-seismic electromagnetic phenomena such as earth potential difference (EPD) variation in many observation sites of both Miyagi and Akita Prefectures. So far, in any earthquakes we observed clear signals of the EPD variation. However, the amplitude of observed EPD signals are very different at each site. To explain this difference, firstly we assumed the EPD generation mechanism to be the streaming potential. Secondarily, the underground circumstance is modeled as the composer of groundwater table, capillary tubes and fine tubes. The model how EPD variation signals appear is postulated to explain the observed data. The relative position of the ground water table against the buried electrodes is examined to explain the observed data. The groundwater table may be very sensitive to the appearance of the EPD variation. If electrodes were buried a few meters below the ground surface, we could observe the EPD signals in the case of shallow groundwater table.

  10. Direct Carbon Fuel Cells: Assessment of their Potential as Solid Carbon Fuel Based Power Generation Systems

    SciTech Connect

    Wolk, R

    2004-04-23

    Small-scale experimental work at Lawrence Livermore National Laboratory (LLNL) has confirmed that a direct carbon fuel cell (DCFC) containing a molten carbonate electrolyte completely reacts solid elemental carbon with atmospheric oxygen contained in ambient air at a temperature of 650-800 C. The efficiency of conversion of the chemical energy in the fuel to DC electricity is 75-80% and is a result of zero entropy change for this reaction and the fixed chemical potentials of C and CO{sub 2}. This is about twice as efficient as other forms power production processes that utilize solid fuels such as petroleum coke or coal. These range from 30-40% for coal fired conventional subcritical or supercritical boilers to 38-42% for IGCC plants. A wide range of carbon-rich solids including activated carbons derived from natural gas, petroleum coke, raw coal, and deeply de-ashed coal have been evaluated with similar conversion results. The rate of electricity production has been shown to correlate with disorder in the carbon structure. This report provides a preliminary independent assessment of the economic potential of DCFC for competitive power generation. This assessment was conducted as part of a Director's Research Committee Review of DCFC held at Lawrence Livermore National Laboratory (LLNL) on April 9, 2004. The key question that this assessment addresses is whether this technology, which appears to be very promising from a scientific standpoint, has the potential to be successfully scaled up to a system that can compete with currently available power generation systems that serve existing electricity markets. These markets span a wide spectrum in terms of the amount of power to be delivered and the competitive cost in that market. For example, DCFC technology can be used for the personal power market where the current competition for delivery of kilowatts of electricity is storage batteries, for the distributed generation market where the competition for on-site power

  11. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    SciTech Connect

    Bailey, Owen; Worrell, Ernst

    2005-08-03

    The nation's power system is facing a diverse and broad set of challenges. These range from restructuring and increased competitiveness in power production to the need for additional production and distribution capacity to meet demand growth, and demands for increased quality and reliability of power and power supply. In addition, there are growing concerns about emissions from fossil fuel powered generation units and generators are seeking methods to reduce the CO{sub 2} emission intensity of power generation. Although these challenges may create uncertainty within the financial and electricity supply markets, they also offer the potential to explore new opportunities to support the accelerated deployment of cleaner and cost-effective technologies to meet such challenges. The federal government and various state governments, for example, support the development of a sustainable electricity infrastructure. As part of this policy, there are a variety of programs to support the development of ''cleaner'' technologies such as combined heat and power (CHP, or cogeneration) and renewable energy technologies. Energy from renewable energy sources, such as solar, wind, hydro, and biomass, are considered carbon-neutral energy technologies. The production of renewable energy creates no incremental increase in fossil fuel consumption and CO{sub 2} emissions. Electricity and thermal energy production from all renewable resources, except biomass, produces no incremental increase in air pollutants such as nitrogen oxides, sulfur oxides, particulate matter, and carbon monoxide. There are many more opportunities for the development of cleaner electricity and thermal energy technologies called ''recycled'' energy. A process using fossil fuels to produce an energy service may have residual energy waste streams that may be recycled into useful energy services. Recycled energy methods would capture energy from sources that would otherwise be unused and convert it to electricity or

  12. Potential for in situ chemical oxidation of acid extractable organics in oil sands process affected groundwater.

    PubMed

    Sohrabi, V; Ross, M S; Martin, J W; Barker, J F

    2013-11-01

    The process of bitumen extraction from oil sands in Alberta, Canada leads to an accumulation of toxic acid-extractable organics (AEOs) in oil sands process water (OSPW). Infiltration of OSPW from tailings ponds and from their retaining sand dykes and subsequent transport towards surface water has occurred. Given the apparent lack of significant natural attenuation of AEOs in groundwater, remediation may be required. This laboratory study evaluates the potential use of unactivated persulfate and permanganate as in situ oxidation agents for remediation of AEOs in groundwater. Naphthenic acids (NAs; CnH2n+zO2), which are a component of the acutely toxic AEOs, were degraded by both oxidants in OSPW samples. Permanganate oxidation yielded some residual dissolved organic carbon (DOC) whereas persulfate mineralized the AEO compounds with less residual DOC. Acid-extractable organics from oxidized OSPW had essentially no Microtox toxicity.

  13. EVALUATION OF POTENTIAL ELUANTS FOR NON-ACID ELUTION OF CESIUM FROM RESORCINOL-FORMALDEHYDE RESIN

    SciTech Connect

    Adu-Wusu, K.; Pennebaker, F.

    2010-12-22

    Small-column ion exchange (SCIX) units installed in high-level waste tanks to remove Cs-137 from highly alkaline salt solutions are among the waste treatment plans in the DOE-complex. Spherical Resorcinol-Formaldehyde (sRF) is the ion exchange resin selected for use in the Hanford Waste Treatment and Immobilization Plant (WTP). It is also the primary ion exchange material under consideration for SCIX at the Hanford site. The elution step of the multi-step ion exchange process is typically done with 0.5 M nitric acid. An acid eluant is a potential hazard in the event of a spill, leak, etc. because the high-level waste tanks are made of carbon steel. Corrosion and associated structural damage may ensue. A study has been conducted to explore non-acid elution as an alternative. Batch contact sorption equilibrium screening tests have been conducted with 36 potential non-acid eluants. The sorption tests involve equilibrating each cesium-containing eluant solution with the sRF resin for 48 hours at 25 C in a shaker oven. In the sorption tests, an eluant is deemed to have a high cesium elution potential if it minimizes cesium sorption onto the sRF resin. The top candidates (based on lowest cesium sorption distribution coefficients) include ammonium carbonate, ammonium carbonate/ammonium hydroxide, ammonium bicarbonate, rubidium carbonate, ammonium acetate, ammonium acetate/ammonium hydroxide, ammonium bicarbonate/ammonium hydroxide, calcium chloride, and magnesium chloride. A select few of the top candidate eluants from the screening tests were subjected to actual sorption (loading) and elution tests to confirm their elution ability. The actual sorption (loading) and elution tests mimicked the typical sRF-cesium ion exchange process (i.e., sorption or loading, caustic wash, water rinse, and elution) via batch contact sorption and quasi column caustic wash/water rinse/elution. The eluants tested included ammonium carbonate, ammonium acetate, calcium acetate, magnesium

  14. Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells.

    PubMed

    Kulikova, Veronika; Shabalin, Konstantin; Nerinovski, Kirill; Dölle, Christian; Niere, Marc; Yakimov, Alexander; Redpath, Philip; Khodorkovskiy, Mikhail; Migaud, Marie E; Ziegler, Mathias; Nikiforov, Andrey

    2015-11-01

    NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5'-nucleotidases (5'-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5'-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5'-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors. PMID:26385918

  15. Effect of ethylenediaminetetraacetic acid on the photocatalytic activities and flat-band potentials of cadmium sulfide and cadmium selenide

    SciTech Connect

    Uchihara, Toshio ); Matsumura, Michio; Ono, Junichi; Tsubomura, Hiroshi )

    1990-01-11

    Photocatalyzed hydrogen evolution on Pt-loaded CdS powder from aqueous solutions of sodium sulfite is enhanced by addition of a small amount of ethylenediaminetetraacetic acid (EDTA) to the solution. EDTA is hardly consumed by the reaction. It has been concluded from the measurements of the flat-band potential of CdS electrodes that EDTA and other chelating agents, such as 1,2-cyclohexanediaminetetraacetic acid and nitrilotriacetic acid, are adsorbed strongly on the surface of CdS and shift the conduction band energy toward the negative. The enhancement of the photocatalytic hydrogen evolution by the addition of EDTA is explained as being caused by the upward shift of the conduction band energy of CdS due to the negative charge of the chelating agents. The change of the conduction band energy by the adsorption of EDTA is observed also for CdSe electrodes. Although Pt-loaded CdSe powder is inactive for the hydrogen evolution from aqueous solutions of sodium sulfite, it generates hydrogen when EDTA is added to the solution.

  16. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum.

    PubMed

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada

    2012-10-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal L-glutamate (L-Glu) and 5'-inosine monophosphate (IMP) synergistically increases duodenal HCO3- secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3- secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3- secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. L-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced L-Glu/IMP-induced HCO3- secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3- secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3- secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced L-Glu/IMP-induced HCO3- secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal L-Glu/IMP-induced and TGR5 agonist-induced HCO3- secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3- secretion.

  17. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum

    PubMed Central

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H.; Engel, Eli; Kaunitz, Jonathan D.

    2012-01-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal l-glutamate (l-Glu) and 5′-inosine monophosphate (IMP) synergistically increases duodenal HCO3− secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3− secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3− secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. l-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced l-Glu/IMP-induced HCO3− secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3− secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3− secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced l-Glu/IMP-induced HCO3− secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal l-Glu/IMP-induced and TGR5 agonist-induced HCO3− secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3− secretion

  18. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum.

    PubMed

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada

    2012-10-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal L-glutamate (L-Glu) and 5'-inosine monophosphate (IMP) synergistically increases duodenal HCO3- secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3- secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3- secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. L-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced L-Glu/IMP-induced HCO3- secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3- secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3- secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced L-Glu/IMP-induced HCO3- secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal L-Glu/IMP-induced and TGR5 agonist-induced HCO3- secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3- secretion. PMID:22821947

  19. Hyaluronic acid as a potential boron carrier for BNCT: Preliminary evaluation.

    PubMed

    Zaboronok, A; Yamamoto, T; Nakai, K; Yoshida, F; Uspenskii, S; Selyanin, M; Zelenetskii, A; Matsumura, Akira

    2015-12-01

    Hyaluronic acid (HA), a nonimmunogenic, biocompatible polymer found in different biological tissues, has the potential to attach to CD44 receptors on the surface of certain cancer cells, where the receptor is overexpressed compared with normal cells. Boron-hyaluronic acid (BHA) was tested for its feasibility as a potential agent for BNCT. BHA with low-viscosity 30 kDa HA could be administered by intravenous injection. The compound showed a certain degree of cytotoxicity and accumulation in C6 rat glioma cells in vitro. Instability of the chelate bonds between boron and HA and/or insufficient specificity of CD44 receptors on C6 cells to BHA could account for the insufficient in vitro accumulation. To ensure the future eligibility of BHA for BNCT experiments, using alternative tumor cell lines and chemically securing the chelate bonds or synthesizing BHA with boron covalently attached to HA might be required.

  20. Membrane potential and proton cotransport of alanine and phosphate as affected by permeant weak acids in Lemna gibba

    SciTech Connect

    Basso, B.; Ullrich-Eberius, C.I.

    1987-11-01

    The treatment of Lemna gibba plants with the weak acids (trimethylacetic acid and butyric acid), used as tools to decrease intracellular pH, induced a hyperpolarization of membrane potential, dependent on the concentration of the undissociated permeant form of the weak acid and on the value of the resting potential. Measurements were carried out both with high potential and low potential plants and the maximum values of acid induced hyperpolarization were about 35 and 71 millivolts, respectively. Weak acids influenced also the transient light-dark membrane potential changes, typical for photosynthesizing material, suggesting a dependence of these changes on an acidification of cytoplasm. In the presence of the weak acids, the membrane depolarization induced by the cotransport of alanine and phosphate with protons was reduced; the maximum reduction (about 90%) was obtained with alanine during 2 millimolar trimethylacetic acid perfusion at pH 5. A strong inhibition of the uptake rates (up to 48% for (/sup 14/C)alanine and 68% for /sup 32/P-phosphate) was obtained in the presence of the weak acids, both by decreasing the pH of the medium and by increasing the concentration of the acid. In these experimental conditions, the ATP level and O/sub 2/ uptake rates did not change significantly. These results constitute good evidence that H/sup +//solute cotransport in Lemna, already known to be dependent on the electrochemical potential difference for protons, is also strongly regulated by the cytoplasmic pH value.

  1. Efficient Sorption and Removal of Perfluoroalkyl Acids (PFAAs) from Aqueous Solution by Metal Hydroxides Generated in Situ by Electrocoagulation.

    PubMed

    Lin, Hui; Wang, Yujuan; Niu, Junfeng; Yue, Zhihan; Huang, Qingguo

    2015-09-01

    Removal of environmentally persistent perfluoroalkyl acids (PFAAs), that is, perfluorooctanesulfonate (PFOS) and perfluorocarboxylic acids (PFCAs, C4 ∼ C10) were investigated through sorption on four metal hydroxide flocs generated in situ by electrocoagulation in deionized water with 10 mM NaCl as supporting electrolyte. The results indicated that the zinc hydroxide flocs yielded the highest removal efficiency with a wide range concentration of PFOA/PFOS (1.5 μM ∼ 0.5 mM) at the zinc dosage <150 mg L(-1) with the energy consumption <0.18 Wh L(-1). The sorption kinetics indicated that the zinc hydroxide flocs had an equilibrium adsorbed amount (qe) up to 5.74/7.69 mmol g(-1) (Zn) for PFOA/PFOS at the initial concentration of 0.5 mM with an initial sorption rate (v0) of 1.01 × 10(3)/1.81 × 10(3) mmol g(-1) h(-1). The sorption of PFOA/PFOS reached equilibrium within <10 min. The sorption mechanisms of PFAAs on the zinc hydroxide flocs were proposed based on the investigation of various driving forces. The results indicated that the hydrophobic interaction was primarily responsible for the PFAAs sorption. The electrocoagulation process with zinc anode may have a great potential for removing PFAAs from industrial wastewater as well as contaminated environmental waterbody.

  2. [Electricity generation using high concentration terephthalic acid solution by microbial fuel cell].

    PubMed

    Ye, Ye-Jie; Song, Tian-Shun; Xu, Yuan; Chen, Ying-Wen; Zhu, She-Min; Shen, Shu-Bao

    2009-04-15

    The high concentration terephthalic acid (TA) solution as the substrate of microbial fuel cell (MFC) was studied to generate electricity. The open circuit voltage was 0.54 V after inoculating for 210 h with anaerobic activated sludge, which proved that TA can be the substrate of microbial fuel cell to generate electricity. The influence of pH and substrate concentration on generating electricity was studied deeply. The voltage output of external resistance (R = 1,000 Omega) was the highest when pH was 8.0. It increased as the substrate concentration increasing and tended towards a maximum value. The maximum voltage output Umax was 0.5 V and Ks was 785.2 mg/L by Monod equation regression. When the substrate concentration (according to COD) was 4000 mg/L, the maximum power density was 96.3 mW/m2, coulomb efficiency was 2.66% and COD removal rate was 80.3%.

  3. VDAC electronics: 1. VDAC-hexo(gluco)kinase generator of the mitochondrial outer membrane potential.

    PubMed

    Lemeshko, Victor V

    2014-05-01

    The simplest mechanism of the generation of the mitochondrial outer membrane potential (OMP) by the VDAC (voltage-dependent anion channel)-hexokinase complex (VHC), suggested earlier, and by the VDAC-glucokinase complex (VGC), was computationally analyzed. Even at less than 4% of VDACs bound to hexokinase, the calculated OMP is high enough to trigger the electrical closure of VDACs beyond the complexes at threshold concentrations of glucose. These results confirmed our previous hypothesis that the Warburg effect is caused by the electrical closure of VDACs, leading to global restriction of the outer membrane permeability coupled to aerobic glycolysis. The model showed that the inhibition of the conductance and/or an increase in the voltage sensitivity of a relatively small fraction of VDACs by factors like tubulin potentiate the electrical closure of the remaining free VDACs. The extrusion of calcium ions from the mitochondrial intermembrane space by the generated OMP, positive inside, might increase cancer cell resistance to death. Within the VGC model, the known effect of induction of ATP release from mitochondria by accumulated glucose-6-phosphate in pancreatic beta cells might result not only of the known effect of GK dissociation from the VDAC-GK complex, but also of a decrease in the free energy of glucokinase reaction, leading to the OMP decrease and VDAC opening. We suggest that the VDAC-mediated electrical control of the mitochondrial outer membrane permeability, dependent on metabolic conditions, is a fundamental physiological mechanism of global regulation of mitochondrial functions and of cell death.

  4. [The evaluation of hydrocarbon potential generation for source rocks by near-infrared diffuse reflection spectra].

    PubMed

    Zhang, Yu-Jia; Xu, Xiao-Xuan; Song, Ning; Wu, Zhong-Chen; Zhou, Xiang; Chen, Jin; Cao, Xue-Wei; Wang, Bin

    2011-04-01

    Near-infrared (NIR) and mid-infrared (MIR) diffuse reflection spectra were compared and evaluated for hydrocarbon potential generation of source rocks. Near-infrared diffuse reflectance often exhibits significant differences in the spectra due to the non-homogeneous distribution of the particles, so the signal-to-noise ratio of NIR is much lower than MIR It is too difficult to get accurate results by NIR without using a strong spectral preprocessing method to remove systematic noise such as base-line variation and multiplicative scatter effects. In the present paper, orthogonal signal correction (OSC) and an improved algorithm of it, i.e. direct orthogonal signal correction (DOSC), are used as different methods to preprocess both the NIR and MIR spectra of the hydrocarbon source rocks. Another algorithm, wavelet multi-scale direct orthogonal signal correction (WMDOSC), which is a combination of discrete wavelet transform (DWT) and DOSC, is also used as a preprocessing method. Then, the calibration model of hydrocarbon source rocks before and after pretreatment was established by interval partial least square (iPLS). The experimental results show that WMDOSC is more successfully applied to preprocess the NIR spectra data of the hydrocarbon source rocks than other two algorithms, and NIR performed as good as MIR in the analysis of hydrocarbon potential generation of source rocks with WMDOSC-iPLS pretreatment calibration model.

  5. Atmospheric electric potential gradient measurements of ash clouds generated by pyroclastic flows at Unzen Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Miura, Toshiro; Koyaguchi, Takehiro; Tanaka, Yoshikazu

    Atmospheric electric potential gradient measurements were made at two localities simultaneously during pyroclastic flow events on September 25, 1993 at Unzen volcano. Immediately after generation of the pyroclastic flows, the potential gradients showed a positive anomaly that was followed by a negative anomaly. The magnitude of the positive anomalies were nearly equal at the two measurement localities, whereas the magnitude of the negative anomalies at the measurement locality, close to the axis of the ash cloud, was larger than the magnitude at the off-axis measurement locality. These differences may be accounted for by the differences in the distance between the ash cloud and each measurement locality. It is suggested that the height to the positive charge was sufficiently larger and the height to the negative charge was sufficiently smaller than the horizontal distance between the two measurement localities. Our results suggest that the upper part of the ash cloud, which contained volcanic gases and/or relatively fine ash, carried a net positive charge and the lower part of ash cloud, which contained relatively coarse ash, carried a net negative charge. This charge distribution in the ash clouds generated by pyroclastic flows is more consistent with the results reported for Vulcanian plumes from Sakurajiama volcano [Lane and Gilbert, 1992; Lane et al., 1995] and Asama volcano [Hatakeyama and Ishikawa, 1946] than any other cases.

  6. Potential for energy generation from anaerobic digestion of food waste in Australia.

    PubMed

    Lou, Xian Fang; Nair, Jaya; Ho, Goen

    2013-03-01

    Published national and state reports have revealed that Australia deposits an average of 16 million Mg of solid waste into landfills yearly, of which approximately 12.6% is comprised of food. Being highly biodegradable and possessing high energy content, anaerobic digestion offers an attractive treatment option alternative to landfilling. The present study attempted to identify the theoretical maximum benefit of food waste digestion in Australia with regard to energy recovery and waste diversion from landfills. The study also assessed the scope for anaerobic process to utilize waste for energy projects through various case study scenarios. Results indicated anaerobic digestion of total food waste generated across multiple sites in Australia could generate 558 453 dam(3) of methane which translated to 20.3 PJ of heating potential or 1915 GWe in electricity generation annually. This would contribute to 3.5% of total current energy supply from renewable sources. Energy contribution from anaerobic digestion of food waste to the total energy requirement in Australia remains low, partially due to the high energy consumption of the country. However its appropriateness in low density regions, which are prevalent in Australia, may allow digesters to have a niche application in the country.

  7. Potential for energy generation from anaerobic digestion of food waste in Australia.

    PubMed

    Lou, Xian Fang; Nair, Jaya; Ho, Goen

    2013-03-01

    Published national and state reports have revealed that Australia deposits an average of 16 million Mg of solid waste into landfills yearly, of which approximately 12.6% is comprised of food. Being highly biodegradable and possessing high energy content, anaerobic digestion offers an attractive treatment option alternative to landfilling. The present study attempted to identify the theoretical maximum benefit of food waste digestion in Australia with regard to energy recovery and waste diversion from landfills. The study also assessed the scope for anaerobic process to utilize waste for energy projects through various case study scenarios. Results indicated anaerobic digestion of total food waste generated across multiple sites in Australia could generate 558 453 dam(3) of methane which translated to 20.3 PJ of heating potential or 1915 GWe in electricity generation annually. This would contribute to 3.5% of total current energy supply from renewable sources. Energy contribution from anaerobic digestion of food waste to the total energy requirement in Australia remains low, partially due to the high energy consumption of the country. However its appropriateness in low density regions, which are prevalent in Australia, may allow digesters to have a niche application in the country. PMID:23381970

  8. 2-Iodoxybenzoic acid--a simple oxidant with a dazzling array of potential applications.

    PubMed

    Duschek, Alexander; Kirsch, Stefan F

    2011-02-11

    Since its discovery by Christoph Hartmann and Victor Meyer in 1893, 2-iodoxybenzoic acid (IBX) has emerged as a rather ubiquitous oxidant for organic synthesis. The past decade has seen the development of a large variety of applications that go far beyond the simple oxidation of alcohols. This Review is concerned with the synthetic potential of IBX, with particular emphasis on uncommon reactivity patterns and novel fields of application.

  9. Incorporation of TGF-beta 3 within collagen-hyaluronic acid scaffolds improves their chondrogenic potential.

    PubMed

    Matsiko, Amos; Levingstone, Tanya J; Gleeson, John P; O'Brien, Fergal J

    2015-06-01

    Incorporation of therapeutics in the form of growth factors within biomaterials can enhance their biofunctionality. Two methods of incorporating transforming growth factor-beta 3 within collagen-hyaluronic acid scaffolds are described, markedly improving mesenchymal stem cell-mediated chondrogenic differentiation and matrix production. Such scaffolds offer control over the release of therapeutics, demonstrating their potential for repair of complex chondral defects requiring additional stimuli.

  10. Isolation of lactic acid bacteria with potential protective culture characteristics from fruits

    NASA Astrophysics Data System (ADS)

    Hashim, Nurul Huda; Sani, Norrakiah Abdullah

    2015-09-01

    Lactic acid bacteria are also known as beneficial microorganisms abundantly found in fermented food products. In this study, lactic acid bacteria were isolated from fresh cut fruits obtained from local markets. Throughout the isolation process from 11 samples of fruits, 225 presumptive lactic acid bacteria were isolated on MRS agar medium. After catalase and oxidase tests, 149 resulted to fit the characteristics of lactic acid bacteria. Further identification using Gram staining was conducted to identify the Gram positive bacteria. After this confirmation, the fermentation characteristics of these isolates were identified. It was found that 87 (58.4%) isolates were heterofermentative, while the rest of 62 (41.6%) are homofermentative lactic acid bacteria. Later, all these isolates were investigated for the ability to inhibit growth of Staphylococcus aureus using agar spot assay method. Seven (4.7%) isolates showed strong antagonistic capacity, while 127 (85.2%) and 8 (5.4%) isolates have medium and weak antagonistic capacity, respectively. The other 7 (4.7%) isolates indicated to have no antagonistic effect on S. aureus. Results support the potential of LAB isolated in this study which showed strong antagonistic activity against S. aureus may be manipulated to become protective cultures in food products. While the homofermentative or heterofermentative LAB can be utilized in fermentation of food and non-food products depending on the by-products required during the fermentation.

  11. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation.

    PubMed

    Sawada, Kazutaka; Kitagaki, Hiroshi

    2016-01-01

    Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus). Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation. PMID:26839744

  12. Coarse-Grained Modeling of Nucleic Acids Using Anisotropic Gay-Berne and Electric Multipole Potentials.

    PubMed

    Li, Guohui; Shen, Hujun; Zhang, Dinglin; Li, Yan; Wang, Honglei

    2016-02-01

    In this work, we attempt to apply a coarse-grained (CG) model, which is based on anisotropic Gay-Berne and electric multipole (EMP) potentials, to the modeling of nucleic acids. First, a comparison has been made between the CG and atomistic models (AMBER point-charge model) in the modeling of DNA and RNA hairpin structures. The CG results have demonstrated a good quality in maintaining the nucleic acid hairpin structures, in reproducing the dynamics of backbone atoms of nucleic acids, and in describing the hydrogen-bonding interactions between nucleic acid base pairs. Second, the CG and atomistic AMBER models yield comparable results in modeling double-stranded DNA and RNA molecules. It is encouraging that our CG model is capable of reproducing many elastic features of nucleic acid base pairs in terms of the distributions of the interbase pair step parameters (such as shift, slide, tilt, and twist) and the intrabase pair parameters (such as buckle, propeller, shear, and stretch). Finally, The GBEMP model has shown a promising ability to predict the melting temperatures of DNA duplexes with different lengths.

  13. Coarse-Grained Modeling of Nucleic Acids Using Anisotropic Gay-Berne and Electric Multipole Potentials.

    PubMed

    Li, Guohui; Shen, Hujun; Zhang, Dinglin; Li, Yan; Wang, Honglei

    2016-02-01

    In this work, we attempt to apply a coarse-grained (CG) model, which is based on anisotropic Gay-Berne and electric multipole (EMP) potentials, to the modeling of nucleic acids. First, a comparison has been made between the CG and atomistic models (AMBER point-charge model) in the modeling of DNA and RNA hairpin structures. The CG results have demonstrated a good quality in maintaining the nucleic acid hairpin structures, in reproducing the dynamics of backbone atoms of nucleic acids, and in describing the hydrogen-bonding interactions between nucleic acid base pairs. Second, the CG and atomistic AMBER models yield comparable results in modeling double-stranded DNA and RNA molecules. It is encouraging that our CG model is capable of reproducing many elastic features of nucleic acid base pairs in terms of the distributions of the interbase pair step parameters (such as shift, slide, tilt, and twist) and the intrabase pair parameters (such as buckle, propeller, shear, and stretch). Finally, The GBEMP model has shown a promising ability to predict the melting temperatures of DNA duplexes with different lengths. PMID:26717419

  14. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation

    PubMed Central

    Sawada, Kazutaka

    2016-01-01

    Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus). Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation. PMID:26839744

  15. Biological roles and therapeutic potential of hydroxy-carboxylic Acid receptors.

    PubMed

    Ahmed, Kashan

    2011-01-01

    In the recent past, deorphanization studies have described intermediates of energy metabolism to activate G protein-coupled receptors and to thereby regulate metabolic functions. GPR81, GPR109A, and GPR109B, formerly known as the nicotinic acid receptor family, are encoded by clustered genes and share a high degree of sequence homology. Recently, hydroxy-carboxylic acids were identified as endogenous ligands of GPR81, GPR109A, and GPR109B, and therefore these receptors have been placed into a novel receptor family of hydroxy-carboxylic acid (HCA) receptors. The HCA(1) receptor (GPR81) is activated by the glycolytic metabolite 2-hydroxy-propionic acid (lactate), the HCA(2) receptor is activated by the ketone body 3-hydroxy-butyric acid, and the HCA(3) receptor (GPR109B) is a receptor for the β-oxidation intermediate 3-hydroxy-octanoic acid. While HCA(1) and HCA(2) receptors are present in most mammalian species, the HCA(3) receptor is exclusively found in humans and higher primates. HCA receptors are expressed in adipose tissue and mediate anti-lipolytic effects in adipocytes through G(i)-type G protein-dependent inhibition of adenylyl cyclase. HCA(2) and HCA(3) inhibit lipolysis during conditions of increased β-oxidation such as prolonged fasting, whereas HCA(1) mediates the anti-lipolytic effects of insulin in the fed state. As HCA(2) is a receptor for the established anti-dyslipidemic drug nicotinic acid, HCA(1) and HCA(3) also represent promising drug targets and several synthetic ligands for HCA receptors have been developed. In this article, we will summarize the deorphanization and pharmacological characterization of HCA receptors. Moreover, we will discuss recent progress in elucidating the physiological and pathophysiological role to further evaluate the therapeutic potential of the HCA receptor family for the treatment of metabolic disease.

  16. Synthesis and biological evaluation of pseudolaric acid B derivatives as potential immunosuppressive agents.

    PubMed

    Chen, Shou-Qiang; Wang, Jie; Zhao, Chuan; Sun, Qiang-Wen; Wang, Yi-Teng; Ai, Ting; Li, Tan; Gao, Ying; Wang, Huo; Chen, Hong

    2015-01-01

    Pseudolaric acid B (PB) derivatives with immunosuppressive activity were found by our group. In order to find potential immunosuppressive agents with high efficacy and low toxicity, a series of novel PB derivatives were synthesized and evaluated on their immunosuppressive activities. Most of the synthesized compounds were tested in vitro on murine T and B proliferation. In particular, compound 11 exhibited excellent inhibitory activity toward murine T cells (up to 19-fold enhancement compared to that of mycophenolatemofetil) and little cytotoxicity toward normal murine spleen cells. These experimental data demonstrated that some of these PB derivatives have great potential for future immunosuppressive studies.

  17. Potential drug (oxytetracycline and oxolinic acid) pollution from Mediterranean sparid fish farms.

    PubMed

    Rigos, George; Nengas, Ioannis; Alexis, Maria; Troisi, Gera M

    2004-08-25

    The potential for input of two common antibacterial agents in Mediterranean fish farms, oxytetracycline (OTC) and oxolinic acid (OA), was estimated from measurements of these drugs in the faecal excretions of two important farmed sparids, gilthead sea bream, Sparus aurata and sharpsnout sea bream Diplodus puntazzo. Oxolinic acid was found to be well absorbed by gilthead sea bream (92%) and sharpsnout sea bream (88%) while the absorption of OTC was found to be considerably lower in both species (27 and 40%, respectively). These data were integrated with production records for sparids, drug dosage regimes and treatment frequency information to calculate potential annual drug release to the aquatic environment from Greek fish farms. These calculations suggest potentially significant quantities of unmetabolised OTC can be passed unabsorbed through the body of treated sparids and excreted via the faeces into the local marine environment. The situation with OA was much less pronounced. It was estimated that potentially more than 1900 kg of OTC and more than 50 kg of OA may be released via faecal excretion into the environment by sparid farms per year. Further drug may also be released via uneaten medicated feed, leached drugs and other routes of fish elimination (renal excretion, branchial secretions). Drug pollution of the marine environment in the vicinity of fish farms can have adverse ecological effects, including development of resistant bacterial populations and exposure with potential drug accumulation in aquatic fauna and flora.

  18. Potential drug (oxytetracycline and oxolinic acid) pollution from Mediterranean sparid fish farms.

    PubMed

    Rigos, George; Nengas, Ioannis; Alexis, Maria; Troisi, Gera M

    2004-08-25

    The potential for input of two common antibacterial agents in Mediterranean fish farms, oxytetracycline (OTC) and oxolinic acid (OA), was estimated from measurements of these drugs in the faecal excretions of two important farmed sparids, gilthead sea bream, Sparus aurata and sharpsnout sea bream Diplodus puntazzo. Oxolinic acid was found to be well absorbed by gilthead sea bream (92%) and sharpsnout sea bream (88%) while the absorption of OTC was found to be considerably lower in both species (27 and 40%, respectively). These data were integrated with production records for sparids, drug dosage regimes and treatment frequency information to calculate potential annual drug release to the aquatic environment from Greek fish farms. These calculations suggest potentially significant quantities of unmetabolised OTC can be passed unabsorbed through the body of treated sparids and excreted via the faeces into the local marine environment. The situation with OA was much less pronounced. It was estimated that potentially more than 1900 kg of OTC and more than 50 kg of OA may be released via faecal excretion into the environment by sparid farms per year. Further drug may also be released via uneaten medicated feed, leached drugs and other routes of fish elimination (renal excretion, branchial secretions). Drug pollution of the marine environment in the vicinity of fish farms can have adverse ecological effects, including development of resistant bacterial populations and exposure with potential drug accumulation in aquatic fauna and flora. PMID:15276333

  19. A case for bone canaliculi as the anatomical site of strain generated potentials

    NASA Technical Reports Server (NTRS)

    Cowin, S. C.; Weinbaum, S.; Zeng, Y.

    1995-01-01

    We address the question of determining the anatomical site that is the source of the experimentally observed strain generated potentials (SGPs) in bone tissue. There are two candidates for the anatomical site that is the SGP source, the collagen-hydroxyapatite porosity and the larger size lacunar-canalicular porosity. In the past it has been argued, on the basis of experimental data and a reasonable model, that the site of the SGPs in bone is the collagen-hydroxyapatite porosity. The theoretically predicted pore radius necessary for the SGPs to reside in this porosity is 16 nm, which is somewhat larger than the pore radii estimated from gas adsorption data where the preponderance of the pores were estimated to be in the range 5-12.5 nm. However, this pore size is significantly larger than the 2 nm size of the small tracer, microperoxidase, which appears to be excluded from the mineralized matrix. In this work a similar model, but one in which the effects of fluid dynamic drag of the cell surface matrix in the bone canaliculi are included, is used to show that it is possible for the generation of SGPs to be associated with the larger size lacunar-canalicular porosity when the hydraulic drag and electrokinetic contribution of the bone fluid passage through the cell coat (glycocalyx) is considered. The consistency of the SGP data with this model is demonstrated. A general boundary condition is introduced to allow for current leakage at the bone surface. The results suggest that the current leakage is small for the in vitro studies in which the strain generated potentials have been measured.

  20. The ex vivo antiplatelet activation potential of fruit phenolic metabolite hippuric acid.

    PubMed

    Santhakumar, Abishek Bommannan; Stanley, Roger; Singh, Indu

    2015-08-01

    Polyphenol-rich fruit and vegetable intake has been associated with reduction in platelet hyperactivity, a significant contributor to thrombus formation. This study was undertaken to investigate the possible role of hippuric acid, a predominant metabolite of plant cyclic polyols, phenolic acids and polyphenols, in reduction of platelet activation-related thrombogenesis. Fasting blood samples were collected from 13 healthy subjects to analyse the effect of varying concentrations of hippuric acid (100 μM, 200 μM, 500 μM, 1 mM and 2 mM) on activation-dependant platelet surface-marker expression. Procaspase activating compound-1 (PAC-1) and P-selectin/CD62P monoclonal antibodies were used to evaluate platelet activation-related conformational changes and α-granule release respectively using flow cytometry. Platelets were stimulated ex vivo via the P2Y1/P2Y12- adenosine diphosphate (ADP) pathway of platelet activation. Hippuric acid at a concentration of 1 mM and 2 mM significantly reduced P-selectin/CD62P expression (p = 0.03 and p < 0.001 respectively) induced by ADP. Hippuric acid at 2 mM concentration also inhibited PAC-1 activation-dependant antibody expression (p = 0.03). High ex vivo concentrations of hippuric acid can therefore significantly reduce P-selectin and PAC-1 expression thus reducing platelet activation and clotting potential. However, although up to 11 mM of hippuric acid can be excreted in the urine per day following consumption of fruit, hippuric acid is actively excreted with a recorded Cmax for hippuric acid in human plasma at 250-300 μM. This is lower than the blood concentration of 1-2 mM shown to be bioactive in this research. The contribution of hippuric acid to the protective effects of fruit and vegetable intake against vascular disorders by the pathways measured is therefore low but could be synergistic with lowered doses of antiplatelet drugs and help reduce risk of thrombosis in current antiplatelet drug sensitive populations. PMID

  1. Investigation into the oxidative potential generated by the formation of particulate matter from incense combustion.

    PubMed

    Chuang, Hsiao-Chi; BéruBé, Kelly; Lung, Shih-Chun C; Bai, Kuan-Jen; Jones, Tim

    2013-01-15

    The formation of aerosols during combustion plays an important role in allowing released products to interreact, leading to an increase in particulate matter oxidative potential. This study investigated the physicochemistry of incense combustion-derived pollutants, which were emitted into the ambient air as solid and gas phases, followed by the determination of their oxidative potential. Upon combustion of a joss stick, approximately 60% of the mass of incense raw ingredients was released into the ambient air as combustion products including 349.51 mg/g PM(10), 145.48 mg/g CO and 0.16 mg/g NOx. Furthermore, incense combustion produced significant number of primary particles (<50 nm) at 0.99×10(5) 1/h. The NOx generated during incense combustion was able to react with CaCO(3) to produce the final product of Ca(NO(3))(2) in the ambient air. Moreover, coagulation could be a vital process for the growth of primary incense combustion particles through the intermixing with volatile organics. The incense particle's reactions with other combustion-derived products could be responsible for their significant oxidative capacity of 33.1-43.4% oxidative DNA damage. This study demonstrated that the oxidative potential of incense particles appeared to be related to the process of particle formation, and also provided novel data for the respiratory exposure assessment.

  2. Towards generating synthetic gauge potentials for a Bose-Einstein condensate in a toroidal trap

    NASA Astrophysics Data System (ADS)

    Huang, Pan-Pan; Chen, Cheng-An; Wei, Hung-Ji; Yu, Chin-Yeh; Wang, Jung-Bin; Lin, Yu-Ju

    2015-05-01

    We have designed a setup to experimentally study ultracold atoms dressed by Raman laser beams in a ring-shaped trapping potential. To make BECs of Rb87 atoms, we first capture zeeman-slowed atoms in a Magneto-Optical-Trap, perform polarization gradient cooling, and then load the atoms in a quadrupole magnetic trap with a number of ~1e9. After 3.5s of rf-evaporation, these pre-cooled atoms are transferred into a hybrid potential, a crossed optical dipole trap with a magnetic gradient. Evaporative cooling of 4.3 s in the dipole trap is performed by first ramping down the power of dipole beams, followed by ramping off the magnetic gradient during which the trap frequency largely remains the same. We achieved a BEC with 2e5 atoms with an experimental cycle time of 15 s. Our next step is to load the atoms into a toroidal dipole trap and use two Raman beams with orbital angular momentum to dress the atoms, thus generating synthetic vector gauge potentials. Both the dipole beam for the toroidal trap and the Raman beam(s) are Laguerre-Gaussian beams produced by spiral phase plates.

  3. Rabeprazole: a second-generation proton pump inhibitor in the treatment of acid-related disease.

    PubMed

    Pallotta, Stefano; Pace, Fabio; Marelli, Silvia

    2008-08-01

    Rabeprazole is a proton pump inhibitor (PPI) presenting a very advantageous pharmacodynamic and pharmacokinetic profile over older PPIs. In particular, this drug has a very fast onset of action, due to a short activation time and a very high pKa, and may therefore be defined as a 'second generation' PPI. The aim of this article is to provide an update on the pharmacology and clinical profile of rabeprazole and its use in acid-related disorders, with a particular focus on its role in gastroesophageal reflux disease; in the treatment and prevention of duodenal and gastric ulcers and Zollinger-Ellison syndrome; in the therapy of the extraesophageal manifestations of gastroesophageal reflux disease (in particular the respiratory and ear, nose and throat ones); and in the eradication of Helicobacter pylori.

  4. Effect of acid pretreatment on different parts of corn stalk for second generation ethanol production.

    PubMed

    Li, Ping; Cai, Di; Luo, Zhangfeng; Qin, Peiyong; Chen, Changjing; Wang, Yong; Zhang, Changwei; Wang, Zheng; Tan, Tianwei

    2016-04-01

    In this study, the effects of different parts of corn stalk, including stem, leaf, flower, cob and husk on second generation ethanol production were evaluated. FTIR, XRD and SEM were performed to investigate the effect of dilute acid pretreatment. The bagasse obtained after pretreatment were further hydrolyzed by cellulase and used as the substrate for ethanol fermentation. As results, hemicelluloses fractions in different parts of corn stalk were dramatically removed and the solid fractions showed vivid compositions and crystallinities. Compared with other parts of corn stalk, the cob had higher sugar content and better enzymatic digestibility. The highest glucose yield of 94.2% and ethanol production of 24.0 g L(-1) were achieved when the cob was used as feedstock, while the glucose yield and the ethanol production were only 86.0% and 17.1 g L(-1) in the case of flower. PMID:26849200

  5. Review of acid rain potential in India: Future threats and remedial measures

    SciTech Connect

    Mohan, M.; Kumar, S.

    1996-12-31

    Acid rain is a necessary fall out of rapid development process in India. Any increase in Gross Domestic Product has direct influence on the rate of energy consumption and its pattern. Thermal Power plants are the major source of wet and dry deposition of sulfur while transportation sector has a larger share in the increase of NO{sub x}. The process is complex and the effect can be felt hundreds of kilometers away. Redistribution of both the plant nutrients and toxic substances within the biosphere results from such deposition and biogeochemically important trace species are threatened. These have a destabilising effect on several ecosystems. However, tropical climatic conditions and alkaline rich soil has hitherto not allowed any such destabilising effect in India. The sea and the soil derived aerosols are responsible for neutralizing process and maintaining the pH in the alkaline range in the most part of India. The higher temperature and sunlight, increases the efficiency of atmospheric chemical reactions, particularly those transforming SO{sub 2} and NO{sub x} to acidic sulfates and nitrates. The major contribution to acid rain is reported to be due to sulfur component (70%). Therefore, the emission of sulfur requires more attention. It has been observed that pH has a declining trend due to population growth, changing agricultural practices and a very rapid economic development. An estimated 2500 tonnes of sulfur are released in the atmosphere due to the thermal power plants alone as per data available for 1993-94 thermal power generation which is 50 times more than that released in 1950-51 due to thermal power generation. This paper is an overview of the present trends, their likely effects, factors contributing to acid rain and possible remedial action.

  6. POTENTIAL OF ENERGY GENERATION BY INTRODUCTION OF PHOTOVOLTAIC AND SMALL WIND POWER SYSTEM IN SEWAGE TREATMENT PLANTS IN JAPAN

    NASA Astrophysics Data System (ADS)

    Honda, Ryo; Fukushi, Kensuke

    Sites of sewage treatment plants are available as s ites for renewable power generation, while the plants are large energy consumers. This study estimated generation potential of renewable energy by introducing photovoltaic power generation system and small wind power generation system at the sewage treatment plants in 18 major cities. As a result of estimation, 31% of power consumed in the targeted plants were generated by the solar and wind power generation systems when they were intalled in all the plants in the targeted cities. The generated power corresponds to 274,000 t-CO2/year. Approximately 50% of total generated power was generated at 25 plan ts of the 121 of targeted plants.

  7. Human spermatozoa possess an IL4I1 l-amino acid oxidase with a potential role in sperm function.

    PubMed

    Houston, B; Curry, B; Aitken, R J

    2015-06-01

    Reactive oxygen species (ROS) are known to play an important role in the regulation of human sperm function. In this study, we demonstrate for the first time that human spermatozoa possess interleukin-induced gene 1 (IL4I1), an l-amino acid oxidase (LAAO) which is capable of generating ROS on exposure to aromatic amino acids in the presence of oxygen. The preferred substrates were found to be phenylalanine and tryptophan while the enzyme was located in the acrosomal region and midpiece of these cells. In contrast to equine and bovine spermatozoa, enzyme activity was lost as soon as the spermatozoa became non-viable. On a cell-to-cell basis human spermatozoa were also shown to generate lower levels of hydrogen peroxide than their equine counterparts on exposure to phenylalanine. Stimulation of LAAO activity resulted in the induction of several hallmarks of capacitation including tyrosine phosphorylation of the sperm flagellum and concomitant activation of phospho-SRC expression. In addition, stimulation of LAAO resulted in an increase in the levels of acrosomal exocytosis in both the presence and absence of progesterone stimulation, via mechanisms that could be significantly reversed by the presence of catalase. As is often the case with free radical-mediated phenomena, prolonged exposure of human spermatozoa to phenylalanine resulted in the stimulation of apoptosis as indicated by significant increases in mitochondrial superoxide generation and the activation of intracellular caspases. These results confirm the existence of an LAAO in human spermatozoa with a potential role in driving the redox regulation of sperm capacitation and acrosomal exocytosis.

  8. An ATP and Oxalate Generating Variant Tricarboxylic Acid Cycle Counters Aluminum Toxicity in Pseudomonas fluorescens

    PubMed Central

    Singh, Ranji; Lemire, Joseph; Mailloux, Ryan J.; Chénier, Daniel; Hamel, Robert; Appanna, Vasu D.

    2009-01-01

    Although the tricarboxylic acid (TCA) cycle is essential in almost all aerobic organisms, its precise modulation and integration in global cellular metabolism is not fully understood. Here, we report on an alternative TCA cycle uniquely aimed at generating ATP and oxalate, two metabolites critical for the survival of Pseudomonas fluorescens. The upregulation of isocitrate lyase (ICL) and acylating glyoxylate dehydrogenase (AGODH) led to the enhanced synthesis of oxalate, a dicarboxylic acid involved in the immobilization of aluminum (Al). The increased activity of succinyl-CoA synthetase (SCS) and oxalate CoA-transferase (OCT) in the Al-stressed cells afforded an effective route to ATP synthesis from oxalyl-CoA via substrate level phosphorylation. This modified TCA cycle with diminished efficacy in NADH production and decreased CO2-evolving capacity, orchestrates the synthesis of oxalate, NADPH, and ATP, ingredients pivotal to the survival of P. fluorescens in an Al environment. The channeling of succinyl-CoA towards ATP formation may be an important function of the TCA cycle during anaerobiosis, Fe starvation and O2-limited conditions. PMID:19809498

  9. A methanotroph-based biorefinery: Potential scenarios for generating multiple products from a single fermentation.

    PubMed

    Strong, P J; Kalyuzhnaya, M; Silverman, J; Clarke, W P

    2016-09-01

    Methane, a carbon source for methanotrophic bacteria, is the principal component of natural gas and is produced during anaerobic digestion of organic matter (biogas). Methanotrophs are a viable source of single cell protein (feed supplement) and can produce various products, since they accumulate osmolytes (e.g. ectoine, sucrose), phospholipids (potential biofuels) and biopolymers (polyhydroxybutyrate, glycogen), among others. Other cell components, such as surface layers, metal chelating proteins (methanobactin), enzymes (methane monooxygenase) or heterologous proteins hold promise as future products. Here, scenarios are presented where ectoine, polyhydroxybutyrate or protein G are synthesised as the primary product, in conjunction with a variety of ancillary products that could enhance process viability. Single or dual-stage processes and volumetric requirements for bioreactors are discussed, in terms of an annual biomass output of 1000 tonnesyear(-1). Product yields are discussed in relation to methane and oxygen consumption and organic waste generation.

  10. A methanotroph-based biorefinery: Potential scenarios for generating multiple products from a single fermentation.

    PubMed

    Strong, P J; Kalyuzhnaya, M; Silverman, J; Clarke, W P

    2016-09-01

    Methane, a carbon source for methanotrophic bacteria, is the principal component of natural gas and is produced during anaerobic digestion of organic matter (biogas). Methanotrophs are a viable source of single cell protein (feed supplement) and can produce various products, since they accumulate osmolytes (e.g. ectoine, sucrose), phospholipids (potential biofuels) and biopolymers (polyhydroxybutyrate, glycogen), among others. Other cell components, such as surface layers, metal chelating proteins (methanobactin), enzymes (methane monooxygenase) or heterologous proteins hold promise as future products. Here, scenarios are presented where ectoine, polyhydroxybutyrate or protein G are synthesised as the primary product, in conjunction with a variety of ancillary products that could enhance process viability. Single or dual-stage processes and volumetric requirements for bioreactors are discussed, in terms of an annual biomass output of 1000 tonnesyear(-1). Product yields are discussed in relation to methane and oxygen consumption and organic waste generation. PMID:27146469

  11. The Next Generation Science Standards: A potential revolution for geoscience education

    NASA Astrophysics Data System (ADS)

    Wysession, Michael E.

    2014-05-01

    The first and only set of U.S.-nationally distributed K-12 science education standards have been adopted by many states across America, with the potential to be adopted by many more. Earth and space science plays a prominent role in the new standards, with particular emphasis on critical Earth issues such as climate change, sustainability, and human impacts on Earth systems. In the states that choose to adopt the Next Generation Science Standards (NGSS), American youth will have a rigorous practice-based formal education in these important areas. Much work needs to be done to insure the adoption and adequate implementation of the NGSS by a majority of American states, however, and there are many things that Earth and space scientists can do to help facilitate the process.

  12. [Potential of hematopoietic stem cells as the basis for generation of advanced therapy medicinal products].

    PubMed

    Bönig, H; Heiden, M; Schüttrumpf, J; Müller, M M; Seifried, E

    2011-07-01

    Individualized, (stem) cell-based therapies of congenital and acquired illnesses are among the most exciting medical challenges of the twenty-first century. Before the full potential of such therapies can be achieved, many basic scientific and biotechnological questions remain to be answered. What is the ideal source for the generation of such cellular drugs is one of those issues. In many respects, hematopoietic stem cells fulfill the requirements for stem cells as starting material for novel cellular therapeutics, including the simple access to large amounts of stem cells, the availability of good phenotypic markers for their prospective isolation, and an extensive body of knowledge about the in vitro manipulation of these cells. This manuscript discusses the general and specific usability of hematopoietic stem cells as starting material for novel cellular therapeutics and presents some examples of hematological and nonhematological therapeutic approaches which are based on hematopoietic stem cells.

  13. Comprehensive interrogation of a minimalist synthetic CDR-H3 library and its ability to generate antibodies with therapeutic potential.

    PubMed

    Mahon, Ciara M; Lambert, Matthew A; Glanville, Jacob; Wade, Jason M; Fennell, Brian J; Krebs, Mark R; Armellino, Douglas; Yang, Sharon; Liu, Xuemei; O'Sullivan, Cliona M; Autin, Benedicte; Oficjalska, Katarzyna; Bloom, Laird; Paulsen, Janet; Gill, Davinder; Damelin, Marc; Cunningham, Orla; Finlay, William J J

    2013-05-27

    We have generated large libraries of single-chain Fv antibody fragments (>10(10) transformants) containing unbiased amino acid diversity that is restricted to the central combining site of the stable, well-expressed DP47 and DPK22 germline V-genes. Library WySH2A was constructed to examine the potential for synthetic complementarity-determining region (CDR)-H3 diversity to act as the lone source of binding specificity. Library WySH2B was constructed to assess the necessity for diversification in both the H3 and L3. Both libraries provided diverse, specific antibodies, yielding a total of 243 unique hits against 7 different targets, but WySH2B produced fewer hits than WySH2A when selected in parallel. WySH2A also consistently produced hits of similar quality to WySH2B, demonstrating that the diversification of the CDR-L3 reduces library fitness. Despite the absence of deliberate bias in the library design, CDR length was strongly associated with the number of hits produced, leading to a functional loop length distribution profile that mimics the biases observed in the natural repertoire. A similar trend was also observed for the CDR-L3. After target selections, several key amino acids were enriched in the CDR-H3 (e.g., small and aromatic residues) while others were reduced (e.g., strongly charged residues) in a manner that was specific to position, preferentially occurred in CDR-H3 stem positions, and tended towards residues associated with loop stabilization. As proof of principle for the WySH2 libraries to produce viable lead candidate antibodies, 114 unique hits were produced against Delta-like ligand 4 (DLL4). Leads exhibited nanomolar binding affinities, highly specific staining of DLL4+ cells, and biochemical neutralization of DLL4-NOTCH1 interaction.

  14. Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum.

    PubMed

    Takeno, Seiki; Ohnishi, Junko; Komatsu, Tomoha; Masaki, Tatsuya; Sen, Kikuo; Ikeda, Masato

    2007-07-01

    Oxygen limitation is a crucial problem in amino acid fermentation by Corynebacterium glutamicum. Toward this subject, our study was initiated by analysis of the oxygen-requiring properties of C. glutamicum, generally regarded as a strict aerobe. This organism formed colonies on agar plates up to relatively low oxygen concentrations (0.5% O(2)), while no visible colonies were formed in the absence of O(2). However, in the presence of nitrate (NO3-), the organism exhibited limited growth anaerobically with production of nitrite (NO2-), indicating that C. glutamicum can use nitrate as a final electron acceptor. Assays of cell extracts from aerobic and hypoxic cultures yielded comparable nitrate reductase activities, irrespective of nitrate levels. Genome analysis revealed a narK2GHJI cluster potentially relevant to nitrate reductase and transport. Disruptions of narG and narJ abolished the nitrate-dependent anaerobic growth with the loss of nitrate reductase activity. Disruption of the putative nitrate/nitrite antiporter gene narK2 did not affect the enzyme activity but impaired the anaerobic growth. These indicate that this locus is responsible for nitrate respiration. Agar piece assays using L-lysine- and L-arginine-producing strains showed that production of both amino acids occurred anaerobically by nitrate respiration, indicating the potential of C. glutamicum for anaerobic amino acid production.

  15. Exploratory study of acid-forming potential of commercial cheeses: impact of cheese type.

    PubMed

    Gore, Ecaterina; Mardon, Julie; Guerinon, Delphine; Lebecque, Annick

    2016-06-01

    Due to their composition, cheeses are suspected to induce an acid load to the body. To better understand this nutritional feature, the acid-forming potential of five cheeses from different cheese-making technologies and two milk was evaluated on the basis of their potential renal acid load (PRAL) index (considering protein, P, Cl, Na, K, Mg and Ca contents) and organic anions contents. PRAL index ranged from -0.8 mEq/100 g edible portion for fresh cheese to 25.3 mEq/100 g for hard cheese Cantal and 28 mEq/100 g for blue-veined cheese Fourme d'Ambert. PRAL values were greatly subjected to interbatch fluctuations. This work emphasized a great imbalance between acidifying elements of PRAL calculation (Cl, P and proteins elements) and alkalinizing ones (Na and Ca). Particularly, Cl followed by P elements had a strong impact on the PRAL value. Hard cheeses were rich in lactate, thus, might be less acidifying than suspected by their PRAL values only. PMID:27050124

  16. Selective potentiation of 2-APB-induced activation of TRPV1–3 channels by acid

    PubMed Central

    Gao, Luna; Yang, Pu; Qin, Peizhong; Lu, Yungang; Li, Xinxin; Tian, Quan; Li, Yang; Xie, Chang; Tian, Jin-bin; Zhang, Chengwei; Tian, Changlin; Zhu, Michael X.; Yao, Jing

    2016-01-01

    Temperature-sensitive TRP channels are important for responses to pain and inflammation, to both of which tissue acidosis is a major contributing factor. However, except for TRPV1, acid-sensing by other ThermoTRP channels remains mysterious. We show here that unique among TRPV1–3 channels, TRPV3 is directly activated by protons from cytoplasmic side. This effect is very weak and involves key cytoplasmic residues L508, D512, S518, or A520. However, mutations of these residues did not affect a strong proton induced potentiation of TRPV3 currents elicited by the TRPV1–3 common agonist, 2-aminoethoxydiphenyl borate (2-APB), no matter if the ligand was applied from extracellular or cytoplasmic side. The acid potentiation was common among TRPV1–3 and only seen with 2-APB-related ligands. Using 1H-nuclear magnetic resonance to examine the solution structures of 2-APB and its analogs, we observed striking structural differences of the boron-containing compounds at neutral/basic as compared to acidic pH, suggesting that a pH-dependent configuration switch of 2-APB-based drugs may underlie their functionality. Supporting this notion, protons also enhanced the inhibitory action of 2-APB on TRPM8. Collectively, our findings reveal novel insights into 2-APB action on TRP channels, which should facilitate the design of new drugs for these channels. PMID:26876731

  17. Acidic Potassium Permanganate Chemiluminescence for the Determination of Antioxidant Potential in Three Cultivars of Ocimum basilicum.

    PubMed

    Srivastava, Shivani; Adholeya, Alok; Conlan, Xavier A; Cahill, David M

    2016-03-01

    Ocimum basilicum, a member of the family Lamiaceae, is a rich source of polyphenolics that have antioxidant properties. The present study describes the development and application of an online HPLC-coupled acidic potassium permanganate chemiluminescence assay for the qualitative and quantitative assessment of antioxidants in three cultivars of O. basilicum grown under greenhouse conditions. The chemiluminescence based assay was found to be a sensitive and efficient method for assessment of total and individual compound antioxidant potential. Leaves, flowers and roots were found to be rich reserves of the antioxidant compounds which showed intense chemiluminescence signals. The polyphenolics such as rosmarinic, chicoric, caffeic, p-coumaric, m-coumaric and ferulic acids showed antioxidant activity. Further, rosmarinic acid was found to be the major antioxidant component in water-ethanol extracts. The highest levels of rosmarinic acid was found in the leaves and roots of cultivars "holy green" (14.37; 11.52 mM/100 g DW respectively) followed by "red rubin" (10.02; 10.75 mM/100 g DW respectively) and "subja" (6.59; 4.97 mM/100 g DW respectively). The sensitivity, efficiency and ease of use of the chemiluminescence based assay should now be considered for its use as a primary method for the identification and quantification of antioxidants in plant extracts. PMID:26803763

  18. Communication: Physical origins of ionization potential shifts in mixed carboxylic acids and water complexes.

    PubMed

    Gu, Quanli; Tang, Zhen; Su, Peifeng; Wu, Wei; Yang, Zhijun; Trindle, Carl O; Knee, Joseph L

    2016-08-01

    The ionization potential (IP) of the aromatic alpha hydroxy carboxylic acid, 9-hydroxy-9-fluorene carboxylic acid (9HFCA), is shifted by complexation with hydrogen bonding ligands such as water and formic acid. Generalized Kohn-Sham energy decomposition analysis decomposes the intermolecular binding energies into a frozen energy term, polarization, correlation, and/or dispersion energy terms, as well as terms of geometric relaxation and zero point energy. We observe that in each dimer the attractive polarization always increases upon ionization, enhancing binding in the cation and shifting the IP toward the red. For 9HFCA-H2O, a substantial decrease of the repulsive frozen energy in cation further shifts the IP toward red. For 9HFCA-HCOOH, the increase of the frozen energy actually occurs in the cation and shifts the IP toward blue. Consistent with the experimental measurements, our analysis provides new, non-intuitive perspectives on multiple hydrogen bonds interactions in carboxylic acids and water complexes. PMID:27497532

  19. One-pot nanoparticulation of potentially bioactive peptides and gallic acid encapsulation.

    PubMed

    Nourbakhsh, Himan; Madadlou, Ashkan; Emam-Djomeh, Zahra; Wang, Yi-Cheng; Gunasekaran, Sundaram

    2016-11-01

    Whey protein isolate was hydrolyzed to an in vitro antioxidative hydrolysate, followed by transglutaminase-induced cross-linking and microemulsification in an oil phase. The obtained microemulsion was then dispersed in a gallic acid-rich model wastewater which caused gallic acid transportation into internal nanodroplets. Whey peptides were consequently gelled, yielding nanoparticles. Electrophoresis showed that β-lactoglobulin and low molecular weight peptides were cross-linked by transglutaminase. Protein hydrolysis and subsequent enzymatic cross-linking increased the ζ-potential value. Microscopic investigation indicated that most particles were non-spherical. Non-cross-linked and cross-linked peptides underwent a form of heat-triggered self-assembly in the dry state, while nanoparticles did not show such behavior. Peptide crystallites size was increased by cross-linking and acid-induced particle formation. The latter also caused a reduction in intensity of C-H stretching and C-N bending peaks in infra-red spectrum. Gallic acid release from particles to simulated gastrointestinal fluids was through diffusion from swollen particles, and reached almost 70% release. PMID:27211653

  20. Boric acid: a potential chemoprotective agent against aflatoxin b1 toxicity in human blood

    PubMed Central

    Geyikoglu, Fatime

    2010-01-01

    Aflatoxin B1 is the most potent pulmonary and hepatic carcinogen. Since the eradication of Aflatoxin B1 contamination in agricultural products has been difficult, the use of natural or synthetic free radical scavengers could be a potential chemopreventive strategy. Boric acid is the major component of industry and its antioxidant role has recently been reported. The present study assessed, for the first time, the effectiveness of boric acid following exposure to Aflatoxin B1 on human whole blood cultures. The biochemical characterizations of glutathione and some enzymes have been carried out in erythrocytes. Alterations in malondialdehyde level were determined as an index of oxidative stress. The sister-chromatid exchange and micronucleus tests were performed to assess DNA damages in lymphocytes. Aflatoxin B1 treatment significantly reduced the activities of antioxidants by increasing malondialdehyde level (30.53 and 51.43%) of blood, whereas, the boric acid led to an increased resistance of DNA to oxidative damage induced by Aflatoxin B1 in comparison with control values (P < 0.05). In conclusion, the support of boric acid was especially useful in Aflatoxin-toxicated blood. Thus the risk on tissue targeting of Aflatoxin B1 could be reduced ensuring early recovery from its toxicity. PMID:20431944

  1. Acidic Potassium Permanganate Chemiluminescence for the Determination of Antioxidant Potential in Three Cultivars of Ocimum basilicum.

    PubMed

    Srivastava, Shivani; Adholeya, Alok; Conlan, Xavier A; Cahill, David M

    2016-03-01

    Ocimum basilicum, a member of the family Lamiaceae, is a rich source of polyphenolics that have antioxidant properties. The present study describes the development and application of an online HPLC-coupled acidic potassium permanganate chemiluminescence assay for the qualitative and quantitative assessment of antioxidants in three cultivars of O. basilicum grown under greenhouse conditions. The chemiluminescence based assay was found to be a sensitive and efficient method for assessment of total and individual compound antioxidant potential. Leaves, flowers and roots were found to be rich reserves of the antioxidant compounds which showed intense chemiluminescence signals. The polyphenolics such as rosmarinic, chicoric, caffeic, p-coumaric, m-coumaric and ferulic acids showed antioxidant activity. Further, rosmarinic acid was found to be the major antioxidant component in water-ethanol extracts. The highest levels of rosmarinic acid was found in the leaves and roots of cultivars "holy green" (14.37; 11.52 mM/100 g DW respectively) followed by "red rubin" (10.02; 10.75 mM/100 g DW respectively) and "subja" (6.59; 4.97 mM/100 g DW respectively). The sensitivity, efficiency and ease of use of the chemiluminescence based assay should now be considered for its use as a primary method for the identification and quantification of antioxidants in plant extracts.

  2. Physicochemical characterization of cement kiln dust for potential reuse in acidic wastewater treatment.

    PubMed

    Mackie, A; Boilard, S; Walsh, M E; Lake, C B

    2010-01-15

    Cement kiln dust (CKD) is a fine-grained material produced during the manufacture of cement. Current reuse options are limited and the bulk of CKD not reused in the cement manufacturing process is sent to landfills or stored on-site. Due to the calcium oxide (CaO) content of CKD, it has the potential to be used as a replacement for lime in treating acidic wastewaters such as acid rock drainage (ARD). This paper outlines the results of an examination of the physical and chemical properties of CKD samples collected from six cement plants. The CKD samples were analyzed for major oxides using X-ray diffraction (XRD), available lime, specific surface area, particle size, and morphology using scanning electron microscope (SEM) and compared with a commercial quicklime product. Conductivity, pH, and calcium concentrations of slaked CKD and quicklime solutions were used as indicators of reactivity of the CKD. Slaking of two of the CKD samples with the highest free lime contents (e.g., 34 and 37% free CaO) gave elevated pH values statistically comparable to those of the commercial quicklime sample that was characterized as having 87% available CaO. Acid neutralization trials indicate that even CKD samples with low free lime contents could be effective at neutralizing acidic wastewaters.

  3. One-pot nanoparticulation of potentially bioactive peptides and gallic acid encapsulation.

    PubMed

    Nourbakhsh, Himan; Madadlou, Ashkan; Emam-Djomeh, Zahra; Wang, Yi-Cheng; Gunasekaran, Sundaram

    2016-11-01

    Whey protein isolate was hydrolyzed to an in vitro antioxidative hydrolysate, followed by transglutaminase-induced cross-linking and microemulsification in an oil phase. The obtained microemulsion was then dispersed in a gallic acid-rich model wastewater which caused gallic acid transportation into internal nanodroplets. Whey peptides were consequently gelled, yielding nanoparticles. Electrophoresis showed that β-lactoglobulin and low molecular weight peptides were cross-linked by transglutaminase. Protein hydrolysis and subsequent enzymatic cross-linking increased the ζ-potential value. Microscopic investigation indicated that most particles were non-spherical. Non-cross-linked and cross-linked peptides underwent a form of heat-triggered self-assembly in the dry state, while nanoparticles did not show such behavior. Peptide crystallites size was increased by cross-linking and acid-induced particle formation. The latter also caused a reduction in intensity of C-H stretching and C-N bending peaks in infra-red spectrum. Gallic acid release from particles to simulated gastrointestinal fluids was through diffusion from swollen particles, and reached almost 70% release.

  4. Physicochemical characterization of cement kiln dust for potential reuse in acidic wastewater treatment.

    PubMed

    Mackie, A; Boilard, S; Walsh, M E; Lake, C B

    2010-01-15

    Cement kiln dust (CKD) is a fine-grained material produced during the manufacture of cement. Current reuse options are limited and the bulk of CKD not reused in the cement manufacturing process is sent to landfills or stored on-site. Due to the calcium oxide (CaO) content of CKD, it has the potential to be used as a replacement for lime in treating acidic wastewaters such as acid rock drainage (ARD). This paper outlines the results of an examination of the physical and chemical properties of CKD samples collected from six cement plants. The CKD samples were analyzed for major oxides using X-ray diffraction (XRD), available lime, specific surface area, particle size, and morphology using scanning electron microscope (SEM) and compared with a commercial quicklime product. Conductivity, pH, and calcium concentrations of slaked CKD and quicklime solutions were used as indicators of reactivity of the CKD. Slaking of two of the CKD samples with the highest free lime contents (e.g., 34 and 37% free CaO) gave elevated pH values statistically comparable to those of the commercial quicklime sample that was characterized as having 87% available CaO. Acid neutralization trials indicate that even CKD samples with low free lime contents could be effective at neutralizing acidic wastewaters. PMID:19744781

  5. Understanding Potential Exposure Sources of Perfluorinated Carboxylic Acids in the Workplace

    PubMed Central

    Kaiser, Mary A.; Dawson, Barbara J.; Barton, Catherine A.; Botelho, Miguel A.

    2010-01-01

    This paper integrates perspectives from analytical chemistry, environmental engineering, and industrial hygiene to better understand how workers may be exposed to perfluorinated carboxylic acids when handling them in the workplace in order to identify appropriate exposure controls. Due to the dramatic difference in physical properties of the protonated acid form and the anionic form, this family of chemicals provides unique industrial hygiene challenges. Workplace monitoring, experimental data, and modeling results were used to ascertain the most probable workplace exposure sources and transport mechanisms for perfluorooctanoic acid (PFOA) and its ammonium salt (APFO). PFOA is biopersistent and its measurement in the blood has been used to assess human exposure since it integrates exposure from all routes of entry. Monitoring suggests that inhalation of airborne material may be an important exposure route. Transport studies indicated that, under low pH conditions, PFOA, the undissociated (acid) species, actively partitions from water into air. In addition, solid-phase PFOA and APFO may also sublime into the air. Modeling studies determined that contributions from surface sublimation and loss from low pH aqueous solutions can be significant potential sources of workplace exposure. These findings suggest that keeping surfaces clean, preventing accumulation of material in unventilated areas, removing solids from waste trenches and sumps, and maintaining neutral pH in sumps can lower workplace exposures. PMID:20974675

  6. Salicylic acid-induced superoxide generation catalyzed by plant peroxidase in hydrogen peroxide-independent manner.

    PubMed

    Kimura, Makoto; Kawano, Tomonori

    2015-01-01

    It has been reported that salicylic acid (SA) induces both immediate spike and long lasting phases of oxidative burst represented by the generation of reactive oxygen species (ROS) such as superoxide anion radical (O2(•-)). In general, in the earlier phase of oxidative burst, apoplastic peroxidase are likely involved and in the late phase of the oxidative burst, NADPH oxidase is likely involved. Key signaling events connecting the 2 phases of oxidative burst are calcium channel activation and protein phosphorylation events. To date, the known earliest signaling event in response to exogenously added SA is the cell wall peroxidase-catalyzed generation of O2(•-) in a hydrogen peroxide (H2O2)-dependent manner. However, this model is incomplete since the source of the initially required H2O2 could not be explained. Based on the recently proposed role for H2O2-independent mechanism for ROS production catalyzed by plant peroxidases (Kimura et al., 2014, Frontiers in Plant Science), we hereby propose a novel model for plant peroxidase-catalyzed oxidative burst fueled by SA.

  7. Ice Formation Potential of Laboratory Generated Biogenic and Anthropogenic-Biogenic SOA Particles

    NASA Astrophysics Data System (ADS)

    Knopf, D. A.; Alpert, P. A.; Charnawskas, J. C.; Lambe, A. T.; Massoli, P.; Onasch, T. B.; Davidovits, P.; Worsnop, D. R.

    2014-12-01

    Secondary organic aerosol (SOA) is ubiquitous in the atmosphere and may play an important role in cloud glaciation processes. We investigated several laboratory generated SOA particles systems for their initial water uptake and ice formation propensity as a function of temperature, T, relative humidity with respect to water, RH, relative humidity with respect to ice, RHice, and for different humidification rates, cRHice. This includes pure SOA particles formed from α-pinene, isoprene, and longifolene volatile organic compound precursors with and without the presence of sulfate seed particles as well as oxidized soot and soot-coated α-pinene and naphthalene SOA with varying O/C ratios and coating thicknesses. Micro-spectroscopic chemical imaging using scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) is used to characterize SOA, SOA-sulfate, SOA-soot particles generated in the Boston College potential aerosol mass (PAM) flow reactor in relation to their ice nucleation behavior. Water uptake is consistently observed on SOA particles at RH=75% and 95% for 262 and 228 K, respectively, followed by homogeneous ice nucleation applying atmospherically relevant cRHice=1 % min-1. When cRHice=25 % min-1, ice nucleation is delayed by about 30-40% RHice and cannot be explained by homogeneous ice nucleation. This implies diffusion limitation of water into these potentially glassy or semi-solid organic particles resulting in non-equilibrium between ambient RH and particle water activity. These data will aid in our understanding of the role of organic particle phase states in response to changes in T and RH which is crucial information for prediction of atmospheric ice nucleation.

  8. VDAC electronics: 1. VDAC-hexo(gluco)kinase generator of the mitochondrial outer membrane potential.

    PubMed

    Lemeshko, Victor V

    2014-05-01

    The simplest mechanism of the generation of the mitochondrial outer membrane potential (OMP) by the VDAC (voltage-dependent anion channel)-hexokinase complex (VHC), suggested earlier, and by the VDAC-glucokinase complex (VGC), was computationally analyzed. Even at less than 4% of VDACs bound to hexokinase, the calculated OMP is high enough to trigger the electrical closure of VDACs beyond the complexes at threshold concentrations of glucose. These results confirmed our previous hypothesis that the Warburg effect is caused by the electrical closure of VDACs, leading to global restriction of the outer membrane permeability coupled to aerobic glycolysis. The model showed that the inhibition of the conductance and/or an increase in the voltage sensitivity of a relatively small fraction of VDACs by factors like tubulin potentiate the electrical closure of the remaining free VDACs. The extrusion of calcium ions from the mitochondrial intermembrane space by the generated OMP, positive inside, might increase cancer cell resistance to death. Within the VGC model, the known effect of induction of ATP release from mitochondria by accumulated glucose-6-phosphate in pancreatic beta cells might result not only of the known effect of GK dissociation from the VDAC-GK complex, but also of a decrease in the free energy of glucokinase reaction, leading to the OMP decrease and VDAC opening. We suggest that the VDAC-mediated electrical control of the mitochondrial outer membrane permeability, dependent on metabolic conditions, is a fundamental physiological mechanism of global regulation of mitochondrial functions and of cell death. PMID:24412217

  9. Neuronal generators of the visual evoked potentials: intracerebral recording in awake humans.

    PubMed

    Ducati, A; Fava, E; Motti, E D

    1988-01-01

    Flash and pattern reversal visual evoked potentials were recorded in awake patients undergoing stereotactic procedures for severe dyskinetic disorders resistant to medical treatment. The nucleus ventralis lateralis thalami was reached via an occipital approach. VEPs were recorded on the scalp at the entrance of the intracerebral electrode, and serially from sites at different depths. A polarity reversal of the surface recorded wave form took place as the intracerebral electrode was advanced beneath the surface cortical layers. As concerns F-VEPs, most of the scalp activity mirrored the potentials recorded down to the depth of 70-65 mm from the thalamus. The largest amplitude of intracerebral F-VEPs was obtained from recording sites at 50-70 mm from the thalamus, i.e., in the depth of the calcarine fissure. A negative wave, peaking around 47-50 msec, became evident in recording sites at 30-40 mm from the thalamus but vanished as the electrode was advanced farther. In only one patient could we record a small negative wave, peaking at 33 msec, in the vicinity of the corpus geniculatum externum. Furthermore, the oscillatory activity recorded from the scalp appeared to be generated in the cortical layers. PR-VEPs also underwent polarity reversal as the electrode traversed the cortex. PR-VEPs disappeared more superficially than F-VEPs. No PR-evoked activity could be recorded in the vicinity of the corpus geniculatum externum. We conclude that slow and fast components of VEPs recorded from the scalp are entirely generated in cortical layers.

  10. NASA's Vision for Potential Energy Reduction from Future Generations of Propulsion Technology

    NASA Technical Reports Server (NTRS)

    Haller, Bill

    2015-01-01

    Through a robust partnership with the aviation industry, over the past 50 years NASA programs have helped foster advances in propulsion technology that enabled substantial reductions in fuel consumption for commercial transports. Emerging global trends and continuing environmental concerns are creating challenges that will very likely transform the face of aviation over the next 20-40 years. In recognition of this development, NASA Aeronautics has established a set of Research Thrusts that will help define the future direction of the agency's research technology efforts. Two of these thrusts, Ultra-Efficient Commercial Vehicles and Transition to Low-Carbon Propulsion, serve as cornerstones for the Advanced Air Transport Technology (AATT) project. The AATT project is exploring and developing high-payoff technologies and concepts that are key to continued improvement in energy efficiency and environmental compatibility for future generations of fixed-wing, subsonic transports. The AATT project is primarily focused on the N+3 timeframe, or 3 generations from current technology levels. As should be expected, many of the propulsion system architectures technologies envisioned for N+3 vary significantly from todays engines. The use of batteries in a hybrid-electric configuration or deploying multiple fans distributed across the airframe to enable higher bypass ratios are just two examples of potential advances that could enable substantial energy reductions over current propulsion systems.

  11. Organic carbon composition of marine sediments: effect of oxygen exposure on oil generation potential.

    PubMed

    Gélinas, Y; Baldock, J A; Hedges, J I

    2001-10-01

    Anaerobic sedimentary conditions have traditionally been linked to the generation of the source rocks for petroleum formation. However, the influence of sedimentary redox conditions on the composition of freshly deposited organic matter (OM) is not clear. We assessed the effect of in situ exposure time to oxic conditions on the composition of OM accumulating in different coastal and deep-sea sediments using solid-state 13C nuclear magnetic resonance (NMR). 13C NMR spectra were resolved into mixtures of model components to distinguish between alkyl carbon present in protein and nonprotein structures. There is an inverse relation between the length of exposure to oxic conditions and the relative abundance of nonprotein alkyl (alkylNP) carbon, whose concentration is two orders of magnitude higher in coastal sediments with short exposure times than in deep-sea sediments with long exposure times. All alkylNP-rich samples contain a physically separate polymethylene component similar in composition to algaenans and kerogens in type I oil shales. The duration of exposure to oxic conditions appears to directly influence the quality and oil generation potential of OM in marine shales.

  12. Generation of an adenovirus-parvovirus chimera with enhanced oncolytic potential.

    PubMed

    El-Andaloussi, Nazim; Bonifati, Serena; Kaufmann, Johanna K; Mailly, Laurent; Daeffler, Laurent; Deryckère, François; Nettelbeck, Dirk M; Rommelaere, Jean; Marchini, Antonio

    2012-10-01

    In this study, our goal was to generate a chimeric adenovirus-parvovirus (Ad-PV) vector that combines the high-titer and efficient gene transfer of adenovirus with the anticancer potential of rodent parvovirus. To this end, the entire oncolytic PV genome was inserted into a replication-defective E1- and E3-deleted Ad5 vector genome. As we found that parvoviral NS expression inhibited Ad-PV chimera production, we engineered the parvoviral P4 early promoter, which governs NS expression, by inserting into its sequence tetracycline operator elements. As a result of these modifications, P4-driven expression was blocked in the packaging T-REx-293 cells, which constitutively express the tetracycline repressor, allowing high-yield chimera production. The chimera effectively delivered the PV genome into cancer cells, from which fully infectious replication-competent parvovirus particles were generated. Remarkably, the Ad-PV chimera exerted stronger cytotoxic activities against various cancer cell lines, compared with the PV and Ad parental viruses, while being still innocuous to a panel of tested healthy primary human cells. This Ad-PV chimera represents a novel versatile anticancer agent which can be subjected to further genetic manipulations in order to reinforce its enhanced oncolytic capacity through arming with transgenes or retargeting into tumor cells.

  13. Arbutin and decrease of potentially toxic substances generated in human blood neutrophils.

    PubMed

    Pečivová, Jana; Nosál', Radomír; Sviteková, Klára; Mačičková, Tatiana

    2014-12-01

    Neutrophils, highly motile phagocytic cells, constitute the first line of host defense and simultaneously they are considered to be central cells of chronic inflammation. In combination with standard therapeutic procedures, natural substances are gaining interest as an option for enhancing the effectiveness of treatment of inflammatory diseases. We investigated the effect of arbutin and carvedilol and of their combination on 4β-phorbol-12β-myristate-13α-acetate- stimulated functions of human isolated neutrophils. Cells were preincubated with the drugs tested and subsequently stimulated. Superoxide (with or without blood platelets, in the rate close to physiological conditions [1:50]) and HOCl generation, elastase and myeloperoxidase release were determined spectrophotometrically and phospholipase D activation spectrofluorometrically. The combined effect of arbutin and carvedilol was found to be more effective than the effect of each compound alone. Our study provided evidence supporting the potential beneficial effect of arbutin alone or in combination with carvedilol in diminishing tissue damage by decreasing phospholipase D, myeloperoxidase and elastase activity and by attenuating the generation of superoxide and the subsequently derived reactive oxygen species. The presented data indicate the ability of arbutin to suppress the onset and progression of inflammation.

  14. Arbutin and decrease of potentially toxic substances generated in human blood neutrophils

    PubMed Central

    Pečivová, Jana; Nosál', Radomír; Sviteková, Klára

    2014-01-01

    Neutrophils, highly motile phagocytic cells, constitute the first line of host defense and simultaneously they are considered to be central cells of chronic inflammation. In combination with standard therapeutic procedures, natural substances are gaining interest as an option for enhancing the effectiveness of treatment of inflammatory diseases. We investigated the effect of arbutin and carvedilol and of their combination on 4β-phorbol-12β-myristate-13α-acetate- stimulated functions of human isolated neutrophils. Cells were preincubated with the drugs tested and subsequently stimulated. Superoxide (with or without blood platelets, in the rate close to physiological conditions [1:50]) and HOCl generation, elastase and myeloperoxidase release were determined spectrophotometrically and phospholipase D activation spectrofluorometrically. The combined effect of arbutin and carvedilol was found to be more effective than the effect of each compound alone. Our study provided evidence supporting the potential beneficial effect of arbutin alone or in combination with carvedilol in diminishing tissue damage by decreasing phospholipase D, myeloperoxidase and elastase activity and by attenuating the generation of superoxide and the subsequently derived reactive oxygen species. The presented data indicate the ability of arbutin to suppress the onset and progression of inflammation. PMID:26109900

  15. Cardiac Regenerative Medicine: The Potential of a New Generation of Stem Cells

    PubMed Central

    Cambria, Elena; Steiger, Julia; Günter, Julia; Bopp, Annina; Wolint, Petra; Hoerstrup, Simon P.; Emmert, Maximilian Y.

    2016-01-01

    Cardiac stem cell therapy holds great potential to prompt myocardial regeneration in patients with ischemic heart disease. The selection of the most suitable cell type is pivotal for its successful application. Various cell types, including crude bone marrow mononuclear cells, skeletal myoblast, and hematopoietic and endothelial progenitors, have already advanced into the clinical arena based on promising results from different experimental and preclinical studies. However, most of these so-called first-generation cell types have failed to fully emulate the promising preclinical data in clinical trials, resulting in heterogeneous outcomes and a critical lack of translation. Therefore, different next-generation cell types are currently under investigation for the treatment of the diseased myocardium. This review article provides an overview of current stem cell therapy concepts, including the application of cardiac stem (CSCs) and progenitor cells (CPCs) and lineage commitment via guided cardiopoiesis from multipotent cells such as mesenchymal stem cells (MSCs) or pluripotent cells such as embryonic and induced pluripotent stem cells. Furthermore, it introduces new strategies combining complementary cell types, such as MSCs and CSCs/CPCs, which can yield synergistic effects to boost cardiac regeneration. PMID:27721703

  16. Potential health effects of standing waves generated by low frequency noise.

    PubMed

    Ziaran, Stanislav

    2013-01-01

    The main aim is to present the available updated knowledge regarding the potential health effects of standing waves generated by low frequency noise (LFN) from an open window in a moving car where the negative effects of LFN induced by heating components and/or heating, ventilation and air-conditioning are assessed. Furthermore, the assessment of noise in chosen enclosed spaces, such as rooms, offices, and classrooms, or other LFN sources and their effect on the human being were investigated. These types of noise are responsible for disturbance during relaxation, sleep, mental work, education, and concentration, which may reflect negatively on the comfort and health of the population and on the mental state of people such as scientific staff and students. The assessment points out the most exposed areas, and analyzes the conditions of standing wave generation in these rooms caused by outdoor and/or indoor sources. Measurements were made for three different enclosed spaces (office, flat, and passenger car) and sources (traffic specific noise at intersections, noise induced by pipe vibration, and aerodynamic noise) and their operating conditions. For the detection of LFN, the A-weighted sound pressure level and vibration were measured and a fast Fourier transform analysis was used. The LFN sources are specified and the direct effects on the human are reported. Finally, this paper suggests the possibilities for the assessment of LFN and some possible measures that can be taken to prevent or reduce them.

  17. Neural generators of the auditory evoked potential components P3a and P3b.

    PubMed

    Wronka, Eligiusz; Kaiser, Jan; Coenen, Anton M L

    2012-01-01

    The aim of the present study was to define the scalp topography of the two subcomponents of the P3 component of the auditory evoked potential elicited in a three-stimulus oddball paradigm and to identify their cortical generators using the standardized low resolution electromagnetic tomography (sLORETA). Subjects were presented with a random sequence of auditory stimuli and instructed to respond to an infrequently occurring target stimulus inserted into a sequence of frequent standard and rare non-target stimuli. Results show that the magnitude of the frontal P3a is determined by the relative physical difference among stimuli, as it was larger for the stimulus more deviant from the standard. Major neural generators of the P3a were localized within frontal cortex and anterior cingulate gyrus. In contrast to this, the P3b, showing maximal amplitude at parietal locations, was larger for stimuli demanding a response than for the rare non-target. Major sources of the P3b included the superior parietal lobule and the posterior part of the cingulate gyrus. Our findings are in line with the hypothesis that P3a is related to alerting activity during the initial allocation of attention, while P3b is related to activation of a posterior network when the neuronal model of perceived stimulation is compared with the attentional trace. PMID:22508084

  18. Investigation on the potential generation of ultrafine particles from the tire-road interface

    NASA Astrophysics Data System (ADS)

    Mathissen, Marcel; Scheer, Volker; Vogt, Rainer; Benter, Thorsten

    2011-11-01

    There has been some discussion in the literature on the generation of ultrafine particles from tire abrasion of studded and non-studded tires tested in the laboratory environment. In the present study, the potential generation of ultrafine particles from the tire road interface was investigated during real driving. An instrumented Sport Utility Vehicle equipped with summer tires was used to measure particle concentrations with high temporal resolution inside the wheel housing while driving on a regular asphalt road. Different driving conditions, i.e., straight driving, acceleration, braking, and cornering were applied. For normal driving conditions no enhanced particle number concentration in the size range 6-562 nm was found. Unusual maneuvers associated with significant tire slip resulted in measurable particle concentrations. The maximum of the size distribution was between 30 and 60 nm. An exponential increase of the particle concentration with velocity was measured directly at the disc brakes for full stop brakings. A tracer gas experiment was carried out to estimate the upper limit of the emission factor during normal straight driving.

  19. Evaluation of the cyclopentane-1,2-dione as a potential bio-isostere of the carboxylic acid functional group

    PubMed Central

    Gay, Bryant; Huang, Longchuan; Robinson, Katie Herbst; James, Michael; Trojanowski, John Q.; Lee, Virginia M.Y.; Brunden, Kurt R.

    2014-01-01

    Cycloalkylpolyones hold promise in drug design as carboxylic acid bio-isosteres. To investigate cyclopentane-1,2-diones as potential surrogates of the carboxylic acid functional group, the acidity, tautomerism, and geometry of hydrogen bonding of representative compounds were evaluated. Prototypic derivatives of the known thromboxane A2 prostanoid (TP) receptor antagonist, 3-(3-(2-((4-chlorophenyl)sulfonamido)-ethyl)phenyl)propanoic acid, in which the carboxylic acid moiety is replaced by the cyclopentane-1,2-dione unit, were synthesized and evaluated as TP receptor antagonists. Cyclopentane-1,2-dione derivative 9 was found to be a potent TP receptor antagonist with an IC50 value comparable to that of the parent carboxylic acid. These results indicate that the cyclopentane-1,2-dione may be a potentially useful carboxylic acid bio-isostere. PMID:25127105

  20. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases.

    PubMed

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai

    2016-01-01

    Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed.

  1. Potential Use of Phenolic Acids as Anti-Candida Agents: A Review

    PubMed Central

    Teodoro, Guilherme R.; Ellepola, Kassapa; Seneviratne, Chaminda J.; Koga-Ito, Cristiane Y.

    2015-01-01

    There has been a sharp rise in the occurrence of Candida infections and associated mortality over the last few years, due to the growing body of immunocompromised population. Limited number of currently available antifungal agents, undesirable side effects and toxicity, as well as emergence of resistant strains pose a considerable clinical challenge for the treatment of candidiasis. Therefore, molecules that derived from natural sources exhibiting considerable antifungal properties are a promising source for the development of novel anti-candidal therapy. Phenolic compounds isolated from natural sources possess antifungal properties of interest. Particularly, phenolic acids have shown promising in vitro and in vivo activity against Candida species. However, studies on their mechanism of action alone or in synergism with known antifungals are still scarce. This review attempts to discuss the potential use, proposed mechanisms of action and limitations of the phenolic acids in anti-candidal therapy. PMID:26733965

  2. Effect of oxidoreduction potential on aroma biosynthesis by lactic acid bacteria in nonfat yogurt.

    PubMed

    Martin, F; Cachon, R; Pernin, K; De Coninck, J; Gervais, P; Guichard, E; Cayot, N

    2011-02-01

    The aim of this study was to investigate the effect of oxidoreduction potential (Eh) on the biosynthesis of aroma compounds by lactic acid bacteria in non-fat yogurt. The study was done with yogurts fermented by Lactobacillus bulgaricus and Streptococcus thermophilus. The Eh was modified by the application of different gaseous conditions (air, nitrogen, and nitrogen/hydrogen). Acetaldehyde, dimethyl sulfide, diacetyl, and pentane-2,3-dione, as the major endogenous odorant compounds of yogurt, were chosen as tracers for the biosynthesis of aroma compounds by lactic acid bacteria. Oxidative conditions favored the production of acetaldehyde, dimethyl sulfide, and diketones (diacetyl and pentane-2,3-dione). The Eh of the medium influences aroma production in yogurt by modifying the metabolic pathways of Lb. bulgaricus and Strep. thermophilus. The use of Eh as a control parameter during yogurt production could permit the control of aroma formation.

  3. Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa.

    PubMed

    Gökalsın, Barış; Sesal, Nüzhet Cenk

    2016-09-01

    Cystic Fibrosis is a genetic disease and it affects the respiratory and digestive systems. Pseudomonas aeruginosa infections in Cystic Fibrosis are presented as the main cause for high mortality and morbidity rates. Pseudomonas aeruginosa populations can regulate their virulence gene expressions via the bacterial communication system: quorum sensing. Inhibition of quorum sensing by employing quorum sensing inhibitors can leave the bacteria vulnerable. Therefore, determining natural sources to obtain potential quorum sensing inhibitors is essential. Lichens have ethnobotanical value for their medicinal properties and it is possible that their secondary metabolites have quorum sensing inhibitor properties. This study aims to investigate an alternative treatment approach by utilizing lichen secondary metabolite evernic acid to reduce the expressions of Pseudomonas aeruginosa virulence factors by inhibiting quorum sensing. For this purpose, fluorescent monitor strains were utilized for quorum sensing inhibitor screens and quantitative reverse-transcriptase PCR analyses were conducted for comparison. Results indicate that evernic acid is capable of inhibiting Pseudomonas aeruginosa quorum sensing systems.

  4. The microbial communities and potential greenhouse gas production in boreal acid sulphate, non-acid sulphate, and reedy sulphidic soils.

    PubMed

    Šimek, Miloslav; Virtanen, Seija; Simojoki, Asko; Chroňáková, Alica; Elhottová, Dana; Krištůfek, Václav; Yli-Halla, Markku

    2014-01-01

    Acid sulphate (AS) soils along the Baltic coasts contain significant amounts of organic carbon and nitrogen in their subsoils. The abundance, composition, and activity of microbial communities throughout the AS soil profile were analysed. The data from a drained AS soil were compared with those from a drained non-AS soil and a pristine wetland soil from the same region. Moreover, the potential production of methane, carbon dioxide, and nitrous oxide from the soils was determined under laboratory conditions. Direct microscopic counting, glucose-induced respiration (GIR), whole cell hybridisation, and extended phospholipid fatty acid (PLFA) analysis confirmed the presence of abundant microbial communities in the topsoil and also in the deepest Cg2 horizon of the AS soil. The patterns of microbial counts, biomass and activity in the profile of the AS soil and partly also in the non-AS soil therefore differed from the general tendency of gradual decreases in soil profiles. High respiration in the deepest Cg2 horizon of the AS soil (5.66 μg Cg(-1)h(-1), as compared to 2.71 μg Cg(-1)h(-1) in a top Ap horizon) is unusual but reasonable given the large amount of organic carbon in this horizon. Nitrous oxide production peaked in the BCgc horizon of the AS and in the BC horizon of the non-AS soil, but the peak value was ten-fold higher in the AS soil than in the non-AS soil (82.3 vs. 8.6 ng Ng(-1)d(-1)). The data suggest that boreal AS soils on the Baltic coast contain high microbial abundance and activity. This, together with the abundant carbon and total and mineral nitrogen in the deep layers of AS soils, may result in substantial gas production. Consequently, high GHG emissions could occur, for example, when the generally high water table is lowered because of arable farming.

  5. A descriptive model of the receptor potential nonlinearities generated by the hair cell mechanoelectrical transducer.

    PubMed

    Lukashkin, A N; Russell, I J

    1998-02-01

    This paper describes a model for generating the hair cell receptor potential based on a second-order Boltzmann function. The model includes only the resistive elements of the hair cell membranes with batteries across them and the series resistance of the external return path of the transducer current through the tissue of the cochlea. The model provides a qualitative description of signal processing by the hair cell transducer and shows that the nonlinearity of the hair cell transducer can give rise to nonlinear phenomena, such as intermodulation distortion products and two-tone suppression with patterns similar to those which have been recorded from the peripheral auditory system. Particular outcomes of the model are the demonstration that two-tone suppression depends not on the saturation of the receptor current, but on the behaviour of the hair cell transducer function close to the operating point. The model also shows that there is non-monotonic growth and phase change for any spectral component, but not for the fundamental of the receptor potential. PMID:9479750

  6. Sugar amino acid based scaffolds--novel peptidomimetics and their potential in combinatorial synthesis.

    PubMed

    Chakraborty, Tushar K; Jayaprakash, Sarva; Ghosh, Subhash

    2002-08-01

    To meet the growing demands for the development of new molecular entities for discovering new drugs and materials, organic chemists have started looking for new concepts to supplement traditional approaches. In one such approach, the expertise gained over the years in the area of organic synthesis and the rational drug-design concepts are combined together to create "nature-like" and yet unnatural organic molecules that are expected to provide leads in discovering new molecules. Emulating the basic principles followed by nature to build its vast repertoire of biomolecules, organic chemists are developing many novel multifunctional building blocks. Sugar amino acids constitute an important class of such polyfunctional scaffolds where the carboxyl, amino and hydroxyl groups provide an excellent opportunity for organic chemists to create structural diversities akin to nature's molecular arsenal. Recent advances in the area of combinatorial chemistry give unprecedented technological support for rapid compilations of sugar amino acid-based libraries exploiting the diversities of carbohydrate molecules and well-developed solid-phase peptide synthesis methods. This review chronicles the development of sugar amino acids as a novel class of peptidomimetic building blocks and their applications in generating desired secondary structures in peptides as well as in creating mimics of natural biopolymers. PMID:12180903

  7. Retinoic acid and retinoid receptors: potential chemopreventive and therapeutic role in cervical cancer.

    PubMed

    Abu, Jafaru; Batuwangala, Madu; Herbert, Karl; Symonds, Paul

    2005-09-01

    Retinoids are natural and synthetic derivatives of vitamin A, which can be obtained from animal products (milk, liver, beef, fish oils, and eggs) and vegetables (carrots, mangos, sweet potatoes, and spinach). Retinoids regulate various important cellular functions in the body through specific nuclear retinoic-acid receptors and retinoid-X receptors, which are encoded by separate genes. Retinoic-acid receptors specifically bind tretinoin and alitretinoin, whereas retinoid-X receptors bind only alitretinoin. Retinoids have long been established as crucial for several essential life processes-healthy growth, vision, maintenance of tissues, reproduction, metabolism, tissue differentiation (normal, premalignant cells, and malignant cells), haemopoiesis, bone development, spermatogenesis, embryogenesis, and overall survival. Therefore, deficiency of vitamin A can lead to various unwanted biological effects. Several experimental and epidemiological studies have shown the antiproliferative activity of retinoids and their potential use in cancer treatment and chemoprevention. Emerging clinical trials have shown the chemotherapeutic and chemopreventive potential of retinoids in cancerous and precancerous conditions of the uterine cervix. In this review, we explore the potential chemopreventive and therapeutic roles of retinoids in preinvasive and invasive cervical neoplasia.

  8. Numerical simulation of the potential tsunami generated by the BIG'95 debris flow, Northwestern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Iglesias, Olaia; Lastras, Galderic; Canals, Miquel; Olabarrieta, Maitane; González, Mauricio

    2010-05-01

    Based on the characteristics (slope gradient, volume of deposit and estimated downslope velocity) of the BIG'95 debris flow in the Ebro continental margin, and comparing them with those from other tsunamigenic submarine landslides around the world, it appears that this event, occurred ca. 11,500 cal yr BP, could have triggered a tsunami. A published conceptual and numerical model of the BIG'95 debris flow, and the application of the COrnell Multigrid COupled Tsunami model (COMCOT), indicate the tsunamigenic potential of this mass movement. The tsunami numerical simulation has been carried out considering a present day scenario, i.e. with current sea level. Required as an input to the model, we have reconstructed the seafloor variation during landsliding, as well as the bathymetry previous to the landslide occurrence, in agreement with the conceptual and numerical model of Lastras et al. (2005), taking also into account all available multibeam bathymetry and high-resolution seismic profiles. COMCOT is a modelling package capable of simulating the entire lifespan of a tsunami, from its generation to propagation and run-up/run-down in coastal regions. The result of running the model for the BIG'95 debris flow scenario depict a sensible tsunami that would have hit the surrounding shores. The dipole wave generated consists of a trough over the source area of the slide and a crest over the depositional area. Maximum amplitudes follow the main sliding direction. The trough corresponds to the back-going wave, directed towards the Iberian Peninsula, while the crest is the out-going wave, directed towards the Balearic Promontory. The nearest shores are not the first ones to be hit by the tsunami, as the arrival time to coastlines (15 min to Eivissa Island, 20 min to Mallorca Island, and 45 min to the Iberian Peninsula shores) reflects the asymmetric bathymetry of the Catalano-Balearic Sea. The tsunami thus generated experiences a significant shoaling effect caused by the

  9. In vitro assessment of potential intestinal absorption of some phenolic families and carboxylic acids from commercial instant coffee samples.

    PubMed

    López-Froilán, R; Ramírez-Moreno, E; Podio, N S; Pérez-Rodríguez, M L; Cámara, M; Baroni, M V; Wunderlin, D A; Sánchez-Mata, M C

    2016-06-15

    Coffee is one of the most consumed beverages in the world, being a source of bioactive compounds as well as flavors. Hydroxycinnamic acids, flavonols, and carboxylic acids have been studied in the samples of instant coffee commercialized in Spain. The studies about contents of food components should be complemented with either in vitro or in vivo bioaccessibility studies to know the amount of food components effectively available for functions in the human body. In this sense, a widely used in vitro model has been applied to assess the potential intestinal absorption of phenolic compounds and organic acids. The contents of hydroxycinnamic acids and flavonols were higher in instant regular coffee samples than in the decaffeinated ones. Bioaccessible phenolic compounds in most analyzed samples account for 20-25% of hydroxycinnamic acids and 17-26% of flavonols. This could mean that a great part of them can remain in the gut, acting as potential in situ antioxidants. Quinic, acetic, pyroglutamic, citric and fumaric acids were identified in commercial instant coffee samples. Succinic acid was found in the coffee blend containing chicory. All carboxylic acids showed a very high bioaccessibility. Particularly, acetic acid and quinic acid were found in higher contents in the samples treated with the in vitro simulation of gastrointestinal processes, compared to the original ones, which can be explained by their cleavage from chlorogenic acid during digestion. This is considered as a positive effect, since quinic acid is considered as an antioxidant inducer.

  10. In vitro assessment of potential intestinal absorption of some phenolic families and carboxylic acids from commercial instant coffee samples.

    PubMed

    López-Froilán, R; Ramírez-Moreno, E; Podio, N S; Pérez-Rodríguez, M L; Cámara, M; Baroni, M V; Wunderlin, D A; Sánchez-Mata, M C

    2016-06-15

    Coffee is one of the most consumed beverages in the world, being a source of bioactive compounds as well as flavors. Hydroxycinnamic acids, flavonols, and carboxylic acids have been studied in the samples of instant coffee commercialized in Spain. The studies about contents of food components should be complemented with either in vitro or in vivo bioaccessibility studies to know the amount of food components effectively available for functions in the human body. In this sense, a widely used in vitro model has been applied to assess the potential intestinal absorption of phenolic compounds and organic acids. The contents of hydroxycinnamic acids and flavonols were higher in instant regular coffee samples than in the decaffeinated ones. Bioaccessible phenolic compounds in most analyzed samples account for 20-25% of hydroxycinnamic acids and 17-26% of flavonols. This could mean that a great part of them can remain in the gut, acting as potential in situ antioxidants. Quinic, acetic, pyroglutamic, citric and fumaric acids were identified in commercial instant coffee samples. Succinic acid was found in the coffee blend containing chicory. All carboxylic acids showed a very high bioaccessibility. Particularly, acetic acid and quinic acid were found in higher contents in the samples treated with the in vitro simulation of gastrointestinal processes, compared to the original ones, which can be explained by their cleavage from chlorogenic acid during digestion. This is considered as a positive effect, since quinic acid is considered as an antioxidant inducer. PMID:27191052

  11. A potential plant-derived antifungal acetylenic acid mediates its activity by interfering with fatty acid homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    6-Nonadecynoic acid (6-NDA), a plant-derived acetylenic acid, exhibits strong inhibitory activity against the human fungal pathogens Candida albicans, Aspergillus fumigatus, and Trichophyton mentagrophytes. In the present study, transcriptional profiling coupled with mutant and biochemical analyses...

  12. Profiling of potential driver mutations in sarcomas by targeted next generation sequencing.

    PubMed

    Andersson, Carola; Fagman, Henrik; Hansson, Magnus; Enlund, Fredrik

    2016-04-01

    Comprehensive genetic profiling by massively parallel sequencing, commonly known as next generation sequencing (NGS), is becoming the foundation of personalized oncology. For sarcomas very few targeted treatments are currently in routine use. In clinical practice the preoperative diagnostic workup of soft tissue tumours largely relies on core needle biopsies. Although mostly sufficient for histopathological diagnosis, only very limited amounts of formalin fixated paraffin embedded tissue are often available for predictive mutation analysis. Targeted NGS may thus open up new possibilities for comprehensive characterization of scarce biopsies. We therefore set out to search for driver mutations by NGS in a cohort of 55 clinically and morphologically well characterized sarcomas using low input of DNA from formalin fixated paraffin embedded tissues. The aim was to investigate if there are any recurrent or targetable aberrations in cancer driver genes in addition to known chromosome translocations in different types of sarcomas. We employed a panel covering 207 mutation hotspots in 50 cancer-associated genes to analyse DNA from nine gastrointestinal stromal tumours, 14 synovial sarcomas, seven myxoid liposarcomas, 22 Ewing sarcomas and three Ewing-like small round cell tumours at a large sequencing depth to detect also mutations that are subclonal or occur at low allele frequencies. We found nine mutations in eight different potential driver genes, some of which are potentially actionable by currently existing targeted therapies. Even though no recurrent mutations in driver genes were found in the different sarcoma groups, we show that targeted NGS-based sequencing is clearly feasible in a diagnostic setting with very limited amounts of paraffin embedded tissue and may provide novel insights into mesenchymal cell signalling and potentially druggable targets. Interestingly, we also identify five non-synonymous sequence variants in 4 established cancer driver genes in DNA

  13. Potential health implications for acid precipitation, corrosion, and metals contamination of drinking water.

    PubMed

    Sharpe, W E; DeWalle, D R

    1985-11-01

    Potential health effects of drinking water quality changes caused by acid precipitation are presented. Several different types of water supply are discussed and their roles in modifying acid rain impacts on drinking water are explained. Sources of metals contamination in surface water supplies are enumerated. The authors present some results from their research into acid rain impacts on roof-catchment cisterns, small surface water supplies, and lead mobilization in acid soils. A good correlation was obtained between cistern water corrosivity as measured by the Ryznar Index (RI) values and standing tapwater copper concentrations. However, lead concentrations in tapwater did not correlate well with cistern water RI. A modified linear regression model that accounted for Ryznar Index change during storage in vinyl-lined cisterns was used to predict the Ryznar Index value at a copper concentration of 1000 micrograms/L. The predicted RI was greater than the RI of precipitation with a pH of 5.3, indicating that anthropogenically acidified precipitation may result in cistern tapwater copper concentrations in excess of the 1000 micrograms/L suggested drinking water limit. Good correlations between tapwater Ryznar Index and tapwater copper and lead concentrations were not obtained for the small surface water supply. Aluminum concentrations in reservoir water were similar to those in stream source water. Limited data were also presented that indicated lead was present in acid forest soil leachate and streams draining such soils in relatively small concentrations. Where appropriate, recommendations for future research are included with the discussions of research results.

  14. Potential health implications for acid precipitation, corrosion, and metals contamination of drinking water.

    PubMed

    Sharpe, W E; DeWalle, D R

    1985-11-01

    Potential health effects of drinking water quality changes caused by acid precipitation are presented. Several different types of water supply are discussed and their roles in modifying acid rain impacts on drinking water are explained. Sources of metals contamination in surface water supplies are enumerated. The authors present some results from their research into acid rain impacts on roof-catchment cisterns, small surface water supplies, and lead mobilization in acid soils. A good correlation was obtained between cistern water corrosivity as measured by the Ryznar Index (RI) values and standing tapwater copper concentrations. However, lead concentrations in tapwater did not correlate well with cistern water RI. A modified linear regression model that accounted for Ryznar Index change during storage in vinyl-lined cisterns was used to predict the Ryznar Index value at a copper concentration of 1000 micrograms/L. The predicted RI was greater than the RI of precipitation with a pH of 5.3, indicating that anthropogenically acidified precipitation may result in cistern tapwater copper concentrations in excess of the 1000 micrograms/L suggested drinking water limit. Good correlations between tapwater Ryznar Index and tapwater copper and lead concentrations were not obtained for the small surface water supply. Aluminum concentrations in reservoir water were similar to those in stream source water. Limited data were also presented that indicated lead was present in acid forest soil leachate and streams draining such soils in relatively small concentrations. Where appropriate, recommendations for future research are included with the discussions of research results. PMID:4076096

  15. New Theoretical Insight into the Interactions and Properties of Formic Acid: Development of a Quantum-Based Pair Potential for Formic Acid.

    SciTech Connect

    Roszak, S; Gee, R; Balasubramanian, K; Fried, L

    2005-08-08

    We performed ab initio quantum chemical studies for the development of intra and intermolecular interaction potentials for formic acid for use in molecular dynamics simulations of formic acid molecular crystal. The formic acid structures considered in the ab initio studies include both the cis and trans monomers which are the conformers that have been postulated as part of chains constituting liquid and crystal phases under extreme conditions. Although the cis to trans transformation is not energetically favored, the trans isomer was found as a component of stable gas-phase species. Our decomposition scheme for the interaction energy indicates that the hydrogen bonded complexes are dominated by the Hartree-Fock forces while parallel clusters are stabilized by the electron correlation energy. The calculated three-body and higher interactions are found to be negligible, thus rationalizing the development of an atom-atom pair potential for formic acid based on high-level ab initio calculations of small formic acid clusters. Here we present an atom-atom pair potential that includes both intra- and inter-molecular degrees of freedom for formic acid. The newly developed pair potential is used to examine formic acid in the condensed phase via molecular dynamics simulations. The isothermal compression under hydrostatic pressure obtained from molecular dynamics simulations is in good agreement with experiment. Further, the calculated equilibrium melting temperature is found to be in good agreement with experiment.

  16. New theoretical insight into the interactions and properties of formic acid: development of a quantum-based pair potential for formic acid.

    PubMed

    Roszak, Szczepan; Gee, Richard H; Balasubramanian, Krishnan; Fried, Laurence E

    2005-10-01

    We performed ab initio quantum-chemical studies for the development of intra- and intermolecular interaction potentials for formic acid for use in molecular-dynamics simulations of formic acid molecular crystal. The formic acid structures considered in the ab initio studies include both the cis and trans monomers which are the conformers that have been postulated as part of chains constituting liquid and crystal phases under extreme conditions. Although the cis to trans transformation is not energetically favored, the trans isomer was found as a component of stable gas-phase species. Our decomposition scheme for the interaction energy indicates that the hydrogen-bonded complexes are dominated by the Hartree-Fock forces while parallel clusters are stabilized by the electron correlation energy. The calculated three-body and higher interactions are found to be negligible, thus rationalizing the development of an atom-atom pair potential for formic acid based on high-level ab initio calculations of small formic acid clusters. Here we present an atom-atom pair potential that includes both intra- and inter molecular degrees of freedom for formic acid. The newly developed pair potential is used to examine formic acid in the condensed phase via molecular-dynamics simulations. The isothermal compression under hydrostatic pressure obtained from molecular-dynamics simulations is in good agreement with experiment. Further, the calculated equilibrium melting temperature is found to be in good agreement with experiment. PMID:16238411

  17. Lipoic acid as a potential first agent for protection from mycotoxins and treatment of mycotoxicosis.

    PubMed

    Rogers, Sherry A

    2003-08-01

    Mycotoxins--toxic substances produced by fungi or molds--are ubiquitous in the environment and are capable of damaging multiple biochemical mechanisms, resulting in a variety of human symptoms referred to collectively as "mycotoxicosis." In fact, mycotoxins mimic multiple xenobiotics, not only with respect to their ultimate damage, but also in their routes of detoxification. This suggests potential therapeutic options for the challenging treatment of mycotoxicosis. In this brief review, the author examines the use of lipoic acid as an example of an inexpensive and available nutrient that has been shown to protect against, or reverse, the adverse health effects of mycotoxins. PMID:15259433

  18. Oil sands thickened froth treatment tailings exhibit acid rock drainage potential during evaporative drying.

    PubMed

    Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq

    2015-02-01

    Bitumen extraction from oil sands ores after surface mining produces different tailings waste streams: 'froth treatment tailings' are enriched in pyrite relative to other streams. Tailings treatment can include addition of organic polymers to produce thickened tailings (TT). TT may be further de-watered by deposition into geotechnical cells for evaporative drying to increase shear strength prior to reclamation. To examine the acid rock drainage (ARD) potential of TT, we performed predictive analyses and laboratory experiments on material from field trials of two types of thickened froth treatment tailings (TT1 and TT2). Acid-base accounting (ABA) of initial samples showed that both TT1 and TT2 initially had net acid-producing potential, with ABA values of -141 and -230 t CaCO₃ equiv. 1000 t(-1) of TT, respectively. In long-term kinetic experiments, duplicate ~2-kg samples of TT were incubated in shallow trays and intermittently irrigated under air flow for 459 days to simulate evaporative field drying. Leachates collected from both TT samples initially had pH~6.8 that began decreasing after ~50 days (TT2) or ~250 days (TT1), stabilizing at pH~2. Correspondingly, the redox potential of leachates increased from 100-200 mV to 500-580 mV and electrical conductivity increased from 2-5 dS m(-1) to 26 dS m(-1), indicating dissolution of minerals during ARD. The rapid onset and prolonged ARD observed with TT2 is attributed to its greater pyrite (13.4%) and lower carbonate (1.4%) contents versus the slower onset of ARD in TT1 (initially 6.0% pyrite and 2.5% carbonates). 16S rRNA gene pyrosequencing analysis revealed rapid shift in microbial community when conditions became strongly acidic (pH~2) favoring the enrichment of Acidithiobacillus and Sulfobacillus bacteria in TT. This is the first report showing ARD potential of TT and the results have significant implications for effective management of pyrite-enriched oil sands tailings streams/deposits. PMID:25306090

  19. Oil sands thickened froth treatment tailings exhibit acid rock drainage potential during evaporative drying.

    PubMed

    Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq

    2015-02-01

    Bitumen extraction from oil sands ores after surface mining produces different tailings waste streams: 'froth treatment tailings' are enriched in pyrite relative to other streams. Tailings treatment can include addition of organic polymers to produce thickened tailings (TT). TT may be further de-watered by deposition into geotechnical cells for evaporative drying to increase shear strength prior to reclamation. To examine the acid rock drainage (ARD) potential of TT, we performed predictive analyses and laboratory experiments on material from field trials of two types of thickened froth treatment tailings (TT1 and TT2). Acid-base accounting (ABA) of initial samples showed that both TT1 and TT2 initially had net acid-producing potential, with ABA values of -141 and -230 t CaCO₃ equiv. 1000 t(-1) of TT, respectively. In long-term kinetic experiments, duplicate ~2-kg samples of TT were incubated in shallow trays and intermittently irrigated under air flow for 459 days to simulate evaporative field drying. Leachates collected from both TT samples initially had pH~6.8 that began decreasing after ~50 days (TT2) or ~250 days (TT1), stabilizing at pH~2. Correspondingly, the redox potential of leachates increased from 100-200 mV to 500-580 mV and electrical conductivity increased from 2-5 dS m(-1) to 26 dS m(-1), indicating dissolution of minerals during ARD. The rapid onset and prolonged ARD observed with TT2 is attributed to its greater pyrite (13.4%) and lower carbonate (1.4%) contents versus the slower onset of ARD in TT1 (initially 6.0% pyrite and 2.5% carbonates). 16S rRNA gene pyrosequencing analysis revealed rapid shift in microbial community when conditions became strongly acidic (pH~2) favoring the enrichment of Acidithiobacillus and Sulfobacillus bacteria in TT. This is the first report showing ARD potential of TT and the results have significant implications for effective management of pyrite-enriched oil sands tailings streams/deposits.

  20. Various laboratory protocols for measuring thromboxane A2 generation to detect the effectiveness of acetylsalicylic acid therapy: a comparative study.

    PubMed

    Rozalski, Marcin; Watala, Cezary; Golanski, Jacek

    2014-01-01

    A reliable and simple laboratory assay for predicting clinical effectiveness of antiplatelet acetylsalicylic acid (ASA) therapy is needed. We have compared various laboratory protocols for measuring blood thromboxane A2 (TXA2) generation used to detect the effects of ASA administration. Healthy volunteers (n = 15) were given 150 mg per day ASA for 10 days, followed by ASA at 75 mg per day for 10 days. Five protocols tested for measuring TXA2 generation were: baseline TXB2 determination in plasma; static generation of TXA2 in anticoagulated blood (1 h incubation at room temperature or 37°C, respectively); dynamic generation of TXA2 in anticoagulated blood (1 h in rotary mixer); and generation of TXA2 in blood without anticoagulant (serum-generated TXA2). Platelet aggregation in whole blood was also measured using arachidonic acid (AA), collagen, and ADP as agonists. All five protocols showed significant reduction in TXB2 levels in individuals taking ASA. However, only the assay of TXA2 generation in serum was significantly different compared with the other protocols (P < 0.002). Moreover, the strongest and most significant correlation was observed between TXA2 generation in serum and AA-induced aggregation parameters (for 75 mg per day ASA).Serum TXA2 generation is the best laboratory protocol to detect the effects of ASA, based on serum markers of prostanoid metabolism.

  1. Revegetation of non-Acid-generating, thickened tailings with boreal trees: a greenhouse study.

    PubMed

    Larchevêque, Marie; Desrochers, Annie; Bussière, Bruno; Cartier, Hélène; David, Jean-Sébastien

    2013-01-01

    Tree planting presents clear advantages for mine reclamation that is aimed at achieving rapid reclamation of forested landscapes. A greenhouse study was conducted to evaluate the capacity of non-acid-generating, thickened tailings to support six boreal tree species during two growing seasons. One treatment was thickened tailings alone fertilized with inorganic N, P, and K fertilizer or chicken () manure. A thin layer of overburden topsoil was used to cover the tailings and was compared with topsoil alone, where normal tree growth was expected. Two amendments were also tested: overburden topsoil and vermicompost from food wastes. The presence of alkaline thickened tailings under the thin layer of acidic topsoil had a positive effect on tree height and root biomass (broadleaved and jack pine [ Lamb.]) by increasing topsoil pH and available Ca concentrations, which decreased Al, Zn, and Mn phytoavailability to trees; however, root contact with the tailings also increased their Cu concentrations. In thickened tailings that were mixed with topsoil, C/N ratios increased along the experiment from 21 to 40, a value where N immobilization by microorganisms occurred, as suggested by low N concentrations in tree tissues. In consequence, tree height growth (broadleaved) and biomass (conifers) were reduced. Amendment with compost raised the electrical conductivity (3.4 dS cm) to thresholds limiting broadleaved survival, while conifers showed a generalized decrease in biomass production. No trace metal contamination of the trees occurred in the mixtures, probably due to the near-neutral pH conferred by the tailings. PMID:23673827

  2. Bipolar membrane electrodialysis for generation of hydrochloric acid and ammonia from simulated ammonium chloride wastewater.

    PubMed

    Li, Ya; Shi, Shaoyuan; Cao, Hongbin; Wu, Xinmin; Zhao, Zhijuan; Wang, Liying

    2016-02-01

    Simulated ammonium chloride wastewater was treated by a lab-scale bipolar membrane electrodialysis for the generation of HCl and NH3·H2O and desalination. The influence of initial concentration of NH4Cl, current density, salt solution volume, initial concentration of acid and base and membrane stack structure on the yields of HCl and NH3·H2O was investigated. The current efficiency and energy consumption were also examined under different conditions. The results showed that, at the current density of 48 mA/cm(2), the highest concentration of HCl and NH3·H2O with initial concentration of 110 g/L NH4Cl was 57.67 g/L and 45.85 g/L, respectively. Higher initial concentration of NH4Cl was favor to reduce unit energy consumption and increase current efficiency of the BMED system. The membrane stack voltage of BMED increased quickly under constant current when the concentration of NH4Cl contained in the solution of salt compartment was depleted below the "inflection point concentration" about 8000 mg/L. It means that the concentration of NH4Cl below 8000 mg/L was no longer suitable for BMED because of higher energy consumption. The HCl and NH3·H2O concentration increased more quickly following the increase of current density. When increasing the volume of NH4Cl, the concentration of HCl and NH3·H2O also increased. The high initial concentration of acid and base could improve the final concentration of them, while the growth rate was decreased. Compared with the BMED system with three compartments, the growth rate of HCl concentration with the two compartments was higher and its unit energy consumption was lower. It meant that the performance of the BMED system could be improved by optimizing operation conditions. The application feasibility of the generation of HCl and NH3·H2O and desalination of ammonium chloride wastewater by BMED was proved. PMID:26674548

  3. Bipolar membrane electrodialysis for generation of hydrochloric acid and ammonia from simulated ammonium chloride wastewater.

    PubMed

    Li, Ya; Shi, Shaoyuan; Cao, Hongbin; Wu, Xinmin; Zhao, Zhijuan; Wang, Liying

    2016-02-01

    Simulated ammonium chloride wastewater was treated by a lab-scale bipolar membrane electrodialysis for the generation of HCl and NH3·H2O and desalination. The influence of initial concentration of NH4Cl, current density, salt solution volume, initial concentration of acid and base and membrane stack structure on the yields of HCl and NH3·H2O was investigated. The current efficiency and energy consumption were also examined under different conditions. The results showed that, at the current density of 48 mA/cm(2), the highest concentration of HCl and NH3·H2O with initial concentration of 110 g/L NH4Cl was 57.67 g/L and 45.85 g/L, respectively. Higher initial concentration of NH4Cl was favor to reduce unit energy consumption and increase current efficiency of the BMED system. The membrane stack voltage of BMED increased quickly under constant current when the concentration of NH4Cl contained in the solution of salt compartment was depleted below the "inflection point concentration" about 8000 mg/L. It means that the concentration of NH4Cl below 8000 mg/L was no longer suitable for BMED because of higher energy consumption. The HCl and NH3·H2O concentration increased more quickly following the increase of current density. When increasing the volume of NH4Cl, the concentration of HCl and NH3·H2O also increased. The high initial concentration of acid and base could improve the final concentration of them, while the growth rate was decreased. Compared with the BMED system with three compartments, the growth rate of HCl concentration with the two compartments was higher and its unit energy consumption was lower. It meant that the performance of the BMED system could be improved by optimizing operation conditions. The application feasibility of the generation of HCl and NH3·H2O and desalination of ammonium chloride wastewater by BMED was proved.

  4. On the Potential of a New Generation of Magnetometers for MEG: A Beamformer Simulation Study.

    PubMed

    Boto, Elena; Bowtell, Richard; Krüger, Peter; Fromhold, T Mark; Morris, Peter G; Meyer, Sofie S; Barnes, Gareth R; Brookes, Matthew J

    2016-01-01

    Magnetoencephalography (MEG) is a sophisticated tool which yields rich information on the spatial, spectral and temporal signatures of human brain function. Despite unique potential, MEG is limited by a low signal-to-noise ratio (SNR) which is caused by both the inherently small magnetic fields generated by the brain, and the scalp-to-sensor distance. The latter is limited in current systems due to a requirement for pickup coils to be cryogenically cooled. Recent work suggests that optically-pumped magnetometers (OPMs) might be a viable alternative to superconducting detectors for MEG measurement. They have the advantage that sensors can be brought to within ~4 mm of the scalp, thus offering increased sensitivity. Here, using simulations, we quantify the advantages of hypothetical OPM systems in terms of sensitivity, reconstruction accuracy and spatial resolution. Our results show that a multi-channel whole-head OPM system offers (on average) a fivefold improvement in sensitivity for an adult brain, as well as clear improvements in reconstruction accuracy and spatial resolution. However, we also show that such improvements depend critically on accurate forward models; indeed, the reconstruction accuracy of our simulated OPM system only outperformed that of a simulated superconducting system in cases where forward field error was less than 5%. Overall, our results imply that the realisation of a viable whole-head multi-channel OPM system could generate a step change in the utility of MEG as a means to assess brain electrophysiological activity in health and disease. However in practice, this will require both improved hardware and modelling algorithms. PMID:27564416

  5. On the Potential of a New Generation of Magnetometers for MEG: A Beamformer Simulation Study

    PubMed Central

    Boto, Elena; Bowtell, Richard; Krüger, Peter; Fromhold, T. Mark; Morris, Peter G.; Meyer, Sofie S.; Barnes, Gareth R.; Brookes, Matthew J.

    2016-01-01

    Magnetoencephalography (MEG) is a sophisticated tool which yields rich information on the spatial, spectral and temporal signatures of human brain function. Despite unique potential, MEG is limited by a low signal-to-noise ratio (SNR) which is caused by both the inherently small magnetic fields generated by the brain, and the scalp-to-sensor distance. The latter is limited in current systems due to a requirement for pickup coils to be cryogenically cooled. Recent work suggests that optically-pumped magnetometers (OPMs) might be a viable alternative to superconducting detectors for MEG measurement. They have the advantage that sensors can be brought to within ~4 mm of the scalp, thus offering increased sensitivity. Here, using simulations, we quantify the advantages of hypothetical OPM systems in terms of sensitivity, reconstruction accuracy and spatial resolution. Our results show that a multi-channel whole-head OPM system offers (on average) a fivefold improvement in sensitivity for an adult brain, as well as clear improvements in reconstruction accuracy and spatial resolution. However, we also show that such improvements depend critically on accurate forward models; indeed, the reconstruction accuracy of our simulated OPM system only outperformed that of a simulated superconducting system in cases where forward field error was less than 5%. Overall, our results imply that the realisation of a viable whole-head multi-channel OPM system could generate a step change in the utility of MEG as a means to assess brain electrophysiological activity in health and disease. However in practice, this will require both improved hardware and modelling algorithms. PMID:27564416

  6. Distributed Generation Potential of the U.S. CommercialSector

    SciTech Connect

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman,Etan; Marnay, Chris

    2005-06-01

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems in developed countries over the next two decades. In the U.S., private and public expectations for this technology are heavily influenced by forecasts published by the Energy Information Administration (EIA), most notably the Annual Energy Outlook (AEO). EIA's forecasts are typically made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. Annual penetration is forecast by estimating the payback period for each technology, for each of a limited number of representative building types, for each of nine regions. This process results in an AEO2004 forecast deployment of about a total 3 GW of DG electrical generating capacity by 2025, which is only 0.25 percent of total forecast U.S. capacity. Analyses conducted using both the AEO2003 and AEO2004 versions of NEMS changes the baseline costs and performance characteristics of DG to reflect a world without U.S. Department of Energy (DOE) research into several thermal DG technologies, which is then compared to a case with enhanced technology representative of the successful achievement of DOE research goals. The net difference in 2025 DG penetration is dramatic using the AEO2003 version of NEMS, but much smaller in the AEO2004 version. The significance and validity of these contradictory results are discussed, and possibilities for improving estimates of commercial U.S. DG potential are explored.

  7. On the Potential of a New Generation of Magnetometers for MEG: A Beamformer Simulation Study.

    PubMed

    Boto, Elena; Bowtell, Richard; Krüger, Peter; Fromhold, T Mark; Morris, Peter G; Meyer, Sofie S; Barnes, Gareth R; Brookes, Matthew J

    2016-01-01

    Magnetoencephalography (MEG) is a sophisticated tool which yields rich information on the spatial, spectral and temporal signatures of human brain function. Despite unique potential, MEG is limited by a low signal-to-noise ratio (SNR) which is caused by both the inherently small magnetic fields generated by the brain, and the scalp-to-sensor distance. The latter is limited in current systems due to a requirement for pickup coils to be cryogenically cooled. Recent work suggests that optically-pumped magnetometers (OPMs) might be a viable alternative to superconducting detectors for MEG measurement. They have the advantage that sensors can be brought to within ~4 mm of the scalp, thus offering increased sensitivity. Here, using simulations, we quantify the advantages of hypothetical OPM systems in terms of sensitivity, reconstruction accuracy and spatial resolution. Our results show that a multi-channel whole-head OPM system offers (on average) a fivefold improvement in sensitivity for an adult brain, as well as clear improvements in reconstruction accuracy and spatial resolution. However, we also show that such improvements depend critically on accurate forward models; indeed, the reconstruction accuracy of our simulated OPM system only outperformed that of a simulated superconducting system in cases where forward field error was less than 5%. Overall, our results imply that the realisation of a viable whole-head multi-channel OPM system could generate a step change in the utility of MEG as a means to assess brain electrophysiological activity in health and disease. However in practice, this will require both improved hardware and modelling algorithms.

  8. Discovery of wall teichoic acid inhibitors as potential anti-MRSA β-lactam combination agents.

    PubMed

    Wang, Hao; Gill, Charles J; Lee, Sang H; Mann, Paul; Zuck, Paul; Meredith, Timothy C; Murgolo, Nicholas; She, Xinwei; Kales, Susan; Liang, Lianzhu; Liu, Jenny; Wu, Jin; Santa Maria, John; Su, Jing; Pan, Jianping; Hailey, Judy; Mcguinness, Debra; Tan, Christopher M; Flattery, Amy; Walker, Suzanne; Black, Todd; Roemer, Terry

    2013-02-21

    Innovative strategies are needed to combat drug resistance associated with methicillin-resistant Staphylococcus aureus (MRSA). Here, we investigate the potential of wall teichoic acid (WTA) biosynthesis inhibitors as combination agents to restore β-lactam efficacy against MRSA. Performing a whole-cell pathway-based screen, we identified a series of WTA inhibitors (WTAIs) targeting the WTA transporter protein, TarG. Whole-genome sequencing of WTAI-resistant isolates across two methicillin-resistant Staphylococci spp. revealed TarG as their common target, as well as a broad assortment of drug-resistant bypass mutants mapping to earlier steps of WTA biosynthesis. Extensive in vitro microbiological analysis and animal infection studies provide strong genetic and pharmacological evidence of the potential effectiveness of WTAIs as anti-MRSA β-lactam combination agents. This work also highlights the emerging role of whole-genome sequencing in antibiotic mode-of-action and resistance studies.

  9. Novel molecular hybrids of cinnamic acids and guanylhydrazones as potential antitubercular agents.

    PubMed

    Bairwa, Ranjeet; Kakwani, Manoj; Tawari, Nilesh R; Lalchandani, Jaya; Ray, M K; Rajan, M G R; Degani, Mariam S

    2010-03-01

    In an attempt to identify potential new agents active against tuberculosis, 20 novel phenylacrylamide derivatives incorporating cinnamic acids and guanylhydrazones were synthesized using microwave assisted synthesis. Activity of the synthesized compounds was evaluated using resazurin microtitre plate assay (REMA) against Mycobacterium tuberculosis H37Rv. Based on empirical structure-activity relationship data it was observed that both steric and electronic parameters play major role in the activity of this series of compounds. Compound 7s (2E)-N-((-2-(3,4-dimethoxybenzylidene) hydrazinyl) (imino) methyl)-3-(4-methoxyphenyl) acrylamide showed MIC of 6.49microM along with good safety profile of >50-fold in VERO cell line. Thus, this compound could act as a potential lead for further antitubercular studies.

  10. Phytostabilization potential of Jatropha curcas L. in polymetallic acid mine tailings.

    PubMed

    Wu, Qihang; Wang, Shizhong; Thangavel, Palaniswamy; Li, Qingfei; Zheng, Han; Bai, Jun; Qiu, Rongliang

    2011-09-01

    Greenhouse pot experiments were conducted to determine the growth response, metal tolerance, and phytostabilization potential of Jatropha curcas L The plants were grown on different degrees of multi-metal contaminated acid mine soils (T0, control; T1, moderately and T2, highly contaminated soils) with or without limestone amendments. The order of metal accumulation in J. curcas was roots>stems>leaves. The higher tolerance index (>90%) with no phytotoxic symptoms and growth reduction in T1 showed that this plant has the ability to tolerate polymetallic acid mine tailings. Further, various enzymatic and non-enzymatic antioxidants also actively involved in metal defense mechanism in J. curcas. On the other hand, to alleviate the predominant phytoavailable toxic metals such as Al, Cu, and Pb, different rates (0.1, 0.25, 0.50, and 1%) of limestone amendments were added in both T1 and T2 soils. The growth performance of J. curcas was improved due to the increase in soil pH and decrease in phytoavailable soil A1 (95%), Zn (approximately 75%), and Cu (approximately 65%) contents at 0.50% of lime addition. Based on the inherent tolerance ability of J. curcas in existing adverse environmental conditions without liming, it could be used as a suitable candidate for phytostabilization in acid mine tailings. PMID:21972519

  11. Assessment of rosmarinic acid content in six Lamiaceae species extracts and their antioxidant and antimicrobial potential.

    PubMed

    Benedec, Daniela; Hanganu, Daniela; Oniga, Ilioara; Tiperciuc, Brindusa; Olah, Neli-Kinga; Raita, Oana; Bischin, Cristina; Silaghi-Dumitrescu, Radu; Vlase, Laurian

    2015-11-01

    In the present study, six indigenous species of Lamiaceae family (Origanum vulgare L., Melissa officinalis L., Rosmarinus officinalis L., Ocimum basilicum L., Salvia officinalis L. and Hyssopus officinalis L.), have been analyzed to assess the rosmarinic acid, phenyl propane derivatives and polyphenolic contents and their antioxidant and antimicrobial potential. HPLC-MS method has been used for the analysis ofrosmarinicacid. The phenyl propane derivatives and total phenolic contents were determined using spectrophotometric method. The ethanolic extracts were screened for antioxidant activities by DPPH radical scavenging, HAPX (hemoglobin ascorbate per oxidase activity inhibition), and EPR (electron paramagnetic resonance) methods. The ethanolic extracts revealed the presence of rosmarinic acid in the largest amount in O. vulgare (12.40mg/g) and in the lowest in R. officinalis (1.33 mg/g). O. vulgare extracts exhibited the highest antioxidant capacity, in line with the rosmarinic acid and polyphenolic contents. The antimicrobial testing showed a significant activity against L. monocytogenes, S. aureus and C. albicans for all six extracts.

  12. Comparison of fatty acid profile and antioxidant potential of extracts of seven Citrus rootstock seeds.

    PubMed

    Plastina, Pierluigi; Fazio, Alessia; Gabriele, Bartolo

    2012-01-01

    The extracts of seven Citrus rootstock seeds have been compared regarding fatty acid profile and antioxidant potential. Sour orange (Citrus aurantium L.) was found to contain the highest oil amount (34%), while the Poncirus trifoliata cultivars contained the highest percentage of unsaturated fatty acids (84-87%). In addition, the antioxidant properties of the extracts from defatted seeds have been evaluated by measuring their radical scavenging activity against 2,2'-diphenyl-1-picrylhydrazyl. The highest antioxidant activities were observed in the case of the acetone extract of sour orange and Citrumelo Swingle (76% and 75%, respectively), at a concentration of 0.17 mg mL(-1). Moreover, the total phenolic content of the extracts, determined using the Folin-Ciocalteau reagent, was found to be correlated with the radical scavenging activity results. The acetone extracts of sour orange and Citrumelo Swingle exhibited the highest phenolic content [112.3 and 103.4 mg gallic acid equivalent g(-1) dry sample weight, respectively]. PMID:22236049

  13. Assessment of rosmarinic acid content in six Lamiaceae species extracts and their antioxidant and antimicrobial potential.

    PubMed

    Benedec, Daniela; Hanganu, Daniela; Oniga, Ilioara; Tiperciuc, Brindusa; Olah, Neli-Kinga; Raita, Oana; Bischin, Cristina; Silaghi-Dumitrescu, Radu; Vlase, Laurian

    2015-11-01

    In the present study, six indigenous species of Lamiaceae family (Origanum vulgare L., Melissa officinalis L., Rosmarinus officinalis L., Ocimum basilicum L., Salvia officinalis L. and Hyssopus officinalis L.), have been analyzed to assess the rosmarinic acid, phenyl propane derivatives and polyphenolic contents and their antioxidant and antimicrobial potential. HPLC-MS method has been used for the analysis ofrosmarinicacid. The phenyl propane derivatives and total phenolic contents were determined using spectrophotometric method. The ethanolic extracts were screened for antioxidant activities by DPPH radical scavenging, HAPX (hemoglobin ascorbate per oxidase activity inhibition), and EPR (electron paramagnetic resonance) methods. The ethanolic extracts revealed the presence of rosmarinic acid in the largest amount in O. vulgare (12.40mg/g) and in the lowest in R. officinalis (1.33 mg/g). O. vulgare extracts exhibited the highest antioxidant capacity, in line with the rosmarinic acid and polyphenolic contents. The antimicrobial testing showed a significant activity against L. monocytogenes, S. aureus and C. albicans for all six extracts. PMID:26687747

  14. Bone-targeted acid-sensitive doxorubicin conjugate micelles as potential osteosarcoma therapeutics.

    PubMed

    Low, Stewart A; Yang, Jiyuan; Kopeček, Jindřich

    2014-11-19

    Osteosarcoma is a malignancy of the bone that primarily affects adolescents. Current treatments retain mortality rates, which are higher than average cancer mortality rates for the adolescent age group. We designed a micellar delivery system with the aim to increase drug accumulation in the tumor and potentially reduce side effects associated with chemotherapy. The design features are the use of the hydrophilic D-aspartic acid octapeptide as both the effective targeting agent as well as the hydrophilic micelle corona. Micelle stabilization was accomplished by binding of model drug (doxorubicin) via an acid-sensitive hydrazone bond and incorporating one to four 11-aminoundecanoic acid (AUA) moieties to manipulate the hydrophobic/hydrophilic ratio. Four micelle-forming unimers have been synthesized and their self-assembly into micelles was evaluated. Size of the micelles could be modified by changing the architecture of the unimers from linear to branched. The stability of the micelles increased with increasing content of AUA moieties. Adsorption of all micelles to hydroxyapatite occurred rapidly. Doxorubicin release occurred at pH 5.5, whereas no release was detected at pH 7.4. Cytotoxicity toward human osteosarcoma Saos-2 cells correlated with drug release data.

  15. Potential energy scans and vibrational assignments of cyclopropanecarboxylic acid and cyclopropanecarboxamide.

    PubMed

    Badawi, H M; Al-Saadi, A A; Al-Khaldi, M A A; Al-Abbad, S A; Al-Sunaidi, Z H A

    2008-12-15

    The structural stability and internal rotations in cyclopropanecarboxylic acid and cyclopropanecarboxamide were investigated by the DFT-B3LYP and the ab initio MP2 calculations using 6-311G** and 6-311+G** basis sets. The computations were extended to the MP4//MP2/6-311G** and CCSD(T)//MP2/6-311G** single-point calculations. From the calculations the molecules were predicted to exist predominantly in the cis (C=O group eclipses the cyclopropane ring) with a cis-trans barrier of about 4-6kcal/mol. The OCOH torsional barrier in the acid was estimated to be about 12-13kcal/mol while the corresponding OCNH torsional barrier in the amide was calculated to be about 20kcal/mol. The equilibrium constant k for the cis<-->trans interconversion in cyclopropanecarboxylic acid was calculated to be 0.1729 at 298.15K that corresponds to an equilibrium mixture of about 85% cis and 15% trans. The vibrational frequencies were computed at the DFT-B3LYP level. Normal coordinate calculations were carried out and potential energy distributions were calculated for the low energy cis conformer of the molecules. Complete vibrational assignments were made on the basis of normal coordinate calculations and comparison with experimental data of the molecules. PMID:18599341

  16. Acid Lipase from Candida viswanathii: Production, Biochemical Properties, and Potential Application

    PubMed Central

    de Almeida, Alex Fernando; Carmona, Eleonora Cano

    2013-01-01

    Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (YL/S = 1.381 g/g), lipase yield (YL/S = 6.892 U/g), and biomass productivity (PX = 0.282 g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield (YL/S) of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties. PMID:24350270

  17. Acid lipase from Candida viswanathii: production, biochemical properties, and potential application.

    PubMed

    de Almeida, Alex Fernando; Tauk-Tornisielo, Sâmia Maria; Carmona, Eleonora Cano

    2013-01-01

    Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (Y L/S = 1.381 g/g), lipase yield (Y L/S = 6.892 U/g), and biomass productivity (P X = 0.282 g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield (Y L/S ) of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties. PMID:24350270

  18. Acid lipase from Candida viswanathii: production, biochemical properties, and potential application.

    PubMed

    de Almeida, Alex Fernando; Tauk-Tornisielo, Sâmia Maria; Carmona, Eleonora Cano

    2013-01-01

    Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (Y L/S = 1.381 g/g), lipase yield (Y L/S = 6.892 U/g), and biomass productivity (P X = 0.282 g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield (Y L/S ) of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties.

  19. Bone-Targeted Acid-Sensitive Doxorubicin Conjugate Micelles as Potential Osteosarcoma Therapeutics

    PubMed Central

    2015-01-01

    Osteosarcoma is a malignancy of the bone that primarily affects adolescents. Current treatments retain mortality rates, which are higher than average cancer mortality rates for the adolescent age group. We designed a micellar delivery system with the aim to increase drug accumulation in the tumor and potentially reduce side effects associated with chemotherapy. The design features are the use of the hydrophilic d-aspartic acid octapeptide as both the effective targeting agent as well as the hydrophilic micelle corona. Micelle stabilization was accomplished by binding of model drug (doxorubicin) via an acid-sensitive hydrazone bond and incorporating one to four 11-aminoundecanoic acid (AUA) moieties to manipulate the hydrophobic/hydrophilic ratio. Four micelle-forming unimers have been synthesized and their self-assembly into micelles was evaluated. Size of the micelles could be modified by changing the architecture of the unimers from linear to branched. The stability of the micelles increased with increasing content of AUA moieties. Adsorption of all micelles to hydroxyapatite occurred rapidly. Doxorubicin release occurred at pH 5.5, whereas no release was detected at pH 7.4. Cytotoxicity toward human osteosarcoma Saos-2 cells correlated with drug release data. PMID:25291150

  20. Generation and transcriptional programming of intestinal dendritic cells: Essential role of retinoic acid

    PubMed Central

    Zeng, Ruizhu; Bscheider, Michael; Lahl, Katharina; Lee, Mike; Butcher, Eugene C.

    2015-01-01

    The vitamin A metabolite retinoic acid (RA) regulates adaptive immunity in the intestines, with well-characterized effects on IgA responses, Treg induction and gut trafficking of T and B effector cells. It also controls the generation of cDC precursors in the bone marrow and regulates cDC subset representation, but its roles in the specialization of intestinal cDC subsets is understudied. Here we show that RA acts cell-intrinsically in developing gut-tropic pre-mucosal DC (pre-μDC) to effect the differentiation and drive the specialization of intestinal CD103+CD11b− (cDC1) and of CD103+CD11b+ (cDC2). Systemic deficiency or DC-restricted antagonism of RA signaling resulted in altered phenotypes of intestinal cDC1 and cDC2, and reduced numbers of cDC2. Effects of dietary deficiency were most apparent in the proximal small intestine, and were rapidly reversed by reintroducing vitamin A. In cultures of pre-μDC with Flt3L and GM-CSF, RA induced cDC with characteristic phenotypes of intestinal cDC1 and cDC2 by controlling subset-defining cell surface receptors, regulating subset-specific transcriptional programs, and suppressing proinflammatory NF-κB-dependent gene expression. Thus RA is required for transcriptional programming and maturation of intestinal cDC, and with GM-CSF and Flt3L provides a minimal environment for in vitro generation of intestinal cDC1- and cDC2-like cDC from specialized precursors. PMID:26129652

  1. Changes in oxidation-reduction potential during milk fermentation by wild lactic acid bacteria.

    PubMed

    Morandi, Stefano; Silvetti, Tiziana; Tamburini, Alberto; Brasca, Milena

    2016-08-01

    Oxidation-reduction potential (E h) is a fundamental physicochemical property of lactic acid bacteria that determines the microenvironment during the cheese manufacture and ripening. For this reason the E h is of growing interest in dairy research and the dairy industry. The objective of the study was to perform a comprehensive study on the reduction activity of wild lactic acid bacteria strains collected in different periods (from 1960 to 2012) from Italian dairy products. A total of 709 strains belonging to Lactococcus lactis, Enterococcus durans, E. faecium, E. faecalis and Streptococcus thermophilus species were studied for their reduction activity in milk. Kinetics of milk reduction were characterised by the minimum redox potential (E h7) and time of reaching E h7 (t min), the maximum difference between two measures (Δmax) and the time at which these maximum differences occurred (t*). Broad diversity in kinetic parameters was observed at both species and strain levels. E. faecalis and L. lactis resulted to be the most reducing species, while S. thermophilus was characterised by the lowest reducing power while the greatest heterogeneity was pointed out among E. durans and E. faecium strains. Considering the period of collection (1960-2012) we observed that the more recently isolated strains generally showed less reducing activity. This trend was particularly evident for the species E. durans, E. faecium and L. lactis while an opposite trend was observed in E. faecalis species. Data reported in this research provide new information for a deeper understanding of redox potential changes during milk fermentation due to bacterial growth. Gain knowledge of the redox potential of the LAB cultures could allow a better control and standardisation of cheesemaking process. PMID:27600976

  2. Generation of reactive oxygen species by a novel berberine–bile acid analog mediates apoptosis in hepatocarcinoma SMMC-7721 cells

    SciTech Connect

    Li, Qingyong; Zhang, Li; Zu, Yuangang; Liu, Tianyu; Zhang, Baoyou; He, Wuna

    2013-04-19

    Graphical abstract: - Highlights: • Anticancer effects of B4, a novel berberine–bile acid analog, were tested. • B4 inhibited cell proliferation in hepatocellular carcinoma cells. • It also stimulated mitochondrial ROS production and membrane depolarization. • Effects of B4 were inhibited by a non-specific ROS scavenger. • Regulation of ROS generation may be a strategy for treating hepatic carcinoma. - Abstract: 2,3-Methenedioxy-9-O-(3′α,7′α-dihydroxy-5′β-cholan-24′-propy-lester) berberine (B4) is a novel berberine–bile acid analog synthesized in our laboratory. Previously, we showed that B4 exerted greater cytotoxicity than berberine in several human cancer cell lines. Therefore, we further evaluated the mechanism governing its anticancer actions in hepatocellular carcinoma SMMC-7721 cells. B4 inhibited the proliferation of SMMC-7721 cells, and stimulated reactive oxygen species (ROS) production and mitochondrial membrane depolarization; anti-oxidant capacity was reduced. B4 also induced the release of cytochrome c from the mitochondria to the cytosol and an increase in poly ADP-ribose polymerase (PARP) cleavage products, reflective of caspase-3 activation. Moreover, B4 induced the nuclear translocation of apoptosis-inducing factor (AIF) and a rise in DNA fragmentation. Pretreatment with the anti-oxidant N-acetylcysteine (NAC) inhibited B4-mediated effects, including cytotoxicity, ROS production, mitochondrial membrane depolarization increase in intracellular Ca{sup 2+}, cytochrome c release, PARP cleavage, and AIF translocation. Our data suggest that B4 induces ROS-triggered caspase-dependent and caspase-independent apoptosis pathways in SMMC-7721 cells and that ROS production may be a specific potential strategy for treating hepatic carcinoma.

  3. Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat.

    PubMed Central

    Cazalets, J R; Sqalli-Houssaini, Y; Clarac, F

    1992-01-01

    1. The role of serotonin (5-HT) and excitatory amino-acids (EAAs) in the activation of the neural networks (i.e. the central pattern generators) that organize locomotion in mammals was investigated in an isolated brainstem-spinal cord preparation from the newborn rat. 2. The neuroactive substances were bath applied and the activity of fictive locomotion was recorded in the ventral roots. 3. Serotonin initiated an alternating pattern of right and left action potential bursts. The period of this rhythm was dose dependent, i.e. it decreased from around 10 s at 2 x 10(-5) M to 5 s at 10(-4) M. The effects of serotonin were blocked by a 5-HT1 antagonist (propranolol) and by 5-HT2 antagonists (ketanserin, cyproheptadine, mianserin). 5-HT3 antagonists were ineffective. The effects of methoxytryptamine, a non-selective 5-HT agonist, mimicked the 5-HT effects. 4. The endogenous EAAs, glutamate and aspartate, also triggered an alternating rhythmic pattern. Their effects were blocked by 2-amino-5-phosphonovaleric acid (AP-5; a N-methyl-D-aspartate (NMDA) receptor blocker) and 6,7-dinitro-quinoxaline-2,3-dione (a non-NMDA receptor blocker). 5. Several EAA agonists (N-methyl-D,L-aspartate (NMA) and kainate) initiated rhythmic activity. The period of the induced rhythm (from 3 to 1 s) was similar with both of these substances but in a range of concentrations which was ten times lower in the case of kainate (10(-6) to 5 x 10(-6) M) than in that of NMA (10(-5) to 4 x 10(-5) M). alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionate and quisqualate occasionally triggered some episodes of fictive locomotion with a threshold at 6 x 10(-7) and 10(-5) M, respectively. PMID:1362441

  4. Evaluation of DNA encoding acidic ribosomal protein P2 of Cryptosporidium parvum as a potential vaccine candidate for cryptosporidiosis.

    PubMed

    Benitez, Alvaro; Priest, Jeffrey W; Ehigiator, Humphrey N; McNair, Nina; Mead, Jan R

    2011-11-15

    The Cryptosporidium parvum acidic ribosomal protein P2 (CpP2) is an important immunodominant marker in C. parvum infection. In this study, the CpP2 antigen was evaluated as a vaccine candidate using a DNA vaccine model in adult C57BL/6 IL-12 knockout (KO) mice, which are susceptible to C. parvum infection. Our data show that subcutaneous immunization in the ear with DNA encoding CpP2 (CpP2-DNA) cloned into the pUMVC4b vector induced a significant anti-CpP2 IgG antibody response that was predominantly of the IgG1 isotype. Compared to control KO mice immunized with plasmid alone, CpP2-immunized mice demonstrated specific in vitro spleen cell proliferation as well as enhanced IFN-γ production to recombinant CpP2. Further, parasite loads in CpP2 DNA-immunized mice were compared to control mice challenged with C. parvum oocysts. Although a trend in reduction of infection was observed in the CpP2 DNA-immunized mice, differences between groups were not statistically significant. These results suggest that a DNA vaccine encoding the C. parvum P2 antigen is able to provide an effective means of eliciting humoral and cellular responses and has the potential to generate protective immunity against C. parvum infection but may require using alternative vectors or adjuvant to generate a more potent and balanced response.

  5. Acid Mine Drainage Passive Remediation: Potential Use of Alkaline Clay, Optimal Mixing Ratio and Long Term Impacts

    NASA Astrophysics Data System (ADS)

    Plaza, F.; Liang, X.; Wen, Y.; Perone, H.

    2015-12-01

    Acid mine drainage (AMD) is one of the most adverse environmental problems of the mine industry. Surface water and ground water affected by this pollution are characterized by their acidity and the high content of sulfates and heavy metals. In this study, alkaline clay, an industrial waste with a high pH, which is utilized in the alumina refining process, was used as the remediation material to inhibit pyrite oxidation. Through a series of batch and column experiments, complemented with field measurements and geochemical modeling, three important issues associated with this passive and auto sustainable acid mine drainage remediation method were investigated: 1) the potential use of alkaline clay as an AMD remediation material, 2) the adequate alkaline clay/coal refuse mixing ratio (AC/CR) to ensure pH values near to neutral conditions, and, 3) the prediction of long term impacts, in terms of the trends of the main parameters involved in this process such as pH, concentrations of sulfate, iron and other dissolved contaminants. Both field measurements and the samples used for the experiments came from a coal waste site located in Mather, Pennsylvania. Alkaline clay proved to be an effective remediation material for AMD. It was found that 10% AC/CR is an adequate mixing ratio (i.e. the upper limit), which has been also indicated by field measurements. The concentrations of some contaminants such as iron, manganese or sulfate are significantly reduced with the remediation approach, compared to those representative concentrations found in mine tailings. Moreover, results suggest a very reliable long-term stability of the remediation (i.e. neutral pH conditions are maintained), thus enhancing the generation of iron precipitates that could produce pyrite grain coating and hardpan (i.e. cemented layer) on the surface. These processes also made the amended layer less porous, thus increasing water retention and hindering oxygen diffusion.

  6. Potential application of LIBS to NNSA next generation safeguards initiative (NGSI)

    SciTech Connect

    Barefield Ii, James E; Clegg, Samuel M; Veirs, Douglas K; Browne, Mike; Lopez, Leon; Martinez, Ron; Le, Loan; Lamontagne, Stephen A

    2009-01-01

    In a climate in which states and nations have been and perhaps currently are involved in the prol iferation of nuclear materials and technologies, advanced methodologies and improvements in current measurement techniques are needed to combat new threats and increased levels of sophistication. The Department of Energy through the National Nuclear Security Administration (NNSA) has undertaken a broad review of International Safeguards. The conclusion from that review was that a comprehensive initiative to revitalize international safeguards technology and the human resource base was urgently needed to keep pace with demands and increasingly sophisticated emerging safeguards challenges. To address these challenges, NNSA launched the Next Generation Safeguards Initiative (NGSI) to develop policies, concepts, technologies, expertise, and infrastructure necessary to sustain the international safeguards system as its mission evolves for the next 25 years. NGSI is designed to revitalize and strengthen the U.S. safeguards technical base, recognizing that without a robust program the United States of America will not be in a position to exercise leadership or provide the necessary support to the IAEA (International Atomic Energy Agency). International safeguards as administrated by the IAEA are the primary vehicle for verifying compliance with the peaceful use and nonproliferation of nuclear materials and technologies. Laser Induced Breakdown Spectroscopy or LIBS has the potential to support the goals of NGSI as follows: by providing (1) automated analysis in complex nuclear processing or reprocessing facilities in real-time or near real-time without sample preparation or removal, (2) isotopic and important elemental ratio (Cm/Pu, Cm/U, ... etc) analysis, and (3) centralized remote control, process monitoring, and analysis of nuclear materials in nuclear facilities at multiple locations within the facility. Potential application of LIBS to international safeguards as

  7. Hydrocarbon generation potential of the Cretaceous section from Well ALP-6, Perija Region, Venezuela

    SciTech Connect

    Pratt, L. ); Mompart, L.; Murat, B. )

    1993-02-01

    Geochemistry and sedimentology have been integrated in order to provide a better understanding of the source rock potential and depositional environments of the La Luna Formation and Machiques Member in Well ALP-6 (Perija region). These two units, the dominant source rocks in the Maracaibo Basin, are mainly shales with high to very high organic content, while thin interbeds of limestones are poor in organic matter. A detailed sedimentological study and sequence analysis indicates that both shaly units represent a period of platform infilling subsequent to drowning. Periods of progressive back stepping culminating in the deposition of organic-rich condensed intervals are recognized, based on sedimentology of cores and wireline log analysis. A succession of fining-upward sequences, 1' to 5' thick, with distinct sedimentological and geochemical signatures have been identified in the La Luna Formation. Phenomena of early diagenesis (intrashale calcite growth due to organic matter degradation; sulfur precipitated in local paleolows) to late diagenesis (pressure-solution effects with development of laterally correlatable cone-in-cone layers) are all indicators that the hydrocarbon generation potential of La Luna is not uniform and can only be assessed by detailed geological, sedimentological and geochemical investigations. Two geochemically distinct facies can be identified in both La Luna and Machiques. A sulfur-rich facies is characterized by Corg/AVSul ratios averaging 1.9 and by exceptionally high concentrations of sulfur-bearing aromatic compounds. A sulfur-poor facies is characterized by Corg/AVSul ratios averaging 9.2 and by trace concentrations or absence of sulfur-bearing aromatic compounds.

  8. Effects of water availability on free amino acids, sugars, and acrylamide-forming potential in potato.

    PubMed

    Muttucumaru, Nira; Powers, Stephen J; Elmore, J Stephen; Mottram, Donald S; Halford, Nigel G

    2015-03-11

    Irrigation is used frequently in potato cultivation to maximize yield, but water availability may also affect the composition of the crop, with implications for processing properties and food safety. Five varieties of potatoes, including drought-tolerant and -sensitive types, which had been grown with and without irrigation, were analyzed to show the effect of water supply on concentrations of free asparagine, other free amino acids, and sugars and on the acrylamide-forming potential of the tubers. Two varieties were also analyzed under more severe drought stress in a glasshouse. Water availability had profound effects on tuber free amino acid and sugar concentrations, and it was concluded that potato farmers should irrigate only if necessary to maintain the health and yield of the crop, because irrigation may increase the acrylamide-forming potential of potatoes. Even mild drought stress caused significant changes in composition, but these differed from those caused by more extreme drought stress. Free proline concentration, for example, increased in the field-grown potatoes of one variety from 7.02 mmol/kg with irrigation to 104.58 mmol/kg without irrigation, whereas free asparagine concentration was not affected significantly in the field but almost doubled from 132.03 to 242.26 mmol/kg in response to more severe drought stress in the glasshouse. Furthermore, the different genotypes were affected in dissimilar fashion by the same treatment, indicating that there is no single, unifying potato tuber drought stress response.

  9. Coexistence of Lactic Acid Bacteria and Potential Spoilage Microbiota in a Dairy Processing Environment.

    PubMed

    Stellato, Giuseppina; De Filippis, Francesca; La Storia, Antonietta; Ercolini, Danilo

    2015-11-01

    Microbial contamination in food processing plants can play a fundamental role in food quality and safety. In this study, the microbiota in a dairy plant was studied by both 16S rRNA- and 26S rRNA-based culture-independent high-throughput amplicon sequencing. Environmental samples from surfaces and tools were studied along with the different types of cheese produced in the same plant. The microbiota of environmental swabs was very complex, including more than 200 operational taxonomic units with extremely variable relative abundances (0.01 to 99%) depending on the species and sample. A core microbiota shared by 70% of the samples indicated a coexistence of lactic acid bacteria with a remarkable level of Streptococcus thermophilus and possible spoilage-associated bacteria, including Pseudomonas, Acinetobacter, and Psychrobacter, with a relative abundance above 50%. The most abundant yeasts were Kluyveromyces marxianus, Yamadazyma triangularis, Trichosporon faecale, and Debaryomyces hansenii. Beta-diversity analyses showed a clear separation of environmental and cheese samples based on both yeast and bacterial community structure. In addition, predicted metagenomes also indicated differential distribution of metabolic pathways between the two categories of samples. Cooccurrence and coexclusion pattern analyses indicated that the occurrence of potential spoilers was excluded by lactic acid bacteria. In addition, their persistence in the environment can be helpful to counter the development of potential spoilers that may contaminate the cheeses, with possible negative effects on their microbiological quality. PMID:26341209

  10. Coexistence of Lactic Acid Bacteria and Potential Spoilage Microbiota in a Dairy Processing Environment.

    PubMed

    Stellato, Giuseppina; De Filippis, Francesca; La Storia, Antonietta; Ercolini, Danilo

    2015-11-01

    Microbial contamination in food processing plants can play a fundamental role in food quality and safety. In this study, the microbiota in a dairy plant was studied by both 16S rRNA- and 26S rRNA-based culture-independent high-throughput amplicon sequencing. Environmental samples from surfaces and tools were studied along with the different types of cheese produced in the same plant. The microbiota of environmental swabs was very complex, including more than 200 operational taxonomic units with extremely variable relative abundances (0.01 to 99%) depending on the species and sample. A core microbiota shared by 70% of the samples indicated a coexistence of lactic acid bacteria with a remarkable level of Streptococcus thermophilus and possible spoilage-associated bacteria, including Pseudomonas, Acinetobacter, and Psychrobacter, with a relative abundance above 50%. The most abundant yeasts were Kluyveromyces marxianus, Yamadazyma triangularis, Trichosporon faecale, and Debaryomyces hansenii. Beta-diversity analyses showed a clear separation of environmental and cheese samples based on both yeast and bacterial community structure. In addition, predicted metagenomes also indicated differential distribution of metabolic pathways between the two categories of samples. Cooccurrence and coexclusion pattern analyses indicated that the occurrence of potential spoilers was excluded by lactic acid bacteria. In addition, their persistence in the environment can be helpful to counter the development of potential spoilers that may contaminate the cheeses, with possible negative effects on their microbiological quality.

  11. Trichoderma harzianum Produces a New Thermally Stable Acid Phosphatase, with Potential for Biotechnological Application

    PubMed Central

    Souza, Amanda Araújo; Leitão, Vanessa Oliveira; Ramada, Marcelo Henrique; Mehdad, Azadeh; Georg, Raphaela de Castro; Ulhôa, Cirano José; de Freitas, Sonia Maria

    2016-01-01

    Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65°C, respectively, and is stable at 55°C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments. PMID:26938873

  12. Food-associated lactic acid bacteria with antimicrobial potential from traditional Mexican foods.

    PubMed

    Alvarado, C; García Almendárez, B E; Martin, S E; Regalado, C

    2006-01-01

    This work was conducted to identify indigenous LAB capable of antimicrobial activity, present in traditional Mexican-foods with potential as natural preservatives. A total of 27 artisan unlabeled Mexican products were evaluated, from which 94 LAB strains were isolated, and only 25 strains showed antimicrobial activity against at least one pathogen indicator microorganism. Most of the inhibitory activity showed by the isolated LAB strains was attributed to pH reduction by organic acids. Lactobacillus and Lactococcus strains were good acid producers, depending on the substrate, and may enhance the safety of food products. Cell free cultures of Leuconostoc mesenteroides CH210, and PT8 (from chorizo and pulque, respectively) reduced the number of viable cells of enteropathogenic E. coli in broth system. Lb. plantarum CC10 (from "madre" of vinegar) showed significant inhibitory effect against S. aureus 8943. E. faecium QPII (from panela cheese) produced a bacteriocin with wide anti-L. monocytogenes activity. Selected LAB from traditional Mexican foods showed good potential as bio-preservatives.

  13. Trichoderma harzianum Produces a New Thermally Stable Acid Phosphatase, with Potential for Biotechnological Application.

    PubMed

    Souza, Amanda Araújo; Leitão, Vanessa Oliveira; Ramada, Marcelo Henrique; Mehdad, Azadeh; Georg, Raphaela de Castro; Ulhôa, Cirano José; de Freitas, Sonia Maria

    2016-01-01

    Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65 °C, respectively, and is stable at 55 °C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0 was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments. PMID:26938873

  14. The salt stress-induced LPA response in Chlamydomonas is produced via PLA2 hydrolysis of DGK-generated phosphatidic acid[S

    PubMed Central

    Arisz, Steven A.; Munnik, Teun

    2011-01-01

    The unicellular green alga Chlamydomonas has frequently been used as a eukaryotic model system to study intracellular phospholipid signaling pathways in response to environmental stresses. Earlier, we found that hypersalinity induced a rapid increase in the putative lipid second messenger, phosphatidic acid (PA), which was suggested to be generated via activation of a phospholipase D (PLD) pathway and the combined action of a phospholipase C/diacylglycerol kinase (PLC/DGK) pathway. Lysophosphatidic acid (LPA) was also increased and was suggested to reflect a phospholipase A2 (PLA2) activity based on pharmacological evidence. The question of PA's and LPA's origin is, however, more complicated, especially as both function as precursors in the biosynthesis of phospho- and galactolipids. To address this complexity, a combination of fatty acid-molecular species analysis and in vivo 32P-radiolabeling was performed. Evidence is provided that LPA is formed from a distinct pool of PA characterized by a high α-linolenic acid (18:3n-3) content. This molecular species was highly enriched in the polyphosphoinositide fraction, which is the substrate for PLC to form diacylglycerol. Together with differential 32P-radiolabeling studies and earlier PLD-transphosphatidylation and PLA2-inhibitor assays, the data were consistent with the hypothesis that the salt-induced LPA response is primarily generated through PLA2-mediated hydrolysis of DGK-generated PA and that PLD or de novo synthesis [via endoplasmic reticulum - or plastid-localized routes] is not a major contributor. PMID:21900174

  15. Potential of capillary zone electrophoresis for estimation of humate acid-base properties.

    PubMed

    Vanifatova, Natalia G; Zavarzina, Anna G; Spivakov, Boris Ya

    2008-03-01

    Capillary zone electrophoresis (CZE) has been applied for fractionation and characterization of soil-derived humic acids (HAs). Humic acids from soddy-podzolic (HA(s)) and chernozem (HA(ch)) soils were studied as well as hydrophobic high-molecular-weight (HMW) and hydrophilic low-molecular-weight (LMW) HA(s) fractions obtained by salting-out with ammonium sulfate at a saturation of 0-40% and >70%, respectively. The possibility of CZE partial fractionation of HAs has been demonstrated. The shape of "humic hump" was shown to depend on the pH of running electrolyte. Almost the whole peak overlapping occurred if alkaline solutions were used for fractionation, but the peak resolution was improved at pH 5-7. Under appropriate fractionation conditions (pH 7), at least three humic acid subfractions with different electrophoretic mobilities were distinguished in the electropherograms of initial HA and HA(s) fractions. Such a high peak resolution has never been achieved for humic acids before. The presence of three subfractions in the HA is in agreement with gel-filtration analysis and was confirmed by comparison of the electrophoretic behavior of HA(s) with those of its HMW (hydrophobic) and the LMW (hydrophilic) fractions. The potentiometric titration of HA and its fractions was performed and the pK(a) of the functional groups were calculated. An attempt was made for the first time to relate the variation of electrophoretic mobility values with acid-base properties of humic acids. It was shown that changes in the humate charge resulting from the variation of the ionization degree of its functional groups as a function of pH can be estimated on the basis of electrophoretic mobility values. Potential of CZE in estimation of HA isoelectric point was demonstrated. The pH value corresponding to the lowest absolute electrophoretic mobility value of about 20 x 10(-5) cm(2) V(-1) s(-1) can be used for approximate estimation of HA isoelectric point. The data were discussed and

  16. Immunomodulation by dietary long chain omega-3 fatty acids and the potential for adverse health outcomes.

    PubMed

    Fenton, Jenifer I; Hord, Norman G; Ghosh, Sanjoy; Gurzell, Eric A

    2013-01-01

    Recommendations to consume fish for prevention of cardiovascular disease (CVD), along with the U.S. Food and Drug Administration-approved generally recognized as safe (GRAS) status for long chain omega-3 fatty acids, may have had the unanticipated consequence of encouraging long-chain omega-3 (ω-3) fatty acid [(eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] supplementation and fortification practices. While there is evidence supporting a protective role for EPA/DHA supplementation in reducing sudden cardiac events, the safety and efficacy of supplementation with LCω-3PUFA in the context of other disease outcomes is unclear. Recent studies of bacterial, viral, and fungal infections in animal models of infectious disease demonstrate that LCω-3PUFA intake dampens immunity and alters pathogen clearance and can result in reduced survival. The same physiological properties of EPA/DHA that are responsible for the amelioration of inflammation associated with chronic cardiovascular pathology or autoimmune states, may impair pathogen clearance during acute infections by decreasing host resistance or interfere with tumor surveillance resulting in adverse health outcomes. Recent observations that high serum LCω-3PUFA levels are associated with higher risk of prostate cancer and atrial fibrillation raise concern for adverse outcomes. Given the widespread use of supplements and fortification of common food items with LCω-3PUFA, this review focuses on the immunomodulatory effects of the dietary LCω-3PUFAs, EPA and DHA, the mechanistic basis for potential negative health outcomes, and calls for biomarker development and validation as rational first steps towards setting recommended dietary intake levels.

  17. Immunomodulation by dietary long chain omega-3 fatty acids and the potential for adverse health outcomes.

    PubMed

    Fenton, Jenifer I; Hord, Norman G; Ghosh, Sanjoy; Gurzell, Eric A

    2013-01-01

    Recommendations to consume fish for prevention of cardiovascular disease (CVD), along with the U.S. Food and Drug Administration-approved generally recognized as safe (GRAS) status for long chain omega-3 fatty acids, may have had the unanticipated consequence of encouraging long-chain omega-3 (ω-3) fatty acid [(eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] supplementation and fortification practices. While there is evidence supporting a protective role for EPA/DHA supplementation in reducing sudden cardiac events, the safety and efficacy of supplementation with LCω-3PUFA in the context of other disease outcomes is unclear. Recent studies of bacterial, viral, and fungal infections in animal models of infectious disease demonstrate that LCω-3PUFA intake dampens immunity and alters pathogen clearance and can result in reduced survival. The same physiological properties of EPA/DHA that are responsible for the amelioration of inflammation associated with chronic cardiovascular pathology or autoimmune states, may impair pathogen clearance during acute infections by decreasing host resistance or interfere with tumor surveillance resulting in adverse health outcomes. Recent observations that high serum LCω-3PUFA levels are associated with higher risk of prostate cancer and atrial fibrillation raise concern for adverse outcomes. Given the widespread use of supplements and fortification of common food items with LCω-3PUFA, this review focuses on the immunomodulatory effects of the dietary LCω-3PUFAs, EPA and DHA, the mechanistic basis for potential negative health outcomes, and calls for biomarker development and validation as rational first steps towards setting recommended dietary intake levels. PMID:24183073

  18. Intestinal lactic acid bacteria from Muscovy duck as potential probiotics that alter adhesion factor gene expression.

    PubMed

    Xie, Z L; Bai, D P; Xie, L N; Zhang, W N; Huang, X H; Huang, Y F

    2015-10-09

    The purpose of this study was to assess the suitability of lactic acid bacteria (LABs) isolated from Muscovy duck as a potential probiotic. Isolates were identified by targeted polymerase chain reaction and assessed in vitro for probiotic characteristics such as autoaggregation; surface-charge; hydrophobicity; tolerance to acidic pH, bile salts and protease; and expression of genes involved in Caco-2 cell adhesion. The LAB isolates exhibited strong resistance to high bile concentration and acidic pH, produced lactic acid, and bacteriostatic (P < 0.05) were identified as bacilli compared with LAB isolates of cocci. Additionally, the LAB isolates showed high sensitivity to penicillin and tetracycline antibiotics, while they were resistant to ofloxacin, Macrodantin, and cotrimoxazole. The level of F-actin mRNA increased in the groups treated with CM3, Salmonella enterica, and CM3 + S. enterica (P < 0.0001, P < 0.05 and P < 0.05 ). The level of cell adhesion molecule (CAM) and E-cadherin (E-cad) mRNA expression was significantly lower in the treatment group (P < 0.05 for both) than in the control. The F-actin, CAM, and E-cad mRNA levels were significantly lower in the S. enterica and CM3 + S. enterica groups (P < 0.01) than in the CM3 group. Among these, RNA levels were higher in the CM3 + S. enterica than S. enterica group. These results indicate that the natural duck gut microflora is an excellent source for probiotic bacteria and can facilitate the establishment of criteria to select probiotic strains for the prevention of diarrhea.

  19. Estimation of dietary folic acid intake in three generations of females in Southern Spain.

    PubMed

    Monteagudo, C; Mariscal-Arcas, M; Palacin, A; Lopez, M; Lorenzo, M L; Olea-Serrano, F

    2013-08-01

    An adequate folic acid intake has been related to female fertility. The recommended intake of this vitamin was recently increased to 400μg/day, with an additional 200μg/day during pregnancy. The Mediterranean Diet includes sources of folate such as pulses, green-leaf vegetables, fruit, cereals, and dried fruits; other foods of interest are liver and blue fish. The objectives were to determine the foods that contribute most to folate intake and analyze the factors that influence their consumption by three generations in a female population (n=898; age, 10-75yrs) from Southern Spain: 230 adolescents (10-16yrs), 296 healthy pregnant women (19-45yrs), and 372 menopausal women (>45yrs). Participants completed a previously validated semi-quantitative food frequency questionnaire. Over 90% of their folate intake was supplied by cereals, fruit, natural juice, pulses, and cooked and raw vegetables. The mean (SD) daily intake of folate was 288.27(63.64) μg. A higher Mediterranean Diet Score (MDS) was significantly related to a greater folate intake. The daily folate intake was not significantly influenced by educational level, number of children, or place of residence (rural vs. urban). In logistic regression analysis, the factors related to an adequate folate intake (>2/3 of recommendations) were higher age, higher MDS, and lower BMI.

  20. Structural analysis and investigation of molecular properties of Cefpodoxime acid, a third generation antibiotic

    NASA Astrophysics Data System (ADS)

    Suganthi, S.; Balu, P.; Sathyanarayanamoorthi, V.; Kannappan, V.; Kamil, M. G. Mohamed; Kumar, R.

    2016-03-01

    Extensive quantum mechanical studies are carried out on Cefpodoxime acid (CA), a new generation drug by Hartree-Fock (HF) and B3LYP methods to understand the structural and spectral characteristics of the molecule. The most stable geometry of the molecule was optimized and the bond parameters were reported. The spectroscopic properties of this pharmaceutically important compound were investigated by FT-IR, FT-Raman, UV and 1H NMR techniques. The scaled vibrational frequencies of CA in the ground state are calculated by HF and B3LYP methods with 6-311++G (d, p) basis set and compared with the observed FT-IR and FT-Raman spectra. The vibrational spectral analysis indicates the presence of two intra molecular hydrogen bonds in the molecule which is supported by theoretical study. 1H NMR chemical shifts (δ) were calculated for the CA molecule and compared with the experimental values. The theoretical electronic absorption spectral data in water and ethanol solvents were computed by TD-DFT method. UV-Vis absorption spectra of CA are recorded in these two solvents and compared with theoretical spectra. The spectral data and natural bond orbital (NBO) analysis confirm the occurrence of intra molecular interactions in CA. The electronic distribution, in conjunction with electrophilicity index of CA was used to establish the active site and type of interaction between CA and beta lactamases. Mulliken population analysis on atomic charges is also carried out and thermodynamic properties of the title compound are calculated.

  1. Impaired generation of 12-hydroxylated bile acids links hepatic insulin signaling with dyslipidemia.

    PubMed

    Haeusler, Rebecca A; Pratt-Hyatt, Matthew; Welch, Carrie L; Klaassen, Curtis D; Accili, Domenico

    2012-01-01

    The association of type 2 diabetes with elevated plasma triglyceride (TG) and very low-density lipoproteins (VLDL), and intrahepatic lipid accumulation represents a pathophysiological enigma and an unmet therapeutic challenge. Here, we uncover a link between insulin action through FoxO1, bile acid (BA) composition, and altered lipid homeostasis that brings new insight to this longstanding conundrum. FoxO1 ablation brings about two signature lipid abnormalities of diabetes and the metabolic syndrome, elevated liver and plasma TG. These changes are associated with deficiency of 12α-hydroxylated BAs and their synthetic enzyme, Cyp8b1, that hinders the TG-lowering effects of the BA receptor, Fxr. Accordingly, pharmacological activation of Fxr with GW4064 overcomes the BA imbalance, restoring hepatic and plasma TG levels of FoxO1-deficient mice to normal levels. We propose that generation of 12α-hydroxylated products of BA metabolism represents a signaling mechanism linking hepatic lipid abnormalities with type 2 diabetes, and a treatment target for this condition.

  2. Potentiation of vasoconstriction and pressor response by low concentration of monomethylarsonous acid (MMA(III)).

    PubMed

    Lim, Kyung-Min; Shin, Yoo-Sun; Kang, Seojin; Noh, Ji-Yoon; Kim, Keunyoung; Chung, Seung-Min; Yun, Yeo-Pyo; Chung, Jin-Ho

    2011-09-10

    A close link between arsenic exposure and hypertension has been well-established through many epidemiological reports, yet the mechanism underlying it remains unclear. Here we report that nanomolar concentrations of monomethylarsonous acid (MMA(III)), a toxic trivalent methylated arsenic metabolite, can potentiate agonist-induced vasoconstriction and pressor responses. In freshly isolated rat aortic ring, exposure to nanomolar MMA(III) (100-500 nM) potentiated phenylephrine (PE)-induced vasoconstriction while at higher concentrations (≥2.5 μM), suppression of vasoconstriction and apoptosis of vascular smooth muscle were observed. Potentiation of agonist-induced vasoconstriction was also observed with other contractile agonists and it was retained in endothelium-denuded aortic rings, suggesting that these events are agonist-independent and smooth muscle cell dependent. Interestingly, exposure to MMA(III) resulted in increased myosin light chain phosphorylation while PE-induced Ca2+ influx was not affected, reflecting that Ca2+ sensitization is involved. In line with this, MMA(III) enhanced agonist-induced activation of small GTPase RhoA, a key contributor to Ca2+ sensitization. Of note, treatment of MMA(III) to rats induced significantly higher pressor responses in vivo, demonstrating that this event can occur in vivo indeed. We believe that RhoA-mediated Ca2+ sensitization and the resultant potentiation of vasoconstriction by MMA(III) may shed light on arsenic-associated hypertension.

  3. Potential of pulsed corona discharges generated in water for the degradation of persistent pharmaceutical residues.

    PubMed

    Banaschik, Robert; Lukes, Petr; Jablonowski, Helena; Hammer, Malte U; Weltmann, Klaus-Dieter; Kolb, Juergen F

    2015-11-01

    Anthropogenic pollutants and in particular pharmaceutical residues are a potential risk for potable water where they are found in increasing concentrations. Different environmental effects could already be linked to the presence of pharmaceuticals in surface waters even for low concentrations. Many pharmaceuticals withstand conventional water treatment technologies. Consequently, there is a need for new water purification techniques. Advanced oxidation processes (AOP), and especially plasmas with their ability to create reactive species directly in water, may offer a promising solution. We developed a plasma reactor with a coaxial geometry to generate large volume corona discharges directly in water and investigated the degradation of seven recalcitrant pharmaceuticals (carbamazepine, diatrizoate, diazepam, diclofenac, ibuprofen, 17α-ethinylestradiol, trimethoprim). For most substances we observed decomposition rates from 45% to 99% for treatment times of 15-66 min. Especially ethinylestradiol and diclofenac were readily decomposed. As an inherent advantage of the method, we found no acidification and only an insignificant increase in nitrate/nitrite concentrations below legal limits for the treatment. Studies on the basic plasma chemical processes for the model system of phenol showed that the degradation is primarily caused by hydroxyl radicals. PMID:26218466

  4. Potential of pulsed corona discharges generated in water for the degradation of persistent pharmaceutical residues.

    PubMed

    Banaschik, Robert; Lukes, Petr; Jablonowski, Helena; Hammer, Malte U; Weltmann, Klaus-Dieter; Kolb, Juergen F

    2015-11-01

    Anthropogenic pollutants and in particular pharmaceutical residues are a potential risk for potable water where they are found in increasing concentrations. Different environmental effects could already be linked to the presence of pharmaceuticals in surface waters even for low concentrations. Many pharmaceuticals withstand conventional water treatment technologies. Consequently, there is a need for new water purification techniques. Advanced oxidation processes (AOP), and especially plasmas with their ability to create reactive species directly in water, may offer a promising solution. We developed a plasma reactor with a coaxial geometry to generate large volume corona discharges directly in water and investigated the degradation of seven recalcitrant pharmaceuticals (carbamazepine, diatrizoate, diazepam, diclofenac, ibuprofen, 17α-ethinylestradiol, trimethoprim). For most substances we observed decomposition rates from 45% to 99% for treatment times of 15-66 min. Especially ethinylestradiol and diclofenac were readily decomposed. As an inherent advantage of the method, we found no acidification and only an insignificant increase in nitrate/nitrite concentrations below legal limits for the treatment. Studies on the basic plasma chemical processes for the model system of phenol showed that the degradation is primarily caused by hydroxyl radicals.

  5. Generation of available potential energy and the energy cycle during the global weather experiment

    NASA Technical Reports Server (NTRS)

    Salstein, D. A.; Rosen, R. D.

    1986-01-01

    Two major themes were pursued during this research period. The first of these involved examining the impacts of satellite-based data and the forecast model used by the Goddard Laboratory for Atmospheres (GLA) on general circulation statistics. For the other major topic, the diabatic heating fields produced by GLA were examined for one month during the FGGE First Special Observing Period. As part of that effort, the three-dimensional distribution of the four component heating fields were studied, namely those due to shortwave radiation, Q sub SW, longwave radiation, Q sub LW, sensible heating, Q sub S, and latent heating, Q sub L. These components were calculated as part of the GLA analysis/forecast system and archived every quarter day; from these archives cross products with temperature were computed to enable the direct calculation of certain terms of the large-scale atmospheric energy cycle, namely those involving the generation of available potential energy (APE). The decision to archive the diabatic heating components separately has enabled researchers to study the role of the various processes that drive the energy cycle of the atmosphere.

  6. The Interferometric Measurement of Phase Mismatch in Potential Second Harmonic Generators.

    NASA Astrophysics Data System (ADS)

    Sinofsky, Edward Lawrence

    This dissertation combines aspects of lasers, nonlinear optics and interferometry to measure the linear optical properties involved in phase matched second harmonic generation, (SHG). A new measuring technique has been developed to rapidly analyze the phase matching performance of potential SHGs. The data taken is in the form of interferograms produced by the self referencing nonlinear Fizeau interferometer (NLF), and correctly predicts when phase matched SHG will occur in the sample wedge. Data extracted from the interferograms produced by the NLF, allows us to predict both phase matching temperatures for noncritically phase matchable crystals and crystal orientation for angle tuned crystals. Phase matching measurements can be made for both Type I and Type II configurations. Phase mismatch measurements were made at the fundamental wavelength of 1.32 (mu)m, for: calcite, lithium niobate, and gadolinium molybdate (GMO). Similar measurements were made at 1.06 (mu)m. for calcite. Phase matched SHG was demonstrated in calcite, lithium niobate and KTP, while phase matching by temperature tuning is ruled out for GMO.

  7. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats

    SciTech Connect

    Krueger, Katharina Repges, Hendrik; Hippler, Joerg; Hartmann, Louise M.; Hirner, Alfred V.; Straub, Heidrun; Binding, Norbert; Musshoff, Ulrich

    2007-11-15

    In this study, the effects of pentavalent dimethylarsinic acid ((CH{sub 3}){sub 2}AsO(OH); DMA{sup V}) and trivalent dimethylarsinous acid ((CH{sub 3}){sub 2}As(OH); DMA{sup III}) on synaptic transmission generated by the excitatory Schaffer collateral-CA1 synapse were tested in hippocampal slices of young (14-21 day-old) and adult (2-4 month-old) rats. Both compounds were applied in concentrations of 1 to 100 {mu}mol/l. DMA{sup V} had no effect on the amplitudes of evoked fEPSPs or the induction of LTP recorded from the CA1 dendritic region either in adult or in young rats. However, application of DMA{sup III} significantly reduced the amplitudes of evoked fEPSPs in a concentration-dependent manner with a total depression following application of 100 {mu}mol/l DMA{sup III} in adult and 10 {mu}mol/l DMA{sup III} in young rats. Moreover, DMA{sup III} significantly affected the LTP-induction. Application of 10 {mu}mol/l DMA{sup III} resulted in a complete failure of the postsynaptic potentiation of the fEPSP amplitudes in slices taken both from adult and young rats. The depressant effect was not reversible after a 30-min washout of the DMA{sup III}. In slices of young rats, the depressant effects of DMA{sup III} were more pronounced than in those taken from adult ones. Compared to the (absent) effect of DMA{sup V} on synaptic transmission, the trivalent compound possesses a considerably higher neurotoxic potential.

  8. Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation

    SciTech Connect

    Hadley, Stanton W; Tsvetkova, Alexandra A

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic

  9. The potential of high heat generating granites as EGS source to generate power and reduce CO2 emissions, western Arabian shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Chandrasekharam, D.; Lashin, A.; Al Arifi, N.; Al Bassam, A.; El Alfy, M.; Ranjith, P. G.; Varun, C.; Singh, H. K.

    2015-12-01

    Saudi Arabia's dependence on oil and gas to generate electricity and to desalinate sea water is widely perceived to be economically and politically unsustainable. A recent business as usual simulation concluded that the Kingdom would become an oil importer by 2038. There is an opportunity for the country to over come this problem by using its geothermal energy resources. The heat flow and heat generation values of the granites spread over a cumulative area of 161,467 sq. km and the regional stress regime over the western Saudi Arabian shield strongly suggest that this entire area is potential source of energy to support 1) electricity generation, 2) fresh water generation through desalination and 3) extensive agricultural activity for the next two decades. The country can adopt a policy to harness this vast untapped enhanced geothermal systems (EGS) to mitigate climate and fresh water related issues and increase the quantity of oil for export. The country has inherent expertise to develop this resource.

  10. The biological role of a-ketoglutaric acid in physiological processes and its therapeutic potential.

    PubMed

    Grzesiak, Paulina; Słupecka-Ziemilska, Monika; Woliński, Jarosław

    2016-01-01

    In this article we present the results of recent studies on the mechanism of action and biological role of α-ketoglutaric acid (AKG) in animals including developmental period of life. AKG is an intermediate in the Krebs cycle, which generates energy for life processes. Administration of AKG has been shown to be beneficial for proper development and function of the skeletal system during growth of young organisms, as well as in adulthood. In the form of a dietary supplement it also contributes to inhibition of osteoporosis in women. Moreover, it promotes the growth of muscle mass and accelerates wound healing. AKG has a significant impact on the morphology of the gastrointestinal tract in healthy animals and animals with damaged gastrointestinal tract mucosa. It is also a promising substance for the treatment of patients with short bowel syndrome, as it stimulates beneficial changes in intestinal morphology. Recent research has also revealed that AKG has neuroprotective effects. PMID:27416627

  11. Structure and behaviour of the free radicals generated in gamma irradiated amino acid and iminodiacetic acid derivatives.

    PubMed

    Osmanoğlu, Semsettin; Aydın, Murat; Osmanoğlu, Y Emre; Dicle, I Yeşim; Başkan, M Halim

    2011-05-01

    An EPR study has been carried out to investigate the structure and behaviour of the free radical formed γ-irradiated l-alaninamide hydrochloride, dl-glutamic acid monohydrate and N-(2-carboxyethyl) iminodiacetic acid powders at room temperature. The observed paramagnetic species have been attributed to the CH(3)ĊHCONH(2), HOOCCH(2)CH(2)ĊHCOOH and HOOCCH(2)CH(2)NĊHCH(2)(COOH)(2) radicals, respectively. Some spectroscopic properties and suggestions concerning possible structure of the radicals were also discussed in this study. PMID:21393055

  12. Self potential generated by two-phase flow in a porous medium: Experimental study and volcanological applications

    SciTech Connect

    Antraygues, P.; Aubert, M.

    1993-12-01

    In order to characterize the relationships between self-potential generation and hydrothermal convection, laboratory measurements of electric potential and temperature are made along a vertical cylindrical column of porous material where a two-phase flow (wet steam) occurs. For steady state convection, the vertical distributions of vapor and water flow rates are calculated from thermal balance. At the initiation of convection, a positive electrical charge flux is related to the convective front. For isothermal and steady state columns, a positive electric potential gradient is observed along the vapor flow direction. These electric potentials are mainly a function of the vapor flow rates and of the medium permeability. A sudden and large increase in the vapor flow rate and in the volume fraction of vapor can induce a large and long-lived increase in the potential differences along the vapor flow direction. An electrokinetic effect related to the saturated vapor flow is the best candidate for this electric potential generation. The experimental resutls obtained in the present study are applied to self-potential generation in rising two-phase convective cells on active volcanoes. The observed positive self-potential anomalies close to active fissures depend on the electrical charge flux related to the upward saturated vapor flow. These results also demonstrate the value of self-potential monitoring in the early stages preceding a volcanic eruption.

  13. Potential Approach of Microbial Conversion to Develop New Antifungal Products of Omega-3 Fatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Omega-3/('-3) or n-3 fatty acids are a family of unsaturated fatty acids that have in common a final carbon-carbon double bond in the n-3 position. n-3 Fatty acids which are important in human nutrition are: a-linolenic acid (18:3, n-3; ALA), eicosapentaenoic acid (20:5, n-3; EPA), and docosahexaen...

  14. Phosphatidic acid phosphatase and diacylglycerol acyltransferase: potential targets for metabolic engineering of microorganism oil.

    PubMed

    Jin, Hong-Hao; Jiang, Jian-Guo

    2015-04-01

    Oleaginous microorganism is becoming one of the most promising oil feedstocks for biodiesel production due to its great advantages in triglyceride (TAG) accumulation. Previous studies have shown that de novo TAG biosynthesis can be divided into two parts: the fatty acid biosynthesis pathway (the upstream part which generates acyl-CoAs) and the glycerol-3-phosphate acylation pathway (the downstream part in which three acyl groups are sequentially added onto a glycerol backbone). This review mainly focuses on two enzymes in the G3P pathway, phosphatidic acid phosphatase (PAP) and diacylglycerol acyltransferase (DGAT). The former catalyzes a dephosphorylation reaction, and the latter catalyzes a subsequent acylation reaction. Genes, functional motifs, transmembrane domains, action mechanism, and new studies of the two enzymes are discussed in detail. Furthermore, this review also covers diacylglycerol kinase, an enzyme that catalyzes the reverse reaction of diacylglycerol formation. In addition, PAP and DGAT are the conjunction points of the G3P pathway, the Kennedy pathway, and the CDP-diacylglycerol pathway (CDP-DAG pathway), and the mutual transformation between TAGs and phospholipids is discussed as well. Given that both the Kennedy and CDP-diacylglycerol pathways are in metabolic interlock (MI) with the G3P pathway, it is suggested that, via metabolic engineering, TAG accumulation can be improved by the two pathways based on the pivotal function of PAP and DGAT.

  15. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests.

    PubMed

    Argyri, Anthoula A; Zoumpopoulou, Georgia; Karatzas, Kimon-Andreas G; Tsakalidou, Effie; Nychas, George-John E; Panagou, Efstathios Z; Tassou, Chrysoula C

    2013-04-01

    The present study aims to evaluate the probiotic potential of lactic acid bacteria (LAB) isolated from naturally fermented olives and select candidates to be used as probiotic starters for the improvement of the traditional fermentation process and the production of newly added value functional foods. Seventy one (71) lactic acid bacterial strains (17 Leuconostoc mesenteroides, 1 Ln. pseudomesenteroides, 13 Lactobacillus plantarum, 37 Lb. pentosus, 1 Lb. paraplantarum, and 2 Lb. paracasei subsp. paracasei) isolated from table olives were screened for their probiotic potential. Lb. rhamnosus GG and Lb. casei Shirota were used as reference strains. The in vitro tests included survival in simulated gastrointestinal tract conditions, antimicrobial activity (against Listeria monocytogenes, Salmonella Enteritidis, Escherichia coli O157:H7), Caco-2 surface adhesion, resistance to 9 antibiotics and haemolytic activity. Three (3) Lb. pentosus, 4 Lb. plantarum and 2 Lb. paracasei subsp. paracasei strains demonstrated the highest final population (>8 log cfu/ml) after 3 h of exposure at low pH. The majority of the tested strains were resistant to bile salts even after 4 h of exposure, while 5 Lb. plantarum and 7 Lb. pentosus strains exhibited partial bile salt hydrolase activity. None of the strains inhibited the growth of the pathogens tested. Variable efficiency to adhere to Caco-2 cells was observed. This was the same regarding strains' susceptibility towards different antibiotics. None of the strains exhibited β-haemolytic activity. As a whole, 4 strains of Lb. pentosus, 3 strains of Lb. plantarum and 2 strains of Lb. paracasei subsp. paracasei were found to possess desirable in vitro probiotic properties similar to or even better than the reference probiotic strains Lb. casei Shirota and Lb. rhamnosus GG. These strains are good candidates for further investigation both with in vivo studies to elucidate their potential health benefits and in olive fermentation processes

  16. Chemosensory response of marine flagellate towards L- and D- dissolved free amino acids generated during heavy grazing on bacteria.

    PubMed

    Ayo, Begoña; Txakartegi, Aitziber; Baña, Zuriñe; Artolozaga, Itxaso; Iriberri, Juan

    2010-09-01

    This study investigated the generation of dissolved free amino acids (DFAA) by the bacterivorous flagellate Rhynchomonas nasuta when feeding on abundant prey. Specifically, it examined whether this flagellate protist exhibits a chemosensory response towards those amino acids. The concentrations of glycine and the L- and D-enantiomers of glutamate, serine, threonine, alanine, and leucine were determined in co-cultures of the flagellate and bacteria. Glycine, L- and D-alanine, and L-serine were found to accumulate under these conditions in amounts that correlated positively with flagellate abundance, suggesting that protists are involved in their generation. Investigations of the chemotactic response of young and old foraging protists to the same amino acids, offered in concentrations similar to those previously generated, showed that glycine elicited the strongest attraction in both age groups. Young protists were strongly attracted to all the assayed amino acids, whereas older protists maintained a high level of attraction only for glycine. These results suggest that glycine generated by protists actively grazing in bacterially enriched patches functions as an infochemical, signaling to foraging protists the presence of available prey in the aquatic environment.

  17. Ling's Adsorption Theory as a Mechanism of Membrane Potential Generation Observed in Both Living and Nonliving Systems.

    PubMed

    Tamagawa, Hirohisa; Funatani, Makoto; Ikeda, Kota

    2016-01-26

    The