Science.gov

Sample records for acid h3bo2 zinc

  1. 40 CFR 721.3032 - Boric acid (H3BO2), zinc salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Boric acid (H3BO2), zinc salt. 721... Substances § 721.3032 Boric acid (H3BO2), zinc salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as boric acid (H3BO2), zinc salt (PMN...

  2. 40 CFR 721.3032 - Boric acid (H3BO2), zinc salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Boric acid (H3BO2), zinc salt. 721... Substances § 721.3032 Boric acid (H3BO2), zinc salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as boric acid (H3BO2), zinc salt (PMN...

  3. 40 CFR 721.3032 - Boric acid (H3BO2), zinc salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Boric acid (H3BO2), zinc salt. 721... Substances § 721.3032 Boric acid (H3BO2), zinc salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as boric acid (H3BO2), zinc salt (PMN...

  4. 40 CFR 721.3032 - Boric acid (H3BO2), zinc salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Boric acid (H3BO2), zinc salt. 721... Substances § 721.3032 Boric acid (H3BO2), zinc salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as boric acid (H3BO2), zinc salt (PMN...

  5. 40 CFR 721.3032 - Boric acid (H3BO2), zinc salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Boric acid (H3BO2), zinc salt. 721... Substances § 721.3032 Boric acid (H3BO2), zinc salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as boric acid (H3BO2), zinc salt (PMN...

  6. Effect of folic acid on zinc absorption

    SciTech Connect

    Wada, L.; Keating, S.; King, J.C.; Stokstad, E.L.R.

    1986-03-05

    The effect of folic acid on zinc uptake was studied in the human and in the rat. The serum zinc response to a 25 mg oral dose or zinc was measured with and without a 10 mg dose of folic acid. Serum zinc levels were measured prior to the oral dose of zinc and at hourly intervals up to 4 hours after the dose. When zinc was given along, the increases in serum zinc from baseline at hours 1, 2, 3 and 4 were 92, 118, 92 and 66 ..mu..g/dl, respectively. When both zinc and folic acid were given, the increases in serum zinc at hours 1, 2, 3 and 4 were 100, 140, 110 and 75 ..mu..g/dl, respectively. When the increases in serum zinc were plotted against time, there was no significant difference between the areas under the two curves. The everted jejunal sac from the rat was used to study the effect of folate on zinc transport using 100 ..mu..M zinc in the mucosal buffer. The addition of folic acid at levels up to 10/sup -3/M had no significant effect on zinc transport to the serosal side solution or on uptake by the intestinal mucosa. This in vivo study with humans and in vitro study with rat intestine does not support a direct adverse effect of folic acid on zinc absorption.

  7. Melting of saturated fatty acid zinc soaps.

    PubMed

    Barman, S; Vasudevan, S

    2006-11-16

    The melting of alkyl chains in the saturated fatty acid zinc soaps of different chain lengths, Zn(C(n)H(2n+1)COO)(2); n = 11, 13, 15, and 17, have been investigated by powder X-ray diffraction, differential scanning calorimetry, and vibrational spectroscopy. These compounds have a layer structure with the alkyl chains arranged as tilted bilayers and with all methylene chains adopting a planar, all-trans conformation at room temperature. The saturated fatty acid zinc soaps exhibit a single reversible melting transition with the associated enthalpy change varying linearly with alkyl chain length, but surprisingly, the melting temperature remaining constant. Melting is associated with changes in the conformation of the alkyl chains and in the nature of coordination of the fatty acid to zinc. By monitoring features in the infrared spectra that are characteristic of the global conformation of the alkyl chains, a quantitative relation between conformational disorder and melting is established. It is found that, irrespective of the alkyl chain length, melting occurs when 30% of the chains in the soap are disordered. These results highlight the universal nature of the melting of saturated fatty acid zinc soaps and provide a simple explanation for the observed phenomena.

  8. Effects of oxalic acid on availability of zinc from spinach leaves and zinc sulfate to rats.

    PubMed

    Welch, R M; House, W A; Van Campen, D

    1977-06-01

    Some effects of dietary oxalic acid on availability of zinc from organic and inorganic sources were assessed. Male rats fed zinc-deficient diets with and without added sodium oxalate were orally dosed once with either 65Zn-labeled spinach leaves or 65Zn-labeled zinc sulfate. Spinach plants (Spinacia oleracea, var. "Winter Bloomsdale") were grown in 65Zn-labeled nutrient solutions that contained 0.033, 0.131 or 0.262 ppm zinc. Increasing zinc supply to the plants increased zinc concentration in the leaves. Oxalic acid content in all leaves was about 7% dry weight. Dietary oxalate enhanced the availability of 65Zn from zinc sulfate, but had no effect on absorption and retention of 65Zn from spinach leaves. Regardless of dietary oxalate levels, absorption and retention of 65Zn was greater from spinach leaves than from zinc sulfate. We concluded that endogenous zinc in spinach leaves was readily available to zinc-deficient rats, and that dietary oxalate was not deleterious to zinc availability.

  9. Phytic acid reduction in soy protein improves zinc bioavailability

    SciTech Connect

    Zhou, J.R.; Wong, M.S.; Burns, R.A.; Erdman, J.W. Jr. Mead Johnson Research Center, Evansville, IN )

    1991-03-15

    The objective of this study was to confirm previous studies that have suggested that reduction of phytic acid in soy improved zinc bioavailability (BV). Two commercially-produced soybean isolates containing either a normal phytic acid level or a reduced level were formulated into diets so as to provide 6 or 9 ppm zinc. Control diets were egg white protein-based and contained 3, 6 or 9 ppm zinc from zinc carbonate. Weanling male rats were fed these diets for 21 days and food intake and weight gain monitored. Slope ratio analysis of total tibia zinc content compared to total zinc intake revealed that zinc BV from reduced phytic acid soy isolate-containing diets was indistinguishable from control egg white diets. In contrast, zinc BV from normal soy isolate diets was significantly reduced compared to reduced phytic acid and control diets. These results coupled with other results indicate that phytic acid is the inhibitory factor in soybean products that results in reduced zinc BV.

  10. Exposure to sulfuric acid in zinc production.

    PubMed

    Bråtveit, Magne; Haaland, Inger Margrethe; Moen, Bente E; Målsnes, Agnar

    2004-03-01

    This study characterized workers' exposure to sulfuric acid in two cell houses of a zinc production plant. We also aimed at estimating previous exposure to sulfuric acid by simulating the process conditions from before 1975 to produce exposure data for an epidemiological study on cancer in this industry. Further, we compared different sampling methods for aerosols in the cell houses. Personal sampling with a 37 mm Millipore cassette showed that the geometric means of the exposure levels for the workers in the two cell houses were 0.07 mg/m3 (range 0.01-0.48 mg/m3) and 0.04 mg/m3 (range 0.01-0.15 mg/m3). Norway's newly revised limit value of 0.1 mg/m3 was exceeded in 39.0 and 12.9% of the samples in the two cell houses. After the foam layer was removed from the electrolyte surface to simulate the production process from before 1975, the concentration of sulfuric acid increased from 0.11 to 6.04 mg/m3 in stationary measurement by the Millipore sampler. Stationary sampling showed that the Millipore sampler and the inhalable fraction of the Respicon impactor underestimated the sulfuric acid concentration by factors of 1.5 and 2.1 compared with the Institute of Occupational Medicine (IOM) sampler. Sampling with the Respicon impactor showed that the respirable, tracheobronchial and extrathoracic fractions constituted 3.0, 18.7 and 71.7% of the inhalable sulfuric acid aerosol, respectively. Today's exposure levels are lower than those reported to be associated with an increased prevalence of laryngeal cancer in other industries, but the levels prior to 1975 seem to have been much higher. By mass, most of the inhalable aerosol was in the size fractions considered to be highly relevant for the effects of sulfuric acid on the respiratory system. The risk of cancer among the cell house workers should be investigated in an epidemiological study.

  11. Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites.

    PubMed

    Zahid, Henna; Miah, Layeque; Lau, Andy M; Brochard, Lea; Hati, Debolina; Bui, Tam T T; Drake, Alex F; Gor, Jayesh; Perkins, Stephen J; McDermott, Lindsay C

    2016-01-01

    Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigated. Analytical ultracentrifugation (AUC) and CD showed that zinc, but not other divalent metals, causes ZAG to oligomerize in solution. Thus ZAG dimers and trimers were observed in the presence of 1 and 2 mM zinc. Molecular modelling of X-ray scattering curves and sedimentation coefficients indicated a progressive stacking of ZAG monomers, suggesting that the ZAG groove may be occluded in these. Using fluorescence-detected sedimentation velocity, these ZAG-zinc oligomers were again observed in the presence of the fluorescent boron dipyrromethene fatty acid C16-BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-hexadecanoic acid). Fluorescence spectroscopy confirmed that ZAG binds C16-BODIPY. ZAG binding to C16-BODIPY, but not to DAUDA, was reduced by increased zinc concentrations. We conclude that the lipid-binding groove in ZAG contains at least two distinct fatty acid-binding sites for DAUDA and C16-BODIPY, similar to the multiple lipid binding seen in the structurally related immune protein CD1c. In addition, because high concentrations of zinc occur in the pancreas, the perturbation of these multiple lipid-binding sites by zinc may be significant in Type 2 diabetes where dysregulation of ZAG and zinc homoeostasis occurs.

  12. Acid hydrolysis of cellulose in zinc chloride solution

    SciTech Connect

    Cao, N.J.; Xu, Q.; Chen, L.F.

    1995-12-31

    The efficient conversion of cellulosic materials to ethanol has been hindered by the low yield of sugars, the high energy consumption in pretreatment processes, and the difficulty of recycling the pre-treatment agents. Zinc chloride may provide an alternative for pre-treating biomass prior to the hydrolysis of cellulose. The formation of a zinc-cellulose complex during the pretreatment of cellulose improves the yield of glucose in both the enzymatic and acid hydrolysis of cellulose. Low-temperature acid hydrolysis of cellulose in zinc chloride solution is carried out in two stages, a liquefaction stage and a saccharification stage. Because of the formation of zinc-cellulose complex in the first stage, the required amount of acid in the second stage has been decreased significantly. In 67% zinc chloride solution, a 99.5% yield of soluble sugars has been obtained at 70{degrees}C and 0.5M acid concentration. The ratio of zinc chloride to cellulose has been reduced from 4.5 to 1.5, and the yield of soluble sugars is kept above 80%. The rate of hydrolysis is affected by the ratio of zinc chloride to cellulose, acid concentration, and temperature.

  13. AN INVENTORY OF PHOTOGRAPHS OF ZINC ELECTRODEPOSITED FROM ACID ELECTROLYTES

    SciTech Connect

    Faltemier, J.L.; Jaksic, M.M.; Tsuda, T.; Tobias, C.W.

    1983-09-01

    Electrodeposition of zinc from acid electrolytes has been studied by several investigators in this laboratory. A large number of zinc deposits have been observed and photographs (SEM, micrographs, experimental equipment, and line drawings) have been prepared over the years 1976-1983. These photos are compiled in this LBL report to facilitate their future use by others. The tables in this report list the experimental conditions and corresponding identification numbers of photographs that are on file in the Photography Services Laboratory at the Lawrence Berkeley Laboratory. Several samples of these zinc deposits are shown.

  14. Intercalation studies of zinc hydroxide chloride: Ammonia and amino acids

    SciTech Connect

    Arizaga, Gregorio Guadalupe Carbajal

    2012-01-15

    Zinc hydroxide chloride (ZHC) is a layered hydroxide salt with formula Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}2H{sub 2}O. It was tested as intercalation matrix for the first time and results were compared with intercalation products of the well-known zinc hydroxide nitrate and a Zn/Al layered double hydroxide. Ammonia was intercalated into ZHC, while no significant intercalation occurred in ZHN. Aspartic acid intercalation was only achieved by co-precipitation at pH=10 with ZHC and pH=8 with zinc hydroxide nitrate. Higher pH resistance in ZHC favored total deprotonation of both carboxylic groups of the Asp molecule. ZHC conferred more thermal protection against Asp combustion presenting exothermic peaks even at 452 Degree-Sign C while the exothermic event in ZHN was 366 Degree-Sign C and in the LDH at 276 Degree-Sign C. - Graphical abstract: The zinc hydroxide chloride (ZHC) with formula Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}2H{sub 2}O was tested as intercalation matrix. In comparison with the well-known zinc hydroxide nitrate (ZHN) and layered double hydroxides (LDH), ZHC was the best matrix for thermal protection of Asp combustion, presenting exothermic peaks even at 452 Degree-Sign C, while the highest exothermic event in ZHN was at 366 Degree-Sign C, and in the LDH it was at 276 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Zinc hydroxide chloride (ZHC) was tested as intercalation matrix for the first time. Black-Right-Pointing-Pointer ZHC has higher chemical and thermal stability than zinc hydroxide nitrate and LDH. Black-Right-Pointing-Pointer NH{sub 3} molecules can be intercalated into ZHC. Black-Right-Pointing-Pointer The amino group of amino acids limits the intercalation by ion-exchange.

  15. Intestinal transport of zinc and folic acid: a mutual inhibitory effect

    SciTech Connect

    Ghishan, F.K.; Said, H.M.; Wilson, P.C.; Murrell, J.E.; Greene, H.L.

    1986-02-01

    Recent observations suggest an inverse relationship between folic acid intake and zinc nutriture and indicate an interaction between folic acid and zinc at the intestinal level. To define that interaction, we designed in vivo and in vitro transport studies in which folic acid transport in the presence of zinc, as well as zinc transport in the presence of folic acid was examined. These studies show that zinc transport is significantly decreased when folate is present in the intestinal lumen. Similarly folic acid transport is significantly decreased with the presence of zinc. To determine whether this intestinal inhibition is secondary to zinc and folate-forming complexes, charcoal-binding studies were performed. These studies indicate that zinc and folate from complexes at pH 2.0, but that at pH 6.0, these complexes dissolve. Therefore, our studies suggest that under normal physiological conditions a mutual inhibition between folate and zinc exists at the site of intestinal transport.

  16. Kinetic Aspects of Leaching Zinc from Waste Galvanizing Zinc by Using Hydrochloric Acid Solutions

    NASA Astrophysics Data System (ADS)

    Sminčáková, Emília; Trpčevská, Jarmila; Pirošková, Jana

    2016-10-01

    In this work, the results of acid leaching of flux skimmings coming from two plants are presented. Sample A contained two phases, Zn(OH)Cl and NH4Cl. In sample B, the presence of three phases, Zn5(OH)8Cl2·H2O, (NH4)2(ZnCl4) and ZnCl2(NH3)2, was proved. The aqueous solution of hydrochloric acid and distilled water was used as the leaching medium. The effects of the leaching time, temperature and concentration of the leaching medium on the zinc extraction were investigated. The apparent activation energy, E a = 4.61 kJ mol-1, and apparent reaction order n = 0.18 for sample A, and the values E a = 6.28 kJ mol-1 and n = 0.33 for sample B were experimentally determined. Zinc leaching in acid medium is a diffusion-controlled process.

  17. Fishy Business: Effect of Omega-3 Fatty Acids on Zinc Transporters and Free Zinc Availability in Human Neuronal Cells

    PubMed Central

    De Mel, Damitha; Suphioglu, Cenk

    2014-01-01

    Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer’s disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s) for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration. PMID:25195602

  18. 40 CFR 721.3031 - Boric acid (H3BO3), zinc salt (2=3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Boric acid (H3BO3), zinc salt (2=3... Substances § 721.3031 Boric acid (H3BO3), zinc salt (2=3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as boric acid (H3BO3), zinc salt (2=3) (PMN...

  19. 40 CFR 721.3031 - Boric acid (H3BO3), zinc salt (2=3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Boric acid (H3BO3), zinc salt (2=3... Substances § 721.3031 Boric acid (H3BO3), zinc salt (2=3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as boric acid (H3BO3), zinc salt (2=3) (PMN...

  20. 40 CFR 721.10135 - Phosphinic acid, P,P-diethyl-, zinc salt (2:1).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphinic acid, P,P-diethyl-, zinc... Specific Chemical Substances § 721.10135 Phosphinic acid, P,P-diethyl-, zinc salt (2:1). (a) Chemical... acid, P,P-diethyl-, zinc salt (2:1) (PMN P-05-11; CAS No. 284685-45-6) is subject to reporting...

  1. 40 CFR 721.10135 - Phosphinic acid, P,P-diethyl-, zinc salt (2:1).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphinic acid, P,P-diethyl-, zinc... Specific Chemical Substances § 721.10135 Phosphinic acid, P,P-diethyl-, zinc salt (2:1). (a) Chemical... acid, P,P-diethyl-, zinc salt (2:1) (PMN P-05-11; CAS No. 284685-45-6) is subject to reporting...

  2. 40 CFR 721.10135 - Phosphinic acid, P,P-diethyl-, zinc salt (2:1).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphinic acid, P,P-diethyl-, zinc... Specific Chemical Substances § 721.10135 Phosphinic acid, P,P-diethyl-, zinc salt (2:1). (a) Chemical... acid, P,P-diethyl-, zinc salt (2:1) (PMN P-05-11; CAS No. 284685-45-6) is subject to reporting...

  3. 40 CFR 721.10135 - Phosphinic acid, P,P-diethyl-, zinc salt (2:1).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphinic acid, P,P-diethyl-, zinc... Specific Chemical Substances § 721.10135 Phosphinic acid, P,P-diethyl-, zinc salt (2:1). (a) Chemical... acid, P,P-diethyl-, zinc salt (2:1) (PMN P-05-11; CAS No. 284685-45-6) is subject to reporting...

  4. 40 CFR 721.10135 - Phosphinic acid, P,P-diethyl-, zinc salt (2:1).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphinic acid, P,P-diethyl-, zinc... Specific Chemical Substances § 721.10135 Phosphinic acid, P,P-diethyl-, zinc salt (2:1). (a) Chemical... acid, P,P-diethyl-, zinc salt (2:1) (PMN P-05-11; CAS No. 284685-45-6) is subject to reporting...

  5. 40 CFR 721.3031 - Boric acid (H3BO3), zinc salt (2=3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Boric acid (H3BO3), zinc salt (2=3... Substances § 721.3031 Boric acid (H3BO3), zinc salt (2=3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as boric acid (H3BO3), zinc salt (2=3) (PMN...

  6. 40 CFR 721.3031 - Boric acid (H3BO3), zinc salt (2=3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Boric acid (H3BO3), zinc salt (2=3... Substances § 721.3031 Boric acid (H3BO3), zinc salt (2=3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as boric acid (H3BO3), zinc salt (2=3) (PMN...

  7. 40 CFR 721.3031 - Boric acid (H3BO3), zinc salt (2=3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Boric acid (H3BO3), zinc salt (2=3... Substances § 721.3031 Boric acid (H3BO3), zinc salt (2=3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as boric acid (H3BO3), zinc salt (2=3) (PMN...

  8. Zinc.

    PubMed

    Barceloux, D G

    1999-01-01

    The use of zinc in metal alloys and medicinal lotions dates back before the time of Christ. Currently, most of the commercial production of zinc involves the galvanizing of iron and the manufacture of brass. Some studies support the use of zinc gluconate lozenges to treat the common cold, but there are insufficient data at this time to recommend the routine use of these lozenges. Zinc is an essential co-factor in a variety of cellular processes including DNA synthesis, behavioral responses, reproduction, bone formation, growth, and wound healing. Zinc is a relatively common metal with an average concentration of 50 mg/kg soil and a range of 10-300 mg/kg soil. Meat, seafood, dairy products, nuts, legumes, and whole grains contain relatively high concentrations of zinc. The mobility of zinc in anaerobic environments is poor and therefore severe zinc contamination occurs primarily near points sources of zinc release. The recommended daily allowance for adults is 15 mg zinc. The ingestion of 1-2 g zinc sulfate produces emesis. Zinc compounds can produce irritation and corrosion of the gastrointestinal tract, along with acute renal tubular necrosis and interstitial nephritis. Inhalation of high concentrations of zinc chloride from smoke bombs detonated in closed spaces may cause chemical pneumonitis and adult respiratory distress syndrome. In the occupational setting inhalation of fumes from zinc oxide is the most common cause of metal fume fever (fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste, salivation). Zinc compounds are not suspected carcinogens. Treatment of zinc toxicity is supportive. Calcium disodium ethylenediaminetetraacetate (CaNa2EDTA) is the chelator of choice based on case reports that demonstrate normalization of zinc concentrations, but there are few clinical data to confirm the efficacy of this agent.

  9. Leaching and selective zinc recovery from acidic leachates of zinc metallurgical leach residues.

    PubMed

    Sethurajan, Manivannan; Huguenot, David; Jain, Rohan; Lens, Piet N L; Horn, Heinrich A; Figueiredo, Luiz H A; van Hullebusch, Eric D

    2017-02-15

    Zinc (Zn) leaching yields and kinetics from three different zinc plant leach residues (ZLR) generated in different periods (ZLR1>30 years, ZLR2 5-30 years and ZLR3<2 years) were investigated. The factors affecting the Zn leaching rate such as solid to liquid ratio, temperature, acid concentration and agitation were optimized. Under optimum conditions, 46.2 (±4.3), 23.3 (±2.7) and 17.6 (±1.2) mg of Zn can be extracted per gram of ZLR1, ZLR2 and ZLR3, respectively. The Zn leaching kinetics of ZLRs follow the shrinking core diffusion model. The activation energy required to leach Zn from ZLR1, ZLR2 and ZLR3 were estimated to be 2.24kcal/mol, 6.63kcal/mol and 11.7kcal/mol, respectively, by the Arrhenius equation. The order of the reaction with respect to the sulfuric acid concentration was also determined as 0.20, 0.56, and 0.87 for ZLR1, ZLR2 and ZLR3, respectively. Zn was selectively recovered from the leachates by adjusting the initial pH and by the addition of sodium hydroxide and sodium sulfide. More than 90% of Zn was selectively recovered as sphalerite from the ZLR polymetallic leachates by chemical sulfide precipitation.

  10. Zinc

    MedlinePlus

    ... pill" to help remove excess water from the body. Another effect of amiloride (Midamor) is that it can increase the amount of zinc in the body. Taking zinc supplements with amiloride (Midamor) might cause ...

  11. Crystallization of zinc lactate in presence of malic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang-Yang; Févotte, Gilles; Zhong, Liang; Qian, Gang; Zhou, Xing-Gui; Yuan, Wei-Kang

    2010-09-01

    The influence of malic acid, which acts as an impurity on the cooling crystallization of zinc lactate is investigated in this paper by monitoring the relative supersaturation and the number of crystals during crystallization. The presence of malic acid increases the solution solubility and makes the metastable zone wider; it also changes the habit of the crystal. The purity of the final products is shown to be influenced by the amount and size of seed crystals, cooling rate, seeding temperature and final temperature, but appears to depend mainly on the particle size and level of supersaturation. Residual supersaturation thresholds are observed that depend on the final temperature. A model is proposed to predict the steady-state supersaturation value from the final temperature at a given impurity concentration. This model is based on Kubota and Gibbs equations.

  12. Discotic liquid crystal derived from zinc tetraaminophthalocyanine and perfluorooctanoic acid

    NASA Astrophysics Data System (ADS)

    Meng, Fanbao; Zhou, Naiyu; Diao, Na; Du, Chang

    2013-12-01

    A novel kind of metallo-phthalocyanine derivative, zinc 2,9,16,23-tetraaminophthalocyanine perfluorooctanoate (Zn-APc-pFOA), was synthesized from zinc tetraaminophthalocyanine and perfluorooctanoic acid. The chemical structure, liquid crystalline behavior, and electrorheological properties were characterized by the use of various experimental techniques, methods, and instruments, including FT-IR and UV-vis spectroscopy, 1H-NMR, x-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, polarized optical microscopy, the four-point method, a relative permittivity test instrument, and a rotating viscometer. Zn-APc-pFOA shows a discotic hexagonal columnar mesophase over a wide temperature range. The dielectric constant and conductivity of Zn-APc-pFOA are 11.4 and 6.34 × 10-3 S cm-1, respectively. The 20 V% silicone oil-Zn-APc-pFOA fluid shows an electrorheological (ER) effect. Zn-APc-pFOA is a semiconductor with a high dielectric constant, causing a mismatch of conductivity and dielectric constant between the Zn-APc-pFOA and silicone oil. Furthermore, some synergistic effect could occur between the semiconducting property and the molecular orientation of the discotic liquid crystals in Zn-APc-pFOA suspensions, resulting in a high ER effect.

  13. Kinetic modeling on batch-cooling crystallization of zinc lactate: The influence of malic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyang; Qian, Gang; Zhou, Xinggui

    2017-04-01

    Influence of malic acid, which acts as an impurity, on the crystallization kinetics of zinc lactate has been investigated in this work. Crystallization of zinc lactate with a linear cooling profile was carried out in a batch crystallizer and a population balance model was used to estimate the crystallization kinetics for each studied system by using the nonlinear optimization method. The predicted results related to the concentration profile of zinc lactate are in good agreement with the experimental data. The influence of malic acid on the crystallization of zinc lactate is discussed herein.

  14. Zinc

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zinc was recognized as an essential trace metal for humans during the studies of Iranian adolescent dwarfs in the early 1960s. Zinc metal existing as Zn2+ is a strong electron acceptor in biological systems without risks of oxidant damage to cells. Zn2+ functions in the structure of proteins and is ...

  15. Bioavailability of iron, zinc, folic acid, and vitamin A from fortified maize.

    PubMed

    Moretti, Diego; Biebinger, Ralf; Bruins, Maaike J; Hoeft, Birgit; Kraemer, Klaus

    2014-04-01

    Several strategies appear suitable to improve iron and zinc bioavailability from fortified maize, and fortification per se will increase the intake of bioavailable iron and zinc. Corn masa flour or whole maize should be fortified with sodium iron ethylenediaminetetraacetate (NaFeEDTA), ferrous fumarate, or ferrous sulfate, and degermed corn flour should be fortified with ferrous sulfate or ferrous fumarate. The choice of zinc fortificant appears to have a limited impact on zinc bioavailability. Phytic acid is a major inhibitor of both iron and zinc absorption. Degermination at the mill will reduce phytic acid content, and degermed maize appears to be a suitable vehicle for iron and zinc fortification. Enzymatic phytate degradation may be a suitable home-based technique to enhance the bioavailability of iron and zinc from fortified maize. Bioavailability experiments with low phytic acid-containing maize varieties have suggested an improved zinc bioavailability compared to wild-type counterparts. The bioavailability of folic acid from maize porridge was reported to be slightly higher than from baked wheat bread. The bioavailability of vitamin A provided as encapsulated retinyl esters is generally high and is typically not strongly influenced by the food matrix, but has not been fully investigated in maize.

  16. A field investigation of the relationship between zinc and acid volatile sulfide concentrations in freshwater sediments

    USGS Publications Warehouse

    Ankley, Gerald T.; Liber, Karsten; Call, Daniel J.; Markee, Thomas P.; Canfield, Timothy J.; Ingersoll, Christopher G.

    1996-01-01

    Understanding relationships between cationic metals such as cadmium, copper, nickel, lead and zinc, and amorphous iron sulfides, measured as acid volatile sulfide (AVS), is key to predicting metal bioavailability and toxicity insediments. The objective of the present study was to assess seasonal and spatial variations of AVS in freshwater sediments contaminated with zinc. Sediments were sampled from three streams with varying levels of zinc contamination at two different times, March and June of 1995, representing cold- and warm-weather situations. Interstitial (pore) water concentrations of zinc, and solid phase concentrations of AVS and zinc were measured in surficial and deep sediment horizons. Toxicity tests (10-d) with the amphipodHyalella azteca were conducted using intact cores. Sediment zinc concentrations from six sites within the primary test stream differed by about five-fold, and also varied seasonally. Acid volatile sulfide concentrations were generally lower than those of zinc, and pore water zinc concentrations typically were elevated. There was a positive correlation between solid-phase AVS and zinc concentrations, suggesting that the system was dominated by zinc, as opposed to iron sulfides. In contrast to expectations arising from some studies of seasonal variations of AVS in iron-dominated systems, AVS concentrations were smaller in June than in March. However, this was likely due to a major storm event and associated sediment scouring before the June sampling, rather than to seasonal processes related to variations in temperature and dissolved oxygen. Based upon an indirect analysis of depth variations in AVS, there was some indication that zinc sulfide might be less prone to oxidation than iron sulfide. There was a strong correlation between toxicity of the sediment samples toH. azteca and interstitial water concentrations of zinc; however, the possible contribution of other contaminants to sediment toxicity cannot be dismissed.

  17. Does folic acid and zinc sulphate intervention affect endocrine parameters and sperm characteristics in men?

    PubMed

    Ebisch, I M W; Pierik, F H; DE Jong, F H; Thomas, C M G; Steegers-Theunissen, R P M

    2006-04-01

    We evaluated pre- and post-intervention endocrine and semen parameters in a double-blind, placebo-controlled intervention study to investigate the underlying mechanism of increased sperm concentration after folic acid and zinc sulphate intervention. A total of 47 fertile and 40 subfertile males participated in a 26-week intervention study consisting of a daily treatment with folic acid (5 mg/day) and zinc sulphate (66 mg/day), or placebo. Pre- and post-intervention semen parameters, serum folate, zinc, follicle-stimulating hormone (FSH), testosterone and inhibin B concentrations were measured. The results indicated that intervention treatment significantly increased sperm concentration in subfertile males. Other semen and endocrine parameters were not affected by intervention treatment. At baseline, positive correlations were found between serum zinc and sperm concentration, motility and inhibin B. Serum zinc and FSH were inversely correlated. As (already) well known from previous research, inhibin B positively correlated with sperm concentration, motility and morphology, and was inversely correlated with FSH. The latter was positively correlated with testosterone. In addition, testosterone and inhibin B were inversely correlated. After intervention, the correlations with zinc disappeared. We conclude that the increase in sperm concentration after folic acid and zinc sulphate intervention is not the result of alterations in FSH, testosterone or inhibin B concentrations. Although zinc and folate have several effects on spermatogenesis, the underlying mechanisms involved are not clear.

  18. In situ STM studies of zinc in aqueous solutions containing PEG DiAcid inhibitor: Correlation with electrochemical performances of zinc-air fuel cells

    NASA Astrophysics Data System (ADS)

    Cohen-Hyams, Tzipi; Ziengerman, Yuli; Ein-Eli, Yair

    Electrochemical performance of prismatic zinc-air fuel cells comprising zinc anode gel containing poly(ethylene glycol) (PEG 600) and poly(ethylene glycol) bis(carboxymethyl) ether (PEG DiAcid 600) as corrosion inhibitor were studied. It was found that in addition to the low zinc corrosion rates obtained from cells utilizing PEG DiAcid 600 as corrosion inhibitor, both analog and global mobile system (GSM) discharge capacities and potential plateaus, in a wide range of temperatures were higher once PEG DiAcid was added to the zinc gel mixtures. The results obtained from in situ scanning tunneling microscopy (STM) studies of zinc substrates immersed in deionized (DI) water containing inhibitors reveal that the film produced on the zinc metal in the presence of PEG DiAcid is by far thinner than the film produced by other inhibitors such as PEG 600 and polyoxyethylene alkyl phosphate ester acid (GAFAC RA 600). These studies also reveal that the addition of PEG DiAcid forms an adherent and a complete protective coverage, while the addition of PEG 600 and GAFAC RA 600 resulted in an incomplete coverage with the appearance of pits and terraces, indicating on a restricted inhibition performance of these two polymers compared with PEG DiAcid. These studies suggest a low interface resistivity of zinc immersed in alkaline solution containing PEG DiAcid, which is expressed in a higher working potential and increased cell capacity in different temperatures at two discharge modes of analog and GSM.

  19. Synthesis and characterization of zinc chloride containing poly(acrylic acid) hydrogel by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Park, Jong-Seok; Kuang, Jia; Gwon, Hui-Jeong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Seob Khil, Myung; Nho, Young-Chang

    2013-07-01

    In this study, the characterization of zinc chloride incorporated into a poly(acrylic acid) (PAAc) hydrogel prepared by gamma-ray irradiation was investigated. Zinc chloride powder with different concentrations was dissolved in the PAAc solution, and it was crosslinked with gamma-ray irradiation. The effects of various parameters such as zinc ion concentration and irradiation doses on characteristics of the hydrogel formed were investigated in detail for obtaining an antibacterial wound dressing. In addition, the gel content, pH-sensitive (pH 4 or 7) swelling ratio, and UV-vis absorption spectra of the zinc particles in the hydrogels were characterized. Moreover, antibacterial properties of these new materials against Staphylococcus aureus and Escherichia coli strains were observed on solid growth media. The antibacterial tests indicated that the zinc chloride containing PAAc hydrogels have good antibacterial activity.

  20. The (unusual) aspartic acid in the metal coordination sphere of the prokaryotic zinc finger domain.

    PubMed

    D'Abrosca, Gianluca; Russo, Luigi; Palmieri, Maddalena; Baglivo, Ilaria; Netti, Fortuna; de Paola, Ivan; Zaccaro, Laura; Farina, Biancamaria; Iacovino, Rosa; Pedone, Paolo Vincenzo; Isernia, Carla; Fattorusso, Roberto; Malgieri, Gaetano

    2016-08-01

    The possibility of choices of protein ligands and coordination geometries leads to diverse Zn(II) binding sites in zinc-proteins, allowing a range of important biological roles. The prokaryotic Cys2His2 zinc finger domain (originally found in the Ros protein from Agrobacterium tumefaciens) tetrahedrally coordinates zinc through two cysteine and two histidine residues and it does not adopt a correct fold in the absence of the metal ion. Ros is the first structurally characterized member of a family of bacterial proteins that presents several amino acid changes in the positions occupied in Ros by the zinc coordinating residues. In particular, the second position is very often occupied by an aspartic acid although the coordination of structural zinc by an aspartate in eukaryotic zinc fingers is very unusual. Here, by appropriately mutating the protein Ros, we characterize the aspartate role within the coordination sphere of this family of proteins demonstrating how the presence of this residue only slightly perturbs the functional structure of the prokaryotic zinc finger domain while it greatly influences its thermodynamic properties.

  1. Ligand-exchange chromatography of amino acids on copper-, cobalt- and zinc-chelex 100.

    PubMed

    Hemmasi, B; Bayer, E

    1975-06-04

    Procedures for the ligand-exchange chromatography of amino acids on copper-, cobalt-and zinc-Chelex 100 have been examined. Ligand exchange on the copper complex affords a simple and rapid method for the removal of amino acids (except for aspartic and glutamic acids) from dilute solutions. The influence of the pH on the binding of amino acids to the metal complex was also studied. The bound amino acids could be eluted with ammonium hydroxide which also causes a slight metal leakage. Chromatography on cobalt- and zinc-Chelex 100 showed that only the basic amino acids were quantitatively attached to these complexes at pH 8.3-9.5, whereas the others were predominantly EXCLUDED. This procedure can be used for the selective concentration and removal of basic amino acids in the presence of other amino acids.

  2. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    EPA Science Inventory

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2•6H2O functionalization of zeolite. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The adsorption capacity of the adsorbents at 21...

  3. Effect of folic acid and zinc sulphate on endocrine parameters and seminal antioxidant level after varicocelectomy.

    PubMed

    Nematollahi-Mahani, S N; Azizollahi, G H; Baneshi, M R; Safari, Z; Azizollahi, S

    2014-04-01

    Varicocele is among the most common problems which may lead to male infertility. Spermatogenesis is impaired as a consequence of this vascular defect, through mechanisms that are not well described. This study aimed to evaluate serum hormonal level (inhibin B, FSH and testosterone) and seminal plasma antioxidant defence levels after folic acid and zinc sulphate administration in varicocelectomised patients. Participants were randomly allocated to four experimental groups. Our randomisation schedule was as follows: zinc sulphate/folic acid, folic acid, zinc sulphate and placebo. The patients underwent varicocelectomy, before which a blood and semen sample were obtained and also three and six months after varicocelectomy for evaluation of blood hormonal level (FSH, testosterone, inhibin B) and seminal oxidative stress status (nitric oxide, superoxide dismutase, total antioxidant capacity). Patients in different groups took orally one capsule per day after dinner following varicocelectomy for 6 months. A significant rise in peripheral blood inhibin B and seminal plasma activity was detected in the zinc sulphate/folic acid group after 6 months. The present clinical trial indicates a change in the hormonal status of varicocelectomised patients following long-term administration of zinc sulphate and folic acid.

  4. Effectiveness of a zinc amino acid chelate and zinc sulfate in restoring serum and soft tissue zinc concentrations when fed to zinc-depleted pigs.

    PubMed

    Swinkels, J W; Kornegay, E T; Zhou, W; Lindemann, M D; Webb, K E; Verstegen, M W

    1996-10-01

    In a 36-d experiment, 32 pigs were depleted of Zn (24 d) using a soy-isolate (basal) diet (17 mg/kg of Zn) and then fed the basal diet (12 d) supplemented with 45 mg/kg of Zn from ZnSO4 (purified zinc sulfate dry powder, ZnSO4.nH2O) or from a Zn amino acid chelate (ZnAAC) to study the effectiveness of these dietary Zn sources in restoring serum and soft tissue Zn concentrations. Concurrently, nondepleted pigs were pair-fed both Zn-supplemented diets (eight pigs per diet) throughout the experiment. Serum Zn concentrations and serum alkaline phosphatase (ALP) activity of pigs fed the diets with no supplemental Zn were lower (P < .05) than those of nondepleted pigs after 7 and 14 d, respectively. After 24 d, concentrations of Zn in liver, pancreas, kidney, brain, and small intestine of Zn-depleted pigs were lower (P < .01) than those of nondepleted pigs. Except for decreased (P < .001) kidney Cu, soft tissue Cu and Fe concentrations were not affected by Zn status or Zn source. From d 24 to 36 (Zn repletion), serum and tissue Zn concentrations and serum ALP activities increased (P < .05), but the response was similar for both Zn sources in Zn-depleted and nondepleted pigs. At d 30 and 36, kidney Cu was increased (P < .01) in Zn-depleted pigs fed 45 mg/kg of Zn as either ZnSO4 or ZnAAC. Furthermore, Fe concentration was higher (P < .05) in intestinal segments of Zn-depleted and nondepleted pigs fed ZnAAC than in pigs fed ZnSO4. Accumulations of Cu in the kidney and Fe in the small intestine were affected by depletion and repletion of Zn and by dietary Zn source, respectively. In conclusion, serum and soft tissue Zn concentrations were clearly affected by Zn status: however, an effect of Zn source was not observed.

  5. Studies on zinc nodules electrodeposited from acid electrolytes

    SciTech Connect

    Anderson, R.; Tobias, C.W.

    1984-12-01

    The development of morphology of electrodeposited zinc was investigated by studying the initial stages of deposition. Zinc was deposited galvanostatically from 1.0 M ZnCl/sub 2/ electrolyte (0.7 < pH < 4.6) on rotating disc electrodes at current densities from 5 to 130 ma/cm/sup 2/. Pine glassy carbon, Union Carbide pyrolytic graphite, Gould pyrolytic graphite, Exxon graphite loaded polymer, and platinum substrates were used. The number densities of nodules (diameter greater than 1 ..mu..m), typically encountered during incipient morphological development, were measured using scanning electron microscopy and image analysis. Nodule densities up to 7 x 10/sup 4/ nodules/mm/sup 2/ were measured.

  6. Zinc-mediated amino acid discrimination in cysteinyl-tRNA synthetase.

    PubMed

    Zhang, Chun-Mei; Christian, Thomas; Newberry, Kate J; Perona, John J; Hou, Ya-Ming

    2003-04-11

    Escherichia coli cysteinyl-tRNA synthetase (CysRS) achieves a high level of amino acid specificity without an editing reaction. The crystal structure of CysRS bound to substrate cysteine suggested that direct thiol coordination to a tightly bound zinc ion at the base of the active site is the primary determinant of selectivity against non-cognate amino acids. This hypothesis has now been supported by spectroscopic studies of cobalt-substituted CysRS. Binding of cysteine, but not non-cognate amino acids, induces high absorption in the ligand-to-metal charge transfer region, providing evidence for formation of a metal-thiolate bond. In addition, mutations in the zinc ligands alter the absorption spectrum without reducing the discrimination against non-cognate amino acids. These results argue strongly for a major role for the zinc ion in amino acid discrimination by CysRS, where the tight zinc-thiolate interaction and the strict structural geometry of the metal ion are sufficient to reject serine by more than 20,000-fold at the binding step.

  7. Effect of zinc on the transformation of haloacetic acids (HAAs) in drinking water.

    PubMed

    Wang, Wei; Zhu, Lizhong

    2010-02-15

    Suspected carcinogen haloacetic acids (HAAs), as a major class of disinfection byproducts, are widespread in drinking water. Batch experiments were conducted to investigate the effect of zinc, a metal component of galvanized pipe in water distribution systems, on the fate of the HAAs. Results showed that zinc could induce sequential dehalogenation of HAAs. All brominated acetic acids were transformed to acetate ultimately, and chloroacetic acid (MCAA) was the final product for the dehalogenation of trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA). The concentrations of the parent compounds as a function of time were fitted pseudo-first-order kinetic model with R(2)>0.904. Brominated acetic acids were more activated than chlorinated acetic acids in the reaction with zinc and the activity of HAAs decreased with the number of substituents reduced. While flowing through galvanized pipe, brominated and chlorinated acetic acids except MCAA would decrease to 1% of their initial concentrations in 2.11-6.34h, and the rates would not be affected obviously by the hydrodynamic or duct conditions. The health risk due to TCAA, DCAA in drinking water tends to be magnified, and that due to TBAA, DBAA tends to be first increased and then decreased, also that due to MBAA tends to be decreased.

  8. Bio-inspired band gap engineering of zinc oxide by intracrystalline incorporation of amino acids.

    PubMed

    Brif, Anastasia; Ankonina, Guy; Drathen, Christina; Pokroy, Boaz

    2014-01-22

    Bandgap engineering of zinc oxide semiconductors can be achieved using a bio-inspired method. During a bioInspired crystallization process, incorporation of amino acids into the crystal structure of ZnO induces lattice strain that leads to linear bandgap shifts. This allows for fine tuning of the bandgap in a bio-inspired route.

  9. Combined iron and folic acid supplementation with or without zinc reduces time to walking unassisted among Zanzibari infants 5-11 months old

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Iron and zinc deficiencies have been associated with delayed motor development in nutritionally at-risk children, albeit inconsistently. In this community-based, randomized double-blind trial, iron+folic acid (FeFA) (12.5 mg Fe + 50 'g folic acid), zinc (Zn) (10 mg), and iron+folic acid+zinc (FeFA+Z...

  10. Versatile supramolecular reactivity of zinc-tetra(4-pyridyl)porphyrin in crystalline solids: Polymeric grids with zinc dichloride and hydrogen-bonded networks with mellitic acid.

    PubMed

    Lipstman, Sophia; Goldberg, Israel

    2009-12-11

    Crystal engineering studies confirm that the zinc-tetra(4-pyridyl)porphyrin building block reveals versatile supramolecular chemistry. In this work, it was found to be reactive in the assembly of both (a) a 2D polymeric array by a unique combination of self-coordination and coordination through external zinc dichloride linkers and (b) an extended heteromolecular hydrogen-bonded network with mellitic acid sustained by multiple connectivity between the component species.

  11. Superiority of zinc complex of acetylsalicylic acid to acetylsalicylic acid in preventing postischemic myocardial dysfunction.

    PubMed

    Korkmaz, Sevil; Atmanli, Ayhan; Li, Shiliang; Radovits, Tamás; Hegedűs, Peter; Barnucz, Enikő; Hirschberg, Kristóf; Loganathan, Sivakkanan; Yoshikawa, Yutaka; Yasui, Hiroyuki; Karck, Matthias; Szabó, Gábor

    2015-09-01

    The pathophysiology of ischemic myocardial injury involves cellular events, reactive oxygen species, and an inflammatory reaction cascade. The zinc complex of acetylsalicylic acid (Zn(ASA)2) has been found to possess higher anti-inflammatory and lower ulcerogenic activities than acetylsalicylic acid (ASA). Herein, we studied the effects of both ASA and Zn(ASA)2 against acute myocardial ischemia. Rats were pretreated with ASA (75 mg/kg) or Zn(ASA)2 (100 mg/kg) orally for five consecutive days. Isoproterenol (85 mg/kg, subcutaneously [s.c.]) was applied to produce myocardial infarction. After 17-22 h, animals were anesthetized with sodium pentobarbital (60 mg/kg, intraperitoneally [i.p.]) and both electrical and mechanical parameters of cardiac function were evaluated in vivo. Myocardial histological and gene expression analyses were performed. In isoproterenol-treated rats, Zn(ASA)2 treatment normalized significantly impaired left-ventricular contractility index (Emax 2.6 ± 0.7 mmHg/µL vs. 4.6 ± 0.5 mmHg/µL, P < 0.05), increased stroke volume (30 ± 3 µL vs. 50 ± 6 µL, P < 0.05), decreased systemic vascular resistance (7.2 ± 0.7 mmHg/min/mL vs. 4.2 ± 0.5 mmHg/min/mL, P < 0.05) and reduced inflammatory infiltrate into the myocardial tissues. ECG revealed a restoration of elevated ST-segment (0.21 ± 0.03 mV vs. 0.09 ± 0.02 mV, P < 0.05) and prolonged QT-interval (79.2 ± 3.2 ms vs. 69.5 ± 2.5 ms, P < 0.05) by Zn(ASA)2. ASA treatment did not result in an improvement of these parameters. Additionally, Zn(ASA)2 significantly increased the mRNA-expression of superoxide dismutase 1 (+73 ± 15%), glutathione peroxidase 4 (+44 ± 12%), and transforming growth factor (TGF)-β1 (+102 ± 22%). In conclusion, our data demonstrate that oral administration of zinc and ASA in the form of bis(aspirinato)zinc(II) complex is superior to ASA in preventing electrical

  12. Supplemental phytic acid and microbial phytase change zinc bioavailability and cadmium accumulation in growing rats.

    PubMed

    Rimbach, G; Brandt, K; Most, E; Pallauf, J

    1995-07-01

    Three groups of individually housed albino rats (n = 6 each, initial average weight = 47 g) were fed diets based on egg white and corn starch over a 4-week period. All diets were supplemented with 15 mg/kg of Zn and 5 mg/kg of Cd. Group I (Control) was fed the basal diet free of phytic acid (PA) and phytase. By replacing corn starch by 0.5% PA (as NaPA) in groups II and III, a molar PA/Zn ratio of 33 was obtained. In group III, 2000 U of microbial phytase per kg diet were added. Addition of PA to diet (group II) resulted in a significant decrease in growth and zinc status. The negative effect of dietary PA on growth and zinc status was considerably counteracted by the supplementation of 2000 U microbial phytase (group III). In group I the highest apparent zinc absorption (58.2%) was measured. The addition of 0.5% PA (group II) significantly decreased apparent zinc absorption to 23.4%. In rats receiving the phytase-enriched diet (group III) 46.5% of ingested zinc was apparently absorbed. Liver cadmium concentration in rats fed the diet containing PA was significantly higher than that in the control group, whereas phytase supplementation lowered liver cadmium accumulation. In tendency similar effects were obtained for kidney cadmium accumulation.

  13. Effects of surfactants on low-molecular-weight organic acids to wash soil zinc.

    PubMed

    Chen, Yue; Zhang, Shirong; Xu, Xiaoxun; Yao, Ping; Li, Ting; Wang, Guiyin; Gong, Guoshu; Li, Yun; Deng, Ouping

    2016-03-01

    Soil washing is an effective approach to the removal of heavy metals from contaminated soil. In this study, the effects of the surfactants sodium dodecyl sulfate, Triton X-100, and non-ionic polyacrylamide (NPAM) on oxalic acid, tartaric acid, and citric acid used to remove zinc from contaminated soils were investigated. The Zn removal efficiencies of all washing solutions showed a logarithmic increase with acid concentrations from 0.5 to 10.0 g/L, while they decreased as pH increased from 4 to 9. Increasing the reaction time enhanced the effects of surfactants on Zn removal efficiencies by the acids during washing and significantly (P < 0.05) improved the removal under some mixed cases. Oxalic acid suffered antagonistic effects from the three surfactants and seriously damaged soil nutrients during the removal of soil Zn. Notably, the three surfactants caused synergistic effects on tartaric and citric acid during washing, with NPAM leading to an increase in Zn removal by 5.0 g/L citric acid of 10.60 % (P < 0.05) within 2 h. NPAM also alleviated the loss of cation exchange capacity of washed soils and obviously improved soil nitrogen concentrations. Overall, combining citric acid with NPAM offers a promising approach to the removal of zinc from contaminated soil.

  14. 40 CFR 721.5252 - 2-Naphthalenecarboxylic acid, 4,4′-methylenebis [3-hydroxy-, zinc salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-methylenebis [3-hydroxy-, zinc salt. 721.5252 Section 721.5252 Protection of Environment ENVIRONMENTAL...′-methylenebis [3-hydroxy-, zinc salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 2-Naphthalenecarboxylic acid, 4,4′-methylenebis [3-hydroxy-,...

  15. 40 CFR 721.5252 - 2-Naphthalenecarboxylic acid, 4,4′-methylenebis [3-hydroxy-, zinc salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-methylenebis [3-hydroxy-, zinc salt. 721.5252 Section 721.5252 Protection of Environment ENVIRONMENTAL...′-methylenebis [3-hydroxy-, zinc salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 2-Naphthalenecarboxylic acid, 4,4′-methylenebis [3-hydroxy-,...

  16. 40 CFR 721.5252 - 2-Naphthalenecarboxylic acid, 4,4′-methylenebis [3-hydroxy-, zinc salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-methylenebis [3-hydroxy-, zinc salt. 721.5252 Section 721.5252 Protection of Environment ENVIRONMENTAL...′-methylenebis [3-hydroxy-, zinc salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 2-Naphthalenecarboxylic acid, 4,4′-methylenebis [3-hydroxy-,...

  17. 40 CFR 721.5252 - 2-Naphthalenecarboxylic acid, 4,4′-methylenebis [3-hydroxy-, zinc salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-methylenebis [3-hydroxy-, zinc salt. 721.5252 Section 721.5252 Protection of Environment ENVIRONMENTAL...′-methylenebis [3-hydroxy-, zinc salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 2-Naphthalenecarboxylic acid, 4,4′-methylenebis [3-hydroxy-,...

  18. 40 CFR 721.5252 - 2-Naphthalenecarboxylic acid, 4,4′-methylenebis [3-hydroxy-, zinc salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-methylenebis [3-hydroxy-, zinc salt. 721.5252 Section 721.5252 Protection of Environment ENVIRONMENTAL...′-methylenebis [3-hydroxy-, zinc salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 2-Naphthalenecarboxylic acid, 4,4′-methylenebis [3-hydroxy-,...

  19. Cements containing syringic acid esters -- o-ethoxybenzoic acid and zinc oxide.

    PubMed

    Brauer, G M; Stansbury, J W

    1984-02-01

    Fissure caries is reduced when syringic acid is incorporated into a cariogenic diet of rats. It was therefore of interest to synthesize n-hexyl and 2-ethylhexyl syringate and to evaluate the properties of cements with these compounds as ingredients. Liquids containing the esters dissolved in o-ethoxybenzoic acid (EBA) - when mixed with powders made up from zinc oxide, aluminum oxide, and hydrogenated rosin - hardened in from four to nine min. Properties of the cements were determined, when possible, according to ANSI/ADA specification tests. Depending on the powder-liquid ratio employed, we obtained compositions with varying physical properties desirable for different dental applications. The syringate cements, compared with the commonly used ZOE materials, have improved compressive and tensile strength, lower water solubility, do not inhibit polymerization, and are compatible with acrylic monomers. These cements pass, and mostly greatly exceed, the requirements for ZOE-type restorative materials. They also bond significantly to resins, composites, and non-precious metals. The bond strength is somewhat less than that of n-hexyl vanillate-EBA cement, but greatly exceeds the adhesion to various substrates of ZOE luting agents. Cements containing n-hexyl syringate were somewhat brittle. Best results were obtained with liquid compositions containing 5% 2-ethylhexyl syringate, 7% n-hexyl vanillate, and 88% EBA, which yielded non-brittle materials. These cements, because of the syringate ingredient, may possess caries-reducing properties. Thus, perhaps in conjunction with fluoride additives, they would be useful as insulating bases, pulp capping agents, root canal sealers, soft tissue packs, or intermediate restoratives.

  20. Functional assessment of zinc nutriture using changes in plasma zinc after exercise in men supplemented with folic acid

    SciTech Connect

    Lukaski, H.C.; Bolonchuk, W.W.; Milne, D.B.

    1986-03-05

    Recently, the authors proposed that changes in plasma zinc (Zn) and copper (Cu) content after maximal exercise could be a functional test of human trace element nutriture. To test this hypothesis, they studied the effect of folic acid (FA) supplements, previously shown to affect zinc absorption on the exercise-induced changes in plasma Zn and Cu in 7 men aged 28.6 +/- 1.2 yr (mean +/- SEM). The men were fed a constant diet with intakes of Cu (1.01 +/- 0.06 mg/d), Zn (12.7 +/- 0.3 mg/d) and FA (200 mg/d) for two 4 wk periods. This basal diet was supplemented with 400 or 800 mg/d FA and it was fed for 4 wk periods alternating with the unsupplemented diet. Pre and post-exercise hematocrit (Hct), hemoglobin (Hb), and plasma Zn and Cu were not affected by FA supplements. To correct for hemoconcentration during exercise, the van Beaumont quotient was calculated from pre and post-exercise Hct, Hb, and plasma Zn and Cu. When the basal diet was fed, the quotient for Zn was 3.4 +/- 1.4 and 2.3 +/- 1.4%, and it declined (p < 0.05) to -5.93 +/- 1.9% and -7.4 +/- 1.8% with 400 and 800 mg/d supplementation, resp. FA supplementation had no effect on the quotient for plasma Cu. These data suggest that Zn mobilization from stores during exercise is impaired with high intakes of FA.

  1. Clinical Evaluation of Hyaluronic Acid Sponge with Zinc versus Placebo for Scar Reduction after Breast Surgery

    PubMed Central

    Mahedia, Monali; Shah, Nilay

    2016-01-01

    Background: Scar formation is a major source of dissatisfaction among patients and surgeons. Individually, hyaluronan, or hyaluronic acid (HA), and zinc have been shown to reduce scarring. The authors evaluated the safety and efficacy of an HA sponge with zinc compared with placebo when applied to bilateral breast surgery scars; specifically, they evaluated whether the use of this product modulates inflammation and immediate scarring in treated patients after bilateral breast surgery. Methods: This double-blind, randomized, prospective study was approved by the local institutional review board. Bilateral breast surgery patients with right and left incision lines were randomly assigned to receive HA sponge with zinc or placebo within 2 to 4 days after their procedure. Participants were followed up at 6 weeks, 12 weeks, and 1 year and evaluated at 12 weeks. Three blinded evaluators reviewed photographs of the incision lines and assessed the scars using a visual analog scale, new scale, and a patient satisfaction survey. Results: Nineteen bilateral breast surgery patients were enrolled in the study. Statistical analysis was performed on 14 patients who completed the follow-up. The mean visual analog scale score was lower for the side receiving the HA sponge with zinc (2.6) than for the side receiving placebo (3.0), indicating a better outcome (t test; P = 0.08). The HA sponge with zinc was found to have significant positive findings on a patient satisfaction survey (P = 0.01). Conclusions: This is a preliminary study that shows zinc hyaluronan was associated with high patient satisfaction in achieving a better scar after bilateral breast surgery, irrespective of skin color. It seems to be safe and effective for early scars. PMID:27536470

  2. Interactions of zinc octacarboxyphthalocyanine with selected amino acids and with albumin

    NASA Astrophysics Data System (ADS)

    Kliber, Marta; Broda, Małgorzata A.; Nackiewicz, Joanna

    2016-02-01

    Effect of selected amino acids (glycine, L-histidine, L-cysteine, L-serine, L-tryptophan) and albumin on the spectroscopic properties and photostability of zinc octacarboxyphthalocyanine (ZnPcOC) was explored in the phosphate buffer at a pH of 7.0. The photodegradation of ZnPcOC alone and in the presence of amino acids or albumin has been investigated in aqueous phase using UV-366 nm and daylight irradiation. Kinetic analysis showed that the interaction with amino acids or albumin enhances the photostability of ZnPcOC. To answer the question of how zinc phthalocyanine interacts with amino acids extensive DFT calculations were performed. Analysis of the optimized geometry features of ZnPcOC: amino acids complexes in the gas phase and in water environment as well as the BSSE corrected interaction energies indicates that the more likely is the formation of equatorial complexes in which H-bonds are formed between the COOH groups of the phthalocyanine and carboxyl or amino groups of amino acids. UV-Vis spectra calculated by employing time dependent density functional theory (TD-DFT) are also consistent with this conclusion.

  3. Interactions of zinc octacarboxyphthalocyanine with selected amino acids and with albumin.

    PubMed

    Kliber, Marta; Broda, Małgorzata A; Nackiewicz, Joanna

    2016-02-15

    Effect of selected amino acids (glycine, l-histidine, l-cysteine, l-serine, l-tryptophan) and albumin on the spectroscopic properties and photostability of zinc octacarboxyphthalocyanine (ZnPcOC) was explored in the phosphate buffer at a pH of 7.0. The photodegradation of ZnPcOC alone and in the presence of amino acids or albumin has been investigated in aqueous phase using UV-366nm and daylight irradiation. Kinetic analysis showed that the interaction with amino acids or albumin enhances the photostability of ZnPcOC. To answer the question of how zinc phthalocyanine interacts with amino acids extensive DFT calculations were performed. Analysis of the optimized geometry features of ZnPcOC: amino acids complexes in the gas phase and in water environment as well as the BSSE corrected interaction energies indicates that the more likely is the formation of equatorial complexes in which H-bonds are formed between the COOH groups of the phthalocyanine and carboxyl or amino groups of amino acids. UV-Vis spectra calculated by employing time dependent density functional theory (TD-DFT) are also consistent with this conclusion.

  4. Model studies of zinc bonding with humic acid in the presence of UV-VIS-NIR radiation.

    PubMed

    Koczorowska, Elzbieta; Slawinski, Janusz

    2003-06-01

    Model experiments were performed to determine the influence of UV-VIS-NIR radiation on zinc bonded with humic acid (HA). The samples of HA or HA-65Zn radioisotope were overlayed on quartz sand in a glass column and subjected to elution that simulated natural conditions. The zinc concentration was chosen to that occurring in the sewage of the Central Sewage Work in Poznań. Zinc was washed with water to simulate the influence of rain. The recovery of injected radiotraces ions in the eluates was found to depend on pH, zinc and HA concentrations and on radiation exposure. The results help to evaluate the migration behavior of zinc in the presence of HA and UV-VIS-NIR radiation. From the first part of the investigation appears that radiation induces a degradation of HA-Zn layer and that the degradation process depends on pH of the environment. A decrease in pH causes an increase in photodegradation and the degree of zinc binding in the humic layer. Simultaneously, the ultra-weak luminescence (UWL) of plants was monitored to estimate the influence of zinc and HA on their development. The results show effects of HA and zinc on UWL and growth of bean and watercress which characterize the rate of plants metabolism and perturbation of their homeostasis. It was observed that high concentrations of zinc ions and HA considerably affect the development process of the plants.

  5. Zinc complexes of the antibacterial drug oxolinic acid: structure and DNA-binding properties.

    PubMed

    Tarushi, Alketa; Psomas, George; Raptopoulou, Catherine P; Kessissoglou, Dimitris P

    2009-06-01

    The neutral mononuclear zinc complexes with the quinolone antibacterial drug oxolinic acid in the absence or presence of a nitrogen donor heterocyclic ligand 2,2'-bipyridine or 1,10-phenanthroline have been synthesized and characterized. The experimental data suggest that oxolinic acid is on deprotonated mode acting as a bidentate ligand coordinated to the metal ion through the ketone and one carboxylato oxygen atoms. The crystal structures of (chloro)(oxolinato)(2,2'-bipyridine)zinc(II), 2, and bis(oxolinato)(1,10-phenanthroline)zinc(II), 3, have been determined with X-ray crystallography. The biological activity of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV and fluorescence spectroscopies. UV studies of the interaction of the complexes with DNA have shown that they can bind to CT DNA and the DNA-binding constants have been calculated. Competitive studies with ethidium bromide (EB) have shown that complex 3 exhibits the ability to displace the DNA-bound EB indicating that it binds to DNA in strong competition with EB.

  6. Amino Acid Derivatives as New Zinc Binding Groups for the Design of Selective Matrix Metalloproteinase Inhibitors

    PubMed Central

    Giustiniano, Mariateresa; Agamennone, Mariangela; Rossello, Armando; Gomez-Monterrey, Isabel; Novellino, Ettore; Campiglia, Pietro; Vernieri, Ermelinda; Bertamino, Alessia; Carotenuto, Alfonso

    2013-01-01

    A number of matrix metalloproteinases (MMPs) are important medicinal targets for conditions ranging from rheumatoid arthritis to cardiomyopathy, periodontal disease, liver cirrhosis, multiple sclerosis, and cancer invasion and metastasis, where they showed to have a dual role, inhibiting or promoting important processes involved in the pathology. MMPs contain a zinc (II) ion in the protein active site. Small-molecule inhibitors of these metalloproteins are designed to bind directly to the active site metal ions. In an effort to devise new approaches to selective inhibitors, in this paper, we describe the synthesis and preliminary biological evaluation of amino acid derivatives as new zinc binding groups (ZBGs). The incorporation of selected metal-binding functions in more complex biphenyl sulfonamide moieties allowed the identification of one compound able to interact selectively with different MMP enzymatic isoforms. PMID:23555050

  7. Bioavailability of iron, vitamin A, zinc, and folic acid when added to condiments and seasonings.

    PubMed

    Degerud, Eirik M; Manger, Mari Skar; Strand, Tor A; Dierkes, Jutta

    2015-11-01

    Seasonings and condiments can be candidate vehicles for micronutrient fortification if consumed consistently and if dietary practices ensure bioavailability of the nutrient. In this review, we identify factors that may affect the bioavailability of iron, vitamin A, zinc, and folic acid when added to seasonings and condiments and evaluate their effects on micronutrient status. We take into consideration the chemical and physical properties of different forms of the micronutrients, the influence of the physical and chemical properties of foods and meals to which fortified seasonings and condiments are typically added, and interactions between micronutrients and the physiological and nutritional status of the target population. Bioavailable fortificants of iron have been developed for use in dry or fluid vehicles. For example, sodium iron ethylenediaminetetraacetic acid (NaFeEDTA) and ferrous sulfate with citric acid are options for iron fortification of fish and soy sauce. Furthermore, NaFeEDTA, microencapsulated ferrous fumarate, and micronized elemental iron are potential fortificants in curry powder and salt. Dry forms of retinyl acetate or palmitate are bioavailable fortificants of vitamin A in dry candidate vehicles, but there are no published studies of these fortificants in fluid vehicles. Studies of zinc and folic acid bioavailability in seasonings and condiments are also lacking.

  8. Kinetics of sulfuric acid leaching of cadmium from Cd-Ni zinc plant residues.

    PubMed

    Safarzadeh, Mohammad Sadegh; Moradkhani, Davood; Ojaghi-Ilkhchi, Mehdi

    2009-04-30

    Cd-Ni filtercakes are produced continuously at the third purification step in the electrolytic production of zinc in the National Iranian Lead and Zinc Company (NILZ) in northwestern Iran. In this research, the dissolution kinetics of cadmium from Cd-Ni residues produced in NILZ plant has been investigated. Hence, the effects of temperature, sulfuric acid concentration, particle size and stirring speed on the kinetics of cadmium dissolution in sulfuric acid were studied. The dissolution kinetics at 25-55 degrees C and tacid concentration, solid/liquid ratio and particle size were also achieved. The rate of reaction at first 5 min based on diffusion-controlled process can be expressed by a semi-empirical equation as:It was determined that the dissolution rate increased with increasing sulfuric acid concentration and decreasing particle size.

  9. Bioavailability of iron, vitamin A, zinc, and folic acid when added to condiments and seasonings

    PubMed Central

    Degerud, Eirik M.; Manger, Mari Skar; Strand, Tor A.

    2015-01-01

    Seasonings and condiments can be candidate vehicles for micronutrient fortification if consumed consistently and if dietary practices ensure bioavailability of the nutrient. In this review, we identify factors that may affect the bioavailability of iron, vitamin A, zinc, and folic acid when added to seasonings and condiments and evaluate their effects on micronutrient status. We take into consideration the chemical and physical properties of different forms of the micronutrients, the influence of the physical and chemical properties of foods and meals to which fortified seasonings and condiments are typically added, and interactions between micronutrients and the physiological and nutritional status of the target population. Bioavailable fortificants of iron have been developed for use in dry or fluid vehicles. For example, sodium iron ethylenediaminetetraacetic acid (NaFeEDTA) and ferrous sulfate with citric acid are options for iron fortification of fish and soy sauce. Furthermore, NaFeEDTA, microencapsulated ferrous fumarate, and micronized elemental iron are potential fortificants in curry powder and salt. Dry forms of retinyl acetate or palmitate are bioavailable fortificants of vitamin A in dry candidate vehicles, but there are no published studies of these fortificants in fluid vehicles. Studies of zinc and folic acid bioavailability in seasonings and condiments are also lacking. PMID:26469774

  10. Molar ratio iron: zinc and folic acid in Brazilian biscuits and snacks and test for classification using principal component analyses.

    PubMed

    Godoy, Adriana Teixeira; Rebelatto, Ana Paula; Borin-Nogueira, Alessandra; Lima-Pallone, Juliana Azevedo

    2014-06-01

    The aim of the present work was to evaluate molar ratio iron: zinc and the levels of folic acid in biscuit and snacks commercialized in Brazil, prepared with folic acid and iron fortified flours. These nutrients are important for human nutrition; however, iron can have a negative effect on zinc absorption. Molar ratio iron:zinc can indicate if there will be any problems for absorption of these nutrients. The folic acid content varied from 58 to 433 μg/100 g and iron and zinc levels varied from 2.9 to 9.4 mg/100 g and from 0.2 to 1.3 mg/100 g, respectively, for 75 analyzed samples. The average iron contents observed in the products and molar ratio iron:zinc (in average 8:1 for biscuits and 12.8:1 for snacks) could result in problems with the zinc absorption. Moreover, principal compo- nent analyses (PCA) indicated low uniformity in the distribution of minerals and vitamin in the majority of the samples, mainly among brands. The results indicated that for the majority of the samples tested folic acid and iron content was higher than expected for flours and could be useful to governmental authorities in their evaluation program of flour fortification.

  11. Differential Binding of Monomethylarsonous Acid Compared to Arsenite and Arsenic Trioxide with Zinc Finger Peptides and Proteins

    PubMed Central

    2015-01-01

    Arsenic is an environmental toxin that enhances the carcinogenic effect of DNA-damaging agents, such as ultraviolet radiation and benzo[a]pyrene. Interaction with zinc finger proteins has been shown to be an important molecular mechanism for arsenic toxicity and cocarcinogenesis. Arsenicals such as arsenite, arsenic trioxide (ATO), and monomethylarsonous acid (MMA(III)) have been reported to interact with cysteine residues of zinc finger domains, but little is known about potential differences in their selectivity of interaction. Herein we analyzed the interaction of arsenite, MMA(III), and ATO with C2H2, C3H1, and C4 configurations of zinc fingers using UV–vis, cobalt, fluorescence, and mass spectrometry. We observed that arsenite and ATO both selectively bound to C3H1 and C4 zinc fingers, while MMA(III) interacted with all three configurations of zinc finger peptides. Structurally and functionally, arsenite and ATO caused conformational changes and zinc loss on C3H1 and C4 zinc finger peptide and protein, respectively, whereas MMA(III) changed conformation and displaced zinc on all three types of zinc fingers. The differential selectivity was also demonstrated in zinc finger proteins isolated from cells treated with these arsenicals. Our results show that trivalent inorganic arsenic compounds, arsenite and ATO, have the same selectivity and behavior when interacting with zinc finger proteins, while methylation removes the selectivity. These findings provide insights on the molecular mechanisms underlying the differential effects of inorganic versus methylated arsenicals, as well as the role of in vivo arsenic methylation in arsenic toxicity and carcinogenesis. PMID:24611629

  12. Differential binding of monomethylarsonous acid compared to arsenite and arsenic trioxide with zinc finger peptides and proteins.

    PubMed

    Zhou, Xixi; Sun, Xi; Mobarak, Charlotte; Gandolfi, A Jay; Burchiel, Scott W; Hudson, Laurie G; Liu, Ke Jian

    2014-04-21

    Arsenic is an environmental toxin that enhances the carcinogenic effect of DNA-damaging agents, such as ultraviolet radiation and benzo[a]pyrene. Interaction with zinc finger proteins has been shown to be an important molecular mechanism for arsenic toxicity and cocarcinogenesis. Arsenicals such as arsenite, arsenic trioxide (ATO), and monomethylarsonous acid (MMA(III)) have been reported to interact with cysteine residues of zinc finger domains, but little is known about potential differences in their selectivity of interaction. Herein we analyzed the interaction of arsenite, MMA(III), and ATO with C2H2, C3H1, and C4 configurations of zinc fingers using UV-vis, cobalt, fluorescence, and mass spectrometry. We observed that arsenite and ATO both selectively bound to C3H1 and C4 zinc fingers, while MMA(III) interacted with all three configurations of zinc finger peptides. Structurally and functionally, arsenite and ATO caused conformational changes and zinc loss on C3H1 and C4 zinc finger peptide and protein, respectively, whereas MMA(III) changed conformation and displaced zinc on all three types of zinc fingers. The differential selectivity was also demonstrated in zinc finger proteins isolated from cells treated with these arsenicals. Our results show that trivalent inorganic arsenic compounds, arsenite and ATO, have the same selectivity and behavior when interacting with zinc finger proteins, while methylation removes the selectivity. These findings provide insights on the molecular mechanisms underlying the differential effects of inorganic versus methylated arsenicals, as well as the role of in vivo arsenic methylation in arsenic toxicity and carcinogenesis.

  13. Dealumination of clinoptilolite and its effect on zinc removal from acid rock drainage.

    PubMed

    Xu, Wanjing; Li, Loretta Y; Grace, John R

    2014-09-01

    Clinoptilolite, a natural zeolite, is capable of removing heavy metals from acid rock drainage (ARD). Previous studies have neglected the dealumination of clinoptilolite and its impact during remediation. This study observed the dealumination of clinoptilolite during ARD remediation in a slurry bubble column (SBC), and investigated its impact on the capture of zinc. Uptake tests were performed with natural ARD and various sorbent average particle diameters from 300 to 1400μm, superficial gas velocities from 0.08 to 0.23ms(-1), initial aqueous pH from 2 to 6, Zn concentrations from 15 to 215ppm and sorbent/solution mass ratios from 25 to 400gkg(-1) to test zinc uptake. Dealumination of clinoptilolite was sometimes observed during the uptake process. Increased Al in the aqueous phase led to co-precipitation of Zn-Al colloid, enhanced by abundant sulfate in solution. The unit zinc uptake of the Al colloid was found to be much higher than for the raw clinoptilolite.

  14. The effect of zinc chloride, humidity and the substrate on the reaction of 1,2-indanedione-zinc with amino acids in latent fingermark secretions.

    PubMed

    Spindler, Xanthe; Shimmon, Ronald; Roux, Claude; Lennard, Chris

    2011-10-10

    Anecdotal evidence from forensic practitioners and studies conducted under controlled conditions have indicated that the reaction between 1,2-indanedione and the amino acids present in latent fingermark deposits is highly susceptible to ambient humidity. The addition of catalytic amounts of zinc chloride to the 1,2-indanedione working solution--usually in the order of 1:25 to 1:4 molar ratio (indanedione:zinc)--significantly improves the colour and luminescence of fingermarks treated under dry conditions but appears to have a negligible effect on fingermarks treated in humid environments. The results presented in this paper confirmed that zinc(II) ions added to the 1,2-indanedione working solution act as a Lewis acid catalyst, stabilising a key intermediate during a rate-limiting hydrolysis step. Furthermore, studying the reaction using a chromatography-grade cellulose substrate method previously reported confirmed that cellulose substrates play a major role in facilitating the indanedione-amino acid reaction by acting as a surface catalyst in the early stages of the reaction and by directing the formation of the desired luminescent product (Joullié's Pink).

  15. Zinc inhibition of γ-aminobutyric acid transporter 4 (GAT4) reveals a link between excitatory and inhibitory neurotransmission

    PubMed Central

    Cohen-Kfir, Einav; Lee, William; Eskandari, Sepehr; Nelson, Nathan

    2005-01-01

    γ-Aminobutyric acid (GABA) transporters (GATs) play an important role in inhibitory neurotransmission by clearing synaptically released GABA and by maintaining low resting levels of GABA in synaptic and extrasynaptic regions. In certain brain regions, vesicular zinc is colocalized and coreleased with glutamate and modulates the behavior of a number of channels, receptors, and transporters. We examined the effect of zinc on expressed GATs (GAT1, GAT2, GAT3, and GAT4) in Xenopus laevis oocytes by using tracer flux and electrophysiological methods. We show that zinc is a potent inhibitor of GAT4 (Ki of 3 μM). Immunolocalization of GAT4 in the hippocampus revealed dense localization in the CA1 and CA3 regions of the hippocampus, regions which are known to be heavily populated by zinc-containing glutamatergic neurons. The results suggest a physiological role of synaptically released zinc in the hippocampus, because zinc released from hyperactive glutamatergic neurons may simultaneously bring about elevated GABAergic inhibition. Therefore, this mode of zinc function signifies a link between excitatory and inhibitory neurotransmission and may play a neuroprotective role against glutamate-induced excitotoxicity. PMID:15829583

  16. The impact of zinc sulfate addition on the dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in the antioxidant effect of zinc.

    PubMed

    Wan, Chun; Zhang, Mingming; Fang, Qing; Xiong, Liang; Zhao, Xinqing; Hasunuma, Tomohisa; Bai, Fengwu; Kondo, Akihiko

    2015-02-01

    The mechanisms of how zinc protects the cells against acetic acid toxicity and acts as an antioxidant are still not clear. Here we present results of the metabolic profiling of the eukaryotic model yeast species Saccharomyces cerevisiae subjected to long term high concentration acetic acid stress treatment in the presence and absence of zinc supplementation. Zinc addition decreased the release of reactive oxygen species (ROS) in the presence of chronic acetic acid stress. The dynamic changes in the accumulation of intermediates in central carbon metabolism were observed, and higher contents of intracellular alanine, valine and serine were observed by zinc supplementation. The most significant change was observed in alanine content, which is 3.51-fold of that of the control culture in cells in the stationary phase. Subsequently, it was found that 0.5 g L(-1) alanine addition resulted in faster glucose consumption in the presence of 5 g L(-1) acetic acid, and apparently decreased ROS accumulation in zinc-supplemented cells. This indicates that alanine exerted its antioxidant effect at least partially through the detoxification of acetic acid. In addition, intracellular glutathione (GSH) accumulation was enhanced by zinc addition, which is related to the protection of yeast cells from the oxidative injury caused by acetic acid. Our studies revealed for the first time that zinc modulates cellular amino acid metabolism and redox balance, especially biosynthesis of alanine and glutathione to exert its antioxidant effect.

  17. Dietary zinc deficiency affects blood linoleic acid: dihomo-gamma-linolenic acid (LA:DGLA) ratio; a reactive physiological marker of zinc status in vivo (Gallus gallus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary Zinc (Zn) deficiency affects approximately 30% of the world’s population. Zinc is a vital micronutrient and is important for the body’s ability to function. To date, accurate biological markers of the Zn subject’s status are still needed. The aim of this study was to evaluate the chicken mod...

  18. The micronutrient supplements, zinc sulphate and folic acid, did not ameliorate sperm functional parameters in oligoasthenoteratozoospermic men.

    PubMed

    Raigani, M; Yaghmaei, B; Amirjannti, N; Lakpour, N; Akhondi, M M; Zeraati, H; Hajihosseinal, M; Sadeghi, M R

    2014-01-01

    We investigated the effects of folic acid and zinc sulphate supplementation on the improvement of sperm function in subfertile oligoasthenoteratozoospermic (OAT) men. Eighty-three OAT men participated in a 16-week intervention randomised, double-blind clinical trial with daily treatment of folic acid (5 mg day(-1) ) and zinc sulphate (220 mg day(-1) ), or placebo. Before and after treatment, semen and blood samples were obtained for determining sperm concentration, motility, and morphology, sperm viability, sperm mitochondrial function, sperm chromatin status using toluidine blue, aniline blue, acridine orange and chromomycin A3 staining; and semen and blood folate, zinc, B12 , total antioxidant capacity (TAC) and malondialdehyde (MDA) concentrations. Sperm concentration (×10(6)  ml(-1) ) increased in subfertile men receiving the combined treatment of folic acid and zinc sulphate and also in the group receiving only folic acid treatment; however, it was not statistically significant (P = 0.056 and P = 0.05, respectively). Sperm chromatin integrity (%) increased significantly in subfertile men receiving only zinc sulphate treatment (P = 0.048). However, this improvement in sperm quality was not significant after adjusting placebo effect. This study showed that zinc sulphate and folic acid supplementation did not ameliorate sperm quality in infertile men with severely compromised sperm parameters, OAT. Male infertility is a multifactorial disorder, and also nutritional factors play an important role in results of administration of supplementation on sperm parameters. However, these results should be confirmed by multiple studies in larger populations of OAT men.

  19. Effect of essential fatty acid and zinc supplementation during pregnancy on birth intervals, neonatal piglet brain myelination, stillbirth, and preweaning mortality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Omega fatty acids and zinc contribute to physiological pathways that could affect the farrowing process, stillbirth, preweaning mortality and postweaning return to estrus. To determine effects of omega fatty acids and zinc on these reproductive traits, gilts were mated and fed either a control diet,...

  20. Adding zinc to supplemental iron and folic acid does not affect mortality and severe morbidity in young children.

    PubMed

    Bhandari, Nita; Taneja, Sunita; Mazumder, Sarmila; Bahl, Rajiv; Fontaine, Olivier; Bhan, Maharaj K

    2007-01-01

    Studies have found a substantial reduction in diarrhea and respiratory morbidity in young children receiving zinc supplementation. The impact of daily zinc supplementation administered with iron plus folic acid (IFA) in young children on all-cause hospitalizations and mortality in comparison with IFA alone was evaluated. In a double blind cluster-randomized controlled trial, 94,359 subjects aged 1-23 mo were administered a daily dose of zinc plus IFA or IFA alone for a duration of 12 mo after enrollment. The intervention group tablet contained 10 mg of elemental zinc, 12.5 mg of iron, and 50 microg of folic acid. The control group tablets were similar except that they contained a placebo for zinc. Infants aged <6 mo were administered half a tablet, and those older received 1 tablet dissolved in breast milk or water. Hospitalizations were captured by trained study physicians through the surveillance of 8 hospitals. Deaths and hospitalizations were ascertained through visits to households by study supervisors once every 2 mo. The overall death rates did not differ significantly between the 2 groups when adjusted for cluster randomization (hazard ratio = 1.02, 95% CI 0.87, 1.19). Zinc and IFA supplementation compared with IFA alone did not affect adjusted hospitalization rates (overall rate ratio = 1.08, 95% CI 0.98, 1.19; diarrhea-specific rate ratio = 1.15, 95% CI 0.99, 1.34; or pneumonia-specific rate ratio = 1.09, 95% CI 0.94, 1.25). The lack of impact of zinc on mortality and hospitalization rates in this study may have been due to the use of lower daily zinc dosing than used in some of the morbidity prevention trials or from an interaction between zinc and iron, where the addition of iron may have adversely affected potential effects of zinc on immune function and morbidity. Future research should address iron and zinc interaction effects on important functional outcomes.

  1. [Zinc-induced interactions of the metal-binding domain of beta-amyloid with nucleic acids and glycosaminoglycans].

    PubMed

    Khmeleva, S A; Kozin, S A; Kiseleva, Y Y; Mitkevich, V A; Makarov, A A; Radko, S P

    2016-01-01

    Zinc ions form complexes with β-amyloid peptides and play an important role in Alzheimer's disease pathogenesis. It has been demonstrated by turbidimetry and correlation spectroscopy that synthetic peptide Aβ16 representing the metal-binding domain of β-amyloid is able to interact with nucleic acids, chondroitin polysulfate, and dextran sulfates in the presence of zinc ions. The amino acid D7H substitution enhanced the peptide binding to polyanions, whereas the H6R and H6A-H13A substitutions abolished this interaction. It is suggested that the metal-binding domain may serve as a zinc-dependent site of β-amyloid interaction with biological polyanions including DNA, RNA, and glycosaminoglycans.

  2. Leaching of lead from zinc leach residue in acidic calcium chloride aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Le; Mu, Wen-ning; Shen, Hong-tao; Liu, Shao-ming; Zhai, Yu-chun

    2015-05-01

    A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly process. This paper describes an optimization study on the leaching of lead from zinc leach residue using acidic calcium chloride aqueous solution. Six main process conditions, i.e., the solution pH value, stirring rate, concentration of CaCl2 aqueous solution, liquid-to-solid (L/S) ratio, leaching temperature, and leaching time, were investigated. The microstructure and components of the residue and tailing were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). On the basis of experimental results, the optimum reaction conditions were determined to be a solution pH value of 1, a stirring rate of 500 r·min-1, a CaCl2 aqueous solution concentration of 400 g·L-1, a liquid-to-solid mass ratio of 7:1, a leaching temperature of 80°C, and a leaching time of 45 min. The leaching rate of lead under these conditions reached 93.79%, with an iron dissolution rate of 19.28%. Silica did not take part in the chemical reaction during the leaching process and was accumulated in the residue.

  3. A highly sensitive electrochemical biosensor based on zinc oxide nanotetrapods for l-lactic acid detection

    NASA Astrophysics Data System (ADS)

    Lei, Yang; Luo, Ning; Yan, Xiaoqin; Zhao, Yanguang; Zhang, Gong; Zhang, Yue

    2012-05-01

    An amperometric biosensor based on zinc oxide (ZnO) nanotetrapods was designed to detect l-lactic acid. The lactate oxidase was immobilized on the surface of ZnO nanotetrapods by electrostatic adsorption. Unlike traditional detectors, the special four-leg individual ZnO nanostructure, as an adsorption layer, provides multiterminal charge transfer channels. Furthermore, a large amount of ZnO tetrapods are randomly stacked to form a three-dimensional network naturally that facilitates the exchange of electrons and ions in the phosphate buffer solution. Utilizing amperometric response measurements, the prepared ZnO nanotetrapod l-lactic acid biosensor displayed a detection limit of 1.2 μM, a low apparent Michaelis-Menten constant of 0.58 mM, a high sensitivity of 28.0 μA cm-2 mM-1 and a good linear relationship in the range of 3.6 μM-0.6 mM for the l-lactic acid detection. This study shows that the biosensor based on ZnO tetrapod nanostructures is highly sensitive and able to respond rapidly in detecting lactic acid.

  4. Electrospray ionization mass spectrometric observation of ligand exchange of zinc pyrithione with amino acids.

    PubMed

    Moriwaki, Hiroshi; Okabayashi, Masanori; Watanabe, Takehiro; Kawasaki, Hideya; Arakawa, Ryuichi

    2009-07-01

    Zinc pyrithione (ZnPT) is widely used as an antidandruff or antifouling reagent. However, this compound is considered toxic, such as the teratogenic effect, to aquatic lives, and it is important to clarify the mechanism of its toxicity. In this study, the interactions between ZnPT and amino acids were observed using electrospray ionization mass spectrometry (ESI-MS) in order to obtain information on the activity of ZnPT within the living body. The ZnPT complex ([ZnPT-ligand+Amino acid]+), in which the ligand of ZnPT was exchanged by the amino acid, was detected in ZnPT solutions mixed with one of 20 amino acids by ESI-MS. Histidine and cysteine, in particular, showed a high reactivity with ZnPT, while serine and glycine showed a low reactivity. The complexes of ZnPT and a peptide were also observed by the ESI-MS measurement of the solution containing ZnPT with the peptide. These results would be useful to understand the mechanism of ZnPT toxicities to living creatures.

  5. Phosphorus and zinc dissolution from thermally gasified piggery waste ash using sulphuric acid.

    PubMed

    Kuligowski, Ksawery; Poulsen, Tjalfe G

    2010-07-01

    Ash from thermally gasified piggery waste (GA) was treated with sulphuric acid (H(2)SO(4)) using two extraction methods. First different loads (0.39-0.98 kg H(2)SO(4)/kg ash) and concentrations (0.2-2M) were used in 3h extraction. Second, titration of 1:25 (w/w) ash:water suspension was conducted with 4M H(2)SO(4) to determine ash buffer capacity at nine pH steps from 12 to 0.1. Total P and zinc (Zn) dissolution was monitored. Optimal acid load and concentration to dissolve 94% P and 55% Zn from GA was 0.98 kg H(2)SO(4)/kg ash and 0.6M, respectively, which corresponds to acid demand of 19.2 kg H(2)SO(4)/kg P recovered. High concentrations (2M) did not improve P dissolution, but Zn was easier released. Ash buffer capacity was the highest at pH 4 and 0.1, first one due to dissolution of Ca, the second one due to autoprotolysis of water. Acid load had stronger effect on dissolution than concentration in the first method, however in the second; both factors had comparable effect.

  6. Amphipathic Benzoic Acid Derivativies: Synthesis and Binding in the Hydrophobic Tunnel of the Zinc Deacetylase LpxC

    SciTech Connect

    Shin,H.; Gennadios, H.; Whittington, D.; Christianson, D.

    2007-01-01

    The first committed step in lipid A biosynthesis is catalyzed by uridine diphosphate-(3-O-(R-3-hydroxymyristoyl))-N-acetylglucosamine deacetylase (LpxC), a zinc-dependent deacetylase, and inhibitors of LpxC may be useful in the development of antibacterial agents targeting a broad spectrum of Gram-negative bacteria. Here, we report the design of amphipathic benzoic acid derivatives that bind in the hydrophobic tunnel in the active site of LpxC. The hydrophobic tunnel accounts for the specificity of LpxC toward substrates and substrate analogues bearing a 3-O-myristoyl substituent. Simple benzoic acid derivatives bearing an aliphatic 'tail' bind in the hydrophobic tunnel with micromolar affinity despite the lack of a glucosamine ring like that of the substrate. However, although these benzoic acid derivatives each contain a negatively charged carboxylate 'warhead' intended to coordinate to the active site zinc ion, the 2.25 {angstrom} resolution X-ray crystal structure of LpxC complexed with 3-(heptyloxy)benzoate reveals 'backward' binding in the hydrophobic tunnel, such that the benzoate moiety does not coordinate to zinc. Instead, it binds at the outer end of the hydrophobic tunnel. Interestingly, these ligands bind with affinities comparable to those measured for more complicated substrate analogue inhibitors containing glucosamine ring analogues and hydroxamate 'warheads' that coordinate to the active site zinc ion. We conclude that the intermolecular interactions in the hydrophobic tunnel dominate enzyme affinity in this series of benzoic acid derivatives.

  7. Structure and kinetics of fatty acid Langmuir monolayers on zinc salt solutions.

    PubMed

    Cantin, Sophie; Fauré, Marie-Claude; Perrot, Françoise; Goldmann, Michel

    2013-12-19

    The adsorption of zinc cations under behenic acid Langmuir monolayers was investigated by means of isotherm measurements, grazing incidence X-ray diffraction and Brewster angle microscopy. The structure of the films was characterized as a function of Zn(2+) concentration, for three different counterions (chloride, iodide, bromide) and at two subphase pHs (5.5 and 7.5). At pH 5.5 and in the studied concentration range, Zn(2+) adsorption leads to a condensation of the fatty acid monolayer with the same phase transitions as over pure water. In contrast, at higher pH the organic X-phase is evidenced immediately above a concentration threshold without any ion organization. Even though Cu(2+) and Zn(2+)cations induce both the fatty acid X-phase, the kinetics of its formation appears strongly different. Indeed, as for Mg(2+) and Cd(2+), the intermediate new I-structure is evidenced in the course of Zn(2+) adsorption although superstructures are observed only for Mg(2+) and Cd(2+). However, for Zn(2+), the I-phase evolves to the final state through a new structure called X' and a continuous X'-X transition. Finally, any effect of the counterion is evidenced neither during the kinetic process nor in the final state.

  8. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid.

    PubMed

    Wang, Lingling; Han, Changseok; Nadagouda, Mallikarjuna N; Dionysiou, Dionysios D

    2016-08-05

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2·6H2O functionalization of zeolite 4A. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The synthesized materials were characterized by porosimetry analysis, scanning electron microscopy, X-Ray diffraction analysis, and high resolution transmission electron microscopy. The maximum adsorption capacity of the adsorbents at 21±1°C was about 60mgCg(-1). The results showed that the positive charge density of ZnO-coated zeolite adsorbents was proportional to the amount of ZnO coated on zeolite and thus, ZnO-coated zeolite adsorbents exhibited a greater affinity for negatively charged ions. Furthermore, the adsorption capacity of ZnO-coated zeolite adsorbents increased markedly after acid modification. Adsorption experiments demonstrated ZnO-coated zeolite adsorbents possessed high adsorption capacity to remove HA from aqueous solutions mainly due to strong electrostatic interactions between negative functional groups of HA and the positive charges of ZnO-coated zeolite adsorbents.

  9. Reactions of bis[bis(trimethylsilyl)amido] zinc with amides of sulfonimidic acids. Crystal structure and NMR studies of bischelate zinc complex

    NASA Astrophysics Data System (ADS)

    Guzyr, Olexandr I.; Markovskii, Leonid N.; Povolotskii, Mark I.; Roesky, Herbert W.; Chernega, Alexander N.; Rusanov, Eduard B.

    2006-05-01

    Reactions of bis[bis(trimethylsilyl)amido] zinc with amides of sulfonimidic acids are leading to the corresponding bischelate complexes 1- 3. Compounds 1- 3 were characterized by means of NMR spectroscopy and elemental analysis. The X-ray analysis of [ p-MeC 6H 4S(O)(N t-Bu) 2] 2Zn ( 3) demonstrates a tetrahedral environment of the Zn atom in the solid state and dynamic 1H NMR studies showed interconvention between two conformers in solution at high temperatures.

  10. Synthesis of zinc-crosslinked thiolated alginic acid beads and their in vitro evaluation as potential enteric delivery system with folic acid as model drug.

    PubMed

    Taha, M O; Aiedeh, K M; Al-Hiari, Y; Al-Khatib, H

    2005-10-01

    The aim of this study is to explore the potential of synthetic modifications of alginic acid as a method to enhance the stability of its complexes with divalent cations under physiological conditions. A fraction of algin's carboxylic acid moieties was substituted with thiol groups to different substitution degrees through conjugating alginate to cysteine to produce alginate-cysteine (AC) conjugates. Infrared spectrophotometry and iodometry were used to characterize the resulting polymeric conjugates in terms of structure and degree of substitution. Moreover, zinc ions were used to crosslink the resulting AC polymers. Folic acid loaded beads were prepared from Zinc-crosslinked AC polymers (AC-Zn) of different cysteine substitution degrees. The generated beads were then investigated in vitro for their capacity to modify folic acid release. AC-Zn polymeric beads resisted drug release under acidic conditions (pH 1.0). However, upon transfer to a phosphate buffer solution (pH 7.0) they released most of their contents almost immediately. This change in drug release behavior is most probably due to the sequestering of zinc cations by phosphate ions within the buffer solution to form insoluble chelates and, to a lesser extent, the ionization of the carboxylic acid and thiol moieties. Removal of zinc ions from the polymeric matrix seems to promote polymeric disintegration and subsequent drug release. A similar behavior is expected in vivo due to the presence of natural zinc sequestering agents in the intestinal fluids. AC-Zn polymers provided a novel approach for enteric drug delivery as drug release from these matrices complied with the USP specifications for enteric dosage forms.

  11. Changes in fatty acid metabolism induced by varied micro-supplementation with zinc in snails Helix pomatia (Gastropoda Pulmonata).

    PubMed

    Kowalczyk-Pecka, Danuta; Pecka, Stanisław; Kowalczuk-Vasilev, Edyta

    2017-04-01

    We analyzed the changes in the profile of fatty acids (FA) in the foot tissues and hepatopancreas (HP) of snails Helix pomatia exposed to five microdoses of zinc (0.1, 0.25, 0.5, 0.75, or 1mg/l) administered in the form of a pure salt solution and in the form of EDTA and lysine chelates. Selection from a pool of 56 fatty acids analyzed in snail tissues yielded a set of 12 biomarker acids undergoing significant changes in contact with toxic substances. The selection criteria included the greatest percentage among the FA profile and their significant role in physiological processes. The proposed palette of acids of the biomarker FAs comprised C16:0; C18:0; C23:0; C18:1 n-9; C20:1 n-9; C18:2 n-6; C18:3 n-3; C20:2; C20:4 n-6; C20:5 n-3; C22:4 n-6; and C22:5 n-3, and saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs), determined separately in the foot tissues and hepatopancreas. The significant (p=0.01) influence of the dose as well as the source of the zinc on its' concentration in the tissues and on changes in the fatty acid profiles. Among the three zinc forms administered to the snails, the highest bioaccumulation of zinc in both tissues was noted in the group receiving the Zn-EDTA chelate. The content of PUFAs increased as the supplementation with zinc increased up to 0.75mg/l, but at 1mg/l, the share of these FAs began to decrease. This trend was observed in both analyzed tissue types - foot and hepatopancreas. The dose of 1mg Zn/l might be considered as a threshold dose above which the saturation of FAs increases. The results proved that determination of FA profile in snails can be used in ecotoxicological research as a reliable test of the effect of trace doses of stressors. The micro-supplementation of the mollusks diet with zinc is an example of a non-routine approach to issues connected with both diet and toxicology.

  12. Continuous monitoring of the zinc-phosphate acid-base cement setting reaction by proton nuclear magnetic relaxation

    NASA Astrophysics Data System (ADS)

    Apih, T.; Lebar, A.; Pawlig, O.; Trettin, R.

    2001-06-01

    Proton nuclear magnetic relaxation is a well-established technique for continuous and non destructive monitoring of hydration of conventional Portland building cements. Here, we demonstrate the feasibility of nuclear magnetic resonance (NMR) monitoring of the setting reaction of zinc-phosphate acid-base dental cements, which harden in minutes as compared to days, as in the case of Portland cements. We compare the setting of cement powder (mainly, zinc oxide) prepared with clinically used aluminum-modified orthophosphoric acid solution with the setting of a model system where cement powder is mixed with pure orthophosphoric acid solution. In contrast to previously published NMR studies of setting Portland cements, where a decrease of spin-lattice relaxation time is attributed to enhanced relaxation at the growing internal surface, spin-lattice relaxation time T1 increases during the set of clinically used zinc-phosphate cement. Comparison of these results with a detailed study of diffusion, viscosity, and magnetic-field dispersion of T1 in pure and aluminum-modified orthophosphoric acid demonstrates that the increase of T1 in the setting cement is connected with the increase of molecular mobility in the residual phosphoric acid solution. Although not taken into account so far, such effects may also significantly influence the relaxation times in setting Portland cements, particularly when admixtures with an effect on water viscosity are used.

  13. Zinc oxide nanowires-based electrochemical biosensor for L-lactic acid amperometric detection

    NASA Astrophysics Data System (ADS)

    Zhao, Yanguang; Yan, Xiaoqin; Kang, Zhuo; Fang, Xiaofei; Zheng, Xin; Zhao, Lanqing; Du, Hongwu; Zhang, Yue

    2014-05-01

    In this work, zinc oxide (ZnO) nanowires-based electrochemical biosensor is designed and fabricated for the detection of L-lactic acid. ZnO nanowires were successfully synthesized via the chemical vapor deposition method. The morphology and structure of the prepared products were characterized, and the average diameter of synthesized ZnO samples was 500 nm. The fluorescence characterization was performed to verify the immobilization of lactate oxidase onto the ZnO surface. Biosensors based on large-area ZnO nanowires were then constructed, and a series of electrochemical experiments showed that ZnO could provide the efficient electron transfer channel between the enzymic active sites and the electrode surface. The proposed electrochemical biosensor exhibited a sensitivity of 15.6 µA cm-2 mM-1, a wide linear range of 12 µM-1.2 mM with a low-detection limit of 12 µM for L-lactic acid detection. This study has indicated the potential applications for ZnO nanowires to construct the simple and economic nano-bio devices for the detection of biological species.

  14. Strategy to improve photovoltaic performance of DSSC sensitized by zinc prophyrin using salicylic acid as a tridentate anchoring group.

    PubMed

    Gou, Faliang; Jiang, Xu; Fang, Ran; Jing, Huanwang; Zhu, Zhenping

    2014-05-14

    Three new zinc porphyrin dyes attached to ethynyl benzoic acid as an electron transmission and anchoring group have been designed, synthesized, and well-characterized. The performances of their sensitized solar cells have been investigated by optical, photovoltaic, and electrochemical methods. The photoelectric conversion efficiency of the solar cells sensitized by the dye with salicylic acid as an anchoring group demonstrated obvious enhancement when compared with that sensitized by the dye with carboxylic acid as an anchoring group. The density functional theory calculations and the electrochemical impedance spectroscopies revealed that tridentate binding modes could increase the efficiency of electron injection from dyes to the TiO2 nanoparticles by more electron pathways.

  15. Nature of interactions of tryptophan with zinc oxide nanoparticles and L-aspartic acid: A spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Mandal, Gopa; Bhattacharya, Sudeshna; Ganguly, Tapan

    2009-04-01

    The interaction between an essential amino acid L-tryptophan (TRP) with semiconductor zinc oxide (ZnO) nanoparticles and amino acid L-aspartic acid (ASP) is investigated by steady state and time resolved spectroscopic techniques. In both the cases static mode of fluorescence quenching occurs indicating the formation of ground-state complex. Binding constants and the number of binding sites were determined for both the complexes. The observed thermodynamic parameters suggest that the key interacting forces involved are van der Waals interaction and hydrogen bonding in case of TRP and ZnO nanoparticles whereas hydrophobic interaction is responsible in formations of TRP-ASP complex.

  16. The amino acid sequence of the zinc-requiring beta-lactamase II from the bacterium Bacillus cereus 569.

    PubMed

    Ambler, R P; Daniel, M; Fleming, J; Hermoso, J M; Pang, C; Waley, S G

    1985-09-23

    The amino acid sequence of the zinc-requiring beta-lactamase II from Bacillus cereus strain 569 has been determined. It consists of a single polypeptide chain of 227 residues. It is the only example so far fully characterized of a class B beta-lactamase, and is structurally and mechanistically distinct from both the widely distributed class A beta-lactamases (such as the Escherichia coli RTEM enzyme) and from the chromosomally encoded class C enzymes from Gram-negative bacteria.

  17. A Metal-Amino Acid Complex-Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Zinc-Air Batteries.

    PubMed

    Ding, Yanjun; Niu, Yuchen; Yang, Jia; Ma, Liang; Liu, Jianguo; Xiong, Yujie; Xu, Hangxun

    2016-10-01

    Bifunctional oxygen electrocatalyst: A metal-amino acid complex is developed to prepare high-performance mesoporous carbon electrocatalyst for both oxygen reduction and oxygen evolution reactions. Such prepared catalyst can be used to assemble rechargeable zinc-air batteries with excellent durability. This work represents a new route toward low-cost, highly active, and durable bifunctional electrocatalysts for cutting-edge energy conversion devices.

  18. Increased dimensionalities of zinc-diphenic acid coordination polymers by simultaneous or subsequent addition of neutral bridging ligands.

    PubMed

    Dietzel, Pascal D C; Blom, Richard; Fjellvåg, Helmer

    2006-01-28

    Three coordination polymers containing zinc and diphenic acid (H2dpa) were synthesised by solvothermal reaction. Zn(dpa)(H2O) is a one-dimensional coordination polymer that consists of parallel ladder-like chains. One carboxylate group of the diphenic acid coordinates two zinc atoms forming a dinuclear unit which composes the steps of the ladder. The other carboxylate connects to a zinc atom in the next step of the ladder. The fourth coordination site at the zinc atom is occupied by water. Attempts to crosslink the chains by replacing the water molecule with the neutral ligands triethylenediamine (dabco) or 4,4'-bipyridyl lead to the compounds Zn2(dpa)2(dabco) and Zn(dpa)(4,4'-bpy). Their structures can be rationalised as being derived from action of the neutral ligand on Zn(dpa)(H2O), and while they are most conveniently prepared in a one-pot synthesis, it is also possible to obtain them by exposing Zn(dpa)(H2O) to the respective neutral ligand. Zn2(dpa)2(dabco) is a layered two-dimensional coordination polymer in which dinculear zinc carboxylate paddle wheel units and the dabco ligand form infinite linear chains. The chains are interconnected by the dpa unit. The structure of Zn(dpa)(4,4'-bpy) consists of two identical interpenetrating three-dimensional networks. In the network, helical Zn(dpa) chains are interconnected by the rigid 4,4'-bipyridine ligand. Thermogravimetric analysis indicates a high thermal stability of this coordination polymer with decomposition occurring in the range 350-450 degrees C. This is complemented by X-ray thermodiffractometry that indicates a phase transition at 337 degrees C and the final loss of crystallinity at 427 degrees C. The room temperature phase expands drastically along one axis and contracts along the other two axes on heating.

  19. Chemical modification of zinc hydroxide nitrate and Zn-Al-layered double hydroxide with dicarboxylic acids.

    PubMed

    Arizaga, Gregorio Guadalupe Carbajal; Mangrich, Antonio Salvio; da Costa Gardolinski, José Eduardo Ferreira; Wypych, Fernando

    2008-04-01

    A zinc hydroxide nitrate (ZHN), Zn5(OH)8(NO3)2.2H2O, and a layered double hydroxide (LDH), Zn/Al-NO3 were doped with 0.2 mol% of Cu2+ during alkaline chemical precipitation. Both compounds were intercalated with adipate ((-)OOC(CH2)4COO(-)), azelate ((-)OOC(CH2)7COO(-)), and benzoate (C6H5COO(-)) ions through ion exchange reactions. Solid state 13C nuclear magnetic resonance spectroscopy showed only one signal of carboxylic carbon for adipate and azelate intercalated into LDH, indicating that the carboxylic ends of both acids were equivalent, whereas the signal split when the intercalation was into the ZHN matrix. The electron paramagnetic resonance (EPR) spectrum of copper in octahedral cation sites of LDH layers showed a Hamiltonian parameter ratio g ||/A ||=170 cm and, after intercalation of adipate, the change was not significant: g ||/A ||=174 cm. This result indicates that the carboxylate ions did not coordinate with copper centers. Nonetheless, the intercalation of azelate increased the ratio to g ||/A ||=194 cm, similar to the spectra of ZHN modified with adipate, g ||/A ||=199 cm, and azelate, g ||/A ||=183 and 190 cm, which are associated with the coordination of copper by weak carboxylate anion ligands. Copper occupies octahedral or tetrahedral sites in ZHN layers, and the EPR spectra indicate that the dicarboxylate anions reacted preferentially with octahedral sites, whereas benzoate reacted with both sites.

  20. Effect of Fluid Flow on Zinc Electrodeposits from Acid Chloride Electrolytes. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Abdelmassir, A. A.

    1982-01-01

    Zinc was deposited potentiostatically from acid chloride baths. Once bath chemistry and electrochemistry were controlled, the study was focused on convective mass transfer at horizontal electrodes and its effect on cell performance. A laser schlieren imaging technique allowed in situ observations of flow patterns and their correlation with current transients. Convection was turbulent and mass transfer as a function of Rayleigh number was well correlated by: Sh = 0.14 R to the 1/3 power. Similarly, convection initiation time was correlated by DT/d squared = 38 Ra to the -2/3 power. Time scale of fluctuations was about half the initiation time. Taking the boundary layer thickness as a characteristic length, a critical Rayleigh number for the onset of convection was deduced: Ra sub CR = 5000. Placing the anode on the top of the cathode completely changed the flow pattern but kept the I-t curves identical whereas the use of a cathode grid doubled the limiting current. A well defined plateau in the current voltage curves suggested that hydrogen evolution has been successfully inhibited. Finally, long time deposition showed that convection at horizontal electrodes increased the induction time for dentrite growth by at least a factor of 2 with respect to a vertical wire.

  1. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): part I: Characterization and leaching by diluted sulphuric acid.

    PubMed

    Oustadakis, P; Tsakiridis, P E; Katsiapi, A; Agatzini-Leonardou, S

    2010-07-15

    The present paper is the first of a series of two articles dealing with the development of an integrated process for the recovery of zinc from electric arc furnace dust (EAFD), a hazardous industrial waste generated in the collection of particulate material during steelmaking process via electric arc furnace. Part I presents the EAFD characterization and its leaching process by diluted sulphuric acid, whereas Part II deals with the purification of the leach liquor and the recovery of zinc by solvent extraction/electrowinning. The characterization of the examined electric arc furnace dust was carried out by using granulometry analysis, chemical analysis, X-ray diffraction (XRD), thermogravimetric/differential thermal analysis (TG/DTA) and scanning electron microscopy (SEM). The leaching process was based on the Zn extraction with diluted sulphuric acid from EAFD under atmospheric conditions and without using any preliminary treatment. Statistical design and analysis of experiments were used, in order to determine the main effects and interactions of the leaching process factors, which were: acid normality, temperature and solid to liquid ratio. The zinc recovery efficiency on the basis of EAFD weight reached 80%. X-ray diffraction and scanning electron microscopy were used for the characterization of the leached residues.

  2. Dynamic HypA zinc site is essential for acid viability and proper urease maturation in Helicobacter pylori

    PubMed Central

    Johnson, Ryan C.; Hu, Heidi Q.; Merrell, D. Scott; Maroney, Michael J.

    2015-01-01

    Helicobacter pylori requires urease activity in order to survive in the acid environment of the human stomach. Urease is regulated in part by nickelation, a process that requires the HypA protein, which is a putative nickel metallochaperone that is generally associated with hydrogenase maturation. However, in H. pylori, HypA plays a dual role. In addition to an N-terminal nickel binding site, HypA proteins also contain a structural zinc site that is coordinated by two rigorously conserved CXXC sequences, which in H. pylori are flanked by His residues. These structural Zn sites are known to be dynamic, converting from Zn(Cys)4 centers at pH 7.2 to Zn(Cys)2(His)2 centers at pH 6.3 in the presence of Ni(II) ions. In this study, mutant strains of H. pylori that express zinc site variants of the HypA protein are used to show that the structural changes in the zinc site are important for the acid viability of the bacterium, and that a reduction in acid viability in these variants can be traced in large measure to deficient urease activity. This in turn leads to a model that connects the Zn(Cys)4 coordination to urease maturation. PMID:25608738

  3. Effects of supplemental zinc amino acid complex on gut integrity in heat-stressed growing pigs.

    PubMed

    Sanz Fernandez, M V; Pearce, S C; Gabler, N K; Patience, J F; Wilson, M E; Socha, M T; Torrison, J L; Rhoads, R P; Baumgard, L H

    2014-01-01

    Heat stress (HS) jeopardizes livestock health and productivity and both may in part be mediated by reduced intestinal integrity. Dietary zinc improves a variety of bowel diseases, which are characterized by increased intestinal permeability. Study objectives were to evaluate the effects of supplemental zinc amino acid complex (ZnAA) on intestinal integrity in heat-stressed growing pigs. Crossbred gilts (43±6 kg BW) were ad libitum fed one of three diets: (1) control (ZnC; 120 ppm Zn as ZnSO4; n=13), (2) control+100 ppm Zn as ZnAA (Zn220; containing a total of 220 ppm Zn; n=14), and (3) control+200 ppm Zn as ZnAA (Zn320; containing a total of 320 ppm Zn; n=16). After 25 days on their respective diets, all pigs were exposed to constant HS conditions (36°C, ∼50% humidity) for either 1 or 7 days. At the end of the environmental exposure, pigs were euthanized and blood and intestinal tissues were harvested immediately after sacrifice. As expected, HS increased rectal temperature (P⩽0.01; 40.23°C v. 38.93°C) and respiratory rate (P⩽0.01; 113 v. 36 bpm). Pigs receiving ZnAA tended to have increased rectal temperature (P=0.07; +0.27°C) compared with ZnC-fed pigs. HS markedly reduced feed intake (FI; P⩽0.01; 59%) and caused BW loss (2.10 kg), but neither variable was affected by dietary treatment. Fresh intestinal segments were assessed ex vivo for intestinal integrity. As HS progressed from days 1 to 7, both ileal and colonic transepithelial electrical resistance (TER) decreased (P⩽0.05; 34% and 22%, respectively). This was mirrored by an increase in ileal and colonic permeability to the macromolecule dextran (P⩽0.01; 13- and 56-fold, respectively), and increased colonic lipopolysaccharide permeability (P⩽0.05; threefold) with time. There was a quadratic response (P⩽0.05) to increasing ZnAA on ileal TER, as it was improved (P⩽0.05; 56%) in Zn220-fed pigs compared with ZnC. This study demonstrates that HS progressively compromises the intestinal

  4. Dynamics of linker residues modulate the nucleic acid binding properties of the HIV-1 nucleocapsid protein zinc fingers.

    PubMed

    Zargarian, Loussiné; Tisné, Carine; Barraud, Pierre; Xu, Xiaoqian; Morellet, Nelly; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2014-01-01

    The HIV-1 nucleocapsid protein (NC) is a small basic protein containing two zinc fingers (ZF) separated by a short linker. It is involved in several steps of the replication cycle and acts as a nucleic acid chaperone protein in facilitating nucleic acid strand transfers occurring during reverse transcription. Recent analysis of three-dimensional structures of NC-nucleic acids complexes established a new property: the unpaired guanines targeted by NC are more often inserted in the C-terminal zinc finger (ZF2) than in the N-terminal zinc finger (ZF1). Although previous NMR dynamic studies were performed with NC, the dynamic behavior of the linker residues connecting the two ZF domains remains unclear. This prompted us to investigate the dynamic behavior of the linker residues. Here, we collected 15N NMR relaxation data and used for the first time data at several fields to probe the protein dynamics. The analysis at two fields allows us to detect a slow motion occurring between the two domains around a hinge located in the linker at the G35 position. However, the amplitude of motion appears limited in our conditions. In addition, we showed that the neighboring linker residues R29, A30, P31, R32, K33 displayed restricted motion and numerous contacts with residues of ZF1. Our results are fully consistent with a model in which the ZF1-linker contacts prevent the ZF1 domain to interact with unpaired guanines, whereas the ZF2 domain is more accessible and competent to interact with unpaired guanines. In contrast, ZF1 with its large hydrophobic plateau is able to destabilize the double-stranded regions adjacent to the guanines bound by ZF2. The linker residues and the internal dynamics of NC regulate therefore the different functions of the two zinc fingers that are required for an optimal chaperone activity.

  5. The Role of Zinc and Iron-Folic Acid Supplementation on Early Child Temperament and Eating Behaviors in Rural Nepal: A Randomized Controlled Trial

    PubMed Central

    Surkan, Pamela J.; Charles, Mary Katherine; Katz, Joanne; Siegel, Emily H.; Khatry, Subarna K.; LeClerq, Steven C.; Stoltzfus, Rebecca J.; Tielsch, James M.

    2015-01-01

    Child eating behaviors play an important role in nutrient intake, ultimately affecting child growth and later outcomes in adulthood. The study assessed the effects of iron-folic acid and zinc supplementation on child temperament and child eating behaviors in rural Nepal. Children (N = 569) aged 4–17 months in Sarlahi district, southern Nepal were randomized to receive daily supplements of placebo, iron-folic acid, zinc, or zinc plus iron-folic acid and followed for approximately 1 year. At baseline and four follow-up visits mothers completed questionnaires including information on demographic characteristics and child temperament and eating behaviors. The main effects of zinc and iron-folic acid supplementation on temperament and eating behaviors were assessed through crude and adjusted differences in mean cumulative score changes between visits 1 and 5. The adjusted rate-of-change for these outcomes was modeled using generalized estimating equations. Mean changes in temperament scores and in eating behavior scores between visits 1 and 5 were not significant in either the zinc or non-zinc group. Children in the iron-folic acid group increased temperament scores by 0.37 points over 5 visits (95% CI 0.02, 0.7), which was not significant after adjustment. Neither the adjusted rate-of-change in temperament scores between zinc and non-zinc (β = −0.03, 95% CI −0.3, 0.2) or iron-folic acid and non-iron-folic acid (β = 0.08, 95% CI −0.2, 0.3) were significantly different. Adjusted rate of change analysis showed no significant difference between zinc and non-zinc (β = −0.14, 95% CI −0.3, 0.04) or between iron and non-iron eating behavior scores (β = −0.11, 95% CI −0.3, 0.1). Only among children with iron-deficiency anemia at baseline was there a significant decrease in eating behavior score, indicating better eating behaviors, when supplemented with zinc (β = −0.3, 95% CI −0.6, −0.01), Ultimately, this effect of zinc on eating behaviors was the

  6. Antiurolithiatic Activity of Extract and Oleanolic Acid Isolated from the Roots of Lantana camara on Zinc Disc Implantation Induced Urolithiasis.

    PubMed

    Vyas, Narendra; Argal, Ameeta

    2013-01-01

    The present study was done to evaluate the antiurolithiatic activity of ethanolic extract of roots (ELC 200 mg/kg) and oleanolic acid (OA 60 mg/kg, O.A. 80 mg/kg, O.A. 100 mg/kg) isolated from roots of Lantana camara in albino wistar male rats using zinc disc implantation induced urolithiatic model. The group in which only zinc disc was implanted without any treatment showed increase in calcium output (23  ± 2.7 mg/dL). Cystone receiving animals showed significant protection from such change (P < 0.01). Treatment with OA and ELC significantly reduced the calcium output at a dose of OA 60 mg/kg (P < 0.01), OA 80 mg/kg (P < 0.01), ELC 200 mg/kg (P < 0.01), and OA 100 mg/kg (P < 0.001), as compared with zinc disc implanted group. The average weight of zinc discs along with the deposited crystals in the only disc implanted group was found to be 111 ± 8.6 mg. Group that received Cystone 500 mg/kg showed significant reduction in the depositions (P < 0.001). Similarly, the rats which received OA and ELC showed reduced formation of depositions around the zinc disc (P < 0.001). The X-ray images of rats also showed significant effect of OA and ELC on urolitiasis. Thus, OA and ELC showed promising antiurolithiatic activity in dose dependant manner.

  7. Highly microporous carbons derived from a complex of glutamic acid and zinc chloride for use in supercapacitors

    NASA Astrophysics Data System (ADS)

    Dong, Xiao-Ling; Lu, An-Hui; He, Bin; Li, Wen-Cui

    2016-09-01

    The selection of carbon precursor is an important factor when designing carbon materials. In this study, a complex derived from L-glutamic acid and zinc chloride was used to prepare highly microporous carbons via facile pyrolysis. L-glutamic acid, a new carbon precursor with nitrogen functionality, coordinated with zinc chloride resulted in a homogeneous distribution of Zn2+ on the molecular level. During pyrolysis, the evaporation of the in situ formed zinc species creates an abundance of micropores together with the inert gases. The obtained carbons exhibit high specific surface area (SBET: 1203 m2 g-1) and a rich nitrogen content (4.52 wt%). In excess of 89% of the pore volume consists of micropores with pore size ranging from 0.5 to 1.2 nm. These carbons have been shown to be suitable for use as supercapacitor electrodes, and have been tested in 6 M KOH where a capacitance of 217 F g-1 was achieved at a current density of 0.5 A g-1. A long cycling life of 30 000 cycles was achieved at a current density of 1 A g-1, with only a 9% loss in capacity. The leakage current through a two-electrode device was measured as 2.3 μA per mg of electrode and the self-discharge characteristics were minimal.

  8. Preschool iron-folic acid and zinc supplementation in children exposed to iron-folic acid in utero confers no added cognitive benefit in early school-age.

    PubMed

    Christian, Parul; Morgan, Mary E; Murray-Kolb, Laura; LeClerq, Steven C; Khatry, Subarna K; Schaefer, Barbara; Cole, Pamela M; Katz, Joanne; Tielsch, James M

    2011-11-01

    In Nepal, antenatal iron-folic acid supplementation improved aspects of intellectual, executive, and fine motor function among school-age children. We examined the impact of added zinc to the maternal antenatal supplement (M-IFAZn) and preschool supplementation from 12 to 36 mo with iron-folic acid (C-IFA) ± zinc (C-IFAZn) on cognitive outcomes compared to maternal iron-folic acid (M-IFA) alone. Children 7-9 y old (n = 780) who participated in early childhood micronutrient supplementation trial during 2001-2004 and whose mothers participated in an antenatal micronutrient supplementation between 1999 and 2001 were followed for cognitive assessments in 2007-2009. Using multivariate analysis of variance and adjusting for confounders, M-IFA with child supplementation (either C-IFA or C-IFAZn) did not impact scores on the tests of general intelligence (Universal Nonverbal Intelligence Test), and executive function (Stroop and go/no go tests) relative to the M-IFA alone. However, children in the C-IFAZn group had slightly lower scores on the backward digit span (-0.29, 95% CI: -0.55, -0.04) and Movement Assessment Battery for Children (1.33, 95% CI: 0.26, 2.40) relative to the referent group, whereas both C-IFA (-1.92, 95% CI: -3.12, -0.71) and C-IFAZn (-1.78, 95% CI: -2.63, -0.92) produced somewhat lower finger tapping test scores (fine motor skills). The combination of M-IFAZn and C-IFA or C-IFAZn did not lead to any outcome differences relative to M-IFA alone. Preschool iron-folic acid ± zinc to children exposed to iron-folic acid in utero or addition of zinc to maternal iron-folic acid conferred no additional benefit to cognitive outcomes assessed in early school age. The late timing of supplementation during preschool may explain the lack of impact of iron and/or zinc.

  9. The Effect of Copper And Zinc Nanoparticles on the Growth Parameters, Contents of Ascorbic Acid, and Qualitative Composition of Amino Acids and Acylcarnitines in Pistia stratiotes L. (Araceae)

    NASA Astrophysics Data System (ADS)

    Olkhovych, Olga; Volkogon, Mykola; Taran, Nataliya; Batsmanova, Lyudmyla; Kravchenko, Inna

    2016-04-01

    The paper covers the research of copper and zinc nanoparticle effect on the content of ascorbic acid, and quantitative and qualitative composition of amino acids and acylcarnitines in Pistia stratiotes L. plants. Plant exposition to copper nanoparticles led to the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 25 %), and (3) the amount of all studied amino acids except for the glycine amino acid. At this, the amount of 5-oxoproline, arginine, leucine, ornithine, phenylalanine, proline, serine, and tyrosine was two times lower than in control plants. The reduction of the contents of 8 out of 12 investigated acylcarnitines (namely C0, C2, C3, C5, C6, C8, C16, C18:1) was observed in plants under the influence of copper nanoparticles. The result of plants incubation with zinc nanoparticles was the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 15 %), (3) the content of leucine, methionine, phenylalanine, proline, and tyrosine (more than twice), and (4) the content of 10 acylcarnitines (C0, C2, C3, C4, C5, C10, C16, C18, C18:1, C18:2). The observed reduction in amino acid contents may negatively affect plants adaptive reactions associated with de novo synthesis of stress proteins. At the same time, the decrease in the content of acylcarnitines, responsible for fatty acid transportation, may lead to the changes in the activity and direction of lipid metabolism in plants and reduce plant's ability to use free fatty acids as the oxidation substrate for cell reparation.

  10. The Effect of Copper And Zinc Nanoparticles on the Growth Parameters, Contents of Ascorbic Acid, and Qualitative Composition of Amino Acids and Acylcarnitines in Pistia stratiotes L. (Araceae).

    PubMed

    Olkhovych, Olga; Volkogon, Mykola; Taran, Nataliya; Batsmanova, Lyudmyla; Kravchenko, Inna

    2016-12-01

    The paper covers the research of copper and zinc nanoparticle effect on the content of ascorbic acid, and quantitative and qualitative composition of amino acids and acylcarnitines in Pistia stratiotes L. plants. Plant exposition to copper nanoparticles led to the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 25 %), and (3) the amount of all studied amino acids except for the glycine amino acid. At this, the amount of 5-oxoproline, arginine, leucine, ornithine, phenylalanine, proline, serine, and tyrosine was two times lower than in control plants. The reduction of the contents of 8 out of 12 investigated acylcarnitines (namely C0, C2, C3, C5, C6, C8, C16, C18:1) was observed in plants under the influence of copper nanoparticles. The result of plants incubation with zinc nanoparticles was the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 15 %), (3) the content of leucine, methionine, phenylalanine, proline, and tyrosine (more than twice), and (4) the content of 10 acylcarnitines (C0, C2, C3, C4, C5, C10, C16, C18, C18:1, C18:2). The observed reduction in amino acid contents may negatively affect plants adaptive reactions associated with de novo synthesis of stress proteins. At the same time, the decrease in the content of acylcarnitines, responsible for fatty acid transportation, may lead to the changes in the activity and direction of lipid metabolism in plants and reduce plant's ability to use free fatty acids as the oxidation substrate for cell reparation.

  11. Synthesis of framework isomer MOFs containing zinc and 4-tetrazolyl benzenecarboxylic acid via a structure directing solvothermal approach

    SciTech Connect

    Ordonez, Carlos; Kinnibrugh, Tiffany L.; Xu, Hongwu; Lindline, Jennifer; Timofeeva, Tatiana; Wei, Qiang

    2015-04-02

    The solvothermal synthesis of framework isomers was carried out using the hybrid carboxylate and tetrazolate functional ligand, 4-tetrazolyl benzenecarboxylic acid (H₂TBC, TBC = 4-tetrazolyl benzenecarboxylate) and zinc. H₂TBC was also synthesized with the solvothermal approach, and is referred herein as structure 1. Using single-crystal X-ray diffraction, we found that the tetrazolate groups of TBC show an unusual “opposite-on” coordination mode with zinc. Three previously characterized metal-organic frameworks (MOFs) were obtained by systematically changing the solvents of the H₂TBC-Zn reaction, (1) ZnTBC, 2, which has a non-porous structure; (2) Zn₂(TBC)₂(H2O), 3, which has an amphiphilic pore structure and (3) Zn₂(TBC)₂{guest}, 4, which is porous and has channels containing uncoordinated N heteroatoms. Fluorescence spectra of 4 reveal a strong blue emission mainly from the TBC ligands.

  12. Synthesis of framework isomer MOFs containing zinc and 4-tetrazolyl benzenecarboxylic acid via a structure directing solvothermal approach

    DOE PAGES

    Ordonez, Carlos; Kinnibrugh, Tiffany L.; Xu, Hongwu; ...

    2015-04-02

    The solvothermal synthesis of framework isomers was carried out using the hybrid carboxylate and tetrazolate functional ligand, 4-tetrazolyl benzenecarboxylic acid (H₂TBC, TBC = 4-tetrazolyl benzenecarboxylate) and zinc. H₂TBC was also synthesized with the solvothermal approach, and is referred herein as structure 1. Using single-crystal X-ray diffraction, we found that the tetrazolate groups of TBC show an unusual “opposite-on” coordination mode with zinc. Three previously characterized metal-organic frameworks (MOFs) were obtained by systematically changing the solvents of the H₂TBC-Zn reaction, (1) ZnTBC, 2, which has a non-porous structure; (2) Zn₂(TBC)₂(H2O), 3, which has an amphiphilic pore structure and (3) Zn₂(TBC)₂{guest}, 4,more » which is porous and has channels containing uncoordinated N heteroatoms. Fluorescence spectra of 4 reveal a strong blue emission mainly from the TBC ligands.« less

  13. Characterization and stability analysis of zinc oxide nanoencapsulated conjugated linoleic acid.

    PubMed

    Choy, Jin-Ho; Shin, Jiwon; Lim, Seung-Yong; Oh, Jae-Min; Oh, Mi-Hwa; Oh, Sangsuk

    2010-08-01

    Nanoencapsulation technology has a diverse range of applications, including drug-delivery systems (DDS) and cosmetic and chemical carriers, because it can deliver various bio- and organic-molecules and improve their stabilities. Conjugated linoleic acid (CLA) has health benefits, including being an anticancer agent, but it decreases flavor due to volatiles from oxidation. To improve the stability of CLA for food applications, nanoencapsulated CLA was synthesized for use in zinc basic salt (ZBS) and characterized by powder X-ray diffractometry, thermogravimetric analysis (TGA), elemental CHN analysis, inductively coupled plasma (ICP) analysis, UV/VIS spectroscopy, and FTIR spectroscopy. The thermal stability of nanoencapsulated CLA at 180 degrees C, a temperature similar to that used in cooking, was analyzed by gas chromatography. The gallery height of nanoencapsulated CLA was determined to be approximately 26 A through powder X-ray diffractometry; therefore, the CLA molecules were closely packed with zig-zag form between the intracrystalline spaces of nano particles. Elemental CHN analysis and ICP data determined the chemical composition of nanoencapsulated CLA to be Zn(4.86)(OH)(8.78)(CLA)(0.94). By TGA, it was determined about 45% (wt/wt) of weight loss corresponded to CLA, which is good agreement with the 42.13% (wt/wt) determined from high-performance liquid chromatography (HPLC) and elemental CHN analysis. UV/VIS spectroscopy and Fourier-transformed infrared (FTIR) spectroscopy showed encapsulated CLA maintained a conjugated diene structure, supporting the presence of CLA. Nanoencapsulation improved the thermal stability of CLA by about 25%, compared to pristine CLA. Practical Application: This system can be used for protection of encapsulated negatively-charged food ingredients from thermal processing.

  14. Zinc(II) complexes with heterocyclic ether, acid and amide. Crystal structure, spectral, thermal and antibacterial activity studies

    NASA Astrophysics Data System (ADS)

    Jabłońska-Wawrzycka, Agnieszka; Rogala, Patrycja; Czerwonka, Grzegorz; Hodorowicz, Maciej; Stadnicka, Katarzyna

    2016-02-01

    The reaction of zinc salts with heterocyclic ether (1-ethoxymethyl-2-methylimidazole (1-ExMe-2-MeIm)), acid (pyridine-2,3-dicarboxylic acid (2,3-pydcH2)) and amide (3,5-dimethylpyrazole-1-carboxamide (3,5-DMePzCONH2)) yielded three new zinc complexes formulated as [Zn(1-ExMe-2-MeIm)2Cl2] 1, fac-[Zn(H2O)6][Zn(2,3-pydcH)3]22 and [Zn(3,5-DMePz)2(NCO)2] 3. Complexes of 1 and 3 are four-coordinated with a tetrahedron as coordination polyhedron. However, compound 2 forms an octahedral cation-anion complex. The complex 3 was prepared by eliminating of the carboxamide group from the ligand and then the 3,5-dimethylpyrazole (3,5-DMePz) and isocyanates formed were employed as new ligands. The IR and X-ray studies have confirmed a bidentate fashion of coordination of the 2,3-pydcH and monodentate fashion of coordination of the 1-ExMe-2-MeIm and 3,5-DMePz to the Zn(II) ions. The crystal packing of Zn(II) complexes are stabilized by intermolecular classical hydrogen bonds of O-H⋯O and N-H⋯O types. The most interesting feature of the supramolecular architecture of complexes is the existence of C-H⋯O, C-H⋯Cl and C-H⋯π interactions and π⋯π stacking, which also contributes to structural stabilisation. The correlation between crystal structure and thermal stability of zinc complexes is observed. In all compounds the fragments of ligands donor-atom containing go in the last steps. Additionally, antimicrobial activities of compounds were carried out against certain Gram-positive and Gram-negative bacteria and counts of CFU (colony forming units) were also determined. The achieved results confirmed a significant antibacterial activity of some tested zinc complexes. On the basis of the Δ log CFU values the antibacterial activity of zinc complexes follows the order: 3 > 2 > 1. Influence a number of N-donor atoms in zinc environment on antibacterial activity is also observed.

  15. Effect of processing conditions on phytic acid, calcium, iron, and zinc contents of lime-cooked maize.

    PubMed

    Bressani, Ricardo; Turcios, Juan Carlos; Colmenares de Ruiz, Ana Silvia; de Palomo, Patricia Palocios

    2004-03-10

    Tortillas are made by cooking maize in a lime solution during variable times and temperatures, steeping the grain for up to 12 h, washing and grinding it to a fine dough, and cooking portions as flat cakes for up to 6 min. The effects of the main processing steps on the chemical composition, nutritive value, and functional and physicochemical characteristics have been areas of research. The present work evaluates the effect of lime concentration (0, 1.2, 2.4, and 3.6%) and cooking times (45, 60, and 75 min) on phytic acid retention of whole maize, its endosperm, and germ, as well as on the content of calcium, iron, and zinc on the same samples. The effects of steeping time and temperature and steeping medium on the phytic acid of lime-cooked maize were also studied. Finally, phytic acid changes from raw maize to tortilla were also measured. The results indicated that lime concentration and cooking time reduce phytic acid content in whole grain (17.4%), in endosperm (45.8%), and in germ (17.0%). Statistical analyses suggested higher phytic acid loss with 1.2% lime and 75 min of cooking. Cooking with the lime solution is more effective in reducing phytic acid than cooking with water. Steeping maize in lime solution at 50 degrees C during 8 h reduced phytic acid an additional 8%. The total loss of phytic acid from maize to tortilla was 22%. Calcium content increased in whole maize, endosperm, and germ with lime concentration and cooking and steeping times. The increase was higher in the germ than in the endosperm. The level, however, can be controlled if steeping of the cooked grain is conducted in water. Iron and zinc contents were not affected by nixtamalization processing variables but were affected in steeping.

  16. Inhibitory effects of phytic acid and other inositol phosphates on zinc and calcium absorption in suckling rats.

    PubMed

    Lönnerdal, B; Sandberg, A S; Sandström, B; Kunz, C

    1989-02-01

    While it is known that phytic acid, inositol hexaphosphate, has a negative effect on zinc and calcium absorption, the effects of inositol which is phosphorylated to a lesser extent are less known. We have prepared inositol triphosphate (IP-3), tetraphosphate (IP-4), pentaphosphate (IP-5) and hexaphosphate (IP-6) by hydrolysis of sodium phytate and separation by ion-exchange chromatography and have studied their effect on zinc and calcium absorption. Using a suckling rat pup model, we found that liver uptake of 65Zn after 6 h was 5% of the total dose from solutions of IP-6, 19% from IP-5, 28% from IP-4, 29% from IP-3 and 31% from ZnCl2 (control). Non-absorbed calcium was 17%, 1.4%, 0.5%, 0.5% and 0.5% of the given dose of 45Ca, respectively. Thus, at a high degree of phosphorylation (IP-6, IP-5), zinc and calcium uptake was inhibited, while no effect was observed for the other phosphates. Consequently, total "phytate" analysis, which includes inositol phosphates with varying degrees of phosphorylation, can give misleading information with regard to mineral availability. In addition, even limited dephosphorylation of inositol hexaphosphate can have a positive effect on mineral absorption.

  17. Influence of two different alcohols in the esterification of fatty acids over layered zinc stearate/palmitate.

    PubMed

    de Paiva, Eduardo José Mendes; Corazza, Marcos Lúcio; Sierakowski, Maria Rita; Wärnå, Johan; Murzin, Dmitry Yu; Wypych, Fernando; Salmi, Tapio

    2015-10-01

    In this work, esterification of fatty acids (oleic, linoleic and stearic acid) with a commercial zinc carboxylate (a layered compound formed by simultaneous intercalation of stearate and palmitate anions) was performed. Kinetic modeling using a quasi-homogeneous approach successfully fitted experimental data at different molar ratio of fatty acids/alcohols (1-butanol and 1-hexanol) and temperature. An apparent first-order reaction related to all reactants was found and activation energy of 66 kJ/mol was reported. The catalyst showed to be unique, as it can be easily recovered like a heterogeneous catalysts behaving like ionic liquids. In addition, this catalyst demonstrated a peculiar behavior, because higher reactivity was observed with the increase in the alcohols chain length compared to the authors' previous work using ethanol.

  18. Inconsistent effects of iron-folic acid and/or zinc supplementation on the cognitive development of infants.

    PubMed

    Siegel, Emily H; Kordas, Katarzyna; Stoltzfus, Rebecca J; Katz, Joanne; Khatry, Subarna K; LeClerq, Steven C; Tielsch, James M

    2011-12-01

    Despite concerns over the neurocognitive effects of micronutrient deficiencies in infancy, few studies have examined the effects of micronutrient supplementation on specific cognitive indicators. This study investigated, in 2002, the effects of iron-folic acid and/or zinc supplementation on the results of Fagan Test of Infant Intelligence (FTII) and the A-not-B Task of executive functioning among 367 Nepali infants living in Sarlahi district. Infants were enrolled in a cluster-randomized, placebo-controlled clinical trial of daily supplementation with 5 mg of zinc, 6.25 mg of iron with 25 microg of folic acid, or zinc-iron-folic acid, or placebo. These were tested on both the tasks using five indicators of information processing: preference for novelty (FTII), fixation duration (FTII), accelerated performance (> or = 85% correct; A-not-B), deteriorated performance (< 75% correct and > 1 error on repeat-following-correct trails; A-not-B), and the A-not-B error (A-not-B). At 39 and 52 weeks, 247 and 333 infants respectively attempted the cognitive tests; 213 made an attempt to solve both the tests. The likelihood of females completing the A-not-B Task was lower compared to males when cluster randomization was controlled [odds ratio = 0.67; 95% confidence interval 0.46-0.97; p < 0.05]. All of the five cognitive outcomes were modelled in linear and logistic regression. The results were not consistent across either the testing sessions or the information-processing indicators. Neither the combined nor the individual micronutrient supplements improved the performance on the FTII or the A-not-B Task (p > 0.05). These findings suggest that broader interventions (both in terms of scope and duration) are needed for infants who face many biological and social stressors.

  19. Selective extraction of zinc(II) over iron(II) from spent hydrochloric acid pickling effluents by liquid-liquid extraction.

    PubMed

    Mansur, Marcelo Borges; Rocha, Sônia Denise Ferreira; Magalhães, Fernando Silva; Benedetto, Jeaneth dos Santos

    2008-02-11

    The selective removal of zinc(II) over iron(II) by liquid-liquid extraction from spent hydrochloric acid pickling effluents produced by the zinc hot-dip galvanizing industry was studied at room temperature. Two distinct effluents were investigated: effluent 1 containing 70.2g/L of Zn, 92.2g/L of Fe and pH 0.6, and effluent 2 containing 33.9 g/L of Zn, 203.9g/L of Fe and 2M HCl. The following extractants were compared: TBP (tri-n-butyl phosphate), Cyanex 272 [bis(2,4,4-trimethylpentyl)phosphinic acid], Cyanex 301 [bis(2,4,4-trimethylpentyl) dithiophosphinic acid] and Cyanex 302 [bis(2,4,4-trimethylpentyl) monothiophosphinic acid]. The best separation results were obtained for extractants TBP and Cyanex 301. Around 92.5% of zinc and 11.2% of iron were extracted from effluent 1 in one single contact using 100% (v/v) of TBP. With Cyanex 301, around 80-95% of zinc and less than 10% of iron were extracted from effluent 2 at pH 0.3-1.0. For Cyanex 272, the highest extraction yield for zinc (70% of zinc with 20% of iron extraction) was found at pH 2.4. Cyanex 302 presented low metal extraction levels (below 10%) and slow phase disengagement characteristics. Reactions for the extraction of zinc with TBP and Cyanex 301 from hydrochloric acid solution were proposed.

  20. Development and characterization of a hydrophobic treatment for jute fibres based on zinc oxide nanoparticles and a fatty acid

    NASA Astrophysics Data System (ADS)

    Arfaoui, M. A.; Dolez, P. I.; Dubé, M.; David, É.

    2017-03-01

    This work aims at developing a hydrophobic treatment for jute fibres based on the grafting and growth of zinc oxide (ZnO) nanorods on the fibre surface. The first step consists in removing impurities from the fibre surface with a scouring treatment. In the second step, the jute fibres are coated with a layer of ZnO nanoseeds. A hydrothermal process is carried out as a third step to ensure a uniform growth of ZnO nanorods on the surface of the jute fibres. Finally, a hydrophobic treatment is performed on the ZnO nanorod-covered jute fibres using stearic acid (SA), i.e., a typical fatty acid. A large improvement in the fibre hydrophobicity was obtained without any negative effect on thermal stability and limited reduction in strength. Complementary measurements by scanning electron microscopy and X-ray diffraction were also performed and revealed a hexagonal system for the ZnO nanorods.

  1. Zinc oxide modified with benzylphosphonic acids as transparent electrodes in regular and inverted organic solar cell structures

    SciTech Connect

    Lange, Ilja; Reiter, Sina; Kniepert, Juliane; Piersimoni, Fortunato; Brenner, Thomas; Neher, Dieter; Pätzel, Michael; Hildebrandt, Jana; Hecht, Stefan

    2015-03-16

    An approach is presented to modify the work function of solution-processed sol-gel derived zinc oxide (ZnO) over an exceptionally wide range of more than 2.3 eV. This approach relies on the formation of dense and homogeneous self-assembled monolayers based on phosphonic acids with different dipole moments. This allows us to apply ZnO as charge selective bottom electrodes in either regular or inverted solar cell structures, using poly(3-hexylthiophene):phenyl-C71-butyric acid methyl ester as the active layer. These devices compete with or even surpass the performance of the reference on indium tin oxide/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. Our findings highlight the potential of properly modified ZnO as electron or hole extracting electrodes in hybrid optoelectronic devices.

  2. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  3. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  4. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.

    PubMed

    Ma, Cui; Wei, Xiaowen; Sun, Cuihuan; Zhang, Fei; Xu, Jianren; Zhao, Xinqing; Bai, Fengwu

    2015-03-01

    Acetic acid is present in cellulosic hydrolysate as a potent inhibitor, and the superior acetic acid tolerance of Saccharomyces cerevisiae ensures good cell viability and efficient ethanol production when cellulosic raw materials are used as substrates. In this study, a mutant strain of S. cerevisiae ATCC4126 (Sc4126-M01) with improved acetic acid tolerance was obtained through screening strains transformed with an artificial zinc finger protein transcription factor (ZFP-TF) library. Further analysis indicated that improved acetic acid tolerance was associated with improved catalase (CAT) activity. The ZFP coding sequence associated with the improved phenotype was identified, and real-time RT-PCR analysis revealed that three of the possible genes involved in the enhanced acetic acid tolerance regulated by this ZFP-TF, namely YFL040W, QDR3, and IKS1, showed decreased transcription levels in Sc4126-M01 in the presence of acetic acid, compared to those in the control strain. Sc4126-M01 mutants having QDR3 and IKS1 deletion (ΔQDR3 and ΔIKS1) exhibited higher acetic acid tolerance than the wild-type strain under acetic acid treatment. Glucose consumption rate and ethanol productivity in the presence of 5 g/L acetic acid were improved in the ΔQDR3 mutant compared to the wild-type strain. Our studies demonstrated that the synthetic ZFP-TF library can be used to improve acetic acid tolerance of S. cerevisiae and that the employment of an artificial transcription factor can facilitate the exploration of novel functional genes involved in stress tolerance of S. cerevisiae.

  5. Diel cycling of zinc in a stream impacted by acid rock drainage: Initial results from a new in situ Zn analyzer

    USGS Publications Warehouse

    Chapin, T.P.; Nimick, D.A.; Gammons, C.H.; Wanty, R.B.

    2007-01-01

    Recent work has demonstrated that many trace metals undergo dramatic diel (24-h) cycles in near neutral pH streams with metal concentrations reproducibly changing up to 500% during the diel period (Nimick et al., 2003). To examine diel zinc cycles in streams affected by acid rock drainage, we have developed a novel instrument, the Zn-DigiScan, to continuously monitor in situ zinc concentrations in near real-time. Initial results from a 3-day deployment at Fisher Creek, Montana have demonstrated the ability of the Zn-DigiScan to record diel Zn cycling at levels below 100 ??g/l. Longer deployments of this instrument could be used to examine the effects of episodic events such as rainstorms and snowmelt pulses on zinc loading in streams affected by acid rock drainage. ?? Springer Science+Business Media B.V. 2006.

  6. Synthesis of silica coated zinc oxide–poly(ethylene-co-acrylic acid) matrix and its UV shielding evaluation

    SciTech Connect

    Ramasamy, Mohankandhasamy; Kim, Yu Jun; Gao, Haiyan; Yi, Dong Kee; An, Jeong Ho

    2014-03-01

    Graphical abstract: - Highlights: • Well layer thickness controlled silica shell was made on ZnO nanoparticles. • PEAA, an interfacial agent is used to make nanocomposite–polymer matrix by twin-screw extruder. • Si-ZnO/PEAA matrix is highly stable and UV protective as compared to ZnO/PEAA matrix. • Nanoparticle embedded polymer matrix is suggested to make UV shielding fabrics with Nylon4. - Abstract: Silica coated zinc oxide nanoparticles (Si-ZnO NPs) (7 nm thick) were synthesized successfully and melt blended with poly(ethylene-co-acrylic acid) (PEAA resin) to improving ultraviolet (UV) shielding of zinc oxide nanoparticles (ZnO NPs). The photostability of both the ZnO NPs and Si-ZnO NPs were analyzed by the difference in photoluminescence (PL) and by methylene blue (MB) degradation. Photo-degradation studies confirmed that Si-ZnO NPs are highly photostable compared to ZnO NPs. The melt blended matrices were characterized by field emission scanning electron microscopy interfaced with energy dispersive X-ray spectroscopy (FE-SEM-EDX). The UV shielding property was analyzed from the transmittance spectra of UV–visible (UV–vis) spectroscopy. The results confirmed fine dispersion of thick Si-ZnO NPs in the entire resin matrix. Moreover, the Si-ZnO/PEAA showed about 97% UV shielding properties than the ZnO/PEAA.

  7. Zinc absorption from low phytic acid genotypes of maize (Zea mays L.), barley (Hordeum vulgare L.) and rice (Oryza sativa L.) assessed in a suckling rat pup model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytic acid (PA) is an inhibitor of zinc (Zn) absorption. Because dietary PA is a major causative factor for low Zn bioavailability from most diets, a reduction in the PA content of staple diets is likely to improve Zn nutrition in populations of risk of Zn deficiency. Reducing the PA content of mai...

  8. In vitro effects of zinc, D-aspartic acid, and coenzyme-Q10 on sperm function.

    PubMed

    Giacone, Filippo; Condorelli, Rosita A; Mongioì, Laura M; Bullara, Valentina; La Vignera, Sandro; Calogero, Aldo E

    2016-07-15

    Reactive oxygen species favor reproductive processes at low concentrations, but damage spermatozoa and decrease their fertilizing capacity at high concentrations. During infection and/or inflammation of the accessory sex glands reactive oxygen species overproduction may occur which, in turn, may negatively impact on sperm motility, sperm DNA fragmentation, and lipid peroxidation. A number of nutraceutical formulations containing antioxidant molecules have been developed to counteract the deleterious effects of the oxidative stress. A recent formulation containing zinc, D-aspartic acid, and coenzyme-Q10 is present in the pharmaceutical market. Based on these premises, the aim of the present study was to evaluate the effects of this combination on spermatozoa in vitro. The study was conducted on 24 men (32.2 ± 5.5 years): 12 normozoospermic men and 12 asthenozoospermic patients. Spermatozoa from each sample were divided into two control aliquots (aliquot A and B) and an aliquot incubated with zinc, D-aspartic acid, and coenzyme-Q10 (aliquot C). After 3 h of incubation, the following parameters were evaluated: progressive motility, number of spermatozoa with progressive motility recovered after swim-up, lipid peroxidation, and DNA fragmentation. Incubation with zinc, D-aspartic acid, and coenzyme-Q10 maintained sperm motility in normozoospermic men (37.7 ± 1.2 % vs. 35.8 ± 2.3 % at time zero) and improved it significantly in asthenozoospermic patients (26.5 ± 1.9 % vs. 18.8 ± 2.0 % at time zero) (p < 0.01). This resulted in a significantly higher (p < 0.01) number of spermatozoa with progressive motility recovered after swim-up in both normozospermic men (4.1 ± 0.9 vs. 3.3 ± 1.0 millions) and asthenozooseprmic patients (3.2 ± 0.8 vs. 1.6 ± 0.5 millions). Finally, a statistically significant lower sperm lipid peroxidation was found after incubation with zinc, D-aspartic acid, and coenzyme-Q10 (p < 0

  9. [Determination of antidangdruff agent salicylic acid, zinc pyrithione, octopirox, climbazole and ketoconazole in shampoo by high performance liquid chromatography].

    PubMed

    Yang, Yan-Wei; Zhu, Ying; Su, Xiao-Qing

    2005-09-01

    A high performance liquid chromatography method was established for determination of antidangdruff agent salicylic acid,zinc pyrithione, octopirox, climbazole and ketoconazole in shampoo on a C18 column using acetonitrile-metholaqueous solution (10 mmol/L KH2 PO4 and 5 mmol/L EDTANa2, pH is adjusted to 4.0 with H3 PO4) (50:10:40) as mobile phase at a flow rate of 1.0 ml/min, with the column temperature 25 degrees C and detection wave 230nm. The precision was less than 3.8% and recovery varied from 92.7% to 104.9%. The experimental results showed that the method was simple, precise and accurate.

  10. Photodynamic therapy effect of zinc monoamino phthalocyanine-folic acid conjugate adsorbed on single walled carbon nanotubes on melanoma cells

    NASA Astrophysics Data System (ADS)

    Ogbodu, Racheal O.; Ndhundhuma, Ivy; Karsten, Aletta; Nyokong, Tebello

    2015-02-01

    This work reports on the photodynamic therapy effect of zinc monoamino phthalocyanine linked to folic acid represented as ZnMAPc-FA, which was further immobilized onto single walled carbon nanotube represented as ZnMAPc-FA-SWCNT on melanoma A375 cell line, the effect of SWCNT-FA (without ZnMAPc) was also examined. All the compounds were non-toxic to the melanoma A375 cell line in the absence of light. Upon irradiation of the melanoma A375 cell line with a 676 nm diode laser at a power density of 98 mW/cm2 at 5 J/cm2 about 60% and 63% cell death was observed in the presence of ZnMAPc-FA and ZnMAPc-FA-SWCNT respectively. SWCNT-FA had no significant photodynamic therapy or photothermal effect to the cell, only 23% of cell death was observed after irradiation.

  11. 40 CFR 180.217 - Ammoniates for [ethylenebis-(dithiocarbamato)] zinc and ethyl-enebis [dithiocarbamic acid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ammoniates for zinc and ethyl-enebis... for zinc and ethyl-enebis bimolecular and trimolecular cyclic anhydrosulfides and disulfides... mixture of 5.2 parts by weight of ammoniates of zinc with 1 part by weight ethylenebis bimolecular...

  12. Recovering Zinc From Discarded Tires

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1984-01-01

    Zinc sulfate monohydrate sold at profit. Shredded tire material steeped in three sulfuric acid baths to extract zinc. Final product removed by evaporating part of solution until product crystallizes out. Recovered as zinc sulfate monohydrate and sold as fertilizer or for general use.

  13. Zinc Enzymes.

    ERIC Educational Resources Information Center

    Bertini, I.; And Others

    1985-01-01

    Discusses the role of zinc in various enzymes concerned with hydration, hydrolysis, and redox reactions. The binding of zinc to protein residues, properties of noncatalytic zinc(II) and catalytic zinc, and the reactions catalyzed by zinc are among the topics considered. (JN)

  14. Effect of Time and Deposition Method on Quality of Phosphonic Acid Modifier Self-Assembled Monolayers on Indium Zinc Oxide

    SciTech Connect

    Sang, Lingzi; Knesting, Kristina M.; Bulusu, Anuradha; Sigdel, Ajaya K.; Giordano, Anthony J.; Marder, Seth R.; Berry, Joseph J.; Graham, Samuel; Ginger, David S.; Pemberton, Jeanne E.

    2016-12-15

    Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F5BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only after -48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F13-octylphosphonic acid (F13OPA), and pentafluorinated benzyl phosphonic acid (F5BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48-168 h solution deposition at both room temperature and 70 degrees C result in contamination- and surface etch-free close-packed monolayers with good reproducibility. SAMs fabricated by micro-contact printing and spray coating are much less well ordered.

  15. Effect of time and deposition method on quality of phosphonic acid modifier self-assembled monolayers on indium zinc oxide

    NASA Astrophysics Data System (ADS)

    Sang, Lingzi; Knesting, Kristina M.; Bulusu, Anuradha; Sigdel, Ajaya K.; Giordano, Anthony J.; Marder, Seth R.; Berry, Joseph J.; Graham, Samuel; Ginger, David S.; Pemberton, Jeanne E.

    2016-12-01

    Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F5BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only after ∼48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F13-octylphosphonic acid (F13OPA), and pentafluorinated benzyl phosphonic acid (F5BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48-168 h solution deposition at both room temperature and 70 °C result in contamination- and surface etch-free close-packed monolayers with good reproducibility. SAMs fabricated by micro-contact printing and spray coating are much less well ordered.

  16. A water-soluble, octacationic zinc phthalocyanine as molecular probe for nucleic acid secondary structure.

    PubMed

    Zhang, An-Ming; Huang, Jing; Weng, Xiao-Cheng; Li, Jin-Xi; Ren, Li-Ge; Song, Zhi-Bin; Xiong, Xiao-Qin; Zhou, Xiang; Cao, Xiao-Ping; Zhou, Yan

    2007-02-01

    The interaction between CT-DNA and the zinc phthalocyanine ZnPc (1) was studied by UV/VIS and fluorescence titration, as well as by thermal denaturation. ZnPc was found to strongly bind to CT-DNA (K(app)=7.35 x 10(5) M(-1)) in a non-intercalative mode. The photosensitized cleavage of pBR322 DNA was found to efficiently proceed via singlet-oxygen ((1)O(2)) production. Further, ZnPc (1) caused site-specific scission of guanine (G) bases around the bulge of the hairpin oligonucleotides OD1-OD3, as clearly shown by gel-electrophoresis experiments.

  17. Bioavailability of zinc to rats from defatted soy flour, acid-precipitated soy concentrate and neutralized soy concentrate as determined by intrinsic and extrinsic labeling techniques

    SciTech Connect

    Ketelsen, S.M.; Stuart, M.A.; Weaver, C.M.; Forbes, R.M.; Erdman, J.W. Jr.

    1984-03-01

    The bioavailability of 65Zn from intrinsically and extrinsically labeled soy flour, acid-precipitated soy concentrate and neutralized soy concentrate was evaluated in rats. Weanling rats were fed marginally zinc-deficient diets, providing 8 ppm zinc from one of these three soy products, for 7 days. The rats then received a radioactively labeled test meal, identical in composition to the previous diet except that the soy product was either intrinsically or extrinsically labeled with 65Zn. After the test meal the rats were again fed diets the same as those consumed prior to the test meal. Whole-body retention of 65Zn at 24 hours and 12 days as well as 65Zn retained in tibias of rats given meals containing neutralized concentrate-based meals was significantly lower than for rats given meals containing the soy flour or acid-precipitated concentrate. In addition, retention of 65Zn from the extrinsically labeled acid-precipitated concentrate-based meal was significantly higher than from the same product intrinsically labeled. These findings confirm the results of previous feeding studies from which it was suggested that neutralization of soy protein concentrates reduces zinc bioavailability to the rat. In addition, the results are taken to suggest that experimental conditions may influence the validity of the extrinsic labeling technique for zinc.

  18. Organic acids induce tolerance to zinc- and copper-exposed fungi under various growth conditions.

    PubMed

    Sazanova, Katerina; Osmolovskaya, Natalia; Schiparev, Sergey; Yakkonen, Kirill; Kuchaeva, Ludmila; Vlasov, Dmitry

    2015-04-01

    Heavy metals, Zn and Cu, in high concentration (2 mM for Zn and 0.5 mM for Cu) have some inhibiting effect on the growth of Aspergillus niger and Penicillium citrinum. Toxic effects of these metals considerably depend on cultivation conditions including nitrogen sources, pH of nutrient media, and its consistency (presence or absence of agar). In general, nitrate media provides less inhibiting effect on fungal growth under heavy metal exposure than ammonium-containing media. Adding of Zn in nitrate media induces oxalic acid production by fungi. Importance of oxalic acid production in detoxification of heavy metals is confirmed by the formation of Zn-containing crystals in fungal cultures. Cu bringing to the cultural media had no stimulating effect on oxalic acid production as well as no copper-containing crystals were observed. But proceeding from essential increase in oxalic acid production during a long-term fungi adaptation to Cu, it may be proposed that oxalic acid plays some functional role in Cu tolerance of fungi as well. It may be concluded that the role of organic acids and oxalate, in particular, in fungi tolerance and adaptation to heavy metals can be determined by the nature of the metal and its ability to form stable complexes with an acid anion. Stimulating effect of metals on acid production is not universal for all species of fungi and largely depends on metal concentration, nitrogen form in a medium, and other cultivation conditions.

  19. [Zinc and chronic enteropathies].

    PubMed

    Giorgi, P L; Catassi, C; Guerrieri, A

    1984-01-01

    In recent years the nutritional importance of zinc has been well established; its deficiency and its symptoms have also been recognized in humans. Furthermore, Acrodermatitis Enteropathica has been isolated, a rare but severe disease, of which skin lesions, chronic diarrhoea and recurring infections are the main symptoms. The disease is related to the malfunctioning of intestinal absorption of zinc and can be treated by administering pharmacological doses of zinc orally. Good dietary sources of zinc are meat, fish and, to a less extent, human milk. The amount of zinc absorbed in the small intestine is influenced by other nutrients: some compounds inhibit this process (dietary fiber, phytate) while others (picolinic acid, citric acid), referred to as Zn-binding ligands (ZnBL) facilitate it. Citric acid is thought to be the ligand which accounts for the high level of bioavailability of zinc in human milk. zinc absorption occurs throughout the small intestine, not only in the prossimal tract (duodenum and jejunum) but also in the distal tract (ileum). Diarrhoea is one of the clinical manifestations of zinc deficiency, thus many illnesses distinguished by chronic diarrhoea entail a bad absorption of zinc. In fact, in some cases of chronic enteropathies in infants, like coeliac disease and seldom cystic fibrosis, a deficiency of zinc has been isolated. Some of the symptoms of Crohn's disease, like retarded growth and hypogonadism, have been related to hypozinchemia which is present in this illness. Finally, it is possible that some of the dietary treatments frequently used for persistent post-enteritis diarrhoea (i.e. cow's milk exclusion, abuse and misuse of dietary fiber like carrot and carub powder, use of soy formula) can constitute a scarce supply of zinc and therefore could promote the persistency of diarrhoea itself.

  20. Zinc poisoning

    MedlinePlus

    ... other materials to make industrial items such as paint, dyes, and more. These combination substances can be ... Compounds used to make paint, rubber, dyes, wood preservatives, and ... Zinc chloride Zinc oxide (relatively nonharmful) Zinc ...

  1. Effect of excess dietary iron as ferrous sulfate and excess dietary ascorbic acid on liver zinc, copper and sulfhydryl groups and the ovary

    SciTech Connect

    Edwards, C.H.; Adkins, J.S.; Harrison, B.

    1986-03-05

    Female guinea pigs of the NIH 13/N strain, weighing between 475 and 512 g, were fed diets supplemented with 50 to 2500 mg of iron per kg of diet as ferrous sulfate and 0.2 to 8.0 g of ascorbic acid per kg of diet. A significant effect was observed on tissue copper and zinc, ovary weight and liver protein sulfhydryl groups. The mean ovary weight for guinea pigs fed 2500 mg of iron was significantly less than that of animals fed 50 mg of iron, 0.045 +/- 0.012 g and 0.061 +/- 0.009 g, respectively. Liver zinc content of animals fed 2500 mg of iron and 200 mg of ascorbic acid per kg of diet was significantly less than that of animals fed 50 mg of iron and 200 mg of ascorbic acid, 16.3 +/- 3.3 ..mu..g and 19.6 +/- 1.6 ..mu..g, respectively. There was no difference in liver copper due to dietary iron, but when dietary ascorbic acid was increased to 8 g per kg of diet, there was a significant decrease (from 22.8 +/- 8.1 ..mu..g to 10.5 +/- 4.8 ..mu..g) in liver copper. Excess dietary ascorbic acid decreased ovarian zinc significantly when increased to 8 g per kg of diet, 2929 +/- 919 ..mu..g vs 1661 +/- 471 ..mu..g, respectively, when compared to the control group.

  2. Effect of organic acids on the adsorption of copper, lead, and zinc by goethite

    NASA Astrophysics Data System (ADS)

    Perelomov, L. V.; Pinskiy, D. L.; Violante, A.

    2011-01-01

    The adsorption of Cu, Pb, and Zn by synthetic goethite was studied in the absence and presence of oxalic, citric, and glutamic acids at different pH values. It was shown that, in the absence of an acid, the content of adsorbed metals increased with the increasing pH. The content of adsorbed cations at constant pH values decreased in the sequence: Cu > Pb > Zn. The simultaneous addition of metal cations and organic acids to the goethite suspension increased the content of the adsorbed elements. The oxalic and citric acids had similar effects on the adsorption of copper and lead in the studied pH range. The metal: acid concentration ratios significantly affected the adsorption of the heavy metals by goethite. An increase in the metal adsorption was observed to a certain metal: acid ratio, which was followed by a gradual decrease. The adsorption of the metals by goethite also depended on the properties of the metal cations and the organic ligands. The observed tendencies were attributed to the complexation of heavy metals with organic acid anions and the simultaneous sorption of acids at positively charged sites on the goethite surface with the formation of mineral-organic compounds, which significantly modified the surface properties of the mineral. The study of the effect of increasing lead concentrations in the solution on the copper adsorption by goethite in the absence, in the presence, and at the addition of an oxalic acid solution to the goethite suspension one hour before the beginning of the experiment showed that lead decreased the adsorption of copper in all the treatments. The possible mechanisms of the processes occurring in the system were considered.

  3. Silver nanoparticles in combination with acetic acid and zinc oxide quantum dots for antibacterial activities improvement-A comparative study

    NASA Astrophysics Data System (ADS)

    Sedira, Sofiane; Ayachi, Ahmed Abdelhakim; Lakehal, Sihem; Fateh, Merouane; Achour, Slimane

    2014-08-01

    Due to their remarkable antibacterial/antivirus properties, silver nanoparticles (Ag NPs) and zinc oxide quantum dots (ZnO Qds) have been widely used in the antimicrobial field. The mechanism of action of Ag NPs on bacteria was recently studied and it has been proven that Ag NPs exerts their antibacterial activities mainly by the released Ag+. In this work, Ag NPs and ZnO Qds were synthesized using polyol and hydrothermal method, respectively. It was demonstrated that Ag NPs can be oxidized easily in aqueous solution and the addition of acetic acid can increase the Ag+ release which improves the antibacterial activity of Ag NPs. A comparative study between bactericidal effect of Ag NPs/acetic acid and Ag NPs/ZnO Qds on Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia and Staphylococcus aureus was undertaken using agar diffusion method. The obtained colloids were characterized using UV-vis spectroscopy, Raman spectrometry, X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM).

  4. Influence of mineral and organic components on copper, lead, and zinc sorption by acid soils.

    PubMed

    Vega, Flora A; Covelo, Emma F; Vázquez, Juan J; Andrade, Luisa

    2007-12-01

    Sorption isotherms were constructed for the sorption of Cu, Pb and Zn by the surface horizons of three soils [a Humic Cambisol (G1), a Haplic Podzol (G2) and an Umbric Gleysol (G3)] and by fractions obtained by sequential removal of organic matter and oxides. All were of L-type except the H-type isotherms recorded for sorption of lead by whole G2, and all were fitted well by the Langmuir model, with determination coefficients > 0.91. Langmuir equation parameter beta correlated well (r(2) = 0.985) with experimentally maximum sorption capacity. For all soils, metal sorption capacities decreased in the order Zn > Cu > Pb. Sorption by organic matter was one of the main contributions to total sorption. Sorption by oxides was generally most substantial in G1, which had the largest total oxides content, while the sorption of lead by G3 was attributable to its high Mn oxides content. The clayey residue contributed significantly to sorption of zinc by G1, and G3 (due to their respective vermiculite and gibbsite contents) and to sorption of copper by G1 due to its vermiculite content.

  5. Leaching and selective copper recovery from acidic leachates of Três Marias zinc plant (MG, Brazil) metallurgical purification residues.

    PubMed

    Sethurajan, Manivannan; Huguenot, David; Lens, Piet N L; Horn, Heinrich A; Figueiredo, Luiz H A; van Hullebusch, Eric D

    2016-07-15

    Zinc plant purification residue (ZPR), a typical Zn-hydrometallurgical waste, was collected from the Três Marias Zn plant (MG, Brazil). ZPR was characterized for its metal content and fractionation, mineralogy, toxicity and leachability. Toxicity characteristics leaching procedure (TCLP) and European Community Bureau of Reference (BCR) sequential extraction results revealed that this ZPR displays high percentages of metals (Cd, Cu, Zn and Pb) in the highly mobilizable fractions, increasing its hazardous potential. Bulk chemical analysis, pH dependent leaching and acid (H2SO4) leaching studies confirm that the ZPR is polymetallic, rich in Cd, Cu and Zn. The sulfuric acid concentration (1 M), agitation speed (450 rpm), temperature (40 °C) and pulp density (20 g L(-1)) were optimized to leach the maximum amount of heavy metals (Cd, Cu and Zn). Under optimum conditions, more than 50%, 70% and 60% of the total Cd, Cu and Zn present in the ZPR can be leached, respectively. The metals in the acid leachates were investigated for metal sulfide precipitation with an emphasis on selective Cu recovery. Metal sulfide precipitation process parameters such as initial pH and Cu to sulfide ratio were optimized as pH 1.5 and 1:0.5 (Cu:sulfide) mass ratio, respectively. Under optimum conditions, more than 95% of Cu can be selectively recovered from the polymetallic ZPR leachates. The Cu precipitates characterization studies reveal that they are approximately 0.1 μm in diameter and mainly consist of Cu and S. XRD analysis showed covellite (CuS), chalcanthite (CuSO4·5H2O) and natrochalcite (NaCu2(SO4)2(OH)·H2O) as the mineral phases. ZPRs can thus be considered as an alternative resource for copper production.

  6. delta-Aminolevulinic acid dehydratase activity, urinary delta-aminolevulinic acid concentration and zinc protoporphyrin level among people with low level of lead exposure.

    PubMed

    Wang, Qi; Zhao, Huan-hu; Chen, Jian-wei; Hao, Qiao-ling; Gu, Kang-ding; Zhu, Ye-xiang; Zhou, Yi-kai; Ye, Lin-xiang

    2010-01-01

    To evaluate the relationship of delta-aminolevulinic acid dehydratase (ALAD) activity, urinary delta-aminolevulinic acid (ALAU) level and blood zinc protoporphyrin (ZPP) concentration to low blood lead (PbB) levels, these biomarkers were determined for all subjects enrolled from a rural area of southeast China where people had low levels of exposure to lead. The mean values of PbB, ALAD, ALAU and ZPP were 67.11 microg/L (SD: 1.654, range: 10.90-514.04), 339.66 nmol ml(-1)h(-1) (1.419, 78.33-793.13), 20.64 microg/L (1.603, 2.00-326.00), and 0.14 micromol/L (3.437, 0.01-2.26), respectively. ALAD was inversely associated with low levels of PbB. ZPP was inversely related to low levels of PbB but positively related to relatively higher levels of PbB. Alcohol drinking contributed to low ALAD in men. Women had higher ZPP than men. ALAU had no significant association with PbB. In conclusion, ALAD possibly has a non-linear relation with low to moderate levels of PbB. At moderate levels of PbB, ZPP increases with increasing levels of PbB. ALAU is not suitable as an indicator for low levels of lead exposure.

  7. In vitro ¹⁴C-labeled amino acid uptake changes and surface abnormalities in the colon after 1,2-dimethylhydrazine-induced experimental carcinogenesis: protection by zinc.

    PubMed

    Chadha, Vijayta Dani; Dhawan, Devinder K

    2011-01-01

    The present study explored the regulatory role of zinc on the in vitro uptake of ¹⁴C-glucose and ¹⁴C-labeled amino acids and on colonic surface abnormalities after 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis. Rats were segregated into four groups: control, DMH-treated, zinc-treated, and DMH + zinc-treated. Colon carcinogenesis was induced through weekly subcutaneous injections of DMH (30 mg/kg body weight) for 16 weeks. Zinc (in the form of zinc sulfate) was given to rats at a dose level of 227 mg/L in their drinking water. DMH treatment caused a significant decrease in the activities of disaccharidases (sucrase, lactase, and maltase), but a significant increase in the activity of alkaline phosphatase. In vitro uptake of ¹⁴C-D-glucose and the amino acids ¹⁴C-glycine, ¹⁴C-alanine, ¹⁴C-lysine, and ¹⁴C-leucine were significantly higher in the colons of DMH-treated rats. Zinc supplementation of DMH-treated rats resulted in regulating the altered intestinal enzyme activities and in vitro uptake of ¹⁴C-amino acids and ¹⁴C-glucose. Scanning electron microscopy revealed drastic alterations in the colon surface morphology after DMH treatment, which were restored after zinc supplementation. Our results confirm a beneficial effect of zinc against DMH-induced alterations in the colons of rats.

  8. Antimycobacterial, antimicrobial, and biocompatibility properties of para-aminosalicylic acid with zinc layered hydroxide and Zn/Al layered double hydroxide nanocomposites

    PubMed Central

    Saifullah, Bullo; El Zowalaty, Mohamed E; Arulselvan, Palanisamy; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin M; Hussein, Mohd Zobir

    2014-01-01

    The treatment of tuberculosis by chemotherapy is complicated due to multiple drug prescriptions, long treatment duration, and adverse side effects. We report here for the first time an in vitro therapeutic effect of nanocomposites based on para-aminosalicylic acid with zinc layered hydroxide (PAS-ZLH) and zinc-aluminum layered double hydroxides (PAS-Zn/Al LDH), against mycobacteria, Gram-positive bacteria, and Gram-negative bacteria. The nanocomposites demonstrated good antimycobacterial activity and were found to be effective in killing Gram-positive and Gram-negative bacteria. A biocompatibility study revealed good biocompatibility of the PAS-ZLH nanocomposites against normal human MRC-5 lung cells. The para-aminosalicylic acid loading was quantified with high-performance liquid chromatography analysis. In summary, the present preliminary in vitro studies are highly encouraging for further in vivo studies of PAS-ZLH and PAS-Zn/Al LDH nanocomposites to treat tuberculosis. PMID:25114509

  9. Populus yunnanensis males adopt more efficient protective strategies than females to cope with excess zinc and acid rain.

    PubMed

    Jiang, Hao; Korpelainen, Helena; Li, Chunyang

    2013-05-01

    Dioecious plants show sexually different responses to environmental stresses. However, little is known about the dimorphic morphological and physiological responses to soil pollution. To investigate sex-related adaptive responses of Populus yunnanensis seedlings when exposed to excess zinc (Zn), acid rain (AR) and their combination (Zn+AR), we analyzed growth parameters, Zn accumulation and allocation, photosynthetic capacity and biochemical responses under different treatments. Results revealed that both excess Zn and Zn+AR have a negative effect on plant growth. Males have a greater potential than females to enrich Zn. The photosynthesis limitation could be attributable to a lower stomatal conductance, photosynthetic nitrogen use efficiency and nitrate reductase activity induced by Zn accumulation. Overproduction of reactive oxygen species was detected, and females showed higher levels of H2O2 and O2- than did males under excess Zn and Zn+AR. In addition, indicators related to plant injury showed expected increases and exhibited sexual differences. Males synthesized more biochemical molecules, such as proline and non-protein thiol, showing a stronger defense capacity in responses to either excess Zn or Zn+AR. Taking into account the Zn accumulation and the resulting injuries in plants, we suggest that excess Zn causes sex-related adaptive responses and males possess a more effective self-protection mechanism, Zn-stressed individuals suffering from AR did not show notable aggravation or alleviation when compared to damages induced by excess Zn alone.

  10. Synergistic effect of chemo-photothermal for breast cancer therapy using folic acid (FA) modified zinc oxide nanosheet.

    PubMed

    Vimala, Karuppaiya; Shanthi, Krishnamurthy; Sundarraj, Shenbagamoorthy; Kannan, Soundarapandian

    2017-02-15

    Modern therapies for malignant breast cancer in clinics are not efficacious and often result in deprived patient compliance owing to squat therapeutic effectiveness and strong systemic side effects. In order to overcome this, we combined chemo-photothermal targeted therapy of breast cancer within one novel multifunctional drug delivery system. Folic Acid-functionalized polyethylene glycol coated Zinc Oxide nanosheet (FA-PEG-ZnO NS), was successfully synthesized, characterized and introduced to the drug delivery field for the first time. A doxorubicin (DOX)-loaded FA-PEG-ZnO NS based system (DOX-FA-PEG-ZnO NS) showed stimulative effect of heat, pH responsive and sustained drug release properties. Cytotoxicity experiments confirmed that combined therapy mediated the maximum rate of death in breast cancer cells compared to that of single chemotherapy or photothermal therapy. In vivo toxicity evaluation showed that the DOX-FA-PEG-ZnO NS contains minimum systemic toxicity in the mice model system. The findings of the present study provided an ideal drug delivery system for breast cancer therapy due to the advanced chemo-photothermal synergistic targeted therapy and good drug release properties of DOX-FA-PEG-ZnO NS, which could effectively avoid frequent and invasive dosing and improve patient compliance. Thus, functionalized-ZnO NS could be used as a novel nanomaterial for selective chemo-photothermal therapy.

  11. A bisphenol A sensor based on novel self-assembly of zinc phthalocyanine tetrasulfonic acid-functionalized graphene nanocomposites.

    PubMed

    Hou, Keyu; Huang, Lei; Qi, Yongbo; Huang, Caixia; Pan, Haibo; Du, Min

    2015-04-01

    In this work, a novel zinc phthalocyanine tetrasulfonic acid (ZnTsPc)-functionalized graphene nanocomposites (f-GN) was synthesized by a simple and efficient electrostatic self-assembly method, where the positive charged GN decorated by (3-aminopropyl) triethoxysilane (APTES) was self-assemblied with ZnTsPc, a two dimensional (2-D) molecules. It not only enhanced its stability for the hybrid structure, but also avoided the reaggregation of ZnTsPc or f-GN themselves. Based on layered ZnTsPc/f-GN nanocomposites modified glassy carbon electrode, a rapid and sensitive sensor was developed for the determination of bisphenol A (BPA). Under the optimal conditions, the oxidation peak current increased linearly with the concentration of BPA in the range of 5.0×10(-8) to 4.0×10(-6)M with correlation coefficient 0.998 and limits of detection 2.0×10(-8)M. Due to high absorption nature for BPA and electron deficiency on ZnTsPc/f-GN, it presented the unique electron pathway arising from π-π stackable interaction during redox process for detecting BPA. The sensor exhibited remarkable long-term stability, good anti-interference and excellent electrocatalytic activity towards BPA detection.

  12. Ultra-sensitive detection of zinc oxide nanowires using a quartz crystal microbalance and phosphoric acid DNA

    NASA Astrophysics Data System (ADS)

    Jang, Kuewhan; You, Juneseok; Park, Chanhoo; Park, Hyunjun; Choi, Jaeyeong; Choi, Chang-Hwan; Park, Jinsung; Lee, Howon; Na, Sungsoo

    2016-09-01

    Recent advancements of nanomaterials have inspired numerous scientific and industrial applications. Zinc oxide nanowires (ZnO NWs) is one of the most important nanomaterials due to their extraordinary properties. However, studies performed over the past decade have reported toxicity of ZnO NWs. Therefore, there has been increasing demand for effective detection of ZnO NWs. In this study, we propose a method for the detection of ZnO NW using a quartz crystal microbalance (QCM) and DNA probes. The detection method is based on the covalent interaction between ZnO NWs and the phosphoric acid group of single-stranded DNA (i.e., linker DNA), and DNA hybridization between the linker DNA and the probe DNA strand on the QCM electrode. Rapid, high sensitivity, in situ detection of ZnO NWs was demonstrated for the first time. The limit of detection was 10-4 μg ml-1 in deionized water, which represents a sensitivity that is 100000 times higher than the toxic ZnO NW concentration level. Moreover, the selectivity of the ZnO NW detection method was demonstrated by comparison with other types of nanowires and the method was able to detect ZnO NWs in tap water sensitively even after stored for 14 d in a refrigerator. The performance of our proposed method was sufficient to achieve detection of ZnO NW in the ‘real-world’ environment.

  13. TEMPO-functionalized zinc phthalocyanine: synthesis, magnetic properties, and its utility for electrochemical sensing of ascorbic acid.

    PubMed

    Korkut, Sibel Eken; Akyüz, Duygu; Özdoğan, Kemal; Yerli, Yusuf; Koca, Atıf; Şener, M Kasım

    2016-02-21

    Zinc(ii) phthalocyanine (TEMPO-ZnPc), peripherally functionalized with 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) radicals is synthesized and its magneto structural and electrochemical behaviors are investigated. TEMPO-ZnPc shows multi-electron ring based reduction reactions and a TEMPO based oxidation reaction. Spectroelectrochemical measurements support these peak assignments. TEMPO-ZnPc is tested as a homogeneous and heterogeneous ascorbic acid (AA) sensor. Disappearance of TEMPO-ZnPc based reduction processes and the observation of new waves at around 0 and 1.20 V with respect to increasing AA concentration indicate the interaction of TEMPO-ZnPc with AA and usability of the complex as an electrochemical AA sensor. For practical usage as heterogeneous electrocatalysts for AA sensing, a glassy carbon electrode (GCE) is coated with TEMPO-ZnPc (GCE/TEMPO-ZnPc) and this modified electrode is tested as a heterogeneous AA sensor. The redox peak of GCE/TEMPO-ZnPc at 0.81 V decreases the peak current while a new wave is observed at 0.65 V during the titration of the electrolyte with AA. GCE/TEMPO-ZnPc sense AA with 1.75 × 10(-6) mol dm(-3) LOD with a sensitivity of 1.89 × 10(3) A cm mol(-1).

  14. Mechanistic insight into the formation of acetic acid from the direct conversion of methane and carbon dioxide on zinc-modified H-ZSM-5 zeolite.

    PubMed

    Wu, Jian-Feng; Yu, Si-Min; Wang, Wei David; Fan, Yan-Xin; Bai, Shi; Zhang, Chuan-Wei; Gao, Qiang; Huang, Jun; Wang, Wei

    2013-09-11

    Methane and carbon dioxide are known greenhouse gases, and the conversion of these two C1-building blocks into useful fuels and chemicals is a subject of great importance. By solid-state NMR spectroscopy, we found that methane and carbon dioxide can be co-converted on a zinc-modified H-ZSM-5 zeolite (denoted as Zn/H-ZSM-5) to form acetic acid at a low temperature range of 523-773 K. Solid-state (13)C and (1)H MAS NMR investigation indicates that the unique nature of the bifunctional Zn/H-ZSM-5 catalyst is responsible for this highly selective transformation. The zinc sites efficiently activate CH4 to form zinc methyl species (-Zn-CH3), the Zn-C bond of which is further subject to the CO2 insertion to produce surface acetate species (-Zn-OOCCH3). Moreover, the Brønsted acid sites play an important role for the final formation of acetic acid by the proton transfer to the surface acetate species. The results disclosed herein may offer the new possibility for the efficient activation and selective transformation of methane at low temperatures through the co-conversion strategy. Also, the mechanistic understanding of this process will help to the rational design of robust catalytic systems for the practical conversion of greenhouse gases into useful chemicals.

  15. Synthesis of protocatechuic acid-zinc/aluminium-layered double hydroxide nanocomposite as an anticancer nanodelivery system

    NASA Astrophysics Data System (ADS)

    Barahuie, Farahnaz; Hussein, Mohd Zobir; Gani, Shafinaz Abd; Fakurazi, Sharida; Zainal, Zulkarnain

    2015-01-01

    Protocatechuic acid, an active anticancer agent, has been intercalated into Zn/Al-layered double hydroxide at Zn/Al=2) using two different preparation methods, co-precipitation and ion-exchange, which are labelled as PZAE and PZAC, respectively. The release of protocatechuate from the nanocomposites occurred in a controlled manner and was fitted satisfactorily to pseudo-second order kinetics. The basal spacing of the resulting nanocomposites PZAE and PZAC was 10.2 and 11.0 Å, respectively, indicating successful intercalation of protocatechuate anions into the interlayer galleries of Zn/Al-NO3-LDH in a monolayer arrangement with angles of 24 and 33° from the z-axis in PZAE and PZAC, respectively. The formation of nanocomposites was further confirmed by a Fourier transform infrared study. Thermogravimetric and differential thermogravimetric analyses indicated that the thermal stability of the intercalated protocatechuic acid was significantly enhanced compared to its free protocatechuic acid, and the drug content in the nanocomposites was estimated to be approximately 32.6% in PZAE and 29.2% in PZAC. Both PZAE and PZAC nanocomposites inhibit the growth of human cervical, liver and colorectal cancer cell lines and exhibit no toxic effects towards normal fibroblast 3T3 cell after 72 h of treatment.

  16. Effects of zinc and sodium monensin on ruminal degradation of lysine-HCl and liquid 2-hydroxy-4-methylthiobutanoic acid.

    PubMed

    Bateman, H G; Williams, C C; Gantt, D T; Chung, Y H; Beem, A E; Stanley, C C; Goodier, G E; Hoyt, P G; Ward, J D; Bunting, L D

    2004-08-01

    Four nonlactating, mature, Holstein cows were fitted with ruminal cannula and used in a 4 x 4 Latin square-designed experiment to evaluate the impact of supplemental Zn and monensin on ruminal degradation of Lys and liquid 2-hydroxy-4-methylthiobutanoic acid (HMB). Cows were fed 4.54 kg (as fed) of alfalfa hay top-dressed with 4.54 kg (as fed) concentrate once daily. Concentrates were formulated to provide 0 or 500 mg/kg of Zn as ZnSO4 and 0 or 40 mg/kg of monensin in the total diet. Zinc supplementation provided approximately 22-fold greater dietary Zn than estimated by NRC requirements. On d 14 of each period, cows were dosed via the rumen cannula with 50 g of HMB and 100 g of Lys-HCl, and the concentrations of Lys and HMB were monitored every 0.5 h for 8 h. Supplemental Zn tended to decrease the proportion of acetate in ruminal fluid postfeeding and increased the proportion of propionate in ruminal fluid postfeeding. Supplemental Zn increased mean fluid passage rate from the rumen. Monensin decreased the proportion of acetate and increased the mean proportion of propionate in ruminal fluid, resulting in a decrease in the ratio of acetate to propionate. Monensin also increased the mean fluid passage rate from the rumen. Neither Zn nor monensin affected the apparent rate of ruminal disappearance of HMB or Lys. However, Zn and monensin interacted to alter the ruminal degradability of free Lys but not HMB. These data indicate that Zn and monensin may interact to alter ruminal degradability of free amino acids.

  17. Sorption of zinc by novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid.

    PubMed

    Milosavljević, Nedeljko B; Ristić, Mirjana Đ; Perić-Grujić, Aleksandra A; Filipović, Jovanka M; Strbac, Svetlana B; Rakočević, Zlatko Lj; Kalagasidis Krušić, Melina T

    2011-08-30

    Novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid were applied as adsorbents for the removal of Zn(2+) ions from aqueous solution. In batch tests, the influence of solution pH, contact time, initial metal ion concentration and temperature was examined. The sorption was found pH dependent, pH 5.5 being the optimum value. The adsorption process was well described by the pseudo-second order kinetic. The hydrogels were characterized by spectral (Fourier transform infrared-FTIR) and structural (SEM/EDX and atomic force microscopy-AFM) analyses. The surface topography changes were observed by atomic force microscopy, while the changes in surface composition were detected using phase imaging AFM. The negative values of free energy and enthalpy indicated that the adsorption is spontaneous and exothermic one. The best fitting isotherms were Langmuir and Redlich-Peterson and it was found that both linear and nonlinear methods were appropriate for obtaining the isotherm parameters. However, the increase of temperature leads to higher adsorption capacity, since swelling degree increased with temperature.

  18. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH.

    PubMed Central

    Tilburn, J; Sarkar, S; Widdick, D A; Espeso, E A; Orejas, M; Mungroo, J; Peñalva, M A; Arst, H N

    1995-01-01

    The pH regulation of gene expression in Aspergillus nidulans is mediated by pacC, whose 678 residue-derived protein contains three putative Cys2His2 zinc fingers. Ten pacCc mutations mimicking growth at alkaline pH remove between 100 and 214 C-terminal residues, including a highly acidic region containing an acidic glutamine repeat. Nine pacC+/- mutations mimicking acidic growth conditions remove between 299 and 505 C-terminal residues. Deletion of the entire pacC coding region mimics acidity but leads additionally to poor growth and conidiation. A PacC fusion protein binds DNA with the core consensus GCCARG. At alkaline ambient pH, PacC activates transcription of alkaline-expressed genes (including pacC itself) and represses transcription of acid-expressed genes. pacCc mutations obviate the need for pH signal transduction. Images PMID:7882981

  19. Enzymatic hydrolysis of cellulose pretreated with zinc chloride and hydrochloric acid

    SciTech Connect

    Chen, L.F.; Gong, C.S.

    1982-01-01

    Microcrystalline cellulose, Avicel, was dissolved in a concentrated solution of ZnCl/sub 2/ and 0.5% hydrochloric acid followed by heating at 145/sup 0/C for 6 min. after cooling, cellulose in its amorphous form was precipitated by the addition of acetone. The resulting cellulose was hydrolyzed by cellulase derived from Trichoderma viride. At concentrations of 20% cellulose and 1% cellulase, cellulose was hydrolyzed completely for form a solution of 19% glucose and 1% cellobiose within 72 h of incubation. 1 figure, 5 tables.

  20. Zinc biofortification improves phytochemicals and amino-acidic profile in Brassica oleracea cv. Bronco.

    PubMed

    Barrameda-Medina, Yurena; Blasco, Begoña; Lentini, Marco; Esposito, Sergio; Baenas, Nieves; Moreno, Diego A; Ruiz, Juan M

    2017-05-01

    Zn deficiency is currently listed as a major risk factor for human health. Recently, a complimentary solution to mineral malnutrition termed 'biofortification' has been proposed. The aim of this study was to investigate the possible effects of a Zn-biofortification program on Zn levels, amino acidic profile and the phytochemicals content in an edible leafy vegetable, such as Brassica oleracea cv. Bronco. Our results indicate that supplementation of 80-100μM Zn is optimal for maintaining the normal growth of plants and to promote the major Zn concentration in the edible part of B. oleracea. Any further increase of Zn supply induced an accumulation of total amino acids, and increased the enzymatic activities involved in sulfur assimilation and synthesis of phenols, finally resulting in a foliar accumulation of glucosinolates and phenolic compounds. Thus, it could be proposed that the growth of B. oleracea under 80-100μM Zn may increase the intake of this micronutrient and other beneficial compunds for the human health.

  1. Combined iron and folic acid supplementation with or without zinc reduces time to walking unassisted among Zanzibari infants 5- to 11-mo old.

    PubMed

    Olney, Deanna K; Pollitt, Ernesto; Kariger, Patricia K; Khalfan, Sabra S; Ali, Nadra S; Tielsch, James M; Sazawal, Sunil; Black, Robert; Allen, Lindsay H; Stoltzfus, Rebecca J

    2006-09-01

    Iron and zinc deficiencies have been associated with delayed motor development in nutritionally at-risk children, albeit inconsistently. In this community-based, randomized double-blind trial, iron+folic acid (FeFA) (12.5 mg Fe + 50 mug folic acid), zinc (Zn) (10 mg), and iron+folic acid+zinc (FeFA+Zn) supplements or a placebo were given daily for 1 y to nutritionally at-risk children in Pemba, Zanzibar. The effects of these treatments on attaining unassisted walking were evaluated using survival analysis for 354 children aged 5-11 mo at the start of supplementation. Treatment effects on changes in hemoglobin (Hb) and zinc protoporphyrin (ZPP) and height-for-age (HAZ) and weight-for-age (WAZ) Z scores were evaluated using linear regression. Attained motor milestone was recorded every 2 wk for 1 y. Hb, ZPP, HAZ, and WAZ were measured at baseline and after 6 mo of treatment. FeFA with or without Zn reduced the time it took for children to walk assisted. Children who received any iron walked unassisted sooner than those who received no iron [median difference approximately 15 d, P = 0.035, risk ratio (RR) = 1.28, 95% CI = 1.02, 1.61] and this effect was stronger in those who had iron deficiency anemia (IDA) at baseline (median difference was approximately 30 d; P = 0.002; RR = 1.68; 95% CI = 1.21, 2.32). FeFA alone and Zn alone improved Hb and ZPP compared with placebo. There were no significant treatment effects on changes in HAZ or WAZ. The effects of treatment on time to walking may have been mediated by improvements in iron status or hemoglobin, but were not mediated through improvements in growth.

  2. [Effect of mutations and modifications of amino acid residues on zinc-induced interaction of the metal-binding domain of β-amyloid with DNA].

    PubMed

    Khmeleva, S A; Mezentsev, Y V; Kozin, S A; Mitkevich, V A; Medvedev, A E; Ivanov, A S; Bodoev, N V; Makarov, A A; Radko, S P

    2015-01-01

    Interaction of intranuclear β-amyloid with DNA is considered to be a plausible mechanism of Alzheimer's disease pathogenesis. The interaction of single- and double-stranded DNA with synthetic peptides was analyzed using surface plasmon resonance. The peptides represent the metal-binding domain of β-amyloid (amino acids 1-16) and its variants with chemical modifications and point substitutions of amino acid residues which are associated with enhanced neurotoxicity of β-amyloid in cell tests. It has been shown that the presence of zinc ions is necessary for the interaction of the peptides with DNA in solution. H6R substitution has remarkably reduced the ability of domain 1-16 to bind DNA. This is in accordance with the supposition that the coordination of a zinc ion by amino acid residues His6, Glu11, His13, and His14 of the β-amyloid metal-binding domain results in the occurrence of an anion-binding site responsible for the interaction of the domain with DNA. Zinc-induced dimerization and oligomerization of domain 1-16 associated with phosphorylation of Ser8 and the presence of unblocked amino- and carboxy-terminal groups have resulted in a decrease of peptide concentrations required for detection of the peptide-DNA interaction. The presence of multiple anion-binding sites on the dimers and oligomers is responsible for the enhancement of the peptide-DNA interaction. A substitution of the negatively charged residue Asp7 for the neutral residue Asn in close proximity to the anion-binding site of the domain 1-16 of Aβ facilitates the electrostatic interaction between this site and phosphates of a polynucleotide chain, which enhances zinc-induced binding to DNA.

  3. Zinc-promoted simple synthesis of oligomer-free N(alpha)-Fmoc-amino acids using Fmoc-Cl as an acylating agent under neutral conditions.

    PubMed

    Gopi, H N; Suresh Babu, V V

    2000-04-01

    A range of N(alpha)-Fmoc-protected amino acids, including those that contain t-butyl moiety, have been synthesized by employing Fmoc-Cl utilizing the activated, commercial zinc dust-promoted synthesis of carbamates under neutral conditions. A general procedure is described that circumvents the oligomerization side reaction normally noticed in Schotten-Baumann conditions. It is a simple, convenient and clean method. Thus, Fmoc-amino acids are obtained in high yield (85-92%) and purity as checked by thin-layer chromatography, high-performance liquid chromatography and other physical methods.

  4. Daily supplementation with iron plus folic acid, zinc, and their combination is not associated with younger age at first walking unassisted in malnourished preschool children from a deficient population in rural Nepal.

    PubMed

    Katz, Joanne; Khatry, Subarna K; Leclerq, Steven C; Mullany, Luke C; Yanik, Elizabeth L; Stoltzfus, Rebecca J; Siegel, Emily H; Tielsch, James M

    2010-07-01

    A community-based, cluster-randomized, placebo-controlled trial of daily zinc and/or iron+folic acid supplementation was conducted in rural southern Nepal to examine motor milestone attainment among 3264 children 1-36 mo of age between 2001 and 2006. Treatment groups included placebo, zinc (10 mg), iron+folic acid (12.5 mg iron + 50 microg folic acid), and zinc+iron+folic acid (10 mg zinc + 12.5 mg iron + 50 microg folic acid). Infants received half of these doses. The iron arms were stopped November 2003 by recommendation of the Data Safety and Monitoring Board; zinc and placebo continued until January 2006. A total of 2457 children had not walked at the time of entry into the trial and 1775 were followed through 36 mo. Mean age at first walking unassisted did not differ among groups and was 444 +/- 81 d (mean +/- SD) in the placebo group, 444 +/- 81 d in the zinc group, 464 +/- 85 d in the iron+folic acid group, and 446 +/- 87 d in the iron+folic acid+zinc group. Results were similar after adjustment for age at enrollment, asset ownership, maternal literacy, and prior child deaths in the household and in children who consumed at least 60 tablets. Compared with placebo, iron+folic acid was associated with an adjusted mean delay of 28.0 d (95% CI: 11.3, 44.7) in time to walking among infants and the delay was more pronounced with mid-upper arm circumference (MUAC) < 9.5 cm [60.6 d, (95% CI: 28.5, 92.6)]. Risks and benefits of universal iron+folic acid supplementation of infants beyond improved hematologic status deserve further consideration.

  5. In vitro availability of zinc from infant foods with increasing phytic acid contents.

    PubMed

    Bosscher, D; Lu, Z; Janssens, G; Van Caillie-Bertrand, M; Robberecht, H; De Rycke, H; De Wilde, R; Deelstra, H

    2001-08-01

    An in vitro method was used to determine the availability of Zn from infant foods containing increasing amounts of phytate, and to quantify the effect of the phytate:Zn molar ratio on the availability. During the in vitro assay, digestive conditions of infants, younger and older than 4 months of age, were carefully simulated since the solubility of phytate-Zn complexes during digestion is pH dependent. Availability was measured with a continuous flow dialysis in vitro procedure with previous intralumen digestive stage. Zn concentrations were determined with flame atomic absorption spectrometry. Phytic acid content was measured with HPLC. Adding phytate to infant formula lowered Zn availability to 2.84 (sd 0.17) % when the phytate:Zn molar ratio increased to 2.2 as compared with cows' milk-based formula (6.65 (sd 0.55) %). Availability from vegetables (23.83 (sd 2.17) %) significantly decreased at a ratio > 7.9 (15.12 (sd 1.63) %). Zn availability from soyabean-based formula (2.26 (sd 0.36) %) was lower compared with cows' milk-based formula (6.65 (sd 0.55) %). Availability between soyabean- and cows' milk-based formula was similar when a phytate:Zn ratio of 2.2 (2.84 (sd 0.17) %) was obtained in the cows' milk formula. The negative effect of phytic acid on Zn availability was dependent on the type of the food and the phytate content, and should be considered when using soyabean-based formulas during early infancy.

  6. The zinc finger transcription factor SlZFP2 negatively regulates abscisic acid biosynthesis and fruit ripening in tomato.

    PubMed

    Weng, Lin; Zhao, Fangfang; Li, Rong; Xu, Changjie; Chen, Kunsong; Xiao, Han

    2015-03-01

    Abscisic acid (ABA) regulates plant development and adaptation to environmental conditions. Although the ABA biosynthesis pathway in plants has been thoroughly elucidated, how ABA biosynthetic genes are regulated at the molecular level during plant development is less well understood. Here, we show that the tomato (Solanum lycopersicum) zinc finger transcription factor SlZFP2 is involved in the regulation of ABA biosynthesis during fruit development. Overexpression of SlZFP2 resulted in multiple phenotypic changes, including more branches, early flowering, delayed fruit ripening, lighter seeds, and faster seed germination, whereas down-regulation of its expression caused problematic fruit set, accelerated ripening, and inhibited seed germination. SlZFP2 represses ABA biosynthesis during fruit development through direct suppression of the ABA biosynthetic genes NOTABILIS, SITIENS, and FLACCA and the aldehyde oxidase SlAO1. We also show that SlZFP2 regulates fruit ripening through transcriptional suppression of the ripening regulator COLORLESS NON-RIPENING. Using bacterial one-hybrid screening and a selected amplification and binding assay, we identified the (A/T)(G/C)TT motif as the core binding sequence of SlZFP2. Furthermore, by RNA sequencing profiling, we found that 193 genes containing the SlZFP2-binding motifs in their promoters were differentially expressed in 2 d post anthesis fruits between the SlZFP2 RNA interference line and its nontransgenic sibling. We propose that SlZFP2 functions as a repressor to fine-tune ABA biosynthesis during fruit development and provides a potentially valuable tool for dissecting the role of ABA in fruit ripening.

  7. Performance traits and immune response of broiler chicks treated with zinc and ascorbic acid supplementation during cyclic heat stress

    NASA Astrophysics Data System (ADS)

    Chand, Naila; Naz, Shabana; Khan, Ajab; Khan, Sarzamin; Khan, Rifat Ullah

    2014-12-01

    This research was conducted to investigate the effect of supplementation of zinc (Zn) and ascorbic acid (AA) in heat-stressed broilers. A total of 160-day-old broiler chicks of approximately the same weight and appearance were divided into four treatment groups (control, T1, T2, and T3). Control group was fed a standard diet without any supplementation. T1 was supplemented with Zn at the rate of 60 mg/kg of feed, T2 was supplemented with 300 mg/kg of feed AA, and T3 was supplemented with combination of Zn and AA. From week 3 to 5, heat stress environment was provided at the rate of 12 h at 25 °C, 3 h at 25 to 34 °C, 6 h at 34 °C, and 3 h at 34 to 25 °C daily. The results revealed that feed intake, body weight and feed conversion ratio (FCR), and weight of thymus, spleen, and bursa of Fabricius improved significantly ( P < 0.05) in T3 compared to the other treatments. Antibody titer against Newcastle disease (ND), infectious bursal disease (IBD), and infectious bronchitis (IB) increased significantly ( P < 0.05) in T2 and T3 groups. However, total leucocytes count, lymphocytes, and monocytes increased ( P < 0.05) in all treated groups compared to control. The results indicated that the supplementation of Zn or AA alone or in combination improved the performance and immune status of broilers reared under heat stress.

  8. The Zinc Finger Transcription Factor SlZFP2 Negatively Regulates Abscisic Acid Biosynthesis and Fruit Ripening in Tomato1

    PubMed Central

    Weng, Lin; Zhao, Fangfang; Li, Rong; Xu, Changjie; Chen, Kunsong

    2015-01-01

    Abscisic acid (ABA) regulates plant development and adaptation to environmental conditions. Although the ABA biosynthesis pathway in plants has been thoroughly elucidated, how ABA biosynthetic genes are regulated at the molecular level during plant development is less well understood. Here, we show that the tomato (Solanum lycopersicum) zinc finger transcription factor SlZFP2 is involved in the regulation of ABA biosynthesis during fruit development. Overexpression of SlZFP2 resulted in multiple phenotypic changes, including more branches, early flowering, delayed fruit ripening, lighter seeds, and faster seed germination, whereas down-regulation of its expression caused problematic fruit set, accelerated ripening, and inhibited seed germination. SlZFP2 represses ABA biosynthesis during fruit development through direct suppression of the ABA biosynthetic genes NOTABILIS, SITIENS, and FLACCA and the aldehyde oxidase SlAO1. We also show that SlZFP2 regulates fruit ripening through transcriptional suppression of the ripening regulator COLORLESS NON-RIPENING. Using bacterial one-hybrid screening and a selected amplification and binding assay, we identified the (A/T)(G/C)TT motif as the core binding sequence of SlZFP2. Furthermore, by RNA sequencing profiling, we found that 193 genes containing the SlZFP2-binding motifs in their promoters were differentially expressed in 2 d post anthesis fruits between the SlZFP2 RNA interference line and its nontransgenic sibling. We propose that SlZFP2 functions as a repressor to fine-tune ABA biosynthesis during fruit development and provides a potentially valuable tool for dissecting the role of ABA in fruit ripening. PMID:25637453

  9. Leaching and efficiency of six organic zinc fertilizers applied to navy bean crop grown in a weakly acidic soil of Spain.

    PubMed

    Gonzalez, D; Novillo, J; Rico, M I; Alvarez, J M

    2008-05-14

    Zinc contamination of groundwater from fertilizers applied to pulse crops is a potential problem, but the use of different types of organic chelates can minimize the contamination potential while still adequately feeding the crops. The objective of this study was to compare the leaching, distribution in fractions and availability, and relative effectiveness of Zn from six organic Zn fertilizers (zinc-ethylenediaminetetraacetate- N-2-hydroxyethylethylenediaminetriacetate (Zn-EDTA-HEDTA), Zn-HEDTA, zinc- S, S'-ethylenediaminedisuccinate (Zn- S, S-EDDS), zinc-polyhydroxyphenylcarboxylate, Zn-EDTA, and zinc-ethylenediaminedi(2-hydroxy-5-sulfophenylacetate) (Zn-EDDHSA)) applied to a navy bean ( Phaseolus vulgaris, L.) crop cultivated by applying different Zn levels, in a weakly acidic soil under greenhouse conditions. Zinc soil behavior was evaluated by diethylenetriaminepentaacetic acid-triethanolamine (DTPA-TEA), DTPA-ammonium bicarbonate (DTPA-AB), Mehlich-3, and BaCl 2 extractions and sequential fractionation. In all the fertilizer treatments, the percentage of labile Zn that remained in the soil was high with respect to the quantity of Zn applied, with values respectively ranging from 42 to 80% for Zn-EDDHSA and Zn-EDTA sources. A positive correlation with a high level of significance existed between the micronutrient concentration in the navy bean crop (total and soluble) and labile Zn fractions, available Zn, and easily leachable Zn ( r ranged from 0.89 to 0.95, P < 0.0001). The relatively high quantity of total Zn leached by applying Zn-EDTA and Zn-S,S-EDDS sources (11.9 and 6.0%, respectively, for the rate 10 mg of Zn kg(-1) of soil) poses a potential pollution risk for neighboring waters. It would seem recommendable to apply Zn-HEDTA or Zn-EDDHSA sources, even applied at the low rate (5 mg of Zn kg(-1) of soil), because they produced available Zn concentrations in the soil that were above the critical concentration and also produced high Zn concentrations in

  10. Preschool Iron-Folic Acid and Zinc Supplementation in Children Exposed to Iron-Folic Acid in Utero Confers No Added Cognitive Benefit in Early School-Age123

    PubMed Central

    Christian, Parul; Morgan, Mary E.; Murray-Kolb, Laura; LeClerq, Steven C.; Khatry, Subarna K.; Schaefer, Barbara; Cole, Pamela M.; Katz, Joanne; Tielsch, James M.

    2011-01-01

    In Nepal, antenatal iron-folic acid supplementation improved aspects of intellectual, executive, and fine motor function among school-age children. We examined the impact of added zinc to the maternal antenatal supplement (M-IFAZn) and preschool supplementation from 12 to 36 mo with iron-folic acid (C-IFA) ± zinc (C-IFAZn) on cognitive outcomes compared to maternal iron-folic acid (M-IFA) alone. Children 7–9 y old (n = 780) who participated in early childhood micronutrient supplementation trial during 2001–2004 and whose mothers participated in an antenatal micronutrient supplementation between 1999 and 2001 were followed for cognitive assessments in 2007–2009. Using multivariate analysis of variance and adjusting for confounders, M-IFA with child supplementation (either C-IFA or C-IFAZn) did not impact scores on the tests of general intelligence (Universal Nonverbal Intelligence Test), and executive function (Stroop and go/no go tests) relative to the M-IFA alone. However, children in the C-IFAZn group had slightly lower scores on the backward digit span (−0.29, 95% CI: −0.55, −0.04) and Movement Assessment Battery for Children (1.33, 95% CI: 0.26, 2.40) relative to the referent group, whereas both C-IFA (−1.92, 95% CI: −3.12, −0.71) and C-IFAZn (−1.78, 95% CI: −2.63, −0.92) produced somewhat lower finger tapping test scores (fine motor skills). The combination of M-IFAZn and C-IFA or C-IFAZn did not lead to any outcome differences relative to M-IFA alone. Preschool iron-folic acid ± zinc to children exposed to iron-folic acid in utero or addition of zinc to maternal iron-folic acid conferred no additional benefit to cognitive outcomes assessed in early school age. The late timing of supplementation during preschool may explain the lack of impact of iron and/or zinc. PMID:21956955

  11. Cell-free production of integral membrane aspartic acid proteases reveals zinc-dependent methyltransferase activity of the Pseudomonas aeruginosa prepilin peptidase PilD

    PubMed Central

    Aly, Khaled A; Beebe, Emily T; Chan, Chi H; Goren, Michael A; Sepúlveda, Carolina; Makino, Shin-ichi; Fox, Brian G; Forest, Katrina T

    2013-01-01

    Integral membrane aspartic acid proteases are receiving growing recognition for their fundamental roles in cellular physiology of eukaryotes and prokaryotes, and may be medically important pharmaceutical targets. The Gram-negative Pseudomonas aeruginosa PilD and the archaeal Methanococcus voltae FlaK were synthesized in the presence of unilamellar liposomes in a cell-free translation system. Cosynthesis of PilD with its full-length substrate, PilA, or of FlaK with its full-length substrate, FlaB2, led to complete cleavage of the substrate signal peptides. Scaled-up synthesis of PilD, followed by solubilization in dodecyl-β-d-maltoside and chromatography, led to a pure enzyme that retained both of its known biochemical activities: cleavage of the PilA signal peptide and S-adenosyl methionine-dependent methylation of the mature pilin. X-ray fluorescence scans show for the first time that PilD is a zinc-binding protein. Zinc is required for the N-terminal methylation of the mature pilin, but not for signal peptide cleavage. Taken together, our work identifies the P. aeruginosa prepilin peptidase PilD as a zinc-dependent N-methyltransferase and provides a new platform for large-scale synthesis of PilD and other integral membrane proteases important for basic microbial physiology and virulence. PMID:23255525

  12. 46 CFR 148.330 - Zinc ashes; zinc dross; zinc residues; zinc skimmings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Zinc ashes; zinc dross; zinc residues; zinc skimmings... Materials § 148.330 Zinc ashes; zinc dross; zinc residues; zinc skimmings. (a) The shipper must inform the cognizant Coast Guard Captain of the Port in advance of any cargo transfer operations involving zinc...

  13. 46 CFR 148.330 - Zinc ashes; zinc dross; zinc residues; zinc skimmings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Zinc ashes; zinc dross; zinc residues; zinc skimmings... Materials § 148.330 Zinc ashes; zinc dross; zinc residues; zinc skimmings. (a) The shipper must inform the cognizant Coast Guard Captain of the Port in advance of any cargo transfer operations involving zinc...

  14. 46 CFR 148.330 - Zinc ashes; zinc dross; zinc residues; zinc skimmings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Zinc ashes; zinc dross; zinc residues; zinc skimmings... Materials § 148.330 Zinc ashes; zinc dross; zinc residues; zinc skimmings. (a) The shipper must inform the cognizant Coast Guard Captain of the Port in advance of any cargo transfer operations involving zinc...

  15. 46 CFR 148.330 - Zinc ashes; zinc dross; zinc residues; zinc skimmings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Zinc ashes; zinc dross; zinc residues; zinc skimmings... Materials § 148.330 Zinc ashes; zinc dross; zinc residues; zinc skimmings. (a) The shipper must inform the cognizant Coast Guard Captain of the Port in advance of any cargo transfer operations involving zinc...

  16. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase.

    PubMed

    Story, Sandra; Brigmon, Robin L

    2017-03-01

    Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soil resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. These results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications.

  17. 21 CFR 582.5994 - Zinc stearate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Zinc stearate. 582.5994 Section 582.5994 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5994 Zinc stearate. (a) Product. Zinc stearate prepared from stearic acid free from...

  18. 21 CFR 582.5994 - Zinc stearate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Zinc stearate. 582.5994 Section 582.5994 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5994 Zinc stearate. (a) Product. Zinc stearate prepared from stearic acid free from...

  19. 21 CFR 582.5994 - Zinc stearate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc stearate. 582.5994 Section 582.5994 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5994 Zinc stearate. (a) Product. Zinc stearate prepared from stearic acid free from...

  20. 21 CFR 582.5994 - Zinc stearate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc stearate. 582.5994 Section 582.5994 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5994 Zinc stearate. (a) Product. Zinc stearate prepared from stearic acid free from...

  1. 21 CFR 582.5994 - Zinc stearate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Zinc stearate. 582.5994 Section 582.5994 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5994 Zinc stearate. (a) Product. Zinc stearate prepared from stearic acid free from...

  2. Administration of zinc complex of acetylsalicylic acid after the onset of myocardial injury protects the heart by upregulation of antioxidant enzymes.

    PubMed

    Korkmaz-Icöz, Sevil; Atmanli, Ayhan; Radovits, Tamás; Li, Shiliang; Hegedüs, Peter; Ruppert, Mihály; Brlecic, Paige; Yoshikawa, Yutaka; Yasui, Hiroyuki; Karck, Matthias; Szabó, Gábor

    2016-03-01

    We recently demonstrated that the pre-treatment of rats with zinc and acetylsalicylic acid complex in the form of bis(aspirinato)zinc(II) [Zn(ASA)2] is superior to acetylsalicylic acid in protecting the heart from acute myocardial ischemia. Herein, we hypothesized that Zn(ASA)2 treatment after the onset of an acute myocardial injury could protect the heart. The rats were treated with a vehicle or Zn(ASA)2 after an isoproterenol injection. Isoproterenol-induced cardiac damage [inflammatory infiltration into myocardial tissue, DNA-strand breakage evidenced by TUNEL-assay, increased 11-dehydro thromboxane (TX)B2-levels, elevated ST-segment, widened QRS complex and prolonged QT-interval] was prevented by the Zn(ASA)2 treatment. In isoproterenol-treated rats, load-independent left ventricular contractility parameters were significantly improved after Zn(ASA)2. Furthermore, Zn(ASA)2 significantly increased the myocardial mRNA-expression of superoxide dismutase-1, glutathione peroxidase-4 and decreased the level of Na(+)/K(+)/ATPase. Postconditioning with Zn(ASA)2 protects the heart from acute myocardial ischemia. Its mechanisms of action might involve inhibition of pro-inflammatory prostanoids and upregulation of antioxidant enzymes.

  3. Dietary n-3 Fatty Acid, α-Tocopherol, Zinc, vitamin D, vitamin C, and β-carotene are Associated with Age-Related Macular Degeneration in Japan.

    PubMed

    Aoki, Aya; Inoue, Maiko; Nguyen, Elizabeth; Obata, Ryo; Kadonosono, Kazuaki; Shinkai, Shoji; Hashimoto, Hideki; Sasaki, Satoshi; Yanagi, Yasuo

    2016-02-05

    This case-control study reports the association between nutrient intake and neovascular age-related macular degeneration (AMD) in Japan. The nutrient intake of 161 neovascular AMD cases from two university hospitals and 369 population-based control subjects from a cohort study was assessed using a brief-type self-administered questionnaire on diet history, which required respondent recall of the usual intake of 58 foods during the preceding month. Energy-adjusted nutrient intake values were compared between the groups. Logistic regression analysis was used to estimate odds ratios (ORs) and 95% CIs adjusted for smoking history, age, sex, chronic disease history, supplement use, and alcohol consumption. Logistic regression analysis demonstrated that low intakes of n-3 fatty acid, α-tocopherol, zinc, vitamin D, vitamin C, and β-carotene were associated with neovascular AMD (Trend P < 0.0001 for n-3 fatty acid, Trend P < 0.0001 for α-tocopherol, Trend P < 0.0001 for zinc, Trend P = 0.002 for vitamin D, Trend P = 0.04 for vitamin C, Trend P = 0.0004 for β-carotene). There was no association with retinol or cryptoxanthin intake and neovascular AMD (P = 0.67, 0.06).

  4. Total zinc absorption in young women, but not fractional zinc absorption, differs between vegetarian and meat-based diets with equal phytic acid content.

    PubMed

    Kristensen, Mette Bach; Hels, Ole; Morberg, Catrine M; Marving, Jens; Bügel, Susanne; Tetens, Inge

    2006-05-01

    Zn bioavailability is often lower in vegetarian diets mainly due to low Zn and high phytic acid contents. The objective of the present study was to determine the fractional and total absorption of Zn from a vegetarian diet in comparison with meat diets with equal concentrations of phytic acid. A randomized cross-over design, comprising three whole-day diet periods of 5 d each, with a vegetarian diet or diets containing Polish-produced meat or Danish-produced meat, was conducted. Twelve healthy female subjects completed the study. All diets had a high content of phytic acid (1250 micromol/d) and in the meat diets the main meals contained 60 g pork meat. All main meals were extrinsically labelled with the radioactive isotope 65Zn and absorption of Zn was measured in a whole-body counter. The mean Zn content of the whole-day diet was: Polish meat diet 9.9 (SE 0.14) mg, Danish meat diet 9.4 (SE 0.19) mg and vegetarian diet 7.5 (SE 0.18) mg. No difference was observed in the fractional absorption of Zn (Polish meat diet: 27 (SE 1.2) %, Danish meat diet: 27 (SE 1.9) % and vegetarian diet: 23 (SE 2.6) %). A significantly lower amount of total Zn was absorbed from the vegetarian diet (mean Zn absorption of Polish meat diet: 2.7 (SE 0.12) mg/d (P<0.001), Danish meat diet: 2.6 (SE 0.17) mg/d (P=0.006) and vegetarian diet: 1.8 (SE 0.20) mg/d). In conclusion, the vegetarian diet compared with the meat-based diets resulted in lower amounts of absorbed Zn due to a higher content of Zn in the meat diets, but no difference was observed in the fractional absorption of Zn.

  5. Recovery of Zinc from Zinc Ash and Flue Dusts by Hydrometallurgical Processing

    NASA Astrophysics Data System (ADS)

    Thorsen, G.; Grislingås, A.; Steintveit, G.

    1981-01-01

    A process has been developed for recovering zinc and other metal values from chloride-containing solid zinc waste materials such as zinc ash from galvanizing baths, and flue dusts from zinc smelting and Waelz processes. The waste is leached with a liquid organic phase containing a cation exchanger; the commercial carboxylic acid Versatic 911 is highly efficient for this operation. Halogens present in the organic phase are readily washed out with water. Zinc and other metal values are then selectively stripped with sulfuric acid, generating a neutral solution of zinc sulfate suitable for electrolytic production of zinc metal. Alternatively, zinc sulfate can be crystallized directly from the organic phase by stripping with concentrated sulfuric acid.

  6. Effect of L-aspartic acid on the growth, structure and spectral studies of Zinc (tris) Thiourea Sulphate (ZTS) single crystals.

    PubMed

    Samuel, Bincy Susan; Krishnamurthy, R; Rajasekaran, R

    2014-11-11

    Single crystals of pure and L-aspartic acid doped Zinc (Tris) Thiourea Sulphate (ZTS) were grown from aqueous solution by solution growth method. The cell parameters and structure of the grown crystals were determined by X-ray diffraction studies. The presence of functional group in the compound has been confirmed by FTIR and FT-Raman analysis. The optical transparency range has been studied through UV-Vis spectroscopy. TGA/DTA studies show thermal stability of the grown crystals. Microhardness study reveals that the hardness number (Hv) increases with load for pure and doped ZTS crystals. Dielectric studies have been carried out and the results are discussed. The second harmonic generation was confirmed for l-aspartic acid doped ZTS which is greater than pure ZTS.

  7. Effect of L-aspartic acid on the growth, structure and spectral studies of Zinc (tris) Thiourea Sulphate (ZTS) single crystals

    NASA Astrophysics Data System (ADS)

    Samuel, Bincy Susan; Krishnamurthy, R.; Rajasekaran, R.

    2014-11-01

    Single crystals of pure and L-aspartic acid doped Zinc (Tris) Thiourea Sulphate (ZTS) were grown from aqueous solution by solution growth method. The cell parameters and structure of the grown crystals were determined by X-ray diffraction studies. The presence of functional group in the compound has been confirmed by FTIR and FT-Raman analysis. The optical transparency range has been studied through UV-Vis spectroscopy. TGA/DTA studies show thermal stability of the grown crystals. Microhardness study reveals that the hardness number (Hv) increases with load for pure and doped ZTS crystals. Dielectric studies have been carried out and the results are discussed. The second harmonic generation was confirmed for L-aspartic acid doped ZTS which is greater than pure ZTS.

  8. Synthesis of walnut shell modified with titanium dioxide and zinc oxide nanoparticles for efficient removal of humic acid from aqueous solutions.

    PubMed

    Naghizadeh, Ali; Shahabi, Habibeh; Ghasemi, Fatemeh; Zarei, Ahmad

    2016-12-01

    The main aim of this research was to study the efficiency of modified walnut shell with titanium dioxide (TiO2) and zinc oxide (ZnO) in the adsorption of humic acid from aqueous solutions. This experimental study was carried out in a batch condition to determine the effects of factors such as contact time, pH, humic acid concentration, dose of adsorbents (raw walnut shell, modified walnut shell with TiO2 and ZnO) on the removal efficiency of humic acid. pHzpc of raw walnut shell, walnut shell modified with TiO2 and walnut shell modified with ZnO were 7.6, 7.5, and 8, respectively. The maximum adsorption capacity of humic acid at concentration of 30 mg/L, contact time of 30 min at pH = 3 in an adsorbent dose of 0.02 g of walnut shell and ZnO and TiO2 modified walnut shell were found to be 35.2, 37.9, and 40.2 mg/g, respectively. The results showed that the studied adsorbents tended to fit with the Langmuir model. Walnut shell, due to its availability, cost-effectiveness, and also its high adsorption efficiency, can be proposed as a promising natural adsorbent in the removal of humic acid from aqueous solutions.

  9. Single Amino Acid Exchanges in Separate Domains of the Drosophila Serendipity δ Zinc Finger Protein Cause Embryonic and Sex Biased Lethality

    PubMed Central

    Crozatier, M.; Kongsuwan, K.; Ferrer, P.; Merriam, J. R.; Lengyel, J. A.; Vincent, A.

    1992-01-01

    The Drosophila serendipity (sry) delta (δ) zinc finger protein is a sequence-specific DNA binding protein, maternally inherited by the embryo and present in nuclei of transcriptionally active cells throughout fly development. We report here the isolation and characterization of four ethyl methanesulfate-induced zygotic lethal mutations of different strengths in the sry δ gene. For the stronger allele, all of the lethality occurs during late embryogenesis or the first larval instar. In the cases of the three weaker alleles, most of the lethality occurs during pupation; moreover, those adult escapers that emerge are sterile males lacking partially or completely in spermatozoa bundles. Genetic analysis of sry δ thus indicates that it is an essential gene, whose continued expression throughout the life cycle, notably during embryogenesis and pupal stage, is required for viability. Phenotypic analysis of sry δ hemizygote escaper males further suggests that sry δ may be involved in regulation of two different sets of genes: genes required for viability and genes involved in gonadal development. All four sry δ alleles are fully rescued by a wild-type copy of sry δ, but not by an additional copy of the sry β gene, reinforcing the view that, although structurally related, these two genes exert distinct functions. Molecular characterization of the four sry δ mutations revealed that these mutations correspond to single amino acid replacements in the sry δ protein. Three of these replacements map to the same (third out of seven) zinc finger in the carboxy-terminal DNA binding domain; interestingly, none affects the zinc finger consensus residues. The fourth mutation is located in the NH(2)-proximal part of the protein, in a domain proposed to be involved in specific protein-protein interactions. PMID:1516821

  10. Determination of acid forming potential of massive sulfide minerals and the tailings situated in lead/zinc mining district of Balya (NW Turkey)

    NASA Astrophysics Data System (ADS)

    Çelebi, E. Ender; Öncel, M. Salim

    2016-12-01

    Weathering of sulfide minerals is a major source of acid production in nature and especially in mining territories. Pyrite is not the only principal mineral that generates acid drainage: other sulfide minerals (sphalerite, galena, chalcopyrite, etc.) may also be responsible for acid production. In addition to massive sulfide minerals, sulfide-bearing mine tailings may also produce acid drainage due to oxidation and hydrolysis reactions in waste dumps. The lead/zinc (Pb/Zn) mining region in Balya and Balıkesir, in Turkey, has operated mines intensively since the 1860s; so that characterization of the sulfide minerals and tailings situated and formed around the mining site is of great importance to secure a sustainable environment. For this purpose, acid production and neutralization potentials of massive sulfide ores of the region, and in the Pb/Zn process facility mine tailings from ten different points of tailings dam, have been determined by applied conventional Acid-Base Accounting (ABA) and Net Acid Generation (NAG) static tests after chemical and mineralogical analysis. The NAG pH and net acid production potential (NAPP) values were compared on a chart in order to classify the samples as either acid generating or non-acid generating. According to the comparisons, the sulfide minerals were classified as potentially acid forming (PAF). Massive pyrite had the highest NAPP and NAG pH value of 1966.6 kg H2SO4/ton and 1.91, respectively and the galena had the lowest NAPP value of 558.9 kg H2SO4/ton. However, the sphalerite NAG leachate pH value of 4.30 was the highest in sulfide minerals so that the sphalerite plotted near the uncertainty reference border in the PAF zone. In the mine tailings, NAPP values of 105.9 kg H2SO4/ton on average and the NAG pH values of over 7.5 were determined. In addition to these tests, water leaching (agitation test) was carried out on tailings in order to generate more information. The tailings did not generate acidic leachates as

  11. An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa).

    PubMed

    Zhang, Ye; Lan, Hongxia; Shao, Qiaolin; Wang, Ruqin; Chen, Hui; Tang, Haijuan; Zhang, Hongsheng; Huang, Ji

    2016-01-01

    The plant hormones gibberellins (GA) and abscisic acid (ABA) play important roles in plant development and stress responses. Here we report a novel A20/AN1-type zinc finger protein ZFP185 involved in GA and ABA signaling in the regulation of growth and stress response. ZFP185 was constitutively expressed in various rice tissues. Overexpression of ZFP185 in rice results in a semi-dwarfism phenotype, reduced cell size, and the decrease of endogenous GA3 content. By contrast, higher GA3 content was observed in RNAi plants. The application of exogenous GA3 can fully rescue the semi-dwarfism phenotype of ZFP185 overexpressing plants, suggesting the negative role of ZFP185 in GA biosynthesis. Besides GA, overexpression of ZFP185 decreased ABA content and expression of several ABA biosynthesis-related genes. Moreover, it was found that ZFP185, unlike previously known A20/AN1-type zinc finger genes, increases sensitivity to drought, cold, and salt stresses, implying the negative role of ZFP185 in stress tolerance. ZFP185 was localized in the cytoplasm and lacked transcriptional activation potential. Our study suggests that ZFP185 regulates plant growth and stress responses by affecting GA and ABA biosynthesis in rice.

  12. Spectral characterization of novel ternary zinc(II) complexes containing 1,10-phenanthroline and Schiff bases derived from amino acids and salicylaldehyde-5-sulfonates

    NASA Astrophysics Data System (ADS)

    Boghaei, Davar M.; Gharagozlou, Mehrnaz

    2007-07-01

    A series of new ternary zinc(II) complexes [Zn(L 1-10)(phen)], where phen is 1,10-phenanthroline and H 2L 1-10 = tridentate Schiff base ligands derived from the condensation of amino acids (glycine, L-phenylalanine, L-valine, L-alanine, and L-leucine) and salicylaldehyde-5-sulfonates (sodium salicylaldehyde-5-sulfonate and sodium 3-methoxy-salicylaldehyde-5-sulfonate), have been synthesized. The complexes were characterized by elemental analysis, IR, UV-vis, 1H NMR, and 13C NMR spectra. The IR spectra of the complexes showed large differences between νas(COO) and νs(COO), Δ ν ( νas(COO) - νs(COO)) of 191-225 cm -1, indicating a monodentate coordination of the carboxylate group. Spectral data showed that in these ternary complexes the zinc atom is coordinated with the Schiff base ligand acts as a tridentate ONO moiety, coordinating to the metal through its phenolic oxygen, imine nitrogen, and carboxyl oxygen, and also with the neutral planar chelating ligand, 1,10-phenanthroline, coordinating through nitrogens.

  13. A classic zinc finger from friend of GATA mediates an interaction with the coiled-coil of transforming acidic coiled-coil 3.

    PubMed

    Simpson, Raina J Y; Yi Lee, Stella Hoi; Bartle, Natalie; Sum, Eleanor Y; Visvader, Jane E; Matthews, Jacqueline M; Mackay, Joel P; Crossley, Merlin

    2004-09-17

    Classic zinc finger domains (cZFs) consist of a beta-hairpin followed by an alpha-helix. They are among the most abundant of all protein domains and are often found in tandem arrays in DNA-binding proteins, with each finger contributing an alpha-helix to effect sequence-specific DNA recognition. Lone cZFs, not found in tandem arrays, have been postulated to function in protein interactions. We have studied the transcriptional co-regulator Friend of GATA (FOG), which contains nine zinc fingers. We have discovered that the third cZF of FOG contacts a coiled-coil domain in the centrosomal protein transforming acidic coiled-coil 3 (TACC3). Although FOG-ZF3 exhibited low solubility, we have used a combination of mutational mapping and protein engineering to generate a derivative that was suitable for in vitro and structural analysis. We report that the alpha-helix of FOG-ZF3 recognizes a C-terminal portion of the TACC3 coiled-coil. Remarkably, the alpha-helical surface utilized by FOG-ZF3 is the same surface responsible for the well established sequence-specific DNA-binding properties of many other cZFs. Our data demonstrate the versatility of cZFs and have implications for the analysis of many as yet uncharacterized cZF proteins.

  14. ZNF536, a Novel Zinc Finger Protein Specifically Expressed in the Brain, Negatively Regulates Neuron Differentiation by Repressing Retinoic Acid-Induced Gene Transcription▿

    PubMed Central

    Qin, Zhen; Ren, Fangli; Xu, Xialian; Ren, Yongming; Li, Hongge; Wang, Yinyin; Zhai, Yonggong; Chang, Zhijie

    2009-01-01

    Neuronal differentiation is tightly regulated by a variety of factors. In a search for neuron-specific genes, we identified a highly conserved novel zinc finger protein, ZNF536. We observed that ZNF536 is most abundant in the brain and, in particular, is expressed in the developing central nervous system and dorsal root ganglia and localized in the cerebral cortex, hippocampus, and hypothalamic area. During neuronal differentiation of P19 cells induced by retinoic acid (RA), ZNF536 expression is increased at an early stage, and it is maintained at a constant level in later stages. Overexpression of ZNF536 results in an inhibition of RA-induced neuronal differentiation, while depletion or mutation of the ZNF536 gene results in an enhancement of differentiation. We further demonstrated that ZNF536 inhibits expression of neuron-specific marker genes, possibly through the inhibition of RA response element-mediated transcriptional activity, as overexpression of RA receptor α can rescue the inhibitory role of ZNF536 in neuronal differentiation and neuron-specific gene expression. Our studies have identified a novel zinc finger protein that negatively regulates neuron differentiation. PMID:19398580

  15. In vitro solubility of calcium, iron and zinc in relation to phytic acid levels in rice-based consumer products in China.

    PubMed

    Liang, Jianfen; Han, Bei-Zhong; Nout, M J Robert; Hamer, Robert J

    2010-02-01

    In vitro solubility of calcium, iron and zinc in relation to phytic acid (PA) levels in 30 commercial rice-based foods from China was studied. Solubility of minerals and molar ratios of PA to minerals varied with degrees of processing. In primary products, [PA]/[Ca] values were less than 5 and [PA]/[Fe] and [PA]/[Zn] similarly ranged between 5 and 74, with most values between 20 and 30. [PA]/[mineral] molar ratios in intensively processed products were lower. Solubility of calcium ranged from 0% to 87%, with the lowest in brown rice (12%) and the highest in infant foods (50%). Iron solubility in two-thirds of samples was lower than 30%, and that of zinc narrowly ranged from 6% to 30%. Solubility of minerals was not significantly affected by [PA]/[mineral]. At present, neither primary nor intensively processed rice-based products are good dietary sources of minerals. Improvements should be attempted by dephytinization, mineral fortification or, preferably, combination of both.

  16. Human and mouse ZFY genes produce a conserved testis-specific transcript encoding a zinc finger protein with a short acidic domain and modified transactivation potential.

    PubMed

    Decarpentrie, Fanny; Vernet, Nadège; Mahadevaiah, Shantha K; Longepied, Guy; Streichemberger, Eric; Aknin-Seifer, Isabelle; Ojarikre, Obah A; Burgoyne, Paul S; Metzler-Guillemain, Catherine; Mitchell, Michael J

    2012-06-15

    Mammalian ZFY genes are located on the Y chromosome, and code putative transcription factors with 12-13 zinc fingers preceded by a large acidic (activating) domain. In mice, there are two genes, Zfy1 and Zfy2, which are expressed mainly in the testis. Their transcription increases in germ cells as they enter meiosis, both are silenced by meiotic sex chromosome inactivation (MSCI) during pachytene, and Zfy2 is strongly reactivated later in spermatids. Recently, we have shown that mouse Zfy2, but not Zfy1, is involved in triggering the apoptotic elimination of specific types of sex chromosomally aberrant spermatocytes. In humans, there is a single widely transcribed ZFY gene, and there is no evidence for a specific role in the testis. Here, we characterize ZFY transcription during spermatogenesis in mice and humans. In mice, we define a variety of Zfy transcripts, among which is a Zfy2 transcript that predominates in spermatids, and a Zfy1 transcript, lacking an exon encoding approximately half of the acidic domain, which predominates prior to MSCI. In humans, we have identified a major testis-specific ZFY transcript that encodes a protein with the same short acidic domain. This represents the first evidence that ZFY has a conserved function during human spermatogenesis. We further show that, in contrast to the full acidic domain, the short domain does not activate transcription in yeast, and we hypothesize that this explains the functional difference observed between Zfy1 and Zfy2 during mouse meiosis.

  17. Desiccation and zinc binding induce transition of tomato abscisic acid stress ripening 1, a water stress- and salt stress-regulated plant-specific protein, from unfolded to folded state.

    PubMed

    Goldgur, Yehuda; Rom, Slava; Ghirlando, Rodolfo; Shkolnik, Doron; Shadrin, Natalia; Konrad, Zvia; Bar-Zvi, Dudy

    2007-02-01

    Abscisic acid stress ripening 1 (ASR1) is a low molecular weight plant-specific protein encoded by an abiotic stress-regulated gene. Overexpression of ASR1 in transgenic plants increases their salt tolerance. The ASR1 protein possesses a zinc-dependent DNA-binding activity. The DNA-binding site was mapped to the central part of the polypeptide using truncated forms of the protein. Two additional zinc-binding sites were shown to be localized at the amino terminus of the polypeptide. ASR1 protein is presumed to be an intrinsically unstructured protein using a number of prediction algorithms. The degree of order of ASR1 was determined experimentally using nontagged recombinant protein expressed in Escherichia coli and purified to homogeneity. Purified ASR1 was shown to be unfolded using dynamic light scattering, gel filtration, microcalorimetry, circular dichroism, and Fourier transform infrared spectrometry. The protein was shown to be monomeric by analytical ultracentrifugation. Addition of zinc ions resulted in a global change in ASR1 structure from monomer to homodimer. Upon binding of zinc ions, the protein becomes ordered as shown by Fourier transform infrared spectrometry and microcalorimetry, concomitant with dimerization. Tomato (Solanum lycopersicum) leaf soluble ASR1 is unstructured in the absence of added zinc and gains structure upon binding of the metal ion. The effect of zinc binding on ASR1 folding and dimerization is discussed.

  18. Effects of zinc salts on the structural and optical properties of acidic chemical bath deposited ZnS thin films

    SciTech Connect

    Cao, Meng; Zhang, Bin Lei; Li, Liang; Huang, Jian; Zhao, Shou Ren; Cao, Hong; Jiang, Jin Chun; Sun, Yan; Shen, Yue

    2013-02-15

    Graphical abstract: XRD patterns of annealed ZnS films from different zinc salts. Curves a, b, c, d correspond to the annealed ZnS–C1, ZnS–S{sub 3}, ZnS–Cl{sub 2}, ZnS–N{sub 2} thin films. Display Omitted Highlights: ► ZnS thin films were deposited using different zinc salts. ► The grain sizes of deposited ZnS thin films are about 12.5 15.5 nm. ► The band gaps of deposited ZnS thin films were in the range of 3.66–3.83 eV. -- Abstract: ZnS thin films were deposited from different zinc salts by chemical bath deposition (CBD). Structural, morphological and optical characterizations were performed using different methods such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectra. The particle sizes of as-deposited ZnS thin films were calculated to be about 12.5–15.5 nm and the crystal qualities were improved after annealed at 500 °C in Ar/H{sub 2}S (5%) atmosphere. Optical absorption measurements indicated that the band gaps of ZnS thin films were in the range of 3.66–3.83 eV and they decreased with the increasing of particle sizes. ZnCl{sub 2} was found to the best precursor due to the higher crystal quality and compact surface of deposited ZnS thin films.

  19. The effect of calcium salts, ascorbic acid and peptic pH on calcium, zinc and iron bioavailabilities from fortified human milk using an in vitro digestion/Caco-2 cell model.

    PubMed

    Etcheverry, Paz; Wallingford, John Charles; Miller, Dennis Dean; Glahn, Raymond Philip

    2005-05-01

    The calcium, zinc, and iron bioavailabilities of human milk with commercial and noncommercial human milk fortifiers (HMFs) were evaluated under a variety of conditions: peptic digestion at pH 2 and pH 4, supplementation of ascorbic acid, and addition of three calcium salts. The noncommercial HMFs consisted of casein phosphopeptides (CPPs), alpha-lactalbumin, colostrum, and hydrolyzed whey protein concentrate (WPC). They were mixed with human milk (HM) and calcium, zinc, and iron were added. Ascorbic acid (AA) was added in certain studies. The commercial HMFs were Nestlé FM-85, Similac HMF (SHMF), and Enfamil HMF (EHMF). All HMFs were compared to S-26/SMA HMF. Results showed that the peptic pH (2 vs. 4) had no effect on mineral bioavailability. Addition of different calcium salts had no effect on calcium cell uptake and cell ferritin levels (an indicator of iron uptake), however, the addition of calcium glycerophosphate/gluconate increased zinc uptake by Caco-2 cells. Addition of AA significantly increased ferritin levels, with no effect on calcium or zinc uptake. Among the commercial HMFs, FM-85 was significantly lower in zinc uptake than S-26/SMA, and HM+EHMF was significantly higher than HM+S-26/SMA. Cell ferritin levels were significantly higher for HM+S-26/SMA than for all other commercial fortifiers. None of the commercial HMFs were different from HM+S-26/SMA in calcium uptake.

  20. Growth and spectral characterization of ethylene diamine tetra acetic acid (EDTA) doped zinc sulphate hepta hydrate - a semi organic NLO material.

    PubMed

    Ramachandra Raja, C; Ramamurthi, K; Manimekalai, R

    2012-12-01

    Semi-organic non-linear optical single crystals of ethylene diamine tetra acetic acid (EDTA) doped zinc sulphate hepta hydrate crystals were grown by slow evaporation solution growth technique, at room temperature, using de-ionized water as solvent. The modes of vibrations of different molecular groups present in the grown crystal were identified by FT-IR technique. The optical absorbance/transmittance was recorded in the wavelength range of 190-1100 nm. Thermal properties of the grown crystal were studied by thermo gravimetric analysis and differential thermal analysis. The melting point of the grown crystal was estimated by differential scanning calorimetric analysis. The inclusion of the dopant (EDTA) was confirmed by colorimetric estimation method. The second harmonic generation efficiency is about 30% of potassium dihydrogen orthophosphate.

  1. A LABORATORY COMPARISON OF FOUR ZINC OXIDE-EUGENOL FORMULATIONS AS RESTORATIVE MATERIALS.

    DTIC Science & Technology

    The ability of four zinc oxide - eugenol formulations to serve as long-term intermediate restorative materials was investigated. They were: (a...zinc oxide - eugenol , (b) zinc oxide - eugenol + EBA (ethoxybenzoic acid), (c) reinforced zinc oxide - eugenol , and (d) a reinforced zinc oxide - eugenol

  2. Nuclear hormone receptors involved in neoplasia: erb A exhibits a novel DNA sequence specificity determined by amino acids outside of the zinc-finger domain.

    PubMed Central

    Chen, H; Smit-McBride, Z; Lewis, S; Sharif, M; Privalsky, M L

    1993-01-01

    The erb A oncogene is a dominant negative allele of a thyroid hormone receptor gene and acts in the cancer cell by encoding a transcriptional repressor. We demonstrate here that the DNA sequence recognition properties of the oncogenic form of the erb A protein are significantly altered from those of the normal thyroid hormone receptors and more closely resemble those of the retinoic acid receptors; this alteration appears to play an important role in defining the targets of erb A action in neoplasia. Unexpectedly, the novel DNA recognition properties of erb A are encoded by an N-terminal region not previously implicated as playing this function in current models of receptor-DNA interaction. Two N-terminal erb A amino acids in particular, histidine 12 and cysteine 32, contribute to this phenomenon, acting in conjunction with amino acids in the zinc finger domain. The effects of the N-terminal domain can be observed at the level of both DNA binding and transcriptional modulation. Our results indicate that unanticipated determinants within the nuclear hormone receptors participate in DNA sequence recognition and may contribute to the differential target gene specificity displayed by different receptor forms. Images PMID:8096060

  3. Diosmectite-zinc oxide composite improves intestinal barrier restoration and modulates TGF-β1, ERK1/2, and Akt in piglets after acetic acid challenge.

    PubMed

    Song, Z-H; Ke, Y-L; Xiao, K; Jiao, L-F; Hong, Q-H; Hu, C-H

    2015-04-01

    The present study evaluated the beneficial effect of diosmectite-zinc oxide composite (DS-ZnO) on improving intestinal barrier restoration in piglets after acetic acid challenge and explored the underlying mechanisms. Twenty-four 35-d-old piglets (Duroc × Landrace × Yorkshire), with an average weight of 8.1 kg, were allocated to 4 treatment groups. On d 1 of the trial, colitis was induced via intrarectal injection of acetic acid (10 mL of 10% acetic acid [ACA] solution for ACA, DS-ZnO, and mixture of diosmectite [DS] and ZnO [DS+ZnO] groups) and the control group was infused with saline. Twenty-four hours after challenged, piglets were fed with the following diets: 1) control group (basal diet), 2) ACA group (basal diet), 3) DS-ZnO group (basal diet supplemented with DS-ZnO), and 4) DS+ZnO group (mixture of 1.5 g diosmectite [DS]/kg and 500 mg Zn/kg from ZnO [equal amount of DS and ZnO in the DS-ZnO treatment group]). On d 8 of the trial, piglets were sacrificed. The results showed that DS-ZnO supplementation improved (P < 0.05) ADG, ADFI, and transepithelial electrical resistance and decreased (P < 0.05) fecal scores, crypt depth, and fluorescein isothiocyanate-dextran 4 kDa (FD4) influx as compared with ACA group. Moreover, DS-ZnO increased (P < 0.05) occludin, claudin-1, and zonula occluden-1 expressions; reduced (P < 0.05) caspase-9 and caspase-3 activity and Bax expression; and improved (P < 0.05) Bcl2, XIAP, and PCNA expression. Diosmectite-zinc oxide composite supplementation also increased (P < 0.05) TGF-β1 expression and ERK1/2 and Akt activation. These results suggest that DS-ZnO attenuates the acetic acid-induced colitis by improving mucosa barrier restoration, inhibiting apoptosis, and improving intestinal epithelial cells proliferation and modulation of TGF-β1 and ERK1/2 and Akt signaling pathway.

  4. Chemical speciation and mobilization of copper and zinc in naturally contaminated mine soils with citric and tartaric acids.

    PubMed

    Pérez-Esteban, Javier; Escolástico, Consuelo; Moliner, Ana; Masaguer, Alberto

    2013-01-01

    A one-step extraction procedure and a leaching column experiment were performed to assess the effects of citric and tartaric acids on Cu and Zn mobilization in naturally contaminated mine soils to facilitate assisted phytoextraction. A speciation modeling of the soil solution and the metal fractionation of soils were performed to elucidate the chemical processes that affected metal desorption by organic acids. Different extracting solutions were prepared, all of which contained 0.01 M KNO(3) and different concentrations of organic acids: control without organic acids, 0.5 mM citric, 0.5 mM tartaric, 10 mM citric, 10 mM tartaric, and 5 mM citric +5 mM tartaric. The results of the extraction procedure showed that higher concentrations of organic acids increased metal desorption, and citric acid was more effective at facilitating metal desorption than tartaric acid. Metal desorption was mainly influenced by the decreasing pH and the dissolution of Fe and Mn oxides, not by the formation of soluble metal-organic complexes as was predicted by the speciation modeling. The results of the column study reported that low concentrations of organic acids did not significantly increase metal mobilization and that higher doses were also not able to mobilize Zn. However, 5-10 mM citric acid significantly promoted Cu mobilization (from 1 mg kg(-1) in the control to 42 mg kg(-1) with 10 mM citric acid) and reduced the exchangeable (from 21 to 3 mg kg(-1)) and the Fe and Mn oxides (from 443 to 277 mg kg(-1)) fractions. Citric acid could efficiently facilitate assisted phytoextraction techniques.

  5. Sustained release formulation of an anti-tuberculosis drug based on para-amino salicylic acid-zinc layered hydroxide nanocomposite

    PubMed Central

    2013-01-01

    Background Tuberculosis (TB), is caused by the bacteria, Mycobacterium tuberculosis and its a threat to humans since centuries. Depending on the type of TB, its treatment can last for 6–24 months which is a major cause for patients non-compliance and treatment failure. Many adverse effects are associated with the currently available TB medicines, and there has been no new anti-tuberculosis drug on the market for more than 50 year, as the drug development is very lengthy and budget consuming process. Development of the biocompatible nano drug delivery systems with the ability to minimize the side effects of the drugs, protection of the drug from enzymatic degradation. And most importantly the drug delivery systems which can deliver the drug at target site would increase the therapeutic efficacy. Nanovehicles with their tendency to release the drug in a sustained manner would result in the bioavalibilty of the drugs in the body for a longer period of time and this would reduce the dosing frequency in drug administration. The biocompatible nanovehicles with the properties like sustained release of drug of the target site, protection of the drug from physio-chemical degradation, reduction in dosing frequency, and prolong bioavailability of drug in the body would result in the shortening of the treatment duration. All of these factors would improve the patient compliance with chemotherapy of TB. Result An anti-tuberculosis drug, 4-amino salicylic acid (4-ASA) was successfully intercalated into the interlamellae of zinc layered hydroxide (ZLH) via direct reaction with zinc oxide suspension. The X-ray diffraction patterns and FTIR analyses indicate that the molecule was successfully intercalated into the ZLH interlayer space with an average basal spacing of 24 Å. Furthermore, TGA and DTG results show that the drug 4-ASA is stabilized in the interlayers by electrostatic interaction. The release of 4-ASA from the nanocomposite was found to be in a sustained manner. The

  6. Effect of Arbuscular Mycorrhizal Fungi on Plant Biomass and the Rhizosphere Microbial Community Structure of Mesquite Grown in Acidic Lead/Zinc Mine Tailings

    PubMed Central

    Solís-Domínguez, Fernando A.; Valentín-Vargas, Alexis; Chorover, Jon; Maier, Raina M.

    2011-01-01

    Mine tailings in arid and semi-arid environments are barren of vegetation and subject to eolian dispersion and water erosion. Revegetation is a cost-effective strategy to reduce erosion processes and has wide public acceptance. A major cost of revegetation is the addition of amendments, such as compost, to allow plant establishment. In this paper we explore whether arbuscular mycorrhizal fungi (AMF) can help support plant growth in tailings at a reduced compost concentration. A greenhouse experiment was performed to determine the effects of three AMF inocula on biomass, shoot accumulation of heavy metals, and changes in the rhizosphere microbial community structure of the native plant Prosopis juliflora (mesquite). Plants were grown in an acidic lead/zinc mine tailings amended with 10% (w/w) compost amendment, which is slightly sub-optimal for plant growth in these tailings. After two months, AMF-inoculated plants showed increased dry biomass and root length (p < 0.05) and effective AMF colonization compared to controls grown in uninoculated compost-amended tailings. Mesquite shoot tissue lead and zinc concentrations did not exceed domestic animal toxicity limits regardless of whether AMF inoculation was used. The rhizosphere microbial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) profiles of the small subunit RNA gene for bacteria and fungi. Canonical correspondence analysis (CCA) of DGGE profiles showed that the rhizosphere fungal community structure at the end of the experiment was significantly different from the community structure in the tailings, compost, and AMF inocula prior to planting. Further, CCA showed that AMF inoculation significantly influenced the development of both the fungal and bacterial rhizosphere community structures after two months. The changes observed in the rhizosphere microbial community structure may be either a direct effect of the AMF inocula, caused by changes in plant physiology induced by

  7. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings.

    PubMed

    Solís-Domínguez, Fernando A; Valentín-Vargas, Alexis; Chorover, Jon; Maier, Raina M

    2011-02-15

    Mine tailings in arid and semi-arid environments are barren of vegetation and subject to eolian dispersion and water erosion. Revegetation is a cost-effective strategy to reduce erosion processes and has wide public acceptance. A major cost of revegetation is the addition of amendments, such as compost, to allow plant establishment. In this paper we explore whether arbuscular mycorrhizal fungi (AMF) can help support plant growth in tailings at a reduced compost concentration. A greenhouse experiment was performed to determine the effects of three AMF inocula on biomass, shoot accumulation of heavy metals, and changes in the rhizosphere microbial community structure of the native plant Prosopis juliflora (mesquite). Plants were grown in an acidic lead/zinc mine tailings amended with 10% (w/w) compost amendment, which is slightly sub-optimal for plant growth in these tailings. After two months, AMF-inoculated plants showed increased dry biomass and root length (p<0.05) and effective AMF colonization compared to controls grown in uninoculated compost-amended tailings. Mesquite shoot tissue lead and zinc concentrations did not exceed domestic animal toxicity limits regardless of whether AMF inoculation was used. The rhizosphere microbial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) profiles of the small subunit RNA gene for bacteria and fungi. Canonical correspondence analysis (CCA) of DGGE profiles showed that the rhizosphere fungal community structure at the end of the experiment was significantly different from the community structure in the tailings, compost, and AMF inocula prior to planting. Further, CCA showed that AMF inoculation significantly influenced the development of both the fungal and bacterial rhizosphere community structures after two months. The changes observed in the rhizosphere microbial community structure may be either a direct effect of the AMF inocula, caused by changes in plant physiology induced by

  8. The Human CCHC-type Zinc Finger Nucleic Acid-Binding Protein Binds G-Rich Elements in Target mRNA Coding Sequences and Promotes Translation.

    PubMed

    Benhalevy, Daniel; Gupta, Sanjay K; Danan, Charles H; Ghosal, Suman; Sun, Hong-Wei; Kazemier, Hinke G; Paeschke, Katrin; Hafner, Markus; Juranek, Stefan A

    2017-03-21

    The CCHC-type zinc finger nucleic acid-binding protein (CNBP/ZNF9) is conserved in eukaryotes and is essential for embryonic development in mammals. It has been implicated in transcriptional, as well as post-transcriptional, gene regulation; however, its nucleic acid ligands and molecular function remain elusive. Here, we use multiple systems-wide approaches to identify CNBP targets and function. We used photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) to identify 8,420 CNBP binding sites on 4,178 mRNAs. CNBP preferentially bound G-rich elements in the target mRNA coding sequences, most of which were previously found to form G-quadruplex and other stable structures in vitro. Functional analyses, including RNA sequencing, ribosome profiling, and quantitative mass spectrometry, revealed that CNBP binding did not influence target mRNA abundance but rather increased their translational efficiency. Considering that CNBP binding prevented G-quadruplex structure formation in vitro, we hypothesize that CNBP is supporting translation by resolving stable structures on mRNAs.

  9. Molecular aspect on the interaction of zinc-ofloxacin complex with deoxyribonucleic acid, proposed model for binding and cytotoxicity evaluation

    PubMed Central

    Ahmadi, F.; Ebrahimi-Dishabi, N.; Mansouri, K.; Salimi, F.

    2014-01-01

    Recently, several studies have shown that the metal-fluoroquinolone complexes have more antibacterial and cytotoxic effects in comparison with free fluoroquinolones. These results may introduce new drugs for chemotherapy with fewer side effects. In this work a bidentated zinc (II) complex with ofloxacin (OZC) was synthesized and cytotoxicity activities and DNA binding of the resulted complex was studied. The in-vitro anti proliferative and cytotoxic effects of the free ofloxacin (OFL) and OZC against MCF-7, CaCo2 and SKNMC cell lines were tested by using Trypan blue and lactate dehyrogenase (LDH) assay methods. Results revealed that the OZC exhibits better anti proliferative and cytotoxic activities as compared with the OFL. This may be due to the more interaction of OZC with DNA. Therefore, the interaction of OZC with DNA was investigated by using voltammetry, UV-Vis, fluorescence, FT-IR and circular dichroism spectroscopy methods, and the equilibrium binding constant (Kb), binding site size, and thermodynamic parameters were measured. The results revealed that the OZC interacts with DNA via two modes: electrostatic and outside hydrogen binding. The proposed DNA binding modes may support the greater in-vitro cytotoxicity of OZC compared to OFL alone. PMID:25657809

  10. The biological inorganic chemistry of zinc ions.

    PubMed

    Krężel, Artur; Maret, Wolfgang

    2016-12-01

    The solution and complexation chemistry of zinc ions is the basis for zinc biology. In living organisms, zinc is redox-inert and has only one valence state: Zn(II). Its coordination environment in proteins is limited by oxygen, nitrogen, and sulfur donors from the side chains of a few amino acids. In an estimated 10% of all human proteins, zinc has a catalytic or structural function and remains bound during the lifetime of the protein. However, in other proteins zinc ions bind reversibly with dissociation and association rates commensurate with the requirements in regulation, transport, transfer, sensing, signalling, and storage. In contrast to the extensive knowledge about zinc proteins, the coordination chemistry of the "mobile" zinc ions in these processes, i.e. when not bound to proteins, is virtually unexplored and the mechanisms of ligand exchange are poorly understood. Knowledge of the biological inorganic chemistry of zinc ions is essential for understanding its cellular biology and for designing complexes that deliver zinc to proteins and chelating agents that remove zinc from proteins, for detecting zinc ion species by qualitative and quantitative analysis, and for proper planning and execution of experiments involving zinc ions and nanoparticles such as zinc oxide (ZnO). In most investigations, reference is made to zinc or Zn(2+) without full appreciation of how biological zinc ions are buffered and how the d-block cation Zn(2+) differs from s-block cations such as Ca(2+) with regard to significantly higher affinity for ligands, preference for the donor atoms of ligands, and coordination dynamics. Zinc needs to be tightly controlled. The interaction with low molecular weight ligands such as water and inorganic and organic anions is highly relevant to its biology but in contrast to its coordination in proteins has not been discussed in the biochemical literature. From the discussion in this article, it is becoming evident that zinc ion speciation is

  11. Cadmium, lead and zinc leaching from smelter fly ash in simple organic acids--simulators of rhizospheric soil solutions.

    PubMed

    Ettler, Vojtech; Vrtisková, Růzena; Mihaljevic, Martin; Sebek, Ondrej; Grygar, Tomás; Drahota, Petr

    2009-10-30

    Emissions from base-metal smelters are responsible for high contamination of the surrounding soils. Fly ash from a secondary Pb smelter was submitted to a batch leaching procedure (0.5-168 h) in 500 microM solutions of acetic, citric, or oxalic acids to simulate the release of toxic metals (Cd, Pb, Zn) in rhizosphere-like environments. Organic acids increased dissolution of fly ash by a factor of 1.3. Cadmium and Pb formed mobile chloro- and sulphate-complexes, whereas Zn partly present in a citrate (Zn-citrate(-)) complex is expected to be less mobile due to sorption onto the positively charged surfaces of hydrous ferric oxides (HFO) and organic matter (OM) in acidic soil.

  12. Zinc phosphide

    Integrated Risk Information System (IRIS)

    Zinc phoshide ; CASRN 1314 - 84 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  13. Zinc interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The most common and probably the most harmful micronutrient deficiency of commercial pecan enterprises is zinc deficiency. A review is presented of how orchard nutrient element management practices potentially influence tree Zn nutrition. Findings provide background information on how to reduce th...

  14. Zinc cyanide

    Integrated Risk Information System (IRIS)

    Zinc cyanide ; CASRN 557 - 21 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effe

  15. Recovery of zinc and manganese, and other metals (Fe, Cu, Ni, Co, Cd, Cr, Na, K) from Zn-MnO2 and Zn-C waste batteries: Hydroxyl and carbonate co-precipitation from solution after reducing acidic leaching with use of oxalic acid

    NASA Astrophysics Data System (ADS)

    Sobianowska-Turek, A.; Szczepaniak, W.; Maciejewski, P.; Gawlik-Kobylińska, M.

    2016-09-01

    The article discusses the current situation of the spent batteries and portable accumulators management. It reviews recycling technologies of the spent batteries and portable accumulators which are used in the manufacturing installations in the world. Also, it presents the authors' research results on the reductive acidic leaching of waste material of the zinc-carbon batteries (Zn-C) and zinc-manganese batteries (alkaline Zn-MnO2) delivered by a company dealing with mechanical treatment of this type of waste stream. The research data proved that the reductive acidic leaching (H2SO4 + C2H2O4) of the battery's black mass allows to recover 85.0% of zinc and 100% of manganese. Moreover, it was found that after the reductive acidic leaching it is possible to recover nearly 100% of manganese, iron, cadmium, and chromium, 98.0% of cobalt, 95.5% of zinc, and 85.0% of copper and nickel from the solution with carbonate method. On the basis of the results, it is possible to assume that the carbonate method can be used for the preparation of manganese-zinc ferrite.

  16. TREATMENT OF ACID MINE DRAINAGE: I. EQUILIBRIUM BIOSORPTION OF ZINC AND COPPER ON NON-VIABLE ACTIVATED SLUDGE

    EPA Science Inventory

    Biosorption is potentially attractive technology for treament of acid mine drainage for separation/recovery of metal ions and mitigation of their toxicity to sulfate reducing bacteria. This study describes the equilibrium biosorptio of Zn(II) and CU(II) by nonviable activated slu...

  17. Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose.

    PubMed

    Ismail, Ku Syahidah Ku; Sakamoto, Takatoshi; Hasunuma, Tomohisa; Zhao, Xin-Qing; Kondo, Akihiko

    2014-12-01

    Lignocellulosic biomass is a potential substrate for ethanol production. However, pretreatment of lignocellulosic materials produces inhibitory compounds such as acetic acid, which negatively affect ethanol production by Saccharomyces cerevisiae. Supplementation of the medium with three metal ions (Zn(2+) , Mg(2+) , and Ca(2+) ) increased the tolerance of S. cerevisiae toward acetic acid compared to the absence of the ions. Ethanol production from xylose was most improved (by 34%) when the medium was supplemented with 2 mM Ca(2+) , followed by supplementation with 3.5 mM Mg(2+) (29% improvement), and 180 μM Zn(2+) (26% improvement). Higher ethanol production was linked to high cell viability in the presence of metal ions. Comparative transcriptomics between the supplemented cultures and the control suggested that improved cell viability resulted from the induction of genes controlling the cell wall and membrane. Only one gene, FIT2, was found to be up-regulated in common between the three metal ions. Also up-regulation of HXT1 and TKL1 might enhance xylose consumption in the presence of acetic acid. Thus, the addition of ionic nutrients is a simple and cost-effective method to improve the acetic acid tolerance of S. cerevisiae.

  18. Effects of cigarette smoke and ethanol intake on mouse oesophageal mucosa changes induced by dietary zinc deficiency and deoxycholic acid supplementation.

    PubMed

    Zapaterini, Joyce R; de Moura, Nelci A; Ribeiro, Daniel A; Rodrigues, Maria A M; Barbisan, Luis F

    2012-08-01

    The noxious effects of dietary zinc deficiency (ZD) and deoxycholic bile acid (DCA) supplementation in the oesophagus were investigated. The additional influence of cigarette smoke and ethanol intake on the changes in the oesophageal mucosa induced by dietary ZD plus DCA was also assessed. Male C57BL/6 mice were allocated into four groups: Group 1 was fed control diet and groups 2-4 were fed ZD plus DCA diet. After 5 weeks, groups 3 and 4 were exposed to 10% ethanol intake or cigarette smoke for 15 weeks, respectively. All animals were euthanized at the end of week 20, and the oesophagus, lung, liver and colon were collected and analysed by conventional morphology. Cell proliferation was assessed in the oesophageal mucosa by Ki-67 immunohistochemistry and cyclooxygenase 2 (COX-2) protein by Western blotting. Dietary ZD plus DCA treatment induced mild hyperkeratosis and hyperplasia, increased cell proliferation index and COX-2 protein expression in the oesophagus, and intranuclear inclusion, karyocytomegaly and microvesicular fatty change in the liver. Cigarette smoke increased COX-2 protein expression in oesophageal mucosa and irregular enlargement of alveolus and alveolar ductal air spaces, while ethanol enhanced liver damage induced by ZD plus DCA diet. These findings indicate that dietary ZD plus DCA treatment during 20 weeks induces a pattern of chemical oesophageal injury but not Barrett's-like lesions.

  19. Effect of aluminum, zinc, copper, and lead on the acid-base properties of water extracts from soils

    NASA Astrophysics Data System (ADS)

    Motuzova, G. V.; Makarychev, I. P.; Petrov, M. I.

    2013-01-01

    The potentiometric titration of water extracts from the upper horizons of taiga-zone soils by salt solutions of heavy metals (Pb, Cu, and Zn) showed that their addition is an additional source of the extract acidity because of the involvement of the metal ions in complexation with water-soluble organic substances (WSOSs). At the addition of 0.01 M water solutions of Al(NO3)3 to water extracts from soils, Al3+ ions are also involved in complexes with WSOSs, which is accompanied by stronger acidification of the extracts from the upper horizon of soddy soils (with a near-neutral reaction) than from the litter of bog-podzolic soil (with a strongly acid reaction). The effect of the Al3+ hydrolysis on the acidity of the extracts is insignificantly low in both cases. A quantitative relationship was revealed between the release of protons and the ratio of free Cu2+ ions to those complexed with WSOSs at the titration of water extracts from soils by a solution of copper salt.

  20. Zinc and its importance for human health: An integrative review

    PubMed Central

    Roohani, Nazanin; Hurrell, Richard; Kelishadi, Roya; Schulin, Rainer

    2013-01-01

    Since its first discovery in an Iranian male in 1961, zinc deficiency in humans is now known to be an important malnutrition problem world-wide. It is more prevalent in areas of high cereal and low animal food consumption. The diet may not necessarily be low in zinc, but its bio-availability plays a major role in its absorption. Phytic acid is the main known inhibitor of zinc. Compared to adults, infants, children, adolescents, pregnant, and lactating women have increased requirements for zinc and thus, are at increased risk of zinc depletion. Zinc deficiency during growth periods results in growth failure. Epidermal, gastrointestinal, central nervous, immune, skeletal, and reproductive systems are the organs most affected clinically by zinc deficiency. Clinical diagnosis of marginal Zn deficiency in humans remains problematic. So far, blood plasma/serum zinc concentration, dietary intake, and stunting prevalence are the best known indicators of zinc deficiency. Four main intervention strategies for combating zinc deficiency include dietary modification/diversification, supplementation, fortification, and bio-fortification. The choice of each method depends on the availability of resources, technical feasibility, target group, and social acceptance. In this paper, we provide a review on zinc biochemical and physiological functions, metabolism including, absorption, excretion, and homeostasis, zinc bio-availability (inhibitors and enhancers), human requirement, groups at high-risk, consequences and causes of zinc deficiency, evaluation of zinc status, and prevention strategies of zinc deficiency. PMID:23914218

  1. Zinc protoporphyrin inhibition of lipopolysaccharide-, lipoteichoic acid-, and peptidoglycan-induced nitric oxide production through stimulating iNOS protein ubiquitination

    SciTech Connect

    Chow, J.-M.; Lin, H.-Y.; Shen, S.-C.; Wu, M.-S.; Lin, C.-W.; Chiu, W.-T.; Lin, C.-H. Chen, Y.-C.

    2009-06-15

    In the present study, zinc protoporphyrin (ZnPP), but not ferric protoporphyrin (FePP), tin protoporphyrin (SnPP), or zinc chloride (ZnCl{sub 2}), at the doses of 0.5, 1, and 2 {mu}M, dose-dependently inhibited lipopolysaccharide- (LPS), lipoteichoic acid (LTA), and peptidoglycan (PGN)-induced inducible nitric oxide (iNOS) and nitric oxide (NO) production with an increase in heme oxygenase 1 (HO-1) protein in RAW264.7 macrophages in a serum-free condition. NO inhibition and HO-1 induction by ZnPP were blocked by the separate addition of fetal bovine serum (FBS) and bovine serum albumin (BSA). A decrease in the iNOS/NO ratio and an increase in HO-1 protein by ZnPP were identified in three different conditions including ZnPP pretreatment, ZnPP co-treatment, and ZnPP post-treatment with LPS and LTA. Activation of c-Jun N-terminal kinases (JNKs) and extracellular regulated kinases (ERKs) were detected in LPS-, LTA-, and PGN-treated RAW264.7 cells, and iNOS/NO production was blocked by adding the JNK inhibitor, SP600125, but not the ERK inhibitor, PD98059. However, ZnPP addition potentiated ERK and JNK protein phosphorylation stimulated by LPS, LTA, and PGN. Increases in total protein ubiquitination and ubiquitinated iNOS proteins were detected in ZnPP-treated macrophages elicited by LPS according to Western and immunoprecipitation/Western blotting assays, respectively. The decrease in LPS-induced iNOS protein by ZnPP was reversed by adding the proteasome inhibitors MG132 and lactacystin. The reduction in HO-1 protein induced by ZnPP via transfection of HO-1 small interfering RNA did not affect the inhibitory effect of ZnPP against LPS-induced iNOS/NO production and protein ubiquitination induced by ZnPP in macrophages. Data of the present study provide the first evidence to support ZnPP effectively inhibiting inflammatory iNOS/NO production through activation of protein ubiquitination in a HO-1-independent manner in macrophages.

  2. Zinc protoporphyrin inhibition of lipopolysaccharide-, lipoteichoic acid-, and peptidoglycan-induced nitric oxide production through stimulating iNOS protein ubiquitination.

    PubMed

    Chow, Jyh-Ming; Lin, Hui-Yi; Shen, Shing-Chuan; Wu, Ming-Shun; Lin, Cheng-Wei; Chiu, Wen-Ta; Lin, Chien-Huang; Chen, Yen-Chou

    2009-06-15

    In the present study, zinc protoporphyrin (ZnPP), but not ferric protoporphyrin (FePP), tin protoporphyrin (SnPP), or zinc chloride (ZnCl(2)), at the doses of 0.5, 1, and 2 microM, dose-dependently inhibited lipopolysaccharide- (LPS), lipoteichoic acid (LTA), and peptidoglycan (PGN)-induced inducible nitric oxide (iNOS) and nitric oxide (NO) production with an increase in heme oxygenase 1 (HO-1) protein in RAW264.7 macrophages in a serum-free condition. NO inhibition and HO-1 induction by ZnPP were blocked by the separate addition of fetal bovine serum (FBS) and bovine serum albumin (BSA). A decrease in the iNOS/NO ratio and an increase in HO-1 protein by ZnPP were identified in three different conditions including ZnPP pretreatment, ZnPP co-treatment, and ZnPP post-treatment with LPS and LTA. Activation of c-Jun N-terminal kinases (JNKs) and extracellular regulated kinases (ERKs) were detected in LPS-, LTA-, and PGN-treated RAW264.7 cells, and iNOS/NO production was blocked by adding the JNK inhibitor, SP600125, but not the ERK inhibitor, PD98059. However, ZnPP addition potentiated ERK and JNK protein phosphorylation stimulated by LPS, LTA, and PGN. Increases in total protein ubiquitination and ubiquitinated iNOS proteins were detected in ZnPP-treated macrophages elicited by LPS according to Western and immunoprecipitation/Western blotting assays, respectively. The decrease in LPS-induced iNOS protein by ZnPP was reversed by adding the proteasome inhibitors MG132 and lactacystin. The reduction in HO-1 protein induced by ZnPP via transfection of HO-1 small interfering RNA did not affect the inhibitory effect of ZnPP against LPS-induced iNOS/NO production and protein ubiquitination induced by ZnPP in macrophages. Data of the present study provide the first evidence to support ZnPP effectively inhibiting inflammatory iNOS/NO production through activation of protein ubiquitination in a HO-1-independent manner in macrophages.

  3. High performance zinc anode for battery applications

    NASA Technical Reports Server (NTRS)

    Casey, John E., Jr. (Inventor)

    1998-01-01

    An improved zinc anode for use in a high density rechargeable alkaline battery is disclosed. A process for making the zinc electrode comprises electrolytic loading of the zinc active material from a slightly acidic zinc nitrate solution into a substrate of nickel, copper or silver. The substrate comprises a sintered plaque having very fine pores, a high surface area, and 80-85 percent total initial porosity. The residual porosity after zinc loading is approximately 25-30%. The electrode of the present invention exhibits reduced zinc mobility, shape change and distortion, and demonstrates reduced dendrite buildup cycling of the battery. The disclosed battery is useful for applications requiring high energy density and multiple charge capability.

  4. Treatment of zinc-rich acid mine water in low residence time bioreactors incorporating waste shells and methanol dosing.

    PubMed

    Mayes, W M; Davis, J; Silva, V; Jarvis, A P

    2011-10-15

    Bioreactors utilising bacterially mediated sulphate reduction (BSR) have been widely tested for treating metal-rich waters, but sustained treatment of mobile metals (e.g. Zn) can be difficult to achieve in short residence time systems. Data are presented providing an assessment of alkalinity generating media (shells or limestone) and modes of metal removal in bioreactors receiving a synthetic acidic metal mine discharge (pH 2.7, Zn 15 mg/L, SO(4)(2-) 200mg/L, net acidity 103 mg/L as CaCO(3)) subject to methanol dosing. In addition to alkalinity generating media (50%, v.v.), the columns comprised an organic matrix of softwood chippings (30%), manure (10%) and anaerobic digested sludge (10%). The column tests showed sustained alkalinity generation, which was significantly better in shell treatments. The first column in each treatment was effective throughout the 422 days in removing >99% of the dissolved Pb and Cu, and effective for four months in removing 99% of the dissolved Zn (residence time: 12-14 h). Methanol was added to the feedstock after Zn breakthrough and prompted almost complete removal of dissolved Zn alongside improved alkalinity generation and sulphate attenuation. While there was geochemical evidence for BSR, sequential extraction of substrates suggests that the bulk (67-80%) of removed Zn was associated with Fe-Mn oxide fractions.

  5. Amino acid-mediated synthesis of zinc oxide nanostructures and evaluation of their facet-dependent antimicrobial activity.

    PubMed

    Ramani, Meghana; Ponnusamy, S; Muthamizhchelvan, C; Marsili, Enrico

    2014-05-01

    ZnO nanostructures (ZnO-NSs) of different morphologies are synthesized with the amino acids L-alanine, L-threonine, and L-glutamine as capping agents. X-ray diffraction (XRD) shows the formation of a crystalline wurtzite phase of ZnO-NSs. The surface modification of ZnO-NSs due to the capping agents is confirmed using Fourier transform infrared (FTIR) spectroscopy. Photoluminescence spectroscopy reveals that the concentration of surface defects correlates positively with the number of polar facets in ZnO-NSs. The antimicrobial activity of the ZnO-NSs has been tested against Escherichia coli and the common pathogens Staphylococcus aureus, Klebsiella pneumoniae, and Bacillus subtilis. Culture-based methods in rich medium show up to 90% growth inhibition, depending on the ZnO-NSs. Flow cytometry analyses indicate that the reactive oxygen species (ROS) generated by ZnO-NSs contribute mostly to the antibacterial activity. Control experiments in minimal medium show that amino acids and other reducing agents in Luria-Bertani (LB) medium quench ROS, thereby decreasing the antimicrobial activity of the ZnO-NSs.

  6. Preparation and characterization of zinc oxide nanoparticles and their sensor applications for electrochemical monitoring of nucleic acid hybridization.

    PubMed

    Yumak, Tugrul; Kuralay, Filiz; Muti, Mihrican; Sinag, Ali; Erdem, Arzum; Abaci, Serdar

    2011-09-01

    In this study, ZnO nanoparticles (ZNP) of approximately 30 nm in size were synthesized by the hydrothermal method and characterized by X-ray diffraction (XRD), Braun-Emmet-Teller (BET) N2 adsorption analysis and transmission electron microscopy (TEM). ZnO nanoparticles enriched with poly(vinylferrocenium) (PVF+) modified single-use graphite electrodes were then developed for the electrochemical monitoring of nucleic acid hybridization related to the Hepatitis B Virus (HBV). Firstly, the surfaces of polymer modified and polymer-ZnO nanoparticle modified single-use pencil graphite electrodes (PGEs) were characterized using scanning electron microscopy (SEM). The electrochemical behavior of these electrodes was also investigated using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Subsequently, the polymer-ZnO nanoparticle modified PGEs were evaluated for the electrochemical detection of DNA based on the changes at the guanine oxidation signals. Various modifications in DNA oligonucleotides and probe concentrations were examined in order to optimize the electrochemical signals that were generated by means of nucleic acid hybridization. After the optimization studies, the sequence-selective DNA hybridization was investigated in the case of a complementary amino linked probe (target), or noncomplementary (NC) sequences, or target and mismatch (MM) mixture in the ratio of (1:1).

  7. Speciation and pulmonary effects of acidic SO x formed on the surface of ultrafine zinc oxide aerosols

    NASA Astrophysics Data System (ADS)

    Amdur, Mary O.; Chen, Lung Chi; Guty, John; Lam, Hua Fuan; Miller, Patricia D.

    Ultrafine metal oxides and SO 2 react during coal combustion or smelting operations to form primary emissions coated with an acidic SO x layer. A ZnO-SO 2-H 2O (mixed 500°C) system generates such particles to provide greatly needed information on both quantitative composition of the surface layer and its effects on the lung. Total S on the particles is related to ZnO concentration and is predominantly S VI. As a surface layer, 20 μg m -3 H 2SO 4 decreases pulmonary diffusing capacity in guinea pigs after four daily 3-h exposures and produces bronchial hypersensitivity following a single 1-h exposure. That 200 μg m -3 H 2SO 4 aerosols of equivalent particle size are needed to produce the same degree of bronchial hypersensitivity emphasizes the importance of the surface layer.

  8. Development of a Simple Adjustable Zinc Acid/Base Hybrid Catalyst for C-C and C-O Bond-Forming and C-C Bond-Cleavage Reactions.

    PubMed

    Yamashita, Yasuhiro; Minami, Kodai; Saito, Yuki; Kobayashi, Shū

    2016-09-06

    A newly designed zinc Lewis acid/base hybrid catalyst was developed. By adjusting the Lewis acidity of the zinc center, aldol-type additions of 2-picolylamine Schiff base to aldehydes proceeded smoothly to afford syn-aldol adduct equivalents, trans-N,O-acetal adducts, in high yields with high selectivities. NMR experiments, including microchanneled cell for synthesis monitoring (MICCS) NMR analysis, revealed that anti-aldol adducts were formed at the initial stage of the reactions under kinetic control, but the final products were the trans-(syn)-N,O-acetal adducts that were produced through a retro-aldol process under thermodynamic control. In the whole reaction process, the zinc catalyst played three important roles: i) promotion of the aldol process (C-C bond formation), ii) cyclization process to the N,O-acetal product (C-O bond formation), and iii) retro-aldol process from the anti-aldol adduct to the syn-aldol adduct (C-C bond cleavage and C-C bond formation).

  9. Synthesis, structure and properties of zinc(II) coordination polymers with 9H-carbazole-2,7-dicarboxylic acid

    SciTech Connect

    Yi, Xiu-Chun; Xi, Fu-Gui; Wang, Kun; Su, Zhao; Gao, En-Qing

    2013-10-15

    From a new dicarboxylate ligand, 9H-carbazole-2,7-dicarboxylic acid (2,7-H{sub 2}CDC), three Zn(II) metal-organic frameworks were synthesized in the absence or presence of ditopic N-donor ligands. They are formulated as [Zn{sub 5}(μ{sub 3}-OH){sub 2}(2,7-CDC){sub 4}(DEF){sub 2}] (1) (DEF=N,N-diethylformamide), [Zn{sub 2}(2,7-CDC){sub 2}(DABCO)(H{sub 2}O)]·5DMF·H{sub 2}O (2) (DABCO=1-diaza-bicyclo[2.2.2]octane, DMF=N,N-dimethylformamide), and [Zn{sub 2}(2,7-CDC){sub 2}(bpea)]·3DMA·2 H{sub 2}O (3) (bpea=1,2-bis(4-pyridyl)ethylane, DMA=N,N-dimethylacetamide). Compounds 1 and 3 display the 3D pcu frameworks. In 1 the unusual pentanuclear [Zn{sub 5}(μ{sub 3}-OH){sub 2}(COO){sub 8}] secondary building units (SBUs) are linked by dicarboxylate ligands. Differently, in 3 the well-known paddle–wheel [Zn{sub 2}(COO){sub 4}] SBUs are linked by dicarboxylate and dipyridyl ligands. Compound 2 shows the rare self-catenated 3D alb-3,6-C2/c net topology based on the dinuclear paddle–wheel SBU and a mononuclear unit. The stability and fluorescent properties of the compounds have been studied. - Graphical abstract: A new dicarboxylate ligand, 9H-carbazole-2,7-dicarboxylic acid, was used to construct Zn(II) metal-organic frameworks, including a novel self-catenated network with the rare 3D alb-3,6-C2/c net and two pcu-type networks based on an unprecedented pentanuclear clusters and the common paddle–wheel units. The compounds show blue fluorescent properties. Display Omitted - Highlights: • MOFs with a new carbazole-based dicarboxylate ligand. • New pentanuclear [Zn{sub 5}(μ{sub 3}-OH){sub 2}(COO){sub 8}] secondary building unit. • The rare self-catenated 3D alb-3,6-C2/c net.

  10. Zinc and growth.

    PubMed

    Nishi, Y

    1996-08-01

    Zinc is an essential nutrients and plays an important role in growth and sexual function. Zinc deficiency has been known to cause growth retardation and hypogonadism. Several mechanisms of growth retardation and hypogonadism due to zinc deficiency have been suggested. Zinc affects growth hormone (GH) metabolism. Conversely, GH affects zinc metabolism. Zinc deficiency may result in reduced GH production and/or insulin-like growth factor-I (IGF-I). Zinc deficiency may also affect bone metabolism and gonadal function. The interrelationships among zinc, growth, gonadal function, and GH-IGF-I axis appears to be complex.

  11. Prevalence of anemia and deficiency of iron, folic acid, and zinc in children younger than 2 years of age who use the health services provided by the Mexican Social Security Institute

    PubMed Central

    Duque, Ximena; Flores-Hernández, Sergio; Flores-Huerta, Samuel; Méndez-Ramírez, Ignacio; Muñoz, Sergio; Turnbull, Bernardo; Martínez-Andrade, Gloria; Ramos, Rosa I; González-Unzaga, Marco; Mendoza, María E; Martínez, Homero

    2007-01-01

    Background In Mexico, as in other developing countries, micronutrient deficiencies are common in infants between 6 and 24 months of age and are an important public health problem. The objective of this study was to determine the prevalence of anemia and of iron, folic acid, and zinc deficiencies in Mexican children under 2 years of age who use the health care services provided by the Mexican Institute for Social Security (IMSS). Methods A nationwide survey was conducted with a representative sample of children younger than 2 years of age, beneficiaries, and users of health care services provided by IMSS through its regular regimen (located in urban populations) and its Oportunidades program (services offered in rural areas). A subsample of 4,955 clinically healthy children was studied to determine their micronutrient status. A venous blood sample was drawn to determine hemoglobin, serum ferritin, percent of transferrin saturation, zinc, and folic acid. Descriptive statistics include point estimates and 95% confidence intervals for the sample and projections for the larger population from which the sample was drawn. Results Twenty percent of children younger than 2 years of age had anemia, and 27.8% (rural) to 32.6% (urban) had iron deficiency; more than 50% of anemia was not associated with low ferritin concentrations. Iron stores were more depleted as age increased. Low serum zinc and folic acid deficiencies were 28% and 10%, respectively, in the urban areas, and 13% and 8%, respectively, in rural areas. The prevalence of simultaneous iron and zinc deficiencies was 9.2% and 2.7% in urban and rural areas. Children with anemia have higher percentages of folic acid deficiency than children with normal iron status. Conclusion Iron and zinc deficiencies constitute the principal micronutrient deficiencies in Mexican children younger than 2 years old who use the health care services provided by IMSS. Anemia not associated with low ferritin values was more prevalent than

  12. Synthesis, structure and properties of zinc(II) coordination polymers with 9H-carbazole-2,7-dicarboxylic acid

    NASA Astrophysics Data System (ADS)

    Yi, Xiu-Chun; Xi, Fu-Gui; Wang, Kun; Su, Zhao; Gao, En-Qing

    2013-10-01

    From a new dicarboxylate ligand, 9H-carbazole-2,7-dicarboxylic acid (2,7-H2CDC), three Zn(II) metal-organic frameworks were synthesized in the absence or presence of ditopic N-donor ligands. They are formulated as [Zn5(μ3-OH)2(2,7-CDC)4(DEF)2] (1) (DEF=N,N-diethylformamide), [Zn2(2,7-CDC)2(DABCO)(H2O)]·5DMF·H2O (2) (DABCO=1-diaza-bicyclo[2.2.2]octane, DMF=N,N-dimethylformamide), and [Zn2(2,7-CDC)2(bpea)]·3DMA·2 H2O (3) (bpea=1,2-bis(4-pyridyl)ethylane, DMA=N,N-dimethylacetamide). Compounds 1 and 3 display the 3D pcu frameworks. In 1 the unusual pentanuclear [Zn5(μ3-OH)2(COO)8] secondary building units (SBUs) are linked by dicarboxylate ligands. Differently, in 3 the well-known paddle-wheel [Zn2(COO)4] SBUs are linked by dicarboxylate and dipyridyl ligands. Compound 2 shows the rare self-catenated 3D alb-3,6-C2/c net topology based on the dinuclear paddle-wheel SBU and a mononuclear unit. The stability and fluorescent properties of the compounds have been studied.

  13. Enhancement of zinc oxide-mediated solar light decoloration of Acid Yellow 99 dye by addition of β-CD

    NASA Astrophysics Data System (ADS)

    Pitchaimuthu, Sakthivel; Rajalakshmi, Subramanian; Kannan, Nagarathinam; Velusamy, Ponnusamy

    2015-06-01

    In the current work, the commercially available ZnO photocatalyst was used to investigate the photodecoloration of Acid yellow 99 (AY99) dye under solar light radiation. Promising enhancement of photodecoloration of AY99 dye was also achieved by the addition of β-cyclodextrin (β-CD) with the ZnO (ZnO-β-CD). The effects of process parameters such as initial concentration, pH, catalyst loading, and illumination time on the extent of decoloration were investigated. The optimum catalyst loading was observed at 2.0 g/L. The higher photoactivity of ZnO-β-CD/solar light system than ZnO/solar light system can be ascribed due to the ligand to metal charge transfer (LMCT) from β-CD to ZnII. The complexation patterns have been confirmed with UV-visible and FT-IR spectroscopy and the interaction between ZnO and β-CD has been characterized by FE-SEM, powder XRD analysis, and UV-visible diffuse reflectance spectroscopy.

  14. Highly efficient and autocatalytic H2O dissociation for CO2 reduction into formic acid with zinc

    PubMed Central

    Jin, Fangming; Zeng, Xu; Liu, Jianke; Jin, Yujia; Wang, Lunying; Zhong, Heng; Yao, Guodong; Huo, Zhibao

    2014-01-01

    Artificial photosynthesis, specifically H2O dissociation for CO2 reduction with solar energy, is regarded as one of the most promising methods for sustainable energy and utilisation of environmental resources. However, a highly efficient conversion still remains extremely challenging. The hydrogenation of CO2 is regarded as the most commercially feasible method, but this method requires either exotic catalysts or high-purity hydrogen and hydrogen storage, which are regarded as an energy-intensive process. Here we report a highly efficient method of H2O dissociation for reducing CO2 into chemicals with Zn powder that produces formic acid with a high yield of approximately 80%, and this reaction is revealed for the first time as an autocatalytic process in which an active intermediate, ZnH− complex, serves as the active hydrogen. The proposed process can assist in developing a new concept for improving artificial photosynthetic efficiency by coupling geochemistry, specifically the metal-based reduction of H2O and CO2, with solar-driven thermochemistry for reducing metal oxide into metal. PMID:24675820

  15. Sonoelectrochemical Synthesis of Nano Zinc (II) Complexes with 9-Anthracenecarboxylic Acid: Effect of Current Density and Study of their Photophysical Properties.

    PubMed

    Shahrjerdi, Akram; Davarani, Saied Saeed Hosseiny

    2016-11-01

    A new zinc complex, [Zn (9-AC)2] (1) (9-AC = 9-anthracenecarboxylic acid), was prepared via conventional electrochemical method in a fast and facile process and fully characterized by (1)H NMR, (13)C NMR, IR spectroscopy and elemental analysis. The nano structures of the same compound were successfully produced by a facile and environment-friendly sonoelectrochemical route at different current densities (0.5, 1.2, 1.8, 2.5 and 3.5 mA/cm(2)). The new nano-structure particles were characterized by scanning electron microscopy, X-ray powder diffraction, IR spectroscopy and elemental analysis. Thermal stability of single crystal and nano-size samples of the prepared compound was studied by thermogravimetric and differential thermal analysis. The comparison of the effect of current density without and with ultrasonic irradiation on particle size has been investigated in convectional electrochemical and sonoelectrochemical method respectively. The results showed that using ultrasonic irradiation with increasing the current density lead to decrease the particle sizes unlike conventional electrochemical method. In other words, when the current density increase from 0.5 to 3.5 mA/cm(2), in sonoelectrochemical method, the particle sizes decrease from 100 to 48 nm while, in convectional electrochemical method, the particle sizes increase from 400 to 1200 nm and possible explanation offered. Photoluminescence properties of the nano-structured and crystalline bulk of the prepared complex at room temperature in the solid state have been investigated in detail. The results indicate that the size of the complex particles has an important effect on their optical properties.

  16. Active-site zinc ligands and activated H2O of zinc enzymes.

    PubMed Central

    Vallee, B L; Auld, D S

    1990-01-01

    The x-ray crystallographic structures of 12 zinc enzymes have been chosen as standards of reference to identify the ligands to the catalytic and structural zinc atoms of other members of their respective enzyme families. Universally, H2O is a ligand and critical component of the catalytically active zinc sites. In addition, three protein side chains bind to the catalytic zinc atom, whereas four protein ligands bind to the structural zinc atom. The geometry and coordination number of zinc can vary greatly to accommodate particular ligands. Zinc forms complexes with nitrogen and oxygen just as readily as with sulfur, and this is reflected in catalytic zinc sites having a binding frequency of His much greater than Glu greater than Asp = Cys, three of which bind to the metal atom. The systematic spacing between the ligands is striking. For all catalytic zinc sites except the coenzyme-dependent alcohol dehydrogenase, the first two ligands are separated by a "short-spacer" consisting of 1 to 3 amino acids. These ligands are separated from the third ligand by a "long spacer" of approximately 20 to approximately 120 amino acids. The spacer enables formation of a primary bidentate zinc complex, whereas the long spacer contributes flexibility to the coordination sphere, which can poise the zinc for catalysis as well as bring other catalytic and substrate binding groups into apposition with the active site. The H2O is activated by ionization, polarization, or poised for displacement. Collectively, the data imply that the preferred mechanistic pathway for activating the water--e.g., zinc hydroxide or Lewis acid catalysis--will be determined by the identity of the other three ligands and their spacing. Images PMID:2104979

  17. Studies on the bioavailability of zinc in humans: intestinal interaction of tin and zinc.

    PubMed

    Solomons, N W; Marchini, J S; Duarte-Favaro, R M; Vannuchi, H; Dutra de Oliveira, J E

    1983-04-01

    Mineral/mineral interactions at the intestinal level are important in animal nutrition and toxicology, but only limited understanding of their extent or importance in humans has been developed. An inhibitory interaction of dietary tin on zinc retention has been recently described from human metabolic studies. We have explored the tin/zinc interaction using the change-in-plasma-zinc-concentration method with a standard dosage of 12.5 mg of zinc as zinc sulfate in 100 ml of Coca-Cola. Sn/Zn ratios of 2:1, 4:1, and 8:1, constituted by addition of 25, 50, and 100 mg of tin as stannous chloride, had no significant overall effect on zinc uptake. The 100-mg dose of tin produced noxious gastrointestinal symptoms. Addition of iron as ferrous sulfate to form ratios of Sn/Fe/Zn of 1:1:1 and 2:2:1 with the standard zinc solution and the appropriate doses of tin produced a reduction of zinc absorption not dissimilar from that seen previously with zinc and iron alone, and addition of picolinic acid did not influence the uptake of zinc from the solution with the 2:2:1 Sn/Fe/Zn ratio.

  18. Production of zinc pellets

    SciTech Connect

    Cooper, J.F.

    1996-11-26

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.

  19. Production of zinc pellets

    SciTech Connect

    Cooper, John F.

    1996-01-01

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries.

  20. Effects of Combined Treatment with Branched-Chain Amino Acids, Citric Acid, L-Carnitine, Coenzyme Q10, Zinc, and Various Vitamins in Tumor-Bearing Mice.

    PubMed

    Awa, Hiroko; Futamura, Akihiko; Higashiguchi, Takashi; Ito, Akihiro; Mori, Naoharu; Murai, Miyo; Ohara, Hiroshi; Chihara, Takeshi; Kaneko, Takaaki

    2017-03-01

    A functional dietary supplement (FDS) containing Coenzyme Q10, branched-chain amino acids and L-carnitine was administered to tumor-bearing mice, investigating its effects on tumor and muscle tissues. Experiment (A): B16 melanoma cells were implanted subcutaneously into the right side of the abdomen of 8- to 9-week-old C57BL/6J mice. The mice were divided into two groups: a FDS group that received oral administration of FDS (n=10), and a control group that received oral administration of glucose (n=10). The moribund condition was used as the endpoint, and median survival time was determined. Experiment (B): On day 21 after tumor implantation, tumors, soleus muscle, gastrocnemius muscle, and suprahyoid muscles were collected. Tumor and muscle weight and other aspects were evaluated in each group: FDS group (n=15) and control group (n=15). The median survival time was comparable (21 d in the FDS group vs. 18 d in the control group, p=0.30). However, cumulative food intake was significantly higher in the FDS group than the control group (p=0.011). Metastasis of melanoma to the lung was observed in the control group but not in the FDS group (p=0.043). The weight of the suprahyoid muscles was significantly higher in the FDS group than in the control group (p=0.0045). The weight of the tumor was significantly lower in the FDS group than in the control group (p=0.013). The results possibly suggest oral administration of FDS in tumor-bearing mice enhances the maintenance of suprahyoid muscles, resulting in an extended feeding period and suppression of tumor growth and metastasis.

  1. First aminoacetone chelate: [Co(tren){NH2CH2C(O)CH3}]3+-a substrate binding and activation model for zinc(II)-dependent 5-aminolaevulinic acid dehydratase.

    PubMed

    Gumm, Andreas; Hammershøi, Anders; Kofod-Hansen, Mikael; Mønsted, Ole; Osholm Sørensen, Henning

    2007-08-14

    The complex p-[Co(tren){NH(2)CH(2)C(O)CH(3)}](ClO(4))(3).H(2)O was produced stereoselectively from [Co(tren)(O(3)SCF(3))(2)]O(3)SCF(3) () and 2-(aminomethyl)-2-methyl-1,3-dioxolane. The structure of was determined by X-ray crystallography. The complex is the first aminoacetone chelate to be reported and the first structurally characterized example of a non-conjugated ketone moiety coordinated to cobalt(iii). The robust complex was stable to aquation in strong acid and behaved as an acid with pK(a) = 4.99(1) indicative of a strong activation of the aminoacetone ligand towards deprotonation. The complex constitutes a structural model for a proposed substrate binding mode relevant for substrate activation of the zinc(ii)-dependent enzyme 5-aminolaevulinic acid dehydratase.

  2. X-ray absorption near edge structure study on Acutolysin-C, a zinc-metalloproteinase from Agkistrodon acutus venom: Insight into the acid-inactive mechanism

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Chu, Wangsheng; Li, Shujun; Liu, Yiwei; Gao, Bin; Niu, Liwen; Teng, Maikun; Benfatto, Maurizio; Hu, Tiandou; Wu, Ziyu

    2007-11-01

    Acutolysin-C, a snake-venom zinc metalloproteinase, displays a distinct pH-dependent proteolytic activity, which has been tentatively assigned to a structural change of the zinc-containing catalytic center. In this work we compare X-ray absorption near-edge structure (XANES) experimental spectra at the Zn K-edge and theoretical calculations of solutions at different pH values. The experimental data show clear differences confirmed by a best fit using the MXAN procedure. The results show that, when pH decreases from pH 8.0 to pH 3.0, the zinc-coordinating catalytic water molecule moves far from the Glu143 residue that is considered to play an essential role in the proteolytic process. Data suggests that this is the possible mechanism that deactivates the metalloproteinase.

  3. The role of zinc in liver cirrhosis.

    PubMed

    Grüngreiff, Kurt; Reinhold, Dirk; Wedemeyer, Heiner

    2016-01-01

    Zinc is an essential trace element playing fundamental roles in cellular metabolism. It acts mostly by binding a wide range of proteins, thus affecting a broad spectrum of biological processes, which include cell division, growth and differentiation. Zinc is critical to a large number of structural proteins, enzymatic processes, and transcription factors. Zinc deficiency can result in a spectrum of clinical manifestations, such as poor of appetite, loss of body hair, altered taste and smell, testicular atrophy, cerebral and immune dysfunction, and diminished drug elimination capacity. These are common symptoms in patients with chronic liver diseases, especially liver cirrhosis. The liver is the main organ responsible for the zinc metabolism which can be affected by liver diseases. On the other hand, zinc deficiency may alter hepatocyte functions and also immune responses in inflammatory liver diseases. Liver cirrhosis represents the most advanced stage of chronic liver diseases and is the common outcome of chronic liver injury. It is associated with energy malnutrition, with numerous metabolic disorders, such as hypoalbuminemia, with imbalance between branched-chain amino acids and aromatic amino acids, and with reduced zinc serum concentrations. All these processes can influence the clinical outcome of patients, such ascites, hepatic encephalopathy and hepatocellular carcinoma. In the present review, we summarize the emerging evidence on the pitoval role of zinc in the pathogenesis of liver cirrhosis.

  4. Aluminum colloid formation and its effect on co-precipitation of zinc during acid rock drainage remediation with clinoptilolite in a slurry bubble column

    NASA Astrophysics Data System (ADS)

    Xu, W.; Li, L. Y.; Grace, J. R.

    2012-04-01

    Zinc and other metal ions were adsorbed in a laboratory slurry bubble column (SBC) by natural clinoptilolite sorbent particles. During the remediation process, significant white precipitates were sometimes observed. Both zinc and aluminum were detected in the colloidal mixtures. It is shown that Al leached from clinoptilolite during the agitation, contributing to the precipitate. As a result of the Al leaching and increase of pH during the remediation process, the formation of an Al colloid and zinc adsorption onto it could significantly improve ARD remediation, given the high adsorption capacity of the colloid. Sorption of cations increased with increasing colloid formation. Various conditions were tested to investigate their impact on (a) dealumination of clinoptilolite; (b) Al hydrolysis/colloid formation; and (c) adsorption onto the colloidal mixture. The test results indicate that dealumination contributes to the excess aluminum in the aqueous phase and to precipitates. The excess dealumination varies with pH and agitation time. Al hydrolysis occurs with increasing pH due to the neutralization effect of clinoptilolite. A significant proportion of zinc adsorbed onto the collectible aluminum precipitates.

  5. Hemimorphite Ores: A Review of Processing Technologies for Zinc Extraction

    NASA Astrophysics Data System (ADS)

    Chen, Ailiang; Li, Mengchun; Qian, Zhen; Ma, Yutian; Che, Jianyong; Ma, Yalin

    2016-10-01

    With the gradual depletion of zinc sulfide ores, exploration of zinc oxide ores is becoming more and more important. Hemimorphite is a major zinc oxide ore, attracting much attention in the field of zinc metallurgy although it is not the major zinc mineral. This paper presents a critical review of the treatment for extraction of zinc with emphasis on flotation, pyrometallurgical and hydrometallurgical methods based on the properties of hemimorphite. The three-dimensional framework structure of hemimorphite with complex linkage of its structural units lead to difficult desilicification before extracting zinc in the many metallurgical technologies. It is found that the flotation method is generally effective in enriching zinc minerals from hemimorphite ores into a high-grade concentrate for recovery of zinc. Pure zinc can be produced from hemimorphite or/and willemite with a reducing reagent, like methane or carbon. Leaching reagents, such as acid and alkali, can break the complex structure of hemimorphite to release zinc in the leached solution without generation of silica gel in the hydrometallurgical process. For optimal zinc extraction, combing flotation with pyrometallurgical or hydrometallurgical methods may be required.

  6. Rearrangements of the retinoic acid receptor alpha and promyelocytic leukemia zinc finger genes resulting from t(11;17)(q23;q21) in a patient with acute promyelocytic leukemia.

    PubMed Central

    Chen, S J; Zelent, A; Tong, J H; Yu, H Q; Wang, Z Y; Derré, J; Berger, R; Waxman, S; Chen, Z

    1993-01-01

    Cytogenetic study of a patient with acute promyelocytic leukemia (APL) showed an unusual karyotype 46,xy,t(11;17) (q23;21) without apparent rearrangement of chromosome 15. Molecular studies showed rearrangements of the retinoic acid receptor alpha (RAR alpha) gene but no rearrangement of the promyelocytic leukemia gene consistent with the cytogenetic data. Similar to t(15;17) APL, all-trans retinoic acid treatment in this patient produced an early leukocytosis which was followed by a myeloid maturation, but the patient died too early to achieve remission. Further molecular analysis of this patient showed a rearrangement between the RAR alpha gene and a newly discovered zinc finger gene named PLZF (promyelocytic leukemia zinc finger). The fusion PLZF-RAR alpha gene found in this case, was not found in DNA obtained from the bone marrow of normals, APL with t(15;17) and in one patient with AML-M2 with a t(11;17). Fluorescence in situ hybridization using a PLZF specific probe localized the PLZF gene to chromosomal band 11q23.1. Partial exon/intron structure of the PLZF gene flanking the break point on chromosome 11 was also established and the breakpoint within the RAR alpha gene was mapped approximately 2 kb downstream of the exon encoding the 5' untranslated region and the unique A2 domain of the RAR alpha 2 isoform. Images PMID:8387545

  7. Preparation of ionic membranes for zinc/bromine storage batteries

    NASA Astrophysics Data System (ADS)

    Assink, R. A.; Arnold, C., Jr.

    Zinc/bromine flow batteries are being developed for vehicular and utility load leveling applications. During charge, an aqueous zinc bromide salt is electrolyzed to zinc metal and molecular bromine. During discharge, the zinc and bromine react to again form the zinc bromide salt. One serious disadvantage of the microporous separators presently used in the zinc/bromine battery is that modest amounts of bromine and negatively charged bromine moieties permeate through these materials and react with the zinc anode. This results in partial self-discharge of the battery and low coulombic efficiencies. Our approach to this problem is to impregnate the microporous separators with a soluble cationic polyelectrolyte. In laboratory screening tests a sulfonated polysulfone resin and fully fluorinated sulfonic acid polymer substantially reduced bromine permeation with only modest increases in the area resistance.

  8. Zinc oxide overdose

    MedlinePlus

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  9. Bacitracin zinc overdose

    MedlinePlus

    ... sprays such as Polysporin Spray and Neosporin Prescription antibiotic eye drops and ointments such as Neosporin Ophthalmic Bacitracin zinc may also be added to animal food. Other products may also contain bacitracin zinc.

  10. Zinc in diet

    MedlinePlus

    ... reduce your risk of becoming sick with the common cold. Starting to take zinc supplements within 24 hours ... 26. Singh M, Das RR. Zinc for the common cold. Cochrane Database Syst Rev . Jun18;6:CD001364. PMID: ...

  11. Zinc and gastrointestinal disease

    PubMed Central

    Skrovanek, Sonja; DiGuilio, Katherine; Bailey, Robert; Huntington, William; Urbas, Ryan; Mayilvaganan, Barani; Mercogliano, Giancarlo; Mullin, James M

    2014-01-01

    This review is a current summary of the role that both zinc deficiency and zinc supplementation can play in the etiology and therapy of a wide range of gastrointestinal diseases. The recent literature describing zinc action on gastrointestinal epithelial tight junctions and epithelial barrier function is described. Zinc enhancement of gastrointestinal epithelial barrier function may figure prominently in its potential therapeutic action in several gastrointestinal diseases. PMID:25400994

  12. Rechargeable zinc halogen battery

    SciTech Connect

    Spaziante, P.M.; Nidola, A.

    1980-01-01

    A rechargeable zinc halogen battery has an aqueous electrolyte containing ions of zinc and halogen and an amount of polysaccharide and/or sorbitol sufficient to prevent zinc dendrite formation during recharging. The electrolyte may also contain trace amounts of metals such as tungsten, molybdenum, and lead. 7 tables.

  13. The kinetics of water loss from zinc phosphate and zinc polycarboxylate dental cements.

    PubMed

    Nicholson, John W; Czarnecka, Beata

    2008-04-01

    The water desorption behaviour of three different zinc oxide dental cements (two polycarboxylates, one phosphate) has been studied in detail. Disc-shaped specimens of each material were prepared and allowed to lose water by being subjected to a low humidity desiccating atmosphere over concentrated sulfuric acid. In all three cements, water loss was found to follow Fick's second law for at least 6 h (until M(t)/M(infinity) values were around 0.5), with diffusion coefficients ranging from 6.03 x 10(-8 )cm(2 )s(-1) (for the zinc phosphate) to 2.056 x 10(-7 )cm(2 )s(-1) (for one of the zinc polycarboxylates, Poly F Plus). Equilibration times for desorption were of the order of 8 weeks, and equilibrium water losses ranged from 7.1% for zinc phosphate to 16.9% and 17.4% for the two zinc polycarboxylates.

  14. pH-Dependent Inhibition of Kainate Receptors by Zinc

    PubMed Central

    Mott, David D.; Benveniste, Morris; Dingledine, Raymond J.

    2014-01-01

    Kainate receptors contribute to synaptic plasticity and rhythmic oscillatory firing of neurons in corticolimbic circuits including hippocampal area CA3. We use zinc chelators and mice deficient in zinc transporters to show that synaptically released zinc inhibits postsynaptic kainate receptors at mossy fiber synapses and limits frequency facilitation of kainate, but not AMPA EPSCs during thetapattern stimulation. Exogenous zinc also inhibits the facilitatory modulation of mossy fiber axon excitability by kainate but does not suppress the depressive effect of kainate on CA3 axons. Recombinant kainate receptors are inhibited in a subunit-dependent manner by physiologically relevant concentrations of zinc, with receptors containing the KA1 subunit being sensitive to submicromolar concentrations of zinc. Zinc inhibition does not alter receptor desensitization nor apparent agonist affinity and is only weakly voltage dependent, which points to an allosteric mechanism. Zinc inhibition is reduced at acidic pH. Thus, in the presence of zinc, a fall in pH potentiates kainate receptors by relieving zinc inhibition. Acidification of the extracellular space, as occurs during repetitive activity, may therefore serve to unmask kainate receptor neurotransmission. We conclude that zinc modulation of kainate receptors serves an important role in shaping kainate neurotransmission in the CA3 region. PMID:18272686

  15. The 91-205 amino acid region of AcMNPV ORF34 (Ac34), which comprises a potential C3H zinc finger, is required for its nuclear localization and optimal virus multiplication.

    PubMed

    Qiu, Jianxiang; Tang, Zhimin; Yuan, Meijin; Wu, Wenbi; Yang, Kai

    2017-01-15

    During baculovirus infection, most viral proteins must be imported to the nucleus to support virus multiplication. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf34 (ac34) is an alphabaculovirus unique gene that is required for optimal virus production. Ac34 distributes in both the cytoplasm and the nuclei of virus-infected Sf9 cells, but contains no conventional nuclear localization signal (NLS). In this study, we investigated the nuclear targeting domains in Ac34. Transient expression assays showed that Ac34 localized in both the cytoplasm and the nuclei of Sf9 cells, indicating that no viral protein is required for Ac34 nuclear localization. Subcellular localization analysis of Ac34 truncations and internal deletions fused with green fluorescent protein in plasmid-transfected Sf9 cells identified that the 91-205 amino acid (aa) region is required for Ac34 nuclear localization. Mutations in a potential C3H zinc finger (aa 116-131) in Ac34 resulted in exclusive cytoplasmic distribution of GFP:Ac34, suggesting that the zinc finger is required for Ac34 nuclear localization. To assess the functional importance of Ac34 in the nucleus during virus replication, recombinant AcMNPV bacmids containing a series of Ac34 truncations, internal deletions, or site mutations fused with HA tags were constructed. Subcellular localization analysis showed that Ac34 with internal deletions in aa 91-205 or site mutations in the potential zinc finger was predominantly distributed in the cytoplasm. Viral plaque assays and virus growth curves indicated that disruption of Ac34 nuclear localization significantly impaired virus replication. Taken together, our findings demonstrated that the nuclear localization of Ac34 requires the 91-205 aa region and its nuclear localization is essential for optimal virus replication.

  16. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins.

    PubMed

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-07-02

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel's ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators.

  17. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    PubMed Central

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  18. Zinc oxyfluoride transparent conductor

    DOEpatents

    Gordon, Roy G.

    1991-02-05

    Transparent, electrically conductive and infrared-reflective films of zinc oxyfluoride are produced by chemical vapor deposition from vapor mixtures of zinc, oxygen and fluorine-containing compounds. The substitution of fluorine for some of the oxygen in zinc oxide results in dramatic increases in the electrical conductivity. For example, diethyl zinc, ethyl alcohol and hexafluoropropene vapors are reacted over a glass surface at 400.degree. C. to form a visibly transparent, electrically conductive, infrared reflective and ultraviolet absorptive film of zinc oxyfluoride. Such films are useful in liquid crystal display devices, solar cells, electrochromic absorbers and reflectors, energy-conserving heat mirrors, and antistatic coatings.

  19. Cadmium and zinc relationships.

    PubMed

    Elinder, C G; Piscator, M

    1978-08-01

    Cadmium and zinc concentrations in kidney and liver have been measured under different exposure situations in different species including man. The results show that zinc increases almost equimolarly with cadmium in kidney after long-term low-level exposure to cadmium, e.g., in man, horse, pig, and lamb. In contrast, the increase of zinc follows that of cadmium to only a limited extent, e.g., in guinea pig, rabbit, rat, mouse, and chicks. In liver, the cadmium--zinc relationship seems to be reversed in such a way that zinc increases with cadmium more markedly in laboratory animals than in higher mammals. These differences between cadmium and zinc relationships in humans and large farm animals and those in commonly used laboratory animals must be considered carefully before experimental data on cadmium and zinc relationships in laboratory animals can be extrapolated to humans.

  20. Effect of zinc fortification on Cheddar cheese quality.

    PubMed

    Kahraman, O; Ustunol, Z

    2012-06-01

    Zinc-fortified Cheddar cheese containing 228 mg of zinc/kg of cheese was manufactured from milk that had 16 mg/kg food-grade zinc sulfate added. Cheeses were aged for 2 mo. Culture activity during cheese making and ripening, and compositional, chemical, texture, and sensory characteristics were compared with control cheese with no zinc sulfate added to the cheese milk. Compositional analysis included fat, protein, ash, moisture, zinc, and calcium determinations. The thiobarbituric acid (TBA) assay was conducted to determine lipid oxidation during aging. Texture was analyzed by a texture analyzer. An untrained consumer panel of 60 subjects evaluated the cheeses for hardness, off-flavors, appearance, and overall preference using a 9-point hedonic scale. Almost 100% of the zinc added to cheese milk was recovered in the zinc-fortified cheese. Zinc-fortified Cheddar cheese had 5 times more zinc compared with control cheese. Zinc-fortified cheese had higher protein and slightly higher fat and ash contents, whereas moisture was similar for both cheeses. Zinc fortification did not affect culture activity during cheese making or during the 2-mo aging period. The TBA value of control cheese was higher than that of zinc-fortified cheese at the end of ripening. Although zinc-fortified cheese was harder as determined by the texture analyzer, the untrained consumer panel did not detect differences in the sensory attributes and overall quality of the cheeses. Fortification of 16 mg/kg zinc sulfate in cheese milk is a suitable approach to fortifying Cheddar cheese without changing the quality of Cheddar cheese.

  1. Zinc and prostatic cancer

    PubMed Central

    Song, Yang; Ho, Emily

    2014-01-01

    Purpose of review Aim to understand the connection between zinc and prostatic cancer, and to summarize the recent findings about the functions of zinc in the maintenance of prostate health. Recent findings Contradictory findings have been reported by epidemiologic studies examining the association between zinc intake and the risk of prostate cancer. However, a growing body of experimental evidence support that high zinc levels are essential for prostate health. The possible mechanisms include the effects of zinc on the inhibition of terminal oxidation, induction of mitochondrial apoptogenesis, and suppression of NFκB activity. The most recent finding is the effects of zinc in the maintenance of DNA integrity in normal prostate epithelial cells (PrEC) by modulating the expression and activity of DNA repair and damage response proteins, especially p53. Zinc depletion in PrEC increased p53 expression but compromised p53 DNA binding activity resulting an impaired DNA repair function. Moreover, recent findings support the role of zinc transporters as tumor suppressors in the prostate. Summary Future studies need to discover sensitive and specific zinc biomarkers and perform more in vivo studies on the effects of zinc on prostate functions in normal animals or prostate cancer models. PMID:19684515

  2. [Zinc and type 2 diabetes].

    PubMed

    Fukunaka, Ayako; Fujitani, Yoshio

    2016-07-01

    Pancreatic β cells contain the highest amount of zinc among cells within the human body, and hence, the relationship between zinc and diabetes has been a topic of great interest. While many studies demonstrating possible involvement of zinc deficiency in diabetes have been reported, precise mechanisms how zinc regulates glucose metabolism are still far from understood. Recent studies revealed that zinc can transmit signals that are driven by a variety of zinc transporters in a tissue and cell-type specific manner and deficiency in some zinc transporters may cause human diseases. Here, we review the role of zinc in metabolism particularly focusing on the emerging role of zinc transporters in diabetes.

  3. Hydrothermal syntheses, crystal structures and luminescence properties of zinc(II) and cadmium(II) coordination polymers based on bifunctional 3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid

    SciTech Connect

    Li, Na; Guo, Hui-Lin; Hu, Huai-Ming; Song, Juan; Xu, Bing; Yang, Meng-Lin; Dong, Fa-Xin; Xue, Gang-Lin

    2013-02-15

    Five new coordination polymers, [Zn{sub 2}(ctpy){sub 2}Cl{sub 2}]{sub n} (1), [Zn{sub 2}(ctpy){sub 2}(ox)(H{sub 2}O){sub 2}]{sub n} (2), [Zn{sub 2}(ctpy)(3-btc)(H{sub 2}O)]{sub n}{center_dot}0.5nH{sub 2}O (3), [Cd(ctpy){sub 2}(H{sub 2}O)]{sub n} (4), [Cd{sub 4}(ctpy){sub 2}(2-btc){sub 2}(H{sub 2}O){sub 2}]{sub n}{center_dot}2nH{sub 2}O (5), (Hctpy=3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid, H{sub 2}ox=oxalic acid, H{sub 3}(3-btc)=1,3,5-benzenetricarboxylic acid, H{sub 3}(2-btc)=1,2,4-benzenetricarboxylic acid) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray diffraction. Compounds 1-2 are a one-dimensional chain with weak interactions to form 3D supramolecular structures. Compound 3 is a 4-nodal 3D topology framework comprised of binuclear zinc units and (ctpy){sup -} anions. Compound 4 shows two dimensional net. Compound 5 is a (4,5,6)-connected framework with {l_brace}4{sup 4}{center_dot}6{sup 2}{r_brace}{l_brace}4{sup 6}{center_dot}6{sup 4}{r_brace}{sub 2}{l_brace}4{sup 9}{center_dot}6{sup 6}{r_brace} topology. In addition, the thermal stabilities and photoluminescence properties of 1-5 were also studied in the solid state. - Graphical abstract: Five new Zn/Cd compounds with 3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid were prepared. The photoluminescence and thermal stabilities properties of 1-5 were investigated in the solid state. Highlights: Black-Right-Pointing-Pointer Five new zinc/cadmium metal-organic frameworks have been hydrothermal synthesized. Black-Right-Pointing-Pointer The structural variation is attributed to the diverse metal ions and auxiliary ligand. Black-Right-Pointing-Pointer Compounds 1-5 exhibit 1D ring chain, 2D layer and 3D open-framework, respectively. Black-Right-Pointing-Pointer These compounds exhibit strong solid state luminescence emission at room temperature.

  4. Novel electrolyte additives to enhance zinc electrode cycle life

    SciTech Connect

    Doddapaneni, N.; Ingersoll, D.

    1995-11-01

    Electrochemical power sources that utilize zinc electrodes possess many advantages. Zinc is abundantly available, benign, inexpensive, stable over a wide operating temperature range, and has a high oxidation potential. In spite of these advantageous characteristics, rechargeable electrochemical systems based on zinc chemistry have not found widespread use. The major disadvantages of zinc electrodes are that they have limited cycle life due to zinc slumping and zinc electrode shape changes in alkaline solutions resulting from the solubility of zincate (Zn(OH){sub 4}{sup 2-}) in these solutions. As a result, premature cell failure often results due to cell shorting caused by dendritic growth as well as zinc slumping. In this paper we describe the chemical and physical characteristics of electrolyte solutions employing additives, particularly for zinc based electrochemical systems. These electrolytes are prepared using the alkali metal salts of 1,3,5-phenyltrisulfonic acid in combination with potassium hydroxide. The alkali metal salts of the acid possess good thermal stability, good ionic conductivity, and have a wide electrochemical voltage window in aqueous systems. With these electrolyte solutions improved cycle life was achieved in Zn/NiOOH and Zn/AgO. Improved cycle life with this additive is attributed to decreased zincate solubility, resulting in reduced zinc slumping and electrode shape changes. In addition, increased shelf-life and reduced self-discharge were also observed in many alkaline power sources.

  5. The LZT proteins; the LIV-1 subfamily of zinc transporters.

    PubMed

    Taylor, Kathryn M; Nicholson, Robert I

    2003-04-01

    Zinc is an essential ion for cells with a vital role to play in controlling the cellular processes of the cell, such as growth, development and differentiation. Specialist proteins called zinc transporters control the level of intracellular zinc in cells. In mammals, the ZIP family of zinc transporters has a pivotal role in maintaining the correct level of intracellular zinc by their ability to transport zinc into cells from outside, although they may also transport metal ions other than zinc. There are now recognised to be four subfamilies of the ZIP transporters, including the recently discovered LIV-1 subfamily which has similarity to the oestrogen-regulated gene LIV-1, previously implicated in metastatic breast cancer. We call this new subfamily LZT, for LIV-1 subfamily of ZIP zinc Transporters. Here we document current knowledge of this previously uncharacterised group of proteins, which includes the KE4 proteins. LZT proteins are similar to ZIP transporters in secondary structure and ability to transport metal ions across the plasma membrane or intracellular membranes. However, LZT proteins have a unique motif (HEXPHEXGD) with conserved proline and glutamic acid residues, unprecedented in other zinc transporters. The localisation of LZT proteins to lamellipodiae mirrors cellular location of the membrane-type matrix metalloproteases. These differences to other zinc transporters may be consistent with an alternative role for LZT proteins in cells, particularly in diseases such as cancer.

  6. Histidine Protects Against Zinc and Nickel Toxicity in Caenorhabditis elegans

    PubMed Central

    Murphy, John T.; Bruinsma, Janelle J.; Schneider, Daniel L.; Collier, Sara; Guthrie, James; Chinwalla, Asif; Robertson, J. David; Mardis, Elaine R.; Kornfeld, Kerry

    2011-01-01

    Zinc is an essential trace element involved in a wide range of biological processes and human diseases. Zinc excess is deleterious, and animals require mechanisms to protect against zinc toxicity. To identify genes that modulate zinc tolerance, we performed a forward genetic screen for Caenorhabditis elegans mutants that were resistant to zinc toxicity. Here we demonstrate that mutations of the C. elegans histidine ammonia lyase (haly-1) gene promote zinc tolerance. C. elegans haly-1 encodes a protein that is homologous to vertebrate HAL, an enzyme that converts histidine to urocanic acid. haly-1 mutant animals displayed elevated levels of histidine, indicating that C. elegans HALY-1 protein is an enzyme involved in histidine catabolism. These results suggest the model that elevated histidine chelates zinc and thereby reduces zinc toxicity. Supporting this hypothesis, we demonstrated that dietary histidine promotes zinc tolerance. Nickel is another metal that binds histidine with high affinity. We demonstrated that haly-1 mutant animals are resistant to nickel toxicity and dietary histidine promotes nickel tolerance in wild-type animals. These studies identify a novel role for haly-1 and histidine in zinc metabolism and may be relevant for other animals. PMID:21455490

  7. Improved zinc electrode and rechargeable zinc-air battery

    SciTech Connect

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  8. Zinc electrode and rechargeable zinc-air battery

    SciTech Connect

    Ross, P.N. Jr.

    1989-06-27

    This patent describes an improved zinc electrode for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed.

  9. Red blood cell metallothionein as an indicator of zinc status during pregnancy RBC metallothionein, zinc status and pregnancy

    PubMed Central

    Caulfield, Laura E.; Donangelo, Carmen M.; Chen, Ping; Junco, Jorge; Merialdi, Mario; Zavaleta, Nelly

    2008-01-01

    Objective to describe the levels and patterns of change in red blood cell (RBC) metallothionein (MT) during pregnancy and the neonate, and relate RBCMT to other indicators of zinc and iron status. Research Methods & Procedures As part of a double-masked controlled trial of prenatal zinc supplementation among 242 Peruvian pregnant women, we determined RBCMT at enrollment (10–16 wk), 28 and 36 wk gestation, and in the cord blood at delivery in 158 women (86 who received daily supplements containing 60 mg iron and 250 ug folic acid, and 72 whose supplements also contained 25 mg zinc). In addition we measured plasma and urinary zinc concentrations, and hemoglobin and serum ferritin, and on a limited sample, we measured RBC zinc and placental MT. Results RBCMT increased during pregnancy, and levels in the cord blood approximated maternal values at 36 wk. Only RBC zinc at 36 wk differed by supplement type (P <0.05). Increases in RBCMT over pregnancy were however, related to early pregnancy RBC zinc and inversely with the decline in plasma zinc from baseline to 36 weeks gestation. Conclusion Changes in RBCMT throughout pregnancy were consistent with the hypothesized role of MT in regulating zinc homeostasis. RBCMT appears to not be responsive during pregnancy to changes in zinc status achieved with supplements. PMID:18602250

  10. Zinc in Entamoeba invadens.

    NASA Technical Reports Server (NTRS)

    Morgan, R. S.; Sattilaro, R. F.

    1972-01-01

    Atomic absorption spectroscopy, electron microprobe analysis, and dithizone staining of trophozoites and cysts of Entamoeba invadens demonstrate that these cells have a high concentration of zinc (approximately one picogram per cell or 1% of their dry weight). In the cysts of this organism, the zinc is confined to the chromatoid bodies, which previous work has shown to contain crystals of ribosomes. The chemical state and function of this zinc are unknown.

  11. Zinc modulates PPARgamma signaling and activation of porcine endothelial cells.

    PubMed

    Meerarani, Purushothaman; Reiterer, Gudrun; Toborek, Michal; Hennig, Bernhard

    2003-10-01

    Dietary zinc has potent antioxidant and anti-inflammatory properties and is a critical component of peroxisome proliferator-activated receptor (PPAR) gene expression and regulation. To assess the protective mechanisms of PPARgamma in endothelial cell dysfunction and the role of zinc in the modulation of PPARgamma signaling, cultured porcine pulmonary artery endothelial cells were exposed to the membrane-permeable zinc chelator N,N,N'N'-tetrakis (2-pyridylmethyl)-ethylene diamine (TPEN), thiazolidinedione (TZD; PPARgamma agonist) or bisphenol A diglycidyl ether (BADGE; PPARgamma antagonist). Subsequently, endothelial cells were activated by treatment with linoleic acid (90 micro mol/L) for 6 h. Zinc chelation by TPEN increased the DNA binding activity of nuclear factor (NF)-kappaB and activator protein (AP)-1, decreased PPARgamma expression and activation as well as up-regulated interleukin (IL)-6 expression and production. These effects were fully reversed by zinc supplementation. In addition, exposure to TZD down-regulated linoleic acid-induced DNA binding activity of NF-kappaB and AP-1, whereas BADGE further induced activation of these oxidative stress-sensitive transcription factors. Most importantly, the TZD-mediated down-regulation of NF-kappaB and AP-1 and reduced inflammatory response were impaired during zinc chelation. These data suggest that zinc plays a critical role in PPARgamma signaling in linoleic acid-induced endothelial cell activation and indicate that PPARgamma signaling is impaired during zinc deficiency.

  12. Xylan hydrolysis in zinc chloride solution

    SciTech Connect

    Cao, N.J.; Xu, Q.; Chen, L.F

    1995-12-31

    Xylan is the major component of hemicellulose, which consists of up to one-third of the lignocellulosic biomass. When the zinc chloride solution was used as a pretreatment agent to facilitate cellulose hydrolysis, hemicellulose was hydrolyzed during the pretreatment stage. In this study, xylan was used as a model to study the hydrolysis of hemicellulose in zinc chloride solution. The degradation of xylose that is released from xylan was reduced by the formation of zinc-xylose complex. The xylose yield was > 90% (w/w) at 70{degrees}C. The yield and rate of hydrolysis were a function of temperature and the concentration of zinc chloride. The ratio of zinc chloride can be decreased from 9 to 1.3 (w/w). At this ratio, 76% of xylose yield was obtained. When wheat straw was pretreated with a concentrated zinc chloride solution, the hemicellulose hydrolysate contained only xylose and trace amounts of arabinose and oligosaccharides. With this approach, the hemicellulose hydrolysate can be separated from cellulose residue, which would be hydrolyzed subsequently to glucose by acid or enzymes to produce glucose. This production scheme provided a method to produce glucose and xylose in different streams, which can be fermented in separated fermenters.

  13. Zinc and Chlamydia trachomatis

    SciTech Connect

    Sugarman, B.; Epps, L.R.

    1985-07-01

    Zinc was noted to have significant effects upon the infection of McCoy cells by each of two strains of Chlamydia trachomatis. With a high or low Chlamydia inoculant, the number of infected cells increased up to 200% utilizing supplemental zinc (up to 1 x 10/sup -4/ M) in the inoculation media compared with standard Chlamydia cultivation media (8 x 10/sup -6/ M zinc). Ferric chloride and calcium chloride did not effect any such changes. Higher concentrations of zinc, after 2 hr of incubation with Chlamydia, significantly decreased the number of inclusions. This direct effect of zinc on the Chlamydia remained constant after further repassage of the Chlamydia without supplemental zinc, suggesting a lethal effect of the zinc. Supplemental zinc (up to 10/sup -4/ M) may prove to be a useful addition to inoculation media to increase the yield of culturing for Chlamydia trachomatis. Similarly, topical or oral zinc preparations used by people may alter their susceptibility to Chamydia trachomatis infections.

  14. Zinc: An Essential Micronutrient

    PubMed Central

    SAPER, ROBERT B.; RASH, REBECCA

    2009-01-01

    Zinc is an essential micronutrient for human metabolism that catalyzes more than 100 enzymes, facilitates protein folding, and helps regulate gene expression. Patients with malnutrition, alcoholism, inflammatory bowel disease, and malabsorption syndromes are at an increased risk of zinc deficiency. Symptoms of zinc deficiency are nonspecific, including growth retardation, diarrhea, alopecia, glossitis, nail dystrophy, decreased immunity, and hypogonadism in males. In developing countries, zinc supplementation may be effective for the prevention of upper respiratory infection and diarrhea, and as an adjunct treatment for diarrhea in malnourished children. Zinc in combination with antioxidants may be modestly effective in slowing the progression of intermediate and advanced age-related macular degeneration. Zinc is an effective treatment for Wilson disease. Current data do not support zinc supplementation as effective for upper respiratory infection, wound healing, or human immunodeficiency virus. Zinc is well tolerated at recommended dosages. Adverse effects of long-term high-dose zinc use include suppressed immunity, decreased high-density lipoprotein cholesterol levels, anemia, copper deficiency, and possible genitourinary complications. PMID:20141096

  15. Zinc coordination spheres in protein structures.

    PubMed

    Laitaoja, Mikko; Valjakka, Jarkko; Jänis, Janne

    2013-10-07

    Zinc metalloproteins are one of the most abundant and structurally diverse proteins in nature. In these proteins, the Zn(II) ion possesses a multifunctional role as it stabilizes the fold of small zinc fingers, catalyzes essential reactions in enzymes of all six classes, or assists in the formation of biological oligomers. Previously, a number of database surveys have been conducted on zinc proteins to gain broader insights into their rich coordination chemistry. However, many of these surveys suffer from severe flaws and misinterpretations or are otherwise limited. To provide a more comprehensive, up-to-date picture on zinc coordination environments in proteins, zinc containing protein structures deposited in the Protein Data Bank (PDB) were analyzed in detail. A statistical analysis in terms of zinc coordinating amino acids, metal-to-ligand bond lengths, coordination number, and structural classification was performed, revealing coordination spheres from classical tetrahedral cysteine/histidine binding sites to more complex binuclear sites with carboxylated lysine residues. According to the results, coordination spheres of hundreds of crystal structures in the PDB could be misinterpreted due to symmetry-related molecules or missing electron densities for ligands. The analysis also revealed increasing average metal-to-ligand bond length as a function of crystallographic resolution, which should be taken into account when interrogating metal ion binding sites. Moreover, one-third of the zinc ions present in crystal structures are artifacts, merely aiding crystal formation and packing with no biological significance. Our analysis provides solid evidence that a minimal stable zinc coordination sphere is made up by four ligands and adopts a tetrahedral coordination geometry.

  16. Zinc requirements of tropical legume cover crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical soils are deficient in essential plant nutrients, including zinc (Zn). Using cover crops in cropping systems is an important option to improve soil fertility for sustainable crop production. However, success of cover crops in highly weathered tropical infertile acid soils is greatly influen...

  17. Vegetarian diets across the lifecycle: impact on zinc intake and status.

    PubMed

    Foster, Meika; Samman, Samir

    2015-01-01

    Optimal zinc status is an important consideration when evaluating the nutritional adequacy of vegetarian diets. In the absence of animal tissue sources of zinc and with increased intake of inhibitors of zinc absorption, phytic acid in particular, the bioavailability of zinc is thought to be lower from vegetarian as compared to omnivorous diets. The aim of this chapter is to review the research that examines the effects of vegetarian compared to omnivorous diets on zinc intake and zinc status in the elderly, adults, children, pregnancy, and lactation. A narrative review of the published literature was undertaken, focusing on observational studies in humans that reported zinc intake and biomarkers of zinc status at various stages of the life cycle. Compared to their respective nonvegetarian control groups, adult male and female vegetarians have lower dietary zinc intakes and serum zinc concentrations. However in the elderly, children, and in women during pregnancy and lactation, there is insufficient evidence to determine whether zinc intake and status are lower in vegetarians compared to omnivores. Inconsistencies in study findings reflect variations inherent in the definition of vegetarian diets, and in many instances compromised statistical power due to a small sample size. Improved methods for the assessment of zinc status are required to determine whether homeostatic responses are sufficient to maintain an adequate zinc status in vegetarians, particularly during times of increased requirement. Appropriate dietary advice to increase the zinc content and bioavailability of vegetarian diets throughout the life cycle is prudent.

  18. Effect of modifying agents on the hydrophobicity and yield of zinc borate synthesized by zinc oxide

    NASA Astrophysics Data System (ADS)

    Acarali, Nil Baran; Bardakci, Melek; Tugrul, Nurcan; Derun, Emek Moroydor; Piskin, Sabriye

    2013-06-01

    The aim of this study was to synthesize zinc borate using zinc oxide, reference boric acid, and reference zinc borate (reference ZB) as the seed, and to investigate the effects of modifying agents and reaction parameters on the hydrophobicity and yield, respectively. The reaction parameters include reaction time (1-5 h), reactant ratio (H3BO3/ZnO by mass: 2-5), seed ratio (seed crystal/(H3BO3+ZnO) by mass: 0-2wt%), reaction temperature (50-120°C), cooling temperature (10-80°C), and stirring rate (400-700 r/min); the modifying agents involve propylene glycol (PG, 0-6wt%), kerosene (1wt%-6wt%), and oleic acid (OA, 1wt%-6wt%) with solvents (isopropyl alcohol (IPA), ethanol, and methanol). The results of reaction yield obtained from either magnetically or mechanically stirred systems were compared. Zinc borate produced was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and contact angle tests to identify the hydrophobicity. In conclusion, zinc borate is synthesized successfully under the optimized reaction conditions, and the different modifying agents with various solvents affect the hydrophobicity of zinc borate.

  19. Preparation of zinc orthotitanate

    NASA Technical Reports Server (NTRS)

    Gates, D. W.; Gilligan, J. E.; Harada, Y.; Logan, W. R.

    1977-01-01

    Use of decomposable precursors to enhance zinc oxide-titanium dioxide reaction and rapid fixing results in rapid preparation of zinc orthotitanate powder pigment. Preparation process allows production under less stringent conditions. Elimination of powder grinding results in purer that is less susceptible to color degradation.

  20. On the Lewis acidic character of bis(salicylaldiminato)zinc(ii) Schiff-base complexes: a computational and experimental investigation on a series of compounds varying the bridging diimine.

    PubMed

    Forte, Giuseppe; Oliveri, Ivan Pietro; Consiglio, Giuseppe; Failla, Salvatore; Di Bella, Santo

    2017-03-20

    This contribution explores the effect of the 1,2-diimine bridge upon the Lewis acidic character of a series of bis(salicylaldiminato)zinc(ii), ZnL, Schiff-base complexes. The structure of the monomeric and dimeric ZnL complexes, and of the 1 : 1 adducts with pyridine, ZnL·py, is fully optimized by means of DFT calculations. The Gibbs free energy for the dimerization of ZnL complexes and for the formation of ZnL·py adducts is evaluated by accurate composite calculations. It accounts for their spontaneous dimerization and for the greater stability of the ZnL·py adducts with respect to the dimers. Calculated binding constants for the formation ZnL·py adducts are in excellent agreement with experimentally derived values, thus allowing establishing a relative Lewis acidity scale within this series. While the complex derived from the non-conjugated ethylenediamine reveals the lowest Lewis acidity, the complex derived from the diaminomaleonitrile represents the stronger Lewis acidic species. These findings are in good agreement with the greater catalytic activity observed for ZnL Schiff-base complexes derived from conjugated 1,2-diamines in comparison to the non-conjugated analogues. Both in ZnL dimers as well as in ZnL·py adducts the geometry of the coordination sphere seems to be a relevant feature to assess their relative stability. Thus, while the quasi-planarity of ZnL monomers of the conjugated diimines is an unfavourable feature in the dimerization process, it represents an important aspect in stabilizing ZnL·py adducts in a nearly perfect square-pyramidal coordination. These features are relevant for the sensing and catalytic properties of these complexes.

  1. Promyelocytic Leukemia Zinc Finger-Retinoic Acid Receptor α (PLZF-RARα), an Oncogenic Transcriptional Repressor of Cyclin-dependent Kinase Inhibitor 1A (p21WAF/CDKN1A) and Tumor Protein p53 (TP53) Genes*

    PubMed Central

    Choi, Won-Il; Yoon, Jae-Hyeon; Kim, Min-Young; Koh, Dong-In; Licht, Jonathan D.; Kim, Kunhong; Hur, Man-Wook

    2014-01-01

    Promyelocytic leukemia zinc finger-retinoic acid receptor α (PLZF-RARα) is an oncogene transcriptional repressor that is generated by a chromosomal translocation between the PLZF and RARα genes in acute promyelocytic leukemia (APL-type) patients. The molecular interaction between PLZF-RARα and the histone deacetylase corepressor was proposed to be important in leukemogenesis. We found that PLZF-RARα can repress transcription of the p21WAF/CDKN1A gene, which encodes the negative cell cycle regulator p21 by binding to its proximal promoter Sp1-binding GC-boxes 3, 4, 5/6, a retinoic acid response element (RARE), and distal p53-responsive elements (p53REs). PLZF-RARα also acts as a competitive transcriptional repressor of p53, RARα, and Sp1. PLZF-RARα interacts with co-repressors such as mSin3A, NCoR, and SMRT, thereby deacetylating histones Ac-H3 and Ac-H4 at the CDKN1A promoter. PLZF-RARα also interacts with the MBD3-NuRD complex, leading to epigenetic silencing of CDKN1A through DNA methylation. Furthermore, PLZF-RARα represses TP53 and increases p53 protein degradation by ubiquitination, further repressing p21 expression. Resultantly, PLZF-RARα promotes cell proliferation and significantly increases the number of cells in S-phase. PMID:24821728

  2. Zinc induces apatite and scholzite formation during dentin remineralization.

    PubMed

    Osorio, R; Osorio, E; Cabello, I; Toledano, M

    2014-01-01

    The aim of this study was to ascertain whether zinc may improve the repair ability of demineralized dentin. Dentin disks were demineralized by phosphoric acid during 15 s and immersed in artificial saliva, remineralizing solution, a zinc chloride solution and a zinc oxide solution. Dentin specimens were analyzed after 24 h and 1 month of storage. Surface morphology was assessed by atomic force and scanning electron microscopy, mechanical properties were analyzed by nanohardness testing in a TriboIndenter, and chemical changes at the surfaces were determined by X-ray diffraction, Raman and energy-dispersive elemental analyses. After phosphoric acid application, dentin was only partially demineralized. Demineralized dentin was remineralized after 24 h of storage in any of the tested solutions (nanohardness increased and hydroxylapatite formation was detected by Raman). Remineralization was maintained up to 1 month in dentin stored in remineralizing solution, zinc chloride and zinc oxide. Zinc and phosphate were important for hydroxylapatite homeostasis. Scholzite formation was encountered in dentin stored in zinc-containing solutions. Zinc might allow to reach the balance between dentin demineralization and remineralization processes.

  3. Effects of Zinc Chelators on Aflatoxin Production in Aspergillus parasiticus

    PubMed Central

    Wee, Josephine; Day, Devin M.; Linz, John E.

    2016-01-01

    Zinc concentrations strongly influence aflatoxin accumulation in laboratory media and in food and feed crops. The presence of zinc stimulates aflatoxin production, and the absence of zinc impedes toxin production. Initial studies that suggested a link between zinc and aflatoxin biosynthesis were presented in the 1970s. In the present study, we utilized two zinc chelators, N,N,N′,N′-tetrakis (2-pyridylmethyl) ethane-1,2-diamine (TPEN) and 2,3-dimercapto-1-propanesulfonic acid (DMPS) to explore the effect of zinc limitation on aflatoxin synthesis in Aspergillus parasiticus. TPEN but not DMPS decreased aflatoxin biosynthesis up to six-fold depending on whether A. parasiticus was grown on rich or minimal medium. Although we observed significant inhibition of aflatoxin production by TPEN, no detectable changes were observed in expression levels of the aflatoxin pathway gene ver-1 and the zinc binuclear cluster transcription factor, AflR. Treatment of growing A. parasiticus solid culture with a fluorescent zinc probe demonstrated an increase in intracellular zinc levels assessed by increases in fluorescent intensity of cultures treated with TPEN compared to controls. These data suggest that TPEN binds to cytoplasmic zinc therefore limiting fungal access to zinc. To investigate the efficacy of TPEN on food and feed crops, we found that TPEN effectively decreases aflatoxin accumulation on peanut medium but not in a sunflower seeds-derived medium. From an application perspective, these data provide the basis for biological differences that exist in the efficacy of different zinc chelators in various food and feed crops frequently contaminated by aflatoxin. PMID:27271668

  4. Exploring zinc coordination in novel zinc battery electrolytes.

    PubMed

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2014-06-14

    The coordination of zinc ions by tetraglyme has been investigated here to support the development of novel electrolytes for rechargeable zinc batteries. Zn(2+) reduction is electrochemically reversible from tetraglyme. The spectroscopic data, molar conductivity and thermal behavior as a function of zinc composition, between mole ratios [80 : 20] and [50 : 50] [tetraglyme : zinc chloride], all suggest that strong interactions take place between chloro-zinc complexes and tetraglyme. Varying the concentration of zinc chloride produces a range of zinc-chloro species (ZnClx)(2-x) in solution, which hinder full interaction between the zinc ion and tetraglyme. Both the [70 : 30] and [50 : 50] mixtures are promising electrolyte candidates for reversible zinc batteries, such as the zinc-air device.

  5. Zinc absorption from low phytic acid genotypes of maize (Zea mays L.), Barley (Hordeum vulgare L.), and Rice (Oryza sativa L.) assessed in a suckling rat pup model.

    PubMed

    Lönnerdal, Bo; Mendoza, Concepcion; Brown, Kenneth H; Rutger, J Neil; Raboy, Victor

    2011-05-11

    Dietary phytic acid is a major causative factor for low Zn bioavailability in many cereal- and legume-based diets. The bioavailability of Zn in seed of low phytic acid (lpa) variants of maize ( Zea mays L.), rice ( Oryza sativa L.), and barley ( Hordeum vulgare L.) was evaluated using a suckling rat pup model. Suckling rat pups (14 days old, n = 6-8/treatment) were fasted for 6 h and intubated with (65)Zn-radiolabeled suspensions prepared using seed produced by either wild-type (normal phytic acid) or lpa genotypes of each cereal. Test solutions were radiolabeled overnight (all genotypes) or immediately prior to intubation (barley genotypes). Pups were killed 6 h postintubation and tissues removed and counted in a gamma counter. Zn absorption was low from wild-type genotypes of maize (21, 33%) and rice (26%), and phytic acid reduction resulted in significantly higher Zn absorption, 47-52 and 35-52%, respectively. Zn absorption from wild-type barley incubated overnight was high (86-91%), and phytate reduction did not improve Zn absorption (84-90%), which is likely due to endogenous phytase activity. When the wild-type barley solutions were prepared immediately before intubation, Zn absorption was significantly lower (63, 78%) than from the lpa cultivars (92, 96%). Variation in seed or flour phenolic acid levels did not affect Zn absorption. Differences in seed Zn levels did not substantially affect Zn absorption. Thus, when phytic acid is abundant in a diet, it has a larger effect on Zn absorption than the level of Zn. Therefore, reducing the phytic acid content of staple cereal grains may contribute to enhancing Zn nutrition of populations consuming these staple foods.

  6. Zinc bioavailability in rats fed a plant-based diet: a study of fermentation and zinc supplementation

    PubMed Central

    Lazarte, Claudia E.; Vargas, Mirian; Granfeldt, Yvonne

    2015-01-01

    Background Zinc deficiency is a significant problem, in developing countries and in vegetarians, which can be caused by plant-based diets. Thus, dietary strategies, such as fermentation, to improve zinc bioavailability of diets should be investigated. Objective To improve zinc bioavailability in a plant-based diet by the inclusion of fermented food. Design Cassava tubers were fermented and made to replace the unfermented cassava in a basal plant-based diet, and compared with plant-based diets with and without zinc supplement. The zinc bioavailability of the diets was evaluated in Wistar rats that were fed these diets for 28 days. The evaluation was for zinc apparent absorption (ZnAA), serum zinc levels, and zinc deposits in liver and femur; in addition, the feed efficiency ratio (FER) of the diets and femur weight (FW) of the rats were evaluated. Results During the cassava fermentation, lactic acid increased and pH decreased (from 6.8 to 3.9), which is favorable for native phytase activity, resulting in a 90.2% reduction of phytate content in cassava. The diet containing fermented cassava showed significantly higher levels of ZnAA, FER, and FW (p<0.001). Moreover, the zinc levels in serum and femur were significantly higher (p<0.001) compared with the results of the diet with unfermented cassava. The results clearly show a higher zinc bioavailability in the diet containing fermented cassava and are comparable with the results obtained with the plant-based diet with zinc supplement. Conclusions In conclusion, the fermentation of cassava reduces the phytate content. The diet containing the fermented cassava represents a better nutritional alternative than the diet with unfermented cassava and is comparable with the zinc-supplemented diets. PMID:26626410

  7. Zinc antagonizes homocysteine-induced fetal heart defects in rats.

    PubMed

    He, Xiaoyu; Hong, Xinru; Zeng, Fang; Kang, Fenhong; Li, Li; Sun, Qinghua

    2009-09-01

    It has been suggested that zinc may have a protective role against heart defects during fetal development. We investigated the effects of zinc on the development of fetal cardiac malformations induced by homocysteine. Pregnant Sprague-Dawley rats were randomized into one of five groups: control (C), homocysteine (H), homocysteine + zinc (Z), homocysteine + folic acid (F), or homocysteine + zinc + folic acid (ZF) (each n = 8). Homocysteine (8 nmol/day) was administered intraperitoneally in the H, Z, F, and ZF groups on gestation days (GD) 8, 9, and 10. Zinc (30 mg/kg day), folic acid (30 mg/kg day), or both (30 mg/kg day each) were administered intragastrically daily in the Z, F, and ZF groups, respectively, throughout the pregnancy. In each group, two fetuses were removed on GD 13, 15, 17, and 19 and examined for cardiac malformations; maternal copper/zinc-containing-superoxide dismutase (Cu/Zn-SOD) activity and metallothionein type I (MT-1) mRNA expression were measured simultaneously. The prevalence of cardiac malformations was significantly higher in group H than in group C, and significantly lower in group Z than in group H at the studied time points. Cu/Zn-SOD activity and MT-1 mRNA levels were significantly lower in group H than in group C, and significantly higher in group Z than in group H. Our data suggest that zinc antagonizes homocysteine-induced teratogenic effects on the fetal heart, possibly via the inhibition of excessive peroxidation.

  8. Spectrophotometric determination of micro quantities of zinc in rocks

    USGS Publications Warehouse

    Huffman, C.; Lipp, H.H.; Rader, L.F.

    1963-01-01

    A chemical method is presented for the determination of microgram amounts of zinc in rocks. Zinc is absorbed on anion-exchange resin from 1.2 M hydrochloric acid and eluted with 0.01 M hydrochloric acid. A diethyldithiocarbamate separation removes traces of interfering elements from the eluate. The zinc-diethyldithiocarbamate complex is extracted into chloroform at pH 8.5 and reextracted from other elements in the chloroform solution with 0.16 M hydrochloric acid and finally determined spectrophotometrically as the zincon complex at 621 m??. The coefficient of variation of the method determined from replicate determinations of zinc on 75 selected samples of basalt, ranging in zinc content from 0.004 to 0.018 per cent, was found to be 6.3 per cent and essentially constant in the range of zinc content studied. This method of analysis has been used extensively for a study of zinc in basalts reported by Rader, Swadley, Huffman and Lipp (companion paper, 1963). ?? 1963.

  9. Surface nature of nanoparticle zinc-titanium oxide aerogel catalysts

    NASA Astrophysics Data System (ADS)

    Wang, Chien-Tsung; Lin, Jen-Chieh

    2008-05-01

    Nanoparticle zinc-titanium oxide materials were prepared by the aerogel approach. Their structure, surface state and reactivity were investigated. Zinc titanate powders formed at higher zinc loadings possessed a higher surface area and smaller particle size. X-ray photoelectron spectroscopy (XPS) revealed a stronger electronic interaction between Zn and Ti atoms in the mixed oxide structure and showed the formation of oxygen vacancy due to zinc doping into titania or zinc titanate matrices. The 8-45 nm aerogel particles were evaluated as catalysts for methanol oxidation in an ambient flow reactor. Carbon dioxide was favorably produced on the oxides with anion defects. Titanium based oxides exhibited a high selectivity to dimethyl ether, so that a strong Lewis acidic character suggested for the catalysts was associated primarily with the Ti 4+ center. Both methanol conversion and dimethyl ether formation rates increased with increasing the zinc content added to the oxide support. Results demonstrate that cubic zinc titanate phases produce new Lewis acid sites having also a higher reactivity and that the nature of the catalytic surface transforms from Lewis acidic to basic characters due to the presence of reactive oxygen vacancies.

  10. Designing Hydrolytic Zinc Metalloenzymes

    PubMed Central

    2015-01-01

    Zinc is an essential element required for the function of more than 300 enzymes spanning all classes. Despite years of dedicated study, questions regarding the connections between primary and secondary metal ligands and protein structure and function remain unanswered, despite numerous mechanistic, structural, biochemical, and synthetic model studies. Protein design is a powerful strategy for reproducing native metal sites that may be applied to answering some of these questions and subsequently generating novel zinc enzymes. From examination of the earliest design studies introducing simple Zn(II)-binding sites into de novo and natural protein scaffolds to current studies involving the preparation of efficient hydrolytic zinc sites, it is increasingly likely that protein design will achieve reaction rates previously thought possible only for native enzymes. This Current Topic will review the design and redesign of Zn(II)-binding sites in de novo-designed proteins and native protein scaffolds toward the preparation of catalytic hydrolytic sites. After discussing the preparation of Zn(II)-binding sites in various scaffolds, we will describe relevant examples for reengineering existing zinc sites to generate new or altered catalytic activities. Then, we will describe our work on the preparation of a de novo-designed hydrolytic zinc site in detail and present comparisons to related designed zinc sites. Collectively, these studies demonstrate the significant progress being made toward building zinc metalloenzymes from the bottom up. PMID:24506795

  11. Biofortification of Wheat Cultivars to Combat Zinc Deficiency.

    PubMed

    Chattha, Muhammad U; Hassan, Muhammad U; Khan, Imran; Chattha, Muhammad B; Mahmood, Athar; Chattha, Muhammad U; Nawaz, Muhammad; Subhani, Muhammad N; Kharal, Mina; Khan, Sadia

    2017-01-01

    Zinc (Zn) deficiency caused by inadequate dietary intake is a global nutritional problem, particularly in developing countries. Therefore, zinc biofortification of wheat and other cereal crops is being urgently addressed and highly prioritized as a research topic. A field study was planned to evaluate the influence of zinc application on grain yield, grain zinc content, and grain phytic acid concentrations of wheat cultivars, and the relationships between these parameters. Three wheat cultivars, C1 = Faisalabad-2008, C2 = Punjab-2011, and C3 = Millet-2011 were tested with five different methods of zinc application: T1 = control, T2 = seed priming, T3 = soil application, T4 = foliar application, and T5 = soil + foliar application. It was found that grain yield and grain zinc were positively correlated, whereas, grain phytic acid and grain zinc were significantly negatively correlated. Results also revealed that T5, T3, and T4 considerably increased grain yield; however, T2 only slightly enhanced grain yield. Grain zinc concentration increased from 33.1 and 33.7 mg kg(-1) in T1 to 62.3 and 63.1 mg kg(-1) in T5 in 2013-2014 and 2014-2015, respectively. In particular, T5 markedly decreased grain phytic acid content; however, maximum concentration was recorded in T1. Moreover, all the tested cultivars exhibited considerable variation in grain yield, grain zinc, and grain phytic acid content. In conclusion, T5 was found to be most suitable for both optimum grain yield and grain biofortification of wheat.

  12. Biofortification of Wheat Cultivars to Combat Zinc Deficiency

    PubMed Central

    Chattha, Muhammad U.; Hassan, Muhammad U.; Khan, Imran; Chattha, Muhammad B.; Mahmood, Athar; Chattha, Muhammad U.; Nawaz, Muhammad; Subhani, Muhammad N.; Kharal, Mina; Khan, Sadia

    2017-01-01

    Zinc (Zn) deficiency caused by inadequate dietary intake is a global nutritional problem, particularly in developing countries. Therefore, zinc biofortification of wheat and other cereal crops is being urgently addressed and highly prioritized as a research topic. A field study was planned to evaluate the influence of zinc application on grain yield, grain zinc content, and grain phytic acid concentrations of wheat cultivars, and the relationships between these parameters. Three wheat cultivars, C1 = Faisalabad-2008, C2 = Punjab-2011, and C3 = Millet-2011 were tested with five different methods of zinc application: T1 = control, T2 = seed priming, T3 = soil application, T4 = foliar application, and T5 = soil + foliar application. It was found that grain yield and grain zinc were positively correlated, whereas, grain phytic acid and grain zinc were significantly negatively correlated. Results also revealed that T5, T3, and T4 considerably increased grain yield; however, T2 only slightly enhanced grain yield. Grain zinc concentration increased from 33.1 and 33.7 mg kg−1 in T1 to 62.3 and 63.1 mg kg−1 in T5 in 2013–2014 and 2014–2015, respectively. In particular, T5 markedly decreased grain phytic acid content; however, maximum concentration was recorded in T1. Moreover, all the tested cultivars exhibited considerable variation in grain yield, grain zinc, and grain phytic acid content. In conclusion, T5 was found to be most suitable for both optimum grain yield and grain biofortification of wheat. PMID:28352273

  13. The secondary alkaline zinc electrode

    NASA Astrophysics Data System (ADS)

    McLarnon, Frank R.; Cairns, Elton J.

    1991-02-01

    The worldwide studies conducted between 1975 and 1990 with the aim of improving cell lifetimes of secondary alkaline zinc electrodes are overviewed. Attention is given the design features and characteristics of various secondary alkaline zinc cells, including four types of zinc/nickel oxide cell designs (vented static-electrolyte, sealed static-electrolyte, vibrating-electrode, and flowing-electrolyte); two types of zinc/air cells (mechanically rechargeable consolidated-electrode and mechanically rechargeable particulate-electrode); zinc/silver oxide battery; zinc/manganese dioxide cell; and zinc/ferric cyanide battery. Particular consideration is given to recent research in the fields of cell thermodynamics, zinc electrodeposition, zinc electrodissolution, zinc corrosion, electrolyte properties, mathematical and phenomenological models, osmotic pumping, nonuniform current distribution, and cell cycle-life perforamnce.

  14. Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions.

    PubMed

    Jiang, Shasha; Huang, Longbin; Nguyen, Tuan A H; Ok, Yong Sik; Rudolph, Victor; Yang, Hong; Zhang, Dongke

    2016-01-01

    Biochar adsorption may lower concentrations of soluble metals in pore water of sulphidic Cu/Pb-Zn mine tailings. Unlike soil, high levels of salinity and soluble cations are present in tailing pore water, which may affect biochar adsorption of metals from solution. In the present study, removal of soluble copper (Cu) and zinc (Zn) ions by soft- (pine) and hard-wood (jarrah) biochars pyrolysed at high temperature (about 700 °C) was evaluated under typical ranges of pH and salinity conditions resembling those in pore water of sulphidic tailings, prior to their direct application into the tailings. Surface alkalinity, cation exchange capacity, and negative surface charge of biochars affected Cu and Zn adsorption capacities. Quantitative comparisons were provided by fitting the adsorption equilibrium data with either the homogeneous or heterogeneous surface adsorption models (i.e. Langmuir and Freundlich, respectively). Accordingly, the jarrah biochar showed higher Cu and Zn adsorption capacity (Qmax=4.39 and 2.31 mg/g, respectively) than the softwood pine biochar (Qmax=1.47 and 1.00 mg/g). Copper and Zn adsorption by the biochars was favoured by high pH conditions under which they carried more negative charges and Cu and Zn ions were predicted undergoing hydrolysis and polymerization. Within the tested range, salinity had relatively weak effects on the adsorption, which perhaps influenced the surface charge and induced competition for negative charged sites between Na(+) and exchangeable Ca(2+) and/or heavy metal ions. Large amounts of waste wood/timber at many mine sites present a cost-effective opportunity to produce biochars for remediation of sulphidic tailings and seepage water.

  15. Determination of hydroxide and carbonate contents of alkaline electrolytes containing zinc

    NASA Technical Reports Server (NTRS)

    Otterson, D. A.

    1975-01-01

    A method to prevent zinc interference with the titration of OH- and CO3-2 ions in alkaline electrolytes with standard acid is presented. The Ba-EDTA complex was tested and shown to prevent zinc interference with acid-base titrations without introducing other types of interference. Theoretical considerations indicate that this method can be used to prevent interference by other metals.

  16. Anti-inflammatory activity and gastric lesions induced by zinc-tenoxicam.

    PubMed

    Nascimento, Jorge Willian L; Santos, Luiz Henrique; Nothenberg, Michael S; Coelho, Márcio M; Oga, Seizi; Tagliati, Carlos A

    2003-06-01

    Oral administration of tenoxicam or zinc-tenoxicam complex inhibited to a similar extent carrageenin-induced paw oedema and granulomatous tissue formation in rats as well as the acetic acid induced writhing response in mice. Gastric lesions induced by oral administration of zinc-tenoxicam were reduced in number and severity when compared with those induced by tenoxicam or the co-administration of tenoxicam and zinc acetate. However, after intraperitoneal administration, both zinc-tenoxicam and tenoxicam plus zinc acetate induced a reduced number of gastric lesions as compared with tenoxicam.

  17. Neuronal zinc stores are modulated by non-steroidal anti-inflammatory drugs: an optical analysis in cultured hippocampal neurons.

    PubMed

    Love, Rachal; Salazar, Gloria; Faundez, Victor

    2005-11-02

    Zinc chelation and non-steroidal anti-inflammatory drugs (NSAIDs) have been explored as potential neuroprotective agents. However, it remains unknown whether NSAIDs and zinc chelation may converge on a similar cellular process. Using two-photon microscopy to observe hippocampal neurons labeled with a zinc-sensitive dye, we provide evidence that three chemically unrelated NSAIDs, niflumic acid, ibuprofen, and naproxen, acutely increase intracellular zinc stores from extracellular metal pools. Phospholipase A2 inhibitors triggered similar responses, suggesting that NSAIDs likely control zinc stores by their activity as cyclooxygenase inhibitors. These results provide evidence for a new link between cyclooxygenase metabolites and the mechanisms controlling neuronal zinc pools.

  18. Zinc electrode and rechargeable zinc-air battery

    SciTech Connect

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  19. Folic acid and protein content in maternal diet and postnatal high-fat feeding affect the tissue levels of iron, zinc, and copper in the rat.

    PubMed

    Król, Ewelina; Krejpcio, Zbigniew; Chmurzynska, Agata

    2011-12-01

    Although maternal, fetal, and placental mechanisms compensate for disturbances in the fetal environment, any nutritional inadequacies present during pregnancy may affect fetal metabolism, and their consequences may appear in later life. The aim of the present study is to investigate the influence of maternal diet during gestation on Fe, Zn, and Cu levels in the livers and kidneys of adult rats. The study was carried out on the offspring (n = 48) of mothers fed either a protein-balanced or a protein-restricted diet (18% vs. 9% casein) during pregnancy, with or without folic acid supplementation (0.005- vs. 0.002-g folic acid/kg diet). At 10 weeks of age, the offspring of each maternal group were randomly assigned to groups fed either the AIN-93G diet or a high-fat diet for 6 weeks, until the end of the experiment. The levels of Fe, Zn, and Cu in the livers and kidneys were determined by the F-AAS method. It was found that postnatal exposure to the high-fat diet was associated with increased hepatic Fe levels (p < 0.001), and with decreased liver Zn and Cu contents (p < 0.01 and p < 0.05, respectively), as well as with decreased renal Cu contents (p < 0.001). Moreover, the offspring's tissue mineral levels were also affected by protein and folic acid content in the maternal diet. Both prenatal protein restriction and folic acid supplementation increased the liver Zn content (p < 0.05) and the kidney Zn content (p < 0.001; p < 0.05, respectively), while folic acid supplementation resulted in a reduction in renal Cu level (p < 0.05). Summarizing, the results of this study show that maternal dietary folic acid and protein intake during pregnancy, as well as the type of postweaning diet, affect Fe, Zn, and Cu levels in the offspring of the rat. However, the mechanisms responsible for this phenomenon are unclear, and warrant further investigation.

  20. Micronutrients and women of reproductive potential: required dietary intake and consequences of dietary deficiency or excess. Part II--vitamin D, vitamin A, iron, zinc, iodine, essential fatty acids.

    PubMed

    Simpson, Joe Leigh; Bailey, Lynn B; Pietrzik, Klaus; Shane, Barry; Holzgreve, Wolfgang

    2011-01-01

    Part II of this review considers additional micronutrients. Vitamin D is a fat soluble vitamin found in foods of animal origins (fatty fish, liver oil) or fortified products (milk, cheese). Vitamin D deficiency is common in African-American women living in northern latitudes. Vitamin D supplementation may be needed to reach desired 25-(OH)D3 concentrations of >50 nmol/L. In foods of animal origin, preformed Vitamin A is present; in plants (fruits and vegetables) vitamin A precursors (β-carotenoids) are present. Vitamin A supplementation is usually not warranted, and in developing countries should not exceed 3000 μg (10,000 IU)/day. Iron in the form of haem-iron is found in meat, fish and poultry; non-haem (inorganic) iron is found in vegetables, fruits and grains. Iron supplementation may be necessary in the third trimester, earlier in pregnancy or in non-pregnant states if serum ferritin is <20 μg/L or haemoglobin <10.9 g/dL. Zinc is available in red meat, seafood including oysters and unpolished grains; supplementation is not necessary. To assure adequate iodine, food is fortified worldwide with iodated salt. If urinary iodine levels are low, supplementation is needed. Essential fatty acids requirements can be met by one to two portions of fish per week.

  1. Crystal structures and spectroscopic properties of zinc(II) ternary complexes of vitamin L, H' and their isomer m-aminobenzoic acid with bipyridine.

    PubMed

    Wang, Yue; Okabe, Nobuo

    2005-06-01

    The crystal structures of the three Zn(II) complexes, [Zn(bpy)(o-AB)2] (1) (bpy=2,2'-bipyridine, o-AB=o-aminobenzoic acid=Vitamin L), [Zn(bpy)(m-AB)Cl]2 (2) (m-AB=m-aminobenzoic acid), [Zn(bpy)(p-AB)Cl]*p-AB*H2O (3) (p-AB=p-aminobenzoic acid=Vitamin H'), have been determined and the basic coordination geometries and architectures organized by hydrogen-bonds and pi-pi interactions also characterized. The substitute amine group at ortho-, meta-, and para-position of AB plays an important role to produce completely different coordination motif of these complexes, further, in all complexes, aromatic amines are not coordinated to Zn(II) atom. While two different types of coordination modes of the carboxylate O atoms are present in these complexes: one mode consists of the usual Zn-O bond lengths (2.009(2)-2.251(2) A) in complex 1, 2 and 3; another consists of a very long Zn-O bond lengths (2.422(2) A) in complex 1. Each of the complexes has the characteristic UV absorption bands around 250-310 nm region, and the intense fluorescence band at near 325 nm.

  2. Supplementing young women with both zinc and iron protects zinc-related antioxidant indicators previously impaired by iron supplementation.

    PubMed

    Kamp, Fernanda; Donangelo, Carmen Marino

    2008-11-01

    Iron supplementation impairs antioxidant status, whereas zinc is recognized as an antioxidant micronutrient. We investigated the effect of supplementing both zinc and iron on iron, zinc, and antioxidant status in 18 women (22-31 y) studied during 2 sequential 8-wk periods. From wk 1 to 8, only iron (50 mg/d) (Fe period) was supplemented and from wk 9 to 16, zinc (25 mg/d) (Fe+Zn period) was also given but at a different time of the day. Indicators of iron (serum iron, iron-binding capacity, and serum ferritin), zinc (serum and urinary zinc), and antioxidant status [ferric-reducing ability of plasma (FRAP); erythrocyte osmotic fragility (EOF); erythrocyte aminolevulinic acid dehydratase (delta-ALAD) activity, and in vitro zinc-delta-ALAD activation (Zn-delta-ALAD%)] were measured at baseline and after each supplementation period. Fe period modified indicators of iron status as expected (P < 0.05) but did not affect indicators of zinc status. Fe+Zn period did not affect indicators of iron status but increased serum and urinary zinc (P < 0.02). Antioxidant status was impaired after the Fe period, as indicated by decreased FRAP (P < 0.005) and delta-ALAD activity (P < 0.05) and increased EOF (P < 0.01). After the Fe+Zn period, FRAP values tended to increase (P = 0.1), delta-ALAD activity and EOF returned to baseline values, and Zn-delta-ALAD% decreased (P < 0.001) compared with baseline. In conclusion, supplementing young women with both zinc and iron protects zinc-related antioxidant indicators previously impaired by iron supplementation without impairment of iron status.

  3. Microstructural and antibacterial properties of zinc-substituted cobalt ferrite nanopowders synthesized by sol-gel methods

    NASA Astrophysics Data System (ADS)

    Sanpo, Noppakun; Berndt, Christopher C.; Wang, James

    2012-10-01

    Zinc-substituted cobalt ferrite nanopowders were prepared via a sol-gel route using citric acid as a chelating agent. The influence of zinc concentration on the microstructure, crystal structure, surface wettability, surface roughness, and antibacterial property of zinc-substituted cobalt ferrite nanopowders was investigated systematically. The substitution of zinc influences slightly the microstructure, surface wettability, surface roughness, and crystal structure but strongly affects the antibacterial property of the cobalt ferrite nanopowders.

  4. Molecular dynamics of sialic acid analogues complex with cholera toxin and DFT optimization of ethylene glycol-mediated zinc nanocluster conjugation.

    PubMed

    Sharmila, D Jeya Sundara; Jino Blessy, J

    2017-01-01

    Cholera is an infectious disease caused by cholera toxin (CT) protein of bacterium Vibrio cholerae. A sequence of sialic acid (N-acetylneuraminic acid, NeuNAc or Neu5Ac) analogues modified in its C-5 position is modelled using molecular modelling techniques and docked against the CT followed by molecular dynamics simulations. Docking results suggest better binding affinity of NeuNAc analogue towards the binding site of CT. The NeuNAc analogues interact with the active site residues GLU:11, TYR:12, HIS:13, GLY:33, LYS:34, GLU:51, GLN:56, HIE:57, ILE:58, GLN:61, TRP:88, ASN:90 and LYS:91 through intermolecular hydrogen bonding. Analogues N-glycolyl-NeuNAc, N-Pentanoyl-NeuNAc and N-Propanoyl-NeuNAc show the least XPGscore (docking score) of -9.90, -9.16, and -8.91, respectively, and glide energy of -45.99, -42.14 and -41.66 kcal/mol, respectively. Stable nature of CT-N-glycolyl-NeuNAc, CT-N-Pentanoyl-NeuNAc and CT-N-Propanoyl-NeuNAc complexes was verified through molecular dynamics simulations, each for 40 ns using the software Desmond. All the nine NeuNAc analogues show better score for drug-like properties, so could be considered as suitable candidates for drug development for cholera infection. To improve the enhanced binding mode of NeuNAc analogues towards CT, the nine NeuNAc analogues are conjugated with Zn nanoclusters through ethylene glycol (EG) as carriers. The NeuNAc analogues conjugated with EG-Zn nanoclusters show better binding energy towards CT than the unconjugated nine NeuNAc analogues. The electronic structural optimization of EG-Zn nanoclusters was carried out for optimizing their performance as better delivery vehicles for NeuNAc analogues through density functional theory calculations. These sialic acid analogues may be considered as novel leads for the design of drug against cholera and the EG-Zn nanocluster may be a suitable carrier for sialic acid analogues.

  5. Endogenous Zinc in Neurological Diseases

    PubMed Central

    2005-01-01

    The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 2000 BC (for example, the Smith Papyrus), and zinc has apparently been used fairly steadily throughout Roman and modern times (for example, as the American lotion named for its zinc ore, 'Calamine'). It is, therefore, somewhat ironic that zinc is a relatively late addition to the pantheon of signal ions in biology and medicine. However, the number of biological functions, health implications and pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the calcium of the twenty-first century'. Here neurobiological roles of endogenous zinc is summarized. PMID:20396459

  6. Zinc Salts Inactivate Clinical Isolates of Herpes Simplex Virus In Vitro

    PubMed Central

    Arens, Max; Travis, Sharon

    2000-01-01

    Using a standard plaque assay and clinical isolates of herpes simplex virus (HSV), we have tested the ability of zinc salts to inactivate HSV. Virus was treated by incubation at 37°C with zinc salts in morpholinepropanesulfonic acid-buffered culture medium and was then diluted and plated onto CV-1 cells for detection and quantitation of remaining infectious virus. Of 10 randomly chosen clinical isolates (five HSV type 1 [HSV-1] isolates and five HSV-2 isolates), seven were inactivated >98% by treatment in vitro with 50 mM zinc gluconate for 2 h and nine were inactivated >97% by treatment with zinc lactate. The effect was concentration dependent. With an HSV-1 isolate, 50 mM zinc gluconate or zinc lactate caused 100% inactivation, 15 mM caused 98 to 99% inactivation, and 5 mM caused 63 to 86% inactivation. With an HSV-2 isolate, 50 and 15 mM zinc gluconate caused 30% inactivation and 5 and 1 mM caused less than 9% inactivation, whereas 50 and 15 mM zinc lactate caused greater than 92% inactivation and 5 and 1 mM caused 37 and 26% inactivation, respectively. The ability of the zinc salts to inactivate HSV was not related to pH in the pH range of 6.1 to 7.6 since inactivation by zinc gluconate or zinc lactate in that pH range was 99.7 to 100% with a 2-h treatment with 50 mM zinc salt. Short (5-min) treatments of selected isolates with zinc gluconate, zinc lactate, zinc acetate, or zinc sulfate yielded inactivation rates of 0 to 55%. PMID:10790094

  7. Determinants of protein hyperthermostability: Purification and amino acid sequence of rubredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus and secondary structure of the zinc adduct by NMR

    SciTech Connect

    Blake, P.R.; Summers, M.F. ); Park, J.B.; Bryant, F.O.; Aono, Shigetoshi; Adams, M.W.W. ); Magnuson, J.K.; Eccleston, E.; Howard, J.B. )

    1991-11-12

    The purification, amino acid sequence, and two-dimensional {sup 1}H NMR results are reported for the rubredoxin (Rd) from the hyperthermophilic archaebacterium Pyrococcus furiosus, an organism that grows optimally at 100C. The molecular mass (5397 Da), iron content UV-vis spectrophotometric properties, and amino acid sequence are found to be typical of this class of redox protein. However, P. furiosus Rd is remarkably thermostable, being unaffected after incubation for 24 h at 95C. One- and two-dimensional {sup 1}H nuclear magnetic resonance spectra of the oxidized (Fe(III)Rd) and reduced (Fe(II)Rd) forms of P. furiosus Rd exhibited substantial paramagnetic line broadening, and this precluded detailed 3D structural studies. The apoprotein was not readily amenable to NMR studies due to apparent protein oxidation involving the free cysteine sulfhydryls. Secondary structural elements were determined from qualitative analysis of 2D Overhauser effect spectra. These structural elements are similar to those observed by X-ray crystallography for native Rd from the mesophile C. pasteurianum. From analysis of the secondary structure, potentially stabilizing electrostatic interactions involving the charged groups of residues Ala(1), Glu(14), and Glu(52) are proposed. These interactions, which are not present in rubredoxins from mesophilic organisms, may prevent the {beta}-sheet from unzipping' at elevated temperatures.

  8. ZINC ROUGHER CELLS ON LEFT, ZINC CLEANER CELLS ON RIGHT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ZINC ROUGHER CELLS ON LEFT, ZINC CLEANER CELLS ON RIGHT, LOOKING NORTH. NOTE ONE STYLE OF DENVER AGITATOR IN LOWER RIGHT CELL. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  9. History of zinc in agriculture.

    PubMed

    Nielsen, Forrest H

    2012-11-01

    Zinc was established as essential for green plants in 1926 and for mammals in 1934. However, >20 y would pass before the first descriptions of zinc deficiencies in farm animals appeared. In 1955, it was reported that zinc supplementation would cure parakeratosis in swine. In 1958, it was reported that zinc deficiency induced poor growth, leg abnormalities, poor feathering, and parakeratosis in chicks. In the 1960s, zinc supplementation was found to alleviate parakeratosis in grazing cattle and sheep. Within 35 y, it was established that nearly one half of the soils in the world may be zinc deficient, causing decreased plant zinc content and production that can be prevented by zinc fertilization. In many of these areas, zinc deficiency is prevented in grazing livestock by zinc fertilization of pastures or by providing salt licks. For livestock under more defined conditions, such as poultry, swine, and dairy and finishing cattle, feeds are easily supplemented with zinc salts to prevent deficiency. Today, the causes and consequences of zinc deficiency and methods and effects of overcoming the deficiency are well established for agriculture. The history of zinc in agriculture is an outstanding demonstration of the translation of research into practical application.

  10. Solid phase extraction of zinc(II) using a PVC-based polymer inclusion membrane with di(2-ethylhexyl)phosphoric acid (D2EHPA) as the carrier.

    PubMed

    Kolev, Spas D; Baba, Yoshinari; Cattrall, Robert W; Tasaki, Tsutomu; Pereira, Natalie; Perera, Jilska M; Stevens, Geoffrey W

    2009-05-15

    A polymer inclusion membrane (PIM) is reported consisting of 45% (m/m) di(2-ethylhexyl)phosphoric acid (D2EHPA) immobilized in poly(vinyl chloride) (PVC) for use as a solid phase absorbent for selectively extracting Zn(II) from aqueous solutions in the presence of Cd(II), Co(II), Cu(II), Ni(II) and Fe(II). Interference from Fe(III) in the sample is eliminated by precipitation with orthophosphate prior to the extraction of Zn(II). Studies using a dual compartment transport cell have shown that the Zn(II) flux (2.58 x 10(-6)mol m(-2)s(-1)) is comparable to that observed for supported liquid membranes. The stoichiometry of the extracted complex is shown to be ZnR(2).HR, where R is the D2EHPA anion.

  11. Deproto-metallation of N-arylated pyrroles and indoles using a mixed lithium–zinc base and regioselectivity-computed CH acidity relationship

    PubMed Central

    Messaoud, Mohamed Yacine Ameur; Hedidi, Madani; Derdour, Aïcha; Chevallier, Floris; Ivashkevich, Oleg A; Matulis, Vadim E; Roisnel, Thierry; Dorcet, Vincent

    2015-01-01

    Summary The synthesis of N-arylated pyrroles and indoles is documented, as well as their functionalization by deprotonative metallation using the base in situ prepared from LiTMP and ZnCl2·TMEDA (1/3 equiv). With N-phenylpyrrole and -indole, the reactions were carried out in hexane containing TMEDA which regioselectively afforded the 2-iodo derivatives after subsequent iodolysis. With pyrroles and indoles bearing N-substituents such as 2-thienyl, 3-pyridyl, 4-methoxyphenyl and 4-bromophenyl, the reactions all took place on the substituent, at the position either adjacent to the heteroatom (S, N) or ortho to the heteroatom-containing substituent (OMe, Br). The CH acidities of the substrates were determined in THF solution using the DFT B3LYP method in order to rationalize the experimental results. PMID:26425204

  12. Deproto-metallation using a mixed lithium-zinc base and computed CH acidity of 1-aryl 1H-benzotriazoles and 1-aryl 1H-indazoles.

    PubMed

    Nagaradja, Elisabeth; Chevallier, Floris; Roisnel, Thierry; Dorcet, Vincent; Halauko, Yury S; Ivashkevich, Oleg A; Matulis, Vadim E; Mongin, Florence

    2014-03-07

    1-Aryl-1H-benzotriazoles and -1H-indazoles were synthesized, and their deproto-metallation using the base prepared by mixing LiTMP with ZnCl2·TMEDA (1/3 equiv.) was studied. In the indazole series, reactions occurring at the 3 position were followed by ring opening, and functionalization of the substrate was only found possible (on the sulfur ring) using 2-thienyl as aryl group. In the benzotriazole series, either mono- or bis-deprotonation (depending on the amount of base employed) was achieved with phenyl, 4-methoxyphenyl and 2-thienyl as aryl group, and bis-deprotonation in the case of 4-chlorophenyl and 4-trifluoromethylphenyl. The experimental results were analyzed with the help of the CH acidities of the substrates, determined in THF solution using the DFT B3LYP method.

  13. Protective Coats For Zinc-Rich Primers

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis G, III

    1993-01-01

    Report describes tests of topcoats for inorganic zinc-rich primers on carbon steel. Topcoats intended to provide additional protection against corrosion in acidic, salty seacoast-air/rocket-engine-exhaust environment of Space Shuttle launch site. Tests focused on polyurethane topcoats on epoxy tie coats on primers. Part of study involved comparison between "high-build" coating materials and thin-film coating materials.

  14. Recovery of manganese and zinc from spent Zn-C cell powder: Experimental design of leaching by sulfuric acid solution containing glucose.

    PubMed

    Biswas, Ranjit K; Karmakar, Aneek K; Kumar, Sree L

    2016-05-01

    The spent Zn-C cell powder, containing ZnMn2O4, ZnO, MnO(OH) and possibly Mn2O3 and Mn3O4, can be leached by a sulfuric acid solution mixed with some glucose. The leaching is found to be dependent on solid to liquid (S/L) ratio, amount of glucose, concentration of sulfuric acid solution, time and pulp agitation speed. For 5g powder (S), 1h leaching time and 300rpm pulp agitation speed, two-level four-factor (2(4)) experimental designs have been carried out to derive models for extraction of both Mn(II) and Zn(II). Amount of glucose (G, g), concentration of H2SO4 solution (C, mol/L), volume of H2SO4 solution as leachant (L, mL) and leaching temperature (T, °C) are considered as factors (variables). The model in both cases consists of mean, factor effects and interaction effects. The four-factor interaction effect is observed in neither of the cases. Some two-factor and three-factor effects are found to have produced positive or negative contributions to dissolution percentage in both cases. The models are examined for comparison with experimental results with good fits and also used for optimization of factors. At optimized condition (G=0.50g, C=2mol/L, L=250mL and T=100°C), an aliquot of 5g powder in 1h and at 300rpm produces a solution containing (7.08±0.10)g/L Mn(II) and (2.20±0.06)g/L Zn(II) corresponding to almost 100% extraction of both metal ions.

  15. A review of zinc oxide mineral beneficiation using flotation method.

    PubMed

    Ejtemaei, Majid; Gharabaghi, Mahdi; Irannajad, Mehdi

    2014-04-01

    In recent years, extraction of zinc from low-grade mining tailings of oxidized zinc has been a matter of discussion. This is a material which can be processed by flotation and acid-leaching methods. Owing to the similarities in the physicochemical and surface chemistry of the constituent minerals, separation of zinc oxide minerals from their gangues by flotation is an extremely complex process. It appears that selective leaching is a promising method for the beneficiation of this type of ore. However, with the high consumption of leaching acid, the treatment of low-grade oxidized zinc ores by hydrometallurgical methods is expensive and complex. Hence, it is best to pre-concentrate low-grade oxidized zinc by flotation and then to employ hydrometallurgical methods. This paper presents a critical review on the zinc oxide mineral flotation technique. In this paper, the various flotation methods of zinc oxide minerals which have been proposed in the literature have been detailed with the aim of identifying the important factors involved in the flotation process. The various aspects of recovery of zinc from these minerals are also dealt with here. The literature indicates that the collector type, sulfidizing agent, pH regulator, depressants and dispersants types, temperature, solid pulp concentration, and desliming are important parameters in the process. The range and optimum values of these parameters, as also the adsorption mechanism, together with the resultant flotation of the zinc oxide minerals reported in the literature are summarized and highlighted in the paper. This review presents a comprehensive scientific guide to the effectiveness of flotation strategy.

  16. Trace elements in human physiology and pathology: zinc and metallothioneins.

    PubMed

    Tapiero, Haim; Tew, Kenneth D

    2003-11-01

    Zinc is one of the most abundant nutritionally essential elements in the human body. It is found in all body tissues with 85% of the whole body zinc in muscle and bone, 11% in the skin and the liver and the remaining in all the other tissues. In multicellular organisms, virtually all zinc is intracellular, 30-40% is located in the nucleus, 50% in the cytoplasm, organelles and specialized vesicles (for digestive enzymes or hormone storage) and the remainder in the cell membrane. Zinc intake ranges from 107 to 231 micromol/d depending on the source, and human zinc requirement is estimated at 15 mg/d. Zinc has been shown to be essential to the structure and function of a large number of macromolecules and for over 300 enzymic reactions. It has both catalytic and structural roles in enzymes, while in zinc finger motifs, it provides a scaffold that organizes protein sub-domains for the interaction with either DNA or other proteins. It is critical for the function of a number of metalloproteins, inducing members of oxido-reductase, hydrolase ligase, lyase family and has co-activating functions with copper in superoxide dismutase or phospholipase C. The zinc ion (Zn(++)) does not participate in redox reactions, which makes it a stable ion in a biological medium whose potential is in constant flux. Zinc ions are hydrophilic and do not cross cell membranes by passive diffusion. In general, transport has been described as having both saturable and non-saturable components, depending on the Zn(II) concentrations involved. Zinc ions exist primarily in the form of complexes with proteins and nucleic acids and participate in all aspects of intermediary metabolism, transmission and regulation of the expression of genetic information, storage, synthesis and action of peptide hormones and structural maintenance of chromatin and biomembranes.

  17. Inflammation markers predict zinc transporter gene expression in women with type 2 diabetes mellitus.

    PubMed

    Foster, Meika; Petocz, Peter; Samman, Samir

    2013-09-01

    The pathology of type 2 diabetes mellitus (DM) often is associated with underlying states of conditioned zinc deficiency and chronic inflammation. Zinc and omega-3 polyunsaturated fatty acids each exhibit anti-inflammatory effects and may be of therapeutic benefit in the disease. The present randomized, double-blind, placebo-controlled, 12-week trial was designed to investigate the effects of zinc (40 mg/day) and α-linolenic acid (ALA; 2 g/day flaxseed oil) supplementation on markers of inflammation [interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, C-reactive protein (CRP)] and zinc transporter and metallothionein gene expression in 48 postmenopausal women with type 2 DM. No significant effects of zinc or ALA supplementation were observed on inflammatory marker concentrations or fold change in zinc transporter and metallothionein gene expression. Significant increases in plasma zinc concentrations were observed over time in the groups supplemented with zinc alone or combined with ALA (P=.007 and P=.009, respectively). An impact of zinc treatment on zinc transporter gene expression was found; ZnT5 was positively correlated with Zip3 mRNA (P<.001) only in participants receiving zinc, while zinc supplementation abolished the relationship between ZnT5 and Zip10. IL-6 predicted the expression levels and CRP predicted the fold change of the ZnT5, ZnT7, Zip1, Zip7 and Zip10 mRNA cluster (P<.001 and P=.031, respectively). Fold change in the expression of metallothionein mRNA was predicted by TNF-α (P=.022). Associations among inflammatory cytokines and zinc transporter and metallothionein gene expression support an interrelationship between zinc homeostasis and inflammation in type 2 DM.

  18. Acid soldering flux poisoning

    MedlinePlus

    The harmful substances in soldering fluxes are called hydrocarbons. They include: Ammonium chloride Rosin Hydrochloric acid Zinc ... Lee DC. Hydrocarbons. In: Marx JA, Hockberger RS, Walls RM, et ... Rosen's Emergency Medicine: Concepts and Clinical Practice . 8th ...

  19. Zinc titanate sorbents

    DOEpatents

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1998-02-03

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750 to about 950 C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 microns, and about 1 part titanium dioxide having a median particle size of less than about 1 micron. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  20. Zinc titanate sorbents

    DOEpatents

    Gupta, Raghubir P.; Gangwal, Santosh K.; Jain, Suresh C.

    1998-01-01

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750.degree. C. to about 950.degree. C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 .mu., and about 1 part titanium dioxide having a median particle size of less than about 1 .mu.. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  1. Cadmium and zinc chain and cluster-based layered coordination polymers prepared from flexible-arm aromatic ortho-dicarboxylic acids and 4-pyridylnicotinamide

    NASA Astrophysics Data System (ADS)

    Kraft, Peter E.; Uebler, Jacob W.; LaDuca, Robert L.

    2013-04-01

    Hydrothermal reaction of a d10-metal nitrate salt, a flexible-arm aromatic ortho-dicarboxylic acid, and 4-pyridylnicotinamide (4-pna) afforded four new crystalline coordination polymers, which were characterized by single-crystal X-ray diffraction. [Cd(Hhmph)(nic)(H2O)2]n (1, hmph = homophthalate, nic = nicotinate) is a 1-D coordination polymer chain compound whose nic ligands were generated in situ via 4-pna hydrolysis. Addition of base and a shorter reaction duration afforded [Cd(hmph)(4-pna)]n (2), which has dinuclear [Cd2(hmph)2] dimers linked into a 1-D ladder polymer via 4-pna ligands. A similar chain structure, albeit with a different hmph binding mode, is seen in [Zn(hmph)(4-pna)]n (3). {[Zn2(phda)2(4-pna)2(H2O)]ṡH2O}n (4, phda = 1,2-phenylenediacetate) has both anti-syn bridged [Zn2(OCO)2] ring dimers and [Zn2(OCO)4] paddlewheel dimers, linked into a layered coordination polymer by dipodal 4-pna ligands. Luminescent properties of these new materials are also presented.

  2. Zinc/Aluminum layered double hydroxide-titanium dioxide composite nanosheet film as novel solid phase microextraction fiber for the gas chromatographic determination of valproic acid.

    PubMed

    Matin, Amir Abbas; Biparva, Pourya; Amanzadeh, Hatam; Farhadi, Khalil

    2013-01-15

    A nanosheet thin film based on Zn/Al layered double hydroxide (LDH) and TiO(2) composite was prepared via sol-gel process on capillary glass rod. Characterization of the fiber coating using X-ray diffraction (XRD) pattern and scanning electron microscopy (SEM) images showed that it consists of a large number of intercrossed and curved nanosheets with hexagonal architecture. The thickness of these plates is about few nanometers, and the lateral dimension is varying from 400 to 1000 nm. Application of the proposed coating as a solid phase microextraction fiber was investigated. As a model analyte, valproic acid (VPA, antiepileptic drug) was selected and its extraction from biological (human serum) and pharmaceutical (tablet and syrup) samples were performed without any considerable matrix effect. Analytical merits of the method, under optimum conditions (extraction temperature: 50 ± 1°C, extraction time: 15 min, desorption temperature: 250°C, desorption time: 2 min, solution pH: 1.5, salt concentration: 5 mol L(-1)), are 70 μg L(-1) and 0.20-100 mg L(-1) for LOD and LDR, respectively.

  3. Effects of spatial and temporal variation of acid-volatile sulfide on the bioavailability of copper and zinc in freshwater sediments

    SciTech Connect

    Besser, J.M.; Ingersoll, C.G.; Giesy, J.P.

    1996-03-01

    Variation in concentrations of acid-volatile sulfide (AVS) in sediments from the upper Clark Fork River of Montana, USA, was associated with differences in bioaccumulation of Cu and Zn and growth of larvae of the midge, Chironomus tentans. Growth of midge larvae was significantly greater and bioaccumulation of Cu was significantly less in surface sections (0--3 cm depth) of sediment cores, which had greater concentrations of AVS and lesser ratios of simultaneously extracted metals to AVS (SEM:AVS ratios) than in subsurface sediments (6--9 cm). Concentrations of AVS were significantly less in sediments incubated with oxic overlying water for 9 weeks than in the same sediments incubated under anoxic conditions. Bioaccumulation of Cu differed significantly between incubation treatments, corresponding to differences in concentrations of AVS and SEM:AVS ratios, although midge growth did not. Bioaccumulation of Zn did not differ significantly between depth strata of sediment cores or between incubation treatments. When results from the two sets of bioassays were combined, bioaccumulation of Cu and Zn, but not growth, was significantly correlated with SEM:AVS ratios and other estimates of bioavailable metal fractions in sediments. Growth of midge larvae was significantly correlated with bioaccumulation of Zn, but not Cu, suggesting that Zn was the greater contributor to the toxicity of these sediments. Assessments of the toxicity of metal-contaminated freshwater sediments should consider the effects of spatial and temporal variation in AVS concentrations on metal bioavailability.

  4. Characterization of Zinc Influx Transporters (ZIPs) in Pancreatic β Cells: ROLES IN REGULATING CYTOSOLIC ZINC HOMEOSTASIS AND INSULIN SECRETION.

    PubMed

    Liu, Ying; Batchuluun, Battsetseg; Ho, Louisa; Zhu, Dan; Prentice, Kacey J; Bhattacharjee, Alpana; Zhang, Ming; Pourasgari, Farzaneh; Hardy, Alexandre B; Taylor, Kathryn M; Gaisano, Herbert; Dai, Feihan F; Wheeler, Michael B

    2015-07-24

    Zinc plays an essential role in the regulation of pancreatic β cell function, affecting important processes including insulin biosynthesis, glucose-stimulated insulin secretion, and cell viability. Mutations in the zinc efflux transport protein ZnT8 have been linked with both type 1 and type 2 diabetes, further supporting an important role for zinc in glucose homeostasis. However, very little is known about how cytosolic zinc is controlled by zinc influx transporters (ZIPs). In this study, we examined the β cell and islet ZIP transcriptome and show consistent high expression of ZIP6 (Slc39a6) and ZIP7 (Slc39a7) genes across human and mouse islets and MIN6 β cells. Modulation of ZIP6 and ZIP7 expression significantly altered cytosolic zinc influx in pancreatic β cells, indicating an important role for ZIP6 and ZIP7 in regulating cellular zinc homeostasis. Functionally, this dysregulated cytosolic zinc homeostasis led to impaired insulin secretion. In parallel studies, we identified both ZIP6 and ZIP7 as potential interacting proteins with GLP-1R by a membrane yeast two-hybrid assay. Knock-down of ZIP6 but not ZIP7 in MIN6 β cells impaired the protective effects of GLP-1 on fatty acid-induced cell apoptosis, possibly via reduced activation of the p-ERK pathway. Therefore, our data suggest that ZIP6 and ZIP7 function as two important zinc influx transporters to regulate cytosolic zinc concentrations and insulin secretion in β cells. In particular, ZIP6 is also capable of directly interacting with GLP-1R to facilitate the protective effect of GLP-1 on β cell survival.

  5. Zinc and zinc chelators modify taurine transport in rat retinal cells.

    PubMed

    Márquez, Asarí; Urbina, Mary; Lima, Lucimey

    2014-11-01

    Zinc regulates Na(+)/Cl(-)-dependent transporters, similar to taurine one, such as those for dopamine, serotonin and norepinephrine. This study examined the ex vivo effect of zinc (ZnSO4), N,N,N,N-tetraquis-(2-piridilmetil)etilendiamino (TPEN) and diethylenetriaminepenta-acetic acid (DTPA), intracellular and extracellular zinc chelators, respectively, on rat retina [(3)H]taurine transport. Isolated cells were incubated in Locke solution with 100 nM of [(3)H]taurine for 25 s. Different concentrations of ZnSO4 (0.5-200 μM) were used. Low concentrations of ZnSO4 (30 and 40 μM) increased the transport, while higher concentrations (100, 150 and 200 μM) decreased it. Various concentrations of TPEN (1-200 μM) were added. Intermediate concentrations of TPEN (10-60 μM) significantly decreased [(3)H]taurine transport. The presence of TPEN, 20 μM, plus ZnSO4 reversed the effect of TPEN alone. Several concentrations of DTPA (1-500 μM) were also investigated. Reduction of transport took place at high concentrations of the chelator (100, 250 and 500 μM). DTPA, 500 μM, plus ZnSO4, did not modify the effect of it. These results indicate that zinc modulates taurine transport in a concentration-dependent manner, directly acting on the transporter or by forming taurine-zinc complexes in cell membranes.

  6. Prediction of zinc finger DNA binding protein.

    PubMed

    Nakata, K

    1995-04-01

    Using the neural network algorithm with back-propagation training procedure, we analysed the zinc finger DNA binding protein sequences. We incorporated the characteristic patterns around the zinc finger motifs TFIIIA type (Cys-X2-5-Cys-X12-13-His-X2-5-His) and the steroid hormone receptor type (Cys-X2-5-Cys-X12-15-Cys-X2-5-Cys-X15-16-Cys-X4-5-Cys-X8-10- Cys-X2-3-Cys) in the neural network algorithm. The patterns used in the neural network were the amino acid pattern, the electric charge and polarity pattern, the side-chain chemical property and subproperty patterns, the hydrophobicity and hydrophilicity patterns and the secondary structure propensity pattern. Two consecutive patterns were also considered. Each pattern was incorporated in the single layer perceptron algorithm and the combinations of patterns were considered in the two-layer perceptron algorithm. As for the TFIIIA type zinc finger DNA binding motifs, the prediction results of the two-layer perceptron algorithm reached up to 96.9% discrimination, and the prediction results of the discriminant analysis using the combination of several characters reached up to 97.0%. As for the steroid hormone receptor type zinc finger, the prediction results of neural network algorithm and the discriminant analyses reached up to 96.0%.

  7. Zinc Phosphide Poisoning

    PubMed Central

    Doğan, Erdal; Güzel, Abdulmenap; Çiftçi, Taner; Aycan, İlker; Çetin, Bedri; Kavak, Gönül Ölmez

    2014-01-01

    Zinc phosphide has been used widely as a rodenticide. Upon ingestion, it gets converted to phosphine gas in the body, which is subsequently absorbed into the bloodstream through the stomach and the intestines and gets captured by the liver and the lungs. Phosphine gas produces various metabolic and nonmetabolic toxic effects. Clinical symptoms are circulatory collapse, hypotension, shock symptoms, myocarditis, pericarditis, acute pulmonary edema, and congestive heart failure. In this case presentation, we aim to present the intensive care process and treatment resistance of a patient who ingested zinc phosphide for suicide purposes. PMID:25101186

  8. Observations of interstellar zinc

    NASA Technical Reports Server (NTRS)

    Jura, M.; York, D.

    1981-01-01

    The International Ultraviolet Explorer observations of interstellar zinc toward 10 stars are examined. It is found that zinc is at most only slightly depleted in the interstellar medium; its abundance may serve as a tracer of the true metallicity in the gas. The local interstellar medium has abundances that apparently are homogeneous to within a factor of two, when integrated over paths of about 500 pc, and this result is important for understanding the history of nucleosynthesis in the solar neighborhood. The intrinsic errors in detecting weak interstellar lines are analyzed and suggestions are made as to how this error limit may be lowered to 5 mA per target observation.

  9. Zinc electrode in alkaline electrolyte

    SciTech Connect

    McBreen, J.

    1995-12-31

    The zinc electrode in alkaline electrolyte is unusual in that supersaturated zincate solutions can form during discharge and spongy or mossy zinc deposits can form on charge at low overvoltages. The effect of additives on regular pasted ZnO electrodes and calcium zincate electrodes is discussed. The paper also reports on in situ x-ray absorption (XAS) results on mossy zinc deposits.

  10. History of zinc in agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zinc was established as essential for green plants in 1926 and for mammals in 1934. However, over 20 years would past before the first descriptions of zinc deficiencies in farm animals appeared. In 1955, it was reported that zinc supplementation would cure a parakeratosis in swine. In 1958, it wa...

  11. Photovoltaic cells employing zinc phosphide

    DOEpatents

    Barnett, Allen M.; Catalano, Anthony W.; Dalal, Vikram L.; Masi, James V.; Meakin, John D.; Hall, Robert B.

    1984-01-01

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  12. Delta-aminolevulinic Acid dehydratase genotype and its relationship with blood lead and zinc protoporphyrin levels in lead-exposed children living in a smelter community in northern Mexico.

    PubMed

    Mijares, I A; López, P; Rosado, J L; Cebrián, A; Vera-Aguilar, E; Alatorre, J; Quintanilla-Vega, M B; García, A E Rojas; Stoltzfus, R J; Cebrián, M E; García-Vargas, G G

    2006-01-01

    The implications of delta-aminolevulinic acid dehydratase (ALAD) polymorphism for lead kinetics and toxicity have been mainly studied in occupationally exposed adults. Therefore, our purpose was to evaluate the distribution of ALAD genotype and its association with biomarkers of exposure (PbB levels) and effect (Blood ZPP) among children living in a smelter community in Mexico. We recruited 569 children from nine elementary schools close to a smelter site. PbB was determined by electrothermal atomic absorption spectrometry. A polymerase chain reaction (PCR)-based protocol was used for ALAD genotyping. Zinc protoporphyrin (ZPP) in blood was measured by direct fluorometry. Most children (93.15%) were homozygous for ALAD (1-1), 6.67% were heterozygous for ALAD for (1-2), and one child was homozygous for ALAD (2-2). There was an increased proportion of ALAD (1-2/2-2) genotype with respect to PbB levels. The ZPP geometric mean was slightly higher in ALAD (1-1) genotype children (63.48 mu mol ZPP/mol Hb) than in those having the ALAD-2 genotype (58.22 mu mol ZPP/mol Hb; p = 0.051). Linear and quadratic models showed significant relationships between ZPP and PbB. A significant increase in the odds ratio (OR) for the effect of lead exposure on ZPP levels was observed for ALAD (1-1) children having PbB values above 20 mu g/dL, as compared to those having PbB levels below 10 mu g/dL (OR = 2.95, 95% CI = 1.45-5.97; p = 0.003), whereas no significant increases were observed for the ALAD (1-2/2-2) children. In summary, our results suggest that heme biosynthesis was less affected in ALAD (1-2/2-2) lead-exposed children than in those carrying the ALAD (1-1) genotype.

  13. HSP32 (HO-1) inhibitor, copoly(styrene-maleic acid)-zinc protoporphyrin IX, a water-soluble micelle as anticancer agent: In vitro and in vivo anticancer effect.

    PubMed

    Fang, Jun; Greish, Khaled; Qin, Haibo; Liao, Long; Nakamura, Hideaki; Takeya, Motohiro; Maeda, Hiroshi

    2012-08-01

    We reported previously the antitumor effect of heme oxygenase-1 (HO-1) inhibition by zinc protoporphyrin IX (ZnPP). ZnPP per se is poorly water soluble and thus cannot be used as anticancer chemotherapeutic. Subsequently, we developed water-soluble micelles of ZnPP using styrene-maleic acid copolymer (SMA), which encapsulated ZnPP (SMA-ZnPP). In this report, the in vitro and in vivo therapeutic effects of SMA-ZnPP are described. In vitro experiments using 11 cultured tumor cell lines and six normal cell lines revealed a remarkable cytotoxicity of SMA-ZnPP against various tumor cells; average IC(50) is about 11.1 μM, whereas the IC(50) to various normal cells is significantly higher, that is, more than 50 μM. In the pharmacokinetic study, we found that SMA-ZnPP predominantly accumulated in the liver tissue after i.v. injection, suggesting its applicability for liver cancer. As expected, a remarkable antitumor effect was achieved in the VX-2 tumor model in the liver of rabbit that is known as one the most difficult tumor models to cure. Antitumor effect was also observed in murine tumor xenograft, that is, B16 melanoma and Meth A fibrosarcoma. Meanwhile, no apparent side effects were found even at the dose of ∼7 times higher concentration of therapeutics dose. These findings suggest a potential of SMA-ZnPP as a tool for anticancer therapy toward clinical development, whereas further investigations are warranted.

  14. Early growth and environmental implications of dietary zinc and copper concentrations and sources of broiler chicks.

    PubMed

    Dozier, W A; Davis, A J; Freeman, M E; Ward, T L

    2003-12-01

    1. Environmental accumulation of zinc and copper is becoming a concern in areas having intensive animal production. This study examined performance and excretion of broiler chicks given diets supplemented with graded concentrations of zinc and copper from three different sources. 2. Two experiments were conducted, each utilising 570 1-d-old chicks. In Experiment 1, chicks were given diets containing supplemental zinc concentrations from 40 to 120 mg/kg supplied as zinc sulphate, a zinc amino acid complex (Availa Zn), or a combination of zinc sulphate and Availa Zn with each contributing one-half of the total supplemental zinc. In Experiment 2, broiler chicks were given diets with graded concentrations of supplemental copper ranging from 4 to 12 mg/kg from copper sulphate, a copper amino acid complex (Availa Cu), or a combination of copper sulphate and Availa Cu with each contributing one-half of the total supplemental copper. 3. During the 17-d experimental period, mineral concentration or source did not influence body weight, feed conversion, or the incidence of mortality from 1 to 17 d. 4. Decreasing dietary zinc concentration from 120 to 40 mg/kg reduced zinc excretion by 50%. 5. Copper excretion was decreased by 35% as supplemental copper was reduced from 12 to 4 mg/kg. 6. Reducing dietary zinc and copper concentrations can potentially decrease the accumulation of heavy metals in the environment without compromising bird performance.

  15. Development of bone in chick embryos from Cobb 500 breeder hens fed diets supplemented with zinc, manganese, and copper from inorganic and amino acid-complexed sources.

    PubMed

    Favero, A; Vieira, S L; Angel, C R; Bos-Mikich, A; Lothhammer, N; Taschetto, D; Cruz, R F A; Ward, T L

    2013-02-01

    Sources of Zn, Mn, and Cu (IZMC) as sulfates or as amino acid complexes (OZMC) were used to supplement Cobb 500 breeder hen diets. Experimental treatments consisted of diets supplemented with 1) 100, 100, and 10 mg/kg of Zn, Mn, and Cu, respectively, from IZMC (control); 2) 60, 60, and 3 mg/kg of Zn, Mn, and Cu, respectively, from IZMC plus 40, 40, and 7 mg/kg of Zn, Mn, and Cu, respectively, from OZMC (ISO); and 3) a diet with 100, 100, and 10 mg/kg of Zn, Mn, and Cu, respectively, from IZMC as in control plus 40, 40, and 7 mg/kg of supplemental Zn, Mn, and Cu from OZMC (on top). Ten replications of 20 females and 2 males were used per treatment. Eggs from breeders at 30, 40, 50 and 60 wk of age were incubated, and 5 embryos per replicate were collected at 10 (E10), 14 (E14), and 18 (E18) d of incubation. Midshaft width and calcification were measured for left tibia and femur stained with Alcian Blue and Alizarin Red S. At hatch, the left tibia of 5 chicks per replicate was sampled for histological evaluation of the diaphysis and distal epiphysis. Feeding the ISO treatment compared with the control diet increased the Zn (P < 0.05) but not Mn and Cu content of the yolk and albumen blend. At E14, the ISO and on-top treatments had a trend to increase tibia calcification at the rates of 1.6 and 1%, respectively (P < 0.1). The E18 ISO and on-top treatments had 2% thicker tibia compared with the control, regardless of hen age (P < 0.05). Also, at E18, calcification of tibia and femur was higher from hens fed the on-top treatment (P < 0.05). The chicks from the ISO and on-top groups had increased tibia moment of inertia (P < 0.01) at day of hatch. Broiler breeder hens consuming OZMC associated with IZMC produced embryos and hatching chicks with improvements in selected bone mineralization parameters.

  16. A Prenatal Multiple Micronutrient Supplement Produces Higher Maternal Vitamin B-12 Concentrations and Similar Folate, Ferritin, and Zinc Concentrations as the Standard 60-mg Iron Plus 400-μg Folic Acid Supplement in Rural Bangladeshi Women12

    PubMed Central

    Rahman, Anisur; Raqib, Rubhana; Lönnerdal, Bo; Ekström, Eva-Charlotte

    2016-01-01

    Background: The effects of prenatal food and micronutrient supplementation on maternal micronutrient status are not well known. Objective: We compared the efficacy and effectiveness of 3 different micronutrient supplements on maternal micronutrient status when combined with food supplementation. Methods: In the MINIMat (Maternal and Infant Nutrition Intervention, Matlab) trial in Bangladesh, 4436 pregnant women were randomly assigned to daily intake of 3 types of micronutrient capsules: 30 mg Fe and 400 μg folic acid (Fe30F), 60 mg Fe and 400 μg folic acid (Fe60F), or multiple micronutrient supplements (MMNs) combined with early (week 9 of pregnancy) or usual (week 20 of pregnancy) food supplementation in a 2 by 3 factorial design. Plasma concentrations of vitamin B-12, folate, ferritin, and zinc were analyzed before the start of micronutrient supplementation (week 14) and at week 30 of pregnancy in 641 randomly selected women. An electronic monitoring device was used to measure the number of capsules taken. The effectiveness of food and micronutrient regimens as well as efficacy per capsule in maternal micronutrient status were analyzed by ANOVA and general linear models. Results: At week 30 of pregnancy, women in the MMN group had higher geometric mean concentrations of vitamin B-12 than women in the Fe60F group (119 compared with 101 pmol/L, respectively); no other differences in effectiveness of micronutrient and food regimens were observed. A dose-response relation between the number of capsules taken and concentrations of folate and ferritin was observed for all micronutrient supplements. Fe30F had lower efficacy per capsule in increasing ferritin concentrations within the first tertile of capsule intake than did Fe60F and MMNs. Because ferritin reached a plateau for all types of micronutrient supplements, there was no difference between the regimens in their effectiveness. Conclusion: Compared with Fe60F, MMNs produced higher maternal vitamin B-12 and

  17. Creep Resistant Zinc Alloy

    SciTech Connect

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  18. Zinc sulfide liquefaction catalyst

    DOEpatents

    Garg, Diwakar

    1984-01-01

    A process for the liquefaction of carbonaceous material, such as coal, is set forth wherein coal is liquefied in a catalytic solvent refining reaction wherein an activated zinc sulfide catalyst is utilized which is activated by hydrogenation in a coal derived process solvent in the absence of coal.

  19. Doped zinc oxide microspheres

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  20. Doped zinc oxide microspheres

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-12-14

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  1. Zinc and Compounds

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 05 / 002 TOXICOLOGICAL REVIEW OF ZINC AND COMPOUNDS ( CAS No . 7440 - 66 - 6 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) July 2005 U.S . Environmental Protection Agency Washington D.C . DISCLAIMER This document has been reviewed in accordanc

  2. Solution NMR characterization of Sgf73(1-104) indicates that Zn ion is required to stabilize zinc finger motif

    SciTech Connect

    Lai, Chaohua; Wu, Minhao; Li, Pan; Shi, Chaowei; Tian, Changlin; Zang, Jianye

    2010-07-02

    Zinc finger motif contains a zinc ion coordinated by several conserved amino acid residues. Yeast Sgf73 protein was identified as a component of SAGA (Spt/Ada/Gcn5 acetyltransferase) multi-subunit complex and Sgf73 protein was known to contain two zinc finger motifs. Sgf73(1-104), containing the first zinc finger motif, was necessary to modulate the deubiquitinase activity of SAGA complex. Here, Sgf73(1-104) was over-expressed using bacterial expression system and purified for solution NMR (nuclear magnetic resonance) structural studies. Secondary structure and site-specific relaxation analysis of Sgf73(1-104) were achieved after solution NMR backbone assignment. Solution NMR and circular dichroism analysis of Sgf73(1-104) after zinc ion removal using chelation reagent EDTA (ethylene-diamine-tetraacetic acid) demonstrated that zinc ion was required to maintain stable conformation of the zinc finger motif.

  3. [Zinc oxide-eugenol as dental material (1)].

    PubMed

    Brauer, G M

    1976-11-01

    Zinc oxide-eugenol cements are considerably better tolerated by tissue than other dental materials. As they alleviate pain and are bacteriostatic and antiseptic, they are well tolerated by patients. The cements are good insulators and possess better sealing properties than zinc phosphate cements. Because of their poor mechanic properties, the conventional zinc oxide-eugenol cements are mainly used as temporary fixing contents and filling materials, for gingival dressings and together with filling materials as impression materials. Recently, reinforced zinc oxide-eugenol cements and cements containing ethoxy benzoic acid (EBA) have been developed. These new cements have considerably better mechanic properties and are therefore used for cement bases, indirect capping, long-term temporary fillings and in selected cases as definite fixing cements.

  4. A Comparison of Diets Supplemented with a Feed Additive Containing Organic Acids, Cinnamaldehyde and a Permeabilizing Complex, or Zinc Oxide, on Post-Weaning Diarrhoea, Selected Bacterial Populations, Blood Measures and Performance in Weaned Pigs Experimentally Infected with Enterotoxigenic E. coli †

    PubMed Central

    Stensland, Ingunn; Kim, Jae Cheol; Bowring, Bethany; Collins, Alison M.; Mansfield, Josephine P.; Pluske, John R.

    2015-01-01

    Simple Summary This experiment was conducted to assess the effects of three diets on diarrhoea, performance (weight change, feed intake and feed conversion ratio), selected bacterial populations and blood measures of weaner pigs infected with enterotoxigenic E. coli. The three diets were: base diet (no antimicrobial compounds), base diet containing zinc oxide, and base diet containing a feed additive (blend of organic acids, cinnamaldehyde and permeabilizing complex). Only feeding zinc oxide decreased diarrhoea, with zinc oxide-fed pigs performing better than base diet-fed pigs. Zinc oxide-fed pigs performed similarly to pigs fed the organic acids, cinnamaldehyde and permeabilizing complex. Significant interactions between treatment and day after weaning were found for some bacterial populations, although the implications of such findings require further examination. Abstract The effects of feeding a diet supplemented with zinc oxide (ZnO) or a blend of organic acids, cinnamaldehyde and a permeabilizing complex (OACP) on post-weaning diarrhoea (PWD) and performance in pigs infected with enterotoxigenic E. coli (ETEC) were examined. Additionally, changes in selected bacterial populations and blood measures were assessed. A total of 72 pigs weaned at 22 d of age and weighing 7.2 ± 1.02 kg (mean ± SEM) was used. Treatments were: base diet (no antimicrobial compounds); base diet + 3 g ZnO/kg; base diet + 1.5 g OACP/kg. Dietary treatments started on the day of weaning and were fed ad libitum for 3 weeks. All pigs were infected with an F4 ETEC on d 4, 5 and 6 after weaning. The incidence of PWD was lower in pigs fed ZnO (p = 0.026). Overall, pigs fed ZnO grew faster (p = 0.013) and ate more (p = 0.004) than the base diet-fed pigs, with OACP-fed pigs performing the same (p > 0.05) as both the ZnO- and base diet-fed pigs. Feed conversion ratio was similar for all diets (p > 0.05). The percentage of E. coli with F4 fimbriae was affected a day by treatment interaction (p

  5. Zinc bioavailability in the chick

    SciTech Connect

    Hempe, J.M.

    1987-01-01

    Methods for assessing zinc bioavailability were evaluated in the chick. A low-zinc chick diet was developed using rehydrated, spray-dried egg white autoclaved at 121 C for 30 min as the primary protein source. The relative bioavailability of zinc from soy flour and beef was determined by whole-body retention of extrinsic /sup 65/Zn, and in slope ratio assays for growth rate and tissue zinc. Compared to zinc carbonate added to an egg white-based diet, all methods gave similar estimates of approximately 100% zinc bioavailability for beef but estimates for soy flour varied widely. The slope ratio assay for growth rate gave the best estimate of zinc bioavailability for soy flour. True absorption, as measured by percent isotope retention from extrinsically labeled soy flour, was 47%.

  6. An improved nickel/zinc battery for ventricular assist systems

    NASA Astrophysics Data System (ADS)

    Coates, Dwaine; Ferreira, Elio; Charkey, Allen

    Nickel/zinc batteries are currently being manufactured under contract to the National Institutes of Health (NIH) for a left ventricular assist device (LVAD). The nickel/zinc system is being developed to replace the current lead-acid battery in this application. First generation prototype cells provide 60 Wh kg -1, which is a weight saving of more than 35% compared to the lead-acid battery in current use. Further optimization of this design will result in a projected energy density of 70 Wh kg -1 by reducing the cell weight by 15%. Cell characterization and accelerated testing are underway to establish cell performance as a function of cycle life.

  7. Uniqueness of Zinc as a Bioelement: Principles and Applications in Bioinorganic Chemistry--III.

    ERIC Educational Resources Information Center

    Ochiai, Ei-Ichiro

    1988-01-01

    Attempts to delineate certain basic principles and applications of bioinorganic chemistry to oxidation-reduction reactions. Examines why zinc(II) is so uniquely suited to enzymated reactions of the acid-base type. Suggests the answer may be in the natural abundance and the basic physicochemical properties of zinc(II). (MVL)

  8. Acute changes in cellular zinc alters zinc uptake rates prior to zinc transporter gene expression in Jurkat cells.

    PubMed

    Holland, Tai C; Killilea, David W; Shenvi, Swapna V; King, Janet C

    2015-12-01

    A coordinated network of zinc transporters and binding proteins tightly regulate cellular zinc levels. Canonical responses to zinc availability are thought to be mediated by changes in gene expression of key zinc transporters. We investigated the temporal relationships of actual zinc uptake with patterns of gene expression in membrane-bound zinc transporters in the human immortalized T lymphocyte Jurkat cell line. Cellular zinc levels were elevated or reduced with exogenous zinc sulfate or N,N,N',N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), respectively. Excess zinc resulted in a rapid 44 % decrease in the rate of zinc uptake within 10 min. After 120 min, the expression of metallothionein (positive control) increased, as well as the zinc exporter, ZnT1; however, the expression of zinc importers did not change during this time period. Zinc chelation with TPEN resulted in a rapid twofold increase in the rate of zinc uptake within 10 min. After 120 min, the expression of ZnT1 decreased, while again the expression of zinc importers did not change. Overall, zinc transporter gene expression kinetics did not match actual changes in cellular zinc uptake with exogenous zinc or TPEN treatments. This suggests zinc transporter regulation may be the initial response to changes in zinc within Jurkat cells.

  9. Interaction Between Yeasts and Zinc

    NASA Astrophysics Data System (ADS)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  10. Zinc homeostasis and neurodegenerative disorders

    PubMed Central

    Szewczyk, Bernadeta

    2013-01-01

    Zinc is an essential trace element, whose importance to the function of the central nervous system (CNS) is increasingly being appreciated. Alterations in zinc dyshomeostasis has been suggested as a key factor in the development of several neuropsychiatric disorders. In the CNS, zinc occurs in two forms: the first being tightly bound to proteins and, secondly, the free, cytoplasmic, or extracellular form found in presynaptic vesicles. Under normal conditions, zinc released from the synaptic vesicles modulates both ionotropic and metabotropic post-synaptic receptors. While under clinical conditions such as traumatic brain injury, stroke or epilepsy, the excess influx of zinc into neurons has been found to result in neurotoxicity and damage to postsynaptic neurons. On the other hand, a growing body of evidence suggests that a deficiency, rather than an excess, of zinc leads to an increased risk for the development of neurological disorders. Indeed, zinc deficiency has been shown to affect neurogenesis and increase neuronal apoptosis, which can lead to learning and memory deficits. Altered zinc homeostasis is also suggested as a risk factor for depression, Alzheimer's disease (AD), aging, and other neurodegenerative disorders. Under normal CNS physiology, homeostatic controls are put in place to avoid the accumulation of excess zinc or its deficiency. This cellular zinc homeostasis results from the actions of a coordinated regulation effected by different proteins involved in the uptake, excretion and intracellular storage/trafficking of zinc. These proteins include membranous transporters (ZnT and Zip) and metallothioneins (MT) which control intracellular zinc levels. Interestingly, alterations in ZnT and MT have been recently reported in both aging and AD. This paper provides an overview of both clinical and experimental evidence that implicates a dysfunction in zinc homeostasis in the pathophysiology of depression, AD, and aging. PMID:23882214

  11. Simultaneous determination of arsenic, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in fertilizers by microwave acid digestion and inductively coupled plasma-optical emission spectrometry detection: single-laboratory validation of a modification and extension of AOAC 2006.03.

    PubMed

    Webb, Sharon; Bartos, James; Boles, Rhonda; Hasty, Elaine; Thuotte, Ethel; Thiex, Nancy J

    2014-01-01

    A single-laboratory validation study was conducted for the simultaneous determination of arsenic, cadmium, calcium, cobalt, copper, chromium, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in all major types of commercial fertilizer products by microwave digestion and inductively coupled plasma-optical emission spectroscopy analysis. This validation study proposes an extension and modification of AOAC 2006.03. The extension is the inclusion of calcium, copper, iron, magnesium, manganese, and zinc, and the modification is incorporation of hydrochloric acid in the digestion system. This dual acid digestion utilizes both hydrochloric and nitric acids in a 3 to 9 mL volume ratio/100 mL. In addition to 15 of the 30 original validation materials used in the 2006.03 collaborative study, National Institute of Standards and Technology Standard Reference Material 695 and Magruder 2009-06 were incorporated as accuracy materials. The main benefits of this proposed method are a significant increase in laboratory efficiency when compared to the use of both AOAC Methods 965.09 and 2006.03 to achieve the same objective and an enhanced recovery of several metals.

  12. Experimental phasing using zinc anomalous scattering

    SciTech Connect

    Cha, Sun-Shin; An, Young Jun; Jeong, Chang-Sook; Kim, Min-Kyu; Lee, Sung-Gyu; Lee, Kwang-Hoon; Oh, Byung-Ha

    2012-09-01

    The surface of proteins can be charged with zinc ions and the anomalous signals from these zinc ions can be used for structure determination of proteins. Zinc is a suitable metal for anomalous dispersion phasing methods in protein crystallography. Structure determination using zinc anomalous scattering has been almost exclusively limited to proteins with intrinsically bound zinc(s). Here, it is reported that multiple zinc ions can easily be charged onto the surface of proteins with no intrinsic zinc-binding site by using zinc-containing solutions. Zn derivatization of protein surfaces appears to be a largely unnoticed but promising method of protein structure determination.

  13. Novel electrochemical behavior of zinc anodes in zinc/air batteries in the presence of additives

    NASA Astrophysics Data System (ADS)

    Lee, Chang Woo; Sathiyanarayanan, K.; Eom, Seung Wook; Kim, Hyun Soo; Yun, Mun Soo

    In our continued efforts to find an electrically rechargeable zn/air secondary battery, we report the unique behavior of a zinc oxide anode in the presence of additives such as phosphoric acid, tartaric acid, succinic acid and citric acid. These additives were added to the electrolyte, which is an 8.5 M KOH solution containing 25 g of ZnO and 3000 ppm of polyethylene glycol in 1 l of water. In zn/air systems there are two main problems namely the hydrogen overpotential and dendrite formation during recharging. Investigations have studied in detail both of the problems in order to overcome them. The results obtained in presence of additives are compared with the behavior of the electrolyte 8.5 M KOH in the absence of additives. It has been concluded that the hydrogen overpotential is raised enormously while dendrite formation is reduced to some extent. Out of the four acids studied, the order of increase in hydrogen overpotential is: tartaric acid > succinic acid > phosphoric acid > citric acid. The prevention of dendrite formation follows the order: citric acid > succinic acid > tartaric acid > phosphoric acid.

  14. 21 CFR 73.1991 - Zinc oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc... indirect process whereby zinc metal isolated from the zinc-containing ore is vaporized and then...

  15. 21 CFR 73.1991 - Zinc oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc... indirect process whereby zinc metal isolated from the zinc-containing ore is vaporized and then...

  16. 21 CFR 73.1991 - Zinc oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc... indirect process whereby zinc metal isolated from the zinc-containing ore is vaporized and then...

  17. 21 CFR 73.1991 - Zinc oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc... indirect process whereby zinc metal isolated from the zinc-containing ore is vaporized and then...

  18. Rhodiola rosea, folic acid, zinc and biotin (EndEP®) is able to improve ejaculatory control in patients affected by lifelong premature ejaculation: Results from a phase I-II study

    PubMed Central

    Cai, Tommaso; Verze, Paolo; Massenio, Paolo; Tiscione, Daniele; Malossini, Gianni; Cormio, Luigi; Carrieri, Giuseppe; Mirone, Vincenzo

    2016-01-01

    The therapeutic armamentarium currently available for the treatment of premature ejaculation (PE) is not highly satisfactory. However, phytotherapeutics appear to be an interesting option for PE management. The present study aimed to evaluate the tolerability and efficacy of a phytotherapeutic combination of Rhodiola rosea, folic acid, biotin and zinc (EndEP®) in the treatment of patients affected by lifelong PE. All patients affected by lifelong PE who were attending three Urological Institutions from July to December 2014 were enrolled in this prospective, multicentre, phase I–II study. All patients were assigned to receive oral tablets of EndEP® (one tablet per day) for 90 days. Clinical and instrumental analyses were carried out at enrolment and at the end of the study. International Prostatic Symptom Score (IPSS), International Index of Erectile Function (IIEF)-15, Premature Ejaculation Diagnostic Tool (PEDT) and Short Form (SF)-36 questionnaires were used. The intravaginal ejaculation latency time (IELT) for each event was also evaluated using the stop-watch technique. The main outcome measure was the difference from baseline in PEDT questionnaire and mean IELT at the end of the follow-up period. In total, 91 patients (mean age, 32.3±5.6 years) were analysed. The baseline questionnaires mean scores were 1.1±1.6, 26.1±2.9, 15.3±3.4 and 98.2±0.5, for IPSS, IIEF-15, PEDT and SF-36, respectively. The mean IELT at baseline was 73.6±46.9s. At the follow-up examination (90 days after the start of treatment), no statistically significant differences were identified in terms of IPSS (1.4±1.5) or IIEF-15 (26.3±3.1) compared with the pre-treatment values (P=0.19 and P=0.64, respectively). A statistically significant difference was detected between the mean IELT at enrolment and after treatment (73.6±46.9 vs. 102.3±60.0; P<0.001) and SF-36 questionnaire (98.2±0.5 vs. 99.4±0.1; P<0.001). Fifty-five patients reported improvement in the control of

  19. Rhodiola rosea, folic acid, zinc and biotin (EndEP(®)) is able to improve ejaculatory control in patients affected by lifelong premature ejaculation: Results from a phase I-II study.

    PubMed

    Cai, Tommaso; Verze, Paolo; Massenio, Paolo; Tiscione, Daniele; Malossini, Gianni; Cormio, Luigi; Carrieri, Giuseppe; Mirone, Vincenzo

    2016-10-01

    The therapeutic armamentarium currently available for the treatment of premature ejaculation (PE) is not highly satisfactory. However, phytotherapeutics appear to be an interesting option for PE management. The present study aimed to evaluate the tolerability and efficacy of a phytotherapeutic combination of Rhodiola rosea, folic acid, biotin and zinc (EndEP(®)) in the treatment of patients affected by lifelong PE. All patients affected by lifelong PE who were attending three Urological Institutions from July to December 2014 were enrolled in this prospective, multicentre, phase I-II study. All patients were assigned to receive oral tablets of EndEP(®) (one tablet per day) for 90 days. Clinical and instrumental analyses were carried out at enrolment and at the end of the study. International Prostatic Symptom Score (IPSS), International Index of Erectile Function (IIEF)-15, Premature Ejaculation Diagnostic Tool (PEDT) and Short Form (SF)-36 questionnaires were used. The intravaginal ejaculation latency time (IELT) for each event was also evaluated using the stop-watch technique. The main outcome measure was the difference from baseline in PEDT questionnaire and mean IELT at the end of the follow-up period. In total, 91 patients (mean age, 32.3±5.6 years) were analysed. The baseline questionnaires mean scores were 1.1±1.6, 26.1±2.9, 15.3±3.4 and 98.2±0.5, for IPSS, IIEF-15, PEDT and SF-36, respectively. The mean IELT at baseline was 73.6±46.9s. At the follow-up examination (90 days after the start of treatment), no statistically significant differences were identified in terms of IPSS (1.4±1.5) or IIEF-15 (26.3±3.1) compared with the pre-treatment values (P=0.19 and P=0.64, respectively). A statistically significant difference was detected between the mean IELT at enrolment and after treatment (73.6±46.9 vs. 102.3±60.0; P<0.001) and SF-36 questionnaire (98.2±0.5 vs. 99.4±0.1; P<0.001). Fifty-five patients reported improvement in the control of

  20. The possible role of gradual accumulation of copper, cadmium, lead and iron and gradual depletion of zinc, magnesium, selenium, vitamins B2, B6, D, and E and essential fatty acids in multiple sclerosis.

    PubMed

    Johnson, S

    2000-09-01

    Multiple sclerosis (MS) has a much higher incidence among caucasians that in any other race. Furthermore: females are much more susceptible than males and white females living in colder, wetter areas are much more susceptible than those living in warmer areas. On the other hand, menstruating women have increased copper (Cu) absorption and half-life, so they tend to accumulate more Cu than males. Moreover, rapidly growing girls have an increased demand for zinc (Zn), but their rapidly decreasing production of melatonin results in impaired Zn absorption, which is exacerbated by the high Cu levels. The low Zn levels result in deficient CuZnSuperoxide dismutase (CuZnSOD), which in turn leads to increased levels of superoxide. Menstruating females also often present with low magnesium (Mg) and vitamin B6 levels. Vitamin B6 moderates intracellular nitric oxide (NO) production and extracellular Mg is required for NO release from the cell, so that a deficiency of these nutrients results in increased NO production in the cell and reduced release from the cell. The trapped NO combines with superoxide to form peroxinitrite, an extremely powerful free radical that leads to the myelin damage of MS. Iron (Fe), molybdenum (Mo) and cadmium (Cd) accumulation also increase superoxide production. Which explains MS in males, who tend to accumulate Fe much faster and Cu much less rapidly than females. Since vitamin D is paramount for Mg absorption, the much reduced exposure to sunlight in the higher latitudes may account for the higher incidence in these areas. Moreover, vitamin B2 is a cofactor for xanthine oxidase, and its deficiency exacerbates the low levels of uric acid caused by high Cu levels, resulting in myelin degeneration. Finally Selenium (Se) and vitamin E prevent lipid peroxidation and EPA and DHA upregulate CuZnSOD. Therefore, supplementation with 100 mg MG, 25 mg vit B6, 10 mg vit B2, 15 mg Zn and 400 IU vit D and E, 100 microg Se, 180 mg EPA and 120 mg DHA per day

  1. Observations of interstellar zinc

    NASA Technical Reports Server (NTRS)

    York, D. G.; Jura, M.

    1982-01-01

    IUE observations toward 10 stars have shown that zinc is not depleted in the interstellar medium by more than a factor of two, suggesting that its abundance may serve as a tracer of the true metallicity in the gas. A result pertinent to the history of nucleosynthesis in the solar neighborhood is that the local interstellar medium has abundances that appear to be homogeneous to within a factor of two, when integrated over paths of about 500 pc.

  2. Estimating mercury emissions from a zinc smelter in relation to China's mercury control policies.

    PubMed

    Wang, S X; Song, J X; Li, G H; Wu, Y; Zhang, L; Wan, Q; Streets, D G; Chin, Conrad K; Hao, J M

    2010-10-01

    Mercury concentrations of flue gas at inlet/outlet of the flue gas cleaning, electrostatic demister, reclaiming tower, acid plant, and mercury contents in zinc concentrate and by-products were measured in a hydrometallurgical zinc smelter. The removal efficiency of flue gas cleaning, electrostatic demister, mercury reclaiming and acid plant was about 17.4%, 30.3%, 87.9% and 97.4% respectively. Flue gas cleaning and electrostatic demister captured 11.7% and 25.3% of the mercury in the zinc concentrate, respectively. The mercury reclaiming tower captured 58.3% of the mercury in the zinc concentrate. About 4.2% of the mercury in the zinc concentrate was captured by the acid plant. Consequently, only 0.8% of the mercury in the zinc concentrate was emitted to the atmosphere. The atmospheric mercury emission factor was 0.5 g t(-1) of zinc produced for the tested smelter, indicating that this process offers the potential to effectively reduce mercury emissions from zinc smelting.

  3. Zinc: indications in brain disorders.

    PubMed

    Prakash, Atish; Bharti, Kanchan; Majeed, Abu Bakar A

    2015-04-01

    Zinc is the authoritative metal which is present in our body, and reactive zinc metal is crucial for neuronal signaling and is largely distributed within presynaptic vesicles. Zinc also plays an important role in synaptic function. At cellular level, zinc is a modulator of synaptic activity and neuronal plasticity in both development and adulthood. Different importers and transporters are involved in zinc homeostasis. ZnT-3 is a main transporter involved in zinc homeostasis in the brain. It has been found that alterations in brain zinc status have been implicated in a wide range of neurological disorders including impaired brain development and many neurodegenerative disorders such as Alzheimer's disease, and mood disorders including depression, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and prion disease. Furthermore, zinc has also been implicated in neuronal damage associated with traumatic brain injury, stroke, and seizure. Understanding the mechanisms that control brain zinc homeostasis is thus critical to the development of preventive and treatment strategies for these and other neurological disorders.

  4. Role of zinc finger structure in nuclear localization of transcription factor Sp1

    SciTech Connect

    Ito, Tatsuo; Azumano, Makiko; Uwatoko, Chisana; Itoh, Kohji Kuwahara, Jun

    2009-02-27

    Transcription factor Sp1 is localized in the nucleus and regulates gene expression. Our previous study demonstrated that the carboxyl terminal region of Sp1 containing 3-zinc finger region as DNA binding domain can also serve as nuclear localization signal (NLS). However, the nuclear transport mechanism of Sp1 has not been well understood. In this study, we performed a gene expression study on mutant Sp1 genes causing a set of amino acid substitutions in zinc finger domains to elucidate nuclear import activity. Nuclear localization of the GFP-fused mutant Sp1 proteins bearing concomitant substitutions in the first and third zinc fingers was highly inhibited. These mutant Sp1 proteins had also lost the binding ability as to the GC box sequence. The results suggest that the overall tertiary structure formed by the three zinc fingers is essential for nuclear localization of Sp1 as well as dispersed basic amino acids within the zinc fingers region.

  5. Application of zinc oxide quantum dots in food safety

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zinc oxide quantum dots (ZnO QDs) are nanoparticles of purified powdered ZnO. The ZnO QDs were directly added into liquid foods or coated on the surface of glass jars using polylactic acid (PLA) as a carrier. The antimicrobial activities of ZnO QDs against Listeria monocytogenes, Salmonella Enteriti...

  6. Comparative effects of zinc-nano complexes, zinc-sulphate and zinc-methionine on performance in broiler chickens.

    PubMed

    Mohammadi, V; Ghazanfari, S; Mohammadi-Sangcheshmeh, A; Nazaran, M H

    2015-01-01

    Micronutrients, especially zinc, have an important role in normal metabolism and growth of broilers. Using novel technologies helps to synthesise novel zinc complexes to deliver this micronutrient more efficiently. In the present study, the effects of different zinc complexes and nano complexes on broiler performance were compared. Broilers in 6 groups were given basal diet (without zinc) and basal diet supplemented with zinc-sulphate, zinc-methionine, zinc-nano-sulphate, zinc-nano-methionine and zinc-nano-max (that was synthesised based on nanochelating technology) at a concentration of 80 mg/kg of diet. At 1-42 d of age, dietary zinc-nano-sulphate supplementation decreased weight gain and feed intake. However, feed conversion ratio was not influenced by treatments. Carcass yield (%) of birds in the zinc-nano-sulphate and control groups were dramatically reduced at 42 d of age and abdominal fat (%) increased in these groups. Relative to the control group, the antibody titre, spleen and bursa of Fabricius (%) were significantly higher in groups supplemented with zinc. Heterophil (%) was also significantly higher in the zinc-nano-methionine group in blood on d 42 compared to the control, zinc-sulphate and zinc-nano-sulphate. Compared to the controls, the mean malondialdehyde content in thigh tissue was significantly reduced in groups supplemented with zinc at the time 0, 50, 100 and 150 min after oxidation. Tibia zinc concentration in nanoparticle zinc samples was significantly higher relative to the control and zinc-sulphate groups. Taken together, our data indicate that delivery of zinc in the structure of zinc-nano-methionine and zinc-nano-max at concentrations of 80 mg/kg of diet improves growth performance. However, dietary zinc-nano-sulphate decreased growth performance in broilers.

  7. Arsenic doped zinc oxide

    SciTech Connect

    Volbers, N.; Lautenschlaeger, S.; Leichtweiss, T.; Laufer, A.; Graubner, S.; Meyer, B. K.; Potzger, K.; Zhou Shengqiang

    2008-06-15

    As-doping of zinc oxide has been approached by ion implantation and chemical vapor deposition. The effect of thermal annealing on the implanted samples has been investigated by using secondary ion mass spectrometry and Rutherford backscattering/channeling geometry. The crystal damage, the distribution of the arsenic, the diffusion of impurities, and the formation of secondary phases is discussed. For the thin films grown by vapor deposition, the composition has been determined with regard to the growth parameters. The bonding state of arsenic was investigated for both series of samples using x-ray photoelectron spectroscopy.

  8. Associations among dietary zinc intakes and biomarkers of zinc status before and after a zinc supplementation program in Guatemalan schoolchildren

    PubMed Central

    Bui, Vinh Q.; Marcinkevage, Jessica; Ramakrishnan, Usha; Flores-Ayala, Rafael C.; Ramirez-Zea, Manuel; Villalpando, Salvador; Martorell, Reynaldo; DiGirolamo, Ann M.; Stein, Aryeh D.

    2015-01-01

    Background The associations among dietary zinc intakes and biomarkers of zinc status are unknown in apparently healthy children at high risk for zinc deficiency. Objective To assess associations among zinc-related parameters in a sample of Guatemalan school-aged children. Methods We assessed total dietary intakes and biomarkers of zinc status before and after receiving 6 months of zinc supplementation or placebo in 691 Guatemalan schoolchildren aged 6 to 11 years. Most of the children also received zinc-fortified milk from a government program that started shortly after the trial began. We assessed associations between zinc intakes and serum zinc, alkaline phosphatase (ALP), and albumin. Results At baseline, the prevalence of serum zinc < 65 μg/dL and dietary zinc intake below Estimated Average Requirements (EAR) (< 4 and < 7 mg/day for children < 9 and ≥ 9 years, respectively) were 21.6% and 39.4%, respectively. Pearson correlations between serum zinc concentration and dietary zinc intake, serum ALP, and serum albumin were r = 0.07, 0.15, and 0.07, respectively. At the 6-month follow-up, low serum zinc and low total (diet plus fortified milk) zinc intakes were observed in 1.2% and 0.0% of children in the zinc-supplemented group and 4.0% and 34.1% in the placebo group, respectively. Pearson correlations between serum zinc concentration and total zinc intake, serum ALP, and serum albumin were 0.10, 0.06, and −0.11 in the zinc-supplemented group and −0.04, 0.05, and 0.01 in the placebo group, respectively. Conclusions Zinc intake was inconsistently associated with markers of serum zinc concentration. Zinc fortification or supplementation attenuated the associations. PMID:23964387

  9. 40 CFR 721.10326 - 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2... 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2,2'-(1,2-diazenediyl)bis - and...

  10. Health risks following ingestion of mercury and zinc air batteries.

    PubMed

    Nolan, M; Tucker, I

    1981-01-01

    This paper reports on a study set up to assess the corrosive behaviour of mercury and zinc air batteries in the gastric juice environment of the stomach. The results show a relatively rapid rate of corrosion for charged mercury batteries. In contrast, the zinc air battery showed no visible corrosion under the same conditions. In view of the toxic dangers from leakage of mercury batteries, it is recommended that steps be taken to ensure that such batteries do not remain in the acidic environment of the stomach, should ingestion occur.

  11. Zinc-transporter genes in human visceral and subcutaneous adipocytes: lean versus obese.

    PubMed

    Smidt, Kamille; Pedersen, Steen B; Brock, Birgitte; Schmitz, Ole; Fisker, Sanne; Bendix, Jørgen; Wogensen, Lise; Rungby, Jørgen

    2007-01-29

    Zinc ions influence adipose tissue metabolism by regulating leptin secretion and by promoting free fatty acid release and glucose uptake. The mechanisms controlling zinc metabolism in adipose tissue are unknown. We therefore examined the gene-expression levels of a number of zinc-transporting proteins in adipose tissue, comparing subcutaneous fat with visceral fat from lean and obese humans. Both ZnT-proteins responsible for zinc transport from cytosol to extracellular compartments and intracellular vesicles and Zip-proteins responsible for zinc transport to the cytoplasm were expressed in all samples. This suggests that zinc metabolism in adipocytes is actively controlled by zinc-transporters. The expression levels were different in lean and obese subjects suggesting a role for these proteins in obesity. Furthermore, the expression levels were different from subcutaneous fat to intra-abdominal fat suggesting that the metabolic activity in adipocytes is to some extent dependent upon zinc and the activity of zinc-transporting proteins or vice versa.

  12. Zinc gluconate and the common cold. Review of randomized controlled trials.

    PubMed Central

    Marshall, S.

    1998-01-01

    OBJECTIVE: To examine the evidence of seven randomized controlled trials (RCT) on the therapeutic effectiveness of zinc gluconate lozenges for treating the common cold. DATA SOURCES: Using the MeSH headings common cold and zinc gluconate, MEDLINE was searched from 1966 on for all published RCTs evaluating use of zinc gluconate for treating the common cold. STUDY SELECTION: For this study, only double-blind RCTs were included. SYNTHESIS: Fair evidence suggests that zinc gluconate lozenges have a therapeutic effect in treating the common cold. Starting therapy with zinc gluconate lozenges within 24 to 48 hours of onset of cold symptoms reduces the duration and severity of the cold. Patients must suck lozenges every 2 hours while awake during the cold. Minimum effective dose appears to be 13.3 mg of elemental zinc per lozenge. Evidence suggests that compounds such as citric acid, sorbitol, and mannitol bind the free zinc ion in the mouth, and this could account for variations in therapeutic benefit. Bad taste and nausea are important side effects of zinc lozenges. CONCLUSION: Evidence supports use of zinc gluconate lozenges for reducing the symptoms and duration of the common cold, but the side effects, bad taste, and therapeutic protocol might limit patient compliance. PMID:9612589

  13. Chromium and zinc contamination of parenteral nutrient solution components commonly used in infants and children.

    PubMed

    Hak, E B; Storm, M C; Helms, R A

    1998-01-15

    Chromium and zinc contamination of components of parenteral nutrient (PN) solutions used in infants and children was studied. Solutions of amino acids, L-cysteine hydrochloride, dextrose, electrolytes, minerals, vitamins, multiple trace elements, and individual trace elements were obtained. A variety of manufacturers, lots, and expiration dates were represented when possible. The solutions were analyzed for chromium and zinc by flame atomic absorption spectrophotometry. In all amino acid products, chromium concentration was below the limit of detection and zinc concentration ranged from 0.06 to 4.97 mg/L. In the L-cysteine hydrochloride products, chromium was measurable in only two lots (0.11 and 0.23 mg/L); zinc was measurable in all lots (32-86 mg/L). Sodium and potassium salts of chloride and acetate had chromium concentrations of 0.02-0.23 mg/L and zinc concentrations of 0.35-0.56 mg/L. Phosphate salts contained chromium 0.39-0.44 mg/L and zinc 0.91-2.33 mg/L. In calcium gluconate, zinc concentration was 0.28-2.38 mg/L. In four lots of multiple trace elements, chromium was 92-104% and zinc was 100-113.5% of the labeled amount. A PN solution for a < 10-kg infant compounded from the components assayed would provide up to an additional 0.7 microgram of chromium per kilogram and 200 micrograms of zinc per kilogram. Zinc and chromium contaminants were detected in many of the products that are common components of PN solutions for infants and children; the contamination may be sufficient to result in the administration of zinc and chromium in amounts exceeding current recommendations.

  14. Effect of infant cereals on zinc and copper absorption during weaning

    SciTech Connect

    Bell, J.G.; Keen, C.L.; Loennerdal, B.

    1987-10-01

    Zinc and copper absorption from five infant cereal products mixed with water, human milk, or cow's milk was measured using an in vivo absorption model (rat pup) involving gastric intubation of extrinsically radiolabeled diets. Whole-body copper 64 uptake, nine hours after intubation, ranged from 14% to 31% of the dose given for the different cereal combinations. The resultant bioavailability of copper from human milk-cereal combinations (23% to 26%) was significantly lower than that from human milk alone (38%). Whole-body zinc 65 uptake, nine hours after intubation, ranged from 13% to 54% of the dose given for the different cereal combinations. These values were significantly lower than the whole-body zinc 65 uptake from milk alone (61%). Zinc availability was lower (13% to 25%) from dry cereal combinations that contained phytic acid (oatmeal and high-protein varieties) compared with the ready-to-serve cereal-fruit combinations (24% to 54%). The highest zinc uptake (37% to 54%) was from rice-fruit combinations that do not contain phytic acid. We estimated the amounts of zinc and copper that would be absorbed from these cereal products and speculated on the potential impact of these foods on the weaning infant's zinc and copper nutriture. Depending on the feeding practices employed during the weaning period, it is apparent that infant cereals may compromise utilization of zinc and copper from milk diets during weaning.

  15. Erythrocyte zinc protoporphyrin.

    PubMed

    Braun, J

    1999-03-01

    In iron deficiency and lead poisoning, the enzyme ferrochelatase catalyzes the incorporation of zinc, instead of iron, into protoporphyrin IX, resulting in the formation of zinc protoporphyrin (ZPP). In healthy blood donors, there is a good inverse correlation between serum ferritin and ZPP levels. In renal failure patients and in patients with anemia caused by a variety of chronic disorders, two different types of iron deficiency are found: (a) absolute iron deficiency and (b) relative, or functional, iron deficiency. The latter occurs when iron, despite adequate stores, is not delivered rapidly enough to the erythroblasts. ZPP is not only indicative of absolute iron deficiency, but it is also, for now, the best indicator of iron-deficient erythropoiesis, along with the percentage of hypochromic red blood cells. By contrast, serum ferritin and transferrin saturation may not adequately assess functional iron deficiency. Elevated ZPP levels in renal failure patients can be caused by different pathogenetic mechanisms, such as chronic inflammatory disease, lead poisoning, and the presence of uremic factors, all of which could potentially inhibit heme biosynthesis. However, ZPP levels do not consistently predict an erythropoietic response to iron supplementation in maintenance hemodialysis patients, and thus, iron overload during i.v. iron supplementation cannot be detected by measuring ZPP.

  16. Successful removal of zinc sulfide scale restriction from a hot, deep, sour gas well

    SciTech Connect

    Kenrick, A.J.; Ali, S.A.

    1997-07-01

    Removal of zinc sulfide scale with hydrochloric acid from a hot, deep, Norphlet Sandstone gas well in the Gulf of Mexico resulted in a 29% increase in the production rates. The zinc sulfide scale was determined to be in the near-wellbore area. The presence of zinc sulfide is explained by the production of 25 ppm H{sub 2}S gas, and the loss of 50--100 bbl of zinc bromide fluid to the formation. Although zinc sulfide scale has been successfully removed with hydrochloric acid in low-to-moderate temperature wells, no analogous treatment data were available for high temperature, high pressure (HTHP) Norphlet wells. Therefore laboratory testing was initiated to identify suitable acid systems for scale removal, and select a high quality corrosion inhibitor that would mitigate detrimental effects of the selected acid on downhole tubulars and surface equipment. This case history presents the first successful use of hydrochloric acid in removing zinc sulfide scale from a HTHP Norphlet sour gas well.

  17. 21 CFR 522.2690 - Zinc gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter of solution contains 13.1 milligrams zinc as zinc...

  18. Regeneration of zinc chloride hydrocracking catalyst

    DOEpatents

    Zielke, Clyde W.

    1979-01-01

    Improved rate of recovery of zinc values from the solids which are carried over by the effluent vapors from the oxidative vapor phase regeneration of spent zinc chloride catalyst is achieved by treatment of the solids with both hydrogen chloride and calcium chloride to selectively and rapidly recover the zinc values as zinc chloride.

  19. 21 CFR 522.2690 - Zinc gluconate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter of solution contains 13.1 milligrams zinc as zinc...

  20. 21 CFR 522.2690 - Zinc gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter of solution contains 13.1 milligrams zinc as zinc...

  1. 21 CFR 522.2690 - Zinc gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter of solution contains 13.1 milligrams zinc as zinc...

  2. 21 CFR 522.2690 - Zinc gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter of solution contains 13.1 milligrams zinc as zinc...

  3. Zinc-bromine battery development

    NASA Astrophysics Data System (ADS)

    Richards, Lew; Vanschalwijk, Walter; Albert, George; Tarjanyi, Mike; Leo, Anthony; Lott, Stephen

    1990-05-01

    This report describes development activities on the zinc-bromine battery system conducted by Energy Research Corporation (ERC). The project was a cost-shared program supported by the U.S. Department of Energy and managed through Sandia. The project began in September 1985 and ran through January 1990. The zinc-bromine battery has been identified as a promising alternative to conventional energy storage options for many applications. The low cost of the battery reactants and the potential for long life make the system an attractive candidate for bulk energy storage applications, such as utility load leveling. The battery stores energy by the electrolysis of an aqueous zinc bromide salt to zinc metal and dissolved bromine. Zinc is plated as a layer on the electrode surface while bromine is dissolved in the electrolyte and carried out of the stack. The bromine is then extracted from the electrolyte with an organic complexing agent in the positive electrolyte storage tank. On discharge the zinc and bromine are consumed, regenerating the zinc bromide salt.

  4. Cytotoxicity of zinc in vitro.

    PubMed

    Borovanský, J; Riley, P A

    1989-01-01

    The effect of zinc ions on B16 mouse melanoma lines, HeLa cells and I-221 epithelial cells was investigated in vitro in order to ascertain whether sensitivity to Zn2+ is a general feature of cells in vitro and in an attempt to elucidate the mechanism(s) of zinc cytotoxicity. The proliferation of B16, HeLa and I-221 cell lines was inhibited by 1.25 x 10(-4), 1.50 x 10(-4) and 1.50 x 10(-4) mol/l Zn2+, respectively. The free radical scavengers, methimazole and ethanol, did not suppress the toxicity of Zn2+, neither did superoxide dismutase or catalase. The addition of the chelating agent EDTA reduced the zinc cytotoxicity. It was possible to suppress the cytotoxicity of zinc by increasing the concentration of either Fe2+ or Ca2+ but not Mg2+, which suggests that a prerequisite for the toxic action of zinc is entry into cells using channels that are shared with iron or calcium. This view was supported by experiments in which transferrin intensified the cytotoxic action of zinc in serum-free medium. Another agent facilitating zinc transport, prostaglandin E2, inhibited the proliferation of the B16 melanoma cell line. There were no conspicuous differences in zinc toxicity to pigmented and unpigmented cells. The toxic effect of zinc in the cell systems studied exceeded that of iron, copper, manganese and cobalt in the same concentration range. In vitro, Zn2+ should be regarded as a dangerous cation.

  5. Full size zinc-air battery

    SciTech Connect

    Goldstein, J.R.; Koretz, B.

    1993-11-01

    The Electric Fuel zinc-air battery yielded energy densities from 6.8 to 10.2 times higher than those of the lead-acid batteries. The higher the power and the more difficult the driving cycle, the higher this ratio of energy densities grew. Not only was the Electric Fuel battery capable of extended high-power discharge, the impact of such discharge conditions on energy and driving range was show to be quite small, and was much smaller than the comparable impact on lead-acid traction batteries. At the time of writing this paper, tests are scheduled to continue with the 110-kWh battery in the Mercedes van, and preliminary plans have been made for testing of additional batteries on other vehicle types.

  6. Zinc deficiency in senile purpura.

    PubMed Central

    Haboubi, N Y; Haboubi, N A; Gyde, O H; Small, N A; Barford, A V

    1985-01-01

    Fasting plasma zinc concentrations were lower in elderly people with senile purpura than in a control group matched for age. No significant difference was found in the mean serum concentration of albumin, which is the main binder of zinc. No other clinical or laboratory findings differentiated the two groups. As the cause of the low plasma zinc values has not been found it is suggested that further studies of the related factors including input, output, and binding should be made before a therapeutic trial is launched. PMID:4056071

  7. Zinc Finger Takes on a Whole New Meaning: Reducing and Monitoring Zinc Blanks in the Isotope Lab

    NASA Astrophysics Data System (ADS)

    Wilkes, E. B.; Wasylenki, L. E.; Anbar, A. D.

    2010-12-01

    In terms of avoiding contamination, zinc is one of the most difficult elements to study isotopically. The reason for this is that zinc stearate is a very common mold release agent in the production of plastics, including those most often used in isotope geochemistry clean labs. While polyethylene bottles, polypropylene centrifuge tubes, pipette tips, and Kimwipes are all potential sources of contaminant zinc, by far the largest amount of zinc is introduced to the laboratory by gloves. Most items can be effectively rid of zinc by soaking in dilute hydrochloric acid, but gloves cannot be cleaned easily, and use of gloves can quickly lead to contamination on many surfaces throughout the lab. We recently conducted several experiments in which dissolved zinc was partly adsorbed onto synthetic Mn oxyhydroxide particles. The dissolved and adsorbed pools were separated by filtration, purified with ion exchange chemistry, and analyzed for isotope composition by MC-ICP-MS. We used a commercially purchased ICP standard solution both as our standard (delta66/64Zn = 0) and as the source of the zinc in the experiments. Whenever gloves were worn during purification, process blanks contained as much as 150 ng Zn, and both the dissolved and adsorbed pools of zinc came out enriched in heavy isotopes relative to the starting pool, contrary to our expectation of mass balance. When gloves were not worn, blanks were <10 ng, and, as expected, one pool of Zn was lighter and one heavier than the standard. Zinc leached from two different brands of vinyl gloves, including one brand recommended to us for being “low” in zinc, measured +10‰ relative to our standard. We therefore concluded that glove zinc contaminated most of our experimental samples. We were only able to see such clear evidence of contamination because (1) we were doing an experiment in which we expected one light and one heavy pool of zinc compared to our standard, and (2) we happened to use an ICP standard solution for

  8. Zinc transporter 7 deficiency affects lipid synthesis in adipocytes by inhibiting insulin-dependent Akt activity and glucose uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mice deficient for zinc transporter 7 (Znt7) are mildly zinc deficient, accompanied with low body weight gain and body fat accumulation. To investigate the underlying mechanism of Znt7 deficiency in body adiposity, we investigated fatty acid composition and insulin sensitivity in visceral (epididyma...

  9. The production and molecular properties of the zinc beta-lactamase of Pseudomonas maltophilia IID 1275.

    PubMed Central

    Bicknell, R; Emanuel, E L; Gagnon, J; Waley, S G

    1985-01-01

    The production and purification of a tetrameric zinc beta-lactamase from Pseudomonas maltophilia IID 1275 were greatly improved. Three charge variants were isolated by chromatofocusing. The subunits each contain two atomic proportions of zinc and (in two of the variants) one residue of cysteine. The thiol group is not required for activity, nor does it appear to bind to the metal. Replacement of zinc by cobalt, cadmium or nickel takes place at a measurable rate, and gives enzymes that are less active than the zinc enzyme. The properties of this enzyme differ from those of the other known zinc beta-lactamase, beta-lactamase II from Bacillus cereus. The amino acid sequence of the N-terminal 32 residues was determined; there is no similarity to the N-terminal sequences of other beta-lactamases. PMID:3931629

  10. Potentiometric stripping analysis of zinc and copper in human teeth and dental materials.

    PubMed

    Kalicanin, Biljana M; Nikolić, Ruzica S

    2008-01-01

    Potentiometric stripping analysis (PSA) with oxygen as the oxidant has been used to determine soluble zinc and copper levels in exfoliated human teeth (all of which required extraction for orthodontic reasons) and commercial dental materials. The soluble zinc and copper contents of teeth were slightly below the zinc and copper contents in whole teeth reported by other researchers, except in the case of tooth with removed amalgam filling. Soluble zinc and copper concentrations of the dental materials and metal ceramic crowns were 0.50-6.30, and of 2.00-4.30 microg/g, respectively. The results of this work suggest that PSA may be a good method for zinc and copper leaching studies during the investigation of dental prosthetic materials' biocompatibility. Corrosive action of acidic media as evidenced by SEM micrographs caused the leaching of metal ions from teeth.

  11. Influence of dietary calcium, phosphorus, zinc and sodium phytate level on cataract incidence, growth and histopathology in juvenile chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Richardson, N L; Higgs, D A; Beames, R M; McBride, J R

    1985-05-01

    To determine the influence of wide variations in dietary levels of calcium, zinc and phytic acid (as sodium phytate) on growth and cataract incidence, juvenile chinook salmon held at 10-11 degrees C were fed daily to satiation for 105 d one of nine purified diets containing one of three levels (grams/kilogram) of calcium (averaged 4.8, 17.7, 50.2), zinc (averaged 0.05, 0.15, 0.39) and phytic acid (1.62, 6.46, 25.8). Diets were formulated to have a calcium-phosphorus ratio of close to unity when considering phosphorus sources other than sodium phytate. High dietary phytic acid concentration (25.8 g/kg) depressed chinook salmon growth, food and protein conversion [protein efficiency ratio (PER)] and thyroid function, increased mortality, promoted cataract formation (zinc at 0.05 g/kg) and induced anomalies in pyloric cecal structure. Calcium at 51 g/kg (or phosphorus) exacerbated the effects of high dietary phytate and low dietary zinc on cataract incidence. Moreover, high dietary levels of calcium (48-51 g/kg) coupled with phosphorus significantly impaired the growth and appetite of low phytic acid (1.62 g/kg) groups and led to nephrocalcinosis in low and high phytic acid groups. Plasma zinc levels were directly related to dietary zinc concentration and inversely related to dietary phytic acid level. Calcium (51 g/kg) and/or phosphorus reduced zinc bioavailability when the diet concurrently contained 0.05 g zinc and 25.8 g of phytic acid per kilogram. It is concluded that zinc is essential for normal eye development in juvenile chinook salmon. Further, zinc deficiency could not be induced in chinook salmon fed diets with high ratios of calcium (or phosphorus) to zinc alone. This required the simultaneous presence of a strong mineral (zinc)-binding agent.

  12. Deposition of zinc films by laser method

    SciTech Connect

    Goncharov, V K; Gusakov, G A; Puzyrev, M V

    2015-04-30

    Conditions of laser irradiation of a zinc target under which large droplets of a laser target material are not formed in the erosion plume are found, and zinc nanofilms with a minimum number of large particles on the surface are produced. The surface structure, thickness and optical characteristics of zinc films are determined as functions of the power density of laser radiation falling on a zinc target. The evaporation threshold for a zinc target irradiated by nanosecond laser pulses is found. (laser technologies)

  13. The Endophytic Bacterium, Sphingomonas SaMR12, Improves the Potential for Zinc Phytoremediation by Its Host, Sedum alfredii

    PubMed Central

    Zhang, Xincheng; Pan, Fengshan; Yang, Xiaoe; Feng, Ying

    2014-01-01

    The endophytic bacterium, Sphingomonas SaMR12, isolated from Sedum alfredii Hance, appears to increase plant biomass and zinc-extraction from contaminated soil; however, the mechanism by which this occurs is not clear. Here, the ability of SaMR12 to promote zinc extraction and its effects on root morphology and exudation were examined in hydroponics. Zinc treatment increased shoot biomass by 30 to 45%, and by a further 10 to 19% when combined with SaMR12 inoculation. Zinc treatment also increased zinc accumulation modestly and this too was enhanced with SaMR12. Both biomass and zinc levels increased in a dose-dependent manner with significant effects seen at 50 µM zinc and apparent saturation at 500 µM. Zinc and the endophyte also increased levels of auxin but not at 50 µM and zinc increased levels of superoxide and hydrogen peroxide but mainly at 500 µM. As for root morphology, SaMR12 increased root branching, the number of root tips, and surface area. Zinc and SaMR12 also increased the exudation of oxalic acid. For most assays the effects of the endophyte and zinc were additive, with the notable exception of SaMR12 strongly reducing the production of reactive oxygen species at 500 µM zinc. Taken together, these results suggest that the promotion of growth and zinc uptake by exposure to zinc and to SaMR12 are independent of reactive oxygen and do not involve increases in auxin. PMID:25198772

  14. Comparison of proteome response to saline and zinc stress in lettuce

    PubMed Central

    Lucini, Luigi; Bernardo, Letizia

    2015-01-01

    Zinc salts occurring in soils can exert an osmotic stress toward plants. However, being zinc a heavy metal, some more specific effects on plant metabolisms can be forecast. In this work, lettuce has been used as a model to investigate salt and zinc stresses at proteome level through a shotgun tandem MS proteomic approach. The effect of zinc stress in lettuce, in comparison with NaCl stress, was evaluated to dissect between osmotic/oxidative stress related effects, from those changes specifically related to zinc. The analysis of proteins exhibiting a fold change of 3 as minimum (on log 2 normalized abundances), revealed the involvement of photosynthesis (via stimulation of chlorophyll synthesis and enhanced role of photosystem I) as well as stimulation of photophosphorylation. Increased glycolytic supply of energy substrates and ammonium assimilation [through formation of glutamine synthetase (GS)] were also induced by zinc in soil. Similarly, protein metabolism (at both transcriptional and ribosomal level), heat shock proteins, and proteolysis were affected. According to their biosynthetic enzymes, hormones appear to be altered by both the treatment and the time point considered: ethylene biosynthesis was enhanced, while production of abscisic acid was up-regulated at the earlier time point to decrease markedly and gibberellins were decreased at the later one. Besides aquaporin PIP2 synthesis, other osmotic/oxidative stress related compounds were enhanced under zinc stress, i.e., proline, hydroxycinnamic acids, ascorbate, sesquiterpene lactones, and terpenoids biosynthesis. Although the proteins involved in the response to zinc stress and to salinity were substantially the same, their abundance changed between the two treatments. Lettuce response to zinc was more prominent at the first sampling point, yet showing a faster adaptation than under NaCl stress. Indeed, lettuce plants showed an adaptation after 30 days of stress, in a more pronounced way in the case of

  15. Stabilized nickel-zinc battery

    SciTech Connect

    Himy, A.; Wagner, O.C.

    1982-04-27

    An alkaline nickel-zinc cell which has (1) a nickel-nickel hydroxide cathode; (2) a zinc-zinc oxide anode containing (A) a corrosion inhibitor such as PBO, SNO2, Tl2O3, in(OH)3 or mixtures thereof; (B) a slight corrosion accelerator such as cdo, bi2o3, ga2o3, or mixtures thereof; and (C) a zinc active material; (3) a mass-transport separator; (4) an alkaline electrolyte; and (5) means for charging the cell with an interrupted current having a frequency of from more than zero to 16 hertz with a rest period of not less than 60 milliseconds. Another desirable feature is the use of a pressure-cutoff switch to terminate charging when the internal pressure of the cell reaches a selected value in the range of from 5 to 8 psig.

  16. Synthesis of hydrophobic zinc borate nanoflakes and its effect on flame retardant properties of polyethylene

    SciTech Connect

    Li Shengli; Long Beihong; Wang Zichen; Tian Yumei; Zheng Yunhui; Zhang Qian

    2010-04-15

    Zinc borate (2ZnO.3B{sub 2}O{sub 3}.3.5H{sub 2}O) has relatively high dehydration on-set temperature which property permits processing in a wide range of polymer system. But zinc borate particles are hardly dispersed in a polymer matrix so that they prevent their using in industry. To address this problem, we synthesized hydrophobic zinc borate (2ZnO.3B{sub 2}O{sub 3}.3.5H{sub 2}O) nanoflakes by employing solid-liquid reaction of zinc oxide (ZnO) and boric acid (H{sub 3}BO{sub 3}) in the presence of oleic acid. This method does not bring pollution. By conducting morphological and microscopic analyses, we found that this compound displayed nanoflake morphology with particle size of around 100-200 nm, thickness less than 100 nm and there were uniform mesopores with the diameter about 10 nm within the particles. Furthermore, our products had an effect on flame retardant of polyethylene, especially when the zinc borate was modified by oleic acid. - Graphical abstract: The contact angle of hydrophobic zinc borate nanoflakes is 129.02 deg. with added 2.0 wt% of oleic acid.

  17. Powering future vehicles with the refuelable zinc/air battery

    SciTech Connect

    1995-10-01

    A recent road test at LLNL underscored the zinc/air battery`s capacity to give electric vehicles some of the attractive features of gas-driven cars: a 400-km range between refueling, 10-minute refueling, and highway-safe acceleration. Developed at Lawrence Livermore National Laboratory, the battery weights only one-sixth as much as standard lead/acid batteries and occupies one-third the space, yet costs less per mile to operate. What`s more, because the battery is easily refuelable, it promises trouble-free, nearly 24-hour-a-day operation for numerous kinds of electric vehicles, from forklifts to delivery vans and possibly, one day, personal automobiles. The test of a Santa Barbara Municipal Transit bus with a hybrid of zinc/air and lead/acid batteries capped a short development period for the zinc/air battery. The test run indicated the zinc/air battery`s potential savings in vehicle weight from 5.7 to 4.0 metric tons, in battery weight from 2.0 to 0.3 metric tons, in battery volume from 0.79 to 0.25 m{sup 3}, and in electricity cost from 5.6 cents per mile to 4.7 cents per mile. The power, however, remains the same.

  18. Heat-sterilized silver oxide-zinc cells: Cycle life studies

    NASA Technical Reports Server (NTRS)

    Arms, J. T.

    1973-01-01

    A JPL study was conducted to evaluate the cell design parameters that contribute to the cycle life of sealed, heat-sterilized silver oxide-zinc cells. Test cells having a rated capacity of 4.2 A-h were fabricated using zinc oxide electrodes prepared by the sintered Teflon process. Two separator variations were evaluated, one having acrylic acid and the other methacrylic acid grafted to irradiated polyethylene film. Significant results of this study include the following: (1) cycle life in excess of 300 cycles was attained; (2) a zinc oxide/silver stoichiometric ratio of 1.5 resulted in greater cycle life than a ratio of 1.1, and similar cycle life to cells having a ratio of 2; (3) cells having methacrylic acid grafted separators suffered somewhat less in capacity loss due to zinc electrode shape change than cells having acrylic acid type; (4) use of acrylic acid grafted separators was slightly superior to the methacrylic acid type in respect to silver penetration; and (5) the inclusion of a layer of potassium titanate paper adjacent to the zinc electrodes resulted in cells that achieved higher cycle life before any of the group failed than that reached by cells of any other construction.

  19. Structural Analyses of Zinc Finger Domains for Specific Interactions with DNA.

    PubMed

    Eom, Ki Seong; Cheong, Jin Sung; Lee, Seung Jae

    2016-12-28

    Zinc finger proteins are among the most extensively applied metalloproteins in the field of biotechnology owing to their unique structural and functional aspects as transcriptional and translational regulators. The classical zinc fingers are the largest family of zinc proteins and they provide critical roles in physiological systems from prokaryotes to eukaryotes. Two cysteine and two histidine residues (Cys₂His₂) coordinate to the zinc ion for the structural functions to generate a ββα fold, and this secondary structure supports specific interactions with their binding partners, including DNA, RNA, lipids, proteins, and small molecules. In this account, the structural similarity and differences of well-known Cys₂His₂-type zinc fingers such as zinc interaction factor 268 (ZIF268), transcription factor IIIA (TFIIIA), GAGA, and Ros will be explained. These proteins perform their specific roles in species from archaea to eukaryotes and they show significant structural similarity; however, their aligned amino acids present low sequence homology. These zinc finger proteins have different numbers of domains for their structural roles to maintain biological progress through transcriptional regulations from exogenous stresses. The superimposed structures of these finger domains provide interesting details when these fingers are applied to specific gene binding and editing. The structural information in this study will aid in the selection of unique types of zinc finger applications in vivo and in vitro approaches, because biophysical backgrounds including complex structures and binding affinities aid in the protein design area.

  20. Thermodynamic and Kinetic Studies for Intensifying Selective Decomposition of Zinc Ferrite

    NASA Astrophysics Data System (ADS)

    Han, Junwei; Liu, Wei; Qin, Wenqing; Jiao, Fen; Wang, Dawei; Liang, Chao

    2016-09-01

    A novel method to intensify the selective decomposition of zinc ferrite by a roasting process including reduction and magnetization stages was proposed. The relevant thermodynamic analysis with HSC [enthalpy (H), entropy (S) and heat capacity (C)] Chemistry 5.0 and experimental research on a laboratory scale were investigated. The thermodynamic calculations show that increasing the temperature and the CO amount promote not only the decomposition of zinc ferrite but also the formation of wustite, which can be converted to magnetite using sufficient CO2 at 823 K. The experimental results indicate that the zinc ferrite was decomposed into zinc oxide and wustite by reduction roasting under a gas mixture of 20% CO, 20% CO2 and 60% N2 at 1023 K for 90 min, and the decomposition degree of zinc ferrite reached 94%. Then, the generated wustite was transformed into magnetite by magnetization roasting under CO2 atmosphere at 823 K for 75 min, after which the selective extraction of zinc from zinc ferrite could be well achieved by low acid leaching. Increasing temperature and time were conducive to the magnetization within low temperature range, but when the temperature was above 823 K the zinc ferrite could be regenerated.

  1. Trace elements in foods of children from Cameroon: a focus on zinc and phytate content.

    PubMed

    Kana Sop, M Modestine; Gouado, Inocent; Mananga, Marlyne-Josephine; Djeukeu Asongni, William; Amvam Zollo, Paul Henri; Oberleas, Donald; Tetanye, Ekoe

    2012-06-01

    In developing countries, complementary foods are based on local cereal porridges. These foods are poor in trace elements, with a high risk of inducing micronutrient deficiencies-the primary cause of mortality in children under the age of five. Inappropriate feeding of complementary foods is the major factor creating malnutrition and micronutrients deficiencies in Cameroon children, as well as in other developing countries. This study determined the zinc and phytate content of 30 complementary foods that were based on maize or Irish potatoes. The foods were blended or treated by dehusking, fermentation and germination. Zinc was measured by flame atomic absorption spectrophotometry and phytates by high pressure-liquid chromatography; then phytates/zinc molar ratios were calculated. Concentrations (mg/100g dry matter) ranged, respectively, from 0.20 to 2.58 (0.12 ± 0.67) for zinc and from 0.00 to 6.04 (1.87 ± 1.7) for phytates. The phytate/zinc ratio varied from 0.00 to 51.62 (11.12 ± 11.53). It appears that germination and fermentation reduced the level of phytates: however, zinc levels in the samples did not change significantly. The traditional, local complementary foods were not only poor in zinc, but contained very high levels of phytates. These phytates have the potential to considerately reduce the acid extraction of zinc, and could impair its bioavailability.

  2. Spectrophotometric studies and applications for the determination of Ni²+ in zinc-nickel alloy electrolyte.

    PubMed

    Qiao, Xiaoping; Li, Helin; Zhao, Wenzhen; Li, Dejun

    2012-09-01

    The absorption properties of zinc-nickel alloy electrolyte were studied by visible spectrophotometer. The results show that the relationship between the absorbance of the zinc-nickel alloy electrolyte and Ni(2+) concentration in the electrolyte obeys Beer's law at 660 nm. In addition, other components except Ni(2+) in the zinc-nickel alloy electrolyte such as zinc chloride, ammonium chloride, potassium chloride and boric acid have no obvious effect on the absorbance of zinc-nickel alloy electrolyte. Based on these properties, a new method is developed to determine Ni(2+) concentration in zinc-nickel alloy electrolyte. Comparing with other methods, this method is simple, direct and accurate. Moreover, the whole testing process does not consume any reagent and dilution, and after testing, the electrolyte samples can be reused without any pollution to the environment.

  3. Absorption of zinc and iron by rats fed meals containing sorghum food products

    SciTech Connect

    Stuart, S.M.A.; Johnson, P.E.; Hamaker, B.; Kirleis, A.

    1986-03-05

    Zinc and iron absorption from freeze-dried traditionally-prepared sorghum food products was studied in rats. After a period of marginal zinc or iron depletion, rats were fed test meals containing 1 of 4 sorghum foods cooked maize gruel or an inorganic mineral each of which was extrinsically labeled with either /sup 65/Zn or /sup 59/Fe before being added to the diets. Absorption was determined by whole body percent retention of the initial radioisotope dose over a period of 19 days. Iron was highly available from all products tested (75-83%) with no significant differences in absorption among groups (p>0.05). Zinc from fermented Aceta (97%) was more available than that from the other sorghum products (69-78%) or maize gruel (76%). Zinc from acid To (78%) and Aceta (97%) was as available as that from zinc oxide in the control diet (93%) (p>0.05). There were no significant differences in zinc absorption among groups fed Acid To (78%), neutral To (76), alkali To (69%) or maize gruel (76%) (p<0.05). Phytate in the fermented Aceta was 33% lower than in the other sorghum foods. Iron and zinc were highly available from all sorghum foods. Reduction phytate by fermentation increased Zn availability.

  4. Recovery of Metal Values from Spent Zinc-Carbon Dry Cell Batteries

    NASA Astrophysics Data System (ADS)

    Khan, Majharul Haque; Gulshan, Fahmida; Kurny, A. S. W.

    2013-04-01

    Spent zinc-carbon dry cell batteries were characterized in the process of recovery of metal values. Zinc, manganese and steel were the major metallic materials constituting 63 % of the weight of spent batteries. Different components of the spent batteries were separately processed to extract the metallic values. A maximum of 92 % of total amount of zinc contained in the anodes could be extracted with a purity of over 99.0 % from the anodes by heating at 600 °C for 10 min in presence of 12 % NH4Cl flux. Spent electrolyte paste containing manganese and zinc as major metallic elements, was leached in sulfuric acid solution in presence of hydrogen peroxide as a reducing agent. The optimum condition for leaching was found to be concentration of sulfuric acid: 2.5 M, concentration of hydrogen peroxide: 10 %, temperature: 60 °C, stirring speed: 600 rpm and solid/liquid ratio 1:12. A maximum of 88 % manganese contained in the paste could be dissolved within 27 min of leaching under the optimized conditions. Dissolution of zinc under the same conditions was 97 %. A maximum of 69.89 % of manganese and 83.29 % of zinc contained in the leach liquor could be precipitated in the form of manganese carbonate and zinc oxalate.

  5. What every dentist should know about zinc.

    PubMed

    Patel, Amar; von Fraunhofer, J Anthony; Bashirelahi, Nasir

    2011-01-01

    Zinc plays an important role in human physiology, from its involvement in the proper function of the immune system to its role in cellular growth, cell proliferation, and cell apoptosis as well as its essential role in the activity of numerous zinc-binding proteins. However, zinc also plays a key pathophysiological role in major neurological disorders and diabetes. Zinc deficiency is a worldwide problem, whereas excessive intake of zinc is relatively rare. Many patients are exposed to zinc on a regular basis through dentistry as a result of its use in certain restorative materials, mouthwashes, toothpastes and, notably, denture adhesives. Of particular importance to dental professionals are various case reports concerning the neurologic effects of excess zinc intake by patients who routinely use large quantities of zinc-containing denture adhesives. This review presents relevant information concerning the use of zinc in dentistry.

  6. Zinc in innate and adaptive tumor immunity

    PubMed Central

    2010-01-01

    Zinc is important. It is the second most abundant trace metal with 2-4 grams in humans. It is an essential trace element, critical for cell growth, development and differentiation, DNA synthesis, RNA transcription, cell division, and cell activation. Zinc deficiency has adverse consequences during embryogenesis and early childhood development, particularly on immune functioning. It is essential in members of all enzyme classes, including over 300 signaling molecules and transcription factors. Free zinc in immune and tumor cells is regulated by 14 distinct zinc importers (ZIP) and transporters (ZNT1-8). Zinc depletion induces cell death via apoptosis (or necrosis if apoptotic pathways are blocked) while sufficient zinc levels allows maintenance of autophagy. Cancer cells have upregulated zinc importers, and frequently increased zinc levels, which allow them to survive. Based on this novel synthesis, approaches which locally regulate zinc levels to promote survival of immune cells and/or induce tumor apoptosis are in order. PMID:21087493

  7. [Role of zinc in type 2 diabetes].

    PubMed

    Tamaki, Motoyuki; Fujitani, Yoshio

    2014-01-01

    Pancreatic β cells contain the highest amount of zinc among cells within the human body, and hence, the relationship between zinc and diabetes has been of great interest. To date, many studies of zinc and diabetes have been reported, including studies demonstrating that diabetic patients and mice have a decreased amount of zinc in the pancreas. Zinc may counteract the deleterious effects of oxidative stress, which contributes to reduced insulin resistance, and may also protect pancreatic β cells from glucolipotoxicity. Recently, we have shown that SLC30A8/zinc transporter 8, which is a transporter expressed on the surface of insulin granules, plays a key role in zinc transport into insulin granules and in the regulation of hepatic insulin clearance. Here, we review the role of zinc in whole-body maintenance and the latest information on the relationship between zinc and diabetes.

  8. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: Downstream processing and zinc recovery by electrowinning.

    PubMed

    Tsakiridis, P E; Oustadakis, P; Katsiapi, A; Agatzini-Leonardou, S

    2010-07-15

    The characterization and the agitation leaching of electric arc furnace dust (EAFD) by diluted sulphuric acid have been studied in Part I, as a separate article. The aim of the present research work (Part II) is the development of a purification process of the leach liquor for the recovery of high-purity zinc by electrowinning. The proposed hydrometallurgical process consists of the following four (4) unit operations: (1) Removal of iron as easily filterable crystalline basic sulphate salt of the jarosite type, at atmospheric pressure, by chemical precipitation at pH: 3.5 and 95 degrees C. (2) Zinc solvent extraction by Cyanex 272 at pH: 3.5, T: 40 degrees C, with 25% extractant concentration. (3) Stripping of the loaded organic phase by zinc spent electrolyte (62.5 g/L Zn(2+)) at T: 40 degrees C with diluted H(2)SO(4) (3 mol/L). (4) Zinc electrowinning from sulphate solutions (at 38 degrees C) using Al as cathode and Pb as anode. The acidity of the electrolyte was fixed at 180 g/L H(2)SO(4), while the current density was kept constant at 500 A/m(2).

  9. Doping in Zinc Selenide

    NASA Astrophysics Data System (ADS)

    Wheeler, Edward Dean

    An experimental technique ensuring the incorporation of substitutional arsenic and copper doping in ZnSe is presented. Two techniques are investigated. In each, neutron transmutation doping is employed to introduce arsenic and copper dopants in ZnSe. In the first technique, as-grown crystals of ZnSe are exposed to thermal neutrons. The crystals are thermally annealed after irradiation in order to repair the neutron induced lattice damage. The thermal annealing schedules employed in this work, however, do not fully repair the ZnSe lattice. In the second technique, homoepitaxial layers of ZnSe are deposited with irradiated zinc and selenium as source materials. High quality layers of ZnSe, characterized by x-ray diffraction and low temperature photoluminescence, are produced. The long half lives of As^ {75} and Zn^{65} allow the epitaxial layers to be formed prior to nuclear decay. Since the nuclear recoil associated with the decays are not sufficient to displace the dopant nuclei from their substitutional lattice sites, the technique results in isolated As_{Se } or isolated Cu_{Zn } being introduced in layers of ZnSe after crystal growth. Since the dopants are introduced in the bulk crystal after crystal growth, the doping process is decoupled from any interactions present during crystal growth. A technique in which crystal doping is decoupled from crystal growth provides several unique probes for arsenic and copper doping in ZnSe.

  10. Zinc and Diabetic Retinopathy

    PubMed Central

    Miao, Xiao; Sun, Weixia; Miao, Lining; Fu, Yaowen; Wang, Yonggang; Su, Guanfang; Liu, Quan

    2013-01-01

    Zinc (Zn) is an important nutrient that is involved in various physiological metabolisms. Zn dyshomeostasis is often associated with various pathogeneses of chronic diseases, such as metabolic syndrome, diabetes, and related complications. Zn is present in ocular tissue in high concentrations, particularly in the retina and choroid. Zn deficiencies have been shown to affect ocular development, cataracts, age-related macular degeneration, and even diabetic retinopathy. However, the mechanism by which Zn deficiency increases the prevalence of diabetic retinopathy remains unclear. In addition, due to the negative effect of Zn deficiency on the eye, Zn supplementation should prevent diabetic retinopathy; however, limited available data do not always support this notion. Therefore, the goal of this paper was to summarize these pieces of available information regarding Zn prevention of diabetic retinopathy. Current theories and possible mechanisms underlying the role of Zn in the eye-related diseases are discussed. The possible factors that affect the preventive effect of Zn supplementation on diabetic retinopathy were also discussed. PMID:23671870

  11. Zinc content of selected tissues and taste perception in rats fed zinc deficient and zinc adequate rations

    SciTech Connect

    Boeckner, L.S.; Kies, C.

    1986-03-05

    The objective of the study was to determine the effects of feeding zinc sufficient and zinc deficient rations on taste sensitivity and zinc contents of selected organs in rats. The 36 Sprague-Dawley male weanling rats were divided into 2 groups and fed zinc deficient or zinc adequate rations. The animals were subjected to 4 trial periods in which a choice of deionized distilled water or a solution of quinine sulfate at 1.28 x 10/sup -6/ was given. A randomized schedule for rat sacrifice was used. No differences were found between zinc deficient and zinc adequate rats in taste preference aversion scores for quinine sulfate in the first three trial periods; however, in the last trial period rats in the zinc sufficient group drank somewhat less water containing quinine sulfate as a percentage of total water consumption than did rats fed the zinc deficient ration. Significantly higher zinc contents of kidney, brain and parotid salivary glands were seen in zinc adequate rats compared to zinc deficient rats at the end of the study. However, liver and tongue zinc levels were lower for both groups at the close of the study than were those of rats sacrificed at the beginning of the study.

  12. Silver-zinc: status of technology and applications

    NASA Astrophysics Data System (ADS)

    Karpinski, A. P.; Makovetski, B.; Russell, S. J.; Serenyi, J. R.; Williams, D. C.

    Michel Yardney and Professor Henri André developed the first practical silver-zinc battery more than 55 years ago. Since then, primary and rechargeable silver-zinc batteries have attracted a variety of applications due to their high specific energy/energy density, proven reliability and safety, and the highest power output per unit weight and volume of all commercially available batteries. Although significant improvements have been achieved on traditional systems such as lead-acid and nickel/cadmium, and in spite of the advent of new electrochemistries such as lithium-ion and nickel/metal hydride, many users still rely on silver-zinc to satisfy their most demanding and critical requirements. Over the past few years, several of the internal components have been subject to many studies which resulted in significant improvements in the battery wet life and cycle life. Specifically, these include new separator materials which offer an alternative to the cellulosic membranes, improvements to the zinc electrode that include additives that help reduce shape-change and dendritic growth, and to a lesser extent, process changes to the silver electrode and additives to the electrolyte. In comparison, the commonly used secondary systems are lead-acid, nickel/cadmium, nickel/metal hydride, and lithium-ion. Each has attributes which make them desirable for certain applications. Where low cost, high voltage, and high rate capability is required, the lead-acid battery is an obvious choice whenever size and weight are not critical. For applications requiring longer wet life, moderate rate capability, and high cycle life, nickel/cadmium or nickel/metal hydride can be used in spite of their poor charge retention and higher costs. Relatively newer systems are also available such as lithium-ion or lithium polymer technology which are preferred for their high voltage and excellent cycle life. Among the disadvantages of these systems are higher costs, limited configurations (usually

  13. [An atypical case of acute zinc poisoning].

    PubMed

    Andrzejak, R; Antonowicz, J; Andreasik, Z

    1992-01-01

    The paper discussed a case of acute zinc intoxication in a 48-year old welder, after four days of cutting zinc-plated pipes with an oxy-acetylene torch, in poorly ventilated places. The zinc fever has been diagnosed on the basis of the symptoms and confirmed by laboratory findings: high zinc blood and erythrocyte concentration and increased urinary excretion of zinc. One year the intoxication the manifestations of the psycho-organic syndrome with predilection to pseudoneurotic reactions were still present. The non-standard factor in this case is the very short time of exposure to zinc oxide and the occurrence of chronic encephalopathy is also singular.

  14. Characterization of a zinc-cerium flow battery

    NASA Astrophysics Data System (ADS)

    Leung, P. K.; Ponce-de-León, C.; Low, C. T. J.; Shah, A. A.; Walsh, F. C.

    The performance of a divided, parallel-plate zinc-cerium redox flow battery using methanesulfonic acid electrolytes was studied. Eight two and three-dimensional electrodes were tested under both constant current density and constant cell voltage discharge. Carbon felt and the three-dimensional platinised titanium mesh electrodes exhibited superior performance over the 2-dimensional electrodes. The charge and discharge characteristics of the redox flow battery were studied under different operating conditions and Zn/Ce reactant, as well as methansulfonic acid concentration. The cell performance improved at higher operating temperatures and faster electrolyte flow velocities. The number of possible cycles increased at reduced states of charge. During 15 min charge/discharge per cycle experiment, 57 cycles were obtained and the zinc reaction was found to be the limiting process during long term operation.

  15. [Study on X-ray powder diffraction of various structured zinc titanate prepared by the method of direct precipitation].

    PubMed

    Guo, Jian; Wang, Zhi-hua; Tao, Dong-liang; Guo, Guang-sheng

    2007-05-01

    Zinc titanate powders were prepared from Ti(SO4)2, Zn(NO3)2 x (6)H2O and (NH4)2CO3 by the method of direct precipitation. The effects of reaction conditions on the structure of zinc titanate were studied. The sample was analyzed by means of XRD and TG-DTA. The structure of zinc titanate was affected by the reaction subsequence of the formation of titanic acid and zinc carbonate. In the reaction system where titanic acid was generated earlier, collision reaction occurred between the generated zinc carbonate molecule and the surrounding titanic acid molecule. When titanic acid was generated earlier and precipitant (NH4)2CO3 was sufficient, Zn2Ti3O8 was obtained because of the sufficient collision reaction and superfluous titanic acid. In the reaction system where zinc carbonate was generated earlier, collision reaction occurred between the generated titanic acid molecule and the surrounding zinc carbonate molecule. When zinc carbonate was generated earlier and precipitant (NH4)2CO3 was sufficient, Zn2TiO4 was obtained because of the sufficient collision reaction and superfluous zinc carbonate. In addition, the kinds and structure of the production were affected by the dosage of precipitant and the reaction temperature. Zn2Ti3O8 or Zn2TiO4 could be obtained easier when using more precipitant or higher reaction temperature which could cause more sufficient collision reaction. ZnTiO3 could be obtained under the conditions of less precipitant and lower reaction temperature.

  16. History of Zinc in Agriculture12

    PubMed Central

    Nielsen, Forrest H.

    2012-01-01

    Zinc was established as essential for green plants in 1926 and for mammals in 1934. However, >20 y would pass before the first descriptions of zinc deficiencies in farm animals appeared. In 1955, it was reported that zinc supplementation would cure parakeratosis in swine. In 1958, it was reported that zinc deficiency induced poor growth, leg abnormalities, poor feathering, and parakeratosis in chicks. In the 1960s, zinc supplementation was found to alleviate parakeratosis in grazing cattle and sheep. Within 35 y, it was established that nearly one half of the soils in the world may be zinc deficient, causing decreased plant zinc content and production that can be prevented by zinc fertilization. In many of these areas, zinc deficiency is prevented in grazing livestock by zinc fertilization of pastures or by providing salt licks. For livestock under more defined conditions, such as poultry, swine, and dairy and finishing cattle, feeds are easily supplemented with zinc salts to prevent deficiency. Today, the causes and consequences of zinc deficiency and methods and effects of overcoming the deficiency are well established for agriculture. The history of zinc in agriculture is an outstanding demonstration of the translation of research into practical application. PMID:23153732

  17. Influence of zinc deficiency on cell-membrane fluidity in Jurkat, 3T3 and IMR-32 cells.

    PubMed Central

    Verstraeten, Sandra V; Zago, M Paola; MacKenzie, Gerardo G; Keen, Carl L; Oteiza, Patricia I

    2004-01-01

    We investigated whether zinc deficiency can affect plasma membrane rheology. Three cell lines, human leukaemia T-cells (Jurkat), rat fibroblasts (3T3) and human neuroblastoma cells (IMR-32), were cultured for 48 h in control medium, in zinc-deficient medium (1.5 microM zinc; 1.5 Zn), or in the zinc-deficient medium supplemented with 15 microM zinc (15 Zn). The number of viable cells was lower in the 1.5 Zn group than in the control and 15 Zn groups. The frequency of apoptosis was higher in the 1.5 Zn group than in the control and 15 Zn groups. Membrane fluidity was evaluated using the 6-(9-anthroyloxy)stearic acid and 16-(9-anthroyloxy)palmitic acid probes. Membrane fluidity was higher in 1.5 Zn cells than in the control cells; no differences were observed between control cells and 15 Zn cells. The effect of zinc deficiency on membrane fluidity at the water/lipid interface was associated with a higher phosphatidylserine externalization. The higher membrane fluidity in the hydrophobic region of the bilayer was correlated with a lower content of arachidonic acid. We suggest that the increased fluidity of the membrane secondary to zinc deficiency is in part due to a decrease in arachidonic acid content and the apoptosis-related changes in phosphatidylserine distribution. PMID:14629198

  18. Alterations of Bio-elements, Oxidative, and Inflammatory Status in the Zinc Deficiency Model in Rats.

    PubMed

    Doboszewska, Urszula; Szewczyk, Bernadeta; Sowa-Kućma, Magdalena; Noworyta-Sokołowska, Karolina; Misztak, Paulina; Gołębiowska, Joanna; Młyniec, Katarzyna; Ostachowicz, Beata; Krośniak, Mirosław; Wojtanowska-Krośniak, Agnieszka; Gołembiowska, Krystyna; Lankosz, Marek; Piekoszewski, Wojciech; Nowak, Gabriel

    2016-01-01

    Our previous study showed that dietary zinc restriction induces depression-like behavior with concomitant up-regulation of the N-methyl-D-aspartate receptor (NMDAR). Because metal ions, oxidative stress, and inflammation are involved in depression/NMDAR function, in the present study, bio-elements (zinc, copper, iron, magnesium, and calcium), oxidative (thiobarbituric acid-reactive substances; protein carbonyl content), and inflammatory (IL-1α, IL-1β) factors were measured in serum, hippocampus (Hp), and prefrontal cortex (PFC) of male Sprague-Dawley rats subjected to a zinc-adequate (ZnA) (50 mg Zn/kg) or a zinc-deficient (ZnD) (3 mg Zn/kg) diet for 4 or 6 weeks. Both periods of dietary zinc restriction reduced serum zinc and increased serum iron levels. At 4 weeks, lowered zinc level in the PFC and Hp as well as lowered iron level in the PFC of the ZnD rats was observed. At 6 weeks, however, iron level was increased in the PFC of these rats. Although at 6 weeks zinc level in the PFC did not differ between the ZnA and ZnD rats, extracellular zinc concentration after 100 mM KCl stimulation was reduced in the PFC of the ZnD rats and was accompanied by increased extracellular iron and glutamate levels (as measured by the in vivo microdialysis). The examined oxidative and inflammatory parameters were generally enhanced in the tissue of the ZnD animals. The obtained data suggest dynamic redistribution of bio-elements and enhancement of oxidative/inflammatory parameters after dietary zinc restriction, which may have a link with depression-like behavior/NMDAR function/neurodegeneration.

  19. High dose zinc supplementation induces hippocampal zinc deficiency and memory impairment with inhibition of BDNF signaling.

    PubMed

    Yang, Yang; Jing, Xiao-Peng; Zhang, Shou-Peng; Gu, Run-Xia; Tang, Fang-Xu; Wang, Xiu-Lian; Xiong, Yan; Qiu, Mei; Sun, Xu-Ying; Ke, Dan; Wang, Jian-Zhi; Liu, Rong

    2013-01-01

    Zinc ions highly concentrate in hippocampus and play a key role in modulating spatial learning and memory. At a time when dietary fortification and supplementation of zinc have increased the zinc consuming level especially in the youth, the toxicity of zinc overdose on brain function was underestimated. In the present study, weaning ICR mice were given water supplemented with 15 ppm Zn (low dose), 60 ppm Zn (high dose) or normal lab water for 3 months, the behavior and brain zinc homeostasis were tested. Mice fed high dose of zinc showed hippocampus-dependent memory impairment. Unexpectedly, zinc deficiency, but not zinc overload was observed in hippocampus, especially in the mossy fiber-CA3 pyramid synapse. The expression levels of learning and memory related receptors and synaptic proteins such as NMDA-NR2A, NR2B, AMPA-GluR1, PSD-93 and PSD-95 were significantly decreased in hippocampus, with significant loss of dendritic spines. In keeping with these findings, high dose intake of zinc resulted in decreased hippocampal BDNF level and TrkB neurotrophic signaling. At last, increasing the brain zinc level directly by brain zinc injection induced BDNF expression, which was reversed by zinc chelating in vivo. These results indicate that zinc plays an important role in hippocampus-dependent learning and memory and BDNF expression, high dose supplementation of zinc induces specific zinc deficiency in hippocampus, which further impair learning and memory due to decreased availability of synaptic zinc and BDNF deficit.

  20. Successful management of zinc phosphide poisoning

    PubMed Central

    Shakoori, Vahid; Agahi, Mahsa; Vasheghani-Farahani, Maryam; Marashi, Sayed Mahdi

    2016-01-01

    Zinc phosphide (Zn2P3) rodenticide, is generally misused intentionally for suicidal purpose in Iran. For many years, scientists believe that liberation of phosphine (PH3) on contact with acidic content of the stomach is responsible for clinical presentations. However, relatively long time interval between ingestion of Zn2P3 and presentation of its systemic toxicity, and progression of acute liver failure could not be explained by the current opinion. Hence, an innovative theory intended that phosphonium, as an intermediate product will create and pass through the stomach, which then will reduce to produce PH3in the luminal tract. Here, we present a case of massive Zn2P3 poisoning. In our case, we used repeated doses of castor oil to induce bowel movement with an aim of removing unabsorbed toxin, which was proved by radiography. Interestingly, the patient presents only mild symptoms of toxicity such as transient metabolic acidosis and hepatic dysfunction. PMID:27390464

  1. Successful management of zinc phosphide poisoning.

    PubMed

    Shakoori, Vahid; Agahi, Mahsa; Vasheghani-Farahani, Maryam; Marashi, Sayed Mahdi

    2016-06-01

    Zinc phosphide (Zn2P3) rodenticide, is generally misused intentionally for suicidal purpose in Iran. For many years, scientists believe that liberation of phosphine (PH3) on contact with acidic content of the stomach is responsible for clinical presentations. However, relatively long time interval between ingestion of Zn2P3 and presentation of its systemic toxicity, and progression of acute liver failure could not be explained by the current opinion. Hence, an innovative theory intended that phosphonium, as an intermediate product will create and pass through the stomach, which then will reduce to produce PH3in the luminal tract. Here, we present a case of massive Zn2P3 poisoning. In our case, we used repeated doses of castor oil to induce bowel movement with an aim of removing unabsorbed toxin, which was proved by radiography. Interestingly, the patient presents only mild symptoms of toxicity such as transient metabolic acidosis and hepatic dysfunction.

  2. Low-Resistivity Zinc Selenide for Heterojunctions

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1986-01-01

    Magnetron reactive sputtering enables doping of this semiconductor. Proposed method of reactive sputtering combined with doping shows potential for yielding low-resistivity zinc selenide films. Zinc selenide attractive material for forming heterojunctions with other semiconductor compounds as zinc phosphide, cadmium telluride, and gallium arsenide. Semiconductor junctions promising for future optoelectronic devices, including solar cells and electroluminescent displays. Resistivities of zinc selenide layers deposited by evaporation or chemical vapor deposition too high to form practical heterojunctions.

  3. Zinc, aging, and immunosenescence: an overview

    PubMed Central

    Cabrera, Ángel Julio Romero

    2015-01-01

    Zinc plays an essential role in many biochemical pathways and participates in several cell functions, including the immune response. This review describes the role of zinc in human health, aging, and immunosenescence. Zinc deficiency is frequent in the elderly and leads to changes similar to those that occur in oxidative inflammatory aging (oxi-inflamm-aging) and immunosenescence. The possible benefits of zinc supplementation to enhance immune function are discussed. PMID:25661703

  4. Zinc oxide varistors and/or resistors

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-07-27

    Varistors and/or resistors are described that include doped zinc oxide gel microspheres. The doped zinc oxide gel microspheres preferably have from about 60 to about 95% by weight zinc oxide and from about 5 to about 40% by weight dopants based on the weight of the zinc oxide. The dopants are a plurality of dopants selected from silver salts, boron oxide, silicon oxide and hydrons oxides of aluminum, bismuth, cobalt, chromium, manganese, nickel, and antimony.

  5. Zinc oxide varistors and/or resistors

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    Varistors and/or resistors that includes doped zinc oxide gel microspheres. The doped zinc oxide gel microspheres preferably have from about 60 to about 95% by weight zinc oxide and from about 5 to about 40% by weight dopants based on the weight of the zinc oxide. The dopants are a plurality of dopants selected from silver salts, boron oxide, silicon oxide and hydrons oxides of aluminum, bismuth, cobalt, chromium, manganese, nickel, and antimony.

  6. Evaluation and comparison of zinc absorption level from 2-Alkyle 3-Hydroxy pyranon-zinc complexes and zinc sulfate in rat in vivo

    PubMed Central

    Akbar, Badii; Niloufar, Nekouei; Abolfazl, Mostafavi; Lofollah, Saghaei; Ali, Khodarahmi Qadam; Soheyla, Valadian

    2013-01-01

    Background: Although zinc sulfate has been used to improve disorders originated from zinc deficiency, its low compliance is due to gastrointestinal complications; therefore, other zinc compounds have been suggested as replacers for zinc deficient people. The objective of this study was to evaluate and compare the absorption of ethyl and methyl zinc-maltol with that of zinc sulfate to substitute zinc sulfate with those complexes. Materials and Methods: After five weeks of being fed by zinc deficient food, zinc deficient rats were divided into four groups randomly receiving medicinal solutions of zinc sulfate, zinc ethyl maltol and zinc methyl maltol using feeding tube method for two weeks while the control was received distilled water. Serum zinc concentration and ALP (Alkaline Phosphatase) and LDH (Lactate Dehydrogenase) activity of rats were determined before and after the study. Statistical analyses were performed using SPSS 11.5. The study was conducted from 2008 to 2010. Results: Serum zinc concentration and enzyme activity in all groups receiving drug solution increased. The most and least increase were in zinc sulfate and zinc methyl maltol groups, respectively. The difference between zinc methyl maltol and zinc sulfate group was significant (P < 0.05); however, this difference was not significant in the case of zinc ethyl maltol. Conclusion: Zinc ethyl maltol can be a suitable and preferable substitute for zinc sulfate. PMID:24223392

  7. Nucleation and growth of zinc from chloride concentrated solutions

    SciTech Connect

    Trejo, G.; Ortega B, R.; Meas V, Y.; Ozil, P.; Chainet, E.; Nguyen, B.

    1998-12-01

    The electrodeposition of metals is a complex phenomenon influenced by a number of factors that modify the rates of nucleation and growth and determine the properties of the deposits. In this work the authors study the influence of the zinc chloride (ZnCl{sub 2}) concentration on the zinc nucleation process on glassy carbon, in a KCl electrolyte under conditions close to those employed in commercial acid deposition baths for zinc. The electrochemical study was performed using cyclic voltammetry and potentiostatic current-time transients. The charge-transfer coefficient and the formal potential for ZnCl{sub 2} reduction were evaluated from cyclic voltammetry experiments. The nucleation process was analyzed by comparing the transients obtained with the known dimensionless (i/i{sub m}){sup 2} vs. t/t{sub m} response for instantaneous or progressive nucleation. The results show that the nucleation process and the number density of sites are dependent on ZnCl{sub 2} concentration. Scanning electron microscopy analysis of the deposits shows that the deposits are homogeneous and compact although a change in the morphology is observed as a function of ZnCl{sub 2} concentration. Evaluation of the corrosion resistance reveals the influence of the nucleation process on the subsequent corrosion resistance of the zinc deposits.

  8. Chronic toxicity of mixtures of copper, cadmium and zinc to Daphnia pulex

    SciTech Connect

    Flickinger, A.L.

    1984-01-01

    Daphnia pulex (de Greer) were exposed to single and bimetal mixtures of copper, cadmium and zinc in reconstituted waters of different hardness/alkalinity and humic acid concentrations. The effect of single and bimetal exposure to these metals was evaluated by survivorship and reproductive indices of brood size, percent aborted eggs/brood, age at reproductive maturity, age at first reproduction and the instantaneous rate of population growth. Accumulation by 7-day-old Daphnia magna of metals in these mixtures was also assessed in medium water containing 0.0 and 0.75 mg humic acid/L. The addition of 0.75 mg humic acid/L decreased the acute toxicity of copper and zinc but increased the acute toxicity of cadmium. Survival was the best index of a single or bimetal chronic stress since it was equally or more sensitive than any reproductive index. The interaction between copper and zinc was variable in soft water which contained 0.15 mg humic acid/L, but largely independent in medium water which contained 0.0 and 0.75 mg humic acid/L. Zinc and humic acid had no effect on the accumulation of copper in medium water. Copper and cadmium were synergistic in their interaction on daphniid survival in medium water which contained 0.0 and 0.75 mg humic acid/L.

  9. 21 CFR 182.8991 - Zinc oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc oxide. 182.8991 Section 182.8991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of...

  10. 21 CFR 182.8997 - Zinc sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc sulfate. 182.8997 Section 182.8997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions...

  11. 21 CFR 182.8985 - Zinc chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc chloride. 182.8985 Section 182.8985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a) Product. Zinc chloride. (b)...

  12. 21 CFR 182.8988 - Zinc gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc gluconate. 182.8988 Section 182.8988 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8988 Zinc gluconate. (a) Product. Zinc gluconate....

  13. 21 CFR 182.8994 - Zinc stearate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc stearate. 182.8994 Section 182.8994 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8994 Zinc stearate. (a) Product. Zinc stearate prepared...

  14. Zinc supplementation in children with cystic fibrosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cystic fibrosis (CF) leads to malabsorption of macro- and micronutrients. Symptomatic zinc deficiency has been reported in CF but little is known about zinc homeostasis in children with CF. Zinc supplementation (Zn suppl) is increasingly common in children with CF but it is not without theoretcial r...

  15. 21 CFR 73.2991 - Zinc oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Zinc oxide. 73.2991 Section 73.2991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2991 Zinc oxide. (a) Identity and specifications. The color additive zinc oxide shall conform in identity and specifications to the requirements of §...

  16. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance...

  17. 21 CFR 582.5991 - Zinc oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc oxide. 582.5991 Section 582.5991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is...

  18. 21 CFR 582.5985 - Zinc chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc chloride. 582.5985 Section 582.5985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance...

  19. 21 CFR 582.5991 - Zinc oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc oxide. 582.5991 Section 582.5991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is...

  20. 21 CFR 73.2991 - Zinc oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Zinc oxide. 73.2991 Section 73.2991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2991 Zinc oxide. (a) Identity and specifications. The color additive zinc oxide shall conform in identity and specifications to the requirements of §...

  1. 21 CFR 73.2991 - Zinc oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Zinc oxide. 73.2991 Section 73.2991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2991 Zinc oxide. (a) Identity and specifications. The color additive zinc oxide shall conform in identity and specifications to the requirements of §...

  2. 21 CFR 582.5991 - Zinc oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Zinc oxide. 582.5991 Section 582.5991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is...

  3. 21 CFR 582.5985 - Zinc chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Zinc chloride. 582.5985 Section 582.5985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance...

  4. 21 CFR 582.5988 - Zinc gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc gluconate. 582.5988 Section 582.5988 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5988 Zinc gluconate. (a) Product. Zinc gluconate. (b) Conditions of use. This substance...

  5. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance...

  6. 21 CFR 582.5988 - Zinc gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Zinc gluconate. 582.5988 Section 582.5988 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5988 Zinc gluconate. (a) Product. Zinc gluconate. (b) Conditions of use. This substance...

  7. 21 CFR 582.5985 - Zinc chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Zinc chloride. 582.5985 Section 582.5985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance...

  8. 21 CFR 582.5991 - Zinc oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Zinc oxide. 582.5991 Section 582.5991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is...

  9. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance...

  10. 21 CFR 582.5988 - Zinc gluconate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Zinc gluconate. 582.5988 Section 582.5988 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5988 Zinc gluconate. (a) Product. Zinc gluconate. (b) Conditions of use. This substance...

  11. 21 CFR 582.5988 - Zinc gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Zinc gluconate. 582.5988 Section 582.5988 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5988 Zinc gluconate. (a) Product. Zinc gluconate. (b) Conditions of use. This substance...

  12. 21 CFR 582.5985 - Zinc chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Zinc chloride. 582.5985 Section 582.5985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance...

  13. 21 CFR 582.5991 - Zinc oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Zinc oxide. 582.5991 Section 582.5991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is...

  14. 21 CFR 73.2991 - Zinc oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Zinc oxide. 73.2991 Section 73.2991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2991 Zinc oxide. (a) Identity and specifications. The color additive zinc oxide shall conform in identity and specifications to the requirements of §...

  15. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance...

  16. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance...

  17. 21 CFR 582.5985 - Zinc chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc chloride. 582.5985 Section 582.5985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance...

  18. 21 CFR 582.5988 - Zinc gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc gluconate. 582.5988 Section 582.5988 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5988 Zinc gluconate. (a) Product. Zinc gluconate. (b) Conditions of use. This substance...

  19. 21 CFR 73.2991 - Zinc oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Zinc oxide. 73.2991 Section 73.2991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2991 Zinc oxide. (a) Identity and specifications. The color additive zinc oxide shall conform in identity and specifications to the requirements of §...

  20. 21 CFR 73.1991 - Zinc oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... amounts consistent with good manufacturing practice. (d) Labeling. The color additive and any mixtues... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc...). It is principally composed of Zn. (2) Color additive mixtures for drug use made with zinc oxide...

  1. Effect of resveratrol and zinc on intracellular zinc status in normal human prostate epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...

  2. DNA Recognition by the DNA Primase of Bacteriophage T7: A Structure Function Study of the Zinc-Binding Domain

    SciTech Connect

    Akabayov, B.; Lee, S; Akabayov, S; Rekhi, S; Zhu, B; Richardson, C

    2009-01-01

    Synthesis of oligoribonucleotide primers for lagging-strand DNA synthesis in the DNA replication system of bacteriophage T7 is catalyzed by the primase domain of the gene 4 helicase-primase. The primase consists of a zinc-binding domain (ZBD) and an RNA polymerase (RPD) domain. The ZBD is responsible for recognition of a specific sequence in the ssDNA template whereas catalytic activity resides in the RPD. The ZBD contains a zinc ion coordinated with four cysteine residues. We have examined the ligation state of the zinc ion by X-ray absorption spectroscopy and biochemical analysis of genetically altered primases. The ZBD of primase engaged in catalysis exhibits considerable asymmetry in coordination to zinc, as evidenced by a gradual increase in electron density of the zinc together with elongation of the zinc-sulfur bonds. Both wild-type primase and primase reconstituted from purified ZBD and RPD have a similar electronic change in the level of the zinc ion as well as the configuration of the ZBD. Single amino acid replacements in the ZBD (H33A and C36S) result in the loss of both zinc binding and its structural integrity. Thus the zinc in the ZBD may act as a charge modulation indicator for the surrounding sulfur atoms necessary for recognition of specific DNA sequences.

  3. Zinc inhibits oxidative stress-induced iron signaling and apoptosis in Caco-2 cells.

    PubMed

    Kilari, Sreenivasulu; Pullakhandam, Raghu; Nair, K Madhavan

    2010-04-01

    Studies in humans and animals have suggested negative interactions of iron and zinc during their intestinal absorption. Further, zinc seems to prevent iron-induced oxidative damage in rats, which was hypothesized to be through the modulation of the intracellular iron signaling pathway. The aim of this study was, therefore, to understand the effects of zinc on oxidant-induced iron signaling and cell death in human enterocyte-like Caco-2 cells. We demonstrate that zinc decreases glucose/glucose oxidase (H(2)O(2)-generating system)-induced iron uptake and inhibits iron-regulatory protein 1 activation and divalent metal ion transporter 1 expression. There was also a concomitant decrease in oxidant-induced intracellular labile iron and restoration of ferritin and metallothionein expression. Further, zinc enhanced the Bcl-2/Bax ratio and reduced caspase-3 activity, leading to inhibition of apoptosis. Interestingly, bathophenanthroline disulfonic acid, an extracellular iron chelator, emulated the effects of zinc except for the reduced ferritin levels. These results suggest that zinc inhibits apoptosis by reducing oxidant-induced iron signaling in Caco-2 cells.

  4. Effect of zinc on copper and iron bioavailability as influenced by dietary copper and fat source

    SciTech Connect

    Magee, A.C.; Jones, B.P.; Lin, F.; Sinthusek, G.; Frimpong, N.A.; Wu, S.

    1986-03-05

    In a number of experiments, they have observed that liver copper levels of young male rats fed low zinc diets were essentially the same as liver copper levels of rats fed adequate zinc. Liver iron levels of rats fed low zinc diets, however, tended to be markedly higher than liver iron levels of rats fed adequate zinc. Increases in dietary zinc (up to 200 ppm) were generally associated with decreases in liver iron deposition, but had little effect on liver copper deposition. Iron bioavailability appeared to be enhanced when fat sources high in saturated fatty acids were used, and there was evidence that the type of dietary fat influenced the effect of zinc on iron bioavailability. Liver copper deposition, however, did not appear to be markedly affected by the type of dietary fat suggesting that copper bioavailability is less affected by fat source. Increases in dietary copper were associated with increases in liver copper levels and decreases in liver iron levels of rats fed increasing levels of zinc. These data suggest that potential interrelationships between dietary factors not being considered as experimental variables could have significant effects on results and on the interrelationships between dietary variables which are being studied.

  5. Solution structure of an archaeal DNA binding protein with an eukaryotic zinc finger fold.

    PubMed

    Guillière, Florence; Danioux, Chloé; Jaubert, Carole; Desnoues, Nicole; Delepierre, Muriel; Prangishvili, David; Sezonov, Guennadi; Guijarro, J Iñaki

    2013-01-01

    While the basal transcription machinery in archaea is eukaryal-like, transcription factors in archaea and their viruses are usually related to bacterial transcription factors. Nevertheless, some of these organisms show predicted classical zinc fingers motifs of the C2H2 type, which are almost exclusively found in proteins of eukaryotes and most often associated with transcription regulators. In this work, we focused on the protein AFV1p06 from the hyperthermophilic archaeal virus AFV1. The sequence of the protein consists of the classical eukaryotic C2H2 motif with the fourth histidine coordinating zinc missing, as well as of N- and C-terminal extensions. We showed that the protein AFV1p06 binds zinc and solved its solution structure by NMR. AFV1p06 displays a zinc finger fold with a novel structure extension and disordered N- and C-termini. Structure calculations show that a glutamic acid residue that coordinates zinc replaces the fourth histidine of the C2H2 motif. Electromobility gel shift assays indicate that the protein binds to DNA with different affinities depending on the DNA sequence. AFV1p06 is the first experimentally characterised archaeal zinc finger protein with a DNA binding activity. The AFV1p06 protein family has homologues in diverse viruses of hyperthermophilic archaea. A phylogenetic analysis points out a common origin of archaeal and eukaryotic C2H2 zinc fingers.

  6. Influence of food acidulants on bioaccessibility of zinc and iron from selected food grains.

    PubMed

    Hemalatha, Sreeramaiah; Platel, Kalpana; Srinivasan, Krishnapura

    2005-10-01

    Four common acidulants in Indian dietary, i. e., citric acid, tamarind (Tamarindus indica), amchur (Mangifera indica), and kokum (Garcinia indica) were examined for a possible influence on the bioaccessibility of zinc from selected food grains. Among the four acidulants examined, amchur and citric acid generally enhanced the bioaccessibility of zinc and iron from all the food grains studied. The increase in zinc bioaccessibility produced by citric acid was around 40% in rice and chickpea, while amchur produced around 60% increase from decorticated green gram. This positive influence of acidulants on zinc bioaccessibility from food grains was seen both in the raw and cooked form. Tamarind and kokum, the other two acidulants tested, generally did not have a favourable influence on zinc and iron bioaccessibility. This lack of positive influence of these two acidulants on mineral availability could be attributable to the presence of significant amounts of tannin in them. Citric acid and amchur also generally enhanced the bioaccessibility of iron from these food grains.

  7. Dipeptidyl peptidase III is a zinc metallo-exopeptidase. Molecular cloning and expression.

    PubMed

    Fukasawa, K; Fukasawa, K M; Kanai, M; Fujii, S; Hirose, J; Harada, M

    1998-01-15

    We have purified dipeptidyl peptidase III (EC 3.4.14.4) from human placenta. It had a pH optimum of 8.8 and readily hydrolysed Arg-Arg-beta-naphthylamide. Monoamino acid-, Gly-Phe-, Gly-Pro- and Bz-Arg-beta-naphthylamides were not hydrolysed at all. The enzyme was inhibited by p-chloromercuriphenylsulphonic acid, metal chelators and 3,4-dichloroisocoumarin and contained 1 mol of zinc per mol of enzyme. The zinc dissociation constant was 250 fM at pH 7. 4 as determined by the zinc binding study. We isolated, by immunological screening of a Uni-ZAP XR cDNA library constructed from rat liver mRNA species, a cDNA clone with 2633 bp encoding the rat enzyme. The longest open reading frame encodes a 827-residue protein with a theoretical molecular mass of 92790 Da. Escherichia coli SOLR cells were infected with the pBluescript phagemid containing the cloned cDNA and established the overexpression of a protein that hydrolysed Arg-Arg-beta-naphthylamide. The recombinant protein was purified and the amino acid sequence of the protein was confirmed. We presumed that the putative zinc-binding domain involved in catalysis was present in the recombinant enzyme. It was a novel zinc-binding motif in that one amino acid residue was inserted into the conserved HEXXH motif characteristic of the metalloproteinases.

  8. Development of a hydrometallurgical route for the recovery of zinc and manganese from spent alkaline batteries

    NASA Astrophysics Data System (ADS)

    Veloso, Leonardo Roger Silva; Rodrigues, Luiz Eduardo Oliveira Carmo; Ferreira, Daniel Alvarenga; Magalhães, Fernando Silva; Mansur, Marcelo Borges

    A hydrometallurgical route is proposed in this paper for the selective separation of zinc and manganese from spent alkaline batteries. The recycling route comprises the following steps: (1) batteries dismantling to separate the spent batteries dust from other components (iron scraps, plastic and paper), (2) grinding of the batteries dust to produce a black homogeneous powder, (3) leaching of the powder in two sequential steps, "neutral leaching with water" to separate potassium and produce a KOH solution, followed by an "acidic leaching with sulphuric acid" to remove zinc and manganese from the powder, and (4) selective precipitation of zinc and manganese using the KOH solution (pH around 11) produced in the neutral leaching step. For the acidic leaching step, two alternative routes have been investigated (selective leaching of zinc and total leaching) with regard to the following operational variables: temperature, time, sulphuric acid concentration, hydrogen peroxide concentration and solid/liquid ratio. The results obtained in this study have shown that the proposed route is technically simple, versatile and provides efficient separation of zinc and manganese.

  9. Dipeptidyl peptidase III is a zinc metallo-exopeptidase. Molecular cloning and expression.

    PubMed Central

    Fukasawa, K; Fukasawa, K M; Kanai, M; Fujii, S; Hirose, J; Harada, M

    1998-01-01

    We have purified dipeptidyl peptidase III (EC 3.4.14.4) from human placenta. It had a pH optimum of 8.8 and readily hydrolysed Arg-Arg-beta-naphthylamide. Monoamino acid-, Gly-Phe-, Gly-Pro- and Bz-Arg-beta-naphthylamides were not hydrolysed at all. The enzyme was inhibited by p-chloromercuriphenylsulphonic acid, metal chelators and 3,4-dichloroisocoumarin and contained 1 mol of zinc per mol of enzyme. The zinc dissociation constant was 250 fM at pH 7. 4 as determined by the zinc binding study. We isolated, by immunological screening of a Uni-ZAP XR cDNA library constructed from rat liver mRNA species, a cDNA clone with 2633 bp encoding the rat enzyme. The longest open reading frame encodes a 827-residue protein with a theoretical molecular mass of 92790 Da. Escherichia coli SOLR cells were infected with the pBluescript phagemid containing the cloned cDNA and established the overexpression of a protein that hydrolysed Arg-Arg-beta-naphthylamide. The recombinant protein was purified and the amino acid sequence of the protein was confirmed. We presumed that the putative zinc-binding domain involved in catalysis was present in the recombinant enzyme. It was a novel zinc-binding motif in that one amino acid residue was inserted into the conserved HEXXH motif characteristic of the metalloproteinases. PMID:9425109

  10. Zinc dyshomeostasis during polymicrobial sepsis in mice involves zinc transporter Zip14 and can be overcome by zinc supplementation

    PubMed Central

    Wessels, Inga

    2015-01-01

    Integrity of the immune system is particularly dependent on the availability of zinc. Recent data suggest that zinc is involved in the development of sepsis, a life-threatening systemic inflammation with high death rates, but with limited therapeutic options. Altered cell zinc transport mechanisms could contribute to the inflammatory effects of sepsis. Zip14, a zinc importer induced by proinflammatory stimuli, could influence zinc metabolism during sepsis and serve as a target for therapy. Using cecal ligation-and-puncture (CLP) to model polymicrobial sepsis, we narrowed the function of ZIP14 to regulation of zinc homeostasis in hepatocytes, while hepatic leukocytes were mostly responsible for driving inflammation, as shown by higher expression of IL-1β, TNFα, S100A8, and matrix metalloproteinase-8. Using Zip14 knockout (KO) mice as a novel approach, we found that ablation of Zip14 produced a delay in development of leukocytosis, prevented zinc accumulation in the liver, altered the kinetics of hypozincemia, and drastically increased serum IL-6, TNFα, and IL-10 concentrations following CLP. Hence, this model revealed that the zinc transporter ZIP14 is a component of the pathway for zinc redistribution that contributes to zinc dyshomeostasis during polymicrobial sepsis. In contrast, using the identical CLP model, we found that supplemental dietary zinc reduced the severity of sepsis, as shown by amelioration of cytokines, calprotectins, and blood bacterial loads. We conclude that the zinc transporter ZIP14 influences aspects of the pathophysiology of nonlethal polymicrobial murine sepsis induced by CLP through zinc delivery. The results are promising for the use of zinc and its transporters as targets for future sepsis therapy. PMID:26272258

  11. Pharmacokinetics of zinc tannate after intratesticular injection.

    PubMed

    Migally, N B; Fahim, M S

    1984-01-01

    Forty-eight sexually mature male rats were injected intratesticularly with either 1, 3, or 6 mg zinc tannate (Kastrin) or with saline (as control). Zinc localized only in low concentration in primary spermatocytes and could not be detected in spermatogonia, Sertoli cells, spermatids, or spermatozoa. Forty-eight hours after injection of 1 mg Kastrin, zinc was accumulated in the spermatogonia and primary spermatocytes while, after injection of 3 mg, zinc was preferentially localized in Sertoli cells and spermatids; however, zinc was observed in the spermatids and spermatozoa 48 h after injection with 6 mg, and germ cells lost their identity and were fragmented after 1 week.

  12. Method of preparing zinc orthotitanate pigment

    NASA Technical Reports Server (NTRS)

    Gates, D. W.; Harada, Y.; Logan, W. R.; Gilligan, J. E. (Inventor)

    1977-01-01

    Zinc orthotitanate suitable for use as a pigment for spacecraft thermal control coatings is prepared by heating a slightly zinc deficient reaction mixture of precipitated oxalates of zinc and titanium. The reaction mixture can be formed by coprecipitation of zinc and titanium oxalates from chloride solution or by mixing separately precipitated oxalates. The mixture is first heated to 400 to 600 C to remove volatiles and is then rapidly heated at 900 to 1200 C. Zinc orthotitanate produced by this method exhibits the very fine particle size needed for thermal control coatings as well as stability in a space environment.

  13. Characterization of the zinc-metalloprotein nature of rat spermatidal protein TP2.

    PubMed

    Kundu, T K; Rao, M R

    1994-08-29

    Spermatidal transition protein, TP2, was purified from rat testes by Hg-affinity chromatography. The present study reports the details of the zinc-metalloprotein nature of TP2 by employing the 65 Zn-blotting technique. Chemical modification of cysteine by iodoacetic acid, and histidine by diethylpyrocarbonate, resulted in a near complete inhibition of 65Zn-binding to TP2. The 65Zinc-binding was localized to the V8 protease-derived N-terminal two-third polypeptide fragment. Circular dichroism spectroscopy studies of TP2 (zinc pre-incubated) and its V8 protease-derived polypeptide fragments revealed that the N-terminal fragment has a Type I-beta-turn spectrum, while the C-terminal fragment has a small but significant alpha-helical structure. EDTA altered the circular dichroism spectrum of TP2 and the N-terminal fragment (zinc binding domain) but not that of the C-terminal fragment.

  14. Zinc leaching from tire crumb rubber.

    PubMed

    Rhodes, Emily P; Ren, Zhiyong; Mays, David C

    2012-12-04

    Because tires contain approximately 1-2% zinc by weight, zinc leaching is an environmental concern associated with civil engineering applications of tire crumb rubber. An assessment of zinc leaching data from 14 studies in the published literature indicates that increasing zinc leaching is associated with lower pH and longer leaching times, but the data display a wide range of zinc concentrations, and do not address the effect of crumb rubber size or the dynamics of zinc leaching during flow through porous crumb rubber. The present study was undertaken to investigate the effect of crumb rubber size using the synthetic precipitation leaching procedure (SPLP), the effect of exposure time using quiescent batch leaching tests, and the dynamics of zinc leaching using column tests. Results indicate that zinc leaching from tire crumb rubber increases with smaller crumb rubber and longer exposure time. Results from SPLP and quiescent batch leaching tests are interpreted with a single-parameter leaching model that predicts a constant rate of zinc leaching up to 96 h. Breakthrough curves from column tests displayed an initial pulse of elevated zinc concentration (~3 mg/L) before settling down to a steady-state value (~0.2 mg/L), and were modeled with the software package HYDRUS-1D. Washing crumb rubber reduces this initial pulse but does not change the steady-state value. No leaching experiment significantly reduced the reservoir of zinc in the crumb rubber.

  15. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    DOEpatents

    Zaromb, S.; Lawson, D.B.

    1994-02-15

    A process for recovering zinc-rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered by distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10 C, separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream. 1 figure.

  16. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    DOEpatents

    Zaromb, Solomon; Lawson, Daniel B.

    1994-01-01

    A process for recovering zinc/rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10.degree. C., separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream.

  17. Zinc-The key to preventing corrosion

    USGS Publications Warehouse

    Kropschot, S.J.; Doebrich, Jeff L.

    2011-01-01

    Centuries before it was identified as an element, zinc was used to make brass (an alloy of zinc and copper) and for medicinal purposes. Metallic zinc and zinc oxide were produced in India sometime between the 11th and 14th centuries and in China in the 17th century, although the discovery of pure metallic zinc is credited to the German chemist Andreas Marggraf, who isolated the element in 1746. Refined zinc metal is bluish-white when freshly cast; it is hard and brittle at most temperatures and has relatively low melting and boiling points. Zinc alloys readily with other metals and is chemically active. On exposure to air, it develops a thin gray oxide film (patina), which inhibits deeper oxidation (corrosion) of the metal. The metal's resistance to corrosion is an important characteristic in its use.

  18. Uniform colloidal zinc compounds of various morphologies

    SciTech Connect

    Castellano, M.; Matijevic, E. )

    1989-02-01

    The preparation of finely dispersed zinc compounds consisting of uniform particles is described. Aging at elevated temperatures ({approx} 90{degree}C) of aqueous solutions of zinc nitrate or zinc chloride in the presence of urea resulted in precipitation of uniform rodlike basic zinc carbonate particles. These solids show x-ray characteristics of crystalline hydrozincite. In the presence of sulfate ions amorphous spherical particles of narrow size distribution of the same chemical composition are generated. On calcination both kinds of solids change to zinc oxide yet retain the original shape. In the presence of NaH{sub 2}PO{sub 4} and urea, aqueous zinc salt solutions on aging yield rather uniform amorphous spherical zinc basic phosphate particles, which on calcination lose water.

  19. Zinc Therapy in Dermatology: A Review

    PubMed Central

    Mahajan, Vikram K.; Mehta, Karaninder S.; Chauhan, Pushpinder S.

    2014-01-01

    Zinc, both in elemental or in its salt forms, has been used as a therapeutic modality for centuries. Topical preparations like zinc oxide, calamine, or zinc pyrithione have been in use as photoprotecting, soothing agents or as active ingredient of antidandruff shampoos. Its use has expanded manifold over the years for a number of dermatological conditions including infections (leishmaniasis, warts), inflammatory dermatoses (acne vulgaris, rosacea), pigmentary disorders (melasma), and neoplasias (basal cell carcinoma). Although the role of oral zinc is well-established in human zinc deficiency syndromes including acrodermatitis enteropathica, it is only in recent years that importance of zinc as a micronutrient essential for infant growth and development has been recognized. The paper reviews various dermatological uses of zinc. PMID:25120566

  20. Embryonic neural inducing factor churchill is not a DNA-binding zinc finger protein: solution structure reveals a solvent-exposed beta-sheet and zinc binuclear cluster.

    PubMed

    Lee, Brian M; Buck-Koehntop, Bethany A; Martinez-Yamout, Maria A; Dyson, H Jane; Wright, Peter E

    2007-08-31

    Churchill is a zinc-containing protein that is involved in neural induction during embryogenesis. At the time of its discovery, it was thought on the basis of sequence alignment to contain two zinc fingers of the C4 type. Further, binding of an N-terminal GST-Churchill fusion protein to a particular DNA sequence was demonstrated by immunoprecipitation selection assay, suggesting that Churchill may function as a transcriptional regulator by sequence-specific DNA binding. We show by NMR solution structure determination that, far from containing canonical C4 zinc fingers, the protein contains three bound zinc ions in novel coordination sites, including an unusual binuclear zinc cluster. The secondary structure of Churchill is also unusual, consisting of a highly solvent-exposed single-layer beta-sheet. Hydrogen-deuterium exchange and backbone relaxation measurements reveal that Churchill is unusually dynamic on a number of time scales, with the exception of regions surrounding the zinc coordinating sites, which serve to stabilize the otherwise unstructured N terminus and the single-layer beta-sheet. No binding of Churchill to the previously identified DNA sequence could be detected, and extensive searches using DNA sequence selection techniques could find no other DNA sequence that was bound by Churchill. Since the N-terminal amino acids of Churchill form part of the zinc-binding motif, the addition of a fusion protein at the N terminus causes loss of zinc and unfolding of Churchill. This observation most likely explains the published DNA-binding results, which would arise due to non-specific interaction of the unfolded protein in the immunoprecipitation selection assay. Since Churchill does not appear to bind DNA, we suggest that it may function in embryogenesis as a protein-interaction factor.

  1. Biomarkers of Nutrition for Development (BOND)-Zinc Review.

    PubMed

    King, Janet C; Brown, Kenneth H; Gibson, Rosalind S; Krebs, Nancy F; Lowe, Nicola M; Siekmann, Jonathan H; Raiten, Daniel J

    2016-03-09

    Zinc is required for multiple metabolic processes as a structural, regulatory, or catalytic ion. Cellular, tissue, and whole-body zinc homeostasis is tightly controlled to sustain metabolic functions over a wide range of zinc intakes, making it difficult to assess zinc insufficiency or excess. The BOND (Biomarkers of Nutrition for Development) Zinc Expert Panel recommends 3 measurements for estimating zinc status: dietary zinc intake, plasma zinc concentration (PZC), and height-for-age of growing infants and children. The amount of dietary zinc potentially available for absorption, which requires an estimate of dietary zinc and phytate, can be used to identify individuals and populations at risk of zinc deficiency. PZCs respond to severe dietary zinc restriction and to zinc supplementation; they also change with shifts in whole-body zinc balance and clinical signs of zinc deficiency. PZC cutoffs are available to identify individuals and populations at risk of zinc deficiency. However, there are limitations in using the PZC to assess zinc status. PZCs respond less to additional zinc provided in food than to a supplement administered between meals, there is considerable interindividual variability in PZCs with changes in dietary zinc, and PZCs are influenced by recent meal consumption, the time of day, inflammation, and certain drugs and hormones. Insufficient data are available on hair, urinary, nail, and blood cell zinc responses to changes in dietary zinc to recommend these biomarkers for assessing zinc status. Of the potential functional indicators of zinc, growth is the only one that is recommended. Because pharmacologic zinc doses are unlikely to enhance growth, a growth response to supplemental zinc is interpreted as indicating pre-existing zinc deficiency. Other functional indicators reviewed but not recommended for assessing zinc nutrition in clinical or field settings because of insufficient information are the activity or amounts of zinc-dependent enzymes

  2. Association between Maternal Zinc Status, Dietary Zinc Intake and Pregnancy Complications: A Systematic Review.

    PubMed

    Wilson, Rebecca L; Grieger, Jessica A; Bianco-Miotto, Tina; Roberts, Claire T

    2016-10-15

    Adequate zinc stores in the body are extremely important during periods of accelerated growth. However, zinc deficiency is common in developing countries and low maternal circulating zinc concentrations have previously been associated with pregnancy complications. We reviewed current literature assessing circulating zinc and dietary zinc intake during pregnancy and the associations with preeclampsia (PE); spontaneous preterm birth (sPTB); low birthweight (LBW); and gestational diabetes (GDM). Searches of MEDLINE; CINAHL and Scopus databases identified 639 articles and 64 studies were reviewed. In 10 out of 16 studies a difference was reported with respect to circulating zinc between women who gave birth to a LBW infant (≤2500 g) and those who gave birth to an infant of adequate weight (>2500 g), particularly in populations where inadequate zinc intake is prevalent. In 16 of our 33 studies an association was found between hypertensive disorders of pregnancy and circulating zinc; particularly in women with severe PE (blood pressure ≥160/110 mmHg). No association between maternal zinc status and sPTB or GDM was seen; however; direct comparisons between the studies was difficult. Furthermore; only a small number of studies were based on women from populations where there is a high risk of zinc deficiency. Therefore; the link between maternal zinc status and pregnancy success in these populations cannot be established. Future studies should focus on those vulnerable to zinc deficiency and include dietary zinc intake as a measure of zinc status.

  3. Association between Maternal Zinc Status, Dietary Zinc Intake and Pregnancy Complications: A Systematic Review

    PubMed Central

    Wilson, Rebecca L.; Grieger, Jessica A.; Bianco-Miotto, Tina; Roberts, Claire T.

    2016-01-01

    Adequate zinc stores in the body are extremely important during periods of accelerated growth. However, zinc deficiency is common in developing countries and low maternal circulating zinc concentrations have previously been associated with pregnancy complications. We reviewed current literature assessing circulating zinc and dietary zinc intake during pregnancy and the associations with preeclampsia (PE); spontaneous preterm birth (sPTB); low birthweight (LBW); and gestational diabetes (GDM). Searches of MEDLINE; CINAHL and Scopus databases identified 639 articles and 64 studies were reviewed. In 10 out of 16 studies a difference was reported with respect to circulating zinc between women who gave birth to a LBW infant (≤2500 g) and those who gave birth to an infant of adequate weight (>2500 g), particularly in populations where inadequate zinc intake is prevalent. In 16 of our 33 studies an association was found between hypertensive disorders of pregnancy and circulating zinc; particularly in women with severe PE (blood pressure ≥160/110 mmHg). No association between maternal zinc status and sPTB or GDM was seen; however; direct comparisons between the studies was difficult. Furthermore; only a small number of studies were based on women from populations where there is a high risk of zinc deficiency. Therefore; the link between maternal zinc status and pregnancy success in these populations cannot be established. Future studies should focus on those vulnerable to zinc deficiency and include dietary zinc intake as a measure of zinc status. PMID:27754451

  4. A novel zinc-air battery for electric vehicles

    SciTech Connect

    Ross, P.N.

    1995-07-01

    A new type of zinc electrode is matched with new bifunctional air electrodes to produce a zinc-air battery of a novel design. The zinc electrode is a flow-thru type made from copper foam-metal. The air electrode uses corrosion resistant carbon black as a high area support for a highly dispersed spinel oxide electrocatalyst. The battery design employs flowing electrolyte, 12 M KOH saturated or supersaturated with zincate. Single cells as large as 200 cm{sup 2} (1/5 EV design scale) having a capacity of 20 AH have been tested with C/4--C/16 constant current cycling. More extensive and realistic life cycle testing was done with 2 Ah cells, including the Simplified Federal Urban Driving Schedule (SFUDS) cycle. This testing has confirmed that these cells can provide the necessary transient power response required for urban EV applications. The cells achieved an average of 72 SFUDS repetitions (7.2 hrs) per discharge cycle, more than twice the number with a sealed lead acid EV battery in similar testing. The full scale (30 kWh) EV battery design based on these single cell tests indicate an energy density of 90--100 Wh/kg, 60--80 W/kg, and a very low materials cost ($50 per kWh). These results indicate this battery would provide at least twice the vehicle range of a lead acid battery of the same volume at a comparable or even lower materials cost.

  5. Zinc supplementation ameliorates electromagnetic field-induced lipid peroxidation in the rat brain.

    PubMed

    Bediz, Cem Seref; Baltaci, Abdulkerim Kasim; Mogulkoc, Rasim; Oztekin, Esma

    2006-02-01

    Extremely low-frequency (0-300 Hz) electromagnetic fields (EMFs) generated by power lines, wiring and home appliances are ubiquitous in our environment. All populations are now exposed to EMF, and exposure to EMF may pose health risks. Some of the adverse health effects of EMF exposure are lipid peroxidation and cell damage in various tissues. This study has investigated the effects of EMF exposure and zinc administration on lipid peroxidation in the rat brain. Twenty-four male Sprague-Dawley rats were randomly allocated to three groups; they were maintained untreated for 6 months (control, n = 8), exposed to low-frequency (50 Hz) EMF for 5 minutes every other day for 6 months (n = 8), or exposed to EMF and received zinc sulfate daily (3 mg/kg/day) intraperitoneally (n = 8). We measured plasma levels of zinc and thiobarbituric acid reactive substances (TBARS), and levels of reduced glutathione (GSH) in erythrocytes. TBARS and GSH levels were also determined in the brain tissues. TBARS levels in the plasma and brain tissues were higher in EMF-exposed rats with or without zinc supplementation, than those in controls (p < 0.001). In addition, TBARS levels were significantly lower in the zinc-supplemented rats than those in the EMF-exposed rats (p < 0.001). GSH levels were significantly decreased in the brain and erythrocytes of the EMF-exposed rats (p < 0.01), and were highest in the zinc-supplemented rats (p < 0.001). Plasma zinc was significantly lower in the EMF-exposed rats than those in controls (p < 0.001), while it was highest in the zinc-supplemented rats (p < 0.001). The present study suggests that long-term exposure to low-frequency EMF increases lipid peroxidation in the brain, which may be ameliorated by zinc supplementation.

  6. Isotopic discrimination of zinc during root-uptake and cellular incorporation in higher plants

    NASA Astrophysics Data System (ADS)

    Mason, T. F.; Weiss, D. J.; Coles, B. J.; Horstwood, M.; Parrish, R. R.; Zhao, F. J.; Kirk, G. J.

    2003-04-01

    Introduction: Isotopic variability of terrestrial zinc offers a unique tool for studying the geochemical and biochemical cycling of zinc through natural ecosystems. However, to realise this potential, the mechanisms controlling the isotopic composition of zinc during geosphere-biosphere interactions must first be understood. The uptake of zinc by plants involves a variety of abiotic and biochemical reactions, and can provide insights into the types of processes that may fractionate zinc isotopes within living systems. We therefore present an experimental study to quantify if and how zinc isotopes are fractionated during uptake in higher plants. Methodology: Two experimental approaches were taken: (1) a hydroponic study in which rice, lettuce, and tomato cultivars were grown in one of two nutrient solutions (a HEDTA + NTA buffered system, and an EDTA buffered system), and (2) a field-based study in which rice plants were grown in experimental paddy fields under both zinc-sufficient and zinc-deficient conditions. Upon harvest, roots, shoots, nutrient solutions and soils were acid digested, and matrix components were removed from the zinc fraction using anion exchange procedures. For soils the 'bioavailble' zinc fraction was abstracted using a 1 N HCl leaching step. Zinc isotopic compositions were determined on a ThermoElemental Axiom MC-ICP-MS, using copper as an internal reference to correct for mass discrimination effects. Combined measurement errors based on repeated analyses of ultra-pure standards and plant reference materials were <0.035 ppm per atomic mass unit (pamu) (2σ) for 66Zn/64Zn measurements. Results: Under hydroponic condisions, all three plant species exhibit a similar pattern of zinc isotopic discrimination, with a small enrichment from nutrient solution to root of +0.04 to +0.09 ppm pamu, followed by an isotopic depletion from root to shoot of -0.13 to -0.26 ppm pamu. While the same trend is observed with the HEDTA + NTA and EDTA nutrient

  7. Response of zinc, iron and copper status parameters to supplementation with zinc or zinc and iron in women

    SciTech Connect

    Yadrick, K.; Kenney, M.A.; Winterfeldt, E.

    1986-03-05

    Supplementation with zinc at levels available over-the-counter may compromise iron or copper status. This study examined the effects of zinc(50mg/day) or zinc and iron(50 mg each/day) on 18 women aged 25-40. Subjects were matched on initial levels of serum ferritin(SF) and erythrocyte superoxide dismutase(ESOD) and randomly assigned to Group Z (zinc) or F-Z (iron and zinc). The following were measured pretreatment and after 6 and 10 weeks treatment: serum zinc (BZ), salivary sediment zinc (SSZ), hemoglobin (Hgb), hematocrit (Hct), SF, serum ceruloplasmin (Cp) and ESOD. Effects of treatment and weeks of treatment on changes from initial blood and saliva levels were analyzed using AOV. BZ increased (P=0.0144) and ESOD decreased (P=0.0001) with weeks of treatment. Differences due to treatment are presented. No effects were noted on Hgb, Hct or Cp. Intakes of zinc supplements at about 4X RDA appear to decrease copper(ESOD) and iron(SF) status. Use of iron w/zinc may be protective for FE but not Cu, and may compromise zinc (SSZ) status.

  8. The influence of zinc chloride and zinc oxide nanoparticles on air-time survival in freshwater mussels.

    PubMed

    Gagné, François; Auclair, Joëlle; Peyrot, Caroline; Wilkinson, Kevin J

    2015-01-01

    The purpose of this study was to determine the cumulative effects of exposure to either dissolved zinc or nanozinc oxide (nanoZnO) and air-time survival in freshwater mussels. Mussels were exposed to each forms of zinc for 96h then placed in air to determine survival time. A sub-group of mussels before and after 7days of exposure to air were kept aside for the determination of the following biomarkers: arachidonate-dependent cyclooxygenase (COX) and peroxidase (inflammation and oxidative stress), lipid metabolism (total lipids, esterases activity, HO-glycerol, acetyl CoA and phospholipase A2) and lipid damage (lipid peroxidation [LPO]). The results showed that air-time survival was decreased from a mean value of 18.5days to a mean value of 12days in mussels exposed to 2.5mg/L of nanoZnO although it was not lethal based on shell opening at concentrations below 50mg/L after 96h. In mussels exposed to zinc only, the median lethal concentration was estimated at 16mg/L (10-25 95% CI). The air-time survival did not significantly change in mussels exposed to the same concentration of dissolved Zn. Significant weight losses were observed at 0.5mg/L of nanoZnO and at 2.5mg/L for dissolved zinc chloride, and were also significantly correlated with air-time survival (r=0.53; p<0.01). Air exposure significantly increased COX activity in control mussels and in mussels exposed to 0.5mg/L of nanoZnO and zinc chloride. The data also suggested fatty acid breakdown and β-oxidation. Mussels exposed to contaminants are more susceptible to prolonged exposure to air during low water levels.

  9. Influence of lead ions on the macromorphology of electrodeposited zinc

    SciTech Connect

    Tsuda, T.; Tobias, C.W.

    1981-09-01

    The morphology of zinc as it is electrodeposited from acid solutions demonstrates a remarkable imprint of electrolyte flow conditions. The development of macromorphology of zinc deposits has been investigated under galvanostatic conditions on a rotating plantinum disk electrode by use of photomacrography, scanning electron microscopy, electron probe microanalysis and Auger microprobe analysis. Logarithmic spiral markings, which reflect the hydrodynamic flow on a rotating disk, appear in a certain region of current density well below the limiting current density. Morphological observations revealed the major influence of trace lead ions on the amplifications of surface roughness through coalescence and preferred growth of initial protrusions. Results obtained from ultra-pure electrolyte suggest preferred crystal growth towards well-mixed orientation in the concentration field caused by slight differences in crystallization overpotential. A qualitative model involving a coupling mechanism between the evolving surface roughness and instability phenomena in the boundary layer is advanced to explain the formation of spiral patterns.

  10. Zinc-bromine battery design for electric vehicles

    SciTech Connect

    Bellows, R.; Grimes, P.; Einstein, H.; Kantner, E.; Malachesky, P.; Newby, K.

    1982-01-01

    Design projections for zinc-bromine batteries are attractive for electric vehicle applications in terms of low manufacturing costs ($28/kWh) and good performance characteristics. Zinc-bromine batery projections (60 to 80 Wh/kg, 130 to 200 W/kg) compare favorably to both current lead acid batteries and proposed advanced battery candidates. The performance of recently developed battery components with 1200 cm/sup 2/ electrodes in a 120V, 10 kWh module is described. Similarly constructed smaller scale (600 cm/sup 2/) components have shown lifetimes exceeding 400 cycles and the ability to follow both regenerative braking (J227aD) and random cycling regimes. Initial dynamometer evaluations of full scale 20 kWh batteries is expected in early 1984.

  11. Organic Wheat Farming Improves Grain Zinc Concentration.

    PubMed

    Helfenstein, Julian; Müller, Isabel; Grüter, Roman; Bhullar, Gurbir; Mandloi, Lokendra; Papritz, Andreas; Siegrist, Michael; Schulin, Rainer; Frossard, Emmanuel

    2016-01-01

    Zinc (Zn) nutrition is of key relevance in India, as a large fraction of the population suffers from Zn malnutrition and many soils contain little plant available Zn. In this study we compared organic and conventional wheat cropping systems with respect to DTPA (diethylene triamine pentaacetic acid)-extractable Zn as a proxy for plant available Zn, yield, and grain Zn concentration. We analyzed soil and wheat grain samples from 30 organic and 30 conventional farms in Madhya Pradesh (central India), and conducted farmer interviews to elucidate sociological and management variables. Total and DTPA-extractable soil Zn concentrations and grain yield (3400 kg ha-1) did not differ between the two farming systems, but with 32 and 28 mg kg-1 respectively, grain Zn concentrations were higher on organic than conventional farms (t = -2.2, p = 0.03). Furthermore, multiple linear regression analyses revealed that (a) total soil zinc and sulfur concentrations were the best predictors of DTPA-extractable soil Zn, (b) Olsen phosphate taken as a proxy for available soil phosphorus, exchangeable soil potassium, harvest date, training of farmers in nutrient management, and soil silt content were the best predictors of yield, and (c) yield, Olsen phosphate, grain nitrogen, farmyard manure availability, and the type of cropping system were the best predictors of grain Zn concentration. Results suggested that organic wheat contained more Zn despite same yield level due to higher nutrient efficiency. Higher nutrient efficiency was also seen in organic wheat for P, N and S. The study thus suggests that appropriate farm management can lead to competitive yield and improved Zn concentration in wheat grains on organic farms.

  12. Organic Wheat Farming Improves Grain Zinc Concentration

    PubMed Central

    Helfenstein, Julian; Müller, Isabel; Grüter, Roman; Bhullar, Gurbir; Mandloi, Lokendra; Papritz, Andreas; Siegrist, Michael; Schulin, Rainer; Frossard, Emmanuel

    2016-01-01

    Zinc (Zn) nutrition is of key relevance in India, as a large fraction of the population suffers from Zn malnutrition and many soils contain little plant available Zn. In this study we compared organic and conventional wheat cropping systems with respect to DTPA (diethylene triamine pentaacetic acid)-extractable Zn as a proxy for plant available Zn, yield, and grain Zn concentration. We analyzed soil and wheat grain samples from 30 organic and 30 conventional farms in Madhya Pradesh (central India), and conducted farmer interviews to elucidate sociological and management variables. Total and DTPA-extractable soil Zn concentrations and grain yield (3400 kg ha-1) did not differ between the two farming systems, but with 32 and 28 mg kg-1 respectively, grain Zn concentrations were higher on organic than conventional farms (t = -2.2, p = 0.03). Furthermore, multiple linear regression analyses revealed that (a) total soil zinc and sulfur concentrations were the best predictors of DTPA-extractable soil Zn, (b) Olsen phosphate taken as a proxy for available soil phosphorus, exchangeable soil potassium, harvest date, training of farmers in nutrient management, and soil silt content were the best predictors of yield, and (c) yield, Olsen phosphate, grain nitrogen, farmyard manure availability, and the type of cropping system were the best predictors of grain Zn concentration. Results suggested that organic wheat contained more Zn despite same yield level due to higher nutrient efficiency. Higher nutrient efficiency was also seen in organic wheat for P, N and S. The study thus suggests that appropriate farm management can lead to competitive yield and improved Zn concentration in wheat grains on organic farms. PMID:27537548

  13. Intracellular free zinc and zinc buffering in human red blood cells.

    PubMed

    Simons, T J

    1991-07-01

    Zn2+ has been allowed to equilibrate across the red cell membrane using two agents that increase membrane permeability to this ion: the ionophore A23187 and the specific carrier ethylmaltol. Extracellular free Zn2+ was controlled with EGTA (1,2-di(2-aminoethoxy)ethane-NNN'N'tetra-acetic acid] buffers, except in the case of ethylmaltol, which itself acts as a buffer. Measurement of cellular zinc content at different levels of free Zn2+ facilitated the study of intracellular Zn2+ binding. It was also possible to estimate intracellular free Zn2+ concentration in untreated cells using a "null-point" technique. Intracellular zinc was found to consist of an inexchangeable component of about 129 mumol/10(13) cells and an exchangeable component of 6.7 +/- 1.5 mumol/10(13) cells, with a free concentration of about 2.4 x 10(-11) M. The main component of Zn2+ buffering is hemoglobin, with a dissociation constant of about 2 x 10(-8) M.

  14. Potential interaction between zinc ions and a cyclodextrin-based diclofenac formulation.

    PubMed

    Hamdan, Imad I; El-Sabawi, Dina; Abdel Jalil, Mariam

    2016-01-01

    Complexes of diclofenac sodium (DF-Na) with hydroxypropyl betacyclodextrin (HPβCD) were prepared by co-evaporation in a 1:1 ratio and characterized in light of previously reported data. Phase solubility diagrams were obtained for DF-Na with HPβCD in the presence and absence of zinc ions. Dissolution profiles were obtained for DF-Na and its HPβCD complex at acidic (pH 1.2) as well as in phosphate buffer (pH 6.8), in the presence and absence of zinc. HPβCD, as expected, was shown to improve the dissolution of DF-Na in acidic medium but not in phosphate buffer (pH 6.8). The presence of zinc ions decreased the in vitro dissolution of DF-HPβCD complex in acidic medium (pH 1.2) but not in phosphate buffer (pH 6.8). It was confirmed that the precipitate that was formed by zinc ions in the presence of HPβCD and DF-Na contained no cyclodextrin and most likely it was a mixture of the complexes: DF2-Zn and DF-Zn with some molecules of water. In vivo experiments on rats have shown that HPβCD has no statistically significant effect on absorption or bioavailability of DF-Na in spite of the observed improvement of its in vitro dissolution by HPβCD. Moreover, zinc ions were shown to decrease the absorption rate of DF-Na in rats model but did neither significantly alter the absorption nor bioavailability of DF-HPβCD complex. The zinc induced precipitates of DF were shown to have significantly different crystalline properties when HPβCD was present. Therefore, the pharmaceutical details of a DF-Na preparation should be considered when designing the formulation and predicting possible interaction between DF-Na (or other potential NSAIDs) and zinc metal.

  15. Potential interaction between zinc ions and a cyclodextrin-based diclofenac formulation.

    PubMed

    Hamdan, Imad I; El-Sabawi, Dina; Abdel Jalil, Mariam

    2016-03-01

    Complexes of diclofenac sodium (DF-Na) with hydroxypropyl betacyclodextrin (HPβCD) were prepared by co-evaporation in a 1:1 ratio and characterized in light of previously reported data. Phase solubility diagrams were obtained for DF-Na with HPβCD in the presence and absence of zinc ions. Dissolution profiles were obtained for DF-Na and its HPβCD complex at acidic (pH 1.2) as well as in phosphate buffer (pH 6.8), in the presence and absence of zinc. HPβCD, as expected, was shown to improve the dissolution of DF-Na in acidic medium but not in phosphate buffer (pH 6.8). The presence of zinc ions decreased the in vitro dissolution of DF-HPβCD complex in acidic medium (pH 1.2) but not in phosphate buffer (pH 6.8). It was confirmed that the precipitate that was formed by zinc ions in the presence of HPβCD and DF-Na contained no cyclodextrin and most likely it was a mixture of the complexes: DF2-Zn and DF-Zn with some molecules of water. In vivo experiments on rats have shown that HPβCD has no statistically significant effect on absorption or bioavailability of DF-Na in spite of the observed improvement of its in vitro dissolution by HPβCD. Moreover, zinc ions were shown to decrease the absorption rate of DF-Na in rats model but did neither significantly alter the absorption nor bioavailability of DF-HPβCD complex. The zinc induced precipitates of DF were shown to have significantly different crystalline properties when HPβCD was present. Therefore, the pharmaceutical details of a DF-Na preparation should be considered when designing the formulation and predicting possible interaction between DF-Na (or other potential NSAIDs) and zinc metal.

  16. Context-dependent DNA recognition code for C2H2 zinc-finger transcription factors

    PubMed Central

    Liu, Jiajian; Stormo, Gary D.

    2008-01-01

    Motivation: Modeling and identifying the DNA-protein recognition code is one of the most challenging problems in computational biology. Several quantitative methods have been developed to model DNA-protein interactions with specific focus on the C2H2 zinc-finger proteins, the largest transcription factor family in eukaryotic genomes. In many cases, they performed well. But the overall the predictive accuracy of these methods is still limited. One of the major reasons is all these methods used weight matrix models to represent DNA-protein interactions, assuming all base-amino acid contacts contribute independently to the total free energy of binding. Results: We present a context-dependent model for DNA–zinc-finger protein interactions that allows us to identify inter-positional dependencies in the DNA recognition code for C2H2 zinc-finger proteins. The degree of non-independence was detected by comparing the linear perceptron model with the non-linear neural net (NN) model for their predictions of DNA–zinc-finger protein interactions. This dependency is supported by the complex base-amino acid contacts observed in DNA–zinc-finger interactions from structural analyses. Using extensive published qualitative and quantitative experimental data, we demonstrated that the context-dependent model developed in this study can significantly improves predictions of DNA binding profiles and free energies of binding for both individual zinc fingers and proteins with multiple zinc fingers when comparing to previous positional-independent models. This approach can be extended to other protein families with complex base-amino acid residue interactions that would help to further understand the transcriptional regulation in eukaryotic genomes. Availability:The software implemented as c programs and are available by request. http://ural.wustl.edu/softwares.html Contact: stormo@ural.wustl.edu PMID:18586699

  17. BWR fuel experience with zinc injection

    SciTech Connect

    Levin, H.A.; Garcia, S.E.

    1995-12-31

    In 1982 a correlation between low primary recirculation system dose rates in BWR`s and the presence of ionic zinc in reactor water was identified. The source of the zinc was primarily from Admiralty brass condensers. Plants with brass condensers are called ``natural zinc`` plants. Brass condensers were also a source of copper that was implicated in crude induced localized corrosion (CILC) fuel failures. In 1986 the first BWR intentionally injected zinc for the benefits of dose rate control. Although zinc alone was never implicated in fuel degradation of failures, a comprehensive fuel surveillance program was initiated to monitor fuel performance. Currently there are 14 plants that are injecting zinc. Six of these plants are also on hydrogen water chemistry. This paper describes the effect on both Zircaloy corrosion and the cruding characteristics as a result of these changes in water chemistry. Fuel rod corrosion was found to be independent of the specific water chemistry of the plants. The corrosion behavior was the same with the additions of zinc alone or zinc plus hydrogen and well within the operating experience for fuel without either of these additions. No change was observed in the amounts of crude deposited on the fuel rods, both for the adherent and loosely held deposits. One of the effects of the zinc addition was the trend to form more of the zinc rich iron spinel in the fuel deposits rather than the hematite deposits that are predominantly formed with non additive water chemistry.

  18. Anti-oxidant, in vitro, in vivo anti-inflammatory activity and antiproliferative activity of mefenamic acid and its metal complexes with manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II).

    PubMed

    Kovala-Demertzi, Dimitra; Hadjipavlou-Litina, Dimitra; Staninska, Malgorzata; Primikiri, Alexandra; Kotoglou, Chronis; Demertzis, Mavroudis A

    2009-06-01

    Some new complexes of mefenamic acid with potentially interesting biological activity are described. The complexes of mefenamic acid [Mn(mef)(2)(H(2)O)(2)], 1, [Co(mef)(2)(H(2)O)(2)], 2, [Ni(mef)(2)(H(2)O)(2)], 3, [Cu(mef)(2)(H(2)O)](2), 4 and [Zn(mef)(2)], 5, were prepared by the reaction of mefenamic acid, a potent anti-inflammatory drug with metal salts. Optical and infrared spectral data of these new complexes are reported. Monomeric six-coordinated species were isolated in the solid state for Mn(II), Ni(II) and Co(II), dimeric five-coordinated for Cu(II) and monomeric four-coordinated for Zn(II). In DMF or CHCl(3) solution the coordination number is retained and the coordinated molecules of water are replaced by solvent molecules. The anti-oxidant properties of the complexes were evaluated using the 1,1-diphenyl-2-picrylhydrazyl, DPPH, free radical scavenging assay. The scavenging activities of the complexes were measured and compared with those of the free drug and vitamin C. We have explored their ability to inhibit soybean lipoxygenase, beta-glucuronidase and trypsin- induced proteolysis. The complex [Mn(mef)(2)(H(2)O)(2)] exhibits the highest antioxidant activity and the highest inhibitory effect against the soybean lipogygenase (LOX), properties that are not demonstrated by mefenamic acid. Their inhibitory effects on rat paw edema induced by Carrageenan was studied and compared with those of mefenamic acid. The complex [Zn(mef)(2)] exhibited a strong inhibitory effect at 0.1 mmol/Kg B.W. (81.5 +/- 1.3% inhibition), superior to the inhibition induced by mefenamic acid at the same dose (61.5 +/- 2.3% inhibition). Mefenamic acid and its metal complexes have been evaluated for antiproliferative activity in vitro against the cells of three human cancer cell lines: MCF-7 (human breast cancer cell line), T24 (bladder cancer cell line), A-549 (non-small cell lung carcinoma) and a mouse fibroblast L-929 cell line. The copper(II) complex displays against T24, MCF-7

  19. Method for the regeneration of spent molten zinc chloride

    DOEpatents

    Zielke, Clyde W.; Rosenhoover, William A.

    1981-01-01

    In a process for regenerating spent molten zinc chloride which has been used in the hydrocracking of coal or ash-containing polynuclear aromatic hydrocarbonaceous materials derived therefrom and which contains zinc chloride, zinc oxide, zinc oxide complexes and ash-containing carbonaceous residue, by incinerating the spent molten zinc chloride to vaporize the zinc chloride for subsequent condensation to produce a purified molten zinc chloride: an improvement comprising the use of clay in the incineration zone to suppress the vaporization of metals other than zinc. Optionally water is used in conjunction with the clay to further suppress the vaporization of metals other than zinc.

  20. Effects of dietary substitution of zinc-methionine for inorganic zinc sources on growth performance, tissue zinc accumulation and some blood parameters in broiler chicks.

    PubMed

    Jahanian, R; Rasouli, E

    2015-02-01

    This study was designed to evaluate the effects of dietary inclusion of zinc-methionine (ZnMet) as a replacement for conventional inorganic zinc sources on performance, tissue zinc accumulation and some plasma indices in broiler chicks. A total of 450-day-old Ross male broiler chicks were randomly assigned to five pen replicates of nine experimental diets. Dietary treatments consisted of two basal diets supplemented with 40 mg/kg added Zn as feed-grade Zn sulphate or Zn oxide in which, Zn was replaced with that supplied from ZnMet complex by 25, 50, 75 or 100%. At 42 days of age, three randomly selected birds from each pen were bled to measure plasma metabolites; then, the chicks were slaughtered to evaluate carcass characteristics. Results showed that dietary treatments affected (p < 0.05) feed intake during the starter period, and chicks on Zn oxide diets consumed more feed than sulphate counterparts. Furthermore, dietary substitution of inorganic Zn sources by ZnMet caused improvements (p < 0.01) in body weight gain during all experimental periods. Dietary supplementation of ZnMet improved feed conversion efficiency during 1-21 and 1-42, but not in 21-42 days of age. Complete replacement of inorganic Zn by that supplied from ZnMet caused an increase (p < 0.05) in relative liver weight. Similarly, dietary inclusion of ZnMet increased breast meat and carcass yields and reduced abdominal fat percentage (p < 0.05). Incremental levels of ZnMet increased (p < 0.05) zinc concentrations in liver and thymus, and the highest zinc accumulations were seen in 100% ZnMet-supplemented birds. Interestingly, introduction of ZnMet into the diets partially in place of inorganic sources resulted in decreases (p < 0.01) in plasma uric acid and triglycerides concentrations. The present findings indicated that dietary ZnMet inclusion in replacement of inorganic sources in addition to improving growth performance, reduced plasma uric acid and triglycerides concentrations, consequently