Science.gov

Sample records for acid ha based

  1. Lactic acid based PEU/HA and PEU/BCP composites: Dynamic mechanical characterization of hydrolysis.

    PubMed

    Rich, Jaana; Tuominen, Jukka; Kylmä, Janne; Seppälä, Jukka; Nazhat, Showan N; Tanner, K Elizabeth

    2002-01-01

    Lactic acid based poly(ester-urethane) (PEU-BDI) and its composites with 20 and 40 vol.% bioceramic filler were characterized prior to their use as biocompatible and bioabsorbable artificial bone materials. Morphological, dynamic mechanical properties, and degradation of these either hydroxyapatite or biphasic calcium phosphate containing composites were determined. Addition of particulate bioactive filler increased the composite stiffness and the glass transition temperature, indicating strong interactions between the filler and matrix. Materials were sterilized by gamma-irradiation, which reduced the average molecular weights by 30-40%. However, dynamic mechanical properties were not significantly affected by irradiation. Specimens were immersed in 0.85 w/v saline at 37 degrees C for 5 weeks, and changes in molecular weights, mass, water absorption, and dynamic mechanical properties were recorded. All the composite materials showed promising dynamic mechanical performance over the 5 weeks of hydrolysis. Average molecular weights of PEU-BDI and its composites did not change substantially during the test period. PEU-BDI retained its modulus values relatively well, and although the moduli of the composite materials were much higher, especially at high filler content, they exhibited faster loss of mechanical integrity. PMID:12115768

  2. Electrospinning of Hyaluronic acid (HA) and HA/Gelatin Blends

    NASA Astrophysics Data System (ADS)

    He, Aihua; Li, Junxing; Han, Charles; Fang, Dufei; Hsiao, Benjamin; Chu, Benjamin

    2007-03-01

    It was found that the processability of HA solution with high viscosity had been improved greatly by using a DMF-water solvent mixture or/and by adding gelatin(GE) into the HA solution. Nano-fibrous membranes with different average fiber diameters and different HA/GE compositions could be obtained. Measurements on viscosity indicated that the HA solution in DMF-water mixed solvent still showed high viscosity. The decrease in surface tension contributed to the fiber formation of HA and HA/GE by electrospinning. Therefore, this study not only provided a novel and simpler way to electrospin the natural polyanion HA solution, but also provided the fundamental physical insight and solution to this spinning difficulty. The HA-GE nanofibrous membranes at different HA/GE compositions are expected to be useful in the biomedical field as novel scaffolds for many applications.

  3. Effect of humic acid (HA) on sulfonamide sorption by biochars.

    PubMed

    Lian, Fei; Sun, Binbin; Chen, Xi; Zhu, Lingyan; Liu, Zhongqi; Xing, Baoshan

    2015-09-01

    Effect of quantity and fractionation of loaded humic acid (HA) on biochar sorption for sulfonamides was investigated. The HA was applied in two different modes, i.e. pre-coating and co-introduction with sorbate. In pre-coating mode, the polar fractions of HA tended to interact with low-temperature biochars via H-bonding, while the hydrophobic fractions were likely to be adsorbed by high-temperature biochars through hydrophobic and π-π interactions, leading to different composition and structure of the HA adlayers. The influences of HA fractionation on biochar sorption for sulfonamides varied significantly, depending on the nature of interaction between HA fraction and sorbate. Meanwhile, co-introduction of HA with sulfonamides revealed that the effect of HA on sulfonamide sorption was also dependent on HA concentration. These findings suggest that the amount and fractionation of adsorbed HA are tailored by the surface properties of underlying biochars, which differently affect the sorption for organic contaminants. PMID:26057361

  4. Prospects of HA-Based Universal Influenza Vaccine

    PubMed Central

    Hashem, Anwar M.

    2015-01-01

    Current influenza vaccines afford substantial protection in humans by inducing strain-specific neutralizing antibodies (Abs). Most of these Abs target highly variable immunodominant epitopes in the globular domain of the viral hemagglutinin (HA). Therefore, current vaccines may not be able to induce heterosubtypic immunity against the divergent influenza subtypes. The identification of broadly neutralizing Abs (BnAbs) against influenza HA using recent technological advancements in antibody libraries, hybridoma, and isolation of single Ab-secreting plasma cells has increased the interest in developing a universal influenza vaccine as it could provide life-long protection. While these BnAbs can serve as a source for passive immunotherapy, their identification represents an important step towards the design of such a universal vaccine. This review describes the recent advances and approaches used in the development of universal influenza vaccine based on highly conserved HA regions identified by BnAbs. PMID:25785268

  5. Hyaluronan (HA) Interacting Proteins RHAMM and Hyaluronidase Impact Prostate Cancer Cell Behavior and Invadopodia Formation in 3D HA-Based Hydrogels

    PubMed Central

    Gurski, Lisa A.; Nguyen, Ngoc T.; Xiao, Longxi; van Golen, Kenneth L.; Jia, Xinqiao; Farach-Carson, Mary C.

    2012-01-01

    To study the individual functions of hyaluronan interacting proteins in prostate cancer (PCa) motility through connective tissues, we developed a novel three-dimensional (3D) hyaluronic acid (HA) hydrogel assay that provides a flexible, quantifiable, and physiologically relevant alternative to current methods. Invasion in this system reflects the prevalence of HA in connective tissues and its role in the promotion of cancer cell motility and tissue invasion, making the system ideal to study invasion through bone marrow or other HA-rich connective tissues. The bio-compatible cross-linking process we used allows for direct encapsulation of cancer cells within the gel where they adopt a distinct, cluster-like morphology. Metastatic PCa cells in these hydrogels develop fingerlike structures, “invadopodia”, consistent with their invasive properties. The number of invadopodia, as well as cluster size, shape, and convergence, can provide a quantifiable measure of invasive potential. Among candidate hyaluronan interacting proteins that could be responsible for the behavior we observed, we found that culture in the HA hydrogel triggers invasive PCa cells to differentially express and localize receptor for hyaluronan mediated motility (RHAMM)/CD168 which, in the absence of CD44, appears to contribute to PCa motility and invasion by interacting with the HA hydrogel components. PCa cell invasion through the HA hydrogel also was found to depend on the activity of hyaluronidases. Studies shown here reveal that while hyaluronidase activity is necessary for invadopodia and inter-connecting cluster formation, activity alone is not sufficient for acquisition of invasiveness to occur. We therefore suggest that development of invasive behavior in 3D HA-based systems requires development of additional cellular features, such as activation of motility associated pathways that regulate formation of invadopodia. Thus, we report development of a 3D system amenable to dissection of

  6. Characterization of Three Novel Fatty Acid- and Retinoid-Binding Protein Genes (Ha-far-1, Ha-far-2 and Hf-far-1) from the Cereal Cyst Nematodes Heterodera avenae and H. filipjevi

    PubMed Central

    Peng, Huan; Luo, Shujie; Huang, Wenkun; Cui, Jiangkuan; Li, Xin; Kong, Lingan; Jiang, Daohong; Chitwood, David J.; Peng, Deliang

    2016-01-01

    Heterodera avenae and H. filipjevi are major parasites of wheat, reducing production worldwide. Both are sedentary endoparasitic nematodes, and their development and parasitism depend strongly on nutrients obtained from hosts. Secreted fatty acid- and retinol-binding (FAR) proteins are nematode-specific lipid carrier proteins used for nutrient acquisition as well as suppression of plant defenses. In this study, we obtained three novel FAR genes Ha-far-1 (KU877266), Ha-far-2 (KU877267), Hf-far-1 (KU877268). Ha-far-1 and Ha-far-2 were cloned from H. avenae, encoding proteins of 191 and 280 amino acids with molecular masses about 17 and 30 kDa, respectively and sequence identity of 28%. Protein Blast in NCBI revealed that Ha-FAR-1 sequence is 78% similar to the Gp-FAR-1 protein from Globodera pallida, while Ha-FAR-2 is 30% similar to Rs-FAR-1 from Radopholus similis. Only one FAR protein Hf-FAR-1was identified in H. filipjevi; it had 96% sequence identity to Ha-FAR-1. The three proteins are alpha-helix-rich and contain the conserved domain of Gp-FAR-1, but Ha-FAR-2 had a remarkable peptide at the C-terminus which was random-coil-rich. Both Ha-FAR-1 and Hf-FAR-1 had casein kinase II phosphorylation sites, while Ha-FAR-2 had predicted N-glycosylation sites. Phylogenetic analysis showed that the three proteins clustered together, though Ha-FAR-1 and Hf-FAR-1 adjoined each other in a plant-parasitic nematode branch, but Ha-FAR-2 was distinct from the other proteins in the group. Fluorescence-based ligand binding analysis showed the three FAR proteins bound to a fluorescent fatty acid derivative and retinol and with dissociation constants similar to FARs from other species, though Ha-FAR-2 binding ability was weaker than that of the two others. In situ hybridization detected mRNAs of Ha-far-1 and Ha-far-2 in the hypodermis. The qRT-PCR results showed that the Ha-far-1and Ha-far-2 were expressed in all developmental stages; Ha-far-1 expressed 70 times more than Ha-far-2 in

  7. Characterization of Three Novel Fatty Acid- and Retinoid-Binding Protein Genes (Ha-far-1, Ha-far-2 and Hf-far-1) from the Cereal Cyst Nematodes Heterodera avenae and H. filipjevi.

    PubMed

    Qiao, Fen; Luo, Lilian; Peng, Huan; Luo, Shujie; Huang, Wenkun; Cui, Jiangkuan; Li, Xin; Kong, Lingan; Jiang, Daohong; Chitwood, David J; Peng, Deliang

    2016-01-01

    Heterodera avenae and H. filipjevi are major parasites of wheat, reducing production worldwide. Both are sedentary endoparasitic nematodes, and their development and parasitism depend strongly on nutrients obtained from hosts. Secreted fatty acid- and retinol-binding (FAR) proteins are nematode-specific lipid carrier proteins used for nutrient acquisition as well as suppression of plant defenses. In this study, we obtained three novel FAR genes Ha-far-1 (KU877266), Ha-far-2 (KU877267), Hf-far-1 (KU877268). Ha-far-1 and Ha-far-2 were cloned from H. avenae, encoding proteins of 191 and 280 amino acids with molecular masses about 17 and 30 kDa, respectively and sequence identity of 28%. Protein Blast in NCBI revealed that Ha-FAR-1 sequence is 78% similar to the Gp-FAR-1 protein from Globodera pallida, while Ha-FAR-2 is 30% similar to Rs-FAR-1 from Radopholus similis. Only one FAR protein Hf-FAR-1was identified in H. filipjevi; it had 96% sequence identity to Ha-FAR-1. The three proteins are alpha-helix-rich and contain the conserved domain of Gp-FAR-1, but Ha-FAR-2 had a remarkable peptide at the C-terminus which was random-coil-rich. Both Ha-FAR-1 and Hf-FAR-1 had casein kinase II phosphorylation sites, while Ha-FAR-2 had predicted N-glycosylation sites. Phylogenetic analysis showed that the three proteins clustered together, though Ha-FAR-1 and Hf-FAR-1 adjoined each other in a plant-parasitic nematode branch, but Ha-FAR-2 was distinct from the other proteins in the group. Fluorescence-based ligand binding analysis showed the three FAR proteins bound to a fluorescent fatty acid derivative and retinol and with dissociation constants similar to FARs from other species, though Ha-FAR-2 binding ability was weaker than that of the two others. In situ hybridization detected mRNAs of Ha-far-1 and Ha-far-2 in the hypodermis. The qRT-PCR results showed that the Ha-far-1and Ha-far-2 were expressed in all developmental stages; Ha-far-1 expressed 70 times more than Ha-far-2 in

  8. Hydroxyapatite (HA)/poly-L-lactic acid (PLLA) dual coating on magnesium alloy under deformation for biomedical applications.

    PubMed

    Diez, Mathilde; Kang, Min-Ho; Kim, Sae-Mi; Kim, Hyoun-Ee; Song, Juha

    2016-02-01

    The introduction of a protective coating layer to highly corrosive magnesium (Mg) has been proposed as one of the common approaches for improved corrosion resistance of Mg-based implants as load-bearing biomedical applications. However, only few studies have focused on the mechanical stability of the coated Mg under practical conditions where significant deformation of the load-bearing implants is induced during the surgical operation or under physiological environments. Therefore, in this study, we developed a dual coating system composed of an interlayer hydroxyapatite (HA) and a top layer poly-L-lactic acid (PLLA) to improve the coating stability under deformation of Mg alloy (WE43) substrate. The HA interlayer was directly formed on the Mg alloy surface, followed by dip-coating of PLLA. As the interlayer, HA improved the adhesion of PLLA by modulating nano- and microscale roughness, in addition to its inherently good bonding strength to Mg. The flexible and deformable top coating PLLA layer mitigated crack propagation in the HA layer under deformation. Thus, the dual coating layer provided good protection to the underlying WE43 from corrosion regardless of deformation. The enhanced corrosion behavior of dual-coated WE43 exhibited better mechanical and biological performance compared to the non-coated or single-coated WE43. Therefore, this dual coating layer on Mg is expected to accelerate Mg-based applications in biomedical devices. PMID:26704551

  9. Improve the Strength of PLA/HA Composite Through the Use of Surface Initiated Polymerization and Phosphonic Acid Coupling Agent

    PubMed Central

    Wang, Tongxin; Chow, Laurence C.; Frukhtbeyn, Stanislav A.; Ting, Andy Hai; Dong, Quanxiao; Yang, Mingshu; Mitchell, James W.

    2011-01-01

    Bioresorbable composite made from degradable polymers, e.g., polylactide (PLA), and bioactive calcium phosphates, e.g., hydroxyapatite (HA), are clinically desirable for bone fixation, repair and tissue engineering because they do not need to be removed by surgery after the bone heals. However, preparation of PLA/HA composite from non-modified HA usually results in mechanical strength reductions due to a weak interface between PLA and HA. In this study, a calcium-phosphate/phosphonate hybrid shell was developed to introduce a greater amount of reactive hydroxyl groups onto the HA particles. Then, PLA was successfully grafted on HA by surface-initiated polymerization through the non-ionic surface hydroxyl groups. Thermogravimetric analysis indiated that the amount of grafted PLA on HA can be up to 7 %, which is about 50 % greater than that from the literature. PLA grafted HA shows significantly different pH dependent ζ-potential and particle size profiles from those of uncoated HA. By combining the phosphonic acid coupling agent and surface initiated polymerization, PLA could directly link to HA through covalent bond so that the interfacial interaction in the PLA/HA composite can be significantly improved. The diametral tensile strength of PLA/HA composite prepared from PLA-grafted HA was found to be over twice that of the composite prepared from the non-modified HA. Moreover, the tensile strength of the improved composite was 23 % higher than that of PLA alone. By varying additional variables, this approach has the potential to produce bioresorbable composites with improved mechanical properties that are in the range of natural bones, and can have wide applications for bone fixation and repair in load-bearing areas. PMID:22399838

  10. A Lanthanum-Tagged Chemotherapeutic Agent HA-Pt to Track the In Vivo Distribution of Hyaluronic Acid Complexes

    PubMed Central

    Forrest, W.C.; Cai, Shuang; Aires, Daniel; Forrest, M. Laird

    2015-01-01

    Hyaluronic acid drug conjugates can target anti-cancer drugs directly to tumor tissue for loco-regional treatment with enhanced bioavailability, local efficacy and reduced toxicity. In this study, the distribution and pharmacokinetics of hyaluronic acid carrier and a conjugated cisplatin anti-cancer drug were tracked by lanthanum (III) [La(III)] affinity tagging of the nanocarrier. The strong binding affinity of La(III) to HA enabled the simple preparation of a physiologically stable complex HA-Pt-La and straightforward simultaneous detection of HA-La and Pt in biological matrices using inductively coupled plasma-mass spectrometry (ICP-MS). Consequently, after subcutaneous injection of HA-Pt-La nanoparticles in human head and neck squamous cell carcinoma (HNSCC) tumor-bearing mice, the HA and Pt content were detected and quantified simultaneously in the plasma, primary tumor, liver and spleen. PMID:26756040

  11. Putative suppressing effect of IgG Fc-conjugated haemagglutinin (HA) stalk of influenza virus H7N9 on the neutralizing immunogenicity of Fc-conjugated HA head: implication for rational design of HA-based influenza vaccines.

    PubMed

    He, B; Xia, S; Yu, F; Fu, Y; Li, W; Wang, Q; Lu, L; Jiang, S

    2016-02-01

    The emergence of influenza A H7N9 in infection has posed a great threat to public health globally. Poor immunogenicity of H7N9 haemagglutinin (HA) is a major obstacle to the development of an effective H7N9 vaccine. Here, we found that the vaccine containing the H7HA head conjugated with IgG Fc (Hd-Fc) induced strong neutralizing antibody responses and protection against H7N9 infection, whilst the Fc-conjugated H7HA stalk (St-Fc)-based vaccine could not induce neutralizing antibodies, although the St-Fc-immunized mice were partially protected. The vaccines containing the full-length extracellular domain of HA conjugated with Fc and the mixture of Hd-Fc plus St-Fc induced significantly lower neutralizing antibody and haemagglutination inhibition titres than the Hd-Fc-based vaccine. These results suggest that the St-Fc may have inhibitory effects on the neutralizing immunogenicity of Hd-Fc. Therefore, the neutralizing domain(s), such as the receptor-binding domain, in the HA head should be kept and the non-neutralizing domain(s) in the HA stalk with the ability to potentially suppress the neutralizing immunogenicity of HA head should be removed from Fc-conjugated HA-based influenza vaccines to increase the neutralizing antibody response. PMID:26653217

  12. Optimal designs of an HA-based DNA vaccine against H7 subtype influenza viruses

    PubMed Central

    Zhang, Lu; Jia, Na; Li, Jun; Han, Yaping; Cao, Wuchun; Wang, Shixia; Huang, Zuhu; Lu, Shan

    2014-01-01

    The outbreak of a novel H7N9 influenza virus in 2013 has raised serious concerns for the potential of another avian-source pandemic influenza. Effective vaccines against H7N9 virus are important in the prevention and control of any major outbreak. Novel vaccination technologies are useful additions to existing approaches. In the current report, DNA vaccine studies were conducted to identify the optimal design of an H7 HA antigen using the HA gene from a previously reported H7N7 virus that is lethal in humans as the model antigen. New Zealand White rabbits were immunized with DNA vaccines expressing 1 of 3 forms of H7 HA antigen inserts encoding the HA gene from the same H7N7 virus. High-level H7 HA-specific IgG was detected by ELISA, and functional antibodies were confirmed by hemagglutination inhibition assay and pseudotyped virus-based neutralization assay against viruses expressing HA antigens from either the previous H7N7 virus or the novel H7N9 virus. HA antigen design under the tissue plasminogen activator leader (tPA) was the most immunogenic. The data presented in the current report confirm the immunogenicity of the H7 HA antigen and provide useful guidance to prepare for an optimized H7 HA DNA vaccine to help to control the emerging H7N9 virus if and when it is needed. PMID:25424804

  13. Formulation Changes Affect Material Properties and Cell Behavior in HA-Based Hydrogels

    PubMed Central

    Lawyer, Thomas; McIntosh, Kristen; Clavijo, Cristian; Potekhina, Lydia; Mann, Brenda K.

    2012-01-01

    To develop and optimize new scaffold materials for tissue engineering applications, it is important to understand how changes to the scaffold affect the cells that will interact with that scaffold. In this study, we used a hyaluronic acid- (HA-) based hydrogel as a synthetic extracellular matrix, containing modified HA (CMHA-S), modified gelatin (Gtn-S), and a crosslinker (PEGda). By varying the concentrations of these components, we were able to change the gelation time, enzymatic degradation, and compressive modulus of the hydrogel. These changes also affected fibroblast spreading within the hydrogels and differentially affected the proliferation and metabolic activity of fibroblasts and mesenchymal stem cells (MSCs). In particular, PEGda concentration had the greatest influence on gelation time, compressive modulus, and cell spreading. MSCs appeared to require a longer period of adjustment to the new microenvironment of the hydrogels than fibroblasts. Fibroblasts were able to proliferate in all formulations over the course of two weeks, but MSCs did not. Metabolic activity changed for each cell type during the two weeks depending on the formulation. These results highlight the importance of determining the effect of matrix composition changes on a particular cell type of interest in order to optimize the formulation for a given application. PMID:23251160

  14. Hyaluronic Acid (HA) Viscosupplementation on Synovial Fluid Inflammation in Knee Osteoarthritis: A Pilot Study

    PubMed Central

    Vincent, Heather K; Percival, Susan S; Conrad, Bryan P; Seay, Amanda N; Montero, Cindy; Vincent, Kevin R

    2013-01-01

    Objective: This study examined the changes in synovial fluid levels of cytokines, oxidative stress and viscosity six months after intraarticular hyaluronic acid (HA) treatment in adults and elderly adults with knee osteoarthritis (OA). Design: This was a prospective, repeated-measures study design in which patients with knee OA were administered 1% sodium hyaluronate. Patients (N=28) were stratified by age (adults, 50-64 years and elderly adults, ≥65 years). Ambulatory knee pain values and self-reported physical activity were collected at baseline and month six. Materials and Methods: Knee synovial fluid aspirates were collected at baseline and at six months. Fluid samples were analyzed for pro-inflammatory cytokines (interleukins 1β, 6,8,12, tumor necrosis factor-α, monocyte chemotactic protein), anti-inflammatory cytokines (interleukins 4, 10 13), oxidative stress (4-hydroxynonenal) and viscosity at two different physiological shear speeds 2.5Hz and 5Hz. Results: HA improved ambulatory knee pain in adults and elderly groups by month six, but adults reported less knee pain-related interference with participation in exercise than elderly adults. A greater reduction in TNF-α occurred in adults compared to elderly adults (-95.8% ± 7.1% vs 19.2% ± 83.8%, respectively; p=.044). Fluid tended to improve at both shear speeds in adults compared to the elderly adults. The reduction in pain severity correlated with the change in IL-1β levels by month six (r= -.566; p=.044). Conclusion: Reduction of knee pain might be due to improvements in synovial fluid viscosity and inflammation. Cartilage preservation may be dependent on how cytokine, oxidative stress profiles and viscosity change over time. PMID:24093052

  15. Selective oxidative demethylation of veratric acid to vanillic acid by CYP199A4 from Rhodopseudomonas palustris HaA2.

    PubMed

    Bell, Stephen G; Tan, Adrian B H; Johnson, Eachan O D; Wong, Luet-Lok

    2010-01-01

    CYP199A4 (RPB3613) from Rhodopseudomonas palustris HaA2 is a heme monooxygenase that catalyzes the hydroxylation of para-substituted benzoic acids. Monooxygenase activity of CYP199A4 can be reconstituted in a Class I electron transfer chain with an associated [2Fe-2S] ferredoxin, HaPux, (RPB3614) and the flavin-dependent reductase, HaPuR, (RPB3656) that is not associated with a CYP gene. CYP199A4 and the ferredoxin HaPux are produced in greater quantities using recombinant Escherichia coli expression systems when compared to the equivalent proteins in the closely related CYP199A2-Pux-PuR Class I system from R. palustris CGA009. HaPuR and HaPux can also replace PuR and Pux in supporting the CYP199A2 enzyme turnover with high activity. Whole-cell in vivo substrate oxidation systems for CYP199A4 and CYP199A2 with HaPux and HaPuR as the electron transfer proteins have been constructed. These E. coli systems were capable of selectively demethylating veratric acid at the para position to produce vanillic acid at rates of up to 15.3 microM (g-cdw)(-1) min(-1) and yields of up to 1.2 g L(-1). PMID:20024082

  16. Effectiveness of Losartan-Loaded Hyaluronic Acid (HA) Micelles for the Reduction of Advanced Hepatic Fibrosis in C3H/HeN Mice Model

    PubMed Central

    Thomas, Reju George; Moon, Myeong Ju; Kim, Jo Heon; Lee, Jae Hyuk; Jeong, Yong Yeon

    2015-01-01

    Advanced hepatic fibrosis therapy using drug-delivering nanoparticles is a relatively unexplored area. Angiotensin type 1 (AT1) receptor blockers such as losartan can be delivered to hepatic stellate cells (HSC), blocking their activation and thereby reducing fibrosis progression in the liver. In our study, we analyzed the possibility of utilizing drug-loaded vehicles such as hyaluronic acid (HA) micelles carrying losartan to attenuate HSC activation. Losartan, which exhibits inherent lipophilicity, was loaded into the hydrophobic core of HA micelles with a 19.5% drug loading efficiency. An advanced liver fibrosis model was developed using C3H/HeN mice subjected to 20 weeks of prolonged TAA/ethanol weight-adapted treatment. The cytocompatibility and cell uptake profile of losartan-HA micelles were studied in murine fibroblast cells (NIH3T3), human hepatic stellate cells (hHSC) and FL83B cells (hepatocyte cell line). The ability of these nanoparticles to attenuate HSC activation was studied in activated HSC cells based on alpha smooth muscle actin (α-sma) expression. Mice treated with oral losartan or losartan-HA micelles were analyzed for serum enzyme levels (ALT/AST, CK and LDH) and collagen deposition (hydroxyproline levels) in the liver. The accumulation of HA micelles was observed in fibrotic livers, which suggests increased delivery of losartan compared to normal livers and specific uptake by HSC. Active reduction of α-sma was observed in hHSC and the liver sections of losartan-HA micelle-treated mice. The serum enzyme levels and collagen deposition of losartan-HA micelle-treated mice was reduced significantly compared to the oral losartan group. Losartan-HA micelles demonstrated significant attenuation of hepatic fibrosis via an HSC-targeting mechanism in our in vitro and in vivo studies. These nanoparticles can be considered as an alternative therapy for liver fibrosis. PMID:26714035

  17. Apoptosis-induced cell death due to oleanolic acid in HaCaT keratinocyte cells--a proof-of-principle approach for chemopreventive drug development.

    PubMed

    George, V Cijo; Kumar, D R Naveen; Suresh, P K; Kumar, R Ashok

    2012-01-01

    Oleanolic acid (OA) is a naturally occurring triterpenoid in food materials and is a component of the leaves and roots of Olea europaea, Viscum album L., Aralia chinensis L. and more than 120 other plant species. There are several reports validating its antitumor activity against different cancer cells apart from its hepatoprotective activity. However, antitumor activity against skin cancer has not been studied well thus far. Hence the present study of effects of OA against HaCaT (immortalized keratinocyte) cells--a cell-based epithelial model system for toxicity/ethnopharmacology-based studies--was conducted. Radical scavenging activity (DPPH·) and FRAP were determined spectrophotometrically. Proliferation was assessed by XTT assay at 24, 48 and 72 hrs with exposure to various concentrations (12.5-200 μM) of OA. Apoptotic induction potential of OA was demonstrated using a cellular DNA fragmentation ELISA method. Morphological studies were also carried out to elucidate its antitumor potential. The results revealed that OA induces apoptosis by altering cellular morphology as well as DNA integrity in HaCaT cells in a dose-dependent manner, with comparatively low cytotoxicity. The moderate toxicity observed in HaCaT cells, with induction of apoptosis, possibly suggests greater involvement of programmed-cell death-mediated mechanisms. We conclude that OA has relatively low toxicity and has the potential to induce apoptosis in HaCaT cells and hence provides a substantial and sound scientific basis for further validation studies. PMID:22901164

  18. Intravesical administration of combined hyaluronic acid (HA) and chondroitin sulfate (CS) for the treatment of female recurrent urinary tract infections: a European multicentre nested case–control study

    PubMed Central

    Ciani, Oriana; Arendsen, Erik; Romancik, Martin; Lunik, Richard; Costantini, Elisabetta; Di Biase, Manuel; Morgia, Giuseppe; Fragalà, Eugenia; Roman, Tomaskin; Bernat, Marian; Guazzoni, Giorgio; Tarricone, Rosanna; Lazzeri, Massimo

    2016-01-01

    Objectives To compare the clinical effectiveness of the intravesical administration of combined hyaluronic acid and chondroitin sulfate (HA+CS) versus current standard management in adult women with recurrent urinary tract infections (RUTIs). Setting A European Union-based multicentre, retrospective nested case–control study. Participants 276 adult women treated for RUTIs starting from 2009 to 2013. Interventions Patients treated with either intravesical administration of HA+CS or standard of care (antimicrobial/immunoactive prophylaxis/probiotics/cranberry). Primary and secondary outcome measures The primary outcome was occurrence of bacteriologically confirmed recurrence within 12 months. Secondary outcomes were time to recurrence, total number of recurrences, health-related quality of life and healthcare resource consumption. Crude and adjusted results for unbalanced characteristics are presented. Results 181 patients treated with HA+CS and 95 patients treated with standard of care from 7 centres were included. The crude and adjusted ORs (95% CI) for the primary end point were 0.77 (0.46 to 1.28) and 0.51 (0.27 to 0.96), respectively. However, no evidence of improvement in terms of total number of recurrences (incidence rate ratio (95% CI), 0.99 (0.69 to 1.43)) or time to first recurrence was seen (HR (95% CI), 0.99 (0.61 to 1.61)). The benefit of intravesical HA+CS therapy improves when the number of instillations is ≥5. Conclusions Our results show that bladder instillations of combined HA+CS reduce the risk of bacteriologically confirmed recurrences compared with the current standard management of RUTIs. Total incidence rates and hazard rates were instead non-significantly different between the 2 groups after adjusting for unbalanced factors. In contrast to what happens with antibiotic prophylaxis, the effectiveness of the HA+CS reinstatement therapy improves over time. Trial registration number NCT02016118. PMID:27033958

  19. Ab initio base fragment molecular orbital studies of influenza viral hemagglutinin HA1 full-domains in complex with sialoside receptors

    PubMed Central

    Sawada, Toshihiko; Hashimoto, Tomohiro; Tokiwa, Hiroaki; Suzuki, Tohru; Nakano, Hirofumi; Ishida, Hideharu; Kiso, Makoto; Suzuki, Yasuo

    2009-01-01

    Mutations in avian influenza A viral hemagglutinin HA1 domain may alter the binding specificity of HA for α-sialosaccharide receptors, shifting the virus's host range from birds to humans. The amino acid mutations can occur at the sialoside binding site, as well as the antigenic site, far from the binding site. Thus, a theoretical study involving the in silico prediction of HA-sialosaccharide binding may require quantum chemical analysis of HA1 full domain complexed with sialosides, balancing a computational cost with model size of HA1-sialoside complex. In addition, there is no insight to relationship between the model size of HA1-sialoside complex and its binding energy. In this study, H3 subtype HA1 full domains complexed with avian- and human-type Neu5Acα(2-3 and 2-6)Gal receptor analogs was investigated by ab initio based fragment molecular orbital (FMO) method at the level of second-order Møller–Plesset perturbation (MP2)/6-31G. Using this approach, we found avian H3 HA1 to bind to avian α2-3 receptor more strongly than to human α2-6 receptor in gas phase, by a value of 15.3-16.5 kcal/mol. This binding benefit was larger than that in the small model complex. Analysis of the interfragment interaction energies (IFIEs) between Neu5Ac-Gal receptor and amino acid residues on the full domain of H3 HA1 also confirmed the higher avian H3-avian α2-3 binding specificity. It was particularly important to evaluate the IFIEs of amino acid residues in a 13Å radius around Neu5Ac-Gal to take account of long-range electrostatic interactions in the larger HA1-sialoside complex model. These results suggest suitable size of HA1-sialoside complex is significant to estimate HA1-sialoside binding energy and IFIE analysis with FMO method. PMID:19565017

  20. Microencapsulation-protected l-ascorbic acid for the application of human epithelial HaCaT cell proliferation.

    PubMed

    Lam, P-L; Kok, S H-L; Bian, Z-X; Lam, K-H; Gambari, R; Lee, K K-H; Chui, C-H

    2014-01-01

    l-ascorbic acid is an abundant water-soluble nutrient found in vegetables and fruits. It enhances the cell proliferation, which is helpful in wound healing process. However, it is relatively unstable and easily degraded under external environments including acidity, alkalinity, evaporation, heat, oxidization, light or moisture. Its storage remains challenged. This study reported the development of l-ascorbic acid microcapsules using the natural protein, gelatin, and the natural polysaccharide, agar, as the wall protection carrier. The physical properties including entrapment efficiency, particle size, surface morphology, chemical compositions and release profile were identified. The cell proliferation of l-ascorbic acid microcapsules was stronger than the free drug. Significant cell growth in microencapsulated l-ascorbic acid-treated human epithelial HaCaT cells was observed when compared with untreated control. Since cell proliferation and wound repair are closely related, it is believed that l-ascorbic acid microcapsules would effectively increase the potential effect of wound healing activity in human skin. PMID:24963963

  1. Glycolic Acid Silences Inflammasome Complex Genes, NLRC4 and ASC, by Inducing DNA Methylation in HaCaT Cells.

    PubMed

    Tang, Sheau-Chung; Yeh, Jih-I; Hung, Sung-Jen; Hsiao, Yu-Ping; Liu, Fu-Tong; Yang, Jen-Hung

    2016-03-01

    AHAs (α-hydroxy acids), including glycolic acid (GA), have been widely used in cosmetic products and superficial chemical peels. Inflammasome complex has been shown to play critical roles in inflammatory pathways in human keratinocytes. However, the anti-inflammatory mechanism of GA is still unknown. The aim of this study is to investigate the relationship between the expression of the inflammasome complex and epigenetic modification to elucidate the molecular mechanism of the anti-inflammatory effect of GA in HaCaT cells. We evaluated NLRP3, NLRC4, AIM2, and ASC inflammasome complex gene expression on real-time polymerase chain reaction (PCR). Methylation changes were detected in these genes following treatment with DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-Aza) with or without the addition of GA using methylation-specific PCR (MSP). GA inhibited the expressions of these inflammasome complex genes, and the decreases in the expressions of mRNA were reversed by 5-Aza treatment. Methylation was detected in NLRC4 and ASC on MSP, but not in NLRP3 or AIM2. GA decreased NLRC4 and ASC gene expression by increasing not only DNA methyltransferase 3B (DNMT-3B) protein level, but also total DNMT activity. Furthermore, silencing of DNMT-3B (shDNMT-3B) increased the expressions of NLRC4 and ASC. Our data demonstrated that GA treatment induces hypermethylation of promoters of NLRC4 and ASC genes, which may subsequently lead to the hindering of the assembly of the inflammasome complex in HaCaT cells. These results highlight the anti-inflammatory potential of GA-containing cosmetic agents in human skin cells and demonstrate for the first time the role of aberrant hypermethylation in this process. PMID:26784358

  2. Amino Acid Substitutions Improve the Immunogenicity of H7N7HA Protein and Protect Mice against Lethal H7N7 Viral Challenge

    PubMed Central

    Ashok raj, Kattur Venkatachalam; He, Fang; Kwang, Jimmy

    2015-01-01

    Avian influenza A H7N7/NL/219/03 virus creates a serious pandemic threat to human health because it can transmit directly from domestic poultry to humans and from human to human. Our previous vaccine study reported that mice when immunized intranasally (i.n) with live Bac-HA were protected from lethal H7N7/NL/219/03 challenge, whereas incomplete protection was obtained when administered subcutaneously (s.c) due to the fact that H7N7 is a poor inducer of neutralizing antibodies. Interestingly, our recent vaccine studies reported that mice when vaccinated subcutaneously with Bac-HA (H7N9) was protected against both H7N9 (A/Sh2/2013) and H7N7 virus challenge. HA1 region of both H7N7 and H7N9 viruses are differ at 15 amino acid positions. Among those, we selected three amino acid positions (T143, T198 and I211) in HA1 region of H7N7. These amino acids are located within or near the receptor binding site. Following the selection, we substituted the amino acid at these three positions with amino acids found on H7N9HA wild-type. In this study, we evaluate the impact of amino acid substitutions in the H7N7 HA-protein on the immunogenicity. We generated six mutant constructs from wild-type influenza H7N7HA cDNA by site directed mutagenesis, and individually expressed mutant HA protein on the surface of baculovirus (Bac-HAm) and compared their protective efficacy of the vaccines with Bac-H7N7HA wild-type (Bac-HA) by lethal H7N7 viral challenge in a mouse model. We found that mice immunized subcutaneously with Bac-HAm constructs T143A or T198A-I211V or I211V-T143A serum showed significantly higher hemagglutination inhibition and neutralization titer against H7N7 and H7N9 viruses when compared to Bac-HA vaccinated mice groups. We also observed low level of lung viral titer, negligible weight loss and complete protection against lethal H7N7 viral challenge. Our results indicated that amino acid substitution at position 143 or 211 improve immunogenicity of H7N7HA vaccine against

  3. Eicosapentaenoic acid inhibits TNF-{alpha}-induced matrix metalloproteinase-9 expression in human keratinocytes, HaCaT cells

    SciTech Connect

    Kim, Hyeon Ho; Lee, Youngae; Eun, Hee Chul Chung, Jin Ho

    2008-04-04

    Eicosapentaenoic acid (EPA) is an omega-3 ({omega}-3) polyunsaturated fatty acid (PUFA), which has anti-inflammatory and anti-cancer properties. Some reports have demonstrated that EPA inhibits NF-{kappa}B activation induced by tumor necrosis factor (TNF)-{alpha} or lipopolysaccharide (LPS) in various cells. However, its detailed mode of action is unclear. In this report, we investigated whether EPA inhibits the expression of TNF-{alpha}-induced matrix metalloproteinases (MMP)-9 in human immortalized keratinocytes (HaCaT). TNF-{alpha} induced MMP-9 expression by NF-{kappa}B-dependent pathway. Pretreatment of EPA inhibited TNF-{alpha}-induced MMP-9 expression and p65 phosphorylation. However, EPA could not affect I{kappa}B-{alpha} phosphorylation, nuclear translocation of p65, and DNA binding activity of NF-{kappa}B. EPA inhibited TNF-{alpha}-induced p65 phosphorylation through p38 and Akt inhibition and this inhibition was IKK{alpha}-dependent event. Taken together, we demonstrate that EPA inhibits TNF-{alpha}-induced MMP-9 expression through inhibition of p38 and Akt activation.

  4. Efficient CD44-targeted magnetic resonance imaging (MRI) of breast cancer cells using hyaluronic acid (HA)-modified MnFe2O4 nanocrystals

    PubMed Central

    2013-01-01

    Targeted molecular imaging with hyaluronic acid (HA) has been highlighted in the diagnosis and treatment of CD44-overexpressing cancer. CD44, a receptor for HA, is closely related to the growth of cancer including proliferation, metastasis, invasion, and angiogenesis. For the efficient detection of CD44, we fabricated a few kinds of HA-modified MnFe2O4 nanocrystals (MNCs) to serve as specific magnetic resonance (MR) contrast agents (HA-MRCAs) and compared physicochemical properties, biocompatibility, and the CD44 targeting efficiency. Hydrophobic MNCs were efficiently phase-transferred using aminated polysorbate 80 (P80) synthesized by introducing spermine molecules on the hydroxyl groups of P80. Subsequently, a few kinds of HA-MRCAs were fabricated, conjugating different ratios of HA on the equal amount of phase-transferred MNCs. The optimized conjugation ratio of HA against magnetic content was identified to exhibit not only effective CD44 finding ability but also high cell viability through in vitro experiments. The results of this study demonstrate that the suggested HA-MRCA shows strong potential to be used for accurate tumor diagnosis. PMID:23547716

  5. Efficient CD44-targeted magnetic resonance imaging (MRI) of breast cancer cells using hyaluronic acid (HA)-modified MnFe2O4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Lee, Taeksu; Lim, Eun-Kyung; Lee, Jaemin; Kang, Byunghoon; Choi, Jihye; Park, Hyo Seon; Suh, Jin-Suck; Huh, Yong-Min; Haam, Seungjoo

    2013-04-01

    Targeted molecular imaging with hyaluronic acid (HA) has been highlighted in the diagnosis and treatment of CD44-overexpressing cancer. CD44, a receptor for HA, is closely related to the growth of cancer including proliferation, metastasis, invasion, and angiogenesis. For the efficient detection of CD44, we fabricated a few kinds of HA-modified MnFe2O4 nanocrystals (MNCs) to serve as specific magnetic resonance (MR) contrast agents (HA-MRCAs) and compared physicochemical properties, biocompatibility, and the CD44 targeting efficiency. Hydrophobic MNCs were efficiently phase-transferred using aminated polysorbate 80 (P80) synthesized by introducing spermine molecules on the hydroxyl groups of P80. Subsequently, a few kinds of HA-MRCAs were fabricated, conjugating different ratios of HA on the equal amount of phase-transferred MNCs. The optimized conjugation ratio of HA against magnetic content was identified to exhibit not only effective CD44 finding ability but also high cell viability through in vitro experiments. The results of this study demonstrate that the suggested HA-MRCA shows strong potential to be used for accurate tumor diagnosis.

  6. The Polyphenol Chlorogenic Acid Attenuates UVB-mediated Oxidative Stress in Human HaCaT Keratinocytes

    PubMed Central

    Cha, Ji Won; Piao, Mei Jing; Kim, Ki Cheon; Yao, Cheng Wen; Zheng, Jian; Kim, Seong Min; Hyun, Chang Lim; Ahn, Yong Seok; Hyun, Jin Won

    2014-01-01

    We investigated the protective effects of chlorogenic acid (CGA), a polyphenol compound, on oxidative damage induced by UVB exposure on human HaCaT cells. In a cell-free system, CGA scavenged 1,1-diphenyl-2-picrylhydrazyl radicals, superoxide anions, hydroxyl radicals, and intracellular reactive oxygen species (ROS) generated by hydrogen peroxide and ultraviolet B (UVB). Furthermore, CGA absorbed electromagnetic radiation in the UVB range (280–320 nm). UVB exposure resulted in damage to cellular DNA, as demonstrated in a comet assay; pre-treatment of cells with CGA prior to UVB irradiation prevented DNA damage and increased cell viability. Furthermore, CGA pre-treatment prevented or ameliorated apoptosis-related changes in UVB-exposed cells, including the formation of apoptotic bodies, disruption of mitochondrial membrane potential, and alterations in the levels of the apoptosis-related proteins Bcl-2, Bax, and caspase-3. Our findings suggest that CGA protects cells from oxidative stress induced by UVB radiation. PMID:24753819

  7. v-Ha-ras transgene abrogates the initiation step in mouse skin tumorigenesis: effects of phorbol esters and retinoic acid.

    PubMed Central

    Leder, A; Kuo, A; Cardiff, R D; Sinn, E; Leder, P

    1990-01-01

    Experimental carcinogenesis has led to a concept that defines two discrete stages in the development of skin tumors: (i) initiation, which is accomplished by using a mutagen that presumably activates a protooncogene, and (ii) promotion, which is a reversible process brought about most commonly by repeated application of phorbol esters. We have created a transgenic mouse strain that carries the activated v-Ha-ras oncogene fused to the promoter of the mouse embryonic alpha-like, zeta-globin gene. Unexpectedly, these animals developed papillomas at areas of epidermal abrasion and, because abrasion can also serve as a tumor-promoting event in mutagen-treated mouse skin, we tested these mice for their ability to respond to phorbol ester application. Within 6 weeks virtually all treated carrier mice had developed multiple papillomas, some of which went on to develop squamous cell carcinomas and, more frequently, underlying sarcomas. We conclude that the oncogene "preinitiates" carrier mice, replacing the initiation/mutagenesis step and immediately sensitizing them to the action of tumor promoters. In addition, treatment of the mice with retinoic acid dramatically delays, reduces, and often completely inhibits the appearance of promoter-induced papillomas. This strain has use in screening tumor promoters and for assessing antitumor and antiproliferative agents. Images PMID:2251261

  8. Effect of a high molecular weight hyaluronic acid (HA) preparation on the stimulation of polymorphonulcear leukocytes (PMNL)

    SciTech Connect

    McNeil, J.; Chow, D.C.; Skosey, J.L.

    1986-03-01

    During the process of joint inflammation PMNL are attracted into the joint space by chemotactic agents and are stimulated by immune complexes, particular matter (eg, crystals, cartilage debris) and other phlogistic agents. This process occurs in an environment rich in HA. The authors have examined the effect of high molecular weight HA. They have examined the effect of high molecular weight HA upon PMNL stimulation. PMNL were isolated from human blood and stimulated with either opsonized zymosan or formyl-methionyl-leucyl-phenylalanine (fmlp). The authors assessed stimulation by measuring the ability of cell supernatants to promote the release of /sup 35/S from chips of rabbit articular cartilage labeled in vivo, and the enhancement of oxidation of (1-/sup 14/C)glucose to /sup 14/CO/sub 2/. Stimulation of cells with zym in the presence of HA, 0.125-2.5 mg/ml, resulted in enhanced /sup 35/S release (33-59% over zym alone) and /sup 14/CO/sub 2/ production (0.5-64%). However, HA failed to enhance responses when fmlp (+cytochalasin B) was used as the stimulus. It has been demonstrated that high molecular weight HA inhibits phagocytosis of both latex and aggregated IgG. In our studies, it is likely that HA interference with ingestion of zym leads to frustrated phagocytosis and enhancement of PMNL responses. Similar modification of responses of inflammatory mediator cells could occur in inflamed joints.

  9. Citric acid-based hydroxyapatite composite scaffolds enhance calvarial regeneration.

    PubMed

    Sun, Dawei; Chen, Yuhui; Tran, Richard T; Xu, Song; Xie, Denghui; Jia, Chunhong; Wang, Yuchen; Guo, Ying; Zhang, Zhongmin; Guo, Jinshan; Yang, Jian; Jin, Dadi; Bai, Xiaochun

    2014-01-01

    Citric acid-based polymer/hydroxyapatite composites (CABP-HAs) are a novel class of biomimetic composites that have recently attracted significant attention in tissue engineering. The objective of this study was to compare the efficacy of using two different CABP-HAs, poly (1,8-octanediol citrate)-click-HA (POC-Click-HA) and crosslinked urethane-doped polyester-HA (CUPE-HA) as an alternative to autologous tissue grafts in the repair of skeletal defects. CABP-HA disc-shaped scaffolds (65 wt.-% HA with 70% porosity) were used as bare implants without the addition of growth factors or cells to renovate 4 mm diameter rat calvarial defects (n = 72, n = 18 per group). Defects were either left empty (negative control group), or treated with CUPE-HA scaffolds, POC-Click-HA scaffolds, or autologous bone grafts (AB group). Radiological and histological data showed a significant enhancement of osteogenesis in defects treated with CUPE-HA scaffolds when compared to POC-Click-HA scaffolds. Both, POC-Click-HA and CUPE-HA scaffolds, resulted in enhanced bone mineral density, trabecular thickness, and angiogenesis when compared to the control groups at 1, 3, and 6 months post-trauma. These results show the potential of CABP-HA bare implants as biocompatible, osteogenic, and off-shelf-available options in the repair of orthopedic defects. PMID:25372769

  10. Acid-Base Homeostasis

    PubMed Central

    Nakhoul, Nazih; Hering-Smith, Kathleen S.

    2015-01-01

    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3− and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3− is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys. PMID:26597304

  11. The modulatory effect of ellagic acid and rosmarinic acid on ultraviolet-B-induced cytokine/chemokine gene expression in skin keratinocyte (HaCaT) cells.

    PubMed

    Lembo, Serena; Balato, Anna; Di Caprio, Roberta; Cirillo, Teresa; Giannini, Valentina; Gasparri, Franco; Monfrecola, Giuseppe

    2014-01-01

    Ultraviolet radiation (UV) induces an increase in multiple cutaneous inflammatory mediators. Ellagic acid (EA) and rosmarinic acid (RA) are natural anti-inflammatory and immunomodulatory compounds found in many plants, fruits, and nuts. We assessed the ability of EA and RA to modulate IL-1β, IL-6, IL-8, IL-10, MCP-1, and TNF-α gene expression in HaCaT cells after UVB irradiation. Cells were treated with UVB (100 mJ/cm(2)) and simultaneously with EA (5 μM in 0.1% DMSO) or RA (2.7 μM in 0.5% DMSO). Moreover, these substances were added to the UVB-irradiated cells 1 h or 6 h before harvesting, depending on the established UVB-induced cytokine expression peak. Cytokine gene expression was examined using quantitative real time polymerase chain reaction. RA produced a significant reduction in UVB-induced expression of IL-6, IL-8, MCP-1, and TNF-α when applied at the same time as irradiation. EA showed milder effects compared with RA, except for TNF-α. Both substances decreased IL-6 expression, also when applied 5 h after irradiation, and always produced a significant increase in UVB-induced IL-10 expression. Our findings suggest that EA and RA are able to prevent and/or limit the UVB-induced inflammatory cascade, through a reduction in proinflammatory mediators and the enhancement of IL-10, with its protective function. PMID:25162011

  12. Acid-base chemistry

    SciTech Connect

    Hand, C.W.; Blewit, H.L.

    1985-01-01

    The book is not a research compendium and there are no references to the literature. It is a teaching text covering the entire range of undergraduate subject matter dealing with acid-base chemistry (some of it remotely) as taught in inorganic, analytical, and organic chemistry courses. The excellent chapters VII through IX deal in detail with the quantitative aspects of aqueous acid-base equilibria (salt hydrolysis and buffer, titrations, polyprotic and amphoteric substances).

  13. [Preliminary study of a universal vaccine based on the HA2 protein of the H5N1 influenza virus].

    PubMed

    Xin, Li; Yang, Xing-Yu; Yu, Zai-Jiang; Bo, Hong; Zhou, Jian-Fang; Qin, Kun; Shu, Yue-Long

    2014-09-01

    Fragments encoding amino acids 76-130 in the linear conserved region (LCR) of A/Hubei/1/2010 (H5N1) HA2 was fused to hepatitis B core antigen (HBc) to generate a LCR-HBe virus-like particle (VLP). Results showed that the fusion protein of LCR-HBc was highly expressed in this prokaryotic expression system. The purified LCR-HBc particle stimulated high levels of IgG production in mice with a titer of > 1:12 800, and provided 50% cross-protection against lethal challenge by H1N1 viruses. PMID:25562961

  14. Two Cytoplasmic Acylation Sites and an Adjacent Hydrophobic Residue, but No Other Conserved Amino Acids in the Cytoplasmic Tail of HA from Influenza A Virus Are Crucial for Virus Replication.

    PubMed

    Siche, Stefanie; Brett, Katharina; Möller, Lars; Kordyukova, Larisa V; Mintaev, Ramil R; Alexeevski, Andrei V; Veit, Michael

    2015-12-01

    Recruitment of the matrix protein M1 to the assembly site of the influenza virus is thought to be mediated by interactions with the cytoplasmic tail of hemagglutinin (HA). Based on a comprehensive sequence comparison of all sequences present in the database, we analyzed the effect of mutating conserved residues in the cytosol-facing part of the transmembrane region and cytoplasmic tail of HA (A/WSN/33 (H1N1) strain) on virus replication and morphology of virions. Removal of the two cytoplasmic acylation sites and substitution of a neighboring isoleucine by glutamine prevented rescue of infectious virions. In contrast, a conservative exchange of the same isoleucine, non-conservative exchanges of glycine and glutamine, deletion of the acylation site at the end of the transmembrane region and shifting it into the tail did not affect virus morphology and had only subtle effects on virus growth and on the incorporation of M1 and Ribo-Nucleoprotein Particles (RNPs). Thus, assuming that essential amino acids are conserved between HA subtypes we suggest that, besides the two cytoplasmic acylation sites (including adjacent hydrophobic residues), no other amino acids in the cytoplasmic tail of HA are indispensable for virus assembly and budding. PMID:26670246

  15. Two Cytoplasmic Acylation Sites and an Adjacent Hydrophobic Residue, but No Other Conserved Amino Acids in the Cytoplasmic Tail of HA from Influenza A Virus Are Crucial for Virus Replication

    PubMed Central

    Siche, Stefanie; Brett, Katharina; Möller, Lars; Kordyukova, Larisa V.; Mintaev, Ramil R.; Alexeevski, Andrei V.; Veit, Michael

    2015-01-01

    Recruitment of the matrix protein M1 to the assembly site of the influenza virus is thought to be mediated by interactions with the cytoplasmic tail of hemagglutinin (HA). Based on a comprehensive sequence comparison of all sequences present in the database, we analyzed the effect of mutating conserved residues in the cytosol-facing part of the transmembrane region and cytoplasmic tail of HA (A/WSN/33 (H1N1) strain) on virus replication and morphology of virions. Removal of the two cytoplasmic acylation sites and substitution of a neighboring isoleucine by glutamine prevented rescue of infectious virions. In contrast, a conservative exchange of the same isoleucine, non-conservative exchanges of glycine and glutamine, deletion of the acylation site at the end of the transmembrane region and shifting it into the tail did not affect virus morphology and had only subtle effects on virus growth and on the incorporation of M1 and Ribo-Nucleoprotein Particles (RNPs). Thus, assuming that essential amino acids are conserved between HA subtypes we suggest that, besides the two cytoplasmic acylation sites (including adjacent hydrophobic residues), no other amino acids in the cytoplasmic tail of HA are indispensable for virus assembly and budding. PMID:26670246

  16. Development of a Fish Based Lake Typology for Natural Austrian Lakes >50 ha Based on the Reconstructed Historical Fish Communities

    NASA Astrophysics Data System (ADS)

    Gassner, Hubert; Wanzenböck, Josef; Zick, Daniela; Tischler, Gerhard; Pamminger-Lahnsteiner, Barbara

    2005-08-01

    Based on the reconstructed native fish communities all natural Austrian lakes >50 ha (n = 43) were classified into four groups using cluster analysis methods. Sentinel species (i.e. species with highest discriminating value for lake types and characteristic for a specific lake group) and type specific fish species (accompanying species with additional value for characterising lake groups) were defined by a newly developed index and by similarity analysis. The first group included 16 lakes of high altitude, small surface area and low fish species number with arctic char as a sentinel species. The second group (n = 10) was characterized by intermediate altitude, large surface area and high maximum water depth with the minnow as sentinel species. The third group contained 14 lakes with low maximum water depths and a long retention time. For this group the bleak was found as a sentinel species. The lakes of the eastern part of Austria represented the last group (n = 3) and were characterized by low altitude and very shallow water depth with pike-perch as a sentinel species.

  17. Short term results comparison of intraarticular platelet-rich plasma (prp) and hyaluronic acid (ha) applications in early stage of knee osteoarthritis

    PubMed Central

    Kilincoglu, Volkan; Yeter, Abdurrahman; Servet, Erkan; Kangal, Mustafa; Yildirim, Mustafa

    2015-01-01

    Objective: The aim of this study is to compare the short-term results of intra-articular platelet-rich plasma (PRP) and hyaluronic acid (HA) administrations in early knee osteoarthritis. Materials and methods: One hundred and eighteen patients (mean age: 59.3±8.55) who were clinically and radiologically documented with a knee osteoarthritis diagnosis between May and December 2013 were evaluated. For the radiological evaluation, the Kellgren-Lawrence radiological classification scale was employed. The data of stage 1 and 2 patients with osteoarthritis were gathered retrospectively according to the Kellgren-Lawrence classification. The patients were given intra-articular PRP or HA treatments a total of three times, one week apart. 61 patients (102 knees) were involved in the PRP group, and 57 patients (97 knees) were involved in the HA group. The patients were evaluated using the Knee Society’s Knee Scoring System (KSS) and the Visual Analog Scale (VAS) scoring system before the treatment and at three and six months after the treatment. Results: In the PRP and HA groups, when pre-treatment KSS and VAS scores were compared with post-treatment three and six-month scores, a statistically significant difference was seen. When the groups were compared with each other, there was no significant difference between pre-treatment KSS and VAS pain scores; however, a significant difference was found between post-treatment three and six-month scores. Conclusion: In this study, the intra-articular PRP administration was more efficient than the HA administration in early knee osteoarthritis. PMID:26770499

  18. Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold.

    PubMed

    Yao, Qingqiang; Wei, Bo; Guo, Yang; Jin, Chengzhe; Du, Xiaotao; Yan, Chao; Yan, Junwei; Hu, Wenhao; Xu, Yan; Zhou, Zhi; Wang, Yijin; Wang, Liming

    2015-01-01

    The study aims to investigate the techniques of design and construction of CT 3D reconstructional data-based polycaprolactone (PCL)-hydroxyapatite (HA) scaffold. Femoral and lumbar spinal specimens of eight male New Zealand white rabbits were performed CT and laser scanning data-based 3D printing scaffold processing using PCL-HA powder. Each group was performed eight scaffolds. The CAD-based 3D printed porous cylindrical stents were 16 piece × 3 groups, including the orthogonal scaffold, the Pozi-hole scaffold and the triangular hole scaffold. The gross forms, fiber scaffold diameters and porosities of the scaffolds were measured, and the mechanical testing was performed towards eight pieces of the three kinds of cylindrical scaffolds, respectively. The loading force, deformation, maximum-affordable pressure and deformation value were recorded. The pore-connection rate of each scaffold was 100 % within each group, there was no significant difference in the gross parameters and micro-structural parameters of each scaffold when compared with the design values (P > 0.05). There was no significant difference in the loading force, deformation and deformation value under the maximum-affordable pressure of the three different cylinder scaffolds when the load was above 320 N. The combination of CT and CAD reverse technology could accomplish the design and manufacturing of complex bone tissue engineering scaffolds, with no significant difference in the impacts of the microstructures towards the physical properties of different porous scaffolds under large load. PMID:25596860

  19. Identification of Amino Acids in HA and PB2 Critical for the Transmission of H5N1 Avian Influenza Viruses in a Mammalian Host

    PubMed Central

    Gao, Yuwei; Zhang, Ying; Shinya, Kyoko; Deng, Guohua; Jiang, Yongping; Li, Zejun; Guan, Yuntao; Tian, Guobin; Li, Yanbing; Shi, Jianzhong; Liu, Liling; Zeng, Xianying; Bu, Zhigao; Xia, Xianzhu; Kawaoka, Yoshihiro; Chen, Hualan

    2009-01-01

    Since 2003, H5N1 influenza viruses have caused over 400 known cases of human infection with a mortality rate greater than 60%. Most of these cases resulted from direct contact with virus-contaminated poultry or poultry products. Although only limited human-to-human transmission has been reported to date, it is feared that efficient human-to-human transmission of H5N1 viruses has the potential to cause a pandemic of disastrous proportions. The genetic basis for H5N1 viral transmission among humans is largely unknown. In this study, we used guinea pigs as a mammalian model to study the transmission of six different H5N1 avian influenza viruses. We found that two viruses, A/duck/Guangxi/35/2001 (DKGX/35) and A/bar-headed goose/Qinghai/3/2005(BHGQH/05), were transmitted from inoculated animals to naïve contact animals. Our mutagenesis analysis revealed that the amino acid asparagine (Asn) at position 701 in the PB2 protein was a prerequisite for DKGX/35 transmission in guinea pigs. In addition, an amino acid change in the hemagglutinin (HA) protein (Thr160Ala), resulting in the loss of glycosylation at 158–160, was responsible for HA binding to sialylated glycans and was critical for H5N1 virus transmission in guinea pigs. These amino acids changes in PB2 and HA could serve as important molecular markers for assessing the pandemic potential of H5N1 field isolates. PMID:20041223

  20. Fourier transform infrared study on microemulsion system of potassium salt of bis(2-ethylhexyl) phosphinic acid (HA)

    NASA Astrophysics Data System (ADS)

    Zhou, Weijin; Shi, Nai; Wang, Yi; Chang, Zhiyuan; Wu, JinGuang

    1994-01-01

    To study microemulsion formation in a solvent extraction system is to probe into some basic principles of extraction chemistry in the light of combining extraction chemistry with surface chemistry. In our previous investigations, the microemulsions of the salts of HDEHP and PC88A have been studied systematically by FT-IR. In the experiment, we observed the change of peak positions and intensities of P equals O, P-O-C and P-O-H groups during saponification and hydration, and discovered that the peak of P-O-C splits apart into 1045 and 1075 cm-1. The vibration frequency of the P-O-C group in HDEHP and PC88A is quite close to the symmetric stretching frequency of the POO- group, and thus causes difficulties in the study of their peak position and absorbance variation. For this reason we synthesized bis(2-ethylhexyl) phosphinic acid without the P-O-C group. Infrared spectra in the range of 800 - 4000 cm-1 of this microemulsion system was studied.

  1. Hyaluronic Acid Based Hydrogels for Regenerative Medicine Applications

    PubMed Central

    Borzacchiello, Assunta; Russo, Luisa; Malle, Birgitte M.; Schwach-Abdellaoui, Khadija; Ambrosio, Luigi

    2015-01-01

    Hyaluronic acid (HA) hydrogels, obtained by cross-linking HA molecules with divinyl sulfone (DVS) based on a simple, reproducible, and safe process that does not employ any organic solvents, were developed. Owing to an innovative preparation method the resulting homogeneous hydrogels do not contain any detectable residual cross-linking agent and are easier to inject through a fine needle. HA hydrogels were characterized in terms of degradation and biological properties, viscoelasticity, injectability, and network structural parameters. They exhibit a rheological behaviour typical of strong gels and show improved viscoelastic properties by increasing HA concentration and decreasing HA/DVS weight ratio. Furthermore, it was demonstrated that processes such as sterilization and extrusion through clinical needles do not imply significant alteration of viscoelastic properties. Both SANS and rheological tests indicated that the cross-links appear to compact the network, resulting in a reduction of the mesh size by increasing the cross-linker amount. In vitro degradation tests of the HA hydrogels demonstrated that these new hydrogels show a good stability against enzymatic degradation, which increases by increasing HA concentration and decreasing HA/DVS weight ratio. Finally, the hydrogels show a good biocompatibility confirmed by in vitro tests. PMID:26090451

  2. Hyaluronic Acid Based Hydrogels for Regenerative Medicine Applications.

    PubMed

    Borzacchiello, Assunta; Russo, Luisa; Malle, Birgitte M; Schwach-Abdellaoui, Khadija; Ambrosio, Luigi

    2015-01-01

    Hyaluronic acid (HA) hydrogels, obtained by cross-linking HA molecules with divinyl sulfone (DVS) based on a simple, reproducible, and safe process that does not employ any organic solvents, were developed. Owing to an innovative preparation method the resulting homogeneous hydrogels do not contain any detectable residual cross-linking agent and are easier to inject through a fine needle. HA hydrogels were characterized in terms of degradation and biological properties, viscoelasticity, injectability, and network structural parameters. They exhibit a rheological behaviour typical of strong gels and show improved viscoelastic properties by increasing HA concentration and decreasing HA/DVS weight ratio. Furthermore, it was demonstrated that processes such as sterilization and extrusion through clinical needles do not imply significant alteration of viscoelastic properties. Both SANS and rheological tests indicated that the cross-links appear to compact the network, resulting in a reduction of the mesh size by increasing the cross-linker amount. In vitro degradation tests of the HA hydrogels demonstrated that these new hydrogels show a good stability against enzymatic degradation, which increases by increasing HA concentration and decreasing HA/DVS weight ratio. Finally, the hydrogels show a good biocompatibility confirmed by in vitro tests. PMID:26090451

  3. Rosmarinic Acid Attenuates Cell Damage against UVB Radiation-Induced Oxidative Stress via Enhancing Antioxidant Effects in Human HaCaT Cells

    PubMed Central

    Fernando, Pattage Madushan Dilhara Jayatissa; Piao, Mei Jing; Kang, Kyoung Ah; Ryu, Yea Seong; Hewage, Susara Ruwan Kumara Madduma; Chae, Sung Wook; Hyun, Jin Won

    2016-01-01

    This study was designed to investigate the cytoprotective effect of rosmarinic acid (RA) on ultraviolet B (UVB)-induced oxidative stress in HaCaT keratinocytes. RA exerted a significant cytoprotective effect by scavenging intracellular ROS induced by UVB. RA also attenuated UVB-induced oxidative macromolecular damage, including protein carbonyl content, DNA strand breaks, and the level of 8-isoprostane. Furthermore, RA increased the expression and activity of superoxide dismutase, catalase, heme oxygenase-1, and their transcription factor Nrf2, which are decreased by UVB radiation. Collectively, these data indicate that RA can provide substantial cytoprotection against the adverse effects of UVB radiation by modulating cellular antioxidant systems, and has potential to be developed as a medical agent for ROS-induced skin diseases. PMID:26759705

  4. An exploratory study on the efficacy of rat dedifferentiated fat cells (rDFATs) with a poly lactic-co-glycolic acid/hydroxylapatite (PLGA/HA) composite for bone formation in a rat calvarial defect model.

    PubMed

    Shirakata, Yoshinori; Nakamura, Toshiaki; Shinohara, Yukiya; Taniyama, Katsuyoshi; Sakoda, Kenji; Yoshimoto, Takehiko; Noguchi, Kazuyuki

    2014-03-01

    In the last two decades, tissue-engineering approaches using scaffolds, growth factors, and cells, or their combination, have been developed for the regeneration of periodontal tissue and bone. The aim of this study was to examine the effects of rat dedifferentiated fat cells (rDFATs) with a poly lactic-co-glycolic acid/hydroxylapatite (PLGA/HA) composite on bone formation in rat calvarial defects. Twenty animals surgically received two calvarial defects (diameter, 5 mm) bilaterally in each parietal bone. The defects were treated by one of the following procedures: PLGA/HA+osteo-differentiated rDFATs implantation (PLGA/HA+rDFATs (OD)); PLGA/HA+rDFATs implantation (PLGA/HA+rDFATs); PLGA/HA implantation (PLGA/HA); no implantation as a control. The animals were euthanized at 8 weeks after the surgery for histological evaluation. The PLGA/HA composite was remarkably resorbed and the amounts of residual PLGA/HA were very slight at 8 weeks after the surgery. The PLGA/HA-implanted groups (PLGA/HA+rDFATs (OD), PLGA/HA+rDFATs and PLGA/HA) showed recovery of the original volume and contour of the defects. The newly formed bone area was significantly larger in the PLGA/HA group (42.10 ± 9.16 %) compared with the PLGA/HA+rDFATs (21.35 ± 13.49 %) and control (22.17 ± 13.08 %) groups (P < 0.05). The percentage of defect closure (DC) by new bone in the PLGA/HA+rDFATs (OD) group (83.16 ± 13.87 %) was significantly greater than that in the control group (40.61 ± 29.62 %) (P < 0.05). Furthermore, the PLGA/HA+rDFATs (OD) group showed the highest level of DC among all the groups. The present results suggest that the PLGA/HA composite is a promising scaffold and that PLGA/HA+DFATs (OD) may be effective for bone formation. PMID:24363067

  5. Effect of Acid-Base Equilibrium on Absorption Spectra of Humic acid in the Presence of Copper Ions

    NASA Astrophysics Data System (ADS)

    Lavrik, N. L.; Mulloev, N. U.

    2014-03-01

    The reaction between humic acid (HA, sample IHSS) and a metal ion (Cu2+) that was manifested as absorption bands in the range 210-350 nm was recorded using absorption spectroscopy. The reaction was found to be more effective as the pH increased. These data were interpreted in the framework of generally accepted concepts about the influence of acid-base equilibrium on the dissociation of salts, according to which increasing the solution pH increases the concentration of HA anions. It was suggested that [HA-Cu2+] complexes formed.

  6. Iodinated hyaluronic acid oligomer-based nanoassemblies for tumor-targeted drug delivery and cancer imaging.

    PubMed

    Lee, Jae-Young; Chung, Suk-Jae; Cho, Hyun-Jong; Kim, Dae-Duk

    2016-04-01

    Nano-sized self-assemblies based on amphiphilic iodinated hyaluronic acid (HA) were developed for use in cancer diagnosis and therapy. 2,3,5-Triiodobenzoic acid (TIBA) was conjugated to an HA oligomer as a computed tomography (CT) imaging modality and a hydrophobic residue. Nanoassembly based on HA-TIBA was fabricated for tumor-targeted delivery of doxorubicin (DOX). Cellular uptake of DOX from nanoassembly, compared to a DOX solution group, was enhanced via an HA-CD44 receptor interaction, and subsequently, the in vitro antitumor efficacy of DOX-loaded nanoassembly was improved in SCC7 (CD44 receptor positive squamous cell carcinoma) cells. Cy5.5, a near-infrared fluorescence (NIRF) dye, was attached to the HA-TIBA conjugate and the in vivo tumor targetability of HA-TIBA nanoassembly, which is based on the interaction between HA and CD44 receptor, was demonstrated in a NIRF imaging study using an SCC7 tumor-xenografted mouse model. Tumor targeting and cancer diagnosis with HA-TIBA nanoassembly were verified in a CT imaging study using the SCC7 tumor-xenografted mouse model. In addition to efficient cancer diagnosis using NIRF and CT imaging modalities, improved antitumor efficacies were shown. HA and TIBA can be used to produce HA-TIBA nanoassembly that may be a promising theranostic nanosystem for cancers that express the CD44 receptor. PMID:26874284

  7. Sargahydroquinoic acid inhibits TNFα-induced AP-1 and NF-κB signaling in HaCaT cells through PPARα activation.

    PubMed

    Jeon, Youngsic; Jung, Yujung; Kim, Min Cheol; Kwon, Hak Cheol; Kang, Ki Sung; Kim, Yong Kee; Kim, Su-Nam

    2014-08-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors and expressed in various cell types in the skin, including keratinocytes, fibroblasts and infiltrating immune cells. Thus, their ligands are targets for the treatment of various skin disorders, such as photo-aging and chronological aging of skin. Intensive studies have revealed that PPARα/γ functions in photo-aging and age-related inflammation by regulating matrix metalloproteinases (MMPs) via activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB). However, the detailed mechanism of PPARα/γ's role in skin aging has not yet been elucidated. In this study, we confirmed that sargahydroquinoic acid (SHQA) as a PPARα/γ ligand significantly decreased Tumor Necrosis Factor-alpha (TNFα)-induced MMP-2/-9 expression by downregulating TNFα-induced transcription factors, subsequently reducing IκBα degradation and blocking NF-κB p65 nuclear translocation in HaCaT human epidermal keratinocyte cells. Treatment of cells with SHQA and GW6471 (PPARα antagonist) not bisphenol A diglycidyl ether (PPARγ antagonists), reversed the effect on TNFα-induced inflammatory signaling pathway activation. Taken together, our data suggest that SHQA inhibit TNFα-induced MMP-2/-9 expression and age-related inflammation by suppressing AP-1 and NF-κB pathway via PPARα. PMID:25019995

  8. Protective effect of 3,4-dihydroxybenzoic acid isolated from Cladophora wrightiana Harvey against ultraviolet B radiation-induced cell damage in human HaCaT keratinocytes.

    PubMed

    Cha, Ji Won; Piao, Mei Jing; Kim, Ki Cheon; Zheng, Jian; Yao, Cheng Wen; Hyun, Chang Lim; Kang, Hee Kyoung; Yoo, Eun Sook; Koh, Young Sang; Lee, Nam Ho; Ko, Mi Hee; Hyun, Jin Won

    2014-03-01

    The aim of the present study was to elucidate the protective properties of 3,4-dihydroxybenzoic acid (DBA) isolated from Cladophora wrightiana Harvey (a green alga) against ultraviolet B (UVB)-induced damage to human HaCaT keratinocytes. DBA exhibited scavenging actions against the 1,1-diphenyl-2-picrylhydrazyl radical, the superoxide anion, and the hydroxyl radical. Furthermore, DBA decreased the levels of intracellular reactive oxygen species generated by hydrogen peroxide or UVB treatment of the cells. DBA also decreased the UVB-augmented levels of phospho-histone H2A.X and the extent of comet tail formation, which are both indications of DNA damage. In addition, the compound safeguarded keratinocytes from UVB-induced injury by reversing the production of apoptotic bodies, overturning the disruption of mitochondrial membrane potential, increasing the expression of the anti-apoptotic protein, B-cell lymphoma 2, and decreasing the expression of the pro-apoptotic proteins, Bcl-2-associated X and cleaved caspase-3. Taken together, these results demonstrate that DBA isolated from a green alga protects human keratinocytes against UVB-induced oxidative stress and apoptosis. PMID:24414942

  9. Characterization of three novel fatty acid- and retinoid-binding protein genes (Ha-far-1, Ha-far-2 and Hf-far-1) from the cereal cyst nematodes Heterodera avenae and H. filipjevi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heterodera avenae and H. filipjevi are major parasites of wheat, reducing production worldwide. Both are sedentary endoparasitic nematodes, and their development and parasitism depend strongly on nutrients obtained from hosts. Secreted fatty acid- and retinoid-binding (FAR) proteins are nematode-spe...

  10. Effects of HA-Coating on the Surface Morphology and Corrosion Behavior of a Co-Cr-Based Implant in Different Conditions

    NASA Astrophysics Data System (ADS)

    Kheimehsari, H.; Izman, S.; Shirdar, Mostafa Rezazadeh

    2015-06-01

    The corrosion behavior and surface morphology of a Co-Cr-based implant after HA-coating using the sol-gel method were investigated. Sintering was performed at four different conditions. Surfaces of the samples were characterized and evaluated using field emission scanning electron microscopy. Atomic force microscope was used to measure the surface roughness and to collect the micrographs of the HA-coating layer. The x-ray diffraction results confirmed the formation of a crystalline phase of HA on the surface of the substrates. To measure the corrosion resistance, the samples were dip-coated with two different thicknesses (78 and 142 μm), and then tested by potentiodynamic polarization and spectroscopy (EIS) in SBF at 37 °C after sintering process. This study revealed that the thickness of the HA-coating layer affects the corrosion rate of the substrate, but the sintering condition of the HA-coating layer plays a remarkably more significant role in improving the corrosion resistance of Co-Cr-based implants. Moreover, the sample sintered at 600 °C for 20 min with thickness of 142 μm showed considerably enhanced surface morphology and superior corrosion resistance compared with the bare material and other treated samples.

  11. Nucleic acid based molecular devices.

    PubMed

    Krishnan, Yamuna; Simmel, Friedrich C

    2011-03-28

    In biology, nucleic acids are carriers of molecular information: DNA's base sequence stores and imparts genetic instructions, while RNA's sequence plays the role of a messenger and a regulator of gene expression. As biopolymers, nucleic acids also have exciting physicochemical properties, which can be rationally influenced by the base sequence in myriad ways. Consequently, in recent years nucleic acids have also become important building blocks for bottom-up nanotechnology: as molecules for the self-assembly of molecular nanostructures and also as a material for building machinelike nanodevices. In this Review we will cover the most important developments in this growing field of nucleic acid nanodevices. We also provide an overview of the biochemical and biophysical background of this field and the major "historical" influences that shaped its development. Particular emphasis is laid on DNA molecular motors, molecular robotics, molecular information processing, and applications of nucleic acid nanodevices in biology. PMID:21432950

  12. Sargahydroquinoic acid inhibits TNFα-induced AP-1 and NF-κB signaling in HaCaT cells through PPARα activation

    SciTech Connect

    Jeon, Youngsic; Jung, Yujung; Kim, Min Cheol; Kwon, Hak Cheol; Kang, Ki Sung; Kim, Yong Kee; Kim, Su-Nam

    2014-08-08

    Highlights: • SHQA increases PPARα/γ transactivation and inhibits MMP-2/-9 expression. • SHQA inhibits TNFα-induced AP-1 and MAPK signaling. • SHQA inhibits TNFα-induced p65 translocation and IκBα phosphorylation. • SHQA inhibits TNFα-induced AP-1 and NF-κB signaling via PPARα. - Abstract: Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors and expressed in various cell types in the skin, including keratinocytes, fibroblasts and infiltrating immune cells. Thus, their ligands are targets for the treatment of various skin disorders, such as photo-aging and chronological aging of skin. Intensive studies have revealed that PPARα/γ functions in photo-aging and age-related inflammation by regulating matrix metalloproteinases (MMPs) via activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB). However, the detailed mechanism of PPARα/γ’s role in skin aging has not yet been elucidated. In this study, we confirmed that sargahydroquinoic acid (SHQA) as a PPARα/γ ligand significantly decreased Tumor Necrosis Factor-alpha (TNFα)-induced MMP-2/-9 expression by downregulating TNFα-induced transcription factors, subsequently reducing IκBα degradation and blocking NF-κB p65 nuclear translocation in HaCaT human epidermal keratinocyte cells. Treatment of cells with SHQA and GW6471 (PPARα antagonist) not bisphenol A diglycidyl ether (PPARγ antagonists), reversed the effect on TNFα-induced inflammatory signaling pathway activation. Taken together, our data suggest that SHQA inhibit TNFα-induced MMP-2/-9 expression and age-related inflammation by suppressing AP-1 and NF-κB pathway via PPARα.

  13. Insights into the Social Structure of the PPNB Site of Kfar HaHoresh, Israel, Based on Dental Remains

    PubMed Central

    Vach, Werner; Simmons, Tal L.; Goring-Morris, A. Nigel

    2015-01-01

    One of the central questions of the transition from mobile hunter-gatherers to sedentary farming communities concerns the establishment of new social structures and group identities. Along with other important factors, such as territory, ideology or economy, biological relationships might have played a decisive role in defining social groups. We therefore systematically analyzed teeth and jaw remains from nine sites in the Near East dating from the Natufian to the Late PPNB as primary proxy data for the reconstruction of familial relationships. This paper presents the results of morphological analyses on the teeth of the individuals from Kfar HaHoresh, one of the investigated Pre-Pottery Neolithic B sites. Kfar HaHoresh is located in the Nazareth hills of Galilee (32°42'20'' N 35°16'28'' E), Israel. Different statistical methods were applied to our data of epigenetic traits with the aim of determining biological relationships within the community, whereby the data of the eight other sites were used as cross-references. Our comparison of the traits of all individuals from Kfar HaHoresh indicates a rather heterogeneous community, but clearly shows one cluster belonging to a quite homogenous group, suggesting close biological relations between females and sub-adults. Interestingly, none of the male individuals belongs to this cluster, although their number outweighs that of the female individuals. This might suggest matrilocal residence patterns. However, due to the incomplete preservation of the teeth along with several other uncertainties, our conclusion must be seen as preliminary. A cross-examination of the results on skeletons excavated after our investigation should also be taken into consideration. PMID:26376321

  14. Insights into the Social Structure of the PPNB Site of Kfar HaHoresh, Israel, Based on Dental Remains.

    PubMed

    Alt, Kurt W; Benz, Marion; Vach, Werner; Simmons, Tal L; Goring-Morris, A Nigel

    2015-01-01

    One of the central questions of the transition from mobile hunter-gatherers to sedentary farming communities concerns the establishment of new social structures and group identities. Along with other important factors, such as territory, ideology or economy, biological relationships might have played a decisive role in defining social groups. We therefore systematically analyzed teeth and jaw remains from nine sites in the Near East dating from the Natufian to the Late PPNB as primary proxy data for the reconstruction of familial relationships. This paper presents the results of morphological analyses on the teeth of the individuals from Kfar HaHoresh, one of the investigated Pre-Pottery Neolithic B sites. Kfar HaHoresh is located in the Nazareth hills of Galilee (32°42'20'' N 35°16'28'' E), Israel. Different statistical methods were applied to our data of epigenetic traits with the aim of determining biological relationships within the community, whereby the data of the eight other sites were used as cross-references. Our comparison of the traits of all individuals from Kfar HaHoresh indicates a rather heterogeneous community, but clearly shows one cluster belonging to a quite homogenous group, suggesting close biological relations between females and sub-adults. Interestingly, none of the male individuals belongs to this cluster, although their number outweighs that of the female individuals. This might suggest matrilocal residence patterns. However, due to the incomplete preservation of the teeth along with several other uncertainties, our conclusion must be seen as preliminary. A cross-examination of the results on skeletons excavated after our investigation should also be taken into consideration. PMID:26376321

  15. Amino acid changes in PB2 and HA affect the growth of a recombinant influenza virus expressing a fluorescent reporter protein.

    PubMed

    Katsura, Hiroaki; Fukuyama, Satoshi; Watanabe, Shinji; Ozawa, Makoto; Neumann, Gabriele; Kawaoka, Yoshihiro

    2016-01-01

    Influenza viruses that express reporter proteins are useful tools, but are often attenuated. Recently, we found that an influenza virus encoding the Venus fluorescent protein acquired two mutations in its PB2 and HA proteins upon mouse adaptation. Here, we demonstrate that the enhanced viral replication and virulence in mice of this Venus-expressing influenza virus are primarily conferred by the PB2-E712D mutation, with only a minor contribution by the HA-T380A mutation. PMID:26847414

  16. Molten fatty acid based microemulsions.

    PubMed

    Noirjean, Cecile; Testard, Fabienne; Dejugnat, Christophe; Jestin, Jacques; Carriere, David

    2016-06-21

    We show that ternary mixtures of water (polar phase), myristic acid (MA, apolar phase) and cetyltrimethylammonium bromide (CTAB, cationic surfactant) studied above the melting point of myristic acid allow the preparation of microemulsions without adding a salt or a co-surfactant. The combination of SANS, SAXS/WAXS, DSC, and phase diagram determination allows a complete characterization of the structures and interactions between components in the molten fatty acid based microemulsions. For the different structures characterized (microemulsion, lamellar or hexagonal phases), a similar thermal behaviour is observed for all ternary MA/CTAB/water monophasic samples and for binary MA/CTAB mixtures without water: crystalline myristic acid melts at 52 °C, and a thermal transition at 70 °C is assigned to the breaking of hydrogen bounds inside the mixed myristic acid/CTAB complex (being the surfactant film in the ternary system). Water determines the film curvature, hence the structures observed at high temperature, but does not influence the thermal behaviour of the ternary system. Myristic acid is partitioned in two "species" that behave independently: pure myristic acid and myristic acid associated with CTAB to form an equimolar complex that plays the role of the surfactant film. We therefore show that myristic acid plays the role of a solvent (oil) and a co-surfactant allowing the fine tuning of the structure of oil and water mixtures. This solvosurfactant behaviour of long chain fatty acid opens the way for new formulations with a complex structure without the addition of any extra compound. PMID:27241163

  17. Registration of the oilseed sunflower genetic stocks HA 458, HA 459, and HA 460 possessing genes for resistance to downy mildew

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three oilseed sunflower (Helianthus annuus L.) genetic stocks, HA 458, HA 459, and HA 460 have been released which are resistant to downy mildew (caused by Plasmopara halstedii (Farl.) Berl. & De Toni) and possess a high-oleic fatty acid profile (oleic acid > 800 g kg-1) in the seed oil. These genet...

  18. Purification, crystallization and preliminary X-ray analysis of an HA17–HA70 (HA2–HA3) complex from Clostridium botulinum type C progenitor toxin

    PubMed Central

    Iwasa, Chikako; Tonozuka, Takashi; Shinoda, Masaya; Sagane, Yoshimasa; Niwa, Koichi; Watanabe, Toshihiro; Yoshida, Hiromi; Kamitori, Shigehiro; Takao, Toshifumi; Oguma, Keiji; Nishikawa, Atsushi

    2014-01-01

    The haemagglutinin (HA) complex of Clostridium botulinum type C toxin is composed of three types of subcomponents: HA33, HA17 and HA70 (also known as HA1, HA2 and HA3, respectively). Here, a 260 kDa HA17–HA70 complex was crystallized. His-tagged HA17 and maltose-binding-protein-tagged HA70 were expressed in Escherichia coli and their complex was affinity-purified using a combination of amylose resin chromatography and nickel–nitrilotri­acetic acid agarose chromatography. Diffraction data were collected to 8.0 Å resolution and the crystal belonged to the tetragonal space group P41212. The molecular-replacement solution indicated that one molecule of HA17 was bound to each HA70 monomer. PMID:24419620

  19. Hyaluronan viscosupplementation: state of the art and insight into the novel cooperative hybrid complexes based on high and low molecular weight HA of potential interest in osteoarthritis treatment

    PubMed Central

    Schiraldi, Chiara; Stellavato, Antonietta; de Novellis, Francesca; La Gatta, Annalisa; De Rosa, Mario

    2016-01-01

    Summary Osteoarthritis (OA) represents a group of chronic, painful, disabling conditions affecting synovial joints. It is characterized by degeneration of articular cartilage, alterations of peri-articular and subchondral bone, low-grade synovial inflammation (synovitis). Despite OA is commonly described as a non-inflammatory disease, it is known that its progression and the subsequent increment of symptoms correlate to the production of inflammatory factors that induce the secretion of enzymes responsible for cartilage degradation. In clinical practice, to alleviate pain and stiffness, not only during acute phases but also as maintenance therapy, intra-articular injections of corticosteroids or similar drugs are used, besides it is well diffused the viscosupplementation procedure based on hyaluronan gel. There are many different products containing high molecular weight linear HA or cross-linked derivatives, however the novelty in the field consist in the hybrid cooperative complexes derived from high and low molecular weight HA through a patented processing. This technique permit to double the amount of HA delivered to the injured site without increasing the injected volume, beside in vitro assay on human chondrocytes suggested hybrid complexes as effective in the modulation of several inflammatory cytokines in joints. PMID:27252742

  20. Use of an Acid-Base Table.

    ERIC Educational Resources Information Center

    Willis, Grover; And Others

    1986-01-01

    Identifies several ways in which an acid-base table can provide students with information about chemical reactions. Cites examples of the chart's use and includes a table which indicates the strengths of some common acids and bases. (ML)

  1. Intermonomer Interactions in Hemagglutinin Subunits HA1 and HA2 Affecting Hemagglutinin Stability and Influenza Virus Infectivity

    PubMed Central

    DeFeo, Christopher J.; Alvarado-Facundo, Esmeralda; Vassell, Russell

    2015-01-01

    ABSTRACT Influenza virus hemagglutinin (HA) mediates virus entry by binding to cell surface receptors and fusing the viral and endosomal membranes following uptake by endocytosis. The acidic environment of endosomes triggers a large-scale conformational change in the transmembrane subunit of HA (HA2) involving a loop (B loop)-to-helix transition, which releases the fusion peptide at the HA2 N terminus from an interior pocket within the HA trimer. Subsequent insertion of the fusion peptide into the endosomal membrane initiates fusion. The acid stability of HA is influenced by residues in the fusion peptide, fusion peptide pocket, coiled-coil regions of HA2, and interactions between the surface (HA1) and HA2 subunits, but details are not fully understood and vary among strains. Current evidence suggests that the HA from the circulating pandemic 2009 H1N1 influenza A virus [A(H1N1)pdm09] is less stable than the HAs from other seasonal influenza virus strains. Here we show that residue 205 in HA1 and residue 399 in the B loop of HA2 (residue 72, HA2 numbering) in different monomers of the trimeric A(H1N1)pdm09 HA are involved in functionally important intermolecular interactions and that a conserved histidine in this pair helps regulate HA stability. An arginine-lysine pair at this location destabilizes HA at acidic pH and mediates fusion at a higher pH, while a glutamate-lysine pair enhances HA stability and requires a lower pH to induce fusion. Our findings identify key residues in HA1 and HA2 that interact to help regulate H1N1 HA stability and virus infectivity. IMPORTANCE Influenza virus hemagglutinin (HA) is the principal antigen in inactivated influenza vaccines and the target of protective antibodies. However, the influenza A virus HA is highly variable, necessitating frequent vaccine changes to match circulating strains. Sequence changes in HA affect not only antigenicity but also HA stability, which has important implications for vaccine production, as well

  2. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    ERIC Educational Resources Information Center

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  3. Multifunctional Coating Based on Hyaluronic Acid and Dopamine Conjugate for Potential Application on Surface Modification of Cardiovascular Implanted Devices.

    PubMed

    Wu, Feng; Li, Jingan; Zhang, Kun; He, Zikun; Yang, Ping; Zou, Dan; Huang, Nan

    2016-01-13

    Surface modification by conjugating biomolecules has been widely proved to enhance biocompatibility of cardiovascular implanted devices. Here, we aimed at developing a multifunctional surface that not only provides good hemocompatibility but also functions well in inducing desirable vascular cell-material interaction. In the present work, the multicoatings of hyaluronic acid (HA) and dopamine (PDA) were prepared onto 316L stainless steel (316L SS) via chemical conjugation (Michael addition, Schiff base reaction, and electrostatic adsorption). The results of platelet adhesion and activation and the whole blood tests indicated that the HA/PDA coatings obtained better hemocompatibility compared with the bare 316L SS and HA or PDA immobilized on 316L SS. The HA/PDA coatings also inhibited the proliferation of smooth muscle cells and adhesion/activation of macrophages effectively, whereas not all the HA/PDA coatings improved surface endothelialization rapidly and the effects of the multifunctional coatings on endothelial cell growth depend on the HA amounts (1.0, 2.0, and 5.0 mg/mL, labeled as PDA-HA-1, PDA-HA-2, and PDA-HA-5 respectively). Herein the PDA-HA-1 and PDA-HA-2 coatings were found to improve endothelial cell adhesion and proliferation significantly. The tissue compatibility of the HA/PDA coatings also depends on the HA amounts, and the PDA-HA-2 coating was proved to cause milder in vivo tissue response. Additionally, the mechanism of the HA molecular weight change and in vivo tissue response was also explored. These results effectively suggested that the HA/PDA coating might be promising when serving as a cardiovascular implanted device coating. PMID:26654689

  4. Hierarchically structured, hyaluronic acid-based hydrogel matrices via the covalent integration of microgels into macroscopic networks$

    PubMed Central

    Jha, Amit K.; Malik, Manisha S.; Farach-Carson, Mary C.; Duncan, Randall L.; Jia, Xinqiao

    2010-01-01

    We aimed to develop biomimetic hydrogel matrices that not only exhibit structural hierarchy and mechanical integrity, but also present biological cues in a controlled fashion. To this end, photocrosslinkable, hyaluronic acid (HA)-based hydrogel particles (HGPs) were synthesized via an inverse emulsion crosslinking process followed by chemical modification with glycidyl methacrylate (GMA). HA modified with GMA (HA-GMA) was employed as the soluble macromer. Macroscopic hydrogels containing covalently integrated hydrogel particles (HA-c-HGP) were prepared by radical polymerization of HA-GMA in the presence of crosslinkable HGPs. The covalent linkages between the hydrogel particles and the secondary HA matrix resulted in the formation of a diffuse, fibrilar interface around the particles. Compared to the traditional bulk gels synthesized by photocrosslinking of HA-GMA, these hydrogels exhibited a reduced sol fraction and a lower equilibrium swelling ratio. When tested under uniaxial compression, the HA-c-HGP gels were more pliable than the HA-p-HGP gels and fractured at higher strain than the HA-GMA gels. Primary bovine chondrocytes were photoencapsulated in the HA matrices with minimal cell damage. The 3D microenvironment created by HA-GMA and HA HGPs not only maintained the chondrocyte phenotype but also fostered the production of cartilage specific extracellular matrix. To further improve the biological activities of the HA-c-HGP gels, bone morphogenetic protein 2 (BMP-2) was loaded into the immobilized HGPs. BMP-2 was released from the HA-c-HGP gels in a controlled manner with reduced initial burst over prolonged periods of time. The HA-c-HGP gels are promising candidates for use as bioactive matrices for cartilage tissue engineering. PMID:20936090

  5. The inhibition of the GTPase activating protein-Ha-ras interaction by acidic lipids is due to physical association of the C-terminal domain of the GTPase activating protein with micellar structures.

    PubMed Central

    Serth, J; Lautwein, A; Frech, M; Wittinghofer, A; Pingoud, A

    1991-01-01

    The effects of fatty acids and phospholipids on the interaction of the full-length GTPase activating protein (GAP) as well as its isolated C-terminal domain and the Ha-ras proto-oncogene product p21 were studied by various methods, viz. GTPase activity measurements, fluorescence titrations and gel permeation chromatography. It is shown that all fatty acids and acidic phospholipids tested, provided the critical micellar concentration and the critical micellar temperature are reached, inhibit the GAP stimulated p21 GTPase activity. This is interpreted to mean that it is not the molecular structure of acidic lipid molecules per se but rather their physical state of aggregation which is responsible for the inhibitory effect of lipids on the GTPase activity. The relative inhibitory potency of various lipids was measured under defined conditions with mixed Triton X-100 micelles to follow the order: unsaturated fatty acids greater than saturated acids approximately phosphatidic acids greater than or equal to phosphatidylinositol phosphates much greater than phosphatidylinositol and phosphatidylserine. GTPase experiments with varying concentrations of p21 and constant concentrations of GAP and lipids indicate that the binding of GAP by the lipid micelles is responsible for the inhibition, a finding which was confirmed by fluorescence titrations and gel filtrations which show that the C-terminal domain of GAP is bound by lipid micelles. PMID:2026138

  6. Stiffness and Adhesivity Control Aortic Valve Interstitial Cell Behavior within Hyaluronic Acid Based Hydrogels

    PubMed Central

    Duan, Bin; Hockaday, Laura A.; Kapetanovic, Edi; Kang, Kevin H.; Butcher, Jonathan T.

    2013-01-01

    Bioactive and biodegradable hydrogels that mimic the extracellular matrix and regulate valve interstitial cells (VIC) behavior are of great interest as three dimensional (3D) model systems for understanding mechanisms of valvular heart disease pathogenesis in vitro and the basis for regenerative templates for tissue engineering. However, the role of stiffness and adhesivity of hydrogels in VIC behavior remains poorly understood. This study reports synthesis of oxidized and methacrylated hyaluronic acid (Me-HA and MOHA) and subsequent development of hybrid hydrogels based on modified HA and methacrylated gelatin (Me-Gel) for VIC encapsulation. The mechanical stiffness and swelling ratio of the hydrogels were tunable with molecular weight of HA and concentration/composition of precursor solution. The encapsulated VIC in pure HA hydrogels with lower mechanical stiffness showed more spreading morphology comparing to stiffer counterparts and dramatically upregulated alpha smooth muscle actin expression indicating more activated myofibroblast properties. The addition of Me-Gel in Me-HA facilitated cell spreading, proliferation and VIC migration from encapsulated spheroids and better maintained VIC fibroblastic phenotype. The VIC phenotype transition during migration from encapsulated spheroids in both Me-HA and Me-HA/Me-Gel hydrogel matrix was also observed. These findings are important for the rational design of hydrogels for controlling VIC morphology, and for regulating VIC phenotype and function. The Me-HA/Me-Gel hybrid hydrogels accommodated with VIC are promising as valve tissue engineering scaffolds and 3D model for understanding valvular pathobiology. PMID:23648571

  7. Cluster of Differentiation 44 Targeted Hyaluronic Acid Based Nanoparticles for MDR1 siRNA Delivery to Overcome Drug Resistance in Ovarian Cancer

    PubMed Central

    Yang, Xiaoqian; Iyer, Arun K.; Singh, Amit; Milane, Lara; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2014-01-01

    Purpose Approaches for the synthesis of biomaterials to facilitate the delivery of “biologics” is a major area of research in cancer therapy. Here we designed and characterized a hyaluronic acid (HA) based self-assembling nanoparticles that can target CD44 receptors overexpressed on multidrug resistance (MDR) ovarian cancer. The nanoparticle system is composed of HA-poly(ethyleneimine)/HA-poly(ethylene glycol) (HA-PEI/HA-PEG) designed to deliver MDR1 siRNA for the treatment of MDR in an ovarian cancer model. Methods HA-PEI/HA-PEG nanoparticles were synthesized and characterized, then the cellular uptake and knockdown efficiency of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles was further determined. A human xenograft MDR ovarian cancer model was established to evaluate the effects of the combination of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles and paclitaxel on MDR tumor growth. Results Our results demonstrated that HA-PEI/HA-PEG nanoparticles successfully targeted CD44 and delivered MDR1 siRNA into OVCAR8TR (established paclitaxel resistant) tumors. Additionally, HA-PEI/HA-PEG nanoparticles loaded with MDR1 siRNA efficiently down-regulated the expression of MDR1 and P-glycoprotein (Pgp), inhibited the functional activity of Pgp, and subsequently increased cell sensitivity to paclitaxel. HA-PEI/HA-PEG/MDR1 siRNA nanoparticle therapy followed by paclitaxel treatment inhibited tumor growth in MDR ovarian cancer mouse models. Conclusions These findings suggest that this CD44 targeted HA-PEI/HA-PEG nanoparticle platform may be a clinicaly relevant gene delivery system for systemic siRNA-based anticancer therapeutics for the treatment of MDR cancers. PMID:25515492

  8. Conformational divergence in the HA-33/HA-17 trimer of serotype C and D botulinum toxin complex.

    PubMed

    Sagane, Yoshimasa; Hayashi, Shintaro; Akiyama, Tomonori; Matsumoto, Takashi; Hasegawa, Kimiko; Yamano, Akihito; Suzuki, Tomonori; Niwa, Koichi; Watanabe, Toshihiro; Yajima, Shunsuke

    2016-08-01

    Clostridium botulinum produces a large toxin complex (L-TC) comprising botulinum neurotoxin associated with auxiliary nontoxic proteins. A complex of 33- and 17-kDa hemagglutinins (an HA-33/HA-17 trimer) enhances L-TC transport across the intestinal epithelial cell layer via binding HA-33 to a sugar on the cell surface. At least two subtypes of serotype C/D HA-33 exhibit differing preferences for the sugars sialic acid and galactose. Here, we compared the three-dimensional structures of the galactose-binding HA-33 and HA-33/HA-17 trimers produced by the C-Yoichi strain. Comparisons of serotype C/D HA-33 sequences reveal a variable region with relatively low sequence similarity across the C. botulinum strains; the variability of this region may influence the manner of sugar-recognition by HA-33. Crystal structures of sialic acid- and galactose-binding HA-33 are broadly similar in appearance. However, small-angle X-ray scattering revealed distinct solution structures for HA-33/HA-17 trimers. A structural change in the C-terminal variable region of HA-33 might cause a dramatic shift in the conformation and sugar-recognition mode of HA-33/HA-17 trimer. PMID:27237978

  9. Hyaluronic acid based hydroxamate and conjugates with biologically active amines: In vitro effect on matrix metalloproteinase-2.

    PubMed

    Ponedel'kina, Irina Yu; Gaskarova, Aigul R; Khaybrakhmanova, Elvira A; Lukina, Elena S; Odinokov, Victor N

    2016-06-25

    In this study, water soluble hyaluronic acid (HA) based hydroxamate and conjugates with biologically active amines and hydrazides such as p- and o-aminophenols, anthranilic, 4- and 5-aminosalicylic acids, nicotinic, N-benzylnicotinic and isonicotinic hydrazides, p-aminobenzenesulfonamide (Streptocide), p-aminobenzoic acid diethylaminoethyl ester (Procaine), and 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one (4-aminoantipyrene) were examined as matrix metalloproteinase-2 inhibitors (MMPIs). In a dose of 0.27-270μM, the most efficient MMPIs were HA conjugates with o-aminophenol=4-aminoantipyrine>4-aminosalicylic acid>5-aminosalicylic acid. Conjugates with Streptocide, Procaine and HA hydroxamate showed 40-50% inhibitory effect at all used concentrations. Conjugates with anthranilic acid and isonicotinic hydrazide (Isoniazid) in a dose of 0.27μM inhibited enzyme activity by ∼70%, but with the concentration increase their inhibitory effect was decreased. PMID:27083788

  10. Fabrication and characterization of needle-like nano-HA and HA/MWNT composites.

    PubMed

    Meng, Y H; Tang, Chak Yin; Tsui, Chi Pong; Chen, Da Zhu

    2008-01-01

    Hydroxyapatite (HA) ceramic has been used in tissue engineering and orthopedics for its good biocompatibility and osteoconductivity. However, its clinical applications are usually limited by the low strength and brittleness. The objective of this research was to develop a new kind of HA composites in which multi-wall carbon nanotubes (MWNTs) were introduced to the HA ceramic matrix to improve the mechanical properties of the resulting composites. A simple chemical wet method was applied to synthesize the HA ceramic particles with the aid of surfactant and ultrasonication technique at normal atmospheric pressure. The morphology and microstructure of the synthesized HA were characterized by XRD and TEM as a function of treatment time. The results showed that the synthesized HA particles are needle-like with a length of 80-160 nm along the (211) direction and an aspect ratio of 5-15. MWNTs were treated with a mixture of nitric acid and sulfuric acid. The HA/MWNT composites were prepared by solution blending. The composites were sintered using a hot-press method. The mechanical properties of the HA/MWNT composites with different volume percentages of MWNTs were examined. The fracture toughness and flexural strength were improved by 50% and 28% separately when the volume percentage of MWNTs reached 7%. PMID:17577639

  11. Preparation and characterization of nanoparticles based on histidine-hyaluronic acid conjugates as doxorubicin carriers.

    PubMed

    Wu, Jing-liang; Liu, Chen-guang; Wang, Xiao-lei; Huang, Zhen-hua

    2012-08-01

    Histidine-hyaluronic acid (His-HA) conjugates were synthesized using hyaluronic acid (HA) as a hydrophilic segment and histidine (His) as hydrophobic segment by 1-ethyl-3(3-dimethylaminopropyl)carbodiimide (EDC) mediated coupling reactions. The structural characteristics of the His-HA conjugates were investigated using (1)H NMR. His-HA nanoparticles (HH-NPs) were prepared based on His-HA conjugates, and the characteristics of HH-NPs were investigated using dynamic light scattering, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and fluorescence spectroscopy. The particles were between 342 and 732 nm in size, depending on the degree of substitution (DS) of the His. TEM and SEM images indicated that the morphology of HH-NPs was spherical in shape. The critical aggregation concentrations of HH-NPs ranged from 0.034 to 0.125 mg/ml, which decreased with an increase in the DS of the His. Images of fluorescence microscopy indicate that HH-NPs were taken up by the cancer cell line (MCF-7), and significantly decreased by competition inhibition of free HA. From the cytotoxicity test, it was found that DOX-loaded HH-NPs exhibited similar dose and time-dependent cytotoxicity against MCF-7 cells with free DOX. PMID:22580754

  12. Evaluation of a Novel HA/ZrO2-Based Porous Bioceramic Artificial Vertebral Body Combined with a rhBMP-2/Chitosan Slow-Release Hydrogel

    PubMed Central

    Shi, Yihui; Quan, Renfu; Xie, Shangju; Li, Qiang; Cao, Guoping; Zhuang, Wei; Zhang, Liang; Shao, Rongxue; Yang, Disheng

    2016-01-01

    A new HA/ZrO2-based porous bioceramic artificial vertebral body (AVB), carried a recombinant human bone morphogenetic protein-2 (rhBMP-2)/chitosan slow-release hydrogel was prepared to repair vertebral bone defect in beagles. An ionic cross-linking was used to prepare the chitosan hydrogel (CS gel) as the rhBMP-2 slow-release carrier. The vertebral body defects were implanted with the rhBMP-2-loaded AVB in group A, or a non-drug-loaded AVB in group B, or autologous iliac in group C. The encapsulation rate of rhBMP-2 in rhBMP-2-loaded CS gel was 91.88±1.53%, with a drug load of 39.84±2.34 ng/mg. At 6, 12, 24 weeks postoperatively, radiography showed that the bone calluses gradually increased with time in group A, where the artificial vertebral body had completely fused with host-bone at 24 weeks after surgery. In group C, an apparent bone remodeling was occurred in the early stages, and the graft-bone and host-bone had also fused completely at 24 weeks postoperatively. In group B, fusion occurred less than in groups A and C. At 24 weeks after surgery, micro-computed tomography (Micro-CT) revealed that the volume of newly-formed bone in group A was significantly more than in group B (p<0.05). At 24 weeks after surgery, ultra-compressive strengths of the operated segments were 14.03±1.66 MPa in group A, 8.62±1.24 MPa in group B, and 13.78±1.43 MPa in group C. Groups A and C were both significantly higher than group B (p < 0.05). At 24 weeks postoperatively, the hard tissue sections showed that the AVB of group A had tightly fused with host bone, and that pores of the AVB had been filled with abundant nearly mature bone, and that the new bone structured similarly to a trabecular framework, which was similar to that in group C. In contrast, implant fusion of the AVB in group B was not as apparent as group A. In conclusion, the novel HA/ZrO2-based porous bioceramic AVB carried the rhBMP-2-loaded CS gel can promote the repair of bony defect, and induce bone tissue to

  13. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  14. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  15. The Kidney and Acid-Base Regulation

    ERIC Educational Resources Information Center

    Koeppen, Bruce M.

    2009-01-01

    Since the topic of the role of the kidneys in the regulation of acid base balance was last reviewed from a teaching perspective (Koeppen BM. Renal regulation of acid-base balance. Adv Physiol Educ 20: 132-141, 1998), our understanding of the specific membrane transporters involved in H+, HCO , and NH transport, and especially how these…

  16. Students' Alternate Conceptions on Acids and Bases

    ERIC Educational Resources Information Center

    Pan, Hanqing; Henriques, Laura

    2015-01-01

    Knowing what students bring to the classroom can and should influence how we teach them. This study is a review of the literature associated with secondary and postsecondary students' ideas about acids and bases. It was found that there are six types of alternate ideas about acids and bases that students hold. These are: macroscopic properties of…

  17. The Conjugate Acid-Base Chart.

    ERIC Educational Resources Information Center

    Treptow, Richard S.

    1986-01-01

    Discusses the difficulties that beginning chemistry students have in understanding acid-base chemistry. Describes the use of conjugate acid-base charts in helping students visualize the conjugate relationship. Addresses chart construction, metal ions, buffers and pH titrations, and the organic functional groups and nonaqueous solvents. (TW)

  18. Hyaluronic acid based hydrogel system for soft tissue regeneration and drug delivery

    NASA Astrophysics Data System (ADS)

    Jha, Amit Kumar

    We have developed hyaluronic acid (HA)-based, biomimetic hydrogel matrices that are hierarchically structured, mechanically robust and biologically active. Specifically, HA-based hydrogel particles (HGPs) with controlled sizes, defined porosity, and improved stability were synthesized using different inverse emulsion systems and crosslinking chemistries. The resultant particles either contained residual functional groups or were rendered reactive by subsequent chemical modifications. HA-based doubly crosslinked networks (DXNs) were synthesized via covalent crosslinking of HA HGPs with soluble HA macromers carrying mutually reactive functional groups. These hybrid matrices are hierarchical in nature, consisting of densely crosslinked HGPs integrated in a loosely connected secondary matrix. Their mechanical properties and degradation kinetics can be readily tuned by varying the particle size, functional group density, intra- and interparticle crosslinking. To improve the biological functions of HA HGPs, perlecan domain I (PlnDI), a basement membrane proteoglycan that has strong affinity for various heparin binding growth factors (HBGFs), was successfully conjugated to the particles through the core protein via a flexible poly(ethylene glycol) (PEG) linker. The immobilized PlnDI maintains its ability to bind bone morphogenetic proteins (BMP-2) and modulates its in vitro release. A similar, sustained release of BMP-2 was achieved by encapsulating BMP-2-loaded HGPs within a photocrosslinked HA matrix. When encapsulated in HA DXNs, primary bovine chondrocytes were able to maintain their phenotype, proliferate readily and produce abundant glycosaminoglycan. Finally, cell-adhesive HA DXNs were fabricated by encapsulating gelatin-decorated HA HGPs in a secondary HA matrix. Human MSCs were shown to adhere to the composite matrix through the focal adhesion sites clustered on particle surface. The cell-adhesive composite matrices supported hMSC proliferation and migration into

  19. Structural Analysis and Mechanical Characterization of Hyaluronic Acid-Based Doubly Cross-Linked Networks

    PubMed Central

    Jha, Amit K.; Hule, Rohan A.; Jiao, Tong; Teller, Sean S.; Clifton, Rodney J.; Duncan, Randall L.; Pochan, Darrin J.; Jia, Xinqiao

    2009-01-01

    We have created a new class of hyaluronic acid (HA)-based hydrogel materials with HA hydrogel particles (HGPs) embedded in and covalently cross-linked to a secondary network. HA HGPs with an average diameter of ∼900 nm and narrow particle size distribution were synthesized using a refined reverse micelle polymerization technique. The average mesh size of the HGPs was estimated to be approximately 5.5 to 7.0 nm by a protein uptake experiment. Sodium periodate oxidation not only introduced aldehyde groups to the particles but also reduced the average particle size. The aldehyde groups generated were used as reactive handles for subsequent cross-linking with an HA derivative containing hydrazide groups. The resulting macroscopic gels contain two distinct hierarchical networks (doubly cross-linked networks, DXNs): one within individual particles and another among different particles. Bulk gels (BGs) formed by direct mixing of HA derivatives with mutually reactive groups were included for comparison. The hydrogel microstructures were collectively characterized by microscopy and neutron scattering techniques. Their viscoelasticity was quantified at low frequencies (0.1−10 Hz) using a controlled stress rheometer and at high frequencies (up to 200 Hz) with a home-built torsional wave apparatus. Both BGs and DXNs are stable elastic gels that become stiffer at higher frequencies. The HA-based DXN offers unique structural hierarchy and mechanical properties that are suitable for soft tissue regeneration. PMID:20046226

  20. Structural Analysis and Mechanical Characterization of Hyaluronic Acid-Based Doubly Cross-Linked Networks.

    PubMed

    Jha, Amit K; Hule, Rohan A; Jiao, Tong; Teller, Sean S; Clifton, Rodney J; Duncan, Randall L; Pochan, Darrin J; Jia, Xinqiao

    2009-01-01

    We have created a new class of hyaluronic acid (HA)-based hydrogel materials with HA hydrogel particles (HGPs) embedded in and covalently cross-linked to a secondary network. HA HGPs with an average diameter of ∼900 nm and narrow particle size distribution were synthesized using a refined reverse micelle polymerization technique. The average mesh size of the HGPs was estimated to be approximately 5.5 to 7.0 nm by a protein uptake experiment. Sodium periodate oxidation not only introduced aldehyde groups to the particles but also reduced the average particle size. The aldehyde groups generated were used as reactive handles for subsequent cross-linking with an HA derivative containing hydrazide groups. The resulting macroscopic gels contain two distinct hierarchical networks (doubly cross-linked networks, DXNs): one within individual particles and another among different particles. Bulk gels (BGs) formed by direct mixing of HA derivatives with mutually reactive groups were included for comparison. The hydrogel microstructures were collectively characterized by microscopy and neutron scattering techniques. Their viscoelasticity was quantified at low frequencies (0.1-10 Hz) using a controlled stress rheometer and at high frequencies (up to 200 Hz) with a home-built torsional wave apparatus. Both BGs and DXNs are stable elastic gels that become stiffer at higher frequencies. The HA-based DXN offers unique structural hierarchy and mechanical properties that are suitable for soft tissue regeneration. PMID:20046226

  1. Production and characterization of HA and SiHA coatings.

    PubMed

    Tang, Qian; Brooks, Roger; Rushton, Neil; Best, Serena

    2010-01-01

    Plasma sprayed hydroxyapatite (HA) coatings on metallic prostheses have been used clinically in dentistry and orthopedics since the mid 1980s. The coating properties are dependent on the spraying parameters. Since silicon-substituted hydroxyapatite (SiHA) has been shown to offer improved bioactivity over phase pure HA, SiHA coatings have the potential for enhanced performance in clinical application. In this study, phase pure HA and 0.8 wt% SiHA powders were synthesized with similar particle size distribution and morphology. The powders were plasma sprayed onto Ti-6Al-4V substrates at 37 kW and 40 kW plasma gun input power respectively. Four kinds of samples were prepared, HAC 37, HAC 40, SiHAC 37 and SiHAC 40. Materials characterization showed that the coatings were of relatively high phase purity. In vitro cell culture demonstrated that human osteoblast cells grew well on all samples, with the highest cell growth observed on SiHA coatings produced under the lower plasma gun input power. PMID:19672562

  2. Fluorescent sensors based on boronic acids

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher R.; James, Tony D.

    1999-05-01

    Sensor systems have long been needed for detecting the presence in solution of certain chemically or biologically important species. Sensors are used in a wide range of applications from simple litmus paper that shows a single color change in acidic or basic environments to complex biological assays that use enzymes, antibodies and antigens to display binding events. With this work the use of boronic acids in the design and synthesis of sensors for saccharides (diols) will be presented. The fluorescent sensory systems rely on photoinduced electron transfer (PET) to modulate the observed fluorescence. When saccharides form cyclic boronate esters with boronic acids, the Lewis acidity of the boronic acid is enhanced and therefore the Lewis acid-base interaction between the boronic acid and a neighboring amine is strengthened. The strength of this acid-base interaction modulates the PET from the amine (acting as a quencher) to anthracene (acting as a fluorophore). These compounds show increased fluorescence at neutral pH through suppression of the PET from nitrogen to anthracene on saccharide binding. The general strategy for the development of saccharide selective systems will be discussed. The potential of the boronic acid based systems will be illustrated using the development of glucose and glucosamine selective fluorescent sensors as examples.

  3. Base-acid hybrid water electrolysis.

    PubMed

    Chen, Long; Dong, Xiaoli; Wang, Fei; Wang, Yonggang; Xia, Yongyao

    2016-02-21

    A base-acid hybrid electrolytic system with a low onset voltage of 0.78 V for water electrolysis was developed by using a ceramic Li-ion exchange membrane to separate the oxygen-evolving reaction (OER) in a basic electrolyte solution containing the Li-ion and hydrogen-evolving reaction (HER) in an acidic electrolyte solution. PMID:26804323

  4. Hyaluronic Acid-Based Nanocarriers for Intracellular Targeting: Interfacial Interactions with Proteins in Cancer

    PubMed Central

    Choi, Ki Young; Saravanakumar, Gurusamy; Park, Jae Hyung; Park, Kinam

    2011-01-01

    The therapeutic efficacy of most drugs is greatly depends on their ability to cross the cellular barrier and reach their intracellular target sites. To transport the drugs effectively through the cellular membrane and to deliver them into the intracellular environment, several interesting smart carrier systems based on both synthetic or natural polymers have been designed and developed. In recent years, hyaluronic acid (HA) has emerged as a promising candidate for intracellular delivery of various therapeutic and imaging agents because of its innate ability to recognize specific cellular receptors that overexpressed on diseased cells. The aim of this review is to highlight the significance of HA in cancer, and to explore the recent advances of HA-based drug carriers towards cancer imaging and therapeutics. PMID:22079699

  5. New composite materials based on alginate and hydroxyapatite as potential carriers for ascorbic acid.

    PubMed

    Ilie, Andreia; Ghiţulică, Cristina; Andronescu, Ecaterina; Cucuruz, Andrei; Ficai, Anton

    2016-08-30

    The purpose of this article was to obtain prolonged drug release systems in which the drug (ascorbic acid) to reach intact the target area in an environment that is able to control the administration of the active component by chemical or physiological pathways. As support for drug, it was used a material based on calcium phosphate - hydroxyapatite and a natural polymer - alginate, since it is one of the most investigated composite materials for medical applications due to its positive response to biological testing: bioactivity, biocompatibility and osteoconductivity. Three composites with different ratios between alginate and hydroxyapatite were obtained: (a) Alg/HA/AA 1:1 (the mass ratio between Alg and HA being of 1:1), (b) Alg/HA/AA 1:3 (Alg:HA mass ratio of 1:3) and (c) Alg/HA/AA 3:1 (Alg:HA mass ratio of 3:1). The synthesized materials were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and to observe the drug release process, UV-vis spectroscopy. PMID:26784979

  6. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqian; Lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-02-01

    Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer.

  7. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    SciTech Connect

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  8. Enhanced and sustained topical ocular delivery of cyclosporine A in thermosensitive hyaluronic acid-based in situ forming microgels

    PubMed Central

    Wu, Yijun; Yao, Jing; Zhou, Jianping; Dahmani, Fatima Zohra

    2013-01-01

    For nearly a decade, thermoresponsive ophthalmic in situ gels have been recognized as an interesting and promising ocular topical delivery vehicle for lipophilic drugs. In this study, a series of thermosensitive copolymers, hyaluronic acid-g-poly(N-isopropylacrylamide) (HA-g-PNIPAAm), was synthesized, by coupling carboxylic end-capped PNIPAAm to aminated hyaluronic acid through amide bond linkages, and was used as a potential carrier for the topical ocular administration of cyclosporine A (CyA). The lower critical solution temperature of HA-g-PNIPAAm59 in aqueous solutions was measured as 32.7°C, which was not significantly affected by the polymer concentration. Moreover, HA-g-PNIPAAm59 microgels showed a high drug loading efficiency (73.92%) and a controlled release profile that are necessary for biomedical application. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) observations showed that HA-g-PNIPAAm microgels were spherical in shape with homogeneous size. Based on the result of the eye irritation test, the HA-g-PNIPAAm microgels formulation was shown to be safe and nonirritant for rabbit eyes. In addition, HA-g-PNIPAAm microgels achieved significantly higher CyA concentration levels in rabbit corneas (1455.8 ng/g of tissue) than both castor oil formulation and commercial CyA eye drops. Therefore, these newly described thermoresponsive HA-g-PNIPAAm microgels demonstrated attractive properties to serve as pharmaceutical delivery vehicles for a variety of ophthalmic applications. PMID:24092975

  9. Development of electrochemical folic acid sensor based on hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kanchana, P.; Sekar, C.

    2015-02-01

    We report the synthesis of hydroxyapatite (HA) nanoparticles (NPs) by a simple microwave irradiation method and its application as sensing element for the precise determination of folic acid (FA) by electrochemical method. The structure and composition of the HA NPs characterized using XRD, FTIR, Raman and XPS. SEM and EDX studies confirmed the formation of elongated spherical shaped HA NPs with an average particle size of about 34 nm. The HA NPs thin film on glassy carbon electrode (GCE) were deposited by drop casting method. Electrocatalytic behavior of FA in the physiological pH 7.0 was investigated by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperometry. The fabricated HA/GCE exhibited a linear calibration plot over a wide FA concentration ranging from 1.0 × 10-7 to 3.5 × 10-4 M with the detection limit of 75 nM. In addition, the HA NPs modified GCE showed good selectivity toward the determination of FA even in the presence of a 100-fold excess of ascorbic acid (AA) and 1000-fold excess of other common interferents. The fabricated biosensor exhibits good sensitivity and stability, and was successfully applied for the determination of FA in pharmaceutical samples.

  10. [Kidney, Fluid, and Acid-Base Balance].

    PubMed

    Shioji, Naohiro; Hayashi, Masao; Morimatsu, Hiroshi

    2016-05-01

    Kidneys play an important role to maintain human homeostasis. They contribute to maintain body fluid, electrolytes, and acid-base balance. Especially in fluid control, we, physicians can intervene body fluid balance using fluid resuscitation and diuretics. In recent years, one type of fluid resuscitation, hydroxyl ethyl starch has been extensively studied in the field of intensive care. Although their effects on fluid resuscitation are reasonable, serious complications such as kidney injury requiring renal replacement therapy occur frequently. Now we have to pay more attention to this important complication. Another topic of fluid management is tolvaptan, a selective vasopressin-2 receptor antagonist Recent randomized trial suggested that tolvaptan has a similar supportive effect for fluid control and more cost effective compared to carperitide. In recent years, Stewart approach is recognized as one important tool to assess acid-base balance in critically ill patients. This approach has great value, especially to understand metabolic components in acid-base balance. Even for assessing the effects of kidneys on acid-base balance, this approach gives us interesting insight. We should appropriately use this new approach to treat acid-base abnormality in critically ill patients. PMID:27319095

  11. Rheological study of in-situ crosslinkable hydrogels based on hyaluronanic acid, collagen and sericin.

    PubMed

    Vulpe, Raluca; Le Cerf, Didier; Dulong, Virginie; Popa, Marcel; Peptu, Catalina; Verestiuc, Liliana; Picton, Luc

    2016-12-01

    The elaboration of chemically crosslinked hydrogels based on collagen (C), hyaluronanic acid (HA) and sericin (S) with different polymer ratios was investigated by in-situ rheology. This reaction was performed via amide or ester bond reaction activated by carbodiimide, in pure water. Prior to molecule crosslinking, the rheological behaviour of the biopolymers (alone or in mixture) was characterized in a semi-dilute concentration regime. Both flow and dynamic measurements showed that uncrosslinked collagen alone appears to be rather elastic with yield stress properties, whereas uncrosslinked HA alone appears to be rather shear thinning and viscoelastic in agreement with entangled polymer behaviour. Sericin exhibited Newtonian low viscosity behaviour according to its very low molar mass. Before crosslinking, HA exhibited viscoelastic behaviour at concentrations above the critical entangled concentration (C*) in the mixtures, thus HA shows promise as a matrix for future crosslinked networks, whereas sericin did not significantly modify the rheology. During the reaction, followed by rheology, the kinetics were slower for pure HA systems compared with the mixtures (i.e., with added collagen and/or to a lesser extent sericin). At the same time, the final network of hydrogels (i.e., the elastic modulus) was more structured in the mixture based systems. This result is explained by ester bonds (the only possibility for pure HA systems), which are less favourable and reactive than amide bonds (possible with sericin and collagen). The presence of collagen in the HA matrix reinforced the hydrogel network. SEM studies confirmed the structure of the hydrogels, and in vitro degradability was globally consistent with the effect of the selected enzyme according to the hydrogel composition. All the elaborated hydrogels were non-cytotoxic in vitro. PMID:27612727

  12. Synthesis and degradation test of hyaluronic acid hydrogels.

    PubMed

    Hahn, Sei Kwang; Park, Jung Kyu; Tomimatsu, Takashi; Shimoboji, Tsuyoshi

    2007-03-10

    Hyaluronic acid (HA) hydrogels prepared with three different crosslinking reagents were assessed by in vitro and in vivo degradation tests for various tissue engineering applications. Adipic acid dihydrazide grafted HA (HA-ADH) was synthesized and used for the preparation of methacrylated HA (HA-MA) with methacrylic anhydride and thiolated HA (HA-SH) with Traut's reagent (imminothiolane). (1)H NMR analysis showed that the degrees of HA-ADH, HA-MA, and HA-SH modification were 69, 29, and 56 mol%, respectively. HA-ADH hydrogel was prepared by the crosslinking with bis(sulfosuccinimidyl) suberate (BS(3)), HA-MA hydrogel with dithiothreitol (DTT) by Michael addition, and HA-SH hydrogel with sodium tetrathionate by disulfide bond formation. According to in vitro degradation tests, HA-SH hydrogel was degraded very fast, compared to HA-ADH and HA-MA hydrogels. HA-ADH hydrogel was degraded slightly faster than HA-MA hydrogel. Based on these results, HA-MA hydrogels and HA-SH hydrogels were implanted in the back of SD rats and their degradation was assessed according to the pre-determined time schedule. As expected from the in vitro degradation test results, HA-SH hydrogel was in vivo degraded completely only in 2 weeks, whereas HA-MA hydrogels were degraded only partially even in 29 days. The degradation rate of HA hydrogels were thought to be controlled by changing the crosslinking reagents and the functional group of HA derivatives. In addition, the state of HA hydrogel was another factor in controlling the degradation rate. Dried HA hydrogel at 37 degrees C for a day resulted in relatively slow degradation compared to the bulk HA hydrogel. There was no adverse effect during the in vivo tests. PMID:17101173

  13. Investigating a new drug delivery nano composite membrane system based on PVA/PCL and PVA/HA(PEG) for the controlled release of biopharmaceuticals for bone infections.

    PubMed

    Wan, Taoyu; Stylios, George K; Giannoudi, Marilena; Giannoudis, Peter V

    2015-12-01

    The capability for sustained and gradual release of pharmaceuticals is a major requirement in the development of a guided antimicrobial bacterial control system for clinical applications. In this study, PVA gels with varying constituents that were manufactured via a refreeze/thawing route, were found to have excellent potential for antimicrobial delivery for bone infections. Cefuroxime Sodium with poly(ethylene glycol) was incorporated into 2 delivery systems poly(e-caprolactone) (PCL) and hydroxyapatite (HA), by a modified emulsion process. Our results indicate that the Cefuroxime Sodium released from poly(e-caprolactone) in PVA was tailored to a sustained release over more than 45 days, while the release from hydroxyapatite PVA reach burst maximum after 20 days. These PVA hydrogel-systems were also capable of controlled and sustained release of other biopharmaceuticals. PMID:26747917

  14. Student Concept Changes in Acids and Bases.

    ERIC Educational Resources Information Center

    Ye, Renmin; Wells, Raymond R.

    This study focuses on student concept changes in acids and bases. Variables include field dependent level, personal independence level, interest in science or chemistry, teaching strategy, and student gender. This study of Grade 10 students (N=81) provides information relevant to secondary school chemistry learning, teaching, and concept change.…

  15. Jigsaw Cooperative Learning: Acid-Base Theories

    ERIC Educational Resources Information Center

    Tarhan, Leman; Sesen, Burcin Acar

    2012-01-01

    This study focused on investigating the effectiveness of jigsaw cooperative learning instruction on first-year undergraduates' understanding of acid-base theories. Undergraduates' opinions about jigsaw cooperative learning instruction were also investigated. The participants of this study were 38 first-year undergraduates in chemistry education…

  16. Clinical and biometrological efficacy of a hyaluronic acid-based mesotherapy product: a randomised controlled study.

    PubMed

    Baspeyras, Martine; Rouvrais, Céline; Liégard, Laetitia; Delalleau, Alexandre; Letellier, Sandrine; Bacle, Irène; Courrech, Laetitia; Murat, Pascale; Mengeaud, Valérie; Schmitt, Anne-Marie

    2013-10-01

    Data demonstrating the efficacy of hyaluronic acid (HA)-based mesotherapy for skin rejuvenation are scarce. The aim of the study is to assess the efficacy of non-reticulated HA-based mesotherapy on skin elasticity and complexion radiance. 55 women with cutaneous ageing signs included in the Full Analysis Set (FAS) population blindly received intradermal micro-injections (50 × 0.02 mL) of non-cross-linked HA filler with mannitol (Glytone 1, HA concentration: 14 mg/g) in one cheek and saline physiological solution in the other according to hemifacial randomisation in 3 monthly sessions. Elasticity (E1 and E2 stiffness parameters) and dermis thickness were measured by cutometry and 20 MHz echography, before (D0) treatment and 1 (1M) and 3 months (3M) after the last injection. A trained panel blindly scored skin complexion radiance from standardised and calibrated photographs, using 100 mm analogue scales. In the FAS population, only HA filler significantly decreased E1 at 1M (-10.9 %, p = 0.026) and 3M (-10.5 %, p = 0.035) compared with D0; its effect versus the control tended to be more persistent, with a difference between treatments at 3M close to significance (p = 0.063). E2 also decreased at 1M (-8.2 %, p = 0.027 in the per protocol population, n = 53) and 3M after HA-treatment only. Dermis thickness significantly increased after HA-treatment at 1M (+3.4 %, p = 0.028) and 3M (+4 %, p = 0.008), and after control-treatment at 1M only (+2.5 %, p = 0.015). The HA filler significantly improved complexion radiance at 3M compared with the control (p = 0.012) and for 51 % of subjects, their skin status. Non-reticulated HA-based mesotherapy significantly and sustainably improves skin elasticity and complexion radiance. PMID:23715889

  17. Cationic Lipid-Based Nucleic Acid Vectors.

    PubMed

    Jubeli, Emile; Goldring, William P D; Pungente, Michael D

    2016-01-01

    The delivery of nucleic acids into cells remains an important laboratory cell culture technique and potential clinical therapy, based upon the initial cellular uptake, then translation into protein (in the case of DNA), or gene deletion by RNA interference (RNAi). Although viral delivery vectors are more efficient, the high production costs, limited cargo capacity, and the potential for clinical adverse events make nonviral strategies attractive. Cationic lipids are the most widely applied and studied nonviral vectors; however, much remains to be solved to overcome limitations of these systems. Advances in the field of cationic lipid-based nucleic acid (lipoplex) delivery rely upon the development of robust and reproducible lipoplex formulations, together with the use of cell culture assays. This chapter provides detailed protocols towards the formulation, delivery, and assessment of in vitro cationic lipid-based delivery of DNA. PMID:27436310

  18. The first proton sponge-based amino acids: synthesis, acid-base properties and some reactivity.

    PubMed

    Ozeryanskii, Valery A; Gorbacheva, Anastasia Yu; Pozharskii, Alexander F; Vlasenko, Marina P; Tereznikov, Alexander Yu; Chernov'yants, Margarita S

    2015-08-21

    The first hybrid base constructed from 1,8-bis(dimethylamino)naphthalene (proton sponge or DMAN) and glycine, N-methyl-N-(8-dimethylamino-1-naphthyl)aminoacetic acid, was synthesised in high yield and its hydrobromide was structurally characterised and used to determine the acid-base properties via potentiometric titration. It was found that the basic strength of the DMAN-glycine base (pKa = 11.57, H2O) is on the level of amidine amino acids like arginine and creatine and its structure, zwitterionic vs. neutral, based on the spectroscopic (IR, NMR, mass) and theoretical (DFT) approaches has a strong preference to the zwitterionic form. Unlike glycine, the DMAN-glycine zwitterion is N-chiral and is hydrolytically cleaved with the loss of glycolic acid on heating in DMSO. This reaction together with the mild decarboxylative conversion of proton sponge-based amino acids into 2,3-dihydroperimidinium salts under air-oxygen was monitored with the help of the DMAN-alanine amino acid. The newly devised amino acids are unique as they combine fluorescence, strongly basic and redox-active properties. PMID:26159785

  19. Controlling the Adhesion and Differentiation of Mesenchymal Stem Cells Using Hyaluronic Acid-based, Doubly Crosslinked Networks

    PubMed Central

    Jha, Amit K.; Xu, Xian; Duncan, Randall L.; Jia, Xinqiao

    2011-01-01

    We have created hyaluronic acid (HA)-based, cell-adhesive hydrogels that direct the initial attachment and the subsequent differentiation of human mesenchymal stem cells (MSCs) into pre-osteoblasts without osteogenic supplements. HA-based hydrogel particles (HGPs) with an average diameter of 5-6 μm containing an estimated 2.2 wt% gelatin (gHGPs) were synthesized by covalent immobilization of gelatin to HA HGPs prepared via an inverse emulsion polymerization technique. Separately, a photocrosslinkable HA macromer (HAGMA) was synthesized by chemical modification of HA with glycidyl methacrylate (GMA). Doubly crosslinked networks (DXNs) were engineered by embedding gHGPs in a secondary network established by HAGMA at a particle concentration of 2.5 wt%. The resultant composite gels, designated as HA-gHGP, have an average compressive modulus of 21 kPa, and are non-toxic to the cultured MSCs. MSCs readily attached to these gels, exhibiting an early stage of stress fibers assembly 3 h post seeding. By day 7, stellated-shaped cells with extended filopodia were found on HA-gHGP gels. Moreover, cells had migrated deep into the matrix, forming a three dimensional, branched and interconnected cell community. Conversely, MSCs on the control gels lacking gelatin moieties formed isolated spheroids with rounded cell morphology. After 28 days of culture on HA-gHGP, Type I collagen production and mineral deposition were detected in the absence of osteogenic supplements, suggesting induction of osteogenic differentiation. In contrast, cells on the control gels expressed markers for adipogenesis. Overall, the HA-gHGP composite matrix has great promise for directing the osteogenic differentiation of MSCs by providing an adaptable environment through the spatial presentation of cell adhesive modules. PMID:21216457

  20. Characterization of New PEEK/HA Composites with 3D HA Network Fabricated by Extrusion Freeforming.

    PubMed

    Vaezi, Mohammad; Black, Cameron; Gibbs, David M R; Oreffo, Richard O C; Brady, Mark; Moshrefi-Torbati, Mohamed; Yang, Shoufeng

    2016-01-01

    Addition of bioactive materials such as calcium phosphates or Bioglass, and incorporation of porosity into polyetheretherketone (PEEK) has been identified as an effective approach to improve bone-implant interfaces and osseointegration of PEEK-based devices. In this paper, a novel production technique based on the extrusion freeforming method is proposed that yields a bioactive PEEK/hydroxyapatite (PEEK/HA) composite with a unique configuration in which the bioactive phase (i.e., HA) distribution is computer-controlled within a PEEK matrix. The 100% interconnectivity of the HA network in the biocomposite confers an advantage over alternative forms of other microstructural configurations. Moreover, the technique can be employed to produce porous PEEK structures with controlled pore size and distribution, facilitating greater cellular infiltration and biological integration of PEEK composites within patient tissue. The results of unconfined, uniaxial compressive tests on these new PEEK/HA biocomposites with 40% HA under both static and cyclic mode were promising, showing the composites possess yield and compressive strength within the range of human cortical bone suitable for load bearing applications. In addition, preliminary evidence supporting initial biological safety of the new technique developed is demonstrated in this paper. Sufficient cell attachment, sustained viability in contact with the sample over a seven-day period, evidence of cell bridging and matrix deposition all confirmed excellent biocompatibility. PMID:27240326

  1. Chem I Supplement: Emphasis on Acids and Bases

    ERIC Educational Resources Information Center

    Journal of Chemical Education Staff

    1977-01-01

    Provides supplementary notes on acids and bases suitable for secondary school chemistry instruction, including acidity in solid and natural waters, acidity balance in body chemistry, acid and basic foods, pH values of common fluids, examples of drugs, and commercial preparation of nitric acid. (SL)

  2. Cloning, expression, and purification of a recombinant Tat-HA-NR2B9c peptide.

    PubMed

    Zhou, Hai-Hui; Zhang, Ai-Xia; Zhang, Yu; Zhu, Dong-Ya

    2012-10-01

    To design a peptide disrupting the interaction between N-methyl-d-aspartate receptors-2B (NR2B) and postsynaptic density protein-95 (PSD-95), a gene fragment encoding a chimeric peptide was constructed using polymerase chain reaction and ligated into a novel expression vector for recombinant expression in a T7 RNA polymerase-based expression system. The chimeric peptide contained a fragment of the cell membrane transduction domain of the human immunodeficiency virus type1 (HIV-1) Tat, a influenza virus hemagglutinin (HA) epitope-tag, and the C-terminal 9 amino acids of NR2B (NR2B9c). We named the chimeric peptide Tat-HA-NR2B9c. The expression plasmid contained a gene fragment encoding the Tat-HA-NR2B9c was ligated to the C-terminal fragment of l-asparaginase (AnsB-C) via a unique acid labile Asp-Pro linker. The recombinant fusion protein was expressed in inclusion body in Escherichia coli under isopropyl β-d-1-thiogalactopyranoside (IPTG) and purified by washing with 2M urea, solubilizing in 4M urea, and then ethanol precipitation. The target chimeric peptide Tat-HA-NR2B9c was released from the fusion partner following acid hydrolysis and purified by isoelectric point precipitation and ultrafiltration. SDS-PAGE analysis and MALDI-TOF-MS analysis showed that the purified Tat-HA-NR2B9c was highly homogeneous. Furthermore, we investigated the effects of Tat-HA-NR2B9c on ischemia-induced cerebral injury in the rats subjected to middle cerebral artery occlusion (MCAO) and reperfusion, and found that the peptide reduced infarct size and improved neurological functions. PMID:22944204

  3. Composite nanoparticles based on hyaluronic acid chemically cross-linked with alpha,beta-polyaspartylhydrazide.

    PubMed

    Pitarresi, G; Craparo, E F; Palumbo, F S; Carlisi, B; Giammona, G

    2007-06-01

    In this paper, new composite nanoparticles based on hyaluronic acid (HA) chemically cross-linked with alpha,beta-polyaspartylhydrazide (PAHy) were prepared by the use of a reversed-phase microemulsion technique. HA-PAHy nanoparticles were characterized by FT-IR spectroscopy, confirming the occurrence of the chemical cross-linking, dimensional analysis, and transmission electron micrography, showing a sub-micrometer size and spherical shape. Zeta potential measurements demonstrated the presence of HA on the nanoparticle surface. A remarkable affinity of the obtained nanoparticles toward aqueous media that simulate some biological fluids was found. Stability studies showed the absence of chemical degradation in various media, while in the presence of hyaluronidase, a partial degradation occurred. Cell compatibility was evaluated by performing in vitro assays on human chronic myelogenous leukaemia cells (K-562) chosen as a model cell line and a haemolytic test. HA-PAHy nanoparticles were also able to entrap 5-fluorouracil, chosen as a model drug, and release it in a simulated physiological fluid and in human plasma with a mechanism essentially controlled by a Fickian diffusion. PMID:17521164

  4. Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors

    PubMed Central

    Ganesh, Shanthi; Iyer, Arun K.; Morrissey, David V.; Amiji, Mansoor M.

    2013-01-01

    Anticancer therapeutics employing RNA interference mechanism holds promising potentials for sequence-specific silencing of target genes. However targeted delivery of siRNAs to tumor tissues and cells and more importantly, their intracellular release at sites of interest still remains a major challenge that needs to be addressed before this technique could become a clinically viable option. In the current study, we have engineered and screened a series of CD44 targeting hyaluronic acid (HA) based self-assembling nanosystems for targeted siRNA delivery. The HA polymer was functionalized with lipids of varying carbon chain lengths/nitrogen content, as well as polyamines for assessing siRNA encapsulation. From the screens, several HA-derivatives were identified that could stably encapsulate/complex siRNAs and form self-assembled nanosystems, as determined by gel retardation assays and dynamic light scattering. Many HA derivatives could transfect siRNAs into cancer cells overexpressing CD44 receptors. Interestingly, blocking the CD44 receptors on the cells using free excess soluble HA prior to incubation of cy3-labeled-siRNA loaded HA nano-assemblies resulted in >90% inhibition of the receptor mediated uptake, confirming target specificity. In addition, SSB/PLK1 siRNA encapsulated in HA-PEI/PEG nanosystems demonstrated dose dependent and target specific gene knockdown in both sensitive and resistant A549 lung cancer cells overexpressing CD44 receptors. More importantly, these siRNA encapsulated nanosystems demonstrated tumor selective uptake and target specific gene knock down in vivo in solid tumors as well as in metastatic tumors. The HA based nanosystems thus portend to be promising siRNA delivery vectors for systemic targeting of CD44 overexpressing cancers including tumor initiating (stem-) cells and metastatic lesions. PMID:23410679

  5. Heparin-decorated, hyaluronic acid-based hydrogel particles for the controlled release of bone morphogenetic protein 2.

    PubMed

    Xu, Xian; Jha, Amit K; Duncan, Randall L; Jia, Xinqiao

    2011-08-01

    We are interested in developing hydrophilic particulate systems that are capable of sequestering growth factors, regulating their release and potentiating their biological functions. To this end heparin (HP)-decorated, hyaluronic acid (HA)-based hydrogel particles (HGPs) were synthesized using an inverse emulsion polymerization technique employing divinyl sulfone as the crosslinker. By varying the feed composition of the aqueous phase the amount of HP integrated in the particles can be systematically tuned. The resulting microscopic particles are spherical in shape and contain nanosized pores suitable for growth factor encapsulation. The covalently immobilized HP retained its ability to bind bone morphogenetic protein-2 (BMP-2) specifically, and its release kinetics can be adjusted by tuning the particle composition. Compared with pure HA particles the hybrid HA/HP HGPs show a higher BMP-2 loading capacity. While BMP-2 was released from HA HGPs with a significant initial burst, a near zero order release kinetics was observed from HA/HP hybrid particles with an optimized heparin content of 0.55 μg per mg HGPs. The ability of HA/HP hybrid particles to present BMP-2 in a controlled manner, combined with the innate bioactivity of HA, induced robust and consistent chondrogenic differentiation of murine mesenchymal stem cells, as shown by up-regulation of the mRNA levels of chondrogenic markers and the production of cartilage-specific extracellular matrix components. The simplicity of the particle synthesis, combined with the defined biological activities of the constituent building blocks, renders the HP-decorated, HA-based hydrogel particle system an attractive candidate for the sustained release of BMP-2, possibly for cartilage repair and regeneration. PMID:21550426

  6. Heparin-decorated, hyaluronic acid-based hydrogel particles for the controlled release of bone morphogenetic protein 2

    PubMed Central

    Xu, Xian; Jha, Amit K.; Duncan, Randall L.; Jia, Xinqiao

    2011-01-01

    We are interested in developing hydrophilic particulate systems that are capable of sequestering growth factors, regulating their release and potentiating their biological functions. Towards this end, heparin (HP)-decorated, hyaluronic acid (HA)-based, hydrogel particles (HGPs) were synthesized using an inverse emulsion polymerization technique employing divinyl sulfone as the crosslinker. By varying the feed composition of the aqueous phase, the amount of heparin integrated in the particles can be systematically tuned. The resulting microscopic particles are spherical in shape and contain nanosized pores suitable for growth factor encapsulation. The covalently immobilized heparin retained its ability to bind bone morphogenetic protein 2 (BMP-2) specifically, and its release kinetics can be adjusted by tuning the particle composition. Compared to the pure HA particles, the hybrid HA/HP HGPs show a higher BMP-2 loading capacity. While BMP-2 was released from HA HGPs with a significant initial burst, a near zero-order release kinetics was observed from HA/HP hybrid particles with an optimized heparin content of 0.55 μg per milligram HGPs. The ability of HA/HP hybrid particles to present BMP-2 in a controlled manner, combined with the innate bioactivity of HA, induced robust and consistent chondrogenic differentiation of murine mesenchymal stem cells, as evidenced by the up-regulation of mRNA levels of chondrogenic markers and the production of cartilage-specific extracellular matrix components. The simplicity of the particle synthesis, combined with the defined biological activities of the constituent building blocks, renders the HP-decorated, HA-based hydrogel particle system an attractive candidate for the sustained release of BMP-2, possibly for cartilage repair and regeneration. PMID:21550426

  7. The Bronsted-Lowery Acid-Base Concept.

    ERIC Educational Resources Information Center

    Kauffman, George B.

    1988-01-01

    Gives the background history of the simultaneous discovery of acid-base relationships by Johannes Bronsted and Thomas Lowry. Provides a brief biographical sketch of each. Discusses their concept of acids and bases in some detail. (CW)

  8. An Introductory Laboratory Exercise for Acids and Bases.

    ERIC Educational Resources Information Center

    Miller, Richard; Silberman, Robert

    1986-01-01

    Discusses an acid-base neutralization exercise requiring groups of students to determine: (1) combinations of solutions giving neutralization; (2) grouping solutions as acids or bases; and (3) ranking groups in order of concentration. (JM)

  9. Mathematical modeling of acid-base physiology

    PubMed Central

    Occhipinti, Rossana; Boron, Walter F.

    2015-01-01

    pH is one of the most important parameters in life, influencing virtually every biological process at the cellular, tissue, and whole-body level. Thus, for cells, it is critical to regulate intracellular pH (pHi) and, for multicellular organisms, to regulate extracellular pH (pHo). pHi regulation depends on the opposing actions of plasma-membrane transporters that tend to increase pHi, and others that tend to decrease pHi. In addition, passive fluxes of uncharged species (e.g., CO2, NH3) and charged species (e.g., HCO3− , NH4+) perturb pHi. These movements not only influence one another, but also perturb the equilibria of a multitude of intracellular and extracellular buffers. Thus, even at the level of a single cell, perturbations in acid-base reactions, diffusion, and transport are so complex that it is impossible to understand them without a quantitative model. Here we summarize some mathematical models developed to shed light onto the complex interconnected events triggered by acids-base movements. We then describe a mathematical model of a spherical cell–which to our knowledge is the first one capable of handling a multitude of buffer reaction–that our team has recently developed to simulate changes in pHi and pHo caused by movements of acid-base equivalents across the plasma membrane of a Xenopus oocyte. Finally, we extend our work to a consideration of the effects of simultaneous CO2 and HCO3− influx into a cell, and envision how future models might extend to other cell types (e.g., erythrocytes) or tissues (e.g., renal proximal-tubule epithelium) important for whole-body pH homeostasis. PMID:25617697

  10. Photocurable bioadhesive based on lactic acid.

    PubMed

    Marques, D S; Santos, J M C; Ferreira, P; Correia, T R; Correia, I J; Gil, M H; Baptista, C M S G

    2016-01-01

    Novel photocurable and low molecular weight oligomers based on l-lactic acid with proven interest to be used as bioadhesive were successfully manufactured. Preparation of lactic acid oligomers with methacrylic end functionalizations was carried out in the absence of catalyst or solvents by self-esterification in two reaction steps: telechelic lactic acid oligomerization with OH end groups and further functionalization with methacrylic anhydride. The final adhesive composition was achieved by the addition of a reported biocompatible photoinitiator (Irgacure® 2959). Preliminary in vitro biodegradability was investigated by hydrolytic degradation in PBS (pH=7.4) at 37 °C. The adhesion performance was evaluated using glued aminated substrates (gelatine pieces) subjected to pull-to-break test. Surface energy measured by contact angles is lower than the reported values of the skin and blood. The absence of cytoxicity was evaluated using human fibroblasts. A notable antimicrobial behaviour was observed using two bacterial models (Staphylococcus aureus and Escherichia coli). The cured material exhibited a strong thrombogenic character when placed in contact with blood, which can be predicted as a haemostatic effect for bleeding control. This novel material was subjected to an extensive characterization showing great potential for bioadhesive or other biomedical applications where biodegradable and biocompatible photocurable materials are required. PMID:26478350

  11. Bipolar Membranes for Acid Base Flow Batteries

    NASA Astrophysics Data System (ADS)

    Anthamatten, Mitchell; Roddecha, Supacharee; Jorne, Jacob; Coughlan, Anna

    2011-03-01

    Rechargeable batteries can provide grid-scale electricity storage to match power generation with consumption and promote renewable energy sources. Flow batteries offer modular and flexible design, low cost per kWh and high efficiencies. A novel flow battery concept will be presented based on acid-base neutralization where protons (H+) and hydroxyl (OH-) ions react electrochemically to produce water. The large free energy of this highly reversible reaction can be stored chemically, and, upon discharge, can be harvested as usable electricity. The acid-base flow battery concept avoids the use of a sluggish oxygen electrode and utilizes the highly reversible hydrogen electrode, thus eliminating the need for expensive noble metal catalysts. The proposed flow battery is a hybrid of a battery and a fuel cell---hydrogen gas storing chemical energy is produced at one electrode and is immediately consumed at the other electrode. The two electrodes are exposed to low and high pH solutions, and these solutions are separated by a hybrid membrane containing a hybrid cation and anion exchange membrane (CEM/AEM). Membrane design will be discussed, along with ion-transport data for synthesized membranes.

  12. Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering.

    PubMed

    Jin, R; Teixeira, L S Moreira; Dijkstra, P J; van Blitterswijk, C A; Karperien, M; Feijen, J

    2010-04-01

    Polysaccharide hybrids consisting of hyaluronic acid (HA) grafted with a dextran-tyramine conjugate (Dex-TA) were synthesized and investigated as injectable biomimetic hydrogels for cartilage tissue engineering. The design of these hybrids (denoted as HA-g-Dex-TA) is based on the molecular structure of proteoglycans present in the extracellular matrix of native cartilage. Hydrogels of HA-g-Dex-TA were rapidly formed within 2 min via enzymatic crosslinking of the tyramine residues in the presence of horseradish peroxidase and hydrogen peroxide. The gelation time, equilibrium swelling and storage modulus could be adjusted by varying the degree of substitution of tyramine residues and polymer concentration. Bovine chondrocytes incorporated in the HA-g-Dex-TA hydrogels remained viable, as shown by the Live-dead assay. Moreover, enhanced chondrocyte proliferation and matrix production were observed in the HA-g-Dex-TA hydrogels compared to Dex-TA hydrogels. These results suggest that HA-g-Dex-TA hydrogels have a high potential as injectable scaffolds for cartilage tissue engineering. PMID:20116847

  13. Synthesis and characterization of new composite materials based on poly(methacrylic acid) and hydroxyapatite with applications in dentistry.

    PubMed

    Cucuruz, Andrei Tiberiu; Andronescu, Ecaterina; Ficai, Anton; Ilie, Andreia; Iordache, Florin

    2016-08-30

    The use of methacrylic acid (MAA) in medicine was poorly investigated in the past but can be of great importance because the incorporation of hydroxyapatite (HA) can lead to new composite materials with good properties due to the strong electrostatic interactions between carboxylate groups of polymer and Ca(2+) ions from HA. The scope of this study was to determine the potential of using composite materials based on poly(methacrylic acid) (PMAA) and hydroxyapatite in dentistry. Two routes of synthesis were taken into account: i) HA was synthesised in situ and ii) commercial HA was used. Fourier transform infrared spectroscopy and X-ray diffraction were used for compositional assessments. Scanning electron microscopy was performed to determine the morphology and differential thermal analysis (DTA) coupled with thermogravimetric analysis (TG) was used to study the thermal behaviour and to observe quantitative changes. In-vitro tests were also performed in order to evaluate the biocompatibility of both PMAA/HA composites by monitoring the development potential of human endothelial cells using MTT assay and fluorescent microscopy. PMID:26836709

  14. Acid-base balance in ducks (Anas platyrhynchos) during involuntary submergence.

    PubMed

    Shimizu, M; Jones, D R

    1987-02-01

    Measurements of all the major independent variables [arterial CO2 tension (PaCO2); strong-ion difference ([SID]), and total protein content, which approximate total weak acid concentration in plasma] are essential for understanding changes in acid-base balance in plasma. During involuntary submergence of 1, 2, or 4 min, PaCO2 in ducks increased and arterial pH (pHa) decreased. During 1-min dives there were no significant changes in any strong ions. In both 2- and 4-min dives, there was a significant increase in [lactate-], but because of an increase in equal magnitude of [Na+], [SID] did not change. During recovery from all dives the plasma remained acidotic for several minutes, although PaCO2 fell below predive levels in less than 1 min. [Lactate-] increased in the recovery period. There were no changes in total protein content during submergence or recovery. Breathing 100% O2 before 2-min dives caused a reduction in [lactate-] production and release during and after the dive, although due to a marked increased in PaCO2, pHa fell as low as in 4-min dives after breathing air. After 1 min of recovery, pHa returned to normal along with the restoration of the predive level of PaCO2. We conclude that the acidosis during involuntary submergence is due solely to an increase in PaCO2, whereas in recovery it is caused by decreased [SID]. PMID:3101522

  15. Teaching Acid/Base Physiology in the Laboratory

    ERIC Educational Resources Information Center

    Friis, Ulla G.; Plovsing, Ronni; Hansen, Klaus; Laursen, Bent G.; Wallstedt, Birgitta

    2010-01-01

    Acid/base homeostasis is one of the most difficult subdisciplines of physiology for medical students to master. A different approach, where theory and practice are linked, might help students develop a deeper understanding of acid/base homeostasis. We therefore set out to develop a laboratory exercise in acid/base physiology that would provide…

  16. Using Willie's Acid-Base Box for Blood Gas Analysis

    ERIC Educational Resources Information Center

    Dietz, John R.

    2011-01-01

    In this article, the author describes a method developed by Dr. William T. Lipscomb for teaching blood gas analysis of acid-base status and provides three examples using Willie's acid-base box. Willie's acid-base box is constructed using three of the parameters of standard arterial blood gas analysis: (1) pH; (2) bicarbonate; and (3) CO[subscript…

  17. [Progress in biotransformation of bio-based lactic acid ].

    PubMed

    Gao, Chao; Ma, Cuiqing; Xu, Ping

    2013-10-01

    Fermentative production of lactic acid, an important bio-based chemicals, has made considerable progress. In addition to the food industry and production of polylactic acid, lactic acid also can be used as an important platform chemical for the production of acrylic acid, pyruvic acid, 1,2-propanediol, and lactic acid esters. This article summarizes the recent progress in biocatalytic production of lactic acid derivatives by dehydration, dehydrogenation, reduction, and esterification. Trends in the biotransformation of lactic acid are also discussed. PMID:24432656

  18. Hyaluronic acid/chondroitin sulfate-based hydrogel prepared by gamma irradiation technique.

    PubMed

    Zhao, Linlin; Gwon, Hui-Jeong; Lim, Youn-Mook; Nho, Young-Chang; Kim, So Yeon

    2014-02-15

    Gamma-ray irradiation of novel hydrogels was used to develop a biocompatible hydrogel system for skin tissue engineering. These novel hydrogels are composed of natural polymers including hyaluronic acid (HA) and chondroitin sulfate (CS), and the synthetic polymer, poly(vinyl alcohol) (PVA). The γ-ray irradiation method has advantages, such as relatively simple manipulation without need of any extra reagents for polymerization and cross-linking. We synthesized HA and CS derivatives with polymerizable residues. The HA/CS/PVA hydrogels with various compositions were prepared by using γ-ray irradiation technique and their physicochemical properties were investigated to evaluate the feasibility of their use as artificial skin substitutes. HA/CS/PVA hydrogels showed an 85-88% degree of gelation under 15 kGy radiation. All HA/CS/PVA hydrogels exhibited more than 90% water content and reached an equilibrium swelling state within 24h. Hydrogels with higher concentrations of hyaluronidase solution and HA/CS content had proportionally higher enzymatic degradation rates. The drug release behaviors from HA/CS/PVA hydrogels were influenced by the composition of the hydrogel and drug properties. Exposure of human keratinocyte (HaCaT) culture to the extracts of HA/CS/PVA hydrogels did not significantly affect the cell viability. All HaCaT cell cultures exposed to the extracts of HA/CS/PVA hydrogels exhibited greater than 92% cell viability. The HaCaT growth in HA/CS/PVA hydrogels gradually increased as a function of culture time. After 7 days, the HaCaT cells in all HA/CA/PVA hydrogels exhibited more than 80% viability compared to the control group HaCaT culture on a culture plate. PMID:24507324

  19. Identifying a base in a nucleic acid

    DOEpatents

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    2005-02-08

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  20. Hyaluronic acid-based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors

    PubMed Central

    Bajaj, Gaurav; Kim, Mi Ran; Mohammed, Sulma I.; Yeo, Yoon

    2012-01-01

    Intraperitoneal (IP) chemotherapy is an effective way of treating local and regional malignancies confined in the peritoneal cavity such as ovarian cancer. However, a persistent major challenge in IP chemotherapy is the need to provide effective drug concentrations in the peritoneal cavity for an extended period of time. We hypothesized that hyaluronic acid (HA)-based in-situ crosslinkable hydrogel would serve as a carrier of paclitaxel (PTX) particles to improve their IP retention and therapeutic effects. In-vitro gel degradation and release kinetics studies demonstrated that HA gels could entrap microparticulate PTX (>100 μm) and release the drug over 10 days, gradually degraded by hyaluronidase, but had limited effect on retention of Taxol, a 14-nm micelle form of PTX. When administered IP to tumor-bearing nude mice, PTX was best retained in the peritoneal cavity as PTX-gel (microparticulate PTX entrapped in the HA gel), whereas Taxol-gel and other Taxol-based formulations left negligible amount of PTX in the cavity after 14 days. Despite the increase in IP retention of PTX, PTX-gel did not further decrease the tumor burdens than Taxol-based formulations, presumably due to the limited dissolution of PTX. This result indicates that spatial availability of a drug does not necessarily translate to the enhanced anti-tumor effect unless it is accompanied by the temporal availability. PMID:22178261

  1. Thiolated Carboxymethyl-Hyaluronic-Acid-Based Biomaterials Enhance Wound Healing in Rats, Dogs, and Horses

    PubMed Central

    Yang, Guanghui; Prestwich, Glenn D.; Mann, Brenda K.

    2011-01-01

    The progression of wound healing is a complicated but well-known process involving many factors, yet there are few products on the market that enhance and accelerate wound healing. This is particularly problematic in veterinary medicine where multiple species must be treated and large animals heal slower, oftentimes with complicating factors such as the development of exuberant granulation tissue. In this study a crosslinked-hyaluronic-acid (HA-) based biomaterial was used to treat wounds on multiple species: rats, dogs, and horses. The base molecule, thiolated carboxymethyl HA, was first found to increase keratinocyte proliferation in vitro. Crosslinked gels and films were then both found to enhance the rate of wound healing in rats and resulted in thicker epidermis than untreated controls. Crosslinked films were used to treat wounds on forelimbs of dogs and horses. Although wounds healed slower compared to rats, the films again enhanced wound healing compared to untreated controls, both in terms of wound closure and quality of tissue. This study indicates that these crosslinked HA-based biomaterials enhance wound healing across multiple species and therefore may prove particularly useful in veterinary medicine. Reduced wound closure times and better quality of healed tissue would decrease risk of infection and pain associated with open wounds. PMID:23738117

  2. "Click" Chemistry-Tethered Hyaluronic Acid-Based Contact Lens Coatings Improve Lens Wettability and Lower Protein Adsorption.

    PubMed

    Deng, Xudong; Korogiannaki, Myrto; Rastegari, Banafsheh; Zhang, Jianfeng; Chen, Mengsu; Fu, Qiang; Sheardown, Heather; Filipe, Carlos D M; Hoare, Todd

    2016-08-31

    Improving the wettability of and reducing the protein adsorption to contact lenses may be beneficial for improving wearer comfort. Herein, we describe a simple "click" chemistry approach to surface functionalize poly(2-hydroxyethyl methacrylate) (pHEMA)-based contact lenses with hyaluronic acid (HA), a carbohydrate naturally contributing to the wettability of the native tear film. A two-step preparation technique consisting of laccase/TEMPO-mediated oxidation followed by covalent grafting of hydrazide-functionalized HA via simple immersion resulted in a model lens surface that is significantly more wettable, more water retentive, and less protein binding than unmodified pHEMA while maintaining the favorable transparency, refractive, and mechanical properties of a native lens. The dipping/coating method we developed to covalently tether the HA wetting agent is simple, readily scalable, and a highly efficient route for contact lens modification. PMID:27509015

  3. Osteogenic Properties of PBLG-g-HA/PLLA Nanocomposites

    PubMed Central

    Liao, Lan; Yang, Shuang; Miron, Richard J.; Wei, Junchao; Zhang, Yufeng; Zhang, Meng

    2014-01-01

    New development of biomaterial scaffolds remains a prominent issue for the regeneration of lost or fractured bone. Of these scaffolds, a number of bioactive polymers have been synthesized and fabricated for diverse biological roles. Although recent evidence has demonstrated that composite scaffolds such as HA/PLLA have improved properties when compared to either HA or PLLA alone, recent investigations have demonstrated that the phase compatibility between HA and PLLA layers is weak preventing optimal enhancement of the mechanical properties and making the composites prone to breakdown. In the present study, poly (γ-benzyl-L-glutamate) modified hydroxyapatite/(poly (L-lactic acid)) (PBLG-g-HA/PLLA) composite scaffolds were fabricated with improved phase compatibility and tested for their osteogenic properties in 18 Wistar female rats by analyzing new bone formation in 3 mm bilateral femur defects in vivo. At time points, 2, 4 and 8 weeks post surgery, bone formation was evaluated by µ-CT and histological analysis by comparing 4 treatment groups; 1) blank defect, 2) PLLA, 3) HA/PLLA and 4) PBLG-g-HA/PLLA scaffolds. The in vivo analysis demonstrated that new bone formation was much more prominent in HA/PLLA and PBLG-g-HA/PLLA groups as depicted by µ-CT, H&E staining and immunohistochemistry for collagen I. TRAP staining was also utilized to determine the influence of osteoclast cell number and staining intensity to the various scaffolds. No significant differences in either staining intensity or osteoclast numbers between all treatment modalities was observed, however blank defects did contain a higher number of osteoclast-like cells. The results from the present study illustrate the potential of PBLG-g-HA/PLLA scaffolds for bone tissue engineering applications by demonstrating favorable osteogenic properties. PMID:25184285

  4. Physiological roles of acid-base sensors.

    PubMed

    Levin, Lonny R; Buck, Jochen

    2015-01-01

    Acid-base homeostasis is essential for life. The macromolecules upon which living organisms depend are sensitive to pH changes, and physiological systems use the equilibrium between carbon dioxide, bicarbonate, and protons to buffer their pH. Biological processes and environmental insults are constantly challenging an organism's pH; therefore, to maintain a consistent and proper pH, organisms need sensors that measure pH and that elicit appropriate responses. Mammals use multiple sensors for measuring both intracellular and extracellular pH, and although some mammalian pH sensors directly measure protons, it has recently become apparent that many pH-sensing systems measure pH via bicarbonate-sensing soluble adenylyl cyclase. PMID:25340964

  5. Polymer gel dosimeter based on itaconic acid.

    PubMed

    Mattea, Facundo; Chacón, David; Vedelago, José; Valente, Mauro; Strumia, Miriam C

    2015-11-01

    A new polymeric dosimeter based on itaconic acid and N, N'-methylenebisacrylamide was studied. The preparation method, compositions of monomer and crosslinking agent and the presence of oxygen in the dosimetric system were analyzed. The resulting materials were irradiated with an X-ray tube at 158cGy/min, 226cGymin and 298cGy/min with doses up to 1000Gy. The dosimeters presented a linear response in the dose range 75-1000Gy, sensitivities of 0.037 1/Gyat 298cGy/min and an increase in the sensitivity with lower dose rates. One of the most relevant outcomes in this study was obtaining different monomer to crosslinker inclusion in the formed gel for the dosimeters where oxygen was purged during the preparation method. This effect has not been reported in other typical dosimeters and could be attributed to the large differences in the reactivity among these species. PMID:26275817

  6. Renal acid-base metabolism after ischemia.

    PubMed

    Holloway, J C; Phifer, T; Henderson, R; Welbourne, T C

    1986-05-01

    The response of the kidney to ischemia-induced cellular acidosis was followed over the immediate one hr post-ischemia reflow period. Clearance and extraction experiments as well as measurement of cortical intracellular pH (pHi) were performed on Inactin-anesthetized Sprague-Dawley rats. Arteriovenous concentration differences and para-aminohippurate extraction were obtained by cannulating the left renal vein. Base production was monitored as bicarbonate released into the renal vein and urine; net base production was related to the renal handling of glutamine and ammonia as well as to renal oxygen consumption and pHi. After a 15 min control period, the left renal artery was snared for one-half hr followed by release and four consecutive 15 min reflow periods. During the control period, cortical cell pHi measured by [14C]-5,5-Dimethyl-2,4-Oxazolidinedione distribution was 7.07 +/- 0.08, and Q-O2 was 14.1 +/- 2.2 micromoles/min; neither net glutamine utilization nor net bicarbonate generation occurred. After 30 min of ischemia, renal tissue pH fell to 6.6 +/- 0.15. However, within 45 min of reflow, cortical cell pH returned and exceeded the control value, 7.33 +/- 0.06 vs. 7.15 +/- 0.08. This increase in pHi was associated with a significant rise in cellular metabolic rate, Q-O2 increased to 20.3 +/- 6.4 micromoles/min. Corresponding with cellular alkalosis was a net production of bicarbonate and a net ammonia uptake and glutamine release; urinary acidification was abolished. These results are consistent with a nonexcretory renal metabolic base generating mechanism governing cellular acid base homeostasis following ischemia. PMID:3723929

  7. Engineering of lipid prodrug-based, hyaluronic acid-decorated nanostructured lipid carriers platform for 5-fluorouracil and cisplatin combination gastric cancer therapy

    PubMed Central

    Qu, Chun-Ying; Zhou, Min; Chen, Ying-wei; Chen, Mei-mei; Shen, Feng; Xu, Lei-Ming

    2015-01-01

    Purpose The first-line chemotherapy treatment protocol for gastric cancer is combination chemotherapy of 5-fluorouracil (5-FU) and cisplatin (CDDP). The aim of this study was to engineer prodrug-based nanostructured lipid carriers (NLC) platform for codelivery of 5-FU and CDDP to enhance therapy and decrease toxicity. Methods First, 5-FU-stearic acid lipid conjugate was synthesized by two steps. Second, 5-FU-stearic acid prodrug and CDDP were loaded in NLC. Finally, hyaluronic acid (HA) was coated onto NLC surface. Average size, zeta potential, and drug loading capacity of NLC were evaluated. Human gastric cancer cell line BGC823 (BGC823 cells) was used for the testing of in vitro cytotoxicity assays. In vivo antitumor activity of NLC was evaluated in mice bearing BGC823 cells model. Results HA-coated 5-FU-stearic acid prodrug and CDDP-loaded NLC (HA-FU/C-NLC) showed a synergistic effect in combination therapy and displayed the greatest antitumor activity than all of the free drugs or uncoated NLC in vitro and in vivo. Conclusion This work reveals that HA-coated NLC could be used as a novel carrier to code-liver 5-FU and CDDP for gastric cancer therapy. HA-FU/C-NLC could be a promising targeted and combinational therapy in nanomedicine. PMID:26089667

  8. Base pairing and base mis-pairing in nucleic acids

    NASA Technical Reports Server (NTRS)

    Wang, A. H. J.; Rich, A.

    1986-01-01

    In recent years we have learned that DNA is conformationally active. It can exist in a number of different stable conformations including both right-handed and left-handed forms. Using single crystal X-ray diffraction analysis we are able to discover not only additional conformations of the nucleic acids but also different types of hydrogen bonded base-base interactions. Although Watson-Crick base pairings are the predominant type of interaction in double helical DNA, they are not the only types. Recently, we have been able to examine mismatching of guanine-thymine base pairs in left-handed Z-DNA at atomic resolution (1A). A minimum amount of distortion of the sugar phosphate backbone is found in the G x T pairing in which the bases are held together by two hydrogen bonds in the wobble pairing interaction. Because of the high resolution of the analysis we can visualize water molecules which fill in to accommodate the other hydrogen bonding positions in the bases which are not used in the base-base interactions. Studies on other DNA oligomers have revealed that other types of non-Watson-Crick hydrogen bonding interactions can occur. In the structure of a DNA octamer with the sequence d(GCGTACGC) complexed to an antibiotic triostin A, it was found that the two central AT base pairs are held together by Hoogsteen rather than Watson-Crick base pairs. Similarly, the G x C base pairs at the ends are also Hoogsteen rather than Watson-Crick pairing. Hoogsteen base pairs make a modified helix which is distinct from the Watson-Crick double helix.

  9. Effect of Humic Acid on As Redox Transformation and Kinetic Adsorption onto Iron Oxide Based Adsorbent (IBA)

    PubMed Central

    Fakour, Hoda; Lin, Tsair-Fuh

    2014-01-01

    Due to the importance of adsorption kinetics and redox transformation of arsenic (As) during the adsorption process, the present study elucidated natural organic matter (NOM) effects on As adsorption-desorption kinetics and speciation transformation. The experimental procedures were conducted by examining interactions of arsenate and arsenite with different concentrations of humic acid (HA) as a model representative of NOM, in the presence of iron oxide based adsorbent (IBA), as a model solid surface in three environmentally relevant conditions, including the simultaneous adsorption of both As and HA onto IBA, HA adsorption onto As-presorbed IBA, and As adsorption onto HA-presorbed IBA. Experimental adsorption-desorption data were all fitted by original and modified Lagergren pseudo-first and -second order adsorption kinetic models, respectively. Weber’s intraparticle diffusion was also used to gain insight into the mechanisms and rate controlling steps, which the results suggested that intraparticle diffusion of As species onto IBA is the main rate-controlling step. Different concentrations of HA mediated the redox transformation of As species, with a higher oxidation ability than reduction. The overall results indicated the significant effect of organic matter on the adsorption kinetics and redox transformation of As species, and consequently, the fate, transport and mobility of As in different environmentally relevant conditions. PMID:25325357

  10. Tumor spheroid assembly on hyaluronic acid-based structures: A review.

    PubMed

    Carvalho, Marco P; Costa, Elisabete C; Miguel, Sónia P; Correia, Ilídio J

    2016-10-01

    Two-dimensional (2D) cell culture is the main methodology used for screening anticancer therapeutics. However, these 2D cellular models misrepresent the architecture of native tumors, leading, in some cases, to unsuccessful prediction of cancer cell response to drugs. To overcome such limitations, cell growth in three dimensions (3D) arises as an alternative to reproduce in vitro the cellular arrangement found in tumors. Among the 3D cancer models developed so far, spheroids are the most attractive since these are cellular aggregates that broadly mimic many features of solid tumors affecting humans, like cell-cell interactions. One of the most applied techniques for producing spheroids is the liquid overlay technique, in which cells aggregate due to their limited adhesion to certain biomaterials, usually agarose or agar. Recently, the suitability of hyaluronic acid (HA) for spheroids assembly and HA-cell surface receptor interactions has been investigated. Ergo, this review gathers a summary of different studies where HA-based structures were developed and used for tumor spheroids production in order to be used in vitro as reliable 3D tumor models for therapeutic screening purposes. PMID:27312623

  11. History of medical understanding and misunderstanding of Acid base balance.

    PubMed

    Aiken, Christopher Geoffrey Alexander

    2013-09-01

    To establish how controversies in understanding acid base balance arose, the literature on acid base balance was reviewed from 1909, when Henderson described how the neutral reaction of blood is determined by carbonic and organic acids being in equilibrium with an excess of mineral bases over mineral acids. From 1914 to 1930, Van Slyke and others established our acid base principles. They recognised that carbonic acid converts into bicarbonate all non-volatile mineral bases not bound by mineral acids and determined therefore that bicarbonate represents the alkaline reserve of the body and should be a physiological constant. They showed that standard bicarbonate is a good measure of acidosis caused by increased production or decreased elimination of organic acids. However, they recognised that bicarbonate improved low plasma bicarbonate but not high urine acid excretion in diabetic ketoacidosis, and that increasing pCO2 caused chloride to shift into cells raising plasma titratable alkali. Both indicate that minerals influence pH. In 1945 Darrow showed that hyperchloraemic metabolic acidosis in preterm infants fed milk with 5.7 mmol of chloride and 2.0 mmol of sodium per 100 kcal was caused by retention of chloride in excess of sodium. Similar findings were made but not recognised in later studies of metabolic acidosis in preterm infants. Shohl in 1921 and Kildeberg in 1978 presented the theory that carbonic and organic acids are neutralised by mineral base, where mineral base is the excess of mineral cations over anions and organic acid is the difference between mineral base, bicarbonate and protein anion. The degree of metabolic acidosis measured as base excess is determined by deviation in both mineral base and organic acid from normal. PMID:24179938

  12. Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization.

    PubMed

    Lewis, Jennifer D; Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-08-17

    Hf-, Sn-, and Zr-Beta zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions. PMID:26138135

  13. Chip-based sequencing nucleic acids

    DOEpatents

    Beer, Neil Reginald

    2014-08-26

    A system for fast DNA sequencing by amplification of genetic material within microreactors, denaturing, demulsifying, and then sequencing the material, while retaining it in a PCR/sequencing zone by a magnetic field. One embodiment includes sequencing nucleic acids on a microchip that includes a microchannel flow channel in the microchip. The nucleic acids are isolated and hybridized to magnetic nanoparticles or to magnetic polystyrene-coated beads. Microreactor droplets are formed in the microchannel flow channel. The microreactor droplets containing the nucleic acids and the magnetic nanoparticles are retained in a magnetic trap in the microchannel flow channel and sequenced.

  14. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  15. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  16. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1994-01-25

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

  17. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1996-07-23

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  18. Determination of the acidic sites of purified single-walled carbon nanotubes by acid base titration

    NASA Astrophysics Data System (ADS)

    Hu, H.; Bhowmik, P.; Zhao, B.; Hamon, M. A.; Itkis, M. E.; Haddon, R. C.

    2001-09-01

    We report the measurement of the acidic sites in three different samples of commercially available full-length purified single-walled carbon nanotubes (SWNTs) - as obtained from CarboLex (CLI), Carbon Solutions (CSI) and Tubes@Rice (TAR) - by simple acid-base titration methods. Titration of the purified SWNTs with NaOH and NaHCO 3 solutions was used to determine the total percentage of acidic sites and carboxylic acid groups, respectively. The total percentage of acidic sites in full length purified SWNTs from TAR, CLI and CSI are about 1-3%.

  19. Electrochemical Sensor Based on Fe Doped Hydroxyapatite-Carbon Nanotubes Composite for L-Dopa Detection in the Presence of Uric Acid.

    PubMed

    Kanchana, P; Radhakrishnan, S; Navaneethan, M; Arivanandhan, M; Hayakawa, Y; Sekar, C

    2016-06-01

    A novel amperometric sensor based on iron doped hydroxyapatite (Fe-HA) and multiwalled carbon nanotubes (CNT) composite immobilized on a glassy carbon electrode (GCE) has been fabricated. The hybrid composite made of Fe-HA nanoparticles and CNT promotes electron transfer kinetics between the analyte levodopa (L-dopa) and the modified GC electrode. Under optimum conditions, the fabricated sensor gave a linear response range of 1.0 x 10(-7)-1.1 x 10(-6) M with the detection limit as low as 62 nM. The Fe-HA/CNT modified electrode showed good selectivity towards the determination of L-dopa in the presence of ascorbic acid (AA), uric acid (UA) and other common interferents. The sensor displays a high sensitivity, good reproducibility and long-term stability and it was successfully applied for the detection of L-dopa in pharmaceutical and medicinal plant samples. PMID:27427688

  20. Acid-base properties of titanium-antimony oxides catalysts

    SciTech Connect

    Zenkovets, G.A.; Paukshtis, E.A.; Tarasova, D.V.; Yurchenko, E.N.

    1982-06-01

    The acid-base properties of titanium-antimony oxide catalysts were studied by the methods of back titration and ir spectroscopy. The interrelationship between the acid-base and catalytic properties in the oxidative ammonolysis of propylene was discussed. 3 figures, 1 table.

  1. A Closer Look at Acid-Base Olfactory Titrations

    ERIC Educational Resources Information Center

    Neppel, Kerry; Oliver-Hoyo, Maria T.; Queen, Connie; Reed, Nicole

    2005-01-01

    Olfactory titrations using raw onions and eugenol as acid-base indicators are reported. An in-depth investigation on olfactory titrations is presented to include requirements for potential olfactory indicators and protocols for using garlic, onions, and vanillin as acid-base olfactory indicators are tested.

  2. What is the Ultimate Goal in Acid-Base Regulation?

    ERIC Educational Resources Information Center

    Balakrishnan, Selvakumar; Gopalakrishnan, Maya; Alagesan, Murali; Prakash, E. Sankaranarayanan

    2007-01-01

    It is common to see chapters on acid-base physiology state that the goal of acid-base regulatory mechanisms is to maintain the pH of arterial plasma and not arterial PCO [subscript 2] (Pa[subscript CO[subscript 2

  3. The Roles of Acids and Bases in Enzyme Catalysis

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2007-01-01

    Many organic reactions are catalyzed by strong acids or bases that protonate or deprotonate neutral reactants leading to reactive cations or anions that proceed to products. In enzyme reactions, only weak acids and bases are available to hydrogen bond to reactants and to transfer protons in response to developing charges. Understanding this…

  4. Connecting Acids and Bases with Encapsulation... and Chemistry with Nanotechnology

    ERIC Educational Resources Information Center

    Criswell, Brett

    2007-01-01

    The features and the development of various new acids and bases activity sets that combines chemistry with nanotechnology are being described. These sets lead to the generation of many nanotechnology-based pharmaceuticals for the treatment of various diseases.

  5. Development of hyaluronic acid-based scaffolds for brain tissue engineering.

    PubMed

    Wang, Tzu-Wei; Spector, Myron

    2009-09-01

    Three-dimensional biodegradable porous scaffolds play vital roles in tissue engineering. In this study, a hyaluronic acid-collagen (HA-Coll) sponge with an open porous structure and mechanical behavior comparable to brain tissue was developed. HA-Coll scaffolds with different mixing ratios were prepared by a freeze-drying technique and crosslinked with water-soluble carbodiimide to improve mechanical stability. The pore structure of the samples was evaluated by light and scanning electron microscopy, and the mechanical behavior was analyzed by mechanical compression and tension testing. The degree of crosslinking was determined by the water absorption and trinitrobenzene sulfonic assay, and the HA content was determined by a carbazole assay. The results showed that HA-Coll scaffolds containing an open porous structure with a homogeneous pore size distribution could be fabricated. Certain features of the mechanical properties of HA-Coll scaffolds prepared with a Coll:HA mixing ratio of 1:2, and pure HA sponges, were comparable with brain tissue. Neural stem cells (NSCs) were expanded in number in monolayer culture and then seeded onto the three-dimensional scaffolds in order to investigate the effects of the different types of scaffolds on neurogenic induction of the cells. This study contributes to the understanding of the effects of HA content and crosslink treatment on pore characteristics, and mechanical behavior essential for the design of HA-Coll scaffolds suitable for NSC growth and differentiation for brain tissue engineering. PMID:19403351

  6. A Computer-Based Simulation of an Acid-Base Titration

    ERIC Educational Resources Information Center

    Boblick, John M.

    1971-01-01

    Reviews the advantages of computer simulated environments for experiments, referring in particular to acid-base titrations. Includes pre-lab instructions and a sample computer printout of a student's use of an acid-base simulation. Ten references. (PR)

  7. Sunflower metallothionein family characterisation. Study of the Zn(II)- and Cd(II)-binding abilities of the HaMT1 and HaMT2 isoforms.

    PubMed

    Tomas, M; Pagani, M A; Andreo, C S; Capdevila, M; Atrian, S; Bofill, R

    2015-07-01

    Plant metallothioneins (MTs) constitute a family of small Cys-rich proteins capable of coordinating metal ions, significantly differing from microbial and animal MTs. They are divided into four subfamilies depending on the Cys pattern in their sequence. In this work, the MT system of the sunflower plant (Helianthus annuus) has been defined, with ten genes coding for MTs (HaMT) belonging to the four plant MT subfamilies; three HaMT1, four HaMT2, one HaMT3 and two HaMT4 isoforms. The gene expression pattern and capacity to confer metal resistance to yeast cells have been analysed for at least one member of each subfamily. The divalent metal ion-binding abilities of HaMT1-2 and HaMT2-1 (the isoforms encoded by the most abundantly expressed HaMT1 and HaMT2 isogenes) have been characterised, as HaMT3 and HaMT4 were previously studied. Those isoforms constitute an optimum material to study the effect of Cys number variability on their coordination abilities, as they exhibit additional Cys residues regarding the canonical Cys pattern of each subfamily. Our results show that the variation in the number of Cys does not drastically modify their M(II)-binding abilities, but instead modulates the degree of heterogeneity of the corresponding recombinant syntheses. Significantly, the Zn(II)-HaMT1 complexes were highly susceptible to proteolytic cleavage. The recombinant Cd-MT preparations of both isoforms exhibit significant acid-labile sulphide content-Cd6S8 or Cd7S7 species. Overall results suggest that HaMT2-1 is probably associated with Cd(II) detoxification, in contrast to HaMT1-2, which may be more related to physiological functions, such as metal ion transport and delivery. PMID:25770010

  8. Synergistic interaction of platelet derived growth factor (PDGF) with the surface of PLLA/Col/HA and PLLA/HA scaffolds produces rapid osteogenic differentiation.

    PubMed

    Raghavendran, Hanumantha Rao Balaji; Mohan, Saktiswaren; Genasan, Krishnamurithy; Murali, Malliga Raman; Naveen, Sangeetha Vasudevaraj; Talebian, Sepehr; McKean, Robert; Kamarul, Tunku

    2016-03-01

    Scaffolds with structural features similar to the extracellular matrix stimulate rapid osteogenic differentiation in favorable microenvironment and with growth factor supplementation. In this study, the osteogenic potential of electrospun poly-l-lactide/hydroxyapatite/collagen (PLLA/Col/HA, PLLA/HA and PLLA/Col) scaffolds were tested in vitro with the supplementation of platelet derived growth factor-BB (PDGF-BB). Cell attachment and topography, mineralization, extracellular matrix protein localization, and gene expression of the human mesenchymal stromal cells were compared between the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA. The levels of osteocalcin, calcium, and mineralization were significantly greater in the PLLA/Col/HA and PLLA/HA compared with PLLA/Col. High expression of fibronectin, intracellular adhesion molecule, cadherin, and collagen 1 (Col1) suggests that PLLA/Col/HA and PLLA/HA scaffolds had superior osteoinductivity than PLLA/Col. Additionally, osteopontin, osteocalcin, osterix, Runt-related transcription factor 2 (Runx2), and bone morphogenic protein (BMP2) expression were higher in PLLA/Col/HA and PLLA/HA compared with PLLA/Col. In comparison with PLLA/Col, the PLLA/Col/HA and PLLA/HA scaffolds presented a significant upregulation of the genes Runx2, Col 1, Integrin, osteonectin (ON), bone gamma-carboxyglutamic acid-containing protein (BGALP), osteopontin (OPN), and BMP2. The upregulation of these genes was further increased with PDGF-BB supplementation. These results show that PDGF-BB acts synergistically with PLLA/Col/HA and PLLA/HA to enhance the osteogenic differentiation potential. Therefore, this combination can be used for the rapid expansion of bone marrow stromal cells into bone-forming cells for tissue engineering. PMID:26700235

  9. Theranostic nanoparticles based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer

    PubMed Central

    Choi, Ki Young; Jeon, Eun Jung; Yoon, Hong Yeol; Lee, Beom Suk; Na, Jin Hee; Min, Kyung Hyun; Kim, Sang Yoon; Myung, Seung-Jae; Lee, Seulki; Chen, Xiaoyuan; Kwon, Ick Chan; Choi, Kuiwon; Jeong, Seo Young; Kim, Kwangmeyung; Park, Jae Hyung

    2013-01-01

    Colon cancer is the second leading cause of cancer-related death in the United States. The considerable mortality from colon cancer is due to metastasis to other organs, mainly the liver. In the management of colon cancer, early detection and targeted therapy are crucial. In this study, we aimed to establish a versatile theranostic system for early tumor detection and targeted tumor therapy by using poly(ethylene glycol)-conjugated hyaluronic acid nanoparticles (P-HA-NPs) which can selectively accumulate in tumor tissue. For the diagnostic application, a near-infrared fluorescence (NIRF) imaging dye (Cy 5.5) was chemically conjugated onto the HA backbone of P-HA-NPs. After intravenous injection of Cy5.5-P-HA-NPs into the tumor-bearing mice, small-sized colon tumors as well as liver-implanted colon tumors were effectively visualized using the NIRF imaging technique. For targeted therapy, we physically encapsulated the anticancer drug, irinotecan (IRT), into the hydrophobic cores of P-HA-NPs. Owing to their notable tumor targeting capability, IRT-P-HA-NPs exhibited an excellent antitumor activity while showing a reduction in undesirable systemic toxicity. Importantly, we demonstrated the theranostic application using Cy5.5-P-HA-NPs and IRT-P-HA-NPs in orthotopic colon cancer models. Following the systemic administration of Cy5.5-P-HA-NPs, neoplasia was clearly visualized, and the tumor growth was effectively suppressed by intravenous injection of IRT-P-HA-NPs. It should be emphasized that the therapeutic responses could be simultaneously monitored by Cy5.5-P-HA-NPs. Our results suggest that P-HA-NPs can be used as a versatile theranostic system for the early detection, targeted therapy, and therapeutic monitoring of colon cancer. PMID:22687759

  10. Nucleic acid duplexes incorporating a dissociable covalent base pair

    NASA Technical Reports Server (NTRS)

    Gao, K.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure.

  11. Nucleic acid duplexes incorporating a dissociable covalent base pair.

    PubMed

    Gao, K; Orgel, L E

    1999-12-21

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure. PMID:10611299

  12. Analysis of amino acids network based on distance matrix

    NASA Astrophysics Data System (ADS)

    Ali, Tazid; Akhtar, Adil; Gohain, Nisha

    2016-06-01

    In this paper we have constructed a distance matrix of the amino acids. The distance is defined based on the relative evolutionary importance of the base position of the corresponding codons. From this distance matrix a network of the amino acids is obtained. We have argued that this network depicts the evolutionary pattern of the amino acids. To examine the relative importance of the amino acids with respect to this network we have discussed different measures of centrality. We have also investigated the correlation coefficients between different measures of centrality. Further we have explored clustering coefficient as well as degree of distribution.

  13. Generation of New M2e-HA2 Fusion Chimeric Peptide to Development of a Recombinant Fusion Protein Vaccine

    PubMed Central

    Ameghi, Ali; Baradaran, Behzad; Aghaiypour, Khosrow; Barzegar, Abolfazl; Pilehvar-Soltanahmadi, Yones; Moghadampour, Masood; Taghizadeh, Morteza; Zarghami, Nosratollah

    2015-01-01

    Purpose: The purpose was to design a new construction containing influenza virus (H1N1) M2e gene and HA2 gene by bioinformatics approach, cloning the construct in to Escherichia coli and produce M2e-HA2 peptide. Methods: The procedure was done by virus cultivation in SPF eggs, hemagglutination assay (HA), RNA isolation, RT-PCR, primers designed (DNAMAN 4 and Oligo7), virtual fusion construction translation (ExPASy), N-Glycosylated sites prediction (Ensemblegly-Iowa), complete open reading frame (ORF), stop codon studied (NCBI ORF Finder), rare codon determination (GenScript), Solvent accessibility of epitopes (Swiss-PdbViewer), antigenic sites prediction (Protean), fusion PCR of M2e-HA2 gene, sequence analysis, nested PCR, gel electrophoresis, double digestion of pET22b(+) plasmid and the fusion construct, ligation of them, transformation of the ligated vector (pET22b-M2e-HA2) to E.coli (BL21), mass culture the cloned bacterium ,induction the expression by isopropyl-beta-D-thiogalactopyranoside (IPTG), sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), purification the fusion peptide by Ni-NTA column, western blot to verify the purification. Results: In this study we developed a new approach for fusion of Influenza virus M2e (96 nucleotides) and HA2 (663 nucleotides) genes based on fusion PCR strategy and produced a fused fragment with 793 nucleotides. The construct was successfully cloned and expressed. Conclusion: This construct is a 261 amino acid chimeric fusion peptide with about 30 KD molecular weight. According on the latest information; this is the first case of expression and purification M2e-HA2 fusion chimeric peptide, which could be used for development of a recombinant M2e-HA2 fusion protein vaccine. PMID:26793615

  14. An in vivo evaluation of PLLA/PLLA-gHA nano-composite for internal fixation of mandibular bone fractures.

    PubMed

    Peng, Weihai; Zheng, Wei; Shi, Kai; Wang, Wangshu; Shao, Ying; Zhang, Duo

    2015-12-01

    Internal fixation of bone fractures using biodegradable poly(L-lactic-acid) (PLLA)-based materials has attracted the attention of many researchers. In the present study, 36 male beagle dogs were randomly assigned to two groups: PLLA/PLLA-gHA (PLLA-grafted hydroxyapatite) group and PLLA group. PLLA/PLLA-gHA and PLLA plates were embedded in the muscular bags of the erector spinae and also implanted to fix mandibular bone fractures in respective groups. At 1, 2, 3, 6, 9, and 12 months postoperatively, the PLLA/PLLA-gHA and PLLA plates were evaluated by adsorption and degradation tests, and the mandibles were examined through radiographic analysis, biomechanical testing, and histological analysis. The PLLA/PLLA-gHA plates were non-transparent and showed a creamy white color, and the PLLA plates were transparent and faint yellow in color. At all time points following surgery, adsorption and degradation of the PLLA/PLLA-gHA plates were significantly less than those of the PLLA plates, and the lateral and longitudinal bending strengths of the surgically treated mandibles of the beagle dogs in the PLLA/PLLA-gHA group were significantly greater than those of the PLLA group and reached almost the value of intact mandibles at 12 months postoperatively. Additionally, relatively rapid bone healing was observed in the PLLA/PLLA-gHA group with the formation of new lamellar bone tissues at 12 months after the surgery. The PLLA/PLLA-gHA nano-composite can be employed as a biodegradable material for internal fixation of mandibular bone fractures. PMID:26551378

  15. Acid-base properties of 2-phenethyldithiocarbamoylacetic acid, an antitumor agent

    NASA Astrophysics Data System (ADS)

    Novozhilova, N. E.; Kutina, N. N.; Petukhova, O. A.; Kharitonov, Yu. Ya.

    2013-07-01

    The acid-base properties of the 2-phenethyldithiocarbamoylacetic acid (PET) substance belonging to the class of isothiocyanates and capable of inhibiting the development of tumors on many experimental models were studied. The acidity and hydrolysis constants of the PET substance in ethanol, acetone, aqueous ethanol, and aqueous acetone solutions were determined from the data of potentiometric (pH-metric) titration of ethanol and acetone solutions of PET with aqueous solidum hydroxide at room temperature.

  16. Hyaluronic Acid-Based Hydrogels Containing Covalently Integrated Drug Depots: Implication for Controlling Inflammation in Mechanically Stressed Tissues

    PubMed Central

    Xiao, Longxi; Tong, Zhixiang; Chen, Yingchao; Pochan, Darrin J.; Sabanayagam, Chandran R.; Jia, Xinqiao

    2013-01-01

    Synthetic hydrogels containing covalently-integrated soft and deformable drug depots capable of releasing therapeutic molecules in response to mechanical forces are attractive candidates for the treatment of degenerated tissues that are normally load bearing. Herein, radically crosslinkable block copolymer micelles (xBCM) assembled from an amphiphilic block copolymer consisting of hydrophilic poly(acrylic acid) (PAA) partially modified with 2-hydroxyethyl acrylate, and hydrophobic poly(n-butyl acryclate) (PnBA) were employed as the drug depots and the microscopic crosslinkers for the preparation of hyaluronic acid (HA)-based, hydrogels. HA hydrogels containing covalently integrated micelles (HAxBCM) were prepared by radical polymerization of glycidyl methacrylate (GMA)-modified HA (HAGMA) in the presence of xBCMs. When micelles prepared from the parent PAA-b-PnBA without any polymerizable double bonds were used, hydrogels containing physically entrapped micelles (HApBCM) were obtained. The addition of xBCMs to a HAGMA precursor solution accelerated the gelation kinetics and altered the hydrogel mechanical properties. The resultant HAxBCM gels exhibit an elastic modulus of 847 ± 43 Pa and a compressive modulus of 9.2 ± 0.7 kPa. Diffusion analysis of Nile Red (NR)-labeled xBCMs employing fluorescence correlation spectroscopy confirmed the covalent immobilization of xBCMs in HA networks. Covalent integration of dexamethasone (DEX)-loaded xBCMs in HA gels significantly reduced the initial burst release and provided sustained release over a prolonged period. Importantly, DEX release from HAxBCM gels was accelerated by intermittently-applied external compression in a strain-dependent manner. Culturing macrophages in the presence of DEX-releasing HAxBCM gels significantly reduced cellular production of inflammatory cytokines. Incorporating mechano-responsive modules in synthetic matrices offers a novel strategy to harvest mechanical stress present in the healing wounds

  17. Hyaluronic acid-based hydrogels containing covalently integrated drug depots: implication for controlling inflammation in mechanically stressed tissues.

    PubMed

    Xiao, Longxi; Tong, Zhixiang; Chen, Yingchao; Pochan, Darrin J; Sabanayagam, Chandran R; Jia, Xinqiao

    2013-11-11

    Synthetic hydrogels containing covalently integrated soft and deformable drug depots capable of releasing therapeutic molecules in response to mechanical forces are attractive candidates for the treatment of degenerated tissues that are normally load bearing. Herein, radically cross-linkable block copolymer micelles (xBCM) assembled from an amphiphilic block copolymer consisting of hydrophilic poly(acrylic acid) (PAA) partially modified with 2-hydroxyethyl acrylate, and hydrophobic poly(n-butyl acryclate) (PnBA) were employed as the drug depots and the microscopic cross-linkers for the preparation of hyaluronic acid (HA)-based, hydrogels. HA hydrogels containing covalently integrated micelles (HAxBCM) were prepared by radical polymerization of glycidyl methacrylate (GMA)-modified HA (HAGMA) in the presence of xBCMs. When micelles prepared from the parent PAA-b-PnBA without any polymerizable double bonds were used, hydrogels containing physically entrapped micelles (HApBCM) were obtained. The addition of xBCMs to a HAGMA precursor solution accelerated the gelation kinetics and altered the hydrogel mechanical properties. The resultant HAxBCM gels exhibit an elastic modulus of 847 ± 43 Pa and a compressive modulus of 9.2 ± 0.7 kPa. Diffusion analysis of Nile Red (NR)-labeled xBCMs employing fluorescence correlation spectroscopy confirmed the covalent immobilization of xBCMs in HA networks. Covalent integration of dexamethasone (DEX)-loaded xBCMs in HA gels significantly reduced the initial burst release and provided sustained release over a prolonged period. Importantly, DEX release from HAxBCM gels was accelerated by intermittently applied external compression in a strain-dependent manner. Culturing macrophages in the presence of DEX-releasing HAxBCM gels significantly reduced cellular production of inflammatory cytokines. Incorporating mechano-responsive modules in synthetic matrices offers a novel strategy to harvest mechanical stress present in the healing

  18. Carbon-based strong solid acid for cornstarch hydrolysis

    NASA Astrophysics Data System (ADS)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-01

    Highly sulfonated carbonaceous spheres with diameter of 100-500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO3H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO3H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst.

  19. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content.

    PubMed

    He, Shu; Lin, Kai-Feng; Sun, Zhen; Song, Yue; Zhao, Yi-Nan; Wang, Zheng; Bi, Long; Liu, Jian

    2016-07-01

    The aim of the current study was to prepare microsphere-based composite scaffolds made of nano-hydroxyapatite (nHA)/poly (DL-lactic-co-glycolic acid) (PLGA) at different ratios and evaluate the effects of nHA on the characteristics of scaffolds for tissue engineering application. First, microsphere-based composite scaffolds made of two ratios of nHA/PLGA (nHA/PLGA = 20/80 and nHA/PLGA = 50/50) were prepared. Then, the effects of nHA on the wettability, mechanical strength, and degradation of scaffolds were investigated. Second, the biocompatibility and osteoinductivity were evaluated and compared by co-culture of scaffolds with bone marrow stromal stem cells (BMSCs). The results showed that the adhesion, proliferation, and osteogenic differentiation of BMSCs with nHA/PLGA (50/50) were better than those with nHA/PLGA (20/80). Finally, we implanted the scaffolds into femur bone defects in a rabbit model, then the capacity of guiding bone regeneration as well as the in vivo degradation were observed by micro-CT and histological examinations. After 4 weeks' implantation, there was no significant difference on the repair of bone defects. However, after 8 and 12 weeks' implantation, the nHA/PLGA (20/80) exhibited better bone formation than nHA/PLGA (50/50). These results suggested that a proper concentration of nHA in the nHA/PLGA composite should be taken into account when the composite scaffolds were prepared, which plays an important role in the biocompatibility, degradation rate and osteoconductivity. PMID:27378617

  20. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  1. Characterization and cytocompatibility of a new injectable multiphasic bone substitute based on a combination of polysaccharide gel-coated OSPROLIFE(®) HA/TTCP granules and bone marrow concentrate.

    PubMed

    Pierini, Michela; Lucarelli, Enrico; Duchi, Serena; Prosperi, Susanna; Preve, Eleonora; Piccinini, Marzio; Bucciotti, Francesco; Donati, Davide

    2016-07-01

    The purpose of this study was to examine the in vitro cytocompatibility of a novel injectable multiphasic bone substitute (MBS) based on polysaccharide gel-coated OSPROLIFE(®) hydroxyapatite (HA)/tetracalcium phosphate (TTCP) granules combined with bone marrow concentrate (BMC). Polysaccharide gel-coated granules loaded in syringe were combined with BMC diluted in ionic crosslinking solution. The product was then maintained in culture to investigate the cytocompatibility, distribution, and osteogenic differentiation function of cells contained in the BMC. The in vitro cytocompatibility was assessed after 0, 24, and 96 h from the injectable MBS preparation using the LIVE/DEAD(®) staining kit. The results highlighted that cells remained viable after combination with the polysaccharide gel-coated granules; also, viability was maintained over time. The distribution of the cells in the product, observed using confocal microscopy, showed viable cells immersed in the polysaccharide gel formed between the granules after ionic crosslinking. The mesenchymal stromal cells (MSC) contained in the injectable MBS, the basic elements for bone tissue regeneration, were able to differentiate toward osteoblasts, producing an osteogenic matrix as evidenced by alizarin red-s (AR-S) staining. In conclusion, we found that the injectable MBS may have the potential to be used as a bone substitute by applying a "one-step" procedure in bone tissue engineering applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 894-902, 2016. PMID:25952003

  2. Paclitaxel isomerisation in polymeric micelles based on hydrophobized hyaluronic acid.

    PubMed

    Smejkalová, Daniela; Nešporová, Kristina; Hermannová, Martina; Huerta-Angeles, Gloria; Cožíková, Dagmar; Vištejnová, Lucie; Safránková, Barbora; Novotný, Jaroslav; Kučerík, Jiří; Velebný, Vladimír

    2014-05-15

    Physical and chemical structure of paclitaxel (PTX) was studied after its incorporation into polymeric micelles made of hyaluronic acid (HA) (Mw=15 kDa) grafted with C6 or C18:1 acyl chains. PTX was physically incorporated into the micellar core by solvent evaporation technique. Maximum loading capacity for HAC6 and HAC18:1 was determined to be 2 and 14 wt.%, respectively. The loading efficiency was higher for HAC18:1 and reached 70%. Independently of the derivative, loaded HA micelles had spherical size of approximately 60-80 nm and demonstrated slow and sustained release of PTX in vitro. PTX largely changed its form from crystalline to amorphous after its incorporation into the micelle's interior. This transformation increased PTX sensitivity towards stressing conditions, mainly to UV light exposure, during which the structure of amorphous PTX isomerized and formed C3C11 bond within its structure. In vitro cytotoxicity assay revealed that polymeric micelles loaded with PTX isomer had higher cytotoxic effect to normal human dermal fibroblasts (NHDF) and human colon carcinoma cells (HCT-116) than the same micelles loaded with non-isomerized PTX. Further observation indicated that PTX isomer influenced in different ways cell morphology and markers of cell cycle. Taken together, PTX isomer loaded in nanocarrier systems may have improved anticancer activity in vivo than pure PTX. PMID:24614580

  3. Polymerization of amino acids containing nucleotide bases

    NASA Technical Reports Server (NTRS)

    Ben Cheikh, Azzouz; Orgel, Leslie E.

    1990-01-01

    The nucleoamino acids 1-(3'-amino,3'-carboxypropyl)uracil (3) and 9-(3'-amino,3'-carboxypropyl)adenine (4) have been prepared as (L)-en-antiomers and as racemic mixtures. When 3 or 4 is suspended in water and treated with N,N'-carbon-yldiimidazole, peptides are formed in good yield. The products formed from the (L)-enantiomers are hydrolyzed to the monomeric amino acids by pronase. Attempts to improve the efficiency of these oligomerizations by including a polyuridylate template in the reaction mixture were not successful. Similarly, oligomers derived from the (L)-enantiomer of 3 did not act as templates to facilitate the oligomerization of 4.

  4. Carbon-based strong solid acid for cornstarch hydrolysis

    SciTech Connect

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  5. Cloning and nucleotide sequence of the Vibrio cholerae hemagglutinin/protease (HA/protease) gene and construction of an HA/protease-negative strain.

    PubMed Central

    Häse, C C; Finkelstein, R A

    1991-01-01

    The structural gene hap for the extracellular hemagglutinin/protease (HA/protease) of Vibrio cholerae was cloned and sequenced. The cloned DNA fragment contained a 1,827-bp open reading frame potentially encoding a 609-amino-acid polypeptide. The deduced protein contains a putative signal sequence followed by a large propeptide. The extracellular HA/protease consists of 414 amino acids with a computed molecular weight of 46,700. In the absence of protease inhibitors, this is processed to the 32-kDa form which is usually isolated. The deduced amino acid sequence of the mature HA/protease showed 61.5% identity with the Pseudomonas aeruginosa elastase. The cloned hap gene was inactivated and introduced into the chromosome of V. cholerae by recombination to construct the HA/protease-negative strain HAP-1. The cloned fragment containing the hap gene was then shown to complement the mutant strain. Images PMID:2045361

  6. Nucleic Acid-Based Nanodevices in Biological Imaging.

    PubMed

    Chakraborty, Kasturi; Veetil, Aneesh T; Jaffrey, Samie R; Krishnan, Yamuna

    2016-06-01

    The nanoscale engineering of nucleic acids has led to exciting molecular technologies for high-end biological imaging. The predictable base pairing, high programmability, and superior new chemical and biological methods used to access nucleic acids with diverse lengths and in high purity, coupled with computational tools for their design, have allowed the creation of a stunning diversity of nucleic acid-based nanodevices. Given their biological origin, such synthetic devices have a tremendous capacity to interface with the biological world, and this capacity lies at the heart of several nucleic acid-based technologies that are finding applications in biological systems. We discuss these diverse applications and emphasize the advantage, in terms of physicochemical properties, that the nucleic acid scaffold brings to these contexts. As our ability to engineer this versatile scaffold increases, its applications in structural, cellular, and organismal biology are clearly poised to massively expand. PMID:27294440

  7. Isotherm-Based Thermodynamic Models for Solute Activities of Organic Acids with Consideration of Partial Dissociation.

    PubMed

    Nandy, Lucy; Ohm, Peter B; Dutcher, Cari S

    2016-06-23

    Organic acids make up a significant fraction of the organic mass in atmospheric aerosol particles. The calculation of gas-liquid-solid equilibrium partitioning of the organic acid is therefore critical for accurate determination of atmospheric aerosol physicochemical properties and processes such as new particle formation and activation to cloud condensation nuclei. Previously, an adsorption isotherm-based statistical thermodynamic model was developed for capturing solute concentration-activity relationships for multicomponent aqueous solutions over the entire concentration range (Dutcher et al. J. Phys. Chem. C/A 2011, 2012, 2013), with model parameters for energies of adsorption successfully related to dipole-dipole electrostatic forces in solute-solvent and solvent-solvent interactions for both electrolytes and organics (Ohm et al. J. Phys. Chem. A 2015). However, careful attention is needed for weakly dissociating semivolatile organic acids. Dicarboxylic acids, such as malonic acid and glutaric acid are treated here as a mixture of nondissociated organic solute (HA) and dissociated solute (H(+) + A(-)). It was found that the apparent dissociation was greater than that predicted by known dissociation constants alone, emphasizing the effect of dissociation on osmotic and activity coefficient predictions. To avoid additional parametrization from the mixture approach, an expression was used to relate the Debye-Hückel hard-core collision diameter to the adjustable solute-solvent intermolecular distance. An improved reference state treatment for electrolyte-organic aqueous mixtures, such as that observed here with partial dissociation, has also been proposed. This work results in predictive correlations for estimation of organic acid and water activities for which there is little or no activity data. PMID:27222917

  8. Control of the molecular degradation of hyaluronic acid hydrogels for tissue augmentation.

    PubMed

    Oh, Eun Ju; Kang, Sun-Woong; Kim, Byung-Soo; Jiang, Ge; Cho, Il Hwan; Hahn, Sei Kwang

    2008-09-01

    A novel protocol to control the molecular degradation of hyaluronic acid (HA) hydrogels was successfully developed for tissue augmentation applications. HA has a different conformational structure in water and organic solvent, and the carboxyl group of HA is known to be the recognition site of hyaluronidase and HA receptors. Based on these findings, HA was chemically modified by grafting adipic acid dihydrazide (ADH) to the carboxyl group of HA in the water to prepare HA-ADH(WATER) and in the mixed solvent of water and ethanol to prepare degradation-controlled HA-ADH(WATER/ETHANOL). Three kinds of HA hydrogels were prepared by the crosslinking of HA-ADH(WATER) or HA-ADH(WATER/ETHANOL) with bis(sulfosuccinimidyl) suberate, and by the crosslinking of HA-OH with divinyl sulfone (DVS). In vitro and in vivo degradation tests showed that HA-DVS hydrogels were degraded most rapidly, followed by HA-ADH(WATER) hydrogels and HA-ADH(WATER/ETHANOL) hydrogels. There was no adverse effect during and after in vivo degradation tests. All of the HA hydrogel samples appeared to be biocompatible, according to the histological analysis with hematoxylin-eosin and Alcian blue. PMID:18022803

  9. Nucleic acid based fluorescent sensor for mercury detection

    DOEpatents

    Lu, Yi; Liu, Juewen

    2013-02-05

    A nucleic acid enzyme comprises an oligonucleotide containing thymine bases. The nucleic acid enzyme is dependent on both Hg.sup.2+and a second ion as cofactors, to produce a product from a substrate. The substrate comprises a ribonucleotide, a deoxyribonucleotide, or both.

  10. Towards lactic acid bacteria-based biorefineries.

    PubMed

    Mazzoli, Roberto; Bosco, Francesca; Mizrahi, Itzhak; Bayer, Edward A; Pessione, Enrica

    2014-11-15

    Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass. PMID:25087936

  11. An Olfactory Indicator for Acid-Base Titrations.

    ERIC Educational Resources Information Center

    Flair, Mark N.; Setzer, William N.

    1990-01-01

    The use of an olfactory acid-base indicator in titrations for visually impaired students is discussed. Potential olfactory indicators include eugenol, thymol, vanillin, and thiophenol. Titrations performed with each indicator with eugenol proved to be successful. (KR)

  12. Synthesis and antimicrobial activities of new higher amino acid Schiff base derivatives of 6-aminopenicillanic acid and 7-aminocephalosporanic acid

    NASA Astrophysics Data System (ADS)

    Özdemir (nee Güngör), Özlem; Gürkan, Perihan; Özçelik, Berrin; Oyardı, Özlem

    2016-02-01

    Novel β-lactam derivatives (1c-3c) (1d-3d) were produced by using 6-aminopenicillanic acid (6-APA), 7-aminocephalosporanic acid (7-ACA) and the higher amino acid Schiff bases. The synthesized compounds were characterized by elemental analysis, IR, 1H/13C NMR and UV-vis spectra. Antibacterial activities of all the higher amino acid Schiff bases (1a-3a) (1b-3b) and β-lactam derivatives were screened against three gram negative bacteria (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii RSKK 02026), three gram positive bacteria (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 07005, Bacillus subtilis ATCC 6633) and their drug-resistant isolates by using broth microdilution method. Two fungi (Candida albicans and Candida krusei) were used for antifungal activity.

  13. Acid-base homeostasis in the human system

    NASA Technical Reports Server (NTRS)

    White, R. J.

    1974-01-01

    Acid-base regulation is a cooperative phenomena in vivo with body fluids, extracellular and intracellular buffers, lungs, and kidneys all playing important roles. The present account is much too brief to be considered a review of present knowledge of these regulatory systems, and should be viewed, instead, as a guide to the elements necessary to construct a simple model of the mutual interactions of the acid-base regulatory systems of the body.

  14. TRANSFUSIONS—Hazardous Acid-Base Changes with Citrated Blood

    PubMed Central

    Pedro, Jovita M. San; Iwai, Seizo; Hattori, Mitsuo; Leigh, M. Digby

    1962-01-01

    In a study of the acid-base changes in the blood of rabbits during and following transfusions of citrated blood and of heparinized blood, it was observed that, with citrated blood, pH decreased and carbon dioxide tensions rose. With heparinized blood, the acid-base balance was maintained within normal limits following transfusions. The potential hazards of rapid massive citrated blood transfusions in the anesthetized patient during operation must be kept in mind. PMID:14496706

  15. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells.

    PubMed

    Kim, Jungju; Kim, In Sook; Cho, Tae Hyung; Lee, Kyu Back; Hwang, Soon Jung; Tae, Giyoong; Noh, Insup; Lee, Sang Hoon; Park, Yongdoo; Sun, Kyung

    2007-04-01

    Acrylated hyaluronic acid (HA) was used as a scaffold for bone morphogenic protein-2 (BMP-2) and human mesenchymal stem cells (hMSCs) for rat calvarial defect regeneration. HA was acrylated by two-step reactions: (1) introduction of an amine group using adipic acid dihydrazide (ADH); (2) acrylation by N-acryloxysuccinimide. Tetrathiolated poly(ethylene) glycol (PEG-SH(4)) was used as a cross-linker by a Michael-type addition reaction and the hydrogel was formed within 10min under physiological conditions. This hydrogel is degraded completely by 100U/ml hyaluronidase in vitro. hMSCs and/or BMP-2 was added during gelation. Cellular viability in vitro was increased up to 55% in the hydrogels with BMP-2 compared with the control. For in vivo calvarial defect regeneration, five different samples (i.e., control, hydrogel, hydrogel with BMP-2, hydrogel with MSCs, and hydrogel with BMP-2 and MSCs) were implanted for 4 weeks. The histological results demonstrated that the hydrogels with BMP-2 and MSCs had the highest expression of osteocalcin and mature bone formation with vascular markers, such as CD31 and vascular endothelial growth factors, compared with the other samples. This study demonstrated that HA base hydrogel can be used for cell and growth factor carriers for tissue regeneration. PMID:17208295

  16. Evaluation of hyaluronic acid-based combination adjuvant containing monophosphoryl lipid A and aluminum salt for hepatitis B vaccine.

    PubMed

    Moon, Se-hee; Shin, Eui-Cheol; Noh, Young-Woock; Lim, Yong Taik

    2015-09-11

    Here, monophosphoryl lipid A (MPLA) and aluminum salt (Alum) were introduced into a hyaluronic acid (HA)-based combination vaccine adjuvant for hepatitis B vaccine (HBV). Although Alum is a well-known hepatitis B vaccine adjuvant that induces an enhanced humoral immune response, it cannot induce the cellular immune responses. On the other hand, MPLA has been generally reported to promote IFN-γ production via antigen-specific CD4(+) T cells, but it is not water soluble as a result of its long hydrophobic alkyl chains. To this end, water insoluble MPLA could be solubilized in an aqueous solution with the help of HA, which contains many carboxyl and hydroxyl groups that can be used to attach to the hydroxyl head groups of MPLA via hydrogen bonds. Three groups of mice were treated with either hepatitis B surface antigen (HBsAg) alone, HBsAg_Alum complex, or HBsAg_Alum_MPLA/HA complex. The group immunized with the HBsAg_Alum_MPLA/HA complex exhibited a high increase in cellular immune response as well as in humoral immune response relative to the other two groups. The antibody, cytokine and T cell levels were most elevated in the group of mice immunized with HBsAg_Alum_MPLA/HA complex, even at a 1μg/mice dose, and the magnitude was still maintained even after 8 weeks. Specifically, the antibody value was 120 times larger in mice vaccinated with HBsAg_Alum_MPLA/HA complex than in mice vaccinated with HBsAg_Alum complex designed similar to commercially available hepatitis B vaccine, Engerix B. The cytokine and T cell proliferation levels were 2 times and 6 times larger in mice adjuvanted with HBsAg_Alum_MPLA/HA complex than in those vaccinated with HBsAg_Alum. The results therefore indicate that incorporating MPLA and Alum with HA can be a potent strategy to increase both the magnitude and the persistence of HBsAg-specific immune responses to protect hosts against hepatitis B virus infection. PMID:26271830

  17. Synthesis of polyacrylic-acid-based thermochromic polymers

    NASA Astrophysics Data System (ADS)

    Srivastava, Jyoti; Alam, Sarfaraz; Mathur, G. N.

    2003-10-01

    Smart materials respond to environmental stimuli with particular changes in some variables (for example temperature, pressure and electric field etc), for that reason they are often called responsive materials. In the present work, we have synthesized thermochromic polymer based on poly acrylic acid cobalt chloride (CoCl2) and phosphoric acid (H3PO4) that visually and reversibly changes color in the temperature range (70 - 130°C). These thermochromic materials can be used as visual sensors of temperature. Thermochromic polymers are based on polyacrylic acid and CoCl2 complex.

  18. Biomineralized biomimetic organic/inorganic hybrid hydrogels based on hyaluronic acid and poloxamer.

    PubMed

    Huh, Hyun Wook; Zhao, Linlin; Kim, So Yeon

    2015-08-01

    A biomineralized hydrogel system containing hyaluronic acid (HA) and poloxamer composed of a poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) (PEO-PPO-PEO) block copolymer was developed as a biomimetic thermo-responsive injectable hydrogel system for bone regeneration. Using HA and poloxamer macromers with polymerizable residues, organic/inorganic HA/poloxamer hydrogels with various compositions were prepared and subjected to a biomineralization process to mimic the bone extracellular matrix. An increase in HA content within the hydrogels enhanced intermolecular chelation with calcium ions, leading to an increase in nucleation and growth of calcium phosphate in the hydrogels. After the biomineralization procedure, a crystalline formation was observed within and on the surface of the hydrogel. All of the HA/poloxamer hydrogel samples exhibited relatively high water content of greater than 90% at 25 °C, and the water content was influenced by the HA/poloxamer composition, biomineralization, and temperature. In particular, the HA/poloxamer hydrogel was injectable through a syringe without demonstrating appreciable macroscopic fracture at room temperature, whereas it was more opaque and adopted a more rigid structure as the temperature increased because of the increasing hydrophobicity of poloxamer. The enzymatic degradation behavior of the hydrogels depended on the concentration of hyaluronidase, HA/poloxamer composition, and biomineralization. The release kinetics of model drugs from HA/poloxamer hydrogels was primarily dependent on the drug loading content, water content, biomineralization of the hydrogels, and ionic properties of the drug. These results indicate that biomineralized HA/poloxamer hydrogel is a promising candidate material for a biomimetic hydrogel system that promotes bone tissue repair and regeneration via local delivery of drugs. PMID:25933531

  19. Acid-base balance in the developing marsupial: from ectotherm to endotherm.

    PubMed

    Andrewartha, Sarah J; Cummings, Kevin J; Frappell, Peter B

    2014-05-01

    Marsupial joeys are born ectothermic and develop endothermy within their mother's thermally stable pouch. We hypothesized that Tammar wallaby joeys would switch from α-stat to pH-stat regulation during the transition from ectothermy to endothermy. To address this, we compared ventilation (Ve), metabolic rate (Vo2), and variables relevant to blood gas and acid-base regulation and oxygen transport including the ventilatory requirements (Ve/Vo2 and Ve/Vco2), partial pressures of oxygen (PaO2), carbon dioxide (PaCO2), pHa, and oxygen content (CaO2) during progressive hypothermia in ecto- and endothermic Tammar wallabies. We also measured the same variables in the well-studied endotherm, the Sprague-Dawley rat. Hypothermia was induced in unrestrained, unanesthetized joeys and rats by progressively dropping the ambient temperature (Ta). Rats were additionally exposed to helox (80% helium, 20% oxygen) to facilitate heat loss. Respiratory, metabolic, and blood-gas variables were measured over a large body temperature (Tb) range (∼15-16°C in both species). Ectothermic joeys displayed limited thermogenic ability during cooling: after an initial plateau, Vo2 decreased with the progressive drop in Tb. The Tb of endothermic joeys and rats fell despite Vo2 nearly doubling with the initiation of cold stress. In all three groups the changes in Vo2 were met by changes in Ve, resulting in constant Ve/Vo2 and Ve/Vco2, blood gases, and pHa. Thus, although thermogenic capability was nearly absent in ectothermic joeys, blood acid-base regulation was similar to endothermic joeys and rats. This suggests that unlike some reptiles, unanesthetized mammals protect arterial blood pH with changing Tb, irrespective of their thermogenic ability and/or stage of development. PMID:24627357

  20. Streamwater acid-base chemistry and critical loads of atmospheric sulfur deposition in Shenandoah National Park, Virginia.

    PubMed

    Sullivan, T J; Cosby, B J; Webb, J R; Dennis, R L; Bulger, A J; Deviney, F A

    2008-02-01

    A modeling study was conducted to evaluate the acid-base chemistry of streams within Shenandoah National Park, Virginia and to project future responses to sulfur (S) and nitrogen (N) atmospheric emissions controls. Many of the major stream systems in the park have acid neutralizing capacity (ANC) less than 20 microeq/L, levels at which chronic and/or episodic adverse impacts on native brook trout are possible. Model hindcasts suggested that none of these streams had ANC less than 50 microeq/L in 1900. Model projections, based on atmospheric emissions controls representative of laws already enacted as of 2003, suggested that the ANC of those streams simulated to have experienced the largest historical decreases in ANC will increase in the future. The levels of S deposition that were simulated to cause streamwater ANC to increase or decrease to three specified critical levels (0, 20, and 50 microeq/L) ranged from less than zero (ANC level not attainable) to several hundred kg/ha/year, depending on the selected site and its inherent acid-sensitivity, selected ANC endpoint criterion, and evaluation year for which the critical load was calculated. Several of the modeled streams situated on siliciclastic geology exhibited critical loads <0 kg/ha/year to achieve ANC >50 microeq/L in the year 2040, probably due at least in part to base cation losses from watershed soil. The median modeled siliciclastic stream had a calculated critical load to achieve ANC >50 microeq/L in 2100 that was about 3 kg/ha/year, or 77% lower than deposition in 1990, representing the time of model calibration. PMID:17492359

  1. Fabrication and characterization of cross-linkable hydrogel particles based on hyaluronic acid: potential application in vocal fold regeneration.

    PubMed

    Sahiner, Nurettin; Jha, Amit K; Nguyen, David; Jia, Xinqiao

    2008-01-01

    There is a critical need to engineer hyaluronic acid (HA)-based hydrogels with prolonged in vivo residence time, temporal release of therapeutics and matching viscoelasticity for use in vocal fold tissue engineering. We have previously demonstrated the synthesis and characterization of HA-based soft hydrogel particles (HGP) and particle cross-linked networks as injectable materials to treat vocal fold scarring. In this paper, we report a more versatile technique for preparing cross-linkable HA HGP with reduced sizes. HA HGP were synthesized via chemical cross-linking with divinyl sulfone using a sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane reverse micelle system in the presence of 1-heptanol. These HGP were rendered cross-linkable by introducing aldehyde groups via sodium periodate oxidation (oxHGP). The presence of aldehyde groups was confirmed by multi-photon confocal microscope upon fluorescence staining using cascade blue hydrazide. The aldehyde groups were used as reactive handles for covalent cross-linking with HA that has been previously modified with adipic acid dihydrazide (HADH). The resulting doubly cross-linked networks (DXN) are highly pliable and do not break until approx. 200-300% strain. The measured elastic modulus of the DXN is around 500 Pa, while the dynamic viscosity decreases linearly with frequency in log- log scale. The mechanical characteristics of DXN are similar to that of vocal fold lamina propria. In vitro cell-proliferation assays showed that the cross-linkable HA HGP did not adversely affect the proliferation of the cultured fibroblasts as assessed by MTT assay. A low-molecular-weight model drug, rhodamine 6G (R6G), was loaded into oxHGP, and its release was monitored using UV-Vis spectroscopy. R6G-loaded oxHGP maintained their ability to form DXN when mixed with the HAADH solution. Approximately 84% of entrapped R6G was liberated from oxHGP at a rate of 0.24%/min in the first 6 h. When encapsulated in the DXN, R6G was

  2. Effect of Water-Glass Coating on HA and HA-TCP Samples for MSCs Adhesion, Proliferation, and Differentiation.

    PubMed

    Bajpai, Indu; Kim, Duk Yeon; Kyong-Jin, Jung; Song, In-Hwan; Kim, Sukyoung

    2016-01-01

    Ca-P and silicon based materials have become very popular as bone tissue engineering materials. In this study, water-glass (also known as sodium silicate glass) was coated on sintered hydroxyapatite (HA) and HA-TCP (TCP stands for tricalcium phosphate) samples and subsequently heat-treated at 600°C for 2 hrs. X-rays diffraction showed the presence of β- and α-TCP phases along with HA in the HA-TCP samples. Samples without coating, with water-glass coating, and heat-treated after water-glass coating were used to observe the adhesion and proliferation response of bone marrow derived-mesenchymal stem cells (MSCs). Cell culture was carried out for 4 hrs, 1 day, and 7 days. Interestingly, all samples showed similar response for cell adhesion and proliferation up to 7-day culture but fibronectin, E-cadherin, and osteogenic differentiation related genes (osteocalcin and osteopontin) were significantly induced in heat-treated water-glass coated HA-TCP samples. A water-glass coating on Ca-P samples was not found to influence the cell proliferation response significantly but activated some extracellular matrix genes and induced osteogenic differentiation in the MSCs. PMID:27429988

  3. Effect of Water-Glass Coating on HA and HA-TCP Samples for MSCs Adhesion, Proliferation, and Differentiation

    PubMed Central

    Bajpai, Indu; Kim, Duk Yeon; Kyong-Jin, Jung; Song, In-Hwan

    2016-01-01

    Ca-P and silicon based materials have become very popular as bone tissue engineering materials. In this study, water-glass (also known as sodium silicate glass) was coated on sintered hydroxyapatite (HA) and HA-TCP (TCP stands for tricalcium phosphate) samples and subsequently heat-treated at 600°C for 2 hrs. X-rays diffraction showed the presence of β- and α-TCP phases along with HA in the HA-TCP samples. Samples without coating, with water-glass coating, and heat-treated after water-glass coating were used to observe the adhesion and proliferation response of bone marrow derived-mesenchymal stem cells (MSCs). Cell culture was carried out for 4 hrs, 1 day, and 7 days. Interestingly, all samples showed similar response for cell adhesion and proliferation up to 7-day culture but fibronectin, E-cadherin, and osteogenic differentiation related genes (osteocalcin and osteopontin) were significantly induced in heat-treated water-glass coated HA-TCP samples. A water-glass coating on Ca-P samples was not found to influence the cell proliferation response significantly but activated some extracellular matrix genes and induced osteogenic differentiation in the MSCs. PMID:27429988

  4. Roles of urea production, ammonium excretion, and amino acid oxidation in acid-base balance.

    PubMed

    Mackenzie, W

    1986-02-01

    Atkinson and colleagues recently proposed several concepts that contrast with traditional views: first, that acid-base balance is regulated chiefly by the reactions leading to urea production in the liver; second, that ammonium excretion by the kidney plays no role in acid-base homeostasis; and third, that ammonium does not stimulate ureagenesis (except indirectly). To examine these concepts, plasma ions other than bicarbonate are categorized as 1) fixed cations (Na+, K+, Ca2+, and Mg2+, symbolized M+) and anions (Cl-), 2) buffer anions (A-), 3) other anions (X-), and 4) ammonium plus charged amino groups (N+). Since electroneutrality dictates that M+ + N+ = Cl- + HCO3- + A- + X-, it follows that delta HCO3- = delta(M+ - Cl-) - delta A- - delta X- + delta N+. Therefore acid-base disturbances (changes in HCO3-) can be categorized as to how they affect bodily content and hence plasma concentration of each of these four types of ions. The stoichiometry of ureagenesis, glutamine hydrolysis, ammonium and titratable acid excretion, oxidation of neutral, acidic, and basic amino acids, and oxidation of methionine, phosphoserine, and protein are examined to see how they alter these quantities. It is concluded that 1) although ureagenesis is pH dependent and also counteracts a tendency of amino acid oxidation to cause alkalosis, this tendency is inherently limited by the hyperammonemia (delta N+) that necessarily accompanies it, 2) ammonium excretion is equivalent to hydrogen excretion in its effects on acid-base balance if, and only if, it occurs in exchange for sodium or is accompanied by chloride excretion and only when the glutamate generated by glutamine hydrolysis is oxidized.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3511732

  5. Biocompatible hydrogels based on hyaluronic acid cross-linked with a polyaspartamide derivative as delivery systems for epithelial limbal cells.

    PubMed

    Fiorica, Calogero; Senior, Richard A; Pitarresi, Giovanna; Palumbo, Fabio Salvatore; Giammona, Gaetano; Deshpande, Pallavi; MacNeil, Sheila

    2011-07-29

    The aim of this work was to evaluate the potential use of hydrogels based on hyaluronic acid (HA) chemically cross-linked with α,β-poly(N-2-hydroxyethyl) (2-aminoethylcarbamate)-D,L-aspartamide (PHEA-EDA) as substitutes for the amniotic membrane able to release limbal cells for corneal regeneration. Hydrogels, shaped as films, with three different molar ratios (X) between PHEA-EDA and HA (X = 0.5, 1.0 and 1.5) have been investigated. First, it has been evaluated their swelling ability, hydrolytic resistance in simulated physiological fluid and cell compatibility by using human dermal fibroblasts chosen as a model cell line. Then adhesion studies in comparison with collagen gel, have been performed by using immortalized cells, such as human corneal epithelial cells (HCEC) or primary cells, such as rabbit limbal epithelial cells (RLEC) and/or rabbit limbal fibroblasts (RLF). HA/PHEA-EDA hydrogels allow a moderate/poor adhesion of all investigated cells thus suggesting their potential ability to act as cell delivery systems. Finally, commercial contact lenses have been coated, in their inner surface, with each HA/PHEA-EDA film and it has been found that in these conditions, a greater cell adhesion occurs, particularly when RLEC are in co-culture with RLF. However, this adhesion is only transitory, in fact after three days, viable cells are released in the culture medium thus suggesting a potential application of HA/PHEA-EDA hydrogels, for delivering limbal cells in the treatment of corneal damage. PMID:21596121

  6. Evaluation of chain architectures and charge properties of various starch-based flocculants for flocculation of humic acid from water.

    PubMed

    Wu, Hu; Liu, Zhouzhou; Yang, Hu; Li, Aimin

    2016-06-01

    Three different starch-based flocculants with various chain architectures and charge properties have been prepared through etherification, graft copolymerization, or their combination. Two of the flocculants (starch-graft-poly[(2-methacryloyloxyethyl) trimethyl ammonium chloride] and starch-3-chloro-2-hydroxypropyl triethyl ammonium chloride, denoted as STC-g-PDMC and STC-CTA respectively) are cationic, and another one (carboxymethyl starch-graft-poly[(2-methacryloyloxyethyl) trimethyl ammonium chloride], denoted as CMS-g-PDMC) is amphoteric. Those three flocculants have shown far different flocculation efficiency and floc properties for the removal of humic acid (HA) from water due to their distinct structural features. The effects of pH, flocculant dose, and initial HA concentration have been studied systematically. Accordingly, STC-g-PDMC and CMS-g-PDMC with strongly cationic branch chains have much better flocculation performance than polyaluminum chloride (PAC) and STC-CTA, the latter of which features linear chain architecture and strongly cationic pieces lying on its chain backbone. It indicates that the architecture of cationic branch chains plays an important role in HA flocculation due to their significantly enhanced bridging effects. Moreover, STC-g-PDMC has higher HA removal efficiency and better floc properties than CMS-g-PDMC, suggesting that charge neutralization effects make notable contributions to HA removal and that the additional anionic pieces on CMS-g-PDMC can weaken its flocculation performance. In addition, STC-g-PDMC used as coagulant aid for PAC has also been tried, which observably reduces the optimal dose of the inorganic coagulant. PMID:27038383

  7. Poly (ricinoleic acid) based novel thermosetting elastomer.

    PubMed

    Ebata, Hiroki; Yasuda, Mayumi; Toshima, Kazunobu; Matsumura, Shuichi

    2008-01-01

    A novel bio-based thermosetting elastomer was prepared by the lipase-catalyzed polymerization of methyl ricinoleate with subsequent vulcanization. Some mechanical properties of the cured carbon black-filled polyricinoleate compounds were evaluated as a thermosetting elastomer. It was found that the carbon black-filled polyricinoleate compounds were readily cured by sulfur curatives to produce a thermosetting elastomer that formed a rubber-like sheet with a smooth and non-sticky surface. The curing behaviors and mechanical properties were dependent on both the molecular weight of the polyricinoleate and the amount of the sulfur curatives. Cured compounds consisting of polyricinoleate with a molecular weight of 100,800 showed good mechanical properties, such as a hardness of 48 A based on the durometer A measurements, a tensile strength at break of 6.91 MPa and an elongation at break of 350%. PMID:18469493

  8. A symmetry-based formal synthesis of zaragozic acid A.

    PubMed

    Freeman-Cook, K D; Halcomb, R L

    2000-09-22

    A symmetry-based strategy for the synthesis of the zaragozic acids is reported. Two enantioselective dihydroxylations were used to establish the absolute configuration of a C(2) symmetric intermediate. Noteworthy transformations include a group-selective lactonization, which accomplished an end-differentiation of a pseudo-C(2) symmetric intermediate. Late stage protecting group adjustments and oxidations accomplished a formal synthesis of zaragozic acid A. PMID:10987953

  9. Soil Studies: Applying Acid-Base Chemistry to Environmental Analysis.

    ERIC Educational Resources Information Center

    West, Donna M.; Sterling, Donna R.

    2001-01-01

    Laboratory activities for chemistry students focus attention on the use of acid-base chemistry to examine environmental conditions. After using standard laboratory procedures to analyze soil and rainwater samples, students use web-based resources to interpret their findings. Uses CBL probes and graphing calculators to gather and analyze data and…

  10. High School Students' Concepts of Acids and Bases.

    ERIC Educational Resources Information Center

    Ross, Bertram H. B.

    An investigation of Ontario high school students' understanding of acids and bases with quantitative and qualitative methods revealed misconceptions. A concept map, based on the objectives of the Chemistry Curriculum Guideline, generated multiple-choice items and interview questions. The multiple-choice test was administered to 34 grade 12…

  11. Pyrolytic Behavior of Amino Acids and Nucleic Acid Bases: Implications for Their Survival during Extraterrestrial Delivery

    NASA Astrophysics Data System (ADS)

    Basiuk, Vladimir A.; Navarro-González, Rafael

    1998-08-01

    The idea of extraterrestrial delivery of organic matter (by comets, asteroids, meteorites, and interplanetary dust particles) to the early Earth is very popular at present. A strong argument for its favor is the detection of a large variety of organic compounds, including amino acids and nucleic acid bases, in carbonaceous chondrites. Whether these compounds can be delivered by other space bodies is unclear and depends primarily on capability of the biomolecules to survive high temperature regimes during atmospheric deceleration and impacts to the terrestrial surface. Although some indirect estimates of simple biomolecules' survivability have been reported, there is an evident lack of experimental data. In the present study we demonstrate that some simple amino acids, purines, and pyrimidines do not completely decompose even under volatilization at 500°C in a nitrogen atmosphere at normal pressure, with the percentage of survival of the order of 1-10%. In the case of amino acids, several types of condensation products form (piperazine-2,5-diones, bicyclic amidines, hydantoins, etc.) with total yields in the same percentage range, preserving amino acid residues intact and being able to release free amino acids upon hydrolysis. Taking into account the property of amino acids as well as nucleic acid bases to sublime in vacuum under temperatures of about 200°C, one should expect that the biomolecules in the dust particles actually do not experience the temperatures as much as 400-500°C and rapidly sublime during the atmospheric passage, dissipating in the upper atmosphere. The biomolecules' survival during catastrophic airbursts of comets is also possible, but very unlikely for asteroidal impacts to the terrestrial surface (at least for those resulting in complete pulverization and evaporation of the projectiles).

  12. MODELING OF THE ENDOSOMOLYTIC ACTIVITY OF HA2-TAT PEPTIDES WITH RED BLOOD CELLS AND GHOSTS†

    PubMed Central

    Lee, Ya-Jung; Johnson, Gregory; Pellois, Jean-Philippe

    2011-01-01

    HA2-TAT is a peptide-based delivery agent that combines the pH-sensitive HA2 fusion peptide from Influenza and the cell-penetrating peptide TAT from HIV. This chimeric peptide is engineered to induce the cellular uptake of macromolecules into endosomes via the TAT moiety and to respond to the acidifying lumen of endosomes to cause membrane leakage and release of macromolecules into cells via the HA2 moiety. The question of how HA2 and TAT affect the properties of one another remains, however, unanswered and the behavior of the peptide inside endosomes is mostly uncharacterized. To address these issues, the binding and membrane leakage activity of a glutamic acid-enriched analogue E5-TAT was assessed with red blood cells and giant unilamellar vesicles as membrane models for endosomes. Hemolysis and microscopy assays reveal that E5-TAT binds to membranes in a pH-dependent manner and causes membrane leakage by inducing the formation of pores through which macromolecules can escape. The TAT moiety contributes to this activity by causing a shift in the pH response of E5 and by binding to negatively charged phospholipids. On the other hand, TAT binding to glycosaminoglycans reduces the lytic activity of E5-TAT. Addition of TAT to the C-terminus of E5 can therefore either increase or inhibit the activity of E5 depending on the cellular components present at the membrane. Taken together, these results suggest a model for the endosomolytic activity of the peptide and provide the basis for the molecular design of future delivery agents. PMID:20704453

  13. Nucleic acid-based nanoengineering: novel structures for biomedical applications

    PubMed Central

    Li, Hanying; LaBean, Thomas H.; Leong, Kam W.

    2011-01-01

    Nanoengineering exploits the interactions of materials at the nanometre scale to create functional nanostructures. It relies on the precise organization of nanomaterials to achieve unique functionality. There are no interactions more elegant than those governing nucleic acids via Watson–Crick base-pairing rules. The infinite combinations of DNA/RNA base pairs and their remarkable molecular recognition capability can give rise to interesting nanostructures that are only limited by our imagination. Over the past years, creative assembly of nucleic acids has fashioned a plethora of two-dimensional and three-dimensional nanostructures with precisely controlled size, shape and spatial functionalization. These nanostructures have been precisely patterned with molecules, proteins and gold nanoparticles for the observation of chemical reactions at the single molecule level, activation of enzymatic cascade and novel modality of photonic detection, respectively. Recently, they have also been engineered to encapsulate and release bioactive agents in a stimulus-responsive manner for therapeutic applications. The future of nucleic acid-based nanoengineering is bright and exciting. In this review, we will discuss the strategies to control the assembly of nucleic acids and highlight the recent efforts to build functional nucleic acid nanodevices for nanomedicine. PMID:23050076

  14. Crystal and molecular structure of eight organic acid-base adducts from 2-methylquinoline and different acids

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Jin, Shouwen; Tao, Lin; Liu, Bin; Wang, Daqi

    2014-08-01

    Eight supramolecular complexes with 2-methylquinoline and acidic components as 4-aminobenzoic acid, 2-aminobenzoic acid, salicylic acid, 5-chlorosalicylic acid, 3,5-dinitrosalicylic acid, malic acid, sebacic acid, and 1,5-naphthalenedisulfonic acid were synthesized and characterized by X-ray crystallography, IR, mp, and elemental analysis. All of the complexes are organic salts except compound 2. All supramolecular architectures of 1-8 involve extensive classical hydrogen bonds as well as other noncovalent interactions. The results presented herein indicate that the strength and directionality of the classical hydrogen bonds (ionic or neutral) between acidic components and 2-methylquinoline are sufficient to bring about the formation of binary organic acid-base adducts. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-8 displayed 2D-3D framework structure.

  15. ACID PRECIPITATION IN NORTH AMERICA: 1984 ANNUAL DATA SUMMARY FROM ACID DEPOSITION SYSTEM DATA BASE

    EPA Science Inventory

    The report gives a summary of 1984 wet deposition precipitation chemistry data collected in North America and available in the Acid Deposition System (ADS) data base. North American wet deposition monitoring networks with data in ADS are NADP/NTN, CANSAP, APN, UAPSP, MAP3S/PCN, W...

  16. ACID PRECIPITATION IN NORTH AMERICA: 1983 ANNUAL DATA SUMMARY FROM ACID DEPOSITION SYSTEM DATA BASE

    EPA Science Inventory

    The report gives a summary of 1983 wet deposition precipitation chemistry data collected in North America and available in the Acid Deposition System (ADS) data base. North American wet deposition monitoring networks with data in ADS are NADP/NTN, CANSAP, APN, UAPSP, MAP3S/PCN, W...

  17. Acid/base account and minesoils: A review

    SciTech Connect

    Hossner, L.R.; Brandt, J.E.

    1997-12-31

    Generation of acidity from the oxidation of iron sulfides (FeS{sub 2}) is a common feature of geological materials exposed to the atmosphere by mining activities. Acid/base accounting (ABA) has been the primary method to evaluate the acid- or alkaline-potential of geological materials and to predict if weathering of these materials will have an adverse effect on terrestrial and aquatic environments. The ABA procedure has also been used to evaluate minesoils at different stages of weathering and, in some cases, to estimate lime requirements. Conflicting assessments of the methodology have been reported in the literature. The ABA is the fastest and easiest way to evaluate the acid-forming characteristics of overburden materials; however, accurate evaluations sometimes require that ABA data be examined in conjunction with additional sample information and results from other analytical procedures. The end use of ABA data, whether it be for minesoil evaluation or water quality prediction, will dictate the method`s interpretive criteria. Reaction kinetics and stoichiometry may vary and are not clearly defined for all situations. There is an increasing awareness of the potential for interfering compounds, particularly siderite (FeCO{sub 3}), to be present in geological materials associated with coal mines. Hardrock mines, with possible mixed sulfide mineralogy, offer a challenge to the ABA, since acid generation may be caused by minerals other than pyrite. A combination of methods, static and kinetic, is appropriate to properly evaluate the presence of acid-forming materials.

  18. Acid-Base Disorders--A Computer Simulation.

    ERIC Educational Resources Information Center

    Maude, David L.

    1985-01-01

    Describes and lists a program for Apple Pascal Version 1.1 which investigates the behavior of the bicarbonate-carbon dioxide buffer system in acid-base disorders. Designed specifically for the preclinical medical student, the program has proven easy to use and enables students to use blood gas parameters to arrive at diagnoses. (DH)

  19. Using Spreadsheets to Produce Acid-Base Titration Curves.

    ERIC Educational Resources Information Center

    Cawley, Martin James; Parkinson, John

    1995-01-01

    Describes two spreadsheets for producing acid-base titration curves, one uses relatively simple cell formulae that can be written into the spreadsheet by inexperienced students and the second uses more complex formulae that are best written by the teacher. (JRH)

  20. Turkish Prospective Chemistry Teachers' Alternative Conceptions about Acids and Bases

    ERIC Educational Resources Information Center

    Boz, Yezdan

    2009-01-01

    The purpose of this study was to obtain prospective chemistry teachers' conceptions about acids and bases concepts. Thirty-eight prospective chemistry teachers were the participants. Data were collected by means of an open-ended questionnaire and semi-structured interviews. Analysis of data indicated that most prospective teachers did not have…

  1. Students' Understanding of Acids/Bases in Organic Chemistry Contexts

    ERIC Educational Resources Information Center

    Cartrette, David P.; Mayo, Provi M.

    2011-01-01

    Understanding key foundational principles is vital to learning chemistry across different contexts. One such foundational principle is the acid/base behavior of molecules. In the general chemistry sequence, the Bronsted-Lowry theory is stressed, because it lends itself well to studying equilibrium and kinetics. However, the Lewis theory of…

  2. Gamma ray-induced synthesis of hyaluronic acid/chondroitin sulfate-based hydrogels for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zhao, Linlin; Gwon, Hui-Jeong; Lim, Youn-Mook; Nho, Young-Chang; Kim, So Yeon

    2015-01-01

    Hyaluronic acid (HA)/chondroitin sulfate (CS)/poly(acrylic acid) (PAAc) hydrogel systems were synthesized by gamma-ray irradiation without the use of additional initiators or crosslinking agents to achieve a biocompatible hydrogel system for skin tissue engineering. HA and CS derivatives with polymerizable residues were synthesized. Then, the hydrogels composed of glycosaminoglycans, HA, CS, and a synthetic ionic polymer, PAAc, were prepared using gamma-ray irradiation through simultaneous free radical copolymerization and crosslinking. The physicochemical properties of the HA/CS/PAAc hydrogels having various compositions were investigated to evaluate their feasibility as artificial skin substitutes. The gel fractions of the HA/CS/PAAc hydrogels increased in absorbed doses up to 15 kGy, and they exhibited 91-93% gel fractions under 15 kGy radiation. All of the HA/CS/PAAc hydrogels exhibited relatively high water contents of over 90% and reached an equilibrium swelling state within 24 h. The enzymatic degradation kinetics of the HA/CS/PAAc hydrogels depended on both the concentration of the hyaluronidase solution and the ratio of HA/CS/PAAc. The in vitro drug release profiles of the HA/CS/PAAc hydrogels were significantly influenced by the interaction between the ionic groups in the hydrogels and the ionic drug molecules as well as the swelling of the hydrogels. From the cytotoxicity results of human keratinocyte (HaCaT) cells cultured with extracts of the HA/CS/PAAc hydrogels, all of the HA/CS/PAAc hydrogel samples tested showed relatively high cell viabilities of more than 82%, and did not induce any significant adverse effects on cell viability.

  3. Primordial transport of sugars and amino acids via Schiff bases

    NASA Astrophysics Data System (ADS)

    Stillwell, William; Rau, Aruna

    1981-09-01

    Experimental support is given for a model concerning the origin of a primordial transport system. The model is based on the facilitated diffusion of amino acids stimulated by aliphatic aldehyde carriers and sugars stimulated by aliphatic amine carriers. The lipid-soluble diffusing species is the Schiff base. The possible role of this simple transport system in the origin of an early protocell is discussed.

  4. Counterion specificity of surfactants based on dicarboxylic amino acids.

    PubMed

    Bordes, Romain; Tropsch, Jürgen; Holmberg, Krister

    2009-10-15

    The behavior in solution of a series of amino acid-based surfactants having two carboxyl groups separated by a spacer of one, two, or three carbon atoms has been investigated. All three surfactants precipitated on addition of acid, but the aspartate surfactant (with a two-carbon spacer) was considerably more resistant to precipitation than the aminomalonate surfactant (one-carbon spacer) and the glutamate surfactant (three-carbon spacer). The interactions with the monovalent counterions lithium, sodium, and potassium were investigated by conductivity. It was found that lithium ions bound the strongest and potassium ions the weakest to the surfactant micelles. These results were interpreted using the hard and soft acid-base theory. Comparing the three surfactants with respect to binding of one specific counterion, sodium, showed that the aminomalonate surfactant, which has the shortest spacer, bound sodium ions the strongest and the glutamate surfactant, which has the longest spacer, had the lowest affinity for the counterion. Also that could be explained by the hard and soft acid-base concept. The glutamate surfactant was found to be considerably more resistant to calcium ions than the two other surfactants. This was attributed to this surfactant forming an intermolecular complex with the calcium ion at the air-water interface while the aminomalonate and the aspartate surfactants, with shorter distance between the carboxylate groups could form six- and seven-membered intramolecular calcium complexes. PMID:19608191

  5. Acid-base transport in pancreas—new challenges

    PubMed Central

    Novak, Ivana; Haanes, Kristian A.; Wang, Jing

    2013-01-01

    Along the gastrointestinal tract a number of epithelia contribute with acid or basic secretions in order to aid digestive processes. The stomach and pancreas are the most extreme examples of acid (H+) and base (HCO−3) transporters, respectively. Nevertheless, they share the same challenges of transporting acid and bases across epithelia and effectively regulating their intracellular pH. In this review, we will make use of comparative physiology to enlighten the cellular mechanisms of pancreatic HCO−3 and fluid secretion, which is still challenging physiologists. Some of the novel transporters to consider in pancreas are the proton pumps (H+-K+-ATPases), as well as the calcium-activated K+ and Cl− channels, such as KCa3.1 and TMEM16A/ANO1. Local regulators, such as purinergic signaling, fine-tune, and coordinate pancreatic secretion. Lastly, we speculate whether dys-regulation of acid-base transport contributes to pancreatic diseases including cystic fibrosis, pancreatitis, and cancer. PMID:24391597

  6. Acid-base Balance in Acute Gastrointestinal Bleeding*

    PubMed Central

    Northfield, T. C.; Kirby, B. J.; Tattersfield, Anne E.

    1971-01-01

    Acid-base balance has been studied in 21 patients with acute upper gastrointestinal bleeding. A low plasma bicarbonate concentration was found in nine patients, accompanied in each case by a base deficit of more than 3 mEq/litre, indicating a metabolic acidosis. Three patients had a low blood pH. Hyperlactataemia appeared to be a major cause of the acidosis. This was not accompanied by a raised blood pyruvate concentration. The hyperlactataemia could not be accounted for on the basis of hyperventilation, intravenous infusion of dextrose, or arterial hypoxaemia. Before blood transfusion it was most pronounced in patients who were clinically shocked, suggesting that it may have resulted from poor tissue perfusion and anaerobic glycolysis. Blood transfusion resulted in a rise in lactate concentration in seven patients who were not clinically shocked, and failed to reverse a severe uncompensated acidosis in a patient who was clinically shocked. These effects of blood transfusion are probably due to the fact that red blood cells in stored bank blood, with added acid-citrate-dextrose solution, metabolize the dextrose anaerobically to lactic acid. Monitoring of acid-base balance is recommended in patients with acute gastrointestinal bleeding who are clinically shocked. A metabolic acidosis can then be corrected with intravenous sodium bicarbonate. PMID:5313902

  7. Antibacterial Property of Cold-Sprayed HA-Ag/PEEK Coating

    NASA Astrophysics Data System (ADS)

    Sanpo, Noppakun; Tan, Meng Lu; Cheang, Philip; Khor, K. A.

    2009-03-01

    The antibacterial behavior of HA-Ag (silver-doped hydroxyapatite) nanopowder and their composite coatings were investigated against Escherichia coli (DH5α). HA-Ag nanopowder and PEEK (poly-ether-ether-ketone)-based HA-Ag composite powders were synthesized using in-house powder processing techniques. Bacteria culture assay of HA-Ag nanopowder and their composite powders displayed excellent bacteriostatic activity against E. coli. The antibacterial activity increased with increasing concentration of HA-Ag nanoparticle in these composite powders. These nanocomposite powders were subsequently used as feedstock to generate antibacterial coatings via cold spray technology. The ratios of HA-Ag to PEEK in their composite powders were 80:20, 60:40, 40:60, and 20:80 (wt.%). Microstructural characterization and phase analysis of feedstock powders and as-deposited coatings were carried out using FESEM/EDX and XRD. Antibacterial nanocomposite HA-Ag/PEEK coatings were successfully deposited using cold spraying parameters of 11-12 bars at preheated air temperature between 150 and 160 °C. These as-sprayed coatings of HA-Ag/PEEK composite powders comprising varying HA-Ag and PEEK ratios retained their inherent antibacterial property as verified from bacterial assay. The results indicated that the antibacterial activity increased with increasing HA-Ag nanopowder concentration in the composite powder feedstock and cold-sprayed coating.

  8. Bio-based production of organic acids with Corynebacterium glutamicum.

    PubMed

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-03-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, L- and D-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. PMID:23199277

  9. Effects of incorporation of HA/ZrO(2) into glass ionomer cement (GIC).

    PubMed

    Gu, Y W; Yap, A U J; Cheang, P; Khor, K A

    2005-03-01

    Glass ionomer cements (GICs) are a class of bioactive cements that bond directly to bone. In this paper, a new bioactive hydroxyapatite (HA)/zirconia (ZrO(2))-filled GIC composite was developed to improve the biocompatibility and bioactivity of the GICs with the surrounding bone and connective tissues. Nano-sized HA/30 wt% ZrO(2) powders were heat treated at 700 degrees Celsius and 800 degrees Celsius for 3 h to elucidate the influence of the crystallinity of composite powders on the performance of HA/ZrO(2)-GICs. The effects of different volume percentages of HA/ZrO(2) powders (4, 12, 28 and 40 vol%) substituted within GICs were investigated based on their microhardness, compressive strength and diametral tensile strength. The HA/ZrO(2)-GICs composite was soaked in distilled water for 1 day and 1 week before subjecting the samples to mechanical testing. Results showed that the glass and HA/ZrO(2) particles were distributed uniformly in the GIC matrix. The substitution of highly crystalline HA/ZrO(2) improved the mechanical properties of the HA/ZrO(2)-GICs due to the slow resorption rate for highly crystalline powders in distilled water. The mechanical properties of HA/ZrO(2)-GICs increased with increasing soak time due to the continuous formation of aluminium salt bridges, which improved the final strength of the cements. The compositions 4 and 12 vol% HA/ZrO(2)-GICs exhibited superior mechanical properties than the original GICs. The mechanical properties of HA/ZrO(2)-GICs were found to be much better than those of HA-GICs because ZrO(2) has the attributes of high strength, high modulus, and is significantly harder than glass and HA particles. Furthermore, ZrO(2) does not dissolve with increasing soaking time. PMID:15350775

  10. Single residue deletions along the length of the influenza HA fusion peptide lead to inhibition of membrane fusion function

    SciTech Connect

    Langley, William A.; Thoennes, Sudha; Bradley, Konrad C.; Galloway, Summer E.; Talekar, Ganesh R.; Cummings, Sandra F.; Vareckova, Eva; Russell, Rupert J.; Steinhauer, David A.

    2009-11-25

    A panel of eight single amino acid deletion mutants was generated within the first 24 residues of the fusion peptide domain of the of the hemagglutinin (HA) of A/Aichi/2/68 influenza A virus (H3N2 subtype). The mutant HAs were analyzed for folding, cell surface transport, cleavage activation, capacity to undergo acid-induced conformational changes, and membrane fusion activity. We found that the mutant DELTAF24, at the C-terminal end of the fusion peptide, was expressed in a non-native conformation, whereas all other deletion mutants were transported to the cell surface and could be cleaved into HA1 and HA2 to activate membrane fusion potential. Furthermore, upon acidification these cleaved HAs were able to undergo the characteristic structural rearrangements that are required for fusion. Despite this, all mutants were inhibited for fusion activity based on two separate assays. The results indicate that the mutant fusion peptide domains associate with target membranes in a non-functional fashion, and suggest that structural features along the length of the fusion peptide are likely to be relevant for optimal membrane fusion activity.

  11. Chimeric proteins define variable and essential regions of Ha-ras-encoded protein

    SciTech Connect

    Lowe, D.G.; Ricketts, M.; Levinson, A.D.; Goeddel, D.V.

    1988-02-01

    The biological role of amino acid differences between the human 21-kDa Ha-ras protein (p21) and the human 23-kDa R-ras protein (p23) was investigated by engineering mutant Ha-ras p21 molecules containing divergent amino acid sequences from R-ras p23. Variant amino acids from R-ras p23 regions 1-30, 52-57, 67-78, 1-30 and 67-78 together, and 112-124 were substituted for the corresponding Ha-ras p21 amino acid regions 1-4, 26-31, 41-52, 1-4 and 41-52 together, and 86-98, respectively. Rat fibroblasts transfected with genes encoding these position-12 valine-substituted chimeric Ha-ras proteins displayed the same properties of morphological transformation and anchorage-independent growth as Ha-ras T24 oncogene-transformed fibroblasts. However, substitution of variant amino acids from the 80 C-terminal residues (amino acids 138-218) of R-ras p23 for the corresponding p21 amino acids (residues 112-189) inactivated the transforming activity of position-12 valine-substituted p21. The converse substitution of Ha-ras p21 C-terminal residues into R-ras p23 did not result in transformation by position-38 valine-substituted p232. These data are discussed in terms of the structure of ras proteins and the nature of interactions determining the specificity of effector function.

  12. Self-glazing ceramic tiles based on acidic igneous glasses

    SciTech Connect

    Merkin, A.P.; Nanazashvili, V.I.

    1988-07-01

    A technology was derived to produce self-glazing ceramic tiles based on single-component systems of acidic igneous (volcanic) glasses. A weakly alkaline solution of NaOH or KOH was used as the sealing water to activate the sintering process. Tests conducted on the self-glazing ceramic tiles showed that their water absorption amounts to 2.5-8%, linear shrinkage is 3.2-7%, and frost resistance amounts to 35-70 cycles. The application of acidic igneous glasses as the main raw material for the production of ceramic facing tiles made it possible to widen the raw material base and simplify the technology for fabricating ceramic facing tiles at lower cost. The use of waste products when processing perlite-bearing rocks, when carrying out mining and cutting of tuffs, slags, and tuff breccia for recovering cut materials was recommended.

  13. Nucleic acid-based approaches to STAT inhibition.

    PubMed

    Sen, Malabika; Grandis, Jennifer R

    2012-10-01

    Silencing of abnormally activated genes can be accomplished in a highly specific manner using nucleic acid based approaches. The focus of this review includes the different nucleic acid based inhibition strategies such as antisense oligodeoxynucleotides, small interfering RNA (siRNA), dominant-negative constructs, G-quartet oligonucleotides and decoy oligonucleotides, their mechanism of action and the effectiveness of these approaches to targeting the STAT (signal transducer and activator of transcription) proteins in cancer. Among the STAT proteins, especially STAT3, followed by STAT5, are the most frequently activated oncogenic STATs, which have emerged as plausible therapeutic cancer targets. Both STAT3 and STAT5 have been shown to regulate numerous oncogenic signaling pathways including proliferation, survival, angiogenesis and migration/invasion. PMID:24058785

  14. Radio Observations of SN 2008ha

    NASA Astrophysics Data System (ADS)

    Soderberg, Alicia

    2009-03-01

    I observed the peculiar SN 2008ha (CBET #1567) with the Very Large Array on 2008 Nov 21.99 UT at a frequency of 8.46 GHz. No radio source is detected at the optical SN position to a limit of 93 microJy (3 sigma). At a distance of 21 Mpc, this corresponds to a radio luminosity limit similar to those of nearby Type Ia supernovae (Panagia et al. 2006). It is also consistent with the observed radio luminosities for the nearest Type Ibc supernovae (e.g., SN 2002ap; Berger, Kulkarni & Chevalier 2002), but a factor of 10^3 and 10^5 below the radio luminosities of sub-energetic GRBs (Soderberg et al.

  15. Self-assembled nanoparticles based on amphiphilic chitosan derivative and hyaluronic acid for gene delivery.

    PubMed

    Liu, Ya; Kong, Ming; Cheng, Xiao Jie; Wang, Qian Qian; Jiang, Li Ming; Chen, Xi Guang

    2013-04-15

    The present work described nanoparticles (NPs) made of oleoyl-carboxymethy-chitosan (OCMCS)/hyaluronic acid (HA) using coacervation process as novel potential carriers for gene delivery. An N/P ratio of 5 and OCMCS/HA weight ratio of 4 were the optimal conditions leading to the smallest (164.94 nm), positive charged (+14.2 mV) and monodispersed NPs. OCMCS-HA/DNA (OHD) NPs showed higher in vitro DNA release rates and increased cellular uptake by Caco-2 cells due to the HA involved in NPs. The MTT survival assay indicated no significant cytotoxicity. The transfection efficiency of OHD NPs was 5-fold higher than OCMCS/DNA (OD) NPs; however, it decreased significantly in the presence of excess free HA. The results indicated that OHD NPs internalized in Caco-2 cells were mediated by the hyaluronan receptor CD44. The data obtained in the present research gave evidence of the potential of OHD NPs for the targeting and further transfer of genes to the epithelial cells. PMID:23544543

  16. Analysis of the mineral acid-base components of acid-neutralizing capacity in Adirondack Lakes

    NASA Astrophysics Data System (ADS)

    Munson, R. K.; Gherini, S. A.

    1993-04-01

    Mineral acids and bases influence pH largely through their effects on acid-neutralizing capacity (ANC). This influence becomes particularly significant as ANC approaches zero. Analysis of data collected by the Adirondack Lakes Survey Corporation (ALSC) from 1469 lakes throughout the Adirondack region indicates that variations in ANC in these lakes correlate well with base cation concentrations (CB), but not with the sum of mineral acid anion concentrations (CA). This is because (CA) is relatively constant across the Adirondacks, whereas CB varies widely. Processes that supply base cations to solution are ion-specific. Sodium and silica concentrations are well correlated, indicating a common source, mineral weathering. Calcium and magnesium also covary but do not correlate well with silica. This indicates that ion exchange is a significant source of these cations in the absence of carbonate minerals. Iron and manganese concentrations are elevated in the lower waters of some lakes due to reducing conditions. This leads to an ephemeral increase in CB and ANC. When the lakes mix and oxic conditions are restored, these ions largely precipitate from solution. Sulfate is the dominant mineral acid anion in ALSC lakes. Sulfate concentrations are lowest in seepage lakes, commonly about 40 μeq/L less than in drainage lakes. This is due in part to the longer hydraulic detention time in seepage lakes, which allows slow sulfate reduction reactions more time to decrease lake sulfate concentration. Nitrate typically influences ANC during events such as snowmelt. Chloride concentrations are generally low, except in lakes impacted by road salt.

  17. Acid-base actuation of [c2]daisy chains.

    PubMed

    Fang, Lei; Hmadeh, Mohamad; Wu, Jishan; Olson, Mark A; Spruell, Jason M; Trabolsi, Ali; Yang, Ying-Wei; Elhabiri, Mourad; Albrecht-Gary, Anne-Marie; Stoddart, J Fraser

    2009-05-27

    A versatile synthetic strategy, which was conceived and employed to prepare doubly threaded, bistable [c2]daisy chain compounds, is described. Propargyl and 1-pentenyl groups have been grafted onto the stoppers of [c2]daisy chain molecules obtained using a template-directed synthetic protocol. Such [c2]daisy chain molecules undergo reversible extension and contraction upon treatment with acid and base, respectively. The dialkyne-functionalized [c2]daisy chain (AA) was subjected to an [AA+BB] type polymerization with an appropriate diazide (BB) to afford a linear, mechanically interlocked, main-chain polymer. The macromolecular properties of this polymer were characterized by chronocoulometry, size exclusion chromatography, and static light-scattering analysis. The acid-base switching properties of both the monomers and the polymer have been studied in solution, using (1)H NMR spectroscopy, UV/vis absorption spectroscopy, and cyclic voltammetry. The experimental results demonstrate that the functionalized [c2]daisy chains, along with their polymeric derivatives, undergo quantitative, efficient, and fully reversible switching processes in solution. Kinetics measurements demonstrate that the acid/base-promoted extension/contraction movements of the polymeric [c2]daisy chain are actually faster than those of its monomeric counterpart. These observations open the door to correlated molecular motions and to changes in material properties. PMID:19419175

  18. Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts.

    PubMed

    Le Nôtre, Jérôme; Witte-van Dijk, Susan C M; van Haveren, Jacco; Scott, Elinor L; Sanders, Johan P M

    2014-09-01

    Methacrylic acid, an important monomer for the plastics industry, was obtained in high selectivity (up to 84%) by the decarboxylation of itaconic acid using heterogeneous catalysts based on Pd, Pt and Ru. The reaction takes place in water at 200-250 °C without any external added pressure, conditions significantly milder than those described previously for the same conversion with better yield and selectivity. A comprehensive study of the reaction parameters has been performed, and the isolation of methacrylic acid was achieved in 50% yield. The decarboxylation procedure is also applicable to citric acid, a more widely available bio-based feedstock, and leads to the production of methacrylic acid in one pot in 41% selectivity. Aconitic acid, the intermediate compound in the pathway from citric acid to itaconic acid was also used successfully as a substrate. PMID:25045161

  19. Electrosprayed nanocomposites based on hyaluronic acid derivative and Soluplus for tumor-targeted drug delivery.

    PubMed

    Lee, Song Yi; Lee, Jeong-Jun; Park, Ju-Hwan; Lee, Jae-Young; Ko, Seung-Hak; Shim, Jae-Seong; Lee, Jongkook; Heo, Moon Young; Kim, Dae-Duk; Cho, Hyun-Jong

    2016-09-01

    Nanocomposite (NC) based on hyaluronic acid-ceramide (HACE) and Soluplus (SP) was fabricated by electrospraying for the tumor-targeted delivery of resveratrol (RSV). Amphiphilic property of both HACE and SP has been used to entrap RSV in the internal cavity of NC. Electrospraying with established experimental conditions produced HACE/SP/RSV NC with 230nm mean diameter, narrow size distribution, negative zeta potential, and >80% drug entrapment efficiency. Sustained and pH-dependent drug release profiles were observed in drug release test. Cellular uptake efficiency of HACE/SP NC was higher than that of SP NC, mainly based on HA-CD44 receptor interaction, in MDA-MB-231 (CD44 receptor-positive human breast cancer) cells. Selective tumor targetability of HACE/SP NC, compared to SP NC, was also confirmed in MDA-MB-231 tumor-xenograted mouse model using a near-infrared fluorescence (NIRF) imaging. According to the results of pharmacokinetic study in rats, decreased in vivo clearance and increased half-life of RSV in NC group, compared to drug solution group, were shown. Given that these experimental results, developed HACE/SP NC can be a promising theranostic nanosystem for CD44 receptor-expressed cancers. PMID:27208440

  20. Removal of Uranium in Drinking Water: Brimac Environmental Services, Inc. Brimac HA 216 Adsorptive Media

    EPA Science Inventory

    The Brimac HA 216 Adsorptive Media was tested for uranium (U) removal from a drinking water source (well water) at Grappone Toyota located in Bow, New Hampshire. The HA 216 media is a hydroxyapatite-based material. A pilot unit, consisting of a TIGG Corporation Cansorb® C-5 ste...

  1. Recent Developments in Peptide-Based Nucleic Acid Delivery

    PubMed Central

    Veldhoen, Sandra; Laufer, Sandra D.; Restle, Tobias

    2008-01-01

    Despite the fact that non-viral nucleic acid delivery systems are generally considered to be less efficient than viral vectors, they have gained much interest in recent years due to their superior safety profile compared to their viral counterpart. Among these synthetic vectors are cationic polymers, branched dendrimers, cationic liposomes and cell-penetrating peptides (CPPs). The latter represent an assortment of fairly unrelated sequences essentially characterised by a high content of basic amino acids and a length of 10–30 residues. CPPs are capable of mediating the cellular uptake of hydrophilic macromolecules like peptides and nucleic acids (e.g. siRNAs, aptamers and antisense-oligonucleotides), which are internalised by cells at a very low rate when applied alone. Up to now, numerous sequences have been reported to show cell-penetrating properties and many of them have been used to successfully transport a variety of different cargos into mammalian cells. In recent years, it has become apparent that endocytosis is a major route of internalisation even though the mechanisms underlying the cellular translocation of CPPs are poorly understood and still subject to controversial discussions. In this review, we will summarise the latest developments in peptide-based cellular delivery of nucleic acid cargos. We will discuss different mechanisms of entry, the intracellular fate of the cargo, correlation studies of uptake versus biological activity of the cargo as well as technical problems and pitfalls. PMID:19325804

  2. Recent developments in peptide-based nucleic acid delivery.

    PubMed

    Veldhoen, Sandra; Laufer, Sandra D; Restle, Tobias

    2008-06-01

    Despite the fact that non-viral nucleic acid delivery systems are generally considered to be less efficient than viral vectors, they have gained much interest in recent years due to their superior safety profile compared to their viral counterpart. Among these synthetic vectors are cationic polymers, branched dendrimers, cationic liposomes and cell-penetrating peptides (CPPs). The latter represent an assortment of fairly unrelated sequences essentially characterised by a high content of basic amino acids and a length of 10-30 residues. CPPs are capable of mediating the cellular uptake of hydrophilic macromolecules like peptides and nucleic acids (e.g. siRNAs, aptamers and antisense-oligonucleotides), which are internalised by cells at a very low rate when applied alone. Up to now, numerous sequences have been reported to show cell-penetrating properties and many of them have been used to successfully transport a variety of different cargos into mammalian cells. In recent years, it has become apparent that endocytosis is a major route of internalisation even though the mechanisms underlying the cellular translocation of CPPs are poorly understood and still subject to controversial discussions. In this review, we will summarise the latest developments in peptide-based cellular delivery of nucleic acid cargos. We will discuss different mechanisms of entry, the intracellular fate of the cargo, correlation studies of uptake versus biological activity of the cargo as well as technical problems and pitfalls. PMID:19325804

  3. Acid-base chemistry of frustrated water at protein interfaces.

    PubMed

    Fernández, Ariel

    2016-01-01

    Water molecules at a protein interface are often frustrated in hydrogen-bonding opportunities due to subnanoscale confinement. As shown, this condition makes them behave as a general base that may titrate side-chain ammonium and guanidinium cations. Frustration-based chemistry is captured by a quantum mechanical treatment of proton transference and shown to remove same-charge uncompensated anticontacts at the interface found in the crystallographic record and in other spectroscopic information on the aqueous interface. Such observations are untenable within classical arguments, as hydronium is a stronger acid than ammonium or guanidinium. Frustration enables a directed Grotthuss mechanism for proton transference stabilizing same-charge anticontacts. PMID:26762189

  4. Interactions between groundwater and surface water in a Virginia coastal plain watershed. 2. Acid-base chemistry

    USGS Publications Warehouse

    O'Brien, A. K.; Eshleman, K.N.; Pollard, J.S.

    1994-01-01

    At the Reedy Creek watershed sulphate concentrations were higher and alkalinity lower in the groundwater in the hillslope than in the stream. Sulphate concentrations and alkalinity observed in groundwater in the wetland were usually between those of the hillslope and stream. These data suggest that the wetland is a sink for sulphate and acidity; sulphate reduction may be an important mechanism for generating alkalinity in the wetland. The DOC concentrations were higher in the stream and wetland groundwater than in hillslope groundwater. No consistent spatial patterns in sulphate concentrations were observed in surface water chemistry under base flow conditions. Stream discharge was found to be positively correlated with base flow sulphate concentrations and inversely correlated with alkalinity. A sulphate mass balance indicated that approximately 30% of the estimated 24.9 kg SO42-/ha yr wet atmospheric input was exported from the watershed as sulphate in stream runoff in the water year 1990. -from Authors

  5. Efficacy of a Parainfluenza Virus 5 (PIV5)-Based H7N9 Vaccine in Mice and Guinea Pigs: Antibody Titer towards HA Was Not a Good Indicator for Protection

    PubMed Central

    Johnson, Scott; Dlugolenski, Daniel; Phan, Shannon; Tompkins, S. Mark; He, Biao

    2015-01-01

    H7N9 has caused fatal infections in humans. A safe and effective vaccine is the best way to prevent large-scale outbreaks in the human population. Parainfluenza virus 5 (PIV5), an avirulent paramyxovirus, is a promising vaccine vector. In this work, we generated a recombinant PIV5 expressing the HA gene of H7N9 (PIV5-H7) and tested its efficacy against infection with influenza virus A/Anhui/1/2013 (H7N9) in mice and guinea pigs. PIV5-H7 protected the mice against lethal H7N9 challenge. Interestingly, the protection did not require antibody since PIV5-H7 protected JhD mice that do not produce antibody against lethal H7N9 challenge. Furthermore, transfer of anti-H7 serum did not protect mice against H7N9 challenge. PIV5-H7 generated high HAI titers in guinea pigs, however it did not protect against H7N9 infection or transmission. Intriguingly, immunization of guinea pigs with PIV5-H7 and PIV5 expressing NP of influenza A virus H5N1 (PIV5-NP) conferred protection against H7N9 infection and transmission. Thus, we have obtained a H7N9 vaccine that protected both mice and guinea pigs against lethal H7N9 challenge and infection respectively. PMID:25803697

  6. Determination of Doxorubicin in Stealth Hyalurionic Acid-Based Nanoparticles in Rat Plasma by the Liquid-Liquid Nanoparticles-Breaking Extraction Method: Application to a Pharmacokinetic Study.

    PubMed

    Han, Xiaopeng; Wei, Wei; Zhong, Lu; Luo, Cong; Wu, Chunnuan; Jiang, Qikun; Sun, Jin

    2016-09-01

    An efficient extraction of doxorubicin (Dox) from homemade stealth hyalurionic acid (HA)-based nanoparticles (NPs) in rat plasma could not be performed by previously published methods. Therefore, we attempted to establish the novel NPs-breaking and UPLC-MS-MS method for evaluating the pharmacokinetic profiles of the homemade stealth HA NPs in rats. The pretreatment method of plasma samples used the liquid-liquid extraction method with isopropyl alcohol as NPs-breaking and protein-precipitating solvents, and the NPs-breaking efficiency of isopropyl alcohol was as high as 97.2%. The analyte and gliclazide (internal standard) were extracted from plasma samples with isopropyl alcohol and were separated on UPLC BEH C18 with a mobile phase consisting of methanol and water (containing 0.1% formic acid). The method demonstrated good linearity at the concentrations ranging from 5 to 5,000 ng/mL. The intra- and interday relative standard deviations were >10%. Finally, the method was successfully applied to a pharmacokinetic study of homemade stealth HA-based NPs in rats following intravenous administration. PMID:27240566

  7. Potential irritation of lysine derivative surfactants by hemolysis and HaCaT cell viability.

    PubMed

    Sanchez, L; Mitjans, M; Infante, M R; Vinardell, M P

    2006-02-01

    Surfactants represent one of the most common constituents in topical pharmaceutical and cosmetic applications or cleansers. Since adverse skin and ocular reactions can be caused by them, it is important to evaluate damaging effects. Amino acid-based surfactants deserve particular attention because of their low toxicity and environmental friendly properties. New lysine derivative surfactants associated with heavy and light counterions were tested. The ocular irritancy was assessed by hemolysis, and photohemolysis was employed to evaluate their phototoxicity. Cytotoxicity on HaCaT cells was determined by neutral red uptake and MTT assay to predict skin irritation. All lysine derivative surfactants were less hemolytic and thus less eye-irritating than the commercial surfactants used as model irritants. No phototoxic effects were found. All surfactants presented cytotoxic effects as demonstrated by decrease of neutral red uptake and reduction of MTT salt, with clear concentration-effect profiles. However, the rates of cytotoxicity on HaCaT for the new surfactants suggested that they were less cytotoxic and then, less skin-irritating than the reference ones; surfactants with heavy counterions were the less cytotoxic. The anionic surfactants investigated in the present work may constitute a promising class of surfactants given their low irritancy potential for pharmaceutical and cosmetic preparations. PMID:16135402

  8. Renal regulation of acid-base equilibrium during chronic administration of mineral acid.

    PubMed

    De Sousa, R C; Harrington, J T; Ricanati, E S; Shelkrot, J W; Schwartz, W B

    1974-02-01

    load is the inability of the distal exchange mechanism to conserve the Na+ increment fully by means of H+ exchange. Escape of Na+ and K+ into the urine and the resulting stimulus to Na(+)-H+ exchange remove this constraint and are responsible for establishment of a new steady-state of acid-base equilibrium at plasma [HCO3-] levels significantly higher than those seen with HCl. The feeding of HCl in the presence of a normal salt intake led to a degree of metabolic acidosis not significantly different from that seen in dogs ingesting a low-salt diet. We suggest that the presence of dietary sodium at distal exchange sites did not enhance acid excretion because it is only after a loss of body sodium stores that sodium avidity is increased sufficiently to allow full removal of the acid load. The present findings indicate that the fundamental factors controlling acid excretion and bicarbonate reabsorption in metabolic acidosis are closely similar to those operative in metabolic alkalosis. PMID:11344560

  9. Production of Influenza Virus HA1 Harboring Native-Like Epitopes by Pichia pastoris.

    PubMed

    Lin, Qingshan; Yang, Kunyu; He, Fangping; Jiang, Jie; Li, Tingting; Chen, Zhenqin; Li, Rui; Chen, Yixin; Li, Shaowei; Zhao, Qinjian; Xia, Ningshao

    2016-08-01

    The outbreak of the H5N1 highly pathogenic avian influenza which exhibits high variation had brought a serious threat to the safety of humanity. To overcome this high variation, hemagglutinin-based recombinant subunit vaccine with rational design has been considered as a substitute for traditional virion-based vaccine development. Here, we expressed HA1 part of the hemagglutinin protein using the Pichia pastoris expression system and attained a high yield of about 120 mg/L through the use of fed-batch scalable fermentation. HA1 protein in the culture supernatant was purified using two-step ion-exchange chromatography. The resultant HA1 protein was homogeneous in solution in a glycosylated form, as confirmed by endoglycosidase H treatment. Sedimentation velocity tests, silver staining of protein gels, and immunoblotting were used for verification. The native HA1 reacted well with conformational, cross-genotype, neutralizing monoclonal antibodies, whereas a loss of binding activity was noted with the denatured HA1 form. Moreover, the murine anti-HA1 serum exhibited a virus-capture capability in the hemagglutination inhibition assay, which suggests that HA1 harbors native-like epitopes. In conclusion, soluble HA1 was efficiently expressed and purified in this study. The functional glycosylated protein will be an alternative for the development of recombinant protein-based influenza vaccine. PMID:27040529

  10. Nucleic acid-based tissue biomarkers of urologic malignancies.

    PubMed

    Dietrich, Dimo; Meller, Sebastian; Uhl, Barbara; Ralla, Bernhard; Stephan, Carsten; Jung, Klaus; Ellinger, Jörg; Kristiansen, Glen

    2014-08-01

    Molecular biomarkers play an important role in the clinical management of cancer patients. Biomarkers allow estimation of the risk of developing cancer; help to diagnose a tumor, ideally at an early stage when cure is still possible; and aid in monitoring disease progression. Furthermore, they hold the potential to predict the outcome of the disease (prognostic biomarkers) and the response to therapy (predictive biomarkers). Altogether, biomarkers will help to avoid tumor-related deaths and reduce overtreatment, and will contribute to increased survival and quality of life in cancer patients due to personalized treatments. It is well established that the process of carcinogenesis is a complex interplay between genomic predisposition, acquired somatic mutations, epigenetic changes and genomic aberrations. Within this complex interplay, nucleic acids, i.e. RNA and DNA, play a fundamental role and therefore represent ideal candidates for biomarkers. They are particularly promising candidates because sequence-specific hybridization and amplification technologies allow highly accurate and sensitive assessment of these biomarker levels over a broad dynamic range. This article provides an overview of nucleic acid-based biomarkers in tissues for the management of urologic malignancies, i.e. tumors of the prostate, testis, kidney, penis, urinary bladder, renal pelvis, ureter and other urinary organs. Special emphasis is put on genomic, transcriptomic and epigenomic biomarkers (SNPs, mutations [genomic and mitochondrial], microsatellite instabilities, viral and bacterial DNA, DNA methylation and hydroxymethylation, mRNA expression, and non-coding RNAs [lncRNA, miRNA, siRNA, piRNA, snRNA, snoRNA]). Due to the multitude of published biomarker candidates, special focus is given to the general applicability of different molecular classes as biomarkers and some particularly promising nucleic acid biomarkers. Furthermore, specific challenges regarding the development and clinical

  11. Bio-based production of organic acids with Corynebacterium glutamicum

    PubMed Central

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-01-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, l-and d-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. Funding Information Work in the laboratories of the authors was supported by the Fachagentur Nachwachsende Rohstoffe (FNR) of the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV; FNR Grants 220-095-08A and 220-095-08D; Bio-ProChemBB project, ERA-IB programme), by the Deutsche Bundesstiftung Umwelt (DBU Grant AZ13040/05) and the Evonik Degussa AG. PMID

  12. Biocompatibility and biomechanical characteristics of loofah based scaffolds combined with hydroxyapatite, cellulose, poly-l-lactic acid with chondrocyte-like cells.

    PubMed

    Cecen, Berivan; Kozaci, Leyla Didem; Yuksel, Mithat; Ustun, Ozcan; Ergur, Bekir Ugur; Havitcioglu, Hasan

    2016-12-01

    The current study reports the biocompatibility and biomechanical characteristics of loofah-based scaffolds combined with hydroxyapatite (HA), cellulose, poly-l-lactic acid (PLLA) with chondrocytes-like cells. Scanning electron microscope (SEM) micrographs of the scaffolds showed that the addition of PLLA usually resulted in an increase in cell's attachment on scaffolds. Mechanical and elemental analyzes were assessed using tensile test and Energy Dispersive X-ray spectrometry (EDS), respectively. In summary, we showed that the loofah+PLLA+HA scaffolds perform significantly better than other loofah-based scaffolds employed in terms of increasing a diversity of mechanical properties including tensile strength and Young's modulus. Based on the analysis of the differential scanning calorimetry (DSC) thermograms and EDS spectrums that give an idea about the calcium phosphate (CaP) ratios, the improvement in the mechanical properties could principally be recognized to the strong interaction formed between loofah, PLLA and HA. The viability of chondrocytes on loofah-based scaffolds was analyzed by XTT tests. However, none of the scaffolds have proved to be toxic in metabolic activity. The histological evaluation obtained by hematoxylin and eosin (H&E), Masson trichrome, toluidine blue and immunohistochemistry methods showed that cells in all scaffolds produced extracellular matrix that defined proteoglycan and type I-II collagens. The results of this study suggest that the loofah-based scaffold with desirable properties can be considered as an ideal candidate for cartilage tissue engineering applications. PMID:27612733

  13. Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Pandini, Stefano; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    In this research work, biocomposites based on crosslinked particles of poly(acrylic acid), commonly used as superabsorbent polymer (SAP), and poly-L-lactic acid (PLLA) were developed to elucidate the role of the filler (i.e., polymeric crosslinked particles) on the overall physico-mechanical behavior and to obtain superabsorbent thermoplastic products. Samples prepared by melt-blending of components in different ratios showed a biphasic system with a regular distribution of particles, with diameter ranging from 5 to 10 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA i.e. superabsorbent poly(lactic acid), showed excellent swelling properties, demonstrating that cross-linked particles retain their superabsorbent ability, as in their free counterparts, even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidence enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles which induce regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore PLLA foams, produced in absence of organic solvents and chemical foaming agents, with good physico-mechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production.

  14. General Analytical Procedure for Determination of Acidity Parameters of Weak Acids and Bases

    PubMed Central

    Pilarski, Bogusław; Kaliszan, Roman; Wyrzykowski, Dariusz; Młodzianowski, Janusz; Balińska, Agata

    2015-01-01

    The paper presents a new convenient, inexpensive, and reagent-saving general methodology for the determination of pKa values for components of the mixture of diverse chemical classes weak organic acids and bases in water solution, without the need to separate individual analytes. The data obtained from simple pH-metric microtitrations are numerically processed into reliable pKa values for each component of the mixture. Excellent agreement has been obtained between the determined pKa values and the reference literature data for compounds studied. PMID:25692072

  15. Optimization and translation of MSC-based hyaluronic acid hydrogels for cartilage repair

    NASA Astrophysics Data System (ADS)

    Erickson, Isaac E.

    2011-12-01

    Traumatic injury and disease disrupt the ability of cartilage to carry joint stresses and, without an innate regenerative response, often lead to degenerative changes towards the premature development of osteoarthritis. Surgical interventions have yet to restore long-term mechanical function. Towards this end, tissue engineering has been explored for the de novo formation of engineered cartilage as a biologic approach to cartilage repair. Research utilizing autologous chondrocytes has been promising, but clinical limitations in their yield have motivated research into the potential of mesenchymal stem cells (MSCs) as an alternative cell source. MSCs are multipotent cells that can differentiate towards a chondrocyte phenotype in a number of biomaterials, but no combination has successfully recapitulated the native mechanical function of healthy articular cartilage. The broad objective of this thesis was to establish an MSC-based tissue engineering approach worthy of clinical translation. Hydrogels are a common class of biomaterial used for cartilage tissue engineering and our initial work demonstrated the potential of a photo-polymerizable hyaluronic acid (HA) hydrogel to promote MSC chondrogenesis and improved construct maturation by optimizing macromer and MSC seeding density. The beneficial effects of dynamic compressive loading, high MSC density, and continuous mixing (orbital shaker) resulted in equilibrium modulus values over 1 MPa, well in range of native tissue. While compressive properties are crucial, clinical translation also demands that constructs stably integrate within a defect. We utilized a push-out testing modality to assess the in vitro integration of HA constructs within artificial cartilage defects. We established the necessity for in vitro pre-maturation of constructs before repair to achieve greater integration strength and compressive properties in situ. Combining high MSC density and gentle mixing resulted in integration strength over 500 k

  16. Functional nucleic-acid-based sensors for environmental monitoring.

    PubMed

    Sett, Arghya; Das, Suradip; Bora, Utpal

    2014-10-01

    Efforts to replace conventional chromatographic methods for environmental monitoring with cheaper and easy to use biosensors for precise detection and estimation of hazardous environmental toxicants, water or air borne pathogens as well as various other chemicals and biologics are gaining momentum. Out of the various types of biosensors classified according to their bio-recognition principle, nucleic-acid-based sensors have shown high potential in terms of cost, sensitivity, and specificity. The discovery of catalytic activities of RNA (ribozymes) and DNA (DNAzymes) which could be triggered by divalent metallic ions paved the way for their extensive use in detection of heavy metal contaminants in environment. This was followed with the invention of small oligonucleotide sequences called aptamers which can fold into specific 3D conformation under suitable conditions after binding to target molecules. Due to their high affinity, specificity, reusability, stability, and non-immunogenicity to vast array of targets like small and macromolecules from organic, inorganic, and biological origin, they can often be exploited as sensors in industrial waste management, pollution control, and environmental toxicology. Further, rational combination of the catalytic activity of DNAzymes and RNAzymes along with the sequence-specific binding ability of aptamers have given rise to the most advanced form of functional nucleic-acid-based sensors called aptazymes. Functional nucleic-acid-based sensors (FNASs) can be conjugated with fluorescent molecules, metallic nanoparticles, or quantum dots to aid in rapid detection of a variety of target molecules by target-induced structure switch (TISS) mode. Although intensive research is being carried out for further improvements of FNAs as sensors, challenges remain in integrating such bio-recognition element with advanced transduction platform to enable its use as a networked analytical system for tailor made analysis of environmental

  17. Liquid crystal based biosensors for bile acid detection

    NASA Astrophysics Data System (ADS)

    He, Sihui; Liang, Wenlang; Tanner, Colleen; Fang, Jiyu; Wu, Shin-Tson

    2013-03-01

    The concentration level of bile acids is a useful indicator for early diagnosis of liver diseases. The prevalent measurement method in detecting bile acids is the chromatography coupled with mass spectrometry, which is precise yet expensive. Here we present a biosensor platform based on liquid crystal (LC) films for the detection of cholic acid (CA). This platform has the advantage of low cost, label-free, solution phase detection and simple analysis. In this platform, LC film of 4-Cyano-4'-pentylbiphenyl (5CB) was hosted by a copper grid supported with a polyimide-coated glass substrate. By immersing into sodium dodecyl sulfate (SDS) solution, the LC film was coated with SDS which induced a homeotropic anchoring of 5CB. Addition of CA introduced competitive adsorption between CA and SDS at the interface, triggering a transition from homeotropic to homogeneous anchoring. The detection limit can be tuned by changing the pH value of the solution from 12uM to 170uM.

  18. Ultrasensitive impedimetric lectin based biosensor for glycoproteins containing sialic acid

    PubMed Central

    Bertok, Tomas; Gemeiner, Pavol; Mikula, Milan; Gemeiner, Peter; Tkac, Jan

    2016-01-01

    We report on an ultrasensitive label-free lectin-based impedimetric biosensor for the determination of the sialylated glycoproteins fetuin and asialofetuin. A sialic acid binding agglutinin from Sambucus nigra I was covalently immobilised on a mixed self-assembled monolayer (SAM) consisting of 11-mercaptoundecanoic acid and 6-mercaptohexanol. Poly(vinyl alcohol) was used as a blocking agent. The sensor layer was characterised by atomic force microscopy, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. The biosensor exhibits a linear range that spans 7 orders of magnitude for both glycoproteins, with a detection limit as low as 0.33 fM for fetuin and 0.54 fM for asialofetuin. We also show, by making control experiments with oxidised asialofetuin, that the biosensor is capable of quantitatively detecting changes in the fraction of sialic acid on glycoproteins. We conclude that this work lays a solid foundation for future applications of such a biosensor in terms of the diagnosis of diseases such as chronic inflammatory rheumatoid arthritis, genetic disorders and cancer, all of which are associated with aberrant glycosylation of protein biomarkers. PMID:27231402

  19. An empirically based electrosource horizon lead-acid battery model

    SciTech Connect

    Moore, S.; Eshani, M.

    1996-09-01

    An empirically based mathematical model of a lead-acid battery for use in the Texas A and M University`s Electrically Peaking Hybrid (ELPH) computer simulation is presented. The battery model is intended to overcome intuitive difficulties with currently available models by employing direct relationships between state-of-charge, voltage, and power demand. The model input is the power demand or load. Model outputs include voltage, an instantaneous battery efficiency coefficient and a state-of-charge indicator. A time and current depend voltage hysteresis is employed to ensure correct voltage tracking inherent with the highly transient nature of a hybrid electric drivetrain.

  20. Biofuncationalized microfiber Bragg grating for acid-based sensing

    NASA Astrophysics Data System (ADS)

    Ran, Yang; Huang, Yunyun; Shen, Xiang; Sun, Dandan; Wang, Xiuxin; Jin, Long; Li, Jie; Guan, Baiou

    2014-05-01

    We demonstrate an acid-based sensor from the biofuncationalized microfiber Bragg grating. By electrostatic selfassembly layer-by-layer technique, the film consisting of sodium alginate which has hygroscopic response to the potential of hydrogen is coated on the fiber surface. Consequently, the refractive index variation of the sensing film caused by water absorption can be measured by mFBG's higher order mode peak which can be translated into pH value information. The sensitivity of the sensor is received as high as 265pm/pH.

  1. The comprehensive acid-base characterization of glutathione

    NASA Astrophysics Data System (ADS)

    Mirzahosseini, Arash; Somlyay, Máté; Noszál, Béla

    2015-02-01

    Glutathione in its thiol (GSH) and disulfide (GSSG) forms, and 4 related compounds were studied by 1H NMR-pH titrations and a case-tailored evaluation method. The resulting acid-base properties are quantified in terms of 128 microscopic protonation constants; the first complete set of such parameters for this vitally important pair of compounds. The concomitant 12 interactivity parameters were also determined. Since biological redox systems are regularly compared to the GSH-GSSG pair, the eight microscopic thiolate basicities determined this way are exclusive means for assessing subtle redox parameters in a wide pH range.

  2. Acid-Base Homeostasis: Overview for Infusion Nurses.

    PubMed

    Masco, Natalie A

    2016-01-01

    Acid-base homeostasis is essential to normal function of the human body. Even slight alterations can significantly alter physiologic processes at the tissue and cellular levels. To optimally care for patients, nurses must be able to recognize signs and symptoms that indicate deviations from normal. Nurses who provide infusions to patients-whether in acute care, home care, or infusion center settings-have a responsibility to be able to recognize the laboratory value changes that occur with the imbalance and appreciate the treatment options, including intravenous infusions. PMID:27598068

  3. CoralWatch Data Analysis at Hoi Ha Wan Marine Park, Hong Kong

    NASA Astrophysics Data System (ADS)

    Lau, A.; Hodgson, P.

    2015-12-01

    CoralWatch is a conservation organization that is based at the University of Queensland in Australia. Their development of the "Coral Health Chart" standardized the colour of corals for the further investigation of coral health and bleaching. The location of this project is in the NE part of Hong Kong in New Territories. The location faces ShenZhen, a heavily industrialized city, which is known for its pollution of the Pearl River. This area is protected by the Hong Kong Government and the WWF since 1996.Human activities have caused large amounts of greenhouse gasses to be released into the atmosphere. Carbon dioxide has caused the global temperature to rise and made ocean waters more acidic due to ocean respiration. The ocean is a carbon sink for mankind and the effect of severe acidification is negatively affecting marine life. The increase of temperature diminishes the amount of diversity of marine life; the decreasing acidity of the water has eliminated many species of shellfish and sea anemone; the increase of marine exploitation has decreased the diversity of marine life. The release of toxic waste, mainly mercury, waste and plastic products has also polluted the oceans which negatively impact coral reefs and endanger marine life.The data has been collected by observing the colours and discolouration (bleaching) of the corals of approximately 40 colonies per month. The species of coral in Hoi Ha Wan include, Favites flexuosa, Goniopora columna,Leptastrea purpurea, Lithophyllon undulatum, Pavona decussata. and Platygyra acuta (AFCD,1). The evaluation of four years of coralwatch data has shown the bleaching of hard boulder corals in Hoi Ha Wan, Hong Kong, has halted and the reefs are being to show signs of regeneration. Local marine biologists credited the improved situation of the corals to protected status of the area.

  4. Determination of total antioxidant capacity of humic acids using CUPRAC, Folin-Ciocalteu, noble metal nanoparticle- and solid-liquid extraction-based methods.

    PubMed

    Karadirek, Şeyda; Kanmaz, Nergis; Balta, Zeynep; Demirçivi, Pelin; Üzer, Ayşem; Hızal, Jülide; Apak, Reşat

    2016-06-01

    Total antioxidant capacity (TAC) of humic acid (HA) samples was determined using CUPRAC (CUPric Reducing Antioxidant Capacity), FC (Folin-Ciocalteu), QUENCHER-CUPRAC, QUENCHER-FC, Ag-NP (Silver nanoparticle)‒ and Au-NP (Gold nanoparticle)‒based methods. Conventional FC and modified FC (MFC) methods were applied to solid samples. Because of decreased solubility of Folin-Ciocalteu's phenol reagent in organic solvents, solvent effect on TAC measurement was investigated using QUENCHER-CUPRAC assay by using ethanol:distilled water and dimethyl sulfoxide:distilled water with varying ratios. To see the combined effect of solubilization (leaching) and TAC measurement of humic acids simultaneously, QUENCHER experiments were performed at 25°C and 50°C; QUENCHER-CUPRAC and QUENCHER-FC methods agreed well and had similar precision in F-statistics. Although the Gibbs free energy change (ΔG°) of the oxidation of HA dihydroxy phenols with the test reagents were negative, the ΔG° was positive only for the reaction of CUPRAC reagent with isolated monohydric phenols, showing CUPRAC selectivity toward polyphenolic antioxidants. This is the first work on the antioxidant capacity measurement of HA having a sparingly soluble matrix where enhanced solubilization of bound phenolics is achieved with coupled oxidation by TAC reagents. PMID:27130098

  5. [Practical approach to complex acid-base disorders using a slide rule].

    PubMed

    Rives, E; Grimaud, D

    1986-01-01

    Diagnosis of mixed acid-base disturbances is often difficult. Nowadays it depends on biochemical and statistical interpretation, coupled with clinical data. The acid-base slide-rule is a useful tool to carry out this five step procedure, which it simplifies, giving rapidly at the patient's bed-side an objective support for the diagnosis of acid-base disturbances. PMID:3777572

  6. 78 FR 36698 - Microbiology Devices; Reclassification of Nucleic Acid-Based Systems for Mycobacterium tuberculosis

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... Nucleic Acid-Based Systems for Mycobacterium tuberculosis Complex in Respiratory Specimens AGENCY: Food...) is proposing to reclassify nucleic acid-based in vitro diagnostic devices for the detection of... Controls Guideline: Nucleic Acid-Based In Vitro Diagnostic Devices for the Detection of...

  7. Soluble adenylyl cyclase is an acid-base sensor in epithelial base-secreting cells.

    PubMed

    Roa, Jinae N; Tresguerres, Martin

    2016-08-01

    Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2',5'-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology. PMID:27335168

  8. Superacidity of closo-dodecaborate-based Brønsted acids: a DFT study.

    PubMed

    Lipping, Lauri; Leito, Ivo; Koppel, Ivar; Krossing, Ingo; Himmel, Daniel; Koppel, Ilmar A

    2015-01-29

    The structures and intrinsic gas-phase acidities (GA) of some dodecaborane acids, the derivatives of YB12H11H (Y = PF3, NH3, NF3, NMe3), B12H12H2, and B12H12H(-) (HA, H2A, and HA(-), respectively) have been computationally explored with DFT B3LYP method at the 6-311+G** level of theory as new possible directions of creating superstrong Brønsted acids. Depending on the nature and number of the substituents different protonation geometries were investigated. In general, the GA values of the neutral systems varied according to the substituents in the following order: CF3 < F < Cl and in case of anionic acids: CF3 < Cl < F. The dodecatrifluoromethyl derivative of H2A, B12(CF3)12H1H2, emerges as the strongest among the considered acids and is expected to be in the gas phase at least as strong as the undecatrifluoromethyl carborane, CB11(CF3)11H1H. The GA values of the respective monoanionic forms of the considered acids all, but the (CF3)11 derivative, remained higher than the widely used threshold of superacidity. The HA derivatives' (Y = PF3, NF3) GA's were approximately in the same range as the H2A acids'. In the case Y = NH3 or NMe3 the GA values were significantly higher. Also, the pKa values of B12H12H2, CB11H12H, and their perfluorinated derivatives in 1,2-dichloroethane (DCE) were estimated with SMD and cluster-continuum model calculations. The obtained estimates of pKa values of the perfluorinated derivatives are by around 30 units lower than that of trifluoromethylsulfonylimide, making these acids the strongest ever predicted in solution. The derivatives of B12H12H2 are as a rule not significantly weaker acids than the respective derivatives of CB11H12H. This is important for expanding practical applicability of this type of acids and their anions, as they are synthetically much more accessible than the corresponding CB11H12(-) derivatives. PMID:25513897

  9. PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation.

    PubMed

    Ghorbani, Fereshteh Mohammad; Kaffashi, Babak; Shokrollahi, Parvin; Seyedjafari, Ehsan; Ardeshirylajimi, Abdolreza

    2015-03-15

    Chitosan (Ch), and poly(ɛ-caprolactone) (PCL), widely used as biomaterials with desirable properties for tissue engineering applications, were both blended with zinc-doped hydroxyapatite nanoparticles(nZnHA) and electrospun into nanofibrous scaffolds using formic acid/acetic acid. The rationale behind this study was to demonstrate that presence of small quantities of Zn(2+) ions doped in HA nanoparticles can improve biocompatibility of PCL/Ch blends. SEM observation revealed that average fiber diameter was increased from about 136 nm for a PCL/Ch blend, to around 210 nm for PCL/Ch/nZnHA nanocomposite. PCL/Ch/nZnHA scaffolds offered higher elastic modulus (about 3-fold) and tensile strength (nearly 1.5-fold) than the corresponding PCL/Ch scaffolds. In-vitro biocompatibility studies using human adipose derived stem cells (hAD-MSCs), demonstrated that the presence of only 5 wt% nZnHA in PCL/Ch/nZnHA nanocomposites enhanced hAD-MSCs' attachment compared to PCL/Ch and PCL/Ch/nHA. Finally, hAD-MSCs proliferation occurred at significantly higher rates of 1.5, 1.3 and 1.2 times on PCL/Ch/nZnHA scaffold compared to PCL, PCL/Ch and PCL/Ch/nHA, respectively. PMID:25542118

  10. The Effects of Borate Minerals on the Synthesis of Nucleic Acid Bases, Amino Acids and Biogenic Carboxylic Acids from Formamide

    NASA Astrophysics Data System (ADS)

    Saladino, Raffaele; Barontini, Maurizio; Cossetti, Cristina; di Mauro, Ernesto; Crestini, Claudia

    2011-08-01

    The thermal condensation of formamide in the presence of mineral borates is reported. The products afforded are precursors of nucleic acids, amino acids derivatives and carboxylic acids. The efficiency and the selectivity of the reaction was studied in relation to the elemental composition of the 18 minerals analyzed. The possibility of synthesizing at the same time building blocks of both genetic and metabolic apparatuses, along with the production of amino acids, highlights the interest of the formamide/borate system in prebiotic chemistry.

  11. Design of chitosan-based nanoparticles functionalized with gallic acid.

    PubMed

    Lamarra, J; Rivero, S; Pinotti, A

    2016-10-01

    Active nanoparticles based on chitosan could be applied as a support for the modulation of gallic acid delivery. In this sense, these nanostructures could be employed in different fields such as food, packaging, and pharmaceutical areas. The design parameters of chitosan-based nanoparticles functionalized with gallic acid (GA) were optimized through RSM by means of the analysis of zeta potential (ZP) and percentage encapsulation efficiency (PEE). The nanoparticles were prepared by ionotropic gelation using tripolyphosphate (TPP), at different combinations of chitosan (CH) concentration, CH:TPP ratio and GA. Global desirability methodology allowed finding the optimum formulation that included CH 0.76% (w/w), CH:TPP ratio of 5 and 37mgGA/gCH leading to ZP of +50mV and 82% of PEE. Analysis through QuickScan and turbidity demonstrated that the most stable nanoparticle suspensions were achieved combining concentrations of chitosan ranging between 0.5 and 0.75% with CH:TPP ratios higher than 3. These suspensions had high stability confirmed by means ZP and transmittance values which were higher than +25mV and 0.21 on average, respectively, as well as nanoparticle diameters of about 140nm. FTIR revealed the occurrence of both hydrogen bond and ionic interactions of CH-TPP which allowed the encapsulation and the improvement of the stability of the active agent. PMID:27287172

  12. An ascorbic acid sensor based on cadmium sulphide quantum dots.

    PubMed

    Ganiga, Manjunatha; Cyriac, Jobin

    2016-05-01

    We present a Förster resonance energy transfer (FRET)-based fluorescence detection of vitamin C [ascorbic acid (AA)] using cadmium sulphide quantum dots (CdS QDs) and diphenylcarbazide (DPC). Initially, DPC was converted to diphenylcarbadiazone (DPCD) in the presence of CdS QDs to form QD-DPCD. This enabled excited-state energy transfer from the QDs to DPCD, which led to the fluorescence quenching of QDs. The QD-DPCD solution was used as the sensor solution. In the presence of AA, DPCD was converted back to DPC, resulting in the fluorescence recovery of CdS QDs. This fluorescence recovery can be used to detect and quantify AA. Dynamic range and detection limit of this sensing system were found to be 60-300 nM and 2 nM, respectively. We also performed fluorescence lifetime analyses to confirm existence of FRET. Finally, the sensor responded with equal accuracy to actual samples such as orange juice and vitamin C tablets. Graphical abstract Schematic showing the FRET based fluorescence detection of ascorbic acid. PMID:27023220

  13. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite.

    PubMed

    Valentijn-Benz, Marianne; van 't Hof, Wim; Bikker, Floris J; Nazmi, Kamran; Brand, Henk S; Sotres, Javier; Lindh, Liselott; Arnebrant, Thomas; Veerman, Enno C I

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for agents that protect the enamel against erosive attacks. In the present study we studied in vitro the anti-erosive effects of a number of sphingolipids and sphingoid bases, which form the backbone of sphingolipids. Pretreatment of HAp discs with sphingosine, phytosphingosine (PHS), PHS phosphate and sphinganine significantly protected these against acid-induced demineralization by 80 ± 17%, 78 ± 17%, 78 ± 7% and 81 ± 8%, respectively (p < 0.001). On the other hand, sphingomyelin, acetyl PHS, octanoyl PHS and stearoyl PHS had no anti-erosive effects. Atomic force measurement revealed that HAp discs treated with PHS were almost completely and homogeneously covered by patches of PHS. This suggests that PHS and other sphingoid bases form layers on the surface of HAp, which act as diffusion barriers against H(+) ions. In principle, these anti-erosive properties make PHS and related sphingosines promising and attractive candidates as ingredients in oral care products. PMID:25300299

  14. Effect of temperature on the acid-base properties of the alumina surface: microcalorimetry and acid-base titration experiments.

    PubMed

    Morel, Jean-Pierre; Marmier, Nicolas; Hurel, Charlotte; Morel-Desrosiers, Nicole

    2006-06-15

    Sorption reactions on natural or synthetic materials that can attenuate the migration of pollutants in the geosphere could be affected by temperature variations. Nevertheless, most of the theoretical models describing sorption reactions are at 25 degrees C. To check these models at different temperatures, experimental data such as the enthalpies of sorption are thus required. Highly sensitive microcalorimeters can now be used to determine the heat effects accompanying the sorption of radionuclides on oxide-water interfaces, but enthalpies of sorption cannot be extracted from microcalorimetric data without a clear knowledge of the thermodynamics of protonation and deprotonation of the oxide surface. However, the values reported in the literature show large discrepancies and one must conclude that, amazingly, this fundamental problem of proton binding is not yet resolved. We have thus undertaken to measure by titration microcalorimetry the heat effects accompanying proton exchange at the alumina-water interface at 25 degrees C. Based on (i) the surface sites speciation provided by a surface complexation model (built from acid-base titrations at 25 degrees C) and (ii) results of the microcalorimetric experiments, calculations have been made to extract the enthalpic variations associated respectively to first and second deprotonation of the alumina surface. Values obtained are deltaH1 = 80+/-10 kJ mol(-1) and deltaH2 = 5+/-3 kJ mol(-1). In a second step, these enthalpy values were used to calculate the alumina surface acidity constants at 50 degrees C via the van't Hoff equation. Then a theoretical titration curve at 50 degrees C was calculated and compared to the experimental alumina surface titration curve. Good agreement between the predicted acid-base titration curve and the experimental one was observed. PMID:16504204

  15. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    PubMed Central

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; Tan, Li Huey

    2014-01-01

    In this review, we summarize recent progresses in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed. PMID:25205057

  16. Formulation of a Peptide Nucleic Acid Based Nucleic Acid Delivery Construct

    PubMed Central

    Millili, Peter G.; Yin, Daniel H.; Fan, Haihong; Naik, Ulhas P.; Sullivan, Millicent O.

    2010-01-01

    Gene delivery biomaterials need to be designed to efficiently achieve nuclear delivery of plasmid DNA. Polycations have been used to package DNA and other nucleic acids within sub-micron sized particles, offering protection from shear-induced or enzymatic degradation. However, cytotoxicity issues coupled with limited in vivo transfection efficiencies minimize the effectiveness of this approach. In an effort to improve upon existing technologies aimed at delivering nucleic acids, an alternative approach to DNA packaging was explored. Peptide nucleic acids (PNAs) were used to directly functionalize DNA with poly(ethylene glycol) (PEG) chains that provide a steric layer and inhibit multimolecular aggregation during complexation. DNA prePEGylation by this strategy was predicted to enable the formation of more homogeneous and efficiently packaged polyplexes. In this work, DNA-PNA-peptide-PEG (DP3) conjugates were synthesized and self-assembled with 25 kDa poly(ethylenimine) (PEI). Complexes with small standard deviations and average diameters ranging from 30 – 50 nm were created, with minimal dependence of complex size on N:P ratio (PEI amines to DNA phosphates). Furthermore, PEI-DNA interactions were altered by the derivitization strategy, resulting in tighter compaction of the PEI-DP3 complexes in comparison with PEI-DNA complexes. Transfection experiments in Chinese Hamster Ovary (CHO) cells revealed comparable transfection efficiencies but reduced cytotoxicities of the PEI-DP3 complexes relative to PEI-DNA complexes. The enhanced cellular activities of the PEI-DP3 complexes were maintained following the removal of free PEI from the PEI-DP3 formulations, whereas the cellular activity of the conventional PEI-DNA formulations was reduced by free PEI removal. These findings suggest that DNA prePEGylation by the PNA-based strategy might provide a way to circumvent cytotoxicity and formulation issues related to the use of PEI for in vivo gene delivery. PMID:20131756

  17. Enhance Cancer Cell Recognition and Overcome Drug Resistance Using Hyaluronic Acid and α-Tocopheryl Succinate Based Multifunctional Nanoparticles.

    PubMed

    Liang, Desheng; Wang, Ai-Ting; Yang, Zhen-Zhen; Liu, Yu-Jie; Qi, Xian-Rong

    2015-06-01

    Multidrug resistance (MDR) presents a clinical obstacle to cancer chemotherapy. The main purpose of this study was to evaluate the potential of a hyaluronic acid (HA) and α-tocopheryl succinate (α-TOS) based nanoparticle to enhance cancer cell recognition and overcome MDR, and to explore the underlying mechanisms. A multifunctional nanoparticle, HTTP-50 NP, consisted of HA-α-TOS (HT) conjugate and d-α-tocopheryl polyethylene glycol succinate (TPGS) with docetaxel loaded in its hydrophobic core. The promoted tumor cell recognition and accumulation, cytotoxicity, and mitochondria-specific apoptotic pathways for the HTTP-50 NP were confirmed in MCF-7/Adr cells (P-gp-overexpressing cancer model), indicating that the formulated DTX and the conjugated α-TOS in the HTTP-50 NP could synergistically circumvent the acquired and intrinsic MDR in MCF-7/Adr cells. In vivo investigation on the MCF-7/Adr xenografted nude mice models confirmed that HTTP-50 NP possessed much higher tumor tissue accumulation and exhibited pronouncedly enhanced antiresistance tumor efficacy with reduced systemic toxicity compared with HTTP-0 NP and Taxotere. The mechanisms of the multifunctional HTTP-50 NP to overcome MDR and enhance antiresistance efficacy may be contributed by CD44 receptor-targeted delivery and P-gp efflux inhibition, and meanwhile to maximize antitumor efficacy by synergism of DTX and mitocan of α-TOS killing tumor cells. PMID:25945733

  18. A comprehensive classification of nucleic acid structural families based on strand direction and base pairing.

    PubMed Central

    Lavery, R; Zakrzewska, K; Sun, J S; Harvey, S C

    1992-01-01

    We propose a classification of DNA structures formed from 1 to 4 strands, based only on relative strand directions, base to strand orientation and base pairing geometries. This classification and its associated notation enable all nucleic acids to be grouped into structural families and bring to light possible structures which have not yet been observed experimentally. It also helps in understanding transitions between families and can assist in the design of multistrand structures. PMID:1383936

  19. Hybridization and sequencing of nucleic acids using base pair mismatches

    DOEpatents

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    2001-01-01

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  20. Probe kit for identifying a base in a nucleic acid

    DOEpatents

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    2001-01-01

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  1. Method of Identifying a Base in a Nucleic Acid

    DOEpatents

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    1999-01-01

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  2. Ha83, a Chitin Binding Domain Encoding Gene, Is Important to Helicoverpa armigera Nucleopolyhedrovirus Budded Virus Production and Occlusion Body Assembling.

    PubMed

    Yu, Huan; Xu, Jian; Liu, Qiang; Liu, Tong-Xian; Wang, Dun

    2015-01-01

    Helicoerpa armigera nucleopolyhedrovirus (HearNPV) ha83 is a late expressed gene that encodes a chitin binding protein. Chitin domain truncation studies revealed that the cysteine at the 128 amino acid position probably played an important role in both chitin binding ability and protein transmission of Ha83. In order to study the function of ha83 in the HearNPV infection cycle, an ha83 knockout HearNPV (Ha83KO) was constructed via homologous recombination. Viral growth and viral DNA replication curves showed that fewer budded virions were produced in Ha83KO transfected cells, while viral DNA replication was increased. Electron microscopy revealed that fewer nucleocapsids were transmitted from virogenic stroma in the Ha83KO transfected cell nucleus, and the morphology of occlusion bodies was prominently larger and cube-shaped. Furthermore, DNA quantity in occlusion bodies of Ha83KO was significantly lower than the occlusion bodies of HaWT. The transcription analysis indicated that these changes may be due to the decreased expression level of viral structural associated genes, such as polyhedrin, p10, pif-2, or cg30 in Ha83KO infected cells. Above results demonstrated that the cysteine at the 128 amino acid position in Ha83 might be the key amino acid, and Ha83 plays an important role in BVs production and OBs assembling. PMID:26057202

  3. Ha83, a Chitin Binding Domain Encoding Gene, Is Important to Helicoverpa armigera Nucleopolyhedrovirus Budded Virus Production and Occlusion Body Assembling

    PubMed Central

    Yu, Huan; Xu, Jian; Liu, Qiang; Liu, Tong-Xian; Wang, Dun

    2015-01-01

    Helicoerpa armigera nucleopolyhedrovirus (HearNPV) ha83 is a late expressed gene that encodes a chitin binding protein. Chitin domain truncation studies revealed that the cysteine at the 128 amino acid position probably played an important role in both chitin binding ability and protein transmission of Ha83. In order to study the function of ha83 in the HearNPV infection cycle, an ha83 knockout HearNPV (Ha83KO) was constructed via homologous recombination. Viral growth and viral DNA replication curves showed that fewer budded virions were produced in Ha83KO transfected cells, while viral DNA replication was increased. Electron microscopy revealed that fewer nucleocapsids were transmitted from virogenic stroma in the Ha83KO transfected cell nucleus, and the morphology of occlusion bodies was prominently larger and cube-shaped. Furthermore, DNA quantity in occlusion bodies of Ha83KO was significantly lower than the occlusion bodies of HaWT. The transcription analysis indicated that these changes may be due to the decreased expression level of viral structural associated genes, such as polyhedrin, p10, pif-2, or cg30 in Ha83KO infected cells. Above results demonstrated that the cysteine at the 128 amino acid position in Ha83 might be the key amino acid, and Ha83 plays an important role in BVs production and OBs assembling. PMID:26057202

  4. In situ supramolecular hydrogel based on hyaluronic acid and dextran derivatives as cell scaffold.

    PubMed

    Chen, Jing-Xiao; Cao, Lu-Juan; Shi, Yu; Wang, Ping; Chen, Jing-Hua

    2016-09-01

    In this study, hyaluronic acid-β-cyclodextrin conjugate (HA-CD) and dextran-2-naphthylacetic acid conjugate (Dex-NAA) were synthesized as two gelators. The degrees of substitution (DS) of these two gelators were determined to be 15.5 and 7.4%, respectively. Taking advantages of the strong and selective host-guest interaction between β-CD and 2-NAA, the mixture of two gelators could form supramolecular hydrogel in situ. Moreover, the pore size, gelation time, swelling ratio as well as modulus of the hydrogel could be adjusted by simply varying the contents of HA-CD and Dex-NAA. NIH/3T3 cells that entrapped in hydrogel grew well as compared with that cultured in plates, indicating a favorable cytocompatibility of the hydrogel. Collectively, the results demonstrated that the HA-Dex hydrogel could potentially be applied in tissue engineering as cell scaffold. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2263-2270, 2016. PMID:27087451

  5. Heterologous Production of Hyaluronic Acid in an ε-Poly-l-Lysine Producer, Streptomyces albulus

    PubMed Central

    Yoshimura, Tomohiro; Shibata, Nobuyuki; Hamano, Yoshimitsu

    2015-01-01

    Hyaluronic acid (HA) is used in a wide range of medical applications, where its performance and therapeutic efficacy are highly dependent on its molecular weight. In the microbial production of HA, it has been suggested that a high level of intracellular ATP enhances the productivity and molecular weight of HA. Here, we report on heterologous HA production in an ε-poly-l-lysine producer, Streptomyces albulus, which has the potential to generate ATP at high level. The hasA gene from Streptococcus zooepidemicus, which encodes HA synthase, was refactored and expressed under the control of a late-log growth phase-operating promoter. The expression of the refactored hasA gene, along with genes coding for UDP-glucose dehydrogenase, UDP-N-acetylglucosamine pyrophosphorylase, and UDP-glucose pyrophosphorylase, which are involved in HA precursor sugar biosynthesis, resulted in efficient production of HA in the 2.0 MDa range, which is greater than typical bacterial HA, demonstrating that a sufficient amount of ATP was provided to support the biosynthesis of the precursor sugars, which in turn promoted HA production. In addition, unlike in the case of streptococcal HA, S. albulus-derived HA was not cell associated. Based on these findings, our heterologous production system appears to have several advantages for practical HA production. We propose that the present system could be applicable to the heterologous production of a wide variety of molecules other than HA in the case their biosynthesis pathways require ATP in vivo. PMID:25795665

  6. Regulation of Hyaluronan (HA) Metabolism Mediated by HYBID (Hyaluronan-binding Protein Involved in HA Depolymerization, KIAA1199) and HA Synthases in Growth Factor-stimulated Fibroblasts.

    PubMed

    Nagaoka, Aya; Yoshida, Hiroyuki; Nakamura, Sachiko; Morikawa, Tomohiko; Kawabata, Keigo; Kobayashi, Masaki; Sakai, Shingo; Takahashi, Yoshito; Okada, Yasunori; Inoue, Shintaro

    2015-12-25

    Regulation of hyaluronan (HA) synthesis and degradation is essential to maintenance of extracellular matrix homeostasis. We recently reported that HYBID (HYaluronan-Binding protein Involved in hyaluronan Depolymerization), also called KIAA1199, plays a key role in HA depolymerization in skin and arthritic synovial fibroblasts. However, regulation of HA metabolism mediated by HYBID and HA synthases (HASs) under stimulation with growth factors remains obscure. Here we report that TGF-β1, basic FGF, EGF, and PDGF-BB commonly enhance total amount of HA in skin fibroblasts through up-regulation of HAS expression, but molecular size of newly produced HA is dependent on HYBID expression levels. Stimulation of HAS1/2 expression and suppression of HYBID expression by TGF-β1 were abrogated by blockade of the MAPK and/or Smad signaling and the PI3K-Akt signaling, respectively. In normal human skin, expression of the TGF-β1 receptors correlated positively with HAS2 expression and inversely with HYBID expression. On the other hand, TGF-β1 up-regulated HAS1/2 expression but exerted only a slight suppressive effect on HYBID expression in synovial fibroblasts from the patients with osteoarthritis or rheumatoid arthritis, resulting in the production of lower molecular weight HA compared with normal skin and synovial fibroblasts. These data demonstrate that although TGF-β1, basic FGF, EGF, and PDGF-BB enhance HA production in skin fibroblasts, TGF-β1 most efficiently contributes to production of high molecular weight HA by HAS up-regulation and HYBID down-regulation and suggests that inefficient down-regulation of HYBID by TGF-β1 in arthritic synovial fibroblasts may be linked to accumulation of depolymerized HA in synovial fluids in arthritis patients. PMID:26518873

  7. Guanine base stacking in G-quadruplex nucleic acids.

    PubMed

    Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân

    2013-02-01

    G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5'-5' manner based on different accessible tetrad stacking modes at the stacking interfaces of 5'-5' and 3'-3' stacked G-quadruplexes. PMID:23268444

  8. Structure of six organic acid-base adducts from 6-bromobenzo[d]thiazol-2-amine and acidic compounds

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Zhang, Jing; Wang, Daqi; Tao, Lin; Zhou, Mengjian; Shen, Yinyan; Chen, Quan; Lin, Zhanghui; Gao, Xingjun

    2014-05-01

    Six anhydrous organic acid-base adducts of 6-bromobenzo[d]thiazol-2-amine were prepared with organic acids as 2,4,6-trinitrophenol, salicylic acid, 3,5-dinitrobenzoic acid, 3,5-dinitrosalicylic acid, malonic acid and sebacic acid. The compounds 1-6 were characterized by X-ray diffraction analysis, IR, and elemental analysis. The melting points of all the adducts were given. Of the six adducts, 1, 3, 4, and 5 are organic salts, while 2, and 6 are cocrystals. The supramolecular arrangement in the crystals 2-6 is based on the R22(8) synthon. Analysis of the crystal packing of 1-6 suggests that there are strong NH⋯O, OH⋯N, and OH⋯O hydrogen bonds (charge assisted or neutral) between acid and base components in the supramolecular assemblies. When the hydroxyl group is present in the ortho position of the carboxy, the intramolecular S6 synthon is present, as expected. Besides the classical hydrogen bonding interactions, other noncovalent interactions also play important roles in structure extension. Due to the synergetic effect of these weak interactions, compounds 1-6 display 1D-3D framework structure.

  9. Enhanced chondrogenic differentiation of dental pulp stem cells using nanopatterned PEG-GelMA-HA hydrogels.

    PubMed

    Nemeth, Cameron L; Janebodin, Kajohnkiart; Yuan, Alex E; Dennis, James E; Reyes, Morayma; Kim, Deok-Ho

    2014-11-01

    We have examined the effects of surface nanotopography and hyaluronic acid (HA) on in vitro chondrogenesis of dental pulp stem cells (DPSCs). Ultraviolet-assisted capillary force lithography was employed to fabricate well-defined nanostructured scaffolds of composite PEG-GelMA-HA hydrogels that consist of poly(ethylene glycol) dimethacrylate (PEGDMA), methacrylated gelatin (GelMA), and HA. Using this microengineered platform, we first demonstrated that DPSCs formed three-dimensional spheroids, which provide an appropriate environment for in vitro chondrogenic differentiation. We also found that DPSCs cultured on nanopatterned PEG-GelMA-HA scaffolds showed a significant upregulation of the chondrogenic gene markers (Sox9, Alkaline phosphatase, Aggrecan, Procollagen type II, and Procollagen type X), while downregulating the pluripotent stem cell gene, Nanog, and epithelial-mesenchymal genes (Twist, Snail, Slug) compared with tissue culture polystyrene-cultured DPSCs. Immunocytochemistry showed more extensive deposition of collagen type II in DPSCs cultured on the nanopatterned PEG-GelMA-HA scaffolds. These findings suggest that nanotopography and HA provide important cues for promoting chondrogenic differentiation of DPSCs. PMID:24749806

  10. Enhanced Chondrogenic Differentiation of Dental Pulp Stem Cells Using Nanopatterned PEG-GelMA-HA Hydrogels

    PubMed Central

    Nemeth, Cameron L.; Janebodin, Kajohnkiart; Yuan, Alex E.; Dennis, James E.

    2014-01-01

    We have examined the effects of surface nanotopography and hyaluronic acid (HA) on in vitro chondrogenesis of dental pulp stem cells (DPSCs). Ultraviolet-assisted capillary force lithography was employed to fabricate well-defined nanostructured scaffolds of composite PEG-GelMA-HA hydrogels that consist of poly(ethylene glycol) dimethacrylate (PEGDMA), methacrylated gelatin (GelMA), and HA. Using this microengineered platform, we first demonstrated that DPSCs formed three-dimensional spheroids, which provide an appropriate environment for in vitro chondrogenic differentiation. We also found that DPSCs cultured on nanopatterned PEG-GelMA-HA scaffolds showed a significant upregulation of the chondrogenic gene markers (Sox9, Alkaline phosphatase, Aggrecan, Procollagen type II, and Procollagen type X), while downregulating the pluripotent stem cell gene, Nanog, and epithelial–mesenchymal genes (Twist, Snail, Slug) compared with tissue culture polystyrene-cultured DPSCs. Immunocytochemistry showed more extensive deposition of collagen type II in DPSCs cultured on the nanopatterned PEG-GelMA-HA scaffolds. These findings suggest that nanotopography and HA provide important cues for promoting chondrogenic differentiation of DPSCs. PMID:24749806

  11. Effect of Nano-HA/Collagen Composite Hydrogels on Osteogenic Behavior of Mesenchymal Stromal Cells.

    PubMed

    Hayrapetyan, Astghik; Bongio, Matilde; Leeuwenburgh, Sander C G; Jansen, John A; van den Beucken, Jeroen J J P

    2016-06-01

    This study aimed to comparatively evaluate the in vitro effect of nanosized hydroxyapatite and collagen (nHA/COL) based composite hydrogels (with different ratios of nHA and COL) on the behavior of human mesenchymal stromal cells (MSCs), isolated from either adipose tissue (AT-MSCs) or bone marrow (BM-MSCs). We hypothesized that (i) nHA/COL composite hydrogels would promote the osteogenic differentiation of MSCs in an nHA concentration dependent manner, and that (ii) AT-MSCs would show higher osteogenic potential compared to BM-MSCs, due to their earlier observed higher proliferation and osteogenic differentiation potential in 2D in vitro cultures [1]. The obtained results indicated that AT-MSCs show indeed high proliferation, differentiation and mineralization capacities in nHA/COL constructs compared to BM-MSCs, but this effect was irrespective of nHA concentration. Based on the results of alkaline phosphatase (ALP) activity and osteocalcin (OCN) protein level, the osteogenic differentiation of BM-MSCs started in the beginning of the culture period and for AT-MSCs at the end of the culture period. At a molecular level, both cell types showed high expression of osteogenic markers (bone morphogenic protein 2 [BMP2], runt-related transcription factor 2 [RUNX2], OCN or COL1) in both an nHA concentration and time dependent manner. In conclusion, AT-MSCs demonstrated higher osteogenic potential in nHA/COL based 3D micro-environments compared to BM-MSCs, in which proliferation and osteogenic differentiation were highly promoted in a time dependent manner, irrespective of nHA amount in the constructs. The fact that AT-MSCs showed high proliferation and mineralization potential is appealing for their application in future pre-clinical research as an alternative cell source for BM-MSCs. PMID:26803618

  12. Spherical Nucleic Acids as Intracellular Agents for Nucleic Acid Based Therapeutics

    NASA Astrophysics Data System (ADS)

    Hao, Liangliang

    Recent functional discoveries on the noncoding sequences of human genome and transcriptome could lead to revolutionary treatment modalities because the noncoding RNAs (ncRNAs) can be applied as therapeutic agents to manipulate disease-causing genes. To date few nucleic acid-based therapeutics have been translated into the clinic due to challenges in the delivery of the oligonucleotide agents in an effective, cell specific, and non-toxic fashion. Unmodified oligonucleotide agents are destroyed rapidly in biological fluids by enzymatic degradation and have difficulty crossing the plasma membrane without the aid of transfection reagents, which often cause inflammatory, cytotoxic, or immunogenic side effects. Spherical nucleic acids (SNAs), nanoparticles consisting of densely organized and highly oriented oligonucleotides, pose one possible solution to circumventing these problems in both the antisense and RNA interference (RNAi) pathways. The unique three dimensional architecture of SNAs protects the bioactive oligonucleotides from unspecific degradation during delivery and supports their targeting of class A scavenger receptors and endocytosis via a lipid-raft-dependent, caveolae-mediated pathway. Owing to their unique structure, SNAs are able to cross cell membranes and regulate target genes expression as a single entity, without triggering the cellular innate immune response. Herein, my thesis has focused on understanding the interactions between SNAs and cellular components and developing SNA-based nanostructures to improve therapeutic capabilities. Specifically, I developed a novel SNA-based, nanoscale agent for delivery of therapeutic oligonucleotides to manipulate microRNAs (miRNAs), the endogenous post-transcriptional gene regulators. I investigated the role of SNAs involving miRNAs in anti-cancer or anti-inflammation responses in cells and in in vivo murine disease models via systemic injection. Furthermore, I explored using different strategies to construct

  13. Dynamical Approach to Multiequilibria Problems for Mixtures of Acids and Their Conjugated Bases

    ERIC Educational Resources Information Center

    Glaser, Rainer E.; Delarosa, Marco A.; Salau, Ahmed Olasunkanmi; Chicone, Carmen

    2014-01-01

    Mathematical methods are described for the determination of steady-state concentrations of all species in multiequilibria systems consisting of several acids and their conjugated bases in aqueous solutions. The main example consists of a mixture of a diprotic acid H[subscript 2]A, a monoprotic acid HB, and their conjugate bases. The reaction…

  14. Adansonian Analysis and Deoxyribonucleic Acid Base Composition of Serratia marcescens

    PubMed Central

    Colwell, R. R.; Mandel, M.

    1965-01-01

    Colwell, R. R. (Georgetown University, Washington, D.C.), and M. Mandel. Adansonian analysis and deoxyribonucleic acid base composition of Serratia marcescens. J. Bacteriol. 89:454–461. 1965.—A total of 33 strains of Serratia marcescens were subjected to Adansonian analysis for which more than 200 coded features for each of the organisms were included. In addition, the base composition [expressed as moles per cent guanine + cytosine (G + C)] of the deoxyribonucleic acid (DNA) prepared from each of the strains was determined. Except for four strains which were intermediate between Serratia and the Hafnia and Aerobacter group C of Edwards and Ewing, the S. marcescens species group proved to be extremely homogeneous, and the different strains showed high affinities for each other (mean similarity, ¯S = 77%). The G + C ratio of the DNA from the Serratia strains ranged from 56.2 to 58.4% G + C. Many species names have been listed for the genus, but only a single clustering of the strains was obtained at the species level, for which the species name S. marcescens was retained. S. kiliensis, S. indica, S. plymuthica, and S. marinorubra could not be distinguished from S. marcescens; it was concluded, therefore, that there is only a single species in the genus. The variety designation kiliensis does not appear to be valid, since no subspecies clustering of strains with negative Voges-Proskauer reactions could be detected. The characteristics of the species are listed, and a description of S. marcescens is presented. PMID:14255714

  15. Activity-Based Probe for N-Acylethanolamine Acid Amidase.

    PubMed

    Romeo, Elisa; Ponzano, Stefano; Armirotti, Andrea; Summa, Maria; Bertozzi, Fabio; Garau, Gianpiero; Bandiera, Tiziano; Piomelli, Daniele

    2015-09-18

    N-Acylethanolamine acid amidase (NAAA) is a lysosomal cysteine hydrolase involved in the degradation of saturated and monounsaturated fatty acid ethanolamides (FAEs), a family of endogenous lipid signaling molecules that includes oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). Among the reported NAAA inhibitors, α-amino-β-lactone (3-aminooxetan-2-one) derivatives have been shown to prevent FAE hydrolysis in innate-immune and neural cells and to reduce reactions to inflammatory stimuli. Recently, we disclosed two potent and selective NAAA inhibitors, the compounds ARN077 (5-phenylpentyl-N-[(2S,3R)-2-methyl-4-oxo-oxetan-3-yl]carbamate) and ARN726 (4-cyclohexylbutyl-N-[(S)-2-oxoazetidin-3-yl]carbamate). The former is active in vivo by topical administration in rodent models of hyperalgesia and allodynia, while the latter exerts systemic anti-inflammatory effects in mouse models of lung inflammation. In the present study, we designed and validated a derivative of ARN726 as the first activity-based protein profiling (ABPP) probe for the in vivo detection of NAAA. The newly synthesized molecule 1 is an effective in vitro and in vivo click-chemistry activity based probe (ABP), which is able to capture the catalytically active form of NAAA in Human Embryonic Kidney 293 (HEK293) cells overexpressing human NAAA as well as in rat lung tissue. Competitive ABPP with 1 confirmed that ARN726 and ARN077 inhibit NAAA in vitro and in vivo. Compound 1 is a useful new tool to identify activated NAAA both in vitro and in vivo and to investigate the physiological and pathological roles of this enzyme. PMID:26102511

  16. The origin of intermittent exhalation (A! Ha! Ha!) peculiar to human laugh.

    PubMed

    Sumitsuji, N

    2000-01-01

    Since Darwin (1872), the origin of the laugh with an intermittent exhalation "A! Ha! Ha!" which is peculiar to human, has been a great question. The author found out that this laugh is caused by the three sets of emotion. Firstly, light surprise or discovery. The ability to estimate "light" is absolutely important, because the amount of the first exhalation "A!" caused by the stimulation is decided by the amount of "surprise" felt by the subject. The ability to estimate the amount of "surprise" to be "light", makes the partial exhalation "A!". Secondly, consciousness of this harmlessness or delight, and thirdly, the following expectation of some safe circumstances. The author proved this theory by electromyography (EMG), photoplethysmography and galvanic skin reaction (GSR). The similarity between the facial EMG distribution pattern of "the beginning of laugh" and "the light surprise" was proved by electromyography about many facial muscles, with special fine electrode which did not disturb any natural facial expression of the subjects. Plethysmography and GSR proved light sympathetic tension and following relaxation when laughing. The author also suggests relationships between human laugh and human history such as the origin of clothing, language, and use of fire, which are specific in human. PMID:10938997

  17. Biotechnological routes based on lactic acid production from biomass.

    PubMed

    Gao, Chao; Ma, Cuiqing; Xu, Ping

    2011-01-01

    Lactic acid, the most important hydroxycarboxylic acid, is now commercially produced by the fermentation of sugars present in biomass. In addition to its use in the synthesis of biodegradable polymers, lactic acid can be regarded as a feedstock for the green chemistry of the future. Different potentially useful chemicals such as pyruvic acid, acrylic acid, 1,2-propanediol, and lactate ester can be produced from lactic acid via chemical and biotechnological routes. Here, we reviewed the current status of the production of potentially valuable chemicals from lactic acid via biotechnological routes. Although some of the reactions described in this review article are still not applicable at current stage, due to their "greener" properties, biotechnological processes for the production of lactic acid derivatives might replace the chemical routes in the future. PMID:21846500

  18. Nanoconstructions Based on Spatially Ordered Nucleic Acid Molecules

    NASA Astrophysics Data System (ADS)

    Yevdokimov, Yu. M.

    Different strategies for the design of nanoconstructions whose building blocks are both linear molecules of double-stranded nucleic acids and nucleic acid molecules fixed in the spatial structure of particles of liquid-crystalline dispersions are described.

  19. Microgel Tethering For Microarray-Based Nucleic Acid Diagnostics

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoguang

    Molecular diagnostics (MDx) have radically changed the process of clinical microbial identification based on identifying genetic information, MDx approaches are both specific and fast. They can identify microbes to the species and strain level over a time scale that can be as short as one hour. With such information clinicians can administer the most effective and appropriate antimicrobial treatment at an early time point with substantial implications both for patient well-being and for easing the burden on the health-care system. Among the different MDx approaches, such as fluorescence in-situ hybridization, microarrays, next-generation sequencing, and mass spectrometry, point-of-care MDx platforms are drawing particular interest due to their low cost, robustness, and wide application. This dissertation develops a novel MDx technology platform capable of high target amplification and detection performance. For nucleic acid target detection, we fabricate an array of electron-beam-patterned microgels on a standard glass microscope slide. The microgels can be as small as a few hundred nanometers. The unique way of energy deposition during electron-beam lithography provides the microgels with a very diffuse water -gel interface that enables them to not only serve as substrates to immobilize DNA probes but do so while preserving them in a highly hydrated environment that optimizes their performance. Benefiting from the high spatial resolution provided by such techniques as position-sensitive microspotting and dip-pen nanolithography, multiple oligonucleotide probes known as molecular beacons (MBs) can be patterned on microgels. Furthermore, nucleic acid target amplification can be conducted in direct contact with the microgel-tethered detection array. Specifically, we use an isothermal RNA amplification reaction - nucleic acid sequence-based amplification (NASBA). ssRNA amplicons of from the NASBA reaction can directly hybridize with microgel-tethered MBs, and the

  20. Mechanistic insights into interaction of humic acid with silver nanoparticles.

    PubMed

    Manoharan, Vijayan; Ravindran, Aswathy; Anjali, C H

    2014-01-01

    Humic acid (HA) is one of the major components of the natural organic matter present in the environment that alters the fate and behavior of silver nanoparticles (Ag NPs). Transformation of Ag NPs happens upon interaction with HA, thereby, changing both physical and chemical properties. Fluorescence spectroscopy and scanning electron microscopy (SEM) were used to analyze the interaction of Ag NPs with HA. In pH and time-dependent studies, the near field electro dynamical environment of Ag NPs influenced the fluorescence of HA, indicated by fluorescence enhancement. SEM revealed not only morphological changes, but also significant reduction in size of Ag NPs after interaction with HA. Based on these studies, a probable mechanism was proposed for the interaction of HA with Ag NPs, suggesting the possible transformation that these nanoparticles can undergo in the environment. PMID:23801156

  1. [Determination of body fluid based on analysis of nucleic acids].

    PubMed

    Korabečná, Marie

    2015-01-01

    Recent methodological approaches of molecular genetics allow isolation of nucleic acids (DNA and RNA) from negligible forensic samples. Analysis of these molecules may be used not only for individual identification based on DNA profiling but also for the detection of origin of the body fluid which (alone or in mixture with other body fluids) forms the examined biological trace. Such an examination can contribute to the evaluation of procedural, technical and tactical value of the trace. Molecular genetic approaches discussed in the review offer new possibilities in comparison with traditional spectrum of chemical, immunological and spectroscopic tests especially with regard to the interpretation of mixtures of biological fluids and to the confirmatory character of the tests. Approaches based on reverse transcription of tissue specific mRNA and their subsequent polymerase chain reaction (PCR) and fragmentation analysis are applicable on samples containing minimal amounts of biological material. Methods for body fluid discrimination based on examination of microRNA in samples provided so far confusing results therefore further development in this field is needed. The examination of tissue specific methylation of nucleotides in selected gene sequences seems to represent a promising enrichment of the methodological spectrum. The detection of DNA sequences of tissue related bacteria has been established and it provides satisfactory results mainly in combination with above mentioned methodological approaches. PMID:26419517

  2. Acid-base transport by the renal proximal tubule

    PubMed Central

    Skelton, Lara A.; Boron, Walter F.; Zhou, Yuehan

    2015-01-01

    Each day, the kidneys filter 180 L of blood plasma, equating to some 4,300 mmol of the major blood buffer, bicarbonate (HCO3−). The glomerular filtrate enters the lumen of the proximal tubule (PT), and the majority of filtered HCO3− is reclaimed along the early (S1) and convoluted (S2) portions of the PT in a manner coupled to the secretion of H+ into the lumen. The PT also uses the secreted H+ to titrate non-HCO3− buffers in the lumen, in the process creating “new HCO3−” for transport into the blood. Thus, the PT – along with more distal renal segments – is largely responsible for regulating plasma [HCO3−]. In this review we first focus on the milestone discoveries over the past 50+ years that define the mechanism and regulation of acid-base transport by the proximal tubule. Further on in the review, we will summarize research still in progress from our laboratory, work that addresses the problem of how the PT is able to finely adapt to acid–base disturbances by rapidly sensing changes in basolateral levels of HCO3− and CO2 (but not pH), and thereby to exert tight control over the acid–base composition of the blood plasma. PMID:21170887

  3. Hair dye-incorporated poly-γ-glutamic acid/glycol chitosan nanoparticles based on ion-complex formation

    PubMed Central

    Lee, Hye-Young; Jeong, Young-IL; Choi, Ki-Choon

    2011-01-01

    Background p-Phenylenediamine (PDA) or its related chemicals are used more extensively than oxidative hair dyes. However, permanent hair dyes such as PDA are known to have potent contact allergy reactions in humans, and severe allergic reactions are problematic. Methods PDA-incorporated nanoparticles were prepared based on ion-complex formation between the cationic groups of PDA and the anionic groups of poly(γ-glutamic acid) (PGA). To reinforce PDA/PGA ion complexes, glycol chitosan (GC) was added. PDA-incorporated nanoparticles were characterized using field-emission scanning electron microscopy, Fourier- transform infrared (FT-IR) spectroscopy, dynamic light scattering, and powder X-ray diffractometry (XRD). Results Nanoparticles were formed by ion-complex formation between the amine groups of PDA and the carboxyl groups of PGA. PDA-incorporated nanoparticles are small in size (<100 nm), and morphological observations showed spherical shapes. FT-IR spectra results showed that the carboxylic acid peak of PGA decreased with increasing PDA content, indicating that the ion complexes were formed between the carboxyl groups of PGA and the amine groups of PDA. Furthermore, the intrinsic peak of the carboxyl groups of PGA was also decreased by the addition of GC. Intrinsic crystalline peaks of PDA were observed by XRD. This crystalline peak of PDA was completely nonexistent when nanoparticles were formed by ion complex between PDA, PGA, and GC, indicating that PDA was complexed with PGA and no free drug existed in the formulation. During the drug-release experiment, an initial burst release of PDA was observed, and then PDA was continuously released over 1 week. Cytotoxicity testing against HaCaT human skin keratinocyte cells showed PDA-incorporated nanoparticles had lower toxicity than PDA itself. Furthermore, PDA-incorporated nanoparticles showed reduced apoptosis and necrosis reaction at HaCaT cells. Conclusion The authors suggest that these microparticles are ideal

  4. Acid-base properties of aqueous illite surfaces

    SciTech Connect

    Du, Q.; Sun, Z.; Forsling, W.; Tang, H.

    1997-03-01

    In this paper, the acid-base properties of illite/water suspensions are examined using the constant capacitance surface complexation model. On the basis of results of potentiometric titrations and solubility experiments, the authors conclude that the proton reactions in the supernatants of illite suspensions can be successfully represented by proton reactions of Al(H{sub 2}O){sub 6}{sup 3+} and Si(OH){sub 4} in water solutions. For illustrating the acidic characteristics of aqueous illite surfaces, two surface protonation models are proposed: (1) one site-one pK{sub a} model, {triple_bond}SOH {r_reversible} {triple_bond}SO{sup {minus}} + H{sup +}, pK{sub a}{sup int} = 4.12-4.23; (2) two sites-two pK{sub a}s model, {triple_bond}S{sub 1}OH {r_reversible} {triple_bond}S{sup 1}O{sup {minus}} + H{sup +}, pK{sub a{sub I}} = 4.17-4.44, and {triple_bond}S{sub II}OH {r_reversible} {triple_bond}S{sub II}O{sup {minus}} + H{sup +}, pK{sub a{sub II}}{sup int} = 6.35-7.74. Evaluation of these two models indicates that both of them can give good descriptions of the experimental data of systems with different illite concentrations and ionic strengths and that the one site-one pK{sub a} model can be considered as a simplification of the two sites-two pK{sub a}s model. Since both models assume only deprotonation reactions at the illite surfaces, they suggest that the surface behavior of the illite is similar to that of amorphous SiO{sub 2}. Model assumptions, experimental procedures, and evaluative criteria are detailed in the paper.

  5. Solution influence on biomolecular equilibria - Nucleic acid base associations

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Pratt, L. R.; Burt, S. K.; Macelroy, R. D.

    1984-01-01

    Various attempts to construct an understanding of the influence of solution environment on biomolecular equilibria at the molecular level using computer simulation are discussed. First, the application of the formal statistical thermodynamic program for investigating biomolecular equilibria in solution is presented, addressing modeling and conceptual simplications such as perturbative methods, long-range interaction approximations, surface thermodynamics, and hydration shell. Then, Monte Carlo calculations on the associations of nucleic acid bases in both polar and nonpolar solvents such as water and carbon tetrachloride are carried out. The solvent contribution to the enthalpy of base association is positive (destabilizing) in both polar and nonpolar solvents while negative enthalpies for stacked complexes are obtained only when the solute-solute in vacuo energy is added to the total energy. The release upon association of solvent molecules from the first hydration layer around a solute to the bulk is accompanied by an increase in solute-solvent energy and decrease in solvent-solvent energy. The techniques presented are expectd to displace less molecular and more heuristic modeling of biomolecular equilibria in solution.

  6. Effect of protein on the dissolution of HA coatings.

    PubMed

    Bender, S A; Bumgardner, J D; Roach; Bessho, K; Ong, J L

    2000-02-01

    The dissolution behavior of hydroxyapatite (HA) in the presence and absence of protein needs to be investigated in order to fully understand the initial cellular response to HA surfaces. In this study, HA coatings were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy (FTIR) prior to protein study. Fibronectin and albumin adsorption study were also performed. Calcium and phosphorus released in the presence and absence of albumin were measured. pH of the solution was measured daily. From the materials characterization, it was observed that the coatings exhibit a HA-type structure, with traces of sodium on the surface. FTIR indicated the possible presence of carbonates on the coatings. From the adsorption study, the amount of albumin adsorbed (0.052+/-0.005 microg/mm2) was statistically higher than the amount of fibronectin adsorbed on HA surfaces (0.035+/-0.002 microg/mm2). Flame atomic absorption indicated a significantly higher calcium ions released initially for HA coatings incubated with proteins as compared to coatings in the absence of proteins. However, after 7 days incubation, no significant difference in calcium ions release was observed between the HA coatings in the presence and absence of proteins. Phosphorus dissolution on HA coatings was not significantly affected by the presence of proteins. Thus, it was suggested from this study that the initial dissolution properties of calcium ions from HA coatings was dependent on the media. PMID:10646947

  7. Development of poly(lactic-co-glycolic) acid nanoparticles-embedded hyaluronic acid-ceramide-based nanostructure for tumor-targeted drug delivery.

    PubMed

    Park, Ju-Hwan; Lee, Jae-Young; Termsarasab, Ubonvan; Yoon, In-Soo; Ko, Seung-Hak; Shim, Jae-Seong; Cho, Hyun-Jong; Kim, Dae-Duk

    2014-10-01

    A hyaluronic acid-ceramide (HACE) nanostructure embedded with docetaxel (DCT)-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) was fabricated for tumor-targeted drug delivery. NPs with a narrow size distribution and negative zeta potential were prepared by embedding DCT-loaded PLGA NPs into a HACE nanostructure (DCT/PLGA/HACE). DCT-loaded PLGA and DCT/PLGA/HACE NPs were characterized by solid-state techniques, including Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD). A sustained drug release pattern from the NPs developed was observed and negligible cytotoxicity was seen in NIH3T3 cells (normal fibroblast, CD44 receptor negative) and MDA-MB-231 cells (breast cancer cells, CD44 receptor positive). PLGA/HACE NPs containing coumarin 6, used as a fluorescent dye, exhibited improved cellular uptake efficiency, based on the HA-CD44 receptor interaction, compared to plain PLGA NPs. Cyanine 5.5 (Cy5.5)-labeled PLGA/HACE NPs were injected intravenously into a MDA-MB-231 tumor xenograft mouse model and demonstrated enhanced tumor targetability, compared with Cy5.5-PLGA NPs, according to a near-infrared fluorescence (NIRF) imaging study. Considering these experimental results, the DCT/PLGA/HACE NPs developed may be useful as a tumor-targeted drug delivery system. PMID:25079433

  8. Effect of n-HA content on the isothermal crystallization, morphology and mechanical property of n-HA/PLGA composites

    SciTech Connect

    Liuyun, Jiang; Chengdong, Xiong; Lixin, Jiang; Dongliang, Chen; Qing, Li

    2013-03-15

    Graphical abstract: Effect of n-HA content on the isothermal crystallization, morphology and mechanical property of n-HA/PLGA composites was studied in details. The results showed that the addition of higher content of g-n-HA was favorable to promote the crystallization better in g-n-HA/PLGA composites, but it could also cause more agglomeration in PLGA matrix, as a result of worse mechanical properties, and the addition content of 3 wt% g-n-HA to PLGA matrix was an appropriate proportion, which had the highest bending strength among these g-n-HA/PLGA composites, and it might be potential to be used in biomedical fields in future. Highlights: ► The effect of n-HA content on the n-HA/PLGA composites was studied in detail. ► Isothermal crystallization, microstructure and mechanical property were studied. ► The relation between n-HA content and properties of n-HA/PLGA composite was found. ► An appropriate proportion of n-HA in n-HA/PLGA composite was obtained. - Abstract: A serials of g-n-HA/PLGA composites with surface-modified g-n-HA of 1%, 3%, 6%, 10% and 15% in weight were prepared by solution mixing. The isothermal crystallization, morphology and mechanical property of g-n-HA/PLGA composites were investigated by differential scanning calorimeter (DSC), scanning electron microscope (SEM) and electromechanical universal tester. The results showed that Avrami equation was suitable for describing the isothermal crystallization process in this system, and the crystallization rate of g-n-HA/PLGA composites containing more than 3 wt% g-n-HA was basically accord with the relational expression of T{sub 110} {sub °C} > T{sub 105°C} > T{sub 115°C} > T{sub 120°C}. Moreover, at the same Tc, crystallization rate was greatly enhanced with the increasing of g-n-HA acting as nucleate. However, the addition of higher content of g-n-HA would cause more agglomeration in PLGA matrix, so that the mechanical properties of g-n-HA/PLGA composites would gradually decrease. In

  9. Cytocompatibility and osteogenesis evaluation of HA/GCPU composite as scaffolds for bone tissue engineering.

    PubMed

    Du, Jingjing; Zou, Qin; Zuo, Yi; Li, Yubao

    2014-01-01

    Porous scaffolds for bone repair were prepared from newly designed segmented aliphatic polyurethane based on glyceride of castor oil and isophorone diisocyanate. To promote the scaffolds' biological and mechanical properties, hydroxyapatite powder was incorporated into the polymer matrix. The scaffold (named as HA/GCPU) with 40 wt% HA had an average pore size of 500 μm and a compressive strength of 4.6 MPa. The in vitro cell culture studies demonstrated that the HA/GCPU scaffold owned good cytocompatibility. The scaffold and cell-seeded scaffold were implanted in defects (Ф3 mm × 3 mm) of femoral condyle of Sprague-Dawley rats, respectively. New bone could extensively form in both the scaffold and cell-seeded scaffold. It indicates that the HA/GCPU composite scaffold has good prospect for bone repair and regeneration. PMID:24657710

  10. Using problem based learning and guided inquiry in a high school acid-base chemistry unit

    NASA Astrophysics Data System (ADS)

    McKinley, Katie

    The purpose of this investigation was to determine if incorporating problem based learning and guided inquiry would improve student achievement in an acid base unit for high school chemistry. The activities and labs in the unit were modified to be centered around the problem of a fish kill that students investigated. Students also participated in guided inquiry labs to increase the amount of critical thinking and problem solving being done in the classroom. The hypothesis was that the implementation of problem based learning and guided inquiry would foster student learning. Students took a pre-test and post-test on questions covering the objectives of the acid base unit. These assessments were compared to determine the effectiveness of the unit. The results indicate that the unit was effective in increasing student performance on the unit test. This study also analyzed the process of problem based learning. Problem based learning can be an effective method of engaging students in inquiry. However, designing an effective problem based learning unit requires careful design of the problem and enough structure to assure students learn the intended content.

  11. Preparation and bioevaluation of 166Ho labelled hydroxyapatite (HA) particles for radiosynovectomy.

    PubMed

    Unni, P R; Chaudhari, P R; Venkatesh, Meera; Ramamoorthy, N; Pillai, M R A

    2002-02-01

    The preparation of 166Ho labeled hydroxy apatite (HA) particles for radiosynovectomy applications is described in this paper. 166Ho was prepared by the irradiation of Ho2O3 at a flux of 1.8 x 10(13) neutrons/cm2/s for about 7 days. The irradiation resulted in the production of approximately 17 GBq of 166Ho activity at the end of six hours post end of bombardment and the corresponding specific activity was approximately 3-4 GBq/mg of Ho. The irradiated target was dissolved in 0.1 N HCl solution. Radionuclidic purity was ascertained by high resolution gamma ray spectrometry. HA particles were synthesized and characterized by X-ray diffractometry. Labeling studies were carried out with and without citric acid as a transchelating agent. Radiochemical yield and purity of the 166Ho-HA particles were ascertained by paper chromatography and by paper electrophoresis techniques. Labeling yield of >98% could be achieved at pH 7, with 40 mg of HA particles and 8.6 microg of Ho. 166Ho-HA particles prepared were stable for 72 h. Bio-evaluation of the 166Ho -HA particles were carried out by injecting approximately 74 MBq dose in 200 microL (approximately 8 mg of 166Ho-HA particles) directly into the arthritis induced knee joints as well as into the healthy knee joints of white New Zealand rabbits. Images of the injected joints of the animals recorded using a gamma camera at regular intervals showed good retention. Blood samples were collected from the animals and activity assayed in a scintillation detector. Experiments were also carried out under identical conditions in normal rabbits. In both the cases, it was observed that there was no significant extra articular leakage of the injected activity over the study period of 96 h post injection. PMID:11823125

  12. Engineering of papaya mosaic virus (PapMV) nanoparticles through fusion of the HA11 peptide to several putative surface-exposed sites.

    PubMed

    Rioux, Gervais; Babin, Cindy; Majeau, Nathalie; Leclerc, Denis

    2012-01-01

    Papaya mosaic virus has been shown to be an efficient adjuvant and vaccine platform in the design and improvement of innovative flu vaccines. So far, all fusions based on the PapMV platform have been located at the C-terminus of the PapMV coat protein. Considering that some epitopes might interfere with the self-assembly of PapMV CP when fused at the C-terminus, we evaluated other possible sites of fusion using the influenza HA11 peptide antigen. Two out of the six new fusion sites tested led to the production of recombinant proteins capable of self assembly into PapMV nanoparticles; the two functional sites are located after amino acids 12 and 187. Immunoprecipitation of each of the successful fusions demonstrated that the HA11 epitope was located at the surface of the nanoparticles. The stability and immunogenicity of the PapMV-HA11 nanoparticles were evaluated, and we could show that there is a direct correlation between the stability of the nanoparticles at 37°C (mammalian body temperature) and the ability of the nanoparticles to trigger an efficient immune response directed towards the HA11 epitope. This strong correlation between nanoparticle stability and immunogenicity in animals suggests that the stability of any nanoparticle harbouring the fusion of a new peptide should be an important criterion in the design of a new vaccine. PMID:22363771

  13. SHORT-TERM CHANGES IN THE BASE NEUTRALIZING CAPACITY OF AN ACID ADIRONDACK LAKE, NEW YORK

    EPA Science Inventory

    Concern and controversy over the effects of acidic deposition on low ionic strength surface wa ters has led to much discussion on the nature and extent of proton transformations within acid sensitive ecosystems. The source of base neutralizing capacity(BNC) within acid surface wa...

  14. A Comparison of Different Teaching Designs of "Acids and Bases" Subject

    ERIC Educational Resources Information Center

    Ültay, Neslihan; Çalik, Muammer

    2016-01-01

    Inability to link the acid-base concepts with daily life phenomena (as contexts) highlights the need for further research on the context-based acid-base chemistry. In this vein, the aim of this study is to investigate the effects of different teaching designs (REACT strategy, 5Es learning model and traditional (existing) instruction) relevant with…

  15. Hands-On Science: Is It an Acid or a Base? These Colorful Tests Tell All!

    ERIC Educational Resources Information Center

    VanCleave, Janice

    1998-01-01

    Two hands-on science activities for K-6 students teach them how to determine if something is an acid or a base. The activities require acid/base indicator juice, testing strips, and a base solution. A recipe for making them in the classroom using red cabbage and baking soda is provided. (SM)

  16. [Development of Nucleic Acid-Based Adjuvant for Cancer Immunotherapy].

    PubMed

    Kobiyama, Kouji; Ishii, Ken J

    2015-09-01

    Since the discovery of the human T cell-defined tumor antigen, the cancer immunotherapy field has rapidly progressed, with the research and development of cancer immunotherapy, including cancer vaccines, being conducted actively. However, the disadvantages of most cancer vaccines include relatively weak immunogenicity and immune escape or exhaustion. Adjuvants with innate immunostimulatory activities have been used to overcome these issues, and these agents have been shown to enhance the immunogenicity of cancer vaccines and to act as mono-therapeutic anti-tumor agents. CpG ODN, an agonist for TLR9, is one of the promising nucleic acid-based adjuvants, and it is a potent inducer of innate immune effector functions. CpG ODN suppresses tumor growth in the absence of tumor antigens and peptide administration. Therefore, CpG ODN is expected to be useful as a cancer vaccine adjuvant as well as a cancer immunotherapy agent. In this review, we discuss the potential therapeutic applications and mechanisms of CpG ODN for cancer immunotherapy. PMID:26469159

  17. Effect of blending HA-g-PLLA on xanthohumol-loaded PLGA fiber membrane.

    PubMed

    Qiao, Tiankui; Jiang, Suchen; Song, Ping; Song, Xiaofeng; Liu, Qimin; Wang, Lijuan; Chen, Xuesi

    2016-10-01

    Electropsun poly (lactide-co-glycolide) (PLGA) fiber membrane loaded xanthohumol (XN) has been developed using a co-solvent system of chloroform and dimethylformamide. To enhance its biological functionality as bone tissue engineering scaffolds, 5wt% hydroxyapatite grafted poly (l-lactic acid) (HA-g-PLLA) is blended into the spinning solution. The purpose of the present work is to disclose the effect of blending HA-g-PLLA on the corresponding properties of the medicated fiber membrane including morphology, thermodynamics, wettability, drug release, mechanics as well as cytotoxicity. XN and HA-g-PLLA can be well blended with PLGA to make fibers. Blending HA-g-PLLA not only turns amorphous XN/PLGA fiber membrane into crystal structure, but also changes the membranous wettability. Various medicated membranes exhibit the sustained release profiles. Drug release rate of the ternary membrane with HA-g-PLLA is slower compared to the binary XN/PLGA, and for the ternary membrane, the drug release accelerates with increasing XN content. A model is proposed to account for the drug release process. Tensile testing shows that at 10% of XN, the comprehensive mechanics of the ternary is preferable to the binary. At the same time, these fiber membranes are no cytotoxicity. PMID:27343844

  18. Vibrio cholerae hemagglutinin(HA)/protease: An extracellular metalloprotease with multiple pathogenic activities.

    PubMed

    Benitez, Jorge A; Silva, Anisia J

    2016-06-01

    Vibrio cholerae of serogroup O1 and O139, the etiological agent of the diarrheal disease cholera, expresses the extracellular Zn-dependent metalloprotease hemagglutinin (HA)/protease also reported as vibriolysin. This enzyme is also produced by non-O1/O139 (non-cholera) strains that cause mild, sporadic illness (i.e. gastroenteritis, wound or ear infections). Orthologs of HA/protease are present in other members of the Vibrionaceae family pathogenic to humans and fish. HA/protease belongs to the M4 neutral peptidase family and displays significant amino acid sequence homology to Pseudomonas aeruginosa elastase (LasB) and Bacillus thermoproteolyticus thermolysin. It exhibits a broad range of potentially pathogenic activities in cell culture and animal models. These activities range from the covalent modification of other toxins, the degradation of the protective mucus barrier and disruption of intestinal tight junctions. Here we review (i) the structure and regulation of HA/protease expression, (ii) its interaction with other toxins and the intestinal mucosa and (iii) discuss the possible role(s) of HA/protease in the pathogenesis of cholera. PMID:26952544

  19. Determination of substitution positions in hyaluronic acid hydrogels using NMR and MS based methods.

    PubMed

    Wende, Frida J; Gohil, Suresh; Mojarradi, Hotan; Gerfaud, Thibaud; Nord, Lars I; Karlsson, Anders; Boiteau, Jean-Guy; Kenne, Anne Helander; Sandström, Corine

    2016-01-20

    In hydrogels of cross-linked polysaccharides, the total amount of cross-linker and the degree of cross-linking influence the properties of the hydrogel. The substitution position of the cross-linker on the polysaccharide is another parameter that can influence hydrogel properties; hence methods for detailed structural analysis of the substitution pattern are required. NMR and LC-MS methods were developed to determine the positions and amounts of substitution of 1,4-butanediol diglycidyl ether (BDDE) on hyaluronic acid (HA), and for the first time it is shown that BDDE can react with any of the four available hydroxyl groups of the HA disaccharide repeating unit. This was achieved by studying di-, tetra-, and hexasaccharides obtained from degradation of BDDE cross-linked HA hydrogel by chondroitinase. Furthermore, amount of linker substitution at each position was shown to be dependent on the size of the oligosaccharides. For the disaccharide, substitutions were predominantly at ΔGlcA-OH2 and GlcNAc-OH6 while in the tetra- and hexasaccharides, it was mainly at the reducing end GlcNAc-OH4. In the disaccharide there was no substitution at this position. Since chondroitinase is able to completely hydrolyse non-substituted HA into unsaturated disaccharides, these results indicate that the enzyme is prevented to cleave on the non-reducing side of an oligosaccharide substituted at the reducing end GlcNAc-OH4. The procedure can be adopted for the determination of substitution positions in other types of polymers. PMID:26572480

  20. The pharmacokinetics of glycyrrhizic acid evaluated by physiologically based pharmacokinetic modeling.

    PubMed

    Ploeger, B; Mensinga, T; Sips, A; Seinen, W; Meulenbelt, J; DeJongh, J

    2001-05-01

    Glycyrrhizic acid is widely applied as a sweetener in food products and chewing tobacco. In addition, it is of clinical interest for possible treatment of chronic hepatitis C. In some highly exposed subjects, side effects such as hypertension and symptoms associated with electrolyte disturbances have been reported. To analyze the relationship between the pharmacokinetics of glycyrrhizic acid in its toxicity, the kinetics of glycyrrhizic acid and its biologically active metabolite glycyrrhetic acid were evaluated. Glycyrrhizic acid is mainly absorbed after presystemic hydrolysis as glycyrrhetic acid. Because glycyrrhetic acid is a 200-1000 times more potent inhibitor of 11-beta-hydroxysteroid dehydrogenase compared to glycyrrhizic acid, the kinetics of glycyrrhetic acid are relevant in a toxicological perspective. Once absorbed, glycyrrhetic acid is transported, mainly taken up into the liver by capacity-limited carriers, where it is metabolized into glucuronide and sulfate conjugates. These conjugates are transported efficiently into the bile. After outflow of the bile into the duodenum, the conjugates are hydrolyzed to glycyrrhetic acid by commensal bacteria; glycyrrhetic acid is subsequently reabsorbed, causing a pronounced delay in the terminal plasma clearance. Physiologically based pharmacokinetic modeling indicated that, in humans, the transit rate of gastrointestinal contents through the small and large intestines predominantly determines to what extent glycyrrhetic acid conjugates will be reabsorbed. This parameter, which can be estimated noninvasively, may serve as a useful risk estimator for glycyrrhizic-acid-induced adverse effects, because in subjects with prolonged gastrointestinal transit times, glycyrrhetic acid might accumulate after repeated intake. PMID:11495500

  1. Polyol and Amino Acid-Based Biosurfactants, Builders, and Hydrogels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter reviews different detergent materials which have been synthesized from natural agricultural commodities. Background information, which gives reasons why the use of biobased materials may be advantageous, is presented. Detergent builders from L-aspartic acid, citric acid and D-sorbitol...

  2. Preparation of bioactive porous HA/PCL composite scaffolds

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Guo, L. Y.; Yang, X. B.; Weng, J.

    2008-12-01

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications.

  3. Wheat flour based propionic acid fermentation: an economic approach.

    PubMed

    Kagliwal, Lalit D; Survase, Shrikant A; Singhal, Rekha S; Granström, Tom

    2013-02-01

    A process for the fermentative production of propionic acid from whole wheat flour using starch and gluten as nutrients is presented. Hydrolysis of wheat flour starch using amylases was optimized. A batch fermentation of hydrolysate supplemented with various nitrogen sources using Propionibacterium acidipropionici NRRL B 3569 was performed. The maximum production of 48.61, 9.40, and 11.06 g of propionic acid, acetic acid and succinic acid, respectively, was found with wheat flour hydrolysate equivalent to 90 g/l glucose and supplemented with 15 g/l yeast extract. Further, replacement of yeast extract with wheat gluten hydrolysate showed utilization of gluten hydrolysate without compromising the yields and also improving the economics of the process. The process so developed could be useful for production of animal feed from whole wheat with in situ production of preservatives, and also suggest utilization of sprouted or germinated wheat for the production of organic acids. PMID:23357590

  4. New yeast-based approaches in production of palmitoleic acid.

    PubMed

    Kolouchová, Irena; Sigler, Karel; Schreiberová, Olga; Masák, Jan; Řezanka, Tomáš

    2015-09-01

    Palmitoleic acid is found in certain dairy products and has broad applications in medicine and cosmetics. We tried to find a suitable producer of this acid among traditional biotechnological yeast species (Kluyveromyces polysporus, Torulaspora delbrueckii, Saccharomyces cerevisiae) characterized by high biomass yield and Candida krusei, Yarrowia lipolytica and Trichosporon cutaneum accumulating large amounts of lipids. The main factor affecting the content of palmitoleic acid was found to be the C/N ratio in the culture medium, with ammonium sulfate as an optimum nitrogen source leading to highest biomass yield with concomitantly increased lipid accumulation, and an increased content of ω6-linoleic acid, the precursor of prostaglandins, leukotrienes, and thromboxanes. We found that C. krusei can be conveniently used for the purpose, albeit only under certain cultivation conditions, whereas S. cerevisiae can produce high and stable amounts of palmitoleic acid in a broad range of cultivation conditions ranging from conventional to nutrient limitations. PMID:26101962

  5. Development of polylactic acid-based materials through reactive modification

    NASA Astrophysics Data System (ADS)

    Fowlks, Alison Camille

    2009-12-01

    Polylactic acid (PLA)-based systems have shown to be of great potential for the development of materials requiring biobased content, biodegradation, and sufficient properties. The efforts in this study are directed toward addressing the current research need to overcome some of the inherent drawbacks of PLA. To meet this need, reactive extrusion was employed to develop new materials based on PLA by grafting, compounding, and polymer blending. In the first part of this work, maleic anhydride (MA) was grafted onto PLA by reactive extrusion. Two structurally different peroxides were used to initiate grafting and results were reported on the basis of grafting, molecular weight, and thermal behavior. An inverse relationship between degree of grafting and molecular weight was established. It was also found that, regardless of peroxide type, there is an optimum peroxid-to-MA ratio of 0.5:2 that promotes maximum grafting, beyond which degradation reactions become predominant. Overall, it was found that the maleated copolymer (MAPLA) could be used as an interfacial modifier in PLA-based composites. Therefore, MAPLA was incorporated into PLA-talc composites in varying concentrations. The influence of the MAPLA addition on the mechanical and thermal behavior was investigated. When added in an optimum concentration, MAPLA improved the tensile strength and crystallization of the composite. Furthermore, microscopic observation confirmed the compatibilization effect of MAPLA in PLA-talc composites. Vinyltrimethoxysilane was free-radically grafted onto the backbone of PLA and subsequently moisture crosslinked. The effects of monomer, initiator, and catalyst concentration on the degree of crosslinking and the mechanical and thermal properties were investigated. The presence of a small amount of catalyst showed to be a major contributor to the crosslinking formation in the time frame investigated, shown by an increase in gel content and decrease in crystallinity. Furthermore

  6. Registration of two double rust resistant germplasms, HA-R12 and HA-R13 for confection sunflower

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The confection sunflower (Helianthus annuus L.) germplasms HA-R12 (Reg. No. ______, PI 673104) and HA-R13 (Reg. No. ______, PI 673105) were developed by the USDA-ARS, Sunflower and Plant Biology Research Unit in collaboration with the North Dakota Agricultural Experiment Station, and released in Jul...

  7. Registration of two confection sunflower germplasm Lines, HA-R10 and HA-R11, Resistant to sunflower rust

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two confection sunflower (Helianthus annuus L.) germplasm lines, HA-R10 (Reg. No.xxx, PI670043) and HA-R11 (Reg. No.xxx, PI670044) were developed by the USDA-ARS Sunflower and Plant Biology Research Unit in collaboration with the North Dakota Agricultural Experiment Station and released December, 20...

  8. Novel bioactive polyester scaffolds prepared from unsaturated resins based on isosorbide and succinic acid.

    PubMed

    Smiga-Matuszowicz, Monika; Janicki, Bartosz; Jaszcz, Katarzyna; Łukaszczyk, Jan; Kaczmarek, Marcin; Lesiak, Marta; Sieroń, Aleksander L; Simka, Wojciech; Mierzwiński, Maciej; Kusz, Damian

    2014-12-01

    In this study new biodegradable materials obtained by crosslinking poly(3-allyloxy-1,2-propylene succinate) (PSAGE) with oligo(isosorbide maleate) (OMIS) and small amount of methyl methacrylate were investigated. The porous scaffolds were obtained in the presence of a foaming system consisted of calcium carbonate/carboxylic acid mixture, creating in situ porous structure during crosslinking of liquid formulations. The maximum crosslinking temperature and setting time, the cured porous materials morphology as well as the effect of their porosity on mechanical properties and hydrolytic degradation process were evaluated. It was found that the kind of carboxylic acid used in the foaming system influenced compressive strength and compressive modulus of porous scaffolds. The MTS cytotoxicity assay was carried out for OMIS using hFOB1.19 cell line. OMIS resin was found to be non-toxic in wide range of concentrations. On the ground of scanning electron microscopy (SEM) observations and energy X-ray dispersive analysis (EDX) it was found that hydroxyapatite (HA) formation at the scaffolds surfaces within short period of soaking in phosphate buffer solution occurs. After 3h immersion a compact layer of HA was observed at the surface of the samples. The obtained results suggest potential applicability of resulted new porous crosslinked polymeric materials as temporary bone void fillers. PMID:25491802

  9. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    SciTech Connect

    Nan, Alexandrina Bunge, Alexander; Turcu, Rodica

    2015-12-23

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  10. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    NASA Astrophysics Data System (ADS)

    Nan, Alexandrina; Bunge, Alexander; Turcu, Rodica

    2015-12-01

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  11. Evaluation of a conserved HA274-288 epitope to detect antibodies to highly pathogenic avian influenza virus H5N1 in Indonesian commercial poultry.

    PubMed

    Wawegama, Nadeeka K; Tarigan, Simson; Indriani, Risa; Selleck, Paul; Adjid, Rm Abdul; Syafriati, Tati; Hardiman; Durr, Peter A; Ignjatovic, Jagoda

    2016-08-01

    A peptide enzyme linked immunosorbent assay (ELISA) based on an epitope in the haemagglutinin (HA) of avian influenza virus H5N1, amino acid positions 274-288 (HA274-288) was evaluated for detection of H5N1-specific antibodies. An optimized ELISA based on the tetrameric form of the HA274-288 epitope designated MP15 gave low background with non-immune chicken sera and detected vaccinated and infected birds. The HA274-288 epitope was highly conserved in Indonesian H5N1 strains and antibody responses were detected in the majority of the vaccinated chickens regardless of the H5N1 strain used for vaccination. The HA274-288 epitope was also conserved in the majority of H5N1 strains from the neighbouring Asian region, and other H5 subtypes potentially allowing for a wider use of the MP15 ELISA in H5N1 vaccinated and infected flocks. The MP15 ELISA results correlated significantly with haemagglutination inhibition (HI) test results and test sensitivity and specificity were 87% and 92%, respectively. The MP15 ELISA titres were significantly higher than the HI titres in all immune sera allowing for sera to be tested at a single dilution of 1:400 which is of advantage in routine surveillance. The study indicated that the MP15 ELISA is potentially useful for serological detection of H5N1 vaccinated or infected poultry and to have some advantages over the standard HI test for routine monitoring of flocks' immunity after vaccination. PMID:27009612

  12. Morphologies of precise polyethylene-based acid copolymers and ionomers

    NASA Astrophysics Data System (ADS)

    Buitrago, C. Francisco

    Acid copolymers and ionomers are polymers that contain a small fraction of covalently bound acidic or ionic groups, respectively. For the specific case of polyethylene (PE), acid and ionic pendants enhance many of the physical properties such as toughness, adhesion and rheological properties. These improved properties result from microphase separated aggregates of the polar pendants in the non-polar PE matrix. Despite the widespread industrial use of these materials, rigorous chemical structure---morphology---property relationships remain elusive due to the inevitable structural heterogeneities in the historically-available acid copolymers and ionomers. Recently, precise acid copolymers and ionomers were successfully synthesized by acyclic diene metathesis (ADMET) polymerization. These precise materials are linear, high molecular weight PEs with pendant acid or ionic functional groups separated by a precisely controlled number of carbon atoms. The morphologies of nine precise acid copolymers and eleven precise ionomers were investigated by X-ray scattering, solid-state 13C nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). For comparison, the morphologies of linear PEs with pseudo-random placement of the pendant groups were also studied. Previous studies of precise copolymers with acrylic acid (AA) found that the microstructural precision produces a new morphology in which PE crystals drive the acid aggregates into layers perpendicular to the chain axes and presumably at the interface between crystalline and amorphous phases. In this dissertation, a second new morphology for acid copolymers is identified in which the aggregates arrange on cubic lattices. The fist report of a cubic morphology was observed at room and elevated temperatures for a copolymer functionalized with two phosphonic acid (PA) groups on every 21st carbon atom. The cubic lattice has been identified as face-centered cubic (FCC). Overall, three morphology types have been

  13. Polyphosphate-containing fluid fertilizers based on wet-process acid and wet-process acid-sulfuric acid mixtures

    SciTech Connect

    Mann, H.C.

    1984-01-01

    In the late 1960s and early 1970s, the Tennessee Valley Authority (TVA) developed and patented a pipe-reactor process that used low-conversion superphosphoric acid to produce a 10-34-0 grade liquid fertilizer that contained about 60 to 70% of the total P/sub 2/O/sub 5/ as polyphosphate. The process was accepted rapidly by the fluid-fertilizer industry and there are now about 125 commercial plants in operation throughout the United States using this technology. In the latter part of 1970, studies were begun to develop a process to use less expensive merchant-grade acid in a pipe reactor. The process that resulted was designed so that it could be retrofitted into the existing 10-34-0 process with some equipment changes. The product was a 9-32-0 grade suspension fertilizer containing about 20% of the total P/sub 2/O/sub 5/ as polyphosphate. In 1981, TVA began operation in a demonstration-scale unit with a design capacity of 20 tons of 9-32-0 suspension per hour. In addition to using the relatively inexpensive anhydrous ammonia and merchant-grade wet-process acid as raw materials, the process was designed to be energy efficient in that all of the heat required to vaporize the ammonia and preheat the merchant-grade acid was obtained from the process.

  14. CD44-mediated Adhesion to Hyaluronic Acid Contributes to Mechanosensing and Invasive Motility

    PubMed Central

    Kim, Yushan; Kumar, Sanjay

    2014-01-01

    The high molecular weight glycosaminoglycan, hyaluronic acid (HA), makes up a significant portion of the brain extracellular matrix (ECM). Glioblastoma multiforme (GBM), a highly invasive brain tumor, is associated with aberrant HA secretion, tissue stiffening, and overexpression of the HA receptor CD44. Here, transcriptomic analysis, engineered materials, and measurements of adhesion, migration, and invasion were used to investigate how HA/CD44 ligation contributes to the mechanosensing and invasive motility of GBM tumor cells, both intrinsically and in the context of RGD/integrin adhesion. Analysis of transcriptomic data from The Cancer Genome Atlas (TCGA) reveals up-regulation of transcripts associated with HA/CD44 adhesion. CD44 suppression in culture reduces cell adhesion to HA on short time scales (0.5h post-incubation) even if RGD is present, whereas maximal adhesion on longer time scales (3h) requires both CD44 and integrins. Moreover, time-lapse imaging demonstrates that cell adhesive structures formed during migration on bare HA matrices are more short-lived than cellular protrusions formed on surfaces containing RGD. Interestingly, adhesion and migration speed were dependent on HA hydrogel stiffness, implying that CD44-based signaling is intrinsically mechanosensitive. Finally, CD44 expression paired with an HA-rich microenvironment maximized three-dimensional invasion, whereas CD44 suppression or abundant integrin-based adhesion limited it. These findings demonstrate that CD44 transduces HA-based stiffness cues, temporally precedes integrin-based adhesion maturation, and facilitates invasion. PMID:24962319

  15. In Vitro Investigation of Self-Assembled Nanoparticles Based on Hyaluronic Acid-Deoxycholic Acid Conjugates for Controlled Release Doxorubicin: Effect of Degree of Substitution of Deoxycholic Acid

    PubMed Central

    Wei, Wen-Hao; Dong, Xue-Meng; Liu, Chen-Guang

    2015-01-01

    Self-assembled nanoparticles based on a hyaluronic acid-deoxycholic acid (HD) chemical conjugate with different degree of substitution (DS) of deoxycholic acid (DOCA) were prepared. The degree of substitution (DS) was determined by titration method. The nanoparticles were loaded with doxorubicin (DOX) as the model drug. The human cervical cancer (HeLa) cell line was utilized for in vitro studies and cell cytotoxicity of DOX incorporated in the HD nanoparticles was accessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, cellular uptake of fluorescently labeled nanoparticles was also investigated. An increase in the degree of deoxycholic acid substitution reduced the size of the nanoparticles and also enhanced their drug encapsulation efficiency (EE), which increased with the increase of DS. A higher degree of deoxycholic acid substitution also lead to a lower release rate and an initial burst release of doxorubicin from the nanoparticles. In summary, the degree of substitution allows the modulation of the particle size, drug encapsulation efficiency, drug release rate, and cell uptake efficiency of the nanoparticles. The herein developed hyaluronic acid-deoxycholic acid conjugates are a good candidate for drug delivery and could potentiate therapeutic formulations for doxorubicin–mediated cancer therapy. PMID:25837468

  16. Proton exchange in acid-base complexes induced by reaction coordinates with heavy atom motions

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Taghikhani, Mahdi

    2012-06-01

    We extend previous work on nitric acid-ammonia and nitric acid-alkylamine complexes to illustrate that proton exchange reaction coordinates involve the rocking motion of the base moiety in many double hydrogen-bonded gas phase strong acid-strong base complexes. The complexes studied involve the biologically and atmospherically relevant glycine, formic, acetic, propionic, and sulfuric acids with ammonia/alkylamine bases. In these complexes, the magnitude of the imaginary frequencies associated with the proton exchange transition states are <400 cm-1. This contrasts with widely studied proton exchange reactions between symmetric carboxylic acid dimers or asymmetric DNA base pair and their analogs where the reaction coordinate is localized in proton motions and the magnitude of the imaginary frequencies for the transition states are >1100 cm-1. Calculations on complexes of these acids with water are performed for comparison. Variations of normal vibration modes along the reaction coordinate in the complexes are described.

  17. Method for producing iron-based acid catalysts

    SciTech Connect

    Farcasiu, M.; Kathrein, H.; Kaufman, P.B.; Diehl, J.R.

    1998-04-01

    A method for preparing an acid catalyst with a long shelf-life is described. Crystalline iron oxides are doped with lattice compatible metals which are heated with halogen compounds at elevated temperatures.

  18. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms.

    PubMed

    de Oliveira, Juliana Davies; Carvalho, Lucas Silva; Gomes, Antônio Milton Vieira; Queiroz, Lúcio Rezende; Magalhães, Beatriz Simas; Parachin, Nádia Skorupa

    2016-01-01

    Hyaluronic acid, or HA, is a rigid and linear biopolymer belonging to the class of the glycosaminoglycans, and composed of repeating units of the monosaccharides glucuronic acid and N-acetylglucosamine. HA has multiple important functions in the human body, due to its properties such as bio-compatibility, lubricity and hydrophilicity, it is widely applied in the biomedical, food, health and cosmetic fields. The growing interest in this molecule has motivated the discovery of new ways of obtaining it. Traditionally, HA has been extracted from rooster comb-like animal tissues. However, due to legislation laws HA is now being produced by bacterial fermentation using Streptococcus zooepidemicus, a natural producer of HA, despite it being a pathogenic microorganism. With the expansion of new genetic engineering technologies, the use of organisms that are non-natural producers of HA has also made it possible to obtain such a polymer. Most of the published reviews have focused on HA formulation and its effects on different body tissues, whereas very few of them describe the microbial basis of HA production. Therefore, for the first time this review has compiled the molecular and genetic bases for natural HA production in microorganisms together with the main strategies employed for heterologous production of HA. PMID:27370777

  19. Separation and purification of hyaluronic acid by embedded glucuronic acid imprinted polymers into cryogel.

    PubMed

    Ünlüer, Özlem Biçen; Ersöz, Arzu; Denizli, Adil; Demirel, Rasime; Say, Rıdvan

    2013-09-01

    Hyaluronic acid (HA) has been used in many applications such as pharmaceutical, clinical and cosmetics, so its separation and purification is very important. In this study, firstly d-glucuronic acid imprinted polymers (MIPs) have been synthesized for the separation of HA which has glucuronic acid part in its structure. MIP particles have characterized by elemental analysis, Fourier Transform Infrared Spectroscopy (FT-IR) and swelling tests. Then, synthesized MIP particles have embedded into polyacrylamide based cryogel. Cryogel has prepared by free radical cryogelation process initiated by N,N,N',N'-Tetramethylethylenediamine (TEMED) and ammonium persulfate (APS) as redox initiators. This cryogel material was characterized by FT-IR, swelling tests, scanning electron microscopy (SEM) and surface adsorption analyze including pore size analyzer (BET) method. The adsorption of HA has investigated by spectrophotometric method using MIPs embedded into cryogel columns (GAIPEC) and the maximum HA adsorption capacity was found to be 318mgg(-1). The selectivity of GAIPEC column has estimated using N-acetylglucose amine as interfering agent since this molecule is a part of HA and the results have shown that GAIPEC has been nearly 35 times selective for HA than N-acetylglucose amine. The optimum chromatographic conditions for separation of HA were investigated. pH 7.0 buffer solution for elution and 0.1M of NaCl solution as desorption agent were used at 0.5mLmin(-1) flow rate. Also, recovery of GAIPEC was investigated and the results have shown that GAIPEC could be used many times without decreasing its adsorption capacity significantly. Here in, combining selectivity of MIP particles and mechanical properties of cryogel, a rigid and stable material was prepared for the separation and purification of HA. To point out this, HA has been isolated from fish eye and fermentation of Streptococcus equi RSKK 679 cell culture. After that, it has characterized and Fast Protein Liquid

  20. Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose

    PubMed Central

    2014-01-01

    Background Kojic acid (5-Hydroxy-2-(hydroxymethyl)-4-pyrone) is one of the major secondary metabolites in Aspergillus oryzae. It is widely used in food, pharmaceuticals, and cosmetics. The production cost, however, is too high for its use in many applications. Thus, an efficient and cost-effective kojic acid production process would be valuable. However, little is known about the complete set of genes for kojic acid production. Currently, kojic acid is produced from glucose. The efficient production of kojic acid using cellulose as an inexpensive substrate would help establish cost-effective kojic acid production. Results A kojic acid transcription factor gene over-expressing the A. oryzae strain was constructed. Three genes related to kojic acid production in this strain were transcribed in higher amounts than those found in the wild-type strain. This strain produced 26.4 g/L kojic acid from 80 g/L glucose. Furthermore, this strain was transformed with plasmid harboring 3 cellulase genes. The resultant A. oryzae strain successfully produced 0.18 g/L of kojic acid in 6 days of fermentation from the phosphoric acid swollen cellulose. Conclusions Kojic acid was produced directly from cellulose material using genetically engineered A. oryzae. Because A. oryzae has efficient protein secretion ability and secondary metabolite productivity, an A. oryzae-based cell factory could be a platform for the production of various kinds of bio-based chemicals. PMID:24885968

  1. Untargeted fatty acid profiles based on the selected ion monitoring mode.

    PubMed

    Zhang, Liangxiao; Li, Peiwu; Sun, Xiaoman; Hu, Wei; Wang, Xiupin; Zhang, Qi; Ding, Xiaoxia

    2014-08-11

    Fatty acids are potential biomarkers of some diseases and also key markers and quality parameters of different dietary fats and related products. Thus, untargeted fatty acid profiles are important in the study of dietary fat quality and fat-related diseases, as well as in other fields such as bioenergy. In addition, accurate identification of unknown components is a technological breakthrough for the selected ion monitoring (SIM) mode for untargeted profiles. In this study, we developed untargeted fatty acid profiles based on SIM. We also investigated mass spectral characteristics and equivalent chain lengths (ECL) to eliminate the influence of non-FAMEs for identifying fatty acids in samples. As an application example, fatty acid profiles were used to classify three edible vegetable oils. The results indicated that SIM-based untargeted fatty acid profiles could yield accurate qualitative and quantitative results for more fatty acids and benefit related studies of metabolite profiles. PMID:25066717

  2. Canonical Pedagogical Content Knowledge by Cores for Teaching Acid-Base Chemistry at High School

    ERIC Educational Resources Information Center

    Alvarado, Clara; Cañada, Florentina; Garritz, Andoni; Mellado, Vicente

    2015-01-01

    The topic of acid-base chemistry is one of the oldest in general chemistry courses and it has been almost continuously in academic discussion. The central purpose of documenting the knowledge and beliefs of a group of ten Mexican teachers with experience in teaching acid-base chemistry in high school was to know how they design, prepare and…

  3. Acid-base properties of the surface of the α-Al2O3 suspension

    NASA Astrophysics Data System (ADS)

    Ryazanov, M. A.; Dudkin, B. N.

    2009-12-01

    The distribution of the acid-base centers on the surface of α-Al2O3 suspension particles was studied by potentiometric titration, and the corresponding p K spectra were constructed. It was inferred that the double electric layer created by the supporting electrolyte substantially affected the screening of the acid-base centers on the particle surface of the suspension.

  4. Collaborative Strategies for Teaching Common Acid-Base Disorders to Medical Students

    ERIC Educational Resources Information Center

    Petersen, Marie Warrer; Toksvang, Linea Natalie; Plovsing, Ronni R.; Berg, Ronan M. G.

    2014-01-01

    The ability to recognize and diagnose acid-base disorders is of the utmost importance in the clinical setting. However, it has been the experience of the authors that medical students often have difficulties learning the basic principles of acid-base physiology in the respiratory physiology curriculum, particularly when applying this knowledge to…

  5. Lewis Acid-Base, Molecular Modeling, and Isotopic Labeling in a Sophomore Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nataro, Chip; Ferguson, Michelle A.; Bocage, Katherine M.; Hess, Brian J.; Ross, Vincent J.; Swarr, Daniel T.

    2004-01-01

    An experiment to prepare a deuterium labeled adduct of a Lewis acid and Lewis base, to use computational methods allowing students to visualize the LUMO of Lewis acids, the HOMO of Lewis bases and the molecular orbitals of the adduct that is formed is developed. This allows students to see the interplay between calculated and experimental results.

  6. A Comparative Study of French and Turkish Students' Ideas on Acid-Base Reactions

    ERIC Educational Resources Information Center

    Cokelez, Aytekin

    2010-01-01

    The goal of this comparative study was to determine the knowledge that French and Turkish upper secondary-school students (grades 11 and 12) acquire on the concept of acid-base reactions. Following an examination of the relevant curricula and textbooks in the two countries, 528 students answered six written questions about the acid-base concept.…

  7. Thai Grade 11 Students' Alternative Conceptions for Acid-Base Chemistry

    ERIC Educational Resources Information Center

    Artdej, Romklao; Ratanaroutai, Thasaneeya; Coll, Richard Kevin; Thongpanchang, Tienthong

    2010-01-01

    This study involved the development of a two-tier diagnostic instrument to assess Thai high school students' understanding of acid-base chemistry. The acid-base diagnostic test (ABDT) comprising 18 items was administered to 55 Grade 11 students in a science and mathematics programme during the second semester of the 2008 academic year. Analysis of…

  8. Measuring the Confidence of 8th Grade Taiwanese Students' Knowledge of Acids and Bases

    ERIC Educational Resources Information Center

    Jack, Brady Michael; Liu, Chia-Ju; Chiu, Houn-Lin; Tsai, Chun-Yen

    2012-01-01

    The present study investigated whether gender differences were present on the confidence judgments made by 8th grade Taiwanese students on the accuracy of their responses to acid-base test items. A total of 147 (76 male, 71 female) students provided item-specific confidence judgments during a test of their knowledge of acids and bases. Using the…

  9. Using Conceptual Change Texts with Analogies for Misconceptions in Acids and Bases

    ERIC Educational Resources Information Center

    Cetingul, Ipek; Geban, Omer

    2011-01-01

    This study was conducted to explore the effectiveness of conceptual change oriented instruction over traditional instruction on students' understanding of acids and bases concept. Besides, effects of gender difference and science process skills on students' understanding of acids and bases were also investigated. Analysis of the results showed…

  10. Using the Logarithmic Concentration Diagram, Log "C", to Teach Acid-Base Equilibrium

    ERIC Educational Resources Information Center

    Kovac, Jeffrey

    2012-01-01

    Acid-base equilibrium is one of the most important and most challenging topics in a typical general chemistry course. This article introduces an alternative to the algebraic approach generally used in textbooks, the graphical log "C" method. Log "C" diagrams provide conceptual insight into the behavior of aqueous acid-base systems and allow…

  11. High School Students' Understanding of Acid-Base Concepts: An Ongoing Challenge for Teachers

    ERIC Educational Resources Information Center

    Damanhuri, Muhd Ibrahim Muhamad; Treagust, David F.; Won, Mihye; Chandrasegaran, A. L.

    2016-01-01

    Using a quantitative case study design, the "Acids-Bases Chemistry Achievement Test" ("ABCAT") was developed to evaluate the extent to which students in Malaysian secondary schools achieved the intended curriculum on acid-base concepts. Responses were obtained from 260 Form 5 (Grade 11) students from five schools to initially…

  12. Red Shoe-Blue Shoe: An Acid-Base Demonstration with a Fashionable Twist.

    ERIC Educational Resources Information Center

    Breyer, Arthur C.; Uzelmeier, Calvin E.

    1998-01-01

    Illustrates that acid-base indicators come in many forms and the reversible effects that acids and bases have on the colors of such indicators. An object is dyed in an indicator, which causes the object to turn dark blue at pH less than 3.0 to 5.0. Suggests using dyeable fabric shoes and other cotton articles. (PVD)

  13. Students' Understanding of Acid, Base and Salt Reactions in Qualitative Analysis.

    ERIC Educational Resources Information Center

    Tan, Kim-Chwee Daniel; Goh, Ngoh-Khang; Chia, Lian-Sai; Treagust, David F.

    2003-01-01

    Uses a two-tier, multiple-choice diagnostic instrument to determine (n=915) grade 10 students' understanding of the acid, base, and salt reactions involved in basic qualitative analysis. Reports that many students did not understand the formation of precipitates and the complex salts, acid/salt-base reactions, and thermal decomposition involved in…

  14. Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803

    PubMed Central

    2012-01-01

    Background Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria. Results Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS), have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent. Conclusions Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene. PMID:22433663

  15. ACID PRECIPITATION IN NORTH AMERICA: 1987 ANNUAL AND SEASONAL DATA SUMMARIES FROM ACID DEPOSITION SYSTEM DATA BASE

    EPA Science Inventory

    This report summarizes the 1987 wet deposition precipitation chemistry data collected in North America and available in the Acid Deposition System (ADS) data base. nterpretative statistical analyses are not a focus of this report; however, users of the report will learn about maj...

  16. ACID PRECIPITATION IN NORTH AMERICA: 1980, 1981 AND 1982 ANNUAL DATA SUMMARIES FROM ACID DEPOSITION SYSTEM DATA BASE

    EPA Science Inventory

    The Acid Deposition System (ADS) data base for North American wet deposition data is used to provide an overview of the major North American monitoring networks: NADP, CANSAP, APN, MAP3S/PCN, EPRI/SURE, UAPSP and APIOS daily and cumulative. Individual site annual statistical summ...

  17. ACID PRECIPITATION IN NORTH AMERICA: 1985 ANNUAL AND SEASONAL DATA SUMMARIES FROM ACID DEPOSITION SYSTEM DATA BASE

    EPA Science Inventory

    The report gives a summary of 1985 wet deposition precipitation chemistry data collected in North America and available in the Acid Deposition System (ADS) data base. North American wet deposition monitoring networks with data in ADS are NADP/NTN, CANSAP, APN, UAPSP, MAP3S/PCN, W...

  18. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels.

    PubMed

    Janßen, Helge Jans; Steinbüchel, Alexander

    2014-01-01

    The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed. PMID:24405789

  19. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels

    PubMed Central

    2014-01-01

    The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed. PMID:24405789

  20. Suppression of Acid Diffusion in Chemical Amplification Resists by Molecular Control of Base Matrix Polymers

    NASA Astrophysics Data System (ADS)

    Yoshimura, Toshiyuki; Shiraishi, Hiroshi; Okazaki, Shinji

    1995-12-01

    Suppression of acid diffusion during post-exposure baking (PEB) of chemical amplification resists is investigated from the standpoint of molecular control of base matrix polymers. Negative-type chemical amplification resists composed of cresol novolak-based matrix polymers, acid-catalyzed crosslinkers of melamine resins, and acid generators of onium salts are prepared. The molecular weight distributions of the base matrix polymers are controlled by means of a precipitation method. The resists are exposed with electron beams in isolated lines to evaluate the acid diffusion characteristics. Dependence of pattern sizes on the PEB time clearly shows that acid diffusion determines the resist pattern sizes based on Fick's law. The diffusion coefficients of resists with base matrix polymers with small polydispersities are smaller than those of resists with base matrix polymers with large polydispersities. Acid diffusion can still be suppressed by applying base matrix polymers with small weight-average molecular weights and small polydispersities. Diffusion coefficients can be further decreased by using base matrix polymers with more p-cresol components. A diffusion mechanism is proposed based on acid diffusion channels composed of active OH-groups and vacancies in the base matrix polymers.

  1. A novel enzyme-based acidizing system: Matrix acidizing and drilling fluid damage removal

    SciTech Connect

    Harris, R.E.; McKay, D.M.; Moses, V.

    1995-12-31

    A novel acidizing process is used to increase the permeability of carbonate rock cores in the laboratory and to remove drilling fluid damage from cores and wafers. Field results show the benefits of the technology as applied both to injector and producer wells.

  2. Beyond ketonization: selective conversion of carboxylic acids to olefins over balanced Lewis acid-base pairs.

    PubMed

    Baylon, Rebecca A L; Sun, Junming; Martin, Kevin J; Venkitasubramanian, Padmesh; Wang, Yong

    2016-04-11

    We report the direct conversion of mixed carboxylic acids to C-C olefins with up to 60 mol% carbon yield through cascade (cross) ketonization, (cross) aldolization and self-deoxygenation reactions. Co-feeding hydrogen provides an additional ketone hydrogenation/dehydration pathway to a wider range of olefins. PMID:26898532

  3. Nano-polyplex based on oleoyl-carboxymethy-chitosan (OCMCS) and hyaluronic acid for oral gene vaccine delivery.

    PubMed

    Liu, Ya; Wang, Fang-Qin; Shah, Zeana; Cheng, Xiao-Jie; Kong, Ming; Feng, Chao; Chen, Xi-Guang

    2016-09-01

    Here we described nano-polyplexes (NPs) made of oleoyl-carboxymethy-chitosan (OCMCS)/hyaluronic acid (HA) as novel potential carriers for oral gene vaccines delivery. Aerolysin gene (aerA) of Aeromonas hydrophila as microbial antigen was efficiently loaded to form OCMCS-HA/aerA (OHA) NPs. OHA NPs performed the optimal parameters, i.e. smallest (154.5±9.4nm), positive charged (+7.9±0.5mV) and monodispersed system with the N/P ratio of 5 and OCMCS/HA weight ratio of 4. Upon the introduction of HA, OHA NPs was beneficial for the DNA release in intestinal environments in comparison to OA NPs. The mean fluorescence intensity detected in Caco-2 cells incubated with OHA NPs was about 2.5-fold higher than that of OA NPs; however, it decreased significantly in the presence of excess free HA. The OHA NPs and OA NPs decreased the transepithelial electric resistance (TEER) of Caco-2 monolayers obviously and induced increasing the apparent permeability coefficient (Papp) of DNA by 5.45-6.09 folds compared with free DNA. Significantly higher (P<0.05) antigen-specific antibodies were detected in serum after orally immunized with OHA NPs than that immunized with OA NPs and DNA alone in carps. These results enable the OHA NPs might resolve challenges arising from gastrointestinal damage to gene antigens, and offer an approach applicable for oral vaccination. PMID:27236511

  4. Risedronate/zinc-hydroxyapatite based nanomedicine for osteoporosis.

    PubMed

    Khajuria, Deepak Kumar; Disha, Choudhary; Vasireddi, Ramakrishna; Razdan, Rema; Mahapatra, D Roy

    2016-06-01

    Targeting of superior osteogenic drugs to bone is an ideal approach for treatment of osteoporosis. Here, we investigated the potential of using risedronate/zinc-hydroxyapatite (ZnHA) nanoparticles based formulation in a rat model of experimental osteoporosis. Risedronate, a targeting moiety that has a strong affinity for bone, was loaded to ZnHA nanoparticles by adsorption method. Prepared risedronate/ZnHA drug formulation was characterized by field-emission scanning electron microscopy, X-ray diffraction analysis and fourier transform infrared spectroscopy. In vivo performance of the prepared risedronate/ZnHA nanoparticles was tested in an experimental model of postmenopausal osteoporosis. Therapy with risedronate/ZnHA drug formulation prevented increase in serum levels of bone-specific alkaline phosphatase and tartrate-resistant acid phosphatase 5b better than risedronate/HA or risedronate. With respect to improvement in the mechanical strength of the femoral mid-shaft and correction of increase in urine calcium and creatinine levels, the therapy with risedronate/ZnHA drug formulation was more effective than risedronate/HA or risedronate therapy. Moreover, risedronate/ZnHA drug therapy preserved the cortical and trabecular bone microarchitecture better than risedronate/HA or risedronate therapy. Furthermore, risedronate/ZnHA drug formulation showed higher values of calcium/phosphorous ratio and zinc content. The results strongly implicate that risedronate/ZnHA drug formulation has a therapeutic advantage over risedronate or risedronate/HA therapy for the treatment of osteoporosis. PMID:27040198

  5. Bifunctional Organic Polymeric Catalysts with a Tunable Acid-Base Distance and Framework Flexibility

    NASA Astrophysics Data System (ADS)

    Chen, Huanhui; Wang, Yanan; Wang, Qunlong; Li, Junhui; Yang, Shiqi; Zhu, Zhirong

    2014-09-01

    Acid-base bifunctional organic polymeric catalysts were synthesized with tunable structures. we demonstrated two synthesis approaches for structural fine-tune. In the first case, the framework flexibility was tuned by changing the ratio of rigid blocks to flexible blocks within the polymer framework. In the second case, we precisely adjusted the acid-base distance by distributing basic monomers to be adjacent to acidic monomers, and by changing the chain length of acidic monomers. In a standard test reaction for the aldol condensation of 4-nitrobenzaldehyde with acetone, the catalysts showed good reusability upon recycling and maintained relatively high conversion percentage.

  6. Surface acid-base characteristics of fiber materials by contact angle measurements

    SciTech Connect

    Mao Youan . Dept. of Materials Science and Applied Chemistry)

    1993-11-05

    Contact angle measurements were used to study the surface acid-base characteristics of treated and untreated carbon fibers, and of treated and untreated silicon carbide fibers. It has been shown that, when untreated the surfaces of these two fibers exhibits amphoteric, but the base character is dominant. After oxidization in a liquid phase, the surface acid character of the carbon fibers changes little, whereas the base character becomes much stronger. The treatment, with boiling-concentrated HNO[sub 3] for three hours and the sintering treatment in air at 500 C. for eight hours, has little effect on the surface acid-base characteristics of the silicon carbide fibers.

  7. Improvement of ruthenium based decarboxylation of carboxylic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The removal of oxygen atoms from biobased carboxylic acids is an attractive route to provide the drop in replacement feedstocks that industry needs to continue to provide high performance products. Through the use of ruthenium catalysis, an efficient method where this process can be accomplished on ...

  8. BMP-2 Grafted nHA/PLGA Hybrid Nanofiber Scaffold Stimulates Osteoblastic Cells Growth

    PubMed Central

    Haider, Adnan; Kim, Sukyoung; Huh, Man-Woo; Kang, Inn-Kyu

    2015-01-01

    Biomaterials play a pivotal role in regenerative medicine, which aims to regenerate and replace lost/degenerated tissues or organs. Natural bone is a hierarchical structure, comprised of various cells having specific functions that are regulated by sophisticated mechanisms. However, the regulation of the normal functions in damaged or injured cells is disrupted. In order to address this problem, we attempted to artificially generate a scaffold for mimicking the characteristics of the extracellular matrix at the nanoscale level to trigger osteoblastic cell growth. For this purpose, we have chemically grafted bone morphogenetic protein (BMP-2) onto the surface of L-glutamic acid modified hydroxyapatite incorporated into the PLGA nanofiber matrix. After extensive characterization using various spectroscopic techniques, the BMP-g-nHA/PLGA hybrid nanofiber scaffolds were subjected to various in vitro cytocompatibility tests. The results indicated that BMP-2 on BMP-g-nHA/PLGA hybrid nanofiber scaffolds greatly stimulated osteoblastic cells growth, contrary to the nHA/PLGA and pristine PLGA nanofiber scaffold, which are used as control. These results suggest that BMP-g-nHA/PLGA hybrid nanofiber scaffold can be used as a nanodrug carrier for the controlled and targeted delivery of BMP-2, which will open new possibilities for enhancing bone tissue regeneration and will help in the treatment of various bone-related diseases in the future. PMID:26539477

  9. BMP-2 Grafted nHA/PLGA Hybrid Nanofiber Scaffold Stimulates Osteoblastic Cells Growth.

    PubMed

    Haider, Adnan; Kim, Sukyoung; Huh, Man-Woo; Kang, Inn-Kyu

    2015-01-01

    Biomaterials play a pivotal role in regenerative medicine, which aims to regenerate and replace lost/degenerated tissues or organs. Natural bone is a hierarchical structure, comprised of various cells having specific functions that are regulated by sophisticated mechanisms. However, the regulation of the normal functions in damaged or injured cells is disrupted. In order to address this problem, we attempted to artificially generate a scaffold for mimicking the characteristics of the extracellular matrix at the nanoscale level to trigger osteoblastic cell growth. For this purpose, we have chemically grafted bone morphogenetic protein (BMP-2) onto the surface of L-glutamic acid modified hydroxyapatite incorporated into the PLGA nanofiber matrix. After extensive characterization using various spectroscopic techniques, the BMP-g-nHA/PLGA hybrid nanofiber scaffolds were subjected to various in vitro cytocompatibility tests. The results indicated that BMP-2 on BMP-g-nHA/PLGA hybrid nanofiber scaffolds greatly stimulated osteoblastic cells growth, contrary to the nHA/PLGA and pristine PLGA nanofiber scaffold, which are used as control. These results suggest that BMP-g-nHA/PLGA hybrid nanofiber scaffold can be used as a nanodrug carrier for the controlled and targeted delivery of BMP-2, which will open new possibilities for enhancing bone tissue regeneration and will help in the treatment of various bone-related diseases in the future. PMID:26539477

  10. Ethanesulfonic acid-based esterification of industrial acidic crude palm oil for biodiesel production.

    PubMed

    Hayyan, Adeeb; Mjalli, Farouq S; Hashim, Mohd Ali; Hayyan, Maan; AlNashef, Inas M; Al-Zahrani, Saeed M; Al-Saadi, Mohammed A

    2011-10-01

    An industrial grade acidic crude palm oil (ACPO) pre-treatment process was carried out using ethanesulfonic acid (ESA) as a catalyst in the esterification reaction. ESA was used in different dosages to reduce free fatty acid (FFA) to a minimum level for the second stage of biodiesel production via alkaline transesterification reaction. Different process operating conditions were optimized such as ESA dosage (0.25-3.5% wt/wt), methanol to ACPO molar ratio (1:1-20:1), reaction temperature (40-70 °C), and reaction time (3-150 min). This study revealed the potential use of abundant quantities of ACPO from oil palm mills for biodiesel production. The lab scale results showed the effectiveness of the pre-treatment process using ESA catalyst. Three consecutive catalyst recycling runs were achieved without significant degradation in its performance. Second and third reuse runs needed more reaction time to achieve the target level of FFA content. Esterification and transesterification using ESA and KOH respectively is proposed for biodiesel industrial scale production. The produced biodiesel meets the international standards specifications for biodiesel fuel (EN 14214 and ASTM D6751). PMID:21855329

  11. Cellular proliferation, cellular viability, and biocompatibility of HA-ZnO composites.

    PubMed

    Saha, Naresh; Dubey, Ashutosh K; Basu, Bikramjit

    2012-01-01

    One of the important issues in the development of hydroxyapatite (HA)-based biomaterials is the prosthetic infection, which limits wider use of monolithic HA despite superior cellular response. Recently, we reported that ZnO addition to HA can induce bactericidal property. It is therefore important to assess how ZnO addition influences the cytotoxicity property and cell adhesion/proliferation on HA-ZnO composite surfaces in vitro. In the above perspective, the objective of this study is to investigate the cell type and material composition dependent cellular proliferation and viability of pressureless sintered HA-ZnO composites. The combination of cell viability data as well as morphological observations of cultured human osteoblast-like SaOS2 cells and mouse fibroblast L929 cells suggests that HA-ZnO composites containing 10 Wt % or lower ZnO exhibit the ability to support cell adhesion and proliferation. Both SaOS2 and L929 cells exhibit extensive multidirectional network of actin cytoskeleton and cell flattening on the lower ZnO containing (≤10 Wt %) HA-ZnO composites. The in vitro results illustrate how variation in ZnO content can influence significantly the cell vitality, as evaluated using MTT biochemical assay. Also, the critical statistical analysis reveals that ZnO addition needs to be carefully tailored to ensure good in vitro cytocompatibility. The underlying reasons for difference in biological properties are analyzed. It is suggested that surface wettability as well as dissolution of ZnO, both contribute to the observed differences in cellular viability and proliferation. PMID:22102555

  12. Electrodeposited Fe-Co films prepared from a citric-acid-based plating bath

    NASA Astrophysics Data System (ADS)

    Yanai, T.; Uto, H.; Shimokawa, T.; Nakano, M.; Fukunaga, H.; Suzuki, K.

    2013-06-01

    Electrodeposited Fe-Co films are commonly prepared in a boric-acid-based bath. In this research, we applied citric acid instead of boric acid for the plating of Fe-Co films because boron in the waste bath is restricted by environmental-protection regulations in Japan. We evaluated the effect of citric acid on the magnetic and structural properties of the films. The saturation magnetization of the Fe-Co films slightly increased while the Fe content in the Fe-Co films decreased with increasing citric acid concentration. The lowest coercivity value of 240 A/m was obtained at a citric acid concentration of 100 g/L. The plating bath with this citric acid concentration enabled us to obtain Fe-Co films with high saturation magnetizations and smooth surface morphologies.

  13. Structural features of lignohumic acids

    NASA Astrophysics Data System (ADS)

    Novák, František; Šestauberová, Martina; Hrabal, Richard

    2015-08-01

    The composition and structure of humic acids isolated from lignohumate, which is produced by hydrolytic-oxidative conversion of technical lignosulfonates, were characterized by chemical and spectral methods (UV/VIS, FTIR, and 13C NMR spectroscopy). As comparative samples, humic acids (HA) were isolated also from lignite and organic horizon of mountain spruce forest soil. When compared with other HA studied, the lignohumate humic acids (LHHA) contained relatively few carboxyl groups, whose role is partly fulfilled by sulfonic acid groups. Distinctive 13C NMR signal of methoxyl group carbons, typical for lignin and related humic substances, was found at the shift of 55.9 ppm. Other alkoxy carbons were present in limited quantity, like the aliphatic carbons. Due to the low content of these carbon types, the LHHA has high aromaticity of 60.6%. Comparison with the natural HA has shown that lignohumate obtained by thermal processing of technical lignosulfonate can be regarded as an industrially produced analog of natural humic substances. Based on the chemical and spectral data evaluation, structural features of lignohumate humic acids were clarified and their hypothetical chemical structure proposed, which described typical "average" properties of the isolated fraction.

  14. The Role of Organic Acids in the Acid-Base Status of Surface Waters at Bickford Watershed, Massachusetts

    NASA Astrophysics Data System (ADS)

    Eshleman, K. N.; Hemond, H. F.

    1985-10-01

    An experimental field study of the alkalinity and major ion budgets of Bickford watershed in central Massachusetts indicates that organic acid production by the ecosystem contributes measurably to surface water acidification. Applying the concepts of alkalinity, electroneutrality of solutions, and mass balance, organic acids were found to comprise 20% of all strong acid sources on one subcatchment annually, a value half as large as the measured bulk mineral acid deposition. Inorganic cation to anion ratios in Provencial Brook varied between 1.0 in winter and 1.6 during summer, suggesting the presence of up to 100 μeq/L of unmeasured charge from organic anions during the growing season. Base titrations and ultraviolet photooxidation experiments confirmed the existence of low pKa (3.5-5.0) acidic functional groups. A positive linear relationship between dissolved organic carbon (DOC) and anion deficit for a group of surface and groundwater samples indicates the DOC contains about 7.5 meq carboxylic groups per gram C. Biological factors related to both upland and wetland carbon metabolism apparently control this natural acidification phenomenon, which has not been documented on other watersheds in the northeastern United States for which annual alkalinity budgets have been determined.

  15. Description of a halocin-producing Haloferax larsenii HA1 isolated from Pachpadra salt lake in Rajasthan.

    PubMed

    Kumar, Vijay; Saxena, Jyoti; Tiwari, Santosh Kumar

    2016-03-01

    Haloarchaea grow in the extreme environment, such as high salt concentration, and secrete antimicrobial peptides known as halocins. Identification of Haloferax larsenii strain HA1 was carried out using biochemical and molecular methods. Strain HA1 was found as a strict aerobe, catalase positive and Gram negative. It was able to grow optimally at 15 % NaCl (w/v), 42 °C and pH 7.2. Strain HA1 was sensitive to bile acid, was resistant to chloramphenicol and could not utilize arginine. Halocin, produced by strain HA1, was stable up to 100 °C and in a pH range of 5.0-9.0. Antimicrobial activity was not affected by organic solvents, surfactants and detergents, but it was completely lost in the presence of proteinase K, suggesting proteinaceous nature of the compound. It was halocidal against indicator strain Hfx. larsenii HA10. The molecular weight of halocin HA1 was found to be ~14 kDa. These properties of halocin HA1 may be applicable to the preservation of salted foods. PMID:26659359

  16. Acid-base accounting assessment of mine wastes using the chromium reducible sulfur method.

    PubMed

    Schumann, Russell; Stewart, Warwick; Miller, Stuart; Kawashima, Nobuyuki; Li, Jun; Smart, Roger

    2012-05-01

    The acid base account (ABA), commonly used in assessment of mine waste materials, relies in part on calculation of potential acidity from total sulfur measurements. However, potential acidity is overestimated where organic sulfur, sulfate sulfur and some sulfide compounds make up a substantial portion of the sulfur content. The chromium reducible sulfur (CRS) method has been widely applied to assess reduced inorganic sulfur forms in sediments and acid sulfate soils, but not in ABA assessment of mine wastes. This paper reports the application of the CRS method to measuring forms of sulfur commonly found in mine waste materials. A number of individual sulfur containing minerals and real waste materials were analyzed using both CRS and total S and the potential acidity estimates were compared with actual acidity measured from net acid generation tests and column leach tests. The results of the CRS analysis made on individual minerals demonstrate good assessment of sulfur from a range of sulfides. No sulfur was measured using the CRS method in a number of sulfate salts, including jarosite and melanterite typically found in weathered waste rocks, or from dibenzothiophene characteristic of organic sulfur compounds common to coal wastes. Comparison of ABA values for a number of coal waste samples demonstrated much better agreement of acidity predicted from CRS analysis than total S analysis with actual acidity. It also resulted in reclassification of most samples tested from PAF to NAF. Similar comparisons on base metal sulfide wastes generally resulted in overestimation of the acid potential by total S and underestimation of the acid potential by CRS in comparison to acidity measured during NAG tests, but did not generally result in reclassification. In all the cases examined, the best estimate of potential acidity included acidity calculated from both CRS and jarositic S. PMID:22444067

  17. The coagulation characteristics of humic acid by using acid-soluble chitosan, water-soluble chitosan, and chitosan coagulant mixtures.

    PubMed

    Chen, Chih-Yu; Wu, Chung-Yu; Chung, Ying-Chien

    2015-01-01

    Chitosan is a potential substitute for traditional aluminium salts in water treatment systems. This study compared the characteristics of humic acid (HA) removal by using acid-soluble chitosan, water-soluble chitosan, and coagulant mixtures of chitosan with aluminium sulphate (alum) or polyaluminium chloride (PACl). In addition, we evaluated their respective coagulation efficiencies at various coagulant concentrations, pH values, turbidities, and hardness levels. Furthermore, we determined the size and settling velocity of flocs formed by these coagulants to identify the major factors affecting HA coagulation. The coagulation efficiency of acid- and water-soluble chitosan for 15 mg/l of HA was 74.4% and 87.5%, respectively. The optimal coagulation range of water-soluble chitosan (9-20 mg/l) was broader than that of acid-soluble chitosan (4-8 mg/l). Notably, acid-soluble chitosan/PACl and water-soluble chitosan/alum coagulant mixtures exhibited a higher coagulation efficiency for HA than for PACl or alum alone. Furthermore, these coagulant mixtures yielded an acceptable floc settling velocity and savings in both installation and operational expenses. Based on these results, we confidently assert that coagulant mixtures with a 1:1 mass ratio of acid-soluble chitosan/PACl and water-soluble chitosan/alum provide a substantially more cost-effective alternative to using chitosan alone for removing HA from water. PMID:25362971

  18. Niche Mimicking for Selection and Enrichment of Liver Cancer Stem Cells by Hyaluronic Acid-Based Multilayer Films.

    PubMed

    Lee, I-Chi; Chuang, Chun-Chieh; Wu, Yu-Chieh

    2015-10-14

    Cancer stem cells (CSCs) represent a subpopulation of tumor cells that exhibit capacities for self-renewal, tumor initiation, disease relapse or metastasis, and resistance to chemotherapy and radiotherapy. However, the major obstacle associated with the use of CSCs is the difficulty in their isolation and enrichment. According to recent studies, CSCs share similar properties with normal stem cells, and it has been observed that hyaluronan (HA) plays a key factor in CSCs niches and that HA-mediated CD44 interaction promotes tumor progression. Therefore, HA-based multilayer films were used to fabricate sequential surface properties variation and to mimic CSC niches. A quartz crystal microbalance was used to investigate the layer-by-layer adsorption of PAH/HA multilayer films. Colony formation was observed on a series of poly(allylamine hydrochloride) PAH/HA multilayer films, and cytotoxicity and cell viability were evaluated by MTT, LDH and live/dead assay. It was observed that the cells isolated from (PAH/HA)3 displayed the best colony formation ability and that the expression of CD133/CD44 double positive cells was up-regulated to approximately 70% after 7 days of culture. Furthermore, the cells isolated from (PAH/HA)3 displayed higher chemo-resistance than the control group. The stem-cell-related genes expression of selected cells from (PAH/HA)3 after 7 days of culture was significantly different from that of the control group. In conclusion, this study provides a label-free selection and enrichment system that could serve as a new strategy for the future development of CSC selection and drug evaluation in cancer therapy. PMID:26379083

  19. Thai Grade 11 students' alternative conceptions for acid-base chemistry

    NASA Astrophysics Data System (ADS)

    Artdej, Romklao; Ratanaroutai, Thasaneeya; Coll, Richard Kevin; Thongpanchang, Tienthong

    2010-07-01

    This study involved the development of a two-tier diagnostic instrument to assess Thai high school students' understanding of acid-base chemistry. The acid-base diagnostic test (ABDT) comprising 18 items was administered to 55 Grade 11 students in a science and mathematics programme during the second semester of the 2008 academic year. Analysis of students' responses from this study followed the methodology outlined by Çalik and Ayas. The research findings suggest that the ABDT, the multiple choice diagnostic instrument, enables researchers and teachers to classify students' understanding at different levels. Most students exhibited alternative conceptions for several concepts: acid-base theory, dissociation of strong acids or bases, and dissociation of weak acids/bases. Interestingly, one of the concepts that students appeared to find most difficult, and for which they exhibited the most alternative conceptions, was acid-base theory. Some alternative conceptions revealed in this study differ from earlier reports, such as the concept of electrolyte and non-electrolyte solutions as well as the concentration changes of H3O+and OH- in water. These research findings present valuable information for facilitating better understanding of acid-base chemistry by providing insight into the preventable and correctable alternative conceptions exhibited by students.

  20. Polylactic Acid-Based Polymer Blends for Durable Applications

    NASA Astrophysics Data System (ADS)

    Finniss, Adam

    There has been considerable scientific interest in both research and commercial communities as of late in the area of biologically based or sourced plastics. As the consumption of petroleum rises and concerns about climate change increase, this field is likely to grow even larger. One bioplastic that has received a great deal of attention is polylactic acid (PLA). In the past, this material was used mainly in medical or specialty applications, but advancements in manufacturing have led to a desire to use PLA more widely, especially in durable applications. Unfortunately, PLA has several drawbacks that hinder more widespread usage of the material as a durable item: it has low ductility and impact strength in bulk applications, along with poor stability in the face of heat, humidity or liquid media. To combat these deficiencies, a number of techniques were investigated. Samples were annealed to create crystalline domains that would improve mechanical properties and reduce diffusion, blended with graphene to create barriers to diffusion throughout the material, or compounded with a polycarbonate (PC) polymer phase to protect the PLA phase and to enhance the mechanical properties of the blend. If a material containing biologically sourced components with good mechanical properties can be created, it would be desirable for durable uses such as electronics components or as an automotive grade resin. Crystallization experiments were carried out in a differential scanning calorimeter to determine the effects of heat treatment and additives on the rather slow crystallization kinetics of PLA polymer. It was determined that the blending in of the PC phase did not significantly alter the kinetics or mechanism of crystal growth. The addition of graphene to any PC/PLA formulation served as a nucleating agent which speeded up the crystallization kinetics markedly, in some cases by several orders of magnitude. Results obtained from these experiments were internally consistent

  1. Influence of pasture-based feeding systems on fatty acids, organic acids and volatile organic flavour compounds in yoghurt.

    PubMed

    Akbaridoust, Ghazal; Plozza, Tim; Trenerry, V Craige; Wales, William J; Auldist, Martin J; Ajlouni, Said

    2015-08-01

    The influence of different pasture-based feeding systems on fatty acids, organic acids and volatile organic flavour compounds in yoghurt was studied. Pasture is the main source of nutrients for dairy cows in many parts of the world, including southeast Australia. Milk and milk products produced in these systems are known to contain a number of compounds with positive effects on human health. In the current study, 260 cows were fed supplementary grain and forage according to one of 3 different systems; Control (a traditional pasture based diet offered to the cows during milking and in paddock), PMR1 (a partial mixed ration which contained the same supplement as Control but was offered to the cows as a partial mixed ration on a feedpad), PMR 2 (a differently formulated partial mixed ration compared to Control and PMR1 which was offered to the cows on a feedpad). Most of the yoghurt fatty acids were influenced by feeding systems; however, those effects were minor on organic acids. The differences in feeding systems did not lead to the formation of different volatile organic flavour compounds in yoghurt. Yet, it did influence the relative abundance of these components. PMID:26143651

  2. Exposure to acute severe hypoxia leads to increased urea loss and disruptions in acid-base and ionoregulatory balance in dogfish sharks (Squalus acanthias).

    PubMed

    Zimmer, Alex M; Wood, Chris M

    2014-01-01

    The effects of acute moderate (20% air O2 saturation; 6-h exposure) and severe (5% air O2 saturation; 4-h exposure) hypoxia on N-waste, acid-base, and ion balance in dogfish sharks (Squalus acanthias suckleyi) were evaluated. We predicted that the synthesis and/or retention of urea, which are active processes, would be inhibited by hypoxia. Exposure to moderate hypoxia had negligible effects on N-waste fluxes or systemic physiology, except for a modest rise in plasma lactate. Exposure to severe hypoxia led to a significant increase in urea excretion (Jurea), while plasma, liver, and muscle urea concentrations were unchanged, suggesting a loss of urea retention. Ammonia excretion (Jamm) was elevated during normoxic recovery. Moreover, severe hypoxia led to disruptions in acid-base balance, indicated by a large increase in plasma [lactate] and substantial decreases in arterial pHa and plasma [Formula: see text], as well as loss of ionic homeostasis, indicated by increases in plasma [Mg(2+)], [Ca(2+)], and [Na(+)]. We suggest that severe hypoxia in dogfish sharks leads to a reduction in active gill homeostatic processes, such as urea retention, acid-base regulation and ionoregulation, and/or an osmoregulatory compromise due to increased functional gill surface area. Overall, the results provide a comprehensive picture of the physiological responses to a severe degree of hypoxia in an ancient fish species. PMID:25244375

  3. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.

    PubMed

    Zhao, J; Lu, X; Duan, K; Guo, L Y; Zhou, S B; Weng, J

    2009-11-01

    Interconnected porous hydroxyapatite (HA) scaffolds are widely used for bone repair and replacement, owing to their ability to support the adhesion, transfer, proliferation and differentiation of cells. In the present study, the polymer impregnation approach was adopted to produce porous HA scaffolds with three-dimensional (3D) porous structures. These scaffolds have an advantage of highly interconnected porosity (approximately 85%) but a drawback of poor mechanical strength. Therefore, the as-prepared HA scaffolds were lined with composite polymer coatings in order to improve the mechanical properties and retain its good bioactivity and biocompatibility at the same time. The composite coatings were based on poly(D,L-lactide) (PDLLA) polymer solutions, and contained single component or combination of HA, calcium sulfate (CS) and chondroitin sulfate (ChS) powders. The effects of composite coatings on scaffold porosity, microstructure, mechanical property, in vitro mineralizing behavior, and cell attachment of the resultant scaffolds were investigated. The results showed that the scaffolds with composite coatings resulted in significant improvement in both mechanical and biological properties while retaining the 3D interconnected porous structure. The in vitro mineralizing behaviors were mainly related to the compositions of CS and ChS powders in the composite coatings. Excellent cell attachments were observed on the pure HA scaffold as well as the three types of composite scaffolds. These composite scaffolds with improved mechanical properties and bioactivities are promising bone substitutes in tissue engineering fields. PMID:19679453

  4. On the structural, mechanical, and biodegradation properties of HA/β-TCP robocast scaffolds.

    PubMed

    Houmard, Manuel; Fu, Qiang; Genet, Martin; Saiz, Eduardo; Tomsia, Antoni P

    2013-10-01

    Hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) composite scaffolds have shown great potential for bone-tissue engineering applications. In this work, ceramic scaffold with different HA/β-TCP compositions (pure HA, 60HA/40β-TCP, and 20HA/80β-TCP) were fabricated by a robotic-assisted deposition (robocasting) technique using water-based hydrogel inks. A systematic study was conducted to investigate the porosity, mechanical property, and degradation of the scaffolds. Our results indicate that, at a similar volume porosity, the mechanical strength of the sintered scaffolds increased with the decreasing rod diameter. The compressive strength of the fabricated scaffolds (porosity ≈ 25-80 vol %) varied between ∼3 and ∼50 MPa, a value equal or higher than that of human cancellous bone (2-12 MPa). Although there was a slight increase of Ca and P ions in water after 5 month, no noticeable degradation of the scaffolds in SBF or water was observed. Our findings from this work indicate that composite calcium phosphate scaffolds with customer-designed chemistry and architecture may be fabricated by a robotic-assisted deposition method. PMID:23650043

  5. Construction of hyaluronic acid noisome as functional transdermal nanocarrier for tumor therapy.

    PubMed

    Kong, Ming; Park, Hyunjin; Feng, Chao; Hou, Lin; Cheng, Xiaojie; Chen, Xiguang

    2013-04-15

    To develop a functional nanosized transdermal drug delivery system for tumor therapy, amphiphilic hyaluronic acid (HA) based niosome was constructed combining transdermal and tumor targeting ability in one entity. HA esterified with monostearin, the conjugate labeled as HA-GMS self-assembled onto niosome surface and formed HA-niosome. The multilayer vesicle had small size (around 40 nm), good stability and desirable drug encapsulating efficacy, and well compatible with blood. It exhibited better endocytosis to mouse breast tumor cell (4T1) than the control chitosan nanoparticle, which was verified qualitatively and quantitatively. Skin permeation of HA-niosome was proven to be efficient using in vitro stratum corneum model and in vivo fluorescence observation. Histological section study confirmed the security and efficiency of transdermal permeation. The results evidence HA-niosome to be exciting and promising for tumor therapy through trandermal administration. PMID:23544584

  6. Polylactic Acid-Based Polymer Blends for Durable Applications

    NASA Astrophysics Data System (ADS)

    Finniss, Adam

    There has been considerable scientific interest in both research and commercial communities as of late in the area of biologically based or sourced plastics. As the consumption of petroleum rises and concerns about climate change increase, this field is likely to grow even larger. One bioplastic that has received a great deal of attention is polylactic acid (PLA). In the past, this material was used mainly in medical or specialty applications, but advancements in manufacturing have led to a desire to use PLA more widely, especially in durable applications. Unfortunately, PLA has several drawbacks that hinder more widespread usage of the material as a durable item: it has low ductility and impact strength in bulk applications, along with poor stability in the face of heat, humidity or liquid media. To combat these deficiencies, a number of techniques were investigated. Samples were annealed to create crystalline domains that would improve mechanical properties and reduce diffusion, blended with graphene to create barriers to diffusion throughout the material, or compounded with a polycarbonate (PC) polymer phase to protect the PLA phase and to enhance the mechanical properties of the blend. If a material containing biologically sourced components with good mechanical properties can be created, it would be desirable for durable uses such as electronics components or as an automotive grade resin. Crystallization experiments were carried out in a differential scanning calorimeter to determine the effects of heat treatment and additives on the rather slow crystallization kinetics of PLA polymer. It was determined that the blending in of the PC phase did not significantly alter the kinetics or mechanism of crystal growth. The addition of graphene to any PC/PLA formulation served as a nucleating agent which speeded up the crystallization kinetics markedly, in some cases by several orders of magnitude. Results obtained from these experiments were internally consistent

  7. Biodegradable Photo-Crosslinked Thin Polymer Networks Based on Vegetable Oil Hydroxyfatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel crosslinked thin polymer networks based on vegetable oil hydroxyfatty acids (HFAs) were prepared by UV photopolymerization and their mechanical properties were evaluated. Two raw materials, castor oil and 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) were used as sources of mono- and di-HFAs, r...

  8. Surveying Students' Conceptual and Procedural Knowledge of Acid-Base Behavior of Substances

    ERIC Educational Resources Information Center

    Furio-Mas, Carles; Calatayud, Maria-Luisa; Barcenas, Sergio L.

    2007-01-01

    By the end of their high school studies, students should be able to understand macroscopic and sub-microscopic conceptualization of acid-base behavior and the relationship between these conceptual models. The aim of this article is to ascertain whether grade-12 students have sufficient background knowledge to explain the properties of acids,…

  9. Synthesis of novel trivalent amino acid glycoconjugates based on the cyclotriveratrylene ('CTV') scaffold.

    PubMed

    van Ameijde, Jeroen; Liskamp, Rob M J

    2003-08-01

    The convenient synthesis of novel trivalent amino acid glycoconjugates based on cyclotriveratrylene ('CTV') is described. These constructs consist of the CTV scaffold, three oligoethylene glycol spacers of variable length connected to a glyco amino acid residue which can also be varied. The resulting library of trivalent glycoconjugates can be used for studying multivalent interactions. PMID:12948190

  10. Targeting the HA2 subunit of influenza A virus hemagglutinin via CD40L provides universal protection against diverse subtypes.

    PubMed

    Fan, X; Hashem, A M; Chen, Z; Li, C; Doyle, T; Zhang, Y; Yi, Y; Farnsworth, A; Xu, K; Li, Z; He, R; Li, X; Wang, J

    2015-01-01

    The influenza viral hemagglutinin (HA) is comprised of two subunits. Current influenza vaccine predominantly induces neutralizing antibodies (Abs) against the HA1 subunit, which is constantly evolving in unpredictable fashion. The other subunit, HA2, however, is highly conserved but largely shielded by the HA head domain. Thus, enhancing immune response against HA2 could potentially elicit broadly inhibitory Abs. We generated a recombinant adenovirus (rAd) encoding secreted fusion protein, consisting of codon-optimized HA2 subunit of influenza A/California/7/2009(H1N1) virus fused to a trimerized form of murine CD40L, and determined its ability of inducing protective immunity upon intranasal administration. We found that mice immunized with this recombinant viral vaccine were completely protected against lethal challenge with divergent influenza A virus subtypes including H1N1, H3N2, and H9N2. Codon-optimization of HA2 as well as the use of CD40L as a targeting ligand/molecular adjuvant were indispensable to enhance HA2-specific mucosal IgA and serum IgG levels. Moreover, induction of HA2-specific T-cell responses was dependent on CD40L, as rAd secreting HA2 subunit without CD40L failed to induce any significant levels of T-cell cytokines. Finally, sera obtained from immunized mice were capable of inhibiting 13 subtypes of influenza A viruses in vitro. These results provide proof of concept for a prototype HA2-based universal influenza vaccine. PMID:25052763

  11. EFFECTIVENESS OF USING DILUTE OXALIC ACID TO DISSOLVEHIGH LEVEL WASTE IRON BASED SLUDGE SIMULANT

    SciTech Connect

    Ketusky, E

    2008-07-11

    At the Savannah River Site (SRS), near Aiken South Carolina, there is a crucial need to remove residual quantities of highly radioactive iron-based sludge from large select underground storage tanks (e.g., 19,000 liters of sludge per tank), in order to support tank closure. The use of oxalic acid is planned to dissolve the residual sludge, hence, helping in the removal. Based on rigorous testing, primarily using 4 and 8 wt% oxalic acid solutions, it was concluded that the more concentrated the acid, the greater the amount of residual sludge that would be dissolved; hence, a baseline technology on using 8 wt% oxalic acid was developed. In stark contrast to the baseline technology, reports from other industries suggest that the dissolution will most effectively occur at 1 wt% oxalic acid (i.e., maintaining the pH near 2). The driver for using less oxalic acid is that less (i.e., moles) would decrease the severity of the downstream impacts (i.e., required oxalate solids removal efforts). To determine the initial feasibility of using 1 wt% acid to dissolve > 90% of the sludge solids, about 19,000 liters of representative sludge was modeled using about 530,000 liters of 0 to 8 wt% oxalic acid solutions. With the chemical thermodynamic equilibrium based software results showing that 1 wt% oxalic acid could theoretically work, simulant dissolution testing was initiated. For the dissolution testing, existing simulant was obtained, and an approximate 20 liter test rig was built. Multiple batch dissolutions of both wet and air-dried simulant were performed. Overall, the testing showed that dilute oxalic acid dissolved a greater fraction of the stimulant and resulted in a significantly larger acid effectiveness (i.e., grams of sludge dissolved/mole of acid) than the baseline technology. With the potential effectiveness confirmed via simulant testing, additional testing, including radioactive sludge testing, is planned.

  12. A1/A2-Diamino-Substituted Pillar[5]arene-Based Acid-Base-Responsive Host-Guest System.

    PubMed

    Hu, Wei-Bo; Hu, Wen-Jing; Zhao, Xiao-Li; Liu, Yahu A; Li, Jiu-Sheng; Jiang, Biao; Wen, Ke

    2016-05-01

    An acid-base-responsive supramolecular host-guest system based on a planarly chiral A1/A2-diamino-substituted pillar[5]arene (1)/imidazolium ion recognition motif was created. The pillar[4]arene[1]diaminobenzene 1 can bring an electron-deficient imidazolium cation into its cylindrically shaped cavity under neutral or basic conditions and release it under acidic conditions. PMID:27088317

  13. CILogon-HA. Higher Assurance Federated Identities for DOE Science

    SciTech Connect

    Basney, James

    2015-08-01

    The CILogon-HA project extended the existing open source CILogon service (initially developed with funding from the National Science Foundation) to provide credentials at multiple levels of assurance to users of DOE facilities for collaborative science. CILogon translates mechanism and policy across higher education and grid trust federations, bridging from the InCommon identity federation (which federates university and DOE lab identities) to the Interoperable Global Trust Federation (which defines standards across the Worldwide LHC Computing Grid, the Open Science Grid, and other cyberinfrastructure). The CILogon-HA project expanded the CILogon service to support over 160 identity providers (including 6 DOE facilities) and 3 internationally accredited certification authorities. To provide continuity of operations upon the end of the CILogon-HA project period, project staff transitioned the CILogon service to operation by XSEDE.

  14. The Muon Collider as a $H/A$ factory

    SciTech Connect

    Eichten, Estia; Martin, Adam

    2013-11-22

    We show that a muon collider is ideally suited for the study of heavy H/A scalars, cousins of the Higgs boson found in two-Higgs doublet models and required in supersymmetric models. The key aspects of H/A are: (1) they are narrow, yet have a width-to-mass ratio far larger than the expected muon collider beam-energy resolution, and (2) the larger muon Yukawa allows efficient s-channel production. We study in detail a representative Natural Supersymmetry model which has a 1.5 Tev H/A with $m_H$- $m_A$ = 10 Gev. The large event rates at resonant peak allow the determination of the individual H and A resonance parameters (including CP) and the decays into electroweakinos provides a wealth of information unavailable to any other present or planned collider.

  15. The Muon Collider as a $H/A$ factory

    DOE PAGESBeta

    Eichten, Estia; Martin, Adam; Univ. of Notre Dame, IN

    2013-11-22

    We show that a muon collider is ideally suited for the study of heavy H/A scalars, cousins of the Higgs boson found in two-Higgs doublet models and required in supersymmetric models. The key aspects of H/A are: (1) they are narrow, yet have a width-to-mass ratio far larger than the expected muon collider beam-energy resolution, and (2) the larger muon Yukawa allows efficient s-channel production. We study in detail a representative Natural Supersymmetry model which has a 1.5 Tev H/A with $m_H$- $m_A$ = 10 Gev. The large event rates at resonant peak allow the determination of the individual Hmore » and A resonance parameters (including CP) and the decays into electroweakinos provides a wealth of information unavailable to any other present or planned collider.« less

  16. Facing acid-base disorders in the third millennium - the Stewart approach revisited.

    PubMed

    Kishen, R; Honoré, Patrick M; Jacobs, R; Joannes-Boyau, O; De Waele, E; De Regt, J; Van Gorp, V; Boer, W; Spapen, Hd

    2014-01-01

    Acid-base disorders are common in the critically ill. Most of these disorders do not cause harm and are self-limiting after appropriate resuscitation and management. Unfortunately, clinicians tend to think about an acid-base disturbance as a "disease" and spend long hours effectively treating numbers rather than the patient. Moreover, a sizable number of intensive-care physicians experience difficulties in interpreting the significance of or understanding the etiology of certain forms of acid-base disequilibria. Traditional tools for interpreting acid-base disorders may not be adequate for analyzing the complex nature of these metabolic abnormalities. Inappropriate interpretation may also lead to wrong clinical conclusions and incorrectly influence clinical management (eg, bicarbonate therapy for metabolic acidosis in different clinical situations). The Stewart approach, based on physicochemical principles, is a robust physiological concept that can facilitate the interpretation and analysis of simple, mixed, and complex acid-base disorders, thereby allowing better diagnosis of the cause of the disturbance and more timely treatment. However, as the concept does not attach importance to plasma bicarbonate, clinicians may find it complicated to use in their daily clinical practice. This article reviews various approaches to interpreting acid-base disorders and suggests the integration of base-excess and Stewart approach for a better interpretation of these metabolic disorders. PMID:24959091

  17. Essentials in the diagnosis of acid-base disorders and their high altitude application.

    PubMed

    Paulev, P E; Zubieta-Calleja, G R

    2005-09-01

    This report describes the historical development in the clinical application of chemical variables for the interpretation of acid-base disturbances. The pH concept was already introduced in 1909. Following World War II, disagreements concerning the definition of acids and bases occurred, and since then two strategies have been competing. Danish scientists in 1923 defined an acid as a substance able to give off a proton at a given pH, and a base as a substance that could bind a proton, whereas the North American Singer-Hasting school in 1948 defined acids as strong non-buffer anions and bases as non-buffer cations. As a consequence of this last definition, electrolyte disturbances were mixed up with real acid-base disorders and the variable, strong ion difference (SID), was introduced as a measure of non-respiratory acid-base disturbances. However, the SID concept is only an empirical approximation. In contrast, the Astrup/Siggaard-Andersen school of scientists, using computer strategies and the Acid-base Chart, has made diagnosis of acid-base disorders possible at a glance on the Chart, when the data are considered in context with the clinical development. Siggaard-Andersen introduced Base Excess (BE) or Standard Base Excess (SBE) in the extracellular fluid volume (ECF), extended to include the red cell volume (eECF), as a measure of metabolic acid-base disturbances and recently replaced it by the term Concentration of Titratable Hydrogen Ion (ctH). These two concepts (SBE and ctH) represent the same concentration difference, but with opposite signs. Three charts modified from the Siggaard-Andersen Acid-Base Chart are presented for use at low, medium and high altitudes of 2500 m, 3500 m, and 4000 m, respectively. In this context, the authors suggest the use of Titratable Hydrogen Ion concentration Difference (THID) in the extended extracellular fluid volume, finding it efficient and better than any other determination of the metabolic component in acid-base

  18. The solubilization of fatty acids in systems based on block copolymers and nonionic surfactants

    NASA Astrophysics Data System (ADS)

    Mirgorodskaya, A. B.; Yatskevich, E. I.; Zakharova, L. Ya.

    2010-12-01

    The solubilizing action of micellar, microemulsion, and polymer-colloid systems formed on the basis of biologically compatible amphiphilic polymers and nonionic surfactants on capric, lauric, palmitic, and stearic acids was characterized quantitatively. Systems based on micelle forming oxyethyl compounds increased the solubility of fatty acids by more than an order of magnitude. Acid molecules incorporated into micelles increased their size and caused structural changes. Solubilization was accompanied by complete or partial destruction of intrinsic acid associates and an increase in their p K a by 1.5-2 units compared with water.

  19. Efficacy of a crosslinked hyaluronic acid-based hydrogel as a tear film supplement: a masked controlled study.

    PubMed

    Williams, David L; Mann, Brenda K

    2014-01-01

    Keratoconjunctivitis sicca (KCS), or dry eye, is a significant medical problem in both humans and dogs. Treating KCS often requires the daily application of more than one type of eye drop in order to both stimulate tear prodcution and provide a tear supplement to increase hydration and lubrication. A previous study demonstrated the potential for a crosslinked hyaluronic acid-based hydrogel (xCMHA-S) to reduce the clinical signs associated with KCS in dogs while using a reduced dosing regimen of only twice-daily administration. The present study extended those results by comparing the use of the xCMHA-S to a standard HA-containing tear supplement in a masked, randomized clinical study in dogs with a clinical diagnosis of KCS. The xCMHA-S was found to significantly improve ocular surface health (conjunctival hyperaemia, ocular irritation, and ocular discharge) to a greater degree than the alternative tear supplement (P = 0.0003). Further, owners reported the xCMHA-S treatment as being more highly effective than the alternative tear supplement (P = 0.0024). These results further demonstrate the efficacy of the xCMHA-S in reducing the clinical signs associated with KCS, thereby improving patient health and owner happiness. PMID:24914681

  20. Humic Acid-Oxidizing, Nitrate-Reducing Bacteria in Agricultural Soils

    PubMed Central

    Van Trump, J. Ian; Wrighton, Kelly C.; Thrash, J. Cameron; Weber, Karrie A.; Andersen, Gary L.; Coates, John D.

    2011-01-01

    ABSTRACT This study demonstrates the prevalence, phylogenetic diversity, and physiology of nitrate-reducing microorganisms capable of utilizing reduced humic acids (HA) as electron donors in agricultural soils. Most probable number (MPN) enumeration of agricultural soils revealed large populations (104 to 106 cells g−1 soil) of microorganisms capable of reducing nitrate while oxidizing the reduced HA analog 2,6-anthrahydroquinone disulfonate (AH2DS) to its corresponding quinone. Nitrate-dependent HA-oxidizing organisms isolated from agricultural soils were phylogenetically diverse and included members of the Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Advective up-flow columns inoculated with corn plot soil and amended with reduced HA and nitrate supported both HA oxidation and enhanced nitrate reduction relative to no-donor or oxidized HA controls. The additional electron donating capacity of reduced HA could reasonably be attributed to the oxidation of reduced functional groups. Subsequent 16S rRNA gene-based high-density oligonucleotide microarray (PhyloChip) indicated that reduced HA columns supported the development of a bacterial community enriched with members of the Acidobacteria, Firmicutes, and Betaproteobacteria relative to the no-donor control and initial inoculum. This study identifies a previously unrecognized role for HA in stimulating denitrification processes in saturated soil systems. Furthermore, this study indicates that reduced humic acids impact soil geochemistry and the indigenous bacterial community composition. PMID:21750120

  1. Biodistribution profiling of the chemical modified hyaluronic acid derivatives used for oral delivery system.

    PubMed

    Hsieh, Chien-Ming; Huang, Yu-Wen; Sheu, Ming-Thau; Ho, Hsiu-O

    2014-03-01

    A series of adipic acid dihydrazide (ADH)-modified hyaluronic acid (HA-ADH) compounds were synthesized and conjugated with QDots (QDots-HA conjugates) to assess the effects of the molecular weight (MW) and extent of chemical modification of HA on its biodistribution. Their physicochemical structures were confirmed by complementary application of GPC, (1)H NMR, FTIR, and UV-vis spectroscopic methods. In vivo imaging of QDots-HA conjugates after oral administration was analyzed to investigate their biodistribution in nude mice. Simultaneously, real-time bioimaging was confirmed by an anatomical analysis to investigate the organ-specific accumulation of conjugates. QDot-HA conjugates with a higher MW of HA or high modification presented relatively slow clearance leading to an extension of the retention time for up to 10 days, whereas those with lower MWs of HA or a low modification extent exhibited quick absorption and elimination after oral administration. Taken together, HA derivatives with suitable MWs and chemical modification extents can be used to design new, more-sophisticated, and intelligent HA-based vehicles for oral delivery with diverse characteristics. PMID:24315950

  2. In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol-gel process.

    PubMed

    Rezaei, A; Mohammadi, M R

    2013-01-01

    Hydroxyapatite (HA) is the most substantial mineral constituent of a bone which has been extensively used in medicine as implantable materials, owing to its good biocompatibility, bioactivity high osteoconductive, and/or osteoinductive properties. Nevertheless, its mechanical property is not utmost appropriate for a bone substitution. Therefore, a composite consist of HA and a biodegradable polymer is usually prepared to generate an apt bone scaffold. In the present work polycaprolactone (PCL), a newly remarkable biocompatible and biodegradable polymer, was employed as a matrix and hydroxyapatite nanoparticles were used as a reinforcement element of the composite. HA/PCL nanocomposites were synthesized by a new in situ sol-gel process using calcium hydroxide and phosphoric acid precursors in the presence of Tetrahydrofuran (THF) as a solvent. Chemical and physical characteristics of the nanocomposite were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FTIR) analyses. The results indicated that pure HA nanoparticles were well-incorporated and homogenously dispersed in the PCL matrix. It was found that the mechanical property of PCL was improved by addition of 20wt.% HA nanoparticles. Furthermore, the biological property of nanocomposites was investigated under in vitro condition. For this purpose, HA/PCL scaffolds were prepared through a salt leaching process and immersed in a saturated simulated body fluid (SBF) after 3 and 7days. It was found that a uniform layer of biomimetic HA could be deposited on the surface of HA/PCL scaffolds. Therefore, the prepared HA/PCL scaffolds showed good potential for bone tissue engineering and could be used for many clinical applications in orthopedic and maxillofacial surgery. PMID:25428086

  3. Injectable oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for nucleus pulposus regeneration.

    PubMed

    Su, Wen-Yu; Chen, Yu-Chun; Lin, Feng-Huei

    2010-08-01

    Injectable hydrogel allows irregular surgical defects to be completely filled, lessens the risk of implant migration, and minimizes surgical defects due to the solution-gel state transformation. Here, we first propose a method for preparing oxidized hyaluronic acid/adipic acid dihydrazide (oxi-HA/ADH) injectable hydrogel by chemical cross-linking under physiological conditions. Fourier transform infrared spectrometry and trinitrobenzene sulfonate assay were used to confirm the oxidation of hyaluronic acid. Rheological properties were measured to evaluate the working ability of the hydrogel for further clinical application. The oxi-HA/ADH in situ forming hydrogel can transform from liquid form into a gel-like matrix within 3-8 min, depending on the operational temperature. Furthermore, hydrogel degradation and cell assessment is also a concern for clinical application. Injectable oxi-HA/ADH8 hydrogel can maintain its gel-like state for at least 5 weeks with a degradation percentage of 40%. Importantly, oxi-HA/ADH8 hydrogel can assist in nucleus pulposus cell synthesis of type II collagen and aggrecan mRNA gene expression according to the results of real-time PCR analysis, and shows good biocompatibility based on cell viability and cytotoxicity assays. Based on the results of the current study, oxi-HA/ADH hydrogel may possess several advantages for future application in nucleus pulposus regeneration. PMID:20193782

  4. Going Beyond, Going Further: The Preparation of Acid-Base Titration Curves.

    ERIC Educational Resources Information Center

    McClendon, Michael

    1984-01-01

    Background information, list of materials needed, and procedures used are provided for a simple technique for generating mechanically plotted acid-base titration curves. The method is suitable for second-year high school chemistry students. (JN)

  5. [Evaluation on hepatotoxicity caused by Dioscorea bulbifera based on analysis of bile acids].

    PubMed

    Xu, Ying; Chen, Chong-Chong; Yang, Li; Wang, Jun-Ming; Ji, Li-Li; Wang, Zheng-Tao; Hu, Zhi-Bi

    2011-01-01

    Metabolic profile of bile acids was used to evaluate hepatotoxicity of mice caused by ethanol extraction of Dioscorea bulbifera L. (ethanol extraction, ET) and diosbulbin B (DB), separately. Ultra-performance liquid chromatography coupled with quadrupole mass spectrometry (UPLC-MS) was applied to determine the contents of all kinds of endogenous bile acids including free bile acids, taurine conjugates and glycine conjugates. Obvious liver injuries could be observed in mice after administrated with ET and DB. Based on the analysis using principle components analysis (PCA), toxic groups could be distinguished from their control groups, which suggested that the variance of the contents of bile acids could evaluate hepatotoxicity caused by ET and DB. Meanwhile, ET and DB toxic groups were classified in the same trends comparing to control groups in the loading plot, and difference between the two toxic groups could also be observed. DB proved to be one of the toxic components in Dioscorea bulbifera L. Bile acids of tauroursodeoxycholic acid (TUDCA), taurochenodeoxycholic acid (TCDCA), taurocholic acid (TCA), taurodeoxycholic acid (TDCA), cholic acid (CA) and others proved to be important corresponds to ET and DB induced liver injury according to analysis of partial least square-discriminant analysis (PLS-DA) and the statistical analysis showed that there were significant differences between the control groups and toxic groups (P < 0.01). Furthermore, good correlation could be revealed between the foregoing bile acids and ALT, AST. It indicated that taurine conjugated bile acids as TUDCA, TCDCA, TCA and TDCA along with CA could be considered as sensitive biomarkers of ET and DB induced liver injury. This work can provide the base for the further research on the evaluation and mechanism of hepatotoxicity caused by Dioscorea bulbifera L. PMID:21465807

  6. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells

    PubMed Central

    Veiseh, Mandana; Leith, Sean J.; Tolg, Cornelia; Elhayek, Sallie S.; Bahrami, S. Bahram; Collis, Lisa; Hamilton, Sara; McCarthy, James B.; Bissell, Mina J.; Turley, Eva

    2015-01-01

    The interaction of hyaluronan (HA) with mesenchymal progenitor cells impacts trafficking and fate after tissue colonization during wound repair and these events contribute to diseases such as cancer. How this interaction occurs is poorly understood. Using 10T½ cells as a mesenchymal progenitor model and fluorescent (F-HA) or gold-labeled HA (G-HA) polymers, we studied the role of two HA receptors, RHAMM and CD44, in HA binding and uptake in non-adherent and adherent mesenchymal progenitor (10T½) cells to mimic aspects of cell trafficking and tissue colonization. We show that fluorescent labeled HA (F-HA) binding/uptake was high in non-adherent cells but dropped over time as cells became increasingly adherent. Non-adherent cells displayed both CD44 and RHAMM but only function-blocking anti-RHAMM and not anti-CD44 antibodies significantly reduced F-HA binding/uptake. Adherent cells, which also expressed CD44 and RHAMM, primarily utilized CD44 to bind to F-HA since anti-CD44 but not anti-RHAMM antibodies blocked F-HA uptake. RHAMM overexpression in adherent 10T½ cells led to increased F-HA uptake but this increased binding remained CD44 dependent. Further studies showed that RHAMM-transfection increased CD44 mRNA and protein expression while blocking RHAMM function reduced expression. Collectively, these results suggest that cellular microenvironments in which these receptors function as HA binding proteins differ significantly, and that RHAMM plays at least two roles in F-HA binding by acting as an HA receptor in non-attached cells and by regulating CD44 expression and display in attached cells. Our findings demonstrate adhesion-dependent mechanisms governing HA binding/ uptake that may impact development of new mesenchymal cell-based therapies. PMID:26528478

  7. Closed cycle ion exchange method for regenerating acids, bases and salts

    DOEpatents

    Dreyfuss, Robert M.

    1976-01-01

    A method for conducting a chemical reaction in acidic, basic, or neutral solution as required and then regenerating the acid, base, or salt by means of ion exchange in a closed cycle reaction sequence which comprises contacting the spent acid, base, or salt with an ion exchanger, preferably a synthetic organic ion-exchange resin, so selected that the counter ions thereof are ions also produced as a by-product in the closed reaction cycle, and then regenerating the spent ion exchanger by contact with the by-product counter ions. The method is particularly applicable to closed cycle processes for the thermochemical production of hydrogen.

  8. Nanoporous lanthanide-carboxylate frameworks based on 5-nitroisophthalic acid.

    PubMed

    Chen, San-Ping; Ren, Yi-Xia; Wang, Wei-Tao; Gao, Sheng-Li

    2010-02-14

    The reactions of lanthanide nitrates with 5-nitroisophthalic acid (ab. 5-H(2)nip) in DMF and ethanol (1 : 1) mixed solution gave rise to three nanoporous lanthanide polymers, {[Ln(2)(5-nip)(3)(DMF)(4)](DMF)(2)}(n) (Ln = Nd (), Dy (), Ho (), 5-nip = 5-nitroisophthalate). Single-crystal X-ray diffraction analyses reveal that they are isomorphous and feature three-dimensional metal-organic frameworks with two-dimensional intersecting channels occupied by guest DMF molecules constructed from the linkage of dimer Ln(2)C(6)O(12) SBUs and 5-nip ligands. The guest DMF molecules can be reversibly removed from as identified using TGA-DSC and PXRD. The heat of adsorption of the guest-free sample of with DMF was measured with a value of 10.3 kJ mol(-1) by an RD496-III type microcalorimeter. In addition, the photoluminescent property of was investigated. PMID:20104317

  9. Preparation of Amperometric Glucose Biosensor Based on 4-Mercaptobenzoic Acid

    NASA Astrophysics Data System (ADS)

    Wang, Huihui; Ohnuki, Hitoshi; Endo, Hideaki; Izumi, Mitsuru

    A novel glucose biosensor was fabricated by a combination of a self-assembled monolayer (SAM) of 4-mercaptobenzoic acid and the Langmuir-Blodgett (LB) technique. Because of the catalysis of Prussian Blue contained in the LB film layers, the prepared amperometric biosensor worked at a very low potential range around 0.0 V vs. Ag/AgCl. The optimum operating conditions for glucose biosensor were investigated by varying the glucose oxidase immobilization time, the applied potential and the pH of buffer solution. The steady-state current responses of the glucose biosensor showed a good linear relationship to glucose concentrations from 0.1 mM to 154 mM.

  10. Development of Mucosal Vaccines Based on Lactic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Bermúdez-Humarán, Luis G.; Innocentin, Silvia; Lefèvre, Francois; Chatel, Jean-Marc; Langella, Philippe

    Today, sufficient data are available to support the use of lactic acid bacteria (LAB), notably lactococci and lactobacilli, as delivery vehicles for the development of new mucosal vaccines. These non-pathogenic Gram-positive bacteria have been safely consumed by humans for centuries in fermented foods. They thus constitute an attractive alternative to the attenuated pathogens (most popular live vectors actually studied) which could recover their pathogenic potential and are thus not totally safe for use in humans. This chapter reviews the current research and advances in the use of LAB as live delivery vectors of proteins of interest for the development of new safe mucosal vaccines. The use of LAB as DNA vaccine vehicles to deliver DNA directly to antigen-presenting cells of the immune system is also discussed.

  11. Nucleic Acid-Based Approaches for Detection of Viral Hepatitis

    PubMed Central

    Behzadi, Payam; Ranjbar, Reza; Alavian, Seyed Moayed

    2014-01-01

    Context: To determining suitable nucleic acid diagnostics for individual viral hepatitis agent, an extensive search using related keywords was done in major medical library and data were collected, categorized, and summarized in different sections. Results: Various types of molecular biology tools can be used to detect and quantify viral genomic elements and analyze the sequences. These molecular assays are proper technologies for rapidly detecting viral agents with high accuracy, high sensitivity, and high specificity. Nonetheless, the application of each diagnostic method is completely dependent on viral agent. Conclusions: Despite rapidity, automation, accuracy, cost-effectiveness, high sensitivity, and high specificity of molecular techniques, each type of molecular technology has its own advantages and disadvantages. PMID:25789132

  12. Synthesis and antiproliferative activity of glutamic acid-based dipeptides.

    PubMed

    Silveira-Dorta, Gastón; Martín, Víctor S; Padrón, José M

    2015-08-01

    A small and focused library of 22 dipeptides derived from N,N-dibenzylglutamic acid α- and γ-benzyl esters was prepared in a straightforward manner. The evaluation of the antiproliferative activity in the human solid tumor cell lines HBL-100 (breast), HeLa (cervix), SW1573 (non-small cell lung), T-47D (breast), and WiDr (colon) provided γ-glutamyl methionine (GI50 = 6.0-41 μM) and α-glutamyl proline (GI50 = 7.5-18 μM) as lead compounds. In particular, glutamyl serine and glutamyl proline dipeptides were more active in the resistant cancer cell line WiDr than the conventional anticancer drugs cisplatin and etoposide. Glutamyl tryptophan dipeptides did not affect cell growth of HBL-100, while in T-47D cells, proliferation was inhibited. This result might be attributed to the inhibition of the ATB(0,+) transporter. PMID:25900811

  13. Bilingual Creativity in Chinese English: Ha Jin's "In the Pond."

    ERIC Educational Resources Information Center

    Zhang, Hang

    2002-01-01

    Addresses issues related to bilingual creativity in Chinese English and their implications for world Englishes in the Chinese context. The language examined is drawn from Ha Jin's novella, "In the Pond, in which the author's use of English is nativized in the Chinese context in order to recast the cultural meanings of the language. (Author/VWL)

  14. Acid-Base Chemistry of White Wine: Analytical Characterisation and Chemical Modelling

    PubMed Central

    Prenesti, Enrico; Berto, Silvia; Toso, Simona; Daniele, Pier Giuseppe

    2012-01-01

    A chemical model of the acid-base properties is optimized for each white wine under study, together with the calculation of their ionic strength, taking into account the contributions of all significant ionic species (strong electrolytes and weak one sensitive to the chemical equilibria). Coupling the HPLC-IEC and HPLC-RP methods, we are able to quantify up to 12 carboxylic acids, the most relevant substances responsible of the acid-base equilibria of wine. The analytical concentration of carboxylic acids and of other acid-base active substances was used as input, with the total acidity, for the chemical modelling step of the study based on the contemporary treatment of overlapped protonation equilibria. New protonation constants were refined (L-lactic and succinic acids) with respect to our previous investigation on red wines. Attention was paid for mixed solvent (ethanol-water mixture), ionic strength, and temperature to ensure a thermodynamic level to the study. Validation of the chemical model optimized is achieved by way of conductometric measurements and using a synthetic “wine” especially adapted for testing. PMID:22566762

  15. Contemporary Trends in the Acid-Base Status of the Two Acid-Sensitive Streams in Western Maryland

    NASA Technical Reports Server (NTRS)

    Eshleman, Keith N.; Kline, Kathleen M.; Morgan, Raymond P., II; Castro, Nancy M.; Negley, Timothy L.

    2008-01-01

    Recovery of streamwater acid neutralizing capacity (ANC) resulting from declines in regional acid deposition was examined using contemporary (1990-2005) data from two long-term monitoring stations located on the Appalachian Plateau in western Maryland, U.S. Two computational methods were used to estimate daily, monthly, and annual fluxes and discharge-weighted concentrations of ANC, sulfate, nitrate, and base cations over the period of record, and two statistical methods were used to evaluate long-term trends in fluxes and concentrations. The methods used to estimate concentrations, as well as the, statistical techniques, produced very similar results, underlining the robustness of the identified trends. We found clear evidence that streamwater sulfate concentrations have declined at an average rate of about 3 (microns)eq L(exp -1) yr(exp -1) at the two sites due to a 34% reduction in wet atmospheric sulfur deposition. Trends in nitrate concentrations appear to be related to other watershed factors, especially forest disturbance. The best evidence of recovery is based on a doubling of ANC (from 21 to 42 (microns)eq L(exp -1) at the more acid-sensitive site over the 16-year period. A slowing, or possible reversal, in the sulfate, nitrate, and SBC trends is evident in our data and may portend a decline in the rate of--or end to--further recovery.

  16. Contemporary trends in the acid-base status of two acid-sensitive streams in Western Maryland

    SciTech Connect

    Keith N. Eshleman; Kathleen M. Kline; Raymond P. Morgan II; Nancy M. Castro; Timothy L. Negley

    2008-01-01

    Recovery of streamwater acid neutralizing capacity (ANC) resulting from declines in regional acid deposition was examined using contemporary (1990-2005) data from two long-term monitoring stations located on the Appalachian Plateau in western Maryland, U.S. Two computational methods were used to estimate daily, monthly, and annual fluxes and discharge-weighted concentrations of ANC, sulfate, nitrate, and base cations over the period of record, and two statistical methods were used to evaluate long-term trends in fluxes and concentrations. The methods used to estimate concentrations, as well as the statistical techniques, produced very similar results, underlining the robustness of the identified trends. We found clear evidence that streamwater sulfate concentrations have declined at an average rate of about 3 {mu}eq L{sup -1} yr{sup -1} at the two sites due to a 34% reduction in wet atmospheric sulfur deposition. Trends in nitrate concentrations appear to be related to other watershed factors, especially forest disturbance. The best evidence of recovery is based on a doubling of ANC (from 21 to 42 {mu}eq L{sup -1}) at the more acid-sensitive site over the 16-year period. A slowing, or possible reversal, in the sulfate, nitrate, and SBC trends is evident in our data and may portend a decline in the rate of or end to further recovery. 33 refs., 4 figs., 1 tab.

  17. Experienced Teachers' Pedagogical Content Knowledge of Teaching Acid-base Chemistry

    NASA Astrophysics Data System (ADS)

    Drechsler, Michal; van Driel, Jan

    2008-11-01

    We investigated the pedagogical content knowledge (PCK) of nine experienced chemistry teachers. The teachers took part in a teacher training course on students’ difficulties and the use of models in teaching acid-base chemistry, electrochemistry, and redox reactions. Two years after the course, the teachers were interviewed about their PCK of (1) students’ difficulties in understanding acid-base chemistry and (2) models of acids and bases in their teaching practice. In the interviews, the teachers were asked to comment on authentic student responses collected in a previous study that included student interviews about their understanding of acids and bases. Further, the teachers drew story-lines representing their level of satisfaction with their acid-base teaching. The results show that, although all teachers recognised some of the students’ difficulties as confusion between models, only a few chose to emphasise the different models of acids and bases. Most of the teachers thought it was sufficient to distinguish clearly between the phenomenological level and the particle level. The ways the teachers reflected on their teaching, in order to improve it, also differed. Some teachers reflected more on students’ difficulties; others were more concerned about their own performance. Implications for chemistry (teacher) education are discussed.

  18. Complexes of adamantane-based group 13 Lewis acids and superacids: Bonding analysis and thermodynamics of hydrogen splitting.

    PubMed

    El-Hamdi, Majid; Solà, Miquel; Poater, Jordi; Timoshkin, Alexey Y

    2016-06-01

    The electronic structure and chemical bonding in donor-acceptor complexes formed by group 13 element adamantane and perfluorinated adamantane derivatives EC9 R'15 (E = B, Al; R' = H, F) with Lewis bases XR3 and XC9 H15 (X = N, P; R= H, CH3 ) have been studied using energy decomposition analysis at the BP86/TZ2P level of theory. Larger stability of complexes with perfluorinated adamantane derivatives is mainly due to better electrostatic and orbital interactions. Deformation energies of the fragments and Pauli repulsion are of less importance, with exception for the boron-phosphorus complexes. The MO analysis reveals that LUMO energies of EC9 R'15 significantly decrease upon fluorination (by 4.7 and 3.6 eV for E = B and Al, respectively) which results in an increase of orbital interaction energies by 27-38 (B) and 15-26 (Al) kcal mol(-1) . HOMO energies of XR3 increase in order PH3  < NH3  < PMe3  < PC9 H15  < NMe3  < NC9 H15 . For the studied complexes, there is a linear correlation between the dissociation energy of the complex and the energy difference between HOMO of the donor and LUMO of the acceptor. The fluorination of the Lewis acid significantly reduces standard enthalpies of the heterolytic hydrogen splitting H2  + D + A = [HD](+)  + [HA](-) . Analysis of several types of the [HD](+) ···[HA](-) ion pair formation in the gas phase reveals that structures with additional H···F interactions are energetically favorable. Taking into account the ion pair formation, hydrogen splitting is predicted to be highly exothermic in case of the perfluorinated derivatives both in the gas phase and in solution. Thus, fluorinated adamantane-based Lewis superacids are attractive synthetic targets for the construction of the donor-acceptor cryptands. © 2016 Wiley Periodicals, Inc. PMID:26931238

  19. Templated synthesis of peptide nucleic acids via sequence-selective base-filling reactions.

    PubMed

    Heemstra, Jennifer M; Liu, David R

    2009-08-19

    The templated synthesis of nucleic acids has previously been achieved through the backbone ligation of preformed nucleotide monomers or oligomers. In contrast, here we demonstrate templated nucleic acid synthesis using a base-filling approach in which individual bases are added to abasic sites of a peptide nucleic acid (PNA). Because nucleobase substrates in this approach are not self-reactive, a base-filling approach may reduce the formation of nontemplated reaction products. Using either reductive amination or amine acylation chemistries, we observed efficient and selective addition of each of the four nucleobases to an abasic site in the middle of the PNA strand. We also describe the addition of single nucleobases to the end of a PNA strand through base filling, as well as the tandem addition of two bases to the middle of the PNA strand. These findings represent an experimental foundation for nonenzymatic information transfer through base filling. PMID:19722647

  20. Templated Synthesis of Peptide Nucleic Acids via Sequence-Selective Base-Filling Reactions

    PubMed Central

    2009-01-01

    The templated synthesis of nucleic acids has previously been achieved through the backbone ligation of preformed nucleotide monomers or oligomers. In contrast, here we demonstrate templated nucleic acid synthesis using a base-filling approach in which individual bases are added to abasic sites of a peptide nucleic acid (PNA). Because nucleobase substrates in this approach are not self-reactive, a base-filling approach may reduce the formation of nontemplated reaction products. Using either reductive amination or amine acylation chemistries, we observed efficient and selective addition of each of the four nucleobases to an abasic site in the middle of the PNA strand. We also describe the addition of single nucleobases to the end of a PNA strand through base filling, as well as the tandem addition of two bases to the middle of the PNA strand. These findings represent an experimental foundation for nonenzymatic information transfer through base filling. PMID:19722647

  1. Spheroidized Hydroxyapatite (HA) Powders Plasma Spraying of Combustion Flame

    NASA Astrophysics Data System (ADS)

    Khor, K. A.; Wang, Y.; Cheang, P.

    1998-06-01

    Tailoring powder characteristics to suit the plasma spray process can alleviate difficulties associated with the preparation of hydroxyapatite (HA) coatings. Commercial HA feedstock normally exhibit an angular morphology and a wide particle size range that present difficulties in powder transport from the powder hopper to the plasma spray gun and in nonuniform melting of the powders in the plasma flame. Hence, combustion flame spheroidized hydroxyapatite (SHA) was used as the feedstock for plasma spraying. Spherical particles within a narrow particle size range are found to be more effective for the plasma spray processes. Results show coatings generated from spheroidized HA powders have unique surface and microstructure characteristics. Scanning electron microscope (SEM) observation of the coating surface revealed well-formed splats that spread and flatten into disc configurations with no disintegration, reflecting adequate melting of the HA in the plasma and subsequent deposition consistency. The surface topography is generally flat with good overlapping of subsequent spreading droplets. Porosity in the form of macropores is substantially reduced. The cross-section microstructure reveals a dense coating comprised of randomly stacked lamellae. The tensile bond strengths of the SHA coatings, phase composition, and characteristics of the coatings generated with different particle sizes (125 to 75 µm, 45 to 75 µm, 20 to 45 µm, and 5 to 20 µm) showed that a high bond strength of ˜16 MPa can be obtained with SHA in the size range from 20 to 45 µm. This can be improved further by a postspray treatment by hot isostatic pressing (HIP). However, larger particle size ranges exhibited higher degrees of crystallinity and relatively higher HA content among the various calcium phosphate phases found in the coatings.

  2. Blood acid-base balance as a function of water oxygenation: a study at two different ambient CO2 levels in the dogfish, Scyliorhinus canicula.

    PubMed

    Truchot, J P; Toulmond, A; Dejours, P

    1980-07-01

    In the unanesthetized dogfish, Scyliorhinus canicula, oxygen and carbon dioxide partial pressures and concentrations in inspired and expired water and the acid-base balance of arterial blood, pHa and PcCO2, were determined. Each dogfish was exposed to waters differing in oxygenation and in CO2 levels, which was controlled with a pH-CO2-stat device, for successive 2- to 3-h periods. The four ambient conditions were: normoxia-normocapnia (inspired PO2, PIO2 ca 160 Torr; PICO2 ca 0.3 Torr), hyperoxia-normocapnia (PIO2 ca 730 Torr), hyperoxia-hypercapnia (PICO2 ca 1.0 Torr); normoxia-hypercapnia. At both low and high ambient CO2, the inspired-expired O2 and CO2 concentration differences increased in hyperoxia. Ventilation was depressed, and concomitantly, PACO2 increased and the arterial plasma pH decreased. The hypercapnic acidosis was rapidly but only partially compensated by an increase of the plasma bicarbonate concentration. Due to the buffer action of carbonate in sea water, low and high ambient CO2 levels corresponded respectively to high and low values of the CO2 capacitance coefficient, betaWCO2. At both ambient oxygenation levels, the expired-inspired PCO2 difference was greater at low than at high betaWCO2. At a given ambient CO2 level, expired PCO2, PECO2, wash higher in hyperoxia than in normoxia; an effect more marked at low than at high betaWCO2. Thus, the water capacitance coeffcient betaWCO2 is an important factor determining PECO2 values and probably arterial blood acid-base balance. As a general conclusion, the acid-base balance of the arterial blood in the dogfish is very much dependent on the conditions of the oxygenation and acid-base balance of the ambient water which consequently should be carefully controlled. PMID:6771856

  3. Characterization of dicalcium phosphate dihydrate cements prepared using a novel hydroxyapatite-based formulation.

    PubMed

    Alge, Daniel L; Santa Cruz, Grace; Goebel, W Scott; Chu, Tien-Min Gabriel

    2009-04-01

    Dicalcium phosphate dihydrate (DCPD) cements are typically prepared using beta-tricalcium phosphate (beta-TCP) as the base component. However, hydroxyapatite (HA) is an interesting alternative because of its potential for reducing cement acidity, as well as modulating cement properties via ionic substitutions. In the present study, we have characterized DCPD cements prepared with a novel formulation based on monocalcium phosphate monohydrate (MCPM) and HA. Cements were prepared using a 4:1 MCPM:HA molar ratio. The reactivity of HA in this system was verified by showing DCPD formation using poorly crystalline HA, as well as highly crystalline HA. Evaluation of cements prepared with poorly crystalline HA revealed that setting occurs rapidly in the MCPM/HA system, and that the use of a setting regulator is necessary to maintain workability of the cement paste. Compressive testing showed that MCPM/HA cements have strengths comparable to what has previously been published for DCPD cements. However, preliminary in vitro analysis of cement degradation revealed that conversion of DCPD to HA may occur much more rapidly in the MCPM/HA system compared to cements prepared with beta-TCP. Future studies should investigate this property further, as it could have important implications for the use of HA-based DCPD cement formulations. PMID:19349655

  4. Thermoset coatings from epoxidized sucrose soyate and blocked, bio-based dicarboxylic acids.

    PubMed

    Kovash, Curtiss S; Pavlacky, Erin; Selvakumar, Sermadurai; Sibi, Mukund P; Webster, Dean C

    2014-08-01

    A new 100% bio-based thermosetting coating system was developed from epoxidized sucrose soyate crosslinked with blocked bio-based dicarboxylic acids. A solvent-free, green method was used to block the carboxylic acid groups and render the acids miscible with the epoxy resin. The thermal reversibility of this blocking allowed for the formulation of epoxy-acid thermoset coatings that are 100% bio-based. This was possible due to the volatility of the vinyl ethers under curing conditions. These systems have good adhesion to metal substrates and perform well under chemical and physical stress. Additionally, the hardness of the coating system is dependent on the chain length of the diacid used, making it tunable. PMID:24777954

  5. Efficient aspartic acid production by a psychrophile-based simple biocatalyst.

    PubMed

    Tajima, Takahisa; Hamada, Mai; Nakashimada, Yutaka; Kato, Junichi

    2015-10-01

    We previously constructed a Psychrophile-based Simple bioCatalyst (PSCat) reaction system, in which psychrophilic metabolic enzymes are inactivated by heat treatment, and used it here to study the conversion of aspartic acid from fumaric acid mediated by the activity of aspartate ammonia-lyase (aspartase). In Escherichia coli, the biosynthesis of aspartic acid competes with that of L-malic acid produced from fumaric acid by fumarase. In this study, E. coli aspartase was expressed in psychrophilic Shewanella livingstonensis Ac10 heat treated at 50 °C for 15 min. The resultant PSCat could convert fumaric acid to aspartic acid without the formation of L-malic acid because of heat inactivation of psychrophilic fumarase activity. Furthermore, alginate-immobilized PSCat produced high yields of aspartic acid and could be re-used nine times. The results of our study suggest that PSCat can be applied in biotechnological production as a new approach to increase the yield of target compounds. PMID:26254042

  6. Fabrication and mechanical properties of PLLA/PCL/HA composites via a biomimetic, dip coating, and hot compression procedure.

    PubMed

    Charles, L F; Shaw, M T; Olson, J R; Wei, M

    2010-06-01

    Currently, the bone-repair biomaterials market is dominated by high modulus metals and their alloys. The problem of stress-shielding, which results from elastic modulus mismatch between these metallic materials and natural bone, has stimulated increasing research into the development of polymer-ceramic composite materials that can more closely match the modulus of bone. In this study, we prepared poly(L: -lactic acid)/hydroxyapatite/poly(epsilon-caprolactone) (PLLA/HA/PCL) composites via a four-step process, which includes surface etching of the fiber, the deposition of the HA coating onto the PLLA fibers through immersion in simulated body fluid (SBF), PCL coating through a dip-coating process, and hot compression molding. The initial HA-coated PLLA fiber had a homogeneous and continuous coating with a gradient structure. The effects of HA: PCL ratio and molding temperature on flexural mechanical properties were studied and both were shown to be important to mechanical properties. Mechanical results showed that at low molding temperatures and up to an HA: PCL volume ratio of 1, the flexural strain decreased while the flexural modulus and strength increased. At higher mold temperatures with a lower viscosity of the PCL a HA: PCL ratio of 1.6 gave similar properties. The process successfully produced composites with flexural moduli near the lower range of bone. Such composites may have clinical use for load bearing bone fixation. PMID:20238147

  7. In vitro study of RRS HA injectable mesotherapy/biorevitalization product on human skin fibroblasts and its clinical utilization.

    PubMed

    Deglesne, Pierre-Antoine; Arroyo, Rodrigo; Ranneva, Evgeniya; Deprez, Philippe

    2016-01-01

    Mesotherapy/biorevitalization with hyaluronic acid (HA) is a treatment approach currently used for skin rejuvenation. Various products with a wide range of polycomponent formulations are available on the market. Most of these formulations contain noncross-linked HA in combination with a biorevitalization cocktail, formed by various amounts of vitamins, minerals, amino acids, nucleotides, coenzymes, and antioxidants. Although ingredients are very similar among the different products, in vitro and clinical effects may vary substantially. There is a real need for better characterization of these products in terms of their action on human skin or in vitro skin models. In this study, we analyzed the effect of the RRS(®) (Repairs, Refills, Stimulates) HA injectable medical device on human skin fibroblasts in vitro. Skin fibroblast viability and its capacity to induce the production of key extracellular matrix were evaluated in the presence of different concentrations of RRS HA injectable. Viability was evaluated through colorimetric MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, and key extracellular matrix genes, type I collagen and elastin, were quantified by quantitative polymerase chain reaction. Results demonstrated that RRS HA injectable could promote human skin fibroblast viability (+15%) and increase fibroblast gene expression of type I collagen and elastin by 9.7-fold and 14-fold in vitro, respectively. These results demonstrate that mesotherapy/biorevitalization products can, at least in vitro, effectively modulate human skin fibroblasts. PMID:26966384

  8. In vitro study of RRS HA injectable mesotherapy/biorevitalization product on human skin fibroblasts and its clinical utilization

    PubMed Central

    Deglesne, Pierre-Antoine; Arroyo, Rodrigo; Ranneva, Evgeniya; Deprez, Philippe

    2016-01-01

    Mesotherapy/biorevitalization with hyaluronic acid (HA) is a treatment approach currently used for skin rejuvenation. Various products with a wide range of polycomponent formulations are available on the market. Most of these formulations contain noncross-linked HA in combination with a biorevitalization cocktail, formed by various amounts of vitamins, minerals, amino acids, nucleotides, coenzymes, and antioxidants. Although ingredients are very similar among the different products, in vitro and clinical effects may vary substantially. There is a real need for better characterization of these products in terms of their action on human skin or in vitro skin models. In this study, we analyzed the effect of the RRS® (Repairs, Refills, Stimulates) HA injectable medical device on human skin fibroblasts in vitro. Skin fibroblast viability and its capacity to induce the production of key extracellular matrix were evaluated in the presence of different concentrations of RRS HA injectable. Viability was evaluated through colorimetric MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, and key extracellular matrix genes, type I collagen and elastin, were quantified by quantitative polymerase chain reaction. Results demonstrated that RRS HA injectable could promote human skin fibroblast viability (+15%) and increase fibroblast gene expression of type I collagen and elastin by 9.7-fold and 14-fold in vitro, respectively. These results demonstrate that mesotherapy/biorevitalization products can, at least in vitro, effectively modulate human skin fibroblasts. PMID:26966384

  9. trans-cis Configuration regulated supramolecular polymer gels and chirality transfer based on a bolaamphiphilic histidine and dicarboxylic acids.

    PubMed

    Chen, Chunfeng; Wang, Tianyu; Fu, Yunzhi; Liu, Minghua

    2016-01-25

    Supramolecular polymer gels based on the co-assembly of bolaamphiphilic l-histidine(BolaHis) and dicarboxylic acids are dependent on the molar ratios, flexibility and cis-trans configuration of acid molecules. Thus, oligomerized rigid cis-maleic acid or flexible trans-cyclohexane dicarboxylic acid can form chiral supramolecular polymer gels with l-BolaHis. PMID:26617194

  10. The μ3 model of acids and bases: extending the Lewis theory to intermetallics.

    PubMed

    Stacey, Timothy E; Fredrickson, Daniel C

    2012-04-01

    A central challenge in the design of new metallic materials is the elucidation of the chemical factors underlying the structures of intermetallic compounds. Analogies to molecular bonding phenomena, such as the Zintl concept, have proven very productive in approaching this goal. In this Article, we extend a foundational concept of molecular chemistry to intermetallics: the Lewis theory of acids and bases. The connection is developed through the method of moments, as applied to DFT-calibrated Hückel calculations. We begin by illustrating that the third and fourth moments (μ(3) and μ(4)) of the electronic density of states (DOS) distribution tune the properties of a pseudogap. μ(3) controls the balance of states above and below the DOS minimum, with μ(4) then determining the minimum's depth. In this way, μ(3) predicts an ideal occupancy for the DOS distribution. The μ(3)-ideal electron count is used to forge a link between the reactivity of transition metals toward intermetallic phase formation, and that of Lewis acids and bases toward adduct formation. This is accomplished through a moments-based definition of acidity which classifies systems that are electron-poor relative to the μ(3)-ideal as μ(3)-acidic, and those that are electron-rich as μ(3)-basic. The reaction of μ(3) acids and bases, whether in the formation of a Lewis acid/base adduct or an intermetallic phase, tends to neutralize the μ(3) acidity or basicity of the reactants. This μ(3)-neutralization is traced to the influence of electronegativity differences at heteroatomic contacts on the projected DOS curves of the atoms involved. The role of μ(3)-acid/base interactions in intermetallic phases is demonstrated through the examination of 23 binary phases forming between 3d metals, the stability range of the CsCl type, and structural trends within the Ti-Ni system. PMID:22420716

  11. Weak Acid Ionization Constants and the Determination of Weak Acid-Weak Base Reaction Equilibrium Constants in the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nyasulu, Frazier; McMills, Lauren; Barlag, Rebecca

    2013-01-01

    A laboratory to determine the equilibrium constants of weak acid negative weak base reactions is described. The equilibrium constants of component reactions when multiplied together equal the numerical value of the equilibrium constant of the summative reaction. The component reactions are weak acid ionization reactions, weak base hydrolysis…

  12. Spectroscopic Investigation of Surface Dependent Acid-base Property of Ceria Nanoshapes

    DOE PAGESBeta

    Wu, Zili; Mann, Amanda K; Li, Meijun; Overbury, Steven

    2015-01-01

    In addition to their well-known redox character, the acid-base property is another interesting aspect of ceria-based catalysts. Herein, the effect of surface structure on the acid-base property of ceria was studied in detail by utilizing ceria nanocrystals with different morphologies (cubes, octahedra and rods) that exhibit crystallographically well-defined surface facets. The nature, type, strength and amount of acid and base sites on these ceria nanoshapes were investigated via in situ IR spectroscopy combined with various probe molecules. Pyridine adsorption shows the presence of Lewis acid sites (Ce cations) on the ceria nanoshapes. These Lewis acid sites are relatively weak andmore » similar in strength among the three nanoshapes according to the probing by both pyridine and acetonitrile. Both Br nsted (hydroxyl group) and Lewis (surface lattice oxygen) base sites are present on the ceria nanoshapes as probed by CO2 adsorption. CO2 and chloroform adsorption indicate that the strength and amount of the Lewis base sites are shape dependent: rods > cubes > octahedra. The weak and strong surface dependence of the acid and base sites, respectively, are a result of interplay between the surface structure dependent coordination unsaturation status of the Ce cations and O anions and the amount of defect sites on the three ceria nanoshapes. Furthermore, it was found that the nature of the acid-base sites of ceria can be impacted by impurities, such as Na and P residues that result from their use as structure-directing reagent in the hydrothermal synthesis of the ceria nanocrystals. This observation calls for precaution in interpreting the catalytic behavior of nanoshaped ceria where trace impurities may be present.« less

  13. Effect of Hyaluronic Acid Incorporation Method on the Stability and Biological Properties of Polyurethane-Hyaluronic Acid Biomaterials

    PubMed Central

    Ruiz, Amaliris; Rathnam, Kashmila R.; Masters, Kristyn S.

    2014-01-01

    The high failure rate of small diameter vascular grafts continues to drive the development of new materials and modification strategies that address this clinical problem, with biomolecule incorporation typically achieved via surface-based modification of various biomaterials. In this work, we examined whether the method of biomolecule incorporation (i.e., bulk vs. surface modification) into a polyurethane (PU) polymer impacted biomaterial performance in the context of vascular applications. Specifically, hyaluronic acid (HA) was incorporated into a poly(ether urethane) via bulk copolymerization or covalent surface tethering, and the resulting PU-HA materials characterized with respect to both physical and biological properties. Modification of PU with HA by either surface or bulk methods yielded materials that, when tested under static conditions, possessed no significant differences in their ability to resist protein adsorption, platelet adhesion, and bacterial adhesion, while supporting endothelial cell culture. However, only bulk-modified PU-HA materials were able to fully retain these characteristics following material exposure to flow, demonstrating a superior ability to retain the incorporated HA and minimize enzymatic degradation, protein adsorption, platelet adhesion, and bacterial adhesion. Thus, despite bulk methods rarely being implemented in the context of biomolecule attachment, these results demonstrate improved performance of PU-HA upon bulk, rather than surface, incorporation of HA. Although explored only in the context of PU-HA, the findings revealed by these experiments have broader implications for the design and evaluation of vascular graft modification strategies. PMID:24276670

  14. Assembling and Using an LED-Based Detector to Monitor Absorbance Changes during Acid-Base Titrations

    ERIC Educational Resources Information Center

    Santos, Willy G.; Cavalheiro, E´der T. G.

    2015-01-01

    A simple photometric assembly based in an LED as a light source and a photodiode as a detector is proposed in order to follow the absorbance changes as a function of the titrant volume added during the course of acid-base titrations in the presence of a suitable visual indicator. The simplicity and low cost of the electronic device allow the…

  15. The role of acid-base imbalance in statin-induced myotoxicity.

    PubMed

    Taha, Dhiaa A; De Moor, Cornelia H; Barrett, David A; Lee, Jong Bong; Gandhi, Raj D; Hoo, Chee Wei; Gershkovich, Pavel

    2016-08-01

    Disturbances in acid-base balance, such as acidosis and alkalosis, have potential to alter the pharmacologic and toxicologic outcomes of statin therapy. Statins are commonly prescribed for elderly patients who have multiple comorbidities such as diabetes mellitus, cardiovascular, and renal diseases. These patients are at risk of developing acid-base imbalance. In the present study, the effect of disturbances in acid-base balance on the interconversion of simvastatin and pravastatin between lactone and hydroxy acid forms have been investigated in physiological buffers, human plasma, and cell culture medium over pH ranging from 6.8-7.8. The effects of such interconversion on cellular uptake and myotoxicity of statins were assessed in vitro using C2C12 skeletal muscle cells under conditions relevant to acidosis, alkalosis, and physiological pH. Results indicate that the conversion of the lactone forms of simvastatin and pravastatin to the corresponding hydroxy acid is strongly pH dependent. At physiological and alkaline pH, substantial proportions of simvastatin lactone (SVL; ∼87% and 99%, respectively) and pravastatin lactone (PVL; ∼98% and 99%, respectively) were converted to the active hydroxy acid forms after 24 hours of incubation at 37°C. At acidic pH, conversion occurs to a lower extent, resulting in greater proportion of statin remaining in the more lipophilic lactone form. However, pH alteration did not influence the conversion of the hydroxy acid forms of simvastatin and pravastatin to the corresponding lactones. Furthermore, acidosis has been shown to hinder the metabolism of the lactone form of statins by inhibiting hepatic microsomal enzyme activities. Lipophilic SVL was found to be more cytotoxic to undifferentiated and differentiated skeletal muscle cells compared with more hydrophilic simvastatin hydroxy acid, PVL, and pravastatin hydroxy acid. Enhanced cytotoxicity of statins was observed under acidic conditions and is attributed to increased

  16. Effects of the Q223R mutation in the hemagglutinin (HA) of egg-adapted pandemic 2009 (H1N1) influenza A virus on virus growth and binding of HA to human- and avian-type cell receptors.

    PubMed

    Suptawiwat, O; Jeamtua, W; Boonarkart, Ch; Kongchanagul, A; Puthawathana, P; Auewarakul, P

    2013-01-01

    The 2009 swine-origin influenza A virus (H1N1) and its initial reassortant vaccine strains did not grow well in embryonated eggs. The glutamine to arginine mutation at the amino acid position 223 (Q223R) of the hemagglutinin (HA) gene is the major mutation previously found in egg-adapted 2009 H1N1 strains and shown to enhance viral growth in embryonated eggs. However, the effect of this mutation on the receptor-binding preference had not been directly demonstrated. In this study, the Q223R mutation was shown to change the viral HA binding preference from the human-type receptor, α2,6-linked sialic acid, to the avian-type receptor, α2,3-linked sialic acid; and to enhance the viral growth in embryonated eggs but not in cell culture. PMID:24020758

  17. The in Silico Insight into Carbon Nanotube and Nucleic Acid Bases Interaction

    PubMed Central

    Karimi, Ali Asghar; Ghalandari, Behafarid; Tabatabaie, Seyed Saleh; Farhadi, Mohammad

    2016-01-01

    Background To explore practical applications of carbon nanotubes (CNTs) in biomedical fields the properties of their interaction with biomolecules must be revealed. Recent years, the interaction of CNTs with biomolecules is a subject of research interest for practical applications so that previous research explored that CNTs have complementary structure properties with single strand DNA (ssDNA). Objectives Hence, the quantum mechanics (QM) method based on ab initio was used for this purpose. Therefore values of binding energy, charge distribution, electronic energy and other physical properties of interaction were studied for interaction of nucleic acid bases and SCNT. Materials and Methods In this study, the interaction between nucleic acid bases and a (4, 4) single-walled carbon nanotube (SCNT) were investigated through calculations within quantum mechanics (QM) method at theoretical level of Hartree-Fock (HF) method using 6-31G basis set. Hence, the physical properties such as electronic energy, total dipole moment, charge distributions and binding energy of nucleic acid bases interaction with SCNT were investigated based on HF method. Results It has been found that the guanine base adsorption is bound stronger to the outer surface of nanotube in comparison to the other bases, consistent with the recent theoretical studies. In the other words, the results explored that guanine interaction with SCNT has optimum level of electronic energy so that their interaction is stable. Also, the calculations illustrated that SCNT interact to nucleic acid bases by noncovalent interaction because of charge distribution an electrostatic area is created in place of interaction. Conclusions Consequently, small diameter SCNT interaction with nucleic acid bases is noncovalent. Also, the results revealed that small diameter SCNT interaction especially SCNT (4, 4) with nucleic acid bases can be useful in practical application area of biomedical fields such detection and drug delivery.

  18. Characteristics of Palm Fatty Acid Ester (PFAE), a New Vegetable Based Insulating Oil for Transformers

    NASA Astrophysics Data System (ADS)

    Suzuki, Takashi; Kanoh, Takaaki; Koide, Hidenobu; Hikosaka, Tomoyuki

    We have developed new vegetable based insulating oil for transformers called PFAE (Palm Fatty Acid Ester). PFAE has 0.6 times less viscosity and 1.3 times higher dielectric constant compared to mineral oil. The oxidative stability, biodegradability and acute toxicity to fish of PFAE has also been determined to be superior to mineral oil. In this paper, in order to optimize the characteristics of fatty acid esters originating from palm oil, several kinds of fatty acid alkyl esters were first synthesized in the laboratory by the molecular design technique and the transesterification from fatty acid methyl esters and alkyl alcohols. Next the electro-chemical characteristics of the fatty acid alkyl esters as insulating oil were analyzed.

  19. Thermoformed protein based composites in presence of organic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    World industrialization has generated substantial quantities of petroleum-based plastics over many years, which are non biodegradable. There is a growing demand for the use of renewable agricultural sources to develop eco-friendly biobased composites. Agriculture-sourced proteins and starches are b...

  20. Thioarsenides: A case for long-range Lewis acid-base-directed van der Waals interactions

    SciTech Connect

    Gibbs, Gerald V.; Wallace, Adam F.; Downs, R. T.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.

    2011-04-01

    Electron density distributions, bond paths, Laplacian and local energy density properties have been calculated for a number of As4Sn (n = 3,4,5) thioarsenide molecular crystals. On the basis of the distributions, the intramolecular As-S and As-As interactions classify as shared bonded interactions and the intermolecular As-S, As-As and S-S interactions classify as closed-shell van der Waals bonded interactions. The bulk of the intermolecular As-S bond paths link regions of locally concentrated electron density (Lewis base regions) with aligned regions of locally depleted electron density (Lewis acid regions) on adjacent molecules. The paths are comparable with intermolecular paths reported for several other molecular crystals that link aligned Lewis base and acid regions in a key-lock fashion, interactions that classified as long range Lewis acid-base directed van der Waals interactions. As the bulk of the intermolecular As-S bond paths (~70%) link Lewis acid-base regions on adjacent molecules, it appears that molecules adopt an arrangement that maximizes the number of As-S Lewis acid-base intermolecular bonded interactions. The maximization of the number of Lewis acid-base interactions appears to be connected with the close-packed array adopted by molecules: distorted cubic close-packed arrays are adopted for alacránite, pararealgar, uzonite, realgar and β-AsS and the distorted hexagonal close-packed arrays adopted by α- and β-dimorphite. A growth mechanism is proposed for thioarsenide molecular crystals from aqueous species that maximizes the number of long range Lewis acid-base vdW As-S bonded interactions with the resulting directed bond paths structuralizing the molecules as a molecular crystal.

  1. Thioarsenides: a case for long-range Lewis acid-base-directed van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Gibbs, G. V.; Wallace, A. F.; Downs, R. T.; Ross, N. L.; Cox, D. F.; Rosso, K. M.

    2011-04-01

    Electron density distributions, bond paths, Laplacian and local-energy density properties have been calculated for a number of As4S n ( n = 3, 4 and 5) thioarsenide molecular crystals. On the basis of the distributions, the intramolecular As-S and As-As interactions classify as shared bonded interactions, and the intermolecular As-S, As-As and S-S interactions classify as closed-shell van der Waals (vdW) bonded interactions. The bulk of the intermolecular As-S bond paths link regions of locally concentrated electron density (Lewis-base regions) with aligned regions of locally depleted electron density (Lewis-acid regions) on adjacent molecules. The paths are comparable with intermolecular paths reported for several other molecular crystals that link aligned Lewis base and acid regions in a key-lock fashion, interactions that classified as long-range Lewis acid-base-directed vdW interactions. As the bulk of the intermolecular As-S bond paths (~70%) link Lewis acid-base regions on adjacent molecules, it appears that molecules adopt an arrangement that maximizes the number of As-S Lewis acid-base intermolecular bonded interactions. The maximization of the number of Lewis acid-base interactions appears to be connected with the close-packed array adopted by molecules: distorted cubic close-packed arrays are adopted for alacránite, pararealgar, uzonite, realgar and β-AsS and the distorted hexagonal close-packed arrays adopted by α- and β-dimorphite. A growth mechanism is proposed for thioarsenide molecular crystals from aqueous species that maximizes the number of long-range Lewis acid-base vdW As-S bonded interactions with the resulting directed bond paths structuralizing the molecules as a molecular crystal.

  2. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water.

    PubMed

    Liu, Jing-fu; Zhao, Zong-shan; Jiang, Gui-bin

    2008-09-15

    Humic acid (HA) coated Fe3O4 nanoparticles (Fe3O4/HA) were developed for the removal of toxic Hg(II), Pb(II), Cd(II), and Cu(II) from water. Fe3O4/HA were prepared by a coprecipitation procedure with cheap and environmentally friendly iron salts and HA. TOC and XPS analysis showed the as-prepared Fe3O4/HA contains approximately 11% (w/w) of HA which are fractions abundant in O and N-based functional groups. TEM images and laser particle size analysis revealed the Fe3O4/HA (with approximately 10 nm Fe3O4 cores) aggregated in aqueous suspensions to form aggregates with an average hydrodynamic size of approximately 140 nm. With a saturation magnetization of 79.6 emu/g, the Fe3O4/HA can be simply recovered from water with magnetic separations at low magnetic field gradients within a few minutes. Sorption of the heavy metals to Fe3O4/HA reached equilibrium in less than 15 min, and agreed well to the Langmuir adsorption model with maximum adsorption capacities from 46.3 to 97.7 mg/g. The Fe3O4/HA was stable in tap water, natural waters, and acidic/ basic solutions ranging from 0.1 M HCl to 2 M NaOH with low leaching of Fe (< or = 3.7%) and HA (< or = 5.3%). The Fe3O4/HA was able to remove over 99% of Hg(ll) and Pb(ll) and over 95% of Cu(II) and Cd(II) in natural and tap water at optimized pH. Leaching back of the Fe3O4/HA sorbed heavy metals in water was found to be negligible. PMID:18853814

  3. HaCaT cell proliferation influenced by melatonin.

    PubMed

    Hipler, U-C; Fischer, T W; Elsner, P

    2003-01-01

    The hormone melatonin is characterized by numerous pharmacological effects. The influence of melatonin on the growth of the human hair follicle was shown in previous investigations. In the present study, the effects of melatonin were investigated by means of proliferation tests of HaCaT keratinocytes using the [3H]thymidine incorporation, a fluorescence assay with Hoechst dye 33342 and the ATP bioluminescence assay. The aim of the study was to find melatonin concentrations suitable for treatments of the skin and whether there is a cytotoxic effect on HaCaT cells. The different proliferative activity of melatonin depending on its concentration and the time of incubation could be shown in all investigations. PMID:14528062

  4. The muon collider as a H/A factory

    NASA Astrophysics Data System (ADS)

    Eichten, Estia; Martin, Adam

    2014-01-01

    We show that a muon collider is ideally suited for the study of heavy H/A scalars, cousins of the Higgs boson found in two-Higgs-doublet models and required in supersymmetric models. The key aspects of H/A are: (1) they are narrow, yet have a width-to-mass ratio far larger than the expected muon collider beam-energy resolution, and (2) the larger muon Yukawa allows efficient s-channel production. We study in detail a representative Natural Supersymmetry model which has a 1.5 TeVH/A with mH-mA=10 GeV. The large event rates at resonant peak allow the determination of the individual H and A resonance parameters (including CP) and the decays into electroweakinos provide a wealth of information unavailable to any other present or planned collider.

  5. Synthesis, characterization and catalytic activity of acid-base bifunctional materials through protection of amino groups

    SciTech Connect

    Shao, Yanqiu; Liu, Heng; Yu, Xiaofang; Guan, Jingqi; Kan, Qiubin

    2012-03-15

    Graphical abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. Highlights: Black-Right-Pointing-Pointer The acid-base bifunctional material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized through protection of amino groups. Black-Right-Pointing-Pointer The obtained bifunctional material was tested for aldol condensation. Black-Right-Pointing-Pointer The SO{sub 3}H-SBA-15-NH{sub 2} catalyst containing amine and sulfonic acid groups exhibited excellent acid-basic properties. -- Abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. X-ray diffraction (XRD), N{sub 2} adsorption-desorption, transmission electron micrographs (TEM), back titration, {sup 13}C magic-angle spinning (MAS) NMR and {sup 29}Si magic-angle spinning (MAS) NMR were employed to characterize the synthesized materials. The obtained bifunctional material was tested for aldol condensation reaction between acetone and 4-nitrobenzaldehyde. Compared with monofunctional catalysts of SO{sub 3}H-SBA-15 and SBA-15-NH{sub 2}, the bifunctional sample of SO{sub 3}H-SBA-15-NH{sub 2} containing amine and sulfonic acid groups exhibited excellent acid-basic properties, which make it possess high activity for the aldol condensation.

  6. Simple method of isolating humic acids from organic soils

    NASA Astrophysics Data System (ADS)

    Ahmed, O. H.; Susilawati, K.; Nik Muhamad, A. B.; Khanif, M. Y.

    2009-04-01

    Humic substances particularly humic acids (HA) play a major role in soil conditioning e.g. erosion control, soil cation exchange capacity, complexation of heavy metal ions and pesticides, carbon and nitrogen cycles, plant growth and reduction of ammonia volatilization from urea. Humified substances such as coal, composts, and peat soils have substantial amounts of HA but the isolation of these acids is expensive, laborious, and time consuming. Factors that affect the quality and yield of HA isolated from these materials include extraction, fractionation, and purification periods. This work developed a simple, rapid, and cost effective method of isolating HA from peat soils. There was a quadratic relationship between extraction period and HA yield. Optimum extraction period was estimated at 4 h instead of the usual range of 12 to 48 h. There was no relationship between fractionation period and HA yield. As such 2 h instead of the usual range of 12 to 24 h fractionation period could be considered optimum. Low ash content (5%), remarkable reduction in K, coupled with the fact that organic C, E4/E6, carboxylic COOH, phenolic OH, and total acidity values of the HA were consistent with those reported by other authors suggest that the HA dealt with were free from mineral matter. This was possible because the distilled water used to purify the HA served as Bronsted-Lowry acid during the purification process of the HA. Optimum purification period using distilled waster was 1 h instead of the usual range of 1 and 7 days (uses HF and HCl and dialysis). Humic acids could be isolated from tropical peat soils within 7 h (i.e. 4 h extraction, 2 h fractionation, and 1 h purification) instead of the existing period of 2 and 7 days. This could facilitate the idea of producing organic fertilizers such as ammonium-humate and potassium-humate from humified substances since techniques devised in this study did not alter the true nature of the HA. Besides, the technique is rapid, simple

  7. Modeling uranium transport in acidic contaminated groundwater with base addition

    SciTech Connect

    Zhang, Fan; Luo, Wensui; Parker, Jack C.; Brooks, Scott C; Watson, David B; Jardine, Philip; Gu, Baohua

    2011-01-01

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  8. Composition of exchangeable bases and acidity in soils of the Crimean Mountains

    NASA Astrophysics Data System (ADS)

    Kostenko, I. V.

    2015-08-01

    Acid forest and mountainous meadow soils of the Crimean Mountains were studied. The amount of hydrogen and aluminum ions extracted from these soils depended on the pH of extracting agents. The maximum values of the soil acidity were obtained upon the extraction with a strongly alkaline solution of sodium acetate in 0.05 N NaOH. The application of this extractant made it possible to determine the total exchange acidity, the total amount of extractable aluminum, and the total cation exchange capacity of the soils after the extraction of all the acidic components from them. The values of these characteristics were significantly higher than the values of the potential acidity and cation exchange capacity obtained by the routine analytical methods. Hydrogen predominated among the acidic components of the exchange acidity in the humus horizons, whereas aluminum predominated among them in the underlying mineral horizons. Hydrothermic conditions and the character of vegetation and parent materials were the major factors affecting the relationships between bases and acidic components in the soil adsorption complex.

  9. Milk and acid-base balance: proposed hypothesis versus scientific evidence.

    PubMed

    Fenton, Tanis R; Lyon, Andrew W

    2011-10-01

    Recently the lay press has claimed a hypothetical association among dairy product consumption, generation of dietary acid, and harm to human health. This theoretical association is based on the idea that the protein and phosphate in milk and dairy products make them acid-producing foods, which cause our bodies to become acidified, promoting diseases of modern civilization. Some authors have suggested that dairy products are not helpful and perhaps detrimental to bone health because higher osteoporotic fracture incidence is observed in countries with higher dairy product consumption. However, scientific evidence does not support any of these claims. Milk and dairy products neither produce acid upon metabolism nor cause metabolic acidosis, and systemic pH is not influenced by diet. Observations of higher dairy product intake in countries with prevalent osteoporosis do not hold when urban environments are compared, likely due to physical labor in rural locations. Milk and other dairy products continue to be a good source of dietary protein and other nutrients. Key teaching points: Measurement of an acidic pH urine does not reflect metabolic acidosis or an adverse health condition. The modern diet, and dairy product consumption, does not make the body acidic. Alkaline diets alter urine pH but do not change systemic pH. Net acid excretion is not an important influence of calcium metabolism. Milk is not acid producing. Dietary phosphate does not have a negative impact on calcium metabolism, which is contrary to the acid-ash hypothesis. PMID:22081694

  10. The Effect of Acid-Base Interactions on Conformation of Adsorbed Polymer Chains

    NASA Astrophysics Data System (ADS)

    Dhopatkar, Nishad; Zhu, He; Dhinojwala, Ali

    Adsorption of polymer chains from solutions is of fundamental interest in polymer science. This absorption process is governed by the complex interplay between the solvent-polymer, polymer-substrate, and solvent-substrate interaction energies. In early 1970's, Fowkes and his coworkers have introduced the concept of acid base interactions in explaining why PMMA (basic) adsorption was extremely low on acidic substrates from acidic solvents. The acidic solvent molecules compete with the surface for binding with the basic polymer sites and this reduces the adsorption of PMMA. Here, by using interface-selective sum frequency generation spectroscopy (SFG) and attenuated-total-reflectance (ATR)-FTIR spectroscopy we directly measure whether the solvent or polymer molecules interact with the substrate in acidic, basic, and neutral solvents. Surprisingly, we find that the surface acidic site (hydroxyl) groups are still covered with PMMA chains in acidic solvent. The PMMA chains in acidic solvent adsorb with much higher fraction of chains as trains in comparison to loops and tails. Such differences in the static and dynamic conformations have consequences in understanding the exchange kinetics, colloidal stabilization, chromatographic separations, adhesion and friction, and stabilization of nanocomposites.

  11. In vivo response to HA-polyhydroxybutyrate/polyhydroxyvalerate composite.

    PubMed

    Luklinska, Z B; Schluckwerder, H

    2003-08-01

    This study examined the morphological and compositional structure of bone-implant interfaces after in vivo implantation into the tibias of rabbits. The implants were composed of biodegradable polyhydroxybutyrate/polyhydroxyvalerate copolymer reinforced with synthetic hydroxyapatite (HA) particles. Optical and scanning electron microscopy techniques were used, including energy-dispersive X-ray analysis. The interface was found to be morphologically, biologically and chemically active throughout the period of study. There was a strong tendency to rebuild the bone structure at the interface after implantation, independent of the composition of the implant, but direct bone bonding with the implant depended on the bioactive nature of the interface, as represented by the HA particles. At all implantation times, lamellar bone formed at the interface and replaced degrading polymer matrix, while engulfing HA filler particles. In regions about 50-100 from the interface, the bone region displayed an osteon organization. Osteoblasts and osteocytes were identified throughout the interface region. The thickness of the newly formed bone significantly increased over the period of the experiment from about 130 microm at 1 month to about 770 microm at 6 months. Materials that behave in this manner may be useful in some bone replacement therapies. PMID:12887706

  12. Interfacial strength of novel PMMA/HA/nanoclay bone cement.

    PubMed

    Wang, C X; Tong, J

    2008-01-01

    In the present study, nanoclay was introduced to PMMA bone cement to obtain a new formulation of bioactive PMMA cement (PMMA/HA/nanoclay). To evaluate the interfacial property of the new bioactive cement for use as a fixation agent, Brazilian disk specimens were used to study the interfacial strength of synthetic bone-cement interface. The results show that, for tensile loading, the addition of 17.5 wt% HA into PMMA cement produced a notable decrease in the fracture load, while a further addition of 0.5 wt% nanoclay slightly counteracted the decrease due to the addition of HA. The addition of 1.0 wt% nanoclay brought the fracture load back to the same level as that of pure PMMA cement, although with the further increase of nanoclay (1.5 wt% nanoclay and 2.0 wt% nanoclay), the fracture loads decreased again. The same trend in the calculated strain energy release rates was also observed. For shear loading, however, the same trend was not observed due to the premature fracture and collapsing of the foam. This finding may be useful in the development of novel bioactive bone cements to improve the fixation of joint arthroplasty. PMID:19197113

  13. Reprocessing system with nuclide separation based on chromatography in hydrochloric acid solution

    SciTech Connect

    Suzuki, Tatsuya; Tachibana, Yu; Koyama, Shi-ichi

    2013-07-01

    We have proposed the reprocessing system with nuclide separation processes based on the chromatographic technique in the hydrochloric acid solution system. Our proposed system consists of the dissolution process, the reprocessing process, the minor actinide separation process, and nuclide separation processes. In the reprocessing and separation processes, the pyridine resin is used as a main separation media. It was confirmed that the dissolution in the hydrochloric acid solution is easily achieved by the plasma voloxidation and by the addition of oxygen peroxide into the hydrochloric acid solution.

  14. Carbon composite micro- and nano-tubes-based electrodes for detection of nucleic acids

    PubMed Central

    2011-01-01

    The first aim of this study was to fabricate vertically aligned multiwalled carbon nanotubes (MWCNTs). MWCNTs were successfully prepared by using plasma enhanced chemical vapour deposition. Further, three carbon composite electrodes with different content of carbon particles with various shapes and sizes were prepared and tested on measuring of nucleic acids. The dependences of adenine peak height on the concentration of nucleic acid sample were measured. Carbon composite electrode prepared from a mixture of glassy and spherical carbon powder and MWCNTs had the highest sensitivity to nucleic acids. Other interesting result is the fact that we were able to distinguish signals for all bases using this electrode. PMID:21711910

  15. Top value platform chemicals: bio-based production of organic acids.

    PubMed

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation. PMID:26360870

  16. Carbon composite micro- and nano-tubes-based electrodes for detection of nucleic acids.

    PubMed

    Prasek, Jan; Huska, Dalibor; Jasek, Ondrej; Zajickova, Lenka; Trnkova, Libuse; Adam, Vojtech; Kizek, Rene; Hubalek, Jaromir

    2011-01-01

    The first aim of this study was to fabricate vertically aligned multiwalled carbon nanotubes (MWCNTs). MWCNTs were successfully prepared by using plasma enhanced chemical vapour deposition. Further, three carbon composite electrodes with different content of carbon particles with various shapes and sizes were prepared and tested on measuring of nucleic acids. The dependences of adenine peak height on the concentration of nucleic acid sample were measured. Carbon composite electrode prepared from a mixture of glassy and spherical carbon powder and MWCNTs had the highest sensitivity to nucleic acids. Other interesting result is the fact that we were able to distinguish signals for all bases using this electrode. PMID:21711910

  17. Acid-base and electrolyte abnormalities during renal support for acute kidney injury: recognition and management.

    PubMed

    Claure-Del Granado, Rolando; Claure, Rolando; Bouchard, Josée

    2012-01-01

    Acute kidney injury (AKI) is associated with electrolyte and acid-base disturbances such as hyperkalemia, metabolic acidosis, hypocalcemia and hyperphosphatemia. The initiation of dialysis in AKI can efficiently treat these complications. The choice of dialysis modality can be made based on their operational characteristics to tailor the therapy according to the clinical scenario. Each dialysis modality can also trigger significant electrolyte and acid-base disorders, such as hypokalemia, hypophosphatemia and metabolic alkalosis, which may direct changes in fluid delivery and composition. Continuous techniques may be particularly useful in these situations as they allow more time for correction and to maintain balance. This review provides an overview of the electrolyte and acid-base disturbances occurring in AKI and after the initiation of dialysis and discusses therapeutic options in this setting. PMID:23095419

  18. Organization of hepatic nitrogen metabolism and its relation to acid-base homeostasis.

    PubMed

    Häussinger, D

    1990-11-16

    Hepatic and renal nitrogen metabolism are linked by an interorgan glutamine flux, coupling both renal ammoniagenesis and hepatic ureogenesis to systemic acid base regulation. This is because protein breakdown produces equimolar amounts of NH4+ and HCO3-. A hepatic role in this interorgan team effort is based upon the tissue-specific presence of urea synthesis, which represents a major irreversible pathway for removal of metabolically generated bicarbonate. A sensitive and complex control of bicarbonate disposal via ureogenesis by the extracellular acid-base status creates a feed-back control loop between the acid-base status and the rate of bicarbonate elimination. This bicarbonate-homeostatic mechanism operates without threat of hyperammonemia, because a sophisticated structural and functional organisation of ammonia-metabolizing pathways in the liver acinus uncouples urea synthesis from the vital need to eliminate potentially toxic ammonia. PMID:2126308

  19. Nucleic Acid-based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems

    PubMed Central

    Lui, Clarissa; Cady, Nathaniel C.; Batt, Carl A.

    2009-01-01

    The advent of nucleic acid-based pathogen detection methods offers increased sensitivity and specificity over traditional microbiological techniques, driving the development of portable, integrated biosensors. The miniaturization and automation of integrated detection systems presents a significant advantage for rapid, portable field-based testing. In this review, we highlight current developments and directions in nucleic acid-based micro total analysis systems for the detection of bacterial pathogens. Recent progress in the miniaturization of microfluidic processing steps for cell capture, DNA extraction and purification, polymerase chain reaction, and product detection are detailed. Discussions include strategies and challenges for implementation of an integrated portable platform. PMID:22412335

  20. Characteristic of microarc oxidized coatings on titanium alloy formed in electrolytes containing chelate complex and nano-HA

    NASA Astrophysics Data System (ADS)

    Wei, Daqing; Zhou, Yu; Wang, Yaming; Jia, Dechang

    2007-03-01

    Microarc oxidized (MAO) TiO 2-based coatings containing Ca and P on titanium alloy were formed in electrolytes containing nano-hydroxyapatite (nano-HA), calcium and phosphate salts. The effects of HA concentration on the thickness, micropore size and number of the MAO coatings were not pronounced. However, the surfaces of the MAO coatings become rough and the crystallinity of anatase increases with increasing HA concentration. In addition, the Ca and P concentrations on the surfaces of the MAO coatings decrease, since the chelate complex of CaY 2- (Y = [ 2(OOC)NCH 2CH 2N(COO) 2] 4-) and phosphate ions are hindered to be incorporated into the MAO coatings by HA. In vitro experiments indicate that the apatite-forming abilities of the MAO coatings decrease with increasing HA concentration. Furthermore, with increasing HA concentration, the solubility of Ca and P of the MAO coatings decreases, which could lower the supersaturation of the SBF with respect to apatite near the surfaces of the MAO coatings, further leading to the decreased apatite-forming ability. The results indicate that the HA addition in the electrolytes has an important effect on the structure and in vitro bioactivity of the MAO coatings.

  1. [Construction of recombinant adenovirus co-expressing M1 and HA genes of influenza virus type A].

    PubMed

    Guo, Jian-Qiang; Yao, Li-Hong; Chen, Ai-Jun; Xu, Yi; Jia, Run-Qing; Bo, Hong; Dong, Jie; Zhou, Jian-Fang; Shu, Yue-Long; Zhang, Zhi-Qing

    2009-03-01

    Based on the human H5N1 influenza virus strain A/Anhui/1/2005, recombinant adenovirus co-expressing M1 and HA genes of H5N1 influenza virus was constructed using an internal ribosome entry site (IRES) sequence to link the two genes. The M1 and HA genes of H5N1 influenza virus were amplified by PCR and subcloned into pStar vector separately. Then the M1-IRES-HA fragment was amplified and subcloned into pShuttle-CMV vector, the shuttle plasmid was then linearized and transformed into BJ5183 bacteria which contained backbone vector pAd-Easy. The recombinant vector pAd-Easy was packaged in 293 cells to get recombinant adenovirus Ad-M1/HA. CPE was observed after 293 cells were transfected by Ad-M1/HA. The co-expression of M1 and HA genes was confirmed by Western-blot and IFA (immunofluorescence assay). The IRES containing recombinant adenovirus allowed functional co-expression of M1 and HA genes and provided the foundation for developing new influenza vaccines with adenoviral vector. PMID:19678564

  2. An unnatural amino acid based fluorescent probe for phenylalanine ammonia lyase.

    PubMed

    Tian, Zhenlin; Zhu, Weiping; Xu, Yufang; Qian, Xuhong

    2014-08-21

    A fluorescent probe (2a-LP) based on an unnatural amino acid (UAA) is developed for the detection of phenylalanine ammonia lyase (PAL). In the presence of PAL, 2a-LP is catalytically deaminated to ortho-amino-transcinnamic acid (o-a-CA), which shows a remarkable “off–on” fluorescence signal. Thus, the probe 2a-LP enables direct visualization of the PAL activity in tomato under UV illumination and has potential in vitro assays. PMID:24971756

  3. The formation of an ordered microporous aluminum-based material mediated by phthalic acid.

    PubMed

    Zhang, Wei; Cai, Jian-Hua; Huang, Pei-Pei; Hu, Lin-Lin; Cao, An-Min; Wan, Li-Jun

    2016-06-28

    By using phthalic acid as a soft template, we showed that it was possible to prepare a microporous aluminum-based material when the precipitation of Al(3+) was properly controlled. We also identified that this microporous aluminum-based material could be promising for the removal of fluoride ions in water treatment. PMID:27263661

  4. EPA (ENVIRONMENTAL PROTECTION AGENCY) METHOD STUDY 30, METHOD 625 - BASE/NEUTRALS, ACIDS AND PESTICIDES

    EPA Science Inventory

    The work which is described in this report was performed for the purpose of validating, through an interlaboratory study, Method 625 for the analysis of the base/neutral, acid, and pesticide priority pollutants. This method is based on the extraction and concentration of the vari...

  5. Photochemistry of nucleic acid bases and their thio- and aza-analogues in solution.

    PubMed

    Pollum, Marvin; Martínez-Fernández, Lara; Crespo-Hernández, Carlos E

    2015-01-01

    The steady-state and time-resolved photochemistry of the natural nucleic acid bases and their sulfur- and nitrogen-substituted analogues in solution is reviewed. Emphasis is given to the experimental studies performed over the last 3-5 years that showcase topical areas of scientific inquiry and those that require further scrutiny. Significant progress has been made toward mapping the radiative and nonradiative decay pathways of nucleic acid bases. There is a consensus that ultrafast internal conversion to the ground state is the primary relaxation pathway in the nucleic acid bases, whereas the mechanism of this relaxation and the level of participation of the (1)πσ*, (1) nπ*, and (3)ππ* states are still matters of debate. Although impressive research has been performed in recent years, the microscopic mechanism(s) by which the nucleic acid bases dissipate excess vibrational energy to their environment, and the role of the N-glycosidic group in this and in other nonradiative decay pathways, are still poorly understood. The simple replacement of a single atom in a nucleobase with a sulfur or nitrogen atom severely restricts access to the conical intersections responsible for the intrinsic internal conversion pathways to the ground state in the nucleic acid bases. It also enhances access to ultrafast and efficient inter-system crossing pathways that populate the triplet manifold in yields close to unity. Determining the coupled nuclear and electronic pathways responsible for the significantly different photochemistry in these nucleic acid base analogues serves as a convenient platform to examine the current state of knowledge regarding the photodynamic properties of the DNA and RNA bases from both experimental and computational perspectives. Further investigations should also aid in forecasting the prospective use of sulfur- and nitrogen-substituted base analogues in photochemotherapeutic applications. PMID:25238718

  6. Tensile properties of HA 230 and HA 188 after 400 and 2500 hour exposures to LiF-22CaF2 and vacuum at 1093 K

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel

    1990-01-01

    The solid-to-liquid phase transformation of the nominal LiF-20CaF2 eutectic at 1043 K is considered to be an ideal candidate thermal energy storage mechanism for a space based low temperature Brayton cycle solar dynamic system. Although Co, Fe, and Ni superalloys are thought to be suitable containment materials for LiF based salts, long term containment is of concern because molten fluorides are usually corrosive and Cr can be lost into space through evaporation. Two examples of commercially available superalloys in sheet form, the Ni-base material HA 230 and the Co-base material Ha 88, have been exposed to molten LiF-22CaF2, its vapor, and vacuum, at 1093 K, for 400 and 2500 hr. Triplicate tensile testing of specimens subjected to all three environments have been undertaken between 77 to 1200 K. Comparison of the weight gain data, microstructure, and tensile properties indicate that little, if any, difference in behavior can be ascribed to the exposure environment.

  7. Recent advances in understanding trans-epithelial acid-base regulation and excretion mechanisms in cephalopods

    PubMed Central

    Hu, Marian Y; Hwang, Pung-Pung; Tseng, Yung-Che

    2015-01-01

    Cephalopods have evolved complex sensory systems and an active lifestyle to compete with fish for similar resources in the marine environment. Their highly active lifestyle and their extensive protein metabolism has led to substantial acid-base regulatory abilities enabling these organisms to cope with CO2 induced acid-base disturbances. In convergence to teleost, cephalopods possess an ontogeny-dependent shift in ion-regulatory epithelia with epidermal ionocytes being the major site of embryonic acid-base regulation and ammonia excretion, while gill epithelia take these functions in adults. Although the basic morphology and excretory function of gill epithelia in cephalopods were outlined almost half a century ago, modern immunohistological and molecular techniques are bringing new insights to the mechanistic basis of acid-base regulation and excretion of nitrogenous waste products (e.g. NH3/NH4+) across ion regulatory epithelia of cephalopods. Using cephalopods as an invertebrate model, recent findings reveal partly conserved mechanisms but also novel aspects of acid-base regulation and nitrogen excretion in these exclusively marine animals. Comparative studies using a range of marine invertebrates will create a novel and exciting research direction addressing the evolution of pH regulatory and excretory systems. PMID:26716070

  8. Recent advances in understanding trans-epithelial acid-base regulation and excretion mechanisms in cephalopods.

    PubMed

    Hu, Marian Y; Hwang, Pung-Pung; Tseng, Yung-Che

    2015-01-01

    Cephalopods have evolved complex sensory systems and an active lifestyle to compete with fish for similar resources in the marine environment. Their highly active lifestyle and their extensive protein metabolism has led to substantial acid-base regulatory abilities enabling these organisms to cope with CO2 induced acid-base disturbances. In convergence to teleost, cephalopods possess an ontogeny-dependent shift in ion-regulatory epithelia with epidermal ionocytes being the major site of embryonic acid-base regulation and ammonia excretion, while gill epithelia take these functions in adults. Although the basic morphology and excretory function of gill epithelia in cephalopods were outlined almost half a century ago, modern immunohistological and molecular techniques are bringing new insights to the mechanistic basis of acid-base regulation and excretion of nitrogenous waste products (e.g. NH3/NH4 (+)) across ion regulatory epithelia of cephalopods. Using cephalopods as an invertebrate model, recent findings reveal partly conserved mechanisms but also novel aspects of acid-base regulation and nitrogen excretion in these exclusively marine animals. Comparative studies using a range of marine invertebrates will create a novel and exciting research direction addressing the evolution of pH regulatory and excretory systems. PMID:26716070

  9. A macromolecular delivery vehicle for protein-based vaccines: Acid-degradable protein-loaded microgels

    PubMed Central

    Murthy, Niren; Xu, Mingcheng; Schuck, Stephany; Kunisawa, Jun; Shastri, Nilabh; Fréchet, Jean M. J.

    2003-01-01

    The development of protein-based vaccines remains a major challenge in the fields of immunology and drug delivery. Although numerous protein antigens have been identified that can generate immunity to infectious pathogens, the development of vaccines based on protein antigens has had limited success because of delivery issues. In this article, an acid-sensitive microgel material is synthesized for the development of protein-based vaccines. The chemical design of these microgels is such that they degrade under the mildly acidic conditions found in the phagosomes of antigen-presenting cells (APCs). The rapid cleavage of the microgels leads to phagosomal disruption through a colloid osmotic mechanism, releasing protein antigens into the APC cytoplasm for class I antigen presentation. Ovalbumin was encapsulated in microgel particles, 200–500 nm in diameter, prepared by inverse emulsion polymerization with a synthesized acid-degradable crosslinker. Ovalbumin is released from the acid-degradable microgels in a pH-dependent manner; for example, microgels containing ovalbumin release 80% of their encapsulated proteins after 5 h at pH 5.0, but release only 10% at pH 7.4. APCs that phagocytosed the acid-degradable microgels containing ovalbumin were capable of activating ovalbumin-specific cytoxic T lymphocytes. The acid-degradable microgels developed in this article should therefore find applications as delivery vehicles for vaccines targeted against viruses and tumors, where the activation of cytoxic T lymphocytes is required for the development of immunity. PMID:12704236

  10. Propaedeutic study for the delivery of nucleic acid-based molecules from PLGA microparticles and stearic acid nanoparticles

    PubMed Central

    Grassi, G; Coceani, N; Farra, R; Dapas, B; Racchi, G; Fiotti, N; Pascotto, A; Rehimers, B; Guarnieri, G; Grassi, M

    2006-01-01

    We studied the mechanism governing the delivery of nucleic acid-based drugs (NABD) from microparticles and nanoparticles in zero shear conditions, a situation occurring in applications such as in situ delivery to organ parenchyma. The delivery of a NABD molecule from poly(DL-lactide-co-glycolide) (PLGA) microparticles and stearic acid (SA) nanoparticles was studied using an experimental apparatus comprising a donor chamber separated from the receiver chamber by a synthetic membrane. A possible toxic effect on cell biology, as evaluated by studying cell proliferation, was also conducted for just PLGA microparticles. A mathematical model based on the hypothesis that NABD release from particles is due to particle erosion was used to interpret experimental release data. Despite zero shear conditions imposed in the donor chamber, particle erosion was the leading mechanism for NABD release from both PLGA microparticles and SA nanoparticles. PLGA microparticle erosion speed is one order of magnitude higher than that of competing to SA nanoparticles. Finally, no deleterious effects of PLGA microparticles on cell proliferation were detected. Thus, the data here reported can help optimize the delivery systems aimed at release of NABD from micro- and nanoparticles. PMID:17722283

  11. Acid-base analysis: a critique of the Stewart and bicarbonate-centered approaches.

    PubMed

    Kurtz, Ira; Kraut, Jeffrey; Ornekian, Vahram; Nguyen, Minhtri K

    2008-05-01

    When approaching the analysis of disorders of acid-base balance, physical chemists, physiologists, and clinicians, tend to focus on different aspects of the relevant phenomenology. The physical chemist focuses on a quantitative understanding of proton hydration and aqueous proton transfer reactions that alter the acidity of a given solution. The physiologist focuses on molecular, cellular, and whole organ transport processes that modulate the acidity of a given body fluid compartment. The clinician emphasizes the diagnosis, clinical causes, and most appropriate treatment of acid-base disturbances. Historically, two different conceptual frameworks have evolved among clinicians and physiologists for interpreting acid-base phenomena. The traditional or bicarbonate-centered framework relies quantitatively on the Henderson-Hasselbalch equation, whereas the Stewart or strong ion approach utilizes either the original Stewart equation or its simplified version derived by Constable. In this review, the concepts underlying the bicarbonate-centered and Stewart formulations are analyzed in detail, emphasizing the differences in how each approach characterizes acid-base phenomenology at the molecular level, tissue level, and in the clinical realm. A quantitative comparison of the equations that are currently used in the literature to calculate H(+) concentration ([H(+)]) is included to clear up some of the misconceptions that currently exist in this area. Our analysis demonstrates that while the principle of electroneutrality plays a central role in the strong ion formulation, electroneutrality mechanistically does not dictate a specific [H(+)], and the strong ion and bicarbonate-centered approaches are quantitatively identical even in the presence of nonbicarbonate buffers. Finally, our analysis indicates that the bicarbonate-centered approach utilizing the Henderson-Hasselbalch equation is a mechanistic formulation that reflects the underlying acid-base phenomenology. PMID

  12. Hyaluronic acid as an internal wetting agent in model DMAA/TRIS contact lenses.

    PubMed

    Weeks, Andrea; Luensmann, Doerte; Boone, Adrienne; Jones, Lyndon; Sheardown, Heather

    2012-11-01

    Model silicone hydrogel contact lenses, comprised of N,N-dimethylacrylamide and methacryloxypropyltris (trimethylsiloxy) silane, were fabricated and hyaluronic acid (HA) was incorporated as an internal wetting agent using a dendrimer-based method. HA and dendrimers were loaded into the silicone hydrogels and cross-linked using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide chemistry. The presence and location of HA in the hydrogels was confirmed using X-ray photoelectron spectroscopy and confocal laser scanning microscopy, respectively. The effects of the presence of HA on the silicone hydrogels on hydrophilicity, swelling behavior, transparency, and lysozyme sorption and denaturation were evaluated. The results showed that HA increased the hydrophilicity and the equilibrium water content of the hydrogels without affecting transparency. HA also significantly decreased the amount of lysozyme sorption (p < 0.002). HA had no effect on lysozyme denaturation in hydrogels containing 0% and 1.7% methacrylic acid (MAA) (by weight) but when the amount of MAA was increased to 5%, the level of lysozyme denaturation was significantly lower compared to control materials. These results suggest that HA has great potential to be used as a wetting agent in silicone hydrogel contact lenses to improve wettability and to decrease lysozyme sorption and denaturation. PMID:21750182

  13. Synthesis of acid-base bifunctional mesoporous materials by oxidation and thermolysis

    SciTech Connect

    Yu, Xiaofang; Zou, Yongcun; Wu, Shujie; Liu, Heng; Guan, Jingqi; Kan, Qiubin

    2011-06-15

    Graphical abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst. The obtained sample of SO{sub 3}H-MCM-41-NH{sub 2} containing amine and sulfonic acids exhibits excellent catalytic activity in aldol condensation reaction. Research highlights: {yields} Synthesize acid-base bifunctional mesoporous materials SO{sub 3}H-MCM-41-NH{sub 2}. {yields} Oxidation and then thermolysis to generate acidic site and basic site. {yields} Exhibit good catalytic performance in aldol condensation reaction between acetone and various aldehydes. -- Abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst SO{sub 3}H-MCM-41-NH{sub 2}. This method was achieved by co-condensation of tetraethylorthosilicate (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and (3-triethoxysilylpropyl) carbamicacid-1-methylcyclohexylester (3TAME) in the presence of cetyltrimethylammonium bromide (CTAB), followed by oxidation and then thermolysis to generate acidic site and basic site. X-ray diffraction (XRD) and transmission electron micrographs (TEM) show that the resultant materials keep mesoporous structure. Thermogravimetric analysis (TGA), X-ray photoelectron spectra (XPS), back titration, solid-state {sup 13}C CP/MAS NMR and solid-state {sup 29}Si MAS NMR confirm that the organosiloxanes were condensed as a part of the silica framework. The bifunctional sample (SO{sub 3}H-MCM-41-NH{sub 2}) containing amine and sulfonic acids exhibits excellent acid-basic properties, which make it possess high activity in aldol condensation reaction between acetone and various aldehydes.

  14. Novel mixed ligand complexes of bioactive Schiff base (E)-4-(phenyl (phenylimino) methyl) benzene-1,3-diol and 2-aminophenol/2-aminobenzoic acid: Synthesis, spectral characterization, antimicrobial and nuclease studies

    NASA Astrophysics Data System (ADS)

    Subbaraj, P.; Ramu, A.; Raman, N.; Dharmaraja, J.

    2014-01-01

    A novel bidentate Schiff base ligand has been synthesized using 2,4-dihydroxybenzophenone and aniline. Its mixed ligand complexes of MAB type [M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HA = Schiff base and B = 2-aminophenol/2-aminobenzoic acid] have been synthesized and characterized on the basis of spectral data UV-Vis, IR, 1H NMR, FAB-Mass, EPR, SEM and magnetic studies. All the complexes were soluble in DMF and DMSO. Elemental analysis and molar conductance values indicate that the complexes are non-electrolytes. HA binds with M(II) ions through azomethine and deprotonated phenolic group and B binds through the primary amine group and deprotonated phenolic/carboxylic groups. Using FAB-Mass the cleavage pattern of the ligand (HA) has been established. All the complexes adopt octahedral geometry around the metal ions. It has been confirmed with the help of UV-Vis, IR, 1H NMR and FAB-Mass spectral data. DNA binding activities of the complexes 1d and 2d are studied by UV-Vis spectroscopy and cleavage studies of Schiff base ligand and its complexes 1d and 2d have been by agarose gel electrophoresis method. In vitro biological activities of the free ligand (HA) and their metal complexes (1a-1e and 2a-2e) were screened against few bacteria, Escherichia coli, Staphylococcus saphyphiticus, Staphylococcus aureus, Pseudomonas aeruginosa and fungi Aspergillus niger, Enterobacter species, Candida albicans by well diffusion technique.

  15. Hyaluronan (HA) and serum-derived hyaluronan-associated protein (SHAP)-HA complex as predictive markers of cervical ripening in premature labor.

    PubMed

    Kishida, Tameko; Yabushita, Hiromitsu; Wakatsuki, Akihiko; Zhuo, Lisheng; Kimata, Koji

    2008-01-01

    The purpose of this study is to investigate whether serum hyaluronan (HA) and serum-derived HA-associated proteins (SHAP)-HA complex predict cervical ripening and premature delivery. Sera were obtained from 64 women with normal pregnancies, 20 with full term delivery, and 13 with threatened premature labor. Concentrations of HA and SHAP-HA complex in serum were measured by sandwich ELISA. Serum concentrations of HA and SHAP-HA complex did not differ within first, second, and third trimester groups. The serum SHAP-HA complex was elevated in the full term labor group more than in the third trimester group; however, the concentrations of serum HA did not differ between both groups. The HA and SHAP-HA complex levels in sera were higher in the premature labor group than in the second trimester group. In the premature labor group, the SHAP-HA complex levels were higher in the cases with Bishop scores more than 4 points when compared with the cases with Bishop scores of 4 points or less. Increased levels of SHAP-HA complex in sera are possible predictive markers for cervical ripening in premature labor. PMID:18382897

  16. Effect of supersaturation on L-glutamic acid polymorphs under droplet-based microchannels

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Wang, Zhanzhong; Dang, Leping; Wei, Hongyuan

    2016-07-01

    Supersaturation is an important controlling factor for crystallization process and polymorphism. Droplet-based microchannels and conventional crystallization were used to investigate polymorphs of L-gluatamic acid in this work. The results illustrate that it is easy to realize the accurate and rapid control of the crystallization temperature in the droplets, which is especially beneficial to heat and mass transfer during crystallization. It is also noted that higher degree of supersaturation favors the nucleation of α crystal form, while lower degree of supersaturation favors the nucleation of β crystal form under droplet-based microchannels for L-gluatamic acid. In addition, there is a different nucleation behavior to be found under droplet-based microchannels both for the β form and α form of L-glutamic acid. This new finding can provide important insight into the development and design of investigation meanings for drug polymorph.

  17. Effect of acid/base on the third-order optical nonlinearity of polypyrrole

    NASA Astrophysics Data System (ADS)

    Wang, Aijian; Zhao, Wei; Yu, Wang

    2015-11-01

    Polypyrrole (PPy) and its acid/base composites (PPy·H2SO4, PPy·HCl and PPy·NH3·H2O) were successfully synthesized and were characterized respectively by using fourier transform infrared, ultraviolet/visible absorption, X-ray diffraction, transmission electron microscopy and Raman spectroscopic techniques. The nonlinear optical properties of PPy and its acid/base composites were investigated using nanosecond Z-scan measurements at 532 nm. At the identical linear transmittance, the saturable absorption of pure PPy was changed to reverse saturable absorption by doping with acid (HCl and H2SO4) and base (NH3·H2O). The possible mechanisms for the different nonlinear properties were also discussed.

  18. Absorption, fluorescence, and acid-base equilibria of rhodamines in micellar media of sodium dodecyl sulfate.

    PubMed

    Obukhova, Elena N; Mchedlov-Petrossyan, Nikolay O; Vodolazkaya, Natalya A; Patsenker, Leonid D; Doroshenko, Andrey O; Marynin, Andriy I; Krasovitskii, Boris M

    2017-01-01

    Rhodamine dyes are widely used as molecular probes in different fields of science. The aim of this paper was to ascertain to what extent the structural peculiarities of the compounds influence their absorption, emission, and acid-base properties under unified conditions. The acid-base dissociation (HR(+)⇄R+H(+)) of a series of rhodamine dyes was studied in sodium n-dodecylsulfate micellar solutions. In this media, the form R exists as a zwitterion R(±). The indices of apparent ionization constants of fifteen rhodamine cations HR(+) with different substituents in the xanthene moiety vary within the range of pKa(app)=5.04 to 5.53. The distinct dependence of emission of rhodamines bound to micelles on pH of bulk water opens the possibility of using them as fluorescent interfacial acid-base indicators. PMID:27423469

  19. [Genotoxic modification of nucleic acid bases and biological consequences of it. Review and prospects of experimental and computational investigations

    NASA Technical Reports Server (NTRS)

    Poltev, V. I.; Bruskov, V. I.; Shuliupina, N. V.; Rein, R.; Shibata, M.; Ornstein, R.; Miller, J.

    1993-01-01

    The review is presented of experimental and computational data on the influence of genotoxic modification of bases (deamination, alkylation, oxidation) on the structure and biological functioning of nucleic acids. Pathways are discussed for the influence of modification on coding properties of bases, on possible errors of nucleic acid biosynthesis, and on configurations of nucleotide mispairs. The atomic structure of nucleic acid fragments with modified bases and the role of base damages in mutagenesis and carcinogenesis are considered.

  20. Effect of Thickness of HA-Coating on Microporous Silk Scaffolds Using Alternate Soaking Technology

    PubMed Central

    Zhu, Rui; Xue, Yingsen; Hao, Zhangying; Xie, Zhenghong; Fan, Xiangli; Fan, Hongbin

    2014-01-01

    Hydroxyapatite (HA) can be coated on various materials surface and has the function of osteogenicity. Microporous silk scaffold has excellent biocompatibility. In this study, alternate soaking technology was used to coat HA on microporous silk scaffolds. However, the cell proliferation was found to decrease with the increasing thickness (cycles of soaking) of HA-coating. This study aims to determine the best thickness (cycles of soaking) of HA-coating on microporous silk scaffolds. The SEM observation showed that group with one cycle of alternate soaking (1C-HA) has the most optimal porosity like non-HA-modified microporous silk scaffolds. The proliferation of osteoblasts has no significant difference between noncoated HA (N-HA) and 1C-HA groups, which are both significantly higher than those in two cycles of soaking (2C-HA) and three cycles of soaking (3C-HA) groups. The transcription levels of specific genes (runx2 and osteonectin) in osteoblasts of 1C-HA group were significantly higher than those of N-HA group. Moreover, the levels showed no significant difference among 1C-HA, 2C-HA, and 3C-HA groups. In conclusion, microporous silk scaffold with 1 cycle of HA-coating can combine the biocompatibility of silk and osteogenicity of HA. PMID:25093176

  1. A fluorometric assay platform for caffeic acid detection based on the G-quadruplex/hemin DNAzyme.

    PubMed

    Cai, Nan; Li, Yan; Chen, Shufan; Su, Xingguang

    2016-07-21

    In this paper, a fluorometric assay platform for fluorescence detection of caffeic acid was designed based on the peroxidase-mimicking activities of G-quadruplex/hemin DNAzyme. Under the catalysis of the formed G-quadruplex/hemin complex, H2O2 could be decomposed into hydroxyl radicals with strong oxidation properties. Then caffeic acid would be oxidized by the released hydroxyl radicals, resulting in the product caffeic acid-quinone. Normally, caffeic acid has no influence on the fluorescence of graphene quantum dots. But when mixed with the G-quadruplex/hemin complex and H2O2, the fluorescence of graphene quantum dots was obviously quenched by the oxidized caffeic acid. Under the optimized experimental conditions, the quenched fluorescence intensity was linearly correlated with the concentration of caffeic acid, ranging from 2 μM to 350 μM with a detection limit of 200 nM. The proposed method was applied to the determination of caffeic acid in human serum samples with satisfactory results. PMID:27220084

  2. Monitoring responses of Mason Pine to acid rain in China based on remote sensing vegetation index

    NASA Astrophysics Data System (ADS)

    Jin, Jiaxin; Jiang, Hong; Hou, Chunliang; Zhang, Xiuying; Wang, Ying

    2014-03-01

    Since the 1970s, acid rain has remained in the public spotlight in both Europe and the United States and recently has emerged as an important problem in other regions such as Southeast Asia. To reveal responses of Masson Pine to acid rain during a long time series in central China, we used the interpolation dataset of acid rain and the Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) data to derive the monthly pH and NDVI trajectories based on acidity gradients from 1992 to 2006. Then we analyzed inter-annual and seasonal variation of vegetation growth by improved sinusoidal fitting and regression analysis. In the environment of strong acidity and moderate acidity, the growth of Masson Pine was inhibited during the study period, while the slight acidity promoted growth of Masson Pine to some extent. For the multi-year monthly changing trend of NDVI, late spring to mid autumn, the NDVI showed a decreasing trend, especially in June, while from late autumn to the following spring, the NDVI showed a rising tendency, specifically in December and March.

  3. Phytochemistry of Cimicifugic Acids and Associated Bases in Cimicifuga racemosa Root Extracts

    PubMed Central

    GÖdecke, Tanja; Nikolic, Dejan; Lankin, David C.; Chen, Shao-Nong; Powell, Sharla L.; Dietz, Birgit; Bolton, Judy L.; Van Breemen, Richard B.; Farnsworth, Norman R.; Pauli, Guido F.

    2009-01-01

    Introduction Earlier studies reported serotonergic activity for cimicifugic acids (CA) isolated from Cimicifuga racemosa. The discovery of strongly basic alkaloids, cimipronidines, from the active extract partition and evaluation of previously employed work-up procedures has led to the hypothesis of strong acid/base association in the extract. Objective Re-isolation of the CAs was desired to permit further detailed studies. Based on the acid/base association hypothesis, a new separation scheme of the active partition was required, which separates acids from associated bases. Methodology A new 5-HT7 bioassay guided work-up procedure was developed that concentrates activity into one partition. The latter was subjected to a new 2-step centrifugal partitioning chromatography (CPC) method, which applies pH zone refinement gradient (pHZR CPC) to dissociate the acid/base complexes. The resulting CA fraction was subjected to a second CPC step. Fractions and compounds were monitored by 1H NMR using a structure based spin-pattern analysis facilitating dereplication of the known acids. Bioassay results were obtained for the pHZR CPC fractions and for purified CAs. Results A new CA was characterized. While none of the pure CAs was active, the serotonergic activity was concentrated in a single pHZR CPC fraction, which was subsequently shown to contain low levels of the potent 5-HT7 ligand, Nω–methylserotonin. Conclusion This study shows that CAs are not responsible for serotonergic activity in black cohosh. New phytochemical methodology (pHZR CPC) and a sensitive dereplication method (LC-MS) led to the identification of Nω–methylserotonin as serotonergic active principle. PMID:19140115

  4. The glmS Ribozyme Cofactor is a General Acid-Base Catalyst

    PubMed Central

    Viladoms, Julia; Fedor, Martha J.

    2012-01-01

    The glmS ribozyme is the first natural self-cleaving ribozyme known to require a cofactor. The D-glucosamine-6-phosphate (GlcN6P) cofactor has been proposed to serve as a general acid, but its role in the catalytic mechanism has not been established conclusively. We surveyed GlcN6P-like molecules for their ability to support self-cleavage of the glmS ribozyme and found a strong correlation between the pH dependence of the cleavage reaction and the intrinsic acidity of the cofactors. For cofactors with low binding affinities the contribution to rate enhancement was proportional to their intrinsic acidity. This linear free-energy relationship between cofactor efficiency and acid dissociation constants is consistent with a mechanism in which the cofactors participate directly in the reaction as general acid-base catalysts. A high value for the Brønsted coefficient (β ~ 0.7) indicates that a significant amount of proton transfer has already occurred in the transition state. The glmS ribozyme is the first self-cleaving RNA to use an exogenous acid-base catalyst. PMID:23113700

  5. Powerful Amplification Cascades of FRET-Based Two-Layer Nonenzymatic Nucleic Acid Circuits.

    PubMed

    Quan, Ke; Huang, Jin; Yang, Xiaohai; Yang, Yanjing; Ying, Le; Wang, He; Xie, Nuli; Ou, Min; Wang, Kemin

    2016-06-01

    Nucleic acid circuits have played important roles in biological engineering and have increasingly attracted researchers' attention. They are primarily based on nucleic acid hybridizations and strand displacement reactions between nucleic acid probes of different lengths. Signal amplification schemes that do not rely on protein enzyme show great potential in analytical applications. While the single amplification circuit often achieves linear amplification that may not meet the need for detection of target in a very small amount, it is very necessary to construct cascade circuits that allow for larger amplification of inputs. Herein, we have successfully engineered powerful amplification cascades of FRET-based two-layer nonenzymatic nucleic acid circuits, in which the outputs of catalyzed hairpin assembly (CHA) activate hybridization chain reactions (HCR) circuits to induce repeated hybridization, allowing real-time monitoring of self-assembly process by FRET signal. The cascades can yield 50000-fold signal amplification with the help of the well-designed and high-quality nucleic acid circuit amplifiers. Subsequently, with coupling of structure-switching aptamer, as low as 200 pM adenosine is detected in buffer, as well as in human serum. To our knowledge, we have for the first time realized real-time monitoring adaptation of HCR to CHA circuits and achieved amplified detection of nucleic acids and small molecules with relatively high sensitivity. PMID:27142084

  6. The glmS ribozyme cofactor is a general acid-base catalyst.

    PubMed

    Viladoms, Júlia; Fedor, Martha J

    2012-11-21

    The glmS ribozyme is the first natural self-cleaving ribozyme known to require a cofactor. The d-glucosamine-6-phosphate (GlcN6P) cofactor has been proposed to serve as a general acid, but its role in the catalytic mechanism has not been established conclusively. We surveyed GlcN6P-like molecules for their ability to support self-cleavage of the glmS ribozyme and found a strong correlation between the pH dependence of the cleavage reaction and the intrinsic acidity of the cofactors. For cofactors with low binding affinities, the contribution to rate enhancement was proportional to their intrinsic acidity. This linear free-energy relationship between cofactor efficiency and acid dissociation constants is consistent with a mechanism in which the cofactors participate directly in the reaction as general acid-base catalysts. A high value for the Brønsted coefficient (β ~ 0.7) indicates that a significant amount of proton transfer has already occurred in the transition state. The glmS ribozyme is the first self-cleaving RNA to use an exogenous acid-base catalyst. PMID:23113700

  7. Potential Biological Applications of Bio-Based Anacardic Acids and Their Derivatives

    PubMed Central

    Hamad, Fatma B.; Mubofu, Egid B.

    2015-01-01

    Cashew nut shells (CNS), which are agro wastes from cashew nut processing factories, have proven to be among the most versatile bio-based renewable materials in the search for functional materials and chemicals from renewable resources. CNS are produced in the cashew nut processing process as waste, but they contain cashew nut shell liquid (CNSL) up to about 30–35 wt. % of the nut shell weight depending on the method of extraction. CNSL is a mixture of anacardic acid, cardanol, cardol, and methyl cardol, and the structures of these phenols offer opportunities for the development of diverse products. For anacardic acid, the combination of phenolic, carboxylic, and a 15-carbon alkyl side chain functional group makes it attractive in biological applications or as a synthon for the synthesis of a multitude of bioactive compounds. Anacardic acid, which is about 65% of a CNSL mixture, can be extracted from the agro waste. This shows that CNS waste can be used to extract useful chemicals and thus provide alternative green sources of chemicals, apart from relying only on the otherwise declining petroleum based sources. This paper reviews the potential of anacardic acids and their semi-synthetic derivatives for antibacterial, antitumor, and antioxidant activities. The review focuses on natural anacardic acids from CNS and other plants and their semi-synthetic derivatives as possible lead compounds in medicine. In addition, the use of anacardic acid as a starting material for the synthesis of various biologically active compounds and complexes is reported. PMID:25894225

  8. Potential biological applications of bio-based anacardic acids and their derivatives.

    PubMed

    Hamad, Fatma B; Mubofu, Egid B

    2015-01-01

    Cashew nut shells (CNS), which are agro wastes from cashew nut processing factories, have proven to be among the most versatile bio-based renewable materials in the search for functional materials and chemicals from renewable resources. CNS are produced in the cashew nut processing process as waste, but they contain cashew nut shell liquid (CNSL) up to about 30-35 wt. % of the nut shell weight depending on the method of extraction. CNSL is a mixture of anacardic acid, cardanol, cardol, and methyl cardol, and the structures of these phenols offer opportunities for the development of diverse products. For anacardic acid, the combination of phenolic, carboxylic, and a 15-carbon alkyl side chain functional group makes it attractive in biological applications or as a synthon for the synthesis of a multitude of bioactive compounds. Anacardic acid, which is about 65% of a CNSL mixture, can be extracted from the agro waste. This shows that CNS waste can be used to extract useful chemicals and thus provide alternative green sources of chemicals, apart from relying only on the otherwise declining petroleum based sources. This paper reviews the potential of anacardic acids and their semi-synthetic derivatives for antibacterial, antitumor, and antioxidant activities. The review focuses on natural anacardic acids from CNS and other plants and their semi-synthetic derivatives as possible lead compounds in medicine. In addition, the use of anacardic acid as a starting material for the synthesis of various biologically active compounds and complexes is reported. PMID:25894225

  9. Stearidonic acid, a plant-based dietary fatty acid, enhances the chemosensitivity of canine lymphoid tumor cells.

    PubMed

    Pondugula, Satyanarayana R; Ferniany, Glennie; Ashraf, Farah; Abbott, Kodye L; Smith, Bruce F; Coleman, Elaine S; Mansour, Mahmoud; Bird, R Curtis; Smith, Annette N; Karthikeyan, Chandrabose; Trivedi, Piyush; Tiwari, Amit K

    2015-05-15

    Lymphoma is the most common hematopoietic tumor in dogs and humans, with similar pathogenesis and therapeutic responses. Anticancer drugs like vincristine (VCR) and doxorubicin (DOX) are often used in treating lymphoma. However, the cure rate is generally poor due to chemoresistance. Here, we sought to determine whether stearidonic acid (SDA), a plant-based dietary fatty acid, sensitizes chemoresistant canine lymphoid-tumor cells. GL-1 B-cell lymphoid-tumor cells were found to be highly sensitive to the antitumor-activity of VCR and DOX, while OSW T-cell and 17-71 B-cell lymphoid-tumor cells were moderately and fully resistant, respectively. SDA, at its non-toxic concentrations, significantly promoted the antitumor action of VCR and DOX in both OSW and 17-71 cells. SDA-mediated chemosensitization was associated with SDA inhibition of P-glycoprotein (P-gp) function. This was confirmed in HEK293 cells stably expressing P-gp as well as by increased binding-affinity of SDA to P-gp in P-gp docking analysis. SDA at its chemosensitizing concentrations did not affect the viability of healthy dog peripheral blood mononuclear cells, suggesting that SDA is non-toxic to normal dog peripheral blood leucocytes at its chemosensitizing concentrations. Our study identifies a novel dietary fatty acid that may be used as a dietary supplement in combination with chemotherapy to promote the antitumor efficacy of the chemotherapy drugs in dogs and possibly in humans with chemoresistant lymphoma. PMID:25847597

  10. An Introduction to Multivariate Curve Resolution-Alternating Least Squares: Spectrophotometric Study of the Acid-Base Equilibria of 8-Hydroxyquinoline-5-Sulfonic Acid

    ERIC Educational Resources Information Center

    Rodriguez-Rodriguez, Cristina; Amigo, Jose Manuel; Coello, Jordi; Maspoch, Santiago

    2007-01-01

    A spectrophotometric study of the acid-base equilibria of 8-hydroxyquinoline-5-sulfonic acid to describe the multivariate curve resolution-alternating least squares algorithm (MCR-ALS) is described. The algorithm provides a lot of information and hence is of great importance for the chemometrics research.

  11. Synthesis and effect of fatty acid amides as friction modifiers in petroleum base stock.

    PubMed

    Khalkar, Sharmishtha; Bhowmick, DiptiNarayan; Pratap, Amit

    2013-01-01

    Fatty acid amides were prepared by using Lewis acid as a catalyst. The products from reaction was subjected to solvent extraction with chloroform and then followed by purification with n-hexane, ethanol and acetonitrile. Fatty acid amide, characterized by various physicochemical and tribological properties like wear scar, weld load and coefficient of friction. These compounds found good antiwear (AW) and extreme pressure (EP) additive. The addition of various EP and AW additives in lubricating oil is an important and effective way to reduce friction and wear. Fatty acid amides were used as antiwear and friction modifier additive and a comparative study was carried out for 1%, 3%, 5% additive blend with commercial petroleum base stocks 150N and 500N. PMID:24200937

  12. Titania-based molecularly imprinted polymer for sulfonic acid dyes prepared by sol-gel method.

    PubMed

    Li, Man; Li, Rong; Tan, Jin; Jiang, Zi-Tao

    2013-03-30

    A novel titania-based molecularly imprinted polymer (MIP) was synthesized through sol-gel process with sunset yellow (Sun) as template, without use of functional monomer. MIP was used as a solid-phase extraction material for the isolation and enrichment of sulfonic acid dyes in beverages. The results showed that MIP exhibited better selectivity, higher recovery and adsorption capacity for the sulfonic acid dyes compared to the non-imprinted polymer (NIP). MIP presented highest extraction selectivity to Sun when pH less than or equal to 3. The adsorption capacity was 485.9 mg g(-1), which was larger than that of NIP (384.7 mg g(-1)). The better clean-up ability demonstrated the capability of MIP for the isolation and enrichment of sulfonic acid dyes in complicated food samples. The mean recoveries for the sulfonic acid dyes on MIP were from 81.9% to 97.2% in spiked soft drink. PMID:23598213

  13. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed

    2015-06-01

    Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (Ka = 3582.88 M-1) and selectivity for fructose over glucose at pH = 7.4. The sensor 1 showed a linear response toward D-fructose in the concentrations ranging from 2.5 × 10-5 to 4 × 10-4 mol L-1 with the detection limit of 1.3 × 10-5 mol L-1.

  14. Unravelling the Ru-Catalyzed Hydrogenolysis of Biomass-Based Polyols under Neutral and Acidic Conditions.

    PubMed

    Hausoul, Peter J C; Negahdar, Leila; Schute, Kai; Palkovits, Regina

    2015-10-12

    The aqueous Ru/C-catalyzed hydrogenolysis of biomass-based polyols such as erythritol, xylitol, sorbitol, and cellobitol is studied under neutral and acidic conditions. For the first time, the complete product spectrum of C2 C6 polyols is identified and, based on a thorough analysis of the reaction mixtures, a comprehensive reaction mechanism is proposed, which consists of (de)hydrogenation, epimerization, decarbonylation, and deoxygenation reactions. The data reveal that the Ru-catalyzed deoxygenation reaction is highly selective for the cleavage of terminal hydroxyl groups. Changing from neutral to acidic conditions suppresses decarbonylation, consequently increasing the selectivity towards deoxygenation. PMID:26448526

  15. Silica nanoparticles as a delivery system for nucleic acid-based reagents

    PubMed Central

    Hom, Christopher; Lu, Jie

    2010-01-01

    The transport of nucleic acid-based reagents is predicated upon developing structurally stable delivery systems that can preferentially bind and protect DNA and RNA, and release their cargo upon reaching their designated sites. Recent advancements in tailoring the size, shape, and external surface functionalization of silica materials have led to increased biocompatibility and efficiency of delivery. In this Feature Article, we highlight recent research progress in the use of silica nanoparticles as a delivery vehicle for nucleic acid-based reagents. PMID:20740060

  16. An In Vivo Study of Composite Microgels Based on Hyaluronic Acid and Gelatin for the Reconstruction of Surgically Injured Rat Vocal Folds

    ERIC Educational Resources Information Center

    Coppoolse, Jiska M. S.; Van Kooten, T. G.; Heris, Hossein K.; Mongeau, Luc; Li, Nicole Y. K.; Thibeault, Susan L.; Pitaro, Jacob; Akinpelu, Olubunm; Daniel, Sam J.

    2014-01-01

    Purpose: The objective of this study was to investigate local injection with a hierarchically microstructured hyaluronic acid-gelatin (HA-Ge) hydrogel for the treatment of acute vocal fold injury using a rat model. Method: Vocal fold stripping was performed unilaterally in 108 Sprague-Dawley rats. A volume of 25 µl saline (placebo controls),…

  17. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    NASA Astrophysics Data System (ADS)

    Yu, Meihua; Jambhrunkar, Siddharth; Thorn, Peter; Chen, Jiezhong; Gu, Wenyi; Yu, Chengzhong

    2012-12-01

    In this paper, a targeted drug delivery system has been developed based on hyaluronic acid (HA) modified mesoporous silica nanoparticles (MSNs). HA-MSNs possess a specific affinity to CD44 over-expressed on the surface of a specific cancer cell line, HCT-116 (human colon cancer cells). The cellular uptake performance of fluorescently labelled MSNs with and without HA modification has been evaluated by confocal microscopy and fluorescence-activated cell sorter (FACS) analysis. Compared to bare MSNs, HA-MSNs exhibit a higher cellular uptake via HA receptor mediated endocytosis. An anticancer drug, doxorubicin hydrochloride (Dox), has been loaded into MSNs and HA-MSNs as drug delivery vehicles. Dox loaded HA-MSNs show greater cytotoxicity to HCT-116 cells than free Dox and Dox-MSNs due to the enhanced cell internalization behavior of HA-MSNs. It is expected that HA-MSNs have a great potential in targeted delivery of anticancer drugs to CD44 over-expressing tumors.

  18. One-pot transformation of cellobiose to formic acid and levulinic acid over ionic-liquid-based polyoxometalate hybrids.

    PubMed

    Li, Kaixin; Bai, Linlu; Amaniampong, Prince Nana; Jia, Xinli; Lee, Jong-Min; Yang, Yanhui

    2014-09-01

    Currently, levulinic acid (LA) and formic acid (FA) are considered as important carbohydrates for the production of value-added chemicals. Their direct production from biomass will open up a new opportunity for the transformation of biomass resource to valuable chemicals. In this study, one-pot transformation of cellobiose into LA and FA was demonstrated, using a series of multiple-functional ionic liquid-based polyoxometalate (IL-POM) hybrids as catalytic materials. These IL-POMs not only markedly promoted the production of valuable chemicals including LA, FA and monosaccharides with high selectivities, but also provided great convenience of the recovery and the reuse of the catalytic materials in an environmentally friendly manner. Cellobiose conversion of 100%, LA selectivity of 46.3%, and FA selectivity of 26.1% were obtained at 423 K and 3 MPa for 3 h in presence of oxygen. A detailed catalytic mechanism for the one-pot transformation of cellobiose was also presented. PMID:25110998

  19. An amperometric uric acid biosensor based on chitosan-carbon nanotubes electrospun nanofiber on silver nanoparticles.

    PubMed

    Numnuam, Apon; Thavarungkul, Panote; Kanatharana, Proespichaya

    2014-06-01

    A novel amperometric uric acid biosensor was fabricated by immobilizing uricase on an electrospun nanocomposite of chitosan-carbon nanotubes nanofiber (Chi-CNTsNF) covering an electrodeposited layer of silver nanoparticles (AgNPs) on a gold electrode (uricase/Chi-CNTsNF/AgNPs/Au). The uric acid response was determined at an optimum applied potential of -0.35 V vs Ag/AgCl in a flow-injection system based on the change of the reduction current for dissolved oxygen during oxidation of uric acid by the immobilized uricase. The response was directly proportional to the uric acid concentration. Under the optimum conditions, the fabricated uric acid biosensor had a very wide linear range, 1.0-400 μmol L(-1), with a very low limit of detection of 1.0 μmol L(-1) (s/n = 3). The operational stability of the uricase/Chi-CNTsNF/AgNPs/Au biosensor (up to 205 injections) was excellent and the storage life was more than six weeks. A low Michaelis-Menten constant of 0.21 mmol L(-1) indicated that the immobilized uricase had high affinity for uric acid. The presence of potential common interfering substances, for example ascorbic acid, glucose, and lactic acid, had negligible effects on the performance of the biosensor. When used for analysis of uric acid in serum samples, the results agreed well with those obtained by use of the standard enzymatic colorimetric method (P > 0.05). PMID:24718436

  20. Investigation of surfactant mediated acid-base charging of mineral oxide particles dispersed in apolar systems.

    PubMed

    Gacek, Matthew M; Berg, John C

    2012-12-21

    The current work examines the role of acid-base properties on particle charging in apolar media. Manipulating the polarity and magnitude of charge in such systems is of growing interest to a number of applications. A major hurdle to the implementation of this technology is that the mechanism(s) of particle charging remain a subject of debate. The authors previously conducted a study of the charging of a series of mineral oxide particles dispersed in apolar systems that contained the surfactant AOT. It was observed that there was a correlation between the particle electrophoretic mobility and the acid-base nature of the particle, as characterized by aqueous point of zero charge (PZC) or the isoelectric point (IEP). The current study investigates whether or not a similar correlation is observed with other surfactants, namely, the acidic Span 80 and the basic OLOA 11000. This is accomplished by measuring the electrophoretic mobility of a series of mineral oxides that are dispersed in Isopar-L containing various concentrations of either Span 80 or OLOA 11000. The mineral oxides used have PZC values that cover a wide range of pH, providing a systematic study of how particle and surfactant acid-base properties impact particle charge. It was found that the magnitude and polarity of particle surface charge varied linearly with the particle PZC for both surfactants used. In addition, the point at which the polarity of charge reversed for the basic surfactant OLOA 11000 was shifted to a pH of approximately 8.5, compared to the previous result of about 5 for AOT. This proves that both surfactant and particle acid-base properties are important, and provides support for the theory of acid-base charging in apolar media. PMID:23157688

  1. Characterization of low-molecular-weight hyaluronic acid-based hydrogel and differential stem cell responses in the hydrogel microenvironments.

    PubMed

    Kim, Jungju; Park, Yongdoo; Tae, Giyoong; Lee, Kyu Back; Hwang, Chang Mo; Hwang, Soon Jung; Kim, In Sook; Noh, Insup; Sun, Kyung

    2009-03-15

    Hyaluronic acid is a natural glycosaminoglycan involved in biological processes. Low-molecular-weight hyaluronic acid (10 and 50 kDa)-based hydrogel was synthesized using derivatized hyaluronic acid. Hyaluronic acid was acrylated by two steps: (1) introduction of an amine group using adipic acid dihydrazide, and (2) acrylation by N-acryloxysuccinimide. Injectable hyaluronic acid-based hydrogel was prepared by using acrylated hyaluronic acid and poly(ethylene glycol) tetra-thiols via Michael-type addition reaction. Mechanical properties of the hydrogel were evaluated by varying the molecular weight of acrylated hyaluronic acid (10 and 50 kDa) and the weight percent of hydrogel. Hydrogel based on 50-kDa hyaluronic acid showed the shortest gelation time and the highest complex modulus. Next, human mesenchymal stem cells were cultured in cell-adhesive RGD peptide-immobilized hydrogels together with bone morphogenic protein-2 (BMP-2). Cells cultured in the RGD/BMP-2-incorporated hydrogels showed proliferation rates higher than that of control or RGD-immobilized hydrogels. Real-time RT-PCR showed that the expression of osteoblast marker genes such as CBFalpha1 and alkaline phosphatase was increased in hyaluronic acid-based hydrogel, and the expression level was dependent on the molecular weight of hyaluronic acid, RGD peptide, and BMP-2. This study indicates that low-molecular-weight hyaluronic acid-based hydrogel can be applied to tissue regeneration as differentiation guidance materials of stem cells. PMID:18384163

  2. A comparative study of surface acid-base characteristics of natural illites from different origins

    SciTech Connect

    Liu, W.; Sun, Z.; Forsling, W.; Du, Q.; Tang, H.

    1999-11-01

    The acid-base characteristics of naturally occurring illites, collected from different locations, were investigated by potentiometeric titrations. The experimental data were interpreted using the constant capacitance surface complexation model. Considerable release of Al and Si from illite samples and subsequent complexation or precipitation of hydroxyl aluminosilicates generated during the acidimetric forward titration and the alkalimetric back titration, respectively, were observed. In order to describe the acid-base chemistry of aqueous illite surfaces, two surface proton-reaction models, introducing the corresponding reactions between the dissolved aluminum species and silicic acid, as well as a surface Al-Si complex on homogeneous illite surface sites, were proposed. Optimization results indicated that both models could provide a good description of the titration behavior for all aqueous illite systems in this study. The intrinsic acidity constants for the different illites were similar in Model 1, showing some generalities in their acid-base properties. Model 1 may be considered as a simplification of Model 2, evident in the similarities between the corresponding constants. In addition, the formation constant for surface Al-Si species (complexes or precipitates) is relatively stable in this study.

  3. Acid-base behavior in hydrothermal processing of wastes. 1997 annual progress report

    SciTech Connect

    1997-01-01

    'A major obstacle to the development of hydrothermal technology for treating DOE wastes has been a lack of scientific knowledge of solution chemistry, thermodynamics and transport phenomena. The progress over the last year is highlighted in the following four abstracts from manuscripts which have been submitted to journals. The authors also have made considerable progress on a spectroscopic study of the acid-base equilibria of Cr(VI). They have utilized novel spectroscopic indicators to study acid-base equilibria up to 380 C. Until now, very few systems have been studied at such high temperatures, although this information is vital for hydrothermal processing of wastes. The pH values of aqueous solutions of boric acid and KOH were measured with the optical indicator 2-naphthol at temperatures from 300 to 380 C. The equilibrium constant Kb-l for the reaction B(OH)3 + OH{sup -} = B(OH){sup -4} was determined from the pH measurements and correlated with a modified Born model. The titration curve for the addition of HCl to sodium borate exhibits strong acid-strong base behavior even at 350 C and 24.1 MPa. At these conditions, aqueous solutions of sodium borate buffer the pH at 9.6 t 0.25. submitted to Ind. Eng. Chem. Res. Acetic Acid and HCl Acid-base titrations for the KOH-acetic acid or NH{sub 3} -acetic acid systems were monitored with the optical indicator 2-naphthoic acid at 350 C and 34 MPa, and those for the HCl;Cl- system with acridine at 380 C and up to 34 MPa (5,000 psia ). KOH remains a much stronger base than NH,OH at high temperature. From 298 K to the critical temperature of water, the dissociation constant for HCl decreases by 13 orders of magnitude, and thus, the basicity of Cl{sup -} becomes significant. Consequently, the addition of NaCl to HCl raises the pH. The pH titration curves may be predicted with reasonable accuracy from the relevant equilibrium constants and Pitzer''s formulation of the Debye- Htickel equation for the activity coefficients.'

  4. An interpenetrating HA/G/CS biomimic hydrogel via Diels-Alder click chemistry for cartilage tissue engineering.

    PubMed

    Yu, Feng; Cao, Xiaodong; Zeng, Lei; Zhang, Qing; Chen, Xiaofeng

    2013-08-14

    In order to mimic the natural cartilage extracellular matrix, a novel biological degradable interpenetrating network hydrogel was synthesized from the gelatin (G), hyaluronic acid (HA) and chondroitin sulfate (CS) by Diels-Alder "click" chemistry. HA was modified with furylamine and G was modified with furancarboxylic acid respectively. (1)H NMR spectra and elemental analysis showed that the substitution degrees of HA-furan and G-furan were 71.5% and 44.5%. Then the hydrogels were finally synthesized by cross-linking furan-modified HA and G derivatives with dimaleimide poly(ethylene glycol) (MAL-PEG-MAL). The mechanical and degradation properties of the hydrogels could be tuned simply through varying the molar ratio between furan and maleimide. Rheological, mechanical and degradation studies demonstrated that the Diels-Alder "click" chemistry is an efficient method for preparing high performance biological interpenetrating hydrogels. This biomimic hydrogel with improved mechanical properties could have great potential applications in cartilage tissue engineering. PMID:23769536

  5. Preparation of a novel carbon-based solid acid from cassava stillage residue and its use for the esterification of free fatty acids in waste cooking oil.

    PubMed

    Wang, Lingtao; Dong, Xiuqin; Jiang, Haoxi; Li, Guiming; Zhang, Minhua

    2014-04-01

    A novel carbon-based solid acid catalyst was prepared by the sulfonation of incompletely carbonized cassava stillage residue (CSR) with concentrated sulfuric acid, and employed to catalyze the esterification of methanol and free fatty acids (FFAs) in waste cooking oil (WCO). The effects of the carbonization and the sulfonation temperatures on the pore structure, acid density and catalytic activity of the CSR-derived catalysts were systematically investigated. Low temperature carbonization and high temperature sulfonation can cause the collapse of the carbon framework, while high temperature carbonization is not conducive to the attachment of SO3H groups on the surface. The catalyst showed high catalytic activity for esterification, and the acid value for WCO is reduced to below 2mg KOH/g after reaction. The activity of catalyst can be well maintained after five cycles. CSR can be considered a promising raw material for the production of a new eco-friendly solid acid catalyst. PMID:24661813

  6. Functionalized PCL/HA nanocomposites as microporous membranes for bone regeneration.

    PubMed

    Basile, Maria Assunta; d'Ayala, Giovanna Gomez; Malinconico, Mario; Laurienzo, Paola; Coudane, Jean; Nottelet, Benjamin; Ragione, Fulvio Della; Oliva, Adriana

    2015-03-01

    In the present work, microporous membranes based on poly(ε-caprolactone) (PCL) and PCL functionalized with amine (PCL-DMAEA) or anhydride groups (PCL-MAGMA) were realized by solvent-non solvent phase inversion and proposed for use in Guided Tissue Regeneration (GTR). Nanowhiskers of hydroxyapatite (HA) were also incorporated in the polymer matrix to realize nanocomposite membranes. Scanning Electron Microscopy (SEM) showed improved interfacial adhesion with HA for functionalized polymers, and highlighted substantial differences in the porosity. A relationship between the developed porous structure of the membrane and the chemical nature of grafted groups was proposed. Compared to virgin PCL, hydrophilicity increases for functionalized PCL, while the addition of HA influences significantly the hydrophilic characteristics only in the case of virgin polymer. A significant increase of in vitro degradation rate was found for PCL-MAGMA based membranes, and at lower extent of PCL-DMAEA membranes. The novel materials were investigated regarding their potential as support for cell growth in bone repair using multipotent mesenchymal stromal cells (MSC) as a model. MSC plated onto the various membranes were analyzed in terms of adhesion, proliferation and osteogenic capacity that resulted to be related to chemical as well as porous structure. In particular, PCL-DMAEA and the relative nanocomposite membranes are the most promising in terms of cell-biomaterial interactions. PMID:25579947

  7. Biopolymers for Medical Applications: Polyglycerol Sebacate (PGS) doped Hydroxyapatite (HA)

    NASA Astrophysics Data System (ADS)

    Teruel, Maria; Kuthirummal, Narayanan; Levi, Nicole; Wake College Team

    2011-04-01

    In the investigation to engineer the ideal scaffolding device for cleft palate repair, polyglycerol sebacate (PGS) doped with hydroxyapatite (HA) were chosen for their elastomeric and biodegradable properties, as well as their cost-effective synthesis. Hydroxyapatite was integrated into the PGS to form a composite with high porosity and improved mechanical properties yielding a good substrate for cell attachment during the repair process. FT-IR scans were performed to characterize the composite polymer. Differential Scanning Calorimetry (DSC) was utilized to identify an acceptable glass transition temperature (Tg), between -18 and - 21°C. At this Tg, it was determined that the material was sufficiently polymerized to a point where it was durable yet pliable enough to use for cleft palate devices. In the synthesis of PGS 3% and 5% HA, a Tg of - 20.10°C and - 21.72°C, respectively, was achieved and further analytical tests were then performed on the polymers. Methods of analysis included X-Ray Diffraction and Tensile Strength Testing. Acknowledgements to the Research Department of Plastic and Reconstructive Surgery, Wake Forest University and College of Charleston.

  8. Human relevance of an in vitro gene signature in HaCaT for skin sensitization.

    PubMed

    van der Veen, Jochem W; Hodemaekers, Henny; Reus, Astrid A; Maas, Wilfred J M; van Loveren, Henk; Ezendam, Janine

    2015-02-01

    The skin sensitizing potential of chemicals is mainly assessed using animal methods, such as the murine local lymph node assay. Recently, an in vitro assay based on a gene expression signature in the HaCaT keratinocyte cell line was proposed as an alternative to these animal methods. Here, the human relevance of this gene signature is assessed through exposure of freshly isolated human skin to the chemical allergens dinitrochlorobenzene (DNCB) and diphenylcyclopropenone (DCP). In human skin, the gene signature shows similar direction of regulation as was previously observed in vitro, suggesting that the molecular processes that drive expression of these genes are similar between the HaCaT cell line and freshly isolated skin, providing evidence for the human relevance of the gene signature. PMID:25236440

  9. Boronic Acid-Based Approach for Separation and Immobilization of Glycoproteins and Its Application in Sensing

    PubMed Central

    Wang, Xiaojin; Xia, Ning; Liu, Lin

    2013-01-01

    Glycoproteins influence a broad spectrum of biological processes including cell-cell interaction, host-pathogen interaction, or protection of proteins against proteolytic degradation. The analysis of their glyco-structures and concentration levels are increasingly important in diagnosis and proteomics. Boronic acids can covalently react with cis-diols in the oligosaccharide chains of glycoproteins to form five- or six-membered cyclic esters. Based on this interaction, boronic acid-based ligands and materials have attracted much attention in both chemistry and biology as the recognition motif for enrichment and chemo/biosensing of glycoproteins in recent years. In this work, we reviewed the progress in the separation, immobilization and detection of glycoproteins with boronic acid-functionalized materials and addressed its application in sensing. PMID:24141187

  10. Laser restoring the glass surface treated with acid-based paint

    NASA Astrophysics Data System (ADS)

    Strusevich, Anastasia V.; Poltaev, Yuriy A.; Sinev, Dmitrii A.

    2013-11-01

    The modern city facilities are often being attacked by graffiti artists, and increasingly vandals leave "tags" using paints, which compound based on acids, hydrofluoric or acetic commonly. These paints not only ink the surface, but also increase the surface roughness, and such impact can not be corrected by conventional cleaning. Thus, it was requested to develop technology that would not only clean the surface, but also to restore its structure by smoothing out irregularities and roughness formed after exposure in acid. In this work we investigated the effect of restoring the surface of the glass, spoiled by acid-based paint and then treated with CO2-laser. During the experiments, it was found that it is real to create the single-step laser surface restoring technology.

  11. Lewis-Acid/Base Effects on Gallium Volatility in Molten Chlorides

    SciTech Connect

    Williams, D.F.

    2001-02-26

    It has been proposed that GaCl{sub 3} can be removed by direct volatilization from a Pu-Ga alloy that is dissolved in a molten chloride salt. Although pure GaCl{sub 3} is quite volatile (boiling point, 201 C), the behavior of GaCl{sub 3} dissolved in chloride salts is different due to solution effects and is critically dependent on the composition of the solvent salt (i.e., its Lewis-acid/base character). In this report, the behavior of gallium in prototypical Lewis-acid and Lewis-base salts is compared. It was found that gallium volatility is suppressed in basic melts and enhanced in acidic melts. The implications of these results on the potential for simple gallium removal in molten salt systems are significant.

  12. Non-covalent bonded 2D-3D supramolecular architectures based on 4-dimethylaminopyridine and organic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Huan; Jin, Shouwen; Wen, Xianhong; Liu, Bin; Fang, Yang; Zhang, Yani; Wang, Daqi

    2015-07-01

    Studies concentrating on non-covalent weak interactions between the organic base of 4-dimethylaminopyridine, and acidic derivatives have led to an increased understanding of the role 4-dimethylaminopyridine has in binding with the organic acid derivatives. Here anhydrous and hydrous multicomponent organic acid-base adducts of 4-dimethylaminopyridine have been prepared with organic acids such as 1,3-benzodioxole-5-carboxylic acid, p-aminobenzoic acid, 2,4-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 5-chlorosalicylic acid, 5-bromosalicylic acid, 5-nitrosalicylic acid, and 5-sulfosalicylic acid. The 4-dimethylaminopyridine is only monoprotonated. All compounds are organic salts with the 1:1 ratio of the cation and the anion. For the 5-sulfosalicylic acid only one H is ionized to exhibit the valence number of -1. The eight crystalline complexes were characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. These structures adopted the hetero supramolecular synthons. Analysis of the crystal packing of 1-8 suggests that there are Nsbnd H⋯O, Osbnd H⋯O, and Osbnd H⋯S hydrogen bonds (charge assisted or neutral) between the organic acid and the 4-dimethylaminopyridine moieties in the studied compounds. Except the classical hydrogen bonding interactions, the secondary propagating interactions also play important roles in structure extension. For the synergistic effect of the various non-covalent interactions, the complexes displayed 2D-3D framework structures.

  13. Acid-base titrations for polyacids: Significance of the pK sub a and parameters in the Kern equation

    NASA Technical Reports Server (NTRS)

    Meites, L.

    1978-01-01

    A new method is suggested for calculating the dissociation constants of polyvalent acids, especially polymeric acids. In qualitative form the most significant characteristics of the titration curves are demonstrated and identified which are obtained when titrating the solutions of such acids with a standard base potentiometrically.

  14. tRNA acceptor-stem and anticodon bases embed separate features of amino acid chemistry.

    PubMed

    Carter, Charles W; Wolfenden, Richard

    2016-01-01

    The universal genetic code is a translation table by which nucleic acid sequences can be interpreted as polypeptides with a wide range of biological functions. That information is used by aminoacyl-tRNA synthetases to translate the code. Moreover, amino acid properties dictate protein folding. We recently reported that digital correlation techniques could identify patterns in tRNA identity elements that govern recognition by synthetases. Our analysis, and the functionality of truncated synthetases that cannot recognize the tRNA anticodon, support the conclusion that the tRNA acceptor stem houses an independent code for the same 20 amino acids that likely functioned earlier in the emergence of genetics. The acceptor-stem code, related to amino acid size, is distinct from a code in the anticodon that is related to amino acid polarity. Details of the acceptor-stem code suggest that it was useful in preserving key properties of stereochemically-encoded peptides that had developed the capacity to interact catalytically with RNA. The quantitative embedding of the chemical properties of amino acids into tRNA bases has implications for the origins of molecular biology. PMID:26595350

  15. Microbial biosensor for free fatty acids using an oxygen electrode based on thick film technology.

    PubMed

    Schmidt, A; Standfuss-Gabisch, C; Bilitewski, U

    1996-01-01

    A microbial biosensor based on thick film technology was developed. The microorganisms, Arthrobacter nicotianae, were immobilized in Ca-alginate directly on the electrode surface. For the stability of the calcium alginate gel the addition of 0.5 mM CaCl2 to the assay buffer was necessary. The respiratory activity of the microorganisms was monitored by oxygen consumption at -600 mV vs. Ag/AgCl reference electrode. The sensor was used in a batch system and was applied to the determination of free fatty acids in milk. Short-chain fatty acids (C4:0-C12:0) were the preferential substrates, with butyric acid being the main substrate. Consequently, the concentration of free short-chain fatty acids was represented as the butyric acid equivalent. The sensor showed linearity over the concentration range 9.5-165.5 microM (correlation coefficient, r = 0.99920). The response time of the sensor was approximately 3 min. No additional dialysis membrane was necessary, which led to a high sensitivity of the sensor and fast response times. Recovery rates of 98-113% were found for butyric acid in milk samples using the sensor without any additional membrane and a sample dilution of 200 by the assay. Two widespread disadvantages of microbial sensors, long response times and long times to return to the baseline signal after use, could be overcome. PMID:8828165

  16. Effect of Varying Magnetic Fields on Targeted Gene Delivery of Nucleic Acid-Based Molecules.

    PubMed

    Oral, Ozlem; Cıkım, Taha; Zuvin, Merve; Unal, Ozlem; Yagci-Acar, Havva; Gozuacik, Devrim; Koşar, Ali

    2015-11-01

    Several physical methods have been developed to introduce nucleic acid expression vectors into mammalian cells. Magnetic transfection (magnetofection) is one such transfection method, and it involves binding of nucleic acids such as DNA, RNA or siRNA to magnetic nanoparticles followed by subsequent exposure to external magnetic fields. However, the challenge between high efficiency of nucleic acid uptake by cells and toxicity was not totally resolved. Delivery of nucleic acids and their transport to the target cells require carefully designed and controlled systems. In this study, we introduced a novel magnetic system design providing varying magnet turn speeds and magnetic field directions. The system was tested in the magnetofection of human breast (MCF-7), prostate (DU-145, PC-3) and bladder (RT-4) cancer cell lines using green fluorescent protein DNA as a reporter. Polyethylenimine coated superparamagnetic iron oxide nanoparticles (SPIONs) were used as nucleic acid carriers. Adsorption of PEI on SPION improved the cytocompatibility dramatically. Application of external magnetic field increased intracellular uptake of nanoparticles and transfection efficiency without any additional cytotoxicity. We introduce our novel magnetism-based method as a promising tool for enhanced nucleic acid delivery into mammalian cells. PMID:25963582

  17. Trypsin pre-treatment corrects SRID over-estimation of immunologically active, pre-fusion HA caused by mixed immunoprecipitin rings.

    PubMed

    Wen, Yingxia; Palladino, Giuseppe; Xie, Yuhong; Ferrari, Annette; Ma, Xiuwen; Han, Liqun; Dormitzer, Philip R; Settembre, Ethan C

    2016-06-17

    Influenza vaccines are the primary intervention to prevent the substantial health burden of seasonal and pandemic influenza. Subunit and split influenza vaccines are formulated, released for clinical use, and tested for stability based on their content of immunologically active (capable of eliciting functional antibodies) hemagglutinin (HA). Single-radial immunodiffusion (SRID), the standard in vitro potency assay in the field, is believed to specifically detect immunologically active HA. We confirmed that, with conformationally homogeneous HA preparations, SRID specifically detected native, pre-fusion HA, which elicited influenza neutralizing and hemagglutination inhibiting (HI) antibodies in mice, and it did not detect low-pH stressed, post-fusion HA, which was selectively removed from the SRID gel during a blotting step and was significantly less immunologically active. This selective detection was due to the SRID format, not a conformational specificity of the sheep antiserum used in the SRID, as the same antiserum detected non-stressed and low-pH stressed HA similarly when used in an ELISA format. However, when low-pH stressed HA was mixed with non-stressed HA, SRID detected both forms in mixed immunoprecipitin rings, leading to over-quantification of pre-fusion HA. We previously reported that trypsin digestion of antigen samples selectively degrade stressed HA, so that an otherwise conformationally insensitive biophysical quantification technique, reversed-phase high pressure liquid chromatography (RP-HPLC), can specifically quantify trypsin-resistant, immunologically active, pre-fusion HA. Here, we report that trypsin digestion can also improve the specificity of SRID so that it can quantify immunologically active, pre-fusion HA when it is mixed with less immunologically active, post-fusion HA. PMID:27154389

  18. Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine.

    PubMed

    Hemshekhar, Mahadevappa; Thushara, Ram M; Chandranayaka, Siddaiah; Sherman, Larry S; Kemparaju, Kempaiah; Girish, Kesturu S

    2016-05-01

    Hyaluronic acid (HA), is a glycosaminoglycan comprised of repeating disaccharide units of N-acetyl-D-glucosamine and D-glucuronic acid. HA is synthesized by hyaluronan synthases and reaches sizes in excess of 2MDa. It plays numerous roles in normal tissues but also has been implicated in inflammatory processes, multiple drug resistance, angiogenesis, tumorigenesis, water homeostasis, and altered viscoelasticity of extracellular matrix. The physicochemical properties of HA including its solubility and the availability of reactive functional groups facilitate chemical modifications on HA, which makes it a biocompatible material for use in tissue regeneration. HA-based biomaterials and bioscaffolds do not trigger allergies or inflammation and are hydrophilic which make them popular as injectable dermal and soft tissue fillers. They are manufactured in different forms including hydrogels, tubes, sheets and meshes. Here, we review the pathophysiological and pharmacological properties and the clinical uses of native and modified HA. The review highlights the therapeutic applications of HA-based bioscaffolds in organ-specific tissue engineering and regenerative medicine. PMID:26893053

  19. A PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODEL FOR intravenous and ingested DIMETHYLARSINIC ACID (DMAV) IN MICE.

    EPA Science Inventory

    A physiologically based pharmacokinetic (PBPK) model for the organoarsenical dimethylarsinic acid (DMA(V)) was developed in mice. The model was calibrated using tissue time course data from multiple tissues in mice administered DMA(V) intravenously. The final model structure was ...

  20. Locked nucleic acid based beacons for surface interaction studies and biosensor development

    PubMed Central

    Martinez, Karen; Estevez, M.-Carmen; Wu, Yanrong; Phillips, Joseph A.; Medley, Colin D.; Tan, Weihong

    2011-01-01

    DNA sensors and microarrays permit fast, simple and real-time detection of nucleic acids through the design and use of increasingly sensitive, selective and robust molecular probes. Specifically, molecular beacons (MBs) have been employed for this purpose; however, their potential in the development of solid-surface-based biosensors has not been fully realized. This is mainly a consequence of the beacon’s poor stability due to the hairpin structure once immobilized onto a solid surface, commonly resulting in a low signal enhancement. Here, we report the design of a new MB that overcomes some of the limitations of MBs for surface immobilization. Essentially, this new design adds locked nucleic acid bases (LNAs) to the beacon structure, resulting in a LNA molecular beacon (LMB) with robust stability after surface immobilization. To test the efficacy of LMBs against that of regular molecular beacons (RMBs), the properties of selectivity, sensitivity, thermal stability, hybridization kinetics and robustness for the detection of target sequences were compared and evaluated. A 25-fold enhancement was achieved for the LMB on surface with detection limits reaching the low nanomolar range. In addition, the LMB-based biosensor was shown to possess better stability, reproducibility, selectivity and robustness when compared to the RMB. Therefore, as an alternative to conventional DNA and as a prospective tool for use in both DNA microarrays and biosensors, these results demonstrate the potential of the locked nucleic acid bases for nucleic acid design for surface immobilization. PMID:19351140