Sample records for acid ha based

  1. Effect of molecular weight of hyaluronic acid (HA) on viscoelasticity and particle texturing feel of HA dermal biphasic fillers.

    PubMed

    Chun, Cheolbyong; Lee, Deuk Yong; Kim, Jin-Tae; Kwon, Mi-Kyung; Kim, Young-Zu; Kim, Seok-Soon

    2016-01-01

    Hyaluronic acid (HA) dermal biphasic fillers are synthesized for their efficacy in correcting aesthetic defects such as wrinkles, scars and facial contouring defects. The fillers consist of crosslinked HA microspheres suspended in a noncrosslinked HA. To extend the duration of HAs within the dermis and obtain the particle texturing feel, HAs are crosslinked to obtain the suitable mechanical properties. Hyaluronic acid (HA) dermal biphasic fillers are prepared by mixing the crosslinked HA microspheres and the noncrosslinked HAs. The elastic modulus of the fillers increased with raising the volume fraction of the microspheres. The mechanical properties and the particle texturing feel of the fillers made from crosslinked HA (1058 kDa) microspheres suspended in noncrosslinked HA (1368 kDa) are successfully achieved, which are adequate for the fillers. Dermal biphasic HA fillers made from 1058 kDa exhibit suitable elastic moduli (211 to 420 Pa) and particle texturing feel (scale 7 ~ 9).

  2. HA Antibody-Mediated FcγRIIIa Activity Is Both Dependent on FcR Engagement and Interactions between HA and Sialic Acids.

    PubMed

    Cox, Freek; Kwaks, Ted; Brandenburg, Boerries; Koldijk, Martin H; Klaren, Vincent; Smal, Bastiaan; Korse, Hans J W M; Geelen, Eric; Tettero, Lisanne; Zuijdgeest, David; Stoop, Esther J M; Saeland, Eirikur; Vogels, Ronald; Friesen, Robert H E; Koudstaal, Wouter; Goudsmit, Jaap

    2016-01-01

    Interactions with receptors for the Fc region of IgG (FcγRs) have been shown to contribute to the in vivo protection against influenza A viruses provided by broadly neutralizing antibodies (bnAbs) that bind to the viral hemagglutinin (HA) stem. In particular, Fc-mediated antibody-dependent cellular cytotoxicity (ADCC) has been shown to contribute to protection by stem-binding bnAbs. Fc-mediated effector functions appear not to contribute to protection provided by strain-specific HA head-binding antibodies. We used a panel of anti-stem and anti-head influenza A and B monoclonal antibodies with identical human IgG1 Fc domains and investigated their ability to mediate ADCC-associated FcγRIIIa activation. Antibodies which do not interfere with sialic acid binding of HA can mediate FcγRIIIa activation. However, the FcγRIIIa activation was inhibited when a mutant HA, unable to bind sialic acids, was used. Antibodies which block sialic acid receptor interactions of HA interfered with FcγRIIIa activation. The inhibition of FcγRIIIa activation by HA head-binding and sialic acid receptor-blocking antibodies was confirmed in plasma samples of H5N1 vaccinated human subjects. Together, these results suggest that in addition to Fc-FcγR binding, interactions between HA and sialic acids on immune cells are required for optimal Fc-mediated effector functions by anti-HA antibodies.

  3. Elastin-like protein-hyaluronic acid (ELP-HA) hydrogels with decoupled mechanical and biochemical cues for cartilage regeneration.

    PubMed

    Zhu, Danqing; Wang, Huiyuan; Trinh, Pavin; Heilshorn, Sarah C; Yang, Fan

    2017-05-01

    Hyaluronic acid (HA) is a major component of cartilage extracellular matrix and is an attractive material for use as 3D injectable matrices for cartilage regeneration. While previous studies have shown the promise of HA-based hydrogels to support cell-based cartilage formation, varying HA concentration generally led to simultaneous changes in both biochemical cues and stiffness. How cells respond to the change of biochemical content of HA remains largely unknown. Here we report an adaptable elastin-like protein-hyaluronic acid (ELP-HA) hydrogel platform using dynamic covalent chemistry, which allows variation of HA concentration without affecting matrix stiffness. ELP-HA hydrogels were created through dynamic hydrazone bonds via the reaction between hydrazine-modified ELP (ELP-HYD) and aldehyde-modified HA (HA-ALD). By tuning the stoichiometric ratio of aldehyde groups to hydrazine groups while maintaining ELP-HYD concentration constant, hydrogels with variable HA concentration (1.5%, 3%, or 5%) (w/v) were fabricated with comparable stiffness. To evaluate the effects of HA concentration on cell-based cartilage regeneration, chondrocytes were encapsulated within ELP-HA hydrogels with varying HA concentration. Increasing HA concentration led to a dose-dependent increase in cartilage-marker gene expression and enhanced sGAG deposition while minimizing undesirable fibrocartilage phenotype. The use of adaptable protein hydrogels formed via dynamic covalent chemistry may be broadly applicable as 3D scaffolds with decoupled niche properties to guide other desirable cell fates and tissue repair. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Elastin-like Protein-Hyaluronic acid (ELP-HA) Hydrogels with Decoupled Mechanical and Biochemical cues for Cartilage Regeneration

    PubMed Central

    Zhu, Danqing; Wang, Huiyuan; Trinh, Pavin; Heilshorn, Sarah C.; Yang, Fan

    2018-01-01

    Hyaluronic acid (HA) is a major component of cartilage extracellular matrix and is an attractive material for use as 3D injectable matrices for cartilage regeneration. While previous studies have shown the promise of HA-based hydrogels to support cell-based cartilage formation, varying HA concentration generally led to simultaneous changes in both biochemical cues and stiffness. How cells respond to the change of biochemical content of HA remains largely unknown. Here we report an adaptable elastin-like protein-hyaluronic acid (ELP-HA) hydrogel platform using dynamic covalent chemistry, which allows varyiation of HA concentration without affecting matrix stiffness. ELP-HA hydrogels were created through dynamic hydrazone bonds via the reaction between hydrazine-modified ELP (ELP-HYD) and aldehyde-modified HA (HA-ALD). By tuning the stoichiometric ratio of aldehyde groups to hydrazine groups while maintaining ELP-HYD concentration constant, hydrogels with variable HA concentration (1.5%, 3%, or 5%) (w/v) were fabricated with comparable stiffness. To evaluate the effects of HA concentration on cell-based cartilage regeneration, chondrocytes were encapsulated within ELP-HA hydrogels with varying HA concentration. Increasing HA concentration led to a dose-dependent increase in cartilage-marker gene expression and enhanced sGAG deposition while minimizing undesirable fibrocartilage phenotype. The use of adaptable protein hydrogels formed via dynamic covalent chemistry may be broadly applicable as 3D scaffolds with decoupled niche properties to guide other desirable cell fates and tissue repair. PMID:28268018

  5. Effect of humic acid (HA) on sulfonamide sorption by biochars.

    PubMed

    Lian, Fei; Sun, Binbin; Chen, Xi; Zhu, Lingyan; Liu, Zhongqi; Xing, Baoshan

    2015-09-01

    Effect of quantity and fractionation of loaded humic acid (HA) on biochar sorption for sulfonamides was investigated. The HA was applied in two different modes, i.e. pre-coating and co-introduction with sorbate. In pre-coating mode, the polar fractions of HA tended to interact with low-temperature biochars via H-bonding, while the hydrophobic fractions were likely to be adsorbed by high-temperature biochars through hydrophobic and π-π interactions, leading to different composition and structure of the HA adlayers. The influences of HA fractionation on biochar sorption for sulfonamides varied significantly, depending on the nature of interaction between HA fraction and sorbate. Meanwhile, co-introduction of HA with sulfonamides revealed that the effect of HA on sulfonamide sorption was also dependent on HA concentration. These findings suggest that the amount and fractionation of adsorbed HA are tailored by the surface properties of underlying biochars, which differently affect the sorption for organic contaminants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity.

    PubMed

    Poldervaart, Michelle T; Goversen, Birgit; de Ruijter, Mylene; Abbadessa, Anna; Melchels, Ferry P W; Öner, F Cumhur; Dhert, Wouter J A; Vermonden, Tina; Alblas, Jacqueline

    2017-01-01

    In bone regenerative medicine there is a need for suitable bone substitutes. Hydrogels have excellent biocompatible and biodegradable characteristics, but their visco-elastic properties limit their applicability, especially with respect to 3D bioprinting. In this study, we modified the naturally occurring extracellular matrix glycosaminoglycan hyaluronic acid (HA), in order to yield photo-crosslinkable hydrogels with increased mechanical stiffness and long-term stability, and with minimal decrease in cytocompatibility. Application of these tailor-made methacrylated hyaluronic acid (MeHA) gels for bone tissue engineering and 3D bioprinting was the subject of investigation. Visco-elastic properties of MeHA gels, measured by rheology and dynamic mechanical analysis, showed that irradiation of the hydrogels with UV light led to increased storage moduli and elastic moduli, indicating increasing gel rigidity. Subsequently, human bone marrow derived mesenchymal stromal cells (MSCs) were incorporated into MeHA hydrogels, and cell viability remained 64.4% after 21 days of culture. Osteogenic differentiation of MSCs occurred spontaneously in hydrogels with high concentrations of MeHA polymer, in absence of additional osteogenic stimuli. Addition of bone morphogenetic protein-2 (BMP-2) to the culture medium further increased osteogenic differentiation, as evidenced by increased matrix mineralisation. MeHA hydrogels demonstrated to be suitable for 3D bioprinting, and were printed into porous and anatomically shaped scaffolds. Taken together, photosensitive MeHA-based hydrogels fulfilled our criteria for cellular bioprinted bone constructs within a narrow window of concentration.

  7. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity

    PubMed Central

    Poldervaart, Michelle T.; Goversen, Birgit; de Ruijter, Mylene; Abbadessa, Anna; Melchels, Ferry P. W.; Öner, F. Cumhur; Dhert, Wouter J. A.; Vermonden, Tina

    2017-01-01

    In bone regenerative medicine there is a need for suitable bone substitutes. Hydrogels have excellent biocompatible and biodegradable characteristics, but their visco-elastic properties limit their applicability, especially with respect to 3D bioprinting. In this study, we modified the naturally occurring extracellular matrix glycosaminoglycan hyaluronic acid (HA), in order to yield photo-crosslinkable hydrogels with increased mechanical stiffness and long-term stability, and with minimal decrease in cytocompatibility. Application of these tailor-made methacrylated hyaluronic acid (MeHA) gels for bone tissue engineering and 3D bioprinting was the subject of investigation. Visco-elastic properties of MeHA gels, measured by rheology and dynamic mechanical analysis, showed that irradiation of the hydrogels with UV light led to increased storage moduli and elastic moduli, indicating increasing gel rigidity. Subsequently, human bone marrow derived mesenchymal stromal cells (MSCs) were incorporated into MeHA hydrogels, and cell viability remained 64.4% after 21 days of culture. Osteogenic differentiation of MSCs occurred spontaneously in hydrogels with high concentrations of MeHA polymer, in absence of additional osteogenic stimuli. Addition of bone morphogenetic protein-2 (BMP-2) to the culture medium further increased osteogenic differentiation, as evidenced by increased matrix mineralisation. MeHA hydrogels demonstrated to be suitable for 3D bioprinting, and were printed into porous and anatomically shaped scaffolds. Taken together, photosensitive MeHA-based hydrogels fulfilled our criteria for cellular bioprinted bone constructs within a narrow window of concentration. PMID:28586346

  8. Bond Dissociation Free Energies (BDFEs) of the Acidic H-A Bonds in HA(*)(-) Radical Anions by Three Different Pathways.

    PubMed

    Zhao, Yongyu; Bordwell, Frederick G.

    1996-09-20

    Cleavage of radical anions, HA(*)(-), have been considered to give either H(*) + A(-) (path a) or H(-) + A(*) (path b), and factors determining the preferred mode of cleavage have been discussed. It is conceivable that cleavage to give a proton and a radical dianion, HA(*)(-) right harpoon over left harpoon H(+) + A(*)(2)(-) (path c), might also be feasible. A method, based on a thermodynamic cycle, to estimate the bond dissociation free energy (BDFE) by path c has been devised. Comparison of the BDFEs for cleavage of the radical anions derived from 24 nitroaromatic OH, SH, NH, and CH acids by paths a, b, c has shown that path c is favored thermodynamically.

  9. Quantitative genetics of circulating Hyaluronic Acid (HA) and its correlation with hand osteoarthritis and obesity-related phenotypes in a community-based sample.

    PubMed

    Prakash, Jai; Gabdulina, Gulzhan; Trofimov, Svetlana; Livshits, Gregory

    2017-09-01

    One of the potential molecular biomarkers of osteoarthritis (OA) is hyaluronic acid (HA). HA levels may be related to the severity and progression of OA. However, little is known about the contribution of major risk factors for osteoarthritis, e.g. obesity-related phenotypes and genetics to HA variation. To clarify the quantitative effect of these factors on HA. An ethnically homogeneous sample of 911 apparently healthy European-derived individuals, assessed for radiographic hand osteoarthritis (RHOA), HA, leptin, adiponectin, and several anthropometrical measures of obesity-related phenotypes was studied. Model-based quantitative genetic analysis was used to reveal genetic and shared environmental factors affecting the variation of the study's phenotypes. The HA levels significantly correlated with the age, RHOA, adiponectin, obesity-related phenotypes, and the waist-to-hip ratio. The putative genetic effects contributed significantly to the variation of HA (66.2 ± 9.3%) and they were also significant factors in the variations of all the other studied phenotypes, with the heritability estimate ranging between 0.122 ± 4.4% (WHR) and 45.7 ± 2.2% (joint space narrowing). This is the first study to report heritability estimates of HA variation and its correlation with obesity-related phenotypes, ADP and RHOA. However, the nature of genetic effects on HA and its correlation with other study phenotypes require further clarification.

  10. Fractal analysis of polyferric chloride-humic acid (PFC-HA) flocs in different topological spaces.

    PubMed

    Wang, Yili; Lu, Jia; Baiyu, Du; Shi, Baoyou; Wang, Dongsheng

    2009-01-01

    The fractal dimensions in different topological spaces of polyferric chloride-humic acid (PFC-HA) flocs, formed in flocculating different kinds of humic acids (HA) water at different initial pH (9.0, 7.0, 5.0) and PFC dosages, were calculated by effective density-maximum diameter, image analysis, and N2 absorption-desorption methods, respectively. The mass fractal dimensions (Df) of PFC-HA flocs were calculated by bi-logarithm relation of effective density with maximum diameter and Logan empirical equation. The Df value was more than 2.0 at initial pH of 7.0, which was 11% and 13% higher than those at pH 9.0 and 5.0, respectively, indicating the most compact flocs formed in flocculated HA water at initial pH of 7.0. The image analysis for those flocs indicates that after flocculating the HA water at initial pH greater than 7.0 with PFC flocculant, the fractal dimensions of D2 (logA vs. logdL) and D3 (logVsphere VS. logdL) of PFC-HA flocs decreased with the increase of PFC dosages, and PFC-HA flocs showed a gradually looser structure. At the optimum dosage of PFC, the D2 (logA vs. logdL) values of the flocs show 14%-43% difference with their corresponding Df, and they even had different tendency with the change of initial pH values. However, the D2 values of the flocs formed at three different initial pH in HA solution had a same tendency with the corresponding Dr. Based on fractal Frenkel-Halsey-Hill (FHH) adsorption and desorption equations, the pore surface fractal dimensions (Ds) for dried powders of PFC-HA flocs formed in HA water with initial pH 9.0 and 7.0 were all close to 2.9421, and the Ds values of flocs formed at initial pH 5.0 were less than 2.3746. It indicated that the pore surface fractal dimensions of PFC-HA flocs dried powder mainly show the irregularity from the mesopore-size distribution and marcopore-size distribution.

  11. Characterization of Three Novel Fatty Acid- and Retinoid-Binding Protein Genes (Ha-far-1, Ha-far-2 and Hf-far-1) from the Cereal Cyst Nematodes Heterodera avenae and H. filipjevi

    PubMed Central

    Peng, Huan; Luo, Shujie; Huang, Wenkun; Cui, Jiangkuan; Li, Xin; Kong, Lingan; Jiang, Daohong; Chitwood, David J.; Peng, Deliang

    2016-01-01

    Heterodera avenae and H. filipjevi are major parasites of wheat, reducing production worldwide. Both are sedentary endoparasitic nematodes, and their development and parasitism depend strongly on nutrients obtained from hosts. Secreted fatty acid- and retinol-binding (FAR) proteins are nematode-specific lipid carrier proteins used for nutrient acquisition as well as suppression of plant defenses. In this study, we obtained three novel FAR genes Ha-far-1 (KU877266), Ha-far-2 (KU877267), Hf-far-1 (KU877268). Ha-far-1 and Ha-far-2 were cloned from H. avenae, encoding proteins of 191 and 280 amino acids with molecular masses about 17 and 30 kDa, respectively and sequence identity of 28%. Protein Blast in NCBI revealed that Ha-FAR-1 sequence is 78% similar to the Gp-FAR-1 protein from Globodera pallida, while Ha-FAR-2 is 30% similar to Rs-FAR-1 from Radopholus similis. Only one FAR protein Hf-FAR-1was identified in H. filipjevi; it had 96% sequence identity to Ha-FAR-1. The three proteins are alpha-helix-rich and contain the conserved domain of Gp-FAR-1, but Ha-FAR-2 had a remarkable peptide at the C-terminus which was random-coil-rich. Both Ha-FAR-1 and Hf-FAR-1 had casein kinase II phosphorylation sites, while Ha-FAR-2 had predicted N-glycosylation sites. Phylogenetic analysis showed that the three proteins clustered together, though Ha-FAR-1 and Hf-FAR-1 adjoined each other in a plant-parasitic nematode branch, but Ha-FAR-2 was distinct from the other proteins in the group. Fluorescence-based ligand binding analysis showed the three FAR proteins bound to a fluorescent fatty acid derivative and retinol and with dissociation constants similar to FARs from other species, though Ha-FAR-2 binding ability was weaker than that of the two others. In situ hybridization detected mRNAs of Ha-far-1 and Ha-far-2 in the hypodermis. The qRT-PCR results showed that the Ha-far-1and Ha-far-2 were expressed in all developmental stages; Ha-far-1 expressed 70 times more than Ha-far-2 in

  12. Characterization of Three Novel Fatty Acid- and Retinoid-Binding Protein Genes (Ha-far-1, Ha-far-2 and Hf-far-1) from the Cereal Cyst Nematodes Heterodera avenae and H. filipjevi.

    PubMed

    Qiao, Fen; Luo, Lilian; Peng, Huan; Luo, Shujie; Huang, Wenkun; Cui, Jiangkuan; Li, Xin; Kong, Lingan; Jiang, Daohong; Chitwood, David J; Peng, Deliang

    2016-01-01

    Heterodera avenae and H. filipjevi are major parasites of wheat, reducing production worldwide. Both are sedentary endoparasitic nematodes, and their development and parasitism depend strongly on nutrients obtained from hosts. Secreted fatty acid- and retinol-binding (FAR) proteins are nematode-specific lipid carrier proteins used for nutrient acquisition as well as suppression of plant defenses. In this study, we obtained three novel FAR genes Ha-far-1 (KU877266), Ha-far-2 (KU877267), Hf-far-1 (KU877268). Ha-far-1 and Ha-far-2 were cloned from H. avenae, encoding proteins of 191 and 280 amino acids with molecular masses about 17 and 30 kDa, respectively and sequence identity of 28%. Protein Blast in NCBI revealed that Ha-FAR-1 sequence is 78% similar to the Gp-FAR-1 protein from Globodera pallida, while Ha-FAR-2 is 30% similar to Rs-FAR-1 from Radopholus similis. Only one FAR protein Hf-FAR-1was identified in H. filipjevi; it had 96% sequence identity to Ha-FAR-1. The three proteins are alpha-helix-rich and contain the conserved domain of Gp-FAR-1, but Ha-FAR-2 had a remarkable peptide at the C-terminus which was random-coil-rich. Both Ha-FAR-1 and Hf-FAR-1 had casein kinase II phosphorylation sites, while Ha-FAR-2 had predicted N-glycosylation sites. Phylogenetic analysis showed that the three proteins clustered together, though Ha-FAR-1 and Hf-FAR-1 adjoined each other in a plant-parasitic nematode branch, but Ha-FAR-2 was distinct from the other proteins in the group. Fluorescence-based ligand binding analysis showed the three FAR proteins bound to a fluorescent fatty acid derivative and retinol and with dissociation constants similar to FARs from other species, though Ha-FAR-2 binding ability was weaker than that of the two others. In situ hybridization detected mRNAs of Ha-far-1 and Ha-far-2 in the hypodermis. The qRT-PCR results showed that the Ha-far-1and Ha-far-2 were expressed in all developmental stages; Ha-far-1 expressed 70 times more than Ha-far-2 in

  13. Intra-articular Hyaluronic Acid (HA) and Platelet Rich Plasma (PRP) injection versus Hyaluronic acid (HA) injection alone in Patients with Grade III and IV Knee Osteoarthritis (OA): A Retrospective Study on Functional Outcome.

    PubMed

    Saturveithan, C; Premganesh, G; Fakhrizzaki, S; Mahathir, M; Karuna, K; Rauf, K; William, H; Akmal, H; Sivapathasundaram, N; Jaspreet, K

    2016-07-01

    Introduction: Intra-articular hyaluronic acid (HA) is widely utilized in the treatment of knee osteoarthritis whereas platelet rich plasma (PRP) enhances the regeneration of articular cartilage. This study analyses the efficacy of HA and PRP in grade III and IV knee osteoarthritis. Methodology: This is a cross sectional study with retrospective review of 64 patients (101 knees) which includes 56 knees injected with HA+ PRP, and 45 knees with HA only. Results: During the post six months International Knee Documentation Committee (IKDC) evaluation, HA+PRP group showed marked improvement of 24.33 compared to 12.15 in HA group. Decrement in visual analogue score (VAS) in HA+PRP was 1.9 compared to 0.8 in HA group. Conclusion: We propose intra-articular HA and PRP injections as an optional treatment modality in Grade III and IV knee osteoarthritis in terms of functional outcome and pain control for up to six months when arthroplasty is not an option.

  14. Intra-articular Hyaluronic Acid (HA) and Platelet Rich Plasma (PRP) injection versus Hyaluronic acid (HA) injection alone in Patients with Grade III and IV Knee Osteoarthritis (OA): A Retrospective Study on Functional Outcome

    PubMed Central

    Premganesh, G; Fakhrizzaki, S; Mahathir, M; Karuna, K; Rauf, K; William, H; Akmal, H; Sivapathasundaram, N; Jaspreet, K

    2016-01-01

    Introduction: Intra-articular hyaluronic acid (HA) is widely utilized in the treatment of knee osteoarthritis whereas platelet rich plasma (PRP) enhances the regeneration of articular cartilage. This study analyses the efficacy of HA and PRP in grade III and IV knee osteoarthritis. Methodology: This is a cross sectional study with retrospective review of 64 patients (101 knees) which includes 56 knees injected with HA+ PRP, and 45 knees with HA only. Results: During the post six months International Knee Documentation Committee (IKDC) evaluation, HA+PRP group showed marked improvement of 24.33 compared to 12.15 in HA group. Decrement in visual analogue score (VAS) in HA+PRP was 1.9 compared to 0.8 in HA group. Conclusion: We propose intra-articular HA and PRP injections as an optional treatment modality in Grade III and IV knee osteoarthritis in terms of functional outcome and pain control for up to six months when arthroplasty is not an option. PMID:28435559

  15. The enhanced anti-tissue adhesive effect of injectable pluronic-HA hydrogel by poly(γ-glutamic acid).

    PubMed

    Kim, Manse; Hwang, Youngmin; Tae, Giyoong

    2016-12-01

    The stability of tissue barrier in physiological condition is a key factor to isolate the damaged site from adjacent tissue for anti-tissue adhesion. Although pluronic or pluronic-hyaluronic acid (HA) hydrogel as an injectable formulation can prevent tissue adhesion at the injection site, the anti-tissue adhesion effect is limited due to its poor stability. Herein, we prepared tissue barrier formulations composed of pluronic F127 (F127) and HA mixture (F127-HA) and the effect of the addition of poly(γ-glutamic acid) (PGA) was characterized. All of F127, HA, and F127-HA mixture showed the poor in vitro residence stability less than 3 days. However, by adding PGA into F127-HA mixture, their stability was significantly enhanced by the control of the molecular weight and concentration of PGA. Thus, F127-HA with 10wt% PGA (2000kDa) showed the long-term stability over 10 days. Similarly, the enhanced stability of F127-HA with PGA resulted in the enhanced and excellent in vivo anti-tissue adhesion effect, evidenced by histological analysis and grading of tissue adhesion. Therefore, F127-HA containing PGA could be applied as an efficient injectable tissue barrier for anti-tissue adhesion. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Hyaluronan (HA) interacting proteins RHAMM and hyaluronidase impact prostate cancer cell behavior and invadopodia formation in 3D HA-based hydrogels.

    PubMed

    Gurski, Lisa A; Xu, Xian; Labrada, Lyana N; Nguyen, Ngoc T; Xiao, Longxi; van Golen, Kenneth L; Jia, Xinqiao; Farach-Carson, Mary C

    2012-01-01

    To study the individual functions of hyaluronan interacting proteins in prostate cancer (PCa) motility through connective tissues, we developed a novel three-dimensional (3D) hyaluronic acid (HA) hydrogel assay that provides a flexible, quantifiable, and physiologically relevant alternative to current methods. Invasion in this system reflects the prevalence of HA in connective tissues and its role in the promotion of cancer cell motility and tissue invasion, making the system ideal to study invasion through bone marrow or other HA-rich connective tissues. The bio-compatible cross-linking process we used allows for direct encapsulation of cancer cells within the gel where they adopt a distinct, cluster-like morphology. Metastatic PCa cells in these hydrogels develop fingerlike structures, "invadopodia", consistent with their invasive properties. The number of invadopodia, as well as cluster size, shape, and convergence, can provide a quantifiable measure of invasive potential. Among candidate hyaluronan interacting proteins that could be responsible for the behavior we observed, we found that culture in the HA hydrogel triggers invasive PCa cells to differentially express and localize receptor for hyaluronan mediated motility (RHAMM)/CD168 which, in the absence of CD44, appears to contribute to PCa motility and invasion by interacting with the HA hydrogel components. PCa cell invasion through the HA hydrogel also was found to depend on the activity of hyaluronidases. Studies shown here reveal that while hyaluronidase activity is necessary for invadopodia and inter-connecting cluster formation, activity alone is not sufficient for acquisition of invasiveness to occur. We therefore suggest that development of invasive behavior in 3D HA-based systems requires development of additional cellular features, such as activation of motility associated pathways that regulate formation of invadopodia. Thus, we report development of a 3D system amenable to dissection of

  17. Activity-guided separation and characterization of new halocin HA3 from fermented broth of Haloferax larsenii HA3.

    PubMed

    Kumar, Vijay; Tiwari, Santosh Kumar

    2017-05-01

    Haloferax larsenii HA3 was able to grow optimally in HS medium containing 15% NaCl, at pH 7.2 and 42 °C in aerobic conditions. Strain HA3 was found to be round shape, Gram-negative, catalase-positive, sensitive to bile acid, and resistant to chloramphenicol, and could not utilize arginine. The lipid profile revealed the presence of glycerol diether moiety (GDEM) suggesting Haloarchaea characteristics. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that it was closely related to H. larsenii ZJ206. Interestingly, strain HA3 was found to produce halocin HA3 which was purified using ultrafiltration and chromatography. It was found to be stable up to 80 °C, pH 2.0-10.0, organic solvents, surfactants, and detergents tested. However, the activity of halocin HA3 was completely reduced in the presence of proteinase K and trypsin. It was found to be halocidal against H. larsenii HA10, rupturing cell boundary and leading to cell death. The molecular weight of halocin HA3 was found to be ~13 kDa and MALDI-TOF MS/MS analysis suggested no homology with known halocins. The N-terminal ten amino-acid residues, NH 2 MNLGIILETN-COOH, suggested a new/novel halocin. These properties of halocin HA3 may be applicable for control of Haloarchaea in environments and salted foods.

  18. Imaging of Homeostatic, Neoplastic, and Injured Tissues by HA-Based Probes

    PubMed Central

    Veiseh, Mandana; Breadner, Daniel; Ma, Jenny; Akentieva, Natalia; Savani, Rashmin C; Harrison, Rene; Mikilus, David; Collis, Lisa; Gustafson, Stefan; Lee, Ting-Yim; Koropatnick, James; Luyt, Leonard G.; Bissell, Mina J.; Turley, Eva A.

    2013-01-01

    An increase in hyaluronan (HA) synthesis, cellular uptake, and metabolism occurs during the remodeling of tissue microenvironments following injury and during disease processes such as cancer. We hypothesized that multimodality HA-based probes selectively target and detectably accumulate at sites of high HA metabolism, thus providing a flexible imaging strategy for monitoring disease and repair processes. Kinetic analyses confirmed favorable available serum levels of the probe following intravenous (i.v.) or subcutaneous (s.c.) injection. Nuclear (technetium-HA, 99mTc-HA, and iodine-HA, 125I-HA), optical (fluorescent Texas Red-HA, TR-HA), and magnetic resonance (gadolinium-HA, Gd-HA) probes imaged liver (99mTc-HA), breast cancer cells/xenografts (TR-HA, Gd-HA), and vascular injury (125I-HA, TR-HA). Targeting of HA probes to these sites appeared to result from selective HA receptor-dependent localization. Our results suggest that HA-based probes, which do not require polysaccharide backbone modification to achieve favorable half-life and distribution, can detect elevated HA metabolism in homeostatic, injured, and diseased tissues. PMID:22066590

  19. The novel kinetics expression of Cadmium (II) removal using green adsorbent horse dung humic acid (Hd-Ha)

    NASA Astrophysics Data System (ADS)

    Basuki, Rahmat; Santosa, Sri Juari; Rusdiarso, Bambang

    2017-03-01

    Humic acid from dry horse dung powder has been prepared and this horse dung humic acid (HD-HA) was then applied as a sorbent to adsorb Cadmium(II) from a solution. Characterization of HD-HA was conducted by detection of its functional group, UV-Vis spectra, ash level, and total acidity. Result of the work showed that HD-HA had similar character compared with peat soil humic acid (PS-HA) and previous researchers. The adsorption study of this work was investigated by batch experiment in pH 5. The thermodynamics parameters in this work were determined by the Langmuir isotherm model for monolayer sorption and Freundlich isotherm model multilayer sorption. Monolayer sorption capacity (b) for HD-HA was 1.329 × 10-3 mol g-1, equilibrium constant (K) was 5.651 (mol/L)-1, and multilayer sorption capacity was 2.646 × 10-2 mol g-1. The kinetics parameters investigated in this work were determined by the novel kinetics expression resulted from the mathematical derivation the availability of binding sites of sorbent. Adsorption rate constant (ka) from this novel expression was 43.178 min-1 (mol/L)-1 and desorption rate constant (kd) was 1.250 × 10-2 min-1. Application of the kinetics model on sorption Cd(II) onto HD-HA showed the nearly all of models gave a good linearity. However, only this proposed kinetics expression has good relation with Langmuir model. The novel kinetics expression proposed in this paper seems to be more realistic and reasonable and close to the experimental real condition because the value of ka/kd (3452 (mol/L)-1) was fairly close with K from Langmuir isotherm model (5651 (mol/L)-1). Comparison of this novel kinetics expression with well-known Lagergren pseudo-first order kinetics and Ho pseudo-second order kinetics was also critically discussed in this paper.

  20. Sugar-induced conformational change found in the HA-33/HA-17 trimer of the botulinum toxin complex.

    PubMed

    Sagane, Yoshimasa; Hayashi, Shintaro; Matsumoto, Takashi; Miyashita, Shin-Ichiro; Inui, Ken; Miyata, Keita; Yajima, Shunsuke; Suzuki, Tomonori; Hasegawa, Kimiko; Yamano, Akihito; Nishikawa, Atsushi; Ohyama, Tohru; Watanabe, Toshihiro; Niwa, Koichi

    2013-08-30

    Large-sized botulinum toxin complex (L-TC) is formed by conjugation of neurotoxin, nontoxic nonhemagglutinin and hemagglutinin (HA) complex. The HA complex is formed by association of three HA-70 molecules and three HA-33/HA-17 trimers, comprised of a single HA-17 and two HA-33 proteins. The HA-33/HA-17 trimer isolated from serotype D L-TC has the ability to bind to and penetrate through the intestinal epithelial cell monolayer in a sialic acid-dependent manner, and thus it plays an important role in toxin delivery through the intestinal cell wall. In this study, we determined the solution structure of the HA-33/HA-17 trimer by using small-angle X-ray scattering (SAXS). The SAXS image of HA-33/HA-17 exhibited broadly similar appearance to the crystal image of the complex. On the other hand, in the presence of N-acetylneuraminic acid, glucose and galactose, the solution structure of the HA-33/HA-17 trimer was drastically altered compared to the structure in the absence of the sugars. Sugar-induced structural change of the HA-33/HA-17 trimer may contribute to cell binding and subsequent transport across the intestinal cell layer. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Posttranslational modification of Ha-ras p21 by farnesyl versus geranylgeranyl isoprenoids is determined by the COOH-terminal amino acid.

    PubMed Central

    Kinsella, B T; Erdman, R A; Maltese, W A

    1991-01-01

    ras proteins undergo posttranslational modification by a 15-carbon farnesyl isoprenoid at a cysteine within a defined COOH-terminal amino acid motif; i.e., Cys-Ali-Ali-Ser/Met (where Ali represents an aliphatic residue). In other low molecular mass GTP-binding proteins, cysteines are modified by 20-carbon geranylgeranyl groups within a Cys-Ali-Ali-Leu motif. We changed the terminal Ser-189 of Ha-ras p21 to Leu-189 by site-directed mutagenesis and found that the protein was modified by [3H]geranylgeranyl instead of [3H]farnesyl in an in vitro assay. Gel-permeation chromatography of [3H]mevalonate-labeled hydrocarbons released from immunoprecipitated ras proteins overexpressed in COS cells indicated that Ha-ras p21(Leu-189) was also a substrate for 20-carbon isoprenyl modification in vivo. Additional steps in Ha-ras p21 processing, normally initiated by farnesylation, appear to be supported by geranylgeranylation, based on metabolic labeling of Ha-ras p21(Leu-189) with [3H]palmitate and its subcellular localization in a particulate fraction from COS cells. These observations indicate that the amino acid occupying the terminal position (Xaa) in the Cys-Ali-Ali-Xaa motif constitutes a key structural feature by which Ha-ras p21 and other proteins with ras-like COOH-terminal isoprenylation sites are distinguished as substrates for farnesyl- or geranylgeranyltransferases. Images PMID:1924354

  2. Conformational divergence in the HA-33/HA-17 trimer of serotype C and D botulinum toxin complex.

    PubMed

    Sagane, Yoshimasa; Hayashi, Shintaro; Akiyama, Tomonori; Matsumoto, Takashi; Hasegawa, Kimiko; Yamano, Akihito; Suzuki, Tomonori; Niwa, Koichi; Watanabe, Toshihiro; Yajima, Shunsuke

    2016-08-05

    Clostridium botulinum produces a large toxin complex (L-TC) comprising botulinum neurotoxin associated with auxiliary nontoxic proteins. A complex of 33- and 17-kDa hemagglutinins (an HA-33/HA-17 trimer) enhances L-TC transport across the intestinal epithelial cell layer via binding HA-33 to a sugar on the cell surface. At least two subtypes of serotype C/D HA-33 exhibit differing preferences for the sugars sialic acid and galactose. Here, we compared the three-dimensional structures of the galactose-binding HA-33 and HA-33/HA-17 trimers produced by the C-Yoichi strain. Comparisons of serotype C/D HA-33 sequences reveal a variable region with relatively low sequence similarity across the C. botulinum strains; the variability of this region may influence the manner of sugar-recognition by HA-33. Crystal structures of sialic acid- and galactose-binding HA-33 are broadly similar in appearance. However, small-angle X-ray scattering revealed distinct solution structures for HA-33/HA-17 trimers. A structural change in the C-terminal variable region of HA-33 might cause a dramatic shift in the conformation and sugar-recognition mode of HA-33/HA-17 trimer. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Clinical comparison of oral administration and viscosupplementation of hyaluronic acid (HA) in early knee osteoarthritis.

    PubMed

    Ricci, M; Micheloni, G M; Berti, M; Perusi, F; Sambugaro, E; Vecchini, E; Magnan, B

    2017-04-01

    Osteoarthritis (OA) is a progressive, chronic and degenerative joint disease characterized by a loss of articular cartilage. Treatment of OA is largely palliative based on nonsteroidal anti-inflammatory drugs, opioids and injections of steroids. Regarding conservative treatment, intra-articular injections of hyaluronic acid (HA) can play a role in early symptomatic knee OA. Between August 2015 and September 2015, sixty patients (32 males and 28 females) between 40 and 70 years old were randomly allocated into two groups: Half were treated with three weekly intra-articular injections of hyaluronic acid 1.6 % (group A), while the others were treated with Syalox 300 Plus ® (hyaluronic acid 300 mg + Boswellia serrata extract 100 mg) 1 tab/die for 20 days and afterward Syalox 150 ® (hyaluronic acid 150 mg) 1 tab/die for other 20 days (group B). All patients were evaluated clinically with American Knee Society Score (AKSS) and visual analogue scale (VAS) for the pain before the treatment and after 3 months. AKSS of the patients in both groups was significantly increased by the treatment, and VAS score was significantly reduced. In both groups, two subgroups were created with patients older than 60 years and patients younger than 60 years. Better results are reported in younger patients of group A and older subjects in group B. Despite several limitations, the results of the study have shown that HA injection and oral administration may have beneficial therapeutic effects on patients with early osteoarthritis. Different outcomes in younger and older subject suggested a combined therapy first with local infiltrations and then with oral composition.

  4. The duration of hyaluronidase and optimal timing of hyaluronic acid (HA) filler reinjection after hyaluronidase injection.

    PubMed

    Kim, H J; Kwon, S B; Whang, K U; Lee, J S; Park, Y L; Lee, S Y

    2018-02-01

    Hyaluronidase injection is a commonly performed treatment for overcorrection or misplacement of hyaluronic acid (HA) filler. Many patients often wants the HA filler reinjection after the use of hyaluronidase, though the optimal timing of reinjection of HA filler still remains unknown. To provide the optimal time interval between hyaluronidase injections and HA filler reinjections. 6 Sprague-Dawley rats were injected with single monophasic HA filler. 1 week after injection, the injected sites were treated with hyaluronidase. Then, HA fillers were reinjected sequentially with differing time intervals from 30 minutes to 14 days. 1 hour after the reinjection of the last HA filler, all injection sites were excised for histologic evaluation. 3 hours after reinjection of HA filler, the appearance of filler material became evident again, retaining its shape and volume. 6 hours after reinjection, the filler materials restored almost its original volume and there were no significant differences from the positive control. Our data suggest that the hyaluronidase loses its effect in dermis and subcutaneous tissue within 3-6 hours after the injection and successful engraftment of reinjected HA filler can be accomplished 6 hours after the injection.

  5. Posttranslational modification of Ha-ras p21 by farnesyl versus geranylgeranyl isoprenoids is determined by the COOH-terminal amino acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinsella, B.T.; Erdman, R.A.; Maltese, W.A.

    ras proteins undergo posttranslational modification by a 15-carbon farnesyl isoprenoid at a cysteine within a defined COOH-terminal amino acid motif; i.e., Cys-Ali-Ali-Ser/Met (where Ali represents an aliphatic residue). In other low molecular mass GTP-binding proteins, cysteines are modified by 20-carbon geranylgeranyl groups within a Cys-Ali-Ali-Leu motif. The authors changed the terminal Ser-189 of Ha-ras p21 to Leu-189 by site-directed mutagenesis and found that the protein was modified by ({sup 3}H)geranylgeranyl instead of ({sup 3}H)farnesyl in an in vitro assay. Gel-permeation chromatography of ({sup 3}H)mevalonate-labeled hydrocarbons released from immunoprecipitated ras proteins overexpressed in COS cells indicated that Ha-ras p21 (Leu-189) wasmore » also a substrate for 20-carbon isoprenyl modification in vivo. Additional steps in Ha-ras p21 processing, normally initiated by farnesylation, appear to be supported by geranylgeranylation, based on metabolic labeling of Ha-ras p21 (Leu-189) with ({sup 3}H) palmitate and its subcellular localization in a particulate fraction from COS cells. These observations indicate that the amino acid occupying the terminal position (Xaa) in the Cys-Ali-Ali-Xaa motif constitutes a key structural feature by which Ha-ras p21 and other proteins with ras-like COOH-terminal isoprenylation sites are distinguished as substrates for farnesyl- or geranylgeranyltransferases.« less

  6. Hyaluronic acid-based scaffolds for tissue engineering.

    PubMed

    Chircov, Cristina; Grumezescu, Alexandru Mihai; Bejenaru, Ludovic Everard

    2018-01-01

    Hyaluronic acid (HA) is a natural glycosaminoglycan found in the extracellular matrix of most connective tissues. Due to its chemical structure, HA is a hydrophilic polymer and it is characterized by a fast degradation rate. HA-based scaffolds for tissue engineering are intensively studied due to their increased biocompatibility, biodegradability and chemical modification. Depending on the processing technique, scaffolds can be prepared in the form of hydrogels, sponges, cryogels, and injectable hydrogels, all discussed in this review.

  7. Changes in redox properties of Humic Acid (HA) upon sorption to alumina

    NASA Astrophysics Data System (ADS)

    Orsetti, Silvia; Haderlein, Stefan B.; Visser, Anna-Neva

    2014-05-01

    The interaction between humic substances and soil minerals may change important properties and reactivity of the organic matter. In particular, we are interested whether changes in the redox properties of a HA (namely total electron exchange capacity and redox state) occur upon sorption to redox inactive minerals. Sorption of Pahokee Peat humic acid to Al2O3 was studied at pH value of 7.0 in batch experiments, at several HA/oxide ratio. All experiments were conducted in anoxic environment. The required equilibration time was determined by taking aliquots of the suspension at several time intervals and registering the UV-vis spectra of the supernatant; apparent sorption equilibrium (no decrease in UV-vis signal) was achieved after 5 days approximately. Both the suspension (mineral+sorbed HA, plus supernatant) and the supernatant after centrifugation were analyzed using mediated electrochemical techniques, and the electron donating and accepting capacities (EDC and EAC, respectively) were determined. In addition, SUVA was calculated for each batch. These preliminary results show a slight increase in the SUVA of the supernatant upon sorption, which would indicate a preferential sorption of more aliphatic fractions. Interestingly, the total electron exchange capacities (EEC) of the supernatants showed no significant differences to that of the stock HA, whereas the EEC of the whole suspension showed values up to twice the one from the stock HA. The EDC/EAC (which can be interpreted as a measure of the redox state of the sample) also showed same values for stock and supernatants, being the values of the whole suspensions towards the reduced side. Therefore, such preliminary results would indicate not a change in the redox properties of the dissolved HA, but only for the sorbed one. The sorbed fraction seems to present higher redox activity (higher EEC) and a more reduced state than the stock HA. Given the absence of redox transfer between the HA and the oxide, it could

  8. Effect of Acid-Base Equilibrium on Absorption Spectra of Humic acid in the Presence of Copper Ions

    NASA Astrophysics Data System (ADS)

    Lavrik, N. L.; Mulloev, N. U.

    2014-03-01

    The reaction between humic acid (HA, sample IHSS) and a metal ion (Cu2+) that was manifested as absorption bands in the range 210-350 nm was recorded using absorption spectroscopy. The reaction was found to be more effective as the pH increased. These data were interpreted in the framework of generally accepted concepts about the influence of acid-base equilibrium on the dissociation of salts, according to which increasing the solution pH increases the concentration of HA anions. It was suggested that [HA-Cu2+] complexes formed.

  9. Lithospermic acid derivatives from Lithospermum erythrorhizon increased expression of serine palmitoyltransferase in human HaCaT cells.

    PubMed

    Thuong, Phuong Thien; Kang, Keon Wook; Kim, Jeong Kee; Seo, Dae Bang; Lee, Sang Jun; Kim, Sung Han; Oh, Won Keun

    2009-03-15

    A MeOH extract of the dry root of Lithospermum erythrorhizon showed strong increasing effect on serine palmitoyltransferase (SPT) in normal human keratinocyte cells (HaCaT cells). Bioassay-guided separation on this extract using repeated chromatography resulted in the isolation of lithospermic acid (1) and two derivative esters, 9''-methyl lithospermate (2) and 9'-methyl lithospermate (3). Compounds 1-3 significantly increased SPT expressions in the relative quantity (%) of SPT1 mRNA as well as SPT2 mRNA. These constituents also raised the level of SPT protein in HaCaT cells in a dose-dependent manner, with the increased level of SPT protein in HaCaT cells of 55%, 23%, and 81% at the concentration of 100 microg/ml, respectively. This finding suggests that lithospermic acid and its derivatives from L. erythrorhizon might improve the permeability barrier by stimulating the protein level of SPT.

  10. A Crosslinked HA-Based Hydrogel Ameliorates Dry Eye Symptoms in Dogs

    PubMed Central

    Williams, David L.; Mann, Brenda K.

    2013-01-01

    Keratoconjunctivitis sicca, commonly referred to as dry eye or KCS, can affect both humans and dogs. The standard of care in treating KCS typically includes daily administration of eye drops to either stimulate tear production or to hydrate and lubricate the corneal surface. Lubricating eye drops are often applied four to six times daily for the life of the patient. In order to reduce this dosing regimen yet still provides sufficient hydration and lubrication, we have developed a crosslinked hydrogel based on a modified, thiolated hyaluronic acid (HA), xCMHA-S. This xCMHA-S gel was found to have different viscosity and rheologic behavior than solutions of noncrosslinked HA. The gel was also able to increase tear breakup time in rabbits, indicating a stabilization of the tear film. Further, in a preliminary clinical study of dogs with KCS, the gel significantly reduced the symptoms associated with KCS within two weeks while only being applied twice daily. The reduction of symptoms combined with the low dosing regimen indicates that this gel may lead to both improved patient health and owner compliance in applying the treatment. PMID:23840213

  11. Antibiotic-containing hyaluronic acid gel as an antibacterial carrier: Usefulness of sponge and film-formed HA gel in deep infection.

    PubMed

    Matsuno, Hiroaki; Yudoh, Kazuo; Hashimoto, Masamichi; Himeda, Yasukazu; Miyoshi, Teruzo; Yoshida, Kaoru; Kano, Syogo

    2006-03-01

    We have developed a novel bioabsorbable antibacterial carrier using hyaluronic acid (HA) gel for prevention and treatment of orthopedic infections. In this study, we investigated the in vivo antibacterial effects of two forms of this new material, an HA gel sponge and an HA gel film. A titanium cylinder was inserted into the intramedullary cavity of each rabbit femur, along with an HA gel sponge or HA gel film containing antibiotics. The HA gel sponge contained gentamycin, vancomycin, tobramycin, or minomycin. The HA gel film contained gentamycin or vancomycin. After 0, 7, and 14 days, the rabbit bone marrow was collected, and the antibacterial activity of the HA gel was determined by agar diffusion test. As a control, we used Septocoll, a commercially available antibacterial carrier. Both the HA gel sponge and HA gel film exhibited antibacterial activity. The present results indicate that HA gel containing antibiotics is a clinically useful bioabsorbable antibacterial carrier. Copyright 2006 Orthopaedic Research Society.

  12. Crystal structure of the HA3 subcomponent of Clostridium botulinum type C progenitor toxin.

    PubMed

    Nakamura, Toshio; Kotani, Mao; Tonozuka, Takashi; Ide, Azusa; Oguma, Keiji; Nishikawa, Atsushi

    2009-01-30

    The Clostridium botulinum type C 16S progenitor toxin contains a neurotoxin and several nontoxic components, designated nontoxic nonhemagglutinin (HA), HA1 (HA-33), HA2 (HA-17), HA3a (HA-22-23), and HA3b (HA-53). The HA3b subcomponent seems to play an important role cooperatively with HA1 in the internalization of the toxin by gastrointestinal epithelial cells via binding of these subcomponents to specific oligosaccharides. In this study, we investigated the sugar-binding specificity of the HA3b subcomponent using recombinant protein fused to glutathione S-transferase and determined the three-dimensional structure of the HA3a-HA3b complex based on X-ray crystallography. The crystal structure was determined at a resolution of 2.6 A. HA3b contains three domains, domains I to III, and the structure of domain I resembles HA3a. In crystal packing, three HA3a-HA3b molecules are assembled to form a three-leaved propeller-like structure. The three HA3b domain I and three HA3a alternate, forming a trimer of dimers. In a database search, no proteins with high structural homology to any of the domains (Z score >10) were found. Especially, HA3a and HA3b domain I, mainly composed of beta-sheets, reveal a unique fold. In binding assays, HA3b bound sialic acid with high affinity, but did not bind galactose, N-acetylgalactosamine, or N-acetylglucosamine. The electron density of liganded N-acetylneuraminic acid was determined by crystal soaking. In the sugar-complex structure, the N-acetylneuraminic acid-binding site was located in the cleft formed between domains II and III of HA3b. This report provides the first determination of the three-dimensional structure of the HA3a-HA3b complex and its sialic acid binding site. Our results will provide useful information for elucidating the mechanism of assembly of the C16S toxin and for understanding the interactions with oligosaccharides on epithelial cells and internalization of the botulinum toxin complex.

  13. Hyaluronic acid-coated, prodrug-based nanostructured lipid carriers for enhanced pancreatic cancer therapy.

    PubMed

    Lu, Zhihe; Su, Jingrong; Li, Zhengrong; Zhan, Yuzhu; Ye, Decai

    2017-01-01

    Gemcitabine (GEM) and Baicalein (BCL) are reported to have anti-tumor effects including pancreatic cancer. Hyaluronic acid (HA) can bind to over-expressed receptors in various kinds of cancer cells. The aim of this study is to develop prodrugs containing HA, BCL and GEM, and construct nanomedicine incorporate GEM and BCL in the core and HA on the surface. This system could target the cancer cells and co-deliver the drugs. GEM-stearic acid lipid prodrug (GEM-SA) and hyaluronic acid-amino acid-baicalein prodrug (HA-AA-BCL) were synthesized. Then, GEM and BCL prodrug-based targeted nanostructured lipid carriers (HA-GEM-BCL NLCs) were prepared by the nanoprecipitation technique. The in vitro cytotoxicity studies of the NLCs were evaluated on AsPC1 pancreatic cancer cell line. In vivo anti-tumor effects were observed on the murine-bearing pancreatic cancer model. HA-GEM-BCL NLCs were effective in entering pancreatic cancer cells over-expressing HA receptors, and showed cytotoxicity of tumor cells in vitro. In vivo study revealed significant tumor growth inhibition ability of HA-GEM-BCL NLCs in murine pancreatic cancer model. It could be concluded that HA-GEM-BCL NLCs could be featured as promising co-delivery, tumor-targeted nanomedicine for the treatment of cancers.

  14. Acid-base properties of humic and fulvic acids formed during composting.

    PubMed

    Plaza, César; Senesi, Nicola; Polo, Alfredo; Brunetti, Gennaro

    2005-09-15

    The soil acid-base buffering capacity and the biological availability, mobilization, and transport of macro- and micronutrients, toxic metal ions, and xenobiotic organic cations in soil are strongly influenced by the acid-base properties of humic substances, of which humic and fulvic acids are the major fractions. For these reasons, the proton binding behavior of the humic acid-like (HA) and fulvic acid-like (FA) fractions contained in a compost are believed to be instrumental in its successful performance in soil. In this work, the acid-base properties of the HAs and FAs isolated from a mixture of the sludge residue obtained from olive oil mill wastewater (OMW) evaporated in an open-air pond and tree cuttings (TC) at different stages of composting were investigated by a current potentiometric titration method and the nonideal competitive adsorption (NICA)-Donnan model. The NICA-Donnan model provided an excellent description of the acid-base titration data, and pointed out substantial differences in site density and proton-binding affinity between the HAs and FAs examined. With respect to FAs, HAs were characterized by a smaller content of carboxylic- and phenolic-type groups and their larger affinities for proton binding. Further, HAs featured a greater heterogeneity in carboxylic-type groups than FAs. The composting process increased the content and decreased the proton affinity of carboxylic- and phenolic-type groups of HAs and FAs, and increased the heterogeneity of phenolic-type groups of HAs. As a whole, these effects indicated that the composting process could produce HA and FA fractions with greater cation binding capacities. These results suggest that composting of organic materials improves their agronomic and environmental value by increasing their potential to retain and exchange macro- and micronutrients, and to reduce the bioavailability of organic and inorganic pollutants.

  15. Employing the cyclophosphate to accelerate the degradation of nano-hydroxyapatite/poly(amino acid) (n-HA/PAA) composite materials.

    PubMed

    Jing, Linjing; Chen, Li; Peng, Haitao; Ji, Mizhi; Xiong, Yi; Lv, Guoyu

    2017-12-01

    Owing to the good degradability and biocompatibility of polyphosphoesters (PPEs), the aim of the current study was to investigate a novel degradable composite of nano-hydroxyapatite/poly(amino acid) (n-HA/PAA) with cyclophosphate (CPE) via in situ melting polymerization to improve the degradation of n-HA/PAA. The structure of each composite was characterized via Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The degradation properties were studied in terms of the weight loss and pH in a phosphate-buffered saline (PBS) solution, while the surface morphology was examined using a scanning electron microscope-energy dispersive spectrometer (SEM-EDS) after soaking the surface in simulated body fluid (SBF). The cell proliferation, cell adhesion, and alkaline phosphatase (ALP) activity were used for the analysis of cytocompatibility. The weight loss results showed that the n-HA/PAA composite was 9.98 wt%, weighed after soaking in the PBS solution for 12 weeks, whereas the nano-hydroxyapatite/polyphosphoester-amino acid (n-HA/PPE-AA) composite was 46.94 wt%. The pH of the composites was in a suitable range between 6.64 to 7.06 and finally stabilized at 7.39. The SEM and EDS results revealed the formation of an apatite-like layer on the surface of the n-HA/PPE-AA composites after soaking in SBF for one week. The cell counting Kit 8 (CCK-8) assay of the cell culture in the leaching liquid of the n-HA/PPE-AA composites exhibited non-cytotoxicity and high-proliferation, and the cell adhesion showed the well spreading and normal phenotype extension of the cells on the n-HA/PPE-AA composites surface. Concurrently, the co-culture results of the composites and cells confirmed that the n-HA/PPE-AA composites exhibited a higher ALP activity. In summary, the results demonstrated that the n-HA/PPE-AA composites had a controllable degradation property, good bioactivity, and cytocompatibility.

  16. Boronic acid-tethered amphiphilic hyaluronic acid derivative-based nanoassemblies for tumor targeting and penetration.

    PubMed

    Jeong, Jae Young; Hong, Eun-Hye; Lee, Song Yi; Lee, Jae-Young; Song, Jae-Hyoung; Ko, Seung-Hak; Shim, Jae-Seong; Choe, Sunghwa; Kim, Dae-Duk; Ko, Hyun-Jeong; Cho, Hyun-Jong

    2017-04-15

    (3-Aminomethylphenyl)boronic acid (AMPB)-installed hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated for tumor-targeted delivery. The amine group of AMPB was conjugated to the carboxylic acid group of hyaluronic acid (HA) via amide bond formation, and synthesis was confirmed by spectroscopic methods. HACE-AMPB/MB NPs with a 239-nm mean diameter, narrow size distribution, negative zeta potential, and >90% drug encapsulation efficiency were fabricated. Exposed AMPB in the outer surface of HACE-AMPB NPs (in the aqueous environment) may react with sialic acid of cancer cells. The improved cellular accumulation efficiency, in vitro antitumor efficacy, and tumor penetration efficiency of HACE-AMPB/MB NPs, compared with HACE/MB NPs, in MDA-MB-231 cells (CD44 receptor-positive human breast adenocarcinoma cells) may be based on the CD44 receptor-mediated endocytosis and phenylboronic acid-sialic acid interaction. Enhanced in vivo tumor targetability, infiltration efficiency, and antitumor efficacies of HACE-AMPB NPs, compared with HACE NPs, were observed in a MDA-MB-231 tumor-xenografted mouse model. In addition to passive tumor targeting (based on an enhanced permeability and retention effect) and active tumor targeting (interaction between HA and CD44 receptor), the phenylboronic acid-sialic acid interaction can play important roles in augmented tumor targeting and penetration of HACE-AMPB NPs. STATEMENT OF SIGNIFICANCE: (3-Aminomethylphenyl)boronic acid (AMPB)-tethered hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated and their tumor targeting and penetration efficiencies were assessed in MDA-MB-231 (CD44 receptor-positive human adenocarcinoma) tumor models. MB, which exhibited antitumor efficacies via the inhibition of angiogenesis and hypoxia inducible factor (HIF)-1, was entrapped in HACE-AMPB NPs in this study. Phenylboronic acid located in the outer surface

  17. Citric acid induces cell-cycle arrest and apoptosis of human immortalized keratinocyte cell line (HaCaT) via caspase- and mitochondrial-dependent signaling pathways.

    PubMed

    Ying, Tsung-Ho; Chen, Chia-Wei; Hsiao, Yu-Ping; Hung, Sung-Jen; Chung, Jing-Gung; Yang, Jen-Hung

    2013-10-01

    Citric acid is an alpha-hydroxyacid (AHA) widely used in cosmetic dermatology and skincare products. However, there is concern regarding its safety for the skin. In this study, we investigated the cytotoxic effects of citric acid on the human keratinocyte cell line HaCaT. HaCaT cells were treated with citric acid at 2.5-12.5 mM for different time periods. Cell-cycle arrest and apoptosis were investigated by 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining, flow cytometry, western blot and confocal microscopy. Citric acid not only inhibited proliferation of HaCaT cells in a dose-dependent manner, but also induced apoptosis and cell cycle-arrest at the G2/M phase (before 24 h) and S phase (after 24 h). Citric acid increased the level of Bcl-2-associated X protein (BAX) and reduced the levels of B-cell lymphoma-2 (BCL-2), B-cell lymphoma-extra large (BCL-XL) and activated caspase-9 and caspase-3, which subsequently induced apoptosis via caspase-dependent and caspase-independent pathways. Citric acid also activated death receptors and increased the levels of caspase-8, activated BH3 interacting-domain death agonist (BID) protein, Apoptosis-inducing factor (AIF), and Endonuclease G (EndoG). Therefore, citric acid induces apoptosis through the mitochondrial pathway in the human keratinocyte cell line HaCaT. The study results suggest that citric acid is cytotoxic to HaCaT cells via induction of apoptosis and cell-cycle arrest in vitro.

  18. Homology modeling study toward identifying structural properties in the HA2 B-loop that would influence the HA1 receptor-binding site.

    PubMed

    Cueno, Marni E; Imai, Kenichi; Shimizu, Kazufumi; Ochiai, Kuniyasu

    2013-07-01

    Influenza hemagglutinin (HA) consists of a fibrous globular stem (HA2) inserted into the viral membrane supporting a globular head (HA1). HA1 receptor-binding has been hypothesized to be structurally correlated to the HA2 B-loop, however, this was never fully understood. Here, we elucidated the structural relationship between the HA2 B-loop and the HA1 receptor-binding site (RBS). Throughout this study, we analyzed 2486 H1N1 HA homology models obtained from human, swine and avian strains during 1976-2012. Quality of all homology models were verified before further analyses. We established that amino acid residue 882 is putatively strain-conserved and differs in the human (K882), swine (H882) and avian (N882) strains. Moreover, we observed that the amino acid at residue 882 and, similarly, its orientation has the potential to influence the HA1 RBS diameter measurements which we hypothesize may consequentially affect influenza H1N1 viral infectivity, immune escape, transmissibility, and evolution. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Sugar-binding sites of the HA1 subcomponent of Clostridium botulinum type C progenitor toxin.

    PubMed

    Nakamura, Toshio; Tonozuka, Takashi; Ide, Azusa; Yuzawa, Takayuki; Oguma, Keiji; Nishikawa, Atsushi

    2008-02-22

    Clostridium botulinum type C 16S progenitor toxin contains a hemagglutinin (HA) subcomponent, designated HA1, which appears to play an important role in the effective internalization of the toxin in gastrointestinal epithelial cells and in creating a broad specificity for the oligosaccharide structure that corresponds to various targets. In this study, using the recombinant protein fused to glutathione S-transferase, we investigated the binding specificity of the HA1 subcomponent to sugars and estimated the binding sites of HA1 based on X-ray crystallography and soaking experiments using various sugars. N-Acetylneuraminic acid, N-acetylgalactosamine, and galactose effectively inhibited the binding that occurs between glutathione S-transferase-HA1 and mucins, whereas N-acetylglucosamine and glucose did not inhibit it. The crystal structures of HA1 complex with N-acetylneuraminic acid, N-acetylgalactosamine, and galactose were also determined. There are two sugar-binding sites, sites I and II. Site I corresponds to the electron densities noted for all sugars and is located at the C-terminal beta-trefoil domain, while site II corresponds to the electron densities noted only for galactose. An aromatic amino acid residue, Trp176, at site I has a stacking interaction with the hexose ring of the sugars. On the other hand, there is no aromatic residue at site II; thus, the interaction with galactose seems to be poor. The double mutant W176A at site I and D271F at site II has no avidity for N-acetylneuraminic acid but has avidity for galactose. In this report, the binding specificity of botulinum C16S toxin HA1 to various sugars is demonstrated based on its structural features.

  20. Potential of capillary zone electrophoresis for estimation of humate acid-base properties.

    PubMed

    Vanifatova, Natalia G; Zavarzina, Anna G; Spivakov, Boris Ya

    2008-03-07

    Capillary zone electrophoresis (CZE) has been applied for fractionation and characterization of soil-derived humic acids (HAs). Humic acids from soddy-podzolic (HA(s)) and chernozem (HA(ch)) soils were studied as well as hydrophobic high-molecular-weight (HMW) and hydrophilic low-molecular-weight (LMW) HA(s) fractions obtained by salting-out with ammonium sulfate at a saturation of 0-40% and >70%, respectively. The possibility of CZE partial fractionation of HAs has been demonstrated. The shape of "humic hump" was shown to depend on the pH of running electrolyte. Almost the whole peak overlapping occurred if alkaline solutions were used for fractionation, but the peak resolution was improved at pH 5-7. Under appropriate fractionation conditions (pH 7), at least three humic acid subfractions with different electrophoretic mobilities were distinguished in the electropherograms of initial HA and HA(s) fractions. Such a high peak resolution has never been achieved for humic acids before. The presence of three subfractions in the HA is in agreement with gel-filtration analysis and was confirmed by comparison of the electrophoretic behavior of HA(s) with those of its HMW (hydrophobic) and the LMW (hydrophilic) fractions. The potentiometric titration of HA and its fractions was performed and the pK(a) of the functional groups were calculated. An attempt was made for the first time to relate the variation of electrophoretic mobility values with acid-base properties of humic acids. It was shown that changes in the humate charge resulting from the variation of the ionization degree of its functional groups as a function of pH can be estimated on the basis of electrophoretic mobility values. Potential of CZE in estimation of HA isoelectric point was demonstrated. The pH value corresponding to the lowest absolute electrophoretic mobility value of about 20 x 10(-5) cm(2) V(-1) s(-1) can be used for approximate estimation of HA isoelectric point. The data were discussed and

  1. Putative suppressing effect of IgG Fc-conjugated haemagglutinin (HA) stalk of influenza virus H7N9 on the neutralizing immunogenicity of Fc-conjugated HA head: implication for rational design of HA-based influenza vaccines.

    PubMed

    He, B; Xia, S; Yu, F; Fu, Y; Li, W; Wang, Q; Lu, L; Jiang, S

    2016-02-01

    The emergence of influenza A H7N9 in infection has posed a great threat to public health globally. Poor immunogenicity of H7N9 haemagglutinin (HA) is a major obstacle to the development of an effective H7N9 vaccine. Here, we found that the vaccine containing the H7HA head conjugated with IgG Fc (Hd-Fc) induced strong neutralizing antibody responses and protection against H7N9 infection, whilst the Fc-conjugated H7HA stalk (St-Fc)-based vaccine could not induce neutralizing antibodies, although the St-Fc-immunized mice were partially protected. The vaccines containing the full-length extracellular domain of HA conjugated with Fc and the mixture of Hd-Fc plus St-Fc induced significantly lower neutralizing antibody and haemagglutination inhibition titres than the Hd-Fc-based vaccine. These results suggest that the St-Fc may have inhibitory effects on the neutralizing immunogenicity of Hd-Fc. Therefore, the neutralizing domain(s), such as the receptor-binding domain, in the HA head should be kept and the non-neutralizing domain(s) in the HA stalk with the ability to potentially suppress the neutralizing immunogenicity of HA head should be removed from Fc-conjugated HA-based influenza vaccines to increase the neutralizing antibody response.

  2. Extraction of hyaluronic acid (HA) from rooster comb and characterization using flow field-flow fractionation (FlFFF) coupled with multiangle light scattering (MALS).

    PubMed

    Kang, Dong Young; Kim, Won-Suk; Heo, In Sook; Park, Young Hun; Lee, Seungho

    2010-11-01

    Hyaluronic acid (HA) was extracted in a relatively large scale from rooster comb using a method similar to that reported previously. The extraction method was modified to simplify and to reduce time and cost in order to accommodate a large-scale extraction. Five hundred grams of frozen rooster combs yielded about 500 mg of dried HA. Extracted HA was characterized using asymmetrical flow field-flow fractionation (AsFlFFF) coupled online to a multiangle light scattering detector and a refractive index detector to determine the molecular size, molecular weight (MW) distribution, and molecular conformation of HA. For characterization of HA, AsFlFFF was operated by a simplified two-step procedure, instead of the conventional three-step procedure, where the first two steps (sample loading and focusing) were combined into one to avoid the adsorption of viscous HA onto the channel membrane. The simplified two-step AsFlFFF yielded reasonably good separations of HA molecules based on their MWs. The weight average MW (M(w) ) and the average root-mean-square (RMS) radius of HA extracted from rooster comb were 1.20×10(6) and 94.7 nm, respectively. When the sample solution was filtered through a 0.45 μm disposable syringe filter, they were reduced down to 3.8×10(5) and 50.1 nm, respectively. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Porphyra-334, a mycosporine-like amino acid, attenuates UV-induced apoptosis in HaCaT cells.

    PubMed

    Suh, Sung-Suk; Oh, Se Kyung; Lee, Sung Gu; Kim, Il-Chan; Kim, Sanghee

    2017-06-27

    The main aim of the current research was to study the effect of porphyra-334, one of mycosporine-like amino acids (MAAs), well known as UV-absorbing compounds, on UVinduced apoptosis in human immortalized keratinocyte (HaCaT) cells. Due to their UV-screening capacity and ability to prevent UV-induced DNA damage, MAAs have recently attracted considerable attention in both industry and research in pharmacology. Herein, human HaCaT cells were used to determine the biological activities of porphyra- 334 by various in vitro assays, including proliferation, apoptosis and Western blot assays. The proliferation rate of UV-irradiated HaCaT cells was significantly decreased compared to the control group. Pretreatment with porphyra- 334 markedly attenuated the inhibitory effect of UV and induced a dramatic decrease in the apoptotic rate. Expression of active caspase-3 protein was increased in response to UV irradiation, while caspase-3 levels were similar between cells treated with porphyra-334 and the non-irradiated control group. Taken together, our data suggest that porphyra-334 inhibits UV-induced apoptosis in HaCaT cells through attenuation of the caspase pathway.

  4. The Impact of HA Oligomer Content on Physical, Mechanical, and Biologic Properties of Divinyl Sulfone-Crosslinked HA Hydrogels

    PubMed Central

    Ibrahim, Samir; Kang, Qian K; Ramamurthi, Anand

    2009-01-01

    In recent studies, we showed that exogenous hyaluronic acid oligomers (HA-o) stimulate functional endothelialization, though native long-chain HA is more bioinert and possibly more biocompatible. Thus, in this study, hydrogels containing high molecular weight (HMW) HA (1×106 Da) and HA oligomer mixtures (HA-o: 0.75–10 kDa) were created by crosslinking with divinyl sulfone (DVS). The incorporation of HA oligomers was found to compromise the physical and mechanical properties of the gels (rheology, apparent crosslinking density, swelling ratio, degradation) and to very mildly enhance inflammatory cell recruitment in vivo; increasing the DVS crosslinker content within the gels in general, had the opposite effect, though the relatively high concentration of DVS within these gels (necessary to create a solid gel) also stimulated a mild sub-cutaneous inflammatory response in vivo and VCAM-1 expression by ECs cultured atop; ICAM-expression levels remained very low irrespective extent of DVS crosslinking or HA-o content. The greatest EC attachment and proliferation (MTT assay) was observed on gels that contained the highest amount of HA-o. The study shows that the beneficial EC response to HA oligomers and biocompatibility of HA is mostly unaltered by their chemical derivatization and crosslinking into a hydrogel. However, the study also demonstrates that the relatively high concentrations of DVS, necessary to create solid gels, compromises their biocompatibility. Moreover, the poor mechanics of even these heavily crosslinked gels, in the context of vascular implantation, necessitates the investigation of other, more appropriate crosslinking agents. Alternately, the outcomes of this study may be used to guide an approach based on chemical immobilization and controlled surface-presentation of both bioactive HA oligomers and more biocompatible HMW HAon synthetic or tissue engineered grafts already in use, without the use of a crosslinker, so that improved, predictable

  5. Formulation Changes Affect Material Properties and Cell Behavior in HA-Based Hydrogels.

    PubMed

    Lawyer, Thomas; McIntosh, Kristen; Clavijo, Cristian; Potekhina, Lydia; Mann, Brenda K

    2012-01-01

    To develop and optimize new scaffold materials for tissue engineering applications, it is important to understand how changes to the scaffold affect the cells that will interact with that scaffold. In this study, we used a hyaluronic acid- (HA-) based hydrogel as a synthetic extracellular matrix, containing modified HA (CMHA-S), modified gelatin (Gtn-S), and a crosslinker (PEGda). By varying the concentrations of these components, we were able to change the gelation time, enzymatic degradation, and compressive modulus of the hydrogel. These changes also affected fibroblast spreading within the hydrogels and differentially affected the proliferation and metabolic activity of fibroblasts and mesenchymal stem cells (MSCs). In particular, PEGda concentration had the greatest influence on gelation time, compressive modulus, and cell spreading. MSCs appeared to require a longer period of adjustment to the new microenvironment of the hydrogels than fibroblasts. Fibroblasts were able to proliferate in all formulations over the course of two weeks, but MSCs did not. Metabolic activity changed for each cell type during the two weeks depending on the formulation. These results highlight the importance of determining the effect of matrix composition changes on a particular cell type of interest in order to optimize the formulation for a given application.

  6. Hyaluronic acid doped-poly(3,4-ethylenedioxythiophene)/chitosan/gelatin (PEDOT-HA/Cs/Gel) porous conductive scaffold for nerve regeneration.

    PubMed

    Wang, Shuping; Guan, Shui; Zhu, Zhibo; Li, Wenfang; Liu, Tianqing; Ma, Xuehu

    2017-02-01

    Conducting polymer, as a "smart" biomaterial, has been increasingly used to construct tissue engineered scaffold for nerve tissue regeneration. In this study, a novel porous conductive scaffold was prepared by incorporating conductive hyaluronic acid (HA) doped-poly(3,4-ethylenedioxythiophene) (PEDOT-HA) nanoparticles into a chitosan/gelatin (Cs/Gel) matrix. The physicochemical characteristics of Cs/Gel scaffold with 0-10wt% PEDOT-HA were analyzed and the results indicated that the incorporation of PEDOT-HA into scaffold increased the electrical and mechanical properties while decreasing the porosity and water absorption. Moreover, in vitro biodegradation of scaffold displayed a declining trend with the PEDOT-HA content increased. About the biocompatibility of conductive scaffold, neuron-like rat phaeochromocytoma (PC12) cells were cultured in scaffold to evaluate cell adhesion and growth. 8% PEDOT-HA/Cs/Gel scaffold had a higher cell adhesive efficiency and cell viability than the other conductive scaffolds. Furthermore, cells in the scaffold with 8wt% PEDOT-HA expressed higher synapse growth gene of GAP43 and SYP compared with Cs/Gel control group. These results suggest that 8%PEDOT-HA/Cs/Gel scaffold is an attractive cell culture conductive substrate which could support cell adhesion, survival, proliferation, and synapse growth for the application in nerve tissue regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Highly stretchable HA/SA hydrogels for tissue engineering.

    PubMed

    Zhu, Chengcheng; Yang, Rui; Hua, Xiaobin; Chen, Hong; Xu, Jumei; Wu, Rile; Cen, Lian

    2018-04-01

    A highly stretchable hyaluronic acid (HA)/sodium alginate (SA) hydrogel was developed in this study based on an interpenetrating polymer network. HA/SA hydrogels were prepared by mixing two polysaccharides followed by covalent crosslinking via epoxy groups on HA molecules and ionic crosslinking via divalent ions on SA chains sequentially. The effect of HA/SA ratio on the pore size and distribution, swelling ratio, elongation and rheological properties as well as protein loading and release properties of HA/SA hydrogels was explored. Moreover, a surface modification method, layer-by-layer (LBL) assembly technique, was applied to modify the hydrogel to evaluate the hydrogel's tenability in varying biological performance. It was then shown that the hydrogels had the pore sizes ranging from 100 to 50 μm. With the increase in SA content of the resulting hydrogels, the pore size, swelling ratio, and storage modulus (G') and loss modulus (G″) of the hydrogel all decreased, whereas the in vitro bulk weight loss was fastened. Moreover, elongation at break (EB) value increased first, reached a peak value and then decreased, that is HA8/SA1 (HA:SA = 8:1) had the highest EB value of 417%. This hydrogel could retain 33.2% of the pre-loaded protein even after 72 h, which could be further attenuated when LBL was used to shell the hydrogel. The growth of fibroblasts on HA8/SA1 hydrogel gave preliminary assessment on its suitability as a cellular carrier, while the LBL modified HA8/SA1 hydrogel also favored the anchoring of keratinocytes, further enhancing its cell carrier role for tissue regeneration, especially skin engineering.

  8. Increase in gap-junctional intercellular communications (GJIC) of normal human dermal fibroblasts (NHDF) on surfaces coated with high-molecular-weight hyaluronic acid (HMW HA).

    PubMed

    Park, Jeong Ung; Tsuchiya, Toshie

    2002-06-15

    Normal human dermal fibroblast (NHDF) cells were used to detect differences in gap-junctional intercellular communication (GJIC) by hyaluronic acid (HA), a linear polymer built from repeating disaccharide units that consist of N-acetyl-D-glucosamine (GlcNa) and D-glucuronic acid (GlcA) linked by a beta 1-4 glycosidic bond. The NHDF cells were cultured with different molecular weights (MW) of HA for 4 days. The rates of cell attachment in dishes coated with high-molecular-weight (HMW; 310 kDa or 800 kDa) HA at 2 mg/dish were significantly reduced at an early time point compared with low-molecular-weight (LMW; 4.8 kDa or 48 kDa) HA with the same coating amounts. HA-coated surfaces were observed by atomic force microscopy (AFM) under air and showed that HA molecules ran parallel in the dish coated with LMW HA and had an aggregated island structure in the dish coated with HMW HA surfaces. The cell functions of GJIC were assayed by a scrape-loading dye transfer (SLDT) method using a dye solution of Lucifer yellow. Promotion of the dye transfer was clearly obtained in the cell monolayer grown on the surface coated with HMW HA. These results suggest that HMW HA promotes the function of GJIC in NHDF cells. In contrast, when HMW HA was added to the monolayer of NHDF cells, the functions of GJIC clearly were lowered in comparison with the cells grown in the control dish or with those grown on the surface of HMW HA. Therefore it is concluded that the MW size of HA and its application method are important factors for generating biocompatible tissue-engineered products because of the manner in which the GJIC participates in cell differentiation and cell growth rate. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res 60: 541-547, 2002

  9. Hyaluronic Acid-Based pH-Sensitive Polymer-Modified Liposomes for Cell-Specific Intracellular Drug Delivery Systems.

    PubMed

    Miyazaki, Maiko; Yuba, Eiji; Hayashi, Hiroshi; Harada, Atsushi; Kono, Kenji

    2018-01-17

    For the enhancement of therapeutic effects and reduction of side effects derived from anticancer drugs in cancer chemotherapy, it is imperative to develop drug delivery systems with cancer-specificity and controlled release function inside cancer cells. pH-sensitive liposomes are useful as an intracellular drug delivery system because of their abilities to transfer their contents into the cell interior through fusion or destabilization of endosome, which has weakly acidic environment. We earlier reported liposomes modified with various types of pH-sensitive polymers based on synthetic polymers and biopolymers as vehicles for intracellular drug delivery systems. In this study, hyaluronic acid (HA)-based pH-sensitive polymers were designed as multifunctional polymers having not only pH-sensitivity but also targeting properties to cells expressing CD44, which is known as a cancer cell surface marker. Carboxyl group-introduced HA derivatives of two types, MGlu-HA and CHex-HA, which have a more hydrophobic side chain structure than that of MGlu-HA, were synthesized by reaction with various dicarboxylic anhydrides. These polymer-modified liposomes were stable at neutral pH, but showed content release under weakly acidic conditions. CHex-HA-modified liposomes delivered their contents into CD44-expressing cells more efficiently than HA-modified or MGlu-HA-modified liposomes or unmodified liposomes, whereas the same liposomes were taken up only slightly by cells expressing CD44 proteins less. Competition assay using free HA or other polymers revealed that HA derivative-modified liposomes might be recognized by CD44. Therefore, HA-derivative-modified liposomes are useful as cell-specific intracellular drug delivery systems.

  10. The effect of the type of HA on the degradation of PLGA/HA composites.

    PubMed

    Naik, Ashutosh; Shepherd, David V; Shepherd, Jennifer H; Best, Serena M; Cameron, Ruth E

    2017-01-01

    The aim of this study is to explore the importance of the potentially competing effects of buffering effects of the calcium phosphate filler and particle-mediated water sorption on the degradation products of poly(d,l lactide-co-glycolide (50:50))(PLGA)/hydroxyapatite(HA) composites. Further the influence of type of HA on the mechanical properties of the composites was investigated. Phase pure HA was synthesised via a reaction between aqueous solutions of calcium hydroxide and orthophosphoric acid. The powder produced was either used as produced (uncalcined) or calcined in air or calcined in a humidified argon atmosphere. An in-vitro degradation study was carried out in phosphate buffered saline (PBS). The results obtained indicated that the degradation rate of the composite might be better understood if both the buffering effects and the rate of water sorption by the composites are considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effectiveness of Losartan-Loaded Hyaluronic Acid (HA) Micelles for the Reduction of Advanced Hepatic Fibrosis in C3H/HeN Mice Model

    PubMed Central

    Thomas, Reju George; Moon, Myeong Ju; Kim, Jo Heon; Lee, Jae Hyuk; Jeong, Yong Yeon

    2015-01-01

    Advanced hepatic fibrosis therapy using drug-delivering nanoparticles is a relatively unexplored area. Angiotensin type 1 (AT1) receptor blockers such as losartan can be delivered to hepatic stellate cells (HSC), blocking their activation and thereby reducing fibrosis progression in the liver. In our study, we analyzed the possibility of utilizing drug-loaded vehicles such as hyaluronic acid (HA) micelles carrying losartan to attenuate HSC activation. Losartan, which exhibits inherent lipophilicity, was loaded into the hydrophobic core of HA micelles with a 19.5% drug loading efficiency. An advanced liver fibrosis model was developed using C3H/HeN mice subjected to 20 weeks of prolonged TAA/ethanol weight-adapted treatment. The cytocompatibility and cell uptake profile of losartan-HA micelles were studied in murine fibroblast cells (NIH3T3), human hepatic stellate cells (hHSC) and FL83B cells (hepatocyte cell line). The ability of these nanoparticles to attenuate HSC activation was studied in activated HSC cells based on alpha smooth muscle actin (α-sma) expression. Mice treated with oral losartan or losartan-HA micelles were analyzed for serum enzyme levels (ALT/AST, CK and LDH) and collagen deposition (hydroxyproline levels) in the liver. The accumulation of HA micelles was observed in fibrotic livers, which suggests increased delivery of losartan compared to normal livers and specific uptake by HSC. Active reduction of α-sma was observed in hHSC and the liver sections of losartan-HA micelle-treated mice. The serum enzyme levels and collagen deposition of losartan-HA micelle-treated mice was reduced significantly compared to the oral losartan group. Losartan-HA micelles demonstrated significant attenuation of hepatic fibrosis via an HSC-targeting mechanism in our in vitro and in vivo studies. These nanoparticles can be considered as an alternative therapy for liver fibrosis. PMID:26714035

  12. Effectiveness of Losartan-Loaded Hyaluronic Acid (HA) Micelles for the Reduction of Advanced Hepatic Fibrosis in C3H/HeN Mice Model.

    PubMed

    Thomas, Reju George; Moon, Myeong Ju; Kim, Jo Heon; Lee, Jae Hyuk; Jeong, Yong Yeon

    2015-01-01

    Advanced hepatic fibrosis therapy using drug-delivering nanoparticles is a relatively unexplored area. Angiotensin type 1 (AT1) receptor blockers such as losartan can be delivered to hepatic stellate cells (HSC), blocking their activation and thereby reducing fibrosis progression in the liver. In our study, we analyzed the possibility of utilizing drug-loaded vehicles such as hyaluronic acid (HA) micelles carrying losartan to attenuate HSC activation. Losartan, which exhibits inherent lipophilicity, was loaded into the hydrophobic core of HA micelles with a 19.5% drug loading efficiency. An advanced liver fibrosis model was developed using C3H/HeN mice subjected to 20 weeks of prolonged TAA/ethanol weight-adapted treatment. The cytocompatibility and cell uptake profile of losartan-HA micelles were studied in murine fibroblast cells (NIH3T3), human hepatic stellate cells (hHSC) and FL83B cells (hepatocyte cell line). The ability of these nanoparticles to attenuate HSC activation was studied in activated HSC cells based on alpha smooth muscle actin (α-sma) expression. Mice treated with oral losartan or losartan-HA micelles were analyzed for serum enzyme levels (ALT/AST, CK and LDH) and collagen deposition (hydroxyproline levels) in the liver. The accumulation of HA micelles was observed in fibrotic livers, which suggests increased delivery of losartan compared to normal livers and specific uptake by HSC. Active reduction of α-sma was observed in hHSC and the liver sections of losartan-HA micelle-treated mice. The serum enzyme levels and collagen deposition of losartan-HA micelle-treated mice was reduced significantly compared to the oral losartan group. Losartan-HA micelles demonstrated significant attenuation of hepatic fibrosis via an HSC-targeting mechanism in our in vitro and in vivo studies. These nanoparticles can be considered as an alternative therapy for liver fibrosis.

  13. Hydroxamic acids as weak base indicators: protonation in strong acid media.

    PubMed

    García, B; Ibeas, S; Hoyuelos, F J; Leal, J M; Secco, F; Venturini, M

    2001-11-30

    The protonation equilibria of N-phenylbenzohydroxamic, benzohydroxamic, salicylhydroxamic, and N-p-tolylcinnamohydroxamic acids have been studied at 25 degrees C in concentrated sulfuric, hydrochloric, and perchloric acid media; the UV-vis spectral measurements were analyzed using the Hammett equation and the Bunnett-Olsen and excess acidity methods. The medium effects observed in the UV spectral curves were corrected with the Cox-Yates and vector analysis methods. The H(A) acidity function based on benzamides provided the best results. The range of variation of the solvation coefficient m is similar to that of amides, this indicating similar solvation requirements for amides and hydroxamic acids. For the same substrate, the observed variations of pK(BH)(+) with the mineral acid used was justified by formation of solvent-separated ion pairs; for the same mineral acid, the observed changes in pK(BH)(+) can be explained by the solvation of BH(+). The change of the pK(BH)(+) values was in reasonably good agreement with the sequence of the catalytic efficiency of the mineral acids used, HCl > H(2)SO(4) > HClO(4).

  14. Hyaluronic acid based hydroxamate and conjugates with biologically active amines: In vitro effect on matrix metalloproteinase-2.

    PubMed

    Ponedel'kina, Irina Yu; Gaskarova, Aigul R; Khaybrakhmanova, Elvira A; Lukina, Elena S; Odinokov, Victor N

    2016-06-25

    In this study, water soluble hyaluronic acid (HA) based hydroxamate and conjugates with biologically active amines and hydrazides such as p- and o-aminophenols, anthranilic, 4- and 5-aminosalicylic acids, nicotinic, N-benzylnicotinic and isonicotinic hydrazides, p-aminobenzenesulfonamide (Streptocide), p-aminobenzoic acid diethylaminoethyl ester (Procaine), and 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one (4-aminoantipyrene) were examined as matrix metalloproteinase-2 inhibitors (MMPIs). In a dose of 0.27-270μM, the most efficient MMPIs were HA conjugates with o-aminophenol=4-aminoantipyrine>4-aminosalicylic acid>5-aminosalicylic acid. Conjugates with Streptocide, Procaine and HA hydroxamate showed 40-50% inhibitory effect at all used concentrations. Conjugates with anthranilic acid and isonicotinic hydrazide (Isoniazid) in a dose of 0.27μM inhibited enzyme activity by ∼70%, but with the concentration increase their inhibitory effect was decreased. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Two Cytoplasmic Acylation Sites and an Adjacent Hydrophobic Residue, but No Other Conserved Amino Acids in the Cytoplasmic Tail of HA from Influenza A Virus Are Crucial for Virus Replication

    PubMed Central

    Siche, Stefanie; Brett, Katharina; Möller, Lars; Kordyukova, Larisa V.; Mintaev, Ramil R.; Alexeevski, Andrei V.; Veit, Michael

    2015-01-01

    Recruitment of the matrix protein M1 to the assembly site of the influenza virus is thought to be mediated by interactions with the cytoplasmic tail of hemagglutinin (HA). Based on a comprehensive sequence comparison of all sequences present in the database, we analyzed the effect of mutating conserved residues in the cytosol-facing part of the transmembrane region and cytoplasmic tail of HA (A/WSN/33 (H1N1) strain) on virus replication and morphology of virions. Removal of the two cytoplasmic acylation sites and substitution of a neighboring isoleucine by glutamine prevented rescue of infectious virions. In contrast, a conservative exchange of the same isoleucine, non-conservative exchanges of glycine and glutamine, deletion of the acylation site at the end of the transmembrane region and shifting it into the tail did not affect virus morphology and had only subtle effects on virus growth and on the incorporation of M1 and Ribo-Nucleoprotein Particles (RNPs). Thus, assuming that essential amino acids are conserved between HA subtypes we suggest that, besides the two cytoplasmic acylation sites (including adjacent hydrophobic residues), no other amino acids in the cytoplasmic tail of HA are indispensable for virus assembly and budding. PMID:26670246

  16. Evaluation of injection augmentation treatment of hyaluronic acid based materials on rabbit vocal folds viscoelasticity.

    PubMed

    Borzacchiello, A; Mayol, L; Gärskog, O; Dahlqvist, A; Ambrosio, L

    2005-06-01

    The viscoelastic properties of vocal folds after injection of hyaluronic acid (hyaluronan, HA) based materials have been studied in an animal model (rabbit) six months after injection. The results indicate that the viscoelastic properties of the vocal folds injected with the HA based materials are similar to the healthy vocal folds (non-injected samples) used as control. Histological analysis has been also performed to investigate on the fate of the injected materials after six months from the implant. The HA based materials remain up to six months and they recruited fibroblasts that induce the ingrowth of new connective tissue resulting in an endogenous soft tissue augmentation. The HA based compounds are good candidate for further studies aimed at restoring/preserving the vibratory capacity of the vocal folds with injection treatment in glottal insufficiency.

  17. Structural-based designed modular capsomere comprising HA1 for low-cost poultry influenza vaccination.

    PubMed

    Waneesorn, Jarurin; Wibowo, Nani; Bingham, John; Middelberg, Anton P J; Lua, Linda H L

    2018-05-24

    Highly pathogenic avian influenza (HPAI) viruses cause a severe and lethal infection in domestic birds. The increasing number of HPAI outbreaks has demonstrated the lack of capabilities to control the rapid spread of avian influenza. Poultry vaccination has been shown to not only reduce the virus spread in animals but also reduce the virus transmission to humans, preventing potential pandemic development. However, existing vaccine technologies cannot respond to a new virus outbreak rapidly and at a cost and scale that is commercially viable for poultry vaccination. Here, we developed modular capsomere, subunits of virus-like particle, as a low-cost poultry influenza vaccine. Modified murine polyomavirus (MuPyV) VP1 capsomere was used to present structural-based influenza Hemagglutinin (HA1) antigen. Six constructs of modular capsomeres presenting three truncated versions of HA1 and two constructs of modular capsomeres presenting non-modified HA1 have been generated. These modular capsomeres were successfully produced in stable forms using Escherichia coli, without the need for protein refolding. Based on ELISA, this adjuvanted modular capsomere (CaptHA1-3C) induced strong antibody response (almost 10 5 endpoint titre) when administered into chickens, similar to titres obtained in the group administered with insect cell-based HA1 proteins. Chickens that received adjuvanted CaptHA1-3C followed by challenge with HPAI virus were fully protected. The results presented here indicate that this platform for bacterially-produced modular capsomere could potentially translate into a rapid-response and low-cost vaccine manufacturing technology suitable for poultry vaccination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Gaming Sea-based Multinational HA/DR Operations at PACOM Amphibious Leaders Symposium 2016

    DTIC Science & Technology

    2016-11-01

    DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. Gaming Sea-based Multinational HA/DR Operations...Marine Corps photo by Cpl. Wesley Timm. Approved by: November 2016 Dr. E.D. McGrady Director, Integration and Gaming Advanced Technology and...TYPE Final2 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Gaming Seabased Multinational HA/DR Operations at PACOM 5a. CONTRACT NUMBER N00014-16

  19. The optimal SAM surface functional group for producing a biomimetic HA coating on Ti.

    PubMed

    Liu, D P; Majewski, P; O'Neill, B K; Ngothai, Y; Colby, C B

    2006-06-15

    Commercial interest is growing in biomimetic methods that employ self assembled mono-layers (SAMs) to produce biocompatible HA coatings on Ti-based orthopedic implants. Recently, separate studies have considered HA formation for various SAM surface functional groups. However, these have often neglected to verify crystallinity of the HA coating, which is essential for optimal bioactivity. Furthermore, differing experimental and analytical methods make performance comparisons difficult. This article investigates and evaluates HA formation for four of the most promising surface functional groups: --OH, --SO(3)H, --PO(4)H(2) and --COOH. All of them successfully formed a HA coating at Ca/P ratios between 1.49 and 1.62. However, only the --SO(3)H and --COOH end groups produced a predominantly crystalline HA. Furthermore, the --COOH end group yielded the thickest layer and possessed crystalline characteristics very similar to that of the human bone. The --COOH end group appears to provide the optimal SAM surface interface for nucleation and growth of biomimetic crystalline HA. Intriguingly, this finding may lend support to explanations elsewhere of why human bone sialoprotein is such a potent nucleator of HA and is attributed to the protein's glutamic acid-rich sequences.

  20. Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone.

    PubMed

    Ng, Angela M H; Tan, K K; Phang, M Y; Aziyati, O; Tan, G H; Isa, M R; Aminuddin, B S; Naseem, M; Fauziah, O; Ruszymah, B H I

    2008-05-01

    Biomaterial, an essential component of tissue engineering, serves as a scaffold for cell attachment, proliferation, and differentiation; provides the three dimensional (3D) structure and, in some applications, the mechanical strength required for the engineered tissue. Both synthetic and naturally occurring calcium phosphate based biomaterial have been used as bone fillers or bone extenders in orthopedic and reconstructive surgeries. This study aims to evaluate two popular calcium phosphate based biomaterial i.e., hydroxyapatite (HA) and tricalcium phosphate/hydroxyapatite (TCP/HA) granules as scaffold materials in bone tissue engineering. In our strategy for constructing tissue engineered bone, human osteoprogenitor cells derived from periosteum were incorporated with human plasma-derived fibrin and seeded onto HA or TCP/HA forming 3D tissue constructs and further maintained in osteogenic medium for 4 weeks to induce osteogenic differentiation. Constructs were subsequently implanted intramuscularly in nude mice for 8 weeks after which mice were euthanized and constructs harvested for evaluation. The differential cell response to the biomaterial (HA or TCP/HA) adopted as scaffold was illustrated by the histology of undecalcified constructs and evaluation using SEM and TEM. Both HA and TCP/HA constructs showed evidence of cell proliferation, calcium deposition, and collagen bundle formation albeit lesser in the former. Our findings demonstrated that TCP/HA is superior between the two in early bone formation and hence is the scaffold material of choice in bone tissue engineering. Copyright 2007 Wiley Periodicals, Inc.

  1. Neovascularization Induced by the Hyaluronic Acid-Based Spongy-Like Hydrogels Degradation Products.

    PubMed

    Silva, Lucília P da; Pirraco, Rogério P; Santos, Tírcia C; Novoa-Carballal, Ramon; Cerqueira, Mariana T; Reis, Rui L; Correlo, Vitor M; Marques, Alexandra P

    2016-12-14

    Neovascularization has been a major challenge in many tissue regeneration strategies. Hyaluronic acid (HA) of 3-25 disaccharides is known to be angiogenic due to its interaction with endothelial cell receptors. This effect has been explored with HA-based structures but a transitory response is observed due to HA burst biodegradation. Herein we developed gellan gum (GG)-HA spongy-like hydrogels from semi-interpenetrating network hydrogels with different HA amounts. Enzymatic degradation was more evident in the GG-HA with high HA amount due to their lower mechanical stability, also resulting from the degradation itself, which facilitated the access of the enzyme to the HA in the bulk. GG-HA spongy-like hydrogels hyaluronidase-mediated degradation lead to the release of HA oligosaccharides of different amounts and sizes in a HA content-dependent manner which promoted in vitro proliferation of human umbilical cord vein endothelial cells (HUVECs) but not their migration. Although no effect was observed in human dermal microvascular endothelial cells (hDMECs) in vitro, the implantation of GG-HA spongy-like hydrogels in an ischemic hind limb mice model promoted neovascularization in a material-dependent manner, consistent with the in vitro degradation profile. Overall, GG-HA spongy-like hydrogels with a sustained release of HA oligomers are valuable options to improve tissue vascularization, a critical issue in several applications in the tissue engineering and regenerative medicine field.

  2. Hyaluronic acid based hydrogel system for soft tissue regeneration and drug delivery

    NASA Astrophysics Data System (ADS)

    Jha, Amit Kumar

    We have developed hyaluronic acid (HA)-based, biomimetic hydrogel matrices that are hierarchically structured, mechanically robust and biologically active. Specifically, HA-based hydrogel particles (HGPs) with controlled sizes, defined porosity, and improved stability were synthesized using different inverse emulsion systems and crosslinking chemistries. The resultant particles either contained residual functional groups or were rendered reactive by subsequent chemical modifications. HA-based doubly crosslinked networks (DXNs) were synthesized via covalent crosslinking of HA HGPs with soluble HA macromers carrying mutually reactive functional groups. These hybrid matrices are hierarchical in nature, consisting of densely crosslinked HGPs integrated in a loosely connected secondary matrix. Their mechanical properties and degradation kinetics can be readily tuned by varying the particle size, functional group density, intra- and interparticle crosslinking. To improve the biological functions of HA HGPs, perlecan domain I (PlnDI), a basement membrane proteoglycan that has strong affinity for various heparin binding growth factors (HBGFs), was successfully conjugated to the particles through the core protein via a flexible poly(ethylene glycol) (PEG) linker. The immobilized PlnDI maintains its ability to bind bone morphogenetic proteins (BMP-2) and modulates its in vitro release. A similar, sustained release of BMP-2 was achieved by encapsulating BMP-2-loaded HGPs within a photocrosslinked HA matrix. When encapsulated in HA DXNs, primary bovine chondrocytes were able to maintain their phenotype, proliferate readily and produce abundant glycosaminoglycan. Finally, cell-adhesive HA DXNs were fabricated by encapsulating gelatin-decorated HA HGPs in a secondary HA matrix. Human MSCs were shown to adhere to the composite matrix through the focal adhesion sites clustered on particle surface. The cell-adhesive composite matrices supported hMSC proliferation and migration into

  3. Adsorption of lignite-derived humic acids on coal-based mesoporous activated carbons.

    PubMed

    Lorenc-Grabowska, Ewa; Gryglewicz, Grazyna

    2005-04-15

    The adsorption by a coal-based mesoporous activated carbon of humic acids (HAs) isolated from two Polish lignites was studied. For comparison, a commercial Aldrich humic acid was also included into this study. The differences in chemical structure and functional groups of HAs were determined by elemental analysis and infrared spectroscopy DRIFT. Two activated carbons used differed in terms of mesopore volume, mesopore size distribution, and chemical properties of the surface. The kinetics of adsorption of HAs have been discussed using three kinetic models, i.e., the first-order Lagergren model, the pseudo-second-order model, and the intraparticle diffusion model. It was found that the adsorption of HAs from alkaline solution on mesoporous activated carbon proceeds according to the pseudo-second-order model. The correlation coefficients were close to 1. The intraparticle diffusion of HA molecules within the carbon particle was identified to be the rate-limiting step. Comparing the two activated carbons, the carbon with a higher volume of pores with widths of 10-50 nm showed a greater removal efficiency of HA. An increase in the Freundlich adsorption capacity with decreasing carbon content of HA was observed. Among the HAs studied, S-HA shows characteristics indicating the highest contribution of small-size fraction. The S-HA was removed by both activated carbons to the highest extent. The effect of pH solution on the adsorption of HA was examined over the range pH 5.4-12.2. It was found that the extent of adsorption decreased with decreasing pH of the solution.

  4. Synergistic interaction of platelet derived growth factor (PDGF) with the surface of PLLA/Col/HA and PLLA/HA scaffolds produces rapid osteogenic differentiation.

    PubMed

    Raghavendran, Hanumantha Rao Balaji; Mohan, Saktiswaren; Genasan, Krishnamurithy; Murali, Malliga Raman; Naveen, Sangeetha Vasudevaraj; Talebian, Sepehr; McKean, Robert; Kamarul, Tunku

    2016-03-01

    Scaffolds with structural features similar to the extracellular matrix stimulate rapid osteogenic differentiation in favorable microenvironment and with growth factor supplementation. In this study, the osteogenic potential of electrospun poly-l-lactide/hydroxyapatite/collagen (PLLA/Col/HA, PLLA/HA and PLLA/Col) scaffolds were tested in vitro with the supplementation of platelet derived growth factor-BB (PDGF-BB). Cell attachment and topography, mineralization, extracellular matrix protein localization, and gene expression of the human mesenchymal stromal cells were compared between the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA. The levels of osteocalcin, calcium, and mineralization were significantly greater in the PLLA/Col/HA and PLLA/HA compared with PLLA/Col. High expression of fibronectin, intracellular adhesion molecule, cadherin, and collagen 1 (Col1) suggests that PLLA/Col/HA and PLLA/HA scaffolds had superior osteoinductivity than PLLA/Col. Additionally, osteopontin, osteocalcin, osterix, Runt-related transcription factor 2 (Runx2), and bone morphogenic protein (BMP2) expression were higher in PLLA/Col/HA and PLLA/HA compared with PLLA/Col. In comparison with PLLA/Col, the PLLA/Col/HA and PLLA/HA scaffolds presented a significant upregulation of the genes Runx2, Col 1, Integrin, osteonectin (ON), bone gamma-carboxyglutamic acid-containing protein (BGALP), osteopontin (OPN), and BMP2. The upregulation of these genes was further increased with PDGF-BB supplementation. These results show that PDGF-BB acts synergistically with PLLA/Col/HA and PLLA/HA to enhance the osteogenic differentiation potential. Therefore, this combination can be used for the rapid expansion of bone marrow stromal cells into bone-forming cells for tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Understanding the undelaying mechanism of HA-subtyping in the level of physic-chemical characteristics of protein.

    PubMed

    Ebrahimi, Mansour; Aghagolzadeh, Parisa; Shamabadi, Narges; Tahmasebi, Ahmad; Alsharifi, Mohammed; Adelson, David L; Hemmatzadeh, Farhid; Ebrahimie, Esmaeil

    2014-01-01

    The evolution of the influenza A virus to increase its host range is a major concern worldwide. Molecular mechanisms of increasing host range are largely unknown. Influenza surface proteins play determining roles in reorganization of host-sialic acid receptors and host range. In an attempt to uncover the physic-chemical attributes which govern HA subtyping, we performed a large scale functional analysis of over 7000 sequences of 16 different HA subtypes. Large number (896) of physic-chemical protein characteristics were calculated for each HA sequence. Then, 10 different attribute weighting algorithms were used to find the key characteristics distinguishing HA subtypes. Furthermore, to discover machine leaning models which can predict HA subtypes, various Decision Tree, Support Vector Machine, Naïve Bayes, and Neural Network models were trained on calculated protein characteristics dataset as well as 10 trimmed datasets generated by attribute weighting algorithms. The prediction accuracies of the machine learning methods were evaluated by 10-fold cross validation. The results highlighted the frequency of Gln (selected by 80% of attribute weighting algorithms), percentage/frequency of Tyr, percentage of Cys, and frequencies of Try and Glu (selected by 70% of attribute weighting algorithms) as the key features that are associated with HA subtyping. Random Forest tree induction algorithm and RBF kernel function of SVM (scaled by grid search) showed high accuracy of 98% in clustering and predicting HA subtypes based on protein attributes. Decision tree models were successful in monitoring the short mutation/reassortment paths by which influenza virus can gain the key protein structure of another HA subtype and increase its host range in a short period of time with less energy consumption. Extracting and mining a large number of amino acid attributes of HA subtypes of influenza A virus through supervised algorithms represent a new avenue for understanding and

  6. Understanding the Underlying Mechanism of HA-Subtyping in the Level of Physic-Chemical Characteristics of Protein

    PubMed Central

    Ebrahimi, Mansour; Aghagolzadeh, Parisa; Shamabadi, Narges; Tahmasebi, Ahmad; Alsharifi, Mohammed; Adelson, David L.

    2014-01-01

    The evolution of the influenza A virus to increase its host range is a major concern worldwide. Molecular mechanisms of increasing host range are largely unknown. Influenza surface proteins play determining roles in reorganization of host-sialic acid receptors and host range. In an attempt to uncover the physic-chemical attributes which govern HA subtyping, we performed a large scale functional analysis of over 7000 sequences of 16 different HA subtypes. Large number (896) of physic-chemical protein characteristics were calculated for each HA sequence. Then, 10 different attribute weighting algorithms were used to find the key characteristics distinguishing HA subtypes. Furthermore, to discover machine leaning models which can predict HA subtypes, various Decision Tree, Support Vector Machine, Naïve Bayes, and Neural Network models were trained on calculated protein characteristics dataset as well as 10 trimmed datasets generated by attribute weighting algorithms. The prediction accuracies of the machine learning methods were evaluated by 10-fold cross validation. The results highlighted the frequency of Gln (selected by 80% of attribute weighting algorithms), percentage/frequency of Tyr, percentage of Cys, and frequencies of Try and Glu (selected by 70% of attribute weighting algorithms) as the key features that are associated with HA subtyping. Random Forest tree induction algorithm and RBF kernel function of SVM (scaled by grid search) showed high accuracy of 98% in clustering and predicting HA subtypes based on protein attributes. Decision tree models were successful in monitoring the short mutation/reassortment paths by which influenza virus can gain the key protein structure of another HA subtype and increase its host range in a short period of time with less energy consumption. Extracting and mining a large number of amino acid attributes of HA subtypes of influenza A virus through supervised algorithms represent a new avenue for understanding and

  7. Production of poly(β-l-malic acid) by Aureobasidium pullulans HA-4D under solid-state fermentation.

    PubMed

    Xia, Jun; Li, Rongqing; He, Aiyong; Xu, Jiaxing; Liu, Xiaoyan; Li, Xiangqian; Xu, Jiming

    2017-11-01

    Poly(β-l-malic acid) (PMA) production by Aureobasidium pullulans HA-4D was carried out through solid-state fermentation (SSF) using agro-industrial residues. Maximum PMA production (75.4mg/g substrate) was obtained from a mixed substrate of sweet potato residue and wheat bran (1:1, w/w) supplemented with NaNO 3 (0.8%, w/w) and CaCO 3 (2%, w/w), with an initial moisture content of 70% and inoculum size of 13% (v/w) for 8days. Repeated-batch SSF was successfully conducted for 5 cycles with a high productivity. The scanning electron microscopy showed that the yeast-like cells of A. pullulans HA-4D could grow well on the solid substrate surface. Moreover, the cost analysis showed that the unit price of PMA in SSF was much lower than that of SmF. This is the first report on PMA production via SSF, and this study provided a new method to produce PMA from inexpensive agro-industrial residues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Characterization of New PEEK/HA Composites with 3D HA Network Fabricated by Extrusion Freeforming.

    PubMed

    Vaezi, Mohammad; Black, Cameron; Gibbs, David M R; Oreffo, Richard O C; Brady, Mark; Moshrefi-Torbati, Mohamed; Yang, Shoufeng

    2016-05-26

    Addition of bioactive materials such as calcium phosphates or Bioglass, and incorporation of porosity into polyetheretherketone (PEEK) has been identified as an effective approach to improve bone-implant interfaces and osseointegration of PEEK-based devices. In this paper, a novel production technique based on the extrusion freeforming method is proposed that yields a bioactive PEEK/hydroxyapatite (PEEK/HA) composite with a unique configuration in which the bioactive phase (i.e., HA) distribution is computer-controlled within a PEEK matrix. The 100% interconnectivity of the HA network in the biocomposite confers an advantage over alternative forms of other microstructural configurations. Moreover, the technique can be employed to produce porous PEEK structures with controlled pore size and distribution, facilitating greater cellular infiltration and biological integration of PEEK composites within patient tissue. The results of unconfined, uniaxial compressive tests on these new PEEK/HA biocomposites with 40% HA under both static and cyclic mode were promising, showing the composites possess yield and compressive strength within the range of human cortical bone suitable for load bearing applications. In addition, preliminary evidence supporting initial biological safety of the new technique developed is demonstrated in this paper. Sufficient cell attachment, sustained viability in contact with the sample over a seven-day period, evidence of cell bridging and matrix deposition all confirmed excellent biocompatibility.

  9. A phase IIa study of HA-irinotecan, formulation of hyaluronic acid and irinotecan targeting CD44 in extensive-stage small cell lung cancer.

    PubMed

    Alamgeer, Muhammad; Neil Watkins, D; Banakh, Ilia; Kumar, Beena; Gough, Daniel J; Markman, Ben; Ganju, Vinod

    2018-04-01

    Preclinical studies in small cell lung cancer (SCLC) have shown that hyaluronic acid (HA) can be effectively used to deliver chemotherapy and selectively decrease CD44 expressing (stem cell-like) tumour cells. The current study aimed to replicate these findings and obtain data on safety and activity of HA-irinotecan (HA-IR). Eligible patients with extensive stage SCLC were consented. A safety cohort (n = 5) was treated with HA-IR and Carboplatin (C). Subsequently, the patients were randomised 1:1 to receive experimental (HA-IR + C) or standard (IR + C) treatment, to a maximum of 6 cycles. The second line patients were added to the study and treated with open label HA-IR + C. Tumour response was measured after every 2 cycles. Baseline tumour specimens were stained for CD44s and CD44v6 expression. Circulating tumour cells (CTCs) were enumerated before each treatment cycle. Out of 39 patients screened, 34 were evaluable for the study. The median age was 66 (range 39-83). The overall response rates were 69% and 75% for experimental and standard arms respectively. Median progression free survival was 42 and 28 weeks, respectively (p = 0.892). The treatments were well tolerated. The incidence of grade III/IV diarrhea was more common in the standard arm, while anaemia was more common in the experimental arm. IHC analysis suggested that the patients with CD44s positive tumours may gain survival benefit from HA-IR. HA-IR is well tolerated and active in ES-SCLC. The effect of HA-IR on CD44s + cancer stem-like cells provide an early hint towards a potential novel target.

  10. Osteogenic properties of PBLG-g-HA/PLLA nanocomposites.

    PubMed

    Liao, Lan; Yang, Shuang; Miron, Richard J; Wei, Junchao; Zhang, Yufeng; Zhang, Meng

    2014-01-01

    New development of biomaterial scaffolds remains a prominent issue for the regeneration of lost or fractured bone. Of these scaffolds, a number of bioactive polymers have been synthesized and fabricated for diverse biological roles. Although recent evidence has demonstrated that composite scaffolds such as HA/PLLA have improved properties when compared to either HA or PLLA alone, recent investigations have demonstrated that the phase compatibility between HA and PLLA layers is weak preventing optimal enhancement of the mechanical properties and making the composites prone to breakdown. In the present study, poly (γ-benzyl-L-glutamate) modified hydroxyapatite/(poly (L-lactic acid)) (PBLG-g-HA/PLLA) composite scaffolds were fabricated with improved phase compatibility and tested for their osteogenic properties in 18 Wistar female rats by analyzing new bone formation in 3 mm bilateral femur defects in vivo. At time points, 2, 4 and 8 weeks post surgery, bone formation was evaluated by µ-CT and histological analysis by comparing 4 treatment groups; 1) blank defect, 2) PLLA, 3) HA/PLLA and 4) PBLG-g-HA/PLLA scaffolds. The in vivo analysis demonstrated that new bone formation was much more prominent in HA/PLLA and PBLG-g-HA/PLLA groups as depicted by µ-CT, H&E staining and immunohistochemistry for collagen I. TRAP staining was also utilized to determine the influence of osteoclast cell number and staining intensity to the various scaffolds. No significant differences in either staining intensity or osteoclast numbers between all treatment modalities was observed, however blank defects did contain a higher number of osteoclast-like cells. The results from the present study illustrate the potential of PBLG-g-HA/PLLA scaffolds for bone tissue engineering applications by demonstrating favorable osteogenic properties.

  11. Development of electrochemical folic acid sensor based on hydroxyapatite nanoparticles.

    PubMed

    Kanchana, P; Sekar, C

    2015-02-25

    We report the synthesis of hydroxyapatite (HA) nanoparticles (NPs) by a simple microwave irradiation method and its application as sensing element for the precise determination of folic acid (FA) by electrochemical method. The structure and composition of the HA NPs characterized using XRD, FTIR, Raman and XPS. SEM and EDX studies confirmed the formation of elongated spherical shaped HA NPs with an average particle size of about 34 nm. The HA NPs thin film on glassy carbon electrode (GCE) were deposited by drop casting method. Electrocatalytic behavior of FA in the physiological pH 7.0 was investigated by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperometry. The fabricated HA/GCE exhibited a linear calibration plot over a wide FA concentration ranging from 1.0×10(-7) to 3.5×10(-4) M with the detection limit of 75 nM. In addition, the HA NPs modified GCE showed good selectivity toward the determination of FA even in the presence of a 100-fold excess of ascorbic acid (AA) and 1000-fold excess of other common interferents. The fabricated biosensor exhibits good sensitivity and stability, and was successfully applied for the determination of FA in pharmaceutical samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Development of electrochemical folic acid sensor based on hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kanchana, P.; Sekar, C.

    2015-02-01

    We report the synthesis of hydroxyapatite (HA) nanoparticles (NPs) by a simple microwave irradiation method and its application as sensing element for the precise determination of folic acid (FA) by electrochemical method. The structure and composition of the HA NPs characterized using XRD, FTIR, Raman and XPS. SEM and EDX studies confirmed the formation of elongated spherical shaped HA NPs with an average particle size of about 34 nm. The HA NPs thin film on glassy carbon electrode (GCE) were deposited by drop casting method. Electrocatalytic behavior of FA in the physiological pH 7.0 was investigated by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperometry. The fabricated HA/GCE exhibited a linear calibration plot over a wide FA concentration ranging from 1.0 × 10-7 to 3.5 × 10-4 M with the detection limit of 75 nM. In addition, the HA NPs modified GCE showed good selectivity toward the determination of FA even in the presence of a 100-fold excess of ascorbic acid (AA) and 1000-fold excess of other common interferents. The fabricated biosensor exhibits good sensitivity and stability, and was successfully applied for the determination of FA in pharmaceutical samples.

  13. Synthesis and characterization of new composite materials based on poly(methacrylic acid) and hydroxyapatite with applications in dentistry.

    PubMed

    Cucuruz, Andrei Tiberiu; Andronescu, Ecaterina; Ficai, Anton; Ilie, Andreia; Iordache, Florin

    2016-08-30

    The use of methacrylic acid (MAA) in medicine was poorly investigated in the past but can be of great importance because the incorporation of hydroxyapatite (HA) can lead to new composite materials with good properties due to the strong electrostatic interactions between carboxylate groups of polymer and Ca(2+) ions from HA. The scope of this study was to determine the potential of using composite materials based on poly(methacrylic acid) (PMAA) and hydroxyapatite in dentistry. Two routes of synthesis were taken into account: i) HA was synthesised in situ and ii) commercial HA was used. Fourier transform infrared spectroscopy and X-ray diffraction were used for compositional assessments. Scanning electron microscopy was performed to determine the morphology and differential thermal analysis (DTA) coupled with thermogravimetric analysis (TG) was used to study the thermal behaviour and to observe quantitative changes. In-vitro tests were also performed in order to evaluate the biocompatibility of both PMAA/HA composites by monitoring the development potential of human endothelial cells using MTT assay and fluorescent microscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Generation of recombinant pandemic H1N1 influenza virus with the HA cleavable by bromelain and identification of the residues influencing HA bromelain cleavage.

    PubMed

    Wang, Weijia; Suguitan, Amorsolo L; Zengel, James; Chen, Zhongying; Jin, Hong

    2012-01-20

    The proteolytic enzyme bromelain has been traditionally used to cleave the hemagglutinin (HA) protein at the C-terminus of the HA2 region to release the HA proteins from influenza virions. The bromelain cleaved HA (BHA) has been routinely used as an antigen to generate antiserum that is essential for influenza vaccine product release. The HA of the 2009 pandemic H1N1 influenza A/California/7/2009 (CA09) virus could not be cleaved efficiently by bromelain. To ensure timely delivery of BHA for antiserum production, we generated a chimeric virus that contained the HA1 region from CA09 and the HA2 region from the seasonal H1N1 A/South Dakota/6/2007 (SD07) virus that is cleavable by bromelain. The BHA from this chimeric virus was antigenically identical to CA09 and induced high levels of HA-specific antibodies and protected ferrets from wild-type H1N1 CA09 virus challenge. To determine the molecular basis of inefficient cleavage of CA09 HA by bromelain, the amino acids that differed between the HA2 of CA09 and SD07 were introduced into recombinant CA09 virus to assess their effect on bromelain cleavage. The D373N or E374G substitution in the HA2 stalk region of CA09 HA enabled efficient cleavage of CA09 HA by bromelain. Sequence analysis of the pandemic H1N1-like viruses isolated from 2010 revealed emergence of the E374K change. We found that K374 enabled the HA to be cleaved by bromelain and confirmed that the 374 residue is critical for HA bromelain cleavage. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Hyaluronic acid for anticancer drug and nucleic acid delivery.

    PubMed

    Dosio, Franco; Arpicco, Silvia; Stella, Barbara; Fattal, Elias

    2016-02-01

    Hyaluronic acid (HA) is widely used in anticancer drug delivery, since it is biocompatible, biodegradable, non-toxic, and non-immunogenic; moreover, HA receptors are overexpressed on many tumor cells. Exploiting this ligand-receptor interaction, the use of HA is now a rapidly-growing platform for targeting CD44-overexpressing cells, to improve anticancer therapies. The rationale underlying approaches, chemical strategies, and recent advances in the use of HA to design drug carriers for delivering anticancer agents, are reviewed. Comprehensive descriptions are given of HA-based drug conjugates, particulate carriers (micelles, liposomes, nanoparticles, microparticles), inorganic nanostructures, and hydrogels, with particular emphasis on reports of preclinical/clinical results. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Influence of the concentrations of hyaluronic acid on the properties and biocompatibility of Cs-Gel-HA membranes.

    PubMed

    Liu, Haifeng; Yin, Yuji; Yao, Kangde; Ma, Dongrui; Cui, Lei; Cao, Yilin

    2004-08-01

    The object of this study was to investigate the relationship between the concentrations of HA solutions and the physicochemical properties and the biocompatibility of Cs-Gel-HA membranes. The addition of different concentrations of HA not only improved the wettability significantly and extended the degradation time of Cs-Gel-HA membranes, but also changed their mechanical properties. The concentration of HA had a significant influence on the biocompatibility of Cs-Gel-HA membranes. Results demonstrated that it was only the concentrations of HA in a certain range (0.01-0.1%), that could promote the cell adhesion, migration and proliferation, while the concentration of HA was above 0.1% it would either reduce or even inhibit these behaviors.

  17. 3D fabrication and characterization of phosphoric acid scaffold with a HA/β-TCP weight ratio of 60:40 for bone tissue engineering applications.

    PubMed

    Wang, Yanen; Wang, Kai; Li, Xinpei; Wei, Qinghua; Chai, Weihong; Wang, Shuzhi; Che, Yu; Lu, Tingli; Zhang, Bo

    2017-01-01

    A key requirement for three-dimensional printing (3-DP) at room temperature of medical implants depends on the availability of printable and biocompatible binder-powder systems. Different concentration polyvinyl alcohol (PVA) and phosphoric acid solutions were chosen as the binders to make the artificial stent biocompatible with sufficient compressive strength. In order to achieve an optimum balance between the bioceramic powder and binder solution, the biocompatibility and mechanical properties of these artificial stent samples were tested using two kinds of binder solutions. This study demonstrated the printable binder formulation at room temperature for the 3D artificial bone scaffolds. 0.6 wt% PVA solution was ejected easily via inkjet printing, with a supplementation of 0.25 wt% Tween 80 to reduce the surface tension of the polyvinyl alcohol solution. Compared with the polyvinyl alcohol scaffolds, the phosphoric acid scaffolds had better mechanical properties. Though both scaffolds supported the cell proliferation, the absorbance of the polyvinyl alcohol scaffolds was higher than that of the phosphoric acid scaffolds. The artificial stents with a hydroxyapatite/beta-tricalcium phosphate (HA/β-TCP) weight ratios of 60:40 depicted good biocompatibility for both scaffolds. Considering the scaffolds' mechanical and biocompatible properties, the phosphoric acid scaffolds with a HA/β-TCP weight ratio of 60:40 may be the best combination for bone tissue engineering applications.

  18. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors.

    PubMed

    Lv, Qing; Nair, Lakshmi; Laurencin, Cato T

    2009-12-01

    Dynamic flow culture bioreactor systems have been shown to enhance in vitro bone tissue formation by facilitating mass transfer and providing mechanical stimulation. Our laboratory has developed a biodegradable poly (lactic acid glycolic acid) (PLAGA) mixed scaffold consisting of lighter-than-water (LTW) and heavier-than-water (HTW) microspheres as potential matrices for engineering tissue using a high aspect ratio vessel (HARV) rotating bioreactor system. We have demonstrated enhanced osteoblast differentiation and mineralization on PLAGA scaffolds in the HARV rotating bioreactor system when compared with static culture. The objective of the present study is to improve the mechanical properties and bioactivity of polymeric scaffolds by designing LTW polymer/ceramic composite scaffolds suitable for dynamic culture using a HARV bioreactor. We employed a microsphere sintering method to fabricate three-dimensional PLAGA/nano-hydroxyapatite (n-HA) mixed scaffolds composed of LTW and HTW composite microspheres. The mechanical properties, pore size and porosity of the composite scaffolds were controlled by varying parameters, such as sintering temperature, sintering time, and PLAGA/n-HA ratio. The PLAGA/n-HA (4:1) scaffold sintered at 90 degrees C for 3 h demonstrated the highest mechanical properties and an appropriate pore structure for bone tissue engineering applications. Furthermore, evaluation human mesenchymal stem cells (HMSCs) response to PLAGA/n-HA scaffolds was performed. HMSCs on PLAGA/n-HA scaffolds demonstrated enhanced proliferation, differentiation, and mineralization when compared with those on PLAGA scaffolds. Therefore, PLAGA/n-HA mixed scaffolds are promising candidates for HARV bioreactor-based bone tissue engineering applications. Copyright 2008 Wiley Periodicals, Inc.

  19. Intravesical administration of combined hyaluronic acid (HA) and chondroitin sulfate (CS) for the treatment of female recurrent urinary tract infections: a European multicentre nested case-control study.

    PubMed

    Ciani, Oriana; Arendsen, Erik; Romancik, Martin; Lunik, Richard; Costantini, Elisabetta; Di Biase, Manuel; Morgia, Giuseppe; Fragalà, Eugenia; Roman, Tomaskin; Bernat, Marian; Guazzoni, Giorgio; Tarricone, Rosanna; Lazzeri, Massimo

    2016-03-31

    To compare the clinical effectiveness of the intravesical administration of combined hyaluronic acid and chondroitin sulfate (HA+CS) versus current standard management in adult women with recurrent urinary tract infections (RUTIs). A European Union-based multicentre, retrospective nested case-control study. 276 adult women treated for RUTIs starting from 2009 to 2013. Patients treated with either intravesical administration of HA+CS or standard of care (antimicrobial/immunoactive prophylaxis/probiotics/cranberry). The primary outcome was occurrence of bacteriologically confirmed recurrence within 12 months. Secondary outcomes were time to recurrence, total number of recurrences, health-related quality of life and healthcare resource consumption. Crude and adjusted results for unbalanced characteristics are presented. 181 patients treated with HA+CS and 95 patients treated with standard of care from 7 centres were included. The crude and adjusted ORs (95% CI) for the primary end point were 0.77 (0.46 to 1.28) and 0.51 (0.27 to 0.96), respectively. However, no evidence of improvement in terms of total number of recurrences (incidence rate ratio (95% CI), 0.99 (0.69 to 1.43)) or time to first recurrence was seen (HR (95% CI), 0.99 (0.61 to 1.61)). The benefit of intravesical HA+CS therapy improves when the number of instillations is ≥ 5. Our results show that bladder instillations of combined HA+CS reduce the risk of bacteriologically confirmed recurrences compared with the current standard management of RUTIs. Total incidence rates and hazard rates were instead non-significantly different between the 2 groups after adjusting for unbalanced factors. In contrast to what happens with antibiotic prophylaxis, the effectiveness of the HA+CS reinstatement therapy improves over time. NCT02016118. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. A nonfouling voltammetric immunosensor for the carcinoembryonic antigen based on the use of polyaniline nanowires wrapped with hyaluronic acid.

    PubMed

    Wang, Jiasheng; Hui, Ni

    2018-06-16

    A non-fouling electrochemical immunosensor is described for determination of the tumor biomarker carcinoembryonic antigen (CEA). It is based on the use of composite wires made by chemical grafting of hyaluronic acid onto polyaniline nanowires. The modified nanowires possess excellent antifouling property both in single protein solutions and in dilute serum samples. The current of immunoelectrode exhibits a linear response in the 0.01 pg mL -1 to 10,000 pg mL -1 CEA concentration range and 0.0075 pg mL -1 detection limit. This work demonstrates that coating an electrode with hyaluronic acid can largely reduce unspecific adsorption of proteins on the electrode surface. Graphical abstract Schematic of a nonfouling electrochemical immunosensor for the carcinoembryonic antigen. It is based on novel composite wires made through the chemical grafting of easily available hyaluronic acid (HA) onto polyaniline (PANI) nanowires. The HA/PANI demonstrated excellent antifouling property both in single protein solutions and human serum samples.

  1. Construction and cellular immune response induction of HA-based alphavirus replicon vaccines against human-avian influenza (H5N1).

    PubMed

    Yang, Shi-gui; Wo, Jian-er; Li, Min-wei; Mi, Fen-fang; Yu, Cheng-bo; Lv, Guo-liang; Cao, Hong-Cui; Lu, Hai-feng; Wang, Bao-hong; Zhu, Hanping; Li, Lan-Juan

    2009-12-09

    Several approaches are being taken worldwide to develop vaccines against H5N1 viruses; most of them, however, pose both practical and immunological challenges. One potential strategy for improving the immunogenicity of vaccines involves the use of alphavirus replicons and VP22, a herpes simplex type 1 (HSV-1) protein. In this study, we analysed the antigenic peptides and homogeneity of the HA sequences (human isolates of the H5N1 subtype, from 1997 to 2003) and explored a novel alphavirus replicon system of VP22 fused with HA, to assess whether the immunogenicity of an HA-based replicon vaccine could be induced and augmented via fusion with VP22. Further, replicon particles expressing VP22, and enhanced green fluorescent protein (EGFP) were individually used as controls. Cellular immune responses in mice immunised with replicons were evaluated by identifying specific intracellular cytokine production with flow cytometry (FCM). Animal-based experimentation indicated that both the IL-4 expression of CD4(+) T cells and the IFN-gamma expression of CD8(+) T cells were significantly increased in mice immunised with VPR-HA and VPR-VP22/HA. A dose titration effect vis-à-vis both IL-4 expression and IFN-gamma expression were observed in VPR-HA- and VPR-VP22/HA-vaccinated mice. Our results revealed that both VPR-VP22/HA and VPR-HA replicon particles presented a promising approach for developing vaccines against human-avian influenza, and VP22 could enhance the immunogenicity of the HA antigens to which it is fused.

  2. The Polyphenol Chlorogenic Acid Attenuates UVB-mediated Oxidative Stress in Human HaCaT Keratinocytes

    PubMed Central

    Cha, Ji Won; Piao, Mei Jing; Kim, Ki Cheon; Yao, Cheng Wen; Zheng, Jian; Kim, Seong Min; Hyun, Chang Lim; Ahn, Yong Seok; Hyun, Jin Won

    2014-01-01

    We investigated the protective effects of chlorogenic acid (CGA), a polyphenol compound, on oxidative damage induced by UVB exposure on human HaCaT cells. In a cell-free system, CGA scavenged 1,1-diphenyl-2-picrylhydrazyl radicals, superoxide anions, hydroxyl radicals, and intracellular reactive oxygen species (ROS) generated by hydrogen peroxide and ultraviolet B (UVB). Furthermore, CGA absorbed electromagnetic radiation in the UVB range (280–320 nm). UVB exposure resulted in damage to cellular DNA, as demonstrated in a comet assay; pre-treatment of cells with CGA prior to UVB irradiation prevented DNA damage and increased cell viability. Furthermore, CGA pre-treatment prevented or ameliorated apoptosis-related changes in UVB-exposed cells, including the formation of apoptotic bodies, disruption of mitochondrial membrane potential, and alterations in the levels of the apoptosis-related proteins Bcl-2, Bax, and caspase-3. Our findings suggest that CGA protects cells from oxidative stress induced by UVB radiation. PMID:24753819

  3. Effect of Water-Glass Coating on HA and HA-TCP Samples for MSCs Adhesion, Proliferation, and Differentiation.

    PubMed

    Bajpai, Indu; Kim, Duk Yeon; Kyong-Jin, Jung; Song, In-Hwan; Kim, Sukyoung

    2016-01-01

    Ca-P and silicon based materials have become very popular as bone tissue engineering materials. In this study, water-glass (also known as sodium silicate glass) was coated on sintered hydroxyapatite (HA) and HA-TCP (TCP stands for tricalcium phosphate) samples and subsequently heat-treated at 600°C for 2 hrs. X-rays diffraction showed the presence of β- and α-TCP phases along with HA in the HA-TCP samples. Samples without coating, with water-glass coating, and heat-treated after water-glass coating were used to observe the adhesion and proliferation response of bone marrow derived-mesenchymal stem cells (MSCs). Cell culture was carried out for 4 hrs, 1 day, and 7 days. Interestingly, all samples showed similar response for cell adhesion and proliferation up to 7-day culture but fibronectin, E-cadherin, and osteogenic differentiation related genes (osteocalcin and osteopontin) were significantly induced in heat-treated water-glass coated HA-TCP samples. A water-glass coating on Ca-P samples was not found to influence the cell proliferation response significantly but activated some extracellular matrix genes and induced osteogenic differentiation in the MSCs.

  4. Gamma ray-induced synthesis of hyaluronic acid/chondroitin sulfate-based hydrogels for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zhao, Linlin; Gwon, Hui-Jeong; Lim, Youn-Mook; Nho, Young-Chang; Kim, So Yeon

    2015-01-01

    Hyaluronic acid (HA)/chondroitin sulfate (CS)/poly(acrylic acid) (PAAc) hydrogel systems were synthesized by gamma-ray irradiation without the use of additional initiators or crosslinking agents to achieve a biocompatible hydrogel system for skin tissue engineering. HA and CS derivatives with polymerizable residues were synthesized. Then, the hydrogels composed of glycosaminoglycans, HA, CS, and a synthetic ionic polymer, PAAc, were prepared using gamma-ray irradiation through simultaneous free radical copolymerization and crosslinking. The physicochemical properties of the HA/CS/PAAc hydrogels having various compositions were investigated to evaluate their feasibility as artificial skin substitutes. The gel fractions of the HA/CS/PAAc hydrogels increased in absorbed doses up to 15 kGy, and they exhibited 91-93% gel fractions under 15 kGy radiation. All of the HA/CS/PAAc hydrogels exhibited relatively high water contents of over 90% and reached an equilibrium swelling state within 24 h. The enzymatic degradation kinetics of the HA/CS/PAAc hydrogels depended on both the concentration of the hyaluronidase solution and the ratio of HA/CS/PAAc. The in vitro drug release profiles of the HA/CS/PAAc hydrogels were significantly influenced by the interaction between the ionic groups in the hydrogels and the ionic drug molecules as well as the swelling of the hydrogels. From the cytotoxicity results of human keratinocyte (HaCaT) cells cultured with extracts of the HA/CS/PAAc hydrogels, all of the HA/CS/PAAc hydrogel samples tested showed relatively high cell viabilities of more than 82%, and did not induce any significant adverse effects on cell viability.

  5. Hyaluronan/Tannic Acid Nanoparticles Via Catechol/Boronate Complexation as a Smart Antibacterial System.

    PubMed

    Montanari, Elita; Gennari, Arianna; Pelliccia, Maria; Gourmel, Charlotte; Lallana, Enrique; Matricardi, Pietro; McBain, Andrew J; Tirelli, Nicola

    2016-12-01

    Nanoparticles based on hyaluronic acid (HA) are designed to deliver tannic acid (TA) as an antimicrobial agent. The presence of HA makes these particles potentially useful to target bacteria that colonize cells presenting HA membrane receptors (e.g. CD44), such as macrophages. HA bearing 3-aminophenyl boronic acid groups (HA-APBA) is reacted with TA, yielding nanoparticles with a size that decreases with decreasing HA molecular weight (e.g. 200 nm for 44 kDa, 400 nm for 737 kDa). The boronate esters make the nanoparticles stable at physiological pH, but their hydrolysis in an acidic environment (pH = 5) leads to swelling/solubilization, therefore potentially allowing TA release in endosomal compartments. We have assessed the nanoparticle toxicity profile (on RAW 264.7 macrophages) and their antimicrobial activity (on E. coli and on both methicillin-sensitive and -resistant S. aureus). The antibacterial effect of HA-APBA/TA nanoparticles was significantly higher than that of TA alone, and has very similar activity to TA coformulated with a reducing agent (ascorbic acid), which indicates both the nanoparticles to protect TA catechols from oxidation, and the effective release of TA after nanoparticle internalization. Therefore, there is potential for these nanoparticles to be used in stable, effective, and potentially targetable nanoparticle-based antimicrobial formulations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer

    PubMed Central

    Yang, Xiaoqian; lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-01-01

    Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer. PMID:25687880

  7. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqian; Lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-02-01

    Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer.

  8. Reversible Association of the Hemagglutinin Subcomplex, HA-33/HA-17 Trimer, with the Botulinum Toxin Complex.

    PubMed

    Sagane, Yoshimasa; Mutoh, Shingo; Koizumi, Ryosuke; Suzuki, Tomonori; Miyashita, Shin-Ichiro; Miyata, Keita; Ohyama, Tohru; Niwa, Koichi; Watanabe, Toshihiro

    2017-10-01

    Botulinum neurotoxin (BoNT) associates with nontoxic proteins, either a nontoxic nonhemagglutinin (NTNHA) or the complex of NTNHA and hemagglutinin (HA), to form M- or L-toxin complexes (TCs). Single BoNT and NTNHA molecules are associated and form M-TC. A trimer of the 70-kDa HA protein (HA-70) attaches to the M-TC to form M-TC/HA-70. Further, 1-3 arm-like 33- and 17-kDa HA molecules (HA-33/HA-17 trimer), consisting of 1 HA-17 protein and 2 HA-33 proteins, can attach to the M-TC/HA-70 complex, yielding 1-, 2-, and 3-arm L-TC. In this study, the purified 1- and 2-arm L-TCs spontaneously converted into another L-TC species after acquiring the HA-33/HA-17 trimer from other TCs during long-term storage and freezing/thawing. Transmission electron microscopy analysis provided evidence of the formation of detached HA-33/HA-17 trimers in the purified TC preparation. These findings provide evidence of reversible association/dissociation of the M-TC/HA-70 complex with the HA-33/HA-17 trimers, as well as dynamic conversion of the quaternary structure of botulinum TC in culture.

  9. Selective pre-priming of HA-specific CD4 T cells restores immunological reactivity to HA on heterosubtypic influenza infection.

    PubMed

    Alam, Shabnam; Chan, Cory; Qiu, Xing; Shannon, Ian; White, Chantelle L; Sant, Andrea J; Nayak, Jennifer L

    2017-01-01

    A hallmark of the immune response to influenza is repeated encounters with proteins containing both genetically conserved and variable components. Therefore, the B and T cell repertoire is continually being remodeled, with competition between memory and naïve lymphocytes. Our previous work using a mouse model of secondary heterosubtypic influenza infection has shown that this competition results in a focusing of CD4 T cell response specificity towards internal virion proteins with a selective decrease in CD4 T cell reactivity to the novel HA epitopes. Strikingly, this shift in CD4 T cell specificity was associated with a diminished anti-HA antibody response. Here, we sought to determine whether the loss in HA-specific reactivity that occurs as a consequence of immunological memory could be reversed by selectively priming HA-specific CD4 T cells prior to secondary infection. Using a peptide-based priming strategy, we found that selective expansion of the anti-HA CD4 T cell memory repertoire enhanced HA-specific antibody production upon heterosubtypic infection. These results suggest that the potentially deleterious consequences of repeated exposure to conserved influenza internal virion proteins could be reversed by vaccination strategies that selectively arm the HA-specific CD4 T cell compartment. This could be a potentially useful pre-pandemic vaccination strategy to promote accelerated neutralizing antibody production on challenge with a pandemic influenza strain that contains few conserved HA epitopes.

  10. Preservation of viscoelastic properties of rabbit vocal folds after implantation of hyaluronic Acid-based biomaterials.

    PubMed

    Choi, Jeong-Seok; Kim, Nahn Ju; Klemuk, Sarah; Jang, Yun Ho; Park, In Suh; Ahn, Kyung Hyun; Lim, Jae-Yol; Kim, Young-Mo

    2012-09-01

    To compare the rheological characteristics of structurally different hyaluronic acid (HA)-based biomaterials that are presently used for phonosurgery and to investigate their influence on the viscoelastic properties of vocal folds after implantation in an in vivo rabbit model. In vitro and in vivo rheometric investigation. Experimental laboratory, Inha and Seoul National Universities. Viscoelastic shear properties of 3 HA-based biomaterials (Rofilan, Restylane, and Reviderm) were measured with a strain-controlled rheometer. These biomaterials were injected into the deep layers of rabbit vocal folds, and viscoelastic moduli of the injected vocal folds were determined 2 months after the injection. The vocal fold specimens were observed using a light microscope and a transmission electron microscope. All HA-based biomaterials showed similar levels of shear viscosity, which were slightly higher than that of human vocal folds reported in previous studies. Compared with noninjected control vocal folds, there were no significant differences in the magnitudes of both elastic shear modulus (G') and viscous modulus (G") of injected vocal folds among all of the materials. Light microscopic images showed that all materials were observed in the deep layers of vocal folds and electron scanning images revealed that injected HA particles were homogeneously distributed in regions of collagenous fibers. HA-based biomaterials could preserve the viscoelastic properties of the vocal folds, when they were injected into vocal folds in an in vivo rabbit model. However, further studies on the influence of the biomaterials on the viscoelasticity of human vocal folds in ECM surroundings are still needed.

  11. Secondary anchor polymorphism in the HA-1 minor histocompatibility antigen critically affects MHC stability and TCR recognition

    PubMed Central

    Nicholls, Sarah; Piper, Karen P.; Mohammed, Fiyaz; Dafforn, Timothy R.; Tenzer, Stefan; Salim, Mahboob; Mahendra, Premini; Craddock, Charles; van Endert, Peter; Schild, Hansjörg; Cobbold, Mark; Engelhard, Victor H.; Moss, Paul A. H.; Willcox, Benjamin E.

    2009-01-01

    T cell recognition of minor histocompatibility antigens (mHags) underlies allogeneic immune responses that mediate graft-versus-host disease and the graft-versus-leukemia effect following stem cell transplantation. Many mHags derive from single amino acid polymorphisms in MHC-restricted epitopes, but our understanding of the molecular mechanisms governing mHag immunogenicity and recognition is incomplete. Here we examined antigenic presentation and T-cell recognition of HA-1, a prototypic autosomal mHag derived from single nucleotide dimorphism (HA-1H versus HA-1R) in the HMHA1 gene. The HA-1H peptide is restricted by HLA-A2 and is immunogenic in HA-1R/R into HA-1H transplants, while HA-1R has been suggested to be a “null allele” in terms of T cell reactivity. We found that proteasomal cleavage and TAP transport of the 2 peptides is similar and that both variants can bind to MHC. However, the His>Arg change substantially decreases the stability and affinity of HLA-A2 association, consistent with the reduced immunogenicity of the HA-1R variant. To understand these findings, we determined the structure of an HLA-A2-HA-1H complex to 1.3Å resolution. Whereas His-3 is accommodated comfortably in the D pocket, incorporation of the lengthy Arg-3 is predicted to require local conformational changes. Moreover, a soluble TCR generated from HA-1H-specific T-cells bound HA-1H peptide with moderate affinity but failed to bind HA-1R, indicating complete discrimination of HA-1 variants at the level of TCR/MHC interaction. Our results define the molecular mechanisms governing immunogenicity of HA-1, and highlight how single amino acid polymorphisms in mHags can critically affect both MHC association and TCR recognition. PMID:19234124

  12. Hyaluronic Acid (HA) Scaffolds and Multipotent Stromal Cells (MSCs) in Regenerative Medicine.

    PubMed

    Prè, Elena Dai; Conti, Giamaica; Sbarbati, Andrea

    2016-12-01

    Traditional methods for tissue regeneration commonly used synthetic scaffolds to regenerate human tissues. However, they had several limitations, such as foreign body reactions and short time duration. In order to overcome these problems, scaffolds made of natural polymers are preferred. One of the most suitable and widely used materials to fabricate these scaffolds is hyaluronic acid. Hyaluronic acid is the primary component of the extracellular matrix of the human connective tissue. It is an ideal material for scaffolds used in tissue regeneration, thanks to its properties of biocompatibility, ease of chemical functionalization and degradability. In the last few years, especially from 2010, scientists have seen that the cell-based engineering of these natural scaffolds allows obtaining even better results in terms of tissue regeneration and the research started to grow in this direction. Multipotent stromal cells, also known as mesenchymal stem cells, plastic-adherent cells isolated from bone marrow and other mesenchymal tissues, with self-renew and multi-potency properties are ideal candidates for this aim. Normally, they are pre-seeded onto these scaffolds before their implantation in vivo. This review discusses the use of hyaluronic acid-based scaffolds together with multipotent stromal cells, as a very promising tool in regenerative medicine.

  13. Retention of Human-Induced Pluripotent Stem Cells (hiPS) With Injectable HA Hydrogels for Vocal Fold Engineering.

    PubMed

    Imaizumi, Mitsuyoshi; Li-Jessen, Nicole Y K; Sato, Yuka; Yang, David T; Thibeault, Susan L

    2017-04-01

    One prospective treatment option for vocal fold scarring is regeneration with an engineered scaffold containing induced pluripotent stem cells (iPS). In the present study, we investigated the feasibility of utilizing an injectable hyaluronic acid (HA) scaffold encapsulated with human-iPS cell (hiPS) for regeneration of vocal folds. Thirty athymic nude rats underwent unilateral vocal fold injury. Contralateral vocal folds served as uninjured controls. Hyaluronic acid hydrogel scaffold, HA hydrogel scaffold containing hiPS, and HA hydrogel scaffold containing hiPS with epidermal growth factor (EGF) were injected in both vocal folds immediately after surgery. One and 2 weeks after injection, larynges were excised for histology, immunohistochemistry, and fluorescence in situ hybridization (FISH). Presence of HA hydrogel was confirmed in vocal folds 1 and 2 weeks post injection. The FISH analysis confirmed the presence and viability of hiPS in the injected vocal folds. Histological results demonstrated that vocal folds injected with HA hydrogel scaffold containing EGF demonstrated less fibrosis than those with HA hydrogel only. Human-iPS survived in injured rat vocal folds. The HA hydrogel with hiPS and EGF ameliorated the fibrotic response. Additional work is necessary to optimize hiPS differentiation and further confirm the safety of hiPS for clinical applications.

  14. An interpenetrating HA/G/CS biomimic hydrogel via Diels-Alder click chemistry for cartilage tissue engineering.

    PubMed

    Yu, Feng; Cao, Xiaodong; Zeng, Lei; Zhang, Qing; Chen, Xiaofeng

    2013-08-14

    In order to mimic the natural cartilage extracellular matrix, a novel biological degradable interpenetrating network hydrogel was synthesized from the gelatin (G), hyaluronic acid (HA) and chondroitin sulfate (CS) by Diels-Alder "click" chemistry. HA was modified with furylamine and G was modified with furancarboxylic acid respectively. (1)H NMR spectra and elemental analysis showed that the substitution degrees of HA-furan and G-furan were 71.5% and 44.5%. Then the hydrogels were finally synthesized by cross-linking furan-modified HA and G derivatives with dimaleimide poly(ethylene glycol) (MAL-PEG-MAL). The mechanical and degradation properties of the hydrogels could be tuned simply through varying the molar ratio between furan and maleimide. Rheological, mechanical and degradation studies demonstrated that the Diels-Alder "click" chemistry is an efficient method for preparing high performance biological interpenetrating hydrogels. This biomimic hydrogel with improved mechanical properties could have great potential applications in cartilage tissue engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Antigenicity of the 2015-2016 seasonal H1N1 human influenza virus HA and NA proteins.

    PubMed

    Clark, Amelia M; DeDiego, Marta L; Anderson, Christopher S; Wang, Jiong; Yang, Hongmei; Nogales, Aitor; Martinez-Sobrido, Luis; Zand, Martin S; Sangster, Mark Y; Topham, David J

    2017-01-01

    Antigenic drift of the hemagglutinin (HA) and neuraminidase (NA) influenza virus proteins contributes to reduced vaccine efficacy. To analyze antigenic drift in human seasonal H1N1 viruses derived from the 2009 pandemic H1N1 virus (pH1N1-like viruses) accounts for the limited effectiveness (around 40%) of vaccination against pH1N1-like viruses during the 2015-2016 season, nasal washes/swabs collected from adult subjects in the Rochester, NY area, were used to sequence and isolate the circulating viruses. The HA and NA proteins from viruses circulating during the 2015-2016 season encoded eighteen and fourteen amino acid differences, respectively, when compared to A/California/04/2009, a strain circulating at the origin of the 2009 pandemic. The circulating strains belonged to subclade 6B.1, defined by HA amino acid substitutions S101N, S179N, and I233T. Hemagglutination-inhibiting (HAI) and HA-specific neutralizing serum antibody (Ab) titers from around 50% of pH1N1-like virus-infected subjects and immune ferrets were 2-4 fold lower for the 2015-2016 circulating strains compared to the vaccine strain. In addition, using a luminex-based mPlex HA assay, the binding of human sera from subjects infected with pH1N1-like viruses to the HA proteins from circulating and vaccine strains was not identical, strongly suggesting antigenic differences in the HA protein. Additionally, NA inhibition (NAI) Ab titers in human sera from pH1N1-like virus-infected subjects increased after the infection and there were measurable antigenic differences between the NA protein of circulating strains and the vaccine strain using both ferret and human antisera. Despite having been vaccinated, infected subjects exhibited low HAI Ab titers against the vaccine and circulating strains. This suggests that poor responses to the H1N1 component of the vaccine as well as antigenic differences in the HA and NA proteins of currently circulating pH1N1-like viruses could be contributing to risk of

  16. GE11 peptide modified and reduction-responsive hyaluronic acid-based nanoparticles induced higher efficacy of doxorubicin for breast carcinoma therapy

    PubMed Central

    Hu, Danrong; Mezghrani, Omar; Zhang, Lei; Chen, Yi; Ke, Xue; Ci, Tianyuan

    2016-01-01

    Novel breast carcinoma dual-targeted redox-responsive nanoparticles (NPs) based on cholesteryl-hyaluronic acid conjugates were designed for intracellular delivery of the antitumor drug doxorubicin (DOX). A series of reduction-responsive hyaluronic acid derivatives grafted with hydrophobic cholesteryl moiety (HA-ss-Chol) and GE11 peptide conjugated HA-ss-Chol (GE11–HA-ss-Chol) were synthesized. The obtained conjugates showed attractive self-assembly characteristics and high drug loading capacity. GE11–HA-ss-Chol NPs were highly stable under conditions mimicking normal physiological conditions, while showing a fast degradation of the vehicle’s structure and accelerating the drug release dramatically in the presence of intracellular reductive environment. Furthermore, the cellular uptake assay confirmed GE11–HA-ss-Chol NPs were taken up by MDA-MB-231 cells through CD44- and epidermal growth factor receptor-mediated endocytosis. The internalization pathways of GE11–HA-ss-Chol NPs might involve clathrin-mediated endocytosis and macropinocytosis. The intracellular distribution of DOX in GE11–HA-ss-Chol NPs showed a faster release and more efficient nuclear delivery than the insensitive control. Enhanced in vitro cytotoxicity of GE11–HA-ss-Chol DOX-NPs further confirmed the superiority of their dual-targeting and redox-responsive capacity. Moreover, in vivo imaging investigation in MDA-MB-231 tumor-bearing mice confirmed that GE11–HA-ss-Chol NPs labeled with 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine iodide, a near-infrared fluorescence dye, possessed a preferable tumor accumulation ability as compared to the single-targeting counterpart (HA-ss-Chol NPs). The antitumor efficacy showed an improved therapy efficacy and lower systemic side effect. These results suggest GE11–HA-ss-Chol NPs provide a good potential platform for antitumor drugs. PMID:27785019

  17. Uptake of Cr3+ from aqueous solution by lignite-based humic acids.

    PubMed

    Arslan, G; Pehlivan, E

    2008-11-01

    Humic acid (HA) produced from brown coal, a relatively abundant and inexpensive material is currently being investigated as an adsorbent to remove toxic metals from aqueous solution. The influence of five parameters (contact time, solution pH, initial metal concentration, temperature and amount of adsorbent) on the removal at 20+/-1 degrees C was studied. HAs were prepared from lignites by using alkaline extraction, sedimentation and acidic precipitation. Adsorption equilibrium was achieved in about 60 min for Cr3+ ion. The Langmuir adsorption isotherm was used to describe observed sorption phenomena. The maximum adsorption capacity of 0.17 mmol for Ilgin (HA1), 0.29 mmol for Beysehir (HA2) and 0.18 mmol Ermenek (HA3) and 0.17 mmol of Cr3+/g for activated carbon (AC) was achieved, respectively at pH of 4.1. More than 84% of Cr3+ was removed by HA2, 54% by HA3 and 51% by HA1 and 50% by AC from aqueous solution. The adsorption was strongly dependent on pH but independent of ionic strength and metal ions. The adsorption of Cr3+ was higher between pH 4.1 and 5.1 for all HAs and maximum sorption was observed at pH 4.1. The rise in temperature caused a slight decrease in the value of the equilibrium constant (Kc) for the sorption of Cr3+ ion. Complex mechanisms including ion exchange, complexation and adsorption and size exclusion are possible for sorption of Cr3+ ion on HAs.

  18. Antibacterial Property of Cold-Sprayed HA-Ag/PEEK Coating

    NASA Astrophysics Data System (ADS)

    Sanpo, Noppakun; Tan, Meng Lu; Cheang, Philip; Khor, K. A.

    2009-03-01

    The antibacterial behavior of HA-Ag (silver-doped hydroxyapatite) nanopowder and their composite coatings were investigated against Escherichia coli (DH5α). HA-Ag nanopowder and PEEK (poly-ether-ether-ketone)-based HA-Ag composite powders were synthesized using in-house powder processing techniques. Bacteria culture assay of HA-Ag nanopowder and their composite powders displayed excellent bacteriostatic activity against E. coli. The antibacterial activity increased with increasing concentration of HA-Ag nanoparticle in these composite powders. These nanocomposite powders were subsequently used as feedstock to generate antibacterial coatings via cold spray technology. The ratios of HA-Ag to PEEK in their composite powders were 80:20, 60:40, 40:60, and 20:80 (wt.%). Microstructural characterization and phase analysis of feedstock powders and as-deposited coatings were carried out using FESEM/EDX and XRD. Antibacterial nanocomposite HA-Ag/PEEK coatings were successfully deposited using cold spraying parameters of 11-12 bars at preheated air temperature between 150 and 160 °C. These as-sprayed coatings of HA-Ag/PEEK composite powders comprising varying HA-Ag and PEEK ratios retained their inherent antibacterial property as verified from bacterial assay. The results indicated that the antibacterial activity increased with increasing HA-Ag nanopowder concentration in the composite powder feedstock and cold-sprayed coating.

  19. Role of induced glutathione-S-transferase from Helicoverpa armigera (Lepidoptera: Noctuidae) HaGST-8 in detoxification of pesticides.

    PubMed

    Labade, Chaitali P; Jadhav, Abhilash R; Ahire, Mehul; Zinjarde, Smita S; Tamhane, Vaijayanti A

    2018-01-01

    The present study deals with glutathione-S-transferase (GST) based detoxification of pesticides in Helicoverpa armigera and its potential application in eliminating pesticides from the environment. Dietary exposure of a pesticide mixture (organophosphates - chlorpyrifos and dichlorvos, pyrethroid - cypermethrin; 2-15ppm each) to H. armigera larvae resulted in a dose dependant up-regulation of GST activity and gene expression. A variant GST from H. armigera (HaGST-8) was isolated from larvae fed with 10ppm pesticide mixture and it was recombinantly expressed in yeast (Pichia pastoris HaGST-8). HaGST-8 had a molecular mass of 29kDa and was most active at pH 9 at 30°C. GC-MS and LC-HRMS analysis validated that HaGST-8 was effective in eliminating organophosphate type of pesticides and partially reduced the cypermethrin content (53%) from aqueous solutions. Unlike the untransformed yeast, P. pastoris HaGST-8 grew efficiently in media supplemented with pesticide mixtures (200 and 400ppm each pesticide) signifying the detoxification ability of HaGST-8. The amino acid sequence of HaGST-8 and the already reported sequence of HaGST-7 had just 2 mismatches. The studies on molecular interaction strengths revealed that HaGST-8 had stronger binding affinities with organophosphate, pyrethroid, organochloride, carbamate and neonicotinoid type of pesticides. The abilities of recombinant HaGST-8 to eliminate pesticides and P. pastoris HaGST-8 to grow profusely in the presence of high level of pesticide content can be applied for removal of such residues from food, water resources and bioremediation. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Rheological study of in-situ crosslinkable hydrogels based on hyaluronanic acid, collagen and sericin.

    PubMed

    Vulpe, Raluca; Le Cerf, Didier; Dulong, Virginie; Popa, Marcel; Peptu, Catalina; Verestiuc, Liliana; Picton, Luc

    2016-12-01

    The elaboration of chemically crosslinked hydrogels based on collagen (C), hyaluronanic acid (HA) and sericin (S) with different polymer ratios was investigated by in-situ rheology. This reaction was performed via amide or ester bond reaction activated by carbodiimide, in pure water. Prior to molecule crosslinking, the rheological behaviour of the biopolymers (alone or in mixture) was characterized in a semi-dilute concentration regime. Both flow and dynamic measurements showed that uncrosslinked collagen alone appears to be rather elastic with yield stress properties, whereas uncrosslinked HA alone appears to be rather shear thinning and viscoelastic in agreement with entangled polymer behaviour. Sericin exhibited Newtonian low viscosity behaviour according to its very low molar mass. Before crosslinking, HA exhibited viscoelastic behaviour at concentrations above the critical entangled concentration (C*) in the mixtures, thus HA shows promise as a matrix for future crosslinked networks, whereas sericin did not significantly modify the rheology. During the reaction, followed by rheology, the kinetics were slower for pure HA systems compared with the mixtures (i.e., with added collagen and/or to a lesser extent sericin). At the same time, the final network of hydrogels (i.e., the elastic modulus) was more structured in the mixture based systems. This result is explained by ester bonds (the only possibility for pure HA systems), which are less favourable and reactive than amide bonds (possible with sericin and collagen). The presence of collagen in the HA matrix reinforced the hydrogel network. SEM studies confirmed the structure of the hydrogels, and in vitro degradability was globally consistent with the effect of the selected enzyme according to the hydrogel composition. All the elaborated hydrogels were non-cytotoxic in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Humic Acids Enhanced U(VI) Attenuation in Acidic Waste Plumes: An In-situ Remediation Approach

    NASA Astrophysics Data System (ADS)

    Wan, J.; Dong, W.; Tokunaga, T. K.

    2010-12-01

    In the process of extracting plutonium for nuclear weapons production during the Cold War, large volumes of acidic waste solutions containing low-level radionuclides were discharged for decades into unlined seepage basins in several US Department of Energy (DOE) weapon facilities such as the Savannah River Site (SRS), Oak Ridge (OR), and 300 Area of the Hanford Site. Although the basins have been capped and some sites have gone through many years of active remediation, groundwaters currently remain acidic with pH values as low as 3.0 near the basins, and uranium concentrations remain much higher than its maximum contaminant level (MCL). A sustainable U biogeochemical remediation method has not yet been developed, especially under acidic conditions (pH 3-5). Bioreduction-based U remediation requires permanent maintenance of reducing conditions through indefinite supply of electron donor, and when applied in acidic plumes a high-cost pretreatment procedure is required. Methods based on precipitation of phosphate minerals depend on maintenance of high P concentrations. Precipitating of uranyl vanadates can lower U to below its MCL, but this approach is only effective at near-neutral pH. There is an urgent need for developing a sustainable method to control U mobility in acidic conditions. In this paper, we propose a method of using humic acids (HAs) to attenuate contaminant U mobility in acidic waste plumes. Our laboratory experiment results show that HAs are able to strongly and quickly adsorb onto aquifer sediments from the DOE’s SRS and OR. With a moderate addition of HA, U adsorption increased to near 100% at pH below 5.0. Because U partitioning onto the HA modified mineral surfaces is so strong, U concentration in groundwaters can be sustainably reduced to below its MCL. We conducted flow through experiments for U desorption by acidic groundwater leaching at pH 3.5 and 4.5 from HA-treated SRS contaminated sediments. The results show that desorption of both U

  2. ω-Oxidation of α-Chlorinated Fatty Acids

    PubMed Central

    Brahmbhatt, Viral V.; Albert, Carolyn J.; Anbukumar, Dhanalakshmi S.; Cunningham, Bryce A.; Neumann, William L.; Ford, David A.

    2010-01-01

    Myeloperoxidase-derived HOCl targets tissue- and lipoprotein-associated plasmalogens to generate α-chlorinated fatty aldehydes, including 2-chlorohexadecanal. Under physiological conditions, 2-chlorohexadecanal is oxidized to 2-chlorohexadecanoic acid (2-ClHA). This study demonstrates the catabolism of 2-ClHA by ω-oxidation and subsequent β-oxidation from the ω-end. Mass spectrometric analyses revealed that 2-ClHA is ω-oxidized in the presence of liver microsomes with initial ω-hydroxylation of 2-ClHA. Subsequent oxidation steps were examined in a human hepatocellular cell line (HepG2). Three different α-chlorinated dicarboxylic acids, 2-chlorohexadecane-(1,16)-dioic acid, 2-chlorotetradecane-(1,14)-dioic acid, and 2-chloroadipic acid (2-ClAdA), were identified. Levels of 2-chlorohexadecane-(1,16)-dioic acid, 2-chlorotetradecane-(1,14)-dioic acid, and 2-ClAdA produced by HepG2 cells were dependent on the concentration of 2-ClHA and the incubation time. Synthetic stable isotope-labeled 2-ClHA was used to demonstrate a precursor-product relationship between 2-ClHA and the α-chlorinated dicarboxylic acids. We also report the identification of endogenous 2-ClAdA in human and rat urine and elevations in stable isotope-labeled urinary 2-ClAdA in rats subjected to intraperitoneal administration of stable isotope-labeled 2-ClHA. Furthermore, urinary 2-ClAdA and plasma 2-ClHA levels are increased in LPS-treated rats. Taken together, these data show that 2-ClHA is ω-oxidized to generate α-chlorinated dicarboxylic acids, which include α-chloroadipic acid that is excreted in the urine. PMID:20956542

  3. Repair of rabbit cartilage defect based on the fusion of rabbit bone marrow stromal cells and Nano-HA/PLLA composite material.

    PubMed

    Zhu, Weimin; Guo, Daiqi; Peng, Liangquan; Chen, Yun Fang; Cui, Jiaming; Xiong, Jianyi; Lu, Wei; Duan, Li; Chen, Kang; Zeng, Yanjun; Wang, Daping

    2017-02-01

    Objective To assess the effect of the fusion of rabbit bone marrow stromal cells (rBMSCs) and Nano-hydroxyapatite/poly (l-lactic acid) (Nano-HA/PLLA) in repairing the rabbit knee joint with full-thickness cartilage defect. Method The rBMSCs were isolated and cultured in vitro, and the third generation of rBMSCs was co-cultured with the Nano-HA/PLLA to construct the tissue-engineered cartilage (TEC). Eighteen New Zealand white rabbits were selected and randomly divided into three groups, namely, TEC group, Nano-HA/PLLA group, and control group. A cartilage defect model with the diameter of 4.5 mm and depth of 5 mm was constructed on the articular surface of medial malleolus of rabbit femur. General observation, histological observation, and Wakitani's histological scoring were conducted in the 12th and 24th week postoperatively. Results The results of TEC group indicated that new cartilage tissue was formed on the defect site and subchondral bone achieved physiological integration basically. Histological and immunohistochemical analyses indicated the generation of massive extracellular matrix. In contrast, limited regeneration and reconstruction of cartilage was achieved in the Nano-HA/PLLA group and control group, with a significant difference from the TEC group (p < 0.05). Moreover, the effect of cartilage repair was positively correlated with time. Conclusion The porous Nano-HA/PLLA combined with BMSCs promoted the repair of weight-bearing bone of adult rabbit's knee joint with cartilage defect.

  4. Cytotoxic agents for KB and SiHa cells from n-hexane fraction of Cissampelos pareira and its chemical composition.

    PubMed

    Bala, Manju; Pratap, Kunal; Verma, Praveen Kumar; Padwad, Yogendra; Singh, Bikram

    2015-01-01

    Eleven constituents were characterised by gas chromatography-mass spectrometry analysis, and five molecules were isolated using column chromatography. The in vitro study of the extract and isolated molecules against KB and SiHa cell lines revealed oleanolic acid (1) and oleic acid (2) as potent cytotoxic molecules with potential anticancer activity. The IC50 values of n-hexane extract (CPHF), oleanolic acid (1) and oleic acid (2) were >300, 56.08 and 70.7 μg/mL (μM), respectively, against KB cell lines and >300, 47.24 and 80.2 μg/mL (μM), respectively, against SiHa cell lines.

  5. Antigenicity of the 2015–2016 seasonal H1N1 human influenza virus HA and NA proteins

    PubMed Central

    Anderson, Christopher S.; Wang, Jiong; Yang, Hongmei; Nogales, Aitor; Martinez-Sobrido, Luis; Zand, Martin S.; Sangster, Mark Y.; Topham, David J.

    2017-01-01

    Antigenic drift of the hemagglutinin (HA) and neuraminidase (NA) influenza virus proteins contributes to reduced vaccine efficacy. To analyze antigenic drift in human seasonal H1N1 viruses derived from the 2009 pandemic H1N1 virus (pH1N1-like viruses) accounts for the limited effectiveness (around 40%) of vaccination against pH1N1-like viruses during the 2015–2016 season, nasal washes/swabs collected from adult subjects in the Rochester, NY area, were used to sequence and isolate the circulating viruses. The HA and NA proteins from viruses circulating during the 2015–2016 season encoded eighteen and fourteen amino acid differences, respectively, when compared to A/California/04/2009, a strain circulating at the origin of the 2009 pandemic. The circulating strains belonged to subclade 6B.1, defined by HA amino acid substitutions S101N, S179N, and I233T. Hemagglutination-inhibiting (HAI) and HA-specific neutralizing serum antibody (Ab) titers from around 50% of pH1N1-like virus-infected subjects and immune ferrets were 2–4 fold lower for the 2015–2016 circulating strains compared to the vaccine strain. In addition, using a luminex-based mPlex HA assay, the binding of human sera from subjects infected with pH1N1-like viruses to the HA proteins from circulating and vaccine strains was not identical, strongly suggesting antigenic differences in the HA protein. Additionally, NA inhibition (NAI) Ab titers in human sera from pH1N1-like virus-infected subjects increased after the infection and there were measurable antigenic differences between the NA protein of circulating strains and the vaccine strain using both ferret and human antisera. Despite having been vaccinated, infected subjects exhibited low HAI Ab titers against the vaccine and circulating strains. This suggests that poor responses to the H1N1 component of the vaccine as well as antigenic differences in the HA and NA proteins of currently circulating pH1N1-like viruses could be contributing to risk of

  6. Randomized clinical trial between polyacrylate-polyalcohol copolymer (PPC) and dextranomer-hyaluronic acid copolymer (Dx/HA) as bulking agents for endoscopic treatment of primary vesicoureteral reflux (VUR).

    PubMed

    García-Aparicio, L; Blázquez-Gómez, E; Martin, O; Pérez-Bertólez, S; Arboleda, J; Soria, A; Tarrado, X

    2018-05-03

    To compare the radiological and clinical outcomes of endoscopic treatment of primary VUR using polyacrylate-polyalcohol copolymer (PPC-Vantris ® ) or dextranomer-hyaluronic acid copolymer (Dx/HA-Deflux ® ). From October 2014 to April 2017, patients with primary VUR grade III to V that needed endoscopic treatment (ET) were eligible for this randomized clinical trial. We excluded toilet-trained patients with lower urinary tract symptoms. Patients were randomized and allocated into two groups: PPC group and Dx/HA group. After endoscopic treatment a voiding cystourethrography (VCUG) was performed at 6 months; if VUR was still present a second ET was performed. Radiological success was considered if postoperative VUR grade was 0 and clinical success rate was considered if no more fUTI appeared during follow-up. Forty-six patients were eligible but 2 did not accept the trial. Forty-four patients with 73 refluxing ureters were included. PPC: 34 refluxing ureters; and Dx/HA: 39 refluxing ureters. Both groups were statistically homogeneous and comparable. Mean follow-up was 27.6 months. Radiological success rate (82.2%) and clinical success rate (92.3%) were similar in both groups (p > 0.05). The volume of bulking agent used in those successfully treated was greater in Dx/HA group (p < 0.05). Distal ureter was excise in all cases of ureteral reimplantation after PPC treatment; however, distal ureter was preserved in all ureters reimplanted after Dx/HA injection. PPC and Dx/HA had similar outcomes, but we must warn that ureteral reimplantation after endoscopic treatment with PPC is difficult because of the periureteral fibrosis.

  7. An in vivo evaluation of PLLA/PLLA-gHA nano-composite for internal fixation of mandibular bone fractures.

    PubMed

    Peng, Weihai; Zheng, Wei; Shi, Kai; Wang, Wangshu; Shao, Ying; Zhang, Duo

    2015-11-09

    Internal fixation of bone fractures using biodegradable poly(L-lactic-acid) (PLLA)-based materials has attracted the attention of many researchers. In the present study, 36 male beagle dogs were randomly assigned to two groups: PLLA/PLLA-gHA (PLLA-grafted hydroxyapatite) group and PLLA group. PLLA/PLLA-gHA and PLLA plates were embedded in the muscular bags of the erector spinae and also implanted to fix mandibular bone fractures in respective groups. At 1, 2, 3, 6, 9, and 12 months postoperatively, the PLLA/PLLA-gHA and PLLA plates were evaluated by adsorption and degradation tests, and the mandibles were examined through radiographic analysis, biomechanical testing, and histological analysis. The PLLA/PLLA-gHA plates were non-transparent and showed a creamy white color, and the PLLA plates were transparent and faint yellow in color. At all time points following surgery, adsorption and degradation of the PLLA/PLLA-gHA plates were significantly less than those of the PLLA plates, and the lateral and longitudinal bending strengths of the surgically treated mandibles of the beagle dogs in the PLLA/PLLA-gHA group were significantly greater than those of the PLLA group and reached almost the value of intact mandibles at 12 months postoperatively. Additionally, relatively rapid bone healing was observed in the PLLA/PLLA-gHA group with the formation of new lamellar bone tissues at 12 months after the surgery. The PLLA/PLLA-gHA nano-composite can be employed as a biodegradable material for internal fixation of mandibular bone fractures.

  8. Acid-base properties of humic substances from composted and thermally-dried sewage sludges and amended soils as determined by potentiometric titration and the NICA-Donnan model.

    PubMed

    Fernández, José M; Plaza, César; Senesi, Nicola; Polo, Alfredo

    2007-09-01

    The acid-base properties of humic acids (HAs) and fulvic acids (FAs) isolated from composted sewage sludge (CS), thermally-dried sewage sludge (TS), soils amended with either CS or TS at a rate of 80 t ha(-1)y(-1) for 3y and the corresponding unamended soil were investigated by use of potentiometric titrations. The non-ideal competitive adsorption (NICA)-Donnan model for a bimodal distribution of proton binding sites was fitted to titration data by use of a least-squares minimization method. The main fitting parameters of the NICA-Donnan model obtained for each HA and FA sample included site densities, median affinity constants and widths of affinity distributions for proton binding to low and high affinity sites, which were assumed to be, respectively, carboxylic- and phenolic-type groups. With respect to unamended soil HA and FA, the HAs and FAs from CS, and especially TS, were characterized by smaller acidic functional group contents, larger proton binding affinities of both carboxylic- and phenolic-type groups, and smaller heterogeneity of carboxylic and phenolic-type groups. Amendment with CS or TS led to a decrease of acidic functional group contents and a slight increase of proton binding affinities of carboxylic- and phenolic-type groups of soil HAs and FAs. These effects were more evident in the HA and FA fractions from CS-amended soil than in those from TS-amended soil.

  9. Liver-targeting self-assembled hyaluronic acid-glycyrrhetinic acid micelles enhance hepato-protective effect of silybin after oral administration.

    PubMed

    Han, Xiaofeng; Wang, Zhe; Wang, Manyuan; Li, Jing; Xu, Yongsong; He, Rui; Guan, Hongyu; Yue, Zhujun; Gong, Muxin

    2016-06-01

    In order to enhance oral bioavailability and liver targeting delivery of silybin, two amphiphilic hyaluronic acid derivatives, hyaluronic acid-deoxycholic acid (HA-adh-DOCA) and hyaluronic acid-glycyrrhetinic acid (HA-adh-GA) conjugates, were designed and synthesized. Silybin was successfully loaded in HA-adh-DOCA and HA-adh-GA micelles with high drug-loading capacities (20.3% ± 0.5% and 20.6% ± 0.6%, respectively). The silybin-loaded micelles were spherical in shape with the average size around 130 nm. In vitro release study showed that two silybin-loaded micelles displayed similar steady continued-release pattern in simulated gastrointestinal fluids and PBS. Single-pass intestinal perfusion studies indicated that silybin-loaded micelles were absorbed in the whole intestine and transported via a passive diffusion mechanism. Compared with suspension formulation, silybin-loaded HA-adh-DOCA and HA-adh-GA micelles achieved significantly higher AUC and Cmax level. Moreover, liver targeting drug delivery of micelles was confirmed by in vivo imaging analysis. In comparison between the two micellar formulations, HA-adh-GA micelles possessed higher targeting capacity than HA-adh-DOCA micelles, owing to the active hepatic targeting properties of glycyrrhetinic acid. In the treatment of acute liver injury induced by CCl4, silybin-loaded HA-adh-GA micelles displayed better effects over suspension control and silybin-loaded HA-adh-DOCA micelles. Overall, pharmaceutical and pharmacological indicators suggested that the HA-adh-GA conjugates can be successfully utilized for liver targeting of orally administered therapeutics.

  10. Comparative studies of various hyaluronic acids produced by microbial fermentation for potential topical ophthalmic applications.

    PubMed

    Guillaumie, Fanny; Furrer, Pascal; Felt-Baeyens, Olivia; Fuhlendorff, Birgit L; Nymand, Søren; Westh, Peter; Gurny, Robert; Schwach-Abdellaoui, Khadija

    2010-03-15

    This work presents a comparative study of various hyaluronic acids (HA) produced by fermentation of either Bacillus subtilis or Streptococcus towards the selection of an optimal molecular weight (MW) HA for the preparation of topical ophthalmic formulations. The influence of HA MW on water binding capacity, sterile filtration, rheological properties, precorneal residence time and ocular tolerance of ophthalmic solutions was investigated. Molecular weight did not affect hydration of hyaluronic acid according to differential scanning calorimetry (DSC). In general, medium MW HA (0.6-1 MDa) resulted in solutions that were superior in terms of sterile filtration and kinematic viscosity requirements compared to high MW HA (>1 MDa). Moreover, all HA-based solutions exhibited well-defined viscoelastic properties that depend on MW. Gamma scintigraphic data indicated that HA MW at 0.1% concentration (w/v) and HA origin did not significantly affect the corneal residence time on rabbit eyes. A 0.3% solution of high MW HA had a prolonged residence time in the precorneal area compared to a medium MW HA at the same concentration. Finally, an in vivo ocular irritation test based on confocal laser scanning ophthalmoscopy (CLSO) conclusively showed the excellent tolerance of both Bacillus-derived HA and Streptococcus-derived HA after topical instillation onto the corneal surface. Overall, this comprehensive work highlights the superiority of medium MW hyaluronic acid for topical ophthalmic formulations based on their physico-chemical and biological properties, tolerance and handling. Such solutions are expected to enhance tear film stability, to allow for maximum comfort, and to exhibit high residence times, while being biocompatible and easy to sterile filter. (c) 2009 Wiley Periodicals, Inc.

  11. Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy

    PubMed Central

    Wickens, Jennifer M.; Alsaab, Hashem O.; Kesharwani, Prashant; Bhise, Ketki; Amin, Mohd Cairul Iqbal Mohd; Tekade, Rakesh Kumar; Gupta, Umesh; Iyer, Arun K.

    2016-01-01

    The cluster-determinant 44 (CD44) receptor has a high affinity for hyaluronic acid (HA) binding and is a desirable receptor for active targeting based on its overexpression in cancer cells compared with normal body cells. The nanocarrier affinity can be increased by conjugating drug-loaded carriers with HA, allowing enhanced cancer cell uptake via the HA-CD44 receptor-mediated endocytosis pathway. In this review, we discuss recent advances in HA-based nanocarriers and micelles for cancer therapy. In vitro and in vivo experiments have repeatedly indicated HA-based nanocarriers to be a target-specific drug and gene delivery platform with great promise for future applications in clinical cancer therapy. PMID:28017836

  12. Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy.

    PubMed

    Wickens, Jennifer M; Alsaab, Hashem O; Kesharwani, Prashant; Bhise, Ketki; Amin, Mohd Cairul Iqbal Mohd; Tekade, Rakesh Kumar; Gupta, Umesh; Iyer, Arun K

    2017-04-01

    The cluster-determinant 44 (CD44) receptor has a high affinity for hyaluronic acid (HA) binding and is a desirable receptor for active targeting based on its overexpression in cancer cells compared with normal body cells. The nanocarrier affinity can be increased by conjugating drug-loaded carriers with HA, allowing enhanced cancer cell uptake via the HA-CD44 receptor-mediated endocytosis pathway. In this review, we discuss recent advances in HA-based nanocarriers and micelles for cancer therapy. In vitro and in vivo experiments have repeatedly indicated HA-based nanocarriers to be a target-specific drug and gene delivery platform with great promise for future applications in clinical cancer therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A Modified ELISA Accurately Measures Secretion of High Molecular Weight Hyaluronan (HA) by Graves' Disease Orbital Cells

    PubMed Central

    Krieger, Christine C.

    2014-01-01

    Excess production of hyaluronan (hyaluronic acid [HA]) in the retro-orbital space is a major component of Graves' ophthalmopathy, and regulation of HA production by orbital cells is a major research area. In most previous studies, HA was measured by ELISAs that used HA-binding proteins for detection and rooster comb HA as standards. We show that the binding efficiency of HA-binding protein in the ELISA is a function of HA polymer size. Using gel electrophoresis, we show that HA secreted from orbital cells is primarily comprised of polymers more than 500 000. We modified a commercially available ELISA by using 1 million molecular weight HA as standard to accurately measure HA of this size. We demonstrated that IL-1β-stimulated HA secretion is at least 2-fold greater than previously reported, and activation of the TSH receptor by an activating antibody M22 from a patient with Graves' disease led to more than 3-fold increase in HA production in both fibroblasts/preadipocytes and adipocytes. These effects were not consistently detected with the commercial ELISA using rooster comb HA as standard and suggest that fibroblasts/preadipocytes may play a more prominent role in HA remodeling in Graves' ophthalmopathy than previously appreciated. PMID:24302624

  14. Modulating protein adsorption onto hydroxyapatite particles using different amino acid treatments

    PubMed Central

    Lee, Wing-Hin; Loo, Ching-Yee; Van, Kim Linh; Zavgorodniy, Alexander V.; Rohanizadeh, Ramin

    2012-01-01

    Hydroxyapatite (HA) is a material of choice for bone grafts owing to its chemical and structural similarities to the mineral phase of hard tissues. The combination of osteogenic proteins with HA materials that carry and deliver the proteins to the bone-defective areas will accelerate bone regeneration. The study investigated the treatment of HA particles with different amino acids such as serine (Ser), asparagine (Asn), aspartic acid (Asp) and arginine (Arg) to enhance the adsorption ability of HA carrier for delivering therapeutic proteins to the body. The crystallinity of HA reduced when amino acids were added during HA preparation. Depending on the types of amino acid, the specific surface area of the amino acid-functionalized HA particles varied from 105 to 149 m2 g–1. Bovine serum albumin (BSA) and lysozyme were used as model proteins for adsorption study. The protein adsorption onto the surface of amino acid-functionalized HA depended on the polarities of HA particles, whereby, compared with lysozyme, BSA demonstrated higher affinity towards positively charged Arg-HA. Alternatively, the binding affinity of lysozyme onto the negatively charged Asp-HA was higher when compared with BSA. The BSA and lysozyme adsorptions onto the amino acid-functionalized HA fitted better into the Freundlich than Langmuir model. The amino acid-functionalized HA particles that had higher protein adsorption demonstrated a lower protein-release rate. PMID:21957116

  15. Regulation of Hyaluronan (HA) Metabolism Mediated by HYBID (Hyaluronan-binding Protein Involved in HA Depolymerization, KIAA1199) and HA Synthases in Growth Factor-stimulated Fibroblasts.

    PubMed

    Nagaoka, Aya; Yoshida, Hiroyuki; Nakamura, Sachiko; Morikawa, Tomohiko; Kawabata, Keigo; Kobayashi, Masaki; Sakai, Shingo; Takahashi, Yoshito; Okada, Yasunori; Inoue, Shintaro

    2015-12-25

    Regulation of hyaluronan (HA) synthesis and degradation is essential to maintenance of extracellular matrix homeostasis. We recently reported that HYBID (HYaluronan-Binding protein Involved in hyaluronan Depolymerization), also called KIAA1199, plays a key role in HA depolymerization in skin and arthritic synovial fibroblasts. However, regulation of HA metabolism mediated by HYBID and HA synthases (HASs) under stimulation with growth factors remains obscure. Here we report that TGF-β1, basic FGF, EGF, and PDGF-BB commonly enhance total amount of HA in skin fibroblasts through up-regulation of HAS expression, but molecular size of newly produced HA is dependent on HYBID expression levels. Stimulation of HAS1/2 expression and suppression of HYBID expression by TGF-β1 were abrogated by blockade of the MAPK and/or Smad signaling and the PI3K-Akt signaling, respectively. In normal human skin, expression of the TGF-β1 receptors correlated positively with HAS2 expression and inversely with HYBID expression. On the other hand, TGF-β1 up-regulated HAS1/2 expression but exerted only a slight suppressive effect on HYBID expression in synovial fibroblasts from the patients with osteoarthritis or rheumatoid arthritis, resulting in the production of lower molecular weight HA compared with normal skin and synovial fibroblasts. These data demonstrate that although TGF-β1, basic FGF, EGF, and PDGF-BB enhance HA production in skin fibroblasts, TGF-β1 most efficiently contributes to production of high molecular weight HA by HAS up-regulation and HYBID down-regulation and suggests that inefficient down-regulation of HYBID by TGF-β1 in arthritic synovial fibroblasts may be linked to accumulation of depolymerized HA in synovial fluids in arthritis patients. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Minor histocompatibility antigen HA-1 and HA-2 polymorphisms in Taiwan: frequency and application in hematopoietic stem cell transplantation.

    PubMed

    Lio, Hoi-Yan; Tang, Jih-Luh; Wu, Jui; Wu, Shang-Ju; Lin, Chun-Ying; Yang, Ya-Chien

    2010-09-01

    Minor histocompatibility antigens influence the occurrence of graft-vs.-host disease and graft-vs.-leukemia effects after hematopoietic stem cell transplantation (HSCT). We determined the population frequencies of HA-1 and HA-2 alleles in Taiwan and exploited their potential applications in allogeneic HSCT. HA-1 and HA-2 were genotyped using polymerase chain reaction and restriction fragment length polymorphism in healthy controls (221 for HA-1 and 306 for HA-2) and HLA-matched donor-recipient sibling pairs with HSCT (92 for HA-1 and 38 for HA-2). The association of genetic polymorphisms with HSCT outcome was evaluated by univariate and multivariate analyses. The allele frequencies in controls were 35.3% and 64.7% for HA-1(H) and HA-1(R), and 89.0% and 11.0% for HA-2(V) and HA-2(M), respectively. HA-1 disparity was denoted in 16.3% of HLA-matched donor-recipient sibling pairs, while it was not associated with HSCT outcome. HA-2 disparity was not observed in the donor-recipient pairs studied. The possibilities of using HA-1 and HA-2 variabilities as molecular markers for hematopoietic chimerism after HSCT were 39.2% and 18.4%, respectively. Our data provide the information on allele and genotype frequencies of HA-1 and HA-2 in a Taiwanese population, and suggest that prospective genomic typing for HA-1 and HA-2 alleles of the donor and recipient could be a useful approach for molecular identification of hematopoietic chimerism after HSCT, rather than prognosis of clinical outcome.

  17. Intracellular trafficking of hyaluronic acid-chitosan oligomer-based nanoparticles in cultured human ocular surface cells.

    PubMed

    Contreras-Ruiz, Laura; de la Fuente, María; Párraga, Jenny E; López-García, Antonio; Fernández, Itziar; Seijo, Begoña; Sánchez, Alejandro; Calonge, Margarita; Diebold, Yolanda

    2011-01-27

    Nanoparticles are a promising alternative for ocular drug delivery, and our group has proposed that they are especially suited for ocular mucosal disorders. The goal of the present study was to determine which internalization pathway is used by cornea-derived and conjunctiva-derived cell lines to take up hyaluronic acid (HA)-chitosan oligomer (CSO)-based nanoparticles (HA-CSO NPs). We also determined if plasmids loaded onto the NPs reached the cell nucleus. HA-CSO NPs were made of fluoresceinamine labeled HA and CSO by ionotropic gelation and were conjugated with a model plasmid DNA for secreted alkaline phosphatase. Human epithelial cell lines derived from the conjunctiva and the cornea were exposed to HA-CSO NPs for 1 h and the uptake was investigated in living cells by fluorescence microscopy. The influence of temperature and metabolic inhibition, the effect of blocking hyaluronan receptors, and the inhibition of main endocytic pathways were studied by fluorometry. Additionally, the metabolic pathways implicated in the degradation of HA-CSO NPs were evaluated by lysosome identification. There was intracellular localization of plasmid-loaded HACSO NPs in both corneal and conjunctival cells. The intracellular presence of NPs diminished with time. HA-CSO NP uptake was significantly reduced by inhibition of active transport at 4 °C and by sodium azide. Uptake was also inhibited by blocking hyaluronan receptors with anti-CD44 Hermes-1 antibody, by excess HA, and by filipin, an inhibitor of caveolin-dependent endocytosis. HA-CSO NPs had no effect on cell viability. The transfection efficiency of the model plasmid was significantly higher in NP treated cells than in controls. HA-CSO NPs were internalized by two different ocular surface cell lines by an active transport mechanism. The uptake was mediated by hyaluronan receptors through a caveolin-dependent endocytic pathway, yielding remarkable transfection efficiency. Most of HA-CSO NPs were metabolized within 48 h

  18. Acid-Base Homeostasis

    PubMed Central

    Nakhoul, Nazih; Hering-Smith, Kathleen S.

    2015-01-01

    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3− and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3− is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys. PMID:26597304

  19. Intracellular delivery and antitumor effects of a redox-responsive polymeric paclitaxel conjugate based on hyaluronic acid.

    PubMed

    Yin, Shaoping; Huai, Jue; Chen, Xi; Yang, Yong; Zhang, Xinxin; Gan, Yong; Wang, Guangji; Gu, Xiaochen; Li, Juan

    2015-10-01

    Polymer-drug conjugates have demonstrated application potentials in optimizing chemotherapeutics. In this study a new bioconjugate, HA-ss-PTX, was designed and synthesized with cooperative dual characteristics of active tumor targeting and selective intracellular drug release. Paclitaxel (PTX) was covalently attached to hyaluronic acid (HA) with various sizes (MW 9.5, 35, 770 kDa); a cross-linker containing disulfide bond was also used to shield drug leakage in blood circulation and to achieve rapid drug release in tumor cells in response to glutathione. Incorporation of HA to the conjugate enhanced the capabilities of drug loading, intracellular endocytosis and tumor targeting of micelles in comparison to mPEG. HA molecular weight showed significant effect on properties and antitumor efficacy of the synthesized conjugates. Intracellular uptake of HA-ss-PTX toward MCF-7 cells was mediated by CD44-caveolae-mediated endocytosis. Compared to Taxol and mPEG-ss-PTX, HA9.5-ss-PTX demonstrated improved tumor growth inhibition in vivo with a TIR of 83.27 ± 5.20%. It was concluded that HA9.5-ss-PTX achieved rapid intracellular release of PTX and enhanced its therapeutic efficacy, thus providing a platform for specific drug targeting and controlled intracellular release in chemotherapeutics. Polymer-drug conjugates, promising nanomedicines, still face some technical challenges including a lack of specific targeting and rapid intracellular drug release at the target site. In this manuscript we designed and constructed a novel bioconjugate HA-ss-PTX, which possessed coordinated dual characteristics of active tumor targeting and selective intracellular drug release. Redox-responsive disulfide bond was introduced to the conjugate to shield drug leakage in blood circulation and to achieve rapid drug release at tumor site in response to reductant like glutathione. Paclitaxel was selected as a model drug to be covalently attached to hyaluronic acid (HA) with various sizes to

  20. An Influenza HA and M2e Based Vaccine Delivered by a Novel Attenuated Salmonella Mutant Protects Mice against Homologous H1N1 Infection.

    PubMed

    Hajam, Irshad A; Lee, John H

    2017-01-01

    Attenuated Salmonella strains constitute a promising technology for the development of a more efficient multivalent protein based vaccines. In this study, we constructed a novel attenuated strain of Salmonella for the delivery and expression of the H1N1 hemagglutinin (HA) and the conserved extracellular domain of the matrix protein 2 (M2e). We demonstrated that the constructed Salmonella strain exhibited efficient HA and M2e protein expressions and little cytotoxicity and pathogenicity in mice. Using BALB/c mice as the model, we showed that the mice vaccinated with a Salmonella strain expressing HA and M2e protein antigens, respectively, induced significant production of HA and M2e-specific serum IgG1 and IgG2a responses, and of anti-HA interferon-γ producing T cells. Furthermore, immunization with Salmonella-HA-M2e-based vaccine via different routes provided protection in 66.66% orally, 100% intramuscularly, and 100% intraperitoneally immunized mice against the homologous H1N1 virus while none of the animals survived treated with either the PBS or the Salmonella carrying empty expression vector. Ex vivo stimulated dendritic cells (DCs) with heat killed Salmonella expressing HA demonstrated that DCs play an important role in the elicitation of HA-specific humoral immune responses in mice. In summary, Salmonella -HA-M2e-based vaccine elicits efficient antigen-specific humoral and cellular immune responses, and provides significant immune protection against a highly pathogenic H1N1 influenza virus.

  1. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    ERIC Educational Resources Information Center

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  2. 3D-printed scaffolds based on PLA/HA nanocomposites for trabecular bone reconstruction

    NASA Astrophysics Data System (ADS)

    Niaza, K. V.; Senatov, F. S.; Kaloshkin, S. D.; Maksimkin, A. V.; Chukov, D. I.

    2016-08-01

    In the present work porous PLA scaffolds filled with micro- and nano- HA were studied. Both composites with micro- and nano-HA were obtained by extrusion in the same conditions. Scaffolds were obtained by 3D-printing by fused filament fabrication method. Structure of porous scaffolds was pre-modeled by computer software. Compression and three - point flexural tests were used to study mechanical properties of the scaffolds.

  3. In vitro testing of calcium phosphate (HA, TCP, and biphasic HA-TCP) whiskers.

    PubMed

    Jalota, Sahil; Bhaduri, Sarit B; Tas, A Cuneyt

    2006-09-01

    Calcium phosphate [single-phase hydroxyapatite (HA, Ca(10)(PO(4))(6)(OH)(2)), single-phase tricalcium phosphate (beta-TCP, Ca(3)(PO(4))(2)), and biphasic HA-TCP] whiskers were formed by using a novel microwave-assisted molten salt mediated process. Aqueous solutions containing NaNO(3), HNO(3), Ca(NO(3))(2) x 4H(2)O, and KH(2)PO(4) (with or without urea) were used as starting reagents. These solutions were irradiated in a household microwave oven for 5 min. As-recovered precursors were then simply stirred in water at room temperature for 1 h to obtain the whiskers of the desired calcium phosphate (CaP) bioceramics. These whiskers were evaluated, respectively, in vitro by (1) soaking those in synthetic body fluid (SBF) solutions at 37 degrees C for one week, and (2) performing cell attachment and total protein assay tests on the neat whiskers by using a mouse osteoblast cell line (7F2). beta-TCP, HA, and HA-TCP biphasic whiskers were all found to possess apatite-inducing ability when soaked in SBF. SBF-soaked whiskers were found to have BET surface areas ranging from 45 to 112 m(2)/g. Although the osteoblast viability and protein concentrations were found to be the highest on the neat HA whiskers, cells were attached and proliferated on all the whiskers.

  4. Photo-crosslinked hyaluronic acid coated upconverting nanoparticles

    NASA Astrophysics Data System (ADS)

    Mrazek, Jiri; Kettou, Sofiane; Matuska, Vit; Svozil, Vit; Huerta-Angeles, Gloria; Pospisilova, Martina; Nesporova, Kristina; Velebny, Vladimir

    2017-02-01

    Hyaluronic acid (HA)-coated inorganic nanoparticles display enhanced interaction with the CD44 receptors which are overexpressed in many types of cancer cells. Here, we describe a modification of core-shell β-NaY0.80Yb0.18Er0.02F4@NaYF4 nanoparticles (UCNP) by HA derivative bearing photo-reactive groups. UCNP capped with oleic acid were firstly transferred to aqueous phase by an improved protocol using hydrochloric acid or lactic acid treatment. Subsequently, HA bearing furanacryloyl moieties (HA-FU) was adsorbed on the nanoparticle surface and crosslinked by UV irradiation. The crosslinking resulted in stable HA coating, and no polymer desorption was observed. As-prepared UCNP@HA-FU show a hydrodynamic diameter of about 180 nm and are colloidally stable in water and cell culture media. The cellular uptake by normal human fibroblasts and MDA MB-231 cancer cell line was investigated by upconversion luminescence imaging.

  5. Effect of Humic Acid on As Redox Transformation and Kinetic Adsorption onto Iron Oxide Based Adsorbent (IBA)

    PubMed Central

    Fakour, Hoda; Lin, Tsair-Fuh

    2014-01-01

    Due to the importance of adsorption kinetics and redox transformation of arsenic (As) during the adsorption process, the present study elucidated natural organic matter (NOM) effects on As adsorption-desorption kinetics and speciation transformation. The experimental procedures were conducted by examining interactions of arsenate and arsenite with different concentrations of humic acid (HA) as a model representative of NOM, in the presence of iron oxide based adsorbent (IBA), as a model solid surface in three environmentally relevant conditions, including the simultaneous adsorption of both As and HA onto IBA, HA adsorption onto As-presorbed IBA, and As adsorption onto HA-presorbed IBA. Experimental adsorption-desorption data were all fitted by original and modified Lagergren pseudo-first and -second order adsorption kinetic models, respectively. Weber’s intraparticle diffusion was also used to gain insight into the mechanisms and rate controlling steps, which the results suggested that intraparticle diffusion of As species onto IBA is the main rate-controlling step. Different concentrations of HA mediated the redox transformation of As species, with a higher oxidation ability than reduction. The overall results indicated the significant effect of organic matter on the adsorption kinetics and redox transformation of As species, and consequently, the fate, transport and mobility of As in different environmentally relevant conditions. PMID:25325357

  6. Inclusion complex from cyclodextrin-grafted hyaluronic acid and pseudo protein as biodegradable nano-delivery vehicle for gambogic acid.

    PubMed

    Ji, Ying; Shan, Shuo; He, Mingyu; Chu, Chih-Chang

    2017-10-15

    β-Cyclodextrin can form inclusion complex with a series of guest molecules including phenyl moieties, and has gained considerable popularity in the study of supramolecular nanostructure. In this study, a biodegradable nanocomplex (HA(CD)-4Phe4 nanocomplex) was developed from β-cyclodextrin grafted hyaluronic acid (HA) and phenylalanine based poly(ester amide). The phenylalanine based poly(ester amide) is a biodegradable pseudo protein which provides the encapsulation capacity for gambogic acid (GA), a naturally-derived chemotherapeutic which has been effectively employed to treat multidrug resistant tumor. The therapeutic potency of free GA is limited due to its poor solubility in water and the lack of tumor-selective toxicity. The nanocomplex carrier enhanced the solubility and availability of GA in aqueous media, and the HA component enabled the targeted delivery to tumor cells with overexpression of CD44 receptors. In the presence of hyaluronidase, the release of GA from the nanocomplex was significantly accelerated, due to the enzymatic biodegradation of the carrier. Compared to free GA, GA-loaded nanocomplex exhibited improved cytotoxicity in MDA-MB-435/MDR multidrug resistant melanoma cells, and induced enhanced level of apoptosis and mitochondrial depolarization, at low concentration of GA (1-2µM). The nanocomplex enhanced the therapeutic potency of GA, especially when diluted in physiological environment. In addition, suppressed matrix metalloproteinase activity was also detected in MDA-MB-435/MDR cells treated by GA-loaded nanocomplex, which demonstrated its potency in the inhibition of tumor metastasis. The in vitro data suggested that HA(CD)-4Phe4 nanocomplex could provide a promising alternative in the treatment of multidrug resistant tumor cells. Gambogic acid (GA), naturally derived from genus Garcinia trees, exhibited significant cytotoxic activity against multiple types of tumors with resistance to traditional chemotherapeutics. Unfortunately

  7. Humic Acid-Oxidizing, Nitrate-Reducing Bacteria in Agricultural Soils

    PubMed Central

    Van Trump, J. Ian; Wrighton, Kelly C.; Thrash, J. Cameron; Weber, Karrie A.; Andersen, Gary L.; Coates, John D.

    2011-01-01

    ABSTRACT This study demonstrates the prevalence, phylogenetic diversity, and physiology of nitrate-reducing microorganisms capable of utilizing reduced humic acids (HA) as electron donors in agricultural soils. Most probable number (MPN) enumeration of agricultural soils revealed large populations (104 to 106 cells g−1 soil) of microorganisms capable of reducing nitrate while oxidizing the reduced HA analog 2,6-anthrahydroquinone disulfonate (AH2DS) to its corresponding quinone. Nitrate-dependent HA-oxidizing organisms isolated from agricultural soils were phylogenetically diverse and included members of the Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Advective up-flow columns inoculated with corn plot soil and amended with reduced HA and nitrate supported both HA oxidation and enhanced nitrate reduction relative to no-donor or oxidized HA controls. The additional electron donating capacity of reduced HA could reasonably be attributed to the oxidation of reduced functional groups. Subsequent 16S rRNA gene-based high-density oligonucleotide microarray (PhyloChip) indicated that reduced HA columns supported the development of a bacterial community enriched with members of the Acidobacteria, Firmicutes, and Betaproteobacteria relative to the no-donor control and initial inoculum. This study identifies a previously unrecognized role for HA in stimulating denitrification processes in saturated soil systems. Furthermore, this study indicates that reduced humic acids impact soil geochemistry and the indigenous bacterial community composition. PMID:21750120

  8. Hyaluronic Acid (HA)-Polyethylene glycol (PEG) as injectable hydrogel for intervertebral disc degeneration patients therapy

    NASA Astrophysics Data System (ADS)

    Putri Kwarta, Cityta; Widiyanti, Prihartini; Siswanto

    2017-05-01

    Chronic Low Back Pain (CLBP) is one health problem that is often encountered in a community. Inject-able hydrogels are the newest way to restore the disc thickness and hydration caused by disc degeneration by means of minimally invasive surgery. Thus, polymers can be combined to improve the characteristic properties of inject-able hydrogels, leading to use of Hyaluronic Acid (a natural polymer) and Polyethylene glycol (PEG) with Horse Radish Peroxide (HRP) cross linker enzymes. The swelling test results, which approaches were the ideal disc values, were sampled with variation of enzyme concentrations of 0.25 µmol/min/mL. The enzyme concentrations were 33.95%. The degradation test proved that the sample degradation increased along with the decrease of the HRP enzyme concentration. The results of the cytotoxicity assay with MTT assay method showed that all samples resulted in the 90% of living cells are not toxic. In vitro injection, models demonstrated that higher concentration of the enzymes was less state of gel which would rupture when released from the agarose gel. The functional group characterization shows the cross linking bonding in sample with enzyme adding. The conclusion of this study is PEG-HA-HRP enzyme are safe polymer composites which have a potential to be applied as an injectable hydrogel for intervertebral disc degeneration.

  9. Effect of bioactive extruded PLA/HA composite films on focal adhesion formation of preosteoblastic cells.

    PubMed

    Persson, Maria; Lorite, Gabriela S; Kokkonen, Hanna E; Cho, Sung-Woo; Lehenkari, Petri P; Skrifvars, Mikael; Tuukkanen, Juha

    2014-09-01

    The quality of the initial cell attachment to a biomaterial will influence any further cell function, including spreading, proliferation, differentiation and viability. Cell attachment is influenced by the material's ability to adsorb proteins, which is related to the surface chemistry and topography of the material. In this study, we incorporated hydroxyapatite (HA) particles into a poly(lactic acid) (PLA) composite and evaluated the surface structure and the effects of HA density on the initial cell attachment in vitro of murine calvarial preosteoblasts (MC3T3-EI). Scanning electron microscopy (SEM), atomic force microscopy (AFM) and infrared spectroscopy (FTIR) showed that the HA particles were successfully incorporated into the PLA matrix and located at the surface which is of importance in order to maintain the bioactive effect of the HA particles. SEM and AFM investigation revealed that the HA density (particles/area) as well as surface roughness increased with HA loading concentration (i.e. 5, 10, 15 and 20wt%), which promoted protein adsorption. Furthermore, the presence of HA on the surface enhanced cell spreading, increased the formation of actin stress fibers and significantly improved the expression of vinculin in MC3T3-E1 cells which is a key player in the regulation of cell adhesion. These results suggest the potential utility of PLA/HA composites as biomaterials for use as a bone substitute material and in tissue engineering applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Experimental determination and modeling of arsenic complexation with humic and fulvic acids.

    PubMed

    Fakour, Hoda; Lin, Tsair-Fuh

    2014-08-30

    The complexation of humic acid (HA) and fulvic acid (FA) with arsenic (As) in water was studied. Experimental results indicate that arsenic may form complexes with HA and FA with a higher affinity for arsenate than for arsenite. With the presence of iron oxide based adsorbents, binding of arsenic to HA/FA in water was significantly suppressed, probably due to adsorption of As and HA/FA. A two-site ligand binding model, considering only strong and weak site types of binding affinity, was successfully developed to describe the complexation of arsenic on the two natural organic fractions. The model showed that the numbers of weak sites were more than 10 times those of strong sites on both HA and FA for both arsenic species studied. The numbers of both types of binding sites were found to be proportional to the HA concentrations, while the apparent stability constants, defined for describing binding affinity between arsenic and the sites, are independent of the HA concentrations. To the best of our knowledge, this is the first study to characterize the impact of HA concentrations on the applicability of the ligand binding model, and to extrapolate the model to FA. The obtained results may give insights on the complexation of arsenic in HA/FA laden groundwater and on the selection of more effective adsorption-based treatment methods for natural waters. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Interaction of humic acids and humic-acid-like polymers with herpes simplex virus type 1

    NASA Astrophysics Data System (ADS)

    Klöcking, Renate; Helbig, Björn

    The study was performed in order to compare the antiviral activity against herpes simplex virus type 1 (HSV-1) of synthetic humic-acid-like polymers to that of their low-molecular-weight basic compounds and naturally occurring humic acids (HA) in vitro. HA from peat water showed a moderate antiviral activity at a minimum effective concentration (MEC) of 20 µg/ml. HA-like polymers, i.e. the oxidation products of caffeic acid (KOP), hydrocaffeic acid (HYKOP), chlorogenic acid (CHOP), 3,4-dihydroxyphenylacetic acid (3,4-DHPOP), nordihydroguaretic acid (NOROP), gentisinic acid (GENOP), pyrogallol (PYROP) and gallic acid (GALOP), generally inhibit virus multiplication, although with different potency and selectivity. Of the substances tested, GENOP, KOP, 3,4-DHPOP and HYKOP with MEC values in the range of 2 to 10 µg/ml, proved to be the most potent HSV-1 inhibitors. Despite its lower antiviral potency (MEC 40 µg/ml), CHOP has a remarkable selectivity due to the high concentration of this polymer that is tolerated by the host cells (>640 µg/ml). As a rule, the antiviral activity of the synthetic compounds was restricted to the polymers and was not preformed in the low-molecular-weight basic compounds. This finding speaks in favour of the formation of antivirally active structures during the oxidative polymerization of phenolic compounds and, indirectly, of corresponding structural parts in different HA-type substances.

  12. Increased Level of α2,6-Sialylated Glycans on HaCaT Cells Induced by Titanium Dioxide Nanoparticles under UV Radiation

    PubMed Central

    Liu, Xin; Geng, Runqing; Rao, Rong; Tan, Xi; Yang, Xiangliang; Liu, Wei

    2018-01-01

    As one of the most widely used nanomaterials, the safety of nano-TiO2 for human beings has raised concern in recent years. Sialylation is an important glycosylation modification that plays a critical role in signal transduction, apoptosis, and tumor metastasis. The aim of this work was to investigate the cytotoxicity and phototoxicity of nano-TiO2 with different crystalline phases for human skin keratinocytes (HaCaT cells) under ultraviolet (UV) irradiation and detect sialic acid alterations. The results showed that the mixture of crystalline P25 had the highest cytotoxicity and phototoxicity, followed by pure anatase A25, whereas pure rutile R25 had the lowest cytotoxicity and phototoxicity. A25 and R25 had no effects on the expression of sialic acids on HaCaT cells. However, HaCaT cells treated with P25 and UV showed an increased level of alterations in α2,6-linked sialic acids, which was related to the level of reactive oxygen species (ROS) generated by nano-TiO2 and UV. The abundance of α2,6-linked sialic acids increased as ROS production increased, and vice versa. Antioxidant vitamin C (VC) reversed the abnormal expression of α2,6-linked sialic acids caused by nano-TiO2 and protected cells by eliminating ROS. These findings indicate that nano-TiO2 can alter the sialylation status of HaCaT cells under UV irradiation in a process mediated by ROS. PMID:29671762

  13. Injectable In Situ Forming Biodegradable Chitosan-Hyaluronic acid Based Hydrogels for Cartilage Tissue Engineering

    PubMed Central

    Tan, Huaping; Chu, Constance R.; Payne, Karin; Marra, Kacey G.

    2009-01-01

    Injectable, biodegradable scaffolds are important biomaterials for tissue engineering and drug delivery. Hydrogels derived from natural polysaccharides are ideal scaffolds as they resemble the extracellular matrices of tissues comprised of various glycosaminoglycans (GAG). Here, we report a new class of biocompatible and biodegradable composite hydrogels derived from water-soluble chitosan and oxidized hyaluronic acid upon mixing, without the addition of a chemical crosslinking agent. The gelation is attributed to the Schiff-base reaction between amino and aldehyde groups of polysaccharide derivatives. In the current work, N-succinyl-chitosan (S-CS) and aldehyde hyaluronic acid (A-HA) were synthesized for preparation of the composite hydrogels. The polysaccharide derivatives and composite hydrogels were characterized by FTIR spectroscopy. The effect of the ratio of S-CS and A-HA on the gelation time, microstructure, surface morphology, equilibrium swelling, compressive modulus, and in vitro degradation of composite hydrogels was examined. The potential of the composite hydrogel as an injectable scaffold was demonstrated by encapsulation of bovine articular chondrocytes within the composite hydrogel matrix in vitro. The results demonstrated that the composite hydrogel supported cell survival and the cells retained chondrocytic morphology. These characteristics provide a potential opportunity to use the injectable, composite hydrogels in tissue engineering applications. PMID:19167750

  14. The Effects of Topically Applied Glycolic Acid and Salicylic Acid on Ultraviolet Radiation-Induced Erythema, DNA Damage and Sunburn Cell Formation in Human Skin

    PubMed Central

    Kornhauser, Andrija; Wei, Rong-Rong; Yamaguchi, Yuji; Coelho, Sergio G.; Kaidbey, Kays; Barton, Curtis; Takahashi, Kaoruko; Beer, Janusz Z.; Miller, Sharon A.; Hearing, Vincent J.

    2009-01-01

    Background α-Hydroxy acidsHA) are reported to reduce signs of aging in the skin and are widely used cosmetic ingredients. Several studies suggest that αHA can increase the sensitivity of skin to ultraviolet radiation. More recently, β-hydroxy acidsHA), or combinations of αHA and βHA have also been incorporated into antiaging skin care products. Concerns have also arisen about increased sensitivity to ultraviolet radiation following use of skin care products containing β-HA. Objective To determine whether topical treatment with glycolic acid, a representative αHA, or with salicylic acid, a βHA, modifies the short-term effects of solar simulated radiation (SSR) in human skin. Methods Fourteen subjects participated in this study. Three of the four test sites on the mid-back of each subject were treated daily Monday - Friday, for a total of 3.5 weeks, with glycolic acid (10%), salicylic acid (2%), or vehicle (control). The fourth site received no treatment. After the last treatment, each site was exposed to SSR, and shave biopsies from all 4 sites were obtained. The endpoints evaluated in this study were erythema (assessed visually and instrumentally), DNA damage and sunburn cell formation. Results Treatment with glycolic acid resulted in increased sensitivity of human skin to SSR, measured as an increase in erythema, DNA damage and sunburn cell formation. Salicylic acid did not produce significant changes in any of these biomarkers. Conclusions Short-term topical application of glycolic acid in a cosmetic formulation increased the sensitivity of human skin to SSR, while a comparable treatment with salicylic acid did not. PMID:19411163

  15. A Hydroxamic Acid Anchoring Group for Durable Dye-Sensitized Solar Cells Incorporating a Cobalt Redox Shuttle.

    PubMed

    Higashino, Tomohiro; Kurumisawa, Yuma; Cai, Ning; Fujimori, Yamato; Tsuji, Yukihiro; Nimura, Shimpei; Packwood, Daniel M; Park, Jaehong; Imahori, Hiroshi

    2017-09-11

    A hydroxamic acid group has been employed for the first time as an anchoring group for cobalt-based dye-sensitized solar cells (DSSCs). The porphyrin dye YD2-o-C8HA including a hydroxamic acid anchoring group exhibited a power conversion efficiency (η) of 6.4 %, which is close to that of YD2-o-C8, a representative porphyrin dye incorporating a conventional carboxylic acid. More importantly, YD2-o-C8HA was found to be superior to YD2-o-C8 in terms of both binding ability to TiO 2 and durability of cobalt-based DSSCs. Notably, YD2-o-C8HA photocells revealed a higher η-value (4.1 %) than YD2-o-C8 (2.8 %) after 500 h illumination. These results suggest that the hydroxamic acid can be used for DSSCs with other transition-metal-based redox shuttle to ensure high cell durability as well as excellent photovoltaic performance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Acid-base balance in the developing marsupial: from ectotherm to endotherm.

    PubMed

    Andrewartha, Sarah J; Cummings, Kevin J; Frappell, Peter B

    2014-05-01

    Marsupial joeys are born ectothermic and develop endothermy within their mother's thermally stable pouch. We hypothesized that Tammar wallaby joeys would switch from α-stat to pH-stat regulation during the transition from ectothermy to endothermy. To address this, we compared ventilation (Ve), metabolic rate (Vo2), and variables relevant to blood gas and acid-base regulation and oxygen transport including the ventilatory requirements (Ve/Vo2 and Ve/Vco2), partial pressures of oxygen (PaO2), carbon dioxide (PaCO2), pHa, and oxygen content (CaO2) during progressive hypothermia in ecto- and endothermic Tammar wallabies. We also measured the same variables in the well-studied endotherm, the Sprague-Dawley rat. Hypothermia was induced in unrestrained, unanesthetized joeys and rats by progressively dropping the ambient temperature (Ta). Rats were additionally exposed to helox (80% helium, 20% oxygen) to facilitate heat loss. Respiratory, metabolic, and blood-gas variables were measured over a large body temperature (Tb) range (∼15-16°C in both species). Ectothermic joeys displayed limited thermogenic ability during cooling: after an initial plateau, Vo2 decreased with the progressive drop in Tb. The Tb of endothermic joeys and rats fell despite Vo2 nearly doubling with the initiation of cold stress. In all three groups the changes in Vo2 were met by changes in Ve, resulting in constant Ve/Vo2 and Ve/Vco2, blood gases, and pHa. Thus, although thermogenic capability was nearly absent in ectothermic joeys, blood acid-base regulation was similar to endothermic joeys and rats. This suggests that unlike some reptiles, unanesthetized mammals protect arterial blood pH with changing Tb, irrespective of their thermogenic ability and/or stage of development.

  17. The Efficacy and Safety of HA IDF Plus (with Lidocaine) Versus HA IDF (Without Lidocaine) in Nasolabial Folds Injection: A Randomized, Multicenter, Double-Blind, Split-Face Study.

    PubMed

    Lee, Jong-Hun; Kim, Seok-Hwan; Park, Eun-Soo

    2017-04-01

    Injection-related pain of dermal fillers is a consistent and bothersome problem for patients undergoing soft tissue augmentation. Reducing the pain could improve overall patient satisfaction. The purpose of this study was to compare the pain relief, efficacy, and safety of HA IDF plus containing lidocaine with HA IDF without lidocaine during correction of nasolabial folds (NLFs). Sixty-two subjects were enrolled in a randomized, multicenter, double-blind, split-face study of HA IDF plus and HA IDF for NLF correction. For split-face study, HA IDF plus was injected to one side of NLF, and HA IDF was injected to the other side. The first evaluation variable was the injection site pain measured using a 100-mm visual analogue scale (VAS). The second evaluation variables included the global aesthetic improvement scale, wrinkle severity rating scale, and adverse events. Immediately after injection, 91.94% of subjects experienced at least 10 mm decrease in VAS scores at the side injected with HA IDF plus compared with HA IDF, and the rate of subjects is statistically significant. The two fillers were not significantly different in safety profile or wrinkle correction during the follow-up visit. HA IDF plus significantly reduced the injection-related pain during NLFs correction compared with HA IDF without altering clinical outcomes or safety. Both HA IDF plus and HA IDF were considerably tolerated and most adverse reactions were mild and transient. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  18. Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles.

    PubMed

    Erhayem, Mohamed; Sohn, Mary

    2014-02-01

    In many studies, different humic acid (HA) sources are used interchangeably to evaluate the effect of organic matter on geochemical processes in the environment. This research looks more specifically at the effect of HA source on HA adsorption onto nano-TiO2 and how HA adsorption affects the fate and transport of nano-TiO2. In this study, six humic acids (HAs) were studied which were derived from soils (SLHA), or from sediments (SDHA) all originating from the state of Florida. Humic acid adsorption onto titanium dioxide nanoparticles (nano-TiO2) and the sedimentation of HA-coated and uncoated nano-TiO2 were monitored by Ultraviolet-visible (UV-vis) spectroscopy. Synchronous scan fluorescence (SSF) spectroscopy was used to complement the study of HA adsorption onto nano-TiO2. Phosphate buffer was found to reduce the amount of HA adsorbed onto nano-TiO2 relative to solutions of NaCl of the same pH and ionic strength. Adsorption constant values (Kads) for HAs varied in the order SLHA>FSDHA (freshwater sedimentary HA)>ESDHA (estuarine sedimentary HA). SSF results suggested that the more highly conjugated fractions of HA, which are more prevalent in SLHAs versus SDHAs, were preferentially adsorbed. In order to better understand the relationship between adsorption and aggregation, sedimentation studies were conducted and it was found that the percentage of nano-TiO2 sedimentation was preferentially enhanced in the order of the presence of SLHA>FSDHA>ESDHA. The extent of nano-TiO2 sedimentation was decreased with increasing HA concentration. TEM imaging of nano-TiO2 confirmed that nano-TiO2 was aggregated in the presence of HAs. The findings in this study suggest that HAs from different sources influence the fate and transport of nano-TiO2 in the environment differently. © 2013.

  19. Stimulation of TLRs by LMW-HA induces self-defense mechanisms in vaginal epithelium.

    PubMed

    Dusio, Giuseppina F; Cardani, Diego; Zanobbio, Laura; Mantovani, Martina; Luchini, Patrizia; Battini, Lorenzo; Galli, Valentina; Diana, Angela; Balsari, Andrea; Rumio, Cristiano

    2011-07-01

    The innate immune system is present throughout the female reproductive tract and functions in synchrony with the adaptive immune system to provide protection in a way that enhances the chances for fetal survival, while protecting against potential pathogens. Recent data show that activation of Toll-like receptor (TLR)2 and 4 by low-molecular weight hyaluronic acid (LMW-HA) in the epidermis induces secretion of the antimicrobial peptide β-defensin 2. In the present work, we show that LMW-HA induces vaginal epithelial cells to release different antimicrobial peptides, via activation of TLR2 and TLR4. Further, we found that LMW-HA favors repair of vaginal epithelial injury, involving TLR2 and TLR4, and independently from its classical receptor CD44. This wound-healing activity of LMW-HA is dependent from an Akt/phosphatidylinositol 3 kinase pathway. Therefore, these findings suggest that the vaginal epithelium is more than a simple physical barrier to protect against invading pathogens: on the contrary, this surface acts as efficient player of innate host defense, which may modulate its antimicrobial properties and injury restitution activity, following LMW-HA stimulation; this activity may furnish an additional protective activity to this body compartment, highly and constantly exposed to microbiota, ameliorating the self-defense of the vaginal epithelium in both basal and pathological conditions.

  20. ISAAC-based asthma and atopic symptoms among Ha Noi school children.

    PubMed

    Nga, Nguyen Ngoc; Chai, Sanders K; Bihn, Ta Tuyet; Redding, Gregory; Takaro, Tim; Checkoway, Harvey; Son, Phan Han; Van, Duong Khanh; Keifer, Matthew; Trung, Le Van; Barnhart, Scott

    2003-08-01

    Childhood asthma and atopy prevalence patterns in the developing world are only beginning to be defined. No such information exists for Vietnam. Estimates would assist in anticipating health service needs as well as add to the growing database on global patterns of atopy. To estimate the prevalence of atopic symptoms in school children in Ha Noi, Vietnam, a cross-sectional survey was conducted of children aged 5- to 11-years-old in two schools using the parent self-administered International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire. The response rate was 66.4% (969 responses). The overall prevalence of selected symptoms were: 'ever wheezed' 24.9%, 'wheezed in past 12 months' 14.9%, 'ever had asthma' 12.1%, 'doctor-diagnosed asthma' 13.9%, 'ever experienced allergic rhinitis (AR) symptoms' 34.9%, 'AR-conjunctivitis symptoms in past 12 months' 10.7%, 'ever had hay fever' 7.8%, 'doctor-diagnosed hay fever' 11.2%, 'ever had eczema' 3.3% and 'doctor-diagnosed eczema' 3.2%. Kappa statistics demonstrated high within symptom category consistency for 'ever had asthma/doctor-diagnosed asthma' (0.728) and 'ever had eczema/doctor-diagnosed eczema' (0.906). Age and gender adjusted odds ratios (OR) were also consistently significant across wheeze and allergic rhinitis symptom categories [highest OR = 10.10 (95% CI 6.23-16.35) between allergic rhinoconjunctivitis and wheeze in past 12 months]. There is a high prevalence of ISAAC-based symptoms in school children in Ha Noi, Vietnam, often above global averages. The high level of association between atopic symptoms suggests some degree of reliability and validity. Childhood atopy symptom prevalence in Vietnam is more similar to that in developed countries rather than developing countries.

  1. Wear Behavior of Plasma Spray Deposited and Post Heat-Treated Hydroxyapatite (HA)-Based Composite Coating on Titanium Alloy (Ti-6Al-4V) Substrate

    NASA Astrophysics Data System (ADS)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2018-04-01

    The present study concerns a detailed evaluation of wear resistance property of plasma spray deposited composite hydroxyapatite (HA)-based (HA-50 wt pct TiO2 and HA-10 wt pct ZrO2) bioactive coatings developed on Ti-6Al-4V substrate and studying the effect of heat treatment on it. Heat treatment of plasma spray deposited samples has been carried out at 650 °C for 2 hours (for HA-50 wt pct TiO2 coating) and at 750 °C for 2 hours (for HA-10 wt pct ZrO2 coating). There is significant deterioration in wear resistance for HA-50 wt pctTiO2 coating and a marginal deterioration in wear resistance for HA-10 wt pct ZrO2 coating in as-sprayed state (as compared to as-received Ti-6Al-4V) which is, however, improved after heat treatment. The coefficient of friction is marginally increased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings in as-sprayed condition as compared to Ti-6Al-4V substrate. However, coefficient of friction is decreased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings after heat-treated condition as compared to Ti-6Al-4V substrate. The maximum improvement in wear resistance property is, however, observed for HA-10 wt pct ZrO2 sample after heat treatment. The mechanism of wear has been investigated.

  2. Molecular aspects of zygotic embryogenesis in sunflower (Helianthus annuus L.): correlation of positive histone marks with HaWUS expression and putative link HaWUS/HaL1L.

    PubMed

    Salvini, Mariangela; Fambrini, Marco; Giorgetti, Lucia; Pugliesi, Claudio

    2016-01-01

    The link HaWUS/ HaL1L , the opposite transcriptional behavior, and the decrease/increase in positive histone marks bond to both genes suggest an inhibitory effect of WUS on HaL1L in sunflower zygotic embryos. In Arabidopsis, a group of transcription factors implicated in the earliest events of embryogenesis is the WUSCHEL-RELATED HOMEOBOX (WOX) protein family including WUSCHEL (WUS) and other 14 WOX protein, some of which contain a conserved WUS-box domain in addition to the homeodomain. WUS transcripts appear very early in embryogenesis, at the 16-cell embryo stage, but gradually become restricted to the center of the developing shoot apical meristem (SAM) primordium and continues to be expressed in cells of the niche/organizing center of SAM and floral meristems to maintain stem cell population. Moreover, WUS has decisive roles in the embryonic program presumably promoting the vegetative-to-embryonic transition and/or maintaining the identity of the embryonic stem cells. However, data on the direct interaction between WUS and key genes for seed development (as LEC1 and L1L) are not collected. The novelty of this report consists in the characterization of Helianthus annuus WUS (HaWUS) gene and in its analysis regarding the pattern of the methylated lysine 4 (K4) of the Histone H3 and of the acetylated histone H3 during the zygotic embryo development. Also, a parallel investigation was performed for HaL1L gene since two copies of the WUS-binding site (WUSATA), previously identified on HaL1L nucleotide sequence, were able to be bound by the HaWUS recombinant protein suggesting a not described effect of HaWUS on HaL1L transcription.

  3. Synthesis and Hydrolytic Degradation of Substituted Poly(DL-Lactic Acid)s

    PubMed Central

    Tsuji, Hideto; Eto, Takehiko; Sakamoto, Yuzuru

    2011-01-01

    Non-substituted racemic poly(DL-lactic acid) (PLA) and substituted racemic poly(DL-lactic acid)s or poly(DL-2-hydroxyalkanoic acid)s with different side-chain lengths, i.e., poly(DL-2-hydroxybutanoic acid) (PBA), poly(DL-2-hydroxyhexanoic acid) (PHA), and poly(DL-2-hydroxydecanoic acid) (PDA) were synthesized by acid-catalyzed polycondensation of DL-lactic acid (LA), DL-2-hydroxybutanoic acid (BA), DL-2-hydroxyhexanoic acid (HA), and DL-2-hydroxydecanoic acid (DA), respectively. The hydrolytic degradation behavior was investigated in phosphate-buffered solution at 80 and 37 °C by gravimetry and gel permeation chromatography. It was found that the reactivity of monomers during polycondensation as monitored by the degree of polymerization (DP) decreased in the following order: LA > DA > BA > HA. The hydrolytic degradation rate traced by DP and weight loss at 80 °C decreased in the following order: PLA > PDA > PHA > PBA and that monitored by DP at 37 °C decreased in the following order: PLA > PDA > PBA > PHA. LA and PLA had the highest reactivity during polymerization and hydrolytic degradation rate, respectively, and were followed by DA and PDA. BA, HA, PBA, and PHA had the lowest reactivity during polymerization and hydrolytic degradation rate. The findings of the present study strongly suggest that inter-chain interactions play a major role in the reactivity of non-substituted and substituted LA monomers and degradation rate of the non-substituted and substituted PLA, along with steric hindrance of the side chains as can be expected. PMID:28824149

  4. Insights into the role of humic acid on Pd-catalytic electro-Fenton transformation of toluene in groundwater.

    PubMed

    Liao, Peng; Al-Ani, Yasir; Malik Ismael, Zainab; Wu, Xiaohui

    2015-03-18

    A recently developed Pd-based electro-Fenton (E-Fenton) process enables efficient in situ remediation of organic contaminants in groundwater. In the process, H₂O₂, Fe(II), and acidic conditions (~pH 3) are produced in situ to facilitate the decontamination, but the role of ubiquitous natural organic matters (NOM) remain unclear. This study investigated the effect of Aldrich humic acid (HA) on the transformation of toluene by the Pd-based E-Fenton process. At pH 3 with 50 mA current, the presence of HA promoted the efficiency of toluene transformation, with pseudo-first-order rate constants increase from 0.01 to 0.016 as the HA concentration increases from 0 to 20 mg/L. The HA-enhanced toluene transformation was attributed to the accelerated thermal reduction of Fe(III) to Fe(II), which led to production of more hydroxyl radicals. The correlation of the rate constants of toluene transformation and HA decomposition validated hydroxyl radical (·OH) as the predominant reactive species for HA decomposition. The finding of this study highlighted that application of the novel Pd-based E-Fenton process in groundwater remediation may not be concerned by the fouling from humic substances.

  5. Vaccine-induced anti-HA2 antibodies promote virus fusion and enhance influenza virus respiratory disease.

    PubMed

    Khurana, Surender; Loving, Crystal L; Manischewitz, Jody; King, Lisa R; Gauger, Phillip C; Henningson, Jamie; Vincent, Amy L; Golding, Hana

    2013-08-28

    Vaccine-induced disease enhancement has been described in connection with several viral vaccines in animal models and in humans. We investigated a swine model to evaluate mismatched influenza vaccine-associated enhanced respiratory disease (VAERD) after pH1N1 infection. Vaccinating pigs with whole inactivated H1N2 (human-like) virus vaccine (WIV-H1N2) resulted in enhanced pneumonia and disease after pH1N1 infection. WIV-H1N2 immune sera contained high titers of cross-reactive anti-pH1N1 hemagglutinin (HA) antibodies that bound exclusively to the HA2 domain but not to the HA1 globular head. No hemagglutination inhibition titers against pH1N1 (challenge virus) were measured. Epitope mapping using phage display library identified the immunodominant epitope recognized by WIV-H1N2 immune sera as amino acids 32 to 77 of pH1N1-HA2 domain, close to the fusion peptide. These cross-reactive anti-HA2 antibodies enhanced pH1N1 infection of Madin-Darby canine kidney cells by promoting virus membrane fusion activity. The enhanced fusion activity correlated with lung pathology in pigs. This study suggests a role for fusion-enhancing anti-HA2 antibodies in VAERD, in the absence of receptor-blocking virus-neutralizing antibodies. These findings should be considered during the evaluation of universal influenza vaccines designed to elicit HA2 stem-targeting antibodies.

  6. CoralWatch Data Analysis at Hoi Ha Wan Marine Park, Hong Kong

    NASA Astrophysics Data System (ADS)

    Lau, A.; Hodgson, P.

    2015-12-01

    CoralWatch is a conservation organization that is based at the University of Queensland in Australia. Their development of the "Coral Health Chart" standardized the colour of corals for the further investigation of coral health and bleaching. The location of this project is in the NE part of Hong Kong in New Territories. The location faces ShenZhen, a heavily industrialized city, which is known for its pollution of the Pearl River. This area is protected by the Hong Kong Government and the WWF since 1996.Human activities have caused large amounts of greenhouse gasses to be released into the atmosphere. Carbon dioxide has caused the global temperature to rise and made ocean waters more acidic due to ocean respiration. The ocean is a carbon sink for mankind and the effect of severe acidification is negatively affecting marine life. The increase of temperature diminishes the amount of diversity of marine life; the decreasing acidity of the water has eliminated many species of shellfish and sea anemone; the increase of marine exploitation has decreased the diversity of marine life. The release of toxic waste, mainly mercury, waste and plastic products has also polluted the oceans which negatively impact coral reefs and endanger marine life.The data has been collected by observing the colours and discolouration (bleaching) of the corals of approximately 40 colonies per month. The species of coral in Hoi Ha Wan include, Favites flexuosa, Goniopora columna,Leptastrea purpurea, Lithophyllon undulatum, Pavona decussata. and Platygyra acuta (AFCD,1). The evaluation of four years of coralwatch data has shown the bleaching of hard boulder corals in Hoi Ha Wan, Hong Kong, has halted and the reefs are being to show signs of regeneration. Local marine biologists credited the improved situation of the corals to protected status of the area.

  7. In vitro study of RRS HA injectable mesotherapy/biorevitalization product on human skin fibroblasts and its clinical utilization

    PubMed Central

    Deglesne, Pierre-Antoine; Arroyo, Rodrigo; Ranneva, Evgeniya; Deprez, Philippe

    2016-01-01

    Mesotherapy/biorevitalization with hyaluronic acid (HA) is a treatment approach currently used for skin rejuvenation. Various products with a wide range of polycomponent formulations are available on the market. Most of these formulations contain noncross-linked HA in combination with a biorevitalization cocktail, formed by various amounts of vitamins, minerals, amino acids, nucleotides, coenzymes, and antioxidants. Although ingredients are very similar among the different products, in vitro and clinical effects may vary substantially. There is a real need for better characterization of these products in terms of their action on human skin or in vitro skin models. In this study, we analyzed the effect of the RRS® (Repairs, Refills, Stimulates) HA injectable medical device on human skin fibroblasts in vitro. Skin fibroblast viability and its capacity to induce the production of key extracellular matrix were evaluated in the presence of different concentrations of RRS HA injectable. Viability was evaluated through colorimetric MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, and key extracellular matrix genes, type I collagen and elastin, were quantified by quantitative polymerase chain reaction. Results demonstrated that RRS HA injectable could promote human skin fibroblast viability (+15%) and increase fibroblast gene expression of type I collagen and elastin by 9.7-fold and 14-fold in vitro, respectively. These results demonstrate that mesotherapy/biorevitalization products can, at least in vitro, effectively modulate human skin fibroblasts. PMID:26966384

  8. On the acid-base properties of humic acid in soil.

    PubMed

    Cooke, James D; Hamilton-Taylor, John; Tipping, Edward

    2007-01-15

    Humic acid was isolated from three contrasting organic-rich soils and acid-base titrations performed over a range of ionic strengths. Results obtained were unlike most humic acid data sets; they showed a greater ionic strength dependency at low pH than at high pH. Forward- and back-titrations with the base and acid revealed hysteresis, particularly at low pH. Previous authors attributed this type of hysteresis to humic acid aggregates-created during the isolation procedure-being redissolved during titration as the pH increased and regarded the results as artificial. However, forward- and back-titrations with organic-rich soils also demonstrated a similar hysteretic behavior. These observations indicate (i) that titrations of humic acid in aggregated form (as opposed to the more usual dissolved form) are more representative of the acid-base properties of humic acid in soil and (ii) that the ionic strength dependency of proton binding in humic acid is related to its degree of aggregation. Thus, the current use of models based on data from dissolved humic substances to predictthe acid-base properties of humic acid in soil under environmental conditions may be flawed and could substantially overestimate their acid buffering capacity.

  9. Trypanosoma cruzi H+-ATPase 1 (TcHA1) and 2 (TcHA2) genes complement yeast mutants defective in H+ pumps and encode plasma membrane P-type H+-ATPases with different enzymatic properties.

    PubMed

    Luo, Shuhong; Scott, David A; Docampo, Roberto

    2002-11-15

    Previous studies in Trypanosoma cruzi have shown that intracellular pH homeostasis requires ATP and is affected by H(+)-ATPase inhibitors, indicating a major role for ATP-driven proton pumps in intracellular pH control. In the present study, we report the cloning and sequencing of a pair of genes linked in tandem (TcHA1 and TcHA2) in T. cruzi which encode proteins with homology to fungal and plant P-type proton-pumping ATPases. The genes are expressed at the mRNA level in different developmental stages of T. cruzi: TcHA1 is expressed maximally in epimastigotes, whereas TcHA2 is expressed predominantly in trypomastigotes. The proteins predicted from the nucleotide sequence of the genes have 875 and 917 amino acids and molecular masses of 96.3 and 101.2 kDa, respectively. Full-length TcHA1 and an N-terminal truncated version of TcHA2 complemented a Saccharomyces cerevisiae strain deficient in P-type H(+)-ATPase activity, the proteins localized to the yeast plasma membrane, and ATP-driven proton pumping could be detected in proteoliposomes reconstituted from plasma membrane purified from transfected yeast. The reconstituted proton transport activity was reduced by inhibitors of P-type H(+)-ATPases. C-terminal truncation did not affect complementation of mutant yeast, suggesting the lack of C-terminal autoinhibitory domains in these proteins. ATPase activity in plasma membrane from TcHA1- and (N-terminal truncated) TcHA2-transfected yeast was inhibited to different extents by vanadate, whereas the latter yeast strain was more resistant to extremes of pH, suggesting that the native proteins may serve different functions at different stages in the T. cruzi life cycle.

  10. Secondary Structures in a Freeze-Dried Lignite Humic Acid Fraction Caused by Hydrogen-Bonding of Acidic Protons with Aromatic Rings.

    PubMed

    Cao, Xiaoyan; Drosos, Marios; Leenheer, Jerry A; Mao, Jingdong

    2016-02-16

    A lignite humic acid (HA) was separated from inorganic and non-HA impurities (i.e., aluminosilicates, metals) and fractionated by a combination of dialysis and XAD-8 resin. Fractionation revealed a more homogeneous structure of lignite HA. New and more specific structural information on the main lignite HA fraction is obtained by solid-state nuclear magnetic resonance (NMR) spectroscopy. Quantitative (13)C multiple cross-polarization (multiCP) NMR indicated oxidized phenyl propane structures derived from lignin. MultiCP experiments, conducted on potassium HA salts titrated to pH 10 and pH 12, revealed shifts consistent with carboxylate and phenolate formation, but structural changes associated with enolate formation from aromatic beta keto acids were not detected. Two-dimensional (1)H-(13)C heteronuclear correlation (2D HETCOR) NMR indicated aryl-aliphatic ketones, aliphatic and aromatic carboxyl groups, phenol, and methoxy phenyl ethers. Acidic protons from carboxyl groups in both the lignite HA fraction and a synthetic HA-like polycondensate were found to be hydrogen-bonded with electron-rich aromatic rings. Our results coupled with published infrared spectra provide evidence for the preferential hydrogen bonding of acidic hydrogens with electron-rich aromatic rings rather than adjacent carbonyl groups. These hydrogen-bonding interactions likely result from stereochemical arrangements in primary structures and folding.

  11. The first proton sponge-based amino acids: synthesis, acid-base properties and some reactivity.

    PubMed

    Ozeryanskii, Valery A; Gorbacheva, Anastasia Yu; Pozharskii, Alexander F; Vlasenko, Marina P; Tereznikov, Alexander Yu; Chernov'yants, Margarita S

    2015-08-21

    The first hybrid base constructed from 1,8-bis(dimethylamino)naphthalene (proton sponge or DMAN) and glycine, N-methyl-N-(8-dimethylamino-1-naphthyl)aminoacetic acid, was synthesised in high yield and its hydrobromide was structurally characterised and used to determine the acid-base properties via potentiometric titration. It was found that the basic strength of the DMAN-glycine base (pKa = 11.57, H2O) is on the level of amidine amino acids like arginine and creatine and its structure, zwitterionic vs. neutral, based on the spectroscopic (IR, NMR, mass) and theoretical (DFT) approaches has a strong preference to the zwitterionic form. Unlike glycine, the DMAN-glycine zwitterion is N-chiral and is hydrolytically cleaved with the loss of glycolic acid on heating in DMSO. This reaction together with the mild decarboxylative conversion of proton sponge-based amino acids into 2,3-dihydroperimidinium salts under air-oxygen was monitored with the help of the DMAN-alanine amino acid. The newly devised amino acids are unique as they combine fluorescence, strongly basic and redox-active properties.

  12. Multifunctional nanosheets based on hyaluronic acid modified graphene oxide for tumor-targeting chemo-photothermal therapy

    NASA Astrophysics Data System (ADS)

    Hou, Lin; Feng, Qianhua; Wang, Yating; Zhang, Huijuan; Jiang, Guixiang; Yang, Xiaomin; Ren, Junxiao; Zhu, Xiali; Shi, Yuyang; Zhang, Zhenzhong

    2015-03-01

    Graphene oxide (GO) with strong optical absorption in the near-infrared (NIR) region has shown great potential both in photothermal therapy and drug delivery. In this work, hyaluronic acid (HA)-functionalized GO (HA-GO) was successfully synthesized and controlled loading of mitoxantrone (MIT) onto HA-GO via π- π stacking interaction was investigated. The results revealed that drug-loaded nanosheets with high loading efficiency of 45 wt% exhibited pH-sensitive responses to tumor environment. Owing to the receptor-mediated endocytosis, cellular uptake analysis of HA-GO showed enhanced internalization. In vivo optical imaging test demonstrated that HA-GO nanosheets could enhance the targeting ability and residence time in tumor site. Moreover, the anti-tumor activity of free MIT, MIT/GO, and MIT/HA-GO in combination with NIR laser was investigated using human MCF-7 cells. In vitro cytotoxicity study revealed that HA-GO could stand as a biocompatible nanocarrier and MIT/HA-GO demonstrated remarkably higher toxicity than free MIT and MIT/GO, with IC50 of 0.79 µg ml-1. Tumor cell-killing potency was enhanced when MIT/HA-GO were combined with NIR irradiation, and the IC50 of MIT/HA-GO plus laser irradiation was 0.38 µg ml-1. In vivo, MIT/HA-GO plus NIR laser irradiation with the tumor growth inhibition of 93.52 % displayed greater anti-tumor effect compared with free MIT and MIT/GO with or without laser irradiation. Therefore, the MIT/HA-GO nanosheets may potentially be useful for further development of synergistic cancer therapy.

  13. Neural stem cell proliferation and differentiation in the conductive PEDOT-HA/Cs/Gel scaffold for neural tissue engineering.

    PubMed

    Wang, Shuping; Guan, Shui; Xu, Jianqiang; Li, Wenfang; Ge, Dan; Sun, Changkai; Liu, Tianqing; Ma, Xuehu

    2017-09-26

    Engineering scaffolds with excellent electro-activity is increasingly important in tissue engineering and regenerative medicine. Herein, conductive poly(3,4-ethylenedioxythiophene) doped with hyaluronic acid (PEDOT-HA) nanoparticles were firstly synthesized via chemical oxidant polymerization. A three-dimensional (3D) PEDOT-HA/Cs/Gel scaffold was then developed by introducing PEDOT-HA nanoparticles into a chitosan/gelatin (Cs/Gel) matrix. HA, as a bridge, not only was used as a dopant, but also combined PEDOT into the Cs/Gel via chemical crosslinking. The PEDOT-HA/Cs/Gel scaffold was used as a conductive substrate for neural stem cell (NSC) culture in vitro. The results demonstrated that the PEDOT-HA/Cs/Gel scaffold had excellent biocompatibility for NSC proliferation and differentiation. 3D confocal fluorescence images showed cells attached on the channel surface of Cs/Gel and PEDOT-HA/Cs/Gel scaffolds with a normal neuronal morphology. Compared to the Cs/Gel scaffold, the PEDOT-HA/Cs/Gel scaffold not only promoted NSC proliferation with up-regulated expression of Ki67, but also enhanced NSC differentiation into neurons and astrocytes with up-regulated expression of β tubulin-III and GFAP, respectively. It is expected that this electro-active and bio-active PEDOT-HA/Cs/Gel scaffold will be used as a conductive platform to regulate NSC behavior for neural tissue engineering.

  14. Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration--A comparative study.

    PubMed

    Przekora, Agata; Palka, Krzysztof; Ginalska, Grazyna

    2016-01-01

    The aim of this work was to compare biomedical potential of chitosan/hydroxyapatite (chit/HA) and novel chitosan/β-1,3-glucan/hydroxyapatite (chit/glu/HA) materials as scaffolds for bone regeneration via characterization of their biocompatibility, porosity, mechanical properties, and water uptake behaviour. Biocompatibility of the scaffolds was assessed in direct-contact with the materials using normal human foetal osteoblast cell line. Cytotoxicity and osteoblast proliferation rate were evaluated. Porosity was assessed using computed microtomography analysis and mechanical properties were determined by compression testing. Obtained results demonstrated that chit/HA scaffold possessed significantly better mechanical properties (compressive strength: 1.23 MPa, Young's modulus: 0.46 MPa) than chit/glu/HA material (compressive strength: 0.26 MPa, Young's modulus: 0.25 MPa). However, addition of bacterial β-1,3-glucan to the chit/HA scaffold improved its flexibility and porosity. Moreover, chit/glu/HA scaffold revealed significantly higher water uptake capability (52.6% after 24h of soaking) compared to the chit/HA (30.7%) and thus can serve as a very good drug delivery carrier. Chit/glu/HA scaffold was also more favourable to osteoblast survival (near 100% viability after 24-h culture), proliferation, and spreading compared to the chit/HA (63% viability). The chit/glu/HA possesses better biomedical potential than chit/HA scaffold. Nevertheless, poor mechanical properties of the chit/glu/HA limit its application to non-load bearing implantation area. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Construction of surface HA/TiO2 coating on porous titanium scaffolds and its preliminary biological evaluation.

    PubMed

    Chen, Hongjie; Wang, Chunli; Yang, Xiao; Xiao, Zhanwen; Zhu, Xiangdong; Zhang, Kai; Fan, Yujiang; Zhang, Xingdong

    2017-01-01

    A simple approach to fabricating hydroxyxapatite/titanium dioxide (HA/TiO 2 ) coating on porous titanium (Ti) scaffolds was developed in the present study. Surface TiO 2 layer was firstly formed on porous Ti scaffolds with multi-scale pores by acid-alkali (AA) treatment. The outer HA layer was then formed on the TiO 2 layer by subsequent pulse electrochemical deposition (ED) technique. All the three main process parameters, i.e. deposition times, current density and mass transfer mode affected the properties of the HA coating notably. Under the conditions of 90 deposition cycles, -10mA/cm 2 of pulse current density and stirring, a thin layer of homogeneous and nanorod-like HA sediments was formed on the substrate surface of porous Ti scaffolds. The results of protein adsorption and cellular experiments showed that compared to the single TiO 2 surface, the HA/TiO 2 surface allowed more adsorption of serum proteins and further enhanced the alkaline phosphatase (ALP) activity of MC3T3-E1 osteoblasts. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Three-dimensional prostate tumor model based on a hyaluronic acid-alginate hydrogel for evaluation of anti-cancer drug efficacy.

    PubMed

    Tang, Yadong; Huang, Boxin; Dong, Yuqin; Wang, Wenlong; Zheng, Xi; Zhou, Wei; Zhang, Kun; Du, Zhiyun

    2017-10-01

    In vitro cell-based assays are widely applied to evaluate anti-cancer drug efficacy. However, the conventional approaches are mostly based on two-dimensional (2D) culture systems, making it difficult to recapitulate the in vivo tumor scenario because of spatial limitations. Here, we develop an in vitro three-dimensional (3D) prostate tumor model based on a hyaluronic acid (HA)-alginate hybrid hydrogel to bridge the gap between in vitro and in vivo anticancer drug evaluations. In situ encapsulation of PCa cells was achieved by mixing HA and alginate aqueous solutions in the presence of cells and then crosslinking with calcium ions. Unlike in 2D culture, cells were found to aggregate into spheroids in a 3D matrix. The expression of epithelial to mesenchyme transition (EMT) biomarkers was found to be largely enhanced, indicating an increased invasion and metastasis potential in the hydrogel matrix. A significant up-regulation of proangiogenic growth factors (IL-8, VEGF) and matrix metalloproteinases (MMPs) was observed in 3D-cultured PCa cells. The results of anti-cancer drug evaluation suggested a higher drug tolerance within the 3D tumor model compared to conventional 2D-cultured cells. Finally, we found that the drug effect within the in vitro 3D cancer model based on HA-alginate matrix exhibited better predictability for in vivo drug efficacy.

  17. Virulence of an H5N8 highly pathogenic avian influenza is enhanced by the amino acid substitutions PB2 E627K and HA A149V.

    PubMed

    Wu, Haibo; Peng, Xiuming; Lu, Rufeng; Xu, Lihua; Liu, Fumin; Cheng, Linfang; Lu, Xiangyun; Yao, Hangping; Wu, Nanping

    2017-10-01

    A novel reassortant H5N8 highly pathogenic avian influenza (HPAI) virus was recently identified in Asia, Europe, and North America. The H5N8 HPAI virus has raised serious concerns regarding the potential risk for human infection. However, the molecular changes responsible for allowing mammalian infection in H5N8 HPAI viruses are not clear. The objective of this study was to identify amino acid substitutions that are potentially associated with the adaptation of H5N8 HPAI viruses to mammals. In this study, an avian-origin H5N8 virus was adapted to mice through serial lung-to-lung passage. The virulence of mouse-adapted virus was increased and adaptive mutations, HA (A149V) and PB2 (E627K), were detected after the ninth passage in each series of mice. Reverse genetics were used to generate reassortants of the wild type and mouse-adapted viruses. Substitutions in the HA (A149V) and PB2 (E627K) proteins led to enhanced viral virulence in mice, the viruses displayed expanded tissue tropism, and increased replication kinetics in mammalian cells. Continued surveillance in poultry for amino acid changes that might indicate H5N8 HPAI viruses pose a threat to human health is required. Copyright © 2017. Published by Elsevier B.V.

  18. The effects of topically applied glycolic acid and salicylic acid on ultraviolet radiation-induced erythema, DNA damage and sunburn cell formation in human skin.

    PubMed

    Kornhauser, Andrija; Wei, Rong-Rong; Yamaguchi, Yuji; Coelho, Sergio G; Kaidbey, Kays; Barton, Curtis; Takahashi, Kaoruko; Beer, Janusz Z; Miller, Sharon A; Hearing, Vincent J

    2009-07-01

    alpha-Hydroxy acids (alphaHAs) are reported to reduce signs of aging in the skin and are widely used cosmetic ingredients. Several studies suggest that alphaHA can increase the sensitivity of skin to ultraviolet radiation. More recently, beta-hydroxy acids (betaHAs), or combinations of alphaHA and betaHA have also been incorporated into antiaging skin care products. Concerns have also arisen about increased sensitivity to ultraviolet radiation following use of skin care products containing beta-HA. To determine whether topical treatment with glycolic acid, a representative alphaHA, or with salicylic acid, a betaHA, modifies the short-term effects of solar simulated radiation (SSR) in human skin. Fourteen subjects participated in this study. Three of the four test sites on the mid-back of each subject were treated daily Monday-Friday, for a total of 3.5 weeks, with glycolic acid (10%), salicylic acid (2%), or vehicle (control). The fourth site received no treatment. After the last treatment, each site was exposed to SSR, and shave biopsies from all four sites were obtained. The endpoints evaluated in this study were erythema (assessed visually and instrumentally), DNA damage and sunburn cell formation. Treatment with glycolic acid resulted in increased sensitivity of human skin to SSR, measured as an increase in erythema, DNA damage and sunburn cell formation. Salicylic acid did not produce significant changes in any of these biomarkers. Short-term topical application of glycolic acid in a cosmetic formulation increased the sensitivity of human skin to SSR, while a comparable treatment with salicylic acid did not.

  19. Determination of total antioxidant capacity of humic acids using CUPRAC, Folin-Ciocalteu, noble metal nanoparticle- and solid-liquid extraction-based methods.

    PubMed

    Karadirek, Şeyda; Kanmaz, Nergis; Balta, Zeynep; Demirçivi, Pelin; Üzer, Ayşem; Hızal, Jülide; Apak, Reşat

    2016-06-01

    Total antioxidant capacity (TAC) of humic acid (HA) samples was determined using CUPRAC (CUPric Reducing Antioxidant Capacity), FC (Folin-Ciocalteu), QUENCHER-CUPRAC, QUENCHER-FC, Ag-NP (Silver nanoparticle)‒ and Au-NP (Gold nanoparticle)‒based methods. Conventional FC and modified FC (MFC) methods were applied to solid samples. Because of decreased solubility of Folin-Ciocalteu's phenol reagent in organic solvents, solvent effect on TAC measurement was investigated using QUENCHER-CUPRAC assay by using ethanol:distilled water and dimethyl sulfoxide:distilled water with varying ratios. To see the combined effect of solubilization (leaching) and TAC measurement of humic acids simultaneously, QUENCHER experiments were performed at 25°C and 50°C; QUENCHER-CUPRAC and QUENCHER-FC methods agreed well and had similar precision in F-statistics. Although the Gibbs free energy change (ΔG°) of the oxidation of HA dihydroxy phenols with the test reagents were negative, the ΔG° was positive only for the reaction of CUPRAC reagent with isolated monohydric phenols, showing CUPRAC selectivity toward polyphenolic antioxidants. This is the first work on the antioxidant capacity measurement of HA having a sparingly soluble matrix where enhanced solubilization of bound phenolics is achieved with coupled oxidation by TAC reagents. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. HA metabolism in skin homeostasis and inflammatory disease.

    PubMed

    Kavasi, Rafaela-Maria; Berdiaki, Aikaterini; Spyridaki, Ioanna; Corsini, Emanuela; Tsatsakis, Aristidis; Tzanakakis, George; Nikitovic, Dragana

    2017-03-01

    Hyaluronan (HA), an unsulfated glycosaminoglycan, is an important component of the complex extracellular matrix network which surrounds and supports cells in tissues. HA is detected in all vertebrate tissues, but the bulk of HA is produced and deposited in the skin. In this review we focus on the role of HA in skin-associated inflammatory disease and wound healing. Properties of HA are directly dependent on its molecular weight. Thus, high molecular weight HA (HMWHA) is deposited in normal tissues during homeostasis and promotes their stability whereas low molecular weight HA fragments (LMWHA), on the other hand, may arise from enzymatic or chemical activities. The degradation of HMWHA to LMWHA fragments, often leads to the generation of biologically active oligosaccharides with different properties and postulated functions in wound scar formation and inflammation. More detailed studies of HA involvement in skin-associated inflammatory disease may result in novel treatment modalities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Design of peptide mimetics to block pro-inflammatory functions of HA fragments.

    PubMed

    Hauser-Kawaguchi, Alexandra; Luyt, Leonard G; Turley, Eva

    2018-01-31

    Hyaluronan is a simple extracellular matrix polysaccharide that actively regulates inflammation in tissue repair and disease processes. The native HA polymer, which is large (>500 kDa), contributes to the maintenance of homeostasis. In remodeling and diseased tissues, polymer size is strikingly polydisperse, ranging from <10 kDa to >500 kDa. In a diseased or stressed tissue context, both smaller HA fragments and high molecular weight HA polymers can acquire pro-inflammatory functions, which result in the activation of multiple receptors, triggering pro-inflammatory signaling to diverse stimuli. Peptide mimics that bind and scavenge HA fragments have been developed, which show efficacy in animal models of inflammation. These studies indicate both that HA fragments are key to driving inflammation and that scavenging these is a viable therapeutic approach to blunting inflammation in disease processes. This mini-review summarizes the peptide-based methods that have been reported to date for blocking HA signaling events as an anti-inflammatory therapeutic approach. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  2. Insights into the Role of Humic Acid on Pd-catalytic Electro-Fenton Transformation of Toluene in Groundwater

    PubMed Central

    Liao, Peng; Al-Ani, Yasir; Malik Ismael, Zainab; Wu, Xiaohui

    2015-01-01

    A recently developed Pd-based electro-Fenton (E-Fenton) process enables efficient in situ remediation of organic contaminants in groundwater. In the process, H2O2, Fe(II), and acidic conditions (~pH 3) are produced in situ to facilitate the decontamination, but the role of ubiquitous natural organic matters (NOM) remain unclear. This study investigated the effect of Aldrich humic acid (HA) on the transformation of toluene by the Pd-based E-Fenton process. At pH 3 with 50 mA current, the presence of HA promoted the efficiency of toluene transformation, with pseudo-first-order rate constants increase from 0.01 to 0.016 as the HA concentration increases from 0 to 20 mg/L. The HA-enhanced toluene transformation was attributed to the accelerated thermal reduction of Fe(III) to Fe(II), which led to production of more hydroxyl radicals. The correlation of the rate constants of toluene transformation and HA decomposition validated hydroxyl radical (·OH) as the predominant reactive species for HA decomposition. The finding of this study highlighted that application of the novel Pd-based E-Fenton process in groundwater remediation may not be concerned by the fouling from humic substances. PMID:25783864

  3. Mesenchymal stem cell-based repair of articular cartilage with polyglycolic acid-hydroxyapatite biphasic scaffold.

    PubMed

    Zhou, X Z; Leung, V Y; Dong, Q R; Cheung, K M; Chan, D; Lu, W W

    2008-06-01

    This study investigates the capacity of a composite scaffold composed of polyglycolic acid-hydroxyapatite (PGA-HA) and autologous mesenchymal stem cells (MSCs) to promote repair of osteochondral defects. MSCs from culture-expanded rabbits were seeded onto a PGA and HA scaffold. After a 72-hour co-culture period, the cell-adhered PGA and HA were joined together, forming an MSCs-PGA-HA composite. Full-thickness cartilage defects in the intercondylar fossa of the femur were then implanted with the MSC-PGA-HA composite, the PGA-HA scaffold only, or they were left empty (n=20). Animals were sacrificed 16 or 32 weeks after surgery and the gross appearance of the defects was evaluated. The specimens were examined histologically for morphologic features, and stained immunohistochemically for type 2 collagen. Specimens of the MSCs-PGA-HA composite implantation group demonstrated hyaline cartilage and a complete subchondral bone formation. At 16 weeks post-implantation, significant integration of the newly formed tissue with surrounding normal cartilage and subchondral bone was observed when compared to the two control groups. At 32 weeks, no sign of progressive degeneration of the newly formed tissue was found. A significant difference in histological grading score was found compared with the control groups. The novel MSCs-seeded, PGA-HA biphasic graft facilitated both articular cartilage and subchondral bone regeneration in an animal model and might serve as a new approach for clinical applications.

  4. Topical stabilized retinol treatment induces the expression of HAS genes and HA production in human skin in vitro and in vivo.

    PubMed

    Li, Wen-Hwa; Wong, Heng-Kuan; Serrano, José; Randhawa, Manpreet; Kaur, Simarna; Southall, Michael D; Parsa, Ramine

    2017-05-01

    Skin Aging manifests primarily with wrinkles, dyspigmentations, texture changes, and loss of elasticity. During the skin aging process, there is a loss of moisture and elasticity in skin resulting in loss of firmness finally leading to skin sagging. The key molecule involved in skin moisture is hyaluronic acid (HA), which has a significant water-binding capacity. HA levels in skin decline with age resulting in decrease in skin moisture, which may contribute to loss of firmness. Clinical trials have shown that topically applied ROL effectively reduces wrinkles and helps retain youthful appearance. In the current study, ROL was shown to induce HA production and stimulates the gene expression of all three forms of hyaluronic acid synthases (HAS) in normal human epidermal keratinocytes monolayer cultures. Moreover, in human skin equivalent tissues and in human skin explants, topical treatment of tissues with a stabilized-ROL formulation significantly induced the gene expression of HAS mRNA concomitant with an increased HA production. Finally, in a vehicle-controlled human clinical study, histochemical analysis confirmed increased HA accumulation in the epidermis in ROL-treated human skin as compared to vehicle. These results show that ROL increases skin expression of HA, a significant contributing factor responsible for wrinkle formation and skin moisture, which decrease during aging. Taken together with the activity to increase collagen, elastin, and cell proliferation, these studies establish that retinol provides multi-functional activity for photodamaged skin.

  5. Characterization, Corrosion Resistance, and Cell Response of High-Velocity Flame-Sprayed HA and HA/TiO2 Coatings on 316L SS

    NASA Astrophysics Data System (ADS)

    Singh, Tejinder Pal; Singh, Harpreet; Singh, Hazoor

    2012-09-01

    The main aim of this study is to evaluate corrosion and biocompatibility behavior of thermal spray hydroxyapatite (HA) and hydroxyapatite/titania bond (HA/TiO2)-coated 316L stainless steel (316L SS). In HA/TiO2 coatings, TiO2 was used as a bond coat between HA top coat and 316L SS substrate. The coatings were characterized by x-ray diffraction and scanning electron microscopy/energy dispersive spectroscopy, and corrosion resistance determined for the uncoated substrate and the two coatings. The biological behavior was investigated by the cell culture studies using osteosarcoma cell line KHOS-NP (R-970-5). The corrosion resistance of the steel was found to increase after the deposition of the HA and HA/TiO2 bond coatings. Both HA, as well as, HA/TiO2 coatings exhibit excellent bond strength of 49 and 47 MPa, respectively. The cell culture studies showed that HA-coated 316L SS specimens appeared more biocompatible than the uncoated and HA/TiO2-coated 316L SS specimens.

  6. Influence of a heptad repeat stutter on the pH-dependent conformational behavior of the central coiled-coil from influenza hemagglutinin HA2.

    PubMed

    Higgins, Chelsea D; Malashkevich, Vladimir N; Almo, Steven C; Lai, Jonathan R

    2014-09-01

    The coiled-coil is one of the most common protein structural motifs. Amino acid sequences of regions that participate in coiled-coils contain a heptad repeat in which every third then forth residue is occupied by a hydrophobic residue. Here we examine the consequences of a "stutter," a deviation of the idealized heptad repeat that is found in the central coiled-coil of influenza hemagluttinin HA2. Characterization of a peptide containing the native stutter-containing HA2 sequence, as well as several variants in which the stutter was engineered out to restore an idealized heptad repeat pattern, revealed that the stutter is important for allowing coiled-coil formation in the WT HA2 at both neutral and low pH (7.1 and 4.5). By contrast, all variants that contained idealized heptad repeats exhibited marked pH-dependent coiled-coil formation with structures forming much more stably at low pH. A crystal structure of one variant containing an idealized heptad repeat, and comparison to the WT HA2 structure, suggest that the stutter distorts the optimal interhelical core packing arrangement, resulting in unwinding of the coiled-coil superhelix. Interactions between acidic side chains, in particular E69 and E74 (present in all peptides studied), are suggested to play a role in mediating these pH-dependent conformational effects. This conclusion is partially supported by studies on HA2 variant peptides in which these positions were altered to aspartic acid. These results provide new insight into the structural role of the heptad repeat stutter in HA2. © 2014 Wiley Periodicals, Inc.

  7. Simultaneous detection of assembly and disassembly of multivalent HA tag and anti-HA antibody in single in-capillary assay.

    PubMed

    Wang, Jianhao; Qin, Yuqin; Qin, Haifang; Liu, Li; Ding, Shumin; Teng, Yiwan; Ji, Junling; Qiu, Lin; Jiang, Pengju

    2016-08-01

    Herein, we have developed an in-capillary assay for simultaneous detection of the assembly and disassembly of the multivalent HA tag peptide and antibody. HA tag with hexahistidine at C terminus (YPYDVPDYAG4 H6 , termed YPYDH6 ) was conjugated with quantum dots (QDs) by metal-affinity force to form a multivalent HA tag (QD-YPYDH6 ). QD-YPYDH6 and monoclonal anti-HA antibody (anti-HA) were sequentially injected into the capillary. They were mixed and assembled inside the capillary. The reaction products were online discriminated and detected by fluorescence coupled capillary electrophoresis (CE-FL). For the in-capillary assay, the binding efficiency of the multivalent HA tag and antibody on was influenced by the molar ratio and injection time. Such novel assay could even give out the self-assembly kinetic constant of QDs and YPYDH6 as KD of 34.1 μM with n (binding cooperativeness) of 2.2 by Hill equation. More importantly, the simultaneous detection of the assembly and imidazole (Im) induced disassembly of the QD-YPYDH6 -anti-HA complex was achieved in a single in-capillary assay. Our study demonstrated a new method for the online detection of antigen-antibody interactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Chemical hydrogels based on a hyaluronic acid-graft-α-elastin derivative as potential scaffolds for tissue engineering.

    PubMed

    Palumbo, Fabio Salvatore; Pitarresi, Giovanna; Fiorica, Calogero; Rigogliuso, Salvatrice; Ghersi, Giulio; Giammona, Gaetano

    2013-07-01

    In this work hyaluronic acid (HA) functionalized with ethylenediamine (EDA) has been employed to graft α-elastin. In particular a HA-EDA derivative bearing 50 mol% of pendant amino groups has been successfully employed to produce the copolymer HA-EDA-g-α-elastin containing 32% w/w of protein. After grafting with α-elastin, remaining free amino groups reacted with ethylene glycol diglycidyl ether (EGDGE) for producing chemical hydrogels, proposed as scaffolds for tissue engineering. Swelling degree, resistance to chemical and enzymatic hydrolysis, as well as preliminary biological properties of HA-EDA-g-α-elastin/EGDGE scaffold have been evaluated and compared with a HA-EDA/EGDGE scaffold. The presence of α-elastin grafted to HA-EDA improves attachment, viability and proliferation of primary rat dermal fibroblasts and human umbilical artery smooth muscle cells. Biological performance of HA-EDA-g-α-elastin/EGDGE scaffold resulted comparable to that of a commercial collagen type I sponge (Antema®), chosen as a positive control. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Complexity in Acid-Base Titrations: Multimer Formation Between Phosphoric Acids and Imines.

    PubMed

    Malm, Christian; Kim, Heejae; Wagner, Manfred; Hunger, Johannes

    2017-08-10

    Solutions of Brønsted acids with bases in aprotic solvents are not only common model systems to study the fundamentals of proton transfer pathways but are also highly relevant to Brønsted acid catalysis. Despite their importance the light nature of the proton makes characterization of acid-base aggregates challenging. Here, we track such acid-base interactions over a broad range of relative compositions between diphenyl phosphoric acid and the base quinaldine in dichloromethane, by using a combination of dielectric relaxation and NMR spectroscopy. In contrast to what one would expect for an acid-base titration, we find strong deviations from quantitative proton transfer from the acid to the base. Even for an excess of the base, multimers consisting of one base and at least two acid molecules are formed, in addition to the occurrence of proton transfer from the acid to the base and simultaneous formation of ion pairs. For equimolar mixtures such multimers constitute about one third of all intermolecular aggregates. Quantitative analysis of our results shows that the acid-base association constant is only around six times larger than that for the acid binding to an acid-base dimer, that is, to an already protonated base. Our findings have implications for the interpretation of previous studies of reactive intermediates in organocatalysis and provide a rationale for previously observed nonlinear effects in phosphoric acid catalysis. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  10. Stimuli-sensitive thiolated hyaluronic acid based nanofibers: synthesis, preclinical safety and in vitro anti-HIV activity.

    PubMed

    Agrahari, Vivek; Meng, Jianing; Ezoulin, Miezan Jm; Youm, Ibrahima; Dim, Daniel C; Molteni, Agostino; Hung, Wei-Ting; Christenson, Lane K; Youan, Bi-Botti C

    2016-11-01

    To develop a seminal enzyme bioresponsive, mucoadhesive nanofibers (NFs) as safe and effective nanocarriers for the prevention of HIV vaginal transmission. A novel thiolated hyaluronic acid (HA-SH) polymer was synthesized to fabricate tenofovir (TFV)-loaded electrospun NFs (HA-SH-NFs) and characterized in vitro/in vivo. A triggered drug release (87% w/w) from the engineered HA-SH-NFs (mean diameter ∼75 nm) occured within 1 h under the influence of seminal hyaluronidase enzyme. HA-SH-NFs were noncytotoxic, induced no damage on the C57BL/6 mice genital-tract and other organs. No significant CD45 cell-infiltration and changes in cytokines level in cervicovaginal tissues were observed. HA-SH-NFs significantly enhanced both TFV retention and bioavailability in vaginal tissue compared with the 1% TFV-gel. The anti-HIV activity of TFV (on pseudotyped virus followed by luciferase assay) was not adversely affected by the electrospinning process. HA-SH-NFs developed in this study could potentially serve as a safe nanotemplate for topical intravaginal delivery of HIV/AIDS microbicides.

  11. HaLT2- an enhanced lumber grading trainer

    Treesearch

    Powsiri Klinkhachorn; Charles Gatchell; Charles McMillin; Ravi Kothari; Dennis Yost

    1992-01-01

    This paper reports on HaLT2, an improved version of HaLT (Hardwood Lumber Traning Program)- a computer program that provides training in lumber grading. The newly added enhancements In HaLT2 will provide training for both novice and experienced hardwood lumber graders in accordance with National Hardwood Lumber Assodation (NHLA) rules. HaLT2 is more accurate, easier to...

  12. Synthesis of new kojic acid based unnatural α-amino acid derivatives.

    PubMed

    Balakrishna, C; Payili, Nagaraju; Yennam, Satyanarayana; Uma Devi, P; Behera, Manoranjan

    2015-11-01

    An efficient method for the preparation of kojic acid based α-amino acid derivatives by alkylation of glycinate schiff base with bromokojic acids have been described. Using this method, mono as well as di alkylated kojic acid-amino acid conjugates have been prepared. This is the first synthesis of C-linked kojic acid-amino acid conjugate where kojic acid is directly linked to amino acid through a C-C bond. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Hydroxyapatite crystals biologically inspired on titanium by using an organic template based on the copolymer of acrylic acid and itaconic acid.

    PubMed

    Zhang, Chao; Li, Zhi-An; Cheng, Xiang-Rong; Xiao, Qun; Li, Hong-Bo

    2010-01-01

    Hydroxyapatite coating on metal implants is an effective method to enhance bioactive properties of the metal surface. We report here a method to coat the Ti-6Al-4V alloy with hydroxyapatite crystals. After alkaline/heat treatment, the spontaneous growth of organoapatite on titanium alloy surface involves sequential preadsorption of titanium isopropoxide (TIPO) and the copolymer of acrylic acid and itaconic acid on the metal, followed by exposure to simulated body fluid (SBF). The organoapatite characterization of the coating was carried out by scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction. The copolymer of acrylic acid and itaconic acid overlayer which is rich of carboxylate groups can lead to the deposition of needle-like and homogeneous HA on the surface after immersion in SBF.

  14. Effects of incorporation of HA/ZrO(2) into glass ionomer cement (GIC).

    PubMed

    Gu, Y W; Yap, A U J; Cheang, P; Khor, K A

    2005-03-01

    Glass ionomer cements (GICs) are a class of bioactive cements that bond directly to bone. In this paper, a new bioactive hydroxyapatite (HA)/zirconia (ZrO(2))-filled GIC composite was developed to improve the biocompatibility and bioactivity of the GICs with the surrounding bone and connective tissues. Nano-sized HA/30 wt% ZrO(2) powders were heat treated at 700 degrees Celsius and 800 degrees Celsius for 3 h to elucidate the influence of the crystallinity of composite powders on the performance of HA/ZrO(2)-GICs. The effects of different volume percentages of HA/ZrO(2) powders (4, 12, 28 and 40 vol%) substituted within GICs were investigated based on their microhardness, compressive strength and diametral tensile strength. The HA/ZrO(2)-GICs composite was soaked in distilled water for 1 day and 1 week before subjecting the samples to mechanical testing. Results showed that the glass and HA/ZrO(2) particles were distributed uniformly in the GIC matrix. The substitution of highly crystalline HA/ZrO(2) improved the mechanical properties of the HA/ZrO(2)-GICs due to the slow resorption rate for highly crystalline powders in distilled water. The mechanical properties of HA/ZrO(2)-GICs increased with increasing soak time due to the continuous formation of aluminium salt bridges, which improved the final strength of the cements. The compositions 4 and 12 vol% HA/ZrO(2)-GICs exhibited superior mechanical properties than the original GICs. The mechanical properties of HA/ZrO(2)-GICs were found to be much better than those of HA-GICs because ZrO(2) has the attributes of high strength, high modulus, and is significantly harder than glass and HA particles. Furthermore, ZrO(2) does not dissolve with increasing soaking time.

  15. Hyaluronic acid-decorated poly(lactic-co-glycolic acid) nanoparticles for combined delivery of docetaxel and tanespimycin.

    PubMed

    Pradhan, Roshan; Ramasamy, Thiruganesh; Choi, Ju Yeon; Kim, Jeong Hwan; Poudel, Bijay Kumar; Tak, Jin Wook; Nukolova, Natalia; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2015-06-05

    Multiple-drug combination therapy is becoming more common in the treatment of advanced cancers because this approach can decrease side effects and delay or prevent drug resistance. In the present study, we developed hyaluronic acid (HA)-decorated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (HA-PLGA NPs) for co-delivery of docetaxel (DTX) and tanespimycin (17-AAG). DTX and 17-AAG were simultaneously loaded into HA-PLGA NPs using an oil-in-water emulsification/solvent evaporation method. Several formulations were tested. HA-PLGA NPs loaded with DTX and 17-AAG at a molar ratio of 2:1 produced the smallest particle size (173.3±2.2nm), polydispersity index (0.151±0.026), and zeta potential (-12.4±0.4mV). Approximately 60% and 40% of DTX and 17-AAG, respectively, were released over 168h in vitro. Cytotoxicity assays performed in vitro using MCF-7, MDA-MB-231, and SCC-7 cells showed that dual drug-loaded HA-PLGA NPs at a DTX:17-AAG molar ratio of 2:1 exhibited the highest synergistic effect, with combination index values of 0.051, 0.036, and 0.032, respectively, at the median effective dose. Furthermore, synergistic antitumor activity was demonstrated in vivo in a CD44 and RHAMM (CD168) - overexpressing squamous cell carcinoma (SCC-7) xenograft in nude mice. These findings indicated that nanosystem-based co-delivery of DTX and 17-AAG could provide a promising combined therapeutic strategy for enhanced antitumor therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Temperature and magnetic field responsive hyaluronic acid particles with tunable physical and chemical properties

    NASA Astrophysics Data System (ADS)

    Ekici, Sema; Ilgin, Pinar; Yilmaz, Selahattin; Aktas, Nahit; Sahiner, Nurettin

    2011-01-01

    We report the preparation and characterization of thiolated-temperature-responsive hyaluronic acid-cysteamine-N-isopropyl acrylamide (HA-CYs-NIPAm) particles and thiolated-magnetic-responsive hyaluronic acid (HA-Fe-CYs) particles. Linear hyaluronic acid (HA) crosslinked with divinyl sulfone as HA particles was prepared using a water-in-oil micro emulsion system which were then oxidized HA-O with NaIO4 to develop aldehyde groups on the particle surface. HA-O hydrogel particles were then reacted with cysteamine (CYs) which interacted with aldehydes on the HA surface to form HA particles with cysteamine (HA-CYs) functionality on the surface. HA-CYs particles were further exposed to radical polymerization with NIPAm to obtain temperature responsive HA-CYs-NIPAm hydrogel particles. To acquire magnetic field responsive HA composites, magnetic iron particles were included in HA to form HA-Fe during HA particle preparation. HA-Fe hydrogel particles were also chemically modified. The prepared HA-CYs-NIPAm demonstrated temperature dependent size variations and phase transition temperature. HA-CYs-NIPAm and HA-Fe-CYs particles can be used as drug delivery vehicles. Sulfamethoxazole (SMZ), an antibacterial drug, was used as a model drug for temperature-induced release studies from these particles.

  17. Influence of humic acid on adsorption of Hg(II) by vermiculite.

    PubMed

    do Nascimento, Fernando Henrique; Masini, Jorge Cesar

    2014-10-01

    Geochemical mobility of Hg(II) species is strongly affected by the interactions of these compounds with naturally occurring adsorbents such as humic acids, clay minerals, oxides, etc. Interactions among these sorbents affect their affinity for Hg(II) and a full understanding of these processes is still lacking. The present work describes the influence of a humic acid (HA) sample on the adsorption of Hg(II) by vermiculite (VT). Adsorption isotherms were constructed to evaluate the affinity of Hg(II) by VT, HA, VT modified with humic acid (VT-HA), and VT-HA in presence of soluble humic acid (VT-HA + HA). All experiments were made at pH 6.0 ± 0.1 in 0.02 M NaNO3 and 25.0 ± 0.5 °C for initial Hg(II) concentrations from 1.0 to 100 μM. Determinations of Hg(II) were made by square wave voltammetry automated by sequential injection analysis, an approach that enables the determination of the free plus labile fractions of Hg(II) in HA suspensions without the need for laborious separation steps. The adsorption isotherms were fitted to Langmuir and Freundlich equations, showing that HA was the material with the higher adsorption capacity (537 ± 30 μmol g(-1)) in comparison with VT and VT-HA (44 ± 3 and 51 ± 11 μmol g(-1), respectively). Adsorption order was HA > VT-HA + HA > VT = VT-HA. At pH 6.0 the interaction of HA with VT is weak and only 14% of C initially added to the suspension was effectively retained by the mineral. Desorption of Hg(II) in acidic medium (0.05 M HCl) was higher in binary (VT-HA) and ternary (VT-HA + HA) systems in comparison with that of VT and HA alone, suggesting that interactions between VT and HA are facilitated in acidic medium, weakening the binding to Hg(II). Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Catalytic Ethanol Dehydration over Different Acid-activated Montmorillonite Clays.

    PubMed

    Krutpijit, Chadaporn; Jongsomjit, Bunjerd

    2016-01-01

    In the present study, the catalytic dehydration of ethanol to obtain ethylene over montmorillonite clays (MMT) with mineral acid activation including H2SO4 (SA-MMT), HCl (HA-MMT) and HNO3 (NA-MMT) was investigated at temperature range of 200 to 400°C. It revealed that HA-MMT exhibited the highest catalytic activity. Ethanol conversion and ethylene selectivity were found to increase with increased reaction temperature. At 400°C, the HA-MMT yielded 82% of ethanol conversion having 78% of ethylene yield. At lower temperature (i.e. 200 to 300°C), diethyl ether (DEE) was a major product. The highest activity obtained from HA-MMT can be attributed to an increase of weak acid sites and acid density by the activation of MMT with HCl. It can be also proven by various characterization techniques that in most case, the main structure of MMT did not alter by acid activation (excepted for NA-MMT). Upon the stability test for 72 h during the reaction, the MMT and HA-MMT showed only slight deactivation due to carbon deposition. Hence, the acid activation of MMT by HCl is promising to enhance the catalytic dehydration of ethanol.

  19. pH sensitive polymeric complex of cisplatin with hyaluronic acid exhibits tumor-targeted delivery and improved in vivo antitumor effect.

    PubMed

    Fan, Xiaohong; Zhao, Xuesong; Qu, Xinkai; Fang, Jun

    2015-12-30

    Cisplatin (CDDP) is widely used anticancer drug for various solid tumors including lung cancer. However, its indiscriminate distribution causes serious adverse effects and limits its therapeutic effect. In this study, by using hyaluronic acid (HA) we synthesized a complex of CDDP (HA-CDDP), by utilizing ionic interaction between Pt(2+) of CDDP with carboxyl group of HA. The mean HA-CDDP particle size was 208.5nm in PBS according to dynamic light scattering which was also confirmed by TEM, which could exert tumor-targeting property by enhanced permeability and retention (EPR) effect. The CDDP loading in this preparation was 13% (w/w), and release rate of free CDDP from the HA-CDDP complex at physiological pH (7.4) was ∼20%/day. However, in acidic pH the release was much faster, i.e., ∼95% of CDDP was released in 72h at pH 5.5. Moreover, HA-CDDP showed a 2.5-fold higher tumor accumulation than free CDDP whereas no increase of distribution was found in most normal tissues. In addition, because HA receptor CD44 is overexpressed in many tumor cells, we also observed CD44-based endocytosis of HA-CDDP in mouse lung carcinoma LCC cells. These findings together suggest that HA-CDDP may show tumor-selective cytotoxicity by taking advantage of EPR effect, weak acidic environment of tumor tissues (e.g., pH 6∼7), as well as CD44-based intracellular uptake. As expected, HA-CDDP exhibited much improved therapeutic effect than free CDDP in mouse LCC tumor model, whereas no apparent side effect was found. These findings may shed some light on the potential utility of HA for development of tumor-targeted polymeric CDDP drugs, which need further investigations. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Cellular proliferation, cellular viability, and biocompatibility of HA-ZnO composites.

    PubMed

    Saha, Naresh; Dubey, Ashutosh K; Basu, Bikramjit

    2012-01-01

    One of the important issues in the development of hydroxyapatite (HA)-based biomaterials is the prosthetic infection, which limits wider use of monolithic HA despite superior cellular response. Recently, we reported that ZnO addition to HA can induce bactericidal property. It is therefore important to assess how ZnO addition influences the cytotoxicity property and cell adhesion/proliferation on HA-ZnO composite surfaces in vitro. In the above perspective, the objective of this study is to investigate the cell type and material composition dependent cellular proliferation and viability of pressureless sintered HA-ZnO composites. The combination of cell viability data as well as morphological observations of cultured human osteoblast-like SaOS2 cells and mouse fibroblast L929 cells suggests that HA-ZnO composites containing 10 Wt % or lower ZnO exhibit the ability to support cell adhesion and proliferation. Both SaOS2 and L929 cells exhibit extensive multidirectional network of actin cytoskeleton and cell flattening on the lower ZnO containing (≤10 Wt %) HA-ZnO composites. The in vitro results illustrate how variation in ZnO content can influence significantly the cell vitality, as evaluated using MTT biochemical assay. Also, the critical statistical analysis reveals that ZnO addition needs to be carefully tailored to ensure good in vitro cytocompatibility. The underlying reasons for difference in biological properties are analyzed. It is suggested that surface wettability as well as dissolution of ZnO, both contribute to the observed differences in cellular viability and proliferation. Copyright © 2011 Wiley Periodicals, Inc.

  1. Registration of two double rust resistant germplasms, HA-R12 and HA-R13 for confection sunflower

    USDA-ARS?s Scientific Manuscript database

    The confection sunflower (Helianthus annuus L.) germplasms HA-R12 (Reg. No. ______, PI 673104) and HA-R13 (Reg. No. ______, PI 673105) were developed by the USDA-ARS, Sunflower and Plant Biology Research Unit in collaboration with the North Dakota Agricultural Experiment Station, and released in Jul...

  2. Nanocomposite Porous Microcarriers Based on Strontium-Substituted HA- g-Poly(γ-benzyl-l-glutamate) for Bone Tissue Engineering.

    PubMed

    Yan, Shifeng; Xia, Pengfei; Xu, Shenghua; Zhang, Kunxi; Li, Guifei; Cui, Lei; Yin, Jingbo

    2018-05-04

    Porous microcarriers have aroused increasing attention recently, which can create a protected environment for sufficient cell seeding density, facilitate oxygen and nutrient transfer, and well support the cell attachment and growth. In this study, porous microcarriers fabricated from the strontium-substituted hydroxyapatite- graft-poly(γ-benzyl-l-glutamate) (Sr10-HA- g-PBLG) hybrid nanocomposite were developed. The surface grating of PBLG, the micromorphology and element distribution, mechanical strength, in vitro degradation, and Sr 2+ ion release of the obtained Sr10-HA- g-PBLG porous microcarriers were investigated, respectively. The grafting ratio and the molecular weight of the grafted PBLG of Sr10-HA- g-PBLG could be effectively controlled by varying the initial ratio of BLG-NCA to Sr10-HA-NH 2 . The microcarriers exhibited a highly porous and interconnected microstructure with the porosity of about 90% and overall density of 1.03-1.06 g/cm 3 . Also, the degradation rate of Sr10-HA-PBLG microcarriers could be effectively controlled and long-term Sr 2+ release was obtained. The Sr10-HA-PBLG microcarriers allowed cells adhesion, infiltration, and proliferation and promoted the osteogenic differentiation of rabbit adipose-derived stem cells (ADSCs). Successful healing of femoral bone defect was proved by injection of the ADSCs-seeded Sr10-HA-PBLG microcarriers in a rabbit model.

  3. Effects of nitrogen fertilization on the acidity and salinity of greenhouse soils.

    PubMed

    Han, Jiangpei; Shi, Jiachun; Zeng, Lingzao; Xu, Jianming; Wu, Laosheng

    2015-02-01

    A greenhouse pot experiment was conducted to study the effects of conventional nitrogen fertilization on soil acidity and salinity. Three N rates (urea; N0, 0 kg N ha(-1); N1, 600 kg N ha(-1); and N2, 1,200 kg N ha(-1)) were applied in five soils with different greenhouse cultivation years to evaluate soil acidification and salinization rate induced by nitrogen fertilizer in lettuce production. Both soil acidity and salinity increased significantly as N input increased after one season, with pH decrease ranging from 0.45 to 1.06 units and electrolytic conductivity increase from 0.24 to 0.68 mS cm(-1). An estimated 0.92 mol H(+) was produced for 1 mol (NO2 (-) + NO3 (-))-N accumulation in soil. The proton loading from nitrification was 14.3-27.3 and 12.1-58.2 kmol H(+) ha(-1) in the center of Shandong Province under N1 and N2 rate, respectively. However, the proton loading from the uptake of excess bases by lettuces was only 0.3-4.5 % of that from nitrification. Moreover, the release of protons induced the direct release of base cations and accelerated soil salinization. The increase of soil acidity and salinity was attributed to the nitrification of excess N fertilizer. Compared to the proton loading by lettuce, nitrification contributed more to soil acidification in greenhouse soils.

  4. Effect of hyaluronic acid in bone formation and its applications in dentistry.

    PubMed

    Zhao, Ningbo; Wang, Xin; Qin, Lei; Zhai, Min; Yuan, Jing; Chen, Ji; Li, Dehua

    2016-06-01

    Hyaluronic acid (HA), the simplest glycosaminoglycan, participates in several important biological procedures, including mediation of cellular signaling, regulation of cell adhesion and proliferation, and manipulation of cell differentiation. The effect of HA on cell proliferation and differentiation depends on its molecular weight (MW) and concentration. Moreover, the properties of high viscosity, elasticity, highly negative charge, biocompatibility, biodegradability, and nonimmunogenicity make HA attractive in tissue engineering and disease treatment. This review comprises an overview of the effect of HA on cell proliferation and differentiation in vitro, the role of HA in bone regeneration in vivo, and the clinical applications of HA in dentistry, focusing on the mechanism underlining the effect of MW and concentration of HA on cell proliferation and osteogenic differentiation. It is expected that practical progress of HA both in laboratory-based experiments and clinical applications will be achieved in the next few years. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1560-1569, 2016. © 2016 Wiley Periodicals, Inc.

  5. Hyaluronic acid binding by human sperm indicates cellular maturity, viability, and unreacted acrosomal status.

    PubMed

    Huszar, Gabor; Ozenci, Ciler Celik; Cayli, Sevil; Zavaczki, Zoltan; Hansch, Eleonora; Vigue, Lynne

    2003-06-01

    To test, both in semen and washed-sperm fractions, whether hyaluronic acid (HA) binding is restricted to sperm that have completed cellular maturation. Comparisons of sperm in semen and in HA-bound sperm fractions. University-based diagnostic and research andrology laboratory. Semen samples originated in men being tested for infertility. The attributes of sperm maturity were tested by immunocytochemistry with creatine kinase and HspA2 antisera (highlights cytoplasmic retention in diminished-maturity sperm), aniline blue chromatin staining (detects persistent histones), pisum sativum lectin staining (reveals acrosomal integrity), and the FertiLight viability kit (highlights viable and nonviable sperm). All markers of sperm maturity and immaturity supported the hypothesis that HA-bound sperm are mature. Nonbinding sperm exhibited cytoplasmic and nuclear properties of diminished maturity. The acrosomal status of HA-bound sperm was either unreacted or slightly capacitated, but not acrosome reacted. Only viable sperm exhibited HA binding. Sperm that are able to bind to HA are mature and have completed the spermiogenetic processes of sperm plasma membrane remodeling, cytoplasmic extrusion, and nuclear histone-protamine replacement. Hyaluronic acid-bound sperm show unreacted acrosomes. These studies provide further insights into the relationship between spermiogenesis and sperm function.

  6. H-binding of size- and polarity-fractionated soil and lignite humic acids after removal of metal and ash components

    USGS Publications Warehouse

    Drosos, Marios; Leenheer, Jerry A.; Avgeropoulos, Apostolos; Deligiannakis, Yiannis

    2014-01-01

    A fractionation technique, combining dialysis removal of metal and ash components with hydrofluoric acid and pH 10 citrate buffer followed by chromatography of dialysis permeate on XAD-8 resin at decreasing pH values, has been applied to lignite humic acid (lignite-HA) and soil humic acid (soil-HA). H-binding data and non ideal competitive adsorption-Donnan model parameters were obtained for the HA fractions by theoretical analysis of H-binding data which reveal a significant increase of the carboxyl and the phenolic charge for the lignite-HA fractions vs. the parental lignite humic acid (LParentalHA). The fractionated lignite-HA material consisted mainly of permeate fractions, some of which were fulvic acid-like. The fractionated soil-HA material consisted mainly of large macromolecular structures that did not permeate the dialysis membrane during deashing. Chargeable groups had comparable concentrations in soil-HA fractions and parental soil humic acid (SParentalHA), indicating minimal interference of ash components with carboxyl and phenolic (and/or enolic) groups. Fractionation of HA, combined with theoretical analysis of H-binding, can distinguish the supramolecular vs. macromolecular nature of fractions within the same parental HA.

  7. H-binding of size- and polarity-fractionated soil and lignite humic acids after removal of metal and ash components.

    PubMed

    Drosos, Marios; Leenheer, Jerry A; Avgeropoulos, Apostolos; Deligiannakis, Yiannis

    2014-03-01

    A fractionation technique, combining dialysis removal of metal and ash components with hydrofluoric acid and pH 10 citrate buffer followed by chromatography of dialysis permeate on XAD-8 resin at decreasing pH values, has been applied to lignite humic acid (lignite-HA) and soil humic acid (soil-HA). H-binding data and non ideal competitive adsorption-Donnan model parameters were obtained for the HA fractions by theoretical analysis of H-binding data which reveal a significant increase of the carboxyl and the phenolic charge for the lignite-HA fractions vs. the parental lignite humic acid (LParentalHA). The fractionated lignite-HA material consisted mainly of permeate fractions, some of which were fulvic acid-like. The fractionated soil-HA material consisted mainly of large macromolecular structures that did not permeate the dialysis membrane during deashing. Chargeable groups had comparable concentrations in soil-HA fractions and parental soil humic acid (SParentalHA), indicating minimal interference of ash components with carboxyl and phenolic (and/or enolic) groups. Fractionation of HA, combined with theoretical analysis of H-binding, can distinguish the supramolecular vs. macromolecular nature of fractions within the same parental HA.

  8. Glycosylation of Residue 141 of Subtype H7 Influenza A Hemagglutinin (HA) Affects HA-Pseudovirus Infectivity and Sensitivity to Site A Neutralizing Antibodies.

    PubMed

    Alvarado-Facundo, Esmeralda; Vassell, Russell; Schmeisser, Falko; Weir, Jerry P; Weiss, Carol D; Wang, Wei

    2016-01-01

    Human infections with H7 subtype influenza virus have been reported, including an H7N7 outbreak in Netherlands in 2003 and H7N9 infections in China in 2013. Previously, we reported murine monoclonal antibodies (mAbs) that recognize the antigenic site A of H7 hemagglutinin (HA). To better understand protective immunity of H7 vaccines and vaccine candidate selection, we used these mAbs to assess the antigenic relatedness among two H7 HA isolated from past human infections and determine residues that affect susceptibility to neutralization. We found that these mAbs neutralize pseudoviruses bearing HA of A/Shanghai/02/2013(H7N9), but not A/Netherlands/219/2003(H7N7). Glycosylation of the asparagine residue at position 141 (N141) (N133, H3 HA numbering) in the HA of A/Netherlands/219/2003 HA is responsible for this resistance, and it affects the infectivity of HA-pseudoviruses. The presence of threonine at position 143 (T135, H3 HA numbering) in the HA of A/Netherlands/219/2003, rather than an alanine found in the HA of A/Shanghai/02/2013(H7N9), accounts for these differences. These results demonstrate a key role for glycosylation of residue N141 in affecting H7 influenza HA-mediated entry and sensitivity to neutralizing antibodies, which have implications for candidate vaccine design.

  9. [PREPARATION AND BIOCOMPATIBILITY OF IN SITU CROSSLINKING HYALURONIC ACID HYDROGEL].

    PubMed

    Liang, Jiabi; Li, Jun; Wang, Ting; Liang, Yuhong; Zou, Xuenong; Zhou, Guangqian; Zhou, Zhiyu

    2016-06-08

    To fabricate in situ crosslinking hyaluronic acid hydrogel and evaluate its biocompatibility in vitro. The acrylic acid chloride and polyethylene glycol were added to prepare crosslinking agent polyethylene glycol acrylate (PEGDA), and the molecular structure of PEGDA was analyzed by Flourier transformation infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy. Hyaluronic acid hydrogel was chemically modified to prepare hyaluronic acid thiolation (HA-SH). And the degree of HA-SH was analyzed qualitatively and quantitatively by Ellman method. HA-SH solution in concentrations ( W/V ) of 0.5%, 1.0%, and 1.5% and PEGDA solution in concentrations ( W/V ) of 2%, 4%, and 6% were prepared with PBS. The two solutions were mixed in different ratios, and in situ crosslinking hyaluronic acid hydrogel was obtained; the crosslinking time was recorded. The cellular toxicity of in situ crosslinking hyaluronic acid hydrogel (1.5% HA-SH and 4% PEGDA mixed) was tested by L929 cells. Meanwhile, the biocompatibility of hydrogel was tested by co-cultured with human bone mesenchymal stem cells (hBMSCs). Flourier transformation infrared spectroscopy showed that most hydroxyl groups were replaced by acrylate groups; 1H nuclear magnetic resonance spectroscopy showed 3 characteristic peaks of hydrogen representing acrylate and olefinic bond at 5-7 ppm. The thiolation yield of HA-SH was 65.4%. In situ crosslinking time of hyaluronic acid hydrogel was 2 to 70 minutes in the PEGDA concentrations of 2%-6% and HA-SH concentrations of 0.5%-1.5%. The hyaluronic acid hydrogel appeared to be transparent. The toxicity grade of leaching solution of hydrogel was grade 1. hBMSCs grew well and distributed evenly in hydrogel with a very high viability. In situ crosslinking hyaluronic acid hydrogel has low cytotoxicity, good biocompatibility, and controllable crosslinking time, so it could be used as a potential tissue engineered scaffold or repairing material for tissue regeneration.

  10. Totally S-protected hyaluronic acid: Evaluation of stability and mucoadhesive properties as liquid dosage form.

    PubMed

    Pereira de Sousa, Irene; Suchaoin, Wongsakorn; Zupančič, Ožbej; Leichner, Christina; Bernkop-Schnürch, Andreas

    2016-11-05

    It is the aim of this study to synthesize hyaluronic acid (HA) derivatives bearing mucoadhesive properties and showing prolonged stability at pH 7.4 and under oxidative condition as liquid dosage form. HA was modified by thiolation with l-cysteine (HA-SH) and by conjugation with 2-mercaptonicotinic acid-l-cysteine ligand to obtain an S-protected derivative (HA-MNA). The polymers were characterized by determination of thiol group content and mercaptonicotinic acid content. Cytotoxicity, stability and mucoadhesive properties (rheological evaluation and tensile test) of the polymers were evaluated. HA-SH and HA-MNA could be successfully synthesized with a degree of modification of 5% and 9% of the total moles of carboxylic acid groups, respectively. MTT assay revealed no toxicity for the polymers. HA-SH resulted to be unstable both at pH 7.4 and under oxidative conditions, whereas HA-MNA was stable under both conditions. Rheological assessment showed a 52-fold and a 3-fold increase in viscosity for HA-MNA incubated with mucus compared to unmodified HA and HA-SH, respectively. Tensile evaluation carried out with intestinal and conjunctival mucosa confirmed the higher mucoadhesive properties of HA-MNA compared to HA-SH. According to the presented results, HA-MNA appears to be a potent excipient for the formulation of stable liquid dosage forms showing comparatively high mucodhesive properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    PubMed

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-06

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.

  12. Assessing the influence of humic acids on the weathering of galena and its environmental implications.

    PubMed

    Liu, Qingyou; Li, Heping; Jin, Guoheng; Zheng, Kai; Wang, Luying

    2018-08-30

    Galena weathering often occurs in nature and releases metal ions during the process. Humic acid (HA), a critical particle of natural organic matter, binds metal ions, thus affecting metal transfer and transformation. In this work, an electrochemical method combined with spectroscopic techniques was adopted to investigate the interfacial processes involved in galena weathering under acidic and alkaline conditions, as well as in the presence of HA. The results show that the initial step of galena weathering involved the transformation Pb 2+ and S°, regardless of whether the solution was acidic or alkaline. Under acidic conditions, S° and Pb 2+ further transform into anglesite, and HA adsorbs on the galena surface, inhibiting the transformation of sulfur. HA and Pb (II) ions form bridging complexes. Under alkaline conditions without HA, the sulfur produced undergoes no transformation, whereas Pb 2+ will transform into PbO. The presence of HA changes the galena weathering mechanism via ionization effect, and Pb 2+ is ultimately converted into anglesite. Higher acidity in acidic conditions or higher alkalinity in alkaline conditions causes galena corrosion when the electrolyte does not contain HA. Conversely, higher pH always accelerates galena corrosion when the electrolyte contains HA, whether the electrolyte is acidic or alkaline. At the same acidity/alkalinity, increasing the concentration of HA inhibits galena weathering. Galena will release 134.7 g m -2 ·y -1 Pb 2+ to solution at pH 2.5, and the amount decreases to 28.09 g m -2 ·y -1 in the presence of 1000 mg/L HA. This study provides an in situ electrochemical method for the assessment of galena weathering. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Changeable HA to improve MIPv6 protocol

    NASA Astrophysics Data System (ADS)

    Hu, Qing-gui

    2015-12-01

    For mobile IPv6, home agent (HA) plays an important role. Each mobile node (MN) has a home IP address, it will be not changeable. Also, the home agent (HA) of MN is not changeable. This rule provides the convenient for the ongoing communication without interruption. But it has some obvious drawbacks. Here, the new variable HA scheme is proposed. Every MN has a dynamic cache table, recording the information such as its home address, care-of address, and history address etc. If the accumulated time in one region exceeds that in the hometown, the foreign agent (FA) could become home agent (HA), the home agent could become history agent. Later, the performance of the new protocol is simulated with OPNET software, whose result shows the performance of the new protocol works better than that of the traditional protocol.

  14. Hyaluronic acid and chondroitin sulfate content of osteoarthritic human knee cartilage: site-specific correlation with weight-bearing force based on femorotibial angle measurement.

    PubMed

    Otsuki, Shuhei; Nakajima, Mikio; Lotz, Martin; Kinoshita, Mitsuo

    2008-09-01

    This study analyzed glycosaminoglycan (GAG) content in specific compartments of the knee joint to determine the impact of malalignment and helped refine indications for osteotomy. To assess malalignment, the radiological femorotibial angle (FTA) was measured and knee joints were also graded for OA severity with the Kellgren/Lawrence (K/L) classification. Cartilage samples were obtained from 36 knees of 32 OA patients undergoing total knee replacement surgery. Explants were harvested from the medial femoral condyle (MFC), lateral femoral condyle (LFC), patellar groove (PG), and lateral posterior femoral condyle (LPC). Concentrations of hyaluronic acid (HA) and chondroitin sulfate (CS) were measured by high-performance liquid chromatography (HPLC). With OA severity, the average FTA significantly increased. HA and CS content in MFC was negatively correlated with radiographic FTA. In LFC, HA ratio, which is HA content in lateral condyle divided by medial condyle and chondroitin 6 sulfate, increased until about 190 degrees FTA. Importantly, at >190 degrees these contents were significantly decreased. HA and CS content of the femoral condyle shows topographic differences that are related to OA grade and weight-bearing force based on FTA. The clinical relevance is that osteotomy may not be indicated for patients with severe varus (>190 degrees) abnormalities. (c) 2008 Orthopaedic Research Society

  15. Quantification of viable and non-viable Legionella spp. by heterogeneous asymmetric recombinase polymerase amplification (haRPA) on a flow-based chemiluminescence microarray.

    PubMed

    Kober, Catharina; Niessner, Reinhard; Seidel, Michael

    2018-02-15

    Increasing numbers of legionellosis outbreaks within the last years have shown that Legionella are a growing challenge for public health. Molecular biological detection methods capable of rapidly identifying viable Legionella are important for the control of engineered water systems. The current gold standard based on culture methods takes up to 10 days to show positive results. For this reason, a flow-based chemiluminescence (CL) DNA microarray was developed that is able to quantify viable and non-viable Legionella spp. as well as Legionella pneumophila in one hour. An isothermal heterogeneous asymmetric recombinase polymerase amplification (haRPA) was carried out on flow-based CL DNA microarrays. Detection limits of 87 genomic units (GU) µL -1 and 26GUµL -1 for Legionella spp. and Legionella pneumophila, respectively, were achieved. In this work, it was shown for the first time that the combination of a propidium monoazide (PMA) treatment with haRPA, the so-called viability haRPA, is able to identify viable Legionella on DNA microarrays. Different proportions of viable and non-viable Legionella, shown with the example of L. pneumophila, ranging in a total concentration between 10 1 to 10 5 GUµL -1 were analyzed on the microarray analysis platform MCR 3. Recovery values for viable Legionella spp. were found between 81% and 133%. With the combination of these two methods, there is a chance to replace culture-based methods in the future for the monitoring of engineered water systems like condensation recooling plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Induction of HIV Neutralizing Antibodies against the MPER of the HIV Envelope Protein by HA/gp41 Chimeric Protein-Based DNA and VLP Vaccines

    PubMed Central

    Ye, Ling; Wen, Zhiyuan; Dong, Ke; Wang, Xi; Bu, Zhigao; Zhang, Huizhong; Compans, Richard W.; Yang, Chinglai

    2011-01-01

    Several conserved neutralizing epitopes have been identified in the HIV Env protein and among these, the MPER of gp41 has received great attention and is widely recognized as a promising target. However, little success has been achieved in eliciting MPER-specific HIV neutralizing antibodies by a number of different vaccine strategies. We investigated the ability of HA/gp41 chimeric protein-based vaccines, which were designed to enhance the exposure of the MPER in its native conformation, to induce MPER-specific HIV neutralizing antibodies. In characterization of the HA/gp41 chimeric protein, we found that by mutating an unpaired Cys residue (Cys-14) in its HA1 subunit to a Ser residue, the modified chimeric protein HA-C14S/gp41 showed increased reactivity to a conformation-sensitive monoclonal antibody against HA and formed more stable trimers in VLPs. On the other hand, HA-C14S/gp41 and HA/gp41 chimeric proteins expressed on the cell surfaces exhibited similar reactivity to monoclonal antibodies 2F5 and 4E10. Immunization of guinea pigs using the HA-C14S/gp41 DNA or VLP vaccines induced antibodies against the HIV gp41 as well as to a peptide corresponding to a segment of MPER at higher levels than immunization by standard HIV VLPs. Further, sera from vaccinated guinea pigs were found to exhibit HIV neutralizing activities. Moreover, sera from guinea pigs vaccinated by HA-C14S/gp41 DNA and VLP vaccines but not the standard HIV VLPs, were found to neutralize HIV pseudovirions containing a SIV-4E10 chimeric Env protein. The virus neutralization could be blocked by a MPER-specific peptide, thus demonstrating induction of MPER-specific HIV neutralizing antibodies by this novel vaccine strategy. These results show that induction of MPER-specific HIV neutralizing antibodies can be achieved through a rationally designed vaccine strategy. PMID:21625584

  17. Synthesis, characterization and liver targeting evaluation of self-assembled hyaluronic acid nanoparticles functionalized with glycyrrhetinic acid.

    PubMed

    Wang, Xiaodan; Gu, Xiangqin; Wang, Huimin; Sun, Yujiao; Wu, Haiyang; Mao, Shirui

    2017-01-01

    Recently, polymeric materials with multiple functions have drawn great attention as the carrier for drug delivery system design. In this study, a series of multifunctional drug delivery carriers, hyaluronic acid (HA)-glycyrrhetinic acid (GA) succinate (HSG) copolymers were synthesized via hydroxyl group modification of hyaluronic acid. It was shown that the HSG nanoparticles had sub-spherical shape, and the particle size was in the range of 152.6-260.7nm depending on GA graft ratio. HSG nanoparticles presented good short term and dilution stability. MTT assay demonstrated all the copolymers presented no significant cytotoxicity. In vivo imaging analysis suggested HSG nanoparticles had superior liver targeting efficiency and the liver targeting capacity was GA graft ratio dependent. The accumulation of DiR (a lipophilic, NIR fluorescent cyanine dye)-loaded HSG-6, HSG-12, and HSG-20 nanoparticles in liver was 1.8-, 2.1-, and 2.9-fold higher than that of free DiR. The binding site of GA on HA may influence liver targeting efficiency. These results indicated that HSG copolymers based nanoparticles are potential drug carrier for improved liver targeting. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review.

    PubMed

    Tang, Wang-Wang; Zeng, Guang-Ming; Gong, Ji-Lai; Liang, Jie; Xu, Piao; Zhang, Chang; Huang, Bin-Bin

    2014-01-15

    Nowadays nanomaterials have been widely used to remove heavy metals from water/wastewater due to their large surface area and high reactivity. Humic acid (HA) and fulvic acid (FA) exist ubiquitously in aquatic environments and have a variety of functional groups which allow them to complex with metal ions and interact with nanomaterials. These interactions can not only alter the environmental behavior of nanomaterials, but also influence the removal and transportation of heavy metals by nanomaterials. Thus, the interactions and the underlying mechanisms involved warrant specific investigations. This review outlined the effects of HA/FA on the removal of heavy metals from aqueous solutions by various nanomaterials, mainly including carbon-based nanomaterials, iron-based nanomaterials and photocatalytic nanomaterials. Moreover, mechanisms involved in the interactions were discussed and potential environmental implications of HA/FA to nanomaterials and heavy metals were evaluated. © 2013.

  19. Beneficial effects of humic acid on micronutrient availability to wheat

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Grossl, P. R.; Bugbee, B. G.

    2001-01-01

    Humic acid (HA) is a relatively stable product of organic matter decomposition and thus accumulates in environmental systems. Humic acid might benefit plant growth by chelating unavailable nutrients and buffering pH. We examined the effect of HA on growth and micronutrient uptake in wheat (Triticum aestivum L.) grown hydroponically. Four root-zone treatments were compared: (i) 25 micromoles synthetic chelate N-(4-hydroxyethyl)ethylenediaminetriacetic acid (C10H18N2O7) (HEDTA at 0.25 mM C); (ii) 25 micromoles synthetic chelate with 4-morpholineethanesulfonic acid (C6H13N4S) (MES at 5 mM C) pH buffer; (iii) HA at 1 mM C without synthetic chelate or buffer; and (iv) no synthetic chelate or buffer. Ample inorganic Fe (35 micromoles Fe3+) was supplied in all treatments. There was no statistically significant difference in total biomass or seed yield among treatments, but HA was effective at ameliorating the leaf interveinal chlorosis that occurred during early growth of the nonchelated treatment. Leaf-tissue Cu and Zn concentrations were lower in the HEDTA treatment relative to no chelate (NC), indicating HEDTA strongly complexed these nutrients, thus reducing their free ion activities and hence, bioavailability. Humic acid did not complex Zn as strongly and chemical equilibrium modeling supported these results. Titration tests indicated that HA was not an effective pH buffer at 1 mM C, and higher levels resulted in HA-Ca and HA-Mg flocculation in the nutrient solution.

  20. Registration of two confection sunflower germplasm Lines, HA-R10 and HA-R11, Resistant to sunflower rust

    USDA-ARS?s Scientific Manuscript database

    Two confection sunflower (Helianthus annuus L.) germplasm lines, HA-R10 (Reg. No.xxx, PI670043) and HA-R11 (Reg. No.xxx, PI670044) were developed by the USDA-ARS Sunflower and Plant Biology Research Unit in collaboration with the North Dakota Agricultural Experiment Station and released December, 20...

  1. Effect of Hyaluronic Acid Incorporation Method on the Stability and Biological Properties of Polyurethane-Hyaluronic Acid Biomaterials

    PubMed Central

    Ruiz, Amaliris; Rathnam, Kashmila R.; Masters, Kristyn S.

    2014-01-01

    The high failure rate of small diameter vascular grafts continues to drive the development of new materials and modification strategies that address this clinical problem, with biomolecule incorporation typically achieved via surface-based modification of various biomaterials. In this work, we examined whether the method of biomolecule incorporation (i.e., bulk vs. surface modification) into a polyurethane (PU) polymer impacted biomaterial performance in the context of vascular applications. Specifically, hyaluronic acid (HA) was incorporated into a poly(ether urethane) via bulk copolymerization or covalent surface tethering, and the resulting PU-HA materials characterized with respect to both physical and biological properties. Modification of PU with HA by either surface or bulk methods yielded materials that, when tested under static conditions, possessed no significant differences in their ability to resist protein adsorption, platelet adhesion, and bacterial adhesion, while supporting endothelial cell culture. However, only bulk-modified PU-HA materials were able to fully retain these characteristics following material exposure to flow, demonstrating a superior ability to retain the incorporated HA and minimize enzymatic degradation, protein adsorption, platelet adhesion, and bacterial adhesion. Thus, despite bulk methods rarely being implemented in the context of biomolecule attachment, these results demonstrate improved performance of PU-HA upon bulk, rather than surface, incorporation of HA. Although explored only in the context of PU-HA, the findings revealed by these experiments have broader implications for the design and evaluation of vascular graft modification strategies. PMID:24276670

  2. Modeling of hyaluronic acid containing anti-cancer drugs-loaded polylactic-co-glycolic acid bioconjugates for targeted delivery to cancer cells

    NASA Astrophysics Data System (ADS)

    Gul-e-Saba, Adulphakdee, A.; Madthing, A.; Zafar, M. N.; Abdullah, M. A.

    2012-09-01

    Molecular modeling of hyaluronan (HA), polylactic-co-glycolic acid (PLGA), polyethylene glycol-bis-amine (PEG-bis-amine), Curcumin, Cisplatin and the conjugate HA-PEG-PLGA containing Curcumin/Cisplatin were performed using Discovery Studio 2.5 to better understand issues and constraints related to targeted delivery of potent anticancer drugs to cancer cells. HA, a versatile biopolymer is a ligand of cancer cell receptor, CD44 that can be particularly useful in a receptor-mediated cellular uptake of drug-incorporated nanoparticles. Biocompatible and biodegradable polymers, PLGA and PEG, serve as polymeric micelles for controlled-release of drug. Curcumin as a natural anticancer agent has poor solubility that limits its use in drug therapeutics, while platinum-based Cisplatin exhibits systemic cytotoxicity. These can be overcome via drug delivery in polymeric biocompatible vehicles. The PLGA-PEG-HA conjugate shows the total measurement of 105 bond length with average bond length of 1.274163 Å. The conjugation between PEG and HA occurs at C8-O1 atoms and can be manipulated to improve properties.

  3. The role of amino acids in hydroxyapatite mineralization

    PubMed Central

    2016-01-01

    Polar and charged amino acids (AAs) are heavily expressed in non-collagenous proteins (NCPs), and are involved in hydroxyapatite (HA) mineralization in bone. Here, we review what is known on the effect of single AAs on HA precipitation. Negatively charged AAs, such as aspartic acid, glutamic acid (Glu) and phosphoserine are largely expressed in NCPs and play a critical role in controlling HA nucleation and growth. Positively charged ones such as arginine (Arg) or lysine (Lys) are heavily involved in HA nucleation within extracellular matrix proteins such as collagen. Glu, Arg and Lys intake can also increase bone mineral density by stimulating growth hormone production. In vitro studies suggest that the role of AAs in controlling HA precipitation is affected by their mobility. While dissolved AAs are able to inhibit HA precipitation and growth by chelating Ca2+ and PO43− ions or binding to nuclei of calcium phosphate and preventing their further growth, AAs bound to surfaces can promote HA precipitation by attracting Ca2+ and PO43− ions and increasing the local supersaturation. Overall, the effect of AAs on HA precipitation is worth being investigated more, especially under conditions closer to the physiological ones, where the presence of other factors such as collagen, mineralization inhibitors, and cells heavily influences HA precipitation. A deeper understanding of the role of AAs in HA mineralization will increase our fundamental knowledge related to bone formation, and could lead to new therapies to improve bone regeneration in damaged tissues or cure pathological diseases caused by excessive mineralization in tissues such as cartilage, blood vessels and cardiac valves. PMID:27707904

  4. Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold.

    PubMed

    Yao, Qingqiang; Wei, Bo; Guo, Yang; Jin, Chengzhe; Du, Xiaotao; Yan, Chao; Yan, Junwei; Hu, Wenhao; Xu, Yan; Zhou, Zhi; Wang, Yijin; Wang, Liming

    2015-01-01

    The study aims to investigate the techniques of design and construction of CT 3D reconstructional data-based polycaprolactone (PCL)-hydroxyapatite (HA) scaffold. Femoral and lumbar spinal specimens of eight male New Zealand white rabbits were performed CT and laser scanning data-based 3D printing scaffold processing using PCL-HA powder. Each group was performed eight scaffolds. The CAD-based 3D printed porous cylindrical stents were 16 piece × 3 groups, including the orthogonal scaffold, the Pozi-hole scaffold and the triangular hole scaffold. The gross forms, fiber scaffold diameters and porosities of the scaffolds were measured, and the mechanical testing was performed towards eight pieces of the three kinds of cylindrical scaffolds, respectively. The loading force, deformation, maximum-affordable pressure and deformation value were recorded. The pore-connection rate of each scaffold was 100 % within each group, there was no significant difference in the gross parameters and micro-structural parameters of each scaffold when compared with the design values (P > 0.05). There was no significant difference in the loading force, deformation and deformation value under the maximum-affordable pressure of the three different cylinder scaffolds when the load was above 320 N. The combination of CT and CAD reverse technology could accomplish the design and manufacturing of complex bone tissue engineering scaffolds, with no significant difference in the impacts of the microstructures towards the physical properties of different porous scaffolds under large load.

  5. Targeted delivery of hyaluronic acid to the ocular surface by a polymer-peptide conjugate system for dry eye disease.

    PubMed

    Lee, David; Lu, Qiaozhi; Sommerfeld, Sven D; Chan, Amanda; Menon, Nikhil G; Schmidt, Tannin A; Elisseeff, Jennifer H; Singh, Anirudha

    2017-06-01

    Hyaluronic acid (HA) solutions effectively lubricate the ocular surface and are used for the relief of dry eye related symptoms. However, HA undergoes rapid clearance due to limited adhesion, which necessitates frequent instillation. Conversely, highly viscous artificial tear formulations with HA blur vision and interfere with blinking. Here, we developed an HA-eye drop formulation that selectively binds and retains HA for extended periods of time on the ocular surface. We synthesized a heterobifunctional polymer-peptide system with one end binding HA while the other end binding either sialic acid-containing glycosylated transmembrane molecules on the ocular surface epithelium, or type I collagen molecule within the tissue matrix. HA solution was mixed with the polymer-peptide system and tested on both ex vivo and in vivo models to determine its ability to prolong HA retention. Furthermore, rabbit ocular surface tissues treated with binding peptides and HA solutions demonstrated superior lubrication with reduced kinetic friction coefficients compared to tissues treated with conventional HA solution. The results suggest that binding peptide-based solution can keep the ocular surface enriched with HA for prolonged times as well as keep it lubricated. Therefore, this system can be further developed into a more effective treatment for dry eye patients than a standard HA eye drop. Eye drop formulations containing HA are widely used to lubricate the ocular surface and relieve dry eye related symptoms, however its low residence time remains a challenge. We designed a polymer-peptide system for the targeted delivery of HA to the ocular surface using sialic acid or type I collagen as anchors for HA immobilization. The addition of the polymer-peptide system to HA eye drop exhibited a reduced friction coefficient, and it can keep the ocular surface enriched with HA for prolonged time. This system can be further developed into a more effective treatment for dry eye than a

  6. Voltammetric study of the boric acid-salicylaldehyde-H-acid ternary system and its application to the voltammetric determination of boron.

    PubMed

    Kajiwara, Mari; Ito, Yoshio N; Miyazaki, Yoshinobu; Fujimori, Takao; Takehara, Kô; Yoshimura, Kazuhisa

    2015-02-14

    The ternary system of boric acid, salicylaldehyde (SA) and H-acid (HA) was voltammetrically studied from kinetic and equilibrium points of view. The effect of the SA substituents was also studied by using two analogs, 5-fluorosalicylaldehyde (F-SA) and 5-methylsalicylaldehyde (Me-SA). The three cathodic peaks of Azomethine H (AzH), Azomethine H-boric acid complex (AzB), and free SA were observed in the solution containing boric acid, SA and HA. The peak potentials of AzH and SA were shifted to negative potentials with increasing pH, while the peak potential of AzB was pH-independent. This difference indicates that a proton participates in the charge-transfer steps of the AzH and SA reductions, but not in that of the AzB reduction. The formation constants for the AzB complexation were similar among all the examined analogs. In the kinetic study, the reaction rate was higher in an acidic condition for the AzH formation, but in a neutral condition for the AzB formation. The rate constants for the AzB complexes were in the order of F-SA > SA ≈ Me-SA, indicating that the fluoro group accelerates the F-AzB complexation. The AzB complexation mechanism is considered to consist of more than three steps, i.e., the pre-equilibrium of the salicylaldehyde-boric acid complex (SA-B) formation, the nucleophilic attack of HA on SA-B, and the remaining some steps to form AzB. Based on these results, the voltammetric determination method of boron using F-SA was optimized, which allowed the boron concentration to be determined within only 5 min with a 0.03 mg B dm(-3) detection limit.

  7. pH-Amplified multilayer films based on hyaluronan: influence of HA molecular weight and concentration on film growth and stability.

    PubMed

    Shen, Liyan; Chaudouet, Patrick; Ji, Jian; Picart, Catherine

    2011-04-11

    In this study, we investigate the growth and internal properties of polyelectrolyte multilayer films made of poly(l-lysine) and hyaluronan (PLL/HA) under pH-amplified conditions, that is, by alternate deposition of PLL at high pH and HA at low pH. We focus especially on the influence of the molecular weight of HA in this process as well as on its concentration in solution. Film growth was followed by quartz crystal microbalance and by infrared spectroscopy to quantify the deposited mass and to characterize the internal properties of the films, including the presence of hydrogen bonds and the ionization degree of HA in the films. Film growth was significantly faster for HA of high molecular weight (1300 kDa) as compared with 400 and 200 kDa. PLL was found to exhibit a random structure once deposited in the films. Furthermore, we found that PLL-ending films are more stable when they are placed in PBS than their HA counterparts. This was explained on the basis of more cohesive interactions in the films for PLL-ending films. Finally, we quantified PLL(FITC) diffusion into the films and observed that PLL diffusion is enhanced when PLL is paired with the HA of high MW. All together, these results suggest that besides purely physicochemical parameters such as variation in pH, the molecular weight of HA, its concentration in solution, and the possibility to form intermolecular HA association play important roles in film growth, internal cohesion, and stability.

  8. Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite.

    PubMed

    Angelico, Ruggero; Ceglie, Andrea; He, Ji-Zheng; Liu, Yu-Rong; Palumbo, Giuseppe; Colombo, Claudio

    2014-03-01

    Humic acids (HA) have a colloidal character whose size and negative charge are strictly dependent on surface functional groups. They are able to complex large amount of poorly ordered iron (hydr)oxides in soil as a function of pH and other environmental conditions. Accordingly, with the present study we intend to assess the colloidal properties of Fe(II) coprecipitated with humic acids (HA) and their effect on Fe hydroxide crystallinity under abiotic oxidation and order of addition of both Fe(II) and HA. TEM, XRD and DRS experiments showed that Fe-HA consisted of Ferrihydrite with important structural variations. DLS data of Fe-HA at acidic pH showed a bimodal size distribution, while at very low pH a slow aggregation process was observed. Electrophoretic zeta-potential measurements revealed a negative surface charge for Fe-HA macromolecules, providing a strong electrostatic barrier against aggregation. Under alkaline conditions HA chains swelled, which resulted in an enhanced stabilization of the colloid particles. The increasing of zeta potential and size of the Fe-HA macromolecules, reflects a linear dependence of both with pH. The increase in the size and negative charge of the Fe-HA precipitate seems to be more affected by the ionization of the phenolic acid groups, than by the carboxylic acid groups. The main cause of negative charge generation of Fe/HA is due to increased dissociation of phenolic groups in more expanded structure. The increased net negative surface potential induced by coprecipitation with Ferrihydrite and the correspondent changes in configuration of the HA could trigger the inter-particle aggregation with the formation of new negative surface. The Fe-HA coprecipitation can reduce electrosteric repulsive forces, which in turn may inhibit the aggregation process at different pH. Therefore, coprecipitation of Ferrihydrite would be expected to play an important role in the carbon stabilization and persistence not only in organic soils, but

  9. Peritoneal Macrophage-Specific TNF-α Gene Silencing in LPS-Induced Acute Inflammation Model Using CD44 Targeting Hyaluronic Acid Nanoparticles.

    PubMed

    Kosovrasti, Verbena Y; Nechev, Lubomir V; Amiji, Mansoor M

    2016-10-03

    The main goal of this study was to evaluate tumor necrosis factor-alpha (TNF-α) gene silencing in peritoneal macrophages upon activation with lipopolysaccharide (LPS), using CD44-targeting hyaluronic acid (HA)-based nanoparticles encapsulating TNF-α-specific small interfering RNA (siTNF-α). HA nanoparticles were formulated by blending hyaluronic acid-poly(ethylene imine) (HA-PEI), hyaluronic acid-hexyl fatty acid (HA-C6), and hyaluronic acid-poly(ethylene glycol) (HA-PEG) in 3:2:1 weight ratio, and encapsulating siTNF-α to form spherical particles of 78-90 nm diameter. Following intraperitoneal (IP) administration in LPS-treated C57BL/6 mice, the nanoparticles were actively taken up by macrophages and led to a significant downregulation of peritoneal TNF-α level. Downregulation of peritoneal macrophage-specific TNF-α also had a significant impact on other pro-inflammatory cytokine and chemokine levels in the serum. The C57BL/6 group of mice challenged with 5 mg/kg LPS had a significantly higher survival rate when they were treated with 3 mg/kg siTNF-α, either prior or simultaneously with the LPS administration, as compared to the LPS-challenged mice, which were treated with controls including the scrambled siRNA formulation. Overall, the results of this study demonstrate that CD44 targeting HA nanoparticles can selectively deliver siTNF-α to peritoneal macrophages leading to downregulation of pro-inflammatory cytokines in the peritoneal fluid and in the serum. This RNAi strategy could potentially provide an important therapeutic modality for acute inflammatory diseases, such as septic shock.

  10. 2-Hydroxy Acids in Plant Metabolism

    PubMed Central

    Maurino, Veronica G.; Engqvist, Martin K. M.

    2015-01-01

    Glycolate, malate, lactate, and 2-hydroxyglutarate are important 2-hydroxy acids (2HA) in plant metabolism. Most of them can be found as D- and L-stereoisomers. These 2HA play an integral role in plant primary metabolism, where they are involved in fundamental pathways such as photorespiration, tricarboxylic acid cycle, glyoxylate cycle, methylglyoxal pathway, and lysine catabolism. Recent molecular studies in Arabidopsis thaliana have helped elucidate the participation of these 2HA in in plant metabolism and physiology. In this chapter, we summarize the current knowledge about the metabolic pathways and cellular processes in which they are involved, focusing on the proteins that participate in their metabolism and cellular/intracellular transport in Arabidopsis. PMID:26380567

  11. The Conjugate Acid-Base Chart.

    ERIC Educational Resources Information Center

    Treptow, Richard S.

    1986-01-01

    Discusses the difficulties that beginning chemistry students have in understanding acid-base chemistry. Describes the use of conjugate acid-base charts in helping students visualize the conjugate relationship. Addresses chart construction, metal ions, buffers and pH titrations, and the organic functional groups and nonaqueous solvents. (TW)

  12. Improving the accuracy of hyaluronic acid molecular weight estimation by conventional size exclusion chromatography.

    PubMed

    Shanmuga Doss, Sreeja; Bhatt, Nirav Pravinbhai; Jayaraman, Guhan

    2017-08-15

    There is an unreasonably high variation in the literature reports on molecular weight of hyaluronic acid (HA) estimated using conventional size exclusion chromatography (SEC). This variation is most likely due to errors in estimation. Working with commercially available HA molecular weight standards, this work examines the extent of error in molecular weight estimation due to two factors: use of non-HA based calibration and concentration of sample injected into the SEC column. We develop a multivariate regression correlation to correct for concentration effect. Our analysis showed that, SEC calibration based on non-HA standards like polyethylene oxide and pullulan led to approximately 2 and 10 times overestimation, respectively, when compared to HA-based calibration. Further, we found that injected sample concentration has an effect on molecular weight estimation. Even at 1g/l injected sample concentration, HA molecular weight standards of 0.7 and 1.64MDa showed appreciable underestimation of 11-24%. The multivariate correlation developed was found to reduce error in estimations at 1g/l to <4%. The correlation was also successfully applied to accurately estimate the molecular weight of HA produced by a recombinant Lactococcus lactis fermentation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. An injectable oxidated hyaluronic acid/adipic acid dihydrazide hydrogel as a vitreous substitute.

    PubMed

    Su, Wen-Yu; Chen, Ko-Hua; Chen, Yu-Chun; Lee, Yen-Hsien; Tseng, Ching-Li; Lin, Feng-Huei

    2011-01-01

    Vitrectomy is a common procedure for treating ocular-related diseases. The surgery involves removing the vitreous humor from the center of the eye, and vitreous substitutes are needed to replace the vitreous humor after vitrectomy. In the present study, we developed a colorless, transparent and injectable hydrogel with appropriate refractive index as a vitreous substitute. The hydrogel is formed by oxidated hyaluronic acid (oxi-HA) cross-linked with adipic acid dihydrazide (ADH). Hyaluronic acid (HA) was oxidized by sodium periodate to create aldehyde functional groups, which could be cross-linked by ADH. The refractive index of this hydrogel ranged between 1.3420 and 1.3442, which is quite similar to human vitreous humor (1.3345). The degradation tests demonstrated that the hydrogel could maintain the gel matrix over 35 days, depending on the ADH concentration. In addition, the cytotoxicity was evaluated on retina pigmented epithelium (RPE) cells cultivated following the ISO standard (tests for in vitro cytotoxicity), and the hydrogel was found to be non-toxic. In a preliminary animal study, the oxi-HA/ADH hydrogel was injected into the vitreous cavity of rabbit eyes. The evaluations of slit-lamp observation, intraocular pressure, cornea thickness and histological examination showed no significant abnormal biological reactions for 3 weeks. This study suggests that the injectable oxi-HA/ADH hydrogel should be a potential vitreous substitute. Koninklijke Brill NV, Leiden, 2011

  14. Antidiabetics and diuretics show phototoxicity in HaCaT cells

    NASA Astrophysics Data System (ADS)

    Selvaag, Edgar; Petersen, Anita B.; Gniadecki, Robert; Thorn, Tine; Wulf, Hans Christian

    2001-10-01

    The antidiabetics tolbutamide, glibenclamide, and glipizide, and the diuretics bendroflumethiazide, butizide, furosemide, hydrochlorothiazide, and trichlormethiazide were investigated for potential phototoxicity in the HaCaT cell line. The cells were incubated with the drugs and then exposed to UVA1 irradiation. The effects of the antioxidants L-ascorbic acid, and (alpha) -tocopherol on oxidative DNA damage were assessed. Bendroflumethiazide, furosemide, hydrochlorothiazide, trichlormethiazide, or tolbutamide induced dose-dependent phototoxicity. Cells incubated with bendroflumethiazide, tolbutamide, and glibenclamide, and irradiated with UVA1 demonstrated an increased oxidative DNA damage. Pre-treatment with L-ascorbic acid, or (alpha) -tocopherol, suppressed the UVA-induced DNA damage in cells incubated with 1 mM of bendroflumethiazide, furosemide, glibenclamide, glipizide, tolbutamide, and trichloromethiazide, further implying the involvement of reactive oxygen species in the phototoxic DNA damage. These results may indicate a link between phototoxic and photocancerogenic potential of the sulfonamide-derived oral antidiabetic and diuretic drugs, as it has previously been recognized for psoralen, chlorpromazine, and fluoroquinolones. Excessive exposure to UV light may be deleterious for patients treated with these drugs.

  15. Preparation and characterization of bio-composite PEEK/nHA

    NASA Astrophysics Data System (ADS)

    Jin, Y. S.; Bian, C. C.; Zhang, Z. Q.; Zhao, Y.; Yang, L.

    2017-01-01

    PEEK/nHA composite material, with excellent mechanical property as polyetheretherketone (PEEK) and biological activity as hydroxyapatite (HA), has attracted wide attention of medical experts and materials science experts. The addition of hydroxyapatite was the decisive factor for biological activity in PEEK/nHA composite. In this paper, acicular nanohydroxyapatite was prepared by chemical precipitation method with Ca(NO3)2, (NH4)2HPO4 as raw material; PEEK/nHA composite was prepared by solution blending and vacuum sintering method. The composite was characterized with FT-IR, XRD, DSC, TG and mechanical property test. Results showed that the composite has good thermal stability and compressive property when the mass ratio of PEEK to nHA is 10:3; and high nHA content can improve the biological activity of the composite, which can meet the basic requirements for bone tissue engineering scaffold.

  16. Efficacy and safety of injection with poly-L-lactic acid compared with hyaluronic acid for correction of nasolabial fold: a randomized, evaluator-blinded, comparative study.

    PubMed

    Hyun, M Y; Lee, Y; No, Y A; Yoo, K H; Kim, M N; Hong, C K; Chang, S E; Won, C H; Kim, B J

    2015-03-01

    Hyaluronic acid (HA) fillers and poly-L-lactic acid (PLA) fillers are frequently used to correct facial wrinkles. To compare the efficacy and safety of a novel injectable poly-L-lactic acid (PLA) filler and a well-studied biphasic HA filler for the treatment of moderate to severe nasolabial folds. In this multicentre, randomized, evaluator-blinded, comparative study, subjects were randomized for injections with PLA or HA into both nasolabial folds. Efficacy was determined by calculating the change in Wrinkle Severity Rating Scale (WSRS) relative to baseline. Local safety was assessed by reported adverse events. At week 24, mean improvement in WSRS from baseline was 2.09 ± 0.68 for the PLA side and 1.54 ± 0.65 for the HA side. Both injections were well tolerated, and the adverse reactions were mild and transient in most cases. PLA provides noninferior efficacy compared with HA 6 months after being used to treat moderate to severe nasolabial folds. © 2014 British Association of Dermatologists.

  17. Tensile properties of HA 230 and HA 188 after 400 and 2500 hour exposures to LiF-22CaF2 and vacuum at 1093 K

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel

    1990-01-01

    The solid-to-liquid phase transformation of the nominal LiF-20CaF2 eutectic at 1043 K is considered to be an ideal candidate thermal energy storage mechanism for a space based low temperature Brayton cycle solar dynamic system. Although Co, Fe, and Ni superalloys are thought to be suitable containment materials for LiF based salts, long term containment is of concern because molten fluorides are usually corrosive and Cr can be lost into space through evaporation. Two examples of commercially available superalloys in sheet form, the Ni-base material HA 230 and the Co-base material Ha 88, have been exposed to molten LiF-22CaF2, its vapor, and vacuum, at 1093 K, for 400 and 2500 hr. Triplicate tensile testing of specimens subjected to all three environments have been undertaken between 77 to 1200 K. Comparison of the weight gain data, microstructure, and tensile properties indicate that little, if any, difference in behavior can be ascribed to the exposure environment.

  18. Disorders of Acid-Base Balance: New Perspectives

    PubMed Central

    Seifter, Julian L.; Chang, Hsin-Yun

    2017-01-01

    Background Disorders of acid-base involve the complex interplay of many organ systems including brain, lungs, kidney, and liver. Compensations for acid-base disturbances within the brain are more complete, while limitations of compensations are more apparent for most systemic disorders. However, some of the limitations on compensations are necessary to survival, in that preservation of oxygenation, energy balance, cognition, electrolyte, and fluid balance are connected mechanistically. Summary This review aims to give new and comprehensive perspective on understanding acid-base balance and identifying associated disorders. All metabolic acid-base disorders can be approached in the context of the relative losses or gains of electrolytes or a change in the anion gap in body fluids. Acid-base and electrolyte balance are connected not only at the cellular level but also in daily clinical practice. Urine chemistry is essential to understanding electrolyte excretion and renal compensations. Key Messages Many constructs are helpful to understand acid-base, but these models are not mutually exclusive. Electroneutrality and the close interconnection between electrolyte and acid-base balance are important concepts to apply in acid-base diagnoses. All models have complexity and shortcuts that can help in practice. There is no reason to dismiss any of the present constructs, and there is benefit in a combined approach. PMID:28232934

  19. Influence of cations on noncovalent interactions between 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and dissolved fulvic and humic acids.

    PubMed

    Gadad, Praveen; Nanny, Mark A

    2008-12-01

    The influence of cations (Na(+), Ca(2+) and Mg(2+)) on noncovalent interactions between 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and dissolved fulvic acids (FAs) (Norman landfill leachate fulvic acid (NLFA) and Suwannee River fulvic acid (SRFA)) and dissolved humic acids (HAs) (Suwannee River humic acid (SRHA) and Leonardite humic acid (LHA)) was examined using steady-state fluorescence spectroscopy at pH 4, 7 and 10 as a function of cation concentration (up to 25-100mM). Regardless of pH and cation concentration, PRODAN quenching by FA was unaffected by cations. However, interactions between PRODAN and HA decreased in the presence of cations at pH 7 and 10. Cation concentrations below the HA charge density resulted in the greatest decrease of PRODAN quenching, while very little additional decrease in PRODAN quenching occurred at cation concentrations above the HA charge density. This suggests that as the HA carboxylic acid functional groups form inner sphere complexes with divalent cations, intramolecular interactions result in a contraction of the HA molecular structure, thereby preventing PRODAN from associating with the condensed aromatic, electron accepting moieties inherent within HA molecules and responsible for PRODAN quenching. However, once the HA carboxylic acid functional groups are fully titrated with divalent cations, PRODAN quenching is no longer significantly influenced by the further addition of cations, even though these additional cations facilitate intermolecular interactions between the HA molecules to form supramolecular HA aggregates that can continue to increase in size. Regardless of FA and HA type, pH, cation type and concentration, the lack of blue-shifted fluorescence emission spectra indicated that micelle-like hydrophobic regions, amenable to PRODAN partitioning, were not formed by intra- and intermolecular interactions of FA and HA.

  20. Removal of Uranium in Drinking Water: Brimac Environmental Services, Inc. Brimac HA 216 Adsorptive Media

    EPA Science Inventory

    The Brimac HA 216 Adsorptive Media was tested for uranium (U) removal from a drinking water source (well water) at Grappone Toyota located in Bow, New Hampshire. The HA 216 media is a hydroxyapatite-based material. A pilot unit, consisting of a TIGG Corporation Cansorb® C-5 ste...

  1. Isotherm-Based Thermodynamic Models for Solute Activities of Organic Acids with Consideration of Partial Dissociation.

    PubMed

    Nandy, Lucy; Ohm, Peter B; Dutcher, Cari S

    2016-06-23

    Organic acids make up a significant fraction of the organic mass in atmospheric aerosol particles. The calculation of gas-liquid-solid equilibrium partitioning of the organic acid is therefore critical for accurate determination of atmospheric aerosol physicochemical properties and processes such as new particle formation and activation to cloud condensation nuclei. Previously, an adsorption isotherm-based statistical thermodynamic model was developed for capturing solute concentration-activity relationships for multicomponent aqueous solutions over the entire concentration range (Dutcher et al. J. Phys. Chem. C/A 2011, 2012, 2013), with model parameters for energies of adsorption successfully related to dipole-dipole electrostatic forces in solute-solvent and solvent-solvent interactions for both electrolytes and organics (Ohm et al. J. Phys. Chem. A 2015). However, careful attention is needed for weakly dissociating semivolatile organic acids. Dicarboxylic acids, such as malonic acid and glutaric acid are treated here as a mixture of nondissociated organic solute (HA) and dissociated solute (H(+) + A(-)). It was found that the apparent dissociation was greater than that predicted by known dissociation constants alone, emphasizing the effect of dissociation on osmotic and activity coefficient predictions. To avoid additional parametrization from the mixture approach, an expression was used to relate the Debye-Hückel hard-core collision diameter to the adjustable solute-solvent intermolecular distance. An improved reference state treatment for electrolyte-organic aqueous mixtures, such as that observed here with partial dissociation, has also been proposed. This work results in predictive correlations for estimation of organic acid and water activities for which there is little or no activity data.

  2. A Computer-Based Simulation of an Acid-Base Titration

    ERIC Educational Resources Information Center

    Boblick, John M.

    1971-01-01

    Reviews the advantages of computer simulated environments for experiments, referring in particular to acid-base titrations. Includes pre-lab instructions and a sample computer printout of a student's use of an acid-base simulation. Ten references. (PR)

  3. Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy

    NASA Astrophysics Data System (ADS)

    Xiao, Bo; Han, Moon Kwon; Viennois, Emilie; Wang, Lixin; Zhang, Mingzhen; Si, Xiaoying; Merlin, Didier

    2015-10-01

    Nanoparticle (NP)-based combination chemotherapy has been proposed as an effective strategy for achieving synergistic effects and targeted drug delivery for colon cancer therapy. Here, we fabricated a series of hyaluronic acid (HA)-functionalized camptothecin (CPT)/curcumin (CUR)-loaded polymeric NPs (HA-CPT/CUR-NPs) with various weight ratios of CPT to CUR (1 : 1, 2 : 1 and 4 : 1). The resultant spherical HA-CPT/CUR-NPs had a desirable particle size (around 289 nm), relative narrow size distribution, and slightly negative zeta potential. These NPs exhibited a simultaneous sustained release profile for both drugs throughout the time frame examined. Subsequent cellular uptake experiments demonstrated that the introduction of HA to the NP surface endowed NPs with colon cancer-targeting capability and markedly increased cellular uptake efficiency compared with chitosan-coated NPs. Importantly, the combined delivery of CPT and CUR in one HA-functionalized NP exerted strong synergistic effects. HA-CPT/CUR-NP (1 : 1) showed the highest antitumor activity among the three HA-CPT/CUR-NPs, resulting in an extremely low combination index. Collectively, our findings indicate that this HA-CPT/CUR-NP can be exploited as an efficient formulation for colon cancer-targeted combination chemotherapy.Nanoparticle (NP)-based combination chemotherapy has been proposed as an effective strategy for achieving synergistic effects and targeted drug delivery for colon cancer therapy. Here, we fabricated a series of hyaluronic acid (HA)-functionalized camptothecin (CPT)/curcumin (CUR)-loaded polymeric NPs (HA-CPT/CUR-NPs) with various weight ratios of CPT to CUR (1 : 1, 2 : 1 and 4 : 1). The resultant spherical HA-CPT/CUR-NPs had a desirable particle size (around 289 nm), relative narrow size distribution, and slightly negative zeta potential. These NPs exhibited a simultaneous sustained release profile for both drugs throughout the time frame examined. Subsequent cellular uptake experiments

  4. Humic acids as pseudocapacitive electrolyte additive for electrochemical double layer capacitors

    NASA Astrophysics Data System (ADS)

    Wasiński, Krzysztof; Walkowiak, Mariusz; Lota, Grzegorz

    2014-06-01

    Novel electrolyte additive for electrochemical capacitors has been reported. It has been demonstrated for the first time that addition of humic acids (HA) to KOH-based electrolyte significantly increases capacitance of symmetrical capacitors with electrodes made of activated carbon. Specific capacitances determined by means of galvanostatic charge/discharge, cyclic voltammetry and electrochemical impedance spectroscopy consistently showed increases for HA concentrations ranging from 2% w/w up to saturated solution with maximum positive effect observed for 5% w/w of the additive. The capacitance increase has been attributed to complex faradaic processes involving oxygen-containing groups of HA molecules. Due to abundant resources, low cost and easy processability the reported solution can find application in electrochemical capacitor technologies.

  5. Nucleic acid-based electrochemical nanobiosensors.

    PubMed

    Abi, Alireza; Mohammadpour, Zahra; Zuo, Xiaolei; Safavi, Afsaneh

    2018-04-15

    The detection of biomarkers using sensitive and selective analytical devices is critically important for the early stage diagnosis and treatment of diseases. The synergy between the high specificity of nucleic acid recognition units and the great sensitivity of electrochemical signal transductions has already shown promise for the development of efficient biosensing platforms. Yet nucleic-acid based electrochemical biosensors often rely on target amplification strategies (e.g., polymerase chain reactions) to detect analytes at clinically relevant concentration ranges. The complexity and time-consuming nature of these amplification methods impede moving nucleic acid-based electrochemical biosensors from laboratory-based to point-of-care test settings. Fortunately, advancements in nanotechnology have provided growing evidence that the recruitment of nanoscaled materials and structures can enhance the biosensing performance (particularly in terms of sensitivity and response time) to the level suitable for use in point-of-care diagnostic tools. This Review highlights the significant progress in the field of nucleic acid-based electrochemical nanobiosensing with the focus on the works published during the last five years. Copyright © 2017. Published by Elsevier B.V.

  6. Investigating Students' Reasoning about Acid-Base Reactions

    ERIC Educational Resources Information Center

    Cooper, Melanie M.; Kouyoumdjian, Hovig; Underwood, Sonia M.

    2016-01-01

    Acid-base chemistry is central to a wide range of reactions. If students are able to understand how and why acid-base reactions occur, it should provide a basis for reasoning about a host of other reactions. Here, we report the development of a method to characterize student reasoning about acid-base reactions based on their description of…

  7. Influence of insertion site of the avian influenza virus haemagglutinin (HA) gene within the Newcastle disease virus genome on HA expression.

    PubMed

    Ramp, Kristina; Skiba, Martin; Karger, Axel; Mettenleiter, Thomas C; Römer-Oberdörfer, Angela

    2011-02-01

    Members of the order Mononegavirales express their genes in a transcription gradient from 3' to 5'. To assess how this impacts on expression of a foreign transgene, the haemagglutinin (HA) of highly pathogenic avian influenza virus (HPAIV) A/chicken/Vietnam/P41/05 (subtype H5N1) was inserted between the phosphoprotein (P) and matrix protein (M), M and fusion protein (F), or F and haemagglutinin-neuraminidase protein (HN) genes of attenuated Newcastle disease virus (NDV) Clone 30. In addition, the gene encoding the neuraminidase of HPAIV A/duck/Vietnam/TG24-01/05 (subtype H5N1) was inserted into the NDV genome either alone or in combination with the HA gene. All recombinants replicated well in embryonated chicken eggs. The expression levels of HA-specific mRNA and protein were quantified by Northern blot analysis and mass spectrometry, with good correlation. HA expression levels differed only moderately and were highest in the recombinant carrying the HA insertion between the F and HN genes of NDV.

  8. Re-establishment of the IMS Hydroacoustic Station HA04, Crozet Islands, France.

    NASA Astrophysics Data System (ADS)

    Haralabus, Georgios; Stanley, Jerry; Zampolli, Mario; Grenard, Patrick; Nielsen, Peter; Le Bras, Ronan; Brown, David; Bittner, Paulina; Wang, Haijun; Gore, Jane; Amir, Menachem; Bereza, Slava

    2017-04-01

    The incorporation of the hydroacoustic station HA04, Crozet Islands, France, into the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) is a 17 year saga that had a happy ending on 29 December 2016. On that day, following a major engineering and logistical undertaking, the station was successfully installed. While still in its initial testing phase, HA04 sends continuously quality data at the International Data Centre (IDC), pending official certification and promotion to mainstream operational status. Similarly to most other cabled hydroacoustic stations in the IMS, HA04 is comprised of two triplets of moored hydrophones deployed on both sides of Possession Island (Crozet Islands) sending uninterrupted data to a shore facility via submarine fiber optic cables. The designed frequency pass-band is 1 - 100 Hz. Data are relayed to Vienna via a shore based satellite link in real time. According to CTBTO's standard requirements, the design life of HA04 is at least 20 years, maintenance-free for the underwater system. An outline of the main phases of this project, highlights from the installation operations and examples of received hydroacoustic signals associated with recent underwater seismic activity in the Indian Ocean as well as vocalizations from marine mammals acquired by the new HA04 are presented here. HA04 is scheduled to be fully integrated into the operational platform of IDC in the next six months, which will enable registered researchers to access archived monitoring data and processing software, or via the National Data Centres (NDCs).

  9. Combining stable insect cell lines with baculovirus-mediated expression for multi-HA influenza VLP production.

    PubMed

    Sequeira, Daniela P; Correia, Ricardo; Carrondo, Manuel J T; Roldão, António; Teixeira, Ana P; Alves, Paula M

    2018-05-24

    Safer and broadly protective vaccines are needed to cope with the continuous evolution of circulating influenza virus strains and promising approaches based on the expression of multiple hemagglutinins (HA) in a virus-like particle (VLP) have been proposed. However, expression of multiple genes in the same vector can lead to its instability due to tandem repetition of similar sequences. By combining stable with transient expression systems we can rationally distribute the number of genes to be expressed per platform and thus mitigate this risk. In this work, we developed a modular system comprising stable and baculovirus-mediated expression in insect cells for production of multi-HA influenza enveloped VLPs. First, a stable insect High Five cell population expressing two different HA proteins from subtype H3 was established. Infection of this cell population with a baculovirus vector encoding three other HA proteins from H3 subtype proved to be as competitive as traditional co-infection approaches in producing a pentavalent H3 VLP. Aiming at increasing HA expression, the stable insect cell population was infected at increasingly higher cell concentrations (CCI). However, cultures infected at CCI of 3×10 6 cells/mL showed lower HA titers per cell in comparison to standard CCI of 2×10 6 cells/mL, a phenomenon named "cell density effect". To lessen the negative impact of this phenomenon, a tailor-made refeed strategy was designed based on the exhaustion of key nutrients during cell growth. Noteworthy, cultures supplemented and infected at a CCI of 4×10 6 cells/mL showed comparable HA titers per cell to those of CCI of 2×10 6 cells/mL, thus leading to an increase of up to 4-fold in HA titers per mL. Scalability of the modular strategy herein proposed was successfully demonstrated in 2L stirred tank bioreactors with comparable HA protein levels observed between bioreactor and shake flasks cultures. Overall, this work demonstrates the suitability of combining stable

  10. Antibodies induced by the HA2 glycopolypeptide of influenza virus haemagglutinin improve recovery from influenza A virus infection.

    PubMed

    Gocník, M; Fislová, T; Mucha, V; Sládková, T; Russ, G; Kostolansky, F; Varecková, E

    2008-04-01

    The haemagglutinin (HA) of influenza A virus consists of two glycopolypeptides designated HA1 and HA2. Antibodies recognizing HA1 inhibit virus haemagglutination, neutralize virus infectivity and provide good protection against infection, but do not cross-react with the HA of other subtypes. Little is known regarding the biological activities of antibodies against HA2. To study the role of antibodies directed against HA2 during influenza virus infection, two vaccinia virus recombinants (rVVs) were used expressing chimeric molecules of HA, in which HA1 and HA2 were derived from different HA subtypes. The KG-11 recombinant expressed HA1 from A/PR/8/34 (H1N1) virus and HA2 from A/NT/60 (H3N2) virus, whilst KG-12 recombinant expressed HA1 from A/NT/60 virus and HA2 from A/PR/8/34 virus. Immunization of BALB/c mice with rVV expressing HA2 of the HA subtype homologous to the challenge virus [A/PR/8/34 (H1N1) or A/Mississippi/1/85 (H3N2)] did not prevent virus infection, but nevertheless resulted in an increase in mice survival and faster elimination of virus from the lungs. Passive immunization with antibodies purified from mice immunized with rVVs confirmed that antibodies against HA2 were responsible for the described effect on virus infection. Based on the facts that HA2 is a rather conserved part of the HA and that antibodies against HA2, as shown here, may moderate virus infection, future vaccine design should deal with the problem of how to increase the HA2 antibody response.

  11. Fluorescent sensors based on boronic acids

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher R.; James, Tony D.

    1999-05-01

    Sensor systems have long been needed for detecting the presence in solution of certain chemically or biologically important species. Sensors are used in a wide range of applications from simple litmus paper that shows a single color change in acidic or basic environments to complex biological assays that use enzymes, antibodies and antigens to display binding events. With this work the use of boronic acids in the design and synthesis of sensors for saccharides (diols) will be presented. The fluorescent sensory systems rely on photoinduced electron transfer (PET) to modulate the observed fluorescence. When saccharides form cyclic boronate esters with boronic acids, the Lewis acidity of the boronic acid is enhanced and therefore the Lewis acid-base interaction between the boronic acid and a neighboring amine is strengthened. The strength of this acid-base interaction modulates the PET from the amine (acting as a quencher) to anthracene (acting as a fluorophore). These compounds show increased fluorescence at neutral pH through suppression of the PET from nitrogen to anthracene on saccharide binding. The general strategy for the development of saccharide selective systems will be discussed. The potential of the boronic acid based systems will be illustrated using the development of glucose and glucosamine selective fluorescent sensors as examples.

  12. Ultrastructural observation of the acid-base resistant zone of all-in-one adhesives using three different acid-base challenges.

    PubMed

    Tsujimoto, Miho; Nikaido, Toru; Inoue, Go; Sadr, Alireza; Tagami, Junji

    2010-11-01

    The aim of this study was to analyze the ultrastructure of the dentin-adhesive interface using two all-in-one adhesive systems (Clearfil Tri-S Bond, TB; Tokuyama Bond Force, BF) after different acid-base challenges. Three solutions were used as acidic solutions for the acid-base challenges: a demineralizing solution (DS), a phosphoric acid solution (PA), and a hydrochloric acid solution (HCl). After the acid-base challenges, the bonded interfaces were examined by scanning electron microscopy. Thickness of the acid-base resistant zone (ABRZ) created in PA and HCl was thinner than in DS for both adhesive systems. For BF adhesive, an eroded area was observed beneath the ABRZ after immersion in PA and HCl, but not in DS. Conversely for TB adhesive, the eroded area was observed only after immersion in PA. In conclusion, although the ABRZ was observed for both all-in-one adhesive systems, its morphological features were influenced by the ingredients of both the adhesive material and acidic solution.

  13. Osteoinductive-nanoscaled silk/HA composite scaffolds for bone tissue engineering application.

    PubMed

    Huang, Xiaowei; Bai, Shumeng; Lu, Qiang; Liu, Xi; Liu, Shanshan; Zhu, Hesun

    2015-10-01

    Osteoinductive silk/hydroxyapatite (HA) composite scaffolds for bone regeneration were prepared by combining silk with HA/silk core-shell nanoparticles. The HA/silk nanoparticles were directly dispersed in silk solution to form uniform silk/HA blend and then composite scaffolds after a freeze-drying process. The HA/silk nanoparticles uniformly distributed in silk scaffolds at nanometer scale at varying HA content up to 40%, and substantially improved the compressive strength of the scaffolds produced. Rat bone mesenchymal stem cells (rBMSCs) were cultured in these scaffolds and cell proliferation was analyzed by confocal microscopy and DNA assay. Gene expression and biochemical assays were employed to study the influence of increasing HA/silk nanoparticles on in vitro osteogenic differentiation of rBMSCs. Increasing HA/silk nanoparticles inside silk scaffolds improved the growth and osteogenic capability of rBMSCs in the absence of osteogenic growth factors, and also significantly increased the calcium and collagen I deposition. In addition, compared to silk/HA composite scaffolds containing HA aggregates, the scaffolds loaded with HA/silk nanoparticles showed remarkably higher stiffness and better osteogenic property at same HA content, implying a preferable microenvironment for rBMSCs. These results suggest that the osteogenic property as well as mechanical property of silk/HA scaffolds could be further improved through fabricating their structure and topography at nanometer scale, providing more suitable systems for bone regeneration. © 2014 Wiley Periodicals, Inc.

  14. CD44-targeted hyaluronic acid-curcumin prodrug protects renal tubular epithelial cell survival from oxidative stress damage.

    PubMed

    Hu, Jing-Bo; Li, Shu-Juan; Kang, Xu-Qi; Qi, Jing; Wu, Jia-Hui; Wang, Xiao-Juan; Xu, Xiao-Ling; Ying, Xiao-Ying; Jiang, Sai-Ping; You, Jian; Du, Yong-Zhong

    2018-08-01

    Based on the abnormally increased expression of CD44 receptors on renal tubule epithelial cells during ischemia/reperfusion-induced acute kidney injury (AKI), we developed a hyaluronic acid-curcumin (HA-CUR) polymeric prodrug targeting to epithelial cells and then relieving oxidative stress damages. The water solubility of HA-CUR was significantly enhanced and approximately 27-fold higher than that of CUR. Cellular uptake test showed HA-CUR was preferably internalized by H 2 O 2 -pretreated tubular epithelial (HK-2) cells compared with free CUR benefiting from the specific binding between HA and CD44 receptors. Biodistribution results further demonstrated the increased accumulation of HA-CUR in kidneys with 13.9-fold higher than that of free CUR. Pharmacodynamic studies indicated HA-CUR effectively ameliorated AKI, and the exact mechanism was that HA-CUR protected renal tubule epithelial cells from oxidative stress damage via inhibiting PtdIns3K-AKT-mTOR signaling pathway. Taken together, this study provides a new therapeutic strategy for the treatment of AKI based on the pathogenesis of the disease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Primer on clinical acid-base problem solving.

    PubMed

    Whittier, William L; Rutecki, Gregory W

    2004-03-01

    Acid-base problem solving has been an integral part of medical practice in recent generations. Diseases discovered in the last 30-plus years, for example, Bartter syndrome and Gitelman syndrome, D-lactic acidosis, and bulimia nervosa, can be diagnosed according to characteristic acid-base findings. Accuracy in acid-base problem solving is a direct result of a reproducible, systematic approach to arterial pH, partial pressure of carbon dioxide, bicarbonate concentration, and electrolytes. The 'Rules of Five' is one tool that enables clinicians to determine the cause of simple and complex disorders, even triple acid-base disturbances, with consistency. In addition, other electrolyte abnormalities that accompany acid-base disorders, such as hypokalemia, can be incorporated into algorithms that complement the Rules and contribute to efficient problem solving in a wide variety of diseases. Recently urine electrolytes have also assisted clinicians in further characterizing select disturbances. Acid-base patterns, in many ways, can serve as a 'common diagnostic pathway' shared by all subspecialties in medicine. From infectious disease (eg, lactic acidemia with highly active antiviral therapy therapy) through endocrinology (eg, Conn's syndrome, high urine chloride alkalemia) to the interface between primary care and psychiatry (eg, bulimia nervosa with multiple potential acid-base disturbances), acid-base problem solving is the key to unlocking otherwise unrelated diagnoses. Inasmuch as the Rules are clinical tools, they are applied throughout this monograph to diverse pathologic conditions typical in contemporary practice.

  16. Evaluation of adsorption capacities of humic acids extracted from Algerian soil on polyaniline for application to remove pollutants such as Cd(II), Zn(II) and Ni(II) and characterization with cavity microelectrode.

    PubMed

    Terbouche, Achour; Ramdane-Terbouche, Chafia Ait; Hauchard, Didier; Djebbar, Safia

    2011-01-01

    The adsorption capacities of new humic acids isolated from Yakouren forest (YHA) and Sahara (Tamenrasset: THA) soils (Algeria) and commercial humic acid (PFHA) on polyaniline emeraldine base (PEB) were studied at pH 6.6. Also the adsorption of heavy metals such as Cd2+, Zn2+ and Ni2+ on humic acid-polyaniline systems (HA-PEB) was investigated at the same conditions. HA-PEB compounds were characterized by scanning electron microscopy (SEM), infrared spectrometry and cavity microelectrode. In addition, batch adsorption and cavity microelectrode were used in the adsorption study of Cd2+, Zn2+ and Ni2+ on HA-PEB. To develop biocaptors of polluting metals using a cavity microelectrode modified by HA-PEB systems, the adsorption kinetic and adsorption capacity were investigated. The SEM analysis showed that the presence of humic acid affected the PEB surface and caused the formation of a granular morphology. The maximum adsorption capacities (q(max)) of PFHA, THA and YHA determined by adsorption isotherms were 91.31, 132.1 and 151.0 mg/g, respectively. Batch adsorption results showed that q(max) of Cd2+, Zn2+ and Ni2+ on HA-PEB followed the order: THA-PEB > YHA-PEB > PFHA-PEB. The voltammograms obtained with HA-PEB modified cavity microelectrode showed the appearance of new redox couples reflecting the adsorption of HA on PEB. Metal-humic acid-polyaniline voltammograms were characterized by appearance of oxidation-reduction couples or reduction wave corresponding to metal. Finally, the result may be exploited to develop a biocaptor based on the cavity microelectrode amended by THA-PEB and YHA-PEB.

  17. High strength yttria-reinforced HA scaffolds fabricated via honeycomb ceramic extrusion.

    PubMed

    Elbadawi, M; Shbeh, M

    2018-01-01

    The present study investigated the effects of hydroxyapatite (HA) reinforced with yttria on porous scaffolds fabricated via honeycomb ceramic extrusion. Yttria was selected as it has been demonstrated to toughen other ceramics. Moreover, yttria has been surmised to suppress dehydroxylation in HA, a characteristic that prefigures decomposition thereof during sintering into mechanically weaker phases. However, the compressive strength of yttria-reinforced hydroxyapatite (Y-HA) porous scaffolds has hitherto not been reported. Y-HA was synthesised by calcining a commercially available HA with 10wt% yttria at 1000°C. Y-HA was then fabricated into porous scaffolds using an in-house honeycomb extruder, and subsequently sintered at 1200 and 1250°C. The results were compared to the uncalcined as-received commercial powder (AR-HA) and calcined pure HA powder at 1000°C (C-HA). It was discovered that calcination alone caused marked improvements to the stoichiometry, thermal stability, porosity and compressive strength of scaffolds. The improvements were ascribed to the calcined powders with less susceptibility to both agglomeration and enhanced densification. Still, differences were observed between C-HA and Y-HA at 1250°C. The compressive strength increased from 105.9 to 127.3MPa, a larger microporosity was descried and the HA matrix in Y-HA was more stoichiometric. The latter was confirmed by XRD and EDS analyses. Therefore, it was concluded that the reinforcing of hydroxyapatite with yttria improved the compressive strength and suppressed dehydroxylation of porous HA scaffolds. In addition, the compressive strength achieved demonstrated great potential for load-bearing application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Self-Assembled Polymeric Micelles Based on Hyaluronic Acid-g-Poly(d,l-lactide-co-glycolide) Copolymer for Tumor Targeting

    PubMed Central

    Son, Gyung Mo; Kim, Hyun Yul; Ryu, Je Ho; Chu, Chong Woo; Kang, Dae Hwan; Park, Su Bum; Jeong, Young-IL

    2014-01-01

    Graft copolymer composed hyaluronic acid (HA) and poly(d,l-lactide-co-glycolide) (PLGA) (HAgLG) was synthesized for antitumor targeting via CD44 receptor of tumor cells. The carboxylic end of PLGA was conjugated with hexamethylenediamine (HMDA) to have amine end group in the end of chain (PLGA-amine). PLGA-amine was coupled with carboxylic acid of HA. Self-assembled polymeric micelles of HAgLG have spherical morphologies and their sizes were around 50–200 nm. Doxorubicin (DOX)-incorporated polymeric micelles were prepared by dialysis procedure. DOX was released over 4 days and its release rate was accelerated by the tumoric enzyme hyaluronidase. To assess targetability of polymeric micelles, CD44-positive HepG2 cells were employed treated with fluorescein isothiocyanate (FITC)-labeled polymeric micelles. HepG2 cells strongly expressed green fluorescence at the cell membrane and cytosol. However, internalization of polymeric micelles were significantly decreased when free HA was pretreated to block the CD44 receptor. Furthermore, the CD44-specific anticancer activity of HAgLG polymeric micelles was confirmed using CD44-negative CT26 cells and CD44-positive HepG2 cells. These results indicated that polymeric micelles of HaLG polymeric micelles have targetability against CD44 receptor of tumor cells. We suggest HAgLG polymeric micelles as a promising candidate for specific drug targeting. PMID:25216338

  19. Teaching Acid/Base Physiology in the Laboratory

    ERIC Educational Resources Information Center

    Friis, Ulla G.; Plovsing, Ronni; Hansen, Klaus; Laursen, Bent G.; Wallstedt, Birgitta

    2010-01-01

    Acid/base homeostasis is one of the most difficult subdisciplines of physiology for medical students to master. A different approach, where theory and practice are linked, might help students develop a deeper understanding of acid/base homeostasis. We therefore set out to develop a laboratory exercise in acid/base physiology that would provide…

  20. United European Gastroenterology evidence-based guidelines for the diagnosis and therapy of chronic pancreatitis (HaPanEU).

    PubMed

    Löhr, J Matthias; Dominguez-Munoz, Enrique; Rosendahl, Jonas; Besselink, Marc; Mayerle, Julia; Lerch, Markus M; Haas, Stephan; Akisik, Fatih; Kartalis, Nikolaos; Iglesias-Garcia, Julio; Keller, Jutta; Boermeester, Marja; Werner, Jens; Dumonceau, Jean-Marc; Fockens, Paul; Drewes, Asbjorn; Ceyhan, Gürlap; Lindkvist, Björn; Drenth, Joost; Ewald, Nils; Hardt, Philip; de Madaria, Enrique; Witt, Heiko; Schneider, Alexander; Manfredi, Riccardo; Brøndum, Frøkjer J; Rudolf, Sasa; Bollen, Thomas; Bruno, Marco

    2017-03-01

    There have been substantial improvements in the management of chronic pancreatitis, leading to the publication of several national guidelines during recent years. In collaboration with United European Gastroenterology, the working group on 'Harmonizing diagnosis and treatment of chronic pancreatitis across Europe' (HaPanEU) developed these European guidelines using an evidence-based approach. Twelve multidisciplinary review groups performed systematic literature reviews to answer 101 predefined clinical questions. Recommendations were graded using the Grading of Recommendations Assessment, Development and Evaluation system and the answers were assessed by the entire group in a Delphi process online. The review groups presented their recommendations during the 2015 annual meeting of United European Gastroenterology. At this one-day, interactive conference, relevant remarks were voiced and overall agreement on each recommendation was quantified using plenary voting (Test and Evaluation Directorate). After a final round of adjustments based on these comments, a draft version was sent out to external reviewers. The 101 recommendations covered 12 topics related to the clinical management of chronic pancreatitis: aetiology (working party (WP)1), diagnosis of chronic pancreatitis with imaging (WP2 and WP3), diagnosis of pancreatic exocrine insufficiency (WP4), surgery in chronic pancreatitis (WP5), medical therapy (WP6), endoscopic therapy (WP7), treatment of pancreatic pseudocysts (WP8), pancreatic pain (WP9), nutrition and malnutrition (WP10), diabetes mellitus (WP11) and the natural course of the disease and quality of life (WP12). Using the Grading of Recommendations Assessment, Development and Evaluation system, 70 of the 101 (70%) recommendations were rated as 'strong' and plenary voting revealed 'strong agreement' for 99 (98%) recommendations. The 2016 HaPanEU/United European Gastroenterology guidelines provide evidence-based recommendations concerning key aspects

  1. Hyaluronic Acid Hydrogels for Biomedical Applications

    PubMed Central

    Burdick, Jason A.; Prestwich, Glenn D.

    2013-01-01

    Hyaluronic acid (HA), an immunoneutral polysaccharide that is ubiquitous in the human body, is crucial for many cellular and tissue functions and has been in clinical use for over thirty years. When chemically modified, HA can be transformed into many physical forms -- viscoelastic solutions, soft or stiff hydrogels, electrospun fibers, non-woven meshes, macroporous and fibrillar sponges, flexible sheets, and nanoparticulate fluids -- for use in a range of preclinical and clinical settings. Many of these forms are derived from the chemical crosslinking of pendant reactive groups by addition/condensation chemistry or by radical polymerization. Clinical products for cell therapy and regenerative medicine require crosslinking chemistry that is compatible with the encapsulation of cells and injection into tissues. Moreover, an injectable clinical biomaterial must meet marketing, regulatory, and financial constraints to provide affordable products that can be approved, deployed to the clinic, and used by physicians. Many HA-derived hydrogels meet these criteria, and can deliver cells and therapeutic agents for tissue repair and regeneration. This progress report covers both basic concepts and recent advances in the development of HA-based hydrogels for biomedical applications. PMID:21394792

  2. [Kidney, Fluid, and Acid-Base Balance].

    PubMed

    Shioji, Naohiro; Hayashi, Masao; Morimatsu, Hiroshi

    2016-05-01

    Kidneys play an important role to maintain human homeostasis. They contribute to maintain body fluid, electrolytes, and acid-base balance. Especially in fluid control, we, physicians can intervene body fluid balance using fluid resuscitation and diuretics. In recent years, one type of fluid resuscitation, hydroxyl ethyl starch has been extensively studied in the field of intensive care. Although their effects on fluid resuscitation are reasonable, serious complications such as kidney injury requiring renal replacement therapy occur frequently. Now we have to pay more attention to this important complication. Another topic of fluid management is tolvaptan, a selective vasopressin-2 receptor antagonist Recent randomized trial suggested that tolvaptan has a similar supportive effect for fluid control and more cost effective compared to carperitide. In recent years, Stewart approach is recognized as one important tool to assess acid-base balance in critically ill patients. This approach has great value, especially to understand metabolic components in acid-base balance. Even for assessing the effects of kidneys on acid-base balance, this approach gives us interesting insight. We should appropriately use this new approach to treat acid-base abnormality in critically ill patients.

  3. EDTA assisted synthesis of hydroxyapatite nanoparticles for electrochemical sensing of uric acid.

    PubMed

    Kanchana, P; Sekar, C

    2014-09-01

    Hydroxyapatite nanoparticles have been synthesized using EDTA as organic modifier by a simple microwave irradiation method and its application for the selective determination of uric acid (UA) has been demonstrated. Electrochemical behavior of uric acid at HA nanoparticle modified glassy carbon electrode (E-HA/GCE) has been investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), linear sweep voltammetry (LSV) and amperometry. The E-HA modified electrode exhibits efficient electrochemical activity towards uric acid sensing without requiring enzyme or electron mediator. Amperometry studies revealed that the fabricated electrode has excellent sensitivity for uric acid with the lowest detection limit of 142 nM over a wide concentration range from 1 × 10(-7) to 3 × 10(-5)M. Moreover, the studied E-HA modified GC electrode exhibits a good reproducibility and long-term stability and an admirable selectivity towards the determination of UA even in the presence of potential interferents. The analytical performance of this sensor was evaluated for the detection of uric acid in human urine and blood serum samples. Copyright © 2014. Published by Elsevier B.V.

  4. Seasonal changes in blood oxygen transport and acid-base status in the tegu lizard, Tupinambis merianae.

    PubMed

    Andrade, Denis V; Brito, Simone P; Toledo, Luís Felipe; Abe, Augusto S

    2004-05-20

    Oxygen-binding properties, blood gases, and acid-base parameters were studied in tegu lizards, Tupinambis merianae, at different seasons and temperatures. Independent of temperature and pH, blood oxygen affinity was higher in dormant lizards than in those active during the summer. Haematocrit (Hct) and hemoglobin content ([Hb]) were greater in active lizards resulting in a higher oxygen-carrying capacity. Nucleoside triphosphate content ([NTP]) was reduced during dormancy, but the ratio between [NTP] and [Hb] remained unchanged. Dormancy was accompanied by an increase in plasma bicarbonate ([HCO-(3)]pl) and an elevation of arterial CO2 partial pressure (PaCO2) and CO2 content in the plasma (CplCO2). These changes in acid-base parameters persist over a broad range of body temperatures. In vivo, arterial O2 partial pressure (PaO2) and O2 content (CaO2) were not affected by season and tended to increase with temperature. Arterial pH (pHa) of dormant animals is reduced compared to active lizards at body temperatures below 15 degrees C, while no significant difference was noticed at higher temperatures. Copyright 2003 Elsevier B.V.

  5. Transport features of nano-hydroxylapatite (n-HA) embedded silicone rubber (SR) systems: influence of SR/n-HA interaction, degree of reinforcement and morphology.

    PubMed

    M, Bindu; G, Unnikrishnan

    2017-09-27

    We report the transport characteristics of silicone rubber/nano-hydroxylapatite (SR/n-HA) systems at room temperature with reference to the effects of n-HA loading, morphology and penetrant nature, using toluene, xylene, ethyl acetate and butyl acetate in the liquid phase and methanol, ethanol, 1-propanol, 2-propanol and butanol in the vapour phase as probe molecules. The interaction between the n-HA particles and SR matrix has been confirmed by FTIR analysis. As the n-HA content in the SR matrix increased, the penetrant uptake has been found to decrease. The observations have been correlated with the density and void content of the systems. Scanning electron microscopy images have been found to be complementary to the observed transport features. The reinforcement effect of n-HA particles on the SR matrix has been verified by Kraus equation. Molecular mass between the cross links has been observed to decrease with an increase in n-HA loading. The results have been compared with affine, phantom network, parallel, series and Maxwell models. The transport data have been complemented by observations on biological fluid uptake with urea, d-glucose, KI, saline water, phosphate buffer and artificial urine as the media.

  6. Experimental Study of Fouling Behavior of Main Substances (BSA, HA, SA) of Dissolved Organic Matter (DOM) in Dead-end Membrane Filtration

    NASA Astrophysics Data System (ADS)

    Sun, Yongjun; Zhu, Kexin; Khan, Bushra; Du, Xinpei; Hou, Lei; Zhao, Shuang; Li, Ping; Liu, Songbai; Song, Peng; Zhang, Hong; Jiang, Shuihong; Wang, Zhan; Zha, Shenghua

    2018-01-01

    In this study, the fouling behavior of PES ultrafiltration (UF) membrane with different DOM fractions including bovine serum albumin (BSA), sodium alginate (SA) and humic acid (HA) was systematically investigated. The result showed that the fouling mechanism of HA was cake formation while that of BSA and SA was caused by both pore blocking and cake formation due to the different particle size. Moreover, membrane fouling became more severe with the increase of feed concentration and TMP and it could be accurately described by the cake-complete model. The pore blocking resistance for SA was larger than that for BSA, whereas the cake resistance followed the sequence SA>BSA>HA. This observation offered insight into the differences in fouling behavior of the various DOM components and was further used as guidance for practical application.

  7. High and low molecular weight hyaluronic acid differentially influence macrophage activation

    PubMed Central

    Rayahin, Jamie E.; Buhrman, Jason S.; Zhang, Yu; Koh, Timothy J.; Gemeinhart, Richard A.

    2015-01-01

    Macrophages exhibit phenotypic diversity permitting wide-ranging roles in maintaining physiologic homeostasis. Hyaluronic acid, a major glycosaminoglycan of the extracellular matrix, has been shown to have differential signaling based on its molecular weight. With this in mind, the main objective of this study was to elucidate the role of hyaluronic acid molecular weight on macrophage activation and reprogramming. Changes in macrophage activation were assessed by activation state selective marker measurement, specifically quantitative real time polymerase chain reaction, and cytokine enzyme-linked immunoassays, after macrophage treatment with differing molecular weights of hyaluronic acid under four conditions: the resting state, concurrent with classical activation, and following inflammation involving either classically or alternatively activated macrophages. Regardless of initial polarization state, low molecular weight hyaluronic acid induced a classically activated-like state, confirmed by up-regulation of pro-inflammatory genes, including nos2, tnf, il12b, and cd80, and enhanced secretion of nitric oxide and TNF-α. High molecular weight hyaluronic acid promoted an alternatively activated-like state, confirmed by up regulation of pro-resolving gene transcription, including arg1, il10, and mrc1, and enhanced arginase activity. Overall, our observations suggest that macrophages undergo phenotypic changes dependent on molecular weight of hyaluronan that correspond to either (1) pro-inflammatory response for low molecular weight HA or (2) pro-resolving response for high molecular weight HA. These observations bring significant further understanding of the influence of extracellular matrix polymers, hyaluronic acid in particular, on regulating the inflammatory response of macrophages. This knowledge can be used to guide the design of HA-containing biomaterials to better utilize the natural response to HAs. PMID:26280020

  8. Poly aspartic acid peptide-linked PLGA based nanoscale particles: potential for bone-targeting drug delivery applications.

    PubMed

    Jiang, Tao; Yu, Xiaohua; Carbone, Erica J; Nelson, Clarke; Kan, Ho Man; Lo, Kevin W-H

    2014-11-20

    Delivering drugs specifically to bone tissue is very challenging due to the architecture and structure of bone tissue. Poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) hold great promise for the delivery of therapeutics to bone tissue. The goal of the present research was to formulate a PLGA-based NP drug delivery system for bone tissue exclusively. Since poly-aspartic acids (poly-Asp) peptide sequence has been shown to bind to hydroxyapatite (HA), and has been suggested as a molecular tool for bone-targeting applications, we fabricated PLGA-based NPs linked with poly-Asp peptide sequence. Nanoparticles made of methoxy - poly(ethylene glycol) (PEG)-PLGA and maleimide-PEG-PLGA were prepared using a water-in-oil-in-water double emulsion and solvent evaporation method. Fluorescein isothiocyanate (FITC)-tagged poly-Asp peptide was conjugated to the surface of the nanoparticles via the alkylation reaction between the sulfhydryl groups at the N-terminal of the peptide and the CC double bond of maleimide at one end of the polymer chain to form thioether bonds. The conjugation of FITC-tagged poly-Asp peptide to PLGA NPs was confirmed by NMR analysis and fluorescent microscopy. The developed nanoparticle system is highly aqueous dispersible with an average particle size of ∼80 nm. In vitro binding analyses demonstrated that FITC-poly-Asp NPs were able to bind to HA gel as well as to mineralized matrices produced by human mesenchymal stem cells and mouse bone marrow stromal cells. Using a confocal microscopy technique, an ex vivo binding study of mouse major organ ground sections revealed that the FITC-poly-Asp NPs were able to bind specifically to the bone tissue. In addition, proliferation studies indicated that our FITC-poly-Asp NPs did not induce cytotoxicity to human osteoblast-like MG63 cell lines. Altogether, these promising results indicated that this nanoscale targeting system was able to bind to bone tissue specifically and might have a great

  9. [Mitigating the repress of cinnamic acid to cucumber growth by microbial strain].

    PubMed

    Yu, Guo-hui; Xie, Yin-hua; Chen, Yan-hong; Chen, Yuan-feng; Cheng, Ping

    2006-12-01

    Cucumber is one of the most important vegetable species. Its continuous planting has become a common practice demand in many areas of China, but an obstacle from continuous planting made sustainable production of this crop to be prohibited. The self-toxic effect was considered as an important negative factor to continuous cropping cucumber. And cinnamic acid was found to be the main substance to cause self-toxic. Strain Ha8, which isolated from waste water estuary in Zhuhai city and has been authenticated as Cellulosimicrobium cellulans, was found to be able to degrade cinnamic acid, benzoic acid, paraaminobenzoic acid and phenol. Its biologic degrading rate to cinnamic acid was 64.1% and its total degrading rate to cinnamic acid was 79.32% . Therefore, strain Ha8 was used to mitigate the growth stress of cucumber caused by cinnamic acid in the research. In the experiment by hydroponic culturing method, it was found that the stem length, root length, stem weight, leaf weight, root weight, numbers of flower and harvest weight of cucumbers were lower than those untreated ones when added 2micromol/L or 10micromol/L cinnamic acid in culturing solution. But when added 10(7)cfu/L of strain Ha8 and 2micromol/L or 10micromol/L cinnamic acid in same culturing solution, these parameters were higher than those treated only by 2mircomol/L or 10micromol/L cinnamic acid. The result shown that strain Ha8 could mitigate the self-toxic effect caused by cinnamic acid. In edaphic culturing experiments, it was found that organic fertilizer mixed with strain Ha8 could mitigate the growth stress of cucumber caused by 100mg/kg cinnamic acid. When added 3mg/kg sterilized organic fertilizer with strain Ha8 (> or = 10(6)cfu/g dry organic fertilizer) in the culturing soil, the result was satisfied. This treatment could not only improve the growth of cucumber, enhance their root dehydrogenase activity and output, promote their nutrition absorption rate, but also adjust the microbial groups in

  10. Hyaluronic acid: its role in voice.

    PubMed

    Ward, P Daniel; Thibeault, Susan L; Gray, Steven D

    2002-09-01

    The extracellular matrix (ECM), once regarded simply as a structural scaffold, is now recognized as an important modulator of cellular behavior and function. One component that plays a prominent role in this process is hyaluronic acid (HA)--a molecule found in many different tissues. Research into the roles of HA indicates that it plays a key role in tissue viscosity, shock absorption, and space filling. Specifically, research into the role of HA in laryngology indicates that it has profound effects on the structure and viscosity of vocal folds. This article provides an introduction to the structure and biological functions of HA and its importance in voice. In addition, an overview of the pharmaceutical applications of HA is discussed.

  11. Stalking influenza by vaccination with pre-fusion headless HA mini-stem.

    PubMed

    Valkenburg, Sophie A; Mallajosyula, V Vamsee Aditya; Li, Olive T W; Chin, Alex W H; Carnell, George; Temperton, Nigel; Varadarajan, Raghavan; Poon, Leo L M

    2016-03-07

    Inaccuracies in prediction of circulating viral strain genotypes and the possibility of novel reassortants causing a pandemic outbreak necessitate the development of an anti-influenza vaccine with increased breadth of protection and potential for rapid production and deployment. The hemagglutinin (HA) stem is a promising target for universal influenza vaccine as stem-specific antibodies have the potential to be broadly cross-reactive towards different HA subtypes. Here, we report the design of a bacterially expressed polypeptide that mimics a H5 HA stem by protein minimization to focus the antibody response towards the HA stem. The HA mini-stem folds as a trimer mimicking the HA prefusion conformation. It is resistant to thermal/chemical stress, and it binds to conformation-specific, HA stem-directed broadly neutralizing antibodies with high affinity. Mice vaccinated with the group 1 HA mini-stems are protected from morbidity and mortality against lethal challenge by both group 1 (H5 and H1) and group 2 (H3) influenza viruses, the first report of cross-group protection. Passive transfer of immune serum demonstrates the protection is mediated by stem-specific antibodies. Furthermore, antibodies induced by these HA stems have broad HA reactivity, yet they do not have antibody-dependent enhancement activity.

  12. Nanotoxicity of graphene oxide: Assessing the influence of oxidation debris in the presence of humic acid.

    PubMed

    Clemente, Zaira; Castro, Vera Lúcia S S; Franqui, Lidiane S; Silva, Cristiane A; Martinez, Diego Stéfani T

    2017-06-01

    This study sought to evaluate the toxicological effects of graphene oxide (GO) through tests with Danio rerio (zebrafish) embryos, considering the influence of the base washing treatment and the interaction with natural organic matter (i.e., humic acid, HA). A commercial sample of GO was refluxed with NaOH to remove oxidation debris (OD) byproducts, which resulted in a base washed GO sample (bw-GO). This process decreased the total oxygenated groups in bw-GO and its stability in water compared to GO. When tested in the presence of HA, both GO and bw-GO stabilities were enhanced in water. Although the embryo exposure showed no acute toxicity or malformation, the larvae exposed to GO showed a reduction in their overall length and acetylcholinesterase activity. In the presence of HA, GO also inhibited acid phosphatase activity. Our findings indicate a mitigation of material toxicity after OD removal. The difference in the biological effects may be related to the materials' bioavailability and biophysicochemical interactions. This study reports for the first time the critical influence of OD on the GO material biological reactivity and HA interaction, providing new data for nanomaterial environmental risk assessment and sustainable nanotechnology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Whole body acid-base modeling revisited.

    PubMed

    Ring, Troels; Nielsen, Søren

    2017-04-01

    The textbook account of whole body acid-base balance in terms of endogenous acid production, renal net acid excretion, and gastrointestinal alkali absorption, which is the only comprehensive model around, has never been applied in clinical practice or been formally validated. To improve understanding of acid-base modeling, we managed to write up this conventional model as an expression solely on urine chemistry. Renal net acid excretion and endogenous acid production were already formulated in terms of urine chemistry, and we could from the literature also see gastrointestinal alkali absorption in terms of urine excretions. With a few assumptions it was possible to see that this expression of net acid balance was arithmetically identical to minus urine charge, whereby under the development of acidosis, urine was predicted to acquire a net negative charge. The literature already mentions unexplained negative urine charges so we scrutinized a series of seminal papers and confirmed empirically the theoretical prediction that observed urine charge did acquire negative charge as acidosis developed. Hence, we can conclude that the conventional model is problematic since it predicts what is physiologically impossible. Therefore, we need a new model for whole body acid-base balance, which does not have impossible implications. Furthermore, new experimental studies are needed to account for charge imbalance in urine under development of acidosis. Copyright © 2017 the American Physiological Society.

  14. [Effect of lignite humic acid on soil ammonia oxidizing archaea community].

    PubMed

    Dong, Lianhua; Li, Baozhen; Yuan, Hongli; Scow, Kate M

    2010-06-01

    To illuminate the impact of humic acid (HA) on soil ammonia oxidizing archaea and then reveal the effect of HA on soil nitrogen cycle. Two humic acids (cHA and bHA) were added into the soil amended with urea. Community changes of ammonia oxidizing archaea (AOA) and total archaea were studied with terminal restricted fragment length polymorphism (T-RFLP) and real time PCR in the microcosm experiment. We found that the AOA population size increased significantly and AOA community changed greatly in the urea only treatment. However, HA could inhibit the increase of AOA population, moreover, HA could buffer the change in AOA community showed by canonical correspondence analysis (CCA) result. On the other hand, the total archaeal population decreased significantly in the urea only treatment, but stabilized in the urea with HA treatments, which indicated HA could eliminate the toxicity of urea to total archaea. CCA results showed that incubation time was the most important factor for the total archaeal community, and partial CCA (pCCA, when time as a covariable) result demonstrated that cHA was the most important environmental variable for total archaeal community. These results showed that HA diminished ammonia loss by inhibiting the increase of AOA competing with plant for ammonia, thus HA can increase the urea efficiency.

  15. Preparation, optimization and property of PVA-HA/PAA composite hydrogel.

    PubMed

    Chen, Kai; Liu, Jinlong; Yang, Xuehui; Zhang, Dekun

    2017-09-01

    PVA-HA/PAA composite hydrogel is prepared by freezing-thawing, PEG dehydration and annealing method. Orthogonal design method is used to choose the optimization combination. Results showed that HA and PVA have the maximum effect on water content. PVA and freezing-thawing cycles have the maximum effect on creep resistance and stress relaxation rate of hydrogel. Annealing temperature and freezing-thawing cycles have the maximum effect on compressive elastic modulus of hydrogel. Comparing with the water content and mechanical properties of 16 kinds of combination, PVA-HA/PAA composite hydrogel with freezing-thawing cycles of 3, annealing temperature of 120°C, PVA of 16%, HA of 2%, PAA of 4% has the optimization comprehensive properties. PVA-HA/PAA composite hydrogel has a porous network structure. There are some interactions between PVA, HA and PAA in hydrogel and the properties of hydrogel are strengthened. The annealing treatment improves the crystalline and crosslinking of hydrogel. Therefore, the annealing PVA-HA/PAA composite hydrogel has good thermostability, strength and mechanical properties. It also has good lubrication property and its friction coefficient is relative low. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Prophylactic effects of humic acid-glucan combination against experimental liver injury

    PubMed Central

    Vetvicka, Vaclav; Garcia-Mina, Jose Maria; Yvin, Jean-Claude

    2015-01-01

    Aim: Despite intensive research, liver diseases represent a significant health problem and current medicine does not offer a substance able to significantly inhibit the hepatotoxicity leading to various stages of liver disease. Based on our previously published studies showing the protective effects of a glucan-humic acid (HA) combination, we focused on the hypothesis that the combination of these two natural molecules can offer prophylactic protection against experimentally induced hepatotoxicity. Materials and Methods: Lipopolysaccharide, carbon tetrachloride, and ethanol were used to experimentally damage the liver. Levels of aspartate aminotransferase, alanine transaminase, alkaline phosphatase, glutathione, superoxide dismutase, and malondialdehyde, known to correspond to the liver damage, were assayed. Results: Using three different hepatotoxins, we found that in all cases, some samples of HA and most of all the glucan-HA combination, offer strong protection against liver damage. Conclusion: Glucan-HA combination is a promising agent for use in liver protection. PMID:26401416

  17. Clinical comparision of intravesical hyaluronic acid and hyaluronic acid-chondroitin sulphate therapy for patients with bladder pain syndrome/interstitital cystitis.

    PubMed

    Gülpınar, Omer; Kayış, Aytaç; Süer, Evren; Gökçe, Mehmet İlker; Güçlü, Adil Güçal; Arıkan, Nihat

    2014-09-01

    Patients with a history of bladder pain syndrome/interstitial cystitis (BPS/IC) and who responded poorly or unsatisfactorily with previous treatment were compared taking intravesical hyaluronic acid (HA) or hyaluronic acid-chondroitin sulphate (HA-CS). Patients were treated with intravesical instillation with 50 mL sterile sodium hyalurinic acid (Hyacyst, Syner-Med, Surrey, UK) (n = 32) and sodium hyaluronate 1.6% sodium chondroitin sulphate 2% (Ialuril, Aspire Pharma, UK) (n = 33). Intravesical instillations were performed weekly in first month, every 15 days in the second month and monthly in third and fourth months, for a total of 8 doses. Patients were evaluated using a visual analog pain scale (VAS), interstitial cystitis symptom index (ICSI), interstitial cystitis problem index (ICPI), voiding diary for frequency/nocturia, cystometric bladder capacity and voided volume at the beginning and at 6 months. All patients had a potassium sensitivity test (PST) initially. Wilcoxon and Mann-Whitney U tests were used for statistical analysis. In total, 53 patients met the study criteria. There were 30 patients in the HA-CS group (mean age: 48.47) and 23 patients in the HA group (mean age: 49.61) (p > 0.05). The initial PST was positive in 71.7% patients (38/53) overall with no difference between groups (p > 0.05). Responses for VAS, ICCS, ICPS, 24-hour frequency/nocturia statistically improved in both groups at 6 months. There was no significant difference in symptomatic improvement (p > 0.05). Eight patients had mild adverse events. HA and HA/CS instillation can be effective in BPS/IC patients who do not respond to conservative treatment. An important limitation of our study is that the HA dosage of the 2 treatment arms were different. It would be more appropriate with same HA dosage in both groups; however, there was no commercially available glycosaminoglycan (GAG) substance with same HA dosage for single and combination therapy. Large, long-term randomized studies

  18. Spectroscopic analyses on sonocatalytic damage to bovine serum albumin (BSA) induced by ZnO/hydroxylapatite (ZnO/HA) composite under ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiu; Li, Ying; Wang, Jun; Zou, Mingming; Gao, Jingqun; Kong, Yumei; Li, Kai; Han, Guangxi

    ZnO/hydroxylapatite (ZnO/HA) composite with HA molar content of 6.0% was prepared by the method of precipitation and heat-treated at 500 °C for 40 min and was characterized by powder X-ray diffraction (XRD). The sonocatalytic activities of ZnO/HA composite was carried out through the damage of bovine serum albumin (BSA) in aqueous solution. Furthermore, the effects of several factors on the damage of BSA molecules were evaluated by means of UV-vis and fluorescence spectra. Experimental results indicated that the damage degree of BSA aggravated with the increase of ultrasonic irradiation time, irradiation power and ZnO/HA addition amount, but weakened with the increase of solution acidity and ionic strength. In addition, the damage site to BSA was also studied by synchronous fluorescence technology and the damage site was mainly at tryptophan (Trp) residue. This paper provides a valuable reference for driving sonocatalytic method to treat tumor in clinic application.

  19. Synthesis and characterization of agricultural controllable humic acid superabsorbent.

    PubMed

    Gao, Lijuan; Wang, Shiqiang; Zhao, Xuefei

    2013-12-01

    Humic acid superabsorbent polymer (P(AA/AM-HA)) and superabsorbent polymer (P(AA/AM)) were synthesized by aqueous solution polymerization method using acrylic acid (AA), acrylamide (AM) and humic acid (HA) as raw material. The effects of N,N'-methylenebisacrylamide (MBA) crosslinking agent, potassium peroxydisulfate (KPS) initiator, reaction temperature, HA content, ratio of AA to AM, concentration of monomer and neutralization of AA on water absorption were investigated. Absorption and desorption ratios of nitrogen fertilizer and phosphate fertilizer were also investigated by determination of absorption and desorption ratio of NH4(+), PO4(3-) on P(AA/AM-HA) and P(AA/AM). The P(AA/AM-HA) and P(AA/AM) were characterized by Fourier translation infrared spectroscopy, biological photomicroscope and scanning electron microscopy (SEM). The optimal conditions obtained were as follows: the weight ratio of MBA to AA and AM was 0.003; the weight ratio of KPS to AA and AM was 0.008; the weight ratio of HA to AA was 0.1; the mole ratio of AM to AA is 0.1; the mole ratio of NaOH to AA is 0.9; the reaction temperature was 60°C. P(AA/AM-HA) synthesized under optimal conditions, has a good saline tolerance, its water absorbency in distilled water and 0.9 wt.% saline solution is 1180 g/g and 110 g/g, respectively. P(AA/AM-HA) achieves half saturation in 6.5 min. P(AA/AM-HA) is superior to P(AA/AM) on absorption of NH4(+), PO4(3-). The SEM micrograph of P(AA/AM-HA) shows a fine alveolate structure. The biological optical microscope micrograph of P(AA/AM-HA) shows a network structure. Graft polymerization between P(AA/AM) and HA was demonstrated by infrared spectrum. The P(AA/AM-HA) superabsorbent has better absorbing ability of water and fertilizer, electrolytic tolerance and fewer cost than P(AA/AM) superabsorbent. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  20. [Construction of porous hydroxyapatite (HA) block loaded with cultured chondrocytes].

    PubMed

    Yan, M; Dang, G

    1999-07-01

    To construct a kind of bone healing enhancing implant with cultured chondrocytes bound to hydroxyapatite (HA). Chondrocytes were obtained from the costicartilage of rat and were cultured on the porous HA blocks, 3 mm x 3 mm x 4 mm size, for three and seven days. Scanning electron micrograph was taken to show whether the cells grew outside and inside the pore of HA block. The cells cultured on tiny glass sheet for 2 days were used to prove where the cells come from by in situ hybridization technique with alpha1 (II) cDNA probe. Scanning electron micrographs showed that the pores of the HA surface and inside of the blocks are filled with cultured cells, especially the longer cultured block. The cells were chondrocytes confirmed by in situ hybridization. The porous HA can be used as cell cultured substrate and chondrocyte can adhere and proliferate inside the porous HA block.

  1. Preparation of poly(lactic acid)/sintered hydroxyapatite composite biomaterial by supercritical CO2.

    PubMed

    Zhang, Yumin; Wang, Jianru; Ma, Yanmiao; Han, Bo; Niu, Xiaojun; Liu, Jianchun; Gao, Lan; Wang, Jue; Zhai, Xiaoyan; Chu, Kaibo; Yang, Liwang

    2018-01-01

    Based on a kind of sintered hydroxyapatite (HA) with a good cytocompatibility, a series of polylactic acid (PLA) and PLA/HA with the various PLA:HA weight ratio (5:5, 4:6, 3:7, 2:8, 1:9) were fabricated by supercritical CO2. The physical and chemical properties were evaluated by pH, degradation, water absorption, porosity, density, mechanical property, and cytotoxicity respectively. With the increase of HA content, the pH value and porosity increased gradually, while weight loss rate and the density showed a gradual downward trend. Existence of HA can drastically improve the hydroscopicity of PLA scaffolds. The compression strength values slightly increased (p>0.05) from 39.96 MPa of PLA to 45.00 MPa of PLA/HA with the ratio of 7:3, subsequently, the values decreased (p<0.05) from 43.29 MPa (8:2) to 19.00 MPa (9:1). While the modulus of elasticity decreased (p<0.05) from 5.89 to 1.84 GPa with increasing HA content. The PLA/HA (8:2) promoted cell proliferation more significantly than any of other groups (p<0.05). Based on the results, the overall properties of porous scaffolds are the optimal when the weight ratio of PLA/HA is 8:2. Its pH, porosity, density, compression strength, and elasticity modulus are 7.39, 83.0%, 0.60g/cm-3, 34.1 MPa and 2.63 GPa, respectively. SEM observation presented a homogeneous distribution of HA in PLA matrix and a foam-like structure comprising interconnected pores.

  2. Quantification of Lewis acid induced Brønsted acidity of protogenic Lewis bases.

    PubMed

    Lathem, A Paige; Heiden, Zachariah M

    2017-05-09

    Proton transfer promoted by the coordination of protogenic Lewis bases to a Lewis acid is a critical step in catalytic transformations. Although the acidification of water upon coordination to a Lewis acid has been known for decades, no attempts have been made to correlate the Brønsted acidity of the coordinated water molecule with Lewis acid strength. To probe this effect, the pK a 's (estimated error of 1.3 pK a units) in acetonitrile of ten protogenic Lewis bases coordinated to seven Lewis acids containing Lewis acidities varying 70 kcal mol -1 , were computed. To quantify Lewis acid strength, the ability to transfer a hydride (hydride donor ability) from the respective main group hydride was used. Coordination of a Lewis acid to water increased the acidity of the bound water molecule between 20 and 50 pK a units. A linear correlation exhibiting a 2.6 pK a unit change of the Lewis acid-water adduct per ten kcal mol -1 change in hydride donor ability of the respective main group hydride was obtained. For the ten protogenic Lewis bases studied, the coordinated protogenic Lewis bases were acidified between 10 and 50 pK a units. On average, a ten kcal mol -1 change in hydride donor ability of the respective main group hydride resulted in about a 2.8 pK a unit change in the Brønsted acidity of the Lewis acid-Lewis base adducts. Since attempts to computationally investigate the pK a of main group dihydrogen complexes were unsuccessful, experimental determination of the first reported pK a of a main group dihydrogen complex is described. The pK a of H 2 -B(C 6 F 5 ) 3 was determined to be 5.8 ± 0.2 in acetonitrile.

  3. Fragrance chemicals lyral and lilial decrease viability of HaCat cells' by increasing free radical production and lowering intracellular ATP level: protection by antioxidants.

    PubMed

    Usta, Julnar; Hachem, Yassmine; El-Rifai, Omar; Bou-Moughlabey, Yolla; Echtay, Karim; Griffiths, David; Nakkash-Chmaisse, Hania; Makki, Rajaa Fakhoury

    2013-02-01

    We investigate in this study the biochemical effects on cells in culture of two commonly used fragrance chemicals: lyral and lilial. Whereas both chemicals exerted a significant effect on primary keratinocyte(s), HaCat cells, no effect was obtained with any of HepG2, Hek293, Caco2, NIH3T3, and MCF7 cells. Lyral and lilial: (a) decreased the viability of HaCat cells with a 50% cell death at 100 and 60 nM respectively; (b) decreased significantly in a dose dependant manner the intracellular ATP level following 12-h of treatment; (c) inhibited complexes I and II of electron transport chain in liver sub-mitochondrial particles; and (d) increased reactive oxygen species generation that was reversed by N-acetyl cysteine and trolox and the natural antioxidant lipoic acid, without influencing the level of free and/or oxidized glutathione. Lipoic acid protected HaCat cells against the decrease in viability induced by either compound. Dehydrogenation of lyral and lilial produce α,β-unsaturated aldehydes, that reacts with lipoic acid requiring proteins resulting in their inhibition. We propose lyral and lilial as toxic to mitochondria that have a direct effect on electron transport chain, increase ROS production, derange mitochondrial membrane potential, and decrease cellular ATP level, leading thus to cell death. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Nanostructured hydroxyapatite/poly(lactic-co-glycolic acid) composite coating for controlling magnesium degradation in simulated body fluid.

    PubMed

    Johnson, Ian; Akari, Khalid; Liu, Huinan

    2013-09-20

    Biodegradable magnesium (Mg) and its alloys have many attractive properties (e.g. comparable mechanical properties to cortical bone) for orthopedic implant applications, but they degrade too rapidly in the human body to meet clinical requirements. Nanostructured hydroxyapatite (nHA)/poly(lactic-co-glycolic acid) (PLGA) composite coatings provide synergistic properties for controlling degradation of Mg-based substrates and improving bone-implant integration. In this study, nHA/PLGA composites were spin coated onto Mg-based substrates and the results showed that the nHA/PLGA coatings retained nano-scale features with nHA dispersed in PLGA matrix. In comparison with non-coated Mg, the nHA/PLGA composite coated Mg increased the corrosion potential and decreased the corrosion current in revised simulated body fluid (rSBF). After 24 h of immersion in rSBF, increased calcium phosphate (CaP) deposition and formation of Mg-substituted CaP rosettes were observed on the surface of the nHA/PLGA coated Mg, indicating greater bioactivity. In contrast, no significant CaP was deposited on the PLGA coated Mg. Since both PLGA coating and nHA/PLGA coating showed some degree of delamination from Mg-based substrates during extended immersion in rSBF, the coating processing and properties should be further optimized in order to take full advantage of biodegradable Mg and nHA/PLGA nanocomposites for orthopedic applications.

  5. Nanostructured hydroxyapatite/poly(lactic-co-glycolic acid) composite coating for controlling magnesium degradation in simulated body fluid

    NASA Astrophysics Data System (ADS)

    Johnson, Ian; Akari, Khalid; Liu, Huinan

    2013-09-01

    Biodegradable magnesium (Mg) and its alloys have many attractive properties (e.g. comparable mechanical properties to cortical bone) for orthopedic implant applications, but they degrade too rapidly in the human body to meet clinical requirements. Nanostructured hydroxyapatite (nHA)/poly(lactic-co-glycolic acid) (PLGA) composite coatings provide synergistic properties for controlling degradation of Mg-based substrates and improving bone-implant integration. In this study, nHA/PLGA composites were spin coated onto Mg-based substrates and the results showed that the nHA/PLGA coatings retained nano-scale features with nHA dispersed in PLGA matrix. In comparison with non-coated Mg, the nHA/PLGA composite coated Mg increased the corrosion potential and decreased the corrosion current in revised simulated body fluid (rSBF). After 24 h of immersion in rSBF, increased calcium phosphate (CaP) deposition and formation of Mg-substituted CaP rosettes were observed on the surface of the nHA/PLGA coated Mg, indicating greater bioactivity. In contrast, no significant CaP was deposited on the PLGA coated Mg. Since both PLGA coating and nHA/PLGA coating showed some degree of delamination from Mg-based substrates during extended immersion in rSBF, the coating processing and properties should be further optimized in order to take full advantage of biodegradable Mg and nHA/PLGA nanocomposites for orthopedic applications.

  6. Equilibrium Acidities and Homolytic Bond Dissociation Enthalpies of the Acidic C-H Bonds in P-(Para-substituted benzyl)triphenylphosphonium Cations and Related Cations.

    PubMed

    Zhang, Xian-Man; Fry, Albert J.; Bordwell, Frederick G.

    1996-06-14

    Equilibrium acidities (pK(HA)) of six P-(para-substituted benzyl)triphenylphosphonium (p-GC(6)H(4)CH(2)PPh(3)(+)) cations, P-allyltriphenylphosphonium cation, P-cinnamyltriphenylphosphonium cation, and As-(p-cyanobenzyl)triphenylarsonium cation, together with the oxidation potentials [E(ox)(A(-))] of their conjugate anions (ylides) have been measured in dimethyl sulfoxide (DMSO) solution. The acidifying effects of the alpha-triphenylphosphonium groups on the acidic C-H bonds in toluene and propene were found to be ca 25 pK(HA) units (34 kcal/mol). Introduction of an electron-withdrawing group such as 4-NO(2), 4-CN, or 4-Br into the para position of the benzyl ring in p-GC(6)H(4)CH(2)PPh(3)(+) cations resulted in an additional acidity increase, but introduction of the 4-OEt electron-donating group decreases the acidity. The equilibrium acidities of p-GC(6)H(4)CH(2)PPh(3)(+) cations were nicely linearly correlated with the Hammett sigma(-) constants of the substituents (G) with a slope of 4.78 pK(HA) units (R(2) = 0.992) (Figure 1). Reversible oxidation potentials of the P-(para-substituted benzyl)triphenylphosphonium ylides were obtained by fast scan cyclic voltammetry. The homolytic bond dissociation enthalpies (BDEs) of the acidic C-H bonds in these cations, estimated by combining their equilibrium acidities with the oxidation potentials of their corresponding conjugate anions, showed that the alpha-Ph(3)P(+) groups have negligible stabilizing or destabilizing effects on the adjacent radicals. The equilibrium acidity of As-(p-cyanobenzyl)triphenylarsonium cation is 4 pK(HA) units weaker than that of P-(p-cyanobenzyl)triphenylphosphonium cation, but the BDE of the acidic C-H bond in As-(p-cyanobenzyl)triphenylarsonium cation is ca 2 kcal/mol higher than that in P-(p-cyanobenzyl)triphenylphosphonium cation.

  7. Structure and transcription of the Helicoverpa armigera densovirus (HaDV2) genome and its expression strategy in LD652 cells.

    PubMed

    Xu, Pengjun; Graham, Robert I; Wilson, Kenneth; Wu, Kongming

    2017-02-07

    Densoviruses (DVs) are highly pathogenic to their hosts. However, we previously reported a mutualistic DV (HaDV2). Very little was known about the characteristics of this virus, so herein we undertook a series of experiments to explore the molecular biology of HaDV2 further. Phylogenetic analysis showed that HaDV2 was similar to members of the genus Iteradensovirus. However, compared to current members of the genus Iteradensovirus, the sequence identity of HaDV2 is less than 44% at the nucleotide-level, and lower than 36, 28 and 19% at the amino-acid-level of VP, NS1 and NS2 proteins, respectively. Moreover, NS1 and NS2 proteins from HaDV2 were smaller than those from other iteradensoviruses due to their shorter N-terminal sequences. Two transcripts of about 2.2 kb coding for the NS proteins and the VP proteins were identified by Northern Blot and RACE analysis. Using specific anti-NS1 and anti-NS2 antibodies, Western Blot analysis revealed a 78 kDa and a 48 kDa protein, respectively. Finally, the localization of both NS1 and NS2 proteins within the cell nucleus was determined by using Green Fluorescent Protein (GFP) labelling. The genome organization, terminal hairpin structure, transcription and expression strategies as well as the mutualistic relationship with its host, suggested that HaDV2 was a novel member of the genus Iteradensovirus within the subfamily Densovirinae.

  8. Surface characterization of colloidal-sol gel derived biphasic HA/FA coatings.

    PubMed

    Cheng, Kui; Zhang, Sam; Weng, Wenjian

    2007-10-01

    Hydroxyapatite (HA) powders are ultrasonically dispersed in the precursor of fluoridated hydroxyapatite (FHA) or fluorapatite (FA) to form a "colloidal sol". HA/FA biphasic coatings are prepared on Ti6Al4V substrate via dip coating, 150 degrees C drying and 600 degrees C firing. The coatings show homogenous distribution of HA particles in the FA matrix. The relative phase proportion can be tailored by the amount of HA in the colloidal sol. The surfaces of the coatings consist of two kinds of distinct domains: HA and FA, resulting in a compositionally heterogeneous surface. The biphasic coating surface becomes increasingly rougher with HA powders, from around 200 nm of pure FA to 400-600 nm in Ra of biphasic coatings. The rougher biphasic HA/FA surfaces with chemically controllable domains will favor cell attachment, apatite layer deposition and necessary dissolution in clinical applications.

  9. Economic co-production of poly(malic acid) and pullulan from Jerusalem artichoke tuber by Aureobasidium pullulans HA-4D.

    PubMed

    Xia, Jun; Xu, Jiaxing; Liu, Xiaoyan; Xu, Jiming; Wang, Xingfeng; Li, Xiangqian

    2017-02-23

    poly(L-malic acid) (PMA) is a water-soluble polyester with many attractive properties in medicine and food industries, but the high cost of PMA fermentation has restricted its further application for large-scale production. To overcome this problem, PMA production from Jerusalem artichoke tubers was successfully performed. Additionally, a valuable exopolysaccharide, pullulan, was co-produced with PMA by Aureobasidum pullulans HA-4D. The Jerusalem artichoke medium for PMA and pullulan co-production contained only 100 g/L hydrolysate sugar, 30 g/L CaCO 3 and 1 g/L NaNO 3 . Compared with the glucose medium, the Jerusalem artichoke medium resulted in a higher PMA concentration (114.4 g/L) and a lower pullulan concentration (14.3 g/L) in a 5 L bioreactor. Meanwhile, the activity of pyruvate carboxylase and malate dehydrogenas was significantly increased, while the activity of α-phosphoglucose mutase, UDP-glucose pyrophosphorylase and glucosyltransferase was not affected. To assay the economic-feasibility, large-scale production in a 1 t fermentor was performed, yielding 117.5 g/L PMA and 15.2 g/L pullulan. In this study, an economical co-production system for PMA and pullulan from Jerusalem artichoke was developed. The medium for PMA and pullulan co-production was significantly simplified when Jerusalem artichoke tubers were used. With the simplified medium, PMA production was obviously stimulated, which would be associated with the improved activity of pyruvate carboxylase and malate dehydrogenas.

  10. Controlled synthesis and inclusion ability of a hyaluronic acid derivative bearing beta-cyclodextrin molecules.

    PubMed

    Charlot, Aurélia; Heyraud, Alain; Guenot, Pierre; Rinaudo, Marguerite; Auzély-Velty, Rachel

    2006-03-01

    A new synthetic route to beta-cyclodextrin-linked hyaluronic acid (HA-CD) was developed. This was based on the preparation of a HA derivative selectively modified with adipic dihydrazide (HA-ADH) and a beta-cyclodextrin derivative possessing an aldehyde function on the primary face, followed by their coupling by a reductive amination-type reaction. The CD-polysaccharide was fully characterized in terms of chemical integrity and purity by high-resolution NMR spectroscopy. The complexation ability of the grafted CD was further demonstrated by isothermal titration calorimetry using sodium adamantane acetate (ADAc) and Ibuprofen as model guest molecules. The thermodynamic parameters for the complexation of these negatively charged guest molecules by the beta-CD grafted on negatively charged HA were shown to be largely influenced by the ionic strength of the aqueous medium.

  11. Effect of Humic Acid on the Removal of Chromium(VI) and the Production of Solids in Iron Electrocoagulation.

    PubMed

    Pan, Chao; Troyer, Lyndsay D; Liao, Peng; Catalano, Jeffrey G; Li, Wenlu; Giammar, Daniel E

    2017-06-06

    Iron-based electrocoagulation can be highly effective for Cr(VI) removal from water supplies. However, the presence of humic acid (HA) inhibited the rate of Cr(VI) removal in electrocoagulation, with the greatest decreases in Cr(VI) removal rate at higher pH. This inhibition was probably due to the formation of Fe(II) complexes with HA that are more rapidly oxidized than uncomplexed Fe(II) by dissolved oxygen, making less Fe(II) available for reduction of Cr(VI). Close association of Fe(III), Cr(III), and HA in the solid products formed during electrocoagulation influenced the fate of both Cr(III) and HA. At pH 8, the solid products were colloids (1-200 nm) with Cr(III) and HA concentrations in the filtered fraction being quite high, while at pH 6 these concentrations were low due to aggregation of small particles. X-ray diffraction and X-ray absorption fine structure spectroscopy indicated that the iron oxides produced were a mixture of lepidocrocite and ferrihydrite, with the proportion of ferrihydrite increasing in the presence of HA. Cr(VI) was completely reduced to Cr(III) in electrocoagulation, and the coordination environment of the Cr(III) in the solids was similar regardless of the humic acid loading, pH, and dissolved oxygen level.

  12. The use of acetone to enhance the infiltration of HA nanoparticles into a demineralized dentin collagen matrix.

    PubMed

    Besinis, Alexandros; van Noort, Richard; Martin, Nicolas

    2016-03-01

    This study investigates the role of acetone, as a carrier for nano-hydroxyapatite (nano-HA) in solution, to enhance the infiltration of fully demineralized dentin with HA nanoparticles (NPs). Dentin specimens were fully demineralized and subsequently infiltrated with two types of water-based nano-HA solutions (one containing acetone and one without). Characterization of the dentin surfaces and nano-HA particles was performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The surface wettability and infiltration capacity of the nano-HA solutions were quantified by means of contact angle measurements and energy dispersive X-ray spectroscopy (EDS), respectively. Contact angle measurements were taken at baseline and repeated at regular intervals to assess the effect of acetone. The P and Ca levels of infiltrated dentin specimens were measured and compared to sound dentin and non-infiltrated controls. The presence of acetone resulted in an eight-fold decrease in the contact angles of the nano-HA solutions recorded on the surface of demineralized dentin compared to nano-HA solutions without acetone (one-way ANOVA, p<0.05). Perfect wetting of the demineralized dentin surface was achieved 5min after the application of the nano-HA solution containing acetone. Infiltration of demineralized dentin with the nano-HA solution containing acetone restored the lost mineral content by 50%, whereas the mean mineralization values for P and Ca in dentin treated with the acetone-free nano-HA solution were less than 6%. Acetone was shown to act as a vehicle to enhance the capacity to infiltrate demineralized dentin with HA NPs. The successful infiltration of dentin collagen with HA NPs provides a suitable scaffold, whereby the infiltrated HA NPs have the potential to act as seeds that may initiate heterogenous mineral growth when exposed to an appropriate mineral-rich environment. Copyright © 2015 Academy of Dental Materials. Published by Elsevier

  13. Influence of D-Penicillamine on the Viscosity of Hyaluronic Acid Solutions

    NASA Astrophysics Data System (ADS)

    Liang, Jing; Krause, Wendy E.; Colby, Ralph H.

    2006-03-01

    Polyelectrolyte hyaluronic acid (HA, hyaluronan) is an important component in synovial fluid. Its presence results in highly viscoelastic solutions with excellent lubricating and shock-absorbing properties. In comparison to healthy synovial fluid, diseased fluid has a reduced viscosity. In osteoarthritis this reduction in viscosity results from a decline in both the molecular weight and concentration of hyaluronic acid HA. Initial results indicate that D-penicillamine affects the rheology of bovine synovial fluid, a model synovial fluid solution, and its components, including HA. In order to understand how D-penicillamine modifies the viscosity of these solutions, the rheological properties of sodium hyaluronate (NaHA) in phosphate-buffered saline (PBS) with D-penicillamine were studied as function of time, D-penicillamine concentration (0 -- 0.01 M), and storage conditions. Penicillamine has a complex, time dependent effect on the viscosity of NaHA solutions---reducing the zero shear rate viscosity of a 3 mg/mL NaHA in PBS by ca. 40% after 44 days.

  14. Precision Landing and Hazard Avoidance (PL&HA) Domain

    NASA Technical Reports Server (NTRS)

    Robertson, Edward A.; Carson, John M., III

    2016-01-01

    The Precision Landing and Hazard Avoidance (PL&HA) domain addresses the development, integration, testing, and spaceflight infusion of sensing, processing, and GN&C (Guidance, Navigation and Control) functions critical to the success and safety of future human and robotic exploration missions. PL&HA sensors also have applications to other mission events, such as rendezvous and docking.

  15. Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells.

    PubMed

    Cerqueira, Brenda Brenner S; Lasham, Annette; Shelling, Andrew N; Al-Kassas, Raida

    2017-07-01

    This study aimed at development of poly (lactic-co-glycolic acid) (PLGA) nanoparticles embedded with paclitaxel and coated with hyaluronic acid (HA-PTX-PLGA) to actively target the drug to a triple negative breast cancer cells. Nanoparticles were successfully fabricated using a modified oil-in-water emulsion method. The effect of various formulations parameters on the physicochemical properties of the nanoparticles was investigated. SEM imaging confirmed the spherical shape and nano-scale size of the nanoparticles. A sustained drug release profile was obtained and enhanced PTX cytotoxicity was observed when MDA-MB-231 cells were incubated with the HA-PTX-PLGA formulation compared to cells incubated with the non-HA coated nanoparticles. Moreover, HA-PLGA nanoparticles exhibited improved cellular uptake, based on a possible receptor mediated endocytosis due to interaction of HA with CD44 receptors when compared to non-coated PLGA nanoparticles. The non-haemolytic potential of the nanoparticles indicated the suitability of the developed formulation for intravenous administration. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. General base-general acid catalysis by terpenoid cyclases.

    PubMed

    Pemberton, Travis A; Christianson, David W

    2016-07-01

    Terpenoid cyclases catalyze the most complex reactions in biology, in that more than half of the substrate carbon atoms often undergo changes in bonding during the course of a multistep cyclization cascade that proceeds through multiple carbocation intermediates. Many cyclization mechanisms require stereospecific deprotonation and reprotonation steps, and most cyclization cascades are terminated by deprotonation to yield an olefin product. The first bacterial terpenoid cyclase to yield a crystal structure was pentalenene synthase from Streptomyces exfoliatus UC5319. This cyclase generates the hydrocarbon precursor of the pentalenolactone family of antibiotics. The structures of pentalenene synthase and other terpenoid cyclases reveal predominantly nonpolar active sites typically lacking amino acid side chains capable of serving general base-general acid functions. What chemical species, then, enables the Brønsted acid-base chemistry required in the catalytic mechanisms of these enzymes? The most likely candidate for such general base-general acid chemistry is the co-product inorganic pyrophosphate. Here, we briefly review biological and nonbiological systems in which phosphate and its derivatives serve general base and general acid functions in catalysis. These examples highlight the fact that the Brønsted acid-base activities of phosphate derivatives are comparable to the Brønsted acid-base activities of amino acid side chains.

  17. Promotion of PDT efficacy by HA14-1

    NASA Astrophysics Data System (ADS)

    Kessel, David; Price, Michael; Haagenson, Kelly

    2008-02-01

    Photodynamic therapy (PDT) can target the members of the Bcl-2 family that protect cells from the initiation of apoptosis, a well-known death pathway. We examined the ability of HA14-1, a non-peptidic Bcl-2/Bcl-xL antagonist, to promote the efficacy of PDT. The photosensitizer was the porphycene CPO that causes photodamage to Bcl-2 located in the endoplasmic reticulum. Using low PDT doses together with LD5-20 concentrations of HA14-1, we found a marked synergistic effect. These results indicate that such an effect occurs when PDT is coupled with pharmacologic suppression of Bcl-2 function. HA14-1 is an unstable compound that decomposes in aqueous solution. This resulted in a rapid (~60 sec) burst of fluorescence that closely mimicked the properties of many fluorescent probes, but was traced to an effect produced when HA14-1 contacts serum proteins. Other Bcl-2 antagonists that do not produce any intrinsic fluorescence also promoted PDT efficacy. Moreover, briefly storing HA14-1 in aqueous medium until the fluorescent burst is over does not inhibit a subsequent synergistic promotion of PDT efficacy. We conclude that Bcl-2 antagonists can promote the efficacy of low-dose PDT in a manner unrelated to ROS production. The most likely explanation is an enhanced loss of anti-apoptotic Bcl-2 family function such that a threshold for initiation of apoptosis is crossed.

  18. HA-1077 inhibits cell migration/invasion of oral squamous cell carcinoma.

    PubMed

    Moreira Carboni, Simone de Sales Costa; Rodrigues Lima, Nathália Alves; Pinheiro, Nanci Mendes; Tavares-Murta, Beatriz Martins; Crema, Virgínia Oliveira

    2015-10-01

    Oral squamous cell carcinoma (OSCC) is the most malignant lesion occurring in the head and neck. The Rho-kinases (ROCKs), effectors of Rho proteins, are involved in actin cytoskeletal organization, cell migration, and maintenance cortex. The HA-1077 inhibits the ROCKs. This study aimed to evaluate the effect of treatment with HA-1077 on cell motility in SCC-4 cells, a cell line originating from human OSCC. F-actin of SCC-4 cells treated or not with HA-1077 (1, 50 and 100 μmol/l), and also HA-1077 50 μmol/l and/or inhibitors Y-27632 30 μmol/l was stained with rhodamine-conjugated phalloidin and analyzed by confocal microscopy. Approximately 1×10 cells/well, control and treated with HA-1077 (25, 50, and 100 μmol/l) were added to the migration plate assay. In addition, 1×10 cells/well, control and treated with HA-1077 50 μmol/l, were tested by invasion assays (plate coated with Matrigel). The inhibition of ROCKs with HA-1077 and/or Y-27632 leads to morphological changes, affecting the organization of the actin. The inhibitory effect of HA-1077 (P<0.0001) was dose dependent as the number of cells migrated at 100 μmol/l was statistically different: 25 μmol/l (P<0.0001) and 50 μmol/l (P<0.01). The number of cells treated with HA-1077 50 μmol/l decreased compared with control cells that invaded through Matrigel (P<0.0001). This study shows an inhibitory effect of HA-1077 on cell migration and invasion, suggesting that the use of HA-1077 can be a potential therapy for OSCC.

  19. Effects of diet on titratable acid-base excretion in grasshoppers.

    PubMed

    Frazier, M R; Harrison, J F; Behmer, S T

    2000-01-01

    Despite the potential for diet to affect organismal acid-base status, especially in herbivores, little is known about the effects of diet on acid-base loading and excretion. We tested the effects of diet on acid-base loading and excretion in grasshoppers by (a) comparing the fecal acid-base content of 15 grasshopper species collected from the field and (b) comparing fecal acid-base excretion rates of Schistocerca americana grasshoppers fed vegetable diets that differed in their ashed and raw acid-base contents. The field experiments indicated that grass-feeding species excrete fairly neutral fecal pellets, while forb/mixed-feeding species vary widely in their fecal acid-base contents. In the laboratory experiment, acid-base excretion rates were positively correlated with dietary ashed base intake rates but were not correlated with the acid-base content of raw, unashed diet or feeding rate. These experiments suggest that some diets could strongly challenge the acid-base homeostasis of herbivores; in some grasshoppers, dietary acid-base loads could produce certainly lethal 1-unit changes in average body pH within 6 h if they were not excreted.

  20. Biocompatibility of MG-63 cells on collagen, poly-L-lactic acid, hydroxyapatite scaffolds with different parameters.

    PubMed

    Cecen, Berivan; Kozaci, Didem; Yuksel, Mithat; Erdemli, Diler; Bagriyanik, Alper; Havitcioglu, Hasan

    2015-03-18

    In this study, osteoblast-like MG-63 cells were cultured on 3 different scaffold types composed of (a) collagen + poly-L-lactic acid (PLLA), (b) collagen + hydroxyapatite (HA; 30ºC) or (c) collagen + hydroxyapatite (HA; 37ºC) and produced with different porosities. Biomechanical properties of the scaffolds were characterized by tensile strength measurements. Properties of the cell-seeded scaffolds were evaluated with scanning electron microscopy (SEM). Cell adhesion and proliferation capacities were evaluated. Alkaline phosphatase (ALP) levels in media were measured. Transmission electron microscopy (TEM) and histological analyses were used to assess morphological characteristics. Our results showed that collagen-based PLLA and HA scaffolds have good cell biocompatibility. MTT test showed that the scaffolds exhibited no cytotoxicity. According to the force and displacement data, collagen + HA at 37ºC showed the highest mechanical strength and displacement. The results suggest that collagen-based PLLA and HA scaffolds might improve osteoblastic growth in vitro and have biomaterial integration potential in possible therapeutic approaches for future clinical studies.

  1. The Kidney and Acid-Base Regulation

    ERIC Educational Resources Information Center

    Koeppen, Bruce M.

    2009-01-01

    Since the topic of the role of the kidneys in the regulation of acid base balance was last reviewed from a teaching perspective (Koeppen BM. Renal regulation of acid-base balance. Adv Physiol Educ 20: 132-141, 1998), our understanding of the specific membrane transporters involved in H+, HCO , and NH transport, and especially how these…

  2. Acid-base properties of 2-phenethyldithiocarbamoylacetic acid, an antitumor agent

    NASA Astrophysics Data System (ADS)

    Novozhilova, N. E.; Kutina, N. N.; Petukhova, O. A.; Kharitonov, Yu. Ya.

    2013-07-01

    The acid-base properties of the 2-phenethyldithiocarbamoylacetic acid (PET) substance belonging to the class of isothiocyanates and capable of inhibiting the development of tumors on many experimental models were studied. The acidity and hydrolysis constants of the PET substance in ethanol, acetone, aqueous ethanol, and aqueous acetone solutions were determined from the data of potentiometric (pH-metric) titration of ethanol and acetone solutions of PET with aqueous solidum hydroxide at room temperature.

  3. Formation and bioactivity of HA nanorods on micro-arc oxidized zirconium.

    PubMed

    Zhang, Lan; Zhu, Shaoyu; Han, Yong; Xiao, Chengzhang; Tang, Wu

    2014-10-01

    A microporous and CaO partially stabilized zirconia (Ca-PSZ) coating covered with hydroxyapatite (HA) nanorods is fabricated on Zr substrate by a hybrid approach of micro-arc oxidation (MAO) and hydrothermal treatment (HT). The effect of P ions in HT solution on the density and morphology of HA was investigated; the hydrophilicity and apatite-forming ability of the Ca-PSZ coating with HA nanorods were also examined. High-density HA nanorods (with a mean diameter of 50 nm and length of 450 nm) grow on the Ca-PSZ coating after HT in a solution containing 0.002 M β-glycerophosphate disodium (β-GP). However, only a few of coarse-grained HA crystallites grow in the MAOed pores after HT in distilled water or in an ammonia aqueous solution with an initial pH value equal to the solution containing 0.002 M β-GP. P ions in the HT solution are thought to significantly promote the formation of HA nanorods. The Ca-PSZ coating covered with HA nanorods displays good hydrophilicity and excellent apatite-inducing ability, and the induced apatite prefers to nucleate on the basal-faceted surfaces of HA nanorods. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Knee Viscosupplementation: Cost-Effectiveness Analysis between Stabilized Hyaluronic Acid in a Single Injection versus Five Injections of Standard Hyaluronic Acid.

    PubMed

    Estades-Rubio, Francisco J; Reyes-Martín, Alvaro; Morales-Marcos, Victor; García-Piriz, Mercedes; García-Vera, Juan J; Perán, Macarena; Marchal, Juan A; Montañez-Heredia, Elvira

    2017-03-17

    Given the wide difference in price per vial between various presentations of hyaluronic acid, this study seeks to compare the effectiveness and treatment cost of stabilized hyaluronic acid (NASHA) in a single injection with standard preparations of hyaluronic acid (HA) in five injections in osteoarthritis (OA) of the knee. Fifty-four patients with knee osteoarthritis (Kellgren-Lawrence Grade II and III) and the Western Ontario and McMaster Universities Arthritis Index (WOMAC) pain score greater than 7, with a homogeneous distribution of age, sex, BMI, and duration of disease, were included in this study. Patients were randomized into two groups: Group I was treated with NASHA (Durolane ® ) and Group II with HA (Go-ON ® ). Patient's evolution was followed up at the 1st, 2nd, 4th, 8th, 12th, and 26th week after treatment. A statistically significant improvement in WOMAC score was observed for patients treated with NASHA versus those who received HA at Week 26. In addition, the need for analgesia was significantly reduced at Week 26 in the NASHA-treated group. Finally, the economic analysis showed an increased cost of overall treatment with HA injections. Our data support the use of the NASHA class of products in the treatment of knee OA.

  5. Trypsin pre-treatment corrects SRID over-estimation of immunologically active, pre-fusion HA caused by mixed immunoprecipitin rings.

    PubMed

    Wen, Yingxia; Palladino, Giuseppe; Xie, Yuhong; Ferrari, Annette; Ma, Xiuwen; Han, Liqun; Dormitzer, Philip R; Settembre, Ethan C

    2016-06-17

    Influenza vaccines are the primary intervention to prevent the substantial health burden of seasonal and pandemic influenza. Subunit and split influenza vaccines are formulated, released for clinical use, and tested for stability based on their content of immunologically active (capable of eliciting functional antibodies) hemagglutinin (HA). Single-radial immunodiffusion (SRID), the standard in vitro potency assay in the field, is believed to specifically detect immunologically active HA. We confirmed that, with conformationally homogeneous HA preparations, SRID specifically detected native, pre-fusion HA, which elicited influenza neutralizing and hemagglutination inhibiting (HI) antibodies in mice, and it did not detect low-pH stressed, post-fusion HA, which was selectively removed from the SRID gel during a blotting step and was significantly less immunologically active. This selective detection was due to the SRID format, not a conformational specificity of the sheep antiserum used in the SRID, as the same antiserum detected non-stressed and low-pH stressed HA similarly when used in an ELISA format. However, when low-pH stressed HA was mixed with non-stressed HA, SRID detected both forms in mixed immunoprecipitin rings, leading to over-quantification of pre-fusion HA. We previously reported that trypsin digestion of antigen samples selectively degrade stressed HA, so that an otherwise conformationally insensitive biophysical quantification technique, reversed-phase high pressure liquid chromatography (RP-HPLC), can specifically quantify trypsin-resistant, immunologically active, pre-fusion HA. Here, we report that trypsin digestion can also improve the specificity of SRID so that it can quantify immunologically active, pre-fusion HA when it is mixed with less immunologically active, post-fusion HA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Hair dye-incorporated poly-γ-glutamic acid/glycol chitosan nanoparticles based on ion-complex formation.

    PubMed

    Lee, Hye-Young; Jeong, Young-Il; Choi, Ki-Choon

    2011-01-01

    p-Phenylenediamine (PDA) or its related chemicals are used more extensively than oxidative hair dyes. However, permanent hair dyes such as PDA are known to have potent contact allergy reactions in humans, and severe allergic reactions are problematic. PDA-incorporated nanoparticles were prepared based on ion-complex formation between the cationic groups of PDA and the anionic groups of poly(γ-glutamic acid) (PGA). To reinforce PDA/PGA ion complexes, glycol chitosan (GC) was added. PDA-incorporated nanoparticles were characterized using field-emission scanning electron microscopy, Fourier- transform infrared (FT-IR) spectroscopy, dynamic light scattering, and powder X-ray diffractometry (XRD). Nanoparticles were formed by ion-complex formation between the amine groups of PDA and the carboxyl groups of PGA. PDA-incorporated nanoparticles are small in size (<100 nm), and morphological observations showed spherical shapes. FT-IR spectra results showed that the carboxylic acid peak of PGA decreased with increasing PDA content, indicating that the ion complexes were formed between the carboxyl groups of PGA and the amine groups of PDA. Furthermore, the intrinsic peak of the carboxyl groups of PGA was also decreased by the addition of GC. Intrinsic crystalline peaks of PDA were observed by XRD. This crystalline peak of PDA was completely nonexistent when nanoparticles were formed by ion complex between PDA, PGA, and GC, indicating that PDA was complexed with PGA and no free drug existed in the formulation. During the drug-release experiment, an initial burst release of PDA was observed, and then PDA was continuously released over 1 week. Cytotoxicity testing against HaCaT human skin keratinocyte cells showed PDA-incorporated nanoparticles had lower toxicity than PDA itself. Furthermore, PDA-incorporated nanoparticles showed reduced apoptosis and necrosis reaction at HaCaT cells. The authors suggest that these microparticles are ideal candidates for a vehicle for

  7. Synthesis and Characterization of Hyaluronic Acid Modified Colloidal Mesoporous Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbiao; Wang, Yu; Li, Zhen; Wang, Wanxia; Sun, Honghao; Liu, Mingxing

    2017-12-01

    The colloidal mesoporous silica nanoparticles functionalized with hyaluronic acid (CMS-HA) were successfully synthesized by grafting hyaluronic acid onto the external surface of the amino-functionalized mesoporous silica nanoparticles (CMS-NH2). Moreover, the paticle properties of CMS-HA were characterized by fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The nanomaterials were negatively charged and had a relatively uniform spherical morphology with about 100 nm in diameter, which could make it more compatible with blood. So the results suggested that the CMS-HA might be a critical nanomaterial for applying in target drug delivery system.

  8. Sunflower (Helianthus annuus) fatty acid synthase complex: β-hydroxyacyl-[acyl carrier protein] dehydratase genes.

    PubMed

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Sánchez, Rosario; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2016-02-01

    Two sunflower hydroxyacyl-[acyl carrier protein] dehydratases evolved into two different isoenzymes showing distinctive expression levels and kinetics' efficiencies. β-Hydroxyacyl-[acyl carrier protein (ACP)]-dehydratase (HAD) is a component of the type II fatty acid synthase complex involved in 'de novo' fatty acid biosynthesis in plants. This complex, formed by four intraplastidial proteins, is responsible for the sequential condensation of two-carbon units, leading to 16- and 18-C acyl-ACP. HAD dehydrates 3-hydroxyacyl-ACP generating trans-2-enoyl-ACP. With the aim of a further understanding of fatty acid biosynthesis in sunflower (Helianthus annuus) seeds, two β-hydroxyacyl-[ACP] dehydratase genes have been cloned from developing seeds, HaHAD1 (GenBank HM044767) and HaHAD2 (GenBank GU595454). Genomic DNA gel blot analyses suggest that both are single copy genes. Differences in their expression patterns across plant tissues were detected. Higher levels of HaHAD2 in the initial stages of seed development inferred its key role in seed storage fatty acid synthesis. That HaHAD1 expression levels remained constant across most tissues suggest a housekeeping function. Heterologous expression of these genes in E. coli confirmed both proteins were functional and able to interact with the bacterial complex 'in vivo'. The large increase of saturated fatty acids in cells expressing HaHAD1 and HaHAD2 supports the idea that these HAD genes are closely related to the E. coli FabZ gene. The proposed three-dimensional models of HaHAD1 and HaHAD2 revealed differences at the entrance to the catalytic tunnel attributable to Phe166/Val1159, respectively. HaHAD1 F166V was generated to study the function of this residue. The 'in vitro' enzymatic characterization of the three HAD proteins demonstrated all were active, with the mutant having intermediate K m and V max values to the wild-type proteins.

  9. Ha-ras(val12) induces HSP70b transcription via the HSE/HSF1 system, but HSP70b expression is suppressed in Ha-ras(val12)-transformed cells.

    PubMed

    Stanhill, A; Levin, V; Hendel, A; Shachar, I; Kazanov, D; Arber, N; Kaminski, N; Engelberg, D

    2006-03-09

    Heat shock proteins (Hsps) are overexpressed in many tumors, but are downregulated in some tumors. To check for a direct effect of Ha-Ras(val12) on HSP70 transcription, we transiently expressed the oncoprotein in Rat1 fibroblasts and monitored its effect on HSP70b promoter-driven reporter gene. We show that expression of Ha-Ras(val12) induced this promoter. Promoter analysis via systematic deletions and point mutations revealed that Ha-Ras(val12) induces HSP70b transcription via heat shock elements (HSEs). Also, Ha-Ras(val12) induction of HSE-mediated transcription was dramatically reduced in HSF1-/- cells. Yet, residual effect of Ha-Ras(val12) that was still measured in HSF1-/- cells suggests that some of the Ha-Ras(val12) effect is Hsf1-independent. When HSF1-/- cells, stably expressing Ha-Ras(val12), were grown on soft agar only small colonies were formed suggesting a role for heat shock factor 1 (Hsf1) in Ha-Ras(val12)-mediated transformation. Although Ha-ras(Val12) seems to be an inducer of HSP70's expression, we found that in Ha-ras(Val12-)transformed fibroblasts expression of this gene is suppressed. This suppression is correlated with higher sensitivity of Ha-ras(val12)-transformed cells to heat shock. We suggest that Ha-ras(Val12) is involved in Hsf1 activation, thereby inducing the cellular protective response. Cells that repress this response are perhaps those that acquire the capability to further proliferate and become transformed clones.

  10. Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites

    PubMed Central

    Du, Huihui; Chen, Wenli; Cai, Peng; Rong, Xingmin; Dai, Ke; Peacock, Caroline L.; Huang, Qiaoyun

    2016-01-01

    Soil components (e.g., clays, bacteria and humic substances) are known to produce mineral-organic composites in natural systems. Herein, batch sorption isotherms, isothermal titration calorimetry (ITC), and Cd K-edge EXAFS spectroscopy were applied to investigate the binding characteristics of Cd on montmorillonite(Mont)-humic acid(HA)-bacteria composites. Additive sorption and non-additive Cd(II) sorption behaviour is observed for the binary Mont-bacteria and ternary Mont-HA-bacteria composite, respectively. Specifically, in the ternary composite, the coexistence of HA and bacteria inhibits Cd adsorption, suggesting a “blocking effect” between humic acid and bacterial cells. Large positive entropies (68.1 ~ 114.4 J/mol/K), and linear combination fitting of the EXAFS spectra for Cd adsorbed onto Mont-bacteria and Mont-HA-bacteria composites, demonstrate that Cd is mostly bound to bacterial surface functional groups by forming inner-sphere complexes. All our results together support the assertion that there is a degree of site masking in the ternary clay mineral-humic acid-bacteria composite. Because of this, in the ternary composite, Cd preferentially binds to the higher affinity components-i.e., the bacteria. PMID:26792640

  11. Renal acidification responses to respiratory acid-base disorders.

    PubMed

    Madias, Nicolaos E

    2010-01-01

    Respiratory acid-base disorders are those abnormalities in acid-base equilibrium that are expressed as primary changes in the arterial carbon dioxide tension (PaCO2). An increase in PaCO2 (hypercapnia) acidifies body fluids and initiates the acid-base disturbance known as respiratory acidosis. By contrast, a decrease in PaCO2 (hypocapnia) alkalinizes body fluids and initiates the acid-base disturbance known as respiratory alkalosis. The impact on systemic acidity of these primary changes in PaCO2 is ameliorated by secondary, directional changes in plasma [HCO3¯] that occur in 2 stages. Acutely, hypercapnia or hypocapnia yields relatively small changes in plasma [HCO3¯] that originate virtually exclusively from titration of the body's nonbicarbonate buffers. During sustained hypercapnia or hypocapnia, much larger changes in plasma [HCO3¯] occur that reflect adjustments in renal acidification mechanisms. Consequently, the deviation of systemic acidity from normal is smaller in the chronic forms of these disorders. Here we provide an overview of the renal acidification responses to respiratory acid-base disorders. We also identify gaps in knowledge that require further research.

  12. Influence of carbonate ion in the crystallization medium on the formation and chemical composition of CaHA-SrHA solid solutions

    NASA Astrophysics Data System (ADS)

    Nikolaev, Anton; Kuz'mina, Maria; Frank-Kamenetskaya, Olga; Zorina, Maina

    2015-06-01

    The study of the influence of carbonate ions in a solution to Sr-distribution in system «solution-crystal» and to ion substitutions and the non-stoichiometry of formed CaHA-SrHA solid solutions was carried out. The CaHA-SrHA solid solutions were synthesized by precipitation from aqueous solutions with the atomic C/P ratio equal to 0, 0.05 and 0.1 at T = 90 °C. Resulting precipitates were studied using various methods including X-ray powder diffraction, infrared spectroscopy and different chemical analyses. The results of the study have shown that in the range of values of (Ca + Sr)/P in the water solution from 40% to 85%, the presence of carbonate ions (C/P = 0.05-0.1) promotes the incorporation of strontium in the apatite. Crystalline apatite solid solutions formed from water solutions of such composition are more defective compared to apatites that are mainly calcium or strontium. They are characterized by a smaller size coherence scattering domain length along [0 0 1] direction and a greater number of carbonate ions, water molecules and vacancies at the Ca-sites.

  13. Nucleic Acid-Based Nanodevices in Biological Imaging.

    PubMed

    Chakraborty, Kasturi; Veetil, Aneesh T; Jaffrey, Samie R; Krishnan, Yamuna

    2016-06-02

    The nanoscale engineering of nucleic acids has led to exciting molecular technologies for high-end biological imaging. The predictable base pairing, high programmability, and superior new chemical and biological methods used to access nucleic acids with diverse lengths and in high purity, coupled with computational tools for their design, have allowed the creation of a stunning diversity of nucleic acid-based nanodevices. Given their biological origin, such synthetic devices have a tremendous capacity to interface with the biological world, and this capacity lies at the heart of several nucleic acid-based technologies that are finding applications in biological systems. We discuss these diverse applications and emphasize the advantage, in terms of physicochemical properties, that the nucleic acid scaffold brings to these contexts. As our ability to engineer this versatile scaffold increases, its applications in structural, cellular, and organismal biology are clearly poised to massively expand.

  14. Sequence diversity within the HA-1 gene as detected by melting temperature assay without oligonucleotide probes

    PubMed Central

    Graziano, Claudio; Giorgi, Massimo; Malentacchi, Cecilia; Mattiuz, Pier Luigi; Porfirio, Berardino

    2005-01-01

    Background The minor histocompatibility antigens (mHags) are self-peptides derived from common cellular proteins and presented by MHC class I and II molecules. Disparities in mHags are a potential risk for the development of graft-versus-host disease (GvHD) in the recipients of bone marrow from HLA-identical donors. Two alleles have been identified in the mHag HA-1. The correlation between mismatches of the mHag HA-1 and GvHD has been suggested and methods to facilitate large-scale testing were afterwards developed. Methods We used sequence specific primer (SSP) PCR and direct sequencing to detect HA-1 gene polymorphisms in a sample of 131 unrelated Italian subjects. We then set up a novel melting temperature (Tm) assay that may help identification of HA-1 alleles without oligonucleotide probes. Results We report the frequencies of HA-1 alleles in the Italian population and the presence of an intronic 5 base-pair deletion associated with the immunogeneic allele HA-1H. We also detected novel variable sites with respect to the consensus sequence of HA-1 locus. Even though recombination/gene conversion events are documented, there is considerable linkage disequilibrium in the data. The gametic associations between HA-1R/H alleles and the intronic 5-bp ins/del polymorphism prompted us to try the Tm analysis with SYBR® Green I. We show that the addition of dimethylsulfoxide (DMSO) during the assay yields distinct patterns when amplicons from HA-1H homozygotes, HA-1R homozygotes, and heterozygotes are analysed. Conclusion The possibility to use SYBR® Green I to detect Tm differences between allelic variants is attractive but requires great caution. We succeeded in allele discrimination of the HA-1 locus using a relatively short (101 bp) amplicon, only in the presence of DMSO. We believe that, at least in certain assets, Tm assays may benefit by the addition of DMSO or other agents affecting DNA strand conformation and stability. PMID:16202172

  15. Expression and purification of RHC-EGFP fusion protein and its application in hyaluronic acid assay.

    PubMed

    Duan, Ningjun; Lv, Wansheng; Zhu, Lingli; Zheng, Weijuan; Hua, Zichun

    2017-03-16

    Hyaluronan is a widely distributed glycosaminoglycan which has multiple functions. Hyaluronic acid (HA) accumulation has been reported in many human diseases. Understanding the role of hyaluronan and its binding proteins in the pathobiology of disease will facilitate the development of novel therapeutics for many critical diseases. Current techniques described for the analysis of HA are mainly for HA quantification in solutions, not for the direct detection of HA in tissues or on cell surfaces. In our study, a fusion protein, named C-terminal domain of RHAMM-enhanced green fluorescence protein (RHC-EGFP), combined the HA-binding domain, C-terminal of receptor for hyaluronan-mediated motility, with EGFP, a widely used enhanced green fluorescence protein, was expressed and purified from Escherichia coli with high purity. Based on the sensitivity and convenience of fluorescence detection, methods for direct assay of HA in solutions, on cell surface or in tissues were established using RHC-EGFP. The binding specificity was also confirmed by competitive binding experiment and hyaluronidase degradation experiment. Our results provide an alternative choice for the specific and convenient assay of HA in various samples, and maybe helpful for further understanding of the fundamental and comprehensive functions of HA.

  16. All-trans-retinoic acid and 13-cis-retinoic acid: pharmacokinetics and biological activity in different cell culture models of human keratinocytes.

    PubMed

    Schroeder, M; Zouboulis, C C

    2007-02-01

    Despite its known biological effect on epithelial cells, 13- CIS-retinoic acid shows low binding affinity to either cellular retinoic acid-binding proteins or nuclear retinoid receptors compared to its isomer all- TRANS-retinoic acid. We have postulated a prodrug-drug relation with 13- CIS-retinoic acid which isomerizes to all- TRANS-retinoic acid. On the other hand, the biological effects of these two compounds can differ in the widely used cell culture models of HaCaT and normal primary keratinocytes. In this study, we seeded HaCaT and normal keratinocytes at high densities leading to early confluence in order to imitate high keratinocyte proliferation, such as in acne and psoriasis, while to model decreased keratinocyte proliferation, as in aged and steroid-damaged skin, cells were seeded at a low density. High performance liquid chromatography was administered to examine retinoid uptake and metabolism in monolayer HaCaT and normal keratinocyte cultures and the 4-methylumbelliferyl heptanoate assay to estimate cell growth at different cell densities. Major qualitative and quantitative differences were detected in the two cell types regarding intracellular 13- CIS-retinoic acid isomerization to all- TRANS-retinoic acid. On the other hand, the two retinoic acid isomers showed similar effects on cell growth of both cell types tested with increasing proliferation at low cell densities, but being rather inactive at high ones in normal keratinocytes and exhibiting an antiproliferative effect in HaCaT keratinocytes. The missing effect of retinoids on cell proliferation in high seeding densities of normal keratinocytes may indicate that the normalizing activity of retinoids on hyperkeratotic diseases, such as acne or psoriasis, is likely to be carried out by modulation of cell differentiation than cell growth. On the other hand, induced keratinocyte proliferation in low seeding densities may provide an explanation for the acanthosis induced by topical retinoids in aged

  17. Effect of gamma irradiation on hyaluronic acid and dipalmitoylphosphatidylcholine (DPPC) interaction

    NASA Astrophysics Data System (ADS)

    Ahmad, Ainee Fatimah; Mohd, Hur Munawar Kabir; bin Ayob, Muhammad Taqiyuddin Mawardi; Rosli, Nur Ratasha Alia Md; Mohamed, Faizal; Radiman, Shahidan; Rahman, Irman Abdul

    2014-09-01

    DPPC lipids are the major component constituting the biological membrane, and their importances in various physiological functions are well documented. Hyaluronic acid (HA) in the synovial joint fluid functions as a lubricant, shock absorber and a nutrient carrier. Gamma irradiation has also been found to be effective in depolymerizing and cleaving molecular chains related to free radicals, thus extends with changes in chemical composition as well as its physiological functions. This research are conducted to investigate the hyaluronic acid (HA) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) interaction in form of vesicles and its effect to gamma radiation. The size of DPPC vesicles formed via gentle hydration method is between 100 to 200 nm in diameter. HA (0.1, 0.5 and 1.0 mg/ml) was added into the vesicles and characterized by using TEM to determine vesicle size distributions, fusion and rupture of DPPC structure. The results demonstrated that the size of the vesicles approximately between 200 to 300 nm which caused by vesicles fusion with HA and formed even larger vesicles. After being irradiated by 0 to 200 Gy, the size of vesicles decreased as HA was degraded. To elucidate the mechanism of these effects, FTIR spectra were carried out and have shown that at absorption bands at 1700-1750 cm-1 due to formation of carboxylic acid and leads to alteration of HA structure.

  18. Novel mixed ligand complexes of bioactive Schiff base (E)-4-(phenyl (phenylimino) methyl) benzene-1,3-diol and 2-aminophenol/2-aminobenzoic acid: Synthesis, spectral characterization, antimicrobial and nuclease studies

    NASA Astrophysics Data System (ADS)

    Subbaraj, P.; Ramu, A.; Raman, N.; Dharmaraja, J.

    2014-01-01

    A novel bidentate Schiff base ligand has been synthesized using 2,4-dihydroxybenzophenone and aniline. Its mixed ligand complexes of MAB type [M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HA = Schiff base and B = 2-aminophenol/2-aminobenzoic acid] have been synthesized and characterized on the basis of spectral data UV-Vis, IR, 1H NMR, FAB-Mass, EPR, SEM and magnetic studies. All the complexes were soluble in DMF and DMSO. Elemental analysis and molar conductance values indicate that the complexes are non-electrolytes. HA binds with M(II) ions through azomethine and deprotonated phenolic group and B binds through the primary amine group and deprotonated phenolic/carboxylic groups. Using FAB-Mass the cleavage pattern of the ligand (HA) has been established. All the complexes adopt octahedral geometry around the metal ions. It has been confirmed with the help of UV-Vis, IR, 1H NMR and FAB-Mass spectral data. DNA binding activities of the complexes 1d and 2d are studied by UV-Vis spectroscopy and cleavage studies of Schiff base ligand and its complexes 1d and 2d have been by agarose gel electrophoresis method. In vitro biological activities of the free ligand (HA) and their metal complexes (1a-1e and 2a-2e) were screened against few bacteria, Escherichia coli, Staphylococcus saphyphiticus, Staphylococcus aureus, Pseudomonas aeruginosa and fungi Aspergillus niger, Enterobacter species, Candida albicans by well diffusion technique.

  19. Thermoresponsive hyaluronic acid nanogels as hydrophobic drug carrier to macrophages.

    PubMed

    Fernandes Stefanello, Talitha; Szarpak-Jankowska, Anna; Appaix, Florence; Louage, Benoit; Hamard, Lauriane; De Geest, Bruno G; van der Sanden, Boudewijn; Nakamura, Celso Vataru; Auzély-Velty, Rachel

    2014-11-01

    Delivery systems for macrophages are particularly attractive since these phagocytic cells play a important role in immunological and inflammatory responses, also acting as host cells for microorganisms that are involved in deadly infectious diseases, such as leishmaniasis. Hyaluronic acid (HA) is specifically recognized by macrophages that are known to express HA receptors. Therefore, in this study, we focused on HA-based nanogels as drug carriers for these cells. The drug delivery was validated in an in vivo study on mice using intravital two-photon laser scanning microscopy. HA derivatives were modified with a biocompatible oligo(ethylene glycol)-based thermoresponsive polymer to form nanogels. These HA conjugates were readily prepared by varying the molar mass of initial HA and the degree of substitution via radical-mediated thiol-ene chemistry in aqueous solution. The derivatives were shown to self-assemble into spherical gel particles with diameters ranging from 150 to 214 nm above 37 °C. A poorly water-soluble two-photon dye was successfully loaded into the nanogels during this self-assembly process. In vitro cellular uptake tests using a RAW 264.7 murine macrophage cell line showed successful intracellular delivery of the hydrophobic dye. After intravenous injection in mice, the nanogels circulated freely in the blood but were rapidly phagocytized within 13 min by circulating macrophages and stored in the liver and spleen, as observed by two-photon microscopy. Benefit can be thus expected in using such a delivery system for the liver and spleen macrophage-associated diseases. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Nanocrystallized SrHA/SrHA SrTiO3/SrTiO3 TiO2 multilayer coatings formed by micro-arc oxidation for photocatalytic application

    NASA Astrophysics Data System (ADS)

    Han, Y.; Chen, D. H.; Zhang, L.

    2008-08-01

    Novel photocatalytic coatings containing strontium hydroxyapatite (SrHA), strontium titanate (SrTiO3), and TiO2 were formed by micro-arc oxidation (MAO) in an aqueous electrolyte containing strontium acetate and β-glycerophosphate disodium at 530 V for 0.1-5 min. The structure evolution of the coatings was investigated as a function of processing time, and the photocatalytic activity of the coatings was evaluated by measuring the decomposition rate of methyl orange under ultraviolet irradiation. During the MAO processing of the coatings, it was observed that some granules appeared in the electrolyte adjacent to the anode and they increased in amount as the processing time was prolonged. The obtained results show that the granules are amorphous and poorly crystallized SrHA with negative charges. The coating prepared for 5 min presents a microporous structure of SrHA/SrHA-SrTiO3/SrTiO3-TiO2 multilayers, in which the SrHA outermost layer and the SrHA-SrTiO3 intermediate layer are nanocrystallized. It is suggested that formation of the granules, electro-migration of the granules onto the pre-formed layer, and crystallization of the adhered granules are possible mechanisms for the formation of a SrHA/SrHA-SrTiO3/SrTiO3-TiO2 multilayer coating. This coating shows much higher photocatalytic decomposition efficiency relative to the MAO-formed TiO2 coating, and is expected to have an important photocatalytic application.

  1. The application of hyaluronic acid-derivatized carbon nanotubes in hematoporphyrin monomethyl ether-based photodynamic therapy for in vivo and in vitro cancer treatment

    PubMed Central

    Shi, Jinjin; Ma, Rourou; Wang, Lei; Zhang, Jing; Liu, Ruiyuan; Li, Lulu; Liu, Yan; Hou, Lin; Yu, Xiaoyuan; Gao, Jun; Zhang, Zhenzhong

    2013-01-01

    Carbon nanotubes (CNTs) have shown great potential in both photothermal therapy and drug delivery. In this study, a CNT derivative, hyaluronic acid-derivatized CNTs (HA-CNTs) with high aqueous solubility, neutral pH, and tumor-targeting activity, were synthesized and characterized, and then a new photodynamic therapy agent, hematoporphyrin monomethyl ether (HMME), was adsorbed onto the functionalized CNTs to develop HMME-HA-CNTs. Tumor growth inhibition was investigated both in vivo and in vitro by a combination of photothermal therapy and photodynamic therapy using HMME-HA-CNTs. The ability of HMME-HA-CNT nanoparticles to combine local specific photodynamic therapy with external near-infrared photothermal therapy significantly improved the therapeutic efficacy of cancer treatment. Compared with photodynamic therapy or photothermal therapy alone, the combined treatment demonstrated a synergistic effect, resulting in higher therapeutic efficacy without obvious toxic effects to normal organs. Overall, it was demonstrated that HMME-HA-CNTs could be successfully applied to photodynamic therapy and photothermal therapy simultaneously in future tumor therapy. PMID:23843694

  2. Crystalline ha coating on peek via chemical deposition

    NASA Astrophysics Data System (ADS)

    Almasi, D.; Izman, S.; Assadian, M.; Ghanbari, M.; Abdul Kadir, M. R.

    2014-09-01

    Polyether ether ketone (PEEK) has a similar elastic modulus to bone and can be a suitable alternative to metallic implants. However, PEEK is bioinert and does not integrate well with the surrounding tissues. The current commercial method for solving this problem is by coating PEEK substrates with calcium phosphates via plasma spraying. However, this method produces a low bonding strength between the substrate and the coating layer, as well as non-uniform density of the coating. In this study, chemical deposition was used to deposit HA crystalline particles on PEEK substrate without any subsequent crystallisation process therefore producing crystalline treated layer. EDX results confirmed the deposition of HA, and the XRD results confirmed that the treated layer was crystalline HA. FT-IR analysis confirmed the chemical bonding between HA and the substrate. Surface roughness increased from 24.27 nm to 34.08 nm for 3 min immersion time. The water contact angle showed an increase in wettability of the treated sample from 71.6 to 36.4 degrees, which in turn increased its bioactivity. The proposed method is a suitable alternative to other conventional methods as high temperature was not involved in the process which could damage the surface of the substrate.

  3. HVOF-Sprayed Nano TiO2-HA Coatings Exhibiting Enhanced Biocompatibility

    NASA Astrophysics Data System (ADS)

    Lima, R. S.; Dimitrievska, S.; Bureau, M. N.; Marple, B. R.; Petit, A.; Mwale, F.; Antoniou, J.

    2010-01-01

    Biomedical thermal spray coatings produced via high-velocity oxy-fuel (HVOF) from nanostructured titania (n-TiO2) and 10 wt.% hydroxyapatite (HA) (n-TiO2-10wt.%HA) powders have been engineered as possible future alternatives to HA coatings deposited via air plasma spray (APS). This approach was chosen due to (i) the stability of TiO2 in the human body (i.e., no dissolution) and (ii) bond strength values on Ti-6Al-4V substrates more than two times higher than those of APS HA coatings. To explore the bioperformance of these novel materials and coatings, human mesenchymal stem cells (hMSCs) were cultured from 1 to 21 days on the surface of HVOF-sprayed n-TiO2 and n-TiO2-10 wt.%HA coatings. APS HA coatings and uncoated Ti-6Al-4V substrates were employed as controls. The profiles of the hMSCs were evaluated for (i) cellular proliferation, (ii) biochemical analysis of alkaline phosphatase (ALP) activity, (iii) cytoskeleton organization (fluorescent/confocal microscopy), and (iv) cell/substrate interaction via scanning electron microscopy (SEM). The biochemical analysis indicated that the hMSCs cultured on n-TiO2-10 wt.%HA coatings exhibited superior levels of bioactivity than hMSCs cultured on APS HA and pure n-TiO2 coatings. The cytoskeleton organization demonstrated a higher degree of cellular proliferation on the HVOF-sprayed n-TiO2-10wt.%HA coatings when compared to the control coatings. These results are considered promising for engineering improved performance in the next generation of thermally sprayed biomedical coatings.

  4. The Muon Collider as a $H/A$ factory

    DOE PAGES

    Eichten, Estia; Martin, Adam; Univ. of Notre Dame, IN

    2013-11-22

    We show that a muon collider is ideally suited for the study of heavy H/A scalars, cousins of the Higgs boson found in two-Higgs doublet models and required in supersymmetric models. The key aspects of H/A are: (1) they are narrow, yet have a width-to-mass ratio far larger than the expected muon collider beam-energy resolution, and (2) the larger muon Yukawa allows efficient s-channel production. We study in detail a representative Natural Supersymmetry model which has a 1.5 Tev H/A withmore » $$m_H$$- $$m_A$$ = 10 Gev. The large event rates at resonant peak allow the determination of the individual H and A resonance parameters (including CP) and the decays into electroweakinos provides a wealth of information unavailable to any other present or planned collider.« less

  5. Surfactants from itaconic acid: Toxicity to HaCaT keratinocytes in vitro, micellar solubilization, and skin permeation enhancement of hydrocortisone.

    PubMed

    Abruzzo, Angela; Armenise, Nicola; Bigucci, Federica; Cerchiara, Teresa; Gösser, Mireia Broch; Samorì, Chiara; Galletti, Paola; Tagliavini, Emilio; Brown, David M; Johnston, Helinor J; Fernandes, Teresa F; Luppi, Barbara

    2017-05-30

    One of the most widely used approaches for improving drug permeation across the stratum corneum barrier of the skin is the use of chemical penetration enhancers, such as surfactants. In this study, two anionic surfactants, named C12-OPK and C18-OPK, were synthesized via condensation of itaconic acid and fatty amines, with C12 and C18 alkyl chains, respectively. Assessment of impacts on HaCaT keratinocyte cell viability was used as indicator of their potential to cause skin irritation 24h post exposure (Alamar Blue assay). The LC 50 values of C12-OPK and C18-OPK (144 and 85mg/L, respectively) were lower than LC 50 values of the most used commercial surfactants (e.g. SDS). The effect of different surfactant concentrations (up to ten times the critical micellar concentration, CMC) on hydrocortisone (HC) solubility and permeation through porcine skin was also evaluated. Results showed that drug solubility increased linearly with increasing concentrations of both surfactants, as a consequence of the association between drug and micelles. In vitro permeation results showed that the permeability coefficient increased at surfactant concentrations lower than the CMC. In particular, a higher enhancement effect on drug permeation was obtained with C18-OPK, due to its hydrophobic properties that ensured a more effective HC permeation in comparison to C12-OPK. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Acid-base titrations using microfluidic paper-based analytical devices.

    PubMed

    Karita, Shingo; Kaneta, Takashi

    2014-12-16

    Rapid and simple acid-base titration was accomplished using a novel microfluidic paper-based analytical device (μPAD). The μPAD was fabricated by wax printing and consisted of ten reservoirs for reaction and detection. The reaction reservoirs contained various amounts of a primary standard substance, potassium hydrogen phthalate (KHPth), whereas a constant amount of phenolphthalein was added to all the detection reservoirs. A sample solution containing NaOH was dropped onto the center of the μPAD and was allowed to spread to the reaction reservoirs where the KHPth neutralized it. When the amount of NaOH exceeded that of the KHPth in the reaction reservoirs, unneutralized hydroxide ion penetrated the detection reservoirs, resulting in a color reaction from the phenolphthalein. Therefore, the number of the detection reservoirs with no color change determined the concentration of the NaOH in the sample solution. The titration was completed within 1 min by visually determining the end point, which required neither instrumentation nor software. The volumes of the KHPth and phenolphthalein solutions added to the corresponding reservoirs were optimized to obtain reproducible and accurate results for the concentration of NaOH. The μPADs determined the concentration of NaOH at orders of magnitude ranging from 0.01 to 1 M. An acid sample, HCl, was also determined using Na2CO3 as a primary standard substance instead of KHPth. Furthermore, the μPAD was applicable to the titrations of nitric acid, sulfuric acid, acetic acid, and ammonia solutions. The μPADs were stable for more than 1 month when stored in darkness at room temperature, although this was reduced to only 5 days under daylight conditions. The analysis of acidic hot spring water was also demonstrated in the field using the μPAD, and the results agreed well with those obtained by classic acid-base titration.

  7. Insulin-loaded pH-sensitive hyaluronic acid nanoparticles enhance transcellular delivery.

    PubMed

    Han, Lina; Zhao, Yuefang; Yin, Lifang; Li, Ruiming; Liang, Yang; Huang, Huan; Pan, Shirong; Wu, Chuanbin; Feng, Min

    2012-09-01

    In the present study, we developed novel insulin-loaded hyaluronic acid (HA) nanoparticles for insulin delivery. The insulin-loaded HA nanoparticles were prepared by reverse-emulsion-freeze-drying method. This method led to a homogenous population of small HA nanoparticles with average size of 182.2 nm and achieved high insulin entrapment efficiencies (approximately 95%). The pH-sensitive HA nanoparticles as an oral delivery carrier showed advantages in protecting insulin against the strongly acidic environment of the stomach, and not destroying the junction integrity of epithelial cells which promise long-term safety for chronic insulin treatment. The results of transport experiments suggested that insulin-loaded HA nanoparticles were transported across Caco-2 cell monolayers mainly via transcellular pathway and their apparent permeability coefficient from apical to basolateral had more than twofold increase compared with insulin solution. The efflux ratio of P (app) (B to A) to P (app) (A to B) less than 1 demonstrated that HA nanoparticle-mediated transport of insulin across Caco-2 cell monolayers underwent active transport. The results of permeability through the rat small intestine confirmed that HA nanoparticles significantly enhanced insulin transport through the duodenum and ileum. Diabetic rats treated with oral insulin-loaded HA nanoparticles also showed stronger hypoglycemic effects than insulin solution. Therefore, these HA nanoparticles could be a promising candidate for oral insulin delivery.

  8. Chem I Supplement: Emphasis on Acids and Bases

    ERIC Educational Resources Information Center

    Journal of Chemical Education Staff

    1977-01-01

    Provides supplementary notes on acids and bases suitable for secondary school chemistry instruction, including acidity in solid and natural waters, acidity balance in body chemistry, acid and basic foods, pH values of common fluids, examples of drugs, and commercial preparation of nitric acid. (SL)

  9. Wild carrot pentane-based fractions suppress proliferation of human HaCaT keratinocytes and protect against chemically-induced skin cancer.

    PubMed

    Shebaby, Wassim N; Mroueh, Mohamad A; Boukamp, Petra; Taleb, Robin I; Bodman-Smith, Kikki; El-Sibai, Mirvat; Daher, Costantine F

    2017-01-10

    Previous studies in our laboratory showed that the Lebanese Daucus carota ssp. carota (wild carrot) oil extract possesses in vitro and in vivo anticancer activities. The present study aims to examine the cytotoxic effect of Daucus carota oil fractions on human epidermal keratinocytes and evaluate the chemopreventive activity of the pentane diethyl ether fraction on DMBA/TPA induced skin carcinogenesis in mice. Wild carrot oil extract was chromatographed to yield four fractions (F1, 100% pentane; F2, 50:50 pentane:diethyl ether; F3, 100% diethyl ether; F4 93:7 chloroform:methanol). The cytotoxic effect of fractions (10, 25, 50 and 100 μg/mL) was tested on human epidermal keratinocytes (non-tumorigenic HaCaT cells and tumorigenic HaCaT-ras variants) using WST a ssay. Cell cycle phase distribution of tumorigenic HaCaT-ras variants was determined by flow cytometry post-treatment with F2 fraction. Apoptosis related proteins were also assessed using western blot. The antitumor activity of F2 fraction was also evaluated using a DMBA/TPA induced skin carcinoma in Balb/c mice. All fractions exhibited significant cytotoxicity, with HaCaT cells being 2.4-3 times less sensitive than HaCaT-ras A5 (benign tumorigenic), and HaCaT-ras II4 (malignant) cells. GC-MS analysis revealed the presence of a major compound (around 60%) in the pentane/diethylether fraction (F2), identified as 2-himachalen-6-ol. Treatment of HaCaT-ras A5 and HaCaT-ras II4 cells with F2 fraction resulted in the accumulation of cells in the sub-G1 apoptotic phase and decreased the population of cells in the S and G2/M phases. Additionally, F2 fraction treatment caused an up-regulation of the expression of pro-apoptotic (Bax) and down-regulation of the expression of anti-apoptotic (Bcl2) proteins. A decrease in the phosphorylation of AKT and ERK was also observed. Intraperitoneal treatment with F2 fraction (50 or 200 mg/kg) in the DMBA/TPA skin carcinogenesis mouse model showed a significant inhibition of

  10. Evaluation of a computer-based approach to teaching acid/base physiology.

    PubMed

    Rawson, Richard E; Quinlan, Kathleen M

    2002-12-01

    Because acid/base physiology is a difficult subject for most medical and veterinary students, the first author designed a software program, Acid/Base Primer, that would help students with this topic. The Acid/Base Primer was designed and evaluated within a conceptual framework of basic educational principles. Seventy-five first-year veterinary students (of 81; 93% response rate) participated in this study. Students took both a pre- and posttest of content understanding. After completing the Acid/Base Primer in pairs, each student filled out a survey evaluating the features of the program and describing his/her use and experience of it. Four pairs of students participated in interviews that elaborated on the surveys. Scores improved from 53 +/- 2% on the pretest to 74 +/- 1% on an immediate posttest. On surveys and in interviews, students reported that the program helped them construct their own understanding of acid/base physiology and prompted discussions in pairs of students when individual understandings differed. The case-based format provided anchors and a high degree of relevance. Repetition of concepts helped students develop a more complex network of understanding. Questions in the program served to scaffold the learning process by providing direction, accentuating the relevant features of the cases, and provoking discussion. Guidelines for software development were generated on the basis of the findings and relevant educational literature.

  11. Preparation of hyaluronic acid micro-hydrogel by biotin-avidin-specific bonding for doxorubicin-targeted delivery.

    PubMed

    Cui, Yuan; Li, Yanhui; Duan, Qian; Kakuchi, Toyoji

    2013-01-01

    Hyaluronic acid is a naturally ionic polysaccharide with cancer cell selectivity. It is an ideal candidate material for delivery of anticancer agents. In this study, hyaluronic acid (HA) micro-hydrogel loaded with anticancer drugs was prepared by the biotin-avidin system approach. Firstly, carboxyl groups on HA were changed into amino groups with adipic acid dihydrazide (ADH) to graft with biotin by 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride named as HA-biotin. When HA-biotin solution mixed with doxorubicin hydrochloride (DOX·HCl) was blended with neutravidin, the micro-hydrogels would be formed with DOX loading. If excess biotin was added into the microgel, it would be disjointed, and DOX will be released quickly. The results of the synthesis procedure were characterized by (1)H-NMR and FTIR; ADH and biotin have been demonstrated to graft on the HA molecule. A field emission scanning electron microscope was used to observe morphologies of HA micro-hydrogels. Furthermore, the in vitro DOX release results revealed that the release behaviors can be adjusted by adding biotin. Therefore, the HA micro-hydrogel can deliver anticancer drugs efficiently, and the rate of release can be controlled by biotin-specific bonding with the neutravidin. Consequently, the micro-hydrogel will perform the promising property of switching in the specific site in cancer therapy.

  12. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts.

    PubMed

    Zhong, Yinan; Zhang, Jian; Cheng, Ru; Deng, Chao; Meng, Fenghua; Xie, Fang; Zhong, Zhiyuan

    2015-05-10

    The existence of drug resistance poses a major obstacle for the treatment of various malignant human cancers. Here, we report on reduction-sensitive reversibly crosslinked hyaluronic acid (HA) nanoparticles based on HA-Lys-LA conjugates (Lys: l-lysine methyl ester, LA: lipoic acid) for active targeting delivery of doxorubicin (DOX) to CD44+ breast cancers in vitro and in vivo, effectively overcoming drug resistance (ADR). HA-Lys-LA with degrees of substitution of 5, 10 and 28% formed robust nano-sized nanoparticles (152-219nm) following auto-crosslinking. DOX-loaded crosslinked nanoparticles revealed inhibited DOX release under physiological conditions while fast drug release in the presence of 10mM glutathione (GSH). Notably, MTT assays showed that DOX-loaded crosslinked HA-Lys-LA10 nanoparticles possessed an apparent targetability and a superior antitumor activity toward CD44 receptor overexpressing DOX-resistant MCF-7 human breast cancer cells (MCF-7/ADR). The in vivo pharmacokinetics and biodistribution studies in MCF-7/ADR tumor xenografts in nude mice showed that DOX-loaded crosslinked HA-Lys-LA10 nanoparticles had a prolonged circulation time and a remarkably high accumulation in the tumor (12.71%ID/g). Notably, DOX-loaded crosslinked HA-Lys-LA10 nanoparticles exhibited effective inhibition of tumor growth while continuous tumor growth was observed for mice treated with free drug. The Kaplan-Meier survival curves showed that in contrast to control groups, all mice treated with DOX-loaded crosslinked HA-Lys-LA10 nanoparticles survived over an experimental period of 44days. Importantly, DOX-loaded crosslinked HA nanoparticles caused low side effects. The reversibly crosslinked hyaluronic acid nanoparticles with excellent biocompatibility, CD44-targetability, and effective reversal of drug resistance have a great potential in cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Fluorescent biosensor for the detection of hyaluronidase: intensity-based ratiometric sensing and fluorescence lifetime-based sensing using a long lifetime azadioxatriangulenium (ADOTA) fluorophore.

    PubMed

    Chib, Rahul; Mummert, Mark; Bora, Ilkay; Laursen, Bo W; Shah, Sunil; Pendry, Robert; Gryczynski, Ignacy; Borejdo, Julian; Gryczynski, Zygmunt; Fudala, Rafal

    2016-05-01

    In this report, we have designed a rapid and sensitive, intensity-based ratiometric sensing as well as lifetime-based sensing probe for the detection of hyaluronidase activity. Hyaluronidase expression is known to be upregulated in various pathological conditions. We have developed a fluorescent probe by heavy labeling of hyaluronic acid with a new orange/red-emitting organic azadioxatriangulenium (ADOTA) fluorophore, which exhibits a long fluorescence lifetime (∼20 ns). The ADOTA fluorophore in water has a peak fluorescence lifetime of ∼20 ns and emission spectra centered at 560 nm. The heavily ADOTA-labeled hyaluronic acid (HA-ADOTA) shows a red shift in the peak emission wavelength (605 nm), a weak fluorescence signal, and a shorter fluorescence lifetime (∼4 ns) due to efficient self-quenching and formation of aggregates. In the presence of hyaluronidase, the brightness and fluorescence lifetime of the sample increase with a blue shift in the peak emission to its original wavelength at 560 nm. The ratio of the fluorescence intensity of the HA-ADOTA probe at 560 and 605 nm can be used as the sensing method for the detection of hyaluronidase. The cleavage of the hyaluronic acid macromolecule reduces the energy migration between ADOTA molecules, as well as the degree of self-quenching and aggregation. This probe can be efficiently used for both intensity-based ratiometric sensing as well as fluorescence lifetime-based sensing of hyaluronidase. The proposed method makes it a rapid and sensitive assay, useful for analyzing levels of hyaluronidase in relevant clinical samples like urine or plasma. Graphical Abstract Scheme showing cleavage of HA-ADOTA probe by hyaluronidase and the change in the emission spectrum of HA-ADOTA probe before and after cleavage by hyaluronidase.

  14. The acid-base resistant zone in three dentin bonding systems.

    PubMed

    Inoue, Go; Nikaido, Toru; Foxton, Richard M; Tagami, Junji

    2009-11-01

    An acid-base resistant zone has been found to exist after acid-base challenge adjacent to the hybrid layer using SEM. The aim of this study was to examine the acid-base resistant zone using three different bonding systems. Dentin disks were applied with three different bonding systems, and then a resin composite was light-cured to make dentin disk sandwiches. After acid-base challenge, the polished surfaces were observed using SEM. For both one- and two-step self-etching primer systems, an acid-base resistant zone was clearly observed adjacent to the hybrid layer - but with differing appearances. For the wet bonding system, the presence of an acid-base resistant zone was unclear. This was because the self-etching primer systems etched the dentin surface mildly, such that the remaining mineral phase of dentin and the bonding agent yielded clear acid-base resistant zones. In conclusion, the acid-base resistant zone was clearly observed when self-etching primer systems were used, but not so for the wet bonding system.

  15. General Base-General Acid Catalysis by Terpenoid Cyclases§

    PubMed Central

    Pemberton, Travis A.; Christianson, David W.

    2016-01-01

    Terpenoid cyclases catalyze the most complex reactions in biology, in that more than half of the substrate carbon atoms often undergo changes in bonding during the course of a multistep cyclization cascade that proceeds through multiple carbocation intermediates. Many cyclization mechanisms require stereospecific deprotonation and reprotonation steps, and most cyclization cascades are terminated by deprotonation to yield an olefin product. The first bacterial terpenoid cyclase to yield a crystal structure was pentalenene synthase from Streptomyces exfoliatus UC5319. This cyclase generates the hydrocarbon precursor of the pentalenolactone family of antibiotics. The structures of pentalenene synthase and other terpenoid cyclases reveal predominantly nonpolar active sites typically lacking amino acid side chains capable of serving general base-general acid functions. What chemical species, then, enables the Brønsted acid-base chemistry required in the catalytic mechanisms of these enzymes? The most likely candidate for such general base-general acid chemistry is the co-product inorganic pyrophosphate. Here, we briefly review biological and nonbiological systems in which phosphate and its derivatives serve general base and general acid functions in catalysis. These examples highlight the fact that the Brønsted acid-base activities of phosphate derivatives are comparable to the Brønsted acid-base activities of amino acid side chains. PMID:27072285

  16. Ammonia Transporters and Their Role in Acid-Base Balance

    PubMed Central

    2017-01-01

    Acid-base homeostasis is critical to maintenance of normal health. Renal ammonia excretion is the quantitatively predominant component of renal net acid excretion, both under basal conditions and in response to acid-base disturbances. Although titratable acid excretion also contributes to renal net acid excretion, the quantitative contribution of titratable acid excretion is less than that of ammonia under basal conditions and is only a minor component of the adaptive response to acid-base disturbances. In contrast to other urinary solutes, ammonia is produced in the kidney and then is selectively transported either into the urine or the renal vein. The proportion of ammonia that the kidney produces that is excreted in the urine varies dramatically in response to physiological stimuli, and only urinary ammonia excretion contributes to acid-base homeostasis. As a result, selective and regulated renal ammonia transport by renal epithelial cells is central to acid-base homeostasis. Both molecular forms of ammonia, NH3 and NH4+, are transported by specific proteins, and regulation of these transport processes determines the eventual fate of the ammonia produced. In this review, we discuss these issues, and then discuss in detail the specific proteins involved in renal epithelial cell ammonia transport. PMID:28151423

  17. Single-Molecule Studies of Hyaluronic Acid Conformation

    NASA Astrophysics Data System (ADS)

    Innes-Gold, Sarah; Berezney, John; Saleh, Omar

    Hyaluronic acid (HA) is a charged linear polysaccharide abundant in extracellular spaces. Its solution conformation and mechanical properties help define the environment outside of cells, play key roles in cell motility and adhesion processes, and are of interest for the development of HA biomaterials. Intra-chain hydrogen bonds and electrostatic repulsion contribute to HAs physical structure, but the nature of this structure, as well as its dependence on solution electrostatics, are not well-understood. To address this problem, we have investigated HA conformation and mechanical properties under a range of solution conditions systematically designed to affect charge screening or hydrogen bonding. We used magnetic tweezers to apply biological-scale stretching forces to individual HA chains under varying solution conditions.

  18. Mixed Carboxylic Acid Production by Megasphaera elsdenii from Glucose and Lignocellulosic Hydrolysate

    DOE PAGES

    Nelson, Robert S.; Peterson, Darren J.; Karp, Eric M.; ...

    2017-03-01

    Here, volatile fatty acids (VFAs) can be readily produced from many anaerobic microbes and subsequently utilized as precursors to renewable biofuels and biochemicals. Megasphaera elsdenii represents a promising host for production of VFAs, butyric acid (BA) and hexanoic acid (HA). However, due to the toxicity of these acids, product removal via an extractive fermentation system is required to achieve high titers and productivities. Here, we examine multiple aspects of extractive separations to produce BA and HA from glucose and lignocellulosic hydrolysate with M. elsdenii. A mixture of oleyl alcohol and 10% (v/v) trioctylamine was selected as an extraction solvent duemore » to its insignificant inhibitory effect on the bacteria. Batch extractive fermentations were conducted in the pH range of 5.0 to 6.5 to select the best cell growth rate and extraction efficiency combination. Subsequently, fed-batch pertractive fermentations were run over 230 h, demonstrating high BA and HA concentrations in the extracted fraction (57.2 g/L from ~190 g/L glucose) and productivity (0.26 g/L/h). To our knowledge, these are the highest combined acid titers and productivity values reported for M. elsdenii and bacterial mono-cultures from sugars. Lastly, the production of BA and HA (up to 17 g/L) from lignocellulosic sugars was demonstrated.« less

  19. Mixed Carboxylic Acid Production by Megasphaera elsdenii from Glucose and Lignocellulosic Hydrolysate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Robert S.; Peterson, Darren J.; Karp, Eric M.

    Here, volatile fatty acids (VFAs) can be readily produced from many anaerobic microbes and subsequently utilized as precursors to renewable biofuels and biochemicals. Megasphaera elsdenii represents a promising host for production of VFAs, butyric acid (BA) and hexanoic acid (HA). However, due to the toxicity of these acids, product removal via an extractive fermentation system is required to achieve high titers and productivities. Here, we examine multiple aspects of extractive separations to produce BA and HA from glucose and lignocellulosic hydrolysate with M. elsdenii. A mixture of oleyl alcohol and 10% (v/v) trioctylamine was selected as an extraction solvent duemore » to its insignificant inhibitory effect on the bacteria. Batch extractive fermentations were conducted in the pH range of 5.0 to 6.5 to select the best cell growth rate and extraction efficiency combination. Subsequently, fed-batch pertractive fermentations were run over 230 h, demonstrating high BA and HA concentrations in the extracted fraction (57.2 g/L from ~190 g/L glucose) and productivity (0.26 g/L/h). To our knowledge, these are the highest combined acid titers and productivity values reported for M. elsdenii and bacterial mono-cultures from sugars. Lastly, the production of BA and HA (up to 17 g/L) from lignocellulosic sugars was demonstrated.« less

  20. The importance of amino acid interactions in the crystallization of hydroxyapatite

    PubMed Central

    Jahromi, M. Tavafoghi; Yao, G.; Cerruti, M.

    2013-01-01

    Non-collagenous proteins (NCPs) inhibit hydroxyapatite (HA; Ca5(PO4)3OH) formation in living organisms by binding to nascent nuclei of HA and preventing their further growth. Polar and charged amino acids (AAs) are highly expressed in NCPs, and the negatively charged ones, such as glutamic acid (Glu) and phosphoserine (P-Ser) seem to be mainly responsible for the inhibitory effect of NCPs. Despite the recognized importance of these AAs on the behaviour of NCPs, their specific effect on HA crystallization is still unclear, and controversial results have been reported concerning the efficacy of HA inhibition of positively versus negatively charged AAs. We focused on a positively charged (arginine, Arg) and a negatively charged (Glu) AA, and their combination in the same solution. We studied their inhibitory effect on HA nucleation and growth at physiological temperature and pH and we determined the mechanism by which they can affect HA crystallization. Our results showed a strong inhibitory effect of Arg on HA nucleation; however, Glu was more effective in inhibiting HA crystal growth during the growth stage. The combination of Glu and Arg was less effective in controlling HA nucleation, but it inhibited HA crystal growth. We attributed these differences to the stability of complexes formed between AAs and calcium and phosphate ions at the nucleation stage, and in bonding strength of AAs to HA crystal faces during the growth stage. The AAs also influenced the morphology of synthesized HA. Presence of either Arg or Glu resulted in the formation of spherulites consisting of preferentially oriented nanoplatelets orientation. This was attributed to kinetic factors favoring growth front nucleation (GFN) mechanism. PMID:23269851

  1. New Coll-HA/BT composite materials for hard tissue engineering.

    PubMed

    Zanfir, Andrei Vlad; Voicu, Georgeta; Busuioc, Cristina; Jinga, Sorin Ion; Albu, Madalina Georgiana; Iordache, Florin

    2016-05-01

    The integration of ceramic powders in composite materials for bone scaffolds can improve the osseointegration process. This work was aimed to the synthesis and characterization of new collagen-hydroxyapatite/barium titanate (Coll-HA/BT) composite materials starting from barium titanate (BT) nanopowder, hydroxyapatite (HA) nanopowder and collagen (Coll) gel. BT nanopowder was produced by combining two wet-chemical approaches, sol-gel and hydrothermal methods. The resulting materials were characterized in terms of phase composition and microstructure by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. Moreover, the biocompatibility and bioactivity of the composite materials were assessed by in vitro tests. The synthesized BT particles exhibit an average size of around 35 nm and a spherical morphology, with a pseudo-cubic or tetragonal symmetry. The diffraction spectra of Coll-HA and Coll-HA/BT composite materials indicate a pronounced interaction between Col and the mineral phases, meaning a good mineralization of Col fibres. As well, the in vitro tests highlight excellent osteoinductive properties for all biological samples, especially for Coll-HA/BT composite materials, fact that can be attributed to the ferromagnetic properties of BT. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A new standardized method for quantification of humic and fulvic acids in humic ores and commercial products.

    PubMed

    Lamar, Richard T; Olk, Daniel C; Mayhew, Lawrence; Bloom, Paul R

    2014-01-01

    Increased use of humic substances in agriculture has generated intense interest among producers, consumers, and regulators for an accurate and reliable method to quantify humic acid (HA) and fulvic acid (FA) in raw ores and products. Here we present a thoroughly validated method, the new standardized method for determination of HA and FA contents in raw humate ores and in solid and liquid products produced from them. The methods used for preparation of HA and FA were adapted according to the guidelines of the International Humic Substances Society involving alkaline extraction followed by acidification to separate HA from the fulvic fraction. This is followed by separation of FA from the fulvic fraction by adsorption on a nonionic macroporous acrylic ester resin at acid pH. It differs from previous methods in that it determines HA and FA concentrations gravimetrically on an ash-free basis. Critical steps in the method, e.g., initial test portion mass, test portion to extract volume ratio, extraction time, and acidification of alkaline extract, were optimized for maximum and consistent recovery of HA and FA. The method detection limits for HA and FA were 4.62 and 4.8 mg/L, respectively. The method quantitation limits for HA and FA were 14.7 and 15.3 mg/L, respectively.

  3. Assessing College Students' Understanding of Acid Base Chemistry Concepts

    ERIC Educational Resources Information Center

    Wan, Yanjun Jean

    2014-01-01

    Typically most college curricula include three acid base models: Arrhenius', Bronsted-Lowry's, and Lewis'. Although Lewis' acid base model is generally thought to be the most sophisticated among these three models, and can be further applied in reaction mechanisms, most general chemistry curricula either do not include Lewis' acid base model, or…

  4. Synopsis of Precision Landing and Hazard Avoidance (PL&HA) Capabilities for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robertson, Edward A.

    2017-01-01

    Until recently, robotic exploration missions to the Moon, Mars, and other solar system bodies relied upon controlled blind landings. Because terrestrial techniques for terrain relative navigation (TRN) had not yet been evolved to support space exploration, landing dispersions were driven by the capabilities of inertial navigation systems combined with surface relative altimetry and velocimetry. Lacking tight control over the actual landing location, mission success depended on the statistical vetting of candidate landing areas within the predicted landing dispersion ellipse based on orbital reconnaissance data, combined with the ability of the spacecraft to execute a controlled landing in terms of touchdown attitude, attitude rates, and velocity. In addition, the sensors, algorithms, and processing technologies required to perform autonomous hazard detection and avoidance in real time during the landing sequence were not yet available. Over the past decade, NASA has invested substantial resources on the development, integration, and testing of autonomous precision landing and hazard avoidance (PL&HA) capabilities. In addition to substantially improving landing accuracy and safety, these autonomous PL&HA functions also offer access to targets of interest located within more rugged and hazardous terrain. Optical TRN systems are baselined on upcoming robotic landing missions to the Moon and Mars, and NASA JPL is investigating the development of a comprehensive PL&HA system for a Europa lander. These robotic missions will demonstrate and mature PL&HA technologies that are considered essential for future human exploration missions. PL&HA technologies also have applications to rendezvous and docking/berthing with other spacecraft, as well as proximity navigation, contact, and retrieval missions to smaller bodies with microgravity environments, such as asteroids.

  5. Preparation and Optimization of Amorphous Ursodeoxycholic Acid Nano-suspensions by Nanoprecipitation based on Acid-base Neutralization for Enhanced Dissolution.

    PubMed

    Xie, Yike; Chen, Zhongjian; Su, Rui; Li, Ye; Qi, Jianping; Wu, Wei; Lu, Yi

    2017-01-01

    Ursodeoxycholic acid, usually used to dissolve cholesterol gallstones in clinic, is a typical hydrophobic drug with poor oral bioavailability due to dissolution rate-limited performance. The objective of this study was to increase the dissolution of ursodeoxycholic acid by amorphous nanosuspensions. Nanoprecipitation based on acid-base neutralization was used to prepare the nanosuspensions with central composite design to optimize the formula. The nanosuspensions were characterized by particle size, morphology, crystallology and dissolution. The ursodeoxycholic acid nanosuspensions showed mean particle size around 380 nm with polydispersion index value about 0.25. Scanning electron microscope observed high coverage of HPMC-E50 onto the surface of the nanosuspensions. Differential scanning calorimetry and powder X-ray diffractometry revealed amorphous structure of the ursodeoxycholic acid nanosuspensions. A significant increase of dissolution in acidic media was achieved by the amorphous nanosuspensions compared with the physical mixture. It can be predicted that the amorphous nanosuspensions show great potential in improving the oral bioavailability of ursodeoxycholic acid. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Increasing number of small hole diameter microfracture compared with traditional microfracture in same size cartilage defects and effect of HA based aselluler scaffold. An animal study

    PubMed Central

    Uzer, Gökçer; Elmadağ, Nuh Mehmet; Yıldız, Fatih; Güzel, Yunus; Tok, Olgu Enis

    2017-01-01

    Purpose: The purpose of this study is small hole microfracure method comparing with traditional microfracture method and investigation of effect of HA based acellular matrix scaffold on microfracture area. Materials-Methods: 21 Twenty-one New Zealand white rabbits were used for the in vitro portion of this study, bilateral knee joint from the same rabbit were same technic. An articular cartilage defect was established in the femoral trochlear groove about 5 mm. Control group was established alone microfracture (MF). 6 groups were formed in this study and each group has 3 rabbits and their six knees. In 3 groups were applied different number of small diameter hole microfracture (4,5,6 small holes microfracture respectively)and the other 3 groups were applied different number of small diameter hole microfracture (4,5,6 small holes micro fracture respectively added HA based acellular matrix scaffold in the same size ostechondral lesion. The regenerated tissues were harvested for gross morphology, histology at 12 weeks postoperatively. Results: Cartilage were regenerated, maintaining a constant thickness of cartilage. MF group has worse Wakitani scores than 6 small diameter holes mıcrofracture groups(group 6 and group 7) in either parameter of the score. (p=0,043, p=0,016) Matrix addition did not contribute to healing. (p=1,000) Conclusions: Increasing number of the small diameter holes microfracture (minimum %15 of defect size) improves cartilage repair compared with traditional MF in the same size ostechondral lesion. Also small diameter holes microfracture combined with HA-based AM implantation didn’t result in improved quality of the regenerated cartilage tissue.

  7. Protective effect of 3,4-dihydroxybenzoic acid isolated from Cladophora wrightiana Harvey against ultraviolet B radiation-induced cell damage in human HaCaT keratinocytes.

    PubMed

    Cha, Ji Won; Piao, Mei Jing; Kim, Ki Cheon; Zheng, Jian; Yao, Cheng Wen; Hyun, Chang Lim; Kang, Hee Kyoung; Yoo, Eun Sook; Koh, Young Sang; Lee, Nam Ho; Ko, Mi Hee; Hyun, Jin Won

    2014-03-01

    The aim of the present study was to elucidate the protective properties of 3,4-dihydroxybenzoic acid (DBA) isolated from Cladophora wrightiana Harvey (a green alga) against ultraviolet B (UVB)-induced damage to human HaCaT keratinocytes. DBA exhibited scavenging actions against the 1,1-diphenyl-2-picrylhydrazyl radical, the superoxide anion, and the hydroxyl radical. Furthermore, DBA decreased the levels of intracellular reactive oxygen species generated by hydrogen peroxide or UVB treatment of the cells. DBA also decreased the UVB-augmented levels of phospho-histone H2A.X and the extent of comet tail formation, which are both indications of DNA damage. In addition, the compound safeguarded keratinocytes from UVB-induced injury by reversing the production of apoptotic bodies, overturning the disruption of mitochondrial membrane potential, increasing the expression of the anti-apoptotic protein, B-cell lymphoma 2, and decreasing the expression of the pro-apoptotic proteins, Bcl-2-associated X and cleaved caspase-3. Taken together, these results demonstrate that DBA isolated from a green alga protects human keratinocytes against UVB-induced oxidative stress and apoptosis.

  8. An approach to complex acid-base problems

    PubMed Central

    Herd, Anthony M.

    2005-01-01

    OBJECTIVE To review rules and formulas for solving even the most complex acid-base problems. SOURCES OF INFORMATION MEDLINE was searched from January 1966 to December 2003. The search was limited to English-language review articles involving human subjects. Nine relevant review papers were found and provide the background. As this information is well established and widely accepted, it is not judged for strength of evidence, as is standard practice. MAIN MESSAGE An understanding of the body’s responses to acidemia or alkalemia can be gained through a set of four rules and two formulas that can be used to interpret almost any acid-base problems. Physicians should, however, remember the “golden rule” of acid-base interpretation: always look at a patient’s clinical condition. CONCLUSION Physicians practising in acute care settings commonly encounter acid-base disturbances. While some of these are relatively simple and easy to interpret, some are more complex. Even complex cases can be resolved using the four rules and two formulas. PMID:15751566

  9. Nucleic acid duplexes incorporating a dissociable covalent base pair

    NASA Technical Reports Server (NTRS)

    Gao, K.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure.

  10. Nucleic acid duplexes incorporating a dissociable covalent base pair

    PubMed Central

    Gao, Kui; Orgel, Leslie E.

    1999-01-01

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure. PMID:10611299

  11. Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells.

    PubMed

    Aina, Valentina; Bergandi, Loredana; Lusvardi, Gigliola; Malavasi, Gianluca; Imrie, Flora E; Gibson, Iain R; Cerrato, Giuseppina; Ghigo, Dario

    2013-04-01

    A series of Sr-substituted hydroxyapatites (HA), of general formula Ca(10-x)Srx(PO4)6(OH)2, where x=2 and 4, were synthesized by solid state methods and characterized extensively. The reactivity of these materials in cell culture medium was evaluated, and the behavior towards MG-63 osteoblast cells (in terms of cytotoxicity and proliferation assays) was studied. Future in vivo studies will give further insights into the behavior of the materials. A paper by Lagergren et al. (1975), concerning Sr-substituted HA prepared by a solid state method, reports that the presence of Sr in the apatite composition strongly influences the apatite diffraction patterns. Zeglinsky et al. (2012) investigated Sr-substituted HA by ab initio methods and Rietveld analyses and reported changes in the HA unit cell volume and shape due to the Sr addition. To further clarify the role played by the addition of Sr on the physico-chemical properties of these materials we prepared Sr-substituted HA compositions by a solid state method, using different reagents, thermal treatments and a multi-technique approach. Our results indicated that the introduction of Sr at the levels considered here does influence the structure of HA. There is also evidence of a decrease in the crystallinity degree of the materials upon Sr addition. The introduction of increasing amounts of Sr into the HA composition causes a decrease in the specific surface area and an enrichment of Sr-apatite phase at the surface of the samples. Bioactivity tests show that the presence of Sr causes changes in particle size and/or morphology during soaking in MEM solution; on the contrary the morphology of pure HA does not change after 14 days of reaction. The presence of Sr, as Sr-substituted HA and SrCl2, in cultures of human MG-63 osteoblasts did not produce any cytotoxic effect. In fact, Sr-substituted HA increased the proliferation of osteoblast cells and enhanced cell differentiation: Sr in HA has a positive effect on MG-63 cells

  12. Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid

    PubMed Central

    Tavafoghi, M.; Brodusch, N.; Gauvin, R.; Cerruti, M.

    2016-01-01

    Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca2+ and PO43− ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca2+ and PO43− ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca2+ and PO43− ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only. PMID:26791001

  13. Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid.

    PubMed

    Tavafoghi, M; Brodusch, N; Gauvin, R; Cerruti, M

    2016-01-01

    Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca(2+) and PO4(3-) ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca(2+) and PO4(3-) ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca(2+) and PO4(3-) ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only. © 2016 The Author(s).

  14. Novel mixed ligand complexes of bioactive Schiff base (E)-4-(phenyl (phenylimino) methyl) benzene-1,3-diol and 2-aminophenol/2-aminobenzoic acid: synthesis, spectral characterization, antimicrobial and nuclease studies.

    PubMed

    Subbaraj, P; Ramu, A; Raman, N; Dharmaraja, J

    2014-01-03

    A novel bidentate Schiff base ligand has been synthesized using 2,4-dihydroxybenzophenone and aniline. Its mixed ligand complexes of MAB type [M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HA=Schiff base and B=2-aminophenol/2-aminobenzoic acid] have been synthesized and characterized on the basis of spectral data UV-Vis, IR, (1)H NMR, FAB-Mass, EPR, SEM and magnetic studies. All the complexes were soluble in DMF and DMSO. Elemental analysis and molar conductance values indicate that the complexes are non-electrolytes. HA binds with M(II) ions through azomethine and deprotonated phenolic group and B binds through the primary amine group and deprotonated phenolic/carboxylic groups. Using FAB-Mass the cleavage pattern of the ligand (HA) has been established. All the complexes adopt octahedral geometry around the metal ions. It has been confirmed with the help of UV-Vis, IR, (1)H NMR and FAB-Mass spectral data. DNA binding activities of the complexes 1d and 2d are studied by UV-Vis spectroscopy and cleavage studies of Schiff base ligand and its complexes 1d and 2d have been by agarose gel electrophoresis method. In vitro biological activities of the free ligand (HA) and their metal complexes (1a-1e and 2a-2e) were screened against few bacteria, Escherichia coli, Staphylococcus saphyphiticus, Staphylococcus aureus, Pseudomonas aeruginosa and fungi Aspergillus niger, Enterobacter species, Candida albicans by well diffusion technique. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Investigation of boundary conditions for biomimetic HA deposition on titanium oxide surfaces.

    PubMed

    Lindgren, M; Astrand, M; Wiklund, U; Engqvist, H

    2009-07-01

    To improve the clinical outcome of metal implants, i.e. earlier loading and reduction of the incidence of revision surgery, better bone bonding ability is wanted. One method to achieve this is to change the surface chemistry to give a surface that facilitates bone bonding in vivo, i.e. a bioactive surface. Crystalline titanium oxide has recently been proven to be bioactive in vitro and is an interesting option to the more common hydroxylapatite (HA) coatings on implants. A materials possible in vitro bioactivity is tested through soaking in simulated body fluid and studies of possible HA formation on the surface. For bioactive materials, the formed HA layer can also be used as a coating. The aim of the current paper is to investigate some boundary conditions for HA formation on crystalline titanium oxide surfaces regarding influence from coating thickness, soaking time and soaking temperature. The influence from soaking time and temperature on the HA growth were investigated on oxidised Ti samples, (24 h at 800 degrees C) resulting in a rutile surface structure. The oxidised samples were tested at three temperatures (4, 37 and 65 degrees C) and four times (1 h, 1 day, 1 week and 4 weeks). The influence from titanium coating thickness on the HA growth was investigated via depositing thin films of crystalline titanium dioxide on Ti plates using a reactive magnetron sputtering process. Four different PVD runs with coating thicknesses between 19 and 74 nm were tested. The soaking temperature had an effect on the HA formation and growth on both rutile surfaces and native oxide on Ti substrates. Higher temperatures lead to easier formation of HA. It was even possible, at 65 degrees C, to grow HA on native titanium oxide from soaking in PBS. The coating quality was better for HA formed at 65 degrees C compared to 37 degrees C. All PVD-coatings showed HA growth after 1 week in PBS at 37 degrees C, thus even very thin coatings of crystalline titanium oxide coatings are

  16. Using Willie's Acid-Base Box for Blood Gas Analysis

    ERIC Educational Resources Information Center

    Dietz, John R.

    2011-01-01

    In this article, the author describes a method developed by Dr. William T. Lipscomb for teaching blood gas analysis of acid-base status and provides three examples using Willie's acid-base box. Willie's acid-base box is constructed using three of the parameters of standard arterial blood gas analysis: (1) pH; (2) bicarbonate; and (3) CO[subscript…

  17. Students' Alternate Conceptions on Acids and Bases

    ERIC Educational Resources Information Center

    Pan, Hanqing; Henriques, Laura

    2015-01-01

    Knowing what students bring to the classroom can and should influence how we teach them. This study is a review of the literature associated with secondary and postsecondary students' ideas about acids and bases. It was found that there are six types of alternate ideas about acids and bases that students hold. These are: macroscopic properties of…

  18. Interface activation and surface characteristics of Ti/TiN/HA coated sintered stainless steels

    NASA Astrophysics Data System (ADS)

    Choe, Han-Cheol; Ko, Yeong-Mu

    2006-02-01

    Interface activation and surface characteristics of Ti/TiN/HA film coated sintered stainless steels (SSS) have been investigated by electrochemical and biocompatibility tests. HA (hydroxyapatite), Ti, and Ti/TiN film coatings were applied using electron-beam deposition method (EB-PVD). Ti, Ti/TiN, and Ti/TiN/HA film coated surfaces and layers were investigated by SEM and XPS. The coated films showed micro-columnar structure, and Ti/TiN/HA films were denser than Ti or HA-only film. The corrosion resistance of the HA coating was similar to that of Ti/TiN/HA film coating when Cu content reached 4 wt.%, but the corrosion resistance of the HA coating decreased when Cu content increased from 4 wt.% in 0.9% NaCl solution. Therefore, HA-only coating could ensure corrosion resistance when Cu content does not exceed 4 wt.%. The results of biocompatibility tests of SSS on dogs showed that bone formation and biocompatibility were favorable when Cu content did not exceed 4 wt.%. The biocompatibility with bone was generally favorable in Ti/TiN/HA film coating and HA-only coating, while bone formation was somewhat faster for the HA film coated surface than for the Ti/TiN/HA film coating. Also, good cell growth and osseointegration without toxicity were observed.

  19. An in vivo study on the effect of coating stability on osteointegration performance of collagen/hyaluronic acid multilayer modified titanium implants.

    PubMed

    Ao, Haiyong; Zong, Jiajia; Nie, Yanjiao; Wan, Yizao; Zheng, Xiebin

    2018-03-01

    Aseptic loosening of implant is one of the main causes of Ti-based implant failure. In our previous work, a novel stable collagen/hyaluronic acid (Col/HA) multilayer modified titanium coatings (TCs) was developed by layer-by-layer (LBL) covalent immobilization technique, which showed enhanced biological properties compared with TCs that were physically absorbed with Col/HA multilayer in vitro . In this study, a rabbit model with femur condyle defect was employed to compare the osteointegration performance of them. Results indicated that Col/HA multilayer with favourable stability could better facilitate osteogenesis around implants and bone-implant contact. The Col/HA multilayer covalent-immobilized TC may reduce aseptic loosening of implant.

  20. RGO/AuNR/HA-5FU nanocomposite with multi-stage release behavior and efficient antitumor activity for synergistic therapy.

    PubMed

    Yang, Ying; Wang, Yunlong; Zhu, Manzhou; Chen, Yan; Xiao, Yazhong; Shen, Yuhua; Xie, Anjian

    2017-05-02

    A reduced graphene oxide (RGO)/gold nanorod (AuNR)/hydroxyapatite (HA) nanocomposite was designed and successfully synthesized for the first time. An anticancer drug, 5-fluorouracil (5FU), was chosen as a model drug to be loaded in RGO/AuNR/HA. The fabricated RGO/AuNR/HA-5FU showed robust, selective targeting and penetrating efficiency against HeLa cells due to the good compatibility and nontoxicity of HA, and showed excellent synergetic antitumor effects through combined chemotherapy (CT) by 5FU and photothermal therapy (PTT) by both RGO and AuNRs under near-infrared (NIR) laser irradiation. More importantly, this synergistic dual therapy based on RGO/AuNR/HA can also minimize side effects in normal cells and exhibits greater antitumor activity because of a multi-stage drug release ability triggered by the pH sensitivity of HA in the first stage and the combined photothermal conversion capabilities of RGO and AuNRs by means of the NIR laser irradiation in the second stage. This study suggests that the novel RGO/AuNR/HA multi-stage drug delivery system may represent a promising potential application of multifunctional composite materials in the biomedical field.

  1. Sorption of Eu(III) on humic acid or fulvic acid bound to hydrous alumina studied by SEM-EDS, XPS, TRLFS, and batch techniques.

    PubMed

    Tan, X L; Wang, X K; Geckeis, H; Rabung, Th

    2008-09-01

    To identify the effect of humic acid (HA) and fulvic acid (FA) on the sorption mechanism of Eu(III) on organic--inorganic colloids in the environment at a molecular level, surface adsorbed/ complexed Eu(III) on hydrous alumina, HA-, and FA-hydrous alumina hybrids were characterized by using X-ray photoelectron spectroscopy (XPS) and time-resolved laser fluorescence spectroscopy (TRLFS). The experiments were performed in 0.1 mol/L KNO3 or 0.1 mol/L NaClO4 under ambient conditions. The pH values were varied between 2 and 11 at a fixed Eu(III) concentration of 6.0 x 10(-7) mol/L and 4.3 x 10(-5) mol/L. The different Eu(III)/FA(HA)/hydrous alumina complexes were characterized by their fluorescence emission spectra ((5D0-F1)/ (5D0 --> 7F2)) and binding energy of Eu(III). Inner-sphere surface complexation may contribute mainly to Eu(III) sorption on hydrous alumina, and a ternary surface complex is formed at the HA/ FA-hydrous alumina hybrid surfaces. The sorption and species of Eu(III) in ternary Eu-HA/FA-hydrous alumina systems are not dominated by either HA/FA or hydrous alumina, but are dominated by both HA/FA and hydrous alumina. The results are important for understanding the sorption mechanisms and the nature of surface adsorbed Eu(III) species and trivalent chemical homologues of Eu(III) in the natural environment.

  2. Structure-based conformational preferences of amino acids

    PubMed Central

    Koehl, Patrice; Levitt, Michael

    1999-01-01

    Proteins can be very tolerant to amino acid substitution, even within their core. Understanding the factors responsible for this behavior is of critical importance for protein engineering and design. Mutations in proteins have been quantified in terms of the changes in stability they induce. For example, guest residues in specific secondary structures have been used as probes of conformational preferences of amino acids, yielding propensity scales. Predicting these amino acid propensities would be a good test of any new potential energy functions used to mimic protein stability. We have recently developed a protein design procedure that optimizes whole sequences for a given target conformation based on the knowledge of the template backbone and on a semiempirical potential energy function. This energy function is purely physical, including steric interactions based on a Lennard-Jones potential, electrostatics based on a Coulomb potential, and hydrophobicity in the form of an environment free energy based on accessible surface area and interatomic contact areas. Sequences designed by this procedure for 10 different proteins were analyzed to extract conformational preferences for amino acids. The resulting structure-based propensity scales show significant agreements with experimental propensity scale values, both for α-helices and β-sheets. These results indicate that amino acid conformational preferences are a natural consequence of the potential energy we use. This confirms the accuracy of our potential and indicates that such preferences should not be added as a design criterion. PMID:10535955

  3. Sorption of metals on humic acid

    NASA Astrophysics Data System (ADS)

    Kerndorff, H.; Schnitzer, M.

    1980-11-01

    The sorption on humic acid (HA) of metals from an aqueous solution containing Hg(II). Fe(III), Pb, Cu, Al, Ni, Cr(III), Cd, Zn, Co and Mn, was investigated with special emphasis on effects of pH, metal concentration and HA concentration. The sorption efficiency tended to increase with rise in pH, decrease in metal concentration and increase in HA concentration of the equilibrating solution. At pH 2.4. the order of sorption was: Hg≫ Fe≫ Pb≫ CuAl ≫ Ni ≫ CrZnCdCoMn. At pH 3.7. the order was: Hg and Fe were always most readily removed, while Co and Mn were sorbed least readily. There were indications of competition for active sites (CO 2H and phenolic OH groups) on the HA between the different metals. We were unable to find correlations between the affinities of the eleven metals to sorb on HA and their atomic weights, atomic numbers, valencies, and crystal and hydrated ionic radii. The sorption of the eleven metals on the HA could be described by the equation Y = 100/[1 + exp - (A + BX)], where Y = % metal removed by HA; X = mgHA; and A and B are empirical constants.

  4. HA and double-layer HA-P2O5/CaO glass coatings: influence of chemical composition on human bone marrow cells osteoblastic behavior.

    PubMed

    Ferraz, M P; Fernandes, M H; Santos, J D; Monteiro, F J

    2001-07-01

    Human osteoblastic bone marrow derived cells were cultured for 28 days onto the surface of a glass reinforced hydroxyapatite (HA) composite and a commercial type HA plasma sprayed coatings, both in the "as-received" condition and after an immersion treatment with culture medium during 21 days. Cell proliferation and differentiation were analyzed as a function of the chemical composition of the coatings and the immersion treatment. Cell attachment, growth and differentiation of osteoblastic bone marrow cells seeded onto "as-received" plasma sprayed coatings were strongly affected by the time-dependent variation of the surface structure occurring during the first hours of culture. Initial interactions leading to higher amounts of adsorbed protein and zeta potential shifts towards negative charges appeared to result in surface structures with better biological performance. Cultures grown onto the pretreated coatings showed higher rate of cell proliferation and increased functional activity, as compared to those grown onto the corresponding "as-received" materials. However, the cell behavior was similar in the glass composite and HA coatings. The results showed that the glass composites present better characteristics for bone cell growth and function than HA. In addition, this work also provide evidence that the biological performance of the glass composites can be modulated and improved by manipulations in the chemical composition, namely in the content of glass added to HA. Copyright 2001 Kluwer Academic Publishers

  5. Fabrication and characterization of highly porous barium titanate based scaffold coated by Gel/HA nanocomposite with high piezoelectric coefficient for bone tissue engineering applications.

    PubMed

    Ehterami, Arian; Kazemi, Mansure; Nazari, Bahareh; Saraeian, Payam; Azami, Mahmoud

    2018-03-01

    It is well established that the piezoelectric effect plays an important physiological role in bone growth, remodeling and fracture healing. Barium titanate, as a well-known piezoelectric ceramic, is especially an attractive material as a scaffold for bone tissue engineering applications. In this regard, we tried to fabricate a highly porous barium titanate based scaffolds by foam replication method and polarize them by applying an external electric field. In order to enhance the mechanical and biological properties, polarized/non-polarized scaffolds were coated with gelatin and nanostructured HA and characterized for their morphologies, porosities, piezoelectric and mechanical properties. The results showed that the compressive strength and piezoelectric coefficient of porous scaffolds increased with the increase of sintering temperature. After being coated with Gel/HA nanocomposite, the interconnected porous structure and pore size of the scaffolds almost remain unchanged while the Gel/nHA-coated scaffolds exhibited enhanced compressive strength and elastic modulus compared with the uncoated samples. Also, the effect of polarizing and coating of optimal scaffolds on adhesion, viability, and proliferation of the MG63 osteoblast-like cell line was evaluated by scanning electron microscope (SEM) and MTT assay. The cell culture experiments revealed that developed scaffolds had good biocompatibility and cells were able to adhere, proliferate and migrate into pores of the scaffolds. Furthermore, cell density was significantly higher in the coated scaffolds at all tested time-points. These results indicated that highly porous barium titanate scaffolds coated with Gel/HA nanocomposite has great potential in tissue engineering applications for bone tissue repair and regeneration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. The Mechanical Properties and Modeling of Creep Behavior of UHMWPE/Nano-HA Composites

    NASA Astrophysics Data System (ADS)

    Li, Fan; Gao, Lilan; Gao, Hong; Cui, Yun

    2017-09-01

    Composites with different levels of hydroxyapatite (HA) content and ultra-high molecular weight polyethylene (UHMWPE) were prepared in this work. Mechanical properties of the composites were examined here, and to evaluate the effect of HA particles on the time-dependent behavior of the pure matrix, the creep and recovery performance of composites at various stress levels were also researched. As expected, the addition of HA influenced the time-dependent response of the UHMWPE and the effect had a strong dependence on the HA content. The creep and recovery strain of the composites significantly decreased with increasing HA content, and tensile properties were also impaired, which was due to the concentration of HA fillers. The mechanism and effect of HA dispersed into the UHMWPE matrix were examined by scanning electron microscopy. Additionally, since variations in the adjusted parameters revealed the impact of HA on the creep behavior of the UHMWPE matrix, Findley's model was employed. The results indicated that the analytical model was accurate for the prediction of creep of the pure matrix and its composites.

  7. Acidic deposition on Taiwan and associated precipitation patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, N.H.; Chen, C.S.; Peng, C.M.

    1996-12-31

    The acidic deposition on Taiwan is assessed based on precipitation chemistry observed through a nationwide monitoring network of acid rain. Ten sites have been operated since 1990. These sites were further categorized into five categories, namely, the northern (A), middle (B), southern (C), and eastern (D) Taiwan, and background (E), according to their geographical consideration. As a result, the averages (1990-1994) of pH values for the northern sites were between 4.46-4.63, whereas, the rest sites, excluding a southern site near the industrial area, had their averages greater than 5.0. The average concentrations of sulfate ions for these sites of meanmore » pH < 5.0, ranged between 103 and 148 {mu}eq {ell}{sup -1}. The mean concentrations of nitrate ions for urban sites were about 30-50% of sulfate concentrations. Using these sulfate and nitrate concentrations and rainfall data, the deposition fluxes for these sites were calculated. The overall averages of annual sulfate deposition for five areas (categories A-E) were 118, 60, 64, 60 and 25 kg ha{sup -1}, respectively, which were generally greater than those of 20-40 kg ha{sup -1} observed in the eastern USA. For the nitrate deposition, these five areas had the averages of 59, 38, 33, 40 and 16 kg ha{sup -1}, respectively. One of the important reasons why Taiwan had received higher sulfate and nitrate deposition was due to a great amount of precipitation over this subtropical island. For the northern Taiwan, more than 70% of precipitation events were stratiform and frontal precipitation associated with the northeastern monsoons, and frontal systems during the winter and spring (especially, the Mei-Yu) seasons, respectively. In addition to local effects, the long-range transport of acid substances are thought to play an important role.« less

  8. Optimization and translation of MSC-based hyaluronic acid hydrogels for cartilage repair

    NASA Astrophysics Data System (ADS)

    Erickson, Isaac E.

    2011-12-01

    Traumatic injury and disease disrupt the ability of cartilage to carry joint stresses and, without an innate regenerative response, often lead to degenerative changes towards the premature development of osteoarthritis. Surgical interventions have yet to restore long-term mechanical function. Towards this end, tissue engineering has been explored for the de novo formation of engineered cartilage as a biologic approach to cartilage repair. Research utilizing autologous chondrocytes has been promising, but clinical limitations in their yield have motivated research into the potential of mesenchymal stem cells (MSCs) as an alternative cell source. MSCs are multipotent cells that can differentiate towards a chondrocyte phenotype in a number of biomaterials, but no combination has successfully recapitulated the native mechanical function of healthy articular cartilage. The broad objective of this thesis was to establish an MSC-based tissue engineering approach worthy of clinical translation. Hydrogels are a common class of biomaterial used for cartilage tissue engineering and our initial work demonstrated the potential of a photo-polymerizable hyaluronic acid (HA) hydrogel to promote MSC chondrogenesis and improved construct maturation by optimizing macromer and MSC seeding density. The beneficial effects of dynamic compressive loading, high MSC density, and continuous mixing (orbital shaker) resulted in equilibrium modulus values over 1 MPa, well in range of native tissue. While compressive properties are crucial, clinical translation also demands that constructs stably integrate within a defect. We utilized a push-out testing modality to assess the in vitro integration of HA constructs within artificial cartilage defects. We established the necessity for in vitro pre-maturation of constructs before repair to achieve greater integration strength and compressive properties in situ. Combining high MSC density and gentle mixing resulted in integration strength over 500 k

  9. Electrostatic effects on hyaluronic acid configuration

    NASA Astrophysics Data System (ADS)

    Berezney, John; Saleh, Omar

    2015-03-01

    In systems of polyelectrolytes, such as solutions of charged biopolymers, the electrostatic repulsion between charged monomers plays a dominant role in determining the molecular conformation. Altering the ionic strength of the solvent thus affects the structure of such a polymer. Capturing this electrostatically-driven structural dependence is important for understanding many biological systems. Here, we use single molecule manipulation experiments to collect force-extension behavior on hyaluronic acid (HA), a polyanion which is a major component of the extracellular matrix in all vertebrates. By measuring HA elasticity in a variety of salt conditions, we are able to directly assess the contribution of electrostatics to the chain's self-avoidance and local stiffness. Similar to recent results from our group on single-stranded nucleic acids, our data indicate that HA behaves as a swollen chain of electrostatic blobs, with blob size proportional to the solution Debye length. Our data indicate that the chain structure within the blob is not worm-like, likely due to long-range electrostatic interactions. We discuss potential models of this effect.

  10. The Acute Effect of Humic Acid on Iron Accumulation in Rats.

    PubMed

    Cagin, Yasir Furkan; Sahin, N; Polat, A; Erdogan, M A; Atayan, Y; Eyol, E; Bilgic, Y; Seckin, Y; Colak, C

    2016-05-01

    Free iron leads to the formation of pro-oxidant reactive oxygen species (ROS). Humic acids (HAs) enhance permeability of cellular wall and act as a chelator through electron transferring. This study was designed to test chelator effect of HA on iron as well as its anti-oxidant effect against the iron-induced hepatotoxicity and cardiotoxicity. The rats used were randomly divided into four groups (n = 8/group): group I (the control group); group II (the HA group), humic acid (562 mg/kg) was given over 10 days by oral gavage; group III (the iron group), iron III hydroxide polymaltose (250 mg/kg) was given over 10 days by intraperitoneal route; and group IV (the HA plus iron group), received the iron (similar to group II) plus humic acid (similar to those in groups II and III) group. Blood and two tissue samples both from liver and heart were obtained for biochemical and histopathological evaluations. Iron deposition, the iron-induced hepatotoxicity, and cardiotoxicity were demonstrated by histopathological and biochemical manner. However, no significant differences were observed in the serum biochemical values and the histopathological results among the iron and the HA plus iron groups in the liver tissue but not in the heart tissue. The protective effects of humic acid against iron-induced cardiotoxicity were shown but not against hepatotoxicity in our study.

  11. 24 CFR 964.18 - HA role in activities under subparts B & C.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., including the management of specific functions of a public housing development that may be mutually agreeable to the HA and the resident council/resident management corporation. (4) A HA shall provide the... participation in management. (5) If requested, a HA should provide a duly recognized resident council office...

  12. Effect of retinoic acid on aquaporin 3 expression in keratinocytes.

    PubMed

    Xing, F; Liao, W; Jiang, P; Xu, W; Jin, X

    2016-03-11

    To explore the possible mechanism of the third-generation retinoic acid drugs (isotretinoin, acitretin, adapalene) in inducing skin and mucosa dryness and rhagades; specifically, mechanism by which these drugs influence keratinocyte cell culture models in vitro (HaCaT) and aquaporin channel (AQP3) protein expression was investigated. Isotretinoin, acitretin, and adapalene were applied to human keratinocyte HaCaT cells. Immunohistochemistry, reverse transcriptase polymerase chain reaction, and western blotting were used to detect their effects on AQP3 expression in HaCaT cells at different concentrations (0.000, 0.001, 0.010, 0.060, and 0.100 mg/mL) or different at times (0, 6, 12, 24, and 48 h). At 0.010 mg/mL, maximal AQP3 expression was observed in HaCaT cells; this was significantly higher than the expressions at the other concentrations (P < 0.05). After treatment with isotretinoin, acitretin, or adapalene at 0.010 mg/mL for 12 h, the expression of AQP3 was the highest in the isotretinoin group, followed by the acitretin group, with the lowest expression in the adapalene group. However, the differences were not statistically significant (P > 0.05). Retinoic acid can increase AQP3 expression in HaCaT cells, with significant effects observed with 0.010 mg/mL isotretinoin treatment for 12 h. The side effects, namely skin and mucosa dryness caused by retinoic acid might be related to its effects on AQP3 expression.

  13. Solid-state acid-base interactions in complexes of heterocyclic bases with dicarboxylic acids: crystallography, hydrogen bond analysis, and 15N NMR spectroscopy.

    PubMed

    Li, Z Jane; Abramov, Yuriy; Bordner, Jon; Leonard, Jason; Medek, Ales; Trask, Andrew V

    2006-06-28

    A cancer candidate, compound 1, is a weak base with two heterocyclic basic nitrogens and five hydrogen-bonding functional groups, and is sparingly soluble in water rendering it unsuitable for pharmaceutical development. The crystalline acid-base pairs of 1, collectively termed solid acid-base complexes, provide significant increases in the solubility and bioavailability compared to the free base, 1. Three dicarboxylic acid-base complexes, sesquisuccinate 2, dimalonate 3, and dimaleate 4, show the most favorable physicochemical profiles and are studied in greater detail. The structural analyses of the three complexes using crystal structure and solid-state NMR reveal that the proton-transfer behavior in these organic acid-base complexes vary successively correlating with Delta pKa. As a result, 2 is a neutral complex, 3 is a mixed ionic and zwitterionic complex and 4 is an ionic salt. The addition of the acidic components leads to maximized hydrogen bond interactions forming extended three-dimensional networks. Although structurally similar, the packing arrangements of the three complexes are considerably different due to the presence of multiple functional groups and the flexible backbone of 1. The findings in this study provide insight into the structural characteristics of complexes involving heterocyclic bases and carboxylic acids, and demonstrate that X-ray crystallography and 15N solid-state NMR are truly complementary in elucidating hydrogen bonding interactions and the degree of proton transfer of these complexes.

  14. Synthesis and characterization of boric acid mediated metal-organic frameworks based on trimesic acid and terephthalic acid

    NASA Astrophysics Data System (ADS)

    Ozer, Demet; Köse, Dursun A.; Şahin, Onur; Oztas, Nursen Altuntas

    2017-08-01

    The new metal-organic framework materials based on boric acid reported herein. Sodium and boron containing metal-organic frameworks were synthesized by one-pot self-assembly reaction in the presence of trimesic acid and terephthalic acid in water/ethanol solution. Boric acid is a relatively cheap boron source and boric acid mediated metal-organic framework prepared mild conditions compared to the other boron source based metal-organic framework. The synthesized compounds were characterized by FT-IR, p-XRD, TGA/DTA, elemental analysis, 13C-MAS NMR, 11B-NMR and single crystal measurements. The molecular formulas of compounds were estimated as C18H33B2Na5O28 and C8H24B2Na2O17 according to the structural analysis. The obtained complexes were thermally stable. Surface properties of inorganic polymer complexes were investigated by BET analyses and hydrogen storage properties of compound were also calculated.

  15. Effects of Organic Acids and Sylvite on Phytoextraction of 241Am Contaminated Soil.

    PubMed

    Wang, Ping; Du, Liang; Tan, Zhaoyi; Su, Rongbo; Li, Taowen

    2017-03-01

    Contamination of soil with Americium ( 241 Am) at nuclear sites in China poses a serious problem. We screened six plants, from five families, for their 241 Am-enrichment potential. Europium (Eu), which is morphologically and chemically similar to the highly toxic 241 Am, was used in its place. Moreover, the effects of sylvite, citric acid (CA), malic acid (MA), and humic acid (HA) on the absorption of 241 Am by the plants, and its transport within them, were evaluated along with their effect on plant biomass and 241 Am extraction volume. Barley and cabbage showed relatively stronger Eu accumulation capacities. Citric acid promoted the absorption of 241 Am by barley roots and its transport within the plants. The effects of sylvite were not obvious and those of HA were the weakest in case of sunflower; HA, however, maximally increased the biomass of the plants. Our results could provide the basis for future radionuclide phytoremediation of contaminated soils.

  16. Quantitative analysis of urinary glycine conjugates by high performance liquid chromatography: excretion of hippuric acid and methylhippuric acids in the urine of subjects exposed to vapours of toluene and xylenes.

    PubMed

    Ogata, M; Taguchi, T

    1986-01-01

    A new method for the direct determination of hippuric acid (HA) and o-, m- and p-methylhippuric acids (MHAs) in the urine, metabolites of toluene and o-, m- and p-xylenes by high performance liquid chromatography (HPLC) is described. A stainless-steel column packed with silica gel having dinitrophenyl residue and a mixed solution of methanol/water/acetic acid (80/20/0.2) containing tetra-n-butylammonium bromide (0.2% w/v) as mobile phase was used. Concentrations of HA and MHAs were estimated from their peak height at a wave length of 225 nm. Urine can be analyzed directly without solvent extraction or pretreatment to obtain complete separation of HA and o-, m- and p-MHAs. Urine samples from male workers exposed to toluene or xylenes were analyzed for HA or MHAs. The urinary levels of HA and MHAs increased by exposure to toluene and xylenes in proportion to the environmental concentrations of the solvents, although there is a considerable variation in metabolite concentrations. The slope of regression line between toluene and HA and that between m-xylene and m-MHA were similar. The urinary concentrations of HA and MHAs corresponding to 100 ppm (TLV) of toluene was 2.35 g/g creatinine and that of m-MHA corresponding to 100 ppm (TLV) of m-xylene was 2.05 g/g creatinine. The warning levels of the urinary metabolite concentrations of a group of workers and that of an individual worker corresponding to TLV of organic solvent concentration is discussed.

  17. Wear characterization of nano-hydroxyapatite with addition of titanium (HA-Ti)

    NASA Astrophysics Data System (ADS)

    Rosmamuhamadani, R.; Arawi, A. Z. O.; Talari, M. K.; Mahat, M. M.; Bonnia, N. N.; Sabrina; Yahaya, M.; Sulaiman, S.; Ismail, M. I. S.

    2018-04-01

    Hydroxyapatite (Ca10 (PO4)6(OH)2, HA), is an attractive material of an inorganic compound whose chemical composition and crystallographic structures are similar to the composition of the bone. A natural source such as egg shells is composed of 94 wt. % of calcium carbonate (CaCO3), which can be calcined as calcium oxide (CaO) by the calcinations process. The efficient temperature to produce CaO is 900 °C for 2 hours. The synthesis of nano-HA was done by the mixing the diammonium phosphate (DAP) and calcium hydroxide (Ca(OH)2) and subjected into a microwave for 30 minutes at 1100 W irradiation power. Ball milling process was used for 30 minutes to mix the nano-HA with different compositions of titanium. These were pressed to form pallets by hand hydraulic pump (force=2300 psi). The pallets then were sintered at 1200 °C with the heating rate of 3 °C/min for 2 hours. The pallets were tested by several mechanical testing including hardness, compression strength and wear. From the results, HA-25wt. %Ti composite gave the highest hardness, compression and coefficient of friction for wear test values which were 89.6 Hv, 82.5MPa and 0.76μ respectively. It showed that by adding Ti to nano-HA, the mechanical properties of nano-HA could be enhanced. The microstructure analyses by optical micrograph showed that nano-HA-Ti particles displayed shape likes needle morphology. The particles showed the high tendency to form the agglomerations.

  18. Hyaluronic Acid Decreases Lipid Synthesis in Sebaceous Glands.

    PubMed

    Jung, Yu Ra; Hwang, Chul; Ha, Jeong-Min; Choi, Dae-Kyoung; Sohn, Kyung-Cheol; Lee, Young; Seo, Young-Joon; Lee, Young-Ho; Kim, Chang-Deok; Lee, Jeung-Hoon; Im, Myung

    2017-06-01

    Hyaluronic acid (HA) is the major glycosaminoglycan in the extracellular matrix and has been implicated in several functions in skin cells. However, evidence is lacking regarding the HA signaling in sebaceous glands, and its potential role needs to be clarified. We investigated the role of HA in lipid production in sebaceous glands in an experimental study of human sebocytes followed by a clinical study. We first examined the effects of HA on sebaceous glands in hamsters and intradermal injection of HA into hamster auricles decreased both the size of sebaceous glands and the level of lipid production. We demonstrated that human skin sebaceous glands in vivo and sebocytes in vitro express CD44 (HA binding receptor) and that HA downregulates lipid synthesis in a dose-dependent manner. To evaluate the clinical relevance of HA in human skin, 20 oily participants were included in a double-blind, placebo-controlled, split-face study, and the HA-treated side showed a significant decrease in sebum production. The results of this study indicate that HA plays a functional role in human sebaceous gland biology and HA signaling is an effective candidate in the management of disorders in which sebum production is increased. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    PubMed Central

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; Tan, Li Huey

    2014-01-01

    In this review, we summarize recent progresses in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed. PMID:25205057

  20. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    DOE PAGES

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; ...

    2014-09-10

    In this paper, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insightsmore » gained from these studies are described and future directions of this field are also discussed.« less

  1. Selective binding behavior of humic acid removal by aluminum coagulation.

    PubMed

    Jin, Pengkang; Song, Jina; Yang, Lei; Jin, Xin; Wang, Xiaochang C

    2018-02-01

    The reactivity characteristics of humic acid (HA) with aluminium coagulants at different pH values was investigated. It revealed that the linear complexation reaction occurred between aluminum and humic acid at pH < 7, and the reaction rate increased as the pH increased from 2 to 6. While at pH = 7, most of the dosed aluminum existed in the form of free aluminum and remained unreacted in the presence of HA until the concentration reached to trigger Al(OH) 3(s) formation. Differentiating the change of functional groups of HA by 1 H nuclear magnetic resonance spectroscopy and X-ray photoelectron spectra analysis, it elucidated that there was a selective complexation between HA and Al with lower Al dosage at pH 5, which was probably due to coordination of the activated functional groups onto aluminium. While almost all components were removed proportionally by sweep adsorption without selectivity at pH 7, as well as that with higher Al dosage at pH 5. This study provided a promising pathway to analyse the mechanism of the interaction between HA and metal coagulants in future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Influence of freeze-thawing on hyaluronic acid binding of human spermatozoa.

    PubMed

    Nijs, Martine; Creemers, Eva; Cox, Annemie; Janssen, Mia; Vanheusden, Elke; Castro-Sanchez, Yovanna; Thijs, Herbert; Ombelet, Willem

    2009-08-01

    Mature human spermatozoa have at least three specific hyaluronic acid (HA) binding proteins present on their sperm membrane. These receptors play a role in the acrosome reaction, hyaluronidase activity, hyaluronan-mediated motility and sperm-zona and sperm-oolemmal binding. Cryopreservation of spermatozoa can cause ultrastructural and even molecular damage. The aim of this study was to investigate if HA binding receptors of human spermatozoa remain functional after freeze-thawing. Forty patients were enrolled in the study. Semen samples were analysed before and after cryopreservation. Parameters analysed included concentration, motility, morphology and hyaluronan binding. Samples were frozen in CBS straws using a glycerol-glucose-based cryoprotectant. HA binding was studied using the sperm-hyaluronan binding assay. Freeze-thawing resulted in a significant decline in motility: the percentage of motile spermatozoa reduced from 50.6 to 30.3% (P < 0.001). HA binding properties of frozen-thawed spermatozoa remained unchanged after the freeze-thawing process: 68.5 +/- 17.1% spermatozoa of the neat sample were bound to HA, as were 71.3 +/- 20.4 of the frozen-thawed sample. This study indicates that freeze-thawing did not alter the functional hyaluronan binding sites of mature motile spermatozoa, and therefore will not alter their fertilizing potential.

  3. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting.

    PubMed

    Park, Ju Young; Choi, Jong-Cheol; Shim, Jin-Hyung; Lee, Jung-Seob; Park, Hyoungjun; Kim, Sung Won; Doh, Junsang; Cho, Dong-Woo

    2014-09-01

    Bioprinting is a promising technique for engineering composite tissues, such as osteochondral tissues. In this study, as a first step toward bioprinting-based osteochondral tissue regeneration, we systematically examined the behavior of chondrocytes and osteoblasts to hyaluronic acid (HA) and type I collagen (Col-1) hydrogels. First, we demonstrated that cells on hydrogels that were comprised of major native tissue extracellular matrix (ECM) components (i.e. chondrocytes on HA hydrogels and osteoblasts on Col-1 hydrogels) exhibited better proliferation and cell function than cells on non-native ECM hydrogels (i.e., chondrocytes on Col-1 hydrogels and osteoblasts on HA hydrogels). In addition, cells located near their native ECM hydrogels migrated towards them. Finally, we bioprinted three-dimensional (3D) osteochondral tissue-mimetic structures composed of two compartments, osteoblast-encapsulated Col-1 hydrogels and chondrocyte-encapsulated HA hydrogels, and found viability and functions of each cell type were well maintained within the 3D structures up to 14 days in vitro. These results suggest that with proper choice of hydrogel materials, bioprinting-based approaches can be successfully applied for osteochondral tissue regeneration.

  4. Acid-base chemistry and aluminum transport in an acidic watershed and pond in New Hampshire

    Treesearch

    Scott W. Bailey; Charles T. Driscoll; James W. Hornbeck

    1995-01-01

    Cone Pond is one of the few acidic, clear-water ponds in the White Mountains of New Hampshire, a region dominated by high inputs of strong acids from atmospheric deposition and low base content of bedrock. Monitoring was conducted for 13 months to compare and contrast the acid-base chemistry of the terrestrial and aquatic portions of the watershed. Variations in Al...

  5. Quantification of hyaluronan (HA) using a simplified fluorophore-assisted carbohydrate electrophoresis (FACE) procedure.

    PubMed

    Midura, Ronald J; Cali, Valbona; Lauer, Mark E; Calabro, Anthony; Hascall, Vincent C

    2018-01-01

    Hyaluronan (HA) exhibits numerous important roles in physiology and pathologies, and these facts necessitate an ability to accurately and reproducibly measure its quantities in tissues and cell cultures. Our group previously reported a rigorous and analytical procedure to quantify HA (and chondroitin sulfate, CS) using a reductive amination chemistry and separation of the fluorophore-conjugated, unsaturated disaccharides unique to HA and CS on high concentration acrylamide gels. This procedure is known as fluorophore-assisted carbohydrate electrophoresis (FACE) and has been adapted for the detection and quantification of all glycosaminoglycan types. While this previous FACE procedure is relatively straightforward to implement by carbohydrate research investigators, many nonglycoscience laboratories now studying HA biology might have difficulties establishing this prior FACE procedure as a routine assay for HA. To address this need, we have greatly simplified our prior FACE procedure for accurate and reproducible assessment of HA in tissues and cell cultures. This chapter describes in detail this simplified FACE procedure and, because it uses an enzyme that degrades both HA and CS, investigators will also gain additional insight into the quantities of CS in the same samples dedicated for HA analysis. © 2018 Elsevier Inc. All rights reserved.

  6. Hyaluronic Acid and Its Derivatives in Coating and Delivery Systems: Applications in Tissue Engineering, Regenerative Medicine and Immunomodulation.

    PubMed

    Knopf-Marques, Helena; Pravda, Martin; Wolfova, Lucie; Velebny, Vladimir; Schaaf, Pierre; Vrana, Nihal Engin; Lavalle, Philippe

    2016-11-01

    As an Extracellular Matrix (ECM) component, Hyaluronic acid (HA) plays a multi-faceted role in cell migration, proliferation and differentiation at micro level and system level events such as tissue water homeostasis. Among its biological functions, it is known to interact with cytokines and contribute to their retention in ECM microenvironment. In addition to its biological functions, it has advantageous physical properties which result in the industrial endeavors in the synthesis and extraction of HA for variety of applications ranging from medical to cosmetic. Recently, HA and its derivatives have been the focus of active research for applications in biomedical device coatings, drug delivery systems and in the form of scaffolds or cell-laden hydrogels for tissue engineering. A specific reason for the increase in use of HA based structures is their immunomodulatory and regeneration inducing capacities. In this context, this article reviews recent literature on modulation of the implantable biomaterial microenvironment by systems based on HA and its derivatives, particularly hydrogels and microscale coatings that are able to deliver cytokines in order to reduce the adverse immune reactions and promote tissue healing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Novel antigenic shift in HA sequences of H1N1 viruses detected by big data analysis.

    PubMed

    Zhang, Ruiying; Xu, Chongfeng; Duan, Ziyuan

    2017-07-01

    The influenza virus H1N1 has been prevalent all over the world for nearly a century. Many studies on its evolutionary history, substitution rate and antigenicity-associated sites have been done with small datasets. To have a complete view, we analysed 3171 full-length HA sequences from human H1N1 viruses sampled from 1918 to 2016, and discovered a new clade has formed with sequences isolated in Iran. Based on genetic distance calculations, we revealed an uneven evolutionary rate among sequences isolated in different years. We also found that the HA1 fragment of the new clade is like that of viruses that existed in the 1930s, while the HA2 fragment is closely associated with strains isolated after the 2009 pandemic. This new, "mixed" HA sequence indicates a cryptic antigenic shift event occurred, and it should draw more attention to the new clade identified from sequences from Iran. Copyright © 2017. Published by Elsevier B.V.

  8. Mechanical strength of [HA/Bioplastic/Sericin] composite part printed by bioprinter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tontowi, Alva Edy, E-mail: alvaedytontowi@ugm.ac.id; Setiawan, Agris

    The aim of this research was to determine the effect of hydroxyapatite (HA) content in printed biocomposite to its mechanical strength. The biocomposite paste was prepared by composing HA, bioplastic and sericin with various ratios of [HA/Bioplastic]: 40/60, 50/50, 60,40 and 70/30. Sericin of 0.3% weight was added to the biocomposite. Mechanical test was conducted to observe tensile (ASTM D 638 type 4) and flexural strength (ASTM D 790). Both type of specimens were fabricated using 3D Printer. Printing process parameter (infill speed, print speed and layer height) were set up as 60 mm/s, 10 mm/s, 0.35 mm, respectively. Resultsmore » showed that biocomposite with [HA/Biplastic]. weight ratio of 60/40(w/w) has an optimum tensile (3.89 ± 1.26 MPa) and flexural strength (2.51 ± 0.45 MPa). Scanning electron microscope observation indicated that microstructure of specimen was influenced by the percentage of the hydroxyapatite. There was no agglomeration of HA particle within the composite.« less

  9. CILogon-HA. Higher Assurance Federated Identities for DOE Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basney, James

    The CILogon-HA project extended the existing open source CILogon service (initially developed with funding from the National Science Foundation) to provide credentials at multiple levels of assurance to users of DOE facilities for collaborative science. CILogon translates mechanism and policy across higher education and grid trust federations, bridging from the InCommon identity federation (which federates university and DOE lab identities) to the Interoperable Global Trust Federation (which defines standards across the Worldwide LHC Computing Grid, the Open Science Grid, and other cyberinfrastructure). The CILogon-HA project expanded the CILogon service to support over 160 identity providers (including 6 DOE facilities) andmore » 3 internationally accredited certification authorities. To provide continuity of operations upon the end of the CILogon-HA project period, project staff transitioned the CILogon service to operation by XSEDE.« less

  10. A Closer Look at Acid-Base Olfactory Titrations

    ERIC Educational Resources Information Center

    Neppel, Kerry; Oliver-Hoyo, Maria T.; Queen, Connie; Reed, Nicole

    2005-01-01

    Olfactory titrations using raw onions and eugenol as acid-base indicators are reported. An in-depth investigation on olfactory titrations is presented to include requirements for potential olfactory indicators and protocols for using garlic, onions, and vanillin as acid-base olfactory indicators are tested.

  11. [Genetic evolution and substitution frequency of avian influenza virus HA gene in chicken H9N2 subtype in China in the last 20 years].

    PubMed

    Meng, Fang; Xu, Huaiying; Zhang, Wei; Huang, Dihai; Zhang, Zaihui; Liu, Xia; Chang, Weishan; Qin, Zhuoming

    2016-01-04

    Low pathogenic avian influenza (LPAI) H9N2 subtype virus has been prevalent in domestic poultry in China over two decades. This study was to determine the genetic evolution trend of H9N2 avian influenza virus (AIV) under immune pressure of vaccine. H9 HA sequences of 40 isolates from the present study and 136 pandemic strains and 7 classical strains from China downloaded from GenBank, were genetically analyzed to determine evolution, molecular characteristic, and mutation frequency. Phylogenetic trees analysis suggested that H9N2 subtypes AIV could be clustered into 5 distinct lineages: G1-like, BJ94-like, Y280-like, S2-like and Americans lineages. Most H9N2 isolates in 2005-2014 belonged to S2-like sub-genotype, suggesting that this genotype was the dominate isolates in China. Further more, comparison based on the amino acid sequence showed that different lineages have their distinct characteristics, and significant accumulations of amino acid variation were also found. In addition, in comparison with reference Ck/BJ/1/1994 HA gene, average annual substitution rates of H9N2 pandemic strain nucleotide and amino acid were 5.73 x 10⁻³ and 4.25 x 10⁻³ from 1994 to 2014, respectively. Substitution rate during 2011-2014 were 6.35 x 10⁻³ and 5.32 x 10⁻³, higher than that during the period of 2006-2010 (5.22 x 10⁻³ and 3.70 x 10⁻³) and even much higher than that during the 1999-2005 (0.74 x 10⁻³ and 0.50 x 10⁻³), when the vaccines were initially applied in the field. Overall, these data indicate that the mismatch between H9N2 vaccine strains and pandemic strains drives the virus to quickly mutate.

  12. Antibacterial activation of hydroxyapatite (HA) with controlled porosity by different antibiotics.

    PubMed

    Chai, F; Hornez, J-C; Blanchemain, N; Neut, C; Descamps, M; Hildebrand, H F

    2007-11-01

    In order to prevent the increasing frequency of per-operative infections, bioceramics can be loaded with anti-bacterial agents, which will release with respect to their chemical characteristics. A novel hydroxyapatite (HA) was elaborated with specific internal porosities for using as a bone-bioactive antibiotic (ATB) carrier material. UV spectrophotometry and bacteria inhibition tests were performed for testing the ATB adsorption and the microbiological effectiveness after loading with different antibiotics. The impregnation time, ATB impregnating concentration, impregnation condition and other factors, which might influence the ATB loading effect, were studied by exposure to different releasing solvents and different pathogenic bacteria: Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli. It clearly showed that the facility of ATB loading on this porous HA is even possible just under simple non-vacuum impregnation conditions in a not-so-long impregnating interval. The results also showed that, for all three types of ATB (vancomycin, ciprofloxacin and gentamicin), adsorbed amount on the micro-porous HA were hugely higher than that on dense HA. The micro-porosity of test HA had also significantly prolonged the release time of antibiotics even under mimic physiological conditions. Furthermore, it also has primarily proved by a pilot test that the antibacterial efficiency of crude micro-porous HA could be further significantly improved by other methods of functionalization such as cold plasma technique.

  13. Rapidly sintering of interconnected porous Ti-HA biocomposite with high strength and enhanced bioactivity.

    PubMed

    Zhang, L; He, Z Y; Zhang, Y Q; Jiang, Y H; Zhou, R

    2016-10-01

    In this work, interconnected porous Ti-HA biocomposites with enhanced bioactivity, high porosity and compressive strength were prepared by spark plasma sintering (SPS) and space holder method. Pore characteristics, mechanical properties, corrosion behaviors and in vitro bioactivity of the porous Ti-HA were investigated. Results showed that porous Ti-HA with 5-30wt% HA contents possessed not only low elastic modulus of 8.2-15.8GPa (close to that of human bone) but also high compressive strength (86-388MPa). Although the HA partially decomposed and formed secondary phases, the sintered porous Ti-HA can still be good bioactivity. The homogeneity and the thickness of apatite layer increased significantly with the increase of HA. But with the thickness of apatite layer increased, micro-cracks appeared on the surface of porous Ti-30%HA. A model was built to discuss the current distribution and sintering mechanism of HA on Ti matrix during SPS process. It indicated that the excessive addition of HA would deteriorate the sintering quality, thus decreasing the mechanical properties and corrosion resistance. However, the combination of interconnected pore characteristics, low elastic modulus, high compressive strength and enhanced bioactivity might make porous Ti-HA biocomposites prepared by SPS a promising candidate for hard tissue implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Cryopreservation of ram semen in extenders containing soybean lecithin as cryoprotectant and hyaluronic acid as antioxidant.

    PubMed

    Najafi, A; Najafi, M H; Zanganeh, Z; Sharafi, M; Martinez-Pastor, F; Adeldust, H

    2014-12-01

    A soybean lecithin-based extender supplemented with hyaluronic acid (HA) was assayed for effectiveness to improve the quality of frozen-thawed ram semen. HA has not been tested yet in an extender containing soybean lecithin for freezing ram semen. Thus, the aim of this study was to analyse the effects of soybean lecithin at 1% or 1.5% along with HA at 0, 0.5 and 1 mg ml(-1) in a Tris-based extender on the motion characteristics, membrane integrity (HOST), viability, GSH peroxidase (GSH-PX) activity, lipid peroxidation and acrosomal status after freezing-thawing. Semen was collected from four Mehraban rams during the breeding season and frozen in the six lecithin×HA extenders. The extender containing 1.5% lecithin supplemented with no HA yielded higher total motility (52.5%±1.6), viability (55.8%±1.6) and membrane integrity (44.5%±1.7), but the effects of the lecithin concentration did not reach signification. Linearity-related parameters, ALH, BCF, lipid peroxidation, GSH-PX activity, morphology and acrosomal status were not affected by the extender composition. In general, adding HA significantly decreased sperm velocity (1 mg ml(-1) HA), total motility (only with 1.5% lecithin), viability (1 mg ml(-1) HA for 1% lecithin; both concentrations for 1.5% lecithin) and membrane integrity. In conclusion, adding HA to the freezing extender supplemented with soybean lecithin failed to improve quality-related variables in ram semen. Increasing the lecithin content could have a positive effect, but further studies are needed. © 2014 Blackwell Verlag GmbH.

  15. Heterogeneous Electrochemical Immunoassay of Hippuric Acid on the Electrodeposited Organic Films

    PubMed Central

    Choi, Young-Bong; Kim, Nam-Hyuk; Kim, Seung-Hoi; Tae, Gun-Sik; Kim, Hyug-Han

    2014-01-01

    By directly coordinating hippuric acid (HA) to the ferrate (Fe) as an electron transfer mediator, we synthesized a Fe-HA complex, which shows a good electrochemical signal and thus enables the electrochemical immunoanalysis for HA. We electrodeposited organic films containing imidazole groups on the electrode surface and then bonded Ni ion (positive charge) to induce immobilization of Fe-HA (negative charge) through the electrostatic interaction. The heterogeneous competitive immunoassay system relies on the interaction between immobilized Fe-HA antigen conjugate and free HA antigen to its antibody (anti-HA). The electric signal becomes weaker due to the hindered electron transfer reaction when a large-sized HA antibody is bound onto the Fe-HA. However, in the presence of HA, the electric signal increases because free HA competitively reacts with the HA antibody prior to actual reaction and thus prevents the HA antibody from interacting with Fe-HA at the electrode surface. This competition reaction enabled an electrochemical quantitative analysis of HA concentration with a detection limit of 0.5 μg mL−1, and thus allowed us to develop a simple and rapid electrochemical immunosensor. PMID:25313491

  16. HDPE-HA composites synthetized by in situ polymerization with different filler content

    NASA Astrophysics Data System (ADS)

    Hermán, V.; Karam, A.; Albano, C.; Romero, K.; González, G.

    2012-07-01

    In Situ ethylene polymerization was used to synthesize high density polyethylene - hydroxyapatite (HDPE-HA) composites, employing Cp2ZrCl2/MAO as catalytic system. A good dispersion of HA into the HDPE matrix was obtained when the following synthesis conditions were combined: high stirring velocities (2000 rpm), low quantities of solvent (100 mL), and 10 °C. Under these conditions different filler content was used to synthetized HDPE-HA composites. An interaction between HA and HDPE was obtained by FTIR. On the other hand, thermal analysis indicated that no significant differences were observed between HDPE and the composites.

  17. Hyaluronic acid-modified zirconium phosphate nanoparticles for potential lung cancer therapy.

    PubMed

    Li, Ranwei; Liu, Tiecheng; Wang, Ke

    2017-02-01

    Novel tumor-targeting zirconium phosphate (ZP) nanoparticles modified with hyaluronic acid (HA) were developed (HA-ZP), with the aim of combining the drug-loading property of ZP and the tumor-targeting ability of HA to construct a tumor-targeting paclitaxel (PTX) delivery system for potential lung cancer therapy. The experimental results indicated that PTX loading into the HA-ZP nanoparticles was as high as 20.36%±4.37%, which is favorable for cancer therapy. PTX-loaded HA-ZP nanoparticles increased the accumulation of PTX in A549 lung cancer cells via HA-mediated endocytosis and exhibited superior anticancer activity in vitro. In vivo anticancer efficacy assay revealed that HA-ZP nanoparticles possessed preferable anticancer abilities, which exhibited minimized toxic side effects of PTX and strong tumor-suppression potential in clinical application.

  18. [Nutrition, acid-base metabolism, cation-anion difference and total base balance in humans].

    PubMed

    Mioni, R; Sala, P; Mioni, G

    2008-01-01

    The relationship between dietary intake and acid-base metabolism has been investigated in the past by means of the inorganic cation-anion difference (C(+)(nm)-A(-)(nm)) method based on dietary ash-acidity titration after the oxidative combustion of food samples. Besides the inorganic components of TA (A(-)(nm)-C(+)(nm)), which are under renal control, there are also metabolizable components (A(-)(nm)-C(+)(nm)) of TA, which are under the control of the intermediate metabolism. The whole body base balance, NBb(W), is obtained only by the application of C(+)(nm)-A(-)(nm) to food, feces and urine, while the metabolizable component (A(-)(nm)-C(+)(nm)) is disregarded. A novel method has been subsequently suggested to calculate the net balance of fixed acid, made up by the difference between the input of net endogenous acid production: NEAP = SO(4)(2-)+A(-)(m)-(C(+)(nm)-A(-)(nm)), and the output of net acid excretion: NAE = TA + NH(4)(+) - HCO(3)(-). This approach has been criticized because 1) it includes metabolizable acids, whose production cannot be measured independently; 2) the specific control of metabolizable acid and base has been incorrectly attributed to the kidney; 3) the inclusion of A-m in the balance input generates an acid overload; 4) the object of measurement in making up a balance has to be the same, a condition not fulfilled as NEAP is different from NAE. Lastly, by rearranging the net balance of the acid equation, the balance of nonmetabolizable acid equation is obtained. Therefore, any discrepancy between these two equations is due to the inaccuracy in the urine measurement of metabolizable cations and/or anions.

  19. Hyaluronic acid as a potential boron carrier for BNCT: Preliminary evaluation.

    PubMed

    Zaboronok, A; Yamamoto, T; Nakai, K; Yoshida, F; Uspenskii, S; Selyanin, M; Zelenetskii, A; Matsumura, Akira

    2015-12-01

    Hyaluronic acid (HA), a nonimmunogenic, biocompatible polymer found in different biological tissues, has the potential to attach to CD44 receptors on the surface of certain cancer cells, where the receptor is overexpressed compared with normal cells. Boron-hyaluronic acid (BHA) was tested for its feasibility as a potential agent for BNCT. BHA with low-viscosity 30 kDa HA could be administered by intravenous injection. The compound showed a certain degree of cytotoxicity and accumulation in C6 rat glioma cells in vitro. Instability of the chelate bonds between boron and HA and/or insufficient specificity of CD44 receptors on C6 cells to BHA could account for the insufficient in vitro accumulation. To ensure the future eligibility of BHA for BNCT experiments, using alternative tumor cell lines and chemically securing the chelate bonds or synthesizing BHA with boron covalently attached to HA might be required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Exposure to acute severe hypoxia leads to increased urea loss and disruptions in acid-base and ionoregulatory balance in dogfish sharks (Squalus acanthias).

    PubMed

    Zimmer, Alex M; Wood, Chris M

    2014-01-01

    The effects of acute moderate (20% air O2 saturation; 6-h exposure) and severe (5% air O2 saturation; 4-h exposure) hypoxia on N-waste, acid-base, and ion balance in dogfish sharks (Squalus acanthias suckleyi) were evaluated. We predicted that the synthesis and/or retention of urea, which are active processes, would be inhibited by hypoxia. Exposure to moderate hypoxia had negligible effects on N-waste fluxes or systemic physiology, except for a modest rise in plasma lactate. Exposure to severe hypoxia led to a significant increase in urea excretion (Jurea), while plasma, liver, and muscle urea concentrations were unchanged, suggesting a loss of urea retention. Ammonia excretion (Jamm) was elevated during normoxic recovery. Moreover, severe hypoxia led to disruptions in acid-base balance, indicated by a large increase in plasma [lactate] and substantial decreases in arterial pHa and plasma [Formula: see text], as well as loss of ionic homeostasis, indicated by increases in plasma [Mg(2+)], [Ca(2+)], and [Na(+)]. We suggest that severe hypoxia in dogfish sharks leads to a reduction in active gill homeostatic processes, such as urea retention, acid-base regulation and ionoregulation, and/or an osmoregulatory compromise due to increased functional gill surface area. Overall, the results provide a comprehensive picture of the physiological responses to a severe degree of hypoxia in an ancient fish species.

  1. Effect of humic acids on the adsorption of paraquat by goethite.

    PubMed

    Brigante, Maximiliano; Zanini, Graciela; Avena, Marcelo

    2010-12-15

    The adsorption of the herbicide paraquat (PQ(2+)) on goethite and on the binary system humic acid-goethite has been studied in batch experiments by performing adsorption isotherms under different conditions of pH, supporting electrolyte concentration and temperature. The results were completed with capillary electrophoresis (CE) in order to measure the binding isotherm between PQ(2+) and humic acid (HA) molecules in solution. PQ(2+) adsorption is negligible on the bare goethite surface but important on the HA-goethite adsorbent. In this last case, the adsorption increases by increasing pH and decreasing electrolyte concentration. There are no significant effects of temperature on the adsorption. The adsorption takes place by direct binding of PQ(2+) to adsorbed HA molecules leading to the formation of surface species of the type goethite-HA-PQ(2+). The results are consistent with a mechanism where PQ(2+) binds negatively charged groups of HA (carboxylates and phenolates) forming ionic pairs or outer-sphere complexes. Since goethite in nature usually contains adsorbed HA molecules, it may act as a good adsorbent for cationic herbicides. This will not only benefit the deactivation of the herbicides but also reduce their leaching and transport through groundwater. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Fluorescence studies on binding of pyrene and its derivatives to humic acid

    NASA Astrophysics Data System (ADS)

    Nakashima, K.; Maki, M.; Ishikawa, F.; Yoshikawa, T.; Gong, Y.-K.; Miyajima, T.

    2007-07-01

    Binding of pyrene (PyH) and its derivatives to humic acid (HA) has been studied by fluorescence spectroscopy. The nature of the interaction between HA and pyrene derivatives are extensively investigated by employing three derivatives ranging from anionic to cationic compounds: 1-pyrenebutylic acid (PyA), 1-pyrenemethanol (PyM), and 1-pyrenebutyltrimethylammonium bromide (PyB). Binding constants between HA and PyX (X = H, A, M, B) are obtained by steady-state fluorescence quenching techniques, and it is found that PyB has a markedly large binding constant among the pyrene family. This is attributed to a strong electrostatic interaction between cationic PyB and anionic HA. The result suggests that an electrostatic interaction plays a dominant role in binding of pyrenes to humic acid. The importance of electrostatic interaction was also confirmed by a salt effect on the binding constant. Influence of collisional quenching on the binding constant, which causes overestimation of the binding constant, was examined by time-resolved fluorescence spectroscopy as well as temperature effect in steady-state fluorescence measurements. It is elucidated that collisional quenching does not much bring overestimation into the binding constants.

  3. Phylogenetic relationships of the HA and NA genes between vaccine and seasonal influenza A(H3N2) strains in Korea

    PubMed Central

    Park, Sehee; Bae, Joon-Yong; Yoo, Kirim; Cheong, Hee Jin; Noh, Ji Yun; Hong, Kyung Wook; Lemey, Philippe; Vrancken, Bram; Kim, Juwon; Nam, Misun; Yun, Soo-Hyeon; Cho, Woo In; Song, Joon Young; Kim, Woo Joo; Park, Mee Sook; Song, Jin-Won; Kee, Sun-Ho; Song, Ki-Joon; Park, Man-Seong

    2017-01-01

    Seasonal influenza is caused by two influenza A subtype (H1N1 and H3N2) and two influenza B lineage (Victoria and Yamagata) viruses. Of these antigenically distinct viruses, the H3N2 virus was consistently detected in substantial proportions in Korea during the 2010/11-2013/14 seasons when compared to the other viruses and appeared responsible for the influenza-like illness rate peak during the first half of the 2011/12 season. To further scrutinize possible causes for this, we investigated the evolutionary and serological relationships between the vaccine and Korean H3N2 strains during the 2011/12 season for the main antigenic determinants of influenza viruses, the hemagglutinin (HA) and neuraminidase (NA) genes. In the 2011/12 season, when the number of H3N2 cases peaked, the majority of the Korean strains did not belong to the HA clade of A/Perth/16/2009 vaccine, and no Korean strains were of this lineage in the NA segment. In a serological assay, post-vaccinated human sera exhibited much reduced hemagglutination inhibition antibody titers against the non-vaccine clade Korean H3N2 strains. Moreover, Korean strains harbored several amino acid differences in the HA antigenic sites and in the NA with respect to vaccine lineages during this season. Of these, the HA antigenic site C residues 45 and 261 and the NA residue 81 appeared to be the signatures of positive selection. In subsequent seasons, when H3N2 cases were lower, the HA and NA genes of vaccine and Korean strains were more phylogenetically related to each other. Combined, our results provide indirect support for using phylogenetic clustering patterns of the HA and possibly also the NA genes in the selection of vaccine viruses and the assessment of vaccine effectiveness. PMID:28257427

  4. Effect of fulvic and humic acids on copper and zinc homeostasis in rats.

    PubMed

    Hullár, István; Vucskits, András Valentin; Berta, Erzsébet; Andrásofszky, Emese; Bersényi, András; Szabó, József

    2018-03-01

    The objective of this study was to investigate the effects of fulvic acid (FA) and humic acid (HA), the two main compounds of humic substances (HSs), on copper (Cu) and zinc (Zn) homeostasis. Seventy-two male Wistar rats were randomly divided into nine experimental groups. The control diet (AIN-93G formula) and the diets supplemented with 0.1%, 0.2%, 0.4% and 0.8% FA or HA were fed for 26 days. Cu and Zn concentrations of the large intestinal content (LIC), liver, kidney, femur and hair were determined. FA and HA did not influence significantly the Cu or Zn contents of the experimental diets, the rats' feed intake, weight gain and the feed to gain ratio. Both FA and HA decreased the Cu concentrations of the LIC significantly and in a dose-related manner; however the absorption-stimulating effect of HA was more pronounced. FA increased the Cu content of the liver, but neither FA nor HA had a dose-dependent effect on it. FA or HA supplementations had no significant effect on the Cu concentration of the kidney. At the concentrations used, dietary FA or HA supplementations are not promising growth promoters. FA influences the Cu homeostasis unlike HA, because FA not only stimulates Cu absorption, but the extra quantity of absorbed Cu is retained in the organism. The stimulatory effect of HA on Zn absorption may not be manifested in Cu and Zn homeostasis, because of the tight connection of these microelements to FA and HA, which prevents the transmission of Zn from the ZnHA complex to the organs. As regards the effect of FA and HA on Cu and Zn homeostasis, both FA and HA stimulated the absorption of these microelements, but only FA increased the retention of Cu (in the liver) and Zn (in the kidney).

  5. HA222 polymorphism in Influenza A(H1N1) 2009 isolates from Intensive Care Units and ambulatory patients during three influenza seasons.

    PubMed

    Corcioli, F; Arvia, R; Pierucci, F; Clausi, V; Bonizzoli, M; Peris, A; Azzi, A

    2014-02-13

    Amino acid substitutions which can affect the receptor binding specificity of the influenza virus, like the substitution of aspartic acid with glycine in position 222 of the haemagglutinin (HA) of influenza virus A(H1N1) 2009, have been associated with increased viral pathogenicity and increased tropism for the lower respiratory tract. In this paper, the polymorphic site 222 and the site 223 of the HA1 polypeptide of H1N1 2009 viruses were analyzed in order to better clarify the role of these substitutions in H1N1 2009 virus virulence. Viral strains included in this study were collected in Tuscany during 3 different influenza seasons from patients with severe as well as with mild forms of influenza caused by A(H1N1) 2009 virus. In addition, the oseltamivir resistance of the H1N1 2009 strains circulating during the same seasons was monitored with the aim to evaluate whether these changes in the HA and in neuraminidase (NA) tend to be linked and to influence each other. Altogether, the results indicate that in severe forms of influenza viral population is more variable than in mild influenza, as regards the site 222. The frequency of such substitutions varied among the three seasons, it was highest in the season 2010-2011 and very low in the season 2012-2013. However these differences were not significant. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Effect of humic acids on intestinal viscosity, leaky gut and ammonia excretion in a 24 h feed restriction model to induce intestinal permeability in broiler chickens

    USDA-ARS?s Scientific Manuscript database

    Humic acids (HA) are produced by biodegradation of organic matter that involves physical, chemical and microbiological processes, hence, HA are a complex mixture of many different acids containing carboxyl and phenolate groups. The purpose of this study was to evaluate the effect of HA on intestina...

  7. Release of Ciprofloxacin-HCl and Dexamethasone Phosphate by Hyaluronic Acid Containing Silicone Polymers.

    PubMed

    Nguyen, Darrene; Hui, Alex; Weeks, Andrea; Heynen, Miriam; Joyce, Elizabeth; Sheardown, Heather; Jones, Lyndon

    2012-04-19

    The purpose of this study was to determine the effect of the covalent incorporation of hyaluronic acid (HA) into conventional hydrogel and hydrogels containing silicone as models for contact lens materials on the uptake and release of the fluoroquinolone antibiotic ciprofloxacin and the anti-inflammatory steroid dexamethasone phosphate. A 3 mg/mL ciprofloxacin solution (0.3% w/v) and a 1 mg/mL dexamethasone phosphate solution (0.1%) was prepared in borate buffered saline. Three hydrogel material samples (pHEMA; pHEMA TRIS; DMAA TRIS) were prepared with and without the covalent incorporation of HA of molecular weight (MW) 35 or 132 kDa. Hydrogel discs were punched from a sheet of material with a uniform diameter of 5 mm. Uptake kinetics were evaluated at room temperature by soaking the discs for 24 h. Release kinetics were evaluated by placing the drug-loaded discs in saline at 34 °C in a shaking water bath. At various time points over 6-7 days, aliquots of the release medium were assayed for drug amounts. The majority of the materials tested released sufficient drug to be clinically relevant in an ophthalmic application, reaching desired concentrations for antibiotic or anti-inflammatory activity in solution. Overall, the silicone-based hydrogels (pHEMA TRIS and DMAA TRIS), released lower amounts of drug than the conventional pHEMA material (p < 0.001). Materials with HA MW132 released more ciprofloxacin compared to materials with HA MW35 and lenses without HA (p < 0.02). Some HA-based materials were still releasing the drug after 6 days.

  8. [Biocompatibility of HA/TCP biphasic ceramics with co-cultured human osteoblasts in vitro].

    PubMed

    Lu, X; Li, S; Zhang, J; Zhang, Z; Lu, B; Bu, H; Li, Y; Cheng, J

    2001-12-01

    The biocompatibility of HA/TCP ceramic was evaluated by investigation of attachment and growth of osteoblasts on biomaterial, as well as monitoring the effects of biomaterial on expression of functional phenotypes of co-cultured osteoblasts in vitro. When co-cultured with HA/TCP ceramics, osteoblasts firstly attached to the surface of HA/TCP disk, then attached to notches and grew into the micropores of biomaterial during further culture period. At last, the ceramics were almost packed with osteoblasts. Additionally, osteoblasts co-cultured with HA/TCP were similar to osteoblasts cultured under normal condition in osteoblastic phenotypes; the secreted lots of collagen type I, possess strong activity of Alkaline Phosphatase and mineralized extracellular matrix. The fact that osteoblasts could grow well on HA/TCP ceramics and the biomaterial did not affect their physiological function suggest that HA/TCP ceramic is biocompatible with human osteoblasts.

  9. Genetic diversity of HA1 domain of heammaglutinin gene of influenza A(H1N1)pdm09 in Tunisia

    PubMed Central

    2013-01-01

    We present major results concerning isolation and determination of the nucleotide sequence of hemagglutinin (HA1) of the pandemic (H1N1)pdm09 influenza viruses found in Tunisia. Amino acid analysis revealed minor amino acid changes in the antigenic or receptor-binding domains. We found mutations that were also present in 1918 pandemic virus, which includes S183P in 4 and S185T mutation in 19 of 27 viruses analyzed from 2011, while none of the 2009 viruses carried these mutations. Also two specific amino acid differences into N-glycosylation sites (N288T and N276H) were detected. The phylogenetic analysis revealed that the majority of the Tunisian isolates clustered with clade A/St. Petersburg/27/2011 viruses characterized by D97N and S185T mutations. However it also reveals a trend of 2010 strains to accumulate amino acid variation and form new phylogenetic clade with three specific amino acid substitutions: V47I, E172K and K308E. PMID:23679923

  10. Structural fatigue in the 34-meter HA-dec antennas

    NASA Technical Reports Server (NTRS)

    Van Hek, Ronald A.; Saldua, Benjamin P.

    1991-01-01

    Three 26-m hour-angle/declination (HA-dec) antennas, designed for a life span of 20 years, were built in the early 1960s for the NASA Deep Space Network. After 16 years the antennas were upgraded. The design required a structural weight increase of about 50 percent in both the HA and dec structures to achieve the desired improvements. The fatigue caused by the resulting stress-reversal conditions is discussed. The structural failures and their analyses are described.

  11. Ligand activation of peroxisome proliferator-activated receptor-beta/delta inhibits cell proliferation in human HaCaT keratinocytes.

    PubMed

    Borland, Michael G; Foreman, Jennifer E; Girroir, Elizabeth E; Zolfaghari, Reza; Sharma, Arun K; Amin, Shantu; Gonzalez, Frank J; Ross, A Catharine; Peters, Jeffrey M

    2008-11-01

    Although there is strong evidence that ligand activation of peroxisome proliferator-activated receptor (PPAR)-beta/delta induces terminal differentiation and attenuates cell growth, some studies suggest that PPARbeta/delta actually enhances cell proliferation. For example, it was suggested recently that retinoic acid (RA) is a ligand for PPARbeta/delta and potentiates cell proliferation by activating PPARbeta/delta. The present study examined the effect of ligand activation of PPARbeta/delta on cell proliferation, cell cycle kinetics, and target gene expression in human HaCaT keratinocytes using two highly specific PPARbeta/delta ligands [4-[[[2-[3-fluoro-4-(trifluoromethyl)phenyl]-4-methyl-5-thiazolyl]methyl]thio]-2-methylphenoxy acetic acid (GW0742) and 2-methyl-4-((4-methyl-2-(4-trifluoromethylphenyl)-1,3-thiazol-5-yl)-methylsulfanyl)phenoxy-acetic acid (GW501516)] and RA. Both PPARbeta/delta ligands and RA inhibited cell proliferation of HaCaT keratinocytes. GW0742 and GW501516 increased expression of known PPARbeta/delta target genes, whereas RA did not; RA increased the expression of known retinoic acid receptor/retinoid X receptor target genes, whereas GW0742 did not affect these genes. GW0742, GW501516, and RA did not modulate the expression of 3-phosphoinositide-dependent protein kinase or alter protein kinase B phosphorylation. GW0742 and RA increased annexin V staining as quantitatively determined by flow cytometry. The effects of GW0742 and RA were also examined in wild-type and PPARbeta/delta-null primary mouse keratinocytes to determine the specific role of PPARbeta/delta in modulating cell growth. Although inhibition of keratinocyte proliferation by GW0742 was PPARbeta/delta-dependent, inhibition of cell proliferation by RA occurred in both genotypes. Results from these studies demonstrate that ligand activation of PPARbeta/delta inhibits keratinocyte proliferation through PPARbeta/delta-dependent mechanisms. In contrast, the observed inhibition of

  12. Adsorption behaviour of hydrogarnet for humic acid

    NASA Astrophysics Data System (ADS)

    Maeda, Hirotaka; Kurosaki, Yuichi; Nakayama, Masanobu; Ishida, Emile Hideki; Kasuga, Toshihiro

    2018-04-01

    Discharge of humic acid (HA) in aqueous environments is a key health and aesthetic issue. The present work investigates the use of hydrogarnet as a novel adsorbent for HA. Hydrogarnet was hydrothermally synthesized with different solvents to control the chemical composition. Hydrogarnet with three types of chemical compositions had better adsorption properties for HA than hydrogarnet with a single chemical composition. Controlling the chemical composition of hydrogarnet increased the number of hydroxyl groups and the overall binding energy of the system, leading to changes in the zeta potential. The enhancement of these adsorption properties is related to the increased numbers of hydroxyl groups on the surface and their diverse binding energies.

  13. Sargahydroquinoic acid inhibits TNFα-induced AP-1 and NF-κB signaling in HaCaT cells through PPARα activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Youngsic; Jung, Yujung; Kim, Min Cheol

    2014-08-08

    Highlights: • SHQA increases PPARα/γ transactivation and inhibits MMP-2/-9 expression. • SHQA inhibits TNFα-induced AP-1 and MAPK signaling. • SHQA inhibits TNFα-induced p65 translocation and IκBα phosphorylation. • SHQA inhibits TNFα-induced AP-1 and NF-κB signaling via PPARα. - Abstract: Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors and expressed in various cell types in the skin, including keratinocytes, fibroblasts and infiltrating immune cells. Thus, their ligands are targets for the treatment of various skin disorders, such as photo-aging and chronological aging of skin. Intensive studies have revealed that PPARα/γ functions in photo-agingmore » and age-related inflammation by regulating matrix metalloproteinases (MMPs) via activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB). However, the detailed mechanism of PPARα/γ’s role in skin aging has not yet been elucidated. In this study, we confirmed that sargahydroquinoic acid (SHQA) as a PPARα/γ ligand significantly decreased Tumor Necrosis Factor-alpha (TNFα)-induced MMP-2/-9 expression by downregulating TNFα-induced transcription factors, subsequently reducing IκBα degradation and blocking NF-κB p65 nuclear translocation in HaCaT human epidermal keratinocyte cells. Treatment of cells with SHQA and GW6471 (PPARα antagonist) not bisphenol A diglycidyl ether (PPARγ antagonists), reversed the effect on TNFα-induced inflammatory signaling pathway activation. Taken together, our data suggest that SHQA inhibit TNFα-induced MMP-2/-9 expression and age-related inflammation by suppressing AP-1 and NF-κB pathway via PPARα.« less

  14. Thai Grade 11 students' alternative conceptions for acid-base chemistry

    NASA Astrophysics Data System (ADS)

    Artdej, Romklao; Ratanaroutai, Thasaneeya; Coll, Richard Kevin; Thongpanchang, Tienthong

    2010-07-01

    This study involved the development of a two-tier diagnostic instrument to assess Thai high school students' understanding of acid-base chemistry. The acid-base diagnostic test (ABDT) comprising 18 items was administered to 55 Grade 11 students in a science and mathematics programme during the second semester of the 2008 academic year. Analysis of students' responses from this study followed the methodology outlined by Çalik and Ayas. The research findings suggest that the ABDT, the multiple choice diagnostic instrument, enables researchers and teachers to classify students' understanding at different levels. Most students exhibited alternative conceptions for several concepts: acid-base theory, dissociation of strong acids or bases, and dissociation of weak acids/bases. Interestingly, one of the concepts that students appeared to find most difficult, and for which they exhibited the most alternative conceptions, was acid-base theory. Some alternative conceptions revealed in this study differ from earlier reports, such as the concept of electrolyte and non-electrolyte solutions as well as the concentration changes of H3O+and OH- in water. These research findings present valuable information for facilitating better understanding of acid-base chemistry by providing insight into the preventable and correctable alternative conceptions exhibited by students.

  15. Acid-base homeostasis in the human system

    NASA Technical Reports Server (NTRS)

    White, R. J.

    1974-01-01

    Acid-base regulation is a cooperative phenomena in vivo with body fluids, extracellular and intracellular buffers, lungs, and kidneys all playing important roles. The present account is much too brief to be considered a review of present knowledge of these regulatory systems, and should be viewed, instead, as a guide to the elements necessary to construct a simple model of the mutual interactions of the acid-base regulatory systems of the body.

  16. Influence of humic acid on the stability and bacterial toxicity of zinc oxide nanoparticles in water.

    PubMed

    Akhil, K; Chandran, Preethy; Sudheer Khan, S

    2015-12-01

    The present study investigated the stability of zinc oxide nanoparticles (ZnO NPs) by the adsorption of humic acid (HA) and the mechanism of adsorption. The effect of humic acid on NP toxicity was determined by Escherichia coli (ATCC 13534), E. coli (ATCC 25922), and Pseudomonas putida (MTCC 4910). The nanoparticles showed low zeta potential and were least stable in the absence of HA. However, the negative surface charge of the particles increased in the presence of HA (0-50mg/L) that reduced the propensity of nanoparticles to aggregate in water. A decrease in absorbance of ZnO NPs at 375 nm (plasmon peak) was noted in the presence of HA by UV-visible spectrophotometric analysis. A blue shift towards 370 nm was noted when the concentration of HA was above 20mg/L. The HA adsorbed ZnO NPs showed higher zeta potential (>-30 mV) and were highly stable. HA reduced the photocatalytic activity of ZnO and at the same time increased the photostability of ZnO. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. An Acid-Base Chemistry Example: Conversion of Nicotine

    NASA Astrophysics Data System (ADS)

    Summerfield, John H.

    1999-10-01

    The current government interest in nicotine conversion by cigarette companies provides an example of acid-base chemistry that can be explained to students in the second semester of general chemistry. In particular, the conversion by ammonia of the +1 form of nicotine to the easier-to-assimilate free-base form illustrates the effect of pH on acid-base equilibrium. The part played by ammonia in tobacco smoke is analogous to what takes place when cocaine is "free-based".

  18. Prediction of IOI-HA scores using speech reception thresholds and speech discrimination scores in quiet.

    PubMed

    Brännström, K Jonas; Lantz, Johannes; Nielsen, Lars Holme; Olsen, Steen Østergaard

    2014-02-01

    Outcome measures can be used to improve the quality of the rehabilitation by identifying and understanding which variables influence the outcome. This information can be used to improve outcomes for clients. In clinical practice, pure-tone audiometry, speech reception thresholds (SRTs), and speech discrimination scores (SDSs) in quiet or in noise are common assessments made prior to hearing aid (HA) fittings. It is not known whether SRT and SDS in quiet relate to HA outcome measured with the International Outcome Inventory for Hearing Aids (IOI-HA). The aim of the present study was to investigate the relationship between pure-tone average (PTA), SRT, and SDS in quiet and IOI-HA in both first-time and experienced HA users. SRT and SDS were measured in a sample of HA users who also responded to the IOI-HA. Fifty-eight Danish-speaking adult HA users. The psychometric properties were evaluated and compared to previous studies using the IOI-HA. The associations and differences between the outcome scores and a number of descriptive variables (age, gender, fitted monaurally/binaurally with HA, first-time/experienced HA users, years of HA use, time since last HA fitting, best ear PTA, best ear SRT, or best ear SDS) were examined. A multiple forward stepwise regression analysis was conducted using scores on the separate IOI-HA items, the global score, and scores on the introspection and interaction subscales as dependent variables to examine whether the descriptive variables could predict these outcome measures. Scores on single IOI-HA items, the global score, and scores on the introspection (items 1, 2, 4, and 7) and interaction (items 3, 5, and 6) subscales closely resemble those previously reported. Multiple regression analysis showed that the best ear SDS predicts about 18-19% of the outcome on items 3 and 5 separately, and about 16% on the interaction subscale (sum of items 3, 5, and 6) CONCLUSIONS: The best ears SDS explains some of the variance displayed in the IOI-HA

  19. Sulfated hyaluronic acid hydrogels with retarded degradation and enhanced growth factor retention promote hMSC chondrogenesis and articular cartilage integrity with reduced hypertrophy.

    PubMed

    Feng, Qian; Lin, Sien; Zhang, Kunyu; Dong, Chaoqun; Wu, Tianyi; Huang, Heqin; Yan, Xiaohui; Zhang, Li; Li, Gang; Bian, Liming

    2017-04-15

    Recently, hyaluronic acid (HA) hydrogels have been extensively researched for delivering cells and drugs to repair damaged tissues, particularly articular cartilage. However, the in vivo degradation of HA is fast, thus limiting the clinical translation of HA hydrogels. Furthermore, HA cannot bind proteins with high affinity because of the lack of negatively charged sulfate groups. In this study, we conjugated tunable amount of sulfate groups to HA. The sulfated HA exhibits significantly slower degradation by hyaluronidase compared to the wild type HA. We hypothesize that the sulfation reduces the available HA octasaccharide substrate needed for the effective catalytic action of hyaluronidase. Moreover, the sulfated HA hydrogels significantly improve the protein sequestration, thereby effectively extending the availability of the proteinaceous drugs in the hydrogels. In the following in vitro study, we demonstrate that the HA hydrogel sulfation exerts no negative effect on the viability of encapsulated human mesenchymal stem cells (hMSCs). Furthermore, the sulfated HA hydrogels promote the chondrogenesis and suppresses the hypertrophy of encapsulated hMSCs both in vitro and in vivo. Moreover, intra-articular injections of the sulfated HA hydrogels avert the cartilage abrasion and hypertrophy in the animal osteoarthritic joints. Collectively, our findings demonstrate that the sulfated HA is a promising biomaterial for the delivery of therapeutic agents to aid the regeneration of injured or diseased tissues and organs. In this paper, we conjugated sulfate groups to hyaluronic acid (HA) and demonstrated the slow degradation and growth factor delivery of sulfated HA. Furthermore, the in vitro and in vivo culture of hMSCs laden HA hydrogels proved that the sulfation of HA hydrogels not only promotes the chondrogenesis of hMSCs but also suppresses hypertrophic differentiation of the chondrogenically induced hMSCs. The animal OA model study showed that the injected

  20. Protonated o-semiquinone radical as a mimetic of the humic acids native radicals: A DFT approach to the molecular structure and EPR properties

    NASA Astrophysics Data System (ADS)

    Witwicki, Maciej; Jezierska, Julia

    2012-06-01

    Organic radicals are known to be an indispensable component of the humic acids (HA) structure. In HA two forms of radicals, stable (native) and short-lived (transient), are identified. Importantly, these radical forms can be easily differentiated by electron paramagnetic resonance (EPR) spectroscopy. This article provides a DFT-based insight into the electronic and molecular structure of the native radicals. The molecular models including an increase of the radical aromaticity and the hydrogen bonding between the radical and other functional groups of HA are taken under investigation. In consequence the interesting pieces of information on the structure of the native radical centers in HA are revealed and discussed, especially in terms of differences between the electronic structure of the native and transient forms.

  1. The deafness gene dfna5 is crucial for ugdh expression and HA production in the developing ear in zebrafish.

    PubMed

    Busch-Nentwich, Elisabeth; Söllner, Christian; Roehl, Henry; Nicolson, Teresa

    2004-02-01

    Over 30 genes responsible for human hereditary hearing loss have been identified during the last 10 years. The proteins encoded by these genes play roles in a diverse set of cellular functions ranging from transcriptional regulation to K(+) recycling. In a few cases, the genes are novel and do not give much insight into the cellular or molecular cause for the hearing loss. Among these poorly understood deafness genes is DFNA5. How the truncation of the encoded protein DFNA5 leads to an autosomal dominant form of hearing loss is not clear. In order to understand the biological role of Dfna5, we took a reversegenetic approach in zebrafish. Here we show that morpholino antisense nucleotide knock-down of dfna5 function in zebrafish leads to disorganization of the developing semicircular canals and reduction of pharyngeal cartilage. This phenotype closely resembles previously isolated zebrafish craniofacial mutants including the mutant jekyll. jekyll encodes Ugdh [uridine 5'-diphosphate (UDP)-glucose dehydrogenase], an enzyme that is crucial for production of the extracellular matrix component hyaluronic acid (HA). In dfna5 morphants, expression of ugdh is absent in the developing ear and pharyngeal arches, and HA levels are strongly reduced in the outgrowing protrusions of the developing semicircular canals. Previous studies suggest that HA is essential for differentiating cartilage and directed outgrowth of the epithelial protrusions in the developing ear. We hypothesize that the reduction of HA production leads to uncoordinated outgrowth of the canal columns and impaired facial cartilage differentiation.

  2. Technology transfer and scale-up of the Flublok recombinant hemagglutinin (HA) influenza vaccine manufacturing process.

    PubMed

    Buckland, Barry; Boulanger, Robert; Fino, Mireli; Srivastava, Indresh; Holtz, Kathy; Khramtsov, Nikolai; McPherson, Clifton; Meghrous, Jamal; Kubera, Paul; Cox, Manon M J

    2014-09-22

    Multiple different hemagglutinin (HA) protein antigens have been reproducibly manufactured at the 650L scale by Protein Sciences Corporation (PSC) based on an insect cell culture with baculovirus infection. Significantly, these HA protein antigens were produced by the same Universal Manufacturing process as described in the biological license application (BLA) for the first recombinant influenza vaccine approved by the FDA (Flublok). The technology is uniquely designed so that a change in vaccine composition can be readily accommodated from one HA protein antigen to another one. Here we present a vaccine candidate to combat the recently emerged H7N9 virus as an example starting with the genetic sequence for the required HA, creation of the baculovirus and ending with purified protein antigen (or vaccine component) at the 10L scale accomplished within 38 days under GMP conditions. The same process performance is being achieved at the 2L, 10L, 100L, 650L and 2500L scale. An illustration is given of how the technology was transferred from the benchmark 650L scale facility to a retrofitted microbial facility at the 2500L scale within 100 days which includes the time for facility engineering changes. The successful development, technology transfer and scale-up of the Flublok process has major implications for being ready to make vaccine rapidly on a worldwide scale as a defense against pandemic influenza. The technology described does not have the same vulnerability to mutations in the egg adapted strain, and resulting loss in vaccine efficacy, faced by egg based manufacture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Urinary trans-trans muconic acid (exposure biomarker to benzene) and hippuric acid (exposure biomarker to toluene) concentrations in Mexican women living in high-risk scenarios of air pollution.

    PubMed

    Pruneda-Alvarez, Lucía G; Ruíz-Vera, Tania; Ochoa-Martínez, Angeles C; Pérez-Maldonado, Iván N

    2017-11-02

    This study aimed to determine t,t-muconic acid (t,t-MA; exposure biomarker for benzene) and hippuric acid (HA; exposure biomarker for toluene) concentrations in the urine of women living in Mexico. In a cross-sectional study, apparently healthy women (n = 104) were voluntarily recruited from localities with a high risk of air pollution; t,t-MA and HA in urine were quantified using a high-performance liquid chromatography (HPLC) technique. Mean urinary levels of t,t-MA ranged from 680 to 1,310 μg/g creatinine. Mean values of HA ranged from 0.38 to 0.87 g/g creatinine. In conclusion, compared to data recently reported in literature, we found high urinary levels of t,t-MA and HA in assessed women participating in this study. We therefore deem the implementation of a strategy aimed at the reduction of exposure as a necessary measure for the evaluated communities.

  4. Evaluation of hyaluronic acid-protein conjugates for polymer masked-unmasked protein therapy.

    PubMed

    Ferguson, Elaine L; Alshame, Alshame M J; Thomas, David W

    2010-12-15

    Bioresponsive polymers may effectively be utilized to enhance the circulation time and stability of biologically active proteins and peptides, while reducing their immunogenicity and toxicity. Recently, dextrin-epidermal growth factor (EGF) conjugates, which make use of the Polymer-masked UnMasked Protein Therapy (PUMPT) concept, have been developed and shown potential as modulators of impaired wound healing. This study investigated the potential of PUMPT using hyaluronic acid (HA) conjugates to mask activity and enhance protein stability, while allowing restoration of biological activity following triggered degradation. HA fragments (Mw ∼90,000g/mol), obtained by acid hydrolysis of Rooster comb HA, were conjugated to trypsin as a model enzyme or to EGF as a model growth factor. Conjugates contained 2.45 and 0.98% (w/w) trypsin or EGF, respectively, and contained <5% free protein. HA conjugation did not significantly alter trypsin's activity. However, incubation of the conjugate with physiological concentrations of HAase increased its activity to ∼145% (p<0.001) that of the free enzyme. In contrast, when HA-EGF conjugates were tested in vitro, no effect on cell proliferation was seen, even in the presence of HAase. HA conjugates did not display typical masking/unmasking behavior, HA-trypsin conjugates exhibited ∼52% greater stability in the presence of elastase, compared to free trypsin, demonstrating the potential of HA conjugates for further development as modulators of tissue repair. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. A computational study of ultrafast acid dissociation and acid-base neutralization reactions. I. The model.

    PubMed

    Maurer, Patrick; Thomas, Vibin; Rivard, Ugo; Iftimie, Radu

    2010-07-28

    Ultrafast, time-resolved investigations of acid-base neutralization reactions have recently been performed using systems containing the photoacid 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) and various Bronsted bases. Two conflicting neutralization mechanisms have been formulated by Mohammed et al. [Science 310, 83 (2005)] and Siwick et al. [J. Am. Chem. Soc. 129, 13412 (2007)] for the same acid-base system. Herein an ab initio molecular dynamics based computational model is formulated, which is able to investigate the validity of the proposed mechanisms in the general context of ground-state acid-base neutralization reactions. Our approach consists of using 2,4,6-tricyanophenol (exp. pKa congruent with 1) as a model for excited-state HPTS( *) (pKa congruent with 1.4) and carboxylate ions for the accepting base. We employ our recently proposed dipole-field/quantum mechanics (QM) treatment [P. Maurer and R. Iftimie, J. Chem. Phys. 132, 074112 (2010)] of the proton donor and acceptor molecules. This approach allows one to tune the free energy of neutralization to any desired value as well as model initial nonequilibrium hydration effects caused by a sudden increase in acidity, making it possible to achieve a more realistic comparison with experimental data than could be obtained via a full-QM treatment of the entire system. It is demonstrated that the dipole-field/QM model reproduces correctly key properties of the 2,4,6-tricyanophenol acid molecule including gas-phase proton dissociation energies and dipole moments, and condensed-phase hydration structure and pKa values.

  6. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost.

    PubMed

    Scaglia, Barbara; Nunes, Ramom Rachide; Rezende, Maria Olímpia Oliveira; Tambone, Fulvia; Adani, Fabrizio

    2016-08-15

    This work studied the auxin-like activity of humic acids (HA) obtained from vermicomposts produced using leather wastes plus cattle dung at different maturation stages (fresh, stable and mature). Bioassays were performed by testing HA concentrations in the range of 100-6000mgcarbonL(-1). (13)C CPMAS-NMR and GC-MS instrumental methods were used to assess the effect of biological processes and starting organic mixtures on HA composition. Not all HAs showed IAA-like activity and in general, IAA-like activity increased with the length of the vermicomposting process. The presence of leather wastes was not necessary to produce the auxin-like activity of HA, since HA extracted from a mix of cattle manure and sawdust, where no leather waste was added, showed IAA-like activity as well. CPMAS (13)CNMR revealed that HAs were similar independently of the mix used and that the humification process involved the increasing concentration of pre-existing alkali soluble fractions in the biomass. GC/MS allowed the identification of the molecules involved in IAA-like effects: carboxylic acids and amino acids. The concentration of active molecules, rather than their simple presence in HA, determined the bio-stimulating effect, and a good linear regression between auxin-like activity and active stimulating molecules concentration was found (R(2)=-0.85; p<0.01, n=6). Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Mucosal and Systemic Immune Responses to Influenza H7N9 Antigen HA1-2 Co-Delivered Intranasally with Flagellin or Polyethyleneimine in Mice and Chickens.

    PubMed

    Song, Li; Xiong, Dan; Song, Hongqin; Wu, Lili; Zhang, Meihua; Kang, Xilong; Pan, Zhiming; Jiao, Xinan

    2017-01-01

    Consecutive cases of human infection with H7N9 influenza viruses since 2013 in China have prompted efforts to develop an effective treatment. Subunit vaccines introduced by intranasal administration can block an infection at its primary site; flagellin (fliC) and polyethyleneimine (PEI) have been shown to be potent adjuvants. We previously generated the hemagglutinin (HA)1-2-fliC fusion protein consisting of the globular head domain (HA1-2; amino acids 62-284) of HA fused with Salmonella typhimurium fliC. In the present study, we investigated its effectiveness of both flagellin and PEI as mucosal adjuvants for the H7N9 influenza subunit vaccine. Mice immunized intranasally with HA1-2-fliC and HA1-2-PEI showed higher HA1-2-specific immunoglobulin (Ig)G and IgA titers in serum, nasal wash, and bronchial alveolar lavage fluid. Moreover, splenocyte activation and proliferation and the number of HA1-2-specific interferon (IFN)-γ- and interleukin (IL)-4-producing splenocytes were markedly increased in the fliC and PEI groups; in the latter, there were more cells secreting IL-4 than IFN-γ, suggesting that fliC induced T helper type (Th)1 and Th2 immune responses, and PEI induced Th2-biased responses, consistent with the serum antibody isotype pattern (IgG1/IgG2a ratio). Furthermore, virus challenge was performed in a chicken model. The results showed that chickens receiving fliC and PEI adjuvant vaccine exhibited robust immune responses leading to a significant reduction in viral loads of throat and cloaca compared to chickens receiving only HA1-2. These findings provide a basis for the development of H7N9 influenza HA1-2 mucosal subunit vaccines.

  8. Assigning the stereochemistry of syn and anti β-trimethylsiloxy-α-trimethylsilyl alkanoic acid silyl esters using GIAO 1H NMR chemical shift calculations

    NASA Astrophysics Data System (ADS)

    Hadj Mohamed, Slim; Trabelsi, Mahmoud; Champagne, Benoît

    2017-08-01

    The stereostructure of β-trimethylsiloxy-α-trimethylsilyl alkanoic acid silyl esters synthesized by Bellassoued et al. [J. Org. Chem. 2001, 66, 5054-5057] using Mukaiyama aldol reaction has been reassigned using density functional theory NMR 1H chemical shifts calculations. It is now concluded that the major diastereoisomer is syn and the minor is anti. Within this assignment, for all silyl esters, δHa(anti) > δHa(syn), δHb(anti) < δHb(syn), and 3JHa-Hb (anti) > 3JHa-Hb (syn). Since the experimental assignment was based on the stereostructure (E/Z) of the cinnamic acid obtained by elimination of trimethylsilyl 3-phenyl-3-(trimethylsiloxy)-2-(trimethylsilyl)propanoate in the presence of TiCl4 and on the assumption that this elimination is anti stereospecific in acidic medium, one arrives at the conclusion that the elimination of syn and anti β-trimethylsiloxy-α-trimethylsilyl alkanoic acid silyl esters is not anti stereospecific.

  9. Human acid sphingomyelinase.

    PubMed

    Lansmann, Stephanie; Schuette, Christina G; Bartelsen, Oliver; Hoernschemeyer, Joerg; Linke, Thomas; Weisgerber, Judith; Sandhoff, Konrad

    2003-03-01

    Human acid sphingomyelinase (haSMase, EC 3.1.4.12) catalyzes the lysosomal degradation of sphingomyelin to ceramide and phosphorylcholine. An inherited haSMase deficiency leads to Niemann-Pick disease, a severe sphingolipid storage disorder. The enzyme was purified and cloned over 10 years ago. Since then, only a few structural properties of haSMase have been elucidated. For understanding of its complex functions including its role in certain signaling and apoptosis events, complete structural information about the enzyme is necessary. Here, the identification of the disulfide bond pattern of haSMase is reported for the first time. Functional recombinant enzyme expressed in SF21 cells using the baculovirus expression system was purified and digested by trypsin. MALDI-MS analysis of the resulting peptides revealed the four disulfide bonds Cys120-Cys131, Cys385-Cys431, Cys584-Cys588 and Cys594-Cys607. Two additional disulfide bonds (Cys221-Cys226 and Cys227-Cys250) which were not directly accessible by tryptic cleavage, were identified by a combination of a method of partial reduction and MALDI-PSD analysis. In the sphingolipid activator protein (SAP)-homologous N-terminal domain of haSMase, one disulfide bond was assigned as Cys120-Cys131. The existence of two additional disulfide bridges in this region was proved, as was expected for the known disulfide bond pattern of SAP-type domains. These results support the hypothesis that haSMase possesses an intramolecular SAP-type activator domain as predicted by sequence comparison [Ponting, C.P. (1994) Protein Sci., 3, 359-361]. An additional analysis of haSMase isolated from human placenta shows that the recombinant and the native human protein possess an identical disulfide structure.

  10. Bioadhesive chitosan-coated cyclodextrin-based superamolecular nanomicelles to enhance the oral bioavailability of doxorubicin

    NASA Astrophysics Data System (ADS)

    Liu, Yuhai; Zhai, Yinglei; Han, Xiaopeng; Liu, Xiaohong; Liu, Wanjun; Wu, Chunnuan; Li, Lin; Du, Yuqian; Lian, He; Wang, Yongjun; He, Zhonggui; Sun, Jin

    2014-10-01

    In order to improve the oral bioavailability of doxorubicin (Dox), a novel bioadhesive nanomicelle based on host-guest interaction was developed in this study. Hyaluronic acid-linked β-cyclodextrin (HA-CD) was synthesized. The primary nanomicelles were formed through the self-assemble of HA-CD and retinoic acid (RA) which was included as the hydrophobic core to anchor CD cavity by host-guest interaction. Chitosan (CS) was then coated on the surface of primary nanomicelles by ionic interaction with the negatively charged HA. The critical micellar concentration of HA-CD-RA was as low as 22.5 μg/mL. Dox was successfully encapsulated into the hydrophobic core of CS-coated HA-CD-RA nanomicelles (CS/HA-CD-RA-Dox), with encapsulation efficiency as high as 89.2 %. The CS/HA-CD-RA-Dox particle size was 234 nm and was stable over 30 days. In vitro Dox release showed that CS/HA-CD-RA nanomicelles were more sustained than HA-CD-RA nanomicelles, and Dox encapsulated into CS-coated nanomicelles was stable at low pH. The in situ single pass intestinal perfusion revealed that encapsulation of Dox into CS/HA-CD-RA nanomicelles could significantly improve the intestinal permeability of Dox. The mucoadhesion results indicated that the retention percentage of CS/HA-CD-RA nanomicelles was significantly higher than that of HA-CD-RA nanomicelles in gastrointestinal tract. In vivo pharmacokinetic study revealed that AUC(0-∞) of CS/HA-CD-RA nanomicelles was about fourfold higher than that of Dox solution. The present study suggested that CS/HA-CD-RA nanomicelles as biodegradable, biocompatible, and bioadhesive nanostructure can be a promising nanocarrier in improving the bioavailability of anticancer drugs to facilitate the oral chemotherapy.

  11. Structural and rheological characterization of hyaluronic acid-based scaffolds for adipose tissue engineering.

    PubMed

    Borzacchiello, Assunta; Mayol, Laura; Ramires, Piera A; Pastorello, Andrea; Di Bartolo, Chiara; Ambrosio, Luigi; Milella, Evelina

    2007-10-01

    In this study the attention has been focused on the ester derivative of hyaluronic acid (HA), HYAFF11, as a potential three-dimensional scaffold in adipose tissue engineering. Different HYAFF11 sponges having different pore sizes, coated or not coated with HA, have been studied from a rheological and morphological point of view in order to correlate their structure to the macroscopic and degradation properties both in vitro and in vivo, using rat model. The in vitro results indicate that the HYAFF11 sponges possess proper structural and mechanical properties to be used as scaffolds for adipose tissue engineering and, among all the analysed samples, uncoated HYAFF11 large-pore sponges showed a longer lasting mechanical stability. From the in vivo results, it was observed that the elastic modulus of scaffolds seeded with preadipocytes, the biohybrid constructs, and explanted after 3 months of implantation in autologous rat model are over one order of magnitude higher than the corresponding values for the native tissue. These results could suggest that the implanted scaffolds can be invaded and populated by different cells, not only adipocytes, that can produce new matrix having different properties from that of adipose tissue.

  12. Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb.

    PubMed

    de Oliveira, Sabrina Alves; da Silva, Bruno Campos; Riegel-Vidotti, Izabel Cristina; Urbano, Alexandre; de Sousa Faria-Tischer, Paula Cristina; Tischer, Cesar Augusto

    2017-04-01

    The bacterial cellulose (BC), from Gluconacetobacter hansenii, is a biofilm with a high degree of crystallinity that can be used for therapeutic purposes and as a candidate for healing wounds. Hyaluronic acid (HA) is a constitutive polysaccharide found in the extracellular matrix and is a material used in tissue engineering and scaffolding for tissue regeneration. In this study, polymeric composites were produced in presence of hyaluronic acid isolated from chicken comb on different days of fermentation, specifically on the first (BCHA-SABT0) and third day (BCHA-SABT3) of fermentation. The structural characteristics, thermal stability and molar mass of hyaluronic acid from chicken comb were evaluated. Native membrane and polymeric composites were characterized with respect to their morphology and crystallinity. The optimized process of extraction and purification of hyaluronic acid resulted in low molar mass hyaluronic acid with structural characteristics similar to the standard commercial hyaluronic acid. The results demonstrate that the polymeric composites (BC/HA-SAB) can be produced in situ. The membranes produced on the third day presented better incorporation of HA-SAB between cellulose microfiber, resulting in membranes with higher thermal stability, higher roughness and lower crystallinity. The biocompatiblily of bacterial cellulose and the importance of hyaluronic acid as a component of extracellular matrix qualify the polymeric composites as promising biomaterials for tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Re-establishment of the IMS Hydroacoustic Station HA03, Robinson Crusoe Island, Chile

    NASA Astrophysics Data System (ADS)

    Haralabus, Georgios; Stanley, Jerry; Zampolli, Mario; Pautet, Lucie

    2015-04-01

    Water column hydrophone stations of the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) International Monitoring System (IMS) comprise typically two triplets of moored hydrophones deployed on both sides of an island. Triplet distances vary approximately between 50 - 200 km from the island, with each triplet connected to the receiving shore equipment by fibre-optic submarine data cables. Once deployed, the systems relay underwater acoustic waveforms in the band 1 - 100 Hz in real time to Vienna via a shore based satellite link. The design life of hydroacoustic (HA) stations is at least 20 years, without need for any maintenance of the underwater system (UWS). The re-establishment of hydrophone station HA03 at Robinson Crusoe Island (670 km West of the Chilean mainland) is presented here. The station was destroyed in February 2010 by a Tsunami induced by an 8.8 magnitude earthquake. After a major engineering and logistical undertaking HA03 is now back in operation since April 2014. The main phases of the project are presented: (i) the installation of a shore facility for the reception of the hydrophone data from the UWS, which also relays the data back to the CTBTO International Data Center (IDC) in Vienna via a real-time satellite connection, (ii) the manufacturing and testing of the system to meet the stringent requirements of the Nuclear-Test-Ban Treaty, and (iii) the installation of the UWS with a state-of-the-art cable ship. Examples of data acquired by HA03 are also presented. These include hydroacoustic signals from the 1 April 2014 magnitude 8.2 earthquake in Northern Chile, bursting underwater bubbles from a submarine volcano near the Mariana Islands (15,000 Km away from the station), and vocalizations from the numerous marine mammals which transit in the vicinity of HA03. The use of CTBTO data for scientific purposes is possible via the virtual Data Exploitation Centre (vDEC), which is a platform that enables registered researchers to access

  14. Highly efficient production of hyaluronic acid by Streptococcus zooepidemicus R42 derived from heterologous expression of bacterial haemoglobin and mutant selection.

    PubMed

    Lu, J F; Zhu, Y; Sun, H L; Liang, S; Leng, F F; Li, H Y

    2016-04-01

    During Streptococcus zooepidemicus fermentation, most carbon sources are used to synthesize lactic acid, which can inhibit strain growth and hyaluronic acid production. Here, we expressed bacterial haemoglobin (Vhb) in Strep. zooepidemicus. Due to highly efficient oxygen use, only 15·26 g l(-1) lactic acid was produced, which is 0·73 times the quantity produced by the control strain. Compared with the control strain (1·61 g l(-1) ), hyaluronic acid (HA) production in this strain did not substantially increase, only to 2·16 g l(-1) . Next, we used a series of N-methyl-N'-nitro-N-nitroso-guanidine (NTG) treatments and selection programmes. Finally, we generated a hyaluronidase-negative and rifampin-resistant mutant strain that produces high levels of HA. The optimum carbon concentration for maximum hyaluronic acid production is only 30 g l(-1) of sucrose, which is lower than the control strain (60 g l(-1) ). The oxygen transfer rate coefficient KL a increased significantly to 372 ± 53 h(-1) from 18 ± 4 h(-1) of the control. The optimum carbon source for this strain is 21 g l(-1) of sucrose, 9 g l(-1) of maltose and 5 g l(-1) of glutamic acid. Hyaluronic acid accumulated at 6·7 g l(-1) in the culture broth. However, the molecular weight of HA decreased from 1835 KDa (Control) to 429 kDa. The prepared low-molecular weight HA could function as potential antiangiogenic substances, antiviral and antitumour agents to possibly be used as functional food ingredients. Hyaluronic acid (HA) has been used for a wide range of applications in health, cosmetic and clinical fields. During fermentation of Streptococcus to produce HA, 80-85% of the carbon source is used to produce lactic acid and acetic acid, and only approx. 5 and 10% of the carbon source is used to produce HA and biomass respectively. Here, we expressed bacteria haemoglobin (Vhb) in Streptococcus zooepidemicus, which can dramatically inhibit lactic acid production. After NTG

  15. Adsorption of hyaluronic acid on solid supports: role of pH and surface chemistry in thin film self-assembly.

    PubMed

    Choi, Jae-Hyeok; Kim, Seong-Oh; Linardy, Eric; Dreaden, Erik C; Zhdanov, Vladimir P; Hammond, Paula T; Cho, Nam-Joon

    2015-06-15

    Owing to its biocompatibility, resistance to biofouling, and desirable physicochemical and biological properties, hyaluronic acid (HA) has been widely used to modify the surface of various materials. The role of various physicochemical factors in HA adsorption remains, however, to be clarified. Herein, we employed quartz crystal microbalance with dissipation (QCM-D) in order to investigate HA adsorption at different pH conditions onto three substrates-silicon oxide, amine-terminated self-assembled monolayer (SAM) on gold, and carboxylic acid-terminated SAM on gold. The QCM-D experiments indicated specific pH conditions where either strong or weak HA adsorption occurs. The morphology of the adsorbed HA layers was investigated by atomic force microscopy (AFM), and we identified that strong HA adsorption produced a complete, homogenous and smooth HA layer, while weak HA adsorption resulted in rough and inhomogeneous HA layers. The observed specifics of the kinetics of HA adsorption, including a short initial linear phase and subsequent long non-linear phase, were described by using a mean-field kinetic model taking HA diffusion limitations and reconfiguration in the adsorbed state into account. The findings extend the physicochemical background of design strategies for improving the use of passive HA adsorption for surface modification applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The role of beta-ketoacyl-acyl carrier protein synthase III in the condensation steps of fatty acid biosynthesis in sunflower.

    PubMed

    González-Mellado, Damián; von Wettstein-Knowles, Penny; Garcés, Rafael; Martínez-Force, Enrique

    2010-05-01

    The beta-ketoacyl-acyl carrier protein synthase III (KAS III; EC 2.3.1.180) is a condensing enzyme catalyzing the initial step of fatty acid biosynthesis using acetyl-CoA as primer. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus L.) developing seeds, a cDNA coding for HaKAS III (EF514400) was isolated, cloned and sequenced. Its protein sequence is as much as 72% identical to other KAS III-like ones such as those from Perilla frutescens, Jatropha curcas, Ricinus communis or Cuphea hookeriana. Phylogenetic study of the HaKAS III homologous proteins infers its origin from cyanobacterial ancestors. A genomic DNA gel blot analysis revealed that HaKAS III is a single copy gene. Expression levels of this gene, examined by Q-PCR, revealed higher levels in developing seeds storing oil than in leaves, stems, roots or seedling cotyledons. Heterologous expression of HaKAS III in Escherichia coli altered their fatty acid content and composition implying an interaction of HaKAS III with the bacterial FAS complex. Testing purified HaKAS III recombinant protein by adding to a reconstituted E. coli FAS system lacking condensation activity revealed a novel substrate specificity. In contrast to all hitherto characterized plant KAS IIIs, the activities of which are limited to the first cycles of intraplastidial fatty acid biosynthesis yielding C6 chains, HaKAS III participates in at least four cycles resulting in C10 chains.

  17. Simultaneous biodegradation of phenol and carbon tetrachloride mediated by humic acids.

    PubMed

    Martínez, Claudia M; Alvarez, Luis H; Cervantes, Francisco J

    2012-09-01

    The capacity of an anaerobic sediment to achieve the simultaneous biodegradation of phenol and carbon tetrachloride (CT) was evaluated, using humic acids (HA) as redox mediator. The presence of HA in sediment incubations increased the rate of biodegradation of phenol and the rate of dehalogenation (2.5-fold) of CT compared to controls lacking HA. Further experiments revealed that the electron-accepting capacity of HA derived from different organic-rich environments was not associated with their reducing capacity to achieve CT dechlorination. The collected kinetic data suggest that the reduction of CT by reduced HA was the rate-limiting step during the simultaneous biodegradation of phenol and CT. To our knowledge, the present study constitutes the first demonstration of the simultaneous biodegradation of two priority pollutants mediated by HA.

  18. Preparation and characterization of NiW-nHA composite catalyst for hydrocracking

    NASA Astrophysics Data System (ADS)

    Zhou, Gang; Hou, Yongzhao; Liu, Lei; Liu, Hongru; Liu, Can; Liu, Jing; Qiao, Huiting; Liu, Wenyong; Fan, Yubo; Shen, Shituan; Rong, Long

    2012-11-01

    The synthesis, characterization and catalytic capability of the NiW-nano-hydroxyapatite (NiW-nHA) composite were investigated in this paper. The NiW-nHA catalyst was prepared by a co-precipitation method. Then Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDX) were used to analyze this material. In addition, the catalytic capacity of the NiW-nHA composite was also examined by FT-IR and gas chromatography (GC). The results of FT-IR analysis indicated that Ni, W and nHA combined closely. TEM observation revealed that this catalyst was needle shaped and the crystal retained a nanometer size. XRD data also suggested that a new phase of CaWO4 appeared and the lattice parameters of nHA changed in this system. nHA was the carrier of metals. The rates of Ni/W-loading were 73.24% and 65.99% according to the EDX data, respectively. Furthermore, the conversion of 91.88% Jatropha oil was achieved at 360 °C and 3 MPa h-1 over NiW-nHA catalyst. The straight chain alkanes ranging from C15 to C18 were the main components in the production. The yield of C15-C18 alkanes was up to 83.56 wt%. The reaction pathway involved hydrocracking of the C&z.dbd;C bonds of these triglycerides from Jatropha oil. This paper developed a novel non-sulfided catalyst to obtain a ``green biofuel'' from vegetable oil.

  19. Effects of hyaluronic acid on bleeding following third molar extraction.

    PubMed

    Gocmen, Gokhan; Aktop, Sertac; Tüzüner, Burcin; Goker, Bahar; Yarat, Aysen

    2017-01-01

    To explore the effects of hyaluronic acid (HA) on bleeding and associated outcomes after third molar extraction. Forty patients who had undergone molar extraction were randomly divided into two groups; 0.8% (w/v) HA was applied to the HA group (n=20) whereas a control group (n=20) was not treated. Salivary and gingival tissue factor (TF) levels, bleeding time, maximum interincisal opening (MIO), pain scored on a visual analog scale (VAS), and the swelling extent were compared between the two groups. HA did not significantly affect gingival TF levels. Salivary TF levels increased significantly 1 week after HA application but not in the control group. Neither the VAS pain level nor MIO differed significantly between the two groups. The swelling extent on day 3 and the bleeding time were greater in the HA group than in the control group. Local injection of HA at 0.8% prolonged the bleeding time, and increased hemorrhage and swelling in the early postoperative period after third molar extractions.

  20. Efficacy of hyaluronic acid and hydroxyethyl starch in preventing adhesion following endoscopic sinus surgery.

    PubMed

    Kim, Su-Jong; Shin, Jae-Min; Lee, Eun Jung; Park, Il-Ho; Lee, Heung-Man; Kim, Kyung-Su

    2017-10-01

    Adhesion is a major complication of endoscopic sinus surgery that may lead to recurrence of chronic rhinosinusitis, necessitating revision surgery. The purpose of this study was to evaluate the effect of hyaluronic acid and hydroxyethyl starch (HA-HES) relative to hyaluronic acid and carboxymethylcellulose (HA-CMC) with regard to anti-adhesion effect. In this multi-center, prospective, single-blind, randomized controlled study, 77 consecutive patients who underwent bilateral endoscopic sinus surgery were enrolled between March 2014 and March 2015. HA-HES and HA-CMC were applied to randomly assigned ethmoidectomized cavities after the removal of middle meatal packing. At the 1st, 2nd and 4th weeks after surgery, the presence and grades of adhesion, edema, and infection were, respectively, examined via endoscopy by a blinded assessor. The incidence and grades of adhesion at the 2-week follow-up were significantly less in the HA-CMC group than in the HA-HES group (p < 0.05). However, with the exception of week 2, there were no significant differences in the incidence or grades of adhesion, edema, and infection between the two groups. When the primary endpoint-the presence of adhesion at the 4-week follow-up-was compared between two groups, the incidence of adhesion in HA-HES group at the 4-week follow-up was 32% and in HA-CMC was 41.3%, indicating that HA-HES was not inferior to HA-CMC in terms of anti-adhesive effect. No severe adverse reactions were noted during the study period. In conclusion, HA-HES is a safe substitutional anti-adhesion agent that has equivalent effect as HA-CMC after endoscopic sinus surgery.

  1. Improving the degradation behavior and in vitro biological property of nano-hydroxyapatite surface- grafted with the assist of citric acid.

    PubMed

    Jiang, Liuyun; Jiang, Lixin; Xiong, Chengdong; Su, Shengpei

    2016-10-01

    To obtain ideal nano-hydroxyapatite(n-HA) filler for poly(lactide-co-glycolide) (PLGA), a new surface-grafting with the assist of citric acid for nano-hydroxyapatite (n-HA) was designed, and the effect of n-HA surface-grafted with or without citric acid on in vitro degradation behavior and cells viability was studied by the experiments of soaking in simulated body fluid (SBF) and incubating with human osteoblast-like cells (MG-63). The change of pH value, tensile strength reduction, the surface deposits, cells attachment and proliferation of samples during the soaking and incubation were investigated by means of pH meter, electromechanical universal tester, scanning electron microscope (SEM) coupled with energy-dispersive spectro-scopy (EDS), fluorescence microscope and MTT method. The results showed that the introduction of citric acid not only delayed the strength reduction during the degradation by inhibiting the detachment of n-HA from PLGA, but also endowed it better cell attachment and proliferation, suggesting that the n-HA surface-grafted with the assist of citric acid was an important bioactive ceramic fillers for PLGA used as bone materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Fabrication and characterization of plasma-sprayed HA/SiO(2) coatings for biomedical application.

    PubMed

    Morks, M F

    2008-01-01

    Fused silica powder has been mixed with hydroxyapatite (HA) powder and plasma sprayed by using gas tunnel-type plasma jet. The influence of silica content (10 wt% and 20 wt%) on the microstructure and mechanical properties of HA-silica coatings was investigated. For investigating the microstructure and mechanical properties of HA-silica coatings, SUS 304 stainless steel was used as substrate material. The spraying was carried out on roughened substrate in an atmospheric chamber. Scanning electron microscope micrographs of cross-sectioned HA/SiO(2) coatings showed that the sprayed HA coatings with 10 and 20 wt% SiO(2) have dense structure with low porosity compared to the pure HA coatings. On the other hand, as the amount of silica was increased the coatings became denser, harder and exhibited high abrasive wear resistance. The presence of silica significantly improved the adhesive strength of HA/SiO(2) coatings mainly due to the increase in bonding strength of the coating at the interface.

  3. Hungarian tick-borne encephalitis viruses isolated from a 0.5-ha focus are closely related to Finnish strains.

    PubMed

    Egyed, László; Rónai, Zsuzsanna; Dán, Ádám

    2018-04-07

    Four tick-borne encephalitis virus strains were isolated from a small 0.5-ha focus over a six-year-long period (2011-2016) in Hungary. Two strains with identical genomes were isolated from Ixodes ricinus and Haemaphysalis concinna two months apart, which shows that the virus had not evolved separately in these tick species. Whole-genome sequencing of the virus revealed that the isolates differed from each other in 4 amino acids and 9 nucleotides. The calculated substitution rates indicated that the speed of genome evolution differs from habitat to habitat, and continuously changes even within the same focus. The amino acid changes affected the capsid, envelope, NS2a and NS5 genes, and one mutation each occurred in the 5' and 3' NCR as well as the premembrane, NS2a and NS5 genes. Phylogenetic analyses based on complete coding ORF sequences showed that the isolates belong to the European subtype of the virus and are closely related to the Finnish Kumlinge strains, the Bavarian isolate Leila and two isolates of Russian origin, but more distantly related to viruses from the neighbouring Central European countries. These isolates obviously have a common origin and are probably connected by migrating birds. These are the first published complete Hungarian TBEV sequences. Copyright © 2018. Published by Elsevier GmbH.

  4. What is the Ultimate Goal in Acid-Base Regulation?

    ERIC Educational Resources Information Center

    Balakrishnan, Selvakumar; Gopalakrishnan, Maya; Alagesan, Murali; Prakash, E. Sankaranarayanan

    2007-01-01

    It is common to see chapters on acid-base physiology state that the goal of acid-base regulatory mechanisms is to maintain the pH of arterial plasma and not arterial PCO [subscript 2] (Pa[subscript CO[subscript 2

  5. Microbial production of hyaluronic acid from agricultural resource derivatives.

    PubMed

    Pires, Aline M B; Macedo, André C; Eguchi, Silvia Y; Santana, Maria H A

    2010-08-01

    Agricultural resource derivatives (ARDs) such as hydrolysate soy protein concentrate (HSPC), whey protein concentrate (WPC), and cashew apple juice (CAJ) were studied with focus on the production of hyaluronic acid (HA) by Streptococcus zooepidemicus. Supplementation of the media with corn steep liquor (CSL) was also evaluated. Synthetic medium containing glucose and yeast extract was used as control. CAJ was a promising medium for the production of HA. It produced the highest amount of HA (0.89 g L(-1)), similar to that of the control (0.86 g L(-1)). WPC and HSPC media were the most effective for the production of biomass. CSL did not influence the production of HA when HSPC and WPC were used. However, in the synthetic medium it doubled the yield of HA from glucose. The average molecular weight of HA ranged from 10(3) to 10(4)Da for the ARDs and 10(7)Da for the synthetic medium. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Synthesis and characterization of a novel hyaluronic acid hydrogel.

    PubMed

    Zhao, X

    2006-01-01

    Hyaluronic acid (hyaluronan, HA) has many medical applications as a biomaterial. To enhance its biostability, a novel hydrogel of cross-linked hyaluronic acid was prepared using a double cross-linking process, which involves building cross-linkages between hydroxyl group pairs and carboxyl group pairs. The present study explored a number of cross-linking processes in order to obtain different degrees of cross-linking, which were evaluated by the measurement of water absorption capacity as an index of the gel network density. To gain a better understanding of the stability of the gel, the chemical structure and particularly the rheological behaviour of the cross-linked HA, which included the influences of factors, such as degree of cross-linking, HA concentration and gel particle size, were investigated. The in vitro biostability against hyaluronidase and free radical degradation was tested to show that the cross-linked hydrogel had improved resistance to in vitro hyaluronidase and free radical degradation.

  7. Varying Conditions for Hexanoic Acid Degradation with BioTiger™

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foreman, Koji; Milliken, Charles; Brigmon, Robin

    BioTiger™ (BT) is a consortium of 12 bacteria designed for petroleum waste biodegradation. BT is currently being studied and could be considered for bioremediation of the Athabasca oil sands refineries in Canada and elsewhere. The run-off ponds from the petroleum extraction processes, called tailings ponds, are a mixture of polycyclic aromatic hydrocarbons, naphthenic acids, hydrocarbons, toxic chemicals like heavy metals, water, and sand. Due to environmental regulations the oil industry would like to separate and degrade the hazardous chemical species from the tailings ponds while recycling the water. It has been shown that BT at 30 C° is able tomore » completely degrade 10 mM hexanoic acid (HA) co-metabolically with 0.2% yeast extract (w/v) in 48 hours when starting at 0.4 OD 600nm. After establishing this stable degradation capability, variations were tested to explore the wider parameters of BT activity in temperature, pH, intermediate degradation, co-metabolic dependence, and transfer stability. Due to the vast differences in temperature at various points in the refineries, a wide range of temperatures were assessed. The results indicate that BT retains the ability to degrade HA, a model surrogate for tailings pond contaminants, at temperatures ranging from 15°C to 35°C. Hexanamide (HAM) was shown to be an intermediate generated during the degradation of HA in an earlier work and HAM is completely degraded after 48 hours, indicating that HAM is not the final product of HA degradation. Various replacements for yeast extract were attempted. Glucose, a carbon source; casein amino acids, a protein source; additional ammonia, mimicking known media; and additional phosphate with Wolffe’s vitamins and minerals all showed no significant degradation of HA compared to control. Decreasing the yeast extract concentration (0.05%) demonstrated limited but significant degradation. Finally, serial inoculations of BT were performed to determine the stability of

  8. Fabrication of Biopolymer Nanofibers of Hyaluronic Acid via Electrospinning

    NASA Astrophysics Data System (ADS)

    Young, Denice; Queen, Hailey; Krause, Wendy

    2006-03-01

    Electrospinning is a novel technology that uses an electric field to form fibrous materials from a polymer solution. Unlike traditional spinning techniques, electrospinning can produce fibers on the order of 100 nm that can be utilized in applications where nanoscale fibers are necessary for successful implementation, including tissue engineering. Hyaluronic acid (HA) is a widely used biopolymer found in the extracellular matrix and currently marketed in medical applications for joint lubrications and tissue engineering. The high viscosity and surface tension of HA make it an unlikely candidate for electrospinning processes as viscosity is an important parameter in successful electrospinning. To promote HA fiber formation by electrospinning, the effects of salt (NaCl), which is used to reduce the viscosity of aqueous HA solutions; molecular weight of the HA; and an additional biocompatible polymer (e.g., PEO) are under investigation.

  9. Reactive Distillation for Esterification of Bio-based Organic Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scalemore » has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step

  10. Changes in redox properties of humic acids upon sorption to alumina

    NASA Astrophysics Data System (ADS)

    Subdiaga, Edisson; Orsetti, Silvia; Jindal, Sharmishta; Haderlein, Stefan B.

    2016-04-01

    1. Introduction A prominent role of Natural Organic Matter (NOM) in biogeochemical processes is its ability to act as an electron shuttle, accelerating rates between a bulk electron donor and an acceptor. The underlying processes are reversible redox reactions of quinone moieties.1 This shuttling effect has been studied in two major areas: transformation of redox active pollutants and microbial respiration.2-3 Previous studies primarily compared effects in the presence or absence of NOM without addressing the redox properties of NOM nor its speciation. The interaction between humic acids (HA) and minerals might change properties and reactivity of organic matter. Specifically, we investigate whether changes in the redox properties of a HA occur upon sorption to redox inactive minerals. Since fractionation and conformational rearrangements of NOM moieties upon sorption are likely to happen, the redox properties of the NOM fractions upon sorption might differ as well. 2. Materials and methods Elliot Soil Humic Acid (ESHA), Pahokee Peat Humic Acid (PPHA) and Suwannee River Humic Acid (SRHA) were used as received from IHSS. Aluminum oxide (Al2O3) was suspended in 0.1M KCl. Sorption was studied at pH 7.0 in duplicate batch experiments for several HA/Al2O3 ratios. For the suspension (mineral + sorbed HA, plus dissolved HA), the filtrate (0.45μm) and the HA stock solution, the electron donating and accepting capacities (EDC and EAC) were determined following established procedures.4 3. Results All studied HA-Al2O3 systems showed similar behavior with regard to changes in redox properties. There was a significant increase in the EDC of the whole suspension compared to the stock solutions and the non-sorbed HA in the filtrate (up to 300% for PPHA). This effect was more pronounced with increasing amounts of sorbed HA in the suspension. Although ESHA had the highest sorption capacity on Al2O3 (~ 6 times higher than PPHA & SRHA), it showed the smallest changes in redox

  11. Mesoporous silica nanoparticles functionalized with hyaluronic acid. Effect of the biopolymer chain length on cell internalization.

    PubMed

    Nairi, Valentina; Magnolia, Silvia; Piludu, Marco; Nieddu, Mariella; Caria, Cristian Antonio; Sogos, Valeria; Vallet-Regì, Maria; Monduzzi, Maura; Salis, Andrea

    2018-02-12

    Mesoporous silica nanoparticles (MSNs) were functionalized with amino groups (MSN-NH 2 ) and then with hyaluronic acid, a biocompatible biopolymer which can be recognized by CD44 receptors in tumor cells, to obtain a targeting drug delivery system. To this purpose, three hyaluronic acid samples differing for the molecular weight, namely HA S (8-15 kDa), HA M (30-50 kDa) and HA L (90-130 kDa), were used. The MSN-HA S , MSN-HA M , and MSN-HA L materials were characterized through zeta potential and dynamic light scattering measurements at pH = 7.4 and T = 37 °C to simulate physiological conditions. While zeta potential showed an increasing negative value with the increase of the HA chain length, an anomalous value of the hydrodynamic diameter was observed for MSN-HA L , which was smaller than that of MSN-HA S and MSN-HA M samples. The cellular uptake of MSN-HA samples on HeLa cells at 37 °C was studied by optical and electron microscopy. HA chain length affected significantly the cellular uptake that occurred at a higher extent for MSN-NH 2 and MSN-HA S than for MSN-HA M and MSN-HA L samples. Cellular uptake experiments carried out at 4 °C showed that the internalization process was inhibited for MSN-HA samples but not for MSN-NH 2 . This suggests the occurrence of two different mechanisms of internalization. For MSN-NH 2 the uptake is mainly driven by the attractive electrostatic interaction with membrane phospholipids, while MSN-HA internalization involves CD44 receptors overexpressed in HeLa cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin.

    PubMed

    Kong, Bong Ju; Kim, Ayoung; Park, Soo Nam

    2016-08-20

    In the present study, the properties of hydrogel systems based on hyaluronic acid (HA)-hydroxyethyl cellulose (HEC) were investigated for effective transdermal delivery of isoliquiritigenin (ILTG). Hydrogels were synthesized by chemical cross-linking, and network structures were characterised using scanning electron microscopy (SEM) and surface area analyser. Texture properties and swelling of HA-HEC hydrogels were found to be closely linked to cross-linker concentration and swelling medium. Water in HA-HEC hydrogels was found to exist mostly in the form of free water. The viscoelasticity and the network stabilization of the hydrogels were analysed via rheological studies. The release kinetics of the hydrogel followed Fickian diffusion mechanism. In an in vitro skin penetration study, the system substantially improved the delivery of ILTG into the skin. These results indicate that the hydrogel system composed of HA and HEC has potential as a transdermal delivery system, with cross-linking density and the swelling medium influencing the properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Primer development to obtain complete coding sequence of HA and NA genes of influenza A/H3N2 virus.

    PubMed

    Agustiningsih, Agustiningsih; Trimarsanto, Hidayat; Setiawaty, Vivi; Artika, I Made; Muljono, David Handojo

    2016-08-30

    Influenza is an acute respiratory illness and has become a serious public health problem worldwide. The need to study the HA and NA genes in influenza A virus is essential since these genes frequently undergo mutations. This study describes the development of primer sets for RT-PCR to obtain complete coding sequence of Hemagglutinin (HA) and Neuraminidase (NA) genes of influenza A/H3N2 virus from Indonesia. The primers were developed based on influenza A/H3N2 sequence worldwide from Global Initiative on Sharing All Influenza Data (GISAID) and further tested using Indonesian influenza A/H3N2 archived samples of influenza-like illness (ILI) surveillance from 2008 to 2009. An optimum RT-PCR condition was acquired for all HA and NA fragments designed to cover complete coding sequence of HA and NA genes. A total of 71 samples were successfully sequenced for complete coding sequence both of HA and NA genes out of 145 samples of influenza A/H3N2 tested. The developed primer sets were suitable for obtaining complete coding sequences of HA and NA genes of Indonesian samples from 2008 to 2009.

  14. Novel humic acid-bonded magnetite nanoparticles for protein immobilization.

    PubMed

    Bayrakci, Mevlut; Gezici, Orhan; Bas, Salih Zeki; Ozmen, Mustafa; Maltas, Esra

    2014-09-01

    The present paper is the first report that introduces (i) a useful methodology for chemical immobilization of humic acid (HA) to aminopropyltriethoxysilane-functionalized magnetite iron oxide nanoparticles (APS-MNPs) and (ii) human serum albumin (HSA) binding to the obtained material (HA-APS-MNPs). The newly prepared magnetite nanoparticle was characterized by using Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and elemental analysis. Results indicated that surface modification of the bare magnetite nanoparticles (MNPs) with aminopropyltriethoxysilane (APS) and HA was successfully performed. The protein binding studies that were evaluated in batch mode exhibited that HA-APS-MNPs could be efficiently used as a substrate for the binding of HSA from aqueous solutions. Usually, recovery values higher than 90% were found to be feasible by HA-APS-MNPs, while that value was around 2% and 70% in the cases of MNPs and APS-MNPs, respectively. Hence, the capacity of MNPs was found to be significantly improved by immobilization of HA. Furthermore, thermal degradation of HA-APS-MNPs and HSA bonded HA-APS-MNPs was evaluated in terms of the Horowitz-Metzger equation in order to determine kinetic parameters for thermal decomposition. Activation energies calculated for HA-APS-MNPs (20.74 kJmol(-1)) and HSA bonded HA-APS-MNPs (33.42 kJmol(-1)) implied chemical immobilization of HA to APS-MNPs, and tight interactions between HA and HA-APS-MNPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Correlation study between sperm concentration, hyaluronic acid-binding capacity and sperm aneuploidy in Hungarian patients.

    PubMed

    Mokánszki, Attila; Molnár, Zsuzsanna; Ujfalusi, Anikó; Balogh, Erzsébet; Bazsáné, Zsuzsa Kassai; Varga, Attila; Jakab, Attila; Oláh, Éva

    2012-12-01

    Infertile men with low sperm concentration and/or less motile spermatozoa have an increased risk of producing aneuploid spermatozoa. Selecting spermatozoa by hyaluronic acid (HA) binding may reduce genetic risks such as chromosomal rearrangements and numerical aberrations. Fluorescence in-situ hybridization (FISH) has been used to evaluate the presence of aneuploidies. This study examined spermatozoa of 10 oligozoospermic, 9 asthenozoospermic, 9 oligoasthenozoospermic and 17 normozoospermic men by HA binding and FISH. Mean percentage of HA-bound spermatozoa in the normozoospermic group was 81%, which was significantly higher than in the oligozoospermic (P<0.001), asthenozoospermic (P<0.001) and oligoasthenozoospermic (P<0.001) groups. Disomy of sex chromosomes (P=0.014) and chromosome 17 (P=0.0019), diploidy (P=0.03) and estimated numerical chromosome aberrations (P=0.004) were significantly higher in the oligoasthenozoospermic group compared with the other groups. There were statistically significant relationships (P<0.001) between sperm concentration and HA binding (r=0.658), between sperm concentration and estimated numerical chromosome aberrations (r=-0.668) and between HA binding and estimated numerical chromosome aberrations (r=-0.682). HA binding and aneuploidy studies of spermatozoa in individual cases allow prediction of reproductive prognosis and provision of appropriate genetic counselling. Infertile men with normal karyotypes and low sperm concentrations and/or less motile spermatozoa have significantly increased risks of producing aneuploid (diminished mature) spermatozoa. Selecting spermatozoa by hyaluronic acid (HA) binding, based on a binding between sperm receptors for zona pellucida and HA, may reduce the potential genetic risks such as chromosomal rearrangements and numerical aberrations. In the present study we examined sperm samples of 45 men with different sperm parameters by HA-binding assay and fluorescence in-situ hybridization (FISH). Mean

  16. Ligand Activation of Peroxisome Proliferator-Activated Receptor-β/δ Inhibits Cell Proliferation in Human HaCaT KeratinocytesS

    PubMed Central

    Borland, Michael G.; Foreman, Jennifer E.; Girroir, Elizabeth E.; Zolfaghari, Reza; Sharma, Arun K.; Amin, Shantu; Gonzalez, Frank J.; Ross, A. Catharine; Peters, Jeffrey M.

    2009-01-01

    Although there is strong evidence that ligand activation of peroxisome proliferator-activated receptor (PPAR)-β/δ induces terminal differentiation and attenuates cell growth, some studies suggest that PPARβ/δ actually enhances cell proliferation. For example, it was suggested recently that retinoic acid (RA) is a ligand for PPARβ/δ and potentiates cell proliferation by activating PPARβ/δ. The present study examined the effect of ligand activation of PPARβ/δ on cell proliferation, cell cycle kinetics, and target gene expression in human HaCaT keratinocytes using two highly specific PPARβ/δ ligands [4-[[[2-[3-fluoro-4-(trifluoromethyl)phenyl]-4-methyl-5-thiazolyl]methyl]thio]-2-methylphenoxy acetic acid (GW0742) and 2-methyl-4-((4-methyl-2-(4-trifluoromethylphenyl)-1,3-thiazol-5-yl)-methylsulfanyl)phenoxy-acetic acid (GW501516)] and RA. Both PPARβ/δ ligands and RA inhibited cell proliferation of HaCaT keratinocytes. GW0742 and GW501516 increased expression of known PPARβ/δ target genes, whereas RA did not; RA increased the expression of known retinoic acid receptor/retinoid X receptor target genes, whereas GW0742 did not affect these genes. GW0742, GW501516, and RA did not modulate the expression of 3-phosphoinositide-dependent protein kinase or alter protein kinase B phosphorylation. GW0742 and RA increased annexin V staining as quantitatively determined by flow cytometry. The effects of GW0742 and RA were also examined in wild-type and PPARβ/δ-null primary mouse keratinocytes to determine the specific role of PPARβ/δ in modulating cell growth. Although inhibition of keratinocyte proliferation by GW0742 was PPARβ/δ-dependent, inhibition of cell proliferation by RA occurred in both genotypes. Results from these studies demonstrate that ligand activation of PPARβ/δ inhibits keratinocyte proliferation through PPARβ/δ-dependent mechanisms. In contrast, the observed inhibition of cell proliferation in mouse and human keratinocytes by RA is

  17. High-resolution crystal structure of HA33 of botulinum neurotoxin type B progenitor toxin complex.

    PubMed

    Lee, Kwangkook; Lam, Kwok-Ho; Kruel, Anna Magdalena; Perry, Kay; Rummel, Andreas; Jin, Rongsheng

    2014-04-04

    Botulinum neurotoxins (BoNTs) are produced as progenitor toxin complexes (PTCs) by Clostridium botulinum. The PTCs are composed of BoNT and non-toxic neurotoxin-associated proteins (NAPs), which serve to protect and deliver BoNT through the gastrointestinal tract in food borne botulism. HA33 is a key NAP component that specifically recognizes host carbohydrates and helps enrich PTC on the intestinal lumen preceding its transport across the epithelial barriers. Here, we report the crystal structure of HA33 of type B PTC (HA33/B) in complex with lactose at 1.46Å resolution. The structural comparisons among HA33 of serotypes A-D reveal two different HA33-glycan interaction modes. The glycan-binding pockets on HA33/A and B are more suitable to recognize galactose-containing glycans in comparison to the equivalent sites on HA33/C and D. On the contrary, HA33/C and D could potentially recognize Neu5Ac as an independent receptor, whereas HA33/A and B do not. These findings indicate that the different oral toxicity and host susceptibility observed among different BoNT serotypes could be partly determined by the serotype-specific interaction between HA33 and host carbohydrate receptors. Furthermore, we have identified a key structural water molecule that mediates the HA33/B-lactose interactions. It provides the structural basis for development of new receptor-mimicking compounds, which have enhanced binding affinity with HA33 through their water-displacing moiety. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells.

    PubMed

    Veiseh, Mandana; Leith, Sean J; Tolg, Cornelia; Elhayek, Sallie S; Bahrami, S Bahram; Collis, Lisa; Hamilton, Sara; McCarthy, James B; Bissell, Mina J; Turley, Eva

    2015-01-01

    The interaction of hyaluronan (HA) with mesenchymal progenitor cells impacts trafficking and fate after tissue colonization during wound repair and these events contribute to diseases such as cancer. How this interaction occurs is poorly understood. Using 10T½ cells as a mesenchymal progenitor model and fluorescent (F-HA) or gold-labeled HA (G-HA) polymers, we studied the role of two HA receptors, RHAMM and CD44, in HA binding and uptake in non-adherent and adherent mesenchymal progenitor (10T½) cells to mimic aspects of cell trafficking and tissue colonization. We show that fluorescent labeled HA (F-HA) binding/uptake was high in non-adherent cells but dropped over time as cells became increasingly adherent. Non-adherent cells displayed both CD44 and RHAMM but only function-blocking anti-RHAMM and not anti-CD44 antibodies significantly reduced F-HA binding/uptake. Adherent cells, which also expressed CD44 and RHAMM, primarily utilized CD44 to bind to F-HA since anti-CD44 but not anti-RHAMM antibodies blocked F-HA uptake. RHAMM overexpression in adherent 10T½ cells led to increased F-HA uptake but this increased binding remained CD44 dependent. Further studies showed that RHAMM-transfection increased CD44 mRNA and protein expression while blocking RHAMM function reduced expression. Collectively, these results suggest that cellular microenvironments in which these receptors function as HA binding proteins differ significantly, and that RHAMM plays at least two roles in F-HA binding by acting as an HA receptor in non-attached cells and by regulating CD44 expression and display in attached cells. Our findings demonstrate adhesion-dependent mechanisms governing HA binding/ uptake that may impact development of new mesenchymal cell-based therapies.

  19. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells

    PubMed Central

    Veiseh, Mandana; Leith, Sean J.; Tolg, Cornelia; Elhayek, Sallie S.; Bahrami, S. Bahram; Collis, Lisa; Hamilton, Sara; McCarthy, James B.; Bissell, Mina J.; Turley, Eva

    2015-01-01

    The interaction of hyaluronan (HA) with mesenchymal progenitor cells impacts trafficking and fate after tissue colonization during wound repair and these events contribute to diseases such as cancer. How this interaction occurs is poorly understood. Using 10T½ cells as a mesenchymal progenitor model and fluorescent (F-HA) or gold-labeled HA (G-HA) polymers, we studied the role of two HA receptors, RHAMM and CD44, in HA binding and uptake in non-adherent and adherent mesenchymal progenitor (10T½) cells to mimic aspects of cell trafficking and tissue colonization. We show that fluorescent labeled HA (F-HA) binding/uptake was high in non-adherent cells but dropped over time as cells became increasingly adherent. Non-adherent cells displayed both CD44 and RHAMM but only function-blocking anti-RHAMM and not anti-CD44 antibodies significantly reduced F-HA binding/uptake. Adherent cells, which also expressed CD44 and RHAMM, primarily utilized CD44 to bind to F-HA since anti-CD44 but not anti-RHAMM antibodies blocked F-HA uptake. RHAMM overexpression in adherent 10T½ cells led to increased F-HA uptake but this increased binding remained CD44 dependent. Further studies showed that RHAMM-transfection increased CD44 mRNA and protein expression while blocking RHAMM function reduced expression. Collectively, these results suggest that cellular microenvironments in which these receptors function as HA binding proteins differ significantly, and that RHAMM plays at least two roles in F-HA binding by acting as an HA receptor in non-attached cells and by regulating CD44 expression and display in attached cells. Our findings demonstrate adhesion-dependent mechanisms governing HA binding/ uptake that may impact development of new mesenchymal cell-based therapies. PMID:26528478

  20. Pyrrole-hyaluronic acid conjugates for decreasing cell binding to metals and conducting polymers

    PubMed Central

    Lee, Jae Young; Schmidt, Christine E.

    2010-01-01

    Surface modification of electrically conductive biomaterials has been studied to improve biocompatibility for a number of applications, such as implantable sensors and microelectrode arrays. In this study, we electrochemically coated electrodes with biocompatible and non-cell adhesive hyaluronic acid (HA) to reduce cellular adhesion for potential use in neural prostheses. To this end, pyrrole-conjugated hyaluronic acid (PyHA) was synthesized and employed for electrochemical coating of platinum, indium-tin-oxide, and polystyrene sulfonate-doped polypyrrole electrodes. This PyHA conjugate consists of (1) a pyrrole moiety that allows the compound to be electrochemically deposited onto a conductive substrate and (2) non-adhesive HA to minimize cell adhesion and to potentially decrease inflammatory tissue responses. Our characterization results showed the presence of a hydrophilic p(PyHA) layer on the modified electrode, and impedance measurements revealed impedance that was statistically the same as the unmodified electrode. We found that the p(PyHA)-coated electrodes minimized adhesion and migration of fibroblasts and astrocytes for a minimum of up to 3 months. Also, the coating was stable in physiological solution for 3 months and also stable against enzymatic degradation by hyaluronidase. These studies suggest that this p(PyHA)-coating has the potential to be used to mask conducting electrodes from adverse glial responses that occur upon implantation. In addition, electrochemical coating with PyHA can be potentially extended for the surface modification of other metallic and conducting substances such as stents and biosensors. PMID:20558330

  1. Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy.

    PubMed

    Zhang, Min; Cai, Shu; Zhang, Feiyang; Xu, Guohua; Wang, Fengwu; Yu, Nian; Wu, Xiaodong

    2017-06-01

    In this work, a magnesium phytic acid/hydroxyapatite composite coating was successfully prepared on AZ31 magnesium alloy substrate by chemical conversion deposition technology with the aim of improving its corrosion resistance and bioactivity. The influence of hydroxyapatite (HA) content on the microstructure and corrosion resistance of the coatings was investigated. The results showed that with the increase of HA content in phytic acid solution, the cracks on the surface of the coatings gradually reduced, which subsequently improved the corrosion resistance of these coated magnesium alloy. Electrochemical measurements in simulated body fluid (SBF) revealed that the composite coating with 45 wt.% HA addition exhibited superior surface integrity and significantly improved corrosion resistance compared with the single phytic acid conversion coating. The results of the immersion test in SBF showed that the composite coating could provide more effective protection for magnesium alloy substrate than that of the single phytic acid coating and showed good bioactivity. Magnesium phytic acid/hydroxyapatite composite, with the desired bioactivity, can be synthesized through chemical conversion deposition technology as protective coatings for surface modification of the biodegradable magnesium alloy implants. The design idea of the new type of biomaterial is belong to the concept of "third generation biomaterial". Corrosion behavior and bioactivity of coated magnesium alloy are the key issues during implantation. In this study, preparation and corrosion behavior of magnesium phytic acid/hydroxyapatite composite coatings on magnesium alloy were studied. The basic findings and significance of this paper are as follows: 1. A novel environmentally friendly, homogenous and crack-free magnesium phytic acid/hydroxyapatite composite coating was fabricated on AZ31 magnesium alloy via chemical conversion deposition technology with the aim of enhancing its corrosion resistance and

  2. Paediatric acid-base disorders: A case-based review of procedures and pitfalls

    PubMed Central

    Carmody, J Bryan; Norwood, Victoria F

    2013-01-01

    Acid-base disorders occur frequently in paediatric patients. Despite the perception that their analysis is complex and difficult, a straightforward set of rules is sufficient to interpret even the most complex disorders – provided certain pitfalls are avoided. Using a case-based approach, the present article reviews the fundamental concepts of acid-base analysis and highlights common mistakes and oversights. Specific topics include the proper identification of the primary disorder; distinguishing compensatory changes from additional primary disorders; use of the albumin-corrected anion gap to generate a differential diagnosis for patients with metabolic acidosis; screening for mixed disorders with the delta-delta formula; recognizing the limits of compensation; use of the anion gap to identify ‘hidden’ acidosis; and the importance of using information from the history and physical examination to identify the specific cause of a patient’s acid-base disturbance. PMID:24381489

  3. Cell-Free HA-MA/PLGA Scaffolds with Radially Oriented Pores for In Situ Inductive Regeneration of Full Thickness Cartilage Defects.

    PubMed

    Dai, Yuankun; Gao, Zhenzhen; Ma, Lie; Wang, Dongan; Gao, Changyou

    2016-11-01

    A bioactive scaffold with desired microstructure is of great importance to induce infiltration of somatic and stem cells, and thereby to achieve the in situ inductive tissue regeneration. In this study, a scaffold with oriented pores in the radial direction is prepared by using methacrylated hyaluronic acid (HA-MA) via controlled directional cooling of a HA-MA solution, and followed with photo-crosslinking to stabilize the structure. Poly(lactide-co-glycolide) (PLGA) is further infiltrated to enhance the mechanical strength, resulting in a compressive modulus of 120 kPa. In vitro culture of bone marrow stem cells (BMSCs) reveals spontaneous cell aggregation inside this type of scaffold with a spherical morphology. In vivo transplantation of the cell-free scaffold in rabbit knees for 12 w regenerates simultaneously both cartilage and subchondral bone with a Wakitani score of 2.8. Moreover, the expression of inflammatory factor interleukin-1β (IL-1β) is down regulated, although tumor necrosis factor-α (TNF-α) is remarkably up regulated. With the anti-inflammatory, bioactive properties and good restoration of full thickness cartilage defect in vivo, the oriented macroporous HA-MA/PLGA hybrid scaffold has a great potential for the practical application in the in situ cartilage regeneration. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Prebiotic synthesis of carboxylic acids, amino acids and nucleic acid bases from formamide under photochemical conditions⋆

    NASA Astrophysics Data System (ADS)

    Botta, Lorenzo; Mattia Bizzarri, Bruno; Piccinino, Davide; Fornaro, Teresa; Robert Brucato, John; Saladino, Raffaele

    2017-07-01

    The photochemical transformation of formamide in the presence of a mixture of TiO2 and ZnO metal oxides as catalysts afforded a large panel of molecules of biological relevance, including carboxylic acids, amino acids and nucleic acid bases. The reaction was less effective when performed in the presence of only one mineral, highlighting the role of synergic effects between the photoactive catalysts. Taken together, these results suggest that the synthesis of chemical precursors for both the genetic and the metabolic apparatuses might have occurred in a simple environment, consisting of formamide, photoactive metal oxides and UV-radiation.

  5. Mucosal and Systemic Immune Responses to Influenza H7N9 Antigen HA1–2 Co-Delivered Intranasally with Flagellin or Polyethyleneimine in Mice and Chickens

    PubMed Central

    Song, Li; Xiong, Dan; Song, Hongqin; Wu, Lili; Zhang, Meihua; Kang, Xilong; Pan, Zhiming; Jiao, Xinan

    2017-01-01

    Consecutive cases of human infection with H7N9 influenza viruses since 2013 in China have prompted efforts to develop an effective treatment. Subunit vaccines introduced by intranasal administration can block an infection at its primary site; flagellin (fliC) and polyethyleneimine (PEI) have been shown to be potent adjuvants. We previously generated the hemagglutinin (HA)1–2-fliC fusion protein consisting of the globular head domain (HA1–2; amino acids 62–284) of HA fused with Salmonella typhimurium fliC. In the present study, we investigated its effectiveness of both flagellin and PEI as mucosal adjuvants for the H7N9 influenza subunit vaccine. Mice immunized intranasally with HA1–2-fliC and HA1–2-PEI showed higher HA1–2-specific immunoglobulin (Ig)G and IgA titers in serum, nasal wash, and bronchial alveolar lavage fluid. Moreover, splenocyte activation and proliferation and the number of HA1–2-specific interferon (IFN)-γ- and interleukin (IL)-4-producing splenocytes were markedly increased in the fliC and PEI groups; in the latter, there were more cells secreting IL-4 than IFN-γ, suggesting that fliC induced T helper type (Th)1 and Th2 immune responses, and PEI induced Th2-biased responses, consistent with the serum antibody isotype pattern (IgG1/IgG2a ratio). Furthermore, virus challenge was performed in a chicken model. The results showed that chickens receiving fliC and PEI adjuvant vaccine exhibited robust immune responses leading to a significant reduction in viral loads of throat and cloaca compared to chickens receiving only HA1–2. These findings provide a basis for the development of H7N9 influenza HA1–2 mucosal subunit vaccines. PMID:28424686

  6. The relationship between odd- and branched-chain fatty acids and microbial nucleic acid bases in rumen

    PubMed Central

    Liu, Keyuan; Hao, Xiaoyan; Li, Yang; Luo, Guobin; Zhang, Yonggen; Xin, Hangshu

    2017-01-01

    Objective This study aims to identify the relationship between odd- and branched-chain fatty acids (OBCFAs) and microbial nucleic acid bases in the rumen, and to establish a model to accurately predict microbial protein flow by using OBCFA. Methods To develop the regression equations, data on the rumen contents of individual cows were obtained from 2 feeding experiments. In the first experiment, 3 rumen-fistulated dry dairy cows arranged in a 3×3 Latin square were fed diets of differing forage to concentration ratios (F:C). The second experiment consisted of 9 lactating Holstein dairy cows of similar body weights at the same stage of pregnancy. For each lactation stage, 3 cows with similar milk production were selected. The rumen contents were sampled at 4 time points of every two hours after morning feeding 6 h, and then to analyse the concentrations of OBCFA and microbial nucleic acid bases in the rumen samples. Results The ruminal bacteria nucleic acid bases were significantly influenced by feeding diets of differing forge to concentration ratios and lactation stages of dairy cows (p<0.05). The concentrations of OBCFAs, especially odd-chain fatty acids and C15:0 isomers, strongly correlated with the microbial nucleic acid bases in the rumen (p<0.05). The equations of ruminal microbial nucleic acid bases established by ruminal OBCFAs contents showed a good predictive capacity, as indicated by reasonably low standard errors and high R-squared values. Conclusion This finding suggests that the rumen OBCFA composition could be used as an internal marker of rumen microbial matter. PMID:28728386

  7. The relationship between odd- and branched-chain fatty acids and microbial nucleic acid bases in rumen.

    PubMed

    Liu, Keyuan; Hao, Xiaoyan; Li, Yang; Luo, Guobin; Zhang, Yonggen; Xin, Hangshu

    2017-11-01

    This study aims to identify the relationship between odd- and branched-chain fatty acids (OBCFAs) and microbial nucleic acid bases in the rumen, and to establish a model to accurately predict microbial protein flow by using OBCFA. To develop the regression equations, data on the rumen contents of individual cows were obtained from 2 feeding experiments. In the first experiment, 3 rumen-fistulated dry dairy cows arranged in a 3×3 Latin square were fed diets of differing forage to concentration ratios (F:C). The second experiment consisted of 9 lactating Holstein dairy cows of similar body weights at the same stage of pregnancy. For each lactation stage, 3 cows with similar milk production were selected. The rumen contents were sampled at 4 time points of every two hours after morning feeding 6 h, and then to analyse the concentrations of OBCFA and microbial nucleic acid bases in the rumen samples. The ruminal bacteria nucleic acid bases were significantly influenced by feeding diets of differing forge to concentration ratios and lactation stages of dairy cows (p<0.05). The concentrations of OBCFAs, especially odd-chain fatty acids and C15:0 isomers, strongly correlated with the microbial nucleic acid bases in the rumen (p<0.05). The equations of ruminal microbial nucleic acid bases established by ruminal OBCFAs contents showed a good predictive capacity, as indicated by reasonably low standard errors and high R-squared values. This finding suggests that the rumen OBCFA composition could be used as an internal marker of rumen microbial matter.

  8. Reliability of confidence intervals calculated by bootstrap and classical methods using the FIA 1-ha plot design

    Treesearch

    H. T. Schreuder; M. S. Williams

    2000-01-01

    In simulation sampling from forest populations using sample sizes of 20, 40, and 60 plots respectively, confidence intervals based on the bootstrap (accelerated, percentile, and t-distribution based) were calculated and compared with those based on the classical t confidence intervals for mapped populations and subdomains within those populations. A 68.1 ha mapped...

  9. J-Plus: Measuring Ha Emission Line Flux In The Nearby Universe

    NASA Astrophysics Data System (ADS)

    Logroño-García, Rafael; Vilella-Rojo, Gonzalo; López-San Juan, Carlos; Varela, Jesús; Viironen, Kerttu

    2017-10-01

    In the present presentation we aim to validate the methodology designed to extract the Ha emission line flux from J-PLUS data, a twelve optical filter survey carried out with the 2 deg² field of view T80Cam camera, mounted at the JAST/T80 telescope in the OAJ, Teruel, Spain. We use the information of the twelve J-PLUS bands, including the J0660 narrow-band filter located at rest-frame Ha, over 42 deg² to extract de-reddened and [NII] decontaminated Ha emission line fluxes of 46 star-forming regions with previous SDSS and/or CALIFA spectroscopic information. The agreement of the J-PLUS photometric Ha flux and the spectroscopic one is remarkable, with a ratio R = 1,01 +/- 0,27. This demonstrates that we are able to recover reliable Ha fluxes from J-PLUS photometric data. With an expected final area of 8,500 deg2, the large J-PLUS footprint will permit the study of the spatially resolved star formation rate of thousands nearby galaxies at z 0,015, as well as the influence of the close environment. As an illustrative example, we looked to the close pair of interacting galaxies NGC3994 and NGC3995, finding an enhancement of the star formation rate not only in the central part of NGC3994 but also in outer parts of the disc.

  10. Use of Fenton reagent combined with humic acids for the removal of PFOA from contaminated water.

    PubMed

    Santos, Aurora; Rodríguez, Sergio; Pardo, Fernando; Romero, Arturo

    2016-09-01

    Perfluorinated compounds (PFCs) are receiving significant attention due to its global distribution, high persistence, and bioaccumulation properties. Among them, perfluorooctanoic acid (PFOA) is one of the most commonly found in the environment. The strong bond C-F in PFOA is extremely difficult to degrade, therefore advanced oxidation processes (AOPs) at room temperature and pressure are not able to oxidize them, as was noticed here using Fenton like reagent (FR) or persulfate (PS) at 25°C. On the contrary, by using persulfate activated by heat (100mM and T=70°C) a complete defluorination of PFOA 0.1mM was noticed after 18h, with a sequential degradation mechanism of losing one CF2 unit from PFOA and its intermediates (perfluoroheptanoic acid (PFHpA), perfluorohexanoic acid (PFHxA), perfluoropentanoic acid (PFPA) and perfluorobutanoic acid (PFBA)). Since this thermal treatment is not usually desirable from an economical point of view, alternative process has been tested. For this scope, a hybrid process is proposed in this work, by adding humic acid, HA, (600mgL(-1)) and FR, (165mM in H2O2 and 3mM in Fe(3+)) to the 0.1mM PFOA solution. It was found that the HA was oxidized by FR. PFOA was entrapped quantitatively and irreversibly during HA oxidation, resulting PFOA non-available to the aqueous phase. Oxidized HA with PFOA entrapped precipitates. Both, the leftover Fe(III) acting as a coagulant and neutral pH enhance the separation of this solid phase. The precipitation noticed by adding HA to the PFOA solution in absence of FR was negligible. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Cleavage site and Ectodomain of HA2 sub-unit sequence of three equine influenza virus isolated in Morocco

    PubMed Central

    2014-01-01

    Background The equine influenza (EI) is an infectious and contagious disease of the upper respiratory tract of horses. Two outbreaks were notified in Morocco during 1997 and 2004 respectively in Nador and Essaouira. The aims of the present study concern the amino acids sequences comparison with reference strain A/equine/Miami/1963(H3N8) of the HA2 subunit including the cleavage site of three equine influenza viruses (H3N8) isolated in Morocco: A/equine/Nador/1/1997(H3N8), A/equine/Essaouira/2/2004 (H3N8) and A/equine/Essaouira/3/2004 (H3N8). Results The obtained results demonstrated that the substitutions were located at Ectodomain (ED) and transmembrane domain (TD), and they have only one arginine in cleavage site (HA1-PEKQI-R329-GI-HA2). In the Ectodomain, the mutation N/154 2 /T deleted the NGT glycosylation site at position 154 for both strains A/equine/Essaouira/2/2004(H3N8) and A/equine/Essaouira/3/2004(H3N8). Except for mutation D/1602/Y of the A/equine/Nador/1/1997(H3N8) strain, the other mutations were involved in non conserved sites. While the transmembrane domain (TM) of the strain A/equine/Essaouira/3/2004(H3N8) exhibits a substitution at residue C/199 2 /F. For the A/equine/Nador/1/1997(H3N8) strain the HA2 shows a mutation at residue M/207 2 /L. Three Moroccan strains reveals a common substitution at the residue E/211 2 /Q located between transmembrane domain TM and the cytoplasmic domain (CD). Conclusion The given nature virulence of three Moroccan strains, the identified and reported mutations certainly played a permissive role of infection viral process. PMID:25016480

  12. [Procedural analysis of acid-base balance disorder: case serials in 4 patents].

    PubMed

    Ma, Chunyuan; Wang, Guijie

    2017-05-01

    To establish the standardization process of acid-base balance analysis, analyze cases of acid-base balance disorder with the aid of acid-base balance coordinate graph. The acid-base balance theory were reviewed systematically on recent research progress, and the important concepts, definitions, formulas, parameters, regularity and inference in the analysis of acid-base balance were studied. The analysis of acid-base balance disordered processes and steps were figured. The application of acid-base balance coordinate graph in the cases was introduced. The method of "four parameters-four steps" analysis was put forward to analyze the acid-base balance disorders completely. "Four parameters" included pH, arterial partial pressure of carbon dioxide (PaCO 2 ), HCO 3 - and anion gap (AG). "Four steps" were outlined by following aspects: (1) according to the pH, PaCO 2 and HCO 3 - , the primary or main types of acid-base balance disorder was determined; (2) primary or main types of acid-base disorder were used to choose the appropriate compensation formula and to determine the presence of double mixed acid-base balance disorder; (3) the primary acid-base balance disorders were divided into two parts: respiratory acidosis or respiratory alkalosis, at the same time, the potential HCO 3 - should be calculated, the measured HCO 3 - should be replaced with potential HCO 3 - , to determine whether there were three mixed acid-base disorders; (4) based on the above analysis the data judged as the simple AG increased-metabolic acidosis was needed to be further analyzed. The ratio of ΔAG↑/ΔHCO 3 - ↓ was also needed to be calculated, to determine whether there was normal AG metabolic acidosis or metabolic alkalosis. In the clinical practice, PaCO 2 (as the abscissa) and HCO 3 - (as the ordinate) were used to establish a rectangular coordinate system, through origin (0, 0) and coordinate point (40, 24) could be a straight line, and all points on the straight line pH were equal

  13. Bone remodelling around HA-coated acetabular cups

    PubMed Central

    Nielsen, P. T.; Søballe, K.

    2006-01-01

    This study was designed to investigate bone remodelling around the cup in cementless THA. Previous studies indicate an advantage of better sealing of the bone-prosthesis interface by HA/TCP coating of implants, inhibiting polyethylene-induced osteolysis. One hundred patients gave informed consent to participate in a controlled randomized study between porous coated Trilogy versus Trilogy Calcicoat (HA/TCP coated). The cup was inserted in press-fit fixation. The femoral component was a cementless porous coated titanium alloy stem (Bi-Metric), with a modular 28-mm CrCo head. The Harris Hip Score (HHS) and bone mineral density (BMD) determined by DEXA scanning were used to study the effect. Measurements revealed no difference between the two groups after 3 years either in the clinical outcome or in terms of periprosthetic bone density. Patients with a body mass index above normal regained more bone mineral than patients with normal weight. This finding supports the assumption that load is beneficial to bone remodelling. PMID:16761153

  14. In vitro and in vivo comparative study of the phototherapy anticancer activity of hyaluronic acid-modified single-walled carbon nanotubes, graphene oxide, and fullerene

    NASA Astrophysics Data System (ADS)

    Hou, Lin; Yuan, Yujie; Ren, Junxiao; Zhang, Yinling; Wang, Yongchao; Shan, Xiaoning; Liu, Qi; Zhang, Zhenzhong

    2017-08-01

    In this work, carbon nanomaterials, single-walled carbon nanotubes (SWNT), graphene oxide (GO), and fullerene (C60) were modified by hyaluronic acid (HA) to obtain water-soluble and biocompatible nanomaterials with high tumor-targeting capacity and then the comparative study of these hyaluronic acid-modified carbon nanomaterials was made in vitro and in vivo. The conjugates of hyaluronic acid and carbon nanomaterials, namely, HA-SWNT, HA-GO, HA-C60, were confirmed by UV/Vis spectrum, Fourier transform infrared spectroscopy (FTIR), and a transmission electron microscope (TEM). After HA modification, the sizes of HA-SWNT, HA-GO, and HA-C60 were in a range of 70 to 300 nm, and all the three HA-modified materials were at negative potential, demonstrating that HA modification was in favor of extravasation of carbon materials into a tumor site due to enhanced permeability and retention effect of tumor. Photothermal conversion in vitro test demonstrated excellent photothermal sensitivity of HA-SWNT and HA-GO. But the reactive oxygen yield of HA-C60 was the highest compared with the others under visible light irradiation, which proved the good photodynamic therapy effect of HA-C60. In addition, cytotoxicity experiments exhibited that the inhibitory efficacy of HA-SWNT was the lowest, the second was HA-C60, and the highest was HA-GO, which was consistent with the uptake degree of them. While under the laser irradiation, the cell inhibition of the HA-SWNT was the highest, the second was HA-GO, and the last was HA-C60. In vivo evaluation of the three targeting carbon nanomaterials was consistent with the cytotoxicity assay results. Taken together, the results demonstrated that HA-SWNT and HA-GO were suited for photothermal therapy (PTT) agents for their good photothermal property, while HA-C60 was used as a kind of photodynamic therapy (PDT) agent for its photodynamic effect.

  15. Characterization of pH-fractionated humic acids derived from Chinese weathered coal.

    PubMed

    Zhang, Shuiqin; Yuan, Liang; Li, Wei; Lin, Zhian; Li, Yanting; Hu, Shuwen; Zhao, Bingqiang

    2017-01-01

    To reduce the compositional and structural heterogeneity of humic acids (HAs) and achieve better use of HA resources, in this study, we report a new sequential dissolution method for HAs derived from Chinese weathered coal. This method was used to separate HAs into seven fractions by adjusting the pH (3-10) of the extraction solution. The results showed that the HA fractions derived from Chinese weathered coal were concentrated up to 90.31% in the lower pH solutions (3-7). The compositional and structural characteristics of the HA fractions were determined by elemental analysis; ultraviolet-visible (UV-Vis), Fourier transform infrared (FTIR), and solid-state 13 C-nuclear magnetic resonance (NMR) spectroscopies; and other techniques. The results showed significant differences among the HA fractions. The concentrations of the total acidic groups and the carboxyl groups decreased with the increasing pH of the extraction solution. However, the HA fractions derived from extraction solutions with pH 3-4 had relatively lower aromaticity but a higher protonated carbon content. The HA fractions derived from extraction solutions with pH 6-7 had the highest aromaticity and the greatest abundance of COO/N-C=O. This study demonstrated that adjusting the pH of the extraction solution is one way to fractionate HAs from Chinese weathered coal and to obtain HA fractions with compositions and structures that could serve as useful material for study and utilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Potential Regulatory Role of Gibberellic and Humic Acids in Sprouting of Chlorophytum borivilianum Tubers

    PubMed Central

    Puteh, Adam; Hassan, Siti Aishah

    2014-01-01

    Tubers of safed musli (Chlorophytum borivilianum) were immersed in three different concentrations of gibberellic acid (GA3) or humic acid (HA) prior to planting. The highest concentration of GA3 (20 mg L−1) and all concentrations of HA (5, 10, and 15%) appeared to hasten tuber sprouting and promote uniform sprouting pattern. The use of 20 mg L−1 GA3 or 15% HA successfully improved sprouting and mean sprouting time. Safed musli growth and development was improved through the increase in the number of leaves, total leaf area, leaf area index, and total fibrous root length. This directly influenced the number of new tubers formed. The use of 20 mg L−1 GA3 or 15% HA gave similar response with nonsignificant difference among them. However, due to the cost of production, the result from this study suggests that 15% HA should be used to obtain improved sprouting percentage, homogeneous stand establishment, efficient plant growth and development, and increased yield of safed musli. PMID:24688363

  17. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury

    NASA Astrophysics Data System (ADS)

    Khaing, Zin Z.; Milman, Brian D.; Vanscoy, Jennifer E.; Seidlits, Stephanie K.; Grill, Raymond J.; Schmidt, Christine E.

    2011-08-01

    A major hurdle for regeneration after spinal cord injury (SCI) is the ability of axons to penetrate and grow through the scar tissue. After SCI, inflammatory cells, astrocytes and meningeal cells all play a role in developing the glial scar. In addition, degradation of native high molecular weight (MW) hyaluronic acid (HA), a component of the extracellular matrix, has been shown to induce activation and proliferation of astrocytes. However, it is not known if the degradation of native HA actually enhances glial scar formation. We hypothesize that the presence of high MW HA (HA with limited degradation) after SCI will decrease glial scarring. Here, we demonstrate that high MW HA decreases cell proliferation and reduces chondroitin sulfate proteoglycan (CSPG) production in cultured neonatal and adult astrocytes. In addition, stiffness-matched high MW HA hydrogels crosslinked to resist degradation were implanted in a rat model of spinal dorsal hemisection injury. The numbers of immune cells (macrophages and microglia) detected at the lesion site in animals with HA hydrogel implants were significantly reduced at acute time points (one, three and ten days post-injury). Lesioned animals with HA implants also exhibited significantly lower CSPG expression at ten days post-injury. At nine weeks post-injury, animals with HA hydrogel implants exhibited a significantly decreased astrocytic response, but did not have significantly altered CSPG expression. Combined, these data suggest that high MW HA, when stabilized against degradation, mitigates astrocyte activation in vitro and in vivo. The presence of HA implants was also associated with a significant decrease in CSPG deposition at ten days after SCI. Therefore, HA-based hydrogel systems hold great potential for minimizing undesired scarring as part of future repair strategies after SCI.

  18. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury.

    PubMed

    Khaing, Zin Z; Milman, Brian D; Vanscoy, Jennifer E; Seidlits, Stephanie K; Grill, Raymond J; Schmidt, Christine E

    2011-08-01

    A major hurdle for regeneration after spinal cord injury (SCI) is the ability of axons to penetrate and grow through the scar tissue. After SCI, inflammatory cells, astrocytes and meningeal cells all play a role in developing the glial scar. In addition, degradation of native high molecular weight (MW) hyaluronic acid (HA), a component of the extracellular matrix, has been shown to induce activation and proliferation of astrocytes. However, it is not known if the degradation of native HA actually enhances glial scar formation. We hypothesize that the presence of high MW HA (HA with limited degradation) after SCI will decrease glial scarring. Here, we demonstrate that high MW HA decreases cell proliferation and reduces chondroitin sulfate proteoglycan (CSPG) production in cultured neonatal and adult astrocytes. In addition, stiffness-matched high MW HA hydrogels crosslinked to resist degradation were implanted in a rat model of spinal dorsal hemisection injury. The numbers of immune cells (macrophages and microglia) detected at the lesion site in animals with HA hydrogel implants were significantly reduced at acute time points (one, three and ten days post-injury). Lesioned animals with HA implants also exhibited significantly lower CSPG expression at ten days post-injury. At nine weeks post-injury, animals with HA hydrogel implants exhibited a significantly decreased astrocytic response, but did not have significantly altered CSPG expression. Combined, these data suggest that high MW HA, when stabilized against degradation, mitigates astrocyte activation in vitro and in vivo. The presence of HA implants was also associated with a significant decrease in CSPG deposition at ten days after SCI. Therefore, HA-based hydrogel systems hold great potential for minimizing undesired scarring as part of future repair strategies after SCI.

  19. Prospects for nucleic acid-based therapeutics against hepatitis C virus.

    PubMed

    Lee, Chang Ho; Kim, Ji Hyun; Lee, Seong-Wook

    2013-12-21

    In this review, we discuss recent advances in nucleic acid-based therapeutic technologies that target hepatitis C virus (HCV) infection. Because the HCV genome is present exclusively in RNA form during replication, various nucleic acid-based therapeutic approaches targeting the HCV genome, such as ribozymes, aptamers, siRNAs, and antisense oligonucleotides, have been suggested as potential tools against HCV. Nucleic acids are potentially immunogenic and typically require a delivery tool to be utilized as therapeutics. These limitations have hampered the clinical development of nucleic acid-based therapeutics. However, despite these limitations, nucleic acid-based therapeutics has clinical value due to their great specificity, easy and large-scale synthesis with chemical methods, and pharmaceutical flexibility. Moreover, nucleic acid therapeutics are expected to broaden the range of targetable molecules essential for the HCV replication cycle, and therefore they may prove to be more effective than existing therapeutics, such as interferon-α and ribavirin combination therapy. This review focuses on the current status and future prospects of ribozymes, aptamers, siRNAs, and antisense oligonucleotides as therapeutic reagents against HCV.

  20. Molecular MR Imaging of CD44 in Breast Cancer with Hyaluronan-Based Contrast Agents

    DTIC Science & Technology

    2009-09-01

    linear polysaccharide composed of alternating (β-1,4)-linked d- glucuronic acid and (β-1,3) N-acetyl-d-glucosamine residues with molecular weights as...enzymatic reactions in-vivo that generate polysaccharides of decreasing sizes, which in principle may facilitate the timely excretion of HA based...14CO2) or in urine (as low molecular weight HA or monosaccharide fragments). The same authors also reported that the total amount of excretion into

  1. Detection of the HA-33 protein in botulinum neurotoxin type G complex by mass spectrometry.

    PubMed

    Kalb, Suzanne R; Baudys, Jakub; Barr, John R

    2015-10-23

    The disease botulism is caused by intoxication with botulinum neurotoxins (BoNTs), extremely toxic proteins which cause paralysis. This neurotoxin is produced by some members of the Clostridium botulinum and closely related species, and is produced as a protein complex consisting of the neurotoxin and neurotoxin-associated proteins (NAPs). There are seven known serotypes of BoNT, A-G, and the composition of the NAPs can differ between these serotypes. It was previously published that the BoNT/G complex consisted of BoNT/G, nontoxic-nonhemagglutinin (NTNH), Hemagglutinin 70 (HA-70), and HA-17, but that HA-33, a component of the protein complex of other serotypes of BoNT, was not found. Components of the BoNT/G complex were first separated by SDS-PAGE, and bands corresponding to components of the complex were digested and analyzed by LC-MS/MS. Gel bands were identified with sequence coverages of 91% for BoNT/G, 91% for NTNH, 89% for HA-70, and 88% for HA-17. Notably, one gel band was also clearly identified as HA-33 with 93% sequence coverage. The BoNT/G complex consists of BoNT/G, NTNH, HA-70, HA-17, and HA-33. These proteins form the progenitor form of BoNT/G, similar to all other HA positive progenitor toxin complexes.

  2. Fabrication of Novel Hydrogel with Berberine-Enriched Carboxymethylcellulose and Hyaluronic Acid as an Anti-Inflammatory Barrier Membrane

    PubMed Central

    Huang, Yu-Chih; Huang, Kuen-Yu; Yang, Bing-Yuan

    2016-01-01

    An antiadhesion barrier membrane is an important biomaterial for protecting tissue from postsurgical complications. However, there is room to improve these membranes. Recently, carboxymethylcellulose (CMC) incorporated with hyaluronic acid (HA) as an antiadhesion barrier membrane and drug delivery system has been reported to provide excellent tissue regeneration and biocompatibility. The aim of this study was to fabricate a novel hydrogel membrane composed of berberine-enriched CMC prepared from bark of the P. amurense tree and HA (PE-CMC/HA). In vitro anti-inflammatory properties were evaluated to determine possible clinical applications. The PE-CMC/HA membranes were fabricated by mixing PE-CMC and HA as a base with the addition of polyvinyl alcohol to form a film. Tensile strength and ultramorphology of the membrane were evaluated using a universal testing machine and scanning electron microscope, respectively. Berberine content of the membrane was confirmed using a UV-Vis spectrophotometer at a wavelength of 260 nm. Anti-inflammatory property of the membrane was measured using a Griess reaction assay. Our results showed that fabricated PE-CMC/HA releases berberine at a concentration of 660 μg/ml while optimal plasticity was obtained at a 30 : 70 PE-CMC/HA ratio. The berberine-enriched PE-CMC/HA had an inhibited 60% of inflammation stimulated by LPS. These results suggest that the PE-CMC/HA membrane fabricated in this study is a useful anti-inflammatory berberine release system. PMID:28119926

  3. Synthesis and Characterization of Rhodamine B-ethylenediamine-hyaluronan Acid as Potential Biological Functional Materials

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Wang, W. X.; Wang, Y.; Zhang, W. B.; Gong, H. M.; Liu, M. X.

    2018-05-01

    The purpose of this study is to synthesize and characterize fluorescent polymers, rhodamine B-ethylenediamine-hyaluronan acid (RhB-EA-HA). RhB-EA-HA was successfully synthesized by ester ammonolysis reaction and amidation reaction. Moreover, the structural properties of RhB-EA-HA were characterized by 1H-NMR spectra, UV-vis spectrometry and Fourier transform infrared spectroscopy (FT-IR). RhB-EA-HA can be grafted on the surface of silica nanomaterials, which may be potential biological functional materials for drug delivery system.

  4. Lewis Acid-Base Chemistry of 7-Azaisoindigo-Based Organic Semiconductors.

    PubMed

    Randell, Nicholas M; Fransishyn, Kyle M; Kelly, Timothy L

    2017-07-26

    Low-band-gap organic semiconductors are important in a variety of organic electronics applications, such as organic photovoltaic devices, photodetectors, and field effect transistors. Building on our previous work, which introduced 7-azaisoindigo as an electron-deficient building block for the synthesis of donor-acceptor organic semiconductors, we demonstrate how Lewis acids can be used to further tune the energies of the frontier molecular orbitals. Coordination of a Lewis acid to the pyridinic nitrogen of 7-azaisoindigo greatly diminishes the electron density in the azaisoindigo π-system, resulting in a substantial reduction in the lowest unoccupied molecular orbital (LUMO) energy. This results in a smaller highest occupied molecular orbital-LUMO gap and shifts the lowest-energy electronic transition well into the near-infrared region. Both H + and BF 3 are shown to coordinate to azaisoindigo and affect the energy of the S 0 → S 1 transition. A combination of time-dependent density functional theory and UV/vis and 1 H NMR spectroscopic titrations reveal that when two azaisoindigo groups are present and high concentrations of acid are used, both pyridinic nitrogens bind Lewis acids. Importantly, we demonstrate that this acid-base chemistry can be carried out at the solid-vapor interface by exposing thin films of aza-substituted organic semiconductors to vapor-phase BF 3 ·Et 2 O. This suggests the possibility of using the BF 3 -bound 7-azaisoindigo-based semiconductors as n-type materials in various organic electronic applications.

  5. Magnetic hyaluronic acid nanospheres via aqueous Diels-Alder chemistry to deliver dexamethasone for adipose tissue engineering.

    PubMed

    Jia, Yang; Fan, Ming; Chen, Huinan; Miao, Yuting; Xing, Lian; Jiang, Bohong; Cheng, Qifan; Liu, Dongwei; Bao, Weikang; Qian, Bin; Wang, Jionglu; Xing, Xiaodong; Tan, Huaping; Ling, Zhonghua; Chen, Yong

    2015-11-15

    Biopolymer-based nanospheres have great potential in the field of drug delivery and tissue regenerative medicine. In this work, we present a flexible way to conjugate a magnetic hyaluronic acid (HA) nanosphere system that are capable of vectoring delivery of adipogenic factor, e.g. dexamethasone, for adipose tissue engineering. Conjugation of nanospheres was established by aqueous Diels-Alder chemistry between furan and maleimide of HA derivatives. Simultaneously, a furan functionalized dexamethasone peptide, GQPGK, was synthesized and covalently immobilized into the nanospheres. The magnetic HA nanospheres were fabricated by encapsulating super-paramagnetic iron oxide nanoparticles, which exhibited quick magnetic sensitivity. The aqueous Diels-Alder chemistry made nanospheres high binding efficiency of dexamethasone, and the vectoring delivery of dexamethasone could be easily controlled by a external magnetic field. The potential application of the magnetic HA nanospheres on vectoring delivery of adipogenic factor was confirmed by co-culture of human adipose-derived stem cells (ASCs). In vitro cytotoxicity tests demonstrated that incorporation of dexamethasone into magnetic HA nanospheres showed high efficiency to promote ASCs viabilities, in particular under a magnetic field, which suggested a promising future for adipose regeneration applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Mechanical, thermal, rheological and morphological behaviour of irradiated PP/HA composites

    NASA Astrophysics Data System (ADS)

    Ramírez, C.; Albano, C.; Karam, A.; Domínguez, N.; Sánchez, Y.; González, G.

    2005-07-01

    Hydroxyapatite (HA) reinforced polypropylene (PP) composites are being developed as bone graft materials. In this research, the effect of γ irradiation on mechanical, rheological, thermal and morphological behaviour of PP-HA composites was studied. The melt flow index of polymer increased markedly when it was exposed to radiation. This is indicative of chain scission reaction as the predominant process. During the tensile testing, the composites exhibited brittle behaviour, showing no fluency point. Elongation at break showed a tendency to decrease with the increase in radiation dose while stress at break did not show significant variation with radiation dose. High HA content (>20%) and radiation dose (25 kGy) had significant influence on thermal stability.

  7. Boronic acid-based chemical sensors for saccharides.

    PubMed

    Zhang, Xiao-Tai; Liu, Guang-Jian; Ning, Zhang-Wei; Xing, Guo-Wen

    2017-11-27

    During the past decades, the interaction between boronic acids-functionalized sensors and saccharides is of great interest in the frontier domain of the interdiscipline concerning both biology and chemistry. Various boronic acid-based sensing systems have been developed to detect saccharides and corresponding derivatives in vitro as well as in vivo, which embrace unimolecular sensors, two-component sensing ensembles, functional assemblies, and boronic acid-loaded nanomaterials or surfaces. New sensing strategies emerge in endlessly with excellent selectivity and sensitivity. In this review, several typical sensing systems were introduced and some promising examples were highlighted to enable the deep insight of saccharides sensing on the basis of boronic acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Fluorescence analysis of humic and fulvic acids from two Brazilian oxisols as affected by biosolid amendment.

    PubMed

    Bertoncini, E I; D'Orazio, V; Senesi, N; Mattiazzo, M E

    2005-03-01

    Conventional monodimensional fluorescence spectroscopy in the emission, excitation, and synchronous-scan modes and total luminescence spectroscopy have proven to be sensitive techniques for characterization and differentiation of humic acid (HA) and fulvic acid (FA) fractions isolated from an aerobically and anaerobically digested and limed biosolid, two layers of a sandy and a clayey Brazilian oxisol, and the corresponding biosolid-amended soils. The spectral patterns and the relative fluorescence intensities suggest greater molecular heterogeneity, less aromatic polycondensation, and less humification of biosolid HA and FA compared with soil HA and FA. However, the differences are smaller for the FA fractions than for the HA fractions. Fluorescence properties of soil HA and FA differ slightly as a function of soil type and soil layer. Biosolid application causes a shift to shorter wavelengths of the main fluorescence peaks and marked variation of the relative fluorescence intensities of HA and FA isolated from amended soils. These results suggest that molecular components of relatively small molecular size, with a low level of aromatic polycondensation, and low degree of humification present in biosolid HA and FA are partially and variously incorporated into amended soil HA and FA. In general, these modifications seem to be smaller in HA and FA from the clayey soil layers than in those from the sandy soil layers, possibly because of protective effects exerted by clay minerals of native soil HA and FA against disturbances caused by biosolid application.

  9. Immune Escape Mutants of Highly Pathogenic Avian Influenza H5N1 Selected Using Polyclonal Sera: Identification of Key Amino Acids in the HA Protein

    PubMed Central

    Sitaras, Ioannis; Kalthoff, Donata; Beer, Martin; Peeters, Ben; de Jong, Mart C. M.

    2014-01-01

    Evolution of Avian Influenza (AI) viruses – especially of the Highly Pathogenic Avian Influenza (HPAI) H5N1 subtype – is a major issue for the poultry industry. HPAI H5N1 epidemics are associated with huge economic losses and are sometimes connected to human morbidity and mortality. Vaccination (either as a preventive measure or as a means to control outbreaks) is an approach that splits the scientific community, due to the risk of it being a potential driving force in HPAI evolution through the selection of mutants able to escape vaccination-induced immunity. It is therefore essential to study how mutations are selected due to immune pressure. To this effect, we performed an in vitro selection of mutants from HPAI A/turkey/Turkey/1/05 (H5N1), using immune pressure from homologous polyclonal sera. After 42 rounds of selection, we identified 5 amino acid substitutions in the Haemagglutinin (HA) protein, most of which were located in areas of antigenic importance and suspected to be prone to selection pressure. We report that most of the mutations took place early in the selection process. Finally, our antigenic cartography studies showed that the antigenic distance between the selected isolates and their parent strain increased with passage number. PMID:24586231

  10. Electrophoretic deposition of double-layer HA/Al composite coating on NiTi.

    PubMed

    Karimi, Esmaeil; Khalil-Allafi, Jafar; Khalili, Vida

    2016-01-01

    In order to improve the bioactivity of NiTi alloys, which are being known as the suitable materials for biomedical applications, numerous NiTi disks were electrophoretically coated by hetero-coagulated hydroxyapatite/aluminum composite coatings in three main voltages from suspensions with different Al concentrations. In this paper, the amount of Ni ions release and bioactivity of prepared samples as well as bonding strength of the coating to substrate were investigated. The surface characterization of the coating by XRD, EDX, SEM, and FTIR showed that HA particles bonded by Al particles. It caused the formation of a free crack coating on NiTi disks. Moreover, the bonding strength of HA/Al coatings to NiTi substrate were improved by two times as compared to that of the pure HA coatings. Immersing of coated samples in SBF for 1 week showed that apatite formation ability was improved on HA/Al composite coating and Ni ions release from the surface of composite coating decreased. These results induce the appropriate bioactivity and biocompatibility of the deposited HA/Al composite coatings on NiTi disks. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Solid State Reaction Synthesis of Si-HA as Potential Biomedical Material: An Endeavor to Enhance the Added Value of Indonesian Mineral Resources

    NASA Astrophysics Data System (ADS)

    Hartatiek; Yudyanto; Ratnasari, S. D.; Windari, R. Y.; Hidayat, N.

    2017-05-01

    In recent years, one of the most prominently investigated materials is hydroxyapatite (HA). It is because of its excellent properties for medical applications, essentially related to orthopedic. Also, the introduction of other materials to HA becomes another research focus of many leading scientists. In this present study, silicon with various concentrations was introduced, by means of solid state reaction route, to HA forming Si-HA. The crystal structure properties of the as-prepared samples were evaluated by X-ray diffractometer (XRD). Fourier Transform Infra Red (FTIR) spectroscopy data collection and analysis were done to investigate the functional groups within the samples. The microstructural characteristics as well as elemental mapping of the samples were captured by scanning electron microscopy and energy dispersive x-ray spectroscopy (SEM-EDX). Vickers hardness test was also conducted to investigate the hardness properties of the samples. Furthermore, in vitro characterization-based bio resorbability of the samples in a simulated body fluid were also described. This study revealed that Indonesian limestone can be utilized as the raw material for synthesizing HA. The silicon has been successfully incorporated into phosphate site of the HA crystal. Conclusively, the Si-HA reported in this study shows good bioresorbability characteristic.

  12. Evaluating Interest in Acids-Bases: Development of an Acid-Base Interest Scale (ABIS) and Assessment of Pre-Service Science Teachers' Interest

    ERIC Educational Resources Information Center

    Çiçek, Ö.; Ilhan, N.

    2017-01-01

    Students are more likely to be successful in topics they are interested in than others. This study aims to develop an Acid-Base Interest Scale (ABIS) and subsequently evaluate the interest of pre-service science teachers in acids-bases according to gender, years at the university, type of high school the pre-service science teachers attended, and…

  13. An In Vivo Study of Composite Microgels Based on Hyaluronic Acid and Gelatin for the Reconstruction of Surgically Injured Rat Vocal Folds

    ERIC Educational Resources Information Center

    Coppoolse, Jiska M. S.; Van Kooten, T. G.; Heris, Hossein K.; Mongeau, Luc; Li, Nicole Y. K.; Thibeault, Susan L.; Pitaro, Jacob; Akinpelu, Olubunm; Daniel, Sam J.

    2014-01-01

    Purpose: The objective of this study was to investigate local injection with a hierarchically microstructured hyaluronic acid-gelatin (HA-Ge) hydrogel for the treatment of acute vocal fold injury using a rat model. Method: Vocal fold stripping was performed unilaterally in 108 Sprague-Dawley rats. A volume of 25 µl saline (placebo controls),…

  14. Hyaluronic Acid Molecular Weight-Dependent Modulation of Mucin Nanostructure for Potential Mucosal Therapeutic Applications.

    PubMed

    Hansen, Irene M; Ebbesen, Morten F; Kaspersen, Liselotte; Thomsen, Troels; Bienk, Konrad; Cai, Yunpeng; Malle, Birgitte Mølholm; Howard, Kenneth A

    2017-07-03

    This study investigates the effects of different molecular weight hyaluronic acids (HAs) on the mucosal nanostructure using a pig stomach mucin hydrogel as a mucosal barrier model. Microparticles (1.0 μm) and nanoparticles (200 nm) were used as probes, and their movement in mucin was studied by a three-dimensional confocal microscopy-based particle tracking technique and by Nanoparticle Tracking Analysis (NTA) after addition of high-molecular weight (900 kDa) and low-molecular weight (33 kDa) HA. This demonstrated a molecular weight-dependent HA modulation of the mucin nanostructure with a 2.5-fold decrease in the mobility of 200 nm nanoparticles. To further investigate these mechanisms and to verify that the natural viscoelastic properties of mucus are not undesirably altered, rheological measurements were performed on mucin hydrogels with or without HA. This suggested the observed particle mobility restriction was not attributed to alterations of the natural mucin cohesive and viscoelastic properties but, instead, indicates that the added high-molecular weight HA primarily modulates the mucin nanostructure and mesh size. This study, hereby, demonstrates how mucus nanostructure can be modulated by the addition of high-molecular weight HA that offers an opportunity to control mucosal pathogenesis and drug delivery.

  15. Cancer incidence patterns among Vietnamese in the United States and Ha Noi, Vietnam.

    PubMed

    Le, Gem M; Gomez, Scarlett L; Clarke, Christina A; Glaser, Sally L; West, Dee W

    2002-12-01

    Nearly 600,000 persons have immigrated to the United States from Vietnam since the end of the Vietnam War. Despite the rapid growth of the U.S. Vietnamese population, little is known about cancer incidence in this migrant group. Using population-based data from the Surveillance, Epidemiology and End Results program, California Cancer Registry and International Agency for Research on Cancer, we compared cancer incidence rates for Vietnamese in the United States (1988-1992) to rates for residents of Ha Noi, Vietnam (1991-1993); non-Hispanic whites were included to serve as the U.S. reference rates. Lung and breast cancers were the most common among Vietnamese males and females, respectively, regardless of geographic region. Rates of cancers more common to U.S. whites, such as breast, prostate and colon cancers, were elevated for U.S. Vietnamese compared to residents in Ha Noi but still lower than rates for U.S. whites. Rates of cancers more common to Asian countries, such as stomach, liver, lung and cervical cancers, were likewise elevated for U.S. Vietnamese compared to residents of Ha Noi and exceeded corresponding rates for whites. Incidence patterns for stomach, liver, lung and cervical cancers may reflect increased risk of exposures in this migrant population and should be further explored to uncover the relative contributions of environmental and genetic factors to cancer etiology. Copyright 2002 Wiley-Liss, Inc.

  16. Soluble adenylyl cyclase is an acid-base sensor in epithelial base-secreting cells.

    PubMed

    Roa, Jinae N; Tresguerres, Martin

    2016-08-01

    Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2',5'-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology. Copyright © 2016 the American Physiological Society.

  17. Respiratory Acid-Base Disorders in the Critical Care Unit.

    PubMed

    Hopper, Kate

    2017-03-01

    The incidence of respiratory acid-base abnormalities in the critical care unit (CCU) is unknown, although respiratory alkalosis is suspected to be common in this population. Abnormal carbon dioxide tension can have many physiologic effects, and changes in Pco 2 may have a significant impact on outcome. Monitoring Pco 2 in CCU patients is an important aspect of critical patient assessment, and identification of respiratory acid-base abnormalities can be valuable as a diagnostic tool. Treatment of respiratory acid-base disorders is largely focused on resolution of the primary disease, although mechanical ventilation may be indicated in cases with severe respiratory acidosis. Published by Elsevier Inc.

  18. Biocompatibility of Gd-Loaded Chitosan-Hyaluronic Acid Nanogels as Contrast Agents for Magnetic Resonance Cancer Imaging

    PubMed Central

    Gheran, Cecilia Virginia; Rigaux, Guillaume; Callewaert, Maité; Berquand, Alexandre; Chuburu, Françoise; Voicu, Sorina Nicoleta; Dinischiotu, Anca

    2018-01-01

    Although the research on nanogels incorporating Gd chelates for theranostic applications has grown exponentially in recent years, knowledge about their biocompatibility is limited. We compared the biocompatibility of Gd-loaded hyaluronic acid-chitosan-based nanogels (GdCA⊂CS-TPP/HA) with two chitosan concentrations (2.5 and 1.5 mg·mL−1 respectively) using SVEC4-10 murine lymph node endothelial cells. The sulforhodamine B method and released lactate dehydrogenase (LDH) activity were used as cell viability tests. Reactive oxygen species (ROS), reduced glutathione (GSH) and malondialdehyde (MDA) were measured by spectrophotometric and fluorimetric methods. Nrf-2 protein expression was evaluated by Western blot analysis and genotoxicity by alkaline comet assay. After 24 h, the cells viability was not affected by all types and doses of nanogels. The increase of ROS induced a low decrease of GSH concentration and a time-dependent raise of MDA one was produced by citric GdDOTA⊂CS-TPP/HA with a chitosan concentration of 1.5 mg·mL−1, at the highest dose applied. None of the tested nanogels induced changes in Nrf-2 protein expression. A slight but significant genotoxic effect was caused only by citric GdDOTA⊂CS-TPP/HA where CS concentration was 1.5 mg·mL−1. Our results showed a better biocompatibility with lymph node endothelial cells for Gd-loaded hyaluronic acid-chitosan based nanogels with a concentration in chitosan of 2.5 mg·mL−1. PMID:29597306

  19. Adsorption and desorption of phthalic acid esters on graphene oxide and reduced graphene oxide as affected by humic acid.

    PubMed

    Lu, Lun; Wang, Jun; Chen, Baoliang

    2018-01-01

    The implications of humic acid (HA) regarding surface properties of graphene materials and their interactions with phthalic acid esters (PAEs) are not vivid. We report the role of HA on graphene oxide (GO) and reduced graphene oxide (RGO) for sorption-desorption behavior of PAEs. Besides higher surface area and pore volume, the hydrophobic π-conjugated carbon atoms on RGO ensured prominent adsorption capacity towards PAEs in comparison to hydrophilic GO, highlighting the hydrophobic effect. After adjusting for the hydrophobic effect by calculating the hexadecane-water partition coefficient (K HW ) normalized adsorption coefficient (K d /K HW ), the dimethyl phthalate (DMP) molecule portrayed a higher adsorption affinity towards RGO by π-π electron donor-acceptor (EDA) interaction for active sites on graphene interface via sieving effect. In contrast to RGO, the weak π-π EDA interactions and H-bonding was observed between the carbonyl groups of PAEs and oxygen containing functional groups on GO. There was no obvious change in morphologies of GO and RGO before and desorption as revealed by SEM and TEM images, as desorption hysteresis did not occur in all conditions. The presence of HA also resulted in shielding effect thereby decreasing the adsorption rate and capacity of diethyl phthalate (DEP) on GO and RGO, while it had little effect on DMP, probably due to the adsorbed HA as new active sites. The desorption of DMP and DEP on RGO in presence of HA was quick and enhanced. These results should be important for evaluating the fate and health risk of graphene materials and PAEs in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Structural and biochemical characterization of the protease domain of the mosaic botulinum neurotoxin type HA.

    PubMed

    Lam, Kwok-Ho; Sikorra, Stefan; Weisemann, Jasmin; Maatsch, Hannah; Perry, Kay; Rummel, Andreas; Binz, Thomas; Jin, Rongsheng

    2018-04-23

    The extreme toxicity of botulinum neurotoxins (BoNTs) relies on their specific cleavage of SNARE proteins, which eventually leads to muscle paralysis. One newly identified mosaic toxin, BoNT/HA (aka H or FA), cleaves VAMP-2 at a unique position between residues L54 and E55, but the molecular basis underlying VAMP-2-recognition of BoNT/HA remains poorly characterized. Here, we report a ∼2.09 Å resolution crystal structure of the light chain protease domain of BoNT/HA (LC/HA). Structural comparison between LC/HA and LC of BoNT/F1 (LC/F1) reveals distinctive hydrophobic and electrostatic features near the active sites, which may explain their different VAMP-2 cleavage sites. When compared to BoNT/F5 that cleaves VAMP-2 at the same site as BoNT/HA, LC/HA displays higher affinity for VAMP-2, which could be caused by their different surface charge properties surrounding a VAMP-2 exosite-binding cleft. Furthermore, systematic mutagenesis studies on VAMP-2 and structural modeling demonstrate that residues R47 to K59 spanning the cleavage site in VAMP-2 may adopt a novel extended conformation when interacting with LC/HA and LC/F5. Taken together, our structure provides new insights into substrate-recognition of BoNT/HA and paves the way for rational design of small molecule or peptide inhibitors against LC/HA.

  1. The effect of humic acid on uranyl sorption onto bentonite at trace uranium levels.

    PubMed

    Ivanov, Peter; Griffiths, Tamara; Bryan, Nick D; Bozhikov, Gospodin; Dmitriev, Serguei

    2012-11-01

    The effect of humic acid (HA) on U(VI) sorption on bentonite was studied in batch experiments at room temperature and ambient atmosphere at a (237)U(VI) concentration of 8.4 × 10(-11) M and HA concentration of 100 mg L(-1). The distribution of U(VI) between the liquid and solid phases was studied as a function of pH and ionic strength both in the absence and presence of HA. It was shown that the uranyl sorption on bentonite is strongly dependent on pH and the presence of humics, and the effect of the addition order was negligible. In the absence of HA an enhancement in the uptake with increasing pH was observed and a sharp sorption edge was found to take place between pH 3.2 and 4.2. The presence of HA slightly increases uranium(VI) sorption at low pH and curtails it at moderate pH, compared to the absence of HA. In the basic pH range for both the presence and absence of HA the sorption of uranium is significantly reduced, which could be attributed to the formation of soluble uranyl carbonate complexes. The influence of ionic strength on U(VI) and HA uptake by bentonite were investigated in the range of 0.01-1.0 M, and while there was an enhancement in the sorption of humic acid with increasing ionic strength, no significant effect of the ionic strength on the U(VI) sorption was observed in both the absence and presence of HA.

  2. Binding characteristics of Cu2+ to natural humic acid fractions sequentially extracted from the lake sediments.

    PubMed

    He, En; Lü, Changwei; He, Jiang; Zhao, Boyi; Wang, Jinghua; Zhang, Ruiqing; Ding, Tao

    2016-11-01

    Humic acids (HAs) determine the distribution, toxicity, bioavailability, and ultimate fate of heavy metals in the environment. In this work, ten HA fractions (F1-F10) were used as adsorbent, which were sequentially extracted from natural sediments of Lake Wuliangsuhai, to investigate the binding characteristics of Cu 2+ to HA. On the basis of the characterization results, differences were found between the ten extracted HA fractions responding to their elemental compositions and acidic functional groups. The characterization results reveal that the responses of ten extracted HA fractions to their elemental compositions and acidic functional groups were different. The O/C and (O + N)/C ratio of F1-F8 approximately ranged from 0.66 to 0.53 and from 0.72 to 0.61, respectively; the measured results showed that the contents of phenolic groups and carboxyl groups decreased from 4.46 to 2.60 mmol/g and 1.60 to 0.58 mmol/g, respectively. The binding characteristics of Cu 2+ to the ten HA fractions were well modeled by the bi-Langmuir model; the binding behavior of Cu 2+ to all the ten HA fractions were strongly impacted by pH and ionic strength. The FTIR and SEM-EDX image of HA fractions (pre- and post-adsorption) revealed that carboxyl and phenolic groups were responsible for the Cu 2+ sorption on the ten sequentially extracted HA fractions process, which is the same with the analysis of the ligand binding and bi-Langmuir models Accordingly, the adsorption capacity of the former HA fractions on Cu 2+ were higher than the latter ones, which may be attributed to the difference of carboxyl and phenolic group contents between the former and latter extracted HA fractions. Additionally, the functional groups with N and S should not be neglected. This work is hopeful to understand the environmental effect of humic substances, environmental geochemical behavior, and bioavailability of heavy metals in lakes.

  3. Respiratory Adaptations in Acid-base Disturbances: Role of Cerebral Fluids,

    DTIC Science & Technology

    1979-06-19

    The respiratory and metabolic components of acid-base homeostasis are defined. A quantitative empirical description of the (incomplete) mutual...literature. Respiratory adaptations in steady acid-base disturbances of metabolic origin (hyperventilation with hypocapnia in primary metabolic acidosis, and...hypoventilation with hypercapnia in metabolic alkalosis ) are analyzed as a function of the acidity of the cerebral fluids (cerebrospinal and cerebral interstitial fluid). (Author)

  4. Acid-base equilibria inside amine-functionalized mesoporous silica.

    PubMed

    Yamaguchi, Akira; Namekawa, Manato; Kamijo, Toshio; Itoh, Tetsuji; Teramae, Norio

    2011-04-15

    Acid-base equilibria and effective proton concentration inside a silica mesopore modified with a trimethyl ammonium (TMAP) layer were studied by steady-state fluorescence experiments. The mesoporous silica with a dense TMAP layer (1.4 molecules/nm(2)) was prepared by a post grafting of N-trimethoxysilylpropyl-N,N,N-trimethylammonium at surfactant-templated mesoporous silica (diameter of silica framework =3.1 nm). The resulting TMAP-modified mesoporous silica strongly adsorbed of anionic fluorescence indicator dyes (8-hydroxypyrene-1,3,6-trisulfonate (pyranine), 8-aminopyrene-1,3,6-trisulfonate (APTS), 5,10,15,20-tetraphenyl-21H,23H-porphinetetrasulfonic acid disulfuric acid (TPPS), 2-naphthol-3,6-disulfonate (2NT)) and fluorescence excitation spectra of these dyes within TMAP-modified mesoporous silica were measured by varying the solution pH. The fluorescence experiments revealed that the acid-base equilibrium reactions of all pH indicator dyes within the TMAP-modified silica mesopore were quite different from those in bulk water. From the analysis of the acid-base equilibrium of pyranine, the following relationships between solution pH (pH(bulk)) and the effective proton concentration inside the pore (pH(pore)) were obtained: (1) shift of pH(pore) was 1.8 (ΔpH(pore)=1.8) for the pH(bulk) change from 2.1 to 9.1 (ΔpH(bulk)=7.0); (2) pH(pore) was not simply proportional to pH(bulk); (3) the inside of the TMAP-modified silica mesopore was suggested to be in a weak acidic or neutral condition when pH(bulk) was changed from 2.0 to 9.1. Since these relationships between pH(bulk) and pH(pore) could explain the acid-base equilibria of other pH indicator dyes (APTS, TPPS, 2NT), these relationships were inferred to describe the effective proton concentration inside the TMAP-modified silica mesopore. © 2011 American Chemical Society

  5. Synthesis and antimicrobial activities of new higher amino acid Schiff base derivatives of 6-aminopenicillanic acid and 7-aminocephalosporanic acid

    NASA Astrophysics Data System (ADS)

    Özdemir (nee Güngör), Özlem; Gürkan, Perihan; Özçelik, Berrin; Oyardı, Özlem

    2016-02-01

    Novel β-lactam derivatives (1c-3c) (1d-3d) were produced by using 6-aminopenicillanic acid (6-APA), 7-aminocephalosporanic acid (7-ACA) and the higher amino acid Schiff bases. The synthesized compounds were characterized by elemental analysis, IR, 1H/13C NMR and UV-vis spectra. Antibacterial activities of all the higher amino acid Schiff bases (1a-3a) (1b-3b) and β-lactam derivatives were screened against three gram negative bacteria (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii RSKK 02026), three gram positive bacteria (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 07005, Bacillus subtilis ATCC 6633) and their drug-resistant isolates by using broth microdilution method. Two fungi (Candida albicans and Candida krusei) were used for antifungal activity.

  6. Syntheses, structural, computational, and thermal analysis of acid-base complexes of picric acid with N-heterocyclic bases.

    PubMed

    Goel, Nidhi; Singh, Udai P

    2013-10-10

    Four new acid-base complexes using picric acid [(OH)(NO2)3C6H2] (PA) and N-heterocyclic bases (1,10-phenanthroline (phen)/2,2';6',2"-terpyridine (terpy)/hexamethylenetetramine (hmta)/2,4,6-tri(2-pyridyl)-1,3,5-triazine (tptz)) were prepared and characterized by elemental analysis, IR, NMR and X-ray crystallography. Crystal structures provide detailed information of the noncovalent interactions present in different complexes. The optimized structures of the complexes were calculated in terms of the density functional theory. The thermolysis of these complexes was investigated by TG-DSC and ignition delay measurements. The model-free isoconversional and model-fitting kinetic approaches have been applied to isothermal TG data for kinetics investigation of thermal decomposition of these complexes.

  7. TRANSFUSIONS—Hazardous Acid-Base Changes with Citrated Blood

    PubMed Central

    Pedro, Jovita M. San; Iwai, Seizo; Hattori, Mitsuo; Leigh, M. Digby

    1962-01-01

    In a study of the acid-base changes in the blood of rabbits during and following transfusions of citrated blood and of heparinized blood, it was observed that, with citrated blood, pH decreased and carbon dioxide tensions rose. With heparinized blood, the acid-base balance was maintained within normal limits following transfusions. The potential hazards of rapid massive citrated blood transfusions in the anesthetized patient during operation must be kept in mind. PMID:14496706

  8. Studies on corrosion resistance and bio-activity of plasma spray deposited hydroxylapatite (HA) based TiO2 and ZrO2 dispersed composite coatings on titanium alloy (Ti-6Al-4V) and the same after post spray heat treatment

    NASA Astrophysics Data System (ADS)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2017-10-01

    In the present study, the effect of plasma spray deposited hydroxylapatite (HA) based TiO2 dispersed (HA + 50 wt.% TiO2), coating and post spray heat treatment to be referred as HA-TiO2 (heat treated at 650 °C for 2 h) and ZrO2 dispersed (HA + 10 wt.% ZrO2), to be referred as HA-ZrO2 coating (heat treated at 750 °C for 2 h) on corrosion resistance and bioactivity of Ti-6Al-4V substrate has been undertaken. There is partial decomposition of HA to tri-calcium-phosphate (Ca3(PO4)2) and formation of CaTiO3 phase in HA-TiO2 coating and CaZrO3 phase in the HA-ZrO2 coating. Corrosion study in Hank's solution shows that there is shifting of corrosion potential (Ecorr) towards active potential (-1.1 V(SCE) for as-sprayed and post spray heat treated HA-TiO2 coating, -1.1 V(SCE) for as-sprayed HA-ZrO2 coating and -1 V(SCE) for HA-ZO2 coating after post spray heat treatment), and deterioration in pitting corrosion (Epit) resistance in as-sprayed coatings and the same after heat treatment (-0.7 V(SCE) for both HA-TiO2 and HA-ZrO2 coating as compared to as received substrate (-0.3 V(SCE)). The corrosion rate was increased for both the coatings with a maximum increase in HA-ZrO2 coating. Bioactivity test shows a higher degree of apatite deposition in as-sprayed coating and the same after heat treatment as compared to as received Ti-6Al-4V though the as-sprayed one showed a superior behavior.

  9. Emerged HA and NA Mutants of the Pandemic Influenza H1N1 Viruses with Increasing Epidemiological Significance in Taipei and Kaohsiung, Taiwan, 2009–10

    PubMed Central

    Kao, Chuan-Liang; Chan, Ta-Chien; Tsai, Chu-Han; Chu, Kuan-Ying; Chuang, Shu-Fang; Lee, Chang-Chun; Li, Zheng-Rong Tiger; Wu, Ko-Wen; Chang, Luan-Yin; Shen, Yea-Huei; Huang, Li-Min; Lee, Ping-Ing; Yang, ChingLai; Compans, Richard; Rouse, Barry T.; King, Chwan-Chuen

    2012-01-01

    The 2009 influenza pandemic provided an opportunity to observe dynamic changes of the hemagglutinin (HA) and neuraminidase (NA) of pH1N1 strains that spread in two metropolitan areas -Taipei and Kaohsiung. We observed cumulative increases of amino acid substitutions of both HA and NA that were higher in the post–peak than in the pre-peak period of the epidemic. About 14.94% and 3.44% of 174 isolates had one and two amino acids changes, respective, in the four antigenic sites. One unique adaptive mutation of HA2 (E374K) was first detected three weeks before the epidemic peak. This mutation evolved through the epidemic, and finally emerged as the major circulated strain, with significantly higher frequency in the post-peak period than in the pre-peak (64.65% vs 9.28%, p<0.0001). E374K persisted until ten months post-nationwide vaccination without further antigenic changes (e.g. prior to the highest selective pressure). In public health measures, the epidemic peaked at seven weeks after oseltamivir treatment was initiated. The emerging E374K mutants spread before the first peak of school class suspension, extended their survival in high-density population areas before vaccination, dominated in the second wave of class suspension, and were fixed as herd immunity developed. The tempo-spatial spreading of E374K mutants was more concentrated during the post–peak (p = 0.000004) in seven districts with higher spatial clusters (p<0.001). This is the first study examining viral changes during the naïve phase of a pandemic of influenza through integrated virological/serological/clinical surveillance, tempo-spatial analysis, and intervention policies. The vaccination increased the percentage of E374K mutants (22.86% vs 72.34%, p<0.001) and significantly elevated the frequency of mutations in Sa antigenic site (2.36% vs 23.40%, p<0.001). Future pre-vaccination public health efforts should monitor amino acids of HA and NA of pandemic influenza viruses isolated at

  10. Hard and soft acids and bases: atoms and atomic ions.

    PubMed

    Reed, James L

    2008-07-07

    The structural origin of hard-soft behavior in atomic acids and bases has been explored using a simple orbital model. The Pearson principle of hard and soft acids and bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. There are a number of conditions that are imposed on any candidate structure and associated property by the Pearson principle, which have been exploited. The Pearson principle itself has been used to generate a thermodynamically based scale of relative hardness and softness for acids and bases (operational chemical hardness), and a modified Slater model has been used to discern the electronic origin of hard-soft behavior. Whereas chemical hardness is a chemical property of an acid or base and the operational chemical hardness is an experimental measure of it, the absolute hardness is a physical property of an atom or molecule. A critical examination of chemical hardness, which has been based on a more rigorous application of the Pearson principle and the availability of quantitative measures of chemical hardness, suggests that the origin of hard-soft behavior for both acids and bases resides in the relaxation of the electrons not undergoing transfer during the acid-base interaction. Furthermore, the results suggest that the absolute hardness should not be taken as synonymous with chemical hardness but that the relationship is somewhat more complex. Finally, this work provides additional groundwork for a better understanding of chemical hardness that will inform the understanding of hardness in molecules.

  11. The Roles of Acids and Bases in Enzyme Catalysis

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2007-01-01

    Many organic reactions are catalyzed by strong acids or bases that protonate or deprotonate neutral reactants leading to reactive cations or anions that proceed to products. In enzyme reactions, only weak acids and bases are available to hydrogen bond to reactants and to transfer protons in response to developing charges. Understanding this…

  12. Hyaluronic acid modified pH-sensitive liposomes for targeted intracellular delivery of doxorubicin.

    PubMed

    Paliwal, Shivani Rai; Paliwal, Rishi; Agrawal, Govind Prasad; Vyas, Suresh Prasad

    2016-12-01

    Surface-modified pH-sensitive liposomal system may be useful for intracellular delivery of chemotherapeutics. Achieving site-specific targeting with over-expressed hyaluronic acid (HA) receptors along with using pH sensitive liposome carrier for intracellular drug delivery was the aim of this study. Stealth HA-targeted pH-sensitive liposomes (SL-pH-HA) were developed and evaluated to achieve effective intracellular delivery of doxorubicin (DOX) vis-a-vis enhanced antitumor activity. The in vitro release studies demonstrated that the release of DOX from SL-pH-HA was pH-dependent, i.e. faster at mildly acidic pH ∼5, compared to physiological pH ∼7.4. SLpH-HA was evaluated for their cytotoxicity potential on CD44 receptor expressing MCF-7 cells. The half maximal inhibitory concentration (IC50) of SL-pH-HA and SL-HA were about 1.9 and 2.5 μM, respectively, after 48 h of incubation. The quantitative uptake study revealed higher localization of targeted liposomes in the receptor positive cells, which was further confirmed by fluorescent microscopy. The antitumor efficacy of the DOX-loaded HA-targeted pH-sensitive liposomes was also verified in a tumor xenograft mouse model. DOX was efficiently delivered to the tumor site by active targeting via HA and CD44 receptor interaction. The major side-effect of conventional DOX formulation, i.e. cardiotoxicity was also estimated by measuring serum enzyme levels of LDH and CPK and found to be minimized with developed formulation. Overall, HA targeted pH-sensitive liposomes were significantly more potent than the non-targeted liposomes in cells expressing high levels of CD44. Results strongly implies the promise of such liposomal system as an intracellular drug delivery carrier developed for potential anticancer treatment.

  13. Nucleic acid based fluorescent sensor for mercury detection

    DOEpatents

    Lu, Yi; Liu, Juewen

    2013-02-05

    A nucleic acid enzyme comprises an oligonucleotide containing thymine bases. The nucleic acid enzyme is dependent on both Hg.sup.2+and a second ion as cofactors, to produce a product from a substrate. The substrate comprises a ribonucleotide, a deoxyribonucleotide, or both.

  14. Complexity in Acid–Base Titrations: Multimer Formation Between Phosphoric Acids and Imines

    PubMed Central

    Malm, Christian; Kim, Heejae; Wagner, Manfred

    2017-01-01

    Abstract Solutions of Brønsted acids with bases in aprotic solvents are not only common model systems to study the fundamentals of proton transfer pathways but are also highly relevant to Brønsted acid catalysis. Despite their importance the light nature of the proton makes characterization of acid–base aggregates challenging. Here, we track such acid–base interactions over a broad range of relative compositions between diphenyl phosphoric acid and the base quinaldine in dichloromethane, by using a combination of dielectric relaxation and NMR spectroscopy. In contrast to what one would expect for an acid–base titration, we find strong deviations from quantitative proton transfer from the acid to the base. Even for an excess of the base, multimers consisting of one base and at least two acid molecules are formed, in addition to the occurrence of proton transfer from the acid to the base and simultaneous formation of ion pairs. For equimolar mixtures such multimers constitute about one third of all intermolecular aggregates. Quantitative analysis of our results shows that the acid‐base association constant is only around six times larger than that for the acid binding to an acid‐base dimer, that is, to an already protonated base. Our findings have implications for the interpretation of previous studies of reactive intermediates in organocatalysis and provide a rationale for previously observed nonlinear effects in phosphoric acid catalysis. PMID:28597513

  15. Co-delivery of a laminin-111 supplemented hyaluronic acid based hydrogel with minced muscle graft in the treatment of volumetric muscle loss injury

    PubMed Central

    Goldman, Stephen M.; Henderson, Beth E. P.; Walters, Thomas J.

    2018-01-01

    Minced muscle autografting mediates de novo myofiber regeneration and promotes partial recovery of neuromuscular strength after volumetric muscle loss injury (VML). A major limitation of this approach is the availability of sufficient donor tissue for the treatment of relatively large VMLs without inducing donor site morbidity. This study evaluated a laminin-111 supplemented hyaluronic acid based hydrogel (HA+LMN) as a putative myoconductive scaffolding to be co-delivered with minced muscle grafts. In a rat tibialis anterior muscle VML model, delivery of a reduced dose of minced muscle graft (50% of VML defect) within HA+LMN resulted in a 42% improvement of peak tetanic torque production over unrepaired VML affected limbs. However, the improvement in strength was not improved compared to a 50% minced graft-only control group. Moreover, histological analysis revealed that the improvement in in vivo functional capacity mediated by minced grafts in HA+LMN was not accompanied by a particularly robust graft mediated regenerative response as determined through donor cell tracking of the GFP+ grafting material. Characterization of the spatial distribution and density of macrophage and satellite cell populations indicated that the combination therapy damps the heightened macrophage response while re-establishing satellite content 14 days after VML to a level consistent with an endogenously healing ischemia-reperfusion induced muscle injury. Moreover, regional analysis revealed that the combination therapy increased satellite cell density mostly in the remaining musculature, as opposed to the defect area. Based on the results, the following salient conclusions were drawn: 1) functional recovery mediated by the combination therapy is likely due to a superposition of de novo muscle fiber regeneration and augmented repair of muscle fibers within the remaining musculature, and 2) The capacity for VML therapies to augment regeneration and repair within the remaining musculature

  16. Structure and functioning of the acid-base system in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Kuliński, Karol; Schneider, Bernd; Szymczycha, Beata; Stokowski, Marcin

    2017-12-01

    The marine acid-base system is relatively well understood for oceanic waters. Its structure and functioning is less obvious for the coastal and shelf seas due to a number of regionally specific anomalies. In this review article we collect and integrate existing knowledge of the acid-base system in the Baltic Sea. Hydrographical and biogeochemical characteristics of the Baltic Sea, as manifested in horizontal and vertical salinity gradients, permanent stratification of the water column, eutrophication, high organic-matter concentrations and high anthropogenic pressure, make the acid-base system complex. In this study, we summarize the general knowledge of the marine acid-base system as well as describe the peculiarities identified and reported for the Baltic Sea specifically. In this context we discuss issues such as dissociation constants in brackish water, different chemical alkalinity models including contributions by organic acid-base systems, long-term changes in total alkalinity, anomalies of borate alkalinity, and the acid-base effects of biomass production and mineralization. Finally, we identify research gaps and specify limitations concerning the Baltic Sea acid-base system.

  17. Hyaluronic acid modified chitosan nanoparticles for effective management of glaucoma: development, characterization, and evaluation.

    PubMed

    Wadhwa, Sheetu; Paliwal, Rishi; Paliwal, Shivani R; Vyas, S P

    2010-05-01

    In clinical practices, solution of dorzolamide hydrochloride (DH) and timolol maléate (TM) is recommended for the treatment of glaucoma. However, low drug-contact time and poor ocular bioavailability of drugs due to drainage of solution, tear turnover and its dilution or lacrimation limits its uses. In addition, systemic absorption of TM may induce undesirable cardiovascular side effects. Chitosan (CS) is a polycationic biodegradable polymer which provides sustained and local delivery of drugs to the ocular sites. Hyaluronic acid (HA) also provides synergistic effect for mucoadhesion in association with chitosan. In the present study, hyaluronic acid modified chitosan nanoparticles (CS-HA-NPs) loaded with TM and DH were developed and characterized. The CS-HA-NPs were evaluated for size, shape, zeta potential, entrapment efficiency, and mucoadhesive strength. The in vitro release study was also performed in PBS pH 7.4. The ocular irritation potential of CS-HA-NPs was estimated using draize test on albino rabbits. A significant reduction in IOP level was obtained using CS-HA-NPs as compared to plain solution of drug and a comparable higher reduction in IOP level was observed as to CS-NPs. These results suggest that HA potentialy enhance the mucoadhesiveness and efficiency of CS-NPs and may be promising carrier for ocular drug delivery.

  18. The Evaluation of Hydroxyapatite (HA) Coated and Uncoated Porous Tantalum for Biomedical Material Applications

    NASA Astrophysics Data System (ADS)

    Safuan, Nadia; Sukmana, Irza; Kadir, Mohammed Rafiq Abdul; Noviana, Deni

    2014-04-01

    Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.

  19. 75 FR 55323 - Ha-Best, Inc.; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12492-001] Ha-Best, Inc.; Notice of Availability of Environmental Assessment August 31, 2010. In accordance with the National... Office of Energy Projects has reviewed Ha-Best's application for license for the Miner Shoal Waterpower...

  20. Coupling of HDPE/hydroxyapatite composites by silane-based methodologies.

    PubMed

    Sousa, R A; Reis, R L; Cunha, A M; Bevis, M J

    2003-06-01

    Several coupling treatments based on silane chemicals were investigated for the development of high density (HDPE)/hydroxyapatite (HA) composites. Two HA powders, sintered HA (HAs) and non sintered HA (HAns), were studied in combination with five silanes, namely y-methacryloxy propyltrimethoxy silane (MEMO), 3-(2-aminoethyl)aminopropyltrimethoxy silane (DAMO), vinyltrimethoxy silane (VTMO), 3-aminopropyltriethoxy silane (AMEO) and trimethoxypropyl silane (PTMO). The HA particles were treated by a dipping in method or by spraying with silane solutions. After drying, the treated powders were compounded with HDPE or HDPE with acrylic acid and/or organic peroxide and subsequently compression molded. The tensile test specimens obtained from the molded plates were tensile tested and their fracture surfaces were observed by scanning electron microscopy (SEM). For the sintered HA (HAs) composites, the most effective coupling treatments concerning stiffness are those based on MEMO and AMEO. The low influence of these coupling procedures on strength is believed to be associated to the low volume fraction and the relatively smooth surface of the used HA particles. For the non-sintered HA (HAns) composites, it was possible to improve significantly both the stiffness and the strength. Amino silanes demonstrated to be highly efficient concerning strength enhancement. The higher effectiveness of the coupling treatments for HAns filled composites is attributed to their higher particle surface area, smaller particle size distribution and expected higher chemical reactivity. For both cases, the improvement in mechanical performance after the coupling treatment is consistent with the enhancement in interfacial adhesion observed by SEM.