Science.gov

Sample records for acid h2so4 sulfuric

  1. An ab initio Study of the Crystalline Structure of Sulfuric Acid (H2SO4)- The Point Charge Model.

    DTIC Science & Technology

    1987-12-01

    2 ... 8 1.81. 5 111 .4 1111 . Pj LH~ H I Lp ’V. 1 4% % %4"~4 % 4’°" 111’, f LE AN AB INITIO STUDY OF THE CRYSTALLINE STRUCTURE OF SULFURIC ACID...first child .5 .5 4 S. S. S. ni-Ic A I’ J a ~-, ., I ,I/p - ~ ~SJ. ~ >4" h AN AB INITIO STUDY OF THE CRYSTALLINE STRUCTURE OF SULFURIC ACID (H2SO4)- THE

  2. Laboratory measurement of the millimeter wave properties of liquid sulfuric acid (H2SO4). [study of microwave emission from Venus

    NASA Technical Reports Server (NTRS)

    Fahd, Antoine K.; Steffes, Paul G.

    1991-01-01

    The methodology and the results of laboratory measurements of the millimeter wave properties of liquid sulfuric acid are presented. Measurements conducted at 30-40 and 90-100 GHz are reported, using different concentrations of liquid H2SO4. The measured data are used to compute the expected opacity of H2SO4 condensates and their effects on the millimeter wave emission from Venus. The cloud condensate is found to have an effect on the emission from Venus. The calculated decrease in brightness temperature is well below the observed decrease in brightness temperature found by de Pater et al. (1991). It is suggested that other constituents such as gaseous H2SO4 also affect the observed variation in the brightness temperature.

  3. Influences of temperature, H2SO4 concentration and Sn content on corrosion behaviors of PbSn alloy in sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Li, D. G.; Chen, D. R.; Wang, J. D.; Chen, H. S.

    2011-10-01

    The influences of temperature, H2SO4 concentration and Sn content on corrosion behaviors of PbSn alloys in sulfuric acid solution were investigated by potentiodynamic curve, cyclic voltammetry (CV), linear sweeping voltage (LSV), electrochemical impedance spectra (EIS), a.c. voltammetry (ACV) and Mott-Schottky analysis. The microstructure of the corrosion layer on PbSn alloy was analyzed by scanning electron microscopy (SEM). The results showed that the corrosion resistance of PbSn alloy increased with ascending Sn content and H2SO4 concentration, the increment of temperature can decrease the corrosion resistance of PbSn alloy in H2SO4 solution. The conductivity of the anodic film on PbSn alloy was enhanced with increasing temperature, ascending Sn content and descending H2SO4 concentration. SEM result revealed that the corrosion film after cyclic voltammetry was consisted of tetragonal crystal, the porosity enlarged with decreasing temperature, Sn content and H2SO4 concentration.

  4. Recovery of H2SO4 from waste acid solution by a diffusion dialysis method.

    PubMed

    Jeong, Jinki; Kim, Min-Seuk; Kim, Byung-Su; Kim, Soo-Kyung; Kim, Won-Baek; Lee, Jae-Chun

    2005-09-30

    A diffusion dialysis method using anion exchange membrane was used to recover H2SO4 from waste sulfuric acid solution produced at the diamond manufacturing process. Effects of flow rate, operation temperature, and metal ion concentration on the recovery of H2SO4 were investigated. The recovery of H2SO4 increased with the concentration of H2SO4 and operation temperature. It also increased with the flow rate ratio of water/H2SO4 solution up to 1, above which no further increase was observed. The flow rate did not affect the rejection of Fe and Ni ions. About 80% of H2SO4 could be recovered from waste sulfuric acid which contained 4.5M free-H2SO4 at the flow rate of 0.26x10(-3) m3/hm3. The concentration of recovered H2SO4 was 4.3M and the total impurity was 2000 ppm. Preliminary economic evaluation has revealed that the dialysis system is highly attractive one that has payback period of only few months.

  5. Recovery of H2SO4 from an acid leach solution by diffusion dialysis.

    PubMed

    Wei, Chang; Li, Xingbin; Deng, Zhigan; Fan, Gang; Li, Minting; Li, Cunxiong

    2010-04-15

    Diffusion dialysis with a series of anion exchange membranes was used to recover H(2)SO(4) from an acid leach solution produced during the vanadium manufacturing process. The effects of sulfuric acid, FeSO(4) and VOSO(4) concentration, flow rate and flow rate ratio on the recovery of H(2)SO(4) were investigated. The results showed that sulfuric acid permeated well through the membranes used, while metal ions were efficiently rejected. The recovery of H(2)SO(4) increased as the sulfate concentration of the feed increased and the flow rate ratio of water to feed increased. More than 80% of the H(2)SO(4) could be recovered from the leach solution which contained 61.7 g/L free H(2)SO(4), 11.2 g/L Fe and 4.60 g/L V at a flow rate of 0.19x10(-3) m(3)/h m(2). V and Fe ion rejection were within 93-95 and 92-94%, respectively. A preliminary economic evaluation revealed that an investment in this process could be recovered within 27 months.

  6. H2SO4 photolysis: A souce of sulfur dioxide in the upper stratosphere

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Gunson, M. R.; Ko, M. K. W.; Weisenstein, D. W.; Zander, R.; Abrams, M. C.; Goldman, A.; Sze, N. D.; Yue, G. K.

    1995-01-01

    Numerous absoption lines of stratospheric sulfer dioxide (SO2) were identified in solar occulation spectra recorded by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer during the Atmospheric Laboratory for Applications and Science (ATLAS)-1 shuttle mission (March 24-April 2, 1992). based on their analysis, a volume mixing ratio profile of SO2 increasing from (13 +/- 4) p.p.t.v. (parts per 10(exp -12) by volume) at 16 mbar (approximately 28 km) to 455 +/- 90 p.p.t.v. at 0.63 mbar (approximately 52 km) was measured with no significant profile differences between 20 deg N and 60 deg S latitude. The increase in the SO2 mixing ratios with altitude indicates the presence of a source of SO2 in the upper stratosphere. Profiles retrieved from ATMOS spectra recorded during shuttle flights in April-May 1985 and April 1993 show similar vertical distributions but lower concentrations. Two-dimensional model calculations with SO2 assumed as the end product of H2SO4 photolysis produce SO2 profiles consistent with the ATMOS measuremnts to within about a factor 2.

  7. Interactions of methylamine and ammonia with atmospheric nucleation precursor H2SO4 and common organic acids: Thermodynamics and atmospheric implications

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Nadykto, A. B.; Jiang, L.; Bai, Z.

    2016-06-01

    Interactions of the two common atmospheric bases, ammonia (NH3) and methylamine MA (CH3NH2), which are considered to be important stabilizers of binary clusters in the Earth's atmosphere, with H2SO4, the key atmospheric precursor, and 14 common atmospheric organic acids (COA) (formic (CH2O2), acetic (C2H4O2), oxalic (C2H2O4), malonic (C3H4O4), succinic (C4H6O4), glutaric acid (C5H8O4), adipic (C6H10O4), benzoic (C6H5COOH), phenylacetic (C6H5CH2COOH), pyruvic (C3H4O3), maleic acid (C4H4O4), malic (C4H6O5), tartaric (C4H6O6) and pinonic acid (C10H16O3)) have been studied using the composite high-accuracy G3MP2 method. The thermodynamic stability of mixed (COA) (H2SO4), (COA)(B1) and (COA)(B2) dimers and (COA) (H2SO4) (B1) and (COA) (H2SO4) (B1) trimers, where B1 and B2 represent methylamine (CH3NH2) and ammonia (NH3), respectively, have been investigated and their impacts on the thermodynamic stability of clusters containing H2SO4 have been analyzed. It has been shown that in many cases the interactions of H2SO4 with COA, ammonia and methylamine lead to the formation of heteromolecular dimers and trimers, which are certainly more stable than (H2SO4)2 and (H2SO4)3. It has also been found that free energies of (COA) (H2SO4)+ CH3NH2⇔(COA) (H2SO4)(CH3NH2) reactions exceed 10-15 kcal mol-1. This is a clear indication that mixed trimers composed of COA, H2SO4 and methylamine are very stable and can thus serve as possible nucleation sites. The present study leads us to conclude that the interactions of COA coexisting with H2SO4 and common atmospheric bases in the Earth's atmosphere may be an important factor affecting the stability of nucleating sulfuric acid clusters and that the impacts of COA on atmospheric nucleation should be studied in further details.

  8. Gaseous (DMS, MSA, SO2, H2SO4 and DMSO) and particulate (sulfate and methanesulfonate) sulfur species over the northeastern coast of Crete

    NASA Astrophysics Data System (ADS)

    Bardouki, H.; Berresheim, H.; Vrekoussis, M.; Sciare, J.; Kouvarakis, G.; Oikonomou, K.; Schneider, J.; Mihalopoulos, N.

    2003-07-01

    A detailed study of the levels, the temporal and diurnal variability of the main compounds involved in the biogenic sulfur cycle was carried out in Crete (Eastern Mediterranean) during the Mediterranean Intensive Oxidant Study (MINOS) field experiment in July-August 2001. Intensive measurements of gaseous dimethylsulfide (DMS), dimethylsulfoxide (DMSO), sulfur dioxide (SO2), sulfuric (H2SO4) and methanesulfonic acids (MSA) and particulate sulfate (SO42-) and methanesulfonate (MS-) have been performed during the campaign. Dimethylsulfide (DMS) levels ranged from 2.9 to 136 pmol · mol-1 (mean value of 21.7 pmol · mol-1) and showed a clear diurnal variation with daytime maximum. During nighttime DMS levels fall close or below the detection limit of 2 pmol ·mol-1. Concurrent measurements of OH and NO3 radicals during the campaign indicate that NO3 levels can explain most of the observed diurnal variation of DMS. Dimethylsulfoxide (DMSO) ranged between 0.02 and 10.1 pmol · mol-1 (mean value of 1.7 pmol · mol-1) and presents a diurnal variation similar to that of DMS. SO2 levels ranged from 220 to 2970 pmol · mol-1 (mean value of 1030 pmol · mol-1), while nss-SO42- and MS- ranged from 330 to 7100 pmol · mol-1, (mean value of 1440 pmol · mol-1) and 1.1 to 37.5 pmol · mol- (mean value of 11.5 pmol · mol-1) respectively. Of particular interest are the measurements of gaseous MSA and H2SO4. MSA ranged from below the detection limit (3×104) to 3.7×107 molecules cm-3, whereas H2SO4 ranged between 1×105 and 9.0×107 molecules cm-3. The measured H2SO4 maxima are among the highest reported in literature and can be attributed to high insolation, absence of precipitation and increased SO2 levels in the area. From the concurrent SO2, OH, and H2SO4 measurements a sticking coefficient of 0.52±0.28 was calculated for H2SO4. From the concurrent MSA, OH, and DMS measurements the yield of gaseous MSA from the OH-initiated oxidation of DMS was calculated to range between 0

  9. Gaseous (DMS, MSA, SO2, H2SO4 and DMSO) and particulate (sulfate and methanesulfonate) sulfur species over the northeastern coast of Crete

    NASA Astrophysics Data System (ADS)

    Bardouki, H.; Berresheim, H.; Vrekoussis, M.; Sciare, J.; Kouvarakis, G.; Oikonomou, K.; Schneider, J.; Mihalopoulos, N.

    2003-10-01

    A detailed study of the levels, the temporal and diurnal variability of the main compounds involved in the biogenic sulfur cycle was carried out in Crete (Eastern Mediterranean) during the Mediterranean Intensive Oxidant Study (MINOS) field experiment in July-August 2001. Intensive measurements of gaseous dimethylsulfide (DMS), dimethylsulfoxide (DMSO), sulfur dioxide (SO2), sulfuric (H2SO4) and methanesulfonic acids (MSA) and particulate sulfate (SO42-) and methanesulfonate (MS-) have been performed during the campaign. Dimethylsulfide (DMS) levels ranged from 2.9 to 136 pmol·mol-1 (mean value of 21.7 pmol·mol-1) and showed a clear diurnal variation with daytime maximum. During nighttime DMS levels fall close or below the detection limit of 2 pmol·mol-1. Concurrent measurements of OH and NO3 radicals during the campaign indicate that NO3 levels can explain most of the observed diurnal variation of DMS. Dimethylsulfoxide (DMSO) ranged between 0.02 and 10.1 pmol·mol-1 (mean value of 1.7 pmol·mol-1) and presents a diurnal variation similar to that of DMS. SO2 levels ranged from 220 to 2970 pmol·mol-1 (mean value of 1030 pmol·mol-1), while nss-SO42- and MS- ranged from 330 to 7100 pmol·mol-1, (mean value of 1440 pmol·mol-1) and 1.1 to 37.5 pmol·mol-1 (mean value of 11.5 pmol·mol-1) respectively. Of particular interest are the measurements of gaseous MSA and H2SO4. MSA ranged from below the detection limit (3x104) to 3.7x107 molecules cm-3, whereas H2SO4 ranged between 1x105 and 9.0x107 molecules cm-3. The measured H2SO4 maxima are among the highest reported in literature and can be attributed to high insolation, absence of precipitation and increased SO2 levels in the area. From the concurrent SO2, OH, and H2SO4 measurements a sticking coefficient of 0.52±0.28 was calculated for H2SO4. From the concurrent MSA, OH, and DMS measurements the yield of gaseous MSA from the OH-initiated oxidation of DMS was calculated to range between 0.1-0.4%. This low MSA

  10. Influence of H 2SO 4 concentration on lead-acid battery performance . H-type and P-type batteries

    NASA Astrophysics Data System (ADS)

    Pavlov, D.; Naidenov, V.; Ruevski, S.

    With commercialization of the VRLA battery design the H 2SO 4 concentration of the electrolyte filled in the battery has increased to over 1.30 g cm -3. On the other hand, it has been established that the electrochemical activity of PbO 2 depends on the concentration of H 2SO 4, the highest activity being achieved in solutions with concentrations from 1.10 to 1.28 s.g. H 2SO 4. At CH2SO4 > 1.29 g c m-3 , the PbO 2/PbSO 4 electrode gets partially passivated. The present investigation determines the initial capacity performance and the changes in battery capacity on cycling of 12 V/32 A h batteries with six different electrolyte concentrations between 1.15 and 1.33 s.g. H 2SO 4. The batteries are cycled with two discharge currents, 3.2 and 8 A. The utilization of PAM is 50% against 37% NAM utilization. The utilization of H 2SO 4H2SO4) varies between 38 and 88%, depending on the concentration of H 2SO 4 in the electrolyte (CH2SO4). At CH2SO4 = 1.24 g c m-3 , ηH2SO4 ≈ ηPAM . At CH2SO4 < 1.24 s .g . , the H 2SO 4 concentration limits the capacity of the battery (H-region of H 2SO 4 concentrations), whereas at CH2SO4 > 1.24 s .g . , the capacity of the battery is limited by PAM (P-region). It has been established that in the P-region of H 2SO 4 concentrations, the initial capacity of the battery is higher than the rated value (C 0), but the life of the battery is short (maximum 100 cycles). In the H-region of H 2SO 4 concentrations, the initial capacity is lower than C 0, but the cycle life is considerably longer than 100 cycles and depends on the discharge current and the H 2SO 4 concentration. The voltage of charged cells on open circuit declines with decrease in H 2SO 4 concentration, which allows charging of batteries at lower voltages, as is the case with IT batteries, and reversible sulfation of the plates is avoided as well. The obtained results of the present investigation suggest that lead-acid batteries can be divided in two types depending on the

  11. Influence of H 2SO 4 concentration on the performance of lead-acid battery negative plates

    NASA Astrophysics Data System (ADS)

    Pavlov, D.; Petkova, G.; Rogachev, T.

    The influence of sulfuric acid concentration on negative plate performance has been studied on 12 V/32 Ah lead-acid batteries with three negative and four positive plates per cell, i.e. the negative active material limits battery capacity. Initial capacity tests, including C20 capacity, cold cranking ability and Peukert tests, have been carried out in a wide range of sulfuric acid concentrations (from 1.18 to 1.33 sp.gr.). High initial capacity and good CCA performance were registered for batteries with acid concentration between 1.24 and 1.30 sp.gr. The charge acceptance depends on acid concentration as well as on battery state of charge. Batteries with high SoC exhibit high charge acceptance at low acid concentrations. The cycle life tests at two discharge rates (10 and 3 h discharge) evidence that sulfuric acid concentration exerts a strong effect on negative plate performance. The cycle life of batteries decreases with increase of acid concentration. The obtained results demonstrate the high impact of lead sulfate solubility on the cycle life and charge efficiency of lead-acid batteries.

  12. A Study on the Passivation Behavior and Semiconducting Properties of Gamma Titanium Aluminide in 0.1 N H2SO4, HNO3, and HClO4 Acidic Solutions

    NASA Astrophysics Data System (ADS)

    Memarbashi, S.; Saebnoori, E.; Shahrabi, T.

    2014-03-01

    The study focuses on the passivation behavior of single-gamma-phase titanium aluminide in acidic solutions with a particular emphasis on the role of oxidizing strength in characteristics of passive layer. The report includes potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies along with Mott-Schottky analysis in order to determine the corrosion behavior of the alloy and the semiconducting properties of the scale formed during exposure to acidic environment. Passive current density measured from potentiodynamic polarization curve, polarization resistance ( R p) estimated by EIS, defect density, and flatband potential drawn from Mott-Schottky analysis are mainly used in estimating the ability of passive film formed on alloy in protecting it against high corrosion rates in Sulfuric acid (a non-oxidizing acid), perchloric acid, and nitric acid (oxidizing acid with different oxidizing strength). The results show that passive current density ( i pass) in Sulfuric acid is 2.67 × 10-5 A cm-2, which is 2.5 and 3 times greater than the values obtained in perchloric acid ( i pass = 9.91 × 10-6) and nitric acid ( i pass = 7.98 × 10-6), respectively. EIS data reveal that the value of R p in sulfuric acid (20 kΩ cm2) is about three and five times smaller than that its value in perchloric acid and Nitric acid, respectively. Mott-Schottky analysis shows that the passive layer exhibits an n-type semiconducting characteristics irrespective of acidic environment. The greatest and the smallest values of donor density ( N D) are obtained for the passive scale formed in sulfuric acid ( N D, H2SO4 = 18.36 × 1019) and nitric acid ( N D, HNO3 = 13.13 × 1019), respectively. The report concludes that characteristics of the passive scale are directly affected by reduction potential of the acid, which is the criterion of its oxidizing strength. An increase in the oxidizing strength of the acidic solution results in formation of more protective and less

  13. Behavior of OH, H2SO4, and MSA during PASE

    NASA Astrophysics Data System (ADS)

    Mauldin, L.; Kosciuch, E.; Cantrell, C.; Anderson, R.

    2008-12-01

    The role of aerosols in climatic feedback and oxidation chemistry has gained appreciation with the recognition of climate change. Key in the formation and growth of aerosols are hydroxyl radical (OH) and sulfuric acid (H2SO4). To a lesser extent methane sulfonic acid (MSA) is known to participate in particle growth. The Pacific Atmospheric Sulfur Experiment (PASE) was conducted out of Christmas Island, Kiribati during Aug-Sept 2006, with an overall goal of studying DMS oxidation. Here airborne results of OH, H2SO4, and MSA are presented. Typical midday OH concentrations were on the order of 2-3 x 106 molecule cm-3. Both H2SO4 and MSA concentrations showed a strong dependence upon relative humidity. These species will be discussed in terms of partitioning between the gas and particle phases, and in terms of particle neutralization.

  14. Computational study of hydrogen-bonded complexes of HOCO with acids: HOCO⋯HCOOH, HOCO⋯H2SO4, and HOCO⋯H2CO3

    NASA Astrophysics Data System (ADS)

    Hazra, Montu K.; Francisco, Joseph S.; Sinha, Amitabha

    2012-08-01

    Quantum chemistry calculations at the density functional theory (DFT) (B3LYP), MP2, QCISD, QCISD(T), and CCSD(T) levels in conjunction with 6-311++G(2d,2p) and 6-311++G(2df,2p) basis sets have been performed to explore the binding energies of open-shell hydrogen bonded complexes formed between the HOCO radical (both cis-HOCO and trans-HOCO) and trans-HCOOH (formic acid), H2SO4 (sulfuric acid), and cis-cis-H2CO3 (carbonic acid). Calculations at the CCSD(T)/6-311++G(2df,2p) level predict that these open-shell complexes have relatively large binding energies ranging between 9.4 to 13.5 kcal/mol and that cis-HOCO (cH) binds more strongly compared to trans-HOCO in these complexes. The zero-point-energy-corrected binding strengths of the cH⋯Acid complexes are comparable to that of the formic acid homodimer complex (˜13-14 kcal/mol). Infrared fundamental frequencies and intensities of the complexes are computed within the harmonic approximation. Infrared spectroscopy is suggested as a potential useful tool for detection of these HOCO⋯Acid complexes in the laboratory as well as in various planetary atmospheres since complex formation is found to induce large frequency shifts and intensity enhancement of the H-bonded OH stretching fundamental relative to that of the corresponding parent monomers. Finally, the ability of an acid molecule such as formic acid to catalyze the inter-conversion between the cis- and trans-HOCO isomers in the gas phase is also discussed.

  15. Upper limits for H 2SO 4 in the mesosphere of Venus

    NASA Astrophysics Data System (ADS)

    Sandor, Brad J.; Clancy, R. Todd; Moriarty-Schieven, Gerald

    2012-02-01

    Rapid temporal variability of SO 2 and SO in the Venus 85-100 km mesosphere ( Sandor, B.J., Clancy, R.T., Moriarty-Schieven G.H. [2007]. Bull. Am. Astron. Soc. 39, 503; Sandor, B.J., Clancy, R.T., Moriarty-Schieven, G.H., Mills, F.P. [2010]. Icarus 208, 49-60) requires in situ sources and sinks for these molecules. While many loss mechanisms are recognized, no process for in situ production is known. Observational investigations to find, or constrain other potential sulfur reservoirs offer one method toward understanding the applicable photochemistry. Here, we report upper limits for gas-phase H 2SO 4 (sulfuric acid) abundances in Venus' 85-100 km upper mesosphere, derived from 16 ground-based sub-mm spectroscopic observations in the period 2004-2008. Unlike the ubiquitous sulfuric acid solid/liquid aerosol, the gas phase would be photochemically active, potentially both source and sink for SO and SO 2. H 2SO 4 is retrieved from sub-mm lines located in the same bandpass as the SO 2 and SO lines described by Sandor et al. (Sandor, B.J., Clancy, R.T., Moriarty-Schieven, G.H., Mills, F.P. [2010]. Icarus 208, 49-60). H 2SO 4 upper limits reported here are thus simultaneous and spatially coincident with measurements of SO 2 and SO, providing for analysis of the three sulfur species collectively. The average H 2SO 4 abundance over 16 observations is 1 ± 2 ppb (i.e. <3 ppb). Upper limits for individual observations range from 3 to 44 ppb, where quality of the observing weather is the dominant constraint on measurement precision. The sum of H 2SO 4, SO 2 and SO varies widely. In one comparison, the sum [H 2SO 4 + SO 2 + SO] measured on one date differs by 10- σ from the sum measured 2 months later. We conclude that upper mesospheric sulfur atoms are not conserved among the three molecules, that H 2SO 4 is not a significant sulfur reservoir for balancing the observed variations of [SO 2 + SO], and is not relevant to the (still unknown) photochemistry responsible for

  16. A New Parameterization of H2SO4/H2O Aerosol Composition: Atmospheric Implications

    NASA Technical Reports Server (NTRS)

    Tabazadeh, Azadeh; Toon, Owen B.; Clegg, Simon L.; Hamill, Patrick

    1997-01-01

    Recent results from a thermodynamic model of aqueous sulfuric acid are used to derive a new parameterization for the variation of sulfuric acid aerosol composition with temperature and relative humidity. This formulation is valid for relative humidities above 1 % in the temperature range of 185 to 260 K. An expression for calculating the vapor pressure of supercooled liquid water, consistent with the sulfuric acid model, is also presented. We show that the Steele and Hamill [1981] formulation underestimates the water partial pressure over aqueous H2SOI solutions by up to 12% at low temperatures. This difference results in a corresponding underestimate of the H2SO4 concentration in the aerosol by about 6 % of the weight percent at approximately 190 K. In addition, the relation commonly used for estimating the vapor pressure of H2O over supercooled liquid water differs by up to 10 % from our derived expression. The combined error can result in a 20 % underestimation of water activity over a H2SO4 solution droplet in the stratosphere, which has implications for the parameterization of heterogeneous reaction rates in stratospheric sulfuric acid aerosols. The influence of aerosol composition on the rate of homogeneous ice nucleation from a H2SO4 solution droplet is also discussed. This parameterization can also be used for homogeneous gas phase nucleation calculations of H2SO4 solution droplets under various environmental conditions such as in aircraft exhaust or in volcanic plumes.

  17. The role of stabilised Criegee intermediate in gas phase H2SO4 formation

    NASA Astrophysics Data System (ADS)

    Novelli, A.; Hens, K.; Kubistin, D.; Tatum Ernest, C.; Trawny, K.; Rudolf, M.; Auld, J.; Axinte, R.; Hosaynali Beygi, Z.; Nölscher, A.; Paasonen, P.; Sipilä, M.; Keronen, P.; Petdjd, T. T.; Adame, J.; Elste, T.; Werner, A.; Englert, J.; Plass-Duelmer, C.; Fischer, H.; Williams, J.; Vereecken, L.; Martinez, M.; Lelieveld, J.; Harder, H. D.

    2012-12-01

    Sulfuric acid in the gas phase plays a central role in new particle formation and in particle growth. Fine particles directly affect human health via inhalation and have an important impact on climate. In the gas phase, sulfuric acid is known to be formed from the oxidation of SO2 by the OH radical in the presence of oxygen and water. In the last decade, new measurements of OH and H2SO4 have shown relatively high concentrations of H2SO4 during nighttime when the corresponding concentration of OH radicals was too low to explain such high concentrations of sulfuric acid. New laboratory experiments, in addition to theoretical studies, have shown that a possible candidate for the oxidation of SO2 is Stabilized Criegee Intermediates (SCIs) arising from the ozonolysis of alkenes. The rate coefficient for the reaction of CH2OO + SO2 has been measured at 3.9 x 10-11 cm3 molecule-1 s-1 indicating a probable competing role for the SCI in the production of sulfuric acid. Measurements of a fraction of atmospheric SCIs with laser-induced fluorescence (LIF) have been made using a chemical subtraction method both in the laboratory and in the field. The SCIs undergo unimolecular decomposition at low pressure inside the instrument forming OH that is then detected. Model results and laboratory tests confirm our findings. This new instrumental setup has been used in several environments including Finland (HUMPPA-COPEC), Spain (DOMINO HOx) and Germany (HOPE 2012) revealing a unique SCI signal strongly influenced by different kinds of vegetation and meteorological conditions. Results from the HUMPPA campaign show a missing H2SO4 production after taking into account the contribution of the OH radical. The SCIs signal measured with our instrument shows a good correlation with this missing production confirming the important role of the SCI in the oxidation of SO2 and in the formation of sulfuric acid. Using the missing H2SO4 production rate together with the rate coefficient for the

  18. Berberine as a natural source inhibitor for mild steel in 1 M H 2SO 4

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zhao, Peng; Liang, Qiang; Hou, Baorong

    2005-12-01

    Berberine was abstracted from coptis chinensis and its inhibition efficiency on corrosion of mild steel in 1 M H 2SO 4 was investigated through weight loss experiment, electrochemical techniques and scanning electronic microscope (SEM) with energy disperse spectrometer (EDS). The weight loss results showed that berberine is an excellent corrosion inhibitor for mild steel immersed in 1 M H 2SO 4. Potentiodynamic curves suggested that berberine suppressed both cathodic and anodic processes for its concentrations higher than 1.0 × 10 -4 M and mainly cathodic reaction was suppressed for lower concentrations. The Nyquist diagrams of impedance for mild steel in 1 M H 2SO 4 containing berberine with different concentrations showed one capacitive loop, and the polarization resistance increased with the inhibitor concentration rising. A good fit to Flory-Huggins isotherm was obtained between surface coverage degree and inhibitor concentration. The surface morphology and EDS analysis for mild steel specimens in sulfuric acid in the absence and presence of the inhibitor also proved the results obtained by the weight loss and electrochemical experiments. The correlation of inhibition effect and molecular structure of berberine was then discussed by quantum chemistry study.

  19. A 220-year continuous record of volcanic H2SO4 in the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Legrand, M.; Delmas, R. J.

    1987-06-01

    Continuous H2SO4 profiles observed in snow from several Antarctic locations reveal four major volcanic events of the past two centuries (Agung, Krakatoa, Tambora and another large-scale event not recorded historically). Acid deposition and interhemispheric distribution mechanisms are quantified and then used to obtain an order of magnitude estimate for the H2SO4 emissions from these eruptions.

  20. Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization.

    PubMed

    Schwirn, Kathrin; Lee, Woo; Hillebrand, Reinald; Steinhart, Martin; Nielsch, Kornelius; Gösele, Ulrich

    2008-02-01

    The self-ordering of nanoporous anodic aluminum oxide (AAO) in the course of the hard anodization (HA) of aluminum in sulfuric acid (H2SO4) solutions at anodization voltages ranging from 27 to 80 V was investigated. Direct H2SO4-HA yielded AAOs with hexagonal pore arrays having interpore distances D(int) ranging from 72 to 145 nm. However, the AAOs were mechanically unstable and cracks formed along the cell boundaries. Therefore, we modified the anodization procedure previously employed for oxalic acid HA (H2C2O4-HA) to suppress the development of cracks and to fabricate mechanically robust AAO films with D(int) values ranging from 78 to 114 nm. Image analyses based on scanning electron micrographs revealed that at a given anodization voltage the self-ordering of nanopores as well as D(int) depend on the current density (i.e., the electric field strength at the bottoms of the pores). Moreover, periodic oscillations of the pore diameter formed at anodization voltages in the range from 27 to 32 V, which are reminiscent of structures originating from the spontaneous growth of periodic fluctuations, such as topologies resulting from Rayleigh instabilities.

  1. Separation of H(2)SO(4) + CuSO(4) mixture by diffusion dialysis.

    PubMed

    Palatý, Z; Záková, A

    2004-10-18

    Diffusion dialysis of aqueous solution of H(2)SO(4) + CuSO(4) has been investigated in a two-compartment cell with an anion-exchange membrane Neosepta-AFN. The experiments have proved that sulfuric acid permeates well through the membrane used, while cupric sulfate is efficiently rejected. This operation is very effective at high acid concentrations and low concentrations of cupric sulfate. Furthermore, it has been found that even at the highest concentration of CuSO(4), the rejection coefficient is higher than 0.965. The flux of CuSO(4) calculated from the time dependences of the CuSO(4) concentration is negatively influenced by increasing acid concentration.

  2. Modeling impacts of NH3 on uptake of H2SO4 by charged nucleating nanoparticles in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Nadykto, A. B.; Nazarenko, K. M.; Markov, P. N.; Yu, F.

    2016-06-01

    The understanding of the role of ammonia, a well-known stabilizer of binary sulfuric acid-water clusters, in the gas-to-nanoparticle conversion in the Earth atmosphere is critically important for the assessment of aerosol radiative forcing associated with the climate changes. The sulfuric acid H2SO4 is present in the atmosphere in the form of the gas-phase hydrates (H2SO4)(H2O)n, whose interaction with NH3 leads to the formation of more stable bisulfate clusters (NH3)(H2SO4)(H2O)n. Although the impact of NH3 on the thermochemical stability of binary clusters nucleating homogeneously has been studied in some detail in the past, the effect of ammonia on other microphysical properties relevant to nucleation remains insufficiently well understood. In the present study, the effect of ammonia on the electrical dipole moment controlling the nucleation of airborne ions via the dipole-charge interaction has been investigated using the Density Functional Theory (DFT), ab initio MP2 and model chemistry G3 methods. The presence of ammonia in (H2SO4)(H2O)n is found to lead to very large enhancement in the dipole moment, which exceeds 2.0-2.5 Debyes (˜60-80%), 3.7-5.0 Debyes (˜90-180%), 1.4-4.5 Debyes (˜50-150%) and 2.1-5.5 Debyes (˜60-700%) for n = 0, n = 1, n = 2 and n = 3, respectively. The implications of this include the significantly increased uptake of the sulfuric acid, the key atmospheric nucleation precursor, by airborne ions and neutrals (due to dipole-dipole interaction), enhanced nucleation rates and the elevated production of ultrafine particles, which cause adverse health impacts.

  3. Updated H2SO4-H2O binary homogeneous nucleation look-up tables

    NASA Astrophysics Data System (ADS)

    Yu, Fangqun

    2008-12-01

    The calculated rates of H2SO4-H2O binary homogeneous nucleation (BHN), which is the only nucleation mechanism currently widely used in global aerosol models, are well known to have large uncertainties. Recently, we have reduced the uncertainties in the BHN rates on the basis of a kinetic quasi-unary nucleation (KQUN) model, by taking into account the measured bonding energetics of H2SO4 monomers with hydrated sulfuric acid dimers and trimers. The uncertainties were further reduced by using two independent measurements to constrain the equilibrium constants for monomer hydration. In this paper, we present updated BHN rate look-up tables derived from the improved KQUN model which can be used by anyone to obtain the BHN rates under given conditions. The look-up tables cover a wide range of key parameters that can be found in the atmosphere and laboratory studies, and their usage significantly reduces the computational costs of the BHN rate calculations, which is critical for multidimensional modeling. The look-up tables can also be used by those involved in experiments and field measurements to quickly assess the likeliness of BHN. For quick application, one can obtain the BHN rates and properties of critical clusters by browsing through the tables. A comparison of results based on the look-up tables with those from widely used classical BHN model indicates that, in addition to several orders of magnitude difference in nucleation rates, there also exists substantial difference in the predicted numbers of sulfuric acid molecules in the critical clusters and their dependence on key parameters.

  4. Method for determining H2SO4 in automobile exhaust.

    PubMed

    Kipp, K L; Rhodes, D R

    1975-04-01

    A relatively simple procedure for measuring H2SO4 in auto exhaust will be presented. The system is compatible with the Federal constant volume sampler (CVS unit). The time required to get sufficient sample for titration is 15-30 min. Values on sulfates in exhaust with a catalyst car and a noncatalyst car agree well with literature data obtained by dilution tube and filtration techniques.

  5. Meteoric smoke and H2SO4 aerosols in the upper stratosphere and mesosphere

    NASA Astrophysics Data System (ADS)

    Hervig, Mark E.; Bardeen, Charles G.; Siskind, David E.; Mills, Michael J.; Stockwell, Robert

    2017-01-01

    Meteoric smoke has traditionally been understood as a passive tracer which follows the global mesospheric circulation. Smoke extinction measured by the Solar Occultation For Ice Experiment, however, shows that while this is true in the middle to upper mesosphere (pressure < 0.2 hPa), it is not true near the stratopause. Here the expected winter increase begins 3 months earlier than in models. We suggest that the autumn extinction increase is due to H2SO4 condensing above the nominal stratospheric aerosol layer ( 5 hPa). This is possible due to lowering of the H2SO4 saturation vapor pressure when the acid is neutralized through combination with meteoric metals. The appearance of neutralized H2SO4 aerosol in autumn is associated with the seasonal decrease in temperature. The combination of meteoric smoke and neutralized H2SO4 aerosols explains the observations and supports previous suggestions that H2SO4 could condense above the nominal stratospheric sulfate layer.

  6. Knowledge of the systems H2O-SO3-N2O3. Report 1: The system H2SO4-H2O-N2O3

    NASA Technical Reports Server (NTRS)

    Stopperka, K.; Kilz, F.

    1977-01-01

    The amount of N2O3 being absorbed in 50-100% H2SO4 at 19, 60, and 95 C is directly proportional to the acid concentration and inversely proportional to the temperature. NO+ formation according to the above-formulated equation occurs only at H2SO4 concentrations greater than 52%. Absorption in highly concentrated sulfuric acid results in the formation of crystalline NOHSO4.

  7. Vapour pressures of H2SO4/HNO3/HCI/HBr/H2O solutions to low stratospheric temperatures

    SciTech Connect

    Luo, B.; Carslaw, K.S.; Peter, T.; Clegg, S.L. |

    1995-02-01

    Vapor pressures of H2O, HNO3, HCl and HBr over supercooled aqueous mixtures with sulfuric acid have been calculated using an activity coefficient model, for 185 K less than T less than 235 K, 0 less than wt% (H2SO4) + wt% (HNO3) less than 70, and assuming HCl and HBr to be minor constituents. Predicted vapor pressures agree well with most laboratory data, and give confidence in the validity of the model. The results are parameterized as simple formulae, which reproduce the model results to within 40% and cover the entire stratospherically relevant range of composition and temperature.

  8. Dissolution of Olivine, Siderite, and Basalt at 80 Deg C in 0.1 M H2SO4 in a Flow Through Process: Insights into Acidic Weathering on Mars

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.; Hausrath, E. M.; Morris, R. V.; Niles, P. B.; Achilles, C. N.; Ross, D. K.; Cooper, B. L.; Gonzalex, C. P.; Mertzman, S. A.

    2012-01-01

    The occurrence of jarosite, other sulfates (e.g., Mg-and Ca-sulfates), and hematite along with silicic-lastic materials in outcrops of sedimentary materials at Meridiani Planum (MP) and detection of silica rich deposits in Gusev crater, Mars, are strong indicators of local acidic aqueous processes [1,2,3,4,5]. The formation of sediments at Meridiani Planum may have involved the evaporation of fluids derived from acid weathering of Martian basalts and subsequent diagenesis [6,7]. Also, our previous work on acid weathering of basaltic materials in a closed hydro-thermal system was focused on the mineralogy of the acid weathering products including the formation of jarosite and gray hematite spherules [8,9,10]. The object of this re-search is to extend our earlier qualitative work on acidic weathering of rocks to determine acidic dissolution rates of Mars analog basaltic materials at 80 C using a flow-thru reactor. We also characterized residual phases, including poorly crystalline or amorphous phases and precipitates, that remained after the treatments of olivine, siderite, and basalt which represent likely MP source rocks. This study is a stepping stone for a future simulation of the formation of MP rocks under a range of T and P.

  9. Radiolysis of Sulfuric Acid, Sulfuric Acid Monohydrate, and Sulfuric Acid Tetrahydrate and Its Relevance to Europa

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Hudson, R. L.; Moore, M. H.; Carlson, R. W.

    2011-01-01

    We report laboratory studies on the 0.8 MeV proton irradiation of ices composed of sulfuric acid (H2SO4), sulfuric acid monohydrate (H2SO4 H2O), and sulfuric acid tetrahydrate (H2SO4 4H2O) between 10 and 180 K. Using infrared spectroscopy, we identify the main radiation products as H2O, SO2, (S2O3)x, H3O+, HSO4(exp -), and SO4(exp 2-). At high radiation doses, we find that H2SO4 molecules are destroyed completely and that H2SO4 H2O is formed on subsequent warming. This hydrate is significantly more stable to radiolytic destruction than pure H2SO4, falling to an equilibrium relative abundance of 50% of its original value on prolonged irradiation. Unlike either pure H2SO4 or H2SO4 H2O, the loss of H2SO4 4H2O exhibits a strong temperature dependence, as the tetrahydrate is essentially unchanged at the highest irradiation temperatures and completely destroyed at the lowest ones, which we speculate is due to a combination of radiolytic destruction and amorphization. Furthermore, at the lower temperatures it is clear that irradiation causes the tetrahydrate spectrum to transition to one that closely resembles the monohydrate spectrum. Extrapolating our results to Europa s surface, we speculate that the variations in SO2 concentrations observed in the chaotic terrains are a result of radiation processing of lower hydration states of sulfuric acid and that the monohydrate will remain stable on the surface over geological times, while the tetrahydrate will remain stable in the warmer regions but be destroyed in the colder regions, unless it can be reformed by other processes, such as thermal reactions induced by diurnal cycling.

  10. Observations of H2SO4 and MSA during PEM-Tropics-A

    NASA Astrophysics Data System (ADS)

    Mauldin, R. L.; Tanner, D. J.; Heath, J. A.; Huebert, B. J.; Eisele, F. L.

    1999-03-01

    Results are presented of measurements of the concentration of gas phase H2SO4 and methane sulfonic acid (MSA) performed aboard the NASA P3-b aircraft during the Pacific Exploratory Mission (PEM) Tropics study using the selected ion chemical ionization mass spectrometry (SICIMS) technique. During a nighttime portion of one flight the [H2SO4] was found to increase with decreasing relative humidity (RH). When compared to laboratory measurements of H2SO4 vapor pressure as a function of RH and particle neutralization (NH4+ and SO42- ionic composition) and model predictions using a liquid drop hydrate model, these measurements indicate that the particles from which the H2SO4 is evaporating are relatively unneutralized, a result which is in good agreement with filter measurements. Overall, the same increase in the gas phase [MSA] with decreasing RH or decreasing [NH4+] (obtained from filter measurements) was also observed, indicating a high volatility of MSA at low RH values or particle neutralization. When gas phase MSA values are compared to methane sulfonate (MS) values obtained from filter measurements, it was found that MSA was totally volatilized at low RH values, while MSA resides mainly in the particulate form at high RH values. Combining the gas phase and filter measurements, the boundary layer MS/(MS + SO42-) ratio showed a distinct increase with decreasing temperature and suggests that little or no MS or MSA is produced in the boundary layer at temperatures above 300 K.

  11. Measurements of OH, H2SO4, and MSA at the South Pole during ISCAT

    NASA Astrophysics Data System (ADS)

    Mauldin, R. L., III; Eisele, F. L.; Tanner, D. J.; Kosciuch, E.; Shetter, R.; Lefer, B.; Hall, S. R.; Nowak, J. B.; Buhr, M.; Chen, G.; Wang, P.; Davis, D.

    The first measurements of OH, H2SO4, and MSA performed at the South Pole as part of the Investigation of Sulfur Chemistry in the Antarctic Troposphere (ISCAT) study are presented. OH concentrations were found to be quite elevated for such a dry environment, with average values of 2x106 molecule cm-3. Model simulations suggest that much of the observed OH is a result of unexpectedly high NO concentrations. Concentrations of H2SO4 and MSA were generally low with average values of 2.5x105 and 1x105 molecule cm-3, respectively. Major variations in the concentration levels of the above species were found to have a high correlation with changes in the polar mixing layer as estimated from the measured temperature difference from 22 to 2m above the snow surface. Chemical details are discussed.

  12. Quantum chemical study of ternary mixtures of: HNO3:H2SO4:H2O

    NASA Astrophysics Data System (ADS)

    Verdes, M. A.; Gómez, P. C.; Gálvez, O.

    2009-04-01

    Water, nitric acid and sulfuric acid are important atmospheric species as individual species and as hydrogen-bonded aggregates involved in many physical-chemical processes both superficial and bulk. The importance of heterogeneous chemical reactions taking place on ice surfaces, either solid water or solid water plus nitric or sulfuric acid, is well established now in relation to the ozone-depleting mechanisms. Also the importance of liquid droplets formed by HNO3.H2SO4.H2O as components of PSC was soon recognized [1-3]. Finally the physical properties of finely divided aqueous systems is an interesting and active field of research in which theoretical information on the microphysical domain systems may help to understand and rationalize the wealth of experimental information. This can also be the initial step in the study of more complex mixtures with higher amounts of water or variable proportions of their constituents. This kind of calculations have been successfully performed in the past[4]. We present here our results on the structure and spectroscopic and thermodynamic properties of the energy-lowest lying structures among those thermodynamically stable formed by linking the acids plus water. The calculations have been carried out by means of DFT methods (in particular the successful B3LYP) using different basis sets that contain appropriate sets of polarization and diffuse functions up to quadruple-Z quality (Dunninǵs aug-cc-pVQZ). Careful assessment of the dependability of the methodology used has been carried out. This work has been supported by the Spanish Ministry of Education, Projects FIS2007-61686 and CTQ2008-02578/BQU References: [1] Carslaw, K. S. et al.: Geophys. Res. Lett. 21, 2479-2482, 1994 [2] Drdla, K. Et al. :Geophys. Res. Lett. 21, 2473-2478, 1994 [3] Tabazadeh, A. et al.: Geophys. Res. Lett 21, 1619-1622, 1994 [4] Escribano, R et al.: J. J. Chem. Phys A 2003, 107, 652.

  13. Behavior of OH, H2SO4, and MSA during ARCTAS

    NASA Astrophysics Data System (ADS)

    Kosciuch, E.; Mauldin, L.; Anderson, R.; Cantrell, C.; Weinheimer, A.; Knapp, D.; Huey, G.

    2008-12-01

    The NASA ARCTAS study presented a very unique opportunity to investigate the tropospheric chemistry of the Arctic environment, both rural and urban areas of California, and plumes and outflows from boreal fires in northern Canada. Here OH, H2SO4, and MSA data obtained from the NASA DC-8 will be presented. OH showed a large variation depending upon the type of environment sampled with values as low as 2-3 x 105 molecule cm-3 in the clean Arctic to well over 107 molecule cm-3 in urban areas or fire plumes. Values from H2SO4 reveal broad sources of sulfur outflow from both the L.A. and San Francisco regions with concentrations as high as 1x108 molecule cm-3. H2SO4 concentrations from the Arctic were highly varied with values ranging from 3-5x105 to 1x108 molecule cm-3. Observations of MSA, a product of DMS oxidation and presumably of marine origin, help to distinguish air masses with a marine contribution, however measurements from this study may indicate that there are also industrial sources of this species.

  14. Enhancement of bio-oil production via pyrolysis of wood biomass by pretreatment with H2SO4.

    PubMed

    Kumagai, Shogo; Matsuno, Ryo; Grause, Guido; Kameda, Tomohito; Yoshioka, Toshiaki

    2015-02-01

    In this work, a Japanese cedar wood sample was treated during the first step at ambient temperature and atmospheric pressure using several concentrations of sulfuric acid (H2SO4) in a stirred flask. During this pretreatment C-O bonds of cellulose, hemicellulose, and lignin were cleaved. The second step involved the pyrolysis of the pretreated wood sample at 550 °C in a quartz glass tube reactor. A maximum oil yield of 46.8 wt% with the minimum char yield of 10.1 wt% was obtained by the treatment with 3 M H2SO4, whereas untreated wood samples resulted in a 30.1 wt% yield of oil. The main components in the oils were levoglucosan and tar. These results suggest that moderate acid pretreatment produced shorter chain units of cellulose, hemicellulose, and lignin, thereby facilitating the conversion into oil by pyrolysis. The results of thermogravimetry-mass spectroscopy supported the presence of shorter chain units in the pretreated wood samples.

  15. Gas-aerosol relationships of H2SO4, MSA, and OH: Observations in the coastal marine boundary layer at Mace Head, Ireland

    NASA Astrophysics Data System (ADS)

    Berresheim, H.; Elste, T.; Tremmel, H. G.; Allen, A. G.; Hansson, H.-C.; Rosman, K.; Dal Maso, M.; MäKelä, J. M.; Kulmala, M.; O'Dowd, C. D.

    2002-10-01

    Atmospheric concentrations of gaseous sulfuric acid (H2SO4), methane sulfonic acid (MSA), and hydroxyl radicals (OH) were measured by chemical ionization mass spectrometry (CIMS) during the second New Particle Formation and Fate in the Coastal Environment (PARFORCE) campaign in June 1999 at Mace Head, Ireland. Overall median concentrations in marine background air were 1.5, 1.2, and 0.12 × 106 cm-3, respectively. H2SO4 was also present at night indicating significant contributions from nonphotochemical sources. A strong correlation was found between daytime OH and H2SO4 levels in clean marine air suggesting a fast local production of H2SO4 from sulfur precursor gases. Steady state balance calculations of ambient H2SO4 levels agreed with measured concentrations if either very low H2SO4 sticking coefficients (0.02-0.03) or sources in addition to the SO2 + OH reaction were assumed. Overall, variations in ambient H2SO4 levels showed no correlation with either the tidal cycle or ultrafine particle (UFP) concentrations. However, on particular days an anticorrelation between H2SO4 and UFP levels was occasionally observed providing evidence for the contribution of H2SO4 to new particle formation and/or particle growth. Gaseous MSA concentrations were inversely correlated with dew point temperature reflecting a highly sensitive gas-particle partitioning equilibrium of this compound. The present observations seriously question the general use of MSA as a conservative tracer to infer the relative production yield of H2SO4 from dimethylsulfide (DMS) oxidation. MSA/H2SO4 concentration ratios typically ranged between 0.06 and 1.0 in marine air at ground level. Measured diel OH profiles showed a significant deviation from concurrent variations of the ozone photolysis frequency. They also showed up to 1 order of magnitude lower values compared to OH concentrations calculated with a simple photochemical box model. These differences were most pronounced during particle nucleation

  16. Measurement of OH, H2SO4, MSA, and HNO3 Aboard the P-3B Aircraft

    NASA Technical Reports Server (NTRS)

    Eisele, F. L.

    2003-01-01

    This paper addresses the measurement of OH, H2SO4, MSA, and HNO3 aboard the P-3B aircraft under the following headings: 1) Performance Report; 2) Highlights of OH, H2SO4, and MSA Measurements Made Aboard the NASA P-3B During TRACE-P; 3) Development and characteristics of an airborne-based instrument used to measure nitric acid during the NASA TRACE-P field experiment.

  17. Measurements of OH, HO 2+RO 2, H 2SO 4, and MSA at the South Pole during ISCAT 2000

    NASA Astrophysics Data System (ADS)

    Mauldin, R. L.; Kosciuch, E.; Henry, B.; Eisele, F. L.; Shetter, R.; Lefer, B.; Chen, G.; Davis, D.; Huey, G.; Tanner, D.

    2004-10-01

    Measurements of hydroxyl radical (OH), sulfuric acid (H2SO4) and methane sulfonic acid (MSA) together with the first HO2+RO2 observations at the South Pole are presented. These results were recorded as part of the Investigation of Sulfur Chemistry in the Antarctic Troposphere 2000 (ISCAT 2000) study. OH concentrations were found to be highly elevated, having a mean value over the time period of 15 November-30 December 2000 of 2.5×106 molecule cm-3, thus confirming the results from ISCAT 1998. Although data were more limited for the sum of HO2+RO2, a mean value of ∼7×107 molecule cm-3 was estimated. Typically, OH and HO2+RO2 both showed large day-to-day variability. Box model simulations suggest that most of this variability was a direct result of elevated and highly variable levels of nitric oxide. Comparisons of OH with overhead O3 column density measurements revealed that for certain time periods as much as a 30% enhancement occurred in OH as a result of decreases in column O3 levels. Like ISCAT 1998, the observational data for H2SO4 and MSA generally showed very low concentrations with mean values of 2.7×105 and 8×104 molecule cm-3, respectively. When compared against measured levels of particulate sulfate and methane sulfonate, these low gas phase concentrations indicate, as suggested by the more limited data from the ISCAT 1998 study, that local production of gas phase sulfur species contributes little to particle composition.

  18. An Experimental Study of Atmospheric Homogeneous Nucleation: Cluster Growth and Gas-Particle Reactions of H2SO4

    NASA Technical Reports Server (NTRS)

    Eisele, F. L.

    1996-01-01

    The work proposed on this project included both field and laboratory studies. The laboratory studies were to consist of measurements of H2SO4 uptake and evaporation from aerosols of varying chemical composition, while the field component would include measurements of H2SO4 and other compounds which would be conducted as part of a large field campaign. By chance, the opportunity to conduct such an H2SO4/aerosol/ultrafine particle study in conjunction with an OH intercomparison/photochemistry study became available very early in this project (September 1993). This study was conducted at Caribou, Colorado in conjunction with several other groups from NCAR, NOAA and a number of universities. Our group measured OH, H2SO4, SO2, and H20, while Dr. McMurfy's group measured ultrafine particles, and total particle number and size distribution. In addition measurements of HO2/RO2, O3, NO, NO2, NO(y) CO, hydrocarbons, CH2O, and other chemical compounds and meteorological parameters were performed by the other participants and a new laser oblation/mass spectrometry technique was also employed by the NOAA Aeronomy Laboratory to study aerosol composition. The study of aerosol production and growth in conjunction with photochemical measurements is highly advantageous because particle growth precursors such as H2SO4.or MSA are formed by OH initiated sulfur oxidation. The large number of hydrocarbon measurements included in this study were also important in understanding particle growth.

  19. Heterogeneous Uptake and Conversion of HOBr on H2SO4 at Upper Tropospheric and Stratospheric Temperatures (255 - 210 K)

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Ashbourn, Samantha F. M.; Rammer, Thomas A.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Halogen species are known to catalytically destroy ozone in several different regions of the atmosphere. In addition to directly destroying ozone, bromine compounds can indirectly enhance ozone loss through coupling to other radical families. Hypobromous acid (HOBr), a key species in the linkage of BrOx to ClOx and HOx, is produced by the hydrolysis of BrONO2 on sulfate aerosols, and thus the heterogeneous behavior of HOBr must be understood. We have measured the solubility of HOBr in 45 to 70 percent by weight sulfuric acid solutions. Over the temperature range 208 to 255 K, HOBr is very soluble in sulfuric acid, H(*) = 10(exp 4) to 10(exp 8) M/atm. The solubility is temperature dependent, and our results agree well with those of Waschewsky and Abbott for 60 percent by weight H2SO4. HOBr is nearly as soluble as HBr, indicating that equilibrium concentrations of HOBr could approach those of HBr in sulfuric acid aerosols. Despite the high solubility of HOBr, stratospheric aerosol volumes are not large enough to sequester a significant fraction of inorganic bromine from the gas phase. Uptake of HOBr was nearly always accompanied by reaction, producing Br2O and possibly Br2. The effect of this bromine conversion pathway on the HOx and ClOx families, particularly at temperatures as warm as 255 K, will be considered.

  20. 21 CFR 184.1095 - Sulfuric acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sulfuric acid. 184.1095 Section 184.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1095 Sulfuric acid. (a) Sulfuric acid (H2SO4, CAS Reg. No. 7664-93-9),...

  1. 21 CFR 184.1095 - Sulfuric acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sulfuric acid. 184.1095 Section 184.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1095 Sulfuric acid. (a) Sulfuric acid (H2SO4, CAS Reg. No. 7664-93-9),...

  2. 21 CFR 184.1095 - Sulfuric acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sulfuric acid. 184.1095 Section 184.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1095 Sulfuric acid. (a) Sulfuric acid (H2SO4, CAS Reg. No. 7664-93-9),...

  3. 21 CFR 184.1095 - Sulfuric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sulfuric acid. 184.1095 Section 184.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1095 Sulfuric acid. (a) Sulfuric acid (H2SO4, CAS Reg. No. 7664-93-9),...

  4. 21 CFR 184.1095 - Sulfuric acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sulfuric acid. 184.1095 Section 184.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1095 Sulfuric acid. (a) Sulfuric acid (H2SO4, CAS Reg. No. 7664-93-9), also known as oil of vitriol,...

  5. Calculation of composition distribution of ultrafine ion-H2O-H2SO4 clusters using a modified binary ion nucleation theory

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Smith, A. S.; Chan, L. Y.; Yue, G. K.

    1982-01-01

    Thomson's ion nucleation theory was modified to include the effects of curvature dependence of the microscopic surface tension of field dependent, nonlinear, dielectric properties of the liquid; and of sulfuric acid hydrate formation in binary mixtures of water and sulfuric acid vapors. The modified theory leads to a broadening of the ion cluster spectrum, and shifts it towards larger numbers of H2O and H2SO4 molecules. Whether there is more shifting towards larger numbers of H2O or H2SO4 molecules depends on the relative humidity and relative acidity of the mixture. Usually, a broadening of the spectrum is accompanied by a lowering of the mean cluster intensity. For fixed values of relative humidity and relative acidity, a similar broadening pattern is observed when the temperature is lowered. These features of the modified theory illustrate that a trace of sulfuric acid can facilitate the formation of ultrafine, stable, prenucleation ion clusters as well as the growth of the prenucleation ion clusters towards the critical saddle point conditions, even with low values of relative humidity and relative acidity.

  6. Theoretical studies on the electron capture properties of the H2SO4...HOO˙ complex and its implications as an alternative source of HOOH.

    PubMed

    Li, Ping; Ma, Zhiying; Wang, Weihua; Song, Rui; Zhai, Yazhou; Bi, Siwei; Sun, Haitao; Bu, Yuxiang

    2011-04-07

    To better understand the potential role of sulfuric acid aerosols in the atmosphere, the electron capture properties of the H(2)SO(4)...HOO˙ complex have been systematically investigated by employing the MP2 and B3LYP methods in combination with the atoms in molecules (AIM) theory, energy decomposition analysis (EDA), and ab initio molecular dynamics. It was found that the electron capture process is a favorable reaction thermodynamically and kinetically. The excess electron can be captured by the HOO˙ fragment initially, and then the proton of the H(2)SO(4) fragment associated with the intermolecular H-bonds is transferred to the HOO˙ fragment without any activation barriers, resulting in the formation of the HOOH species directly. Therefore, the electron capture process of the H(2)SO(4)...HOO˙ complex provides an alternative source of HOOH in the atmosphere. The nature of the coupling interactions in the electron capture products are clarified, and the most stable anionic complex is also determined. Additionally, the influences of the adjacent water molecules on the electron capture properties are investigated, as well as the distinct IR features of the most stable electron capture product.

  7. Measurements of OH, H2SO4, and MSA Aboard the NCAR C-130 During TOSPE

    NASA Astrophysics Data System (ADS)

    Mauldin, L.; Cantrell, C.; Zondlo, M.; Kosciuch, E.; Eisele, F.; Eisele, F.

    2001-05-01

    The unique environments encountered during the TOPSE mission afforded the opportunity to obtain measurements in varying photochemical regimes. Measurements of OH, H2SO4, and MSA (methane sulfonic acid) performed aboard the NCAR C-130 are presented. The above species were measured using a four channel Selected-Ion Chemical-Ionization Mass-Spectrometer. Low values (<4 x 105 molecule cm-3) of each species were predominately observed at the beginning of the mission as would be expected for areas with low photochemical activity. Towards the end of the mission, as solar activity increased, [OH] rose to levels of 1-2 x 106 molecule cm-3. Encounters with ozone depleted air-masses and photo stationary model simulations will be discussed.

  8. Sulfuric acid measurements in the exhaust plume of a jet aircraft in flight: Implications for the sulfuric acid formation efficiency

    NASA Astrophysics Data System (ADS)

    Curtius, J.; Arnold, F.; Schulte, P.

    2002-04-01

    Sulfuric acid concentrations were measured in the exhaust plume of a B737-300 aircraft in flight. The measurements were made onboard of the German research aircraft Falcon using the Volatile Aerosol Component Analyzer (VACA). The VACA measures total H2SO4, which is the sum of gaseous H2SO4 and aerosol H2SO4. Measurements took place at distances of 25-200 m behind the B737 corresponding to plume ages of about 0.1-1 seconds. The fuel sulfur content (FSC) of the fuel burned by the B737 engines was alternatively 2.6 and 56 mg sulfur per kilogram fuel (ppmm). H2SO4 concentrations measured in the plume for the 56 ppmm sulfur case were up to ~600 pptv. The average concentration of H2SO4 measured in the ambient atmosphere outside the aircraft plume was 88 pptv, the maximum ambient atmospheric H2SO4 was ~300 pptv. Average efficiencies ɛΔCO2 = 3.3 +/- 1.8% and ɛΔT = 2.9 +/- 1.6% for fuel sulfur conversion to sulfuric acid were inferred when relating the H2SO4 data to measurements of the plume tracers ΔCO2 and ΔT.

  9. Fourier transform-infrared studies of thin H2SO4/H2O films: Formation, water uptake, and solid-liquid phase changes

    NASA Technical Reports Server (NTRS)

    Middlebrook, Ann M.; Iraci, Laura T.; Mcneill, Laurie S.; Koehler, Birgit G.; Wilson, Margaret A.; Saastad, Ole W.; Tolbert, Margaret A.; Hanson, David R.

    1993-01-01

    Fourier transform-infrared (FTIR) spectroscopy was used to examine films representative of stratospheric sulfuric acid aerosols. Thin films of sulfuric acid were formed in situ by the condensed phase reaction of SO3 with H2O. FTIR spectra show that the sulfuric acid films absorb water while cooling in the presence of water vapor. Using stratospheric water pressures, the most dilute solutions observed were greater than 40 wt % before simultaneous ice formation and sulfuric acid freezing occurred. FTIR spectra also revealed that the sulfuric acid films crystallized mainly as sulfuric acid tetrahydrate (SAT). Crystallization occurred either when the composition was about 60 wt% H2SO4 or after ice formed on the films at temperatures 1-4 K below the ice frost point. Finally, we determined that the melting point for SAT depended on the background water pressure and was 216-219 K in the presence of 4 x 10(exp -4) Torr H2O. Our results suggest that once frozen, sulfuric acid aerosols in the stratosphere are likely to melt at these temperatures, 30 K colder than previously thought.

  10. Hydrolysis of Sulfur Dioxide in Small Clusters of Sulfuric Acid: Mechanistic and Kinetic Study.

    PubMed

    Liu, Jingjing; Fang, Sheng; Wang, Zhixiu; Yi, Wencai; Tao, Fu-Ming; Liu, Jing-Yao

    2015-11-17

    The deposition and hydrolysis reaction of SO2 + H2O in small clusters of sulfuric acid and water are studied by theoretical calculations of the molecular clusters SO2-(H2SO4)n-(H2O)m (m = 1,2; n = 1,2). Sulfuric acid exhibits a dramatic catalytic effect on the hydrolysis reaction of SO2 as it lowers the energy barrier by over 20 kcal/mol. The reaction with monohydrated sulfuric acid (SO2 + H2O + H2SO4 - H2O) has the lowest energy barrier of 3.83 kcal/mol, in which the cluster H2SO4-(H2O)2 forms initially at the entrance channel. The energy barriers for the three hydrolysis reactions are in the order SO2 + (H2SO4)-H2O > SO2 + (H2SO4)2-H2O > SO2 + H2SO4-H2O. Furthermore, sulfurous acid is more strongly bonded to the hydrated sulfuric acid (or dimer) clusters than the corresponding reactant (monohydrated SO2). Consequently, sulfuric acid promotes the hydrolysis of SO2 both kinetically and thermodynamically. Kinetics simulations have been performed to study the importance of these reactions in the reduction of atmospheric SO2. The results will give a new insight on how the pre-existing aerosols catalyze the hydrolysis of SO2, leading to the formation and growth of new particles.

  11. Dimethyl sulfide oxidation in the equatorial Pacific: Comparison of model simulations with field observations for DMS, SO2, H2SO4(g), MSA(g), MS, and NSS

    NASA Astrophysics Data System (ADS)

    Davis, D.; Chen, G.; Bandy, A.; Thornton, D.; Eisele, F.; Mauldin, L.; Tanner, D.; Lenschow, D.; Fuelberg, H.; Huebert, B.; Heath, J.; Clarke, A.; Blake, D.

    1999-03-01

    Reported here are results from an airborne photochemical/sulfur field study in the equatorial Pacific. This study was part of NASA's Global Tropospheric Experiment (GTE) Pacific Exploratory Mission (PEM) Tropics A program. The focus of this paper is on data gathered during an airborne mission (P-3B flight 7) near the Pacific site of Christmas Island. Using a Lagrangian-type sampling configuration, this sortie was initiated under pre-sunrise conditions and terminated in early afternoon with both boundary layer (BL) as well as buffer layer (BuL) sampling being completed. Chemical species sampled included the gas phase sulfur species dimethyl sulfide (DMS), sulfur dioxide (SO2), methane sulfonic acid (MSA)g, and sulfuric acid (H2SO4)g. Bulk aerosol samples were collected and analyzed for methane sulfonate (MS), non-sea-salt sulfate (NSS), Na+,Cl-, and NH4+. Critical non-sulfur parameters included real-time sampling of the hydroxyl radical (OH) and particle size/number distributions. These data showed pre-sunrise minima in the mixing ratios for OH, SO2, and H2SO4 and post-sunrise maxima in the levels of DMS, OH, and H2SO4. Thus, unlike several previous studies involving coincidence DMS and SO2 measurements, the Christmas Island data revealed that DMS and SO2 were strongly anticorrelated. Our "best estimate" of the overall efficiency for the conversion of DMS to SO2 is 72±22%. These results clearly demonstrate that DMS was the dominant source of SO2 in the marine BL. Using as model input measured values for SO2 and OH, the level of agreement between observed and simulated BL H2SO4(g) profiles was shown to be excellent. This finding, together with supporting correlation analyses, suggests that the dominant sulfur precursor for formation of H2SO4 is SO2 rather than the more speculative sulfur species, SO3. Optimization of the fit between the calculated and observed H2SO4 values was achieved using a H2SO4 first-order loss rate of 1.3 × 10-3 s-1. On the basis of an

  12. Enhancement of atmospheric H2SO4/H2O nucleation: organic oxidation products versus amines

    NASA Astrophysics Data System (ADS)

    Berndt, T.; Sipilä, M.; Stratmann, F.; Petäjä, T.; Vanhanen, J.; Mikkilä, J.; Patokoski, J.; Taipale, R.; Mauldin, R. Lee, III; Kulmala, M.

    2013-06-01

    Atmospheric H2SO4/H2O nucleation influencing effects have been studied in the flow tube IfT-LFT (Institute for Tropospheric Research - Laminar Flow Tube) at 293 ± 0.5 K and a pressure of 1 bar using synthetic air as the carrier gas. The presence of a~possible background amine concentration in the order of 107-108 molecule cm-3 throughout the experiments has to be taken into account. In a first set of investigations, ozonolysis of olefins (tetramethylethylene, 1-methyl-cyclohexene, α-pinene and limonene) for close to atmospheric concentrations, served as the source of OH radicals and possibly other oxidants initiating H2SO4 formation starting from SO2. The oxidant generation is inevitably associated with the formation of a series of organic oxidation products arising from the parent olefins. These products (first generation mainly) showed no clear effect on the number of nucleated particles within a wide range of experimental conditions for H2SO4 concentrations higher than ~107 molecule cm-3. A comparison of the results of two different particle counters (50% cut-off size: about 1.5 nm or 2.5-3 nm) suggested that the early growth process of the nucleated particles was not significantly influenced by the organic oxidation products. An additional, H2SO4-independent process of particle (nano-CN) formation was observed in the case of α-pinene and limonene ozonolysis for H2SO4 concentrations smaller than ~10 7 molecule cm-3. Furthermore, the findings confirm the existence of an additional oxidant for SO2 beside OH radicals, very likely stabilized Criegee Intermediate (sCI). In the case of the ozonolysis of tetramethylethylene, the H2SO4 measurements in the absence and presence of an OH radical scavenger were well described by modelling using recently obtained kinetic data for the sCI reactivity in this system. A second set of experiments has been performed in the presence of added amines (trimethylamine, dimethylamine, aniline and pyridine) in the concentration range

  13. Enhanced thermoelectric properties of PEDOT/PSS/Te composite films treated with H2SO4

    NASA Astrophysics Data System (ADS)

    Song, Haijun; Cai, Kefeng; Shen, Shirley

    2016-12-01

    Firstly, tellurium (Te) nanorods with a high Seebeck coefficient have been integrated into a conducting polymer PEDOT/PSS to form PEDOT/PSS/Te composite films. The Seebeck coefficient of the PEDOT/PSS/Te (90 wt.%) composite films is 191 μV/K, which is about 13 times greater than that of pristine PEDOT/PSS. Then, H2SO4 treatment has been used to further tune the thermoelectric properties of the composite films by adjusting the doping level and increasing the carrier concentration. After the acid treatment, the electrical conductivity of the composite films has increased from 0.22 to 1613 S/cm due to the removal of insulating PSS and the structural rearrangement of PEDOT. An optimized power factor of 42.1 μW/mK2 has been obtained at room temperature for a PEDOT/PSS/Te (80 wt.%) sample, which is about ten times larger than that of the untreated PEDOT/PSS/Te composite film.

  14. Uptake of HNO3 on aviation kerosene and aircraft engine soot: influences of H2O or/and H2SO4.

    PubMed

    Loukhovitskaya, Ekaterina E; Talukdar, Ranajit K; Ravishankara, A R

    2013-06-13

    The uptake of HNO3 on aviation kerosene soot (TC-1 soot) was studied in the absence and presence of water vapor at 295 and 243 K. The influence of H2SO4 coating of the TC-1 soot surface on HNO3 uptake was also investigated. Only reversible uptake of HNO3 was observed. HONO and NO2, potential products of reactive uptake of HNO3, were not observed under any conditions studied here. The uptake of nitric acid increased slightly with relative humidity (RH). Coating of the TC-1 soot surface with sulfuric acid decreased the uptake of HNO3 and did not lead to displacement of H2SO4 from the soot surface. A limited set of measurements was carried out on soot generated by aircraft engine combustor (E-soot) with results similar to those on TC-1 soot. The influence of water on HNO3 uptake on E-soot appeared to be more pronounced than on TC-1 soot. Our results suggest that HNO3 loss in the upper troposphere due to soot is not significant except perhaps in aircraft exhaust plumes. Our results also suggest that HNO3 is not converted to either NO2 or HONO upon its uptake on soot in the atmosphere.

  15. Physical chemistry of the H2SO4/HNO3/H2O system - Implications for polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Molina, M. J.; Zhang, R.; Wooldridge, P. J.; Mcmahon, J. R.; Kim, J. E.; Chang, H. Y.; Beyer, K. D.

    1993-01-01

    Polar stratospheric clouds (PSCs) play a key role in stratospheric ozone depletion. Surface-catalyzed reactions on PSC particles generate chlorine compounds that photolyze readily to yield chlorine radicals, which in turn destroy ozone very efficiently. The most prevalent PSCs form at temperatures several degrees above the ice frost point and are believed to consist of HNO3 hydrates; however, their formation mechanism is unclear. Results of laboratory experiments are presented which indicate that the background stratospheric H2SO4/H2O aerosols provide an essential link in this mechanism: These liquid aerosols absorb significant amounts of HNO3 vapor, leading most likely to the crystallization of nitric acid trihydrate (NAT). The frozen particles then grow to form PSCs by condensation of additional amounts of HNO3 and H2O vapor. Furthermore, reaction probability measurements reveal that the chlorine radical precursors are formed readily at polar stratospheric temperatures not just on NAT and ice crystals, but also on liquid H2SO4 solutions and on solid H2SO4 hydrates. These results imply that the chlorine activation efficiency of the aerosol particles increases rapidly as the temperature approaches the ice frost point regardless of the phase or composition of the particles.

  16. Dielectric and conduction behaviour of H2SO4 doped conducting Polyaniline

    NASA Astrophysics Data System (ADS)

    Mohanty, J.; Behera, P.; Mishra, S. R.; Badapanda, T.; Anwar, S.

    2017-02-01

    We report the effect of H2SO4 doping on the dielectric and conduction behaviour of Polyaniline (PANI) samples. The PANI salt prepared by oxidising aniline hydrochloride in distilled water with the oxidant ammonium persulphate with continuous stirring at room temperature and PANI base is produced by subjecting PANI salt to a reaction with 0.5M NaOH. H2SO4 doped PANI is prepared by subjecting PANI base to reaction with 1M H2SO4 at room temperature under constant stirring for 1h. The synthesied PANI along with the doped samples were further washed with acetone to study the effect of acetone washing on the electrical behaviour. It is observed that the dielectric constant as well as the dielectric loss decreases with frequency in the entire studied sample. The frequency dependent AC conductivity at room temperature obeys the power law and the DC conductivity was obtained from the fitting parameter. It is found that the non acetone washed PANI doped in 1M H2SO4 shows highest dielectric constant and conductivity.

  17. Formation of low-temperature cirrus from H2SO4/H2O aerosol droplets.

    PubMed

    Bogdan, A; Molina, M J; Sassen, K; Kulmala, M

    2006-11-23

    We present experimental results obtained with a differential scanning calorimeter (DSC) that indicate the small ice particles in low-temperature cirrus clouds are not completely solid but rather coated with an unfrozen H2SO4/H2O overlayer. Our results provide a new look on the formation, development, and microphysical properties of low-temperature cirrus clouds.

  18. Sulfuric acid as autocatalyst in the formation of sulfuric acid.

    PubMed

    Torrent-Sucarrat, Miquel; Francisco, Joseph S; Anglada, Josep M

    2012-12-26

    Sulfuric acid can act as a catalyst of its own formation. We have carried out a computational investigation on the gas-phase formation of H(2)SO(4) by hydrolysis of SO(3) involving one and two water molecules, and also in the presence of sulfuric acid and its complexes with one and two water molecules. The hydrolysis of SO(3) requires the concurrence of two water molecules, one of them acting as a catalyzer, and our results predict an important catalytic effect, ranging between 3 and 11 kcal·mol(-1) when the catalytic water molecule is substituted by a sulfuric acid molecule or one of its hydrates. In these cases, the reaction products are either bare sulfuric acid dimer or sulfuric acid dimer complexed with a water molecule. There are broad implications from these new findings. The results of the present investigation show that the catalytic effect of sulfuric acid in the SO(3) hydrolysis can be important in the Earth's stratosphere, in the heterogeneous formation of sulfuric acid and in the formation of aerosols, in H(2)SO(4) formation by aircraft engines, and also in understanding the formation of sulfuric acid in the atmosphere of Venus.

  19. Freezing temperatures of H2SO4/HNO3/H2O mixtures: Implications for polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Song, Naihui

    1994-01-01

    The freezing temperatures of H2SO4/HNO3/H2O mixtures were systematically documented. Nitric acid was found to affect freezing significantly. Measurements show that nitric acid can cause substantial supercooling over a broad composition range. However, some ternary compositions, like to those in polar stratospheric clouds (PSCs), have high freezing temperatures. The freezing of PSC particles could be controlled by the temperature and vapor pressure of both nitric acid and water in a non-linear way. Formation of polar stratospheric clouds may be forecasted on the basic of conditions of temperature and vapor contents of water and nitric acid.

  20. Detection of volcanic SO2, ash, and H2SO4 using the Infrared Atmospheric Sounding Interferometer (IASI)

    NASA Astrophysics Data System (ADS)

    Karagulian, F.; Clarisse, L.; Clerbaux, C.; Prata, A. J.; Hurtmans, D.; Coheur, P. F.

    2010-01-01

    In this work we use infrared spectra recorded by the Infrared Atmospheric Sounding Interferometer (IASI) to characterize the emissions from the Mount Kasatochi volcanic eruption on 7 and 8 August 2008. We first derive the total atmospheric load of sulfur dioxide (SO2) and its evolution over time. For the initial plume, we found values over 1.7 Tg of SO2, making it the largest eruption since the 1991 eruptions of Pinatubo and Hudson. Vertical profiles were retrieved using a line-by-line radiative transfer model and an inversion procedure based on the optimal estimation method (OEM). For the Kasatochi eruption, we found a plume altitude of 12.5 ± 4 km. Taking advantage of IASI's broad spectral coverage, we used the ν3 band (˜1362 cm-1) and, for the first time, the ν1 + ν3 band (˜2500 cm-1) of SO2 for the retrievals. While the ν3 band saturates easily for high SO2 concentrations, preventing accurate retrieval, the ν1 + ν3 band has a much higher saturation threshold. We also analyzed the broadband signature observed in the radiance spectra in the 1072-1215 cm-1 range associated with the presence of aerosols. In the initial volcanic plume the signature matches closely that of mineral ash, while by 10 August most mineral ash is undetectable, and the extinction is shown to match closely the absorption spectrum of liquid H2SO4 drops. The extinction by sulphuric acid particles was confirmed by comparing spectra before and a month after the eruption, providing the first spectral detection of such aerosols from nadir view radiance data.

  1. Nitric acid uptake by sulfuric acid solutions under stratospheric conditions - Determination of Henry's Law solubility

    NASA Technical Reports Server (NTRS)

    Reihs, Christa M.; Golden, David M.; Tolbert, Margaret A.

    1990-01-01

    The uptake of nitric acid by sulfuric acid solutions representative of stratospheric particulate at low temperatures was measured to determine the solubility of nitric acid in sulfuric acid solutions as a function of H2SO4 concentration and solution temperature. Solubilities are reported for sulfuric acid solutions ranging from 58 to 87 wt pct H2SO4 over a temperature range from 188 to 240 K, showing that, in general, the solubility of nitric acid increases with decreasing sulfuric acid concentration and with decreasing temperature. The measured solubilities indicate that nitric acid in the global stratosphere will be found predominantly in the gas phase.

  2. A 2D Microphysical Analysis of Aerosol Nucleation in the Polar Winter Stratosphere: Implications for H2SO4 Photolysis and Nucleation Mechanisms

    NASA Technical Reports Server (NTRS)

    Mills, Michael J.; Toon, Owen B.; Mills, Michael J.; Solomon, Susan

    1997-01-01

    Each spring a layer of small particles forms between 20 and 30 km in the polar regions. Results are presented from a 2D microphysical model of sulfate aerosol, which provide the first self-consistent explanation of the observed "CN layer." Photochemical conversion of sulfuric acid to SO2 in the upper stratosphere and mesosphere is necessary for this layer to form. Recent laboratory measurements of H2SO4 and SO3 photolysis rates are consistent with such conversion, though an additional source of SO2 may be required. Nucleation throughout the polar winter extends the top of the aerosol layer to higher altitudes, despite strong downward transport of ambient air. This finding may be important to heterogeneous chemistry at the top of the aerosol layer in polar winter and spring.

  3. Synergistic of a coumarin derivative with potassium iodide on the corrosion inhibition of aluminum alloy in 1.0 M H2SO4

    NASA Astrophysics Data System (ADS)

    Mohamad, Abu Bakar; Kadhum, Abdul Amir H.; Al-Amiery, Ahmed A.; Ying, Lim Chai; Musa, Ahmed Y.

    2014-05-01

    Synergistic effects of the addition of KI on the corrosion inhibitive performance of a coumarin derivative on an aluminum alloy in 1.0 M H2SO4 at different temperatures were studied using various electrochemical measurements. Density functional theory was used to calculate the quantum chemical parameters of the coumarin derivative. The experimental results showed that the coumarin derivative is considered as a mixedtype inhibitor. The corrosion potential values were almost unchanged upon the addition of PBBC to the acidic solution. The inhibition efficiency increases with increasing inhibitor concentration and increases further in the presence of 6.02 mM KI but decreases significantly at higher temperature. The adsorption of PBBC obeyed the Langmuir isotherm, and being chemically adsorbed at lower temperatures, while physical adsorption is favoured at higher temperature. The theoretical results indicated that the coumarin derivative was adsorbed onto the surface of Al2024 through the sulfur, oxygen and nitrogen atoms.

  4. Detection of Free Tropospheric Air Masses With High So2 and Aerosol Concentrations: Evidence For New Aerosol Particle Formation By H2so4/h2o Nucleation

    NASA Astrophysics Data System (ADS)

    Katragkou, E.; Wilhelm, S.; Kiendler, A.; Arnold, F.; Minikin, A.; Schlager, H.; van Velthoven, P.

    Sulfur dioxide and aerosol measurements were performed in the free troposphere (FT) and the Planetary Boundary Layer (PBL) above continental Europe. The measure- ments took place on board of the German research aircraft "Falcon" in 18 April 2001 as a part of the SCAVEX campaign. A novel aircraft based CIMS (Chemical Ion- ization Mass Spectrometry) instrument equipped with an ion trap mass spectrometer (ITMS) with a low detection limit (50pptv) and a high time resolution (1.3s) operated by MPI-K was used to perform the SO2 measurements. For the aerosol measurements DLR-IPA operated a Condensation Particle Size Analyzer, detecting particles with diameters d > 4, 7, 9 and 20nm and a PCASP-100X aerosol spectrometer probe (d > 100nm). In the measurements made mostly around 5000m altitude SO2 rich air masses were occasionally observed with SO2 VMR of up to 2900pptv. The strong SO2 pollu- tion was due to fast vertical transport of polluted continental PBL air and small-scale deep convection, as indicated by the 5-day backward 3D trajectories. These observa- tions of strong SO2 pollution have interesting implications for aerosol processes, in- cluding efficient formation of gaseous sulfuric acid (GSA) and new aerosol particles. They also imply fast growth of freshly nucleated aerosol particles, which increases the chance for new particles to grow to the size of a CCN. Our analysis indicates the occurrence of new particle formation by H2SO4/H2O nucleation and fast new particle growth by H2SO4/H2O condensation and self-coagulation in the different air masses encountered during the flight.

  5. FTIR studies of low temperature sulfuric acid aerosols

    NASA Technical Reports Server (NTRS)

    Anthony, S. E.; Tisdale, R. T.; Disselkamp, R. S.; Tolbert, M. A.; Wilson, J. C.

    1995-01-01

    Sub-micrometer sized sulfuric acid H2SO4 particles were generated using a constant output atomizer source. The particles were then exposed to water vapor before being injected into a low temperature cell. Multipass transmission Fourier Transformation Infrared (FTIR) spectroscopy was used to determine the phase and composition of the aerosols as a function of time for periods of up to five hours. Binary H2SO4H2O aerosols with compositions from 35 to 95 wt % H2SO4 remained liquid for over 3 hours at room temperatures ranging from 189-240 K. These results suggest that it is very difficut to freeze SSAs via homogeneous nucleation. Attempts to form aerosols more dilute than 35 wt % H2SO4 resulted in ice formation.

  6. Status of initial testing of the H2SO4 section of the ILS experiment.

    SciTech Connect

    Moore, Robert Charles; Parma, Edward J., Jr.; Gelbard, Fred

    2007-12-01

    A sulfuric acid catalytic decomposer section was assembled and tested for the Integrated Laboratory Scale experiments of the Sulfur-Iodine Thermochemical Cycle. This cycle is being studied as part of the U. S. Department of Energy Nuclear Hydrogen Initiative. Tests confirmed that the 54-inch long silicon carbide bayonet could produce in excess of the design objective of 100 liters/hr of SO{sub 2} at 2 bar. Furthermore, at 3 bar the system produced 135 liters/hr of SO{sub 2} with only 31 mol% acid. The gas production rate was close to the theoretical maximum determined by equilibrium, which indicates that the design provides adequate catalyst contact and heat transfer. Several design improvements were also implemented to greatly minimize leakage of SO{sub 2} out of the apparatus. The primary modifications were a separate additional enclosure within the skid enclosure, and replacement of Teflon tubing with glass-lined steel pipes.

  7. On the composition of ammonia-sulfuric-acid ion clusters during aerosol particle formation

    NASA Astrophysics Data System (ADS)

    Schobesberger, S.; Franchin, A.; Bianchi, F.; Rondo, L.; Duplissy, J.; Kürten, A.; Ortega, I. K.; Metzger, A.; Schnitzhofer, R.; Almeida, J.; Amorim, A.; Dommen, J.; Dunne, E. M.; Ehn, M.; Gagné, S.; Ickes, L.; Junninen, H.; Hansel, A.; Kerminen, V.-M.; Kirkby, J.; Kupc, A.; Laaksonen, A.; Lehtipalo, K.; Mathot, S.; Onnela, A.; Petäjä, T.; Riccobono, F.; Santos, F. D.; Sipilä, M.; Tomé, A.; Tsagkogeorgas, G.; Viisanen, Y.; Wagner, P. E.; Wimmer, D.; Curtius, J.; Donahue, N. M.; Baltensperger, U.; Kulmala, M.; Worsnop, D. R.

    2015-01-01

    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new-particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3) and sulfuric acid (H2SO4). Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3-H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from < 2 to 1400 pptv, [H2SO4] from 3.3 × 106 to 1.4 × 109 cm-3 (0.1 to 56 pptv), and a temperature range from -25 to +20 °C. Negatively and positively charged clusters were directly measured by an atmospheric pressure interface time-of-flight (APi-TOF) mass spectrometer, as they initially formed from gas-phase NH3 and H2SO4, and then grew to larger clusters containing more than 50 molecules of NH3 and H2SO4, corresponding to mobility-equivalent diameters greater than 2 nm. Water molecules evaporate from these clusters during sampling and are not observed. We found that the composition of the NH3-H2SO4 clusters is primarily determined by the ratio of gas-phase concentrations [NH3] / [H2SO4], as well as by temperature. Pure binary H2O-H2SO4 clusters (observed as clusters of only H2SO4) only form at [NH3] / [H2SO4] < 0.1 to 1. For larger values of [NH3] / [H2SO4], the composition of NH3-H2SO4 clusters was characterized by the number of NH3 molecules m added for each added H2SO4 molecule n (Δm/Δ n), where n is in the range 4-18 (negatively charged clusters) or 1-17 (positively charged clusters). For negatively charged clusters, Δ m/Δn saturated between 1 and 1.4 for [NH3] / [H2SO4] > 10. Positively

  8. On the composition of ammonia-sulfuric acid clusters during aerosol particle formation

    NASA Astrophysics Data System (ADS)

    Schobesberger, S.; Franchin, A.; Bianchi, F.; Rondo, L.; Duplissy, J.; Kürten, A.; Ortega, I. K.; Metzger, A.; Schnitzhofer, R.; Almeida, J.; Amorim, A.; Dommen, J.; Dunne, E. M.; Ehn, M.; Gagné, S.; Ickes, L.; Junninen, H.; Hansel, A.; Kerminen, V.-M.; Kirkby, J.; Kupc, A.; Laaksonen, A.; Lehtipalo, K.; Mathot, S.; Onnela, A.; Petäjä, T.; Riccobono, F.; Santos, F. D.; Sipilä, M.; Tomé, A.; Tsagkogeorgas, G.; Viisanen, Y.; Wagner, P. E.; Wimmer, D.; Curtius, J.; Donahue, N. M.; Baltensperger, U.; Kulmala, M.; Worsnop, D. R.

    2014-05-01

    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3) and sulfuric acid (H2SO4). Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3-H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from <2 to 1400 pptv, [H2SO4] from 3.3 × 106 to 1.4 × 109 cm-3, and a temperature range from -25 to +20 °C. Negatively and positively charged clusters were directly measured by an atmospheric pressure interface time-of-flight (APi-TOF) mass spectrometer, as they initially formed from gas-phase NH3 and H2SO4, and then grew to larger clusters containing more than 50 molecules of NH3 and H2SO4, corresponding to mobility-equivalent diameters greater than 2 nm. Water molecules evaporate from these clusters during sampling and are not observed. We found that the composition of the NH3-H2SO4 clusters is primarily determined by the ratio of gas-phase concentrations [NH3] / [H2SO4], as well as by temperature. Pure binary H2O-H2SO4 clusters (observed as clusters of only H2SO4) only form at [NH3] / [H2SO4]<0.1 to 1. For larger values of [NH3] / [H2SO4], the composition of NH3-H2SO4 clusters was characterized by the number of NH3 molecules m added for each added H2SO4 molecule n (Δm / Δn), where n is in the range 4-18 (negatively charged clusters) or 1-17 (positively charged clusters). For negatively charged clusters, Δm / Δn saturated between 1 and 1.4 for [NH3] / [H2SO4]>10. Positively charged clusters grew on

  9. Role of Criegee Intermediates in Formation of Sulfuric Acid at BVOCs-rich Cape Corsica Site

    NASA Astrophysics Data System (ADS)

    Kukui, A.; Dusanter, S.; Sauvage, S.; Gros, V.; Bourrianne, T.; Sellegri, K.; Wang, J.; Colomb, A.; Pichon, J. M.; Chen, H.; Kalogridis, C.; Zannoni, N.; Bonsang, B.; Michoud, V.; Locoge, N.; Leonardis, T.

    2015-12-01

    Oxidation of SO2 in reactions with stabilised Criegee Intermediates (sCI) was suggested as an additional source of gaseous sulfuric acid (H2SO4) in the atmosphere, complementary to the conventional H2SO4 formation in reaction of SO2 with OH radicals. Evaluation of the importance of this additional source is complicated due to large uncertainty in the mechanism and rate constants for the reactions of different sCI with SO2, water vapor and other atmospheric species. Here we present an evaluation of the role of sCI in H2SO4 production at remote site on Cape Corsica near the North tip of Corsica Island (Ersa station, Western Mediterranean). In July 2013 comprehensive field observations including gas phase (OH and RO2 radicals, H2SO4, VOCs, NOx, SO2, others) and aerosol measurements were conducted at this site in the frame of ChArMEx project. During the field campaign the site was strongly influenced by local emissions of biogenic volatile compounds (BVOCs), including isoprene and terpenes, forming different sCI in reactions with ozone and, hence, presenting additional source of H2SO4 via sCI+SO2. However, this additional source of H2SO4 at the Ersa site was found to be insignificant. The observed concentrations of H2SO4 were found to be in good agreement with those estimated from the H2SO4 condensation sink and the production of H2SO4 only in the reaction of OH with SO2, without accounting for any additional H2SO4 source. Using the BVOCs observations we present estimation of the upper limit for the rate constants of H2SO4 production via reactions of different sCI with SO2.

  10. A Comprehensive Evaluation of H2SO4 formation from OH and sCI pathways in high BVOC environments

    NASA Astrophysics Data System (ADS)

    Kim, S.; Seco, R.; Park, J. H.; Guenther, A. B.; Smith, J. N.; Kuang, C.; Bustillos, J. O. V.; Tota, J.; Souza, R. A. F. D.

    2014-12-01

    The recently highlighted importance of stabilized Criegee intermediates (sCI) as an oxidant for atmospheric SO2 triggered a number of studies to assess the atmospheric implications of H2SO4 formation from the sCI reaction pathway. In addition, it has not been clear why new particle formation events are not observed in the Amazon rain forest. The mostly widely speculated reason has been a very low H2SO4 level. We will present quantitative assessments of SO2 oxidation by sCI leading to the H2SO4 production using a comprehensive observational dataset from a tropical rainforest study during the GOAmazon field campaign at the T3 site in Manacapuru, Amazonas, Brazil. To our best knowledge, this is the first observation of H2SO4 and OH in Amazon and is unique for all tropical sites due to the accompanying comprehensive gas and aerosol observations such as CO, NOX, SO2, VOCs, and physical and chemical characteristics of aerosols. We will discuss observed H2SO4 levels during the GOAmazon field campaigns to demonstrate 1) H2SO4 formation potential from OH and sCI oxidation pathways by contrasting extremely clean and relatively polluted air masses and 2) the Implications of the observed H2SO4 levels in new particle formation and particle growth events.

  11. Composition and freezing of aqueous H2SO4/HNO3 solutions under polar stratospheric conditions

    NASA Technical Reports Server (NTRS)

    Beyer, K. D.; Seago, S. W.; Chang, H. Y.; Molina, M. J.

    1994-01-01

    The results of laboratory investigations of the freezing behavior of aqueous acid solutions indicate that in the stratosphere H2SO/H2O aerosol droplets would not freeze at temperatures above the ice frost point in the absence of HNO3; however, in the presence of typical levels of HNO3 liquid sulfuric acid aerosols take up significant amounts of HNO3 and H2O vapors and freeze much more readily. This is a consequence of the very rapid change in composition of the liquid droplets as the temperature drops to within two to three degrees of the equilibrium temperature at which HNO3 and H2O vapors would co-condense to form a liquid solution. In the high latitude stratosphere this HNO3/H2O 'dew point' is typically around 192-194 K at 100 mbar.

  12. Surface modification with alumina blasting and H2SO4-HCl etching for bonding two resin-composite veneers to titanium.

    PubMed

    Taira, Yohsuke; Egoshi, Takafumi; Kamada, Kohji; Sawase, Takashi

    2014-02-01

    The purpose of this study was to investigate the effect of an experimental surface treatment with alumina blasting and acid etching on the bond strengths between each of two resin composites and commercially pure titanium. The titanium surface was blasted with alumina and then etched with 45wt% H2SO4 and 15wt% HCl (H2SO4-HCl). A light- and heat-curing resin composite (Estenia) and a light-curing resin composite (Ceramage) were used with adjunctive metal primers. Veneered specimens were subjected to thermal cycling between 4 and 60°C for 50,000 cycles, and the shear bond strengths were determined. The highest bond strengths were obtained for Blasting/H2SO4-HCl/Estenia (30.2 ± 4.5 MPa) and Blasting/Etching/Ceramage (26.0 ± 4.5 MPa), the values of which were not statistically different, followed by Blasting/No etching/Estenia (20.4 ± 2.4 MPa) and Blasting/No etching/Ceramage (0.8 ± 0.3 MPa). Scanning electron microscopy observations revealed that alumina blasting and H2SO4-HCl etching creates a number of micro- and nanoscale cavities on the titanium surface, which contribute to adhesive bonding.

  13. Underpotential deposition of hydrogen on benzene-modified Pt(111) in aqueous H2SO4.

    PubMed

    Jerkiewicz, Gregory; DeBlois, Martin; Radovic-Hrapovic, Zorana; Tessier, Jean-Pierre; Perreault, Frédéric; Lessard, Jean

    2005-04-12

    The Pt(111) electrode is modified by an overlayer of C6H6 (ads) upon its cycling in the 0.05-0.80 V range in aq H2SO4 + 1 mM C6H6. The C6H6 (ads) overlayer significantly changes the underpotential-deposited H (H(UPD)) and anion adsorption, and cyclic-voltammetry (CV) profiles show a sharp cathodic peak and an asymmetric anodic one in the 0.05-0.80 V potential range. The C6H6 (ads) layer blocks the (bi)sulfate adsorption but facilitates the adsorption of one monolayer of H(UPD). Cycling of the benzene-modified Pt(111) in benzene-free aq 0.05 H2SO4 from 0.05 to 0.80 V results in a partial desorption of C6H6 (ads) and in a partial recovery of the CV profile characteristic of an unmodified Pt(111). The peak potential of the cathodic and anodic feature is independent of the scan rate, s (10 < or = s < or = 100 mV s(-1)), and the peak current density increases linearly with an increase of the scan rate. Temperature variation modifies the peak potential and current density but does not affect the charge density of the cathodic or anodic feature. Temperature-dependent studies allow us to determine the thermodynamic state function for the H(UPD) adsorption and desorption. Delta G degrees(ads)(H(UPD))assumes values from -4 to -12 kJ mol(-1), while has values from 9 to 14 kJ mol(-1). The values of delta Delta G degrees (delta Delta G degrees = delat Delta G degrees(ads) + delta Delta D degrees(des)) decrease almost linearly from 6 kJ mol(-1) at theta(H(UPD) --> 0 to 0 kJ mol(-1) at theta(H(UPD) --> 1. The nonzero values of delta Delta G degrees testify that the adsorbing and desorbing H(UPD) adatoms interact with an energetically different substrate. The lateral interactions changed from repulsive (omega = 29 kJ mol(-1) at theta(H(UPD) --> 0) to attractive (omega = -28 kJ mol(-1) at theta(H(UPD) --> 1) as the H(UPD) coverage increases. The values of delta S degrees(ads)(H(UPD)) increase from 19 to 56 J K(-1) mol(-1), while those of delta S degrees(des)(H(UPD)) decrease from

  14. Macroscopic assembled, ultrastrong and H2SO4-resistant fibres of polymer-grafted graphene oxide

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoli; Xu, Zhen; Zheng, Bingna; Gao, Chao

    2013-11-01

    Nacre realizes strength and toughness through hierarchical designs with primary ``brick and mortar'' structures of alternative arrangement of nanoplatelets and biomacromolecules, and these have inspired the fabrication of nanocomposites for decades. However, to simultaneously solve the three critical problems of phase separation, low interfacial strength and random orientation of nanofillers for nanocomposites is a great challenge yet. Here we demonstrate that polymer-grafted graphene oxide sheets are exceptional building blocks for nanocomposites. Their liquid crystalline dispersions can be wet-spun into continuous fibres. Because of well-ordering and efficient load transfer, the composites show remarkable tensile strength (500 MPa), three to four times higher than nacre. The uniform layered microstructures and strong interlayer interactions also endow the fibres good resistance to chemicals including 98% sulfuric acid. We studied the enhancing effect of nanofillers with fraction in a whole range (0-100%), and proposed an equation to depict the relationship.

  15. Macroscopic assembled, ultrastrong and H2SO4-resistant fibres of polymer-grafted graphene oxide

    PubMed Central

    Zhao, Xiaoli; Xu, Zhen; Zheng, Bingna; Gao, Chao

    2013-01-01

    Nacre realizes strength and toughness through hierarchical designs with primary “brick and mortar” structures of alternative arrangement of nanoplatelets and biomacromolecules, and these have inspired the fabrication of nanocomposites for decades. However, to simultaneously solve the three critical problems of phase separation, low interfacial strength and random orientation of nanofillers for nanocomposites is a great challenge yet. Here we demonstrate that polymer-grafted graphene oxide sheets are exceptional building blocks for nanocomposites. Their liquid crystalline dispersions can be wet-spun into continuous fibres. Because of well-ordering and efficient load transfer, the composites show remarkable tensile strength (500 MPa), three to four times higher than nacre. The uniform layered microstructures and strong interlayer interactions also endow the fibres good resistance to chemicals including 98% sulfuric acid. We studied the enhancing effect of nanofillers with fraction in a whole range (0–100%), and proposed an equation to depict the relationship. PMID:24196491

  16. Characterization of direct methanol fuel cell (DMFC) applications with H 2SO 4 modified chitosan membrane

    NASA Astrophysics Data System (ADS)

    Osifo, Peter O.; Masala, Aluwani

    Chitosan (Chs) flakes were prepared from chitin materials that were extracted from the exoskeleton of Cape rock lobsters in South Africa. The Chs flakes were prepared into membranes and the Chs membranes were modified by cross-linking with H 2SO 4. The cross-linked Chs membranes were characterized for the application in direct methanol fuel cells. The Chs membrane characteristics such as water uptake, thermal stability, proton resistance and methanol permeability were compared to that of high performance conventional Nafion 117 membranes. Under the temperature range studied 20-60 °C, the membrane water uptake for Chs was found to be higher than that of Nafion. Thermal analysis revealed that Chs membranes could withstand temperature as high as 230 °C whereas Nafion 117 membranes were stable to 320 °C under nitrogen. Nafion 117 membranes were found to exhibit high proton resistance of 284 s cm -1 than Chs membranes of 204 s cm -1. The proton fluxes across the membranes were 2.73 mol cm -2 s -1 for Chs- and 1.12 mol cm -2 s -1 Nafion membranes. Methanol (MeOH) permeability through Chs membrane was less, 1.4 × 10 -6 cm 2 s -1 for Chs membranes and 3.9 × 10 -6 cm 2 s -1 for Nafion 117 membranes at 20 °C. Chs and Nafion membranes were fabricated into membrane electrode assemblies (MAE) and their performances measure in a free-breathing commercial single cell DMFC. The Nafion membranes showed a better performance as the power density determined for Nafion membranes of 0.0075 W cm -2 was 2.7 times higher than in the case of Chs MEA.

  17. Evaluation and Characterization of Membranes for H2SO4/Water and I2/HI/H2O Water Separation and Hydrogen Permeation for the S-I Cycle

    SciTech Connect

    Frederick R. Stewart

    2006-10-01

    In this report are the findings into three membrane separation studies for potential application to the Sulfur-Iodine (S-I) thermochemical cycle. The first is the removal of water from hydriodic acid/iodine mixtures. In the S-I cycle, iodine is added to the product of the Bunsen reaction to facilitate the separation of sulfuric acid (H2SO4) from hydriodic acid (HI). The amount of iodine can be as high as 83% of the overall mass load of the Bunsen product stream, which potentially introduces a large burden on the cycle’s efficiency. Removal of water from the HI and iodine mixture would substantially reduce the amount of required additional iodine. In this work, performance data for Nafion® and sulfonated poly (ether ether ketone) (SPEEK) membranes is shown.

  18. Improved quasi-unary nucleation model for binary H2SO4-H2O homogeneous nucleation

    NASA Astrophysics Data System (ADS)

    Yu, Fangqun

    2007-08-01

    Aerosol nucleation events have been observed at a variety of locations worldwide, and may have significant climatic and health implications. Binary homogeneous nucleation (BHN) of H2SO4 and H2O is the foundation of recently proposed nucleation mechanisms involving additional species such as ammonia, ions, and organic compounds, and it may dominate atmospheric nucleation under certain conditions. We have shown in previous work that H2SO4-H2O BHN can be treated as a quasi-unary nucleation (QUN) process involving H2SO4 in equilibrium with H2O vapor, and we have developed a self-consistent kinetic model for H2SO4-H2O nucleation. Here, the QUN approach is improved, and an analytical expression yielding H2SO4-H2O QUN rates is derived. Two independent measurements related to monomer hydration are used to constrain the equilibrium constants for this process, which reduces a major source of uncertainty. It is also shown that the capillarity approximation may lead to a large error in the calculated Gibbs free energy change for the evaporation of H2SO4 molecules from small H2SO4-H2O clusters, which affects the accuracy of predicted BHN nucleation rates. The improved QUN model—taking into account the recently measured energetics of small clusters—is thermodynamically more robust. Moreover, predicted QUN nucleation rates are in better agreement with available experimental data than rates calculated using classical H2SO4-H2O BHN theory.

  19. Aerosol chamber study of optical constants and N2O5 uptake on supercooled H2SO4/H2O/HNO3 solution droplets at polar stratospheric cloud temperatures.

    PubMed

    Wagner, Robert; Naumann, Karl-Heinz; Mangold, Alexander; Möhler, Ottmar; Saathoff, Harald; Schurath, Ulrich

    2005-09-15

    The mechanism of the formation of supercooled ternary H(2)SO(4)/H(2)O/HNO(3) solution (STS) droplets in the polar winter stratosphere, i.e., the uptake of nitric acid and water onto background sulfate aerosols at T < 195 K, was successfully mimicked during a simulation experiment at the large coolable aerosol chamber AIDA of Forschungszentrum Karlsruhe. Supercooled sulfuric acid droplets, acting as background aerosol, were added to the cooled AIDA vessel at T = 193.6 K, followed by the addition of ozone and nitrogen dioxide. N(2)O(5), the product of the gas phase reaction between O(3) and NO(2), was then hydrolyzed in the liquid phase with an uptake coefficient gamma(N(2)O(5)). From this experiment, a series of FTIR extinction spectra of STS droplets was obtained, covering a broad range of different STS compositions. This infrared spectra sequence was used for a quantitative test of the accuracy of published infrared optical constants for STS aerosols, needed, for example, as input in remote sensing applications. The present findings indicate that the implementation of a mixing rule approach, i.e., calculating the refractive indices of ternary H(2)SO(4)/H(2)O/HNO(3) solution droplets based on accurate reference data sets for the two binary H(2)SO(4)/H(2)O and HNO(3)/H(2)O systems, is justified. Additional model calculations revealed that the uptake coefficient gamma(N(2)O(5)) on STS aerosols strongly decreases with increasing nitrate concentration in the particles, demonstrating that this so-called nitrate effect, already well-established from uptake experiments conducted at room temperature, is also dominant at stratospheric temperatures.

  20. A global three-dimensional model of the stratospheric sulfuric acid layer

    NASA Technical Reports Server (NTRS)

    Golombek, Amram; Prinn, Ronald G.

    1993-01-01

    A 3D model which encompasses SO2 production from OCS, followed by its oxidation to gaseous H2SO4, the condensation-evaporation equilibrium of gaseous and particulate H2SO4, and finally particle condensation and rainout, is presently used to study processes maintaining the nonvolcanically-perturbed stratosphere's sulfuric acid layer. A comparison of the results thus obtained with remotely sensed stratospheric aerosol extinction data shows the model to simulate the general behavior of stratospheric aerosol extinction.

  1. Experimental study of cluster formation in binary mixture of H2O and H2SO4 vapors in the presence of an ionizing radiation source

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Smith, A. C.; Yue, G. K.

    1980-01-01

    Molecular clusters formed in pure nitrogen containing H2O and H2SO4 vapors and exposed to a 3 mCi Ni63 beta source were studied in the mass range 50 to 780 amu using a quadrupole mass spectrometer. Measurements were made under several combinations of relative humidity and relative acidity ranging from 0.7 to 7.5 percent and 0.00047 to 0.06333 percent, respectively. The number of H2SO4 molecules in the clusters observed ranged from 1 to 7 whereas the number of H2O molecules ranged from 1 to 16. The experimental cluster spectra differ considerably from those calculated using the classical nucleation theory. First order calculations using modified surface tension values and including the effects of multipole moments of the nucleating molecules indicate that these effects may be enough to explain the difference between the measured and the calculated spectra.

  2. CORROSION OF AMORPHOUS AND NANOCRYSTALLINE Fe-BASED ALLOYS IN NaCl AND H2SO4 SOLUTIONS

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Lu, Wei; Wang, Yuxin; Yan, Biao; Pan, Deng

    2013-07-01

    Corrosion resistance of nanocrystalline Fe73.5Si13.5B9Nb3Cu1 alloy was investigated and compared to its amorphous counterpart. Low-temperature crystallization occurred during the annealing of amorphous tapes was used to obtain a nanocrystalline structure. The influence of annealing condition on the structure and corrosion resistance of the alloy in NaCl and H2SO4 solutions was investigated. Based on the testing results, it was found that nanocrystalline tapes have higher corrosion resistance than amorphous counterpart and H2SO4 can promote the occurrence of corrosion compared with NaCl.

  3. Heterogeneous Interactions of Acetaldehyde and Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Michelsen, R. R.; Ashbourn, S. F. M.; Iraci, L. T.

    2004-01-01

    The uptake of acetaldehyde [CH3CHO] by aqueous sulfuric acid has been studied via Knudsen cell experiments over ranges of temperature (210-250 K) and acid concentration (40-80 wt. %) representative of the upper troposphere. The Henry's law constants for acetaldehyde calculated from these data range from 6 x 10(exp 2) M/atm for 40 wt. % H2SO4 at 228 K to 2 x 10(exp 5) M/atm for 80 wt. % H2SO4 at 212 K. In some instances, acetaldehyde uptake exhibits apparent steady-state loss. The possible sources of this behavior, including polymerization, will be explored. Furthermore, the implications for heterogeneous reactions of aldehydes in sulfate aerosols in the upper troposphere will be discussed.

  4. Performance and discharge characteristics of doped (beta) MnO2 in H2SO4 electrolyte

    NASA Astrophysics Data System (ADS)

    Desai, Buqui D.; Lobo, Fernando S.; Kamatdalal, V. N.

    1994-10-01

    Doped manganese dioxides (beta-MnO2) were prepared by thermal decomposition (180 C) of manganese nitrate in the presence of weighed quantities of NH4VO3, Na2WO4 center-dot 2H2O, LiNO3, AgNO3, or MoO3. Detailed chemical analyses, surface area, and pycnometric density determinations were carried out, and the electrochemical performance was evaluated in H2SO4 (8 N) electrolyte. The discharge behavior was monitored using constant currents and constant resistances (both continuous and intermittent discharge). Some of the Mo-doped samples together with the Li- and Ag-doped materials performed well as cathodes in H2SO4. The consistency of discharge duration under different discharge regimes was a marked feature of the behavior of some of the compositions.

  5. New H2SO4 and HSO3 vapour measurements in the stratosphere - Evidence for a volcanic influence

    NASA Astrophysics Data System (ADS)

    Arnold, F.; Buehrke, T.

    1983-01-01

    In situ measurements of stratospheric H2SO4 and HSO3 vapour concentrations using passive chemical ionization mass spectrometry were made in 1982 before and after the dramatic eruptions of the Mexican volcano El Chichon. Substantial increases of the total concentration of these gases over previously measured values were observed, particularly around 25 km altitude where most of the eruption cloud material was deposited. Implications for stratospheric SO2-oxidation and nucleation processes are discussed.

  6. Measurements of OH, H2SO4, and MSA during Tropospheric Ozone Production About the Spring Equinox (TOPSE)

    NASA Astrophysics Data System (ADS)

    Mauldin, R. L.; Cantrell, C. A.; Zondlo, M. A.; Kosciuch, E.; Ridley, B. A.; Weber, R.; Eisele, F. E.

    2003-02-01

    Data from OH, H2SO4, and MSA measurements performed during Tropospheric Ozone Production About the Spring Equinox (TOPSE) are presented. Model simulations of OH results made at solar zenith angles of 60° or less showed a tendency of the model to overestimate OH concentrations. This overestimation was a factor of 1.7 at the lower latitudes (<57°N) of the study. At higher latitudes (>57°N) the model tended toward agreement and ultimately an underestimation of OH concentrations by a factor of 0.7. Comparisons of measurements and model showed the model underestimates OH concentrations at solar zenith angles greater than 70°. The results of the present study are discussed in the context of previous studies. Possible model discrepancies are discussed. Measurements of H2SO4 showed the highest concentrations at the lowest altitudes (<2000 m) and the lowest latitudes of the study. Larger H2SO4 concentrations observed at higher latitudes were accompanied at times by particle nucleation as indicated by the presence of UCN (ultra-fine condensation nuclei) with diameters of 3-4 nm. Concentrations of MSA were generally low with typical values of <2 × 105 molecule cm-3. High concentrations (>107 molecule cm-3) were found in layers and were accompanied by other compounds such as NOx and NOy indicating MSA may also have an industrial source.

  7. Uptake of Hypobromous Acid (HOBr) by Aqueous Sulfuric Acid Solutions: Low-Temperature Solubility and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, Rebecca R.; Ashbourn, Samatha F. M.; Rammer, Thomas A.; Golden, David M.

    2005-01-01

    Hypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45 - 70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H* = 10(exp 4) - 10(exp 7) mol/L/atm. H* is inversely dependent on temperature, with Delta H = -46.2 kJ/mol and Delta S = -106.2 J/mol/K for 55 - 70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into aqueous 45 wt% H2SO4, the solubility can be described by log H* = 3665/T - 10.63. For 55 - 70 wt% H2SO4, log H* = 2412/T - 5.55. At temperatures colder than approx. 213 K, the solubility of HOBr in 45 wt% H2SO4 is noticeably larger than in 70 wt% H2SO4. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Our measurements indicate chemical reaction of HOBr upon uptake into aqueous sulfuric acid in the presence of other brominated gases followed by evolution of gaseous products including Br2O and Br2, particularly at 70 wt% H2SO4.

  8. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry.

    PubMed

    Rondo, L; Ehrhart, S; Kürten, A; Adamov, A; Bianchi, F; Breitenlechner, M; Duplissy, J; Franchin, A; Dommen, J; Donahue, N M; Dunne, E M; Flagan, R C; Hakala, J; Hansel, A; Keskinen, H; Kim, J; Jokinen, T; Lehtipalo, K; Leiminger, M; Praplan, A; Riccobono, F; Rissanen, M P; Sarnela, N; Schobesberger, S; Simon, M; Sipilä, M; Smith, J N; Tomé, A; Tröstl, J; Tsagkogeorgas, G; Vaattovaara, P; Winkler, P M; Williamson, C; Wimmer, D; Baltensperger, U; Kirkby, J; Kulmala, M; Petäjä, T; Worsnop, D R; Curtius, J

    2016-03-27

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  9. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Rondo, L.; Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-03-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  10. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    PubMed Central

    Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Abstract Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI‐APi‐TOF (Chemical Ionization‐Atmospheric Pressure interface‐Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI‐APi‐TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4‐H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self‐contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit. PMID:27610289

  11. Phase and extraction equilibria in H2O-sulfonol-HCl (H2SO4) and H2O-sodium dodecyl sulfate-HCl (H2SO4) systems

    NASA Astrophysics Data System (ADS)

    Zabolotnykh, S. A.; Lesnov, A. E.; Denisova, S. A.

    2016-10-01

    Solubility isotherms of water-sulfonol-hydrochloric (or sulfuric) acid and water-sodium dodecyl sulfate-hydrochloric acid systems at 75°C and a water-sodium dodecyl sulfate-sulfuric acid system at 50°C are constructed. Regions of two-phase liquid equilibrium suitable for use in extraction are found. Concentration parameters for extraction are determined. The interfacial distribution of a series of metal ions with and without such additional complexing reagents as diantipyrylmethane and diantipyrylheptane is studied.

  12. Dissolution, speciation, and reaction of acetaldehyde in cold sulfuric acid

    NASA Astrophysics Data System (ADS)

    Michelsen, Rebecca R.; Ashbourn, Samantha F. M.; Iraci, Laura T.

    2004-12-01

    The uptake of gas-phase acetaldehyde [CH3CHO, ethanal] by aqueous sulfuric acid solutions was studied under upper tropospheric/lower stratospheric (UT/LS) conditions. The solubility of acetaldehyde was found to be low, between 2 × 102 M atm-1 and 1.5 × 105 M atm-1 under the ranges of temperature (211-241 K) and acid composition (39-76 weight percent, wt%, H2SO4) studied. Under most conditions, acetaldehyde showed simple solubility behavior when exposed to sulfuric acid. Under moderately acidic conditions (usually 47 wt% H2SO4), evidence of reaction was observed. Enhancement of uptake at long times was occasionally detected in conjunction with reaction. The source of these behaviors and the effect of acetaldehyde speciation on solubility are discussed. Implications for the uptake of oxygenated organic compounds by tropospheric aerosols are considered.

  13. Binderless Composite Electrode Monolith from Carbon Nanotube and Biomass Carbon Activated by H2 SO4 and CO2 Gas for Supercapacitor

    NASA Astrophysics Data System (ADS)

    Deraman, M.; Ishak, M. M.; Farma, R.; Awitdrus, Taer, E.; Talib, I. A.; Omar, R.

    2011-12-01

    Binderless composite electrodes in the monolithic form prepared from carbon nanotubes (CNTs) and self-adhesive carbon grains (SACG) from fibers of oil palm empty fruit bunch were studied as an electrode in a supercapacitor. The green monoliths (GMs) were prepared from three different types of precursors, SACG, SACG treated with 0.4 Molar H2 SO4 and mixture of SACG and 5% CNTs (by weight) treated with 0.4 Molar H2 SO4 , respectively. These GMs were carbonized at 600 ° C in N2 gas environment and activated by CO2 gas at 800 ° C for 1 hour to produce activated carbon monoliths (ACMs). The properties of the ACMs (density, porosity, microstructure, structure and electrical conductivity) were found affected by CNTs addition and acid treatment. The acid treatment did not improve the electrochemical behavior of the ACMs used as electrodes (specific capacitance, specific energy and specific power of the supercapacitor) in the supercapacitor cells but CNTs addition improves the equivalent series resistance of the cell.

  14. Solubility of acetic acid and trifluoroacetic acid in low-temperature (207-245 k) sulfuric acid solutions: implications for the upper troposphere and lower stratosphere.

    PubMed

    Andersen, Mads P Sulbaek; Axson, Jessica L; Michelsen, Rebecca R H; Nielsen, Ole John; Iraci, Laura T

    2011-05-05

    The solubility of gas-phase acetic acid (CH(3)COOH, HAc) and trifluoroacetic acid (CF(3)COOH, TFA) in aqueous sulfuric acid solutions was measured in a Knudsen cell reactor over ranges of temperature (207-245 K) and acid composition (40-75 wt %, H(2)SO(4)). For both HAc and TFA, the effective Henry's law coefficient, H*, is inversely dependent on temperature. Measured values of H* for TFA range from 1.7 × 10(3) M atm(-1) in 75.0 wt % H(2)SO(4) at 242.5 K to 3.6 × 10(8) M atm(-1) in 40.7 wt % H(2)SO(4) at 207.8 K. Measured values of H* for HAc range from 2.2 × 10(5) M atm(-1) in 57.8 wt % H(2)SO(4) at 245.0 K to 3.8 × 10(8) M atm(-1) in 74.4 wt % H(2)SO(4) at 219.6 K. The solubility of HAc increases with increasing H(2)SO(4) concentration and is higher in strong sulfuric acid than in water. In contrast, the solubility of TFA decreases with increasing sulfuric acid concentration. The equilibrium concentration of HAc in UT/LS aerosol particles is estimated from our measurements and is found to be up to several orders of magnitude higher than those determined for common alcohols and small carbonyl compounds. On the basis of our measured solubility, we determine that HAc in the upper troposphere undergoes aerosol partitioning, though the role of H(2)SO(4) aerosol particles as a sink for HAc in the upper troposphere and lower stratosphere will only be discernible under high atmospheric sulfate perturbations.

  15. Growth of nitric acid hydrates on thin sulfuric acid films

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-01-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1-3 x 10(exp -4) Torr H2O and 1-2.5 x 10(exp -6) Torr HNO3) and subjected to cooling and heating cycles. Fourier Transform Infrared (FTIR) spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.

  16. Electrochemical Behavior Assessment of Micro- and Nano-Grained Commercial Pure Titanium in H2SO4 Solutions

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, Arash; Ansari, Ali Reza; Mazaheri, Yousef; Karimi, Mohsen

    2017-02-01

    In this study, the electrochemical behavior of commercial pure titanium with both coarse-grained (annealed sample with the average grain size of about 45 µm) and nano-grained microstructure was compared by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and Mott-Schottky analysis. Nano-grained Ti, which typically has a grain size of about 90 nm, is successfully made by six-cycle accumulative roll-bonding process at room temperature. Potentiodynamic polarization plots and impedance measurements revealed that as a result of grain refinement, the passive behavior of the nano-grained sample was improved compared to that of annealed pure Ti in H2SO4 solutions. Mott-Schottky analysis indicated that the passive films behaved as n-type semiconductors in H2SO4 solutions and grain refinement did not change the semiconductor type of passive films. Also, Mott-Schottky analysis showed that the donor densities decreased as the grain size of the samples reduced. Finally, all electrochemical tests showed that the electrochemical behavior of the nano-grained sample was improved compared to that of annealed pure Ti, mainly due to the formation of thicker and less defective oxide film.

  17. Adsorption and inhibitive properties of a new synthesized guanidine derivative on corrosion of copper in 0.5 M H 2SO 4

    NASA Astrophysics Data System (ADS)

    Khaled, K. F.

    2008-12-01

    The inhibiting action of N-(5,6-diphenyl-4,5-dihydro-[1,2,4] triazin-3-yl)-guanidine (NTG) on the corrosion of copper in 0.5 M sulphuric acid was studied. NTG was synthesized and studied as an inhibitor for corrosion of copper. Results of weight loss, potentiodynamic polarization and electrochemical impedance (EIS) measurements consistently identify NTG as a good copper corrosion inhibitor. Potentiodynamic polarization studies clearly showed that NTG is a cathodic-type inhibitor for copper in 0.5 M H 2SO 4 solutions. Data obtained from EIS were analyzed to model the corrosion inhibition process through an equivalent circuit. The adsorptive behaviour of NTG on copper in 0.5 M H 2SO 4 was also investigated. The copper/NTG/solvent interfaces were simulated and the charges on NTG molecule as well as its structural parameters were calculated in presence of solvent effects. Adsorption of NTG on the surface of copper is found to obey the Langmuir adsorption isotherm.

  18. Potential role of stabilized Criegee radicals in sulfuric acid production in a high biogenic VOC environment.

    PubMed

    Kim, Saewung; Guenther, Alex; Lefer, Barry; Flynn, James; Griffin, Robert; Rutter, Andrew P; Gong, Longwen; Cevik, Basak Karakurt

    2015-03-17

    We present field observations made in June 2011 downwind of Dallas-Fort Worth, TX, and evaluate the role of stabilized Criegee radicals (sCIs) in gaseous sulfuric acid (H2SO4) production. Zero-dimensional model calculations show that sCI from biogenic volatile organic compounds composed the majority of the sCIs. The main uncertainty associated with an evaluation of H2SO4 production from the sCI reaction channel is the lack of experimentally determined reaction rates for sCIs formed from isoprene ozonolysis with SO2 along with systematic discrepancies in experimentally derived reaction rates between other sCIs and SO2 and water vapor. In general, the maximum of H2SO4 production from the sCI channel is found in the late afternoon as ozone increases toward the late afternoon. The sCI channel, however, contributes minor H2SO4 production compared with the conventional OH channel in the mid-day. Finally, the production and the loss rates of H2SO4 are compared. The application of the recommended mass accommodation coefficient causes significant overestimation of H2SO4 loss rates compared with H2SO4 production rates. However, the application of a lower experimental value for the mass accommodation coefficient provides good agreement between the loss and production rates of H2SO4. The results suggest that the recommended coefficient for the H2O surface may not be suitable for this relatively dry environment.

  19. Heterogeneous interactions of chlorine nitrate, hydrogen chloride, and nitric acid with sulfuric acid surfaces at stratospheric temperatures

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.; Rossi, Michel J.; Golden, David M.

    1988-01-01

    The heterogeneous interactions of ClONO2, HCl, and HNO3 with sulfuric acid surfaces were studied using a Knudsen cell flow reactor. The surfaces studied, chosen to simulate global stratospheric particulate, were composed of 65-75 percent H2SO4 solutions at temperatures in the range -63 to -43 C. Heterogeneous loss, but not reaction, of HNO3 and HCl occurred on these surfaces; the measured sticking coefficients are reported. Chlorine nitrate reacted on the cold sulfuric acid surfaces, producing gas-phase HOCl and condensed HNO3. CLONO2 also reacted with HCl dissolved in the 65-percent H2SO4 solution at -63 C, forming gaseous Cl2. In all cases studied, the sticking and/or reaction coefficients were much larger for the 65-percent H2SO4 solution at -63 C than for the 75-percent solution at -43 C.

  20. Preparation of TiO2 Anatase Nanocrystals by TiCl4 Hydrolysis with Additive H2SO4

    PubMed Central

    Li, Wenbing; Zeng, Tingying

    2011-01-01

    A new methodology was developed to synthesize uniform titania anatase nanocrystals by the hydrolysis of titanium chloride in sulfuric acid aqueous solutions at 0–90°C. The samples were characterized by Raman spectroscopy, UV-visible spectroscopy, transmission electron microscopy (TEM), electron diffraction (ED), and an Energy dispersive X-ray spectroscopy (EDS). The effects of the reaction temperature, mole ratio of SO42− to Ti4+, and the calcinations temperature on the particle size and crystal phase were investigated. Depending on the acidity, the hydrolysis temperature, and the calcination temperature, rhombic anatase nanocrystals sizes in the range of 10 nm to 50 nm were obtained. In the additive of sulfuric acid, Raman spectra and electron diffraction confirmed that the nanoparticles are composed of anatase TiO2. No other titania phases, such as rutile or brookite, were detected. PMID:21698263

  1. Sulfuric acid-induced changes in the physiology and structure of the tracheobronchial airways

    SciTech Connect

    Gearhart, J.M.; Schlesinger, R.B.

    1989-02-01

    Sulfuric acid aerosols occur in the ambient particulate mode due to atmospheric conversion from sulfur dioxide (SO2). This paper describes the response of the rabbit tracheobronchial tree to daily exposures to sulfuric acid (H2SO4) aerosol, relating physiological and morphological parameters. Rabbits were exposed to filtered air (sham control) or to submicrometer-sized H2SO4 at 250 micrograms/m3 H2SO4, for 1 hr/day, 5 days/week, with sacrifices after 4, 8, and 12 months of acid (or sham) exposure; some rabbits were allowed a 3-month recovery after all exposures ended. H2SO4 produced a slowing of tracheobronchial mucociliary clearance during the first weeks of exposure; this change became significantly greater with continued exposures and did not improve after exposures ended. Airway hyperresponsiveness was evident by 4 months of acid exposure; the condition worsened by 8 months of exposure and appeared to stabilize after this time. Standard pulmonary mechanics parameters showed no significant trends with repeated acid exposure, except for a decline in dynamic lung compliance in animals exposed to acid for 12 months. Lung tissue samples obtained from exposed animals showed a shift toward a greater frequency of smaller airways compared to control, an increase in epithelial secretory cell density in smaller airways, and a shift from neutral to acidic glycoproteins in the secretory cells. The effect on airway diameter resolved after the exposures ceased, but the secretory cell response did not return to normal within the recovery period. No evidence of inflammatory cell infiltration was found due to H2SO4 exposure. Thus, significant alterations in the physiology of the tracheobronchial tree have been demonstrated due to repeated 1-hr exposures to a concentration of H2SO4 that is one-fourth the current 8-hr threshold limit value for exposure in the work environment.

  2. Thermal Regeneration of Sulfuric Acid Hydrates after Irradiation

    NASA Technical Reports Server (NTRS)

    Loeffler, Mark J.; Hudson, Reggie L.

    2012-01-01

    In an attempt to more completely understand the surface chemistry of the jovian icy satellites, we have investigated the effect of heating on two irradiated crystalline sulfuric acid hydrates, H2SO4 4H2O and H2SO4 H2O. At temperatures relevant to Europa and the warmer jovian satellites, post-irradiation heating recrystallized the amorphized samples and increased the intensities of the remaining hydrate's infrared absorptions. This thermal regeneration of the original hydrates was nearly 100% efficient, indicating that over geological times, thermally-induced phase transitions enhanced by temperature fluctuations will reform a large fraction of crystalline hydrated sulfuric acid that is destroyed by radiation processing. The work described is the first demonstration of the competition between radiation-induced amorphization and thermally-induced recrystallization in icy ionic solids relevant to the outer Solar System.

  3. Topographic Study on Staging Transition in H2SO4-Graphite Intercalation Compound by in situ Raman Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Nishitani, Ryusuke; Sasaki, Yoshiro; Nishina, Yuichiro

    1987-03-01

    The staging kinetics in H2SO4-GIC’s has been investigated experimentally by time-and space-dependent Raman scattering measurements. The stage transition from stage n to n-1 begins at the interface between the intercalant reservoir and the a-face of the graphite crystal. The lower stage-(n-1) domains emerge at the interface and proceed toward the inner region of the crystal. A narrow phase-boundary between different stage domains exists in the localized region and move toward the inner region as the stage transformation progresses. The present results support the model [R. Nishitani, Y. Uno and H. Suematsu: Synth. Met. 7 (1983) 13] that the stage transformation proceeds via propagation of the boundary between well-staged regions. The origin of the stage disorder is also discussed.

  4. Mineralization of gaseous acetaldehyde by electrochemically generated Co(III) in H2SO4 with wet scrubber combinatorial system.

    PubMed

    Govindan, Muthuraman; Chung, Sang-Joon; Moon, Il-Shik

    2012-06-11

    Electrochemically generated Co(III) mediated catalytic room temperature incineration of acetaldehyde, which is one of volatile organic compounds (VOCs), combined with wet scrubbing system was developed and investigated. Depending on the electrolyte's type, absorption come removal efficiency is varied. In presence of electrogenerated Co(III) in sulfuric acid, acetaldehyde was mineralized to CO2 and not like only absorption in pure sulfuric acid. The Co(III) mediated catalytic incineration led to oxidative absorption and elimination to CO2, which was evidenced with titration, CO2, and cyclic voltammetric analyses. Experimental conditions, such as current density, concentration of mediator, and gas molar flow rate were optimized. By the optimization of the experimental conditions, the complete mineralization of acetaldehyde was realized at a room temperature using electrochemically generated Co(III) with wet scrubber combinatorial system.

  5. Heterogeneous Chemistry of HONO on Liquid Sulfuric Acid: A New Mechanism of Chlorine Activation on Stratospheric Sulfate Aerosols

    NASA Technical Reports Server (NTRS)

    Zhang, Renyi; Leu, Ming-Taun; Keyser, Leon F.

    1996-01-01

    Heterogeneous chemistry of nitrous acid (HONO) on liquid sulfuric acid (H2SO4) Was investigated at conditions that prevail in the stratosphere. The measured uptake coefficient (gamma) of HONO on H2SO4 increased with increasing acid content, ranging from 0.03 for 65 wt % to about 0.1 for 74 wt %. In the aqueous phase, HONO underwent irreversible reaction with H2SO4 to form nitrosylsulfuric acid (NO(+)HSO4(-). At temperatures below 230 K, NO(+)HSO4(-) was observed to be stable and accumulated in concentrated solutions (less than 70 wt % H2SO4) but was unstable and quickly regenerated HONO in dilute solutions (less than 70 wt %). HCl reacted with HONO dissolved in sulfuric acid, releasing gaseous nitrosyl chloride (ClNO). The reaction probability between HCl and HONO varied from 0.01 to 0.02 for 60-72 wt % H2SO4. In the stratosphere, ClNO photodissociates rapidly to yield atomic chlorine, which catalytically destroys ozone. Analysis of the laboratory data reveals that the reaction of HCl with HONO on sulfate aerosols can affect stratospheric ozone balance during elevated sulfuric acid loadings after volcanic eruptions or due to emissions from the projected high-speed civil transport (HSCT). The present results may have important implications on the assessment of environmental acceptability of HSCT.

  6. C3H7NO2S effect on concrete steel-rebar corrosion in 0.5 M H2SO4 simulating industrial/microbial environment

    NASA Astrophysics Data System (ADS)

    Okeniyi, Joshua Olusegun; Nwadialo, Christopher Chukwuweike; Olu-Steven, Folusho Emmanuel; Ebinne, Samaru Smart; Coker, Taiwo Ebenezer; Okeniyi, Elizabeth Toyin; Ogbiye, Adebanji Samuel; Durotoye, Taiwo Omowunmi; Badmus, Emmanuel Omotunde Oluwasogo

    2017-02-01

    This paper investigates C3H7NO2S (Cysteine) effect on the inhibition of reinforcing steel corrosion in concrete immersed in 0.5 M H2SO4, for simulating industrial/microbial environment. Different C3H7NO2S concentrations were admixed, in duplicates, in steel-reinforced concrete samples that were partially immersed in the acidic sulphate environment. Electrochemical monitoring techniques of open circuit potential, as per ASTM C876-91 R99, and corrosion rate, by linear polarization resistance, were then employed for studying anticorrosion effect in steel-reinforced concrete samples by the organic hydrocarbon admixture. Analyses of electrochemical test-data followed ASTM G16-95 R04 prescriptions including probability distribution modeling with significant testing by Kolmogorov-Smirnov and student's t-tests statistics. Results established that all datasets of corrosion potential distributed like the Normal, the Gumbel and the Weibull distributions but that only the Weibull model described all the corrosion rate datasets in the study, as per the Kolmogorov-Smirnov test-statistics. Results of the student's t-test showed that differences of corrosion test-data between duplicated samples with the same C3H7NO2S concentrations were not statistically significant. These results indicated that 0.06878 M C3H7NO2S exhibited optimal inhibition efficiency η = 90.52±1.29% on reinforcing steel corrosion in the concrete samples immersed in 0.5 M H2SO4, simulating industrial/microbial service-environment.

  7. Measurement of OH, H2SO4, MSA, DMSO, DMSO2 on the NASA P-3B Aircraft

    NASA Technical Reports Server (NTRS)

    Eisele, F. L.

    1998-01-01

    This project involves the deployment of a variety of unique aircraft measurements for the PEM-Tropics program. These measurements were all to be accomplished on a near simultaneous basis using a two channel selected ion chemical ionization mass spectrometer instrument. The first year of this project consisted of four components; improve and perform additional testing of the OH, H2SO4, and MSA instrument which had only flown on one previous mission (ACE-I); develop and test the vacuum and electronic hardware and software which would allow two independent mass spectrometer systems to be operated from a single instrument (one vacuum/pumping system); construct an aircraft compatible DMSO/DMS02 ion source and calibration system; and operate the above system on the NASA P-3B during PEM-Tropics. The first two of the components were to be accomplished at NCAR. The third component was to be completed at Georgia Tech and the fourth was to be conducted by researchers from both institutions on the NASA P-3B.

  8. Alpha-amylase production is induced by sulfuric acid in rice aleurone cells.

    PubMed

    Mitsunaga, Shin-ichiro; Kobayashi, Midori; Fukui, Satoe; Fukuoka, Kayoko; Kawakami, Osamu; Yamaguchi, Junji; Ohshima, Masahiro; Mitsui, Toshiaki

    2007-12-01

    The hydrolytic enzyme alpha-amylase (EC 3.2.1.1) is produced mainly in aleurone cells of germinating cereals, and the phytohormone gibberellin (GA) is essential for its induction. However, in rice (Oryza sativa L.), sulfuric acid (H(2)SO(4)) induces alpha-amylase production in aleurone tissue even in the absence of GA. Here, the pre-treatment of rice aleurone cells with H(2)SO(4) and incubation in water induced alpha-amylase activity, as if the cells had been incubated in GA solution.

  9. Molecular interaction of pinic acid with sulfuric acid: exploring the thermodynamic landscape of cluster growth.

    PubMed

    Elm, Jonas; Kurtén, Theo; Bilde, Merete; Mikkelsen, Kurt V

    2014-09-11

    We investigate the molecular interactions between the semivolatile α-pinene oxidation product pinic acid and sulfuric acid using computational methods. The stepwise Gibbs free energies of formation have been calculated utilizing the M06-2X functional, and the stability of the clusters is evaluated from the corresponding ΔG values. The first two additions of sulfuric acid to pinic acid are found to be favorable with ΔG values of -9.06 and -10.41 kcal/mol. Addition of a third sulfuric acid molecule is less favorable and leads to a structural rearrangement forming a bridged sulfuric acid-pinic acid cluster. The involvement of more than one pinic acid molecule in a single cluster is observed to lead to the formation of favorable (pinic acid)2(H2SO4) and (pinic acid)2(H2SO4)2 clusters. The identified most favorable growth paths starting from a single pinic acid molecule lead to closed structures without the further possibility for attachment of either sulfuric acid or pinic acid. This suggests that pinic acid cannot be a key species in the first steps in nucleation, but the favorable interactions between sulfuric acid and pinic acid imply that pinic acid can contribute to the subsequent growth of an existing nucleus by condensation.

  10. Surface chemical compositions and dispersity of starch nanocrystals formed by sulfuric and hydrochloric acid hydrolysis.

    PubMed

    Wei, Benxi; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2014-01-01

    Surface chemical compositions of starch nanocrystals (SNC) prepared using sulfuric acid (H2SO4) and hydrochloric acid (HCl) hydrolysis were analyzed by X-ray photoelectron spectroscopy (XPS) and FT-IR. The results showed that carboxyl groups and sulfate esters were presented in SNC after hydrolysis with H2SO4, while no sulfate esters were detected in SNC during HCl-hydrolysis. TEM results showed that, compared to H2SO4-hydrolyzed sample, a wider size distribution of SNC prepared by HCl-hydrolysis were observed. Zeta-potentials were -23.1 and -5.02 mV for H2SO4- and HCl-hydrolyzed SNC suspensions at pH 6.5, respectively. Nevertheless, the zeta-potential values decreased to -32.3 and -10.2 mV as the dispersion pH was adjusted to 10.6. After placed 48 h at pH 10.6, zeta-potential increased to -24.1 mV for H2SO4-hydrolyzed SNC, while no change was detected for HCl-hydrolyzed one. The higher zeta-potential and relative small particle distribution of SNC caused more stable suspensions compared to HCl-hydrolyzed sample.

  11. Interaction of Ethyl Alcohol Vapor with Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2006-01-01

    We investigated the uptake of ethyl alcohol (ethanol) vapor by sulfuric acid solutions over the range approx.40 to approx.80 wt % H2SO4 and temperatures of 193-273 K. Laboratory studies used a fast flow-tube reactor coupled to an electron-impact ionization mass spectrometer for detection of ethanol and reaction products. The uptake coefficients ((gamma)) were measured and found to vary from 0.019 to 0.072, depending upon the acid composition and temperature. At concentrations greater than approx.70 wt % and in dilute solutions colder than 220 K, the values approached approx.0.07. We also determined the effective solubility constant of ethanol in approx.40 wt % H2SO4 in the temperature range 203-223 K. The potential implications to the budget of ethanol in the global troposphere are briefly discussed.

  12. Effects of sulfuric acid aerosol on cardiopulmonary function of dogs, sheep, and humans.

    PubMed

    Sackner, M A; Ford, D; Fernandez, R; Cipley, J; Perez, D; Kwoka, M; Reinhart, M; Michaelson, E D; Schreck, R; Wanner, A

    1978-09-01

    Submicronic aerosol of sulfuric acid (H2SO4) originates from the burning of fossil fuels and discharge of vapor from the automobile engine equipped with the catalytic converter. This study was conducted to determine whether brief exposure to this aerosol in high concentrations adversely affects the cardiopulmonary system. In all studies, submicronic aerosol of sodium chloride was used as a control. Anesthetized dogs that breathed H2SO4 aerosol in concentrations up to 8 mg per m3 showed no effects on respiratory resistance, static lung compliance, and functional residual capacity. A 4-hour exposure to H2SO4 aerosol (4 mg per m3) produced no significant changes in mechanics of breathing, functional residual capacity, pulmonary and systemic arterial blood pressures, cardiac output, heart rate, and arterial blood gas tensions. Conscious sheep that breathed H2SO4 aerosol in concentrations up to 14 mg per m3 for 20 min had no alteration of tracheal mucous velocity in an immediate 3-hour follow-up period or 5 to 10 days later. Conscious sheep that breathed H2SO4 aerosol (4 mg per m3) for 4 hours had no significant alteration of tracheal mucous velocity immediately and 2 hours thereafter. Both normal and asthmatic adults breathing H2SO4 aerosol in concentrations up to 1 mg per m3 for 10 min showed no significant alteration of lung volumes, distribution of ventilation, ear oximetry, dynamic mechanics of breathing, oscillation mechanics of the chest-lung system, pulmonary capillary blood flow, diffusing capacity, O2 consumption, and pulmonary tissue volume. No delayed effects in pulmonary function nor exacerbation of bronchial asthma were observe during a follow-up period of a few weeks. The present study indicates that single exposure to submicronic H2SO4 aerosol does not produce an immediate or a delayed adverse effect on cardiopulmonary function in anesthetized dogs, conscious sheep, and normal and asthmatic adults.

  13. Calibration of a chemical ionization mass spectrometer for the measurement of gaseous sulfuric acid.

    PubMed

    Kürten, Andreas; Rondo, Linda; Ehrhart, Sebastian; Curtius, Joachim

    2012-06-21

    The accurate measurement of the gaseous sulfuric acid concentration is crucial within many fields of atmospheric science. Instruments utilizing chemical ionization mass spectrometry (CIMS) measuring H(2)SO(4), therefore, require a careful calibration. We have set up a calibration source that can provide a stable and adjustable concentration of H(2)SO(4). The calibration system initiates the production of sulfuric acid through the oxidation of SO(2) by OH. The hydroxyl radical is produced by UV photolysis of water vapor. A numerical model calculates the H(2)SO(4) concentration provided at the outlet of the calibration source. From comparison of this concentration and the signals measured by CIMS, a calibration factor is derived. This factor is evaluated to be 1.1 × 10(10) cm(-3), which is in good agreement with values found in the literature for other CIMS instruments measuring H(2)SO(4). The calibration system is described in detail and the results are discussed. Because the setup is external to the CIMS instrument, it offers the possibility for future CIMS intercomparison measurements by providing defined and stable concentrations of sulfuric acid.

  14. Synergism between rare earth cerium(IV) ion and vanillin on the corrosion of steel in H 2SO 4 solution: Weight loss, electrochemical, UV-vis, FTIR, XPS, and AFM approaches

    NASA Astrophysics Data System (ADS)

    Li, Xianghong; Deng, Shuduan; Fu, Hui; Mu, Guannan; Zhao, Ning

    2008-06-01

    The synergism between rare earth cerium(IV) ion and vanillin (4-hydroxy-3-methoxy-benzaldehyde) on the corrosion of cold rolled steel (CRS) in 1.0 M H 2SO 4 solution at five temperatures ranging from 20 to 60 °C was first studied by weight loss and potentiodynamic polarization methods. The inhibited solutions were analyzed by ultraviolet and visible spectrophotometer (UV-vis). The adsorbed film of CRS surface containing optimum doses of the blends Ce 4+-vanillin was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). The results revealed that vanillin had a moderate inhibitive effect, and the inhibition efficiency (IE) increased with the vanillin concentration. The adsorption of vanillin obeyed Temkin adsorption isotherm. Polarization curves showed that vanillin was a mixed-type inhibitor in sulfuric acid, while prominently inhibited the cathodic reaction. For the cerium(IV) ion, it had a negligible effect, and the maximum IE was only about 20%. However, incorporation of Ce 4+ with vanillin improved significantly the inhibition performance. The IE for Ce 4+ in combination with vanillin was higher than the summation of IE for single Ce 4+ and single vanillin, which was synergism in nature. A high inhibition efficiency, 98% was obtained by a mixture of 25-200 mg l -1 vanillin and 300-475 mg l -1 Ce 4+. UV-vis showed that the new complex of Ce 4+-vanillin was formed in 1.0 M H 2SO 4 for Ce 4+ combination with vanillin. Polarization studies showed that the complex of Ce 4+-vanillin acted as a mixed-type inhibitor, which drastically inhibits both anodic and cathodic reactions. FTIR and XPS revealed that a protective film formed in the presence of both vanillin and Ce 4+ was composed of cerium oxide and the complex of Ce 4+-vanillin. The synergism between Ce 4+ and vanillin could also be evidenced by AFM images. Depending on the results, the synergism mechanism was discussed from the

  15. Inhibitory action of quaternary ammonium bromide on mild steel and synergistic effect with other halide ions in 0.5 M H2SO4.

    PubMed

    Khamis, A; Saleh, Mahmoud M; Awad, Mohamed I; El-Anadouli, B E

    2014-11-01

    The corrosion inhibition of mild steel in 0.5 M H2SO4 solution has been investigated using electrochemical methods, X-ray diffraction (XRD) and scanning electron microscope (SEM). The adsorption and inhibition action of acid corrosion of mild steel using cetyltrimethylammonium bromide (CTABr) and different halides (NaCl, NaBr and NaI) has shown synergetic effect. The results showed that the protection efficiency (P%) has high values at considerable high concentration of CTABr. However, in the presence of the different halides, the P increases dramatically at low concentration of CTABr. Physisorption was proposed from the the values of [Formula: see text]. The synergism parameter (S θ) is found to be greater than unity indicating that the enhanced P% caused by the addition of the halides to the CTABr is due to a co-operative adsorption of both species. Corrosion products phases and surface morphology were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively.

  16. Inhibitory action of quaternary ammonium bromide on mild steel and synergistic effect with other halide ions in 0.5 M H2SO4

    PubMed Central

    Khamis, A.; Saleh, Mahmoud M.; Awad, Mohamed I.; El-Anadouli, B.E.

    2013-01-01

    The corrosion inhibition of mild steel in 0.5 M H2SO4 solution has been investigated using electrochemical methods, X-ray diffraction (XRD) and scanning electron microscope (SEM). The adsorption and inhibition action of acid corrosion of mild steel using cetyltrimethylammonium bromide (CTABr) and different halides (NaCl, NaBr and NaI) has shown synergetic effect. The results showed that the protection efficiency (P%) has high values at considerable high concentration of CTABr. However, in the presence of the different halides, the P increases dramatically at low concentration of CTABr. Physisorption was proposed from the the values of ΔGads0. The synergism parameter (Sθ) is found to be greater than unity indicating that the enhanced P% caused by the addition of the halides to the CTABr is due to a co-operative adsorption of both species. Corrosion products phases and surface morphology were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. PMID:25685532

  17. Results from 13-cm absorptivity and H2SO4 abundance profiles from the Season 10 (1986) Pioneer Venus Orbiter radio occultation experiment

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon M.; Steffes, Paul G.

    1991-01-01

    Results are reported from 13-cm radio-occultation absorptivity measurements of H2SO4 in the northern-hemisphere atmosphere of Venus, obtained by the Pioneer Venus Orbiter on 23 orbits during late 1986 and early 1987. The theoretical basis of the occultation measurements is explained; the error-analysis procedures are outlined; and the data are presented in tables and graphs. The abundance and distribution of gaseous H2SO4 in the equatorial zone (11-25 deg N) are found to be significantly different from those at latitudes above 36 deg N, and evidence for a reduction in H2SO4 abundance since the 1979 measurements is detected.

  18. H2SO4 formation from the gas-phase reaction of stabilized Criegee Intermediates with SO2: Influence of water vapour content and temperature

    NASA Astrophysics Data System (ADS)

    Berndt, Torsten; Jokinen, Tuija; Sipilä, Mikko; Mauldin, Roy L.; Herrmann, Hartmut; Stratmann, Frank; Junninen, Heikki; Kulmala, Markku

    2014-06-01

    The importance of gas-phase products from alkene ozonolysis other than OH radicals, most likely stabilized Criegee Intermediates (sCI), for the process of atmospheric SO2 oxidation to H2SO4 has been recently discovered. Subjects of this work are investigations on H2SO4 formation as a function of water vapour content (RH = 2-65%) and temperature (278-343 K) starting from the ozonolysis of trans-2-butene and 2,3-dimethyl-2-butene (TME). H2SO4 production other than via the OH radical reaction was attributed to the reaction of SO2 with sCI, i.e. acetaldehyde oxide arising from trans-2-butene ozonolysis and acetone oxide from TME. Measurements have been conducted in an atmospheric pressure flow tube using NO3--CI-APi-TOF mass spectrometry for H2SO4 detection. The sCI yields derived from H2SO4 measurements at 293 K were 0.49 ± 0.22 for acetaldehyde oxide and 0.45 ± 0.20 for acetone oxide. Our findings indicate a H2SO4 yield from sCI + SO2 of unity or close to unity. The deduced rate coefficient ratio for the reaction of sCI with H2O and SO2, k(sCI + H2O)/k(sCI + SO2), was found to be strongly dependent on the structure of the Criegee Intermediate, for acetaldehyde oxide at 293 K: (8.8 ± 0.4)·10-5 (syn- and anti-conformer in total) and for acetone oxide: <4·10-6. H2SO4 formation from sCI was pushed back with rising temperature in both reaction systems most probably due to an enhancement of sCI decomposition. The ratio k(dec)/k(sCI + SO2) increased by a factor of 34 (acetone oxide) increasing the temperature from 278 to 343 K. In the case of acetaldehyde oxide the temperature effect is less pronounced. The relevance of atmospheric H2SO4 formation via sCI + SO2 is discussed in view of its dependence on the structure of the Criegee Intermediate.

  19. Vanadium Flow Battery Electrolyte Synthesis via Chemical Reduction of V2O5 in Aqueous HCl and H2SO4.

    SciTech Connect

    Small, Leo J.; Pratt, Harry; Staiger, Chad; Martin, Rachel Irene; Anderson, Travis Mark; Chalamala, Babu; Soundappan, Thiagarajan; Tiwari, Monika; Subarmanian, Venkat R.

    2017-01-01

    We report a simple method to synthesize V 4+ (VO 2+ ) electrolytes as feedstock for all- vanadium redox flow batteries (RFB). By dissolving V 2 O 5 in aqueous HCl and H 2 SO 4 , subsequently adding glycerol as a reducing agent, we have demonstrated an inexpensive route for electrolyte synthesis to concentrations >2.5 M V 4+ (VO 2+ ). Electrochemical analysis and testing of laboratory scale RFB demonstrate improved thermal stability across a wider temperature range (-10-65 degC) for V 4+ (VO 2+ ) electrolytes in HCl compared to in H 2 SO 4 electrolytes.

  20. Methanol Uptake by Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Essin, A. M.; Golden, D. M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The global methanol budget is currently unbalanced, with source terms significantly larger than the sinks terms. To evaluate possible losses of gaseous methanol to sulfate aerosols, the solubility and reactivity of methanol in aqueous sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosols is under investigation. Methanol will partition into sulfate aerosols according to its Henry's law solubility. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H*, for cold (196 - 220 K) solutions ranging between 45 and 70 wt % H2SO4. We have found that methanol solubility ranges from approx. 10(exp 5) - 10(exp 7) M/atm for UT/LS conditions. Solubility increases with decreasing temperature and with increasing sulfuric acid content. Although methanol is slightly more soluble than are acetone and formaldehyde, current data indicate that uptake by clean aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These solubility measurements include uptake due to physical solvation and any rapid equilibria which are established in solution. Reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H is not significant over our experimental time scale for solutions below 80 wt % H2SO4. To confirm this directly, results obtained using a complementary equilibrium measurement technique will also be presented.

  1. Measurement of OH, H2SO4, MSA, NH3 and DMSO Aboard the NASA P-3B Aircraft

    NASA Technical Reports Server (NTRS)

    Eisele, Fred

    2001-01-01

    This project involved the installation of a downsized multichannel mass spectrometer instrument on the NASA P-3B aircraft and its subsequent use on the PEM-Tropics B mission. The new instrument performed well, measuring a number of difficult-to-measure compounds and providing much new photochemical and sulfur data as well as possibly uncovering a new nighttime DMSO source. The details of this effort are discussed.

  2. Evolution of newly formed aerosol particles in the continental boundary layer: A case study including OH and H2SO4 measurements

    NASA Astrophysics Data System (ADS)

    Birmili, W.; Wiedensohler, A.; Plass-Dülmer, C.; Berresheim, H.

    2000-08-01

    An event of new particle formation is presented, based on simultaneous measurements of aerosol number size distributions, relevant gaseous components including H2SO4 and OH, and meteorological parameters. Measurements were conducted at Hohenpeissenberg, a rural continental mountain site in southern Germany. The event was observed under intense solar radiation, with total particle number concentrations increasing from 6000 to 25000 cm-3 within one hour, and ultrafine particles (3-11 nm) accounting for more than 50% of total number. Observed OH and H2SO4 concentrations reached maximum levels around 107 cm-3. A lower limit of the particle nucleation rate was estimated to be 3 cm-3·s-1, consistent with present models of ternary nucleation involving the H2SO4-H2O-NH3 system. Roughly 80% of the subsequent drop in ultrafine mode particle number concentration could be explained by coagulation. The observed particle growth rate of 2.1±0.1 nm/h was largely attributed to the condensation of measured H2SO4, assuming neutralization by ammonia.

  3. Nitrogen and oxygen functionalized hollow carbon materials: The capacitive enhancement by simply incorporating novel redox additives into H2SO4 electrolyte

    NASA Astrophysics Data System (ADS)

    Nie, Yong Fu; Wang, Qian; Chen, Xiang Ying; Zhang, Zhong Jie

    2016-07-01

    In present work, we have developed a simple but effective template carbonization method for producing hollow carbon materials with high content of nitrogen and oxygen from thiocarbanilide. Among all samples, the NPC-1 exhibits high specific surface area (736 m2 g-1) and large pore volume (5.93 cm3 g-1) with high content of heteroatoms (∼11.25 at% nitrogen and ∼5.74 at% oxygen), which is conducive to the improvement of electrochemical performance. Specifically, the high specific capacitance and excellent cycling stability over 5000 cycles of the NPC-1-based electrode are achieved in 1 mol L-1 H2SO4 electrolyte. Additionally, pyrocatechol and rutin as novel redox additives that can easily cause redox-reactions have been incorporated into H2SO4 electrolyte to improve the capacitances. As a result, the NPC-1-R-0.15 and NPC-1-P-0.15 samples deliver high specific capacitances of 120.5 and 368.7 F g-1 at 2 A g-1, respectively, which are much higher than that of the NPC-1 sample (66.2 F g-1) without redox-additives at same current density. Furthermore, the large energy density of 18.9 and 11.9 Wh kg-1 of the NPC-1-based symmetric supercapacitors have been obtained in H2SO4+pyrocatechol and H2SO4+rutin electrolyte, respectively, and both samples also demonstrate excellent cyclic performance for 5000 cycles.

  4. Long-term stability of FeSO4 and H2SO4 treated chromite ore processing residue (COPR): Importance of H(+) and SO4(2).

    PubMed

    Wang, Xin; Zhang, Jingdong; Wang, Linling; Chen, Jing; Hou, Huijie; Yang, Jiakuan; Lu, Xiaohua

    2017-01-05

    In this study, the long-term stability of Cr(VI) in the FeSO4 and H2SO4 (FeSO4-H2SO4) treated chromite ore processing residue (COPR) after 400 curing days and the stabilization mechanisms were investigated. FeSO4-H2SO4 treatment significantly reduced toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) Cr(VI) concentrations to lower than the regulatory limit of 1.5mgL(-1) (HJ/T 301-2007, China EPA) even for the samples curing 400days, achieving an outstanding long-term stability. Our independent leaching tests revealed that H(+) and SO4(2-) have synergistic effect on promoting the release of Cr(VI), which would make Cr(VI) easier accessed by Fe(II) during stabilization. The contributions of H(+) and SO4(2-) to Cr(VI) release ratio were 25%-44% and 19%-38%, respectively, as 5mol H2SO4 per kg COPR was used. X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and alkaline digestion analyses were also employed to interpret the possible stabilization mechanism. Cr(VI) released from COPR solid was reduced to Cr(III) by Fe(II), and then formed stable FexCr(1-x)(OH)3 precipitate. This study provides a facile and reliable scheme for COPR stabilization, and verifies the excellent long-term stability of the FeSO4-H2SO4 treated COPR.

  5. Ion Irradiation of Sulfuric Acid: Implications for its Stability on Europa

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Hudson, R. L.; Moore, M. H.

    2010-01-01

    The Galileo near-infrared mapping spectrometer (NIMS) detected regions on Europa's surface containing distorted H2O bands. This distortion likely indicates that there are other molecules mixed with the water ice. Based on spectral comparison, some of the leading possibilities are sulfuric acid, salts. or possibly H3O(+). Previous laboratory studies have shown that sulfuric acid can be created by irradiation of H2OSO2 mixtures, and both molecules are present on Europa. In this project, we were interested in investigating the radiation stability of sulfuric acid (H2SO4) and determining its lifetime on the surface of Europa.

  6. Sulfuric acid cloud interpretation of the infrared spectrum of Venus

    NASA Technical Reports Server (NTRS)

    Martonchik, J. V.

    1974-01-01

    Sulfuric acid single-cloud models are compared with the Venus spectrum in the 8-14 micron region. The results indicate that a cloud composed of a 75 percent H2SO4 solution and with a particle density of 100 per cu cm is in good agreement with observations. In addition to explaining the 11.2 micron absorption, this model also predicts an absorption feature at 16.7 microns which should be detectable if the observation is made from an aircraft.

  7. Properties and Atmospheric Implication of Methylamine-Sulfuric Acid-Water Clusters.

    PubMed

    Lv, Sha-Sha; Miao, Shou-Kui; Ma, Yan; Zhang, Miao-Miao; Wen, Yang; Wang, Chun-Yu; Zhu, Yu-Peng; Huang, Wei

    2015-08-13

    The presence of amines can increase aerosol formation rates. Most studies have been devoted to dimethylamine as the representative of amine; however, there have been a few works devoted to methylamine. In this study, theoretical calculations are performed on CH3NH2(H2SO4)m(H2O)n (m = 0-3, n = 0-3) clusters. In addition to the structures and energetics, we focused on determining the following characteristics: (1) the growth mechanism, (2) the hydrate distributions and the influences of humidity and temperature, (3) Rayleigh scattering properties. We explored the cluster growth mechanism from a thermodynamics aspect by calculating the Gibbs free energy of adding a water or sulfuric acid molecule step by step at three atmospherically relevant temperatures. The relative ease of the reaction at each step is discussed. From the analysis of hydrate distributions, we find that CH3NH2(H2SO4)(H2O)2, CH3NH2(H2SO4)2, and CH3NH2(H2SO4)3 are most likely to exist in the atmosphere. The general trend of hydration in all cases is more extensive with the growing relative humidity (RH), whereas the distributions do not significantly change with the temperature. Analysis of the Rayleigh scattering properties showed that both H2SO4 and H2O molecules could increase the Rayleigh scattering intensities and isotropic mean polarizabilities, with greater influence by the sulfuric acid molecules. This work sheds light on the mechanism for further research on new particle formation (NPF) containing methylamine in the atmosphere.

  8. Sulphur Kβ emission spectra reveal protonation states of aqueous sulfuric acid

    PubMed Central

    Niskanen, Johannes; Sahle, Christoph J.; Ruotsalainen, Kari O.; Müller, Harald; Kavčič, Matjaž; Žitnik, Matjaž; Bučar, Klemen; Petric, Marko; Hakala, Mikko; Huotari, Simo

    2016-01-01

    In this paper we report an X-ray emission study of bulk aqueous sulfuric acid. Throughout the range of molarities from 1 M to 18 M the sulfur Kβ emission spectra from H2SO4 (aq) depend on the molar fractions and related deprotonation of H2SO4. We compare the experimental results with results from emission spectrum calculations based on atomic structures of single molecules and structures from ab initio molecular dynamics simulations. We show that the S Kβ emission spectrum is a sensitive probe of the protonation state of the acid molecules. Using non-negative matrix factorization we are able to extract the fractions of different protonation states in the spectra, and the results are in good agreement with the simulation for the higher part of the concentration range. PMID:26888159

  9. Phase Equilibria of H2SO4, HNO3, and HCl Hydrates and the Composition of Polar Stratospheric Clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  10. Phase equilibria of H2SO4, HNO3, and HCl hydrates and the composition of polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  11. Computational study of the hydration of sulfuric acid dimers: implications for acid dissociation and aerosol formation.

    PubMed

    Temelso, Berhane; Phan, Thuong Ngoc; Shields, George C

    2012-10-04

    We have investigated the thermodynamics of sulfuric acid dimer hydration using ab initio quantum mechanical methods. For (H(2)SO(4))(2)(H(2)O)(n) where n = 0-6, we employed high-level ab initio calculations to locate the most stable minima for each cluster size. The results presented herein yield a detailed understanding of the first deprotonation of sulfuric acid as a function of temperature for a system consisting of two sulfuric acid molecules and up to six waters. At 0 K, a cluster of two sulfuric acid molecules and one water remains undissociated. Addition of a second water begins the deprotonation of the first sulfuric acid leading to the di-ionic species (the bisulfate anion HSO(4)(-), the hydronium cation H(3)O(+), an undissociated sulfuric acid molecule, and a water). Upon the addition of a third water molecule, the second sulfuric acid molecule begins to dissociate. For the (H(2)SO(4))(2)(H(2)O)(3) cluster, the di-ionic cluster is a few kcal mol(-1) more stable than the neutral cluster, which is just slightly more stable than the tetra-ionic cluster (two bisulfate anions, two hydronium cations, and one water). With four water molecules, the tetra-ionic cluster, (HSO(4)(-))(2)(H(3)O(+))(2)(H(2)O)(2), becomes as favorable as the di-ionic cluster H(2)SO(4)(HSO(4)(-))(H(3)O(+))(H(2)O)(3) at 0 K. Increasing the temperature favors the undissociated clusters, and at room temperature we predict that the di-ionic species is slightly more favorable than the neutral cluster once three waters have been added to the cluster. The tetra-ionic species competes with the di-ionic species once five waters have been added to the cluster. The thermodynamics of stepwise hydration of sulfuric acid dimer is similar to that of the monomer; it is favorable up to n = 4-5 at 298 K. A much more thermodynamically favorable pathway forming sulfuric acid dimer hydrates is through the combination of sulfuric acid monomer hydrates, but the low concentration of sulfuric acid relative to

  12. Surface modifications of Cu(In ,Ga)S2 thin film solar cell absorbers by KCN and H2O2/H2SO4 treatments

    NASA Astrophysics Data System (ADS)

    Weinhardt, L.; Fuchs, O.; Groß, D.; Umbach, E.; Heske, C.; Dhere, N. G.; Kadam, A. A.; Kulkarni, S. S.

    2006-07-01

    KCN etching of the CuxS surface layer formed during the production process of Cu(In ,Ga)S2 thin film solar cell absorbers as well as subsequent H2O2/H2SO4 etching of the Cu(In ,Ga)S2 surface have been investigated using x-ray photoelectron spectroscopy, x-ray excited Auger electron spectroscopy, and x-ray emission spectroscopy. We find that the KCN etching removes the CuxS layer—being identified as Cu2S—and that there is K deposited during this step, which is removed by the subsequent H2O2/H2SO4 oxidation treatment. When a CdS buffer layer is deposited on the absorber directly after KCN etching, a K compound (KCO3) is observed at the CdS surface.

  13. Distribution of Hydrogen Peroxide, Carbon Dioxide, and Sulfuric Acid in Europa's Icy Crust

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.

    2004-01-01

    Galileo's Near Infrared Mapping Spectrometer (NIMS) detected hydrogen peroxide, carbon dioxide and a hydrated material on Europa's surface, the latter interpreted as hydrated sulfuric acid (H2SO4*nH2O) or hydrated salts. Related compounds are molecular oxygen, sulfur dioxide, and two chromophores, one that is dark in the ultraviolet(UV) and concentrated on the trailing side, the other brighter in the UV and preferentially distributed in the leading hemisphere. The UV-dark material has been suggested to be sulfur.

  14. Sulfuric acid poisoning

    MedlinePlus

    Sulfuric acid is a very strong chemical that is corrosive. Corrosive means it can cause severe burns and ... or mucous membranes. This article discusses poisoning from sulfuric acid. This article is for information only. Do NOT ...

  15. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Acid resistance test. 7.48 Section 7.48 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.48 Acid resistance test. (a... solution of sulfuric acid (H2 SO4) by mixing 853 ml of water with 199 ml of sulfuric acid (H2 SO4) with...

  16. Photon and Water Mediated Sulfur Oxide and Acid Chemistry in the Atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Kroll, Jay A.; Vaida, Veronica

    2014-06-01

    Sulfur compounds have been observed in the atmospheres of a number of planetary bodies in our solar system including Venus, Earth, Mars, Io, Europa, and Callisto. The global cloud cover on Venus located at an altitude between 50 and 80 kilometers is composed primarily of sulfuric acid (H_2SO_4) and water. Planetary photochemical models have attempted to explain observations of sulfuric acid and sulfur oxides with significant discrepancies remaining between models and observation. In particular, high SO_2 mixing ratios are observed above 90 km which exceed model predictions by orders of magnitude. Work recently done in the Vaida lab has shown red light can drive photochemistry through overtone pumping for acids like H_2SO_4 and has been successful in explaining much of the sulfur chemistry in Earth's atmosphere. Water can have a number of interesting effects such as catalysis, suppression, and anti-catalysis of thermal and photochemical processes. We investigate the role of water complexes in the hydration of sulfur oxides and dehydration of sulfur acids and present spectroscopic studies to document such effects. We investigate these reactions using FTIR and UV/Vis spectroscopy and will report on our findings.

  17. Heterogeneous atmospheric reactions - Sulfuric acid aerosols as tropospheric sinks

    NASA Technical Reports Server (NTRS)

    Baldwin, A. C.; Golden, D. M.

    1979-01-01

    The reaction probabilities of various atmospheric species incident on a bulk sulfuric acid surface are measured in order to determine the role of sulfuric acid aerosols as pollutant sinks. Reaction products and unreacted starting materials leaving a Knudsen cell flow reactor after collision at 300 K with a H2SO4 surface or a soot surface were detected by mass spectrometry. Significant collision reaction probabilities are observed on a H2SO4 surface for H2O2, HNO3, HO2NO2, ClONO2, N2O5, H2O and NH3, and on soot for NH3. Estimates of the contribution of heterogeneous reactions to pollutant removal under atmospheric conditions indicate that while aerosol removal in the stratosphere is insignificant (loss rate constants approximately 10 to the -10th/sec), heterogeneous reactions may be the dominant loss process for several tropospheric species (loss rate constant approximately 10 to the -5th/sec, comparable to photolysis rate constants).

  18. Protonation of Alcohols in Sulfuric Acid Solutions at UT/LS Conditions

    NASA Astrophysics Data System (ADS)

    Michelsen, R. R.; Vernier, K.; Axson, J.; Morley, D.

    2007-12-01

    The protonation of several small alcohols (ethanol, 2-propanol, and 1-butanol) in cold sulfuric acid aqueous solutions was measured using variable temperature 13C nuclear magnetic resonance (NMR) spectroscopy. The acidity of the sulfuric acid + deuterium oxide solutions ranged from 43 to 81 weight percent (wt %) H2SO4. The pKBH+ values, which are a measure of the acidity of each alcohol, range from -2.0 for butanol at room temperature to -2.2 for ethanol at -20°C. The protonation enthalpies of the three alcohols over the temperature range of 22°C to -35°C were found to be small and negative, ranging from -1.8 kJ mol-1 for 2-propanol to -2.3 kJ mol-1 for ethanol. A small, negative protonation enthalpy means that the degree of protonation of the alcohol slightly decreases as temperature decreases. The pKBH+values and protonation enthalpies are used to predict the form of dissolved alcohols in sulfate aerosols. For typical upper troposphere/lower stratosphere (UT/LS) conditions (40-70 wt % H2SO4 and 220 K), all three alcohols increase from approximately 10% protonated in 40 wt % H2SO4 to over 60% protonated in 70 wt % H2SO4. The percent of protonated alcohol depends more strongly on m*, the slope factor of the excess acidity treatment, than on pKBH+ values. This relationship may reflect solvation effects. The treatment of strongly acidic, non-ideal solutions as applied to organic solutes in sulfate aerosol particles will be discussed.

  19. Synthesis and characterization of multi-active site grafting starch copolymer initiated by KMnO4 and HIO4/H2SO4 systems.

    PubMed

    Guo, Qiaoxia; Wang, Yanqing; Fan, Ya; Liu, Xiwen; Ren, Shenyong; Wen, Yuanzhen; Shen, Baojian

    2015-03-06

    A novel initiator system containing KMO4, HIO4, and H2SO4 for synthesizing grafting starch copolymers is reported. In this system, KMnO4 was used to oxidize the primary hydroxyl group to aldehyde group of glucose in the starch, and the formed aldehyde group reacted with Mn(4+), Mn(3+) to afford starch free radical. At the same time HIO4 perform as the oxidant to open the C2C3 bond of glucose ring in starch to form two more aldehyde groups, and then two more free radicals are generated. As a result one glucose unit could provide ultimately three active sites for starch grafting reaction. Graft copolymers with a higher grafting ratio and grafting efficiency could be obtained by using the composite initiation system than the KMnO4/H2SO4 initiation system. The grafting of polyacrylamide onto the corn starch backbone was confirmed by viscometry, elemental analysis, infrared spectroscopy, nuclear magnetic resonance, X-ray diffraction and scanning electron microscopy.

  20. Why sulfuric acid forms particles so extremely well, and how organics might still compete

    NASA Astrophysics Data System (ADS)

    Kurten, T.; Ehn, M.; Kupiainen, O.; Olenius, T.; Rissanen, M.; Thornton, J. A.; Nielsen, L.; Jørgensen, S.; Ortega Colomer, I. K.; Kjaergaard, H. G.; Vehkamäki, H.

    2013-12-01

    It is a well-known result in aerosol science that the single most important molecule for the first steps of new-particle formation in our atmosphere is sulfuric acid, H2SO4. From a chemical perspective, this seems somewhat counterintuitive: the atmosphere contains thousands of different organic compounds, many of which can potentially form oxidation products with even lower volatility than H2SO4. The unique role of sulfuric acid is due to its formation kinetics. The conversion of sulfur dioxide, SO2 to H2SO4 requires only a single oxidant molecule (e.g. OH), as subsequent steps are extremely rapid. Still, the saturation vapor pressure of H2SO4 is over 108 times lower than that of SO2. In contrast, the oxidation reactions of organic molecules typically lower their saturation vapor pressure by only a factor of 10-1000 per oxidation step. Therefore, organic compounds are usually lost to pre-existing aerosol surfaces before they have undergone sufficiently many oxidation reactions to nucleate on their own. The presence of strong nitrogen-containing base molecules such as amines enhances the particle-forming advantages of sulfuric acid even further. Quantum chemical calculations indicate that the evaporation rate of sulfuric acid from key clusters containing two acid molecules may decrease by a factor of 108 in the presence of ppt-level concentrations of amines, implying a total decrease of up to 1016 in the effective vapor pressure going from SO2 to H2SO4. In some circumstances, this decrease causes the energy barrier for new-particle formation to disappear: the process is no longer nucleation, and some common applications of e.g. the nucleation theorem cease to apply. Cluster kinetic models combined with first-principles evaporation rates appear to describe this sulfuric acid - base clustering reasonably well, and result in cluster formation rates close to those measured at the CLOUD experiment in CERN. There may nevertheless exist exceptions to the general rule that

  1. Commercial Alloys for Sulfuric Acid Vaporization in Thermochemical Hydrogen Cycles

    SciTech Connect

    Thomas M. Lillo; Karen M. Delezene-Briggs

    2005-10-01

    Most thermochemical cycles being considered for producing hydrogen include a processing stream in which dilute sulfuric acid is concentrated, vaporized and then decomposed over a catalyst. The sulfuric acid vaporizer is exposed to highly aggressive conditions. Liquid sulfuric acid will be present at a concentration of >96 wt% (>90 mol %) H2SO4 and temperatures exceeding 400oC [Brown, et. al, 2003]. The system will also be pressurized, 0.7-3.5 MPa, to keep the sulfuric acid in the liquid state at this temperature and acid concentration. These conditions far exceed those found in the commercial sulfuric acid generation, regeneration and handling industries. Exotic materials, e.g. ceramics, precious metals, clad materials, etc., have been proposed for this application [Wong, et. al., 2005]. However, development time, costs, reliability, safety concerns and/or certification issues plague such solutions and should be considered as relatively long-term, optimum solutions. A more cost-effective (and relatively near-term) solution would be to use commercially-available metallic alloys to demonstrate the cycle and study process variables. However, the corrosion behavior of commercial alloys in sulfuric acid is rarely characterized above the natural boiling point of concentrated sulfuric acid (~250oC at 1 atm). Therefore a screening study was undertaken to evaluate the suitability of various commercial alloys for concentration and vaporization of high-temperature sulfuric acid. Initially alloys were subjected to static corrosion tests in concentrated sulfuric acid (~95-97% H2SO4) at temperatures and exposure times up to 200oC and 480 hours, respectively. Alloys with a corrosion rate of less than 5 mm/year were then subjected to static corrosion tests at a pressure of 1.4 MPa and temperatures up to 375oC. Exposure times were shorter due to safety concerns and ranged from as short as 5 hours up to 144 hours. The materials evaluated included nickel-, iron- and cobalt

  2. Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus.

    PubMed

    Li, Fengcheng; Ren, Shuangfeng; Zhang, Wei; Xu, Zhengdan; Xie, Guosheng; Chen, Yan; Tu, Yuanyuan; Li, Qing; Zhou, Shiguang; Li, Yu; Tu, Fen; Liu, Lin; Wang, Yanting; Jiang, Jianxiong; Qin, Jingping; Li, Shizhong; Li, Qiwei; Jing, Hai-Chun; Zhou, Fasong; Gutterson, Neal; Peng, Liangcai

    2013-02-01

    Xylans are the major hemicelluloses in grasses, but their effects on biomass saccharification remain unclear. In this study, we examined the 79 representative Miscanthus accessions that displayed a diverse cell wall composition and varied biomass digestibility. Correlation analysis showed that hemicelluloses level has a strong positive effect on lignocellulose enzymatic digestion after NaOH or H(2)SO(4) pretreatment. Characterization of the monosaccharide compositions in the KOH-extractable and non-KOH-extractable hemicelluloses indicated that arabinose substitution degree of xylan is the key factor that positively affects biomass saccharification. The xylose/arabinose ratio after individual enzyme digestion revealed that the arabinose in xylan is partially associated with cellulose in the amorphous regions, which negatively affects cellulose crystallinity for high biomass digestibility. The results provide insights into the mechanism of lignocellulose enzymatic digestion upon pretreatment, and also suggest a goal for the genetic modification of hemicelluloses towards the bioenergy crop breeding of Miscanthus and grasses.

  3. Improved direct bonding of Si and SiO2 surfaces by cleaning in H2SO4:H2O2:HF

    NASA Astrophysics Data System (ADS)

    Ljungberg, Karin; Söderbärg, Anders; Jansson, Ulf

    1995-07-01

    A method for silicon surface preparation prior to wafer bonding is presented. By cleaning the wafers in a H2SO4:H2O2 mixture in which a small amount of HF is added, and then rinsing in H2O, the bonding behavior of the surfaces is improved, compared to other pretreatments used for bonding. The modified SPM cleaning results in a highly fluorinated chemical oxide on the Si surface. A subsequent water rinse causes substitution of F by OH groups, which increase the initial attraction of the mating surfaces. Higher contact wave velocities and bond strengths than reported for other surface pretreatments have been measured, both for bare and thermally oxidized silicon surfaces.

  4. HCl Vapour Pressures and Reaction Probabilities for ClONO2 + HCl on Liquid H2SO4-HNO3-HCl-H20 Solutions

    NASA Technical Reports Server (NTRS)

    Elrod, M. J.; Koch, R. E.; Kim, J. E.; Molina, M. J.

    1995-01-01

    Henry's Law solubility constants for HCl have been measured for liquid H2SO4-HNO3-HCl-H2O solutions; the results are in good agreement with predictions from published semiempirical models. The ClONO2 + HCl reaction on the surfaces of such solutions with compositions simulating those of stratospheric aerosols has been investigated; as the composition changes following the temperature drop characteristic of the high-latitude stratosphere the reaction probability gamma increases rapidly. Furthermore, the gamma values remain essentially unchanged when HN03 uptake is neglected; the controlling factor appears to be the solubility of HCl. These results corroborate our earlier suggestion that supercooled liquid sulfate aerosols promote chlorine activation at low temperatures as efficiently as solid polar stratospheric cloud particles.

  5. Decolouration of H2SO4 leachate from phosphorus-saturated alum sludge using H2O2 and advanced oxidation processes in phosphorus recovery strategy.

    PubMed

    Zhao, X H; Zhao, Y Q

    2009-12-01

    As a part of attempt for phosphorus (P) recovery from P-saturated alum sludge, which was used as a low-cost P-adsorbent in treatment reed bed for wastewater treatment, decolouration of H(2)SO(4) leachate obtained from previous experiment, possessing a great deal of P, aluminum and red-brown coloured materials (RBCMs), by using H(2)O(2) and advanced oxidation processes (AOPs) was investigated. The use of H(2)O(2) and AOPs in the forms of Fenton (H(2)O(2)/Fe(2 +)) and photo-Fenton (UV/H(2)O(2)/Fe(2 +)) were tested. The changes in colour and total organic carbon (TOC) were taken place as a result of mineralization of RBCMs. The results revealed that all of these three processes examined were efficient. It was found that about 98% colour and 47% TOC can be removed under photo-Fenton treatment after 8 hours of UV irradiation.Correspondingly, the reaction rates of H(2)O(2) and Fenton systems were slow, but 100% colour and 59% TOC removal of H(2)O(2) process and 100% colour and 67% TOC reductions of Fenton process can be achieved after 72 hours of reaction. The changes of structure and molecular weight/size of RBCMs were also evaluated by HPLC and UV-vis spectroscopic analysis. From the results, some chromophores of RBCMs such as aromatic groups were appeared to be easily degraded to the smaller refractory components. Hence, based on the experimental results and considering the investment and expediency of operation, H(2)O(2) and Fenton oxidation could be suitable technologies for the treatment of the RBCMs derived from P-extraction stage by using H(2)SO(4) leaching.

  6. Experimental study and neural network modeling of sugarcane bagasse pretreatment with H2SO4 and O3 for cellulosic material conversion to sugar.

    PubMed

    Gitifar, Vahid; Eslamloueyan, Reza; Sarshar, Mohammad

    2013-11-01

    In this study, pretreatment of sugarcane bagasse and subsequent enzymatic hydrolysis is investigated using two categories of pretreatment methods: dilute acid (DA) pretreatment and combined DA-ozonolysis (DAO) method. Both methods are accomplished at different solid ratios, sulfuric acid concentrations, autoclave residence times, bagasse moisture content, and ozonolysis time. The results show that the DAO pretreatment can significantly increase the production of glucose compared to DA method. Applying k-fold cross validation method, two optimal artificial neural networks (ANNs) are trained for estimations of glucose concentrations for DA and DAO pretreatment methods. Comparing the modeling results with experimental data indicates that the proposed ANNs have good estimation abilities.

  7. Binary nucleation in acid-water systems. II. Sulfuric acid-water and a comparison with methanesulfonic acid-water

    NASA Astrophysics Data System (ADS)

    Wyslouzil, B. E.; Seinfeld, J. H.; Flagan, R. C.; Okuyama, K.

    1991-05-01

    This work presents a systematic investigation of binary nucleation rates for sulfuric acid and water and the effect of temperature on these rates at isothermal, subsaturated conditions. The results from nucleation rate measurements for the sulfuric acid (H2SO4) -water system are discussed and compared to those previously presented for methanesulfonic acid (MSA)-water [B. E. Wyslouzil, J. H. Seinfeld, R. C. Flagan, and K. Okuyama, J. Chem. Phys. (submitted)]. Experiments were conducted at relative humidities (Rh) ranging from 0.006acidities (Ra) in the range of 0.04H2SO4 particles formed by nucleation and growth are much smaller than those formed in the MSA-water experiments, but particle size distribution measurements confirm that most of the particles formed are being observed. The ratio of experimental to theoretical nucleation rates, Jexpt/Jtheor, was found to be a strong function of the predicted number of acid molecules in the critical nucleus for both the H2SO4 -water and MSA-water systems.

  8. Relative Order of Sulfuric Acid, Bisulfate, Hydronium, and Cations at the Air-Water Interface.

    PubMed

    Hua, Wei; Verreault, Dominique; Allen, Heather C

    2015-11-04

    Sulfuric acid (H2SO4), bisulfate (HSO4(-)), and sulfate (SO4(2-)) are among the most abundant species in tropospheric and stratospheric aerosols due to high levels of atmospheric SO2 emitted from biomass burning and volcanic eruptions. The air/aqueous interfaces of sulfuric acid and bisulfate solutions play key roles in heterogeneous reactions, acid rain, radiative balance, and polar stratospheric cloud nucleation. Molecular-level knowledge about the interfacial distribution of these inorganic species and their perturbation of water organization facilitates a better understanding of the reactivity and growth of atmospheric aerosols and of the aerosol surface charge, thus shedding light on topics of air pollution, climate change, and thundercloud electrification. Here, the air/aqueous interface of NaHSO4, NH4HSO4, and Mg(HSO4)2 salt solutions as well as H2SO4 and HCl acid solutions are investigated by means of vibrational sum frequency generation (VSFG) and heterodyne-detected (HD) VSFG spectroscopy. VSFG spectra of all acid solutions show higher SFG response in the OH-bonded region relative to neat water, with 1.1 M H2SO4 being more enhanced than 1.1 M HCl. In addition, VSFG spectra of bisulfate salt solutions highly resemble that of the dilute H2SO4 solution (0.26 M) at a comparable pH. HD-VSFG (Im χ((2))) spectra of acid and bisulfate salt solutions further reveal that hydrogen-bonded water molecules are oriented preferentially toward the bulk liquid phase. General agreement between Im χ((2)) spectra of 1.1 M H2SO4 and 1.1 M HCl acid solutions indicate that HSO4(-) ions have a similar surface preference as that of chloride (Cl(-)) ions. By comparing the direction and magnitude of the electric fields arising from the interfacial ion distributions and the concentration of each species, the most reasonable relative surface preference that can be deduced from a simplified model follows the order H3O(+) > HSO4(-) > Na(+), NH4(+), Mg(2+) > SO4(2-). Interestingly

  9. Evaluation of in vitro and in vivo tests for surface-modified titanium by H2SO4 and H2O2 treatment

    NASA Astrophysics Data System (ADS)

    Lee, Min-Ho; Park, Il-Song; Min, Kwan-Sik; Ahn, Seung-Geun; Park, Ju-Mi; Song, Kwang-Yeob; Park, Charn-Woon

    2007-04-01

    Titanium is widely used as an implant material for artificial teeth. Furthermore, various studies have examined surface treatment with respect to the formation of a fine passive film on the surface of commercial titanium and its alloys and to improve the bioactivity with bone. However, there is insufficient data about the biocompatibility of implant materials in the body. The purpose of this study was to examine whether surface modification affects the precipitation of apatite on titanium metal. Specimens were chemically washed for 2 min in a 1∶1∶1.5 (vol.%) mixture of 48 %HF, 60%HNO3 and distilled water. The specimens were then chemically treated with a solution containing 97%H2SO4 and 30%H2O2 at the ratio of 1∶1 (vol.%) at 40°C for 1h, and subsequently heat-treated at 400°C for 1h. All the specimens were immersed in HBSS with pH 7.4 at 36.5°C for 15d, and the surface was examined with TF-XRD, SEM, EDX and XPS. In addition, specimens of commercial pure Ti, with and without surface treatment, were implanted in the abdominal connective tissue of mice for 28 d. Conventional aluminum and stainless steel 316L were also implanted for comparison. An amorphous titania gel layer was formed on the titanium surface after the titanium specimen was treated with a solution of H2SO4 and H2O2. The average roughness was 2.175 μm after chemical surface treatment. The amorphous titania was subsequently transformed into anatase by heat treatment at 400°C for 1h. The average thickness of the fibrous capsule surrounding the specimens implanted in the connective tissue was 47.1μm in the chemically treated Ti, and 52.2, 168.7 and 101.9μm, respectively, in the untreated commercial pure Ti, aluminum and stainless steel 316L.

  10. Chemistry in the Venus clouds: Sulfuric acid reactions and freezing behavior of aqueous liquid droplets

    NASA Astrophysics Data System (ADS)

    Delitsky, M. L.; Baines, K. H.

    2015-11-01

    Venus has a thick cloud deck at 40-70 km altitude consisting of liquid droplets and solid particles surrounded by atmospheric gases. The liquid droplets are highly concentrated aqueous solutions of sulfuric acid ranging in concentration from 70-99 wt%. Weight percent drops off with altitude (Imamura and Hashimoto 2001). There will be uptake of atmospheric gases into the droplet solutions and the ratios of gas-phase to liquid-phase species will depend on the Henry’s Law constant for those solutions. Reactions of sulfuric acid with these gases will form products with differing solubilities. For example, uptake of HCl by H2SO4/H2O droplets yields chlorosulfonic acid, ClSO3H (Robinson et al 1998) in solution. This may eventually decompose to thionyl- or sulfuryl chlorides, which have UV absorbances. HF will also uptake, creating fluorosulfonic acid, FSO3H, which has a greater solubility than the chloro- acid. As uptake continues, there will be many dissolved species in the cloudwaters. Baines and Delitsky (2013) showed that uptake will have a maximum at ~62 km and this is very close to the reported altitude for the mystery UV absorber in the Venus atmosphere. In addition, at very strong concentrations in lower altitude clouds, sulfuric acid will form hydrates such as H2SO4.H2O and H2SO4.4H2O which will have very different freezing behavior than sulfuric acid, with much higher freezing temperatures (Carslaw et al, 1997). Using temperature data from Venus Express from Tellmann et al (2009), and changes in H2SO4 concentrations as a function of altitude (James et al 1997), we calculate that freezing out of sulfuric acid hydrates can be significant down to as low as 56 km altitude. As a result, balloons, aircraft or other probes in the Venus atmosphere may be limited to flying below certain altitudes. Any craft flying at altitudes above ~55 km may suffer icing on the wings, propellers, balloons and instruments which could cause possible detrimental effects (thermal

  11. Numerical Simulation of Condensation of Sulfuric Acid and Water in a Large Two-stroke Marine Diesel Engine

    NASA Astrophysics Data System (ADS)

    Walther, J. H.; Karvounis, N.; Pang, K. M.

    2016-11-01

    We present results from computational fluid dynamics simulations of the condensation of sulfuric acid (H2SO 4) and water (H2 O) in a large two-stroke marine diesel engine. The model uses a reduced n-heptane skeletal chemical mechanism coupled with a sulfur subset to simulate the combustion process and the formation of SOx and H2SO 4 . Condensation is modeled using a fluid film model coupled with the Eulerian in-cylinder gas phase. The fluid film condensation model is validated against both experimental and numerical results. The engine simulations reveal that the fluid film has a significant effect on the sulfuric acid gas phase. A linear correlation is found between the fuel sulfur content and the sulfuric acid condensation rate. The initial in-cylinder water content is found not to affect the sulfuric acid condensation but it has a high impact on water condensation. The scavenging pressure level shows an inverse correlation between pressure and condensation rate due to change in the flame propagation speed. Finally, increasing the cylinder liner temperature significantly decreases water condensation but has a negligible influence on the condensation of sulfuric acid.

  12. Effect of electrochemical treatment in H2SO4 aqueous solution on carbon material derived from cellulose with added guanidine phosphate

    NASA Astrophysics Data System (ADS)

    Tsubota, Toshiki; Wang, Chuanshu; Murakami, Naoya; Ohno, Teruhisa

    2013-03-01

    The electrochemical treatment in a 1 M H2SO4 aqueous solution is applied to the carbon material synthesized from cellulose mixed with guanidine phosphate. The capacitance value increased by the addition of guanidine phosphate; furthermore, the value significantly increased by the electrochemical treatment and was higher than 350 F g-1 at 50 mA g-1. The process used in this study, that is, removing the lignin from wood waste products, such as bamboo, and then mixing with guanidine phosphate before the heat treatment followed by an electrochemical treatment, should be of benefit for the synthesis of a high performance material for the electrodes of electrochemical capacitors. The significant enhancement of the capacitance value appears in the range of 1.5 V∼2.8 V vs. Ag/AgCl for the applied maximum voltage. This voltage range is consistent with the voltage for the significant enhancement of the current value in the CV curve. The change in the capacitance value should be related to the electrochemical reaction of the water electrolysis. The XPS data indicated that the concentrations of both the N atom and the O atom on the surface increased after the electrochemical process.

  13. Effects of sandblasting, H2SO4/HCl etching, and phosphate primer application on bond strength of veneering resin composite to commercially pure titanium grade 4.

    PubMed

    Egoshi, Takafumi; Taira, Yohsuke; Soeno, Kohyoh; Sawase, Takashi

    2013-01-01

    This study investigated the effects of surface treatments on the bond strength of a resin composite to a commercially pure titanium. The bonding surfaces of all titanium specimens were ground with 1,000-grit silicon carbide paper and then subjected to one or more of these surface treatments: sandblasting with alumina (sand), etching with 45wt% H2SO4 and 15wt% HCl (SH-etchant) at 70°C for 10 min, and/or phosphate primer (MDP-primer) application. Specimens not subjected to any surface treatment were used as controls. After resin composite veneer placement and 24-h water immersion, the shear bond strengths of the specimens in descending order were: sand/SH-etchant/MDP-primer, sand/SH-etchant/no primer, no sand/SH-etchant/MDP-primer, sand/no etch/MDP-primer, no sand/SH-etchant/no primer, sand/no etch/no primer, no sand/no etch/MDP-primer, no sand/no etch/no primer. Scanning electron microscope observations revealed that sandblasting and SH-etchant created many micro- and nanoscale cavities on the titanium surface. Results showed that a combined use of sandblasting, SH-etchant, and MDP-primer application had a cooperative effect on titanium bonding.

  14. X-ray investigation of molten crystal hydrates H2SO4(nH2O) and HNO3(nH2O)

    NASA Technical Reports Server (NTRS)

    Romanova, A. V.; Skryshevskiy, A. F.

    1979-01-01

    Integral analysis of the intensity of the electron density distribution curve in molten crystal hydrates provided by X-ray analysis, permits the following conclusions on the structure of the complex SO and NO ions, and the short-range order in the structure of the solution. The SO4 ion in the solution has a tetrahedral structure with an S to O distance equal to 1.5 A. For the NO3 in the solution, a planar triangular shape is probable, with an N to O distance equal to 1.2 A. Preferential distances between each of the oxygens of the SO ion and the nearest molecules of water proved near to the corresponding distances in solid crystal hydrates. For an (H2SO4)(H2O) solution, the average number of water molecules surrounding each oxygen atom of the SO4 (--) ion was on the order of 1.3 molecules. Hence the preferential distances between the water molecules and the oxygen atoms of the SO ion, and the preference of their mutual position, correspond to the fixed position of these same elements of the structure in the solid crystal hydrate.

  15. Reduction of interpore distance of anodized aluminum oxide nano pattern by mixed H3PO4:H2SO4 electrolyte.

    PubMed

    Song, Kwang Min; Park, Joonmo; Ryu, Sang-Wan

    2007-11-01

    A self-formed and ordered anodized aluminum oxide (AAO) nano pattern has generated considerable interest in both scientific research and commercial application. However, the interpore distance obtainable by AAO is limited by 40-500 nm depending on electrolyte and anodizing voltage. It's believed that below-30 nm AAO pattern is a key technology in the fabrication semiconductor nano structures with enhanced quantum confinement effect, so we worked on the reduction of interpore distance of AAO with a novel electrolyte. AAO nano patterns were fabricated with mixed H2SO4 and H3PO4 as an electrolyte for various voltages and temperatures. The interpore distance and pore diameter of AAO were decreased with reduced anodizing voltage. As a result, an AAO nano pattern with the interpore distance of 27 nm and the pore diameter of 7 nm was obtained. This is the smallest pattern, as long as we know, reported till now with AAO technique. The fabricated AAO pattern could be utilized for uniform and high density quantum dots with increased quantum effect.

  16. Reduction of PCDDs/PCDFs in MSWI fly ash using microwave peroxide oxidation in H2SO4/HNO3 solution.

    PubMed

    Chang, Yu-Min; Dai, Wen-Chien; Tsai, Kao-Shen; Chen, Shiao-Shing; Chen, Jyh-Herng; Kao, Jimmy C M

    2013-05-01

    Microwave peroxide oxidation (MPO) is an energy-efficient and low GHG emission technology to destroy the hazardous organic compounds in solid waste. The objective of this paper is to explore the reduction feasibility of PCDDs/Fs in MSWI fly ash using the MPO in H2SO4/HNO3 solution. Nearly all PCDDs/Fs, 99% in the original fly ash, can be reduced in 120min at the temperature of 150°C using the MPO treatment. It was also found that a change occurred in the content distribution profiles of 17 major PCDD/F congeners before and after MPO treatment. This provides the potential to reduce the actual PCDDs/Fs content more than I-TEQ contents of PCDDs/Fs. The percentile distribution profile has a tendency of higher chlorinated PCDDs/Fs moving to the lower ones. It concludes that a significant reduction efficiency of I-TEQ toxicity was achieved and showed sufficient reduction of toxic level to lower than 1.0ngI-TEQ(gdw)(-1). The treatment temperature would be a critical factor facilitating the dissolution because higher temperature leads more inorganic salt (parts of fly ash) dissolution. Some problems caused by the MPO method are also delineated in this paper.

  17. Preparation of novel activated carbons from H2SO4-pretreated corncob hulls with KOH activation for quick adsorption of dye and 4-chlorophenol.

    PubMed

    Wu, Feng-Chin; Wu, Pin-Hsueh; Tseng, Ru-Ling; Juang, Ruey-Shin

    2011-03-01

    Corncob hull was immersed in 25 wt% H(2)SO(4) and was carbonized in an oven at 290 °C for 2h to obtain the char. The char was then activated for 1h at 780 °C by KOH at weight ratio of KOH/char of 2.5, 3.0, and 3.5. SEM photos of the carbons revealed that the cell wall of corncob hull was etched into thin film structure. It was shown that the adsorption isotherms of methylene blue and 4-chlorophenol on the carbons were well fitted by the Langmuir equation. Moreover, the adsorption kinetics could be satisfactorily described by the Elovich equation. The normalized standard deviations are less than 2.8%. The high fraction of adsorption amount adsorbed within 1 min to that at saturation demonstrated the advantage of the prepared activated carbons. The fraction of adsorption amount within 1 min to that at saturation (q(1)/q(mon)) for the adsorption of 4-CP is high up to 0.807. Such quick adsorption behavior was mainly attributed to the presence of the thin film structure of carbons.

  18. Ternary H2SO4-H2O-NH3 neutral and charged nucleation rates for a wide range of atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Kürten, Andreas; Bianchi, Federico; Almeida, Joao; Duplissy, Jonathan; Dunne, Eimear M.; Breitenlechner, Martin; Praplan, Arnaud P.; Ortega, Ismael K.; Kupiainen, Oona; Rondo, Linda; Ehrhart, Sebastian; Kirkby, Jasper; Curtius, Joachim; Cloud Collaboration

    2013-05-01

    The formation of new particles for the ternary system involving sulfuric acid, water vapor and ammonia has been studied in detail. The nucleation rates were obtained from experiments at the CERN CLOUD chamber which allows the measurement of new particle formation under very well defined conditions. Some of its key features are the suppression of contaminants at the technological limit and a very precise control of a wide range of temperatures, trace gas concentrations and nucleation rates. The effect of ionizing radiation on the ternary nucleation rates was investigated by using the CERN proton synchrotron beam (beam conditions), natural galactic cosmic rays (gcr conditions) as well as the high voltage clearing field inside the chamber to suppress the effect of charges (neutral conditions). The dependence of the nucleation rate on ion concentration, sulfuric acid and ammonia concentration as well as temperature was studied extensively. This way, an unprecedented set of data was collected giving insight into the role of neutral and charged ternary NH3 nucleation and the relative importance of the different parameters.

  19. Large hydrogen-bonded pre-nucleation (HSO4-)(H2SO4)m(H2O)k and (HSO4-)(NH3)(H2SO4)m(H2O)k clusters in the earth's atmosphere.

    PubMed

    Herb, Jason; Xu, Yisheng; Yu, Fangqun; Nadykto, A B

    2013-01-10

    The importance of pre-nucleation cluster stability as the key parameter controlling nucleation of atmospheric airborne ions is well-established. In this Article, large ternary ionic (HSO(4)(-))(H(2)SO(4))(m)(NH(3))(H(2)O)(n) clusters have been studied using Density Functional Theory (DFT) and composite ab initio methods. Twenty classes of clusters have been investigated, and thermochemical properties of common atmospheric (HSO(4)(-))(H(2)SO(4))(m)(NH(3))(0)(H(2)O)(k) and (HSO(4)(-))(H(2)SO(4))(m)(NH(3))(1)(H(2)O)(n) clusters (with m, k, and n up to 3) have been obtained. A large amount of new themochemical and structural data ready-to-use for constraining kinetic nucleation models has been reported. We have performed a comprehensive thermochemical analysis of the obtained data and have investigated the impacts of ammonia and negatively charged bisulfate ion on stability of binary clusters in some detail. The comparison of theoretical predictions and experiments shows that the PW91PW91/6-311++G(3df,3pd) results are in very good agreement with both experimental data and high level ab initio CCSD(T)/CBS values and suggest that the PW91PW91/6-311++G(3df,3pd) method is a viable alternative to higher level ab initio methods in studying large pre-nucleation clusters, for which the higher level computations are prohibitively expensive. The uncertainties in both theory and experiments have been investigated, and possible ways of their reduction have been proposed.

  20. Sulfuric Acid on Europa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain.

    This image is based on data gathered by Galileo's near infrared mapping spectrometer.

    Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks.

    Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  1. Stratospheric sulfuric acid fraction and mass estimate for the 1982 volcanic eruption of El Chichon

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.

    1983-01-01

    The stratospheric sulfuric acid fraction and mass for the 1982 volcanic eruptions of El Chichon are investigated using data from balloon soundings at Laramie (41 deg N) and in southern Texas (27-29 deg N). The total stratospheric mass of these eruptions is estimated to be approximately 8 Tg about 6.5 months after the eruption with possibly as much as 20 Tg in the stratosphere about 45 days after the eruption. Observations of the aerosol in Texas revealed two primary layers, both highly volatile at 150 C. Aerosol in the upper layer at about 25 km was composed of an approximately 80 percent H2SO4 solution while the lower layer at approximately 18 km was composed of a 60-65 percent H2SO4 solution aerosol. It is calculated that an H2SO4 vapor concentration of at least 3 x 10 to the 7th molecules/cu cm is needed to sustain the large droplets in the upper layer. An early bi-modal nature in the size distribution indicates droplet nucleation from the gas phase during the first 3 months, while the similarity of the large particle profiles 2 months apart shows continued particle growth 6.5 months after the explosion.

  2. Efficient hydrogen generation from sodium borohydride hydrolysis using silica sulfuric acid catalyst

    NASA Astrophysics Data System (ADS)

    Manna, Joydev; Roy, Binayak; Sharma, Pratibha

    2015-02-01

    A heterogeneous acid catalyst, silica sulfuric acid, was prepared from silica gel (SiO2) and sulfuric acid (H2SO4). Addition of SO3H functional group to SiO2 has been confirmed through various characterization techniques. The effect of this heterogeneous acid catalyst on hydrogen generation from sodium borohydride hydrolysis reaction was studied for different ratios of catalyst to NaBH4 and at different temperatures. The catalyst exhibited high catalytic activity towards sodium borohydride hydrolysis reaction. The activation energy of the NaBH4 hydrolysis reaction in the presence of silica sulfuric acid was calculated to be the lowest (17 kJ mol-1) among reported heterogeneous catalysts till date.

  3. Methanol Uptake By Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    To evaluate the role of upper tropospheric and lower stratospheric aerosols in the global budget of methanol, the solubility and reactivity of CH3OH in aqueous sulfuric acid solutions are under investigation. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H(*), for methanol dissolution into 45 to 70 percent by weight H2SO4. We find that methanol solubility ranges from 10(exp 5) to 10(exp 8) M/atm and increases with decreasing temperature and with increasing sulfuric acid content. These solubility measurements include uptake due to physical solvation and all rapid equilibria which are established in solution. Our data indicate that simple uptake by aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These results differ from those recently reported in the literature, and an explanation of this disparity will be presented. In addition to solvation, reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H may proceed in the atmosphere but is not significant under our experimental conditions. Results obtained using a complementary equilibrium measurement technique confirm this directly. In addition, the extent of methanol sequestration via formation of mono- and dimethylsulfate will be evaluated under several atmospheric conditions.

  4. Sulfuric acid-sulfur heat storage cycle

    DOEpatents

    Norman, John H.

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  5. Controls and rates of acid production in commercial-scale sulfur blocks.

    PubMed

    Birkham, T K; Hendry, M J; Barbour, S L; Lawrence, J R

    2010-01-01

    Acidic drainage (pH 0.4-1.0) from oxidizing elemental sulfur (S(0)) blocks is an environmental concern in regions where S(0) is stockpiled. In this study, the locations, controls, and rates of H(2)SO(4) production in commercial-scale S(0) blocks ( approximately 1-2 x 10(6) m(3)) in northern Alberta, Canada, were estimated. In situ modeling of O(2) concentrations ([O(2)]) suggest that 70 to >97% of the annual H(2)SO(4) production occurs in the upper 1 m of the blocks where temperatures increase to >15 degrees C during the summer. Laboratory experiments show that S(0) oxidation rates are sensitive to temperature (Q(10) = 4.3) and dependent on the activity of autotrophic S(0)-oxidizing microbes. The annual efflux of SO(4) in drainage water from a S(0) block (5.5 x 10(5) kg) was within the estimated range of SO(4) production within the block (2.7 x 10(5) to 1.2 x 10(6) kg), suggesting that H(2)SO(4) production and removal rates were approximately equal during the study period. The low mean relative humidity within the block (68%; SD = 17%; n = 21) was attributed to osmotic suction from elevated H(2)SO(4) concentrations and suggests a mean in situ pH of approximately -2.1. The low pH of drainage waters was attributed to the mixing of fresh infiltrating water and low-pH in situ water. Heat generation during S(0) oxidation was an important factor in maintaining elevated temperatures (mean, 11.1 degrees C) within the block. The implications of this research are relevant globally because construction methods and the physical properties of S(0) blocks are similar worldwide.

  6. Heterogeneous Reactions of ClONO2, HCl, and HOCl on Liquid Sulfuric Acid Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Renyi; Leu, Ming-Taun; Keyser, Leon F.

    1994-01-01

    The heterogeneous reactions of ClONO2 + H2O yields HNO3 + HOCl (1), ClONO2 + HCl yields C12 + HNO3 (2), and HOCl + HCl yields Cl2 + H2O (3) on liquid sulfuric acid surfaces have been studied using a fast flow reactor coupled to a quadrupole mass spectrometer. The main objectives of the study are to investigate: (a) the temperature dependence of these reactions at a fixed H2O partial pressure typical of the lower stratosphere (that is, by changing temperature at a constant water partial pressure, the H2SO4 content of the surfaces is also changed), (b) the relative importance or competition between reactions 1 and 2, and (c) the effect of HNO3 on the reaction probabilities due to the formation of a H2SO4/HNO3/H2O ternary system. The measurements show that all the reactions depend markedly on temperature at a fixed H2O partial pressure: they proceed efficiently at temperatures near 200 K and much slower at temperatures near 220 K. The reaction probability (gamma(sub 1)) for ClONO2 hydrolysis approaches 0.01 at temperatures below 200 K, whereas the values for gamma(sub 2) and gamma(sub 3) are on the order of a few tenths at 200 K. Although detailed mechanisms for these reactions are still unknown, the present data indicate that the competition between ClONO2 hydrolysis and ClONO2 reaction with HCl may depend on temperature (or H2SO4 Wt %): in the presence of gaseous HCl at stratospheric concentrations, reaction 2 is dominant at lower temperatures (less than 200 K), but reaction 1 becomes important at temperatures above 210 K. Furthermore, reaction probability measurements performed on the H2SO4/HNO3/ H2O ternary solutions do not exhibit noticeable deviation from those performed on the H2SO4/H2O binary system, suggesting little effect of HNO3 in sulfate aerosols on the ClONO2 and HOCl reactions with HCl. The results reveal that significant reductions in the chlorine-containing reservoir species (such as ClONO2 and HCl) can take place on stratospheric sulfate aerosols at

  7. Infrared studies of sulfuric acid and its impact on polar and global ozone

    NASA Astrophysics Data System (ADS)

    Iraci, Laura Tracy

    Sulfuric acid aerosols are present throughout the lower stratosphere and play an important role in both polar and global ozone depletion. In the polar regions, stratospheric sulfate aerosols (SSAs) act as nuclei for the growth of polar stratospheric clouds (PSCs). Heterogeneous reactions can occur on these PSCs, leading to chlorine activation and catalytic ozone destruction. This thesis addresses the issue of polar ozone depletion through laboratory studies which examine the nucleation of PSCs on sulfuric acid. In addition, chemistry which occurs directly on sulfate aerosols may impact ozone at midlatitudes, and studies describing one such reaction are presented as well. To study the growth of type I PSCs on sulfuric acid, thin H2SO4 films were exposed to water and nitric acid vapors at stratospheric temperatures. Fourier transform infrared spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films which condensed. Supercooled liquid sulfuric acid films showed uptake of HNO3 to form ternary solutions, followed by crystallization of nitric acid trihydrate (NAT). When crystalline sulfuric acid tetrahydrate (SAT) films were exposed to nitric acid and water, condensation of a supercooled HNO3/H2O layer was often observed. As predicted by theory, some of the SAT crystal then dissolved, creating a ternary H2SO4/HNO3/H2O solution. From this solution, NAT nearly always crystallized, halting the phase change of sulfuric acid. If a supercooled nitric acid layer did not condense on frozen sulfuric acid, crystalline NAT was not deposited from the gas phase when SNAT/leq41. At significantly higher supersaturations, NAT could be forced to condense on sulfuric acid, regardless of its phase. Calculations of the contact parameter from experimental data indicate that m<0.79 for NAT on SAT, predicting a significant barrier to nucleation of NAT from the gas phase. While PSCs can form only in the cold polar regions of the stratosphere, sulfuric

  8. Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes

    NASA Astrophysics Data System (ADS)

    Fei, Haojie; Yang, Chongyang; Bao, Hua; Wang, Gengchao

    2014-11-01

    Flexible all-solid-state supercapacitors (SCs) are fabricated using graphene/carbon black nanoparticle (GCB) film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes (gPVAP-H2SO4). The GCB composite films, with carbon black (CB) nanoparticles uniformly distributed in the graphene nanosheets, greatly improve the active surface areas and ion transportation of pristine graphene film. The porous structure of as-prepared gPVAP-H2SO4 membrane improves the equilibrium swelling ratio in electrolyte and provides interconnected ion transport channels. The chemical crosslinking solves the fluidity problem of PVA-H2SO4 gel electrolyte at high temperature. As-fabricated GCB//gPVAP(20)-H2SO4//GCB flexible SC displays an increased specific capacitance (144.5 F g-1 at 0.5 A g-1) and a higher specific capacitance retention (67.9% from 0.2 to 4 A g-1). More importantly, the flexible SC possesses good electrochemical performance at high temperature (capacitance retention of 78.3% after 1000 cycles at 70 °C).

  9. Uptake and Dissolution of Gaseous Ethanol in Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Michelsen, Rebecca R.; Staton, Sarah J. R.; Iraci, Laura T.

    2006-01-01

    The solubility of gas-phase ethanol (ethyl alcohol, CH3CH2OH, EtOH) in aqueous sulfuric acid solutions was measured in a Knudsen cell reactor over ranges of temperature (209-237 K) and acid composition (39-76 wt % H2SO4). Ethanol is very soluble under these conditions: effective Henry's law coefficients, H*, range from 4 x 10(exp 4) M/atm in the 227 K, 39 wt % acid to greater than 10(exp 7) M/atm in the 76 wt % acid. In 76 wt % sulfuric acid, ethanol solubility exceeds that which can be precisely determined using the Knudsen cell technique but falls in the range of 10(exp 7)-10(exp 10) M/atm. The equilibrium concentration of ethanol in upper tropospheric/lower stratospheric (UT/LS) sulfate particles is calculated from these measurements and compared to other small oxygenated organic compounds. Even if ethanol is a minor component in the gas phase, it may be a major constituent of the organic fraction in the particle phase. No evidence for the formation of ethyl hydrogen sulfate was found under our experimental conditions. While the protonation of ethanol does augment solubility at higher acidity, the primary reason H* increases with acidity is an increase in the solubility of molecular (i.e., neutral) ethanol.

  10. Solubility of Sulfur Dioxide in Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Chang, K. K.; Compton, L. E.; Lawson, D. D.

    1982-01-01

    The solubility of sulfur dioxide in 50% (wt./wt.) sulfuric acid was evaluated by regular solution theory, and the results verified by experimental measurements in the temperature range of 25 C to 70 C at pressures of 60 to 200 PSIA. The percent (wt./wt.) of sulfur dioxide in 50% (wt./wt.) sulfuric acid is given by the equation %SO2 = 2.2350 + 0.0903P - 0.00026P 10 to the 2nd power with P in PSIA.

  11. Corrosion Behavior of Fe41Co7Cr15Mo14C15B6Y2 Bulk Metallic Glass in Sulfuric Acid Solutions

    NASA Astrophysics Data System (ADS)

    Fan, H. B.; Zheng, W.; Wang, G. Y.; Liaw, P. K.; Shen, J.

    2011-06-01

    An Fe41Co7Cr15Mo14C15B6Y2 bulk metallic glass with a diameter of 5 mm was prepared with the copper-mold-casting method. The corrosion resistance of this amorphous steel in sulfuric-acid solutions was determined by electrochemical measurements. The passive film formed on the surface of the alloy after immersion in the 0.5-mol/l H2SO4 solution for 1 week was analyzed by X-ray photoelectron spectroscopy (XPS). Electrochemical measurements show that the corrosion resistance of the amorphous steel in the 1 mol/l-H2SO4 solution is superior to a stainless steel (SUS 321), and is almost the same as Ti6Al4V, which shows that the amorphous steel has an excellent corrosion resistance in sulfuric-acid solutions. As the concentration of the sulfuric-acid solutions increases from 0.5 mol/l to 4 mol/l, the corrosion resistance of the amorphous steel decreases. The XPS result reveals that a bilayer structure of protective film formed on the surface of the amorphous steel in a H2SO4 solution. The compositions of the inner part of the film are MoO2, Cr2O3, CoO, and FeO, and those of the outer film are MoO3, Cr(OH)3, Co(OH)2, and Fe(OH)3.

  12. Sulfuric Acid and Soot Particle Formation in Aircraft Exhaust

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F.; Verma, S.; Ferry, G. V.; Howard, S. D.; Vay, S.; Kinne, S. A.; Baumgardner, D.; Dermott, P.; Kreidenweis, S.; Goodman, J.; Gore, Waren J. Y. (Technical Monitor)

    1997-01-01

    A combination of CN counts, Ames wire impactor size analyses and optical particle counter data in aircraft exhaust results in a continuous particle size distribution between 0.01 micrometer and 1 micrometer particle radius sampled in the exhaust of a Boeing 757 research aircraft. The two orders of magnitude size range covered by the measurements correspond to 6-7 orders of magnitude particle concentration. CN counts and small particle wire impactor data determine a nucleation mode, composed of aircraft-emitted sulfuric acid aerosol, that contributes between 62% and 85% to the total aerosol surface area and between 31% and 34% to its volume. Soot aerosol comprises 0.5% of the surface area of the sulfuric acid aerosol. Emission indices are: EIH2SO4 = 0.05 g/kgFUEL and (0.2-0.5) g/kgFUEL (for 75 ppmm and 675 ppmm fuel-S, respectively), 2.5E4sulfur (gas) to H2SO4 (particle) conversion efficiency is between 10% and 25%.

  13. Theoretical study on the gas phase reaction of sulfuric acid with hydroxyl radical in the presence of water.

    PubMed

    Long, Bo; Zhang, Wei-Jun; Tan, Xing-Feng; Long, Zheng-Wen; Wang, Yi-Bo; Ren, Da-Sen

    2011-03-03

    The reactions of H2SO4 with the OH radical without water and with water are investigated employing the quantum chemical calculations at the B3LYP/6-311+G(2df,2p) and MP2/aug-cc-pv(T+d)z levels of theory, respectively. The calculated results show that the reaction of H2SO4 with OH and H2O is a very complex mechanism because of the formation of the prereactive complex prior to the transition state and product. There are two prereactive complexes with stabilization energies being -20.28 and -20.67 kcal/mol, respectively. In addition, the single water can lower the energy barriers of the hydrogen abstraction and the proton transfer to 7.51 and 6.37 kcal/mol, respectively from 13.79 and 8.82 kcal/mol with respect to the corresponding prereactive complex. The computed rate constants indicate that the water-assisted reaction of sulfuric acid with OH radical is of greater importance than the reaction of the naked sulfuric acid with the OH radical because the rate constant of the water-assisted process is about 10(3) faster than that of the reaction sulfuric acid with OH. Therefore, the conclusion is obtained that the water-assisted process plays an important role in the sink for the gaseous sulfuric acid in the clean area.

  14. Sulfuric acid on Europa and the radiolytic sulfur cycle

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Johnson, R. E.; Anderson, M. S.

    1999-01-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  15. Sulfuric acid on Europa and the radiolytic sulfur cycle.

    PubMed

    Carlson, R W; Johnson, R E; Anderson, M S

    1999-10-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  16. Solubility of methanol in low-temperature aqueous sulfuric acid and implications for atmospheric particle composition

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Using traditional Knudsen cell techniques, we find well-behaved Henry's law uptake of methanol in aqueous 45 - 70 wt% H2SO4 solutions at temperatures between 197 and 231 K. Solubility of methanol increases with decreasing temperature and increasing acidity, with an effective Henry's law coefficient ranging from 10(exp 5) - 10(exp 8) M/atm. Equilibrium uptake of methanol into sulfuric acid aerosol particles in the upper troposphere and lower stratosphere will not appreciably alter gas-phase concentrations of methanol. The observed room temperature reaction between methanol and sulfuric acid is too slow to provide a sink for gaseous methanol at the temperatures of the upper troposphere and lower stratosphere. It is also too slow to produce sufficient quantities of soluble reaction products to explain the large amount of unidentified organic material seen in particles of the upper troposphere.

  17. Sulfur Cycle

    NASA Technical Reports Server (NTRS)

    Hariss, R.; Niki, H.

    1985-01-01

    Among the general categories of tropospheric sulfur sources, anthropogenic sources have been quantified the most accurately. Research on fluxes of sulfur compounds from volcanic sources is now in progress. Natural sources of reduced sulfur compounds are highly variable in both space and time. Variables, such as soil temperature, hydrology (tidal and water table), and organic flux into the soil, all interact to determine microbial production and subsequent emissions of reduced sulfur compounds from anaerobic soils and sediments. Available information on sources of COS, CS2, DMS, and H2S to the troposphere in the following paragraphs are summarized; these are the major biogenic sulfur species with a clearly identified role in tropospheric chemistry. The oxidation of SO2 to H2SO4 can often have a significant impact on the acidity of precipitation. A schematic representation of some important transformations and sinks for selected sulfur species is illustrated.

  18. Reaction of isoprene on thin sulfuric acid films: kinetics, uptake, and product analysis.

    PubMed

    Connelly, Brandon M; Tolbert, Margaret A

    2010-06-15

    A high vacuum Knudsen flow reactor was used to determine the reactive uptake coefficient, gamma, of isoprene on sulfuric acid films as a function of sulfuric acid weight percent, temperature, and relative humidity. No discernible dependence was observed for gamma over the range of temperatures (220 - 265 K) and pressures (10(-7) Torr -10(-4) Torr) studied. However, the uptake coefficient increased with increased sulfuric acid concentration between the range of 78 wt % (gamma(i) approximately 10(-4)) and 93 wt % (gamma(i) approximately 10(-3)). In addition to the Knudsen Cell, a bulk study was conducted between 60 and 85 wt % H(2)SO(4) to quantify uptake at lower acid concentrations and to determine reaction products. After exposing sulfuric acid to gaseous isoprene the condensed phase products were extracted and analyzed using gas chromatography/mass spectrometry (GC/MS). Isoprene was observed to polymerize in the sulfuric acid and form yellow/red colored monoterpenes and cyclic sesquiterpenes. Finally, addition of water to the 85 wt % sulfuric acid/isoprene product mixture released these terpenes from the condensed phase into the gas phase. Together these experiments imply that direct isoprene uptake will not produce significant SOA; however, terpene production from the small uptake may be relevant for ultrafine particles and could affect growth and nucleation.

  19. Heterogeneous Interactions of ClONO2 and HCl with Sulfuric Acid Tetrahydrate: Implications for the Stratosphere

    NASA Technical Reports Server (NTRS)

    Zhang, Renyi; Jayne, John T.; Molina, Mario J.

    1994-01-01

    The reaction probabilities for ClONO2+H2O- HOCl + HNO3 and ClONO2+ HCl Cl2 +HNO3 have been investigated on sulfuric acid tetrahydrate (SAT, H2SO4-4H2O)surfaces at temperatures between 190 and 230 K and at reactant concentrations that are typical in the lower stratosphere, using a fast-flow reactor coupled to a quadrupole mass spectrometer. The results indicate that the reaction probabilities as well as HCl uptake depend strongly on the thermodynamic state of SAT surface: they decrease significantly with decreasing H2O partial pressure at a given temperature, and decrease with increasing temperature at a given H2O partial pressure, as the SAT changes from the H2O-rich form to the H2SO4-rich form. For H2O-rich SAT at 195 K gamma(sub 1) approx. = -0.01 and gamma(sub 2) greater or equal to 0.1, whereas the values for H2SO4-rich SAT decrease by more than 2 orders of magnitude. At low concentrations of HCl, close to those found in the stratosphere, the amount of HCl taken up by H2O-rich SAT films corresponds to a coverage of the order of a tenth of a monolayer (approx. = 10(exp 14) molecules/sq cm); H2SO4-rich SAT films take up 2 orders of magnitude less HCl (les than 10(exp 12) molecules/sq cm). Substantial HCl uptake at high HCl concentrations is also observed, as a result of surface melting. The data reveal that frozen stratospheric sulfate aerosols may play an important role in chlorine activation in the winter polar stratosphere via processes similar to those occurring on the surfaces of polar stratospheric cloud particles.

  20. Advances in Acid Concentration Membrane Technology for the Sulfur-Iodine Thermochemical Cycle

    SciTech Connect

    Frederick F. Stewart; Christopher J. Orme

    2006-11-01

    One of the most promising cycles for the thermochemical generation of hydrogen is the Sulfur-Iodine (S-I) process, where aqueous HI is thermochemically decomposed into H2 and I2 at approximately 350 degrees Celsius. Regeneration of HI is accomplished by the Bunsen reaction (reaction of SO2, water, and iodine to generate H2SO4 and HI). Furthermore, SO2 is regenerated from the decomposition of H2SO4 at 850 degrees Celsius yielding the SO2 as well as O2. Thus, the cycle actually consists of two concurrent oxidation-reduction loops. As HI is regenerated, co-produced H2SO4 must be separated so that each may be decomposed. Current flowsheets employ a large amount (~83 mol% of the entire mixture) of elemental I2 to cause the HI and the H2SO4 to separate into two phases. To aid in the isolation of HI, which is directly decomposed into hydrogen, water and iodine must be removed. Separation of iodine is facilitated by removal of water. Sulfuric acid concentration is also required to facilitate feed recycling to the sulfuric acid decomposer. Decomposition of the sulfuric acid is an equilibrium limited process that leaves a substantial portion of the acid requiring recycle. Distillation of water from sulfuric acid involves significant corrosion issues at the liquid-vapor interface. Thus, it is desirable to concentrate the acid without boiling. Recent efforts at the INL have concentrated on applying pervaporation through Nafion-117, Nafion-112, and sulfonated poly(etheretherketone) (S-PEEK) membranes for the removal of water from HI/water and HI/Iodine/water feedstreams. In pervaporation, a feed is circulated at low pressure across the upstream side of the membrane, while a vacuum is applied downstream. Selected permeants sorb into the membrane, transport through it, and are vaporized from the backside. Thus, a concentration gradient is established, which provides the driving force for transport. In this work, membrane separations have been performed at temperatures as high as

  1. Examination of Organic Reactions in UT/LS Aerosols: Temperature Dependence in Sulfuric Acid Solution

    NASA Astrophysics Data System (ADS)

    Iraci, L. T.; Michelsen, R. R.

    2004-12-01

    Sulfuric acid has been used for decades as an industrial catalyst for organic reactions, but its parallel role in atmospheric aerosols is relatively unexplored, despite identification of a wide array of organic compounds in particles. Several recent studies have demonstrated possible reactions in acidic particles, generally involving carbonyl groups (C=O) and leading to the formation of larger molecules. Reactions of oxygenated organic compounds in acidic solution are most often studied near room temperature, while the sulfate particles of the upper troposphere and lower stratosphere are significantly colder. Our studies of ethanal (acetaldehyde) suggest that reactivity in ~50 wt% H2SO4 solutions may be enhanced at lower temperatures, contrary to expectations. We will present temperature-dependent results of acid catalyzed condensation reactions, leading to formation of higher molecular weight products. Implications for aerosol composition and reactivity will be discussed.

  2. Process for forming sulfuric acid

    DOEpatents

    Lu, Wen-Tong P.

    1981-01-01

    An improved electrode is disclosed for the anode in a sulfur cycle hydrogen generation process where sulfur dioxie is oxidized to form sulfuric acid at the anode. The active compound in the electrode is palladium, palladium oxide, an alloy of palladium, or a mixture thereof. The active compound may be deposited on a porous, stable, conductive substrate.

  3. Homogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions

    NASA Astrophysics Data System (ADS)

    Brus, D.; Neitola, K.; Hyvärinen, A.-P.; Petäjä, T.; Vanhanen, J.; Sipilä, M.; Paasonen, P.; Kulmala, M.; Lihavainen, H.

    2011-06-01

    In this study the homogeneous nucleation rates in the system of sulfuric acid and water were measured by using a flow tube technique. The goal was to directly compare particle formation rates obtained from atmospheric measurements with nucleation rates of freshly nucleated particles measured with particle size magnifier (PSM) which has detection efficiency of unity for particles having mobility diameter of 1.5 nm. The gas phase sulfuric acid concentration in this study was measured with the chemical ionization mass spectrometer (CIMS), commonly used in field measurements. The wall losses of sulfuric acid were estimated from measured concentration profiles along the flow tube. The initial concentrations of sulfuric acid estimated from loss measurements ranged from 108 to 3 × 109 molecules cm-3. The nucleation rates obtained in this study cover about three orders of magnitude from 10-1 to 102 cm-3 s-1 for commercial ultrafine condensation particle counter (UCPC) TSI model 3025A and from 101 to 104 cm-3 s-1 for PSM. The nucleation rates and the slopes (dlnJ/dln [H2SO4]) show satisfactory agreement when compared to empirical kinetic and activation models and the latest atmospheric nucleation data. To the best of our knowledge, this is the first experimental work providing temperature dependent nucleation rate measurements using a high efficiency particle counter with a cut-off-size of 1.5 nm together with direct measurements of gas phase sulfuric acid concentration.

  4. Optimization of thermal-dilute sulfuric acid pretreatment for enhancement of methane production from cassava residues.

    PubMed

    Zhang, Qinghua; Tang, Lei; Zhang, Jianhua; Mao, Zhonggui; Jiang, Li

    2011-02-01

    In this study, the pretreatment of cassava residues by thermal-dilute sulfuric acid (TDSA) hydrolysis was investigated by means of a statistically designed set of experiments. A three-factor central composite design (CCD) was employed to identify the optimum pretreatment condition of cassava residues for methane production. The individual and interactive effects of temperature, H(2)SO(4) concentration and reaction time on increase of methane yield (IMY) were evaluated by applying response surface methodology (RSM). After optimization, the resulting optimum pretreatment condition was 157.84°C, utilizing 2.99% (w/w TS) H(2)SO(4) for 20.15 min, where the maximum methane yield (248 mL/g VS) was 56.96% higher than the control (158 mL/g VS), which was very close to the predict value 56.53%. These results indicate the model obtained through RSM analysis is suit to predict the optimum pretreatment condition and there is great potential of using TDSA pretreatment of cassava residues to enhance methane yield.

  5. Sulfuric Acid Monohydrate: Formation and Heterogeneous Chemistry in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Zhang, Renyi; Leu, Ming-Taun; Keyser, Leon F.

    1995-01-01

    We have investigated some thermodynamic properties (i.e., freezing/melting points) and heterogeneous chemistry of sulfuric acid monohydrate (SAM, H2SO4.H2O), using a fast flow reactor coupled to a quadrupole mass spectrometer. The freezing point observations of thin liquid sulfuric acid films show that for acid contents between 75 and 85 wt % the monohydrate crystallizes readily at temperatures between 220 and 240 K on a glass substrate. Once formed, SAM can be thermodynamically stable in the H2O partial pressure range of (1-4) x 10(exp -4) torr and in the temperature range of 220-240 K. For a constant H2O partial pressure, lowering the temperature causes SAM to melt when the temperature and water partial pressure conditions are out of its stability regime. The reaction probability measurements indicate that the hydrolysis of N2O5 is significantly suppressed owing to the formation of crystalline SAM: The reaction probability on water-rich SAM (with higher relative humidity, or RH) is of the order of 10(exp -3) at 210 K and decreases by more than an order of magnitude for the acid-rich form (with lower RH). The hydrolysis rate of ClONO2 on water-rich SAM is even smaller, of the order of 10(exp -4) at 195 K. These reported values on crystalline SAM are much smaller than those on liquid solutions. No enhancement of these reactions is observed in the presence of HCl vapor at the stratospheric concentrations. In addition, Brunauer, Emmett, and Teller analysis of gas adsorption isotherms and photomicrography have been performed to characterize the surface roughness and porosities of the SAM substrate. The results suggest the possible formation of SAM in some regions of the middle- or low-latitude stratosphere and, consequently, much slower heterogeneous reactions on the frozen aerosols.

  6. Soot and Sulfuric Acid from Aircraft: Is There Enough to Cause Detrimental Environmental E-kCTSs?

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Strawa, A. W.; Ferry, G. V.; Howard, S. D.; Verma, S.

    1998-01-01

    Aerosol from aircraft can affect the environment in three ways: First, soot aerosol has been implicated to cause Icing-tern ozone depletion at mid-latitudes in the lower stratosphere at a rate of approx. 5% per decade. This effect is in addition and unrelated to the polar ozone holes which are strongly influenced by heterogeneous chemistry on polar stratospheric clouds. Second, the most obvious effect of jet aircraft is the formation of visible contrails in the upper troposphere. The Salt Lake City region experienced an 8% increase in cirrus cloud cover over a 15-year period which covariates with an increase in regional commercial air traffic. If soot particles act as freezing nuclei to cause contrail formation heterogeneously, they would be linked to a secondary effect to cloud modification that very likely is climatologically important. Third, a buildup of soot aerosol could reduce the single scatter albedo of stratospheric aerosol from 0.993+0.004 to 0.98, a critical value that has been postulated to separate stratospheric cooling from warming. Thus arises an important question: Do aircraft emit sufficient amounts of soot to have detrimental effects and warrant emission controls? During the 1996 SUCCESS field campaign, we sampled aerosols in the exhaust wake of a Boeing 757 aircraft and determined emission indices for sulfuric acid (EI(sub H2SO4) = 9.0E-2 and 5.0E-1 g/kg (sub FUEL) for 75 and 675 ppm fuel-sulfur, respectively) and soot aerosol (2.2E-3 less than EI(sub SOOT) = l.lE-2 g/kg (sub FUEL)). The soot particle analysis accounted for their fractal nature, determined electron-microscopically, which enhanced the surface area by a factor of 26 and the volume 11-fold over equivalent-volume spheres. The corresponding fuel-sulfur to H2SO4 conversion efficiency was 10% (for 675 ppmm fuel-S) and 37% (for 75 ppmm fuel-S). Applying the H2SO4 emission index to the 1990 fuel use by the worlds commercial fleets of 1.3E11 kg, a conversion efficiency of 30% of 500 ppmm

  7. Real-time investigations of Pt(111) surface transformations in sulfuric acid solutions.

    PubMed

    Braunschweig, Björn; Mukherjee, Prabuddha; Dlott, Dana D; Wieckowski, Andrzej

    2010-10-13

    We present the first broadband sum-frequency generation (SFG) spectra of adlayers from sulfuric acid solutions on Pt(111) surfaces and reveal surface transformations of (bi)sulfate anions in unprecedented detail. SFG amplitudes, bandwidth, and electrochemical Stark tuning of (bi)sulfate vibrational bands centered at 1250-1290 cm(-1) strongly depend on the applied potential and are correlated with prominent voltammetric features. (Bi)sulfate adlayers on Pt(111) are important model systems for weak, specific adsorption of anions on catalytically active surfaces. Although the existence of surface transformations on Pt(111) in dilute H(2)SO(4) solutions has been established by previous studies, so far they have not been observed with surface vibrational spectroscopy. Our results confirm previous reports of a surface transformation at 0.21 V and provide new information on a second transformation at 0.5 V due to surface hydroxyl formation and rearrangement of the electric double layer.

  8. Production of furfural from xylose at atmospheric pressure by dilute sulfuric acid and inorganic salts.

    PubMed

    Rong, Chunguang; Ding, Xuefeng; Zhu, Yanchao; Li, Ying; Wang, Lili; Qu, Yuning; Ma, Xiaoyu; Wang, Zichen

    2012-03-01

    In this paper, the dehydration of xylose to furfural was carried out under atmospheric pressure and at the boiling temperature of a biphasic mixture of toluene and an aqueous solution of xylose, with sulfuric acid as catalyst plus an inorganic salt (NaCl or FeCl(3)) as promoter. The best yield of furfural was 83% under the following conditions: 150 mL of toluene and 10 mL of aqueous solution of 10% xylose (w/w), 10% H(2)SO(4) (w/w), 2.4g NaCl , and heating for 5h. FeCl(3) as promoter was found to be more efficient than NaCl. The addition of DMSO to the aqueous phase in the absence of an inorganic salt was shown to improve the yield of furfural.

  9. Sulfuric Acid in the Venus Clouds

    NASA Technical Reports Server (NTRS)

    Sill, G. T.

    1972-01-01

    The visible and ultraviolet transmission features of a thin layer of elemental bromine and hydrobromic acid dissolved in sulfuric acid somewhat resemble the Venus spectrum, up to 14 microns. The chemical process postulated for forming sulfuric acid involves the oxidation of sulfur and its compounds to sulfuric acid through the agency of elemental bromine, produced by the photolytic decomposition of hydrogen bromide.

  10. Analysis of electrochemical noise (ECN) data in time and frequency domain for comparison corrosion inhibition of some azole compounds on Cu in 1.0 M H2SO4 solution

    NASA Astrophysics Data System (ADS)

    Ramezanzadeh, B.; Arman, S. Y.; Mehdipour, M.; Markhali, B. P.

    2014-01-01

    In this study, the corrosion inhibition properties of two similar heterocyclic compounds namely benzotriazole (BTA) and benzothiazole (BNS) inhibitors on copper in 1.0 M H2SO4 solution were studied by electrochemical techniques as well as surface analysis. The results showed that corrosion inhibition of copper largely depends on the molecular structure and concentration of the inhibitors. The effect of DC trend on the interpretation of electrochemical noise (ECN) results in time domain was evaluated by moving average removal (MAR) method. Accordingly, the impact of square and Hanning window functions as drift removal methods in frequency domain was studied. After DC trend removal, a good trend was observed between electrochemical noise (ECN) data and the results obtained from EIS and potentiodynamic polarization. Furthermore, the shot noise theory in frequency domain was applied to approach the charge of each electrochemical event (q) from the potential and current noise signals.

  11. Phyllanthus muellerianus and C6H15NO3 synergistic effects on 0.5 M H2SO4-immersed steel-reinforced concrete: Implication for clean corrosion-protection of wind energy structures in industrial environment

    NASA Astrophysics Data System (ADS)

    Okeniyi, Joshua Olusegun; Omotosho, Olugbenga Adeshola; Popoola, Abimbola Patricia Idowu; Loto, Cleophas Akintoye

    2016-07-01

    This paper investigates Phyllanthus muellerianus leaf-extract and C6H15NO3 (triethanolamine: TEA) synergistic effects on reinforcing-steel corrosion-inhibition and the compressive-strength of steel-reinforced concrete immersed in 0.5 M H2SO4. This is to assess suitability of the synergistic admixture usage for wind-energy steel-reinforced concrete structures designed for industrial environments. Steel-reinforced concrete specimens were admixed with individual and synergistic designs of Phyllanthus muellerianus leaf-extract and C6H15NO3 admixtures and immersed in the 0.5 M H2SO4. Electrochemical monitoring of corrosion potential, as per ASTM C876-91 R99, and corrosion current were obtained and statistically analysed, as per ASTM G16-95 R04, for modelling noise resistance. Post-immersion compressive-strength testing then followed, as per ASTM C39/C39M-03, for detailing the admixture effect on load-bearing strength of the steel-reinforced concrete specimens. Results showed that while individual Phyllanthus muellerianus leaf-extract concentrations exhibited better inhibition-efficiency performance than C6H15NO3, synergistic additions of C6H15NO3 to Phyllanthus muellerianus leaf-extract improved steel-rebar corrosion-inhibition. Thus, 6 g Phyllanthus muellerianus + 2 g C6H15NO3 synergistically improved inhibition-efficiency to η = 84.17%, from η = 55.28% by the optimal chemical or from η = 74.72% by the optimal plant-extract admixtures. The study also established that improved compressive strength of steel-reinforced concrete with acceptable inhibition of the steel-rebar corrosion could be attained through optimal combination of the Phyllanthus muellerianus leaf-extract and C6H15NO3 admixtures.

  12. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.

    PubMed

    Kim, Hong-In; Park, Kyung-Ho; Mishra, Devabrata

    2009-07-30

    Dissolution of metals from a pre-oxidized refinery plant spent Co-Mo/Al(2)O(3) catalyst have been tried through low temperature (200-450 degrees C) sulfuric acid baking followed by mild leaching process. Direct sulfuric acid leaching of the same sample, resulted poor Al and Mo recoveries, whereas leaching after sulfuric acid baking significantly improved the recoveries of above two metals. The pre-oxidized spent catalyst, obtained from a Korean refinery plant found to contain 40% Al, 9.92% Mo, 2.28% Co, 2.5% C and trace amount of other elements such as Fe, Ni, S and P. XRD results indicated the host matrix to be poorly crystalline gamma- Al(2)O(3). The effect of various baking parameters such as catalyst-to-acid ratio, baking temperature and baking time on percentage dissolutions of metals has been studied. It was observed that, metals dissolution increases with increase in the baking temperature up to 300 degrees C, then decreases with further increase in the baking temperature. Under optimum baking condition more than 90% Co and Mo, and 93% Al could be dissolved from the spent catalyst with the following leaching condition: H(2)SO(4)=2% (v/v), temperature=95 degrees C, time=60 min and Pulp density=5%.

  13. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions

    PubMed Central

    Perraud, Véronique; Horne, Jeremy R.; Martinez, Andrew S.; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L.; Wingen, Lisa M.; Dabdub, Donald; Blake, Donald R.; Gerber, R. Benny; Finlayson-Pitts, Barbara J.

    2015-01-01

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine–California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs. PMID:26483454

  14. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions.

    PubMed

    Perraud, Véronique; Horne, Jeremy R; Martinez, Andrew S; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L; Wingen, Lisa M; Dabdub, Donald; Blake, Donald R; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-11-03

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs.

  15. High yield production of sugars from deproteinated palm kernel cake under microwave irradiation via dilute sulfuric acid hydrolysis.

    PubMed

    Fan, Suet-Pin; Jiang, Li-Qun; Chia, Chin-Hua; Fang, Zhen; Zakaria, Sarani; Chee, Kah-Leong

    2014-02-01

    Recent years, great interest has been devoted to the conversion of biomass-derived carbohydrate into sugars, such as glucose, mannose and fructose. These are important versatile intermediate products that are easily processed into high value-added biofuels. In this work, microwave-assisted dilute sulfuric acid hydrolysis of deproteinated palm kernel cake (DPKC) was systematically studied using Response Surface Methodology. The highest mannose yield (92.11%) was achieved at the optimized condition of 148°C, 0.75N H2SO4, 10min 31s and substrate to solvent (SS) ratio (w/v) of 1:49.69. Besides that, total fermentable sugars yield (77.11%), was obtained at 170°C, 0.181N H2SO4, 6min 6s and SS ratio (w/v) of 1:40. Ridge analysis was employed to further verify the optimum conditions. Thus, this work provides fundamental data of the practical use of DPKC as low cost, high yield and environmental-friendly material for the production of mannose and other sugars.

  16. Mediated proton transport through Nafion 117 membranes imbibed with varying concentrations of aqueous VOSO4 (VO2+) and NH4VO3 (VO2+) in 2 M H2SO4

    NASA Astrophysics Data System (ADS)

    Suarez, Sophia; Paterno, Domenec

    2016-11-01

    We performed an extensive study on Nafion 117 membrane imbibed with various concentrations of aqueous ammonium metavanadate (NH4VO3), and vanadyl sulfate (VOSO4), in 2 M H2SO4 over the temperature range of 20-100 °C, using 1H NMR and AC Impedance spectroscopies. The objective was to determine the effect of the tetravalent (VO2+) and pentavalent (VO2+) vanadium ions on the proton transport of Nafion 117.1H NMR chemical shift and linewidth data show greater short-range proton transport for the VO2+ imbibed membranes compared with the VO2+. However, the local environments seem to differ in that while the data for VO2+ imbibed membranes seem to follow more the trends observed for water hydrated Nafion 117, those for the VO2+ followed the trend of its aqueous bulk vanadium solvents, indicating that viscosity plays a larger role for the VO2+ imbibed membranes compared to the VO2+.

  17. Inhibition of mild steel corrosion by 1,4,6-trimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile and synergistic effect of halide ion in 0.5 M H2SO4

    NASA Astrophysics Data System (ADS)

    Mourya, Punita; Singh, Praveen; Rastogi, R. B.; Singh, M. M.

    2016-09-01

    The effect of iodide ions on inhibitive performance of 1,4,6-trimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (TODPCN) on mild steel (MS) corrosion in 0.5 M H2SO4 was studied using gravimetric and electrochemical measurements. TODPCN inhibits the corrosion of MS to the extent of 62.3% at its lowest concentration (0.5 mM) and its inhibition efficiency (η) further increases on increasing concentration at 298 K. The adsorption of TODPCN on MS was found to follow the Langmuir adsorption isotherm. The value of η increased on the addition of 2.0 mM KI. The value of synergism parameter being more than unity indicates that the enhanced η value in the presence of iodide ions is only due to synergism. Thus, a cooperative mechanism of inhibition exists between the iodide anion and TODPCN cations. The increase in surface coverage in the presence of KI indicates that iodide ions enhance the adsorption of TODPCN. The surface morphology of corroded/inhibited MS was studied by atomic force microscopy. X-ray photoelectron spectroscopy of inhibited MS surface was carried out to determine the composition of the adsorbed film. Some quantum chemical parameters and the Mulliken charge densities for TODPCN calculated by density functional theory provided further insight into the mechanism of inhibition.

  18. Long-term variations in abundance and distribution of sulfuric acid vapor in the Venus atmosphere inferred from Pioneer Venus and Magellan radio occultation studies

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.; Steffes, P. G.

    1992-01-01

    Radio occultation experiments have been used to study various properties of planetary atmospheres, including pressure and temperature profiles, and the abundance profiles of absorbing constituents in those planetary atmospheres. However, the reduction of amplitude data from such experiments to determine abundance profiles requires the application of the inverse Abel transform (IAT) and numerical differentiation of experimental data. These two operations preferentially amplify measurement errors above the true signal underlying the data. A new technique for processing radio occultation data has been developed that greatly reduces the errors in the derived absorptivity and abundance profiles. This technique has been applied to datasets acquired from Pioneer Venus Orbiter radio occultation studies and more recently to experiments conducted with the Magellan spacecraft. While primarily designed for radar studies of the Venus surface, the high radiated power (EIRP) from the Magellan spacecraft makes it an ideal transmitter for measuring the refractivity and absorptivity of the Venus atmosphere by such experiments. The longevity of the Pioneer Venus Orbiter has made it possible to study long-term changes in the abundance and distribution of sulfuric acid vapor, H2SO4(g), in the Venus atmosphere between 1979 and 1992. The abundance of H2SO4(g) can be inferred from vertical profiles of 13-cm absorptivity profiles retrieved from radio occultation experiments. Data from 1979 and 1986-87 suggest that the abundance of H2SO4(g) at latitudes northward of 70 deg decreased over this time period. This change may be due to a period of active volcanism in the late 1970s followed by a relative quiescent period, or some other dynamic process in the Venus atmosphere. While the cause is not certain, such changes must be incorporated into dynamic models of the Venus atmosphere. Potentially, the Magellan spacecraft will extend the results of Pioneer Venus Orbiter and allow the continued

  19. The clouds of Venus - Sulfuric acid by the lead chamber process

    NASA Technical Reports Server (NTRS)

    Sill, G. T.

    1983-01-01

    The Pioneer Venus atmospheric probe provided new data on the clouds of Venus. A model consistent with this data involves SO2 being oxidized to H2SO4 by NO(x) in the presence of H2O. NO(x) also forms nitrosylsulfuric acid (NOHSO4) dissolved in the H2SO4 droplets. This acid solution, along with SO2 and perhaps NO2, can explain the UV and visible reflection spectrum of Venus. In the middle and lower clouds, NOHSO4 forms solid particles.

  20. Removal of sulfuric acid mist from lead-acid battery plants by coal fly ash-based sorbents.

    PubMed

    Shu, Yuehong; Wei, Xiangyu; Fang, Yu; Lan, Bingyan; Chen, Hongyu

    2015-04-09

    Sorbents from coal fly ash (CFA) activated by NaOH, CaO and H2O were prepared for H2SO4 mist removal from lead-acid battery plants. The effects of parameters including temperature, time, the ratios of CFA/activator and water/solid during sorbent preparation were investigated. It is found that the synthesized sorbents exhibit much higher removal capacity for H2SO4 mist when compared with that of raw coal fly ash and CaO except for H2O activated sorbent and this sorbent was hence excluded from the study because of its low capacity. The H2SO4 mist removal efficiency increases with the increasing of preparation time length and temperature. In addition, the ratios of CFA/activator and water/solid also impact the removal efficiency, and the optimum preparation conditions are identified as: a water/solid ratio of 10:1 at 120 °C for 10h, a CFA:CaO weight ratio of 10:1, and a NaOH solution concentration of 3 mol/L. The formation of rough surface structure and an increased surface area after NaOH/CaO activation favor the sorption of H2SO4 mist and possible sorption mechanisms might be electrostatic attractions and chemical precipitation between the surface of sorbents and H2SO4 mist.

  1. The influence of ferrous sulfate utilization on the sugar yields from dilute-acid pretreatment of softwood for bioethanol production.

    PubMed

    Monavari, Sanam; Galbe, Mats; Zacchi, Guido

    2011-01-01

    By employing metal salts in dilute-acid pretreatment the severity can be reduced due to reduced activation energy. This study reports on a dilute-acid steam pretreatment of spruce chips by addition of a small amount of ferrous sulfate to the acid catalyst, i.e., either SO2, H2SO3 or H2SO4. The utilization of ferrous sulfate resulted in a slightly increased overall glucose yield (from 74% to 78% of the theoretical value) in pretreatment with SO2 and H2SO3. Impregnation with ferrous sulfate and sulfuric acid did not give any improvement compared with pretreatment based solely on H2SO4.

  2. 21 CFR 582.1095 - Sulfuric acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sulfuric acid. 582.1095 Section 582.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1095 Sulfuric acid. (a) Product. Sulfuric acid. (b) Conditions of use. This substance is...

  3. 21 CFR 582.1095 - Sulfuric acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfuric acid. 582.1095 Section 582.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1095 Sulfuric acid. (a) Product. Sulfuric acid. (b) Conditions of use. This substance is...

  4. 46 CFR 153.1046 - Sulfuric acid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK....1046 Sulfuric acid. No person may liquefy frozen or congealed sulfuric acid other than by external...

  5. 46 CFR 153.1046 - Sulfuric acid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK....1046 Sulfuric acid. No person may liquefy frozen or congealed sulfuric acid other than by external...

  6. 46 CFR 153.1046 - Sulfuric acid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK....1046 Sulfuric acid. No person may liquefy frozen or congealed sulfuric acid other than by external...

  7. 21 CFR 582.1095 - Sulfuric acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sulfuric acid. 582.1095 Section 582.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1095 Sulfuric acid. (a) Product. Sulfuric acid. (b) Conditions of use. This substance is...

  8. 21 CFR 582.1095 - Sulfuric acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sulfuric acid. 582.1095 Section 582.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1095 Sulfuric acid. (a) Product. Sulfuric acid. (b) Conditions of use. This substance is...

  9. 46 CFR 153.1046 - Sulfuric acid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK....1046 Sulfuric acid. No person may liquefy frozen or congealed sulfuric acid other than by external...

  10. 21 CFR 582.1095 - Sulfuric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sulfuric acid. 582.1095 Section 582.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1095 Sulfuric acid. (a) Product. Sulfuric acid. (b) Conditions of use. This substance is...

  11. 46 CFR 153.1046 - Sulfuric acid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK....1046 Sulfuric acid. No person may liquefy frozen or congealed sulfuric acid other than by external...

  12. Hydrate sulfuric acid after sulfur implantation in water ice

    NASA Astrophysics Data System (ADS)

    Strazzulla, G.; Baratta, G. A.; Leto, G.; Gomis, O.

    2007-12-01

    For many years an ongoing research program performed at our laboratory has had the aim to investigate the implantation of reactive ions in ices relevant to planetology by using IR spectroscopy. We present new results obtained by implanting 200 keV sulfur ions into water ice at 80 K. We have looked at the formation of sulfur-bearing molecules such as sulfuric acid, sulfur dioxide and hydrogen sulfide. We find that hydrated sulfuric acid is formed with high yield ( 0.65±0.1 molecules/ion). An upper limit to the production yield of SO 2 ( Y⩽0.025 molecules/ion) has been estimated; no hydrogen sulfide has been detected. The formation of hydrogen peroxide is confirmed. Ozone is not detected. The results are discussed relevant to the inquiry on the radiolytic sulfur cycle considered responsible for the formation of sulfur-bearing molecules on the surfaces of the Galilean satellites. We demonstrate that sulfur implantation efficiently forms hydrated sulfuric acid whose observed abundance is explained as caused by an exogenic process. It is more difficult to say if the observed sulfur dioxide is quantitatively supported by only sulfur implantation; additional experimental studies are necessary along with direct observations, especially at UV wavelengths such as those that could be performed by instruments on board Hubble Space Telescope or by the forthcoming World Space Observatory (WSO/UV).

  13. Formic acid catalyzed hydrolysis of SO3 in the gas phase: a barrierless mechanism for sulfuric acid production of potential atmospheric importance.

    PubMed

    Hazra, Montu K; Sinha, Amitabha

    2011-11-02

    Computational studies at the B3LYP/6-311++G(3df,3pd) and MP2/6-311++G(3df,3pd) levels are performed to explore the changes in reaction barrier height for the gas phase hydrolysis of SO(3) to form H(2)SO(4) in the presence of a single formic acid (FA) molecule. For comparison, we have also performed calculations for the reference reaction involving water assisted hydrolysis of SO(3) at the same level. Our results show that the FA assisted hydrolysis of SO(3) to form H(2)SO(4) is effectively a barrierless process. The barrier heights for the isomerization of the SO(3)···H(2)O···FA prereactive collision complex, which is the rate limiting step in the FA assisted hydrolysis, are found to be respectively 0.59 and 0.08 kcal/mol at the B3LYP/6-311++G(3df,3pd) and MP2/6-311++G(3df,3pd) levels. This is substantially lower than the ~7 kcal/mol barrier for the corresponding step in the hydrolysis of SO(3) by two water molecules--which is currently the accepted mechanism for atmospheric sulfuric acid production. Simple kinetic analysis of the relative rates suggests that the reduction in barrier height facilitated by FA, combined with the greater stability of the prereactive SO(3)···H(2)O···FA collision complex compared to SO(3)···H(2)O···H(2)O and the rather plentiful atmospheric abundance of FA, makes the formic acid mediated hydrolysis reaction a potentially important pathway for atmospheric sulfuric acid production.

  14. Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment

    NASA Astrophysics Data System (ADS)

    Marković, Radmila; Stevanović, Jasmina; Avramović, Ljiljana; Nedeljković, Dragutin; Jugović, Branimir; Stajić-Trošić, Jasna; Gvozdenović, Milica

    2012-12-01

    The aim of this study is synthesis of copper-sulfate pentahydrate from the waste sulfuric acid solution-mother liquor generated during the regeneration process of copper bleed solution. Copper is removed from the mother liquor solution in the process of the electrolytic treatment using the insoluble lead anodes alloyed with 6 mass pct of antimony on the industrial-scale equipment. As the result of the decopperization process, copper is removed in the form of the cathode sludge and is precipitated at the bottom of the electrolytic cell. By this procedure, the content of copper could be reduced to the 20 mass pct of the initial value. Chemical characterization of the sludge has shown that it contains about 90 mass pct of copper. During the decopperization process, the very strong poison, arsine, can be formed, and the process is in that case terminated. The copper leaching degree of 82 mass pct is obtained using H2SO4 aqueous solution with the oxygen addition during the cathode sludge chemical treatment at 80 °C ± 5 °C. Obtained copper salt satisfies the requirements of the Serbian Standard for Pesticide, SRPS H.P1. 058. Therefore, the treatment of waste sulfuric acid solutions is of great economic and environmental interest.

  15. Inhibition of cold rolled steel corrosion by Tween-20 in sulfuric acid: weight loss, electrochemical and AFM approaches.

    PubMed

    Mu, Guannan; Li, Xianghong

    2005-09-01

    The inhibiting action of a nonionic surfactant of Tween-20 on the corrosion of cold rolled steel (CRS) in 0.5-7.0 M sulfuric acid (H(2)SO(4)) was studied by weight loss and potentiodynamic polarization methods. Atomic force microscope (AFM) provided the surface conditions. The results show that inhibition efficiency increases with the inhibitor concentration, while it decreases with the sulfuric acid concentration. The adsorption of inhibitor on the cold rolled steel surface obeys the Langmuir adsorption isotherm equation. Effect of immersion time was studied and discussed. The effect of temperature on the corrosion behavior of cold rolled steel was also studied at four temperatures ranging from 30 to 60 degrees C, the thermodynamic parameters such as adsorption heat, adsorption free energy, and adsorption entropy were calculated. The results revealed that the adsorption was physisorption mechanism. A kinetic study of cold rolled steel in uninhibited and inhibited acid was also discussed. The kinetic parameters such as apparent activation energy, pre-exponential factor, rate constant, and reaction constant were calculated for the reactions of corrosion. The inhibition effect is satisfactorily explained by both thermodynamic and kinetic models. Polarization curves show that Tween-20 is a cathodic-type inhibitor in sulfuric acid. The results obtained from weight loss and potentiodynamic polarization are in good agreement, and the Tween-20 inhibition action could also be evidenced by surface AFM images.

  16. Hydrolysis mechanisms for the organopalladium complex [Pd(CNN)P(OMe)3]BF4 in sulfuric acid.

    PubMed

    García, Begoña; Hoyuelos, Francisco J; Ibeas, Saturnino; Muñoz, María S; Peñacoba, Indalecio; Leal, José M

    2009-08-13

    The acid-catalyzed hydrolysis of the organopalladium complex [Pd(CNN)P(OMe)3]BF4 species was monitored spectrophotometrically at different sulfuric acid concentrations (3.9 and 11.0 M) in 10% v:v ethanol-water over the 25-45 degrees C temperature range and in 30% and 50% (v/v) ethanol-water at 25 degrees C. Two acidity regions (I and II) could be differentiated. In each of the two regions the kinetic data pairs yielded two different rate constants, k(1obs) and k(2obs), the former being faster. These constants were fitted by an Excess Acidity analysis to different hydrolyses mechanisms: A-1, A-2, and A-SE2. In region I ([H2SO4] < 7.0 M), the k(1obs) values remained constant k(1obs)(av) = 1.6 x 10(-3) s(-1) and the set of k(2obs) values nicely matched an A-SE2 mechanism, yielding a rate-determining constant k(0,ASE2) = 2.4 x 10(-7) M(-1) s(-1). In region II ([H2SO4] > 7.0 M), a switchover was observed from an A-1 mechanism (k(0,A1) = 1.3 x 10(-4) s(-1)) to an A-2 mechanism (k(0,A2) = 3.6 x 10(-3) M(-1) s(-1)). The temperature effect on the rate constants in 10% (v/v) ethanol-water yielded positive DeltaH and negative DeltaS values, except for the A-1 mechanism, where DeltaS adopted positive values throughout. The solvent permittivity effect, epsilonr, revealed that k(1obs)(av) and k(0,A2) dropped with a fall in epsilonr, whereas the k(0,ASE2) value remained unaffected. The set of results deduced is in line with the schemes put forward.

  17. Bioconversion of sawdust into ethanol using dilute sulfuric acid-assisted continuous twin screw-driven reactor pretreatment and fed-batch simultaneous saccharification and fermentation.

    PubMed

    Kim, Tae Hyun; Choi, Chang Ho; Oh, Kyeong Keun

    2013-02-01

    Ethanol production from poplar sawdust using sulfuric acid-assisted continuous twin screw-driven reactor (CTSR) pretreatment followed by simultaneous saccharification and fermentation (SSF) was investigated. Pretreatment with high acid concentration increased the cellulose content in the pretreated solid (74.9-76.9% in the range of 4.0-5.5wt.% H(2)SO(4)). The sugar content (XMG; xylan+mannan+galactan) in the treated-solid was 11.1-15.2% and 0.9-5.7% with 0.5wt.% and 7.0wt.%, respectively. The XMG recovery yield of the sample treated with 4.0wt.% H(2)SO(4) at 185°C was maximized at 88.6%. Enzymatic hydrolysis test showed a cellulose digestibility of 67.1%, 70.1%, and 73.6% with 15, 30, and 45FPU/g-cellulose, respectively. In the fed-batch SSF tests with initial enzyme addition, the ethanol yield of each stage almost reached a maximum at 28h, 48h, and 56h, respectively, with yields of 63.9% (16.5g/L), 78.4% (30.1g/L), and 81.7% (39.9g/L), respectively.

  18. Enhancement of photocatalytic reduction of CO2 to CH4 over TiO2 nanosheets by modifying with sulfuric acid

    NASA Astrophysics Data System (ADS)

    He, Zhiqiao; Tang, Juntao; Shen, Jie; Chen, Jianmeng; Song, Shuang

    2016-02-01

    TiO2 nanosheets modified with various concentrations of sulfuric acid have been synthesized through hydrothermal treatment at 240 °C followed by heat treatment at 105 °C. Compared with untreated TiO2 nanosheets, the H2SO4-modified samples exhibited markedly improved quantum yield (QY), energy returned on energy invested (EROEI), and turnover number (TON) for CO2 reduction to CH4 under visible-light irradiation. As supported by physical-chemical characterization, the enhanced photocatalytic activities can be attributed to acidification promoting the formation of hydroxyl groups (Brønsted acidic sites) and oxygen vacancies/Ti3+ species. Thus, efficient charge separation and transfer to the TiO2 surface for both CO2 reduction and the accompanying H2O oxidation is facilitated. The highest activity for CO2 photoreduction to CH4 was obtained with TiO2 nanosheets with 0.5 mol L-1 H2SO4, with QY, EROEI, and TON of 0.726‰, 0.335‰, and 83.124, respectively. Furthermore, the catalyst maintained stable performance throughout five successive recyclability test runs.

  19. Effects of H ₂SO₄ and O ₂ on Hg⁰ uptake capacity and reversibility of sulfur-impregnated activated carbon under dynamic conditions.

    PubMed

    Wei, Yuanyang; Yu, Danqing; Tong, Shitang; Jia, Charles Q

    2015-02-03

    Powder activated carbon (AC) injection is widely considered as the most viable technology for removing gaseous elemental mercury (Hg(0)) in flue gases of coal-fired power plants. However, sulfuric acid (H2SO4) can form on the external and internal surfaces of AC particles due to the presence of sulfur oxides, nitrogen oxides, oxygen, and moisture in flue gases. This work focuses on the effects of H2SO4 and O2 on the Hg(0) uptake capacity and reversibility of sulfur impregnated activated carbon (SIAC) under dynamic conditions. Experiments were conducted with 25 μg-Hg(0)/m(3) of nitrogen or air, using a semicontinuous flow fixed-bed reactor kept at 120 or 180 °C. H2SO4 had a profound hindering effect on Hg(0) uptake due to pore blockage. O2 significantly enhanced Hg(0) uptake and its reversibility, via the oxidation of Hg(0) which facilitated chemisorption and the subsequent physisorption onto chemically adsorbed Hg. Absorption of Hg in H2SO4 was unlikely a significant contributor, when Hg(0) concentrations were at levels of typical power plants (tens of ppb). The reversibility of and relative contributions of physisorption and chemisorption to Hg(0) uptake would change with Hg(0) concentrations in flue gases. These findings could be significant in developing a complete solution for Hg capture where the handling of spent sorbent materials and the possible secondary pollution need to be considered.

  20. Charles H. Winston and Confederate Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Reithmiller, Steven

    1995-07-01

    Sulfuric acid turned out to be one of the critical chemicals made in the South during the Civil War. It was necessary for the manufacture of mercury fulminate which was used in the production of percussion caps and sulfuric acid was used in the Daniells cell to produce electricity. Charles H. Winston, president of the Richmond Female Institute and later professor at the University of Richmond (VA) was instrumental in the establishment of a plant to manufacture sulfuric acid in Charlotte, North Carolina. His patent and method of manufacture plus the uses of sulfuric acid during the Civil War are discussed.

  1. Effects of inhalation of acidic compounds on pulmonary function in allergic adolescent subjects.

    PubMed Central

    Koenig, J Q; Covert, D S; Pierson, W E

    1989-01-01

    There is concern about the human health effects of inhalation of acid compounds found in urban air pollution. It was the purpose of this study to investigate three of these acid compounds, sulfur dioxide (SO2), sulfuric acid (H2SO4), and nitric acid (HNO3) in a group of allergic adolescent subjects. Subjects were exposed during rest and moderate exercise to 0.7 mumole/m3 (68 micrograms/m3) H2SO4, 4.0 mumole/m3 (0.1 ppm) SO2, or 2.0 mumole/m3 (0.05 ppm) HNO3. Pulmonary functions (FEV1, total respiratory resistance, and maximal flow) were measured before and after exposure. Preliminary analysis based on nine subjects indicates that exposure to 0.7 mumole/m3 H2SO4 alone and in combination with SO2 caused significant changes in pulmonary function, whereas exposure to air or SO2 alone did not. FEV1 decreased an average of 6% after exposure to H2SO4 alone and 4% when the aerosol was combined with SO2. The FEV1 decrease was 2% after both air and SO2 exposures. Total respiratory resistance (RT) increased 15% after the combined H2SO4 exposures, 12% after H2SO4 alone, and 7% after exposure to air. After exposures to HNO3 alone, FEV1 decreased by 4%, and RT increased by 23%. These results are preliminary; final conclusions must wait for completion of the study. PMID:2539990

  2. Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor: investigation of yields, kinetics, and enzymatic digestibilities of solids.

    PubMed

    Schell, Daniel J; Farmer, Jody; Newman, Millie; McMillan, James D

    2003-01-01

    Corn stover is a domestic feedstock that has potential to produce significant quantities of fuel ethanol and other bioenergy and biobased products. However, comprehensive yield and carbon mass balance information and validated kinetic models for dilute-sulfuric acid (H2SO4) pretreatment of corn stover have not been available. This has hindered the estimation of process economics and also limited the ability to perform technoeconomic modeling to guide research. To better characterize pretreatment and assess its kinetics, we pretreated corn stover in a continuous 1 t/d reactor. Corn stover was pretreated at 20% (w/w) solids concentration over a range of conditions encompassing residence times of 3-12 min, temperatures of 165- 195 degrees C, and H2SO4 concentrations of 0.5-1.4% (w/w). Xylan conversion yield and carbon mass balance data were collected at each run condition. Performance results were used to estimate kinetic model parameters assuming biphasic hemicellulose hydrolysis and a hydrolysis mechanism incorporating formation of intermediate xylo-oligomers. In addition, some of the pretreated solids were tested in a simultaneous saccharification and fermentation (SSF) process to measure the reactivity of their cellulose component to enzymatic digestion by cellulase enzymes. Monomeric xylose yields of 69-71% and total xylose yields (monomers and oligomers) of 70-77% were achieved with performance level depending on pretreatment severity. Cellulose conversion yields in SSF of 80-87% were obtained for some of the most digestible pretreated solids.

  3. Sulfuric Acid and Water: Paradoxes of Dilution

    ERIC Educational Resources Information Center

    Leenson, I. A.

    2004-01-01

    On equilibrium properties of aqueous solutions of sulfuric acid, Julius Thomsen has marked that the heat evolved on diluting liquid sulfuric acid with water is a continuous function of the water used, and excluded absolutely the acceptance of definite hydrates as existing in the solution. Information about thermochemical measurement, a discussion…

  4. Nickel recovery from spent Raneynickel catalyst through dilute sulfuric acid leaching and soda ash precipitation.

    PubMed

    Lee, Jin Young; Rao, S Venkateswara; Kumar, B Nagaphani; Kang, Dong Jun; Reddy, B Ramachandra

    2010-04-15

    Pharmaceutical industry makes extensive use of Raneynickel catalyst for various organic drug intermediates/end products. Spent catalysts contain environmentally critical and economically valuable metals. In the present study, a simple hydrometallurgical process using dilute sulfuric acid leaching was described for the recovery of nickel from spent Raneynickel catalyst. Recovery of nickel varied with acid concentration and time, whereas temperature had negligible effect. Increase of S/L ratio to 30% (w/v) showed marginal effect on nickel (90%) recovery, whereas Al recovery decreased drastically to approximately 20%. Under the optimum conditions of leaching viz: 12 vol.% H(2)SO(4), 30 degrees C, 20% solid to liquid (S/L) ratio and 120 min reaction time, it was possible to recover 98.6% Ni along with 39.2% Al. Leach liquor [pH 0.7] containing 85.0 g/L Ni and 3.25 g/L Al was adjusted to pH 5.4 with 30 wt.% alkali for quantitative aluminum removal. Nickel loss was about 2% during this Al removal step. Nickel from the purified leach liquor was recovered as nickel carbonate by adding required amount of Na(2)CO(3). The purity of NiCO(3) product was found to be 100% with a Ni content of 48.6%. Na(2)SO(4) was recovered as a by-product with a purity of 99%. Complete process is presented.

  5. Optimization and kinetic analysis on the sulfuric acid - Catalyzed depolymerization of wheat straw.

    PubMed

    Wu, Qian-Qian; Ma, Yu-Long; Chang, Xuan; Sun, Yong-Gang

    2015-09-20

    The objectives of this work were to optimize the experimental condition and to study the kinetic behavior of wheat straw depolymerization with sulfuric acid (2 wt%, 3 wt%, and 4 wt%) at different temperatures (120°C, 130°C, and 140°C). The two-fraction kinetic model was obtained for the prediction of the generations of product and by-product during depolymerization. The kinetic parameters of the two-fraction model were analyzed using an Arrhenius-type equation. Applying the kinetic two-fraction model, the optimum condition for wheat straw depolymerization was 3 wt% H2SO4 at 130°C for 75 min, which yielded a high concentration of fermentable sugars (xylose 8.934 g/L, glucose 1.363 g/L, and arabinose 1.203 g/L) and low concentrations of microbial inhibitors (furfural 0.526 g/L and acetic acid 1.192 g/L). These results suggest that the model obtained in this study can satisfactorily describe the formation of degradation products and the depolymerization mechanism of wheat straw.

  6. Sulfuric Acid Regeneration Waste Disposal Technology.

    DTIC Science & Technology

    1986-11-01

    46 2 4 H2 3 4 4 2 Phosphate Sulfuric Water Phosphoric Hydro- Phosphogypsum Rock Acid Acid fluoric Acid For our purposes the process could be viewed as...one where sulfuric acid is neutralized using phosphate rock rather than lime. Although the resulting calcium sulfate (referred to as phosphogypsum ...spearhead research in this country on uses for waste gypsum or phosphogypsum . They have published a recent review of historic and current work on

  7. Preparation and characterization of microporous layers on titanium by anodization in sulfuric acid with and without hydrogen charging.

    PubMed

    Tanaka, Shin-ichi; Fukushima, Yuriko; Nakamura, Isao; Tanaki, Toshiyuki; Jerkiewicz, Gregory

    2013-04-24

    The formation of microporous oxide layers on titanium (Ti) by anodization in sulfuric acid (H2SO4) solution and the influence of prior hydrogen charging on their properties are examined using electrochemical techniques, scanning electron microscopy, grazing incident X-ray diffraction, and X-ray photoelectron spectroscopy. When Ti is anodized in 1 M aqueous H2SO4 solution at a high direct current (DC) potential (>150 V) for 1 min, a porous surface layer develops, and the process takes place with spark-discharge. Under these conditions, oxygen evolution at the Ti electrode proceeds vigorously and concurrently with the formation of anodic oxide. The oxygen gas layer adjacent to the Ti surface acts as an insulator and triggers spark-discharge; the latter stimulates the development of pores. In the absence of spark-discharge, the oxide layer has extended surface roughness but low porosity. A porous oxide layer can be prepared by applying a lower DC voltage (130 V) and without spark-discharge, but Ti requires prior hydrogen charging by cathodic polarization in 1 M aqueous H2SO4 solution. Mott-Schottky measurements indicate that the oxide layers are n-type semiconductors and that the charge carrier density in the anodic oxide layer on the hydrogen-charged Ti is lower than in the case of untreated Ti. The hydrogen charging also affects the flat band potential of the anodic oxide layers on Ti by increasing its value. The reduced charge carrier density brought about by hydrogen charging decreases the oxide layer conductivity and creates favorable conditions for its electrical breakdown that stimulates the development of pores. The porous layer on the hydrogen-charged Ti consists of anatase and rutile phases of TiO2; it has the same chemical composition as the porous layer obtained on untreated Ti. X-ray photoelectron spectroscopy measurements show that prior hydrogen charging does not affect the thickness of anodic oxides on Ti. The porous oxide layer on Ti enables the

  8. Are the clouds of Venus sulfuric acid.

    NASA Technical Reports Server (NTRS)

    Young, A. T.

    1973-01-01

    It is shown that strong aqueous sulfuric acid solutions have the right refractive index and freeze at Venusian cloud temperature, explain the dryness of the Venusian stratosphere, are consistent with some features of the Venusian IR spectrum, and do not absorb in highly reflecting areas of Venus. It is also indicated that such solutions should be produced by reactions between known atmospheric constituents and most sulfur-bearing rock at the Venusian surface temperature, and require only small amounts of sulfur consistent with its cosmic abundance and with the amounts of other volatile elements present in the atmosphere. It is believed therefore that the clouds of Venus consist of sulfuric acid solutions.

  9. Microwave Remote Sensing of the Temperature and Distribution of Sulfur Compounds in the Lower Atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Kolodner, Marc A.; Butler, Bryan J.; Suleiman, Shady H.; Steffes, Paul G.

    2002-08-01

    A multi-wavelength radio frequency observation of Venus was performed on April 5, 1996, with the Very Large Array to investigate potential variations in the vertical and horizontal distribution of temperature and the sulfur compounds sulfur dioxide (SO 2) and sulfuric acid vapor (H 2SO 4(g)) in the atmosphere of the planet. Brightness temperature maps were produced which feature significantly darkened polar regions compared to the brighter low-latitude regions at both observed frequencies. This is the first time such polar features have been seen unambiguously in radio wavelength observations of Venus. The limb-darkening displayed in the maps helps to constrain the vertical profile of H 2SO 4(g), temperature, and to some degree SO 2. The maps were interpreted by applying a retrieval algorithm to produce vertical profiles of temperature and abundance of H 2SO 4(g) given an assumed sub-cloud abundance of SO 2. The results indicate a substantially higher abundance of H 2SO 4(g) at high latitudes (above 45°) than in the low-latitude regions. The retrieved temperature profiles are up to 25 K warmer than the profile obtained by the Pioneer Venus sounder probe at altitudes below 40 km (depending on location and assumed SO 2 abundance). For 150 ppm of SO 2, it is more consistent with the temperature profile obtained by Mariner 5, extrapolated to the surface via a dry adiabat. The profiles obtained for H 2SO 4(g) at high latitudes are consistent with those derived from the Magellan radio occultation experiments, peaking at around 8 ppm at an altitude of 46 km and decaying rapidly away from that altitude. At low latitudes, no significant H 2SO 4(g) is observed, regardless of the assumed SO 2 content. This is well below that measured by Mariner 10 (Lipa and Tyler 1979, Icarus39, 192-208), which peaked at ˜14 ppm near 47 km. Our results favor ≤100 ppm of SO 2 at low latitudes and ≤50 ppm in polar regions. The low-latitude value is statistically consistent with the

  10. Recovery of water and acid from leach solutions using direct contact membrane distillation.

    PubMed

    Kesieme, Uchenna K; Milne, Nicholas; Cheng, Chu Yong; Aral, Hal; Duke, Mikel

    2014-01-01

    This paper describes for the first time the use of direct contact membrane distillation (DCMD) for acid and water recovery from a real leach solution generated by a hydrometallurgical plant. The leach solutions considered contained H2SO4 or HCl. In all tests the temperature of the feed solution was kept at 60 °C. The test work showed that fluxes were within the range of 18-33 kg/m(2)/h and 15-35 kg/m(2)/h for the H2SO4 and HCl systems, respectively. In the H2SO4 leach system, the final concentration of free acid in the sample solution increased on the concentrate side of the DCMD system from 1.04 M up to 4.60 M. The sulfate separation efficiency was over 99.9% and overall water recovery exceeded 80%. In the HCl leach system, HCl vapour passed through the membrane from the feed side to the permeate. The concentration of HCl captured in the permeate was about 1.10 M leaving behind only 0.41 M in the feed from the initial concentration of 2.13 M. In all the experiments, salt rejection was >99.9%. DCMD is clearly viable for high recovery of high quality water and concentrated H2SO4 from spent sulfuric acid leach solution where solvent extraction could then be applied to recover the sulfuric acid and metals. While HCl can be recovered for reuse using only DCMD.

  11. Chemical weathering and the role of sulfuric and nitric acids in carbonate weathering: Isotopes (13C, 15N, 34S, and 18O) and chemical constraints

    NASA Astrophysics Data System (ADS)

    Li, Cai; Ji, Hongbing

    2016-05-01

    Multiple isotopes (13C-DIC, 34S and 18O-SO42-, 15N and 18O-NO3-) and water chemistry were used to evaluate weathering rates and associated CO2 consumption by carbonic acid and strong acids (H2SO4 and HNO3) in a typical karst watershed (Wujiang River, Southwest China). The dual sulfate isotopes indicate that sulfate is mainly derived from sulfide oxidation in coal stratum and sulfide-containing minerals, and dual nitrate isotopes indicate that nitrate is mainly derived from soil N and nitrification. The correlation between isotopic compositions and water chemistry suggests that sulfuric and nitric acids, in addition to carbonic acid, are involved in carbonate weathering. The silicate and carbonate weathering rates are 7.2 t km-2 yr-1 and 76 t km-2 yr-1, respectively. In comparison with carbonate weathering rates (43 t km-2 yr-1) by carbonic acid alone, the subsequent increase in rates indicates significant enhancement of weathering when combined with sulfuric and nitric acids. Therefore, the role of sulfuric and nitric acids in the rock weathering should be considered in the global carbon cycle.

  12. Structure and energetics of nanometer size clusters of sulfuric acid with ammonia and dimethylamine.

    PubMed

    DePalma, Joseph W; Bzdek, Bryan R; Doren, Douglas J; Johnston, Murray V

    2012-01-26

    The structures of positively and negatively charged clusters of sulfuric acid with ammonia and/or dimethylamine ((CH(3))(2)NH or DMA) are investigated using a combination of Monte Carlo configuration sampling, semiempirical calculations, and density functional theory (DFT) calculations. Positively charged clusters of the formula [(NH(4)(+))(x)(HSO(4)(-))(y)](+), where x = y + 1, are studied for 1 ≤ y ≤ 10. These clusters exhibit strong cation-anion interactions, with no contribution to the hydrogen-bonding network from the bisulfate ion protons. A similar hydrogen-bonding network is found for the [(DMAH(+))(5)(HSO(4)(-))(4)](-) cluster. Negatively charged clusters derived from the reaction of DMA with [(H(2)SO(4))(3)(NH(4)(+))(HSO(4)(-))(2)](-) are also studied, up to the fully reacted cluster [(DMAH(+))(4)(HSO(4)(-))(5)](-). These clusters exhibit anion-anion and ion-molecule interactions in addition to cation-anion interactions. While the hydrogen-bonding network is extensive for both positively and negatively charged clusters, the binding energies of ions and molecules in these clusters are determined mostly by electrostatic interactions. The thermodynamics of amine substitution is explored and compared to experimental thermodynamic and kinetic data. Ammonia binds more strongly than DMA to sulfuric acid due to its greater participation in hydrogen bonding and its ability to form a more compact structure that increases electrostatic attraction between oppositely charged ions. However, the greater gas-phase basicity of DMA is sufficient to overcome the stronger binding of ammonia, making substitution of DMA for ammonia thermodynamically favorable. For small clusters of both polarities, substitutions of surface ammonium ions are facile. As the cluster size increases, an ammonium ion becomes encapsulated in the center of the cluster, making it inaccessible to substitution.

  13. Recovery of manganese and zinc from spent Zn-C cell powder: Experimental design of leaching by sulfuric acid solution containing glucose.

    PubMed

    Biswas, Ranjit K; Karmakar, Aneek K; Kumar, Sree L

    2016-05-01

    The spent Zn-C cell powder, containing ZnMn2O4, ZnO, MnO(OH) and possibly Mn2O3 and Mn3O4, can be leached by a sulfuric acid solution mixed with some glucose. The leaching is found to be dependent on solid to liquid (S/L) ratio, amount of glucose, concentration of sulfuric acid solution, time and pulp agitation speed. For 5g powder (S), 1h leaching time and 300rpm pulp agitation speed, two-level four-factor (2(4)) experimental designs have been carried out to derive models for extraction of both Mn(II) and Zn(II). Amount of glucose (G, g), concentration of H2SO4 solution (C, mol/L), volume of H2SO4 solution as leachant (L, mL) and leaching temperature (T, °C) are considered as factors (variables). The model in both cases consists of mean, factor effects and interaction effects. The four-factor interaction effect is observed in neither of the cases. Some two-factor and three-factor effects are found to have produced positive or negative contributions to dissolution percentage in both cases. The models are examined for comparison with experimental results with good fits and also used for optimization of factors. At optimized condition (G=0.50g, C=2mol/L, L=250mL and T=100°C), an aliquot of 5g powder in 1h and at 300rpm produces a solution containing (7.08±0.10)g/L Mn(II) and (2.20±0.06)g/L Zn(II) corresponding to almost 100% extraction of both metal ions.

  14. 46 CFR 151.50-21 - Sulfuric acid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Sulfuric acid. 151.50-21 Section 151.50-21 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-21 Sulfuric acid. (a) How sulfuric acid may be carried. (1) Sulfuric acid of concentration of 77.5 percent (1.7019 specific gravity)...

  15. 46 CFR 151.50-21 - Sulfuric acid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Sulfuric acid. 151.50-21 Section 151.50-21 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-21 Sulfuric acid. (a) How sulfuric acid may be carried. (1) Sulfuric acid of concentration of 77.5 percent (1.7019 specific gravity)...

  16. 46 CFR 151.50-21 - Sulfuric acid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Sulfuric acid. 151.50-21 Section 151.50-21 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-21 Sulfuric acid. (a) How sulfuric acid may be carried. (1) Sulfuric acid of concentration of 77.5 percent (1.7019 specific gravity)...

  17. 46 CFR 151.50-21 - Sulfuric acid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Sulfuric acid. 151.50-21 Section 151.50-21 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-21 Sulfuric acid. (a) How sulfuric acid may be carried. (1) Sulfuric acid of concentration of 77.5 percent (1.7019 specific gravity)...

  18. 46 CFR 151.50-21 - Sulfuric acid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfuric acid. 151.50-21 Section 151.50-21 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-21 Sulfuric acid. (a) How sulfuric acid may be carried. (1) Sulfuric acid of concentration of 77.5 percent (1.7019 specific gravity)...

  19. Modification of the surface chemistry of single- and multi-walled carbon nanotubes by HNO3 and H2SO4 hydrothermal oxidation for application in direct contact membrane distillation.

    PubMed

    Morales-Torres, Sergio; Silva, Tânia L S; Pastrana-Martínez, Luisa M; Brandão, Ana T S C; Figueiredo, José L; Silva, Adrián M T

    2014-06-28

    A specific methodology based on nitric acid hydrothermal oxidation was used to control the surface chemistry of multi-walled (MWCNTs) and single-walled (SWCNTs) carbon nanotubes (CNTs) with different lengths, and this methodology was adapted to the use of sulphuric acid containing ammonium persulfate as an oxidizing agent. The amount of oxygen-containing surface groups depends on the number and length of the graphene layers of the CNTs, thicker and shorter CNTs having more reactive sites for surface functionalization. In particular, the oxidation of MWCNTs was more pronounced than that of short SWCNTs and less surface groups were introduced into long SWCNTs, regardless of the acid used at any fixed concentration. It was also possible to tailor the surface chemistry of both SWCNTs and MWCNTs by using the adopted methodologies, and the amount of both oxygen- and sulphur-containing functional groups was correlated with the concentration of each oxidizing agent used. Mathematical functions that allow precise control of the amount and type of the surface groups introduced into carbon nanotubes were obtained. Buckypapers were also prepared over a polytetrafluoroethylene commercial membrane. These membranes were tested in direct contact membrane distillation and, under salinity conditions, the membrane prepared using oxidized MWCNTs (instead of SWCNTs) was the most efficient, the permeate flux of the commercial membrane significantly increasing in the presence of these CNTs, while completely rejecting chloride ions. In addition, the permeate flux was precisely correlated with the amount of oxygenated functional surface groups (as well as with the pH of point of zero charge) of the oxidized MWCNTs.

  20. Methane activation and oxidation in sulfuric acid.

    PubMed

    Goeppert, Alain; Dinér, Peter; Ahlberg, Per; Sommer, Jean

    2002-07-15

    The H/D exchange observed when methane is contacted with D(2)SO(4) at 270-330 degrees C shows that the alkane behaves as a sigma base and undergoes rapid and reversible protonation at this temperature. DFT studies of the hydrogen exchange between a monomer and a dimer of sulfuric acid and methane show that the transition states involved in the exchange are bifunctional, that is one hydrogen atom is transferred from a hydroxy group in sulfuric acid to methane, while one hydrogen atom is abstracted from methane by a non-hydroxy oxygen atom in sulfuric acid. All the transition states include a CH(5) moiety, which shows similarities to the methanium ion CH(5) (+). The calculated potential activation energy of the hydrogen exchange for the monomer is 174 kJ mol(-1), which is close to the experimental value (176 kJ mol(-1)). Solvation of the monomer and the transition state of the monomer with an extra sulfuric acid molecule, decrease the potential activation energy by 6 kJ mol(-1). The acid-base process is in competition, however, with an oxidative process involving methane and sulfuric acid which leads to CO(2), SO(2), and water, and thus to a decrease of acidity and loss of reactivity of the medium.

  1. Sulfuric acid in the Venus clouds.

    NASA Technical Reports Server (NTRS)

    Sill, G. T.

    1972-01-01

    The extremely dry nature of the Venus upper atmosphere appears to demand the presence of an efficient desiccating agent as the chief constituent of the clouds of Venus. On the basis of polarization measures it is to be expected that this substance is present as spherical droplets, 1 to 2 microns in diameter, with a refractive index n of 1.46 plus or minus 0.02 at 3500A in the observed region of the atmosphere, with T about equal to 235 K. This substance must have ultraviolet, visible, and infrared reflection properties not inconsistent with the observed spectrum of Venus. Sulfuric acid, of about 86% by weight composition, roughly fulfills the first of these properties. The visible and ultraviolet transmission features of a thin layer of elemental bromine and hydrobromic acid dissolved in sulfuric acid somewhat resemble the Venus spectrum, up to 14 microns. The chemical process postulated for forming sulfuric acid involves the oxidation of sulfur and its compounds to sulfuric acid through the agency of elemental bromine produced by the photolytic decomposition of hydrogen bromide.

  2. Rayleigh light scattering properties of atmospheric molecular clusters consisting of sulfuric acid and bases.

    PubMed

    Elm, Jonas; Norman, Patrick; Mikkelsen, Kurt V

    2015-06-28

    The Rayleigh light scattering properties of (H2SO4)a(NH3)b and (H2SO4)a((CH3)2NH)b atmospheric molecular clusters have been investigated using a response theory approach. Using density functional theory the molecular structures and stepwise formation free energies of clusters with a and b up to 4 have been re-investigated. The Rayleigh scattering intensities are calculated from the dipole polarizability tensor α using the CAM-B3LYP functional by applying linear response methods. The intrinsic scattering properties of (H2SO4)a(NH3)b and (H2SO4)a((CH3)2NH)b indicate that amine containing clusters scatter light significantly more efficiently then their ammonia containing counterparts. Using the Atmospheric Cluster Dynamics Code (ACDC) the steady state cluster concentrations are estimated and the effective scattering is calculated. The effective scattering is shown to be highly dependent on the estimated concentrations and indicates that there exist competitive pathways, such as nucleation and coagulation, which influence the cluster distributions. The frequency dependence of the scattering is found to depend on the cluster composition and show increased responses when clusters contain more bases than acid molecules. Based on structures obtained using semi-empirical molecular dynamics simulations the Rayleigh scattering properties of clusters with up to 20 acid-base pairs are evaluated. This study represents the first step towards gaining a fundamental understanding of the scattering properties of small atmospheric clusters in the ambient atmosphere.

  3. Missing SO2 oxidant in the coastal atmosphere? - Evidence from high resolution measurements of OH and atmospheric sulfur compounds

    NASA Astrophysics Data System (ADS)

    Berresheim, H.; Adam, M.; Monahan, C.; O'Dowd, C.; Plane, J. M. C.; Bohn, B.; Rohrer, F.

    2014-01-01

    Diurnal and seasonal variations of gaseous sulfuric acid (H2SO4) and methane sulfonic acid (MSA) were measured in N.E. Atlantic air at the Mace Head atmospheric research station during the years 2010 and 2011. The measurements utilized selected ion/chemical ionization mass spectrometry (SI/CIMS) with a detection limit for both compounds of 4.3 × 10 4 cm-3 at 5 min signal integration. The H2SO4 and MSA gas-phase concentrations were analysed in conjunction with the condensational sink for both compounds derived from 3 nm-10 μm (diameter) aerosol size distributions. Accommodation coefficients of 1.0 for H2SO4 and 0.12 for MSA were assumed leading to estimated atmospheric lifetimes of the order of 7 min and 25 min, respectively. With the SI/CIMS instrument in OH measurement mode alternating between OH signal and background (non-OH) signal evidence was obtained for the presence of one or more unknown oxidants of SO2 in addition to OH. Depending on the nature of the oxidant(s) their ambient concentration may be enhanced in the CIMS inlet system by additional production. The apparent unknown SO2 oxidant was additionally confirmed by direct measurements of SO2 in conjunction with calculated H2SO4 concentrations. The calculated concentrations were consistently lower than the measured concentrations by a factor 4.8 ± 3.4 when considering the oxidation of SO2 by OH as the only source of H2SO4. Both the OH and the background signal were also observed to increase significantly during daytime aerosol nucleation events, independent of the ozone photolysis frequency, J(O1D), and were followed by peaks in both H2SO4 and MSA concentrations. This suggests a strong relation between the unknown oxidant(s), OH chemistry, and the atmospheric photo-oxidation of biogenic iodine compounds. As to the identity of the oxidant(s), we have been able to exclude ClO, BrO, IO, and OIO as possible candidates based on ab initio calculations. Stabilized Criegee intermediates (sCI) produced from

  4. Formaldehyde instrument development and boundary layer sulfuric acid: Implications for photochemistry

    NASA Astrophysics Data System (ADS)

    Case Hanks, Anne Theresa

    This work presents the development of a laser-induced fluorescence technique to measure atmospheric formaldehyde. In conjunction with the technique, the design of a compact, narrow linewidth, etalon-tuned titanium: sapphire laser cavity which is pumped by the second harmonic of a kilohertz Nd:YAG laser is also presented. The fundamental tunable range is from 690-1100 nm depending on mirror reflectivities and optics kit used. The conversion efficiency is at least 25% for the fundamental, and 2-3% for intracavity frequency doubling from 3.5-4W 532 nm pump power. The linewidth is <0.1 cm-1, and the pulsewidth is 18 nsec. Applications of this cavity include the measurement of trace gas species by laser-induced fluorescence, cavity ringdown spectroscopy, and micropulse lidar in the UV-visible region. Also presented are observations of gas-phase sulfuric acid from the NEAQS-ITCT 2K4 (New England Air Quality Study--- Intercontinental Transport and Chemical Transformation) field campaign in July and August 2004. Sulfuric acid values are reported for a polluted environment and possible nucleation events as well as particle growth within the boundary layer are explored. Sulfate production rates via gas phase oxidation of sulfur dioxide are also reported. This analysis allows an important test of our ability to predict sulfuric acid concentration and probe its use as a fast time response photochemical tracer for the hydroxyl radical, OH. In comparison, the NASA time-dependent photochemical box model is used to calculate OH concentration. Nighttime H2SO4 values are examined to test our understanding of nocturnal OH levels and oxidation processes. In comparison, sulfuric acid from a large ground based mission in Tecamac, Mexico (near the northern boundary of Mexico City) during MIRAGE-Mex field campaign (March 2006) is presented. This and other measurements are used to characterize atmospheric oxidation and predict sulfuric acid and OH concentrations at the site. The

  5. Surface modification of PDMS microfluidic devices by controlled sulfuric acid treatment and the application in chip electrophoresis.

    PubMed

    Gitlin, Leonid; Schulze, Philipp; Ohla, Stefan; Bongard, Hans-Josef; Belder, Detlev

    2015-02-01

    Herein, we present a straightforward surface modification technique for PDMS-based microfluidic devices. The method takes advantage of the high reactivity of concentrated sulfuric acid to enhance the surface properties of PDMS bulk material. This results in alteration of the surface morphology and chemical composition that is in-depth characterized by ATR-FTIR, EDX, SEM, and XPS. In comparison to untreated PDMS, modified substrates exhibit a significantly reduced diffusive uptake of small organic molecules while retaining its low electroosmotic properties. This was demonstrated by exposing the channels of a microfluidic device to concentrated rhodamine B solution followed by fluorescence microscopy. The surface modification procedure was used to improve chip-based electrophoretic separations. Separation efficiencies of FITC-labeled amines/amino acids obtained in treated and untreated PDMS-devices as well as in glass chips were compared. We obtained higher efficiencies in H2 SO4 treated PDMS chips compared to untreated ones but lower efficiencies than those obtained in commercial microfluidic glass devices.

  6. Sulfur

    USGS Publications Warehouse

    Apodaca, L.E.

    2012-01-01

    In 2011, elemental sulfur and the byproduct sulfuric acid were produced at 109 operations in 29 states and the U.S. Virgin Islands. Total shipments were valued at about $1.6 billion. Elemental sulfur production was 8.2 Mt (9 million st); Louisiana and Texas accounted for about 53 percent of domestic production.

  7. Intestinal metabolism of sulfur amino acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gastrointestinal tract (GIT) is a metabolically significant site of sulfur amino acid (SAA) metabolism in the body and metabolizes approx. 20% of the dietary methionine intake that is mainly transmethylated to homocysteine and transsulfurated to cysteine. The GIT accounts for approx. 25% of the ...

  8. Charles H. Winston and Confederate Sulfuric Acid.

    ERIC Educational Resources Information Center

    Riethmiller, Steven

    1995-01-01

    Describes the invention and use of a sulfuric acid chamber by Charles Henry Winston during the Civil War. This invention helped supply munitions for the South. Winston, who was President of the Richmond Female Institute in Virginia, constructed the chamber at his farm and was granted a patent by the Confederate Patent Office in 1863. (PVD)

  9. Sulfuric acid thermoelectrochemical system and method

    DOEpatents

    Ludwig, Frank A.

    1989-01-01

    A thermoelectrochemical system in which an electrical current is generated between a cathode immersed in a concentrated sulfuric acid solution and an anode immersed in an aqueous buffer solution of sodium bisulfate and sodium sulfate. Reactants consumed at the electrodes during the electrochemical reaction are thermochemically regenerated and recycled to the electrodes to provide continuous operation of the system.

  10. Heterogeneous Interaction of Peroxyacetyl Nitrate on Liquid Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Zhang, Renyi; Leu, Ming-Taun

    1996-01-01

    The uptake of peroxyacetyl nitrate (PAN) on liquid sulfuric acid surfaces has been investigated using a fast-flow reactor coupled to a chemical ionization mass spectrometer. PAN was observed to be reversibly adsorbed on sulfuric acid.

  11. Densities and apparent molar volumes of atmospherically important electrolyte solutions. 1. The solutes H2SO4, HNO3, HCl, Na2SO4, NaNO3, NaCl, (NH4)2SO4, NH4NO3, and NH4Cl from 0 to 50 °C, including extrapolations to very low temperature and to the pure liquid state, and NaHSO4, NaOH, and NH3 at 25 °C.

    PubMed

    Clegg, S L; Wexler, A S

    2011-04-21

    ) model has been used to calculate apparent molar volumes of H(2)SO(4) in 0-3 mol kg(-1) aqueous solutions of the pure acid and to represent directly the effect of the HSO(4)(-) ↔ H(+) + SO(4)(2-) reaction. The results are incorporated into the treatment of aqueous H(2)SO(4) density described here. Densities and apparent molar volumes from -20 to 50 °C, and from 0 to 100 wt % of solute, are tabulated for the electrolytes listed in the title and have also been incorporated into the extended aerosol inorganics model (E-AIM, http://www.aim.env.uea.ac.uk/aim/aim.php) together with densities of the solid salts and hydrates.

  12. Boric/sulfuric acid anodize - Alternative to chromic acid anodize

    NASA Astrophysics Data System (ADS)

    Koop, Rodney; Moji, Yukimori

    1992-04-01

    The suitability of boric acid/sulfuric acid anodizing (BSAA) solution as a more environmentally acceptable replacement of the chromic acid anodizing (CAA) solution was investigated. Results include data on the BSAA process optimization, the corrosion protection performance, and the compatibility with aircraft finishing. It is shown that the BSSA implementation as a substitude for CAA was successful.

  13. Sulfur Oxidation and Contrail Precursor Chemistry

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Hwang, Soon M.

    2005-01-01

    Sulfuric acid (H2SO4), formed in commercial aircraft operations via Fuel-S (right arrow) SO2 + SO3 (right arrow) H2SO4, plays an important role in affecting the global climate change through atmospheric chemical reactions and radiative forcing. Measurement of the sulfur oxidation rates is critical to the understanding of the contrail formation. The principle reaction pathway is SO2 + O + M (right arrow) SO3 + M. Although there are many measurements for the rates of this reaction, it has never been measured in the temperature and pressure regime available to aircraft operation. In this investigation, a series of experiments were performed behind the reflected shock waves in a shock tube. OH radicals were produced in lean, shock heated SO2/H2/O2/Ar mixtures. The reaction progress was followed using OH absorption spectroscopy at 310 nm. The data were analyzed with the aid of computer modeling/simulation. The mean value of the rate coefficients of R21 determined is k(sub 21,0)/[M]= 3.9 x 10(exp 15) cm(sup 6) per square mole per second at T = 960 - 1150 K and rho = 16-30 micromole per cubic centimeter with uncertainty limits of plus or minus 30%. A non-Arrhenius fit to our data together with all existing data gives k(sub 21,0)/[M] = 1.3 x 10(exp 24) T (exp -2.5) exp(-2350 K/T) cm(sup 6) per square mole per second at T = 300 - 2500 K with the same uncertainty limits given above. The calculated conversion of S(IV)(SO2) to S(VI) (SO3 + H2SO4) was about 2% in our experimental conditions.

  14. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters

    USGS Publications Warehouse

    Kirk, Nordstrom D.; Blaine, McCleskey R.; Ball, J.W.

    2009-01-01

    Many waters sampled in Yellowstone National Park, both high-temperature (30-94 ??C) and low-temperature (0-30 ??C), are acid-sulfate type with pH values of 1-5. Sulfuric acid is the dominant component, especially as pH values decrease below 3, and it forms from the oxidation of elemental S whose origin is H2S in hot gases derived from boiling of hydrothermal waters at depth. Four determinations of pH were obtained: (1) field pH at field temperature, (2) laboratory pH at laboratory temperature, (3) pH based on acidity titration, and (4) pH based on charge imbalance (at both laboratory and field temperatures). Laboratory pH, charge imbalance pH (at laboratory temperature), and acidity pH were in close agreement for pH ??10%, a selection process was used to compare acidity, laboratory, and charge balance pH to arrive at the best estimate. Differences between laboratory and field pH can be explained based on Fe oxidation, H2S or S2O3 oxidation, CO2 degassing, and the temperature-dependence of pK2 for H2SO4. Charge imbalances are shown to be dependent on a speciation model for pH values 350 mg/L Cl) decrease as the Cl- concentration increases from boiling which appears inconsistent with the hypothesis of H2S oxidation as a source of hydrothermal SO4. This trend is consistent with the alternate hypothesis of anhydrite solubility equilibrium. Acid-sulfate water analyses are occasionally high in As, Hg, and NH3 concentrations but in contrast to acid mine waters they are low to below detection in Cu, Zn, Cd, and Pb concentrations. Even concentrations of SO4, Fe, and Al are much lower in thermal waters than acid mine waters of the same pH. This difference in water chemistry may explain why certain species of fly larvae live comfortably in Yellowstone's acid waters but have not been observed in acid rock drainage of the same pH.

  15. A new facile route for synthesizing of graphene oxide using mixture of sulfuric-nitric-phosphoric acids as intercalating agent

    NASA Astrophysics Data System (ADS)

    Panwar, Vinay; Chattree, Ananya; Pal, Kaushik

    2015-09-01

    In this work, graphene oxide (GO) has been prepared through three different processes namely, eco-friendly Hummers method, modification in improved Hummers method and a new approach. This new approach has been designed by changing some processing parameters and intercalating agent for significant reduction in processing time and to improve the quantity of GO in comparison to the other two methods. This has been achieved through better oxidization of graphite using nitric-sulfuric acid (HNO3-H2SO4) as intercalating agent. X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, Atomic Force Microscopy (AFM), X-ray photoelectron spectroscopy (XPS), UV-visible spectroscopy, and Thermogravimetric analysis (TGA) are used to characterize the GO prepared through different processes. These characterizations have confirmed an improved exfoliation of graphite, using addition of HNO3 in intercalating agent, in a short processing time and bring on higher yield of GO via this new process.

  16. A comparison of chromic acid and sulfuric acid anodizing

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1992-01-01

    Because of federal and state mandates restricting the use of hexavalent chromium, it was deemed worthwhile to compare the corrosion protection afforded 2219-T87 aluminum alloy by both Type I chromic acid and Type II sulfuric acid anodizing per MIL-A-8625. Corrosion measurements were made on large, flat 2219-T87 aluminum alloy sheet material with an area of 1 cm(exp 2) exposed to a corrosive medium of 3.5-percent sodium chloride at pH 5.5. Both ac electrochemical impedance spectroscopy and the dc polarization resistance techniques were employed. The results clearly indicate that the corrosion protection obtained by Type II sulfuric acid anodizing is superior, and no problems should result by substituting Type II sulfuric acid anodizing for Type I chromic acid anodizing.

  17. Exposure to sulfuric acid in zinc production.

    PubMed

    Bråtveit, Magne; Haaland, Inger Margrethe; Moen, Bente E; Målsnes, Agnar

    2004-03-01

    This study characterized workers' exposure to sulfuric acid in two cell houses of a zinc production plant. We also aimed at estimating previous exposure to sulfuric acid by simulating the process conditions from before 1975 to produce exposure data for an epidemiological study on cancer in this industry. Further, we compared different sampling methods for aerosols in the cell houses. Personal sampling with a 37 mm Millipore cassette showed that the geometric means of the exposure levels for the workers in the two cell houses were 0.07 mg/m3 (range 0.01-0.48 mg/m3) and 0.04 mg/m3 (range 0.01-0.15 mg/m3). Norway's newly revised limit value of 0.1 mg/m3 was exceeded in 39.0 and 12.9% of the samples in the two cell houses. After the foam layer was removed from the electrolyte surface to simulate the production process from before 1975, the concentration of sulfuric acid increased from 0.11 to 6.04 mg/m3 in stationary measurement by the Millipore sampler. Stationary sampling showed that the Millipore sampler and the inhalable fraction of the Respicon impactor underestimated the sulfuric acid concentration by factors of 1.5 and 2.1 compared with the Institute of Occupational Medicine (IOM) sampler. Sampling with the Respicon impactor showed that the respirable, tracheobronchial and extrathoracic fractions constituted 3.0, 18.7 and 71.7% of the inhalable sulfuric acid aerosol, respectively. Today's exposure levels are lower than those reported to be associated with an increased prevalence of laryngeal cancer in other industries, but the levels prior to 1975 seem to have been much higher. By mass, most of the inhalable aerosol was in the size fractions considered to be highly relevant for the effects of sulfuric acid on the respiratory system. The risk of cancer among the cell house workers should be investigated in an epidemiological study.

  18. Model Prediction of Sulfuric Acid in the Tropical/Subtropical Cirrus Clouds as a Part of CRYSTAL-FACE Mission

    NASA Astrophysics Data System (ADS)

    Kanawade, V.; Tripathi, S. N.

    2005-12-01

    Recent studies show that new particle formation takes place in the cirrus clouds, however, it has not been examined how the formation of new particle occur. Recent experiments, in cirrus clouds, provide in-situ data for particles of diameter 4-6 nm; unfortunately, simultaneous measurement of precursor gases e.g. SO2 and/or H2SO4 concentration is not available. This hinders model prediction of the newly formed particles. In-situ measurements of ultrafine particles, diameter 4 to 6 nm, carried out during 23 July 2002 (WB-57 mission), as a part of CRYSTAL-FACE mission, over Florida, were used for prediction of sulfuric acid and consequently SO2 concentration in the tropical/subtropical cirrus clouds. Using aerosol microphysical model, driven by parameterized binary homogenous nucleation [Vehkamaki et al., 2002] and ion induced nucleation [Modgil et al., 2005] (one at a time), and in-situ measured environmental conditions i.e. temperature, relative humidity and ultrafine particle number concentration, we have calculated likely source strength of sulfuric acid, which is used to infer the dominating nucleation mechanism for ultrafine particles. Model results, for particles diameter 4 to 6 nm, show that the binary homogenous nucleation rates are ~6 fold higher than the ion induced nucleation rates, suggesting that the binary homogenous nucleation mechanism is likely to dominate over ion induced nucleation mechanism in the tropical/subtropical cirrus clouds. The binary homogenous nucleation model and ion induced nucleation model, respectively, predicts sulfuric acid concentrations in the range 2-8 105 molecules cm-3 (SO2=0.3-0.75 ppbv) and 7.5 105 106 molecules cm-3 (SO2=1-3 ppbv),. About 75% of the model simulations show reasonable agreement between predicted and observed particles of diameter from 6 to 9 nm and 4 to 9 nm. Refrences Modgil, M. S. et al., A parameterization of ion-induced nucleation of sulfuric acid and water for atmospheric conditions, J. Geophys. Res

  19. Photocatalytic Oxidation of Sulfurous Acid in an Aqueous Medium

    ERIC Educational Resources Information Center

    Romero, Alicia; Hernandez, Willie; Suarez, Marco F.

    2005-01-01

    The effect of some parameters on sulfurous acid and sulfur oxidation kinetics such as initial concentration of sulfurous acid, oxygen, TiO[2] crystalline concentration, the power of black light, and quantity of TiO[2] is investigated. The experiments can be performed in an undergraduate physical chemistry laboratory with an inexpensive…

  20. Optimization of dilute acid hydrolysis of Enteromorpha

    NASA Astrophysics Data System (ADS)

    Feng, Dawei; Liu, Haiyan; Li, Fuchao; Jiang, Peng; Qin, Song

    2011-11-01

    Acid hydrolysis is a simple and direct way to hydrolyze polysaccharides in biomass into fermentable sugars. To produce fermentable sugars effectively and economically for fuel ethanol, we have investigated the hydrolysis of Enteromorpha using acids that are typically used to hydrolyze biomass: H2SO4, HCl, H3PO4 and C4H4O4 (maleic acid). 5%(w/w) Enteromorpha biomass was treated for different times (30, 60, and 90 min) and with different acid concentrations (0.6, 1.0, 1.4, 1.8, and 2.2%, w/w) at 121°C. H2SO4 was the most effective acid in this experiment. We then analyzed the hydrolysis process in H2SO4 in detail using high performance liquid chromatography. At a sulfuric acid concentration of 1.8% and treatment time of 60 min, the yield of ethanol fermentable sugars (glucose and xylose) was high, (230.5 mg/g dry biomass, comprising 175.2 mg/g glucose and 55.3 mg/g xylose), with 48.6% of total reducing sugars being ethanol fermentable. Therefore, Enteromorpha could be a good candidate for production of fuel ethanol. In future work, the effects of temperature and biomass concentration on hydrolysis, and also the fermentation of the hydrolysates to ethanol fuel should be focused on.

  1. Atmospheric Observations of Aerosol Sizes, Sulfuric Acid and Ammonia Measured in Kent, Ohio

    NASA Astrophysics Data System (ADS)

    Pavuluri, C.; Benson, D. R.; Dailey, B.; Lee, S.

    2008-12-01

    relatively polluted areas (e.g., Atlanta, Pittsburgh, and Detroit). We will present our ground-based, long-term measurements of aerosol sizes and concentrations and discuss how aerosol precursors (H2SO4 and NH3), RH, temperature and photochemistry affect new particle formation in this rather rural Midwestern town, by comparing with previous new particle formation observations made in other sites (e.g., EPA supersites in relatively polluted atmosphere and in Finland boreal forest).

  2. Evaluation of proton-conducting membranes for use in a sulfur dioxide depolarized electrolyzer

    NASA Astrophysics Data System (ADS)

    Elvington, Mark C.; Colón-Mercado, Héctor; McCatty, Steve; Stone, Simon G.; Hobbs, David T.

    The chemical stability, sulfur dioxide transport, ionic conductivity, and electrolyzer performance have been measured for several commercially available and experimental proton exchange membranes (PEMs) for use in a sulfur dioxide depolarized electrolyzer (SDE). The SDEs function is to produce hydrogen by using the Hybrid Sulfur (HyS) Process, a sulfur-based electrochemical/thermochemical hybrid cycle. Membrane stability was evaluated using a screening process where each candidate PEM was heated at 80 °C in 60 wt% H 2SO 4 for 24 h. Following acid exposure, chemical stability for each membrane was evaluated by FTIR using the ATR sampling technique. Membrane SO 2 transport was evaluated using a two-chamber permeation cell. SO 2 was introduced into one chamber whereupon SO 2 transported across the membrane into the other chamber and oxidized to H 2SO 4 at an anode positioned immediately adjacent to the membrane. The resulting current was used to determine the SO 2 flux and SO 2 transport. Additionally, membrane electrode assemblies (MEAs) were prepared from candidate membranes to evaluate ionic conductivity and selectivity (ionic conductivity vs. SO 2 transport) which can serve as a tool for selecting membranes. MEAs were also performance tested in a HyS electrolyzer measuring current density vs. a constant cell voltage (1 V, 80 °C in SO 2 saturated 30 wt% H 2SO 4). Finally, candidate membranes were evaluated considering all measured parameters including SO 2 flux, SO 2 transport, ionic conductivity, HyS electrolyzer performance, and membrane stability. Candidate membranes included both PFSA and non-PFSA polymers and polymer blends of which the non-PFSA polymers, BPVE-6F and PBI, showed the best selectivity.

  3. Sulfur Oxidation and Contrail Precursor Chemistry

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth J.

    2003-01-01

    Sulfuric acid (H2SO4), formed in commercial aircraft operations via fuel-S (goes to) SO2 (goes to) SO3 (goes to) H2SO4 plays an important role in the formation of contrails. It is believed that the first step occurs inside the combustor, the second step in the engine exit nozzle, and the third step in the exhaust plume. Thus, measurements of the sulfur oxidation rates are critical to the understanding of contrail formation. Field measurements of contrails formed behind commercial aircraft indicate that significantly greater conversion of fuel-bound sulfur to sulfate aerosol occurs than can be explained by our current knowledge of contrail physics and chemistry. The conversion of sulfur from S(IV) to S(VI) oxidation state, required for sulfate aerosol formation, is thermodynamically favored for the conditions that exist within jet engines but is kinetically disfavored. The principal reaction pathway is O+SO2+M (goes to) SO3+M. The rates of this reaction have never been measured in the temperature and pressure regimes available to aircraft operation. In the first year (FY02) of this project, we performed a series of experiments to elucidate the rate information for the O+SO2+M (goes to) SO3+M reaction. The work performed is described following the proposed work plan. Because we used the H2/O2 system for an O-atom source and rate coefficients were obtained via computer simulation, construction of a reaction mechanism and either recalculation or estimation of thermodynamic properties of H(x)SO(y) species are described first.

  4. Solubility of HCL in sulfuric acid at stratospheric temperatures

    NASA Technical Reports Server (NTRS)

    Williams, Leah R.; Golden, David M.

    1993-01-01

    The solubility of HCl in sulfuric acid was measured using a Knudsen cell technique. Effective Henry's law constants are reported for sulfuric acid concentrations between 50 and 60 weight percent and for temperatures between 220 and 230 K. The measured values indicate that very little HCl will be dissolved in the stratospheric sulfate aerosol particles.

  5. Two-Stage Separation of V(IV) and Al(III) by Crystallization and Solvent Extraction from Aluminum-Rich Sulfuric Acid Leaching Solution of Stone Coal

    NASA Astrophysics Data System (ADS)

    Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing; Liu, Hong

    2016-12-01

    To improve separation of V(IV) and Al(III) from aluminum-rich sulfuric acid leaching solution of stone coal, the two-stage separation by crystallization and solvent extraction methods have been developed. A co-extraction coefficient (k) was put forward to evaluate comprehensively co-extraction extent in different solutions. In the crystallization stage, 68.2% of aluminum can be removed from the solution. In the solvent extraction stage, vanadium was selectively extracted using di-2-ethylhexyl phosphoric acid/tri-n-butyl phosphate from the crystalline mother solution, followed by H2SO4 stripped efficiently. A V2O5 product with purity of 98.39% and only 0.10% Al was obtained after oxidation, precipitation, and calcination. Compared with vanadium extraction from solution without crystallization, the counter-current extraction stage of vanadium can be decreased from 6 to 3 and co-extraction coefficient (k) decreased from 2.51 to 0.58 with two-stage separation. It is suggested that the aluminum removal by crystallization can evidently weaken the influence of aluminum co-extraction on vanadium extraction and improve the selectivity of solvent extraction for vanadium.

  6. Arsenic(V) removal with polymer inclusion membranes from sulfuric acid media using DBBP as carrier.

    PubMed

    de Lourdes Ballinas, Ma; Rodríguez de San Miguel, Eduardo; de Jesús Rodríguez, Ma Teresa; Silva, Orlando; Muñoz, María; de Gyves, Josefina

    2004-02-01

    Polymer inclusion membranes (PIMs) based on cellulose triacetate (CTA) and dibutyl butyl phosphonate (DBBP) were tested for arsenic(V) separation from H2SO4 for its recovery from copper electrolytes. Solvent extraction experiments allowed the determination of the As(V)-DBBP and H2SO4-DBBP complexes formed in the organic phase. Application of a transient model to membrane transport experiments in solutions containing only arsenic or H2SO4 indicated that it occurred under a kinetically controlled regime by formation of H3AsO4[DBBP]2 and H2SO4[DBBP] species, respectively. When arsenic and H2SO4 are simultaneously present, the existence of a third species, H3AsO4[DBBP][H2SO4], explains well the fact that As(V) flux decreases and that H2SO4 flux increases. In both cases, a limiting 50% recovery value was obtained. However, active arsenic transport (>50%) is achieved if the H2SO4 concentration gradient is assured (e.g., using a triple-cell configuration). In this way, high arsenic recovery factors (90% in 800 min) were obtained with initial concentrations of 5000 mg/L As(V) and 220 g/L H2SO4. In all membrane systems tested, good As(V) selectivity over copper (up to 30000 mg/L) was attained.

  7. Corrosion inhibition in 2.0 M sulfuric acid solutions of high strength maraging steel by aminophenyl tetrazole as a corrosion inhibitor

    NASA Astrophysics Data System (ADS)

    Sherif, El-Sayed M.

    2014-02-01

    The corrosion of high strength maraging steel after varied immersion times in concentrated solution, 2.0 M, of sulfuric acid has been investigated. The work was also extended to study the effect of 5-(3-aminophenyl)-tetrazole (APTA) on the inhibition of the steel corrosion. The study has been carried out using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and scanning electron microscope (SEM) along with energy dispersive X-ray analyzer (EDX) investigations. EIS spectra showed that the corrosion and polarization resistances decrease with increasing the immersion time of the steel before measurement and increase in the presence of APTA and the increase of its concentration. Polarization data agreed with the EIS measurements and indicated that the increase of immersion time increases the corrosion of steel by increasing its corrosion current and corrosion rate and lowering its polarization resistance. On the other hand, the addition of APTA and the increase of its concentration minimized the corrosion of steel through decreasing the corrosion current and corrosion rate and increasing the polarization resistance at all exposure test periods. SEM and EDX investigations confirmed that the inhibition of the maraging steel in the 2.0 M H2SO4 solutions is achieved via the adsorption of the APTA molecules onto the steel protecting its surface from being dissolved easily.

  8. Missing SO2 oxidant in the coastal atmosphere? - observations from high-resolution measurements of OH and atmospheric sulfur compounds

    NASA Astrophysics Data System (ADS)

    Berresheim, H.; Adam, M.; Monahan, C.; O'Dowd, C.; Plane, J. M. C.; Bohn, B.; Rohrer, F.

    2014-11-01

    Diurnal and seasonal variations of gaseous sulfuric acid (H2SO4) and methane sulfonic acid (MSA) were measured in NE Atlantic air at the Mace Head atmospheric research station during the years 2010 and 2011. The measurements utilized selected-ion chemical ionization mass spectrometry (SI/CIMS) with a detection limit for both compounds of 4.3 × 104 cm-3 at 5 min signal integration. The H2SO4 and MSA gas-phase concentrations were analyzed in conjunction with the condensational sink for both compounds derived from 3 nm to 10 μm (aerodynamic diameter) aerosol size distributions. Accommodation coefficients of 1.0 for H2SO4 and 0.12 for MSA were assumed, leading to estimated atmospheric lifetimes on the order of 7 and 25 min, respectively. With the SI/CIMS instrument in OH measurement mode alternating between OH signal and background (non-OH) signal, evidence was obtained for the presence of one or more unknown oxidants of SO2 in addition to OH. Depending on the nature of the oxidant(s), its ambient concentration may be enhanced in the CIMS inlet system by additional production. The apparent unknown SO2 oxidant was additionally confirmed by direct measurements of SO2 in conjunction with calculated H2SO4 concentrations. The calculated H2SO4 concentrations were consistently lower than the measured concentrations by a factor of 4.7 ± 2.4 when considering the oxidation of SO2 by OH as the only source of H2SO4. Both the OH and the background signal were also observed to increase significantly during daytime aerosol nucleation events, independent of the ozone photolysis frequency, J(O1D), and were followed by peaks in both H2SO4 and MSA concentrations. This suggests a strong relation between the unknown oxidant(s), OH chemistry, and the atmospheric photolysis and photooxidation of biogenic iodine compounds. As to the identity of the atmospheric SO2 oxidant(s), we have been able to exclude ClO, BrO, IO, and OIO as possible candidates based on {ab initio} calculations

  9. Sulfur and Hydrogen Isotope Anomalies in Meteorite Sulfonic Acids

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Thiemens, Mark H.; Jackson, Teresa L.; Chang, Sherwood

    1997-01-01

    Intramolecular carbon, hydrogen, and sulfur isotope ratios were measured on a homologous series of organic sulfonic acids discovered in the Murchison meteorite. Mass-independent sulfur isotope fractionations were observed along with high deuterium/hydrogen ratios. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low-temperature environment that is consistent with that of interstellar clouds. Sulfur-33 enrichments observed in methanesulfonic acid could have resulted from gas-phase ultraviolet irradiation of a precursor, carbon disulfide. The source of the sulfonic acid precursors may have been the reactive interstellar molecule carbon monosulfide.

  10. Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers

    USGS Publications Warehouse

    Mangun, C.L.; DeBarr, J.A.; Economy, J.

    2001-01-01

    A series of activated carbon fibers (ACFs) and ammonia-treated ACFs prepared from phenolic fiber precursors have been studied to elucidate the role of pore size, pore volume, and pore surface chemistry on adsorption of sulfur dioxide and its catalytic conversion to sulfuric acid. As expected, the incorporation of basic functional groups into the ACFs was shown as an effective method for increasing adsorption of sulfur dioxide. The adsorption capacity for dry SO2 did not follow specific trends; however the adsorption energies calculated from the DR equation were found to increase linearly with nitrogen content for each series of ACFs. Much higher adsorption capacities were achieved for SO2 in the presence of oxygen and water due to its catalytic conversion to H2SO4. The dominant factor for increasing adsorption of SO2 from simulated flue gas for each series of fibers studied was the weight percent of basic nitrogen groups present. In addition, the adsorption energies calculated for dry SO2 were shown to be linearly related to the adsorption capacity of H2SO4 from this flue gas for all fibers. It was shown that optimization of this parameter along with the pore volume results in higher adsorption capacities for removal of SO2 from flue gases. ?? 2001 Elsevier Science Ltd. All rights reserved.

  11. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    DOEpatents

    Moore, Robert; Pickard, Paul S.; Parma, Jr., Edward J.; Vernon, Milton E.; Gelbard, Fred; Lenard, Roger X.

    2010-01-12

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  12. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2015-04-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt%) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  13. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2014-11-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, Attenuated Total Reflectance-Fourier Transform Infrared and 1H Nuclear Magnetic Resonance spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene, which was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence for products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and methylglyoxal

  14. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    PubMed Central

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2016-01-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40–80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance–Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  15. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities.

    PubMed

    Van Wyngarden, A L; Pérez-Montaño, S; Bui, J V H; Li, E S W; Nelson, T E; Ha, K T; Leong, L; Iraci, L T

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and (1)H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  16. Influence of phosphoric acid on the electrochemistry of lead electrodes in sulfuric acid electrolyte containing antimony

    NASA Astrophysics Data System (ADS)

    Venugopalan, S.

    The influence of phosphoric acid (0 to 40 g 1 -1) on the Pb/PbSO 4 reaction and the kinetics of hydrogen evolution on pure, smooth lead and lead alloy electrodes is studied via galvanostatic polarization in the linear and Tafel domains with and without antimony (0 to 10 mg 1 -1) addition to the H 2SO 4 (3 to 10 M) electrolyte. Phosphoric acid is found to offset significantly the adverse effect of antimony. H 3PO 4 is also found to increase the hydrogen overpotential without affecting the Pb/PbSO 4 reaction. This implies that the open-circuit corrosion of lead and the consequent hydrogen evolution rate on lead are reduced in the presence of H 3PO 4. The beneficial effects of H 3PO 4 additive are found to be optimum at around 20 g 1 -1. Suppression of hydrogen evolution on the negative electrode, a crucial criterion for sealed cell operation, can be achieved using a H 3PO 4 additive.

  17. Theoretical study of the hydration of atmospheric nucleation precursors with acetic acid.

    PubMed

    Zhu, Yu-Peng; Liu, Yi-Rong; Huang, Teng; Jiang, Shuai; Xu, Kang-Ming; Wen, Hui; Zhang, Wei-Jun; Huang, Wei

    2014-09-11

    While atmosphere is known to contain a significant fraction of organic substance and the effect of acetic acid to stabilize hydrated sulfuric acids is found to be close that of ammonia, the details about the hydration of (CH3COOH)(H2SO4)2 are poorly understood, especially for the larger clusters with more water molecules. We have investigated structural characteristics and thermodynamics of the hydrates using density functional theory (DFT) at PW91PW91/6-311++G(3df,3pd) level. The phenomena of the structural evolution may exist during the early stage of the clusters formation, and we tentatively proposed a calculation path for the Gibbs free energies of the clusters formation via the structural evolution. The results in this study supply a picture of the first deprotonation of sulfuric acids for a system consisting of two sulfuric acid molecules, an acetic acid molecule, and up to three waters at 0 and 298.15 K, respectively. We also replace one of the sulfuric acids with a bisulfate anion in (CH3COOH)(H2SO4)2 to explore the difference of acid dissociation between two series of clusters and interaction of performance in clusters growth between ion-mediated nucleation and organics-enhanced nucleation.

  18. Sulfuric acid aerosols in the atmospheres of the terrestrial planets

    NASA Astrophysics Data System (ADS)

    McGouldrick, Kevin; Toon, Owen B.; Grinspoon, David H.

    2011-08-01

    Clouds and hazes composed of sulfuric acid are observed to exist or postulated to have once existed on each of the terrestrial planets with atmospheres in our solar system. Venus today maintains a global cover of clouds composed of a sulfuric acid/water solution that extends in altitude from roughly 50 km to roughly 80 km. Terrestrial polar stratospheric clouds (PSCs) form on stratospheric sulfuric acid aerosols, and both PSCs and stratospheric aerosols play a critical role in the formation of the ozone hole. Stratospheric aerosols can modify the climate when they are enhanced following volcanic eruptions, and are a current focus for geoengineering studies. Rain is made more acidic by sulfuric acid originating from sulfur dioxide generated by industry on Earth. Analysis of the sulfur content of Martian rocks has led to the hypothesis that an early Martian atmosphere, rich in SO 2 and H 2O, could support a sulfur-infused hydrological cycle. Here we consider the plausibility of frozen sulfuric acid in the upper clouds of Venus, which could lead to lightning generation, with implications for observations by the European Space Agency's Venus Express and the Japan Aerospace Exploration Agency's Venus Climate Orbiter (also known as Akatsuki). We also present simulations of a sulfur-rich early Martian atmosphere. We find that about 40 cm/yr of precipitation having a pH of about 2.0 could fall in an early Martian atmosphere, assuming a surface temperature of 273 K, and SO 2 generation rates consistent with the formation of Tharsis. This modeled acid rain is a powerful sink for SO 2, quickly removing it and preventing it from having a significant greenhouse effect.

  19. Nitrogen-sulfur compounds in stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Farlow, N. H.; Snetsinger, K. G.; Hayes, D. M.; Lem, H. Y.; Tooper, B. M.

    1978-01-01

    Two forms of nitrosyl sulfuric acid (NOHSO4 and NOHS2O7) have been tentatively identified in stratospheric aerosols. The first of these can be formed either directly from gas reactions of NO2 with SO2 or by gas-particle interactions between NO2 and H2SO4. The second product may form when SO3 is involved. Estimates based on these reactions suggest that the maximum quantity of NO that might be absorbed in stratospheric aerosols could vary from one-third to twice the amount of NO in the surrounding air. If these reactions occur in the stratosphere, then a mechanism exists for removing nitrogen oxides from that region by aerosol particle fallout. This process may typify another natural means that helps cleanse the lower stratosphere of excessive pollutants.

  20. Investigation of the thermal decomposition of sulfuric acid containing inorganic impurities

    SciTech Connect

    Kogtev, S.E.; Nikandrov, I.S.; Borisenko, A.S.; Peretrutov, A.A.

    1986-09-20

    Oleum is recovered by thermal decomposition of sulfuric acid wastes to sulfur dioxide with conversion of the sulfur dioxide to oleum. The organic substances in sulfuric acid wastes can affect the thermal-decomposition indexes of sulfuric acid wastes. They studied the effect of toluene, nitrotoluene, benzoic acid, and carbon on the yield of sulfur dioxide and also the possibility of reduction of acid vapors by products of pyrolysis and incomplete combustion of hydrocarbons. It is shown that the yield of sulfur dioxide in thermal decomposition of hydrocarbon-containing sulfuric acid wastes can be increased if the process assumes the nature of reductive decomposition.

  1. Protein and sulfur amino acid requirements of broiler breeder hens.

    PubMed

    Harms, R H; Wilson, H R

    1980-02-01

    Two experiments were conducted with Cobb color-sexed broiler breeder hens to determine their protein and sulfur amino acid requirement. A daily intake between 400 and 478 mg of methionine and between 722 and 839 mg of total sulfur amino acids was necessary for maximum egg production, the latter in a diet of 13.07% protein. Slightly lower levels supported maximum body weights. Hens laying at the highest rate consumed 23.4 g of protein per day.

  2. The corrosion protection of several aluminum alloys by chromic acid and sulfuric acid anodizing

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1994-01-01

    The corrosion protection afforded 7075-T6, 7075-T3, 6061-T6, and 2024-T3 aluminum alloys by chromic acid and sulfuric acid anodizing was examined using electrochemical techniques. From these studies, it is concluded that sulfuric acid anodizing provides superior corrosion protection compared to chromic acid anodizing.

  3. Enhanced xylose recovery from oil palm empty fruit bunch by efficient acid hydrolysis.

    PubMed

    Tan, Hooi Teng; Dykes, Gary A; Wu, Ta Yeong; Siow, Lee Fong

    2013-08-01

    Oil palm empty fruit bunch (EFB) is abundantly available in Malaysia and it is a potential source of xylose for the production of high-value added products. This study aimed to optimize the hydrolysis of EFB using dilute sulfuric acid (H2SO4) and phosphoric acid (H3PO4) via response surface methodology for maximum xylose recovery. Hydrolysis was carried out in an autoclave. An optimum xylose yield of 91.2 % was obtained at 116 °C using 2.0 % (v/v) H2SO4, a solid/liquid ratio of 1:5 and a hydrolysis time of 20 min. A lower optimum xylose yield of 24.0 % was observed for dilute H3PO4 hydrolysis at 116 °C using 2.4 % (v/v) H3PO4, a solid/liquid ratio of 1:5 and a hydrolysis time of 20 min. The optimized hydrolysis conditions suggested that EFB hydrolysis by H2SO4 resulted in a higher xylose yield at a lower acid concentration as compared to H3PO4.

  4. Tested Demonstrations: Color Oscillations in the Formic Acid-Nitric Acid-Sulfuric Acid System.

    ERIC Educational Resources Information Center

    Raw, C. J. G.; And Others

    1983-01-01

    Presented are procedures for demonstrating the production of color oscillations when nitric acid is added to a formic acid/concentrated sulfuric acid mixture. Because of safety considerations, "Super-8" home movie of the color changes was found to be satisfactory for demonstration purposes. (JN)

  5. Potential heat exchange fluids for use in sulfuric acid vaporizers

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Petersen, G. R.

    1979-01-01

    A series of perhalocarbons are proposed as candidate heat exchange fluids for service in thermochemical cycles for hydrogen production that involve direct contact of the fluid with sulfuric acid and vaporization of the acid. The required chemical and physical criteria of the liquids are described and the results of some preliminary high temperature test data are presented.

  6. Connection of sulfuric acid to atmospheric nucleation in boreal forest.

    PubMed

    Nieminen, T; Manninen, H E; Sihto, S L; Yli-Juuti, T; Mauldin, R L; Petäjä, T; Riipinen, I; Kerminen, V M; Kulmala, M

    2009-07-01

    Gas to particle conversion in the boundary layer occurs worldwide. Sulfuric acid is considered to be one of the key components in these new particle formation events. In this study we explore the connection between measured sulfuric acid and observed formation rate of both charged 2 nm as well as neutral clusters in a boreal forest environment A very short time delay of the order of ten minutes between these two parameters was detected. On average the event days were clearly associated with higher sulfuric acid concentrations and lower condensation sink (CS) values than the nonevent days. Although there was not a clear sharp boundary between the nucleation and no-nucleation days in sulfuric acid-CS plane, at our measurement site a typical threshold concentration of 3.10(5) molecules cm(-3) of sulfuric acid was needed to initiate the new particle formation. Two proposed nucleation mechanisms were tested. Our results are somewhat more in favor of activation type nucleation than of kinetic type nucleation, even though our data set is too limited to omit either of these two mechanisms. In line with earlier studies, the atmospheric nucleation seems to start from sizes very close to 2 nm.

  7. High pressure sulfuric acid decomposition experiments for the sulfur-iodine thermochemical cycle.

    SciTech Connect

    Velasquez, Carlos E; Reay, Andrew R.; Andazola, James C.; Naranjo, Gerald E.; Gelbard, Fred

    2005-09-01

    A series of three pressurized sulfuric acid decomposition tests were performed to (1) obtain data on the fraction of sulfuric acid catalytically converted to sulfur dioxide, oxygen, and water as a function of temperature and pressure, (2) demonstrate real-time measurements of acid conversion for use as process control, (3) obtain multiple measurements of conversion as a function of temperature within a single experiment, and (4) assess rapid quenching to minimize corrosion of metallic components by undecomposed acid. All four of these objectives were successfully accomplished. This report documents the completion of the NHI milestone on high pressure H{sub 2}SO{sub 4} decomposition tests for the Sulfur-Iodine (SI) thermochemical cycle project. All heated sections of the apparatus, (i.e. the boiler, decomposer, and condenser) were fabricated from Hastelloy C276. A ceramic acid injection tube and a ceramic-sheathed thermocouple were used to minimize corrosion of hot liquid acid on the boiler surfaces. Negligible fracturing of the platinum on zirconia catalyst was observed in the high temperature decomposer. Temperature measurements at the exit of the decomposer and at the entry of the condenser indicated that the hot acid vapors were rapidly quenched from about 400 C to less than 20 C within a 14 cm length of the flow path. Real-time gas flow rate measurements of the decomposition products provided a direct measurement of acid conversion. Pressure in the apparatus was preset by a pressure-relief valve that worked well at controlling the system pressure. However, these valves sometimes underwent abrupt transitions that resulted in rapidly varying gas flow rates with concomitant variations in the acid conversion fraction.

  8. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic...

  9. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic...

  10. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic...

  11. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic...

  12. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic...

  13. Adsorption of ammonia by sulfuric acid treated zirconium hydroxide.

    PubMed

    Glover, T Grant; Peterson, Gregory W; DeCoste, Jared B; Browe, Matthew A

    2012-07-17

    The adsorption of ammonia on Zr(OH)(4), as well as Zr(OH)(4) treated with sulfuric acid, were examined. The results show that treating Zr(OH)(4) with sulfuric acid leads to the formation of a sulfate on the surface of the material, and that the sulfate contributes to the ammonia adsorption capacity through the formation of an ammonium sulfates species. Calcination of Zr(OH)(4) decreases the ammonia adsorption capacity of the material and limits the formation of sulfate species. NMR and FTIR spectroscopy results are presented that show the presence of two distinct ammonium species on the surface of the material. The adsorption capacity of the materials is shown to be a complex phenomenon that is impacted by the surface area, the sulfur content, and the pH of the material. The results illustrate that Zr(OH)(4), which is known to adsorb acidic gases, can be modified and used to adsorb basic gases.

  14. Air pollution and asthma: clinical studies with sulfuric acid aerosols

    SciTech Connect

    Utell, M.J.; Frampton, M.W.; Morrow, P.E. )

    1991-11-01

    Until recently, acid deposition has been widely considered a serious ecological problem but not a threat to human health. The controlled clinical study is an important approach in linking acidic aerosol inhalation with respiratory effects. Asthmatic patients represent a subpopulation most responsive to sulfuric acid aerosols. In a series of studies with asthmatic volunteers, several factors have been identified that may modulate the intensity of the bronchoconstrictor response to inhaled acidic aerosols. We found (1) enhancement of the bronchoconstrictor response during exercise, (2) the more acidic aerosols provoke the greatest changes in lung function, and (3) mitigation of airway responses during sulfuric acid aerosol inhalation caused by high respiratory ammonia concentrations. Additional factors influencing responsiveness await identification.

  15. Protonation Dynamics and Hydrogen Bonding in Aqueous Sulfuric Acid.

    PubMed

    Niskanen, Johannes; Sahle, Christoph J; Juurinen, Iina; Koskelo, Jaakko; Lehtola, Susi; Verbeni, Roberto; Müller, Harald; Hakala, Mikko; Huotari, Simo

    2015-09-03

    Hydration of sulfuric acid plays a key role in new-particle formation in the atmosphere. It has been recently proposed that proton dynamics is crucial in the stabilization of these clusters. One key question is how water molecules mediate proton transfer from sulfuric acid, and hence how the deprotonation state of the acid molecule behaves as a function concentration. We address the proton transfer in aqueous sulfuric acid with O K edge and S L edge core-excitation spectra recorded using inelastic X-ray scattering and with ab initio molecular dynamics simulations in the concentration range of 0-18.0 M. Throughout this range, we quantify the acid-water interaction with atomic resolution. Our simulations show that the number of donated hydrogen bonds per Owater increases from 1.9 to 2.5 when concentration increases from 0 to 18.0 M, in agreement with a rapid disappearance of the pre-edge feature in the O K edge spectrum. The simulations also suggest that for 1.5 M sulfuric acid SO4(2-) is most abundant and that its concentration falls monotonously with increasing concentration. Moreover, the fraction of HSO4(-) peaks at ∼12 M.

  16. 46 CFR 153.556 - Special requirements for sulfuric acid and oleum.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Special requirements for sulfuric acid and oleum. 153... and Equipment Special Requirements § 153.556 Special requirements for sulfuric acid and oleum. (a... acid, oleum, or contaminated sulfuric acid are approved by the Commandant (CG-522) on a case by...

  17. 46 CFR 153.556 - Special requirements for sulfuric acid and oleum.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Special requirements for sulfuric acid and oleum. 153... and Equipment Special Requirements § 153.556 Special requirements for sulfuric acid and oleum. (a... acid, oleum, or contaminated sulfuric acid are approved by the Commandant (CG-ENG) on a case by...

  18. 46 CFR 153.556 - Special requirements for sulfuric acid and oleum.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Special requirements for sulfuric acid and oleum. 153... and Equipment Special Requirements § 153.556 Special requirements for sulfuric acid and oleum. (a... acid, oleum, or contaminated sulfuric acid are approved by the Commandant (CG-ENG) on a case by...

  19. 46 CFR 153.556 - Special requirements for sulfuric acid and oleum.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Special requirements for sulfuric acid and oleum. 153... and Equipment Special Requirements § 153.556 Special requirements for sulfuric acid and oleum. (a... acid, oleum, or contaminated sulfuric acid are approved by the Commandant (CG-522) on a case by...

  20. 46 CFR 153.556 - Special requirements for sulfuric acid and oleum.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Special requirements for sulfuric acid and oleum. 153... and Equipment Special Requirements § 153.556 Special requirements for sulfuric acid and oleum. (a... acid, oleum, or contaminated sulfuric acid are approved by the Commandant (CG-ENG) on a case by...

  1. Speciation of technetium peroxo complexes in sulfuric acid revisited

    DOE PAGES

    Poineau, Frederic; German, Konstantin E.; Burton-Pye, Benjamin P.; ...

    2014-08-24

    We found that the reaction of Tc(+7) with H2O2 has been studied in H2SO4 and the speciation of technetium performed by UV–visible and 99-Tc NMR spectroscopy. UV–visible measurements show that for H2SO4 ≥ 9 M and H2O2 = 0.17 M, TcO3(OH)(H2O)2 reacts immediately and blue solutions are obtained, while no reaction occurs for H2SO42SO44 - begins to react for H2O2 = 2.12 M and red solutions are obtained. The UV–visible spectra of the red species are identical to the one obtained from the reaction of TcO4 - with H2O2 in HNO3 and consistent with the presence of TcO(O2)2(H2O)(OH). The 99-Tcmore » NMR spectrum of the red solution exhibits a broad signal centered at +5.5 ppm vs TcO4 - and is consistent with the presence of a low symmetry Tc(+7) molecule.« less

  2. Microbial Sulfur Cycling in an Acid Mine Lake

    NASA Astrophysics Data System (ADS)

    Bernier, L.; Warren, L. A.

    2004-12-01

    Geochemical dynamics of a tailings impacted lake in Northern Ontario were investigated over a three-year period, in which active pyrrhotite slurry disposal was initiated in year two. A strong seasonal trend of decreasing epilimnetic pH with significant diurnal acid production, pre-, during and post slurry deposition was observed with high rates observed compared to pre-slurry. Slurry deposition occurred at the surface of the lake and acted as a reaction stimulant for acid generation. Over the diurnal timescale investigated, the highest rates of acid production occurred not at the lake surface but within the metaliminetic region of the lake. This region was exemplified by strong decreasing oxygen gradients, and thus observed high rates of acid generation are more consistent with microbial pathways of sulfur oxidation than with abiotic, oxygen catalyzed pathways. Consistent with microbial catalysis, metalimnetic rates of acid generation were highest during June and July when microbial populations and metabolic rates were maximal. These results indicate that microbial oxidation of sulfur species play a major role in acid generation in this system. Further, observed rates of acid generation exceed those predicted by published abiotic rates of pyrrhotite oxidation, but are consistent with literature estimates of acid generation catalyzed by microbial activity. Acidithiobacilli accounted for up to 50% of the microbial community pre slurry, but were absent post slurry deposition. These results are the first to demonstrate quantitatively that microbial sulfur oxidation can play a predominant role in acid generation within mine tailings impacted systems. They further highlight the need to evaluate the more complex pathways by which microorganisms process sulfur as the conditions, controls and process rates differ from those observed for abiotic reactions.

  3. Potential heat exchange fluids for use in sulfuric acid vaporizers

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Petersen, G. R.

    1981-01-01

    A series of liquids have been screened as candidate heat exchange fluids for service in thermochemical cycles that involve the vaporization of sulfuric acid. The required chemical and physical criteria of the liquids is described with the results of some preliminary high temperature test data presented.

  4. ELEMENTAL MERCURY ADSORPTION BY ACTIVATED CARBON TREATED WITH SULFURIC ACID

    EPA Science Inventory

    The paper gives results of a study of the adsorption of elemental mercury at 125 C by a sulfuric-acid (H2S04, 50% w/w/ solution)-treated carbon for the removal of mercury from flue gas. The pore structure of the sample was characterized by nitrogen (N2) at -196 C and the t-plot m...

  5. Heat-Exchange Fluids for Sulfuric Acid Vaporizers

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Petersen, G. R.

    1982-01-01

    Some fluorine-substituted organic materials meet criteria for heat-exchange fluids in contact with sulfuric acid. Most promising of these are perfluoropropylene oxide polymers with degree of polymerization (DP) between 10 and 50. It is desirable to have DP in high range because vapor pressure of material decreases as DP increases, and high-DP liquids have lower loss due to vaporization.

  6. Dilute sulfuric acid pretreatment of sunflower stalks for sugar production.

    PubMed

    Ruiz, Encarnación; Romero, Inmaculada; Moya, Manuel; Cara, Cristóbal; Vidal, Juan D; Castro, Eulogio

    2013-07-01

    In this work the pretreatment of sunflower stalks by dilute sulfuric acid is studied. Pretreatment temperature and the concentration of acid solution were selected as operation variables and modified according to a central rotatable composite experimental design. Based on previous studies pretreatment time was kept constant (5 min) while the variation range for temperature and acid concentration was centered at 175°C and 1.25% (w/v) respectively. Following pretreatment the insoluble solids were separated by filtration and further submitted to enzymatic hydrolysis, while liquid fractions were analyzed for sugars and inhibitors. Response surface methodology was applied to analyze results based on the combined severity of pretreatment experiments. Optimized results show that up to 33 g of glucose and xylose per 100g raw material (65% of the glucose and xylose present in the raw material) may be available for fermentation after pretreatment at 167°C and 1.3% sulfuric acid concentration.

  7. Recovery of high purity sulfuric acid from the waste acid in toluene nitration process by rectification.

    PubMed

    Song, Kai; Meng, Qingqiang; Shu, Fan; Ye, Zhengfang

    2013-01-01

    Waste sulfuric acid is a byproduct generated from numerous industrial chemical processes. It is essential to remove the impurities and recover the sulfuric acid from the waste acid. In this study the rectification method was introduced to recover high purity sulfuric acid from the waste acid generated in toluene nitration process by using rectification column. The waste acid quality before and after rectification were evaluated using UV-Vis spectroscopy, GC/MS, HPLC and other physical and chemical analysis. It was shown that five nitro aromatic compounds in the waste acid were substantially removed and high purity sulfuric acid was also recovered in the rectification process at the same time. The COD was removed by 94% and the chrominance was reduced from 1000° to 1°. The recovered sulfuric acid with the concentration reaching 98.2 wt% had a comparable quality with commercial sulfuric acid and could be recycled back into the toluene nitration process, which could avoid waste of resources and reduce the environmental impact and pollution.

  8. Color Change of Sudan III against Concentrated Sulfuric Acid in Acetonitrile and Quantification for a Small Amount of Concentrated Sulfuric Acid.

    PubMed

    Sakurai, Takao; Kurata, Shoji; Ogino, Kenji

    2016-01-01

    The color-changing phenomenon of hydrophobic bisazo dye, Sudan III in an acetonitrile solution against the addition of concentrated sulfuric acid has been discovered and the chromic properties investigated. Based on observations, a novel quantification method of concentrated sulfuric acid has been developed. Sudan III changes its color from orange to blue against a small volume of sulfuric acid, and the acetonitrile solution of Sudan III is the most suitable for observing the color-change phenomenon. (1)H-NMR and UV-Vis spectroscopic studies showed that the color-change mechanism of Sudan III against sulfuric acid is due to the protonation of the dye by sulfuric acid. This phenomenon is applicable to the quantification of concentrated sulfuric acid by introducing the Hammett acidity function. The proposed method requires only a small amount of the sample, 0.04 mL, and enables rapid quantification.

  9. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2000-12-01

    A test program is being sponsored by the US Department of Energy (DOE), EPRI, FirstEnergy, and TVA to investigate furnace injection of alkaline sorbents as a means of reducing sulfuric acid concentrations in the flue gas from coal-fired boilers. This test program is being conducted at the FirstEnergy Bruce Mansfield Plant (BMP), although later testing will be conducted at a TVA plant. A sorbent injection test was conducted the week of April 18, 2000. The test was the first of several short-term (one- to two-week duration) tests to investigate the effectiveness of various alkaline sorbents for sulfuric acid control and the effects of these sorbents on boiler equipment performance. This first short-term test investigated the effect of injecting dry dolomite powder (CaCO{sub 3} {center_dot} MgCO{sub 3}), a mineral similar to limestone, into the furnace of Unit 2. During the test program, various analytical techniques were used to assess the effects of sorbent injection. These primarily included sampling with the controlled condensation system (CCS) for determining flue gas SO{sub 3} content and an acid dew-point (ADP) meter for determining the sulfuric acid dew point (and, indirectly, the concentration of sulfuric acid) of the flue gas. EPA Reference Method 26a was used for determining hydrochloric acid (HCl) and hydrofluoric acid (HF), as well and chlorine (Cl{sub 2}) and fluorine (F{sub 2}) concentrations in the flue gas. Fly ash resistivity was measured using a Southern Research Institute (SRI) point-to-plane resistivity probe, and unburned carbon in fly ash was determined by loss on ignition (LOI). Coal samples were also collected and analyzed for a variety of parameters. Finally, visual observations were made of boiler furnace and convective pass surfaces prior to and during sorbent injection.

  10. 40 CFR 180.1019 - Sulfuric acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Sulfuric acid; exemption from the... Exemptions From Tolerances § 180.1019 Sulfuric acid; exemption from the requirement of a tolerance. (a) Residues of sulfuric acid are exempted from the requirement of a tolerance when used in accordance...

  11. 40 CFR 180.1019 - Sulfuric acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Sulfuric acid; exemption from the... Exemptions From Tolerances § 180.1019 Sulfuric acid; exemption from the requirement of a tolerance. (a) Residues of sulfuric acid are exempted from the requirement of a tolerance when used in accordance...

  12. 40 CFR 180.1019 - Sulfuric acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Sulfuric acid; exemption from the... Exemptions From Tolerances § 180.1019 Sulfuric acid; exemption from the requirement of a tolerance. (a) Residues of sulfuric acid are exempted from the requirement of a tolerance when used in accordance...

  13. 40 CFR 180.1019 - Sulfuric acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Sulfuric acid; exemption from the... Exemptions From Tolerances § 180.1019 Sulfuric acid; exemption from the requirement of a tolerance. (a) Residues of sulfuric acid are exempted from the requirement of a tolerance when used in accordance...

  14. 40 CFR 180.1019 - Sulfuric acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Sulfuric acid; exemption from the... Exemptions From Tolerances § 180.1019 Sulfuric acid; exemption from the requirement of a tolerance. (a) Residues of sulfuric acid are exempted from the requirement of a tolerance when used in accordance...

  15. Metabolism of sulfur amino acids in Saccharomyces cerevisiae.

    PubMed Central

    Thomas, D; Surdin-Kerjan, Y

    1997-01-01

    Sulfur amino acid biosynthesis in Saccharomyces cerevisiae involves a large number of enzymes required for the de novo biosynthesis of methionine and cysteine and the recycling of organic sulfur metabolites. This review summarizes the details of these processes and analyzes the molecular data which have been acquired in this metabolic area. Sulfur biochemistry appears not to be unique through terrestrial life, and S. cerevisiae is one of the species of sulfate-assimilatory organisms possessing a larger set of enzymes for sulfur metabolism. The review also deals with several enzyme deficiencies that lead to a nutritional requirement for organic sulfur, although they do not correspond to defects within the biosynthetic pathway. In S. cerevisiae, the sulfur amino acid biosynthetic pathway is tightly controlled: in response to an increase in the amount of intracellular S-adenosylmethionine (AdoMet), transcription of the coregulated genes is turned off. The second part of the review is devoted to the molecular mechanisms underlying this regulation. The coordinated response to AdoMet requires two cis-acting promoter elements. One centers on the sequence TCACGTG, which also constitutes a component of all S. cerevisiae centromeres. Situated upstream of the sulfur genes, this element is the binding site of a transcription activation complex consisting of a basic helix-loop-helix factor, Cbf1p, and two basic leucine zipper factors, Met4p and Met28p. Molecular studies have unraveled the specific functions for each subunit of the Cbf1p-Met4p-Met28p complex as well as the modalities of its assembly on the DNA. The Cbf1p-Met4p-Met28p complex contains only one transcription activation module, the Met4p subunit. Detailed mutational analysis of Met4p has elucidated its functional organization. In addition to its activation and bZIP domains, Met4p contains two regulatory domains, called the inhibitory region and the auxiliary domain. When the level of intracellular AdoMet increases

  16. Recovery and separation of sulfuric acid and iron from dilute acidic sulfate effluent and waste sulfuric acid by solvent extraction and stripping.

    PubMed

    Qifeng, Wei; Xiulian, Ren; Jingjing, Guo; Yongxing, Chen

    2016-03-05

    The recovery and simultaneous separation of sulfuric acid and iron from dilute acidic sulfate effluent (DASE) and waste sulfuric acid (WSA) have been an earnest wish for researchers and the entire sulfate process-based titanium pigment industry. To reduce the pollution of the waste acid and make a comprehensive use of the iron and sulfuric acid in it, a new environmentally friendly recovery and separation process for the DASE and the WSA is proposed. This process is based on the reactive extraction of sulfuric acid and Fe(III) from the DASE. Simultaneously, stripping of Fe(III) is carried out in the loaded organic phase with the WSA. Compared to the conventional ways, this innovative method allows the effective extraction of sulfuric acid and iron from the DASE, and the stripping of Fe(III) from the loaded organic phase with the WSA. Trioctylamine (TOA) and tributyl phosphate (TBP) in kerosene (10-50%) were used as organic phases for solvent extraction. Under the optimal conditions, about 98% of Fe(III) and sulfuric acid were removed from the DASE, and about 99.9% of Fe(III) in the organic phase was stripped with the WSA.

  17. Interaction of sulfuric acid corrosion and mechanical wear of iron

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Friction and wear experiments were conducted with elemental iron sliding on aluminum oxide in aerated sulfuric acid at concentrations ranging from very dilute (0.00007 N; i.e., 4 ppm) to very concentrated (96 percent acid). Load and reciprocating sliding speed were kept constant. With the most dilute acid concentration of 0.00007 to 0.0002 N, a complex corrosion product formed that was friable and often increased friction and wear. At slightly higher concentrations of 0.001 N, metal losses were essentially by wear alone. Because no buildup of corrosion products occurred, this acid concentration became the standard from which to separate metal loss from direct corrosion and mechanical wear losses. When the acid concentration was increased to 5 percent (1 N), the well-established high corrosion rate of iron in sulfuric acid strongly dominated the total wear loss. This strong corrosion increased to 30 percent acid and decreased somewhat to 50 percent acid in accordance with expectations. However, the low corrosion of iron expected at acid concentrations of 65 to 96 percent was not observed in the wear area. It was apparent that the normal passivating film was being worn away and a galvanic cell established that rapidly attacked the wear area. Under the conditions where direct corrosion losses were highest, the coefficient of friction was the lowest.

  18. Interaction of sulfuric acid corrosion and mechanical wear of iron

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1986-01-01

    Friction and wear experiment were conducted with elemental iron sliding on aluminum oxide in aerated sulfuric acid at concentrations ranging from very dilute (0.00007 N; i.e., 4 ppm) to very concentrated (96 percent acid). Load and reciprocating sliding speed were kept constant. With the most dilute acid concentration of 0.00007 to 0.0002 N, a complex corrosion product formed that was friable and often increased friction and wear. At slightly higher concentrations of 0.001 N, metal losses were essentially by wear alone. Because no buildup of corrosion products occurred, this acid concentration became the standard from which to separate metal loss from direct corrosion and mechanical wear losses. When the acid concentration was increased to 5 percent (1 N), the well-established high corrosion rate of iron in sulfuric acid strongly dominated the total wear loss. This strong corrosion increased to 30 percent acid and decreased somewhat to 50 percent acid in accordance with expectations. However, the low corrosion of iron expected at acid concentrations of 65 to 96 percent was not observed in the wear area. It was apparent that the normal passivating film was being worn away and a galvanic cell established that rapidly attacked the wear area. Under the conditions where direct corrosion losses were highest, the coefficient of friction was the lowest.

  19. Friction and wear of iron in sulfuric acid

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Elemental iron sliding on aluminum oxide in aerated sulfuric acid concentrations ranging from very dilute (0.000007 N; i.e., 4 ppm) to very concentrated (96 percent acid) was studied. Load and reciprocating sliding speeds were kept constant. With the most dilute acid of 0.7 to 0.0002 N, a complex corrosion product formed that was friable and often increased friction and wear. At concentrations of 0.001 N, metal losses were essentially by wear alone. Because no buildup of corrosion products occurred, this acid concentration became the standard from which to separate metal loss from direct corrosion and mechanical wear losses. When the acid concentration was increased to 5 percent, the high corrosion rate of iron in sulfuric acid strongly dominated the total wear loss. This strong corrosion increased to 30 percent acid, and decreased somewhat at 50 percent in accordance with expectations. However, the low corrosion of iron expected at acid concentrations of 65 to 96 percent was not observed in the wear area. It is apparent that the normal passivating film was being worn away and a galvanic cell established which rapidly attached to the wear area.

  20. Dilute-sulfuric acid pretreatment of cattails for cellulose conversion.

    PubMed

    Zhang, Bo; Wang, Lijun; Shahbazi, Abolghasem; Diallo, Oumou; Whitmore, Allante

    2011-10-01

    The use of aquatic plant cattails to produce biofuel will add value to land and reduce emissions of greenhouse gases by replacing petroleum products. Dilute-sulfuric acid pretreatment of cattails was studied using a Dionex accelerated solvent extractor (ASE) varying acid concentration (0.1-1%), treatment temperature (140-180 °C), and residence time (5-10 min). The highest total glucose yield for both the pretreatment and enzyme hydrolysis stages (97.1% of the cellulose) was reached at a temperature of 180 °C, a sulfuric acid concentration of 0.5%, and a time of 5 min. Cattails pretreated with 0.5% sulfuric acid are digestible with similar results at enzyme loadings above 15 FPU/g glucan. Glucose from cattails cellulose can be efficiently fermented to ethanol with an approximately 90% of the theoretical yield. The results in this study indicate that cattails are a promising source of feedstock for advanced renewable fuel production.

  1. Infrared spectroscopy of sulfuric acid/water aerosols: Freezing characteristics

    NASA Astrophysics Data System (ADS)

    Clapp, M. L.; Niedziela, R. F.; Richwine, L. J.; Dransfield, T.; Miller, R. E.; Worsnop, D. R.

    1997-04-01

    A low-temperature flow cell has been used in conjunction with a Fourier transform infrared (FT-IR) spectrometer to study sulfuric acid/water aerosols. The aerosols were generated with a wide range of composition (28 to 85 wt%), including those characteristic of stratospheric sulfate aerosols, and studied over the temperature range from 240 K to 160 K. The particles exhibited deep supercooling, by as much as 100 K below the freezing point in some cases. Freezing of water ice was observed in the more dilute (<40 wt% sulfuric acid) particles, in agreement with the predictions of Jensen et al. and recent observations by Bertram et al. In contrast with theoretical predictions, however, the entire particle often does not immediately freeze, at least on the timescale of the present experiments (seconds to minutes). Freezing of the entire particle is observed at lower temperatures, well below that characteristic of the polar stratosphere.

  2. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2001-11-06

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x

  3. Phenol-Sulfuric Acid Method for Total Carbohydrates

    NASA Astrophysics Data System (ADS)

    Nielsen, S. Suzanne

    The phenol-sulfuric acid method is a simple and rapid colorimetric method to determine total carbohydrates in a sample. The method detects virtually all classes of carbohydrates, including mono-, di-, oligo-, and polysaccharides. Although the method detects almost all carbohydrates, the absorptivity of the different carbohydrates varies. Thus, unless a sample is known to contain only one carbohydrate, the results must be expressed arbitrarily in terms of one carbohydrate.

  4. A critique of homogeneous freezing measurements of aqueous sulfuric acid

    NASA Astrophysics Data System (ADS)

    Alofs, Darryl J.; Vandike, John L.

    2000-08-01

    Two laboratory measurements of homogeneous freezing of aqueous sulfuric acid particles are critiqued: The first by Bertram et al., 1996, J. Phys. Chem., vol. 100, pp. 2376-2383: the second by Koop et al., 1998, J. Phys. Chem. A, vol. 102, pp. 8924-8931. Calculations for a proposed experimental artifact are inconclusive for Bertram et al. A proposed artifact for Koop et al. is shown to be insignificant.

  5. COS in the stratosphere. [sulfuric acid aerosol precursor

    NASA Technical Reports Server (NTRS)

    Inn, E. C. Y.; Vedder, J. F.; Tyson, B. J.; Ohara, D.

    1979-01-01

    Carbonyl sulfide (COS) has been detected in the stratosphere, and mixing ratio measurements are reported for altitudes of 15.2 to 31.2 km. A large volume, cryogenic sampling system mounted on board a U-2 aircraft has been used for lower stratosphere measurements and a balloon platform for measurement at 31.2 km. These observations and measurements strongly support the concept that stratospheric COS is an important precursor in the formation of sulfuric acid aerosols.

  6. Recovery of rhenium from sulfuric acid solutions with activated coals

    SciTech Connect

    Troshkina, I.D.; Naing, K.Z.; Ushanova, O.N.; P'o, V.; Abdusalomov, A.A.

    2006-09-15

    Equilibrium and kinetic characteristics of rhenium sorption from sulfuric acid solutions (pH 2) by activated coals produced from coal raw materials (China) were studied. Constants of the Henry equation describing isotherms of rhenium sorption by activated coals were calculated. The effective diffusion coefficients of rhenium in the coals were determined. The dynamic characteristics of rhenium sorption and desorption were determined for the activated coal with the best capacity and kinetic characteristics.

  7. Sulfuric acid intercalated graphite oxide for graphene preparation.

    PubMed

    Hong, Yanzhong; Wang, Zhiyong; Jin, Xianbo

    2013-12-06

    Graphene has shown enormous potential for innovation in various research fields. The current chemical approaches based on exfoliation of graphite via graphite oxide (GO) are potential for large-scale synthesis of graphene but suffer from high cost, great operation difficulties, and serious waste discharge. We report a facile preparation of graphene by rapid reduction and expansion exfoliation of sulfuric acid intercalated graphite oxide (SIGO) at temperature just above 100°C in ambient atmosphere, noting that SIGO is easily available as the immediate oxidation descendent of graphite in sulfuric acid. The oxygenic and hydric groups in SIGO are mainly removed through dehydration as catalyzed by the intercalated sulfuric acid (ISA). The resultant consists of mostly single layer graphene sheets with a mean diameter of 1.07 μm after dispersion in DMF. This SIGO process is reductant free, easy operation, low-energy, environmental friendly and generates graphene with low oxygen content, less defect and high conductivity. The provided synthesis route from graphite to graphene via SIGO is compact and readily scalable.

  8. Sulfuric Acid Speleogenesis: Microbial Karst and Microbial Crust

    NASA Astrophysics Data System (ADS)

    Engel, A. S.; Bennett, P. C.; Stern, L. A.

    2001-12-01

    Sulfuric acid speleogenesis is a fundamental mechanism of karst formation, and is potentially responsible for the formation of some of the most extensive cave systems yet discovered. Speleogenesis occurs from the rapid dissolution of the host limestone by sulfuric acid produced from biotic and abiotic sulfide oxidation, and with the release of carbon dioxide, secondary gypsum crusts form. This crust develops predominately on the cave walls, often preserving original bedding indicators, until it finally collapses under its own weight to expose fresh limestone for dissolution. While this general speleogenetic process can be inferred from secondary residues in some caves, directly observing this process is difficult, and involves entry into an extreme environment with toxic atmospheres and low pH solutions. Kane Cave, Big Horn County, WY, offers the unique opportunity to study microbe-rock interactions directly. Kane Cave presently contains 3 springs that discharge hydrogen sulfide-rich waters, supporting thick subaqueous mats of diverse microbial communities in the stream passage. Condensation droplets and elemental sulfur form on subaerially exposed gypsum surfaces. Droplets have an average pH of 1.7, and are dominated by dissolved sulfate, Ca, Mg, Al, and Si, with minor Sr and Fe, and trace Mn and U. SEM and EDS examination of the crusts reveal the presence of C, O, and S, as well as authigenic, doubly-terminated quartz crystals. An average δ 13C value of -36 ‰ suggests that the crusts are biogenic and are composed of chemoautotrophic microorganisms. Enrichment cultures of biofilms and acid droplets rapidly produce sulfuric acid, demonstrating the dominance of sulfur-oxidizing bacteria. Colonization of gypsum surfaces by acidophilic microorganisms enhances acid dissolution of the limestone, and hence the growth of the cave itself. Limestone dissolution also results in mineralized crusts and biofilms that accumulate insoluble residues, which serve as sources of

  9. Combined biomimetic and inorganic acids hydrolysis of hemicellulose in Miscanthus for bioethanol production.

    PubMed

    Guo, Bin; Zhang, Yuanhui; Ha, Suk-Jin; Jin, Yong-Su; Morgenroth, Eberhard

    2012-04-01

    Combined acid catalysis was employed as a pretreatment alternative with combined acid catalysts blending sulfuric acid with two biomimetic acids, trifluoroacetic acid (TFA) and maleic acid (MA), respectively. The influences of acid blending ratio, temperature, and acid dosage on pretreatment performance were investigated. A synergistic effect on hemicellulose decomposition was observed in the combined acid hydrolysis, which greatly increased xylose yield, although TFA/MA would induce more total phenols. Besides, combined TFA pretreatment could efficiently prevent xylose degradation. Fermentation tests of the acid-catalyzed hydrolysates with overliming showed that compared to H(2)SO(4) pretreatment, TFA and MA pretreatments improved overall ethanol yield with an increase by 27-54%. Combined acid catalysis was shown as a feasible pretreatment method for its improved sugar yield, reduced phenols production and catalyst costs.

  10. Dilute sulfuric acid pretreatment of agricultural and agro-industrial residues for ethanol production.

    PubMed

    Martin, Carlos; Alriksson, Björn; Sjöde, Anders; Nilvebrant, Nils-Olof; Jönsson, Leif J

    2007-04-01

    The potential of dilute-acid prehydrolysis as a pretreatment method for sugarcane bagasse, rice hulls, peanut shells, and cassava stalks was investigated. The prehydrolysis was performed at 122 degrees C during 20, 40, or 60 min using 2% H(2)SO(4) at a solid-to-liquid ratio of 1:10. Sugar formation increased with increasing reaction time. Xylose, glucose, arabinose, and galactose were detected in all of the prehydrolysates, whereas mannose was found only in the prehydrolysates of peanut shells and cassava stalks. The hemicelluloses of bagasse were hydrolyzed to a high-extent yielding concentrations of xylose and arabinose of 19.1 and 2.2 g/L, respectively, and a xylan conversion of more than 80%. High-glucose concentrations (26-33.5 g/L) were found in the prehydrolysates of rice hulls, probably because of hydrolysis of starch of grain remains in the hulls. Peanut shells and cassava stalks rendered low amounts of sugars on prehydrolysis, indicating that the conditions were not severe enough to hydrolyze the hemicelluloses in these materials quantitatively. All prehydrolysates were readily fermentable by Saccharomyces cerevisiae. The dilute-acid prehydrolysis resulted in a 2.7- to 3.7-fold increase of the enzymatic convertibility of bagasse, but was not efficient for improving the enzymatic hydrolysis of peanut shells, cassava stalks, or rice hulls.

  11. Dilute Sulfuric Acid Pretreatment of Agricultural and Agro-Industrial Residues for Ethanol Production

    NASA Astrophysics Data System (ADS)

    Martin, Carlos; Alriksson, Björn; Sjöde, Anders; Nilvebrant, Nils-Olof; Jönsson, Leif J.

    The potential of dilute-acid prehydrolysis as a pretreatment method for sugarcane bagasse, rice hulls, peanut shells, and cassava stalks was investigated. The prehydrolysis was performed at 122°C during 20, 40, or 60 min using 2% H2SO4 at a solid-to-liquid ratio of 1∶10. Sugar formation increased with increasing reaction time. Xylose, glucose, arabinose, and galactose were detected in all of the prehydrolysates, whereas mannose was found only in the prehydrolysates of peanut shells and cassava stalks. The hemicelluloses of bagasse were hydrolyzed to a high-extent yielding concentrations of xylose and arabinose of 19.1 and 2.2 g/L, respectively, and a xylan conversion of more than 80%. High-glucose concentrations (26-33.5 g/L) were found in the prehydrolysates of rice hulls, probably because of hydrolysis of starch of grain remains in the hulls. Peanut shells and cassava stalks rendered low amounts of sugars on prehydrolysis, indicating that the conditions were not severe enough to hydrolyze the hemicelluloses in these materials quantitatively. All prehydrolysates were readily fermentable by Saccharomyces cerevisiae. The dilute-acid prehydrolysis resulted in a 2.7-to 3.7-fold increase of the enzymatic convertibility of bagasse, but was not efficient for improving the enzymatic hydrolysis of peanut shells, cassava stalks, or rice hulls.

  12. Effects of acid rain and sulfur dioxide on marble dissolution

    USGS Publications Warehouse

    Schuster, Paul F.; Reddy, Michael M.; Sherwood, Susan I.

    1994-01-01

    Acid precipitation and the dry deposition of sulfur dioxide (SO2) accelerate damage to carbonate-stone monuments and building materials. This study identified and quantified environmental damage to a sample of Vermont marble during storms and their preceding dry periods. Results from field experiments indicated the deposition of SO2 gas to the stone surface during dry periods and a twofold increase in marble dissolution during coincident episodes of low rain rate and decreased rainfall pH. The study is widely applicable to the analysis of carbonate-stone damage at locations affected by acid rain and air pollution.

  13. Effects of acid rain and sulfur dioxide on marble dissolution

    SciTech Connect

    Schuster, P.F.; Reddy, M.M. ); Sherwood, S.I. )

    1994-01-01

    Acid precipitation and the dry deposition of sulfur dioxide (SO[sub 2]) accelerate damage to carbonate-stone monuments and building materials. This study identified and quantified environmental damage to a sample of Vermont marble during storms and their preceding dry periods. Results from field experiments indicated the deposition of SO[sub 2] gas to the stone surface during dry periods and a twofold increase in marble dissolution during coincident episodes of low rain rate and decreased rainfall pH. The study is widely applicable to the analysis of carbonate-stone damage at locations affected by acid rain and air pollution.

  14. Coulometric determination of berkelium in sulfuric acid and nitric acid solutions

    SciTech Connect

    Timofeev, G.A.; Chistyakov, V.M.; Erin, E.A.

    1987-03-01

    Results are reported on the study and quantitative determination of berkelium by the coulometric method in 1 M sulfuric acid, in solutions of nitric acid, and in mixtures of these acids. The best results in the determination of berkelium were obtained in solutions of a mixture of nitric and sulfuric acids. In 1 M HNO/sub 3/ + 0.1 M H/sub 2/SO/sub 4/ solutions, berkelium can be determined with an accuracy within approx. +/- 2%, when its content is 10 ..mu..g/ml.

  15. A Development of Ceramics Cylinder Type Sulfuric Acid Decomposer for Thermo-Chemical Iodine-Sulfur Process Pilot Plant

    SciTech Connect

    Hiroshi Fukui; Isao Minatsuki; Kazuo Ishino

    2006-07-01

    The hydrogen production method applying thermo-chemical Iodine-Sulfur process (IS process) which uses a nuclear high temperature gas cooled reactor is world widely greatly concerned from the view point of a combination as a clean method, free carbon dioxide in essence. In this process, it is essential a using ceramic material, especially SiC because a operation condition of this process is very corrosive due to a sulfuric acid atmosphere with high temperature and high pressure. In the IS process, a sulfuric acid decomposer is the key component which performs evaporating of sulfuric acid from liquid to gas and disassembling to SO{sub 2} gas. SiC was selected as ceramic material to apply for the sulfuric acid decomposer and a new type of binding material was also developed for SiC junction. This technology is expected to wide application not only for a sulfuric acid decomposer but also for various type components in this process. Process parameters were provided as design condition for the decomposer. The configuration of the sulfuric acid decomposer was studied, and a cylindrical tubes assembling type was selected. The advantage of this type is applicable for various type of components in the IS process due to manufacturing with using only simple shape part. A sulfuric acid decomposer was divided into two regions of the liquid and the gaseous phase of sulfuric acid. The thermal structural integrity analysis was studied for the liquid phase part. From the result of this analysis, it was investigated that the stress was below the strength of the breakdown probability 1/100,000 at any position, base material or junction part. The prototype model was manufactured, which was a ceramic portion in the liquid phase part, comparatively complicated configuration, of a sulfuric acid decomposer. The size of model was about 1.9 m in height, 1.0 m in width. Thirty-six cylinders including inlet and outlet nozzles were combined and each part article was joined using the new binder

  16. A Development of Ceramics Cylinder Type Sulfuric Acid Decomposer for Thermo-Chemical Iodine-Sulfur Process Pilot Plant

    NASA Astrophysics Data System (ADS)

    Minatsuki, Isao; Fukui, Hiroshi; Ishino, Kazuo

    The hydrogen production method applying thermo-chemical Iodine-Sulfur process (IS process) which uses a nuclear high temperature gas cooled reactor is world widely greatly concerned from the view point of a combination as a clean method, free carbon dioxide in essence. In this process, it is essential a using ceramic material, especially SiC because a operation condition of this process is very corrosive due to a sulfuric acid atmosphere with high temperature and high pressure. In the IS process, a sulfuric acid decomposer is the key component which performs evaporating of sulfuric acid from liquid to gas and disassembling to SO2 gas. SiC was selected as ceramic material to apply for the sulfuric acid decomposer and a new type of binding material was also developed for SiC junction. This technology is expected to wide application not only for a sulfuric acid decomposer but also for various type components in this process. Process parameters were provided as design condition for the decomposer. The configuration of the sulfuric acid decomposer was studied, and a cylindrical tubes assembling type was selected. The advantage of this type is applicable for various type of components in the IS process due to manufacturing with using only simple shape part. A sulfuric acid decomposer was divided into two regions of the liquid and the gaseous phase of sulfuric acid. The thermal structural integrity analysis was studied for the liquid phase part. From the result of this analysis, it was investigated that the stress was below the strength of the breakdown probability 1/100,000 at any position, base material or junction part. The prototype model was manufactured, which was a ceramic portion in the liquid phase part, comparatively complicated configuration, of a sulfuric acid decomposer. The size of model was about 1.9m in height, 1.0m in width. Thirty-six cylinders including inlet and outlet nozzles were combined and each part article was joined using the new binder (slurry

  17. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2003-10-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi

  18. Efficient production of bioethanol from corn stover by pretreatment with a combination of sulfuric acid and sodium hydroxide.

    PubMed

    Tan, Li; Tang, Yue-Qin; Nishimura, Hiroto; Takei, Shouta; Morimura, Shigeru; Kida, Kenji

    2013-01-01

    Corn stover is the most abundant agricultural residue in China and a valuable reservoir for bioethanol production. In this study, we proposed a process for producing bioethanol from corn stover; the pretreatment prior to presaccharification, followed by simultaneous saccharification and fermentation (SSF) by using a flocculating Saccharomyces cerevisiae strain, was optimized. Pretreatment with acid-alkali combination (1% H2SO4, 150 °C, 10 min, followed by 1% NaOH, 80°C, 60 min) resulted in efficient lignin removal and excellent recovery of xylose and glucose. A glucose recovery efficiency of 92.3% was obtained by enzymatic saccharification, when the pretreated solid load was 15%. SSF was carried out at 35 °C for 36 hr after presaccharification at 50 °C for 24 hr, and an ethanol yield of 88.2% was achieved at a solid load of 15% and an enzyme dosage of 15 FPU/g pretreated corn stover.

  19. Materials study supporting thermochemical hydrogen cycle sulfuric acid decomposer design

    NASA Astrophysics Data System (ADS)

    Peck, Michael S.

    Increasing global climate change has been driven by greenhouse gases emissions originating from the combustion of fossil fuels. Clean burning hydrogen has the potential to replace much of the fossil fuels used today reducing the amount of greenhouse gases released into the atmosphere. The sulfur iodine and hybrid sulfur thermochemical cycles coupled with high temperature heat from advanced nuclear reactors have shown promise for economical large-scale hydrogen fuel stock production. Both of these cycles employ a step to decompose sulfuric acid to sulfur dioxide. This decomposition step occurs at high temperatures in the range of 825°C to 926°C dependent on the catalysis used. Successful commercial implementation of these technologies is dependent upon the development of suitable materials for use in the highly corrosive environments created by the decomposition products. Boron treated diamond film was a potential candidate for use in decomposer process equipment based on earlier studies concluding good oxidation resistance at elevated temperatures. However, little information was available relating the interactions of diamond and diamond films with sulfuric acid at temperatures greater than 350°C. A laboratory scale sulfuric acid decomposer simulator was constructed at the Nuclear Science and Engineering Institute at the University of Missouri-Columbia. The simulator was capable of producing the temperatures and corrosive environments that process equipment would be exposed to for industrialization of the sulfur iodide or hybrid sulfur thermochemical cycles. A series of boron treated synthetic diamonds were tested in the simulator to determine corrosion resistances and suitability for use in thermochemical process equipment. These studies were performed at twenty four hour durations at temperatures between 600°C to 926°C. Other materials, including natural diamond, synthetic diamond treated with titanium, silicon carbide, quartz, aluminum nitride, and Inconel

  20. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS

    SciTech Connect

    Gary M. Blythe; Richard McMillan

    2002-03-04

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NOX control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents the

  1. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS

    SciTech Connect

    Gary M. Blythe; Richard McMillan

    2002-02-04

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NO{sub x} control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two First Energy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents

  2. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... amines with a substituted benzenesulfonic acid and sulfuric acid (generic name). 721.9220 Section 721... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... benzenesulfonic acid and sulfuric acid (PMNs P-89-703, P-89-755, and P-89-756) are subject to reporting under...

  3. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... amines with a substituted benzenesulfonic acid and sulfuric acid (generic name). 721.9220 Section 721... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... benzenesulfonic acid and sulfuric acid (PMNs P-89-703, P-89-755, and P-89-756) are subject to reporting under...

  4. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... amines with a substituted benzenesulfonic acid and sulfuric acid (generic name). 721.9220 Section 721... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... benzenesulfonic acid and sulfuric acid (PMNs P-89-703, P-89-755, and P-89-756) are subject to reporting under...

  5. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... amines with a substituted benzenesulfonic acid and sulfuric acid (generic name). 721.9220 Section 721... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... benzenesulfonic acid and sulfuric acid (PMNs P-89-703, P-89-755, and P-89-756) are subject to reporting under...

  6. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... amines with a substituted benzenesulfonic acid and sulfuric acid (generic name). 721.9220 Section 721... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... benzenesulfonic acid and sulfuric acid (PMNs P-89-703, P-89-755, and P-89-756) are subject to reporting under...

  7. SULFURIC ACID REMOVAL PROCESS EVALUATION: LONG-TERM RESULTS

    SciTech Connect

    Gary M. Blythe; Richard McMillan

    2002-07-03

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corp., the Tennessee Valley Authority, and Dravo Lime, Inc. Sulfuric acid controls are becoming of increasing interest to power generators with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NO{sub x} control on many coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project previously tested the effectiveness of furnace injection of four different calcium-and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents were tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide byproduct slurry produced from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization system. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for

  8. Comparison between the single-bubble sonoluminescences in sulfuric acid and in water

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Chen, Weizhong; Gao, Xianxian; Liang, Yue

    2009-02-01

    Single-bubble sonoluminescence (SBSL) is achieved with strong stability in sulfuric acid solutions. Bubble dynamics and the SBSL spectroscopy in the sulfuric acid solutions with different concentrations are studied with phase-locked integral stroboscopic photography method and a spectrograph, respectively. The experimental results are compared with those in water. The SBSL in sulfuric acid is brighter than that in water. One of the most important reasons for that is the larger viscosity of sulfuric acid, which results in the larger ambient radius and thus the more contents of luminous material inside the bubble. However, sonoluminescence bubble’s collapse in sulfuric acid is less violent than that in water, and the corresponding blackbody radiation temperature of the SBSL in sulfuric acid is lower than that in water.

  9. A rotamer energy level study of sulfuric acid.

    PubMed

    Partanen, Lauri; Pesonen, Janne; Sjöholm, Elina; Halonen, Lauri

    2013-10-14

    It is a common approach in quantum chemical calculations for polyatomic molecules to rigidly constrain some of the degrees of freedom in order to make the calculations computationally feasible. However, the presence of the rigid constraints also affects the kinetic energy operator resulting in the frozen mode correction, originally derived by Pesonen [J. Chem. Phys. 139, 144310 (2013)]. In this study, we compare the effects of this correction to several different approximations to the kinetic energy operator used in the literature, in the specific case of the rotamer energy levels of sulfuric acid. The two stable conformers of sulfuric acid are connected by the rotations of the O-S-O-H dihedral angles and possess C2 and Cs symmetry in the order of increasing energy. Our results show that of the models tested, the largest differences with the frozen mode corrected values were obtained by simply omitting the passive degrees of freedom. For the lowest 17 excited states, this inappropriate treatment introduces an increase of 9.6 cm(-1) on average, with an increase of 8.7 cm(-1) in the zero-point energies. With our two-dimensional potential energy surface calculated at the CCSD(T)-F12a/VDZ-F12 level, we observe a radical shift in the density of states compared to the harmonic picture, combined with an increase in zero point energy. Thus, we conclude that the quantum mechanical inclusion of the different conformers of sulfuric acid have a significant effect on its vibrational partition function, suggesting that it will also have an impact on the computational values of the thermodynamic properties of any reactions where sulfuric acid plays a role. Finally, we also considered the effect of the anharmonicities for the other vibrational degrees of freedom with a VSCF-calculation at the DF-MP2-F12/VTZ-F12 level of theory but found that the inclusion of the other conformer had the more important effect on the vibrational partition function.

  10. Detection of the Rotational Spectrum of Sulfoxylic Acid (hosoh)

    NASA Astrophysics Data System (ADS)

    Crabtree, Kyle N.; Martinez, Oscar, Jr.; Barreau, Lou; McCarthy, Michael C.; Thorwirth, Sven

    2013-06-01

    Sulfoxylic acid (HOSOH) is a chemical intermediate that falls roughly midway in the oxidation states of sulfur, between its highly reduced (H_2S) and oxidixed (H_2SO_4) forms. It is likely formed during atmospheric oxidation of anthropogenic and natural sulfur emissions, and might also be produced by UV processing of circumstellar ices. Despite considerable theoretical work, no gas-phase spectra of sulfoxylic acid or any of its structural isomers have previously been observed. We report the detection of the rotational spectra of the C_2 and C_s rotamers of HOSOH using a combination of Fourier transform microwave spectroscopy and microwave-microwave double resonance techniques, guided by new high-level quantum chemical calculations of their structures. The present work enables radioastronomical searches for these species, and also lays the groundwork for further chemical studies of its gas-phase formation and spectroscopic studies of other H_2SO_2 isomers.

  11. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2003-06-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2002 through March 31, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the seventh reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO3 removal results were presented in the semi

  12. Heterogeneous chemical reaction of chlorine nitrate and water on sulfuric-acid surfaces at room temperature

    NASA Technical Reports Server (NTRS)

    Rossi, Michel J.; Malhotra, Ripudaman; Golden, David M.

    1987-01-01

    The use of H2SO4 as a catalyst for aerosol production of chlorine compounds in the chemistry of the antarctic stratosphere was investigated in laboratory trials. The experiments involved the gas surface collision rate of a molecule on a given surface during its residence time in a Knudsen cell in molecular flow conditions. Chlorine nitrate gas was made to flow through a chamber exposed to a container holding a 95.6 pct H2SO4 solution. Gas leaving the cell was scanned with a mass spectrometer. A sticking coefficient of 0.00032 was found for the chlorine nitrate, a value five times that previously reported.

  13. Materials Data on NaH2SO4 (SG:62) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-04-23

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on H2SO4 (SG:14) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on LiH2SO4 (SG:62) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-03-28

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on CaH2(SO4)2 (SG:61) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on BaH2(SO4)2 (SG:19) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Acute exposure to acid fog. Effects on mucociliary clearance

    SciTech Connect

    Laube, B.L.; Bowes, S.M. III; Links, J.M.; Thomas, K.K.; Frank, R. )

    1993-05-01

    Submicrometric sulfuric acid (H2SO4) aerosol can affect mucociliary clearance without eliciting irritative symptoms or changes in pulmonary function. The effect of larger fog droplets containing H2SO4 on mucociliary clearance is unknown. We quantified mucociliary clearance from the trachea (n = 4) and small airways (n = 7) of young healthy male adults after an acute exposure to H2SO4 fog (MMAD = 10.3 microns; pH = 2.0; liquid water content = 481 +/- 65 mg/m3; osmolarity = 30 mOsm). Acid fog (AF) or saline fog (SF) (10.9 microns; 492 +/- 116 mg/m3; 30 mOsm) was administered for 40 min of unencumbered breathing (no mouth-piece) at rest and for 20 min of exercise sufficient to produce oronasal breathing. Fog exposures were followed by a methacholine (MCh) challenge (a measure of airway reactivity) or inhalation of technetium-99M radioaerosol (MMAD = 3.4 microns) on 2 study days each. Changes in symptoms and forced ventilatory function were also assessed. Clearance was quantified from computer-assisted analyses of gamma camera images of the lower respiratory tract in terms of %removal/min of the radiolabel from the trachea 25 min after inhalation and from the outer zone of the right lung after 1.9 to 3 h. Symptoms, forced ventilatory function, and MCh response were unaffected by either fog. Tracheal clearance was more rapid in four of four subjects after AF (0.83 +/- 1.58% removal/min) compared with that after SF (-0.54 +/- 0.85% removal/min). Outer zone clearance was more rapid in six of seven subjects after AF (0.22 +/- 0.15% removal/min) compared with that after SF (0.01 +/- 0.09% removal/min).

  19. Solubility of HBr in sulfuric acid at stratospheric temperatures

    SciTech Connect

    Williams, L.R.; Golden, D.M.; Huestis, D.L.

    1995-04-20

    The solubility of HBr in 54 to 72 wt % sulfuric acid at low temperatures (200 to 240 K) was measured using two different experimental techniques. In the first, the time dependence of the uptake coefficient of HBr was measured in a Knudsen cell reactor and analyzed to give the effective Henry`s law coefficient. In the second, equilibrium vapor pressures of HBr (gas) over solutions containing known concentrations of HBr (dissolved) were measured. The two techniques were in good agreement. Typical values of the effective Henry`s law coefficient at 220 K were 1.5 x 10{sup 7} M/atm for 54 wt %, 2.2 x 10{sup 6} M/atm for 60 wt %, 1.5 x 10{sup 5} M/atm for 66 wt %, and 8.5 x 10{sup 3} M/atm for 72 wt % sulfuric acid. The measured solubilities combined with the stratospheric gas phase concentration of HBr indicate that very little HBr will be dissolved in stratospheric sulfate aerosol particles. 28 refs., 4 figs., 2 tabs.

  20. Laboratory measurements of heterogeneous reactions on sulfuric acid surfaces

    NASA Technical Reports Server (NTRS)

    Williams, Leah R.; Manion, Jeffrey A.; Golden, David M.; Tolbert, Margaret A.

    1994-01-01

    Increasing evidence from field, modeling, and laboratory studies suggests that heterogeneous reactions on stratospheric sulfate aerosol particles may contribute to global ozone depletion. Using a Knudsen cell reactor technique, the authors have studied the uptake, reactivity, and solubility of several trace atmospheric species on cold sulfuric acid surfaces representative of stratospheric aerosol particles. The results suggest that the heterogeneous conversion of N2O5 to HNO3 is fast enough to significantly affect the partitioning of nitrogen species in the global stratosphere and thus contribute to global ozone depletion. The hydrolysis of ClONO2 is slower and unlikely to be important under normal conditions at midlatitudes. The solubilities of HCl and HNO3 in sulfuric acid down to 200 K were found to be quite low. For HCl, this means that little HCl is available for reaction on the surfaces of stratospheric sulfate aerosol particles. The low solubility of HNO3 means that this product of heterogeneous reactions will enter the gas phase, and the denitrification observed in polar regions is unlikely to occur in the global stratosphere.

  1. Friction and wear of nickel in sulfuric acid

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Experiments were conducted with elemental nickel sliding on aluminum oxide in aerated sulfuric acid in concentrations ranging from very dilute (10 -4 N, i.e., 5 ppm) to very concentrated (96 percent) acid. Load and reciprocating sliding speeds were kept constant. With the most dilute concentration (10 -4 N) no observable corrosion occurred in or outside the wear area. This was used as the base condition to determine the high contribution of corrosion to total wear loss at acid concentrations between 0.5 percent (0.1 N) and 75 percent. Corrosion reached a maximum rate of 100 millimeters per year at 30 percent acid. At the same time, general corrosion outside the wear area was very low, in agreement with published information. It is clear that friction and wear greatly accelerated corrosion in the wear area. At dilute concentrations of 0.001 and 0.01 N, corrosion in the wear area was low, and general corrosion outside was also low, but local outside regions in the direction of the wear motion experienced some enhanced corrosion, apparently due to fluid motion of the acid.

  2. The formation of sulfate and elemental sulfur aerosols under varying laboratory conditions: implications for early earth.

    PubMed

    DeWitt, H Langley; Hasenkopf, Christa A; Trainer, Melissa G; Farmer, Delphine K; Jimenez, Jose L; McKay, Christopher P; Toon, Owen B; Tolbert, Margaret A

    2010-10-01

    The presence of sulfur mass-independent fractionation (S-MIF) in sediments more than 2.45 × 10(9) years old is thought to be evidence for an early anoxic atmosphere. Photolysis of sulfur dioxide (SO(2)) by UV light with λ < 220 nm has been shown in models and some initial laboratory studies to create a S-MIF; however, sulfur must leave the atmosphere in at least two chemically different forms to preserve any S-MIF signature. Two commonly cited examples of chemically different sulfur species that could have exited the atmosphere are elemental sulfur (S(8)) and sulfuric acid (H(2)SO(4)) aerosols. Here, we use real-time aerosol mass spectrometry to directly detect the sulfur-containing aerosols formed when SO(2) either photolyzes at wavelengths from 115 to 400 nm, to simulate the UV solar spectrum, or interacts with high-energy electrons, to simulate lightning. We found that sulfur-containing aerosols form under all laboratory conditions. Further, the addition of a reducing gas, in our experiments hydrogen (H(2)) or methane (CH(4)), increased the formation of S(8). With UV photolysis, formation of S(8) aerosols is highly dependent on the initial SO(2) pressure; and S(8) is only formed at a 2% SO(2) mixing ratio and greater in the absence of a reductant, and at a 0.2% SO(2) mixing ratio and greater in the presence of 1000 ppmv CH(4). We also found that organosulfur compounds are formed from the photolysis of CH(4) and moderate amounts of SO(2). The implications for sulfur aerosols on early Earth are discussed. Key Words: S-MIF-Archean atmosphere-Early Earth-Sulfur aerosols.

  3. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    NASA Astrophysics Data System (ADS)

    Huang, B. S.; Yin, W. F.; Sang, D. H.; Jiang, Z. Y.

    2012-10-01

    The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 °C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr5S8 phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  4. A new test procedure for biogenic sulfuric acid corrosion of concrete

    PubMed

    Vincke; Verstichel; Monteny; Verstraete

    1999-01-01

    A new test method is described for biogenic sulfuric acid corrosion of concrete, more specifically in sewer conditions. The aim of the new test method is the development of an accelerated and reproducible procedure for monitoring the resistance of different types of concrete with regard to biogenic sulfuric acid corrosion. This experimental procedure reflects worst case conditions by providing besides H2S, also an enrichment of thiobacilli and biologically produced sulfur. By simulating the cyclic processes occurring in sewer pipes, significant differences between concrete mixtures could be detected after 51 days. Concrete modified by a styrene-acrylic ester polymer demonstrated a higher resistance against biogenic sulfuric acid attack.

  5. Sulfur redox reactions: Hydrocarbons, native sulfur, Mississippi Valley-type deposits, and sulfuric acid karst in the Delaware Basin, New Mexico and Texas

    SciTech Connect

    Hill, C.A.

    1995-02-01

    Hydrocarbons, native sulfur, Mississippi Valley-type (MVT) deposits, and sulfuric acid karst in the Delaware Basin, southeastern New Mexico, and west Texas, USA, are all genetically related through a series of sulfur redox reactions. The relationship began with hydrocarbons in the basin that reacted with sulfate ions from evaporite rock to produce isotopically light ({delta}{sup 34}S = -22 to -12) H{sub 2}S and bioepigenetic limestone (castiles). This light H{sub 2}S was then oxidized at the redox interface to produce economic native sulfur deposits ({delta}{sup 34}S = -15 to +9) in the castiles, paleokarst, and along graben-boundary faults. This isotopically light H{sub 2}S also migrated from the basin into its margins to accumulate in structural (anticlinal) and stratigraphic (Yates siltstone) traps, where it formed MVT deposits within the zone of reduction ({delta}{sup 34}S = -15 to +7). Later in time, in the zone of oxidation, this H{sub 2}S reacted with oxygenated water to produce sulfuric acid, which dissolved the caves (e.g., Carlsbad Cavern and Lechuguilla Cave, Guadalupe Mountains). Massive gypsum blocks on the floors of the caves ({delta}{sup 34}S = -25 to +4) were formed as a result of this reaction. The H{sub 2}S also produced isotopically light cave sulfur ({delta}{sup 34}S = -24 to -15), which is now slowly oxidizing to gypsum in the presence of vadose drip water. 16 refs., 10 figs.

  6. Thin-film sulfuric acid anodizing as a replacement for chromic acid anodizing

    NASA Technical Reports Server (NTRS)

    Kallenborn, K. J.; Emmons, J. R.

    1995-01-01

    Chromic acid has long been used to produce a thin, corrosion resistant (Type I) coating on aluminum. Following anodizing, the hardware was sealed using a sodium dichromate solution. Sealing closes up pores inherent in the anodized coating, thus improving corrosion resistance. The thinness of the brittle coating is desirable from a fatigue standpoint, and chromium was absorbed by the coating during the sealing process, further improving corrosion resistance. Unfortunately, both chromic acid and sodium dichromate contain carcinogenic hexavalent chromium. Sulfuric acid is being considered as a replacement for chromic acid. Sulfuric acid of 10-20 percent concentration has traditionally been used to produce relatively thick (Types II and III) or abrasion resistant (Type III) coatings. A more dilute, that is five weight percent, sulfuric acid anodizing process, which produces a thinner coating than Type II or III, with nickel acetate as the sealant has been developed. The process was evaluated in regard to corrosion resistance, throwing power, fatigue life, and processing variable sensitivity, and shows promise as a replacement for the chromic acid process.

  7. Unexpectedly acidic nanoparticles formed in dimethylamine-ammonia-sulfuric-acid nucleation experiments at CLOUD

    NASA Astrophysics Data System (ADS)

    Lawler, Michael J.; Winkler, Paul M.; Kim, Jaeseok; Ahlm, Lars; Tröstl, Jasmin; Praplan, Arnaud P.; Schobesberger, Siegfried; Kürten, Andreas; Kirkby, Jasper; Bianchi, Federico; Duplissy, Jonathan; Hansel, Armin; Jokinen, Tuija; Keskinen, Helmi; Lehtipalo, Katrianne; Leiminger, Markus; Petäjä, Tuukka; Rissanen, Matti; Rondo, Linda; Simon, Mario; Sipilä, Mikko; Williamson, Christina; Wimmer, Daniela; Riipinen, Ilona; Virtanen, Annele; Smith, James N.

    2016-11-01

    New particle formation driven by acid-base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas-phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas-phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10-30 nm VMD particles. This behavior is not consistent with present nanoparticle physicochemical models, which predict a higher dimethylaminium fraction when NH3 and DMA are present at similar gas-phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base : acid ratios lower than 1 : 1. The lowest base fractions were found in particles below 15 nm VMD, with a strong size-dependent composition gradient. The reasons for the very acidic composition remain uncertain, but a plausible explanation is that the particles did not reach thermodynamic equilibrium with respect to the bases due to rapid heterogeneous conversion of SO2 to sulfate. These results indicate that sulfuric acid does not require stabilization by ammonium or dimethylaminium as acid-base pairs in particles as small as 10 nm.

  8. Dilute sulfuric acid pretreatment of transgenic switchgrass for sugar production.

    PubMed

    Zhou, Xu; Xu, Jiele; Wang, Ziyu; Cheng, Jay J; Li, Ruyu; Qu, Rongda

    2012-01-01

    Conventional Alamo switchgrass and its transgenic counterparts with reduced/modified lignin were subjected to dilute sulfuric acid pretreatment for improved sugar production. At 150 °C, the effects of acid concentration (0.75%, 1%, 1.25%) and residence time (5, 10, 20, 30 min) on sugar productions in pretreatment and enzymatic hydrolysis were investigated, with the optimal pretreatment conditions determined for each switchgrass genotype based on total sugar yield and the amounts of sugar degradation products generated during the pretreatment. The results show that genetic engineering, although did not cause an appreciable lignin reduction, resulted in a substantial increase in the ratio of acid soluble lignin:acid insoluble lignin, which led to considerably increased sugar productions in both pretreatment and enzymatic hydrolysis. At an elevated threshold concentration of combined 5-hydroxyfuranmethal and furfural (2.0 g/L), the overall carbohydrate conversions of conventional switchgrass and its transgenic counterparts, 10/9-40 and 11/5-47, reached 75.9%, 82.6%, and 82.2%, respectively.

  9. Emission characteristics of nitrogen- and sulfur-containing odorous compounds during different sewage sludge chemical conditioning processes.

    PubMed

    Liu, Huan; Luo, Guang-Qian; Hu, Hong-Yun; Zhang, Qiang; Yang, Jia-Kuan; Yao, Hong

    2012-10-15

    Chemical conditioners are often used to enhance sewage sludge dewaterability through altering sludge properties and flocs structure, both affect odorous compounds emissions not only during sludge conditioning but also in subsequent sludge disposal. This study was to investigate emission characteristics of ammonia (NH(3)), sulfur dioxide (SO(2)), hydrogen sulfide (H(2)S) and carbonyl sulfide (COS) generated from sewage sludge conditioned by three representative conditioners, i.e., organic polymers, iron salts and skeleton builders, F-S (Fenton's reagent and skeleton builders) composite conditioner. The results demonstrate that polyacrylamide (PAM) has an insignificant effect on emission characteristics of nitrogen- and sulfur-containing odorous compounds, because the properties, sulfur and nitrogen speciations are similar in PAM-conditioned sludge and raw sludge (RS). Significant increases of SO(2) and H(2)S emissions in the H(2)SO(4) conditioning process were observed due to the accelerated decomposition of sulfur-containing amino acids in acidic environment. Fenton peroxidation facilitates the formation of COS. CaO can reduce sulfur-containing gases emission via generation of calcium sulfate. However, under strong alkaline conditions, free ammonia or protonated amine in sludge can be easily converted to volatile ammonia, resulting in a significant release of NH(3).

  10. 40 CFR 721.7770 - Alkylphenoxypoly(oxyethylene) sulfuric acid ester, substituted amine salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.7770 Alkylphenoxypoly(oxyethylene) sulfuric acid...) The chemical substance identified as alkyl phenoxypoly(oxyethylene) sulfuric acid ester, substituted... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylphenoxypoly(oxyethylene)...

  11. 40 CFR 721.7770 - Alkylphenoxypoly(oxyethylene) sulfuric acid ester, substituted amine salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.7770 Alkylphenoxypoly(oxyethylene) sulfuric acid...) The chemical substance identified as alkyl phenoxypoly(oxyethylene) sulfuric acid ester, substituted... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkylphenoxypoly(oxyethylene)...

  12. 40 CFR 721.7770 - Alkylphenoxypoly(oxyethylene) sulfuric acid ester, substituted amine salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.7770 Alkylphenoxypoly(oxyethylene) sulfuric acid...) The chemical substance identified as alkyl phenoxypoly(oxyethylene) sulfuric acid ester, substituted... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkylphenoxypoly(oxyethylene)...

  13. 40 CFR 721.7770 - Alkylphenoxypoly(oxyethylene) sulfuric acid ester, substituted amine salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.7770 Alkylphenoxypoly(oxyethylene) sulfuric acid...) The chemical substance identified as alkyl phenoxypoly(oxyethylene) sulfuric acid ester, substituted... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkylphenoxypoly(oxyethylene)...

  14. 40 CFR 721.7770 - Alkylphenoxypoly(oxyethylene) sulfuric acid ester, substituted amine salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.7770 Alkylphenoxypoly(oxyethylene) sulfuric acid...) The chemical substance identified as alkyl phenoxypoly(oxyethylene) sulfuric acid ester, substituted... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylphenoxypoly(oxyethylene)...

  15. What Is the Boiling Point and Heat of Vaporization of Sulfuric Acid?

    ERIC Educational Resources Information Center

    Myers, R. Thomas

    1983-01-01

    Discusses the values presented in various handbooks for the boiling point and heat of vaporization of sulfuric acid, noting discrepencies. Analyzes various approaches to data presentation, discussing the data on sulfuric acid in light of the Trouton constant. Points out the need for a more critical use of tables. (JM)

  16. Correlation of Sulfuric Acid Hydrate Abundance with Charged Particle Flux at the Surface of Europa

    NASA Astrophysics Data System (ADS)

    Dalton, James B.; Paranicas, C. P.; Cassidy, T. A.; Shirley, J. H.

    2010-10-01

    The trailing hemisphere of Jupiter's moon Europa is bombarded by charged particles trapped within Jupiter's magnetosphere. Sulfur ion implantation and impacting energetic electrons strongly affect the surface chemistry of Europa. Understanding these processes is important for disentangling the extrinsic and intrinsic components of Europa's surface chemistry. In the sulfur cycle model of Carlson et al. (Science 286, 97, 1999), hydrated sulfuric acid represents the dominant reaction product of radiolytic surface modification processes on Europa. In recent compositional investigations employing linear mixture modeling, Dalton et al. (LPSC XV, #2511, 2009) and Shirley et al. (Icarus, in press, 2010) document a well-defined gradient of hydrated sulfuric acid abundance for a study area spanning the leading side - trailing side boundary in Argadnel Regio. Sulfuric acid hydrate abundance in this region increases toward the trailing side apex. Here we compare the derived sulfuric acid hydrate abundances at 41 locations on Europa's surface with independent model results describing 1) the sulfur ion flux (Hendrix et al., 2010, in preparation), and 2) the energetic electron flux, at the same locations. We improve upon the prior calculation of electron energy into the surface of Paranicas et al. (2009, in Europa, U. Arizona, p529; Pappalardo, McKinnon, & Khurana eds.) by incorporating a realistic pitch angle dependence of the distribution. While the sulfur ion implantation and electron energy deposition model distributions differ in important details, both show trailing side gradients similar to that found for the sulfuric acid hydrate. Correlation coefficients exceed 0.9 in comparisons of each of these models with the sulfuric acid hydrate distribution. Our results support models in which the electron energy flux drives reactions that utilize implanted sulfur to produce sulfuric acid hydrate. This work was performed at the California Institute of Technology-Jet Propulsion

  17. The Other Chemistry of the Jovian Icy Satellites - Low Energy and Sulfurous

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie L.; Loeffler, M. J.; Moore, M. H.

    2010-01-01

    Spectra of Jupiter's icy satellites reveal surfaces dominated by H2O-ice with minor amounts of SO2 and other materials. The co-existence of H2O and SO2 in surfaces exposed to jovian magnetospheric radiation suggests that sulfuric acid (H2SO4) also could be present. This was noted by Carlson et al. (1999), who supported this suggestion with assignments of near-IR bands in Europa spectra to hydrated H2SO4. Laboratory experiments since have demonstrated radiolytically-driven syntheses in S- and SO2-containing H2O-Ices (Carlson et al., 2002; Moore et al., 2006). In the Cosmic Ice Laboratory, we recently have investigated the thermal chemistry of SO2 trapped in H2O-ice. IR spectra of H2O + SO2 mixtures recorded at 10 to 230 K were used to follow low-temperature reactions in the absence of radiation effects. No SO2 reactions were found at 10 K, but warming to more-relevant Europa temperatures produced both HSO3(-) and S2O5(2-). Added NH3 shifted the product composition toward SO3(2-) and away from the other ions. We find that H2O and SO2 react to produce sulfur oxyanions, such as bisulfite, that as much as 30% of the SO2 can be consumed through this reaction, and that the products remain in the ice when the temperature is lowered, indicating that these reactions are irreversible. Our results suggest that thermally-induced reactions can alter the chemistry at and below the surfaces of the icy satellites in the jovian system.

  18. Sulfuric acid leaching kinetics of South African chromite

    NASA Astrophysics Data System (ADS)

    Zhao, Qing; Liu, Cheng-jun; Shi, Pei-yang; Zhang, Bo; Jiang, Mao-fa; Zhang, Qing-song; Zevenhoven, Ron; Saxén, Henrik

    2015-03-01

    The sulfuric acid leaching kinetics of South African chromite was investigated. The negative influence of a solid product layer constituted of a silicon-rich phase and chromium-rich sulfate was eliminated by crushing the chromite and by selecting proper leaching conditions. The dimensionless change in specific surface area and the conversion rate of the chromite were observed to exhibit a proportional relationship. A modified shrinking particle model was developed to account for the change in reactive surface area, and the model was fitted to experimental data. The resulting model was observed to describe experimental findings very well. Kinetics analysis revealed that the leaching process is controlled by a chemical reaction under the employed experimental conditions and the activation energy of the reaction is 48 kJ·mol-1.

  19. A Demonstration of Acid Rain and Lake Acidification: Wet Deposition of Sulfur Dioxide.

    ERIC Educational Resources Information Center

    Goss, Lisa M.

    2003-01-01

    Introduces a science demonstration on the dissolution of sulfuric oxide emphasizing the concept of acid rain which is an environmental problem. Demonstrates the acidification from acid rain on two lake environments, limestone and granite. Includes safety information. (YDS)

  20. Health effects of air pollutants: Sulfuric acid, the old and the new

    SciTech Connect

    Amdur, M.O. )

    1989-05-01

    Data from exposure of experimental animals and human subjects to sulfuric acid presents a consistent picture of its toxicology. Effects on airway resistance in asthmatic subjects were well predicted by data obtained on guinea pigs. Sulfuric acid increases the irritant response to ozone in both rats and man. In donkeys, rabbits, and human subjects, sulfuric acid alters clearance of particles from the lung in a similar manner. These changes resemble those produced by cigarette smoke and could well lead to chronic bronchitis. Data obtained on guinea pigs indicate that very small amounts of sulfuric acid on the surface of ultrafine metal oxide aerosols produce functional, morphological, and biochemical pulmonary effects. Such particles are typical of those emitted from coal combustion and smelting operations. Sulfate is an unsatisfactory surrogate in existing epidemiology studies. Sulfuric acid measurement is a critical need in such studies. 31 references.

  1. Heterogeneous Chemistry of HO2NO2 on Liquid Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    1995-01-01

    The interaction of HO2NO2 (peroxynitric acid, PNA) vapor with liquid sulfuric acid surfaces was investigated for the acid contents ranging from 50 to 70 wt % and over a temperature range from 205 to 230 K, using a fast flow-reactor coupled to a chemical ionization mass spectrometer. PNA was observed to be physically taken up by liquid sulfuric acid, without undergoing irreversible aqueous phase reactions.

  2. Tungstate sulfuric acid (TSA)/KMnO4 as a novel heterogeneous system for rapid deoximation.

    PubMed

    Karami, Bahador; Montazerozohori, Morteza

    2006-09-28

    Neat chlorosulfonic acid reacts with anhydrous sodium tungstate to give tungstate sulfuric acid (TSA), a new dibasic inorganic solid acid in which two sulfuric acid molecules connect to a tungstate moiety via a covalent bond. A variety of oximes were oxidized to their parent carbonyl compounds under mild conditions with excellent yields in short times by a heterogeneous wet TSA/KMnO4 in dichloromethane system.

  3. HTR Fuel Waste Management: TRISO separation and acid-graphite intercalation compounds preparation

    NASA Astrophysics Data System (ADS)

    Guittonneau, Fabrice; Abdelouas, Abdesselam; Grambow, Bernd

    2010-12-01

    Considering the need to reduce waste production and greenhouse emissions and still keeping high energy efficiency, various 4th generation nuclear energy systems have been proposed. As far as graphite-moderated reactors are concerned (future high temperature fast or thermal reactors), one of the key issues is the large volumes of irradiated graphite encountered. With the objective to reduce volume of waste in the HTR concept, it is very important to be able to separate the fuel from low level activity graphite representing a large volume. The separated TRISO particles can then be reprocessed for waste separation or disposed off in geological repository. In addition, preparation of acid-GICs from the separated graphite may constitute a way to recycle this waste. We used HTR-type compact fuel with ZrO 2 TRISO particles to test two separation methods: low (H 2SO 4 + H 2O 2) and high (H 2SO 4 + HNO 3) temperature acid treatments. In both cases the TRISO separation was complete but some TRISO layers oxidized at high temperature. At low temperature, the desegregation of graphite grains is facilitated by intercalation of sulfuric acid between the graphene layers. The acid-GIC obtained consists of pure phases of high quality suggesting their potential industrial recycling.

  4. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.

    PubMed

    Liu, Chao; Li, Bin; Du, Haishun; Lv, Dong; Zhang, Yuedong; Yu, Guang; Mu, Xindong; Peng, Hui

    2016-10-20

    In this work, nanocellulose was extracted from bleached corncob residue (CCR), an underutilized lignocellulose waste from furfural industry, using four different methods (i.e. sulfuric acid hydrolysis, formic acid (FA) hydrolysis, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and pulp refining, respectively). The self-assembled structure, morphology, dimension, crystallinity, chemical structure and thermal stability of prepared nanocellulose were investigated. FA hydrolysis produced longer cellulose nanocrystals (CNCs) than the one obtained by sulfuric acid hydrolysis, and resulted in high crystallinity and thermal stability due to its preferential degradation of amorphous cellulose and lignin. The cellulose nanofibrils (CNFs) with fine and individualized structure could be isolated by TEMPO-mediated oxidation. In comparison with other nanocellulose products, the intensive pulp refining led to the CNFs with the longest length and the thickest diameter. This comparative study can help to provide an insight into the utilization of CCR as a potential source for nanocellulose production.

  5. ELECTROLYTIC CORROSION OF GOLD AND THE FORMATION OF Au//2(SO//4)//3 IN CONCENTRATED SULFURIC ACID.

    USGS Publications Warehouse

    Senftle, Frank E.; Wright, Donald B.

    1985-01-01

    The authors have examined the direct anodic oxidation of gold in concentrated H//2SO//4 to more fully understand the chemical reactions. Au//2(SO//4)//3 is unstable and cannot be isolated for chemical analysis, but our experiments are consistent with the formation of Au//2(SO//4)//3 in concentrated H//2SO//4, in which it is stable. Equations describing chemical reactions which are compatible with the experimental data are presented.

  6. Suicidal carbon monoxide poisoning by combining formic acid and sulfuric acid within a confined space.

    PubMed

    Lin, Peter T; Dunn, William A

    2014-01-01

    Suicide by inhalation of carbon monoxide produced by mixing formic acid and sulfuric acid within a confined space is a rare method of suicide. This method is similar to the so-called "detergent suicide" method where an acid-based detergent is mixed with a sulfur source to produce hydrogen sulfide. Both methods produce a toxic gas that poses significant hazards for death investigators, first responders and bystanders. Carbon monoxide is an odorless gas, while hydrogen sulfide has a characteristic rotten eggs odor, so the risks associated with carbon monoxide are potentially greater due to lack of an important warning signal. While detergent suicides have become increasingly common in the USA, suicide with formic acid and sulfuric acid is rare with only three prior cases being reported. Greater awareness of this method among death investigators is warranted because of the special risks of accidental intoxication by toxic gas and the possibility that this method of suicide will become more common in the future.

  7. [Investigation on formation mechanism of secologanic acid sulfonates in sulfur-fumigated buds of Lonicera japonica].

    PubMed

    Guo, Ai-Li; Gao, Hui-Min; Chen, Liang-Mian; Zhang, Qi-Wei; Wang, Zhi-Min

    2014-05-01

    To investigate formation mechanism of secologanic acid sulfonates in sulfur-fumigated buds of Lonicera japonica, secologanic acid was enriched and purified from the sun-dried buds of L. japonica by various column chromatography on macroporus resin HPD-100, silica gel and ODS. The stimulation experiments of sulfur-fumigation process were carried out using secologanic acid reacted with SO2 in the aqueous solution. The reaction mechanism could be involved in the esterification or addition reaction. The present investigation provides substantial evidences for interpreting formation pathway of secologanic acid sulfonates in sulfur-fumigated buds of L. japonica.

  8. Benefits of the stirred, autorefrigerated reactor in sulfuric acid alkylation

    SciTech Connect

    Ackerman, S.; Lerner, H.; Zaczepinski, S.

    1996-12-01

    Alkylation is a process which combines propylenes, butylenes, and pentylenes with isobutane in the presence of an acid catalyst (H{sub 2}SO{sub 4} or HF) to produce a premium quality gasoline blendstock. The alkylation process was developed in the late 1930`s and processing capacity grew tremendously during World War II in response to demand for aviation gasoline. Since that time, alkylation capacity has steadily grown to supply an important motor gasoline component. Now, more than 50 years later, alkylation is in the spotlight again for reformulated gasoline. Alkylate is a high octane, low sensitivity, low RVP, totally paraffinic material which represents the ideal blendstock for modern gasoline manufacture. Two types of modern reactor systems are currently offered for license to the refining industry for sulfuric acid alkylation. These are the stirred, autorefrigerated system offered by Exxon Research and Engineering (ERE) and the indirect, or effluent refrigerated system offered by others. By means of a case study example, this paper discusses the autorefrigerated reaction system and its benefits.

  9. Strong Hydrogen Bonded Molecular Interactions between Atmospheric Diamines and Sulfuric Acid.

    PubMed

    Elm, Jonas; Jen, Coty N; Kurtén, Theo; Vehkamäki, Hanna

    2016-05-26

    We investigate the molecular interaction between methyl-substituted N,N,N',N'-ethylenediamines, propane-1,3-diamine, butane-1,4-diamine, and sulfuric acid using computational methods. Molecular structure of the diamines and their dimer clusters with sulfuric acid is studied using three density functional theory methods (PW91, M06-2X, and ωB97X-D) with the 6-31++G(d,p) basis set. A high level explicitly correlated CCSD(T)-F12a/VDZ-F12 method is used to obtain accurate binding energies. The reaction Gibbs free energies are evaluated and compared with values for reactions involving ammonia and atmospherically relevant monoamines (methylamine, dimethylamine, and trimethylamine). We find that the complex formation between sulfuric acid and the studied diamines provides similar or more favorable reaction free energies than dimethylamine. Diamines that contain one or more secondary amino groups are found to stabilize sulfuric acid complexes more efficiently. Elongating the carbon backbone from ethylenediamine to propane-1,3-diamine or butane-1,4-diamine further stabilizes the complex formation with sulfuric acid by up to 4.3 kcal/mol. Dimethyl-substituted butane-1,4-diamine yields a staggering formation free energy of -19.1 kcal/mol for the clustering with sulfuric acid, indicating that such diamines could potentially be a key species in the initial step in the formation of new particles. For studying larger clusters consisting of a diamine molecule with up to four sulfuric acid molecules, we benchmark and utilize a domain local pair natural orbital coupled cluster (DLPNO-CCSD(T)) method. We find that a single diamine is capable of efficiently stabilizing sulfuric acid clusters with up to four acid molecules, whereas monoamines such as dimethylamine are capable of stabilizing at most 2-3 sulfuric acid molecules.

  10. An Investigation of the Acid Rock Drainage Generation from the Road Cut Slope in the Middle Part of South Korea

    NASA Astrophysics Data System (ADS)

    Ji, S.; Cheong, Y.; Yim, G.

    2006-05-01

    To examine the Acid Rock Drainage (ARD) generation from the road cut slope, a prediction study including Acid-Base Accounting (ABA) test and Net Acid Generation (NAG) test was performed for road cut rock samples (20 samples) at the new construction site of a highway in the middle part of South Korea. This slope is composed of slate and phyllite. It was a pit wall which was operated as a quarry which produced materials for roofing. pH1:2 and EC1:2 measurements were performed to evaluate free hydrogen ion contents and salts in samples. ABA test was performed to estimate the balance of the acid generating minerals (mainly pyrite) and the acid neutralizing minerals (mainly carbonates) in rock samples. Total sulfur was analyzed by sulfur analyzer, and then the maximum potential acidity (MPA, kg H2SO4/t) was calculated. X-ray diffraction (XRD) analysis was performed to identify the mineral composition of rock samples. Acid neutralizing capacity (ANC) test, after the Sobek et al. (1978), was performed to estimate the amount of acid originated from the oxidation of sulfide minerals. NAPP (Net Acid Producing Potential) was calculated by total sulfur (MPA) and ANC. NAG test was performed with grounded samples and 15 % hydrogen peroxide, and then NAG was analyzed by measuring pH (NAGpH) of the mixed solution. pH1:2 and EC1:2 ranged from 2.95 to 7.23 and 17.1 to 3070.0 ¥ìS/cm, respectively. MPA of samples was ranged from 0.0 to 79.9 kg H2SO4/t. From the XRD analysis pyrite was found at the most samples. In the sample from highly weathered dike, goethite was found. Results of the ANC tests indicated that the value of ANC reached up to 59.36 kg H2SO4/t. Rock samples could be classified as Potential Acid Forming rock (PAF) and Non- Acid Forming rock (NAF) by plotting NAPP versus NAGpH. In this study 17 samples were classified as PAF rock. It means that this slope would generate ARD when they reacted with rain. Two samples were grouped as NAF. By application this ARD prediction

  11. Pt/TiO2 (Rutile) Catalysts for Sulfuric Acid Decomposition in Sulfur-Based Thermochemical Water-Splitting Cycles

    SciTech Connect

    L. M. Petkovic; D. M. Ginosar; H. W. Rollins; K. C. Burch; P. J. Pinhero; H. H. Farrell

    2008-04-01

    Thermochemical cycles consist of a series of chemical reactions to produce hydrogen from water at lower temperatures than by direct thermal decomposition. All the sulfur-based cycles for water splitting employ the sulfuric acid decomposition reaction. This work reports the studies performed on platinum supported on titania (rutile) catalysts to investigate the causes of catalyst deactivation under sulfuric acid decomposition reaction conditions. Samples of 1 wt% Pt/TiO2 (rutile) catalysts were submitted to flowing concentrated sulfuric acid at 1123 K and atmospheric pressure for different times on stream (TOS) between 0 and 548 h. Post-operation analyses of the spent catalyst samples showed that Pt oxidation and sintering occurred under reaction conditions and some Pt was lost by volatilization. Pt loss rate was higher at initial times but total loss appeared to be independent of the gaseous environment. Catalyst activity showed an initial decrease that lasted for about 66 h, followed by a slight recovery of activity between 66 and 102 h TOS, and a period of slower deactivation after 102 h TOS. Catalyst sulfation did not seem to be detrimental to catalyst activity and the activity profile suggested that a complex dynamical situation involving platinum sintering, volatilization, and oxidation, along with TiO2 morphological changes affected catalyst activity in a non-monotonic way.

  12. Ethanol production from cotton gin trash using optimised dilute acid pretreatment and whole slurry fermentation processes.

    PubMed

    McIntosh, S; Vancov, T; Palmer, J; Morris, S

    2014-12-01

    Cotton ginning trash (CGT) collected from Australian cotton gins was evaluated for bioethanol production. CGT composition varied between ginning operations and contained high levels of extractives (26-28%), acid-insoluble material (17-22%) and holocellulose (42-50%). Pretreatment conditions of time (4-20 min), temperature (160-220 °C) and sulfuric acid concentration (0-2%) were optimised using a central composite design. Response surface modelling revealed that CGT fibre pretreated at 180 °C in 0.8% H2SO4 for 12 min was optimal for maximising enzymatic glucose recoveries and achieved yields of 89% theoretical, whilst the total accumulated levels of furans and acetic acid remained relatively low at <1 and 2 g/L respectively. Response surface modelling also estimated maximum xylose recovery in pretreated liquors (87% theoretical) under the set conditions of 150 °C in 1.9% H2SO4 for 23.8 min. Yeast fermentations yielded high ethanol titres of 85%, 88% and 70% theoretical from glucose generated from: (a) enzymatic hydrolysis of washed pretreated fibres, (b) enzymatic hydrolysis of whole pretreated slurries and (c) simultaneous saccharification fermentations, respectively.

  13. Sulfuric acid karst and its relationship to hydrocarbon reservoir porosity, native sulfur deposits, and the origin of Mississippi Valley-type ore deposits

    SciTech Connect

    Hill, C.A. , Albuquerque, NM )

    1993-03-01

    The Delaware Basin of southeastern New Mexico and West Texas contains hydrocarbons and native sulfur in the basin and sulfuric acid-formed caves and Mississippi Valley-type (MVT) ore deposits around the margins of the basin. Hydrocarbons reacting with sulfate evaporite rock produced hydrogen sulfide gas, which gas oxidized to native sulfur in the basin and which gas also migrated from basin to reef and accumulated there in structural and stratigraphic traps. In the reduced zone of the carbonate reef margin the H[sub 2]S combined with metal-chloride complexes to form MVTs, and in the oxidized zone later in time the H[sub 2]S formed sulfuric acid which dissolved out the famous caves of the region (e.g., Carlsbad Cavern, Lechuguilla Cave). Sulfuric acid karst can be recognized by the discontinuity, large size, and spongework nature of its cave passages, and by the presence of native sulfur, endellite, and large gypsum deposits within these caves. Sulfuric acid oilfield karst refers to cavernous porosity filled with hydrocarbons and can be produced by the mixing of waters of different H[sub 2]S content or by the oxidation of H[sub 2]S to sulfuric acid. Sulfur and carbon-oxygen isotopes have been used to establish and trace the sequence of related hydrocarbon, sulfur, MVT, and karst events in the Delaware Basin.

  14. Amine Reactivity with Nanoclusters of Sulfuric Acid and Ammonia

    NASA Astrophysics Data System (ADS)

    Johnston, M. V.; Bzdek, B. R.; DePalma, J.

    2011-12-01

    Alkyl amines have emerged as key species in new particle formation and growth. This interest is reinforced by ambient measurements of amines (e.g. Smith et al., 2010) and enhanced levels of nitrogen (e.g. Bzdek et al., 2011) during growth of newly formed particles. An important mechanism of amine uptake is aminium salt formation, either by substituting for ammonium ions that already exist in the particle or by opening new channels for salt formation that are not favorable with ammonia. This presentation will focus on recent experimental and computational work in our group to study amine uptake into charged nanoclusters of sulfuric acid and ammonia. In the experimental work, clusters are produced by electrospray of an ammonium sulfate solution and then drawn into a Fourier transform ion cyclotron resonance mass spectrometer where a specific cluster is isolated and exposed to amine vapor. We find that amine reactivity is dependent on the size, composition and charge of the isolated cluster. For small clusters of either polarity, all ammonium ions reside on the surface and amine substitution occurs with near unit reaction probability. As the cluster size increases, an ammonium ion can be encapsulated in the center of the cluster, which provides a steric hindrance to amine substitution. Negatively charged clusters are more likely to be acidic than positively charged clusters. For acidic clusters, incoming amine molecules first substitute for preexisting ammonium ions and then add to the cluster until a "neutralized" aminium bisulfate composition is reached. Computational studies of these clusters provide fundamental insight into the thermodynamics and kinetics of amine uptake.

  15. Mechanisms of volatile production from non-sulfur amino acids by irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Dong Uk; Lee, Eun Joo; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang

    2016-02-01

    Non-sulfur amino acid monomers were used to study the mechanisms of volatile production in meat by irradiation. Irradiation not only produced many volatiles but also increased the amounts of volatiles from non-sulfur amino acid monomers. The major reaction mechanisms involved in volatile production from each group of the amino acids by irradiation differ significantly. However, we speculate that the radiolysis of amino acid side chains were the major mechanism. In addition, Strecker degradation, especially the production of aldehydes from aliphatic group amino acids, and deamination, isomerization, decarboxylation, cyclic reaction and dehydrogenation of the initial radiolytic products were also contributed to the production of volatile compounds. Each amino acid monomers produced different odor characteristics, but the intensities of odor from all non-sulfur amino acid groups were very weak. This indicated that the contribution of volatiles produced from non-sulfur amino acids was minor. If the volatile compounds from non-sulfur amino acids, especially aldehydes, interact with other volatiles compounds such as sulfur compounds, however, they can contribute to the off-odor of irradiated meat significantly.

  16. The Measurement of Sulfur Oxidation Products and Their Role in Homogeneous Nucleation

    NASA Technical Reports Server (NTRS)

    Eisele, F. L.

    1997-01-01

    The loss rate of H2SO4 vapor onto submicron particles was measured for three different particle substrates. The experimental technique involved direct flow tube measurements of H2SO4 decay rates onto a polydisperse aerosol using chemical ionization mass spectroscopic detection. The aerosols of this study were partially hydrated crystalline salts with diameters in the size range of 20 to 400 nm. The mass accommodation coefficients, a, were calculated from the first-order rate constants for H2SO4 loss to be 0.73 + 0.21 and 0.79 + 0.23 for loss onto (NH4)2SO4 and NaCl, respectively. Measurements of the loss rate of H2SO4 onto a NaCl aerosol coated with stearic acid resulted in lower mass accommodation coefficients with values of 0.31 and 0.19 for aerosol with high and low stearic acid coverage, respectively. The observed decrease in a on an aerosol with a hydrocarbon coating suggests that aerosol composition is a key factor in H2SO4 adsorption on to a particle surface.

  17. Sulfuric acid-methanol electrolytes as an alternative to sulfuric-hydrofluoric acid mixtures for electropolishing of niobium

    SciTech Connect

    Zhao, Xin; Corcoran, Sean G.; Kelley, Michael J.

    2011-06-01

    Attainment of the greatest possible interior surface smoothness is critical to meeting the performance demands placed upon niobium superconducting radiofrequency (SRF) accelerator cavities by next generation projects. Electropolishing with HF-H{sub 2}SO{sub 4} electrolytes yields cavities that meet SRF performance goals, but a less-hazardous, more environmentally-friendly process is desirable. Reported studies of EP on chemically-similar tantalum describe the use of sulfuric acid-methanol electrolytes as an HF-free alternative. Reported here are the results of experiments on niobium samples with this electrolyte. Voltammetry experiments indicate a current plateau whose voltage range expands with increasing acid concentration and decreasing temperature. Impedance spectroscopy indicates that a compact salt film is responsible for the current plateau. Equivalent findings in electropolishing chemically-similar tantalum with this electrolyte were interpreted due to as mass transfer limitation by diffusion of Ta ions away from the anode surface. We infer that a similar mechanism is at work here. Conditions were found that yield leveling and brightening comparable to that obtained with HF-H{sub 2}SO{sub 4} mixtures.

  18. Sulfur Dioxide and the Production of Sulfuric Acid on Present-Day and Early Mars: Implications for the Lack of Detected Carbonates on the Surface

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Summers, Michael E.

    2008-01-01

    In the early history of Mars, volcanic activity associated with the formation of the Tharsis ridge produced a very large amount of atmospheric SO2--on the order of a bar of atmospheric SO2. In the present-day atmosphere of Mars, the lifetime of SO2 is relatively short with a lifetime of less than a day. The short lifetime of SO2 in the present Mars atmosphere makes the production of significant levels of H2SO4 very difficult since the SO2 may be destroyed by various chemical and photochemical processes before the SO2 can be converted to H2SO4. However, photochemical calculations performed and described here, indicate that enhanced atmospheric levels of CO2 in the early atmosphere of Mars resulted in a significantly enhanced atmospheric lifetime for SO2 up to several years. With a significantly enhanced atmospheric lifetime, SO2 could readily form large amounts of H2SO4, which precipitated out of the atmosphere in the form of droplets. The precipitated H2SO4 then reacted with potential surface carbonates, destroying the carbonates and resulting in the abundant and widespread distribution of sulfates on the surface of Mars as detected by recent Mars missions.

  19. Theoretical study of ultraviolet induced photodissociation dynamics of sulfuric acid

    NASA Astrophysics Data System (ADS)

    Murakami, Tatsuhiro; Ohta, Ayumi; Suzuki, Tomoya; Ikeda, Kumiko; Danielache, Sebastian O.; Nanbu, Shinkoh

    2015-05-01

    Photodissociation dynamics of sulfuric acid after excitation to the first and second excited states (S1 and S2) were studied by an on-the-fly ab initio molecular dynamics simulations based on the Zhu-Nakamura version of the trajectory surface hopping (ZN-TSH). Forces acting on the nuclear motion were computed on-the-fly by CASSCF method with Dunning's augmented cc-pVDZ basis set. It was newly found that the parent molecule dissociated into two reaction-channels (i) HSO4(12A″) + H(2S) by S1-excitation, and (ii) HSO4(22A″) + H(2S) by S2-excitation. The direct dissociation dynamics yield products different from the SO2 + 2OH fragments often presented in the literature. Both channels result in the same product and differs only in the electronic state of the HSO4 fragment. The trajectories running on S2 do not hop with S0 and a nonadiabatic transition happens at the S2-S1 conical intersection located at a longer OH bond-length than the S1-S0 intersection producing an electronic excited state (22A″) of HSO4 product.

  20. Temperature and intensity of sonoluminescence radiation in sulfuric acid.

    PubMed

    Moshaii, A; Hoseini, M A; Gharibzadeh, S; Tavakoli-Anaraki, A

    2012-07-01

    The spectral radiation of sonoluminescence (SL) from sulfuric acid doped with various Xe concentrations has been studied in a hydrochemical simulation, including radiation effects of both continuum and line emissions. The simulation considers the same temperature for both continuum and line parts of the SL spectrum and gives results in agreement with the experiment. Also, it can properly show period-doubling dynamics for a 50 torr bubble. For most of the allowable driving pressures, it is shown that both the temperature and the intensity of SL for a 4 torr bubble are greater than those of a 50 torr bubble. However, for the range of pressures near the maximum driving conditions of the 50 torr bubble, the SL intensity of this bubble can be up to three orders of magnitude greater than the 4 torr bubble. This case, which is in agreement with the experiment, is obtained when the light-emitting region of the 50 torr bubble is about three orders of magnitude greater than the 4 torr bubble.

  1. Sulfur amino acid metabolism in Zucker diabetic fatty rats.

    PubMed

    Kwak, Hui Chan; Kim, Young-Mi; Oh, Soo Jin; Kim, Sang Kyum

    2015-08-01

    The present study was aimed to investigate the metabolomics of sulfur amino acids in Zucker diabetic fatty (ZDF) rats, an obese type 2 diabetic animal model. Plasma levels of total cysteine, homocysteine and methionine, but not glutathione (GSH) were markedly decreased in ZDF rats. Hepatic methionine, homocysteine, cysteine, betaine, taurine, spermidine and spermine were also decreased. There are no significant difference in hepatic S-adenosylmethionine, S-adenosylhomocysteine, GSH, GSH disulfide, hypotaurine and putrescine between control and ZDF rats. Hepatic SAH hydrolase, betaine-homocysteine methyltransferase and methylene tetrahydrofolate reductase were up-regulated while activities of gamma-glutamylcysteine ligase and methionine synthase were decreased. The area under the curve (AUC) of methionine and methionine-d4 was not significantly different in control and ZDF rats treated with a mixture of methionine (60mg/kg) and methionine-d4 (20mg/kg). Moreover, the AUC of the increase in plasma total homocysteine was comparable between two groups, although the homocysteine concentration curve was shifted leftward in ZDF rats, suggesting that the plasma total homocysteine after the methionine loading was rapidly increased and normalized in ZDF rats. These results show that the AUC of plasma homocysteine is not responsive to the up-regulation of hepatic BHMT in ZDF rats. The present study suggests that the decrease in hepatic methionine may be responsible for the decreases in its metabolites, such as homocysteine, cysteine, and taurine in liver and consequently decreased plasma homocysteine levels.

  2. Mechanochemical leaching of chalcopyrite concentrate by sulfuric acid

    NASA Astrophysics Data System (ADS)

    Mohammadabad, Farhad Khorramshahi; Hejazi, Sina; khaki, Jalil Vahdati; Babakhani, Abolfazl

    2016-04-01

    This study aimed to introduce a new cost-effective methodology for increasing the leaching efficiency of chalcopyrite concentrates at ambient temperature and pressure. Mechanical activation was employed during the leaching (mechanochemical leaching) of chalcopyrite concentrates in a sulfuric acid medium at room temperature and atmospheric pressure. High energy ball milling process was used during the leaching to provide the mechanochemical leaching condition, and atomic absorption spectroscopy and cyclic voltammetry were used to determine the leaching behavior of chalcopyrite. Moreover, X-ray diffraction and scanning electron microscopy were used to characterize the chalcopyrite powder before and after leaching. The results demonstrated that mechanochemical leaching was effective; the extraction of copper increased significantly and continuously. Although the leaching efficiency of chalcopyrite was very low at ambient temperature, the percentages of copper dissolved in the presence of hydrogen peroxide (H2O2) and ferric sulfate (Fe2(SO4)3) after 20 h of mechanochemical leaching reached 28% and 33%, respectively. Given the efficiency of the developed method and the facts that it does not require the use of an autoclave and can be conducted at room temperature and atmospheric pressure, it represents an economical and easy-to-use method for the leaching industry.

  3. Preparation of levoglucosenone through sulfuric acid promoted pyrolysis of bagasse at low temperature.

    PubMed

    Sui, Xian-wei; Wang, Zhi; Liao, Bing; Zhang, Ying; Guo, Qing-xiang

    2012-01-01

    Fast pyrolysis of bagasse pretreated by sulfuric acid was conducted in a fixed bed reactor to prepare levoglucosenone (LGO), a very important anhydrosugar for organic synthesis. The liquid yield and LGO yield were studied at temperatures from 240 to 350 °C and sulfuric acid loadings from 0.92 to 7.10 wt.%. An optimal LGO yield of 7.58 wt.% was obtained at 270 °C with a sulfuric acid pretreatment concentration of 0.05 M (corresponding to 4.28 wt.% sulfuric acid loading). For comparison, microcrystalline cellulose pretreated by 0.05 M sulfuric acid solution was pyrolyzed at temperature from 270 °C to 320 °C, and bagasse loaded with 3-5 wt.% phosphoric acid was pyrolyzed at temperature from 270 °C to 350 °C. The highest yield of LGO from bagasse was 30% higher than that from microcrystalline cellulose, and treatment with sulfuric acid allowed a 21% higher yield than treatment with phosphoric acid.

  4. Size-resolved sulfuric acid mist concentrations at phosphate fertilizer manufacturing facilities in Florida.

    PubMed

    Hsu, Yu-Mei; Wu, Chang-Yu; Lundgren, Dale A; Birky, Brian K

    2007-01-01

    Strong inorganic acid mists containing sulfuric acid were identified as a 'known human carcinogen' in a National Toxicology Program (NTP) report where phosphate fertilizer manufacture was listed as one of many occupational exposures to strong acids. To properly assess the occupational exposure to sulfuric acid mists in modern facilities, approved National Institute for Occupational Safety and Health (NIOSH) Method 7903 and a cascade impactor were used for measuring the total sulfuric acid mist concentration and size-resolved sulfuric acid mist concentration, respectively. Sampling was conducted at eight phosphate fertilizer plants and two background sites in Florida and there were 24 sampling sites in these plants. Samples were analyzed by ion chromatography (IC) to quantify the water-soluble ion species. The highest sulfuric acid concentrations by the cascade impactor were obtained at the sulfuric acid pump tank area. When high aerosol mass concentrations (100 micro g m(-3)) were observed at this area, the sulfuric acid mists were in the coarse mode. The geometric mean sulfuric acid concentrations (+/-geometric standard deviation) of PM(23) (aerodynamic cut size smaller than 23 micro m), PM(10) and PM(2.5) from the cascade impactor were 41.7 (+/-5.5), 37.9 (+/-5.8) and 22.1 (+/-4.5) micro g m(-3), respectively. The geometric mean (+/-geometric standard deviation) for total sulfuric acid concentration from the NIOSH method samples was 143 (+/-5.08) micro g m(-3). Sulfuric acid mist concentrations varied significantly among the plants and even at the same location. The measurements by the NIOSH method were 1.5-229 times higher than those by the cascade impactor. Moreover, using the NIOSH method, the sulfuric acid concentrations measured at the lower flow rate (0.30 Lpm) were higher than those at the higher flow rate (0.45 Lpm). One possible reason for the significant differences between the results from the cascade impactor and the NIOSH method is the potential

  5. Effect of amino acid intake on brush-border membrane uptake of sulfur amino acids.

    PubMed

    Chesney, R W; Gusowski, N; Padilla, M; Lippincott, S

    1986-07-01

    Alterations in the intake of sulfur amino acids (SAA) changes the rat renal brush-border membrane uptake of the beta-amino acid, taurine. A low-SAA diet enhances and a high-taurine diet reduces uptake (Chesney et al., Kidney Int. 24: 588-594, 1983). Neither the low-SAA diet nor the high-taurine diet alters the time course or concentration-dependent accumulation of the sulfur amino acids methionine and cystine or of inorganic sulfate. By contrast the uptake of beta-alanine, another beta-amino acid that competes with taurine, is greater in animals on the low-SAA diet. The high-taurine diet does not change beta-alanine uptake. The plasma levels of taurine are altered by dietary change, but not the values for methionine and cystine. This study indicates that renal adaptation is expressed for beta-alanine, a nonsulfur-containing beta-amino acid. By contrast, methionine, cystine, and sulfate, which participate in a variety of synthetic and conjugative processes, are not conserved by the renal brush-border surface following ingestion of either a low-methionine and -cystine diet or high-taurine diet.

  6. Cytotoxicity of sulfurous acid on cell membrane and bioactivity of Nitrosomonas europaea.

    PubMed

    Jiang, Ruiyu; Wang, Mingqing; Xue, Jianliang; Xu, Ning; Hou, Guihua; Zhang, Wubing

    2015-01-01

    Nitrosomonas europaea, an ammonia oxidizing bacterium, was chosen as a research model to study the alteration of cell membrane in the presence of sulfurous acid and biodegradation of acetochlor. Significant changes of the outer cell membrane were observed in the presence of sulfurous acid using scanning electron microscopy (SEM) and Atomic Force Microscopy (AFM). The fluorescence polarization has shown a significant decrease in membrane fluidity and the increase of permeability of cell membrane. Lysozyme experiment show the cell becomes easily influenced by substance in medium. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) measurements show considerable amount of Ca(2+) and Mg(2+) in the supernatant from the sulfurous acid exposed cells. Sulfurous acid treatment enhanced the ability of N. europaea to degrade acetochlor. On this basis, it can be concluded that the increased cell permeability is favor for the absorbability of nutrition. As a result, N. europaea grows faster and the biodegradation efficiency was improved.

  7. Heterogeneous interactions of calcite aerosol with sulfur dioxide and sulfur dioxide-nitric acid mixtures.

    PubMed

    Prince, A Preszler; Kleiber, P; Grassian, V H; Young, M A

    2007-07-14

    The heterogeneous chemistry of sulfur dioxide with CaCO(3) (calcite) aerosol as a function of relative humidity (RH) has been studied under isolated particle conditions in an atmospheric reaction chamber using infrared absorption spectroscopy. The reaction of SO(2) with calcite produced gas phase CO(2) as a product in addition to the conversion of the particulate carbonate to sulfite. The reaction extent was found to increase with elevated RH, as has been observed for the similar reaction with HNO(3), but much higher relative humidities were needed to significantly enhance the reaction. Mixed experiments in which calcite aerosol was exposed to both HNO(3) and SO(2) were also performed. The overall reaction extent at a given relative humidity did not appear to be increased by having both reactant gases present. The role of carbonate aerosol as an atmospheric sink for sulfur dioxide and particulate nitrogen and sulfur correlations are discussed.

  8. Dental erosion and sulfuric ion exposure levels in individuals working with sulfuric acid in lead storage battery manufacturing plant measured with mouth-rinse index.

    PubMed

    Suyama, Yuji; Takaku, Satoru; Okawa, Yoshikazu; Matsukubo, Takashi

    2010-01-01

    To investigate dental erosion in employees working with sulfuric acid at a lead storage battery manufacturing plant and level of personal exposure to sulfuric ions, we measured sulfuric ion concentrations in the mouth rinse of those employees. We also measured exposure levels from air samples obtained from 2 employees from the same plant who did not work with sulfuric acid using a portable air sampler. At the same time, we collected and compared their mouth rinses with those from other employees. More specifically, we measured and compared sulfuric ion, calcium, and magnesium concentrations, along with pH levels from the mouth rinse of these two groups. Positive correlations were found between sulfuric ion and calcium concentrations (r=0.61, p<0.005), calcium and magnesium concentrations (r=0.61, p<0.005), Ca/Mg and calcium concentrations (r=0.64, p<0.005), and sulfuric ion and magnesium concentrations (r=0.55, p<0.005). Negative correlations were found between sulfuric ion concentrations and pH levels (r=-0.31, p<0.01), and magnesium concentrations and pH levels (r=-0.32, p<0.01). This suggests that mouth rinse from employees working with sulfuric acid could function as an indicator of sulfuric ion concentration in the work environment. Furthermore, this could lead to the development of a more accurate indicator of individual exposure.

  9. Optical constants of sulfuric acid - Application to the clouds of Venus

    NASA Technical Reports Server (NTRS)

    Palmer, K. F.; Williams, D.

    1975-01-01

    Young (1973) and Sill (1972) have independently suggested that the clouds of Venus may well consist of particles composed of sulfuric acid molecules with attached water molecules. For a further study of this hypothesis an investigation has been conducted with the objective to supply the needed laboratory data for a wide range of sulfuric acid concentrations. Optical constants have been determined for the visible, near infrared, and intermediate infrared wavelength regions.

  10. Sulfuric Acid droplet formation and growth in the stratosphere after the 1982 eruption of el chichon.

    PubMed

    Hofmann, D J; Rosen, J M

    1983-10-21

    The eruption of El Chichón Volcano in March and April 1982 resulted in the nucleation of large numbers of new sulfuric acid droplets and an increase by nearly an order of magnitude in the size of the preexisting particles in the stratosphere. Nearly 10(7) metric tons of sulfuric acid remained in the stratosphere by the end of 1982, about 40 times as much as was deposited by Mount St. Helens in 1980.

  11. Therapeutic paracetamol treatment in older persons induces dietary and metabolic modifications related to sulfur amino acids.

    PubMed

    Pujos-Guillot, Estelle; Pickering, Gisèle; Lyan, Bernard; Ducheix, Gilles; Brandolini-Bunlon, Marion; Glomot, Françoise; Dardevet, Dominique; Dubray, Claude; Papet, Isabelle

    2012-02-01

    Sulfur amino acids are determinant for the detoxification of paracetamol (N-acetyl-p-aminophenol) through sulfate and glutathione conjugations. Long-term paracetamol treatment is common in the elderly, despite a potential cysteine/glutathione deficiency. Detoxification could occur at the expense of anti-oxidative defenses and whole body protein stores in elderly. We tested how older persons satisfy the extra demand in sulfur amino acids induced by long-term paracetamol treatment, focusing on metabolic and nutritional aspects. Effects of 3 g/day paracetamol for 14 days on fasting blood glutathione, plasma amino acids and sulfate, urinary paracetamol metabolites, and urinary metabolomic were studied in independently living older persons (five women, five men, mean (±SEM) age 74 ± 1 years). Dietary intakes were recorded before and at the end of the treatment and ingested sulfur amino acids were evaluated. Fasting blood glutathione, plasma amino acids, and sulfate were unchanged. Urinary nitrogen excretion supported a preservation of whole body proteins, but large-scale urinary metabolomic analysis revealed an oxidation of some sulfur-containing compounds. Dietary protein intake was 13% higher at the end than before paracetamol treatment. Final sulfur amino acid intake reached 37 mg/kg/day. The increase in sulfur amino acid intake corresponded to half of the sulfur excreted in urinary paracetamol conjugates. In conclusion, older persons accommodated to long-term paracetamol treatment by increasing dietary protein intake without any mobilization of body proteins, but with decreased anti-oxidative defenses. The extra demand in sulfur amino acids led to a consumption far above the corresponding population-safe recommendation.

  12. Effects of sulfuric acid and ammonium sulfate coatings on the ice nucleation properties of kaolinite particles

    NASA Astrophysics Data System (ADS)

    Eastwood, Michael L.; Cremel, Sebastien; Wheeler, Michael; Murray, Benjamin J.; Girard, Eric; Bertram, Allan K.

    2009-01-01

    The onset conditions for ice nucleation on H2SO4 coated, (NH4)2SO4 coated, and uncoated kaolinite particles at temperatures ranging from 233 to 246 K were studied. We define the onset conditions as the relative humidity and temperature at which the first ice nucleation event was observed. Uncoated particles were excellent ice nuclei; the onset relative humidity with respect to ice (RHi) was below 110% at all temperatures studied, consistent with previous measurements. H2SO4 coatings, however, drastically altered the ice nucleating ability of kaolinite particles, increasing the RHi required for ice nucleation by approximately 30%, similar to the recent measurements by Möhler et al. [2008b]. (NH4)2SO4 coated particles were poor ice nuclei at 245 K, but effective ice nuclei at 236 K. The differences between H2SO4 and (NH4)2SO4 coatings may be explained by the deliquescence and efflorescence properties of (NH4)2SO4. These results support the idea that emissions of SO2 and NH3 may influence the ice nucleating properties of mineral dust particles.

  13. Enzymatic digestion of corncobs pretreated with low strength of sulfuric acid for bioethanol production.

    PubMed

    Kahar, Prihardi; Taku, Kazuo; Tanaka, Shuzo

    2010-10-01

    In this study, the effect and the optimum pretreatment condition of corncobs using low strength of H2SO4 were investigated, in which H2SO4 was used to improve the enzymatic digestibility of corncobs for saccharification without degradation of sugars released. The optimum pretreatment condition was found to be the addition of 0.5% (vol./vol.) H2SO4 and autoclaving at 122°C for 20 min. Under this condition, the structural integrity of corncob was altered to make cellulose microfibrils more accessible for cellulase enzymes, and the enzymatic digestion of corncobs could be significantly enhanced. A high yield of sugar, 80% (wt./wt.), could be obtained at a low enzyme dosage of 0.024 g enzymes/g cobs, when pretreated. As a result, the ethanol production was obviously improved by the pretreatment, i.e., the ethanol yield of 77% (wt./wt.) was obtained within 36 h in the SSF fermentation using Saccharomyces cerevisiae NBRC2114.

  14. Removal characteristics of sulfuric acid aerosols from coal-fired power plants.

    PubMed

    Pan, Danping; Yang, Linjun; Wu, Hao; Huang, Rongting

    2017-03-01

    With increasing attention on sulfuric acid emission, investigations on the removal characteristics of sulfuric acid aerosols by the limestone gypsum wet flue gas desulfurization (WFGD) system and the wet electrostatic precipitator (WESP) were carried out in two coal-fired power plants, and the effects of the WFGD scrubber type and the flue gas characteristics were discussed. The results showed that it was necessary to install the WESP device after desulfurization, as the WFGD system was inefficient to remove sulfuric acid aerosols from the flue gas. The removal efficiency of sulfuric acid aerosols in the WFGD system with double scrubbers ranged from 50% to 65%, which was higher than that with a single scrubber, ranging from 30% to 40%. Furthermore, the removal efficiency of WESP on the sulfuric acid aerosols was from 47.9% to 52.4%. With increased concentrations of SO3 and particles in the flue gas, the removal efficiencies of the WFGD and the WESP on the sulfuric acid aerosols were increased.

  15. Backscatter laser depolarization studies of simulated stratospheric aerosols: Crystallized sulfuric acid droplets

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun

    1988-01-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystallization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.

  16. Backscatter laser depolarization studies of simulated stratospheric aerosols - Crystallized sulfuric acid droplets

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun

    1989-01-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystalization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.

  17. ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION

    SciTech Connect

    Gorensek, M.; Edwards, T.

    2009-06-11

    A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

  18. Reduction in environmental impact of sulfuric acid hydrolysis of bamboo for production of fuel ethanol.

    PubMed

    Sun, Zhao-Yong; Tang, Yue-Qin; Morimura, Shigeru; Kida, Kenji

    2013-01-01

    Fuel ethanol can be produced from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation. To reduce the environmental impact of this process, treatment of the stillage, reuse of the sulfuric acid and reduction of the process water used were studied. The total organic carbon (TOC) concentration of stillage decreased from 29,688 to 269 mg/l by thermophilic methane fermentation followed by aerobic treatment. Washing the solid residue from acid hydrolysis with effluent from the biological treatment increased the sugar recovery from 69.3% to 79.3%. Sulfuric acid recovered during the acid-sugar separation process was condensed and reused for hydrolysis, resulting in a sugar recovery efficiency of 76.8%, compared to 80.1% when fresh sulfuric acid was used. After acetate removal, the condensate could be reused as elution water in the acid-sugar separation process. As much as 86.3% of the process water and 77.6% of the sulfuric acid could be recycled.

  19. The reaction probability of N2O5 with sulfuric acid aerosols at stratospheric temperatures and compositions

    NASA Technical Reports Server (NTRS)

    Fried, Alan; Henry, Bruce E.; Calvert, Jack G.; Mozurkewich, Michael

    1994-01-01

    We have measured the rate of reaction of N2O5 with H2O on monodisperse, submicrometer H2SO4 particles in a low-temperature flow reactor. Measurements were carried out at temperatures between 225 K and 293 K on aerosol particles with sizes and compositions comparable to those found in the stratosphere. At 273 K, the reaction probability was found to be 0.103 +/- 0.0006, independent of H2SO4 composition from 64 to 81 wt%. At 230 K, the reaction probability increased from 0.077 for compositions near 60% H2SO4 to 0.146 for compositions near 70% H2SO4. Intermediate conditions gave intermediate results except for low reaction probabilities of about 0.045 at 260 K on aerosols with about 78% H2SO4. The reaction probability did not depend on particle size. These results imply that the reaction occurs essentially at the surface of the particle. A simple model for this type of reaction that reproduces the general trends observed is presented. the presence of formaldehyde did not affect the reaction rate.

  20. Acidic and hydrogen peroxide treatment of polyaluminum chloride (PACL) sludge from water treatment.

    PubMed

    Kwon, J H; Park, K Y; Park, J H; Lee, S H; Ahn, K H

    2004-01-01

    The water treatment sludge including coagulants cannot be easily removed by conventional dewatering methods. The possibility of hydrogen peroxide (H2O2) oxidation as a pretreatment to enhance the dewaterability of polyaluminum chloride (PACl) sludge from water works was investigated. H2O2 treatment alone was not effective but H2O2 treatment under acidic condition significantly reduced both the cake water content and specific resistance to filtration (SRF), indicating the enhancement of dewaterability and filterability. The filterability after acid/H2O2 treatment was comparable to polymer conditioning and even more dewatered cake than polymer conditioning was produced. By H202 combined with sulfuric acid (H2SO4), leached iron caused Fenton's reaction, which showed a potential to significantly reduce the amount of solids mass and to produce more compact cake with higher filterability.

  1. Comparison of sulfuric and oxalic acid anodizing for preparation of thermal control coatings for spacecraft

    NASA Technical Reports Server (NTRS)

    Le, Huong G.; Watcher, John M.; Smith, Charles A.

    1988-01-01

    The development of thermal control surfaces, which maintain stable solar absorptivity and infrared emissivity over long periods, is challenging due to severe conditions in low-Earth orbit (LEO). Some candidate coatings are second-surface silver-coated Teflon; second-surface, silvered optical solar reflectors made of glass or quartz; and anodized aluminum. Sulfuric acid anodized and oxalic acid anodized aluminum was evaluated under simulated LEO conditions. Oxalic acid anodizing shows promise of greater stability in LEO over long missions, such as the 30 years planned for the Space Station. However, sulfuric acid anodizing shows lower solar absorptivity.

  2. Tolerance of S. cerevisiae and Z. mobilis to inhibitors produced during dilute acid hydrolysis of soybean meal.

    PubMed

    Lujan-Rhenals, Deivis E; Morawicki, Rubén O; Ricke, Steven C

    2014-01-01

    The objective of this research was to determine the minimum inhibitory concentration of 5-hydroxymethyl furfural, furfural, and acetic acid on Saccharomyces cerevisiae (NRRL Y-2233) and Zymomonas mobilis subspecies mobilis (NRRL B-4286) in both detoxified hydrolyzed soybean meal and synthetic YM broth spiked with the three compounds. Soybean meal was hydrolyzed with dilute sulfuric acid (0.0, 0.5, 1.25, and 2.0% wt v(-1)) at three temperatures (105, 120, and 135°C) and three durations (15, 30, and 45 min) followed by detoxification with activated carbon. Of all the combinations, only the treatments obtained at 135°C, 2.0% H2SO4, and 45 min and the one at 135°C, 1.25% H2SO4, and 45 min showed inhibition in the growth of the tested microorganisms. Spiked YM broths showed inhibition for the highest levels of inhibitors, either applied individually or in combination.

  3. First direct sulfuric acid detection in the exhaust plume of a jet aircraft in flight

    NASA Astrophysics Data System (ADS)

    Curtius, J.; Sierau, B.; Arnold, F.; Baumann, R.; Busen, R.; Schulte, P.; Schumann, U.

    Sulfuric acid (SA) was for the first time directly detected in the exhaust plume of a jet aircraft in flight. The measurements were made by a novel aircraft-based VACA (Volatile Aerosol Component Analyzer) instrument of MPI-K Heidelberg while the research aircraft Falcon was chasing another research aircraft ATTAS. The VACA measures the total SA in the gas and in volatile submicron aerosol particles. During the chase the engines of the ATTAS alternatively burned sulfur-poor and sulfur-rich fuel. In the sulfur-rich plume very marked enhancements of total SA were observed of up to 1300 pptv which were closely correlated with ΔCO2 and ΔT and were far above the local ambient atmospheric background-level of typically 15-50 pptv. Our observations indicate a lower limit for the efficiency ɛ for fuel-sulfur conversion to SA of 0.34 %.

  4. Efficient recycling of WC-Co hardmetal sludge by oxidation followed by alkali and sulfuric acid treatments

    NASA Astrophysics Data System (ADS)

    Yang, Dong-hyo; Srivastava, Rajiv Ranjan; Kim, Min-seuk; Nam, Dao Duy; Lee, Jae-chun; Huynh, Hai Trung

    2016-09-01

    We present a process to recycle strategic metals, viz. tungsten and cobalt, from a WC-Co hardmetal sludge (WCHS) via oxidation followed by a two-step hydrometallurgical treatment with alkali and acid solutions. The oxidation of WCHS was investigated in the temperature range of 500 to 1000 °C and optimized at 600 °C to transform the maximum WC into an alkali-soluble WO3. The conditions for the selective dissolution of WO3 in stage-I were optimized as follows: 4.0 M NaOH, pulp density of 175 g/L, and temperature of 100 °C for 1 h, yielding maximum efficacy. Subsequently, in the second step, the optimal conditions for cobalt leaching from the alkali-treated residue were established as follows: 2.0 M H2SO4, 25 g/L pulp density, and 75 °C temperature for 30 min. Downstream processing of the obtained metal ions in solutions was also easier, as the only impurity of dicobaltite ions with the Na2WO4 solution was precipitated as Co(OH)3 under atmospheric O2; meanwhile, the CoSO4 solution obtained through the second step of processing can be treated via electrolysis to recover the metallic cobalt. The present process is simpler in operation, and the efficient use of eco-friendly lixiviants eliminates the previously reported disadvantage.

  5. Reaction kinetics of waste sulfuric acid using H2O2 catalytic oxidation.

    PubMed

    Wang, Jiade; Hong, Binxun; Tong, Xinyang; Qiu, Shufeng

    2016-12-01

    The process of recovering waste sulfuric acids using H2O2 catalytic oxidation is studied in this paper. Activated carbon was used as catalyst. Main operating parameters, such as temperature, feed rate of H2O2, and catalyst dosage, have effects on the removal of impurities from waste sulfuric acids. The reaction kinetics of H2O2 catalytic oxidation on impurities are discussed. At a temperature of 90°C, H2O2 feeding rate of 50 g (kg waste acid)(-1) per hour, and catalyst dosage of 0.2 wt% (waste acid weight), the removal efficiencies of COD and chrominance were both more than 99%, the recovery ratio of sulfuric acid was more than 95%, and the utilization ratio of H2O2 was 88.57%.

  6. Observation of neutral sulfuric acid-amine containing clusters in laboratory and ambient measurements

    SciTech Connect

    Kuang C.; Zhao, J.; Smith, J. N.; Eisele, F. L.; Chen, M.; McMurry, P. H.

    2011-11-02

    Recent ab initio calculations showed that amines can enhance atmospheric sulfuric acid-water nucleation more effectively than ammonia, and this prediction has been substantiated in laboratory measurements. Laboratory studies have also shown that amines can effectively displace ammonia in several types of ammonium clusters. However, the roles of amines in cluster formation and growth at a microscopic molecular scale (from molecular sizes up to 2 nm) have not yet been well understood. Processes that must be understood include the incorporation of amines into sulfuric acid clusters and the formation of organic salts in freshly nucleated particles, which contributes significantly to particle growth rates. We report the first laboratory and ambient measurements of neutral sulfuric acid-amine clusters using the Cluster CIMS, a recently-developed mass spectrometer designed for measuring neutral clusters formed in the atmosphere during nucleation. An experimental technique, which we refer to as Semi-Ambient Signal Amplification (SASA), was employed. Sulfuric acid was added to ambient air, and the concentrations and composition of clusters in this mixture were analyzed by the Cluster CIMS. This experimental approach led to significantly higher cluster concentrations than are normally found in ambient air, thereby increasing signal-to-noise levels and allowing us to study reactions between gas phase species in ambient air and sulfuric acid containing clusters. Mass peaks corresponding to clusters containing four H{sub 2}SO{sub 4} molecules and one amine molecule were clearly observed, with the most abundant sulfuric acid-amine clusters being those containing a C2- or C4-amine (i.e. amines with masses of 45 and 73 amu). Evidence for C3- and C5-amines (i.e. amines with masses of 59 and 87 amu) was also found, but their correlation with sulfuric acid tetramer was not as strong as was observed for the C2- and C4-amines. The formation mechanisms for those sulfuric acid

  7. Dynamics and mass accommodation of HCl molecules on sulfuric acid-water surfaces.

    PubMed

    Behr, P; Scharfenort, U; Ataya, K; Zellner, R

    2009-09-28

    A molecular beam technique has been used to study the dynamics and mass accommodation of HCl molecules in collision with sulfuric acid-water surfaces. The experiments were performed by directing a nearly mono-energetic beam of HCl molecules onto a continuously renewed liquid film of 54-76 wt% sulfuric acid at temperatures between 213 K and 243 K. Deuterated sulfuric acid was used to separate sticking but non-reactive collisions from those that involved penetration through the phase boundary followed by dissociation and recombination with D+. The results indicate that the mass accommodation of HCl on sulfuric acid-water surfaces decreases sharply with increasing acidity over the concentration range 54-76 wt%. Using the capillary wave theory of mass accommodation this effect is explained by a change of the surface dynamics. Regarding the temperature dependence it is found that the mass accommodation of HCl increases with increasing temperature and is limited by the bulk phase viscosity and driven by the restoring forces of the surface tension. These findings imply that under atmospheric conditions the uptake of HCl from the gas phase depends crucially on the bulk phase parameters of the sulfuric acid aerosol.

  8. A sulfuric-lactic acid process for efficient purification of fungal chitosan with intact molecular weight.

    PubMed

    Naghdi, Mitra; Zamani, Akram; Karimi, Keikhosro

    2014-02-01

    The most recent method of fungal chitosan purification, i.e., two steps of dilute sulfuric acid treatment, pretreatment of cell wall at room temperature for phosphate removal and extraction of chitosan from the phosphate free cell wall at high temperature, significantly reduces the chitosan molecular weight. This study was aimed at improvement of this method. In the pretreatment step, to choose the best conditions, cell wall of Rhizopus oryzae, containing 9% phosphate, 10% glucosamine, and 21% N-acetyl glucosamine, was treated with sulfuric, lactic, acetic, nitric, or hydrochloric acid, at room temperature. Sulfuric acid showed the best performance in phosphate removal (90%) and cell wall recovery (89%). To avoid depolymerisation of chitosan, hot sulfuric acid extraction was replaced with lactic acid treatment at room temperature, and a pure fungal chitosan was obtained (0.12 g/g cell wall). Similar pretreatment and extraction processes were conducted on pure shrimp chitosan and resulted in a chitosan recovery of higher than 87% while the reduction of chitosan viscosity was less than 15%. Therefore, the sulfuric-lactic acid method purified the fungal chitosan without significant molecular weight manipulation.

  9. Cluster Formation of Sulfuric Acid with Dimethylamine or Diamines and Detection with Chemical Ionization

    NASA Astrophysics Data System (ADS)

    Jen, C. N.; McMurry, P. H.; Hanson, D. R.

    2015-12-01

    Chemical ionization (CI) mass spectrometers are used to study atmospheric nucleation by detecting clusters produced by reactions of sulfuric acid and various basic gases. These instruments typically use nitrate to chemically ionize clusters for detection. In this study, we compare measured cluster concentrations formed by reacting sulfuric acid vapor with dimethylamine, ethylene diamine, tetramethylethylene diamine, or butanediamine (also known as putrescine) using nitrate and acetate ions. We show from flow reactor measurements that nitrate is unable to chemically ionize clusters with weak acidities. In addition, we vary the ion-molecule reaction time to probe the chemical ionization processes and lifetimes of ions composed of sulfuric acid and base molecules. We then model the neutral and ion cluster formation pathways, including chemical ionization, ion-induced clustering, and ion decomposition, to better identify which cluster types cannot be chemically ionized by nitrate. Our results show that sulfuric acid dimer with two diamines and sulfuric acid trimer with 2 or more base molecules cannot be chemical ionized by nitrate. We conclude that cluster concentrations measured with acetate CI gives a better representation of both cluster abundancies and their base content than nitrate CI.

  10. Enhanced enzymatic hydrolysis of poplar bark by combined use of gamma ray and dilute acid for bioethanol production

    NASA Astrophysics Data System (ADS)

    Chung, Byung Yeoup; Lee, Jae Taek; Bai, Hyoung-Woo; Kim, Ung-Jin; Bae, Hyeun-Jong; Gon Wi, Seung; Cho, Jae-Young

    2012-08-01

    Pretreatment of poplar bark with a combination of sulfuric acid (3%, w/w, H2SO4) and gamma irradiation (0-1000 kGy) was performed in an attempt to enhance enzymatic hydrolysis for bioethanol production. The yields of reducing sugar were slightly increased with an increasing irradiation dose, ranging from 35.4% to 51.5%, with a 56.1% reducing sugar yield observed after dilute acid pretreatment. These results clearly showed that soluble sugars were released faster and to a greater extent in dilute acid-pretreated poplar bark than in gamma irradiation-pretreated bark. When combined pretreatment was carried out, a drastic increase in reducing sugar yield (83.1%) was found compared with individual pretreatment, indicating the possibility of increasing the convertibility of poplar bark following combined pretreatment. These findings are likely associated with cellulose crystallinity, lignin modification, and removal of hemicelluloses.

  11. The sulfuric acid leaching of Bayer electrofilter fines: A practical kinetical approach

    NASA Astrophysics Data System (ADS)

    Sancho Martínez, J. P.; Ayala, Espina J.; García Coque, M. P.; Fernández, Pérez B.; Costales, Alonso D.

    2006-08-01

    Electrofilter fines, which are by-products of the Bayer process for the production of alumina from bauxite, were characterized to evaluate the alumina that was potentially extractable with sulfuric acid. Acid leaching is carried out at different concentrations of sulfuric acid, at different temperatures, pulp densities, and times, to dissolve gibbsite and transition aluminas. The result is an aluminum sulfate solution. This article reports on a study of the kinetics of the leaching reaction at 90°C with two pulp densities: 10% and 30%.

  12. New insights into sulfur amino acids function in gut health and disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gastrointestinal tract (GIT) is a metabolically significant site of sulfur amino acids (SAAs) metabolism in the body. Aside from their role in protein synthesis, methionine and cysteine are involved in many biological functions and diseases. Methionine (MET) is an indispensable amino acid and is...

  13. Sulfuric acid nucleation: An experimental study of the effect of seven bases

    NASA Astrophysics Data System (ADS)

    Glasoe, W. A.; Volz, K.; Panta, B.; Freshour, N.; Bachman, R.; Hanson, D. R.; McMurry, P. H.; Jen, C.

    2015-03-01

    Nucleation of particles with sulfuric acid, water, and nitrogeneous bases was studied in a flow reactor. Sulfuric acid and water levels were set by flows over sulfuric acid and water reservoirs, respectively, and the base concentrations were determined from measured permeation rates and flow dilution ratios. Particle number distributions were measured with a nano-differential-mobility-analyzer system. Results indicate that the nucleation capability of NH3, methylamine, dimethylamine, and trimethylamine with sulfuric acid increases from NH3 as the weakest, methylamine next, and dimethylamine and trimethylamine the strongest. Three other bases were studied, and experiments with triethylamine showed that it is less effective than methylamine, and experiments with urea and acetamide showed that their capabilities are much lower than the amines with acetamide having basically no effect. When both NH3 and an amine were present, nucleation was more strongly enhanced than with just the amine present. Comparisons of nucleation rates to predictions and previous experimental work are discussed, and the sulfuric acid-base nucleation rates measured here are extrapolated to atmospheric conditions. The measurements suggest that atmospheric nucleation rates are significantly affected by synergistic interactions between ammonia and amines.

  14. Sulfuric acid speleogenesis (SAS) close to the water table: Examples from southern France, Austria, and Sicily

    NASA Astrophysics Data System (ADS)

    De Waele, Jo; Audra, Philippe; Madonia, Giuliana; Vattano, Marco; Plan, Lukas; D'Angeli, Ilenia M.; Bigot, Jean-Yves; Anoux, Catherine; Nobécourt, Jean-Claude

    2016-01-01

    Caves formed by rising sulfuric waters have been described from all over the world in a wide variety of climate settings, from arid regions to mid-latitude and alpine areas. H2S is generally formed at depth by reduction of sulfates in the presence of hydrocarbons and is transported in solution through the deep aquifers. In tectonically disturbed areas major fractures eventually allow these H2S-bearing fluids to rise to the surface where oxidation processes can become active producing sulfuric acid. This extremely strong acid reacts with the carbonate bedrock creating caves, some of which are among the largest and most spectacular in the world. Production of sulfuric acid mostly occurs at or close to the water table but also in subaerial conditions in moisture films and droplets in the cave environment. These caves are generated at or immediately above the water table, where condensation-corrosion processes are dominant, creating a set of characteristic meso- and micromorphologies. Due to their close connection to the base level, these caves can also precisely record past hydrological and geomorphological settings. Certain authigenic cave minerals, produced during the sulfuric acid speleogenesis (SAS) phase, allow determination of the exact timing of speleogenesis. This paper deals with the morphological, geochemical and mineralogical description of four very typical sulfuric acid water table caves in Europe: the Grotte du Chat in the southern French Alps, the Acqua Fitusa Cave in Sicily (Italy), and the Bad Deutsch Altenburg and Kraushöhle caves in Austria.

  15. Pretreatment of Sugar Beet Pulp with Dilute Sulfurous Acid is Effective for Multipurpose Usage of Carbohydrates.

    PubMed

    Kharina, M; Emelyanov, V; Mokshina, N; Ibragimova, N; Gorshkova, T

    2016-05-01

    Sulfurous acid was used for pretreatment of sugar beet pulp (SBP) in order to achieve high efficiency of both extraction of carbohydrates and subsequent enzymatic hydrolysis of the remaining solids. The main advantage of sulfurous acid usage as pretreatment agent is the possibility of its regeneration. Application of sulfurous acid as hydrolyzing agent in relatively low concentrations (0.6-1.0 %) during a short period of time (10-20 min) and low solid to liquid ratio (1:3, 1:6) allowed effective extraction of carbohydrates from SBP and provided positive effect on subsequent enzymatic hydrolysis. The highest obtained concentration of reducing substances (RS) in hydrolysates was 8.5 %; up to 33.6 % of all carbohydrates present in SBP could be extracted. The major obtained monosaccharides were arabinose and glucose (9.4 and 7.3 g/l, respectively). Pretreatment of SBP with sulfurous acid increased 4.6 times the yield of glucose during subsequent enzymatic hydrolysis of remaining solids with cellulase cocktail, as compared to the untreated SBP. Total yield of glucose during SBP pretreatment and subsequent enzymatic hydrolysis amounted to 89.4 % of the theoretical yield. The approach can be applied directly to the wet SBP. Hydrolysis of sugar beet pulp with sulfurous acid is recommended for obtaining of individual monosaccharides, as well as nutritional media.

  16. Ice core sulfur and methanesulfonic acid (MSA) records from southern Greenland document North American and European air pollution and suggest a decline in regional biogenic sulfur emissions.

    NASA Astrophysics Data System (ADS)

    Pasteris, D. R.; McConnell, J. R.; Burkhart, J. F.; Saltzman, E. S.

    2014-12-01

    Sulfate aerosols have an important cooling effect on the Earth because they scatter sunlight back to space and form cloud condensation nuclei. However, understanding of the atmospheric sulfur cycle is incomplete, leading to uncertainty in the assessment of past, present and future climate forcing. Here we use annually resolved observations of sulfur and methanesulfonic acid (MSA) concentration in an array of precisely dated Southern Greenland ice cores to assess the history of sulfur pollution emitted from North America and Europe and the history of biogenic sulfate aerosol derived from the North Atlantic Ocean over the last 250 years. The ice core sulfur time series is found to closely track sulfur concentrations in North American and European precipitation since records began in 1965, and also closely tracks estimated sulfur emissions since 1850 within the air mass source region as determined by back trajectory analysis. However, a decline to near-preindustrial sulfur concentrations in the ice cores after 1995 that is not so extensive in the source region emissions indicates that there has been a change in sulfur cycling over the last 150 years. The ice core MSA time series shows a decline of 60% since the 1860s, and is well correlated with declining sea ice concentrations around Greenland, suggesting that the phytoplankton source of biogenic sulfur has declined due to a loss of marginal sea ice zone habitat. Incorporating the implied decrease in biogenic sulfur in our analysis improves the match between the ice core sulfur record and the source region emissions throughout the last 150 years, and solves the problem of the recent return to near-preindustrial levels in the Greenland ice. These findings indicate that the transport efficiency of sulfur air pollution has been relatively stable through the industrial era and that biogenic sulfur emissions in the region have declined.

  17. Pacific Atmospheric Sulfur Experiment (PASE): An Overview

    NASA Astrophysics Data System (ADS)

    Bandy, A. R.; Blomquist, B.; Huebert, B.; Howell, S.; Clarke, T.; Hudson, J.; Faloona, I.; Wang, Y.; Mauldin, R. L.; Heikes, B.; Merrill, J.; O'Sullivan, D.

    2008-12-01

    The Pacific Atmospheric Sulfur Experiment (PASE) was a study of the chemistry of sulfur in a cloud free region of the equatorial Pacific Ocean. The experiment was conducted aboard the NSF C130 just east of Christmas Island during August and early September of 2007 in the prevailing southeasterly trade wind flow. PASE is envisioned as the first of a series of experiments focused on developing an understanding of how the chemistry of sulfur affects climate in general but especially with respect to its impact on cloud chemistry and physics. Being the first of this series, PASE was focused on (but not limited to) clear air to narrow the scope of the science to control costs and to reflect the fact that most of the available instrumentation cannot make effective measurements in clouds. PASE is unique in that it brought together several instruments (SO2, DMS, O3 and H2O) that make measurements fast enough to permit the computation of vertical fluxes by eddy covariance allowing the flux terms in chemical budgets to be determined quantitatively. The PASE instrument payload also made a large suite of slower measurements including but not limited to OH, HO2, RO2, H2SO4, methane sulfonic acid (MSA), H2O2, CH3COOH, thermally resolved CN(>15nm), ultrafine CN (>3 nm), bulk aerosol composition, and cloud condensation nuclei (CCN). The high rate instruments enabled quantification of the vertical exchange that could be generalized to estimate the mixing of the slower analytes. One of the surprising results from PASE was the large and very steady levels of CCN observed throughout the experiment. Furthermore, the vertical gradient indicated that boundary layer venting via shallow convection was a persistent sink of the CCN. Taken in concert the unique data set renders a picture of marine air that has not been purged by precipitation in a long while, allowing it to build up large amounts of volatile sulfur in the condensed phase and providing a superb environment to investigate

  18. Death of a toddler due to ingestion of sulfuric acid at a clandestine home methamphetamine laboratory.

    PubMed

    Burge, Meredith; Hunsaker, John C; Davis, Gregory J

    2009-12-01

    Exposure to strong acids such as sulfuric acid to either the skin or the gastrointestinal or respiratory mucosa will result respectively in significant-occasionally fatal-cutaneous chemical burns as well as devastating corrosive damage to the respiratory and gastrointestinal tracts. Most injuries are accidental, but there are reports of using acids as weapons or as a means of suicide. The primary mechanism of acid injury is coagulative necrosis of the tissues. Sulfuric acid is a chemical often used in industrial and chemical laboratories, and it is an ingredient in household products like drain cleaner. Easily accessible, over-the-counter, household drain cleaner is one of several common materials used to manufacture methamphetamine. With increasing clandestine methamphetamine laboratories in the United States, exposure to methamphetamine and the toxic chemicals used for its production is a growing problem. In many instances, children living in these laboratories qua homes are at risk for injury and death. We report the death of an unattended toddler, who ingested sulfuric acid drain cleaner in his home. The gross and histopathological autopsy findings in this case are similar to those of previously described cases of sulfuric acid injury.

  19. Process for recovery of sulfur from acid gases

    DOEpatents

    Towler, Gavin P.; Lynn, Scott

    1995-01-01

    Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.

  20. Heavy metal extraction from PCB wastewater treatment sludge by sulfuric acid.

    PubMed

    Kuan, Yu-Chung; Lee, I-Hsien; Chern, Jia-Ming

    2010-05-15

    Heavy metals contaminated wastewater sludge is classified as hazardous solid waste and needs to be properly treated to prevent releasing heavy metals to the environment. In this study, the wastewater treatment sludge from a printed circuit board manufacturing plant was treated in a batch reactor by sulfuric acid to remove the contained heavy metals. The effects of sulfuric acid concentration and solid to liquid ratio on the heavy metal removal efficiencies were investigated. The experimental results showed that the total and individual heavy metal removal efficiencies increased with increasing sulfuric acid concentration, but decreased with increasing solid to liquid ratio. A mathematical model was developed to predict the residual sludge weights at varying sulfuric concentrations and solid to liquid ratios. The trivalent heavy metal ions, iron and chromium were more difficult to be removed than the divalent ions, copper, zinc, nickel, and cadmium. For 5 g/L solid to liquid ratio, more than 99.9% of heavy metals can be removed from the sludge by treating with 0.5M sulfuric acid in 2h.

  1. Diamine-sulfuric acid reactions are a potent source of new particle formation

    NASA Astrophysics Data System (ADS)

    Jen, Coty N.; Bachman, Ryan; Zhao, Jun; McMurry, Peter H.; Hanson, David R.

    2016-01-01

    Atmospheric nucleation from sulfuric acid depends on the concentrations and the stabilizing effect of other trace gases, such as ammonia and amines. Diamines are an understudied class of atmospherically relevant compounds, and we examine how they affect sulfuric acid nucleation in both flow reactor experiments and the atmosphere. The number of particles produced from sulfuric acid and diamines in the flow reactor was equal to or greater than the number formed from monoamines, implying that diamines are more effective nucleating agents. Upper limits of diamine abundance were also monitored during three field campaigns: Lamont, OK (2013); Lewes, DE (2012); and Atlanta, GA (2009). Mixing ratios were measured as high as tens of parts per trillion by volume (GA and OK). Laboratory results suggest that diamines at these levels are important for atmospheric nucleation. Diamines likely participate in atmospheric nucleation and should be considered in nucleation measurements and models.

  2. Reevaluating the contribution of sulfuric acid and the origin of organic compounds in atmospheric nanoparticle growth

    NASA Astrophysics Data System (ADS)

    Vakkari, Ville; Tiitta, Petri; Jaars, Kerneels; Croteau, Philip; Beukes, Johan Paul; Josipovic, Miroslav; Kerminen, Veli-Matti; Kulmala, Markku; Venter, Andrew D.; Zyl, Pieter G.; Worsnop, Douglas R.; Laakso, Lauri

    2015-12-01

    Aerosol particles formed in the atmosphere are important to the Earth's climate system due to their ability to affect cloud properties. At present, little is known about the atmospheric chemistry responsible for the growth of newly formed aerosol particles to climate-relevant sizes. Here combining detailed aerosol measurements with a theoretical framework we found that depending on the gaseous precursors and size of the newly formed particles, the growth was dominated by either sulfuric acid accompanied by ammonium or organic compounds originating in either biogenic emissions or savannah fires. The contribution of sulfuric acid was larger during the early phases of the growth, but in clean conditions organic compounds dominated the growth from 1.5 nm up to climatically relevant sizes. Furthermore, our analysis indicates that in polluted environments the contribution of sulfuric acid to the growth may have been underestimated by up to a factor of 10.

  3. Uptake of Small Organic Compounds by Sulfuric Acid Aerosols: Dissolution and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Michelsen, R. R.; Ashbourn, S. F. M.; Staton, S. J. R.

    2003-01-01

    To assess the role of oxygenated volatile organic compounds in the upper troposphere and lower stratosphere, the interactions of a series of small organic compounds with low-temperature aqueous sulfuric acid will be evaluated. The total amount of organic material which may be taken up from the gas phase by dissolution, surface layer formation, and reaction during the particle lifetime will be quantified. Our current results for acetaldehyde uptake on 40 - 80 wt% sulfuric acid solutions will be compared to those of methanol, formaldehyde, and acetone to investigate the relationships between chemical functionality and heterogeneous activity. Where possible, equilibrium uptake will be ascribed to component pathways (hydration, protonation, etc.) to facilitate evaluation of other species not yet studied in low temperature aqueous sulfuric acid.

  4. Biomediated Precipitation of Calcium Carbonate and Sulfur in a Faintly Acidic Hot Spring

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Peng, X.; Qiao, H.

    2014-12-01

    A faintly acidic hot spring named "female Tower" (T=73.5 ℃, pH=6.64 ) is located in the Jifei Geothermal Field,Yunnan province, Southwest China. The precipitates in the hot spring are composed of large amounts of calcite and sulfur, as reveals by XRD analysis. Scanning electron microscopy (SEM) analysis show the microbial mats are formed of various coccoid, rod and filamentous microbes. Transmission electron microscopy (TEM) analysis show that intracellular sulfur granules are commonly associated with these microbes. Energy dispersive X-ray spectrometer (EDS) analysis shows that the surface of microbes are mainly composed of Ca, C, O and S. A culture-independent molecular phylogenetic analysis demonstrates the majority of bacteria in the spring are sulfur-oxidizing bacteria. In the spring water, H2S concentration was up to 60 ppm, while SO42- concentration was only about 10 ppm. We suggest that H2S might be utilized by sulfur-oxidizing bacteria in this hot spring water, leading to the formation of sulfur granules intracellularly and extracellularly. In the meantime, this reaction increases the pH in ambient environments, which fosters the precipitation of calcium carbonate precipitation in the microbial mats. This study suggests that the sulfur-oxidizing bacteria could play an important role in calcium carbonate precipitation in faintly acidic hot spring environments.

  5. Dental erosion in workers exposed to sulfuric acid in lead storage battery manufacturing facility.

    PubMed

    Suyama, Yuji; Takaku, Satoru; Okawa, Yoshikazu; Matsukubo, Takashi

    2010-01-01

    Dental erosion, and specifically its symptoms, has long been studied in Japan as an occupational dental disease. However, in recent years, few studies have investigated the development of this disease or labor hygiene management aimed at its prevention. As a result, interest in dental erosion is comparatively low, even among dental professionals. Our investigation at a lead storage battery factory in 1991 found that the work environmental sulfuric acid density was above the tolerable range (1.0mg/m(3)) and that longterm workers had dental erosion. Therefore, workers handling sulfuric acid were given an oral examination and rates of dental erosion by tooth type, rates of erosion by number of working years and rates of erosion by sulfuric acid density in the work environment investigated. Where dental erosion was diagnosed, degree of erosion was identified according to a diagnostic criterion. No development of dental erosion was detected in the maxillary teeth, and erosion was concentrated in the anterior mandibular teeth. Its prevalence was as high as 20%. Rates of dental erosion rose precipitously after 10 working years. The percentages of workers with dental erosion were 42.9% for 10-14 years, 57.1% for 15-19 years and 66.7% for over 20 years with 22.5% for total number of workers. The percentages of workers with dental erosion rose in proportion to work environmental sulfuric acid density: 17.9% at 0.5-1.0, 25.0% at 1.0-4.0 and 50.0% at 4.0-8.0mg/m(3). This suggests that it is necessary to evaluate not only years of exposure to sulfuric acid but also sulfuric acid density in the air in factory workers.

  6. On the prolonged lifetime of the El Chichon sulfuric acid aerosol cloud

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.

    1987-01-01

    The observed decay of the aerosol mixing ratio following the eruption of El Chichon appears to have been 20-30 percent slower than that following the eruption of Fuego in 1974, even though the sulfuric acid droplets were observed to grow to considerably larger sizes after El Chichon. This suggests the possible presence of a condensation nuclei and sulfuric acid vapor source and continued growth phenomena occurring well after the El Chichon eruption. It is proposed that the source of these nuclei and the associated vapor may be derived from annual evaporation and condensation of aerosol in the high polar regions during stratospheric warming events, with subsequent spreading to lower latitudes.

  7. Dynamic behavior of the bray-liebhafsky oscillatory reaction controlled by sulfuric acid and temperature

    NASA Astrophysics Data System (ADS)

    Pejić, N.; Vujković, M.; Maksimović, J.; Ivanović, A.; Anić, S.; Čupić, Ž.; Kolar-Anić, Lj.

    2011-12-01

    The non-periodic, periodic and chaotic regimes in the Bray-Liebhafsky (BL) oscillatory reaction observed in a continuously fed well stirred tank reactor (CSTR) under isothermal conditions at various inflow concentrations of the sulfuric acid were experimentally studied. In each series (at any fixed temperature), termination of oscillatory behavior via saddle loop infinite period bifurcation (SNIPER) as well as some kind of the Andronov-Hopf bifurcation is presented. In addition, it was found that an increase of temperature, in different series of experiments resulted in the shift of bifurcation point towards higher values of sulfuric acid concentration.

  8. Ammonia Catalyzed Formation of Sulfuric Acid in Troposphere: The Curious Case of A Base Promoting Acid Rain.

    PubMed

    Bandyopadhyay, Biman; Kumar, Pradeep; Biswas, Partha

    2017-04-03

    Electronic structure calculations have been performed to investigate the role of ammonia in catalyzing the formation of sulfuric acid through hydrolysis of SO3 in Earth's atmosphere. The uncatalyzed process involves a high activation barrier and, till date, is mainly known to occur in Earth's atmosphere only when catalyzed by water and acids. Here we show that hydrolysis of SO3 can be very efficiently catalyzed by ammonia, the most abundant basic component in Earth's atmosphere. It was found, based on magnitude of relative potential energies as well as rate coefficients, that ammonia is the best among all the catalysts studied until now (water and acids) and could be a considerable factor in formation of sulfuric acid in troposphere. The calculated rate coefficient (at 298 K) of ammonia catalyzed reaction has been found to be ~10^5 - 10^7 times greater than that for water catalyzed ones. It was found, based on relative rates of ammonia and water catalyzed processes that in troposphere ammonia, together with water, could be the key factor in determining the rate of formation of sulfuric acid. In fact ammonia could surpass water in catalyzing formation of sulfuric acid via hydrolysis of SO3 at various altitudes in troposphere depending upon their relative concentrations.

  9. Acid-base thermochemistry of gaseous oxygen and sulfur substituted amino acids (Ser, Thr, Cys, Met).

    PubMed

    Riffet, Vanessa; Frison, Gilles; Bouchoux, Guy

    2011-11-07

    Acid-base thermochemistry of isolated amino acids containing oxygen or sulfur in their side chain (serine, threonine, cysteine and methionine) have been examined by quantum chemical computations. Density functional theory (DFT) was used, with B3LYP, B97-D and M06-2X functionals using the 6-31+G(d,p) basis set for geometry optimizations and the larger 6-311++G(3df,2p) basis set for energy computations. Composite methods CBS-QB3, G3B3, G4MP2 and G4 were applied to large sets of neutral, protonated and deprotonated conformers. Conformational analysis of these species, based on chemical approach and AMOEBA force field calculations, has been used to identify the lowest energy conformers and to estimate the population of conformers expected to be present at thermal equilibrium at 298 K. It is observed that G4, G4MP2, G3B3, CBS-QB3 composite methods and M06-2X DFT lead to similar conformer energies. Thermochemical parameters have been computed using either the most stable conformers or equilibrium populations of conformers. Comparison of experimental and theoretical proton affinities and Δ(acid)H shows that the G4 method provides the better agreement with deviations of less than 1.5 kJ mol(-1). From this point of view, a set of evaluated thermochemical quantities for serine, threonine, cysteine and methionine may be proposed: PA = 912, 919, 903, 938; GB = 878, 886, 870, 899; Δ(acid)H = 1393, 1391, 1396, 1411; Δ(acid)G = 1363, 1362, 1367, 1382 kJ mol(-1). This study also confirms that a non-negligible ΔpS° is associated with protonation of methionine and that the most acidic hydrogen of cysteine in the gas phase is that of the SH group. In several instances new conformers were identified thus suggesting a re-examination of several IRMPD spectra.

  10. Mechanisms of volatile production from sulfur-containing amino acids by irradiation

    NASA Astrophysics Data System (ADS)

    Uk Ahn, Dong; Joo Lee, Eun; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang

    2016-02-01

    Sulfur-containing amino acids were used to study the mechanisms of off-odor production in meat by irradiation. Irradiation not only increased the amounts of volatiles but also produced many new volatiles from sulfur-containing amino acid monomers. We speculate that the majority of the volatiles were the direct radiolytic products of the side chains, but Strecker degradation as well as deamination and decarboxylation of radiolytic products were also involved in the production of volatile compounds from sulfur amino acids. The volatile compounds produced in amino acids were not only the primary products of irradiation, but also the products of secondary chemical reactions after the primary compounds were produced. Cysteine and methionine produced odor characteristics similar to that of the irradiated meat, but the amounts of sulfur volatiles from methionine were far greater than that of cysteine. Although the present study was carried out using an amino acid model system, the information can be applied to the quality indexes of irradiated meats as well as other food products.

  11. Acid hydrolysis of sugarcane bagasse for lactic acid production.

    PubMed

    Laopaiboon, Pattana; Thani, Arthit; Leelavatcharamas, Vichean; Laopaiboon, Lakkana

    2010-02-01

    In order to use sugarcane bagasse as a substrate for lactic acid production, optimum conditions for acid hydrolysis of the bagasse were investigated. After lignin extraction, the conditions were varied in terms of hydrochloric (HCl) or sulfuric (H(2)SO(4)) concentration (0.5-5%, v/v), reaction time (1-5h) and incubation temperature (90-120 degrees C). The maximum catalytic efficiency (E) was 10.85 under the conditions of 0.5% of HCl at 100 degrees C for 5h, which the main components (in gl(-1)) in the hydrolysate were glucose, 1.50; xylose, 22.59; arabinose, 1.29; acetic acid, 0.15 and furfural, 1.19. To increase yield of lactic acid production from the hydrolysate by Lactococcus lactis IO-1, the hydrolysate was detoxified through amberlite and supplemented with 7 g l(-1) of xylose and 7 g l(-1) of yeast extract. The main products (in gl(-1)) of the fermentation were lactic acid, 10.85; acetic acid, 7.87; formic acid, 6.04 and ethanol, 5.24.

  12. 40 CFR 721.3130 - Sulfuric acid, mono-C9-11-alkyl esters, sodium salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sulfuric acid, mono-C9-11-alkyl esters... Specific Chemical Substances § 721.3130 Sulfuric acid, mono-C9-11-alkyl esters, sodium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  13. 40 CFR 721.3130 - Sulfuric acid, mono-C9-11-alkyl esters, sodium salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sulfuric acid, mono-C9-11-alkyl esters... Specific Chemical Substances § 721.3130 Sulfuric acid, mono-C9-11-alkyl esters, sodium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  14. 40 CFR 721.3130 - Sulfuric acid, mono-C9-11-alkyl esters, sodium salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sulfuric acid, mono-C9-11-alkyl esters... Specific Chemical Substances § 721.3130 Sulfuric acid, mono-C9-11-alkyl esters, sodium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  15. 40 CFR 721.3130 - Sulfuric acid, mono-C9-11-alkyl esters, sodium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sulfuric acid, mono-C9-11-alkyl esters... Specific Chemical Substances § 721.3130 Sulfuric acid, mono-C9-11-alkyl esters, sodium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  16. 40 CFR 721.3130 - Sulfuric acid, mono-C9-11-alkyl esters, sodium salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sulfuric acid, mono-C9-11-alkyl esters... Specific Chemical Substances § 721.3130 Sulfuric acid, mono-C9-11-alkyl esters, sodium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  17. New Particle Formation and Growth from Methanesulfonic Acid, Amines, Water, and Organics

    NASA Astrophysics Data System (ADS)

    Arquero, K. D.; Ezell, M. J.; Finlayson-Pitts, B. J.

    2014-12-01

    Particles in the atmosphere can influence visibility, negatively impact human health, and affect climate. The largest uncertainty in determining global radiative forcing is attributed to atmospheric aerosols. While new particle formation in many locations is correlated with sulfuric acid in air, neither the gas-phase binary nucleation of H2SO4-H2O nor the gas-phase ternary nucleation of H2SO4-NH3-H2O alone can fully explain observations. An additional potential particle source, based on previous studies in this laboratory, is methanesulfonic acid (MSA) with amines and water vapor. However, organics are ubiquitous in the atmosphere, with secondary organic aerosol (SOA) being a major component of particles. Organics could be involved in the initial stages of particle formation by enhancing or inhibiting nucleation from sulfuric acid or MSA, in addition to contributing to their growth to form SOA. Experiments to measure the effects of a series of organics of varying structure on particle formation and growth from MSA, amines, and water were performed in a custom-built small volume aerosol flow tube reactor. Analytical instruments and techniques include a scanning mobility particle sizer to measure particle size distributions, sampling onto a weak cation exchange resin with analysis by ion chromatography to measure amine concentrations, and filter collection and analysis by ultra-high performance liquid chromatography tandem mass spectrometry to measure MSA concentrations. Organics were measured by atmospheric pressure chemical ionization tandem mass spectrometry. The impact of these organics on the initial particle formation as well as growth will be reported. The outcome is an improved understanding of fundamental chemistry of nucleation and growth to ultimately be incorporated into climate models to better predict how particles affect the global climate budget.

  18. Photosynthetic and growth responses of Schima superba seedlings to sulfuric and nitric acid depositions.

    PubMed

    Yao, Fang-Fang; Ding, Hui-Ming; Feng, Li-Li; Chen, Jing-Jing; Yang, Song-Yu; Wang, Xi-Hua

    2016-05-01

    A continuing rise in acid deposition can cause forest degradation. In China, acid deposition has converted gradually from sulfuric acid deposition (SAD) to nitric acid deposition (NAD). However, the differing responses of photosynthesis and growth to depositions of sulfuric vs. nitric acid have not been well studied. In this study, 1-year-old seedlings of Schima superba, a dominant species in subtropical forests, were treated with two types of acid deposition SO4 (2-)/NO3 (-) ratios (8:1 and 0.7:1) with two applications (foliar spraying and soil drenching) at two pH levels (pH 3.5 and pH 2.5) over a period of 18 months. The results showed that the intensity, acid deposition type, and spraying method had significant effects on the physiological characteristics and growth performance of seedlings. Acid deposition at pH 2.5 via foliar application reduced photosynthesis and growth of S. superba, especially in the first year. Unlike SAD, NAD with high acidity potentially alleviated the negative effects of acidity on physiological properties and growth, probably due to a fertilization effect that improved foliar nitrogen and chlorophyll contents. Our results suggest that trees were damaged mainly by direct acid stress in the short term, whereas in the long term, soil acidification was also likely to be a major risk to forest ecosystems. Our data suggest that the shift in acid deposition type may complicate the ongoing challenge of anthropogenic acid deposition to ecosystem stability.

  19. Revealing biogenic sulfuric acid corrosion in sludge digesters: detection of sulfur-oxidizing bacteria within full-scale digesters.

    PubMed

    Huber, B; Drewes, J E; Lin, K C; König, R; Müller, E

    2014-01-01

    Biogenic sulfuric acid corrosion (BSA) is a costly problem affecting both sewerage infrastructure and sludge handling facilities such as digesters. The aim of this study was to verify BSA in full-scale digesters by identifying the microorganisms involved in the concrete corrosion process, that is, sulfate-reducing (SRB) and sulfur-oxidizing bacteria (SOB). To investigate the SRB and SOB communities, digester sludge and biofilm samples were collected. SRB diversity within digester sludge was studied by applying polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) targeting the dsrB-gene (dissimilatory sulfite reductase beta subunit). To reveal SOB diversity, cultivation dependent and independent techniques were applied. The SRB diversity studies revealed different uncultured SRB, confirming SRB activity and H2S production. Comparable DGGE profiles were obtained from the different sludges, demonstrating the presence of similar SRB species. By cultivation, three pure SOB strains from the digester headspace were obtained including Acidithiobacillus thiooxidans, Thiomonas intermedia and Thiomonas perometabolis. These organisms were also detected with PCR-DGGE in addition to two new SOB: Thiobacillus thioparus and Paracoccus solventivorans. The SRB and SOB responsible for BSA were identified within five different digesters, demonstrating that BSA is a problem occurring not only in sewer systems but also in sludge digesters. In addition, the presence of different SOB species was successfully associated with the progression of microbial corrosion.

  20. Free sulfurous acid (FSA) inhibition of biological thiosulfate reduction (BTR) in the sulfur cycle-driven wastewater treatment process.

    PubMed

    Qian, Jin; Wang, Lianlian; Wu, Yaoguo; Bond, Philip L; Zhang, Yuhan; Chang, Xing; Deng, Baixue; Wei, Li; Li, Qin; Wang, Qilin

    2017-06-01

    A sulfur cycle-based bioprocess for co-treatment of wet flue gas desulfurization (WFGD) wastes with freshwater sewage has been developed. In this process the removal of organic carbon is mainly associated with biological sulfate or sulfite reduction. Thiosulfate is a major intermediate during biological sulfate/sulfite reduction, and its reduction to sulfide is the rate-limiting step. In this study, the impacts of saline sulfite (the ionized form: HSO3(-) + SO3(2-)) and free sulfurous acid (FSA, the unionized form: H2SO3) sourced from WGFD wastes on the biological thiosulfate reduction (BTR) activities were thoroughly investigated. The BTR activity and sulfate/sulfite-reducing bacteria (SRB) populations in the thiosulfate-reducing up-flow anaerobic sludge bed (UASB) reactor decreased when the FSA was added to the UASB influent. Batch experiment results confirmed that FSA, instead of saline sulfite, was the true inhibitor of BTR. And BTR activities dropped by 50% as the FSA concentrations were increased from 8.0 × 10(-8) to 2.0 × 10(-4) mg H2SO3-S/L. From an engineering perspective, the findings of this study provide some hints on how to ensure effective thiosulfate accumulation in biological sulfate/sulfite reduction for the subsequent denitrification/denitritation. Such manipulation would result in higher nitrogen removal rates in this co-treatment process of WFGD wastes with municipal sewage.

  1. Levulinic acid production by two-step acid-catalyzed treatment of Quercus mongolica using dilute sulfuric acid.

    PubMed

    Jeong, Hanseob; Jang, Soo-Kyeong; Hong, Chang-Young; Kim, Seon-Hong; Lee, Su-Yeon; Lee, Soo Min; Choi, Joon Weon; Choi, In-Gyu

    2017-02-01

    The objectives of this research were to produce a levulinic acid by two-step acid-catalyzed treatment of Quercus mongolica and to investigate the effect of treatment parameter (reaction temperature range: 100-230°C; sulfuric acid (SA) concentration range: 0-2%) on the levulinic acid yield. After 1(st) step acid-catalyzed treatment, most of the hemicellulosic C5 sugars (15.6gg/100gbiomass) were released into the liquid hydrolysate at the reaction temperature of 150°C in 1% SA; the solid fraction, which contained 53.5% of the C6 sugars, was resistant to further loss of C6 sugars. Subsequently, 2(nd) step acid-catalyzed treatment of the solid fractions was performed under more severe conditions. Finally, 16.5g/100g biomass of levulinic acid was produced at the reaction temperature of 200°C in 2% SA, corresponding to a higher conversion rate than during single-step treatment.

  2. Assessment of nanofiltration and reverse osmosis potentialities to recover metals, sulfuric acid, and recycled water from acid gold mining effluent.

    PubMed

    Ricci, Bárbara C; Ferreira, Carolina D; Marques, Larissa S; Martins, Sofia S; Amaral, Míriam C S

    This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (<88%) when conducted in pH values higher than 1. Thus, sequential use of NF and RO was proved to be a promising treatment for sulfuric acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water.

  3. New insights into sulfur amino acid function in gut health and disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gastrointestinal tract (GIT) is a metabolically significant site of sulfur amino acids (SAA) metabolism in the body. Aside from their role in protein synthesis, methionine and cysteine are involved in many biological functions and diseases. Methionine (MET) is an indispensable AA and is transmet...

  4. Pressure leaching of metals from waste printed circuit boards using sulfuric acid

    NASA Astrophysics Data System (ADS)

    Jha, Manis K.; Lee, Jae-Chun; Kumari, Archana; Choubey, Pankaj K.; Kumar, Vinay; Jeong, Jinki

    2011-08-01

    Printed circuit boards (PCBs) are essential components of electronic equipments which contain various metallic values. This paper reports a hydrometallurgical recycling process for waste PCBs, which consists of the novel pretreatment consisting of organic swelling of PCBs followed by sulfuric acid leaching of metals from waste PCBs. To recycle the waste PCBs, experiments were carried out for the recovery of copper from the crushed and organic swelled materials of waste PCBs using sulfuric acid leaching in presence of hydrogen peroxide under atmospheric and pressure condition. The leaching of PCBs at 90°C, pulp density 100 g/L under atmospheric condition, using 6M sulfuric acid resulted in the dissolution of a minor amount of copper due to the presence of plastic coating on the surface of metallic layers. On the other hand, when the liberated metal sheets from organic swelled PCBs were treated with dilute sulfuric acid of concentration 2M along with hydrogen peroxide in an autoclave under oxygen atmosphere, the percentage recovery of copper was found to increase from 59.63% to 97.01% with an increase in hydrogen peroxide concentration from 5 to 15% (v/v) keeping constant pulp density 30 g/L.

  5. Kinetics of sulfuric acid leaching of cadmium from Cd-Ni zinc plant residues.

    PubMed

    Safarzadeh, Mohammad Sadegh; Moradkhani, Davood; Ojaghi-Ilkhchi, Mehdi

    2009-04-30

    Cd-Ni filtercakes are produced continuously at the third purification step in the electrolytic production of zinc in the National Iranian Lead and Zinc Company (NILZ) in northwestern Iran. In this research, the dissolution kinetics of cadmium from Cd-Ni residues produced in NILZ plant has been investigated. Hence, the effects of temperature, sulfuric acid concentration, particle size and stirring speed on the kinetics of cadmium dissolution in sulfuric acid were studied. The dissolution kinetics at 25-55 degrees C and tsulfuric acid concentration, solid/liquid ratio and particle size were also achieved. The rate of reaction at first 5 min based on diffusion-controlled process can be expressed by a semi-empirical equation as:It was determined that the dissolution rate increased with increasing sulfuric acid concentration and decreasing particle size.

  6. Chemical ionization of clusters formed from sulfuric acid and dimethylamine or diamines

    NASA Astrophysics Data System (ADS)

    Jen, Coty N.; Zhao, Jun; McMurry, Peter H.; Hanson, David R.

    2016-10-01

    Chemical ionization (CI) mass spectrometers are used to study atmospheric nucleation by detecting clusters produced by reactions of sulfuric acid and various basic gases. These instruments typically use nitrate to deprotonate and thus chemically ionize the clusters. In this study, we compare cluster concentrations measured using either nitrate or acetate. Clusters were formed in a flow reactor from vapors of sulfuric acid and dimethylamine, ethylene diamine, tetramethylethylene diamine, or butanediamine (also known as putrescine). These comparisons show that nitrate is unable to chemically ionize clusters with high base content. In addition, we vary the ion-molecule reaction time to probe ion processes which include proton-transfer, ion-molecule clustering, and decomposition of ions. Ion decomposition upon deprotonation by acetate/nitrate was observed. More studies are needed to quantify to what extent ion decomposition affects observed cluster content and concentrations, especially those chemically ionized with acetate since it deprotonates more types of clusters than nitrate.Model calculations of the neutral and ion cluster formation pathways are also presented to better identify the cluster types that are not efficiently deprotonated by nitrate. Comparison of model and measured clusters indicate that sulfuric acid dimers with two diamines and sulfuric acid trimers with two or more base molecules are not efficiently chemical ionized by nitrate. We conclude that acetate CI provides better information on cluster abundancies and their base content than nitrate CI.

  7. Sulfur amino acid deficiency upregulates intestinal methionine cycle activity and suppresses epithelial growth in neonatal pigs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We recently showed that the developing gut is a significant site of methionine transmethylation to homocysteine and transsulfuration to cysteine. We hypothesized that sulfur amino acid (SAA) deficiency would preferentially reduce mucosal growth and antioxidant function in neonatal pigs. Neonatal pi...

  8. The role of cluster energy nonaccommodation in atmospheric sulfuric acid nucleation

    SciTech Connect

    Kurten, T.; Kuang, C.; Gomez, P.; McMurry, P. H.; Vehkamaki, H.; Ortega, I.; Noppel, M.; Kulmala, M.

    2010-01-11

    We discuss the possible role of energy nonaccommodation (monomer-cluster collisions that do not result in stable product formation due to liberated excess energy) in atmospheric nucleation processes involving sulfuric acid. Qualitative estimates of the role of nonaccommodation are computed using quantum Rice-Ramsberger-Kassel theory together with quantum chemically calculated vibrational frequencies and anharmonic coupling constants for small sulfuric acid-containing clusters. We find that energy nonaccommodation effects may, at most, decrease the net formation rate of sulfuric acid dimers by up to a factor of 10 with respect to the hard-sphere collision rate. A decrease in energy nonaccommodation due to an increasing number of internal degrees of freedom may kinetically slightly favor the participation of amines rather than ammonia as stabilizing agents in sulfuric acid nucleation, though the kinetic enhancement factor is likely to be less than three. However, hydration of the clusters (which always occurs in ambient conditions) is likely to increase the energy accommodation factor, reducing the role that energy nonaccommodation plays in atmospheric nucleation.

  9. Improved process for the production of cellulose sulfate using sulfuric acid/ethanol solution.

    PubMed

    Chen, Guo; Zhang, Bin; Zhao, Jun; Chen, Hongwen

    2013-06-05

    An improved process for production of cellulose sulfate (CS) was developed by using sulfuric acid/ethanol solution as sulfonating agent and Na2SO4 as water absorbent. The FTIR, SEM and TG analysis were used to characterize the CS prepared. The total degree of substitution and viscosity of the product solution (2%, w/v) were ranging from 0.28 to 0.77 and from 115 to 907 mPa s, respectively, by changing the process parameters such as the amount of Na2SO4, the reaction time, the temperature, the sulfuric acid/alcohol ratio and liquid/solid ratio. The results indicated that the product with DS (0.28-0.77) and η2% (115-907) mPa s could be produced by using this improved process and more cellulose sulfate could be produced when cellulose was sulfonated for 3-4 h at -2 °C in sulfuric acid/ethanol (1.4-1.6) solution with addition of 0.8 g Na2SO4. The (13)C NMR indicated that the sulfate group of CS produced using sulfuric acid/ethanol solution was at C6 position.

  10. Response of DOC in acid-sensitive Maine lakes to decreasing sulfur deposition (1993 - 2009)

    EPA Science Inventory

    In response to the Clean Air Act Amendments of 1990, sulfur deposition has decreased across the northeastern United States. As a result, sulfate concentrations in lakes and streams have also decreased and many surface waters have become less acidic. Over the same time period, th...

  11. Liquid extraction of rhenium(VII) and molybdenum(VI) with trialkylphosphine oxide from acidic solutions

    NASA Astrophysics Data System (ADS)

    Travkin, V. F.; Palant, A. A.

    2012-01-01

    The liquid extraction of rhenium(VII) and molybdenum(VI) ions from sulfuric, hydrochloric, and nitric acid media is studied in the temperature range from 20 to 40°C using trialkylphosphine oxide in kerosene as an extracting agent. The maximum separation of these metals is attained when they are extracted from solutions of 1.0-2.0 M H2SO4 (the duration of intense phase mixing was 3-5 min). The enthalpy of the studied process is estimated to be Δ H = -32.32 kJ/mol for molybdenum and -51.52 kJ/mol for rhenium. The chemical aspects of the extraction process studied are discussed.

  12. Seed storage protein deficiency improves sulfur amino acid content in common bean (Phaseolus vulgaris L.): redirection of sulfur from gamma-glutamyl-S-methyl-cysteine.

    PubMed

    Taylor, Meghan; Chapman, Ralph; Beyaert, Ronald; Hernández-Sebastià, Cinta; Marsolais, Frédéric

    2008-07-23

    The contents of sulfur amino acids in seeds of common bean ( Phaseolus vulgaris L.) are suboptimal for nutrition. They accumulate large amounts of a gamma-glutamyl dipeptide of S-methyl-cysteine, a nonprotein amino acid that cannot substitute for methionine or cysteine in the diet. Protein accumulation and amino acid composition were characterized in three genetically related lines integrating a progressive deficiency in major seed storage proteins, phaseolin, phytohemagglutinin, and arcelin. Nitrogen, carbon, and sulfur contents were comparable among the three lines. The contents of S-methyl-cysteine and gamma-glutamyl-S-methyl-cysteine were progressively reduced in the mutants. Sulfur was shifted predominantly to the protein cysteine pool, while total methionine was only slightly elevated. Methionine and cystine contents (mg per g protein) were increased by up to ca. 40%, to levels slightly above FAO guidelines on amino acid requirements for human nutrition. These findings may be useful to improve the nutritional quality of common bean.

  13. Mass distribution and concentrations of negative chemiions in the exhaust of a jet engine: Sulfuric acid concentrations and observation of particle growth

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; Ballenthin, John O.; Viggiano, A. A.; Anderson, Bruce E.; Wey, Chowen C.

    Measurements of negative-ion composition and density have been made in the exhaust of a J85-GE-5H turbojet, at ground level, as part of the NASA-EXCAVATE campaign. The mass spectrometer was placed 3 m from the exhaust plane of the engine. Measurements were done as a function of engine power in six steps from idle (50%) to military power (100%). Since the exhaust velocity changes with power, this also corresponds to a time evolution for ion growth. At 100% power most of the ions are HSO 4- with minor amounts of HSO 4-(H 2O) n. With decreasing engine power the degree of hydration increases. In addition, ions with a 139-amu core dominate the spectra at lower engine power. The chemical identity of this ion is unknown. Observation of a small amount of NO 3- core ions in the high-power spectra allows the determination of H 2SO 4 concentrations, which turn out to be a fraction-of-a-percent of the total sulfur in the fuel. Combining the present data with several previous composition measurements allows one to observe ion evolution from bare ions to ions with masses >8000 amu. Ion densities are derived and appear consistent with previous measurements used in modeling studies indicating that ion nucleation is a probable mechanism for volatile aerosol formation.

  14. Competitive Oxidation Kinetics and Microbial Ecology: Intermediate Sulfur Transformations in Acid Mine Drainage Environments

    NASA Astrophysics Data System (ADS)

    Druschel, G. K.; Hamers, R. J.; Banfield, J. F.

    2001-12-01

    Experimental studies have demonstrated that oxidation of pyrite proceeds through several intermediate sulfur species, notably elemental sulfur, thiosulfate, and polythionates (Schippers et al., 1996). However, detailed sampling and analysis of flowing waters and pore waters failed to detect intermediate sulfur species in the 5-way area of the Richmond metal sulfide deposit at the Iron Mountain Mine in northern California. Potential energy available from the oxidation of intermediate sulfur species is considerable, so microbial activity may explain absence of intermediate sulfur compounds at the site. However, the abundance of sulfur-oxidizing microorganisms in areas of active pyrite oxidation at the 5-way is generally low (Bond et al. 2000). Rapid inorganic oxidation rates may prevent microorganisms from utilizing these intermediate sulfur species, thus shaping the structure of microbial communities in acid mine drainage (AMD) environments. Rates and mechanisms of oxidation for tetrathionate and elemental sulfur have been experimentally determined. Batch and flow-through experiments have indicated very slow oxidation of elemental sulfur in inorganic solutions analogous to AMD environments. Results for tetrathionate indicate the importance of non-metabolic and inorganic processes, including surface catalysis and the generation of hydroxyl radicals. Surface catalysis occurs through trithionate on iron oxide surfaces. Hydroxyl radicals may be formed directly by microbes living in proximity to pyrite surfaces, or at pyrite surfaces undergoing wetting and drying cycles. Further experiments investigating the importance of organic compounds associated with iron-oxidizing microorganisms acting as electron transport shuttles and/or wetting agents and ab initio calculations of the electronic structure of potential reactants and intermediates are currently being performed. It is suggested that inorganic processes involved with seasonal wetting and drying of pyritic sediment

  15. Sulfur amino acid metabolism in doxorubicin-resistant breast cancer cells

    SciTech Connect

    Ryu, Chang Seon; Kwak, Hui Chan; Lee, Kye Sook; Kang, Keon Wook; Oh, Soo Jin; Lee, Ki Ho; Kim, Hwan Mook; Ma, Jin Yeul; Kim, Sang Kyum

    2011-08-15

    Although methionine dependency is a phenotypic characteristic of tumor cells, it remains to be determined whether changes in sulfur amino acid metabolism occur in cancer cells resistant to chemotherapeutic medications. We compared expression/activity of sulfur amino acid metabolizing enzymes and cellular levels of sulfur amino acids and their metabolites between normal MCF-7 cells and doxorubicin-resistant MCF-7 (MCF-7/Adr) cells. The S-adenosylmethionine/S-adenosylhomocysteine ratio, an index of transmethylation potential, in MCF-7/Adr cells decreased