Science.gov

Sample records for acid herbicides mcpa

  1. An unusual case of non-fatal poisoning due to herbicide 4-chloro-2-methyl phenoxyacetic acid (MCPA).

    PubMed

    Tennakoon, D A S Sakunthala; Perera, K A P Bandumala; Hathurusinghe, L S

    2014-10-01

    MCPA (4-chloro-2-methyl phenoxyacetic acid) is a systemic hormone-type selective herbicide readily absorbed by leaves and roots. Use of MCPA for murder or attempted murder is very rare in Sri Lanka. However, a reported case of attempted murder by adding MCPA to water will be discussed in this paper. Three extraction methods were carried out with urine samples spiked with MCPA, namely liquid-liquid extraction with chloroform, solid phase extraction using C18 cartridges and vortex mixing with methanolic hydrochloric acid. Based on the recovery results, solid phase extraction was selected as the most suitable method and applied in the analysis of urine and water samples. Identification of MCPA in urine, water and the suspected poison bottle was carried out by HPLC and was confirmed by GC-MS. 4-chloro -2- methyl phenol metabolite was also identified and confirmed in the urine sample of the patient by GC-MS. Quantitative analysis of MCPA was carried out by HPLC using a validated method where Zorbax XDB-C18 column was used with photo diode array detector. In this case, presence of MCPA in one patient's urine sample collected four days after the incident was confirmed by GC-MS and found at a concentration of 0.83μg/ml. MCPA was not identified in the urine samples collected after 13 days in other three patients. The water sample taken from the suspected water storage tank found to contain 101μg/ml of MCPA. The results showed that HPLC combined with GC-MS is suitable for forensic analysis of MCPA in urine. PMID:24867053

  2. Urea Fertilizer and pH Influence on Sorption Process of Flumetsulam and MCPA Acidic Herbicides in a Volcanic Soil.

    PubMed

    Palma, Graciela; Jorquera, Milko; Demanet, Rolando; Elgueta, Sebastian; Briceño, Gabriela; de la Luz Mora, María

    2016-01-01

    The aim of this study was to evaluate the influence of urea fertilizer and pH on the sorption process of two acidic herbicides, flumetsulam (2',6'-difluoro-5-methyl[1,2,4]triazolo[1,5-a]pyrimidine-2-sulfonanilide) and MCPA (4-chloro--tolyloxyacetic acid), on an Andisol. Urea reduced the adsorption of MCPA but not that of flumetsulam. The Freundlich parameter of MCPA decreased from 8.5 to 5.1 mg L kg. This finding could be attributed to an increase in dissolved organic C due to an initial increase in soil pH for urea application. The higher acidic character of MCPA compared with that of flumetsulam produced a greater hydrolysis of urea, leading to a further pH increase. A marked effect of pH on the adsorption of both herbicides was observed. The organic C distribution coefficient () values for flumetsulam were in the range of 74 to 10 L kg, while those of MCPA were in the range of 208 to 45 L kg. In the kinetic studies, the pseudo-second-order model appeared to fit the data best ( > 0.994). The initial adsorption rates () ranged from 20.00 to 4.59 mg kg h for flumetsulam and from 125.00 to 25.60 mg kg hfor MCPA. Both herbicides were adsorbed rapidly during the first stage of the sorption process, and the rates of sorption were dependent on pH. The application of the Elovich and Weber-Morris models led us to conclude that mass transfer through the boundary layer and, to a lesser degree, intraparticle diffusion were influenced by the chemical character of the herbicide. These results suggest that urea application could increase leaching of acid herbicides in soils.

  3. Intentional self-poisoning with the chlorophenoxy herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA)

    PubMed Central

    Roberts, Darren M; Seneviratne, Ruwan; Mohammed, Fahim; Patel, Renu; Senarathna, Lalith; Hittarage, Ariyasena; Buckley, Nick A; Dawson, Andrew H; Eddleston, Michael

    2006-01-01

    Study Objective: Data on poisoning with MCPA (4-chloro-2-methylphenoxyacetic acid) is limited to six case reports. Our objective is to describe outcomes from intentional self-poisoning with MCPA in a prospective case series of 181 patients presenting to hospitals in Sri Lanka. Methods: Patient information was collected by on-site study doctors as part of an ongoing prospective cohort study of poisoned patients. History, clinical details and blood samples were obtained prospectively. Results: Overall clinical toxicity was minimal in 85% of patients, including mild gastrointestinal symptoms in 44% of patients. More severe clinical signs of chlorophenoxy poisoning reported previously such as rhabdomyolysis, renal dysfunction and coma also occurred, but were uncommon. Eight patients died (4.4%). Most deaths occurred suddenly from cardiorespiratory arrest within 48 hours of poisoning; the pathophysiological mechanism of death was not apparent. The correlation between admission plasma MCPA concentration and clinical markers of severity of toxicity (physical signs, symptoms and elevated creatine kinase) was poor. Conclusions: Intentional self-poisoning with MCPA generally causes mild toxicity, but cardiorespiratory arrest and death may occur. All patients should receive routine resuscitation and supportive care. It seems reasonable to correct acidosis and maintain an adequate urine output, but there is insufficient evidence to support other specific interventions. Our data do not support a clinical role for measurement of plasma MCPA in the acute management of poisoning and insufficient data were available to fully examine the utility of measured electrolytes and creatine kinase. PMID:16126140

  4. Toxicity of synthetic herbicides containing 2,4-D and MCPA moieties towards Pseudomonas putida mt-2 and its response at the level of membrane fatty acid composition.

    PubMed

    Piotrowska, Aleksandra; Syguda, Anna; Chrzanowski, Łukasz; Heipieper, Hermann J

    2016-02-01

    One of the attempts to create more effective herbicidal compounds includes the use of ionic liquids. Herbicidal ionic liquids have more effective biological activity, they are less volatile, more thermally stable, and exhibit superior efficiency in comparison to typically employed herbicides, allowing the reduction of the herbicide dose applied per hectare. However, studies on the environmental toxicity of this group of compounds are very rarely available. Environmental toxicity is an important factor, showing the concentration of compounds that has negative effects on soil bacteria including those responsible for biodegradation processes. Therefore, potential toxicity of four herbicidal ionic liquids (HILs) precursors containing 2,4-D and MCPA moieties was tested with the well investigated model organism for toxicity and adaptation, Pseudomonas putida mt-2. Results were compared to those obtained for commercial 2,4-D and MCPA herbicides. Next to growth inhibition, given as EC50, changes in the isomerisation of cis to trans unsaturated fatty acids were applied as proxy for cellular stress adaptation to toxic substances. The results revealed that all investigated precursors of HILs showed lower toxicity compared to commercialized synthetic herbicides 2,4-D and MCPA. The collected data on toxicity of HILs together with their physico-chemical properties might be useful for assessing the potential risk of the environmental pollution as well as guidelines for setting the legislation for their future use. PMID:26347932

  5. Toxicity of synthetic herbicides containing 2,4-D and MCPA moieties towards Pseudomonas putida mt-2 and its response at the level of membrane fatty acid composition.

    PubMed

    Piotrowska, Aleksandra; Syguda, Anna; Chrzanowski, Łukasz; Heipieper, Hermann J

    2016-02-01

    One of the attempts to create more effective herbicidal compounds includes the use of ionic liquids. Herbicidal ionic liquids have more effective biological activity, they are less volatile, more thermally stable, and exhibit superior efficiency in comparison to typically employed herbicides, allowing the reduction of the herbicide dose applied per hectare. However, studies on the environmental toxicity of this group of compounds are very rarely available. Environmental toxicity is an important factor, showing the concentration of compounds that has negative effects on soil bacteria including those responsible for biodegradation processes. Therefore, potential toxicity of four herbicidal ionic liquids (HILs) precursors containing 2,4-D and MCPA moieties was tested with the well investigated model organism for toxicity and adaptation, Pseudomonas putida mt-2. Results were compared to those obtained for commercial 2,4-D and MCPA herbicides. Next to growth inhibition, given as EC50, changes in the isomerisation of cis to trans unsaturated fatty acids were applied as proxy for cellular stress adaptation to toxic substances. The results revealed that all investigated precursors of HILs showed lower toxicity compared to commercialized synthetic herbicides 2,4-D and MCPA. The collected data on toxicity of HILs together with their physico-chemical properties might be useful for assessing the potential risk of the environmental pollution as well as guidelines for setting the legislation for their future use.

  6. Comparative sorption and leaching study of the herbicides fluometuron and 4-chloro-2-methylphenoxyacetic acid (MCPA) in a soil amended with biochars and other sorbents.

    PubMed

    Cabrera, Alegria; Cox, Lucia; Spokas, Kurt A; Celis, Rafael; Hermosín, M Carmen; Cornejo, Juan; Koskinen, William C

    2011-12-14

    Biochar, the solid residual remaining after the thermochemical transformation of biomass for carbon sequestration, has been proposed to be used as a soil amendment, because of its agronomic benefits. The effect of amending soil with six biochars made from different feedstocks on the sorption and leaching of fluometuron and 4-chloro-2-methylphenoxyacetic acid (MCPA) was compared to the effect of other sorbents: an activated carbon, a Ca-rich Arizona montmorillonite modified with hexadecyltrimethylammonium organic cation (SA-HDTMA), and an agricultural organic residue from olive oil production (OOW). Soil was amended at 2% (w/w), and studies were performed following a batch equilibration procedure. Sorption of both herbicides increased in all amended soils, but decreased in soil amended with a biochar produced from macadamia nut shells made with fast pyrolysis. Lower leaching of the herbicides was observed in the soils amended with the biochars with higher surface areas BC5 and BC6 and the organoclay (OCl). Despite the increase in herbicide sorption in soils amended with two hardwood biochars (BC1 and BC3) and OOW, leaching of fluometuron and MCPA was enhanced with the addition of these amendments as compared to the unamended soil. The increased leaching is due to some amendments' soluble organic compounds, which compete or associate with herbicide molecules, enhancing their soil mobility. Thus, the results indicate that not all biochar amendments will increase sorption and decrease leaching of fluometuron and MCPA. Furthermore, the amount and composition of the organic carbon (OC) content of the amendment, especially the soluble part (DOC), can play an important role in the sorption and leaching of these herbicides.

  7. Comparative sorption and leaching study of the herbicides fluometuron and 4-chloro-2-methylphenoxyacetic acid (MCPA) in a soil amended with biochars and other sorbents.

    PubMed

    Cabrera, Alegria; Cox, Lucia; Spokas, Kurt A; Celis, Rafael; Hermosín, M Carmen; Cornejo, Juan; Koskinen, William C

    2011-12-14

    Biochar, the solid residual remaining after the thermochemical transformation of biomass for carbon sequestration, has been proposed to be used as a soil amendment, because of its agronomic benefits. The effect of amending soil with six biochars made from different feedstocks on the sorption and leaching of fluometuron and 4-chloro-2-methylphenoxyacetic acid (MCPA) was compared to the effect of other sorbents: an activated carbon, a Ca-rich Arizona montmorillonite modified with hexadecyltrimethylammonium organic cation (SA-HDTMA), and an agricultural organic residue from olive oil production (OOW). Soil was amended at 2% (w/w), and studies were performed following a batch equilibration procedure. Sorption of both herbicides increased in all amended soils, but decreased in soil amended with a biochar produced from macadamia nut shells made with fast pyrolysis. Lower leaching of the herbicides was observed in the soils amended with the biochars with higher surface areas BC5 and BC6 and the organoclay (OCl). Despite the increase in herbicide sorption in soils amended with two hardwood biochars (BC1 and BC3) and OOW, leaching of fluometuron and MCPA was enhanced with the addition of these amendments as compared to the unamended soil. The increased leaching is due to some amendments' soluble organic compounds, which compete or associate with herbicide molecules, enhancing their soil mobility. Thus, the results indicate that not all biochar amendments will increase sorption and decrease leaching of fluometuron and MCPA. Furthermore, the amount and composition of the organic carbon (OC) content of the amendment, especially the soluble part (DOC), can play an important role in the sorption and leaching of these herbicides. PMID:22023336

  8. Layered double hydroxides as adsorbents and carriers of the herbicide (4-chloro-2-methylphenoxy)acetic acid (MCPA): systems Mg-Al, Mg-Fe and Mg-Al-Fe.

    PubMed

    Bruna, F; Celis, R; Pavlovic, I; Barriga, C; Cornejo, J; Ulibarri, M A

    2009-09-15

    Hydrotalcite-like compounds [Mg(3)Al(OH)(8)]Cl x 4H(2)O; [Mg(3)Fe(OH)(8)]Cl x 4H(2)O; [Mg(3)Al(0.5)Fe(0.5)(OH)(8)]Cl x 4H(2)O (LDHs) and calcined product of [Mg(3)Al(OH)(8)]Cl x 4H(2)O, Mg(3)AlO(4.5) (HT500), were studied as potential adsorbents of the herbicide MCPA [(4-chloro-2-methylphenoxy)acetic acid] as a function of pH, contact time and pesticide concentration, and also as support for the slow release of this pesticide, with the aim to reduce the hazardous effects that it can pose to the environment. The information obtained in the adsorption study was used for the preparation of LDH-MCPA complexes. The results showed high and rapid adsorption of MCPA on the adsorbents as well as that MCPA formulations based on LDHs and HT500 as pesticide supports displayed controlled release properties and reduced herbicide leaching in soil columns compared to a standard commercial MCPA formulation. Thereby, we conclude that the LDHs employed in this study can be used not only as adsorbents to remove MCPA from aqueous solutions, but also as supports for the slow release of this highly mobile herbicide, thus controlling its immediate availability and leaching. PMID:19380194

  9. 2-Methyl-4-chlorophenoxyacetic acid (MCPA)

    Integrated Risk Information System (IRIS)

    2 - Methyl - 4 - chlorophenoxyacetic acid ( MCPA ) ; CASRN 94 - 74 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard

  10. Influence of soil biochar aging on sorption of the herbicides MCPA, nicosulfuron, terbuthylazine, indaziflam, and fluoroethyldiaminotriazine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorption of four herbicides and a metabolite of indaziflam on a fresh macadamia nut biochar and biochars aged one or two years in soil was characterized. On fresh biochar, the sorption was terbuthylazine (Kd = 595) > indaziflam (Kd = 162) > MCPA (Kd = 7.5) > fluoroethyldiaminotriazine (Kd = 0.26) a...

  11. Use of a new hybrid sol-gel zirconia matrix in the removal of the herbicide MCPA: a sorption/degradation process.

    PubMed

    Aronne, Antonio; Sannino, Filomena; Bonavolontà, Serena R; Fanelli, Esther; Mingione, Alessio; Pernice, Pasquale; Spaccini, Riccardo; Pirozzi, Domenico

    2012-02-01

    A class II hybrid sol-gel material was prepared starting from zirconium(IV) propoxide and 2,4-pentanedione and its catalytic activity in the removal of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) was revealed. The thermal and structural characterization, performed by thermogravimetry, differential thermal analysis, and diffuse reflectance Fourier transform infrared spectroscopy, demonstrated the hybrid nature of the material. The structure of the material can be described as a polymeric network of zirconium oxo clusters, on the surface of which large part of Zr(4+) ions are involved in strong complexation equilibria with acetylacetonate (acac) ligands. The incubation of MCPA in the presence of this material yielded an herbicide removal fraction up to 98%. A two-step mechanism was proposed for the MCPA removal, in which a reversible first-order adsorption of the herbicide is followed by its catalytic degradation. The nature of the products of the MCPA catalytic degradation as well as the reaction conditions adopted do not support typical oxidation pathways involving radicals, suggesting the existence of a different mechanism in which the Zr(4+):acac enol-type complex can act as Lewis acid catalyst.

  12. Environmental fate of the herbicide MCPA in agricultural soils amended with fresh and aged de-oiled two-phase olive mill waste.

    PubMed

    Peña, David; López-Piñeiro, Antonio; Albarrán, Ángel; Becerra, Daniel; Sánchez-Llerena, Javier

    2015-09-01

    Olive oil agrifood industry generates large amounts of waste whose recycling as organic amendment represents an alternative to their disposal. The impact of de-oiled two-phase olive mill waste (DW) on the fate of 4-chloro-2-methylphenoxyacetic acid (MCPA) in Mediterranean agricultural soils was evaluated. Furthermore, the effect of the transformation of organic matter from this waste under field conditions was assessed. Four Mediterranean agricultural soils were selected and amended in laboratory with fresh DW and field-aged DW (DW and ADW treatments, respectively). Adsorption capacity increased by factors between 1.18 and 3.59, for the DW-amended soils, and by factor of 4.93, for ADW-amended soil, with respect to unamended soils, when 5% amendment was applied. The DW amendment had inhibitory effect on dehydrogenase activity and slowed herbicide dissipation, whereas the opposite effect was observed in ADW treatments. In the field-amended soil, the amount of MCPA leached was significantly reduced from 56.9% for unamended soil to 15.9% at the 5% rate. However, leaching losses of MCPA increased in the laboratory-amended soils, because of their high water-soluble organic carbon values which could enhance MCPA mobility, especially in the acidic soils. Therefore, the application of DW as organic amendment in Mediterranean agricultural soils could be an important management strategy to reduce MCPA leaching, especially if the organic matter had been previously transformed by ageing processes.

  13. Phytotoxicity and antioxidative enzymes of green microalga (Desmodesmus subspicatus) and duckweed (Lemna minor) exposed to herbicides MCPA, chloridazon and their mixtures.

    PubMed

    Bisewska, Joanna; Sarnowska, Emilia I; Tukaj, Zbigniew H

    2012-09-01

    In this study, we evaluate the toxicity of MCPA (auxin-like growth inhibitor), chloridazon (CHD) (PSII-inhibitor) and their mixtures to floating plants and planktonic algae. Toxicity of MCPA (4-chloro-2-methylphenoxyacetic acid) and CHD (5-amino-4-chloro-2-phenyl-3(2H)-pyridazinone) was first assessed in two growth inhibition tests with Lemna minor (ISO/DIS 20079) and Desmodesmus subspicatus (ISO 8692). Next, herbicide mixtures at concentrations corresponding to the EC values were used to assess their interactive effects, and the biomarkers were: for duckweed fresh weight, frond area, chlorophyll content and number of fronds, and for algae cell count and cell volume. The 3d EC₁₀ and EC₅₀ values using cell counts of D. subspicatus were 142.7 and 529.1 mg/L for MCPA and 1.7 and 5.1 mg/L for CHD. The 7d EC₁₀ and EC₅₀ values using frond number of L. minor amounted to 0.8 and 5.4 mg/L for MCPA and 0.7 and 10.4 mg/L for CHD. Higher sensitivity of reproductive (number of cells/fronds) than growth processes (cell volume/frond area) to herbicides applied individually and in mixtures was especially pronounced in the responses of Desmodesmus. Herbicide interactions were assessed by the two-way ANOVA and Abbott's formula. Generally, an antagonistic interaction with Lemna was revealed by MCPA and chloridazon, whereas additive effect of both herbicides was observed for Desmodesmus. A significant stimulation of SOD and APX activity by binary mixtures was noted in algal cells mainly after 24 and 48 hours of exposure. The extremely high stimulation of the activity of both enzymes was induced by the combination EC₁₀CHD + EC₅₀MCPA (48 h). Presumably due to oxidative stress, the treatment with CHD at concentration EC₅₀ after 72 h was lethal for algae grown in aerated cultures, in contrast to standardized test conditions. Taking into account the consequences of risk assessment for herbicide mixtures we can state that a relatively low toxicity, as well as the

  14. Influence of soil biochar aging on sorption of the herbicides MCPA, nicosulfuron, terbuthylazine, indaziflam, and fluoroethyldiaminotriazine.

    PubMed

    Trigo, Carmen; Spokas, Kurt A; Cox, Lucia; Koskinen, William C

    2014-11-12

    Sorption of four herbicides and a metabolite of indaziflam on a fresh macadamia nut biochar and biochars aged one or two years in soil was characterized. On fresh biochar, the sorption was terbuthylazine (Kd = 595) > indaziflam (Kd = 162) > MCPA (Kd = 7.5) > fluoroethyldiaminotriazine (Kd = 0.26) and nicosulfuron (Kd = 0). Biochar surface area increased with aging attributed to the loss of a surface film. This was also manifested in a decline in water extractable organic carbon with aging. Correspondingly, an increase in the aromaticity was observed. The higher surface area and porosity in aged biochar increased sorption of indaziflam (KdBC-2yr = 237) and fluoroethyldiaminotriazine (KdBC-1yr = 1.2 and KdBC-2yr = 3.0), but interestingly decreased sorption of terbuthylazine (KdBC-1yr = 312 and KdBC-2yr = 221) and MCPA (KdBC-1yr = 2 and KdBC-2yr = 2). These results will facilitate development of biochars for specific remediation purposes.

  15. Influence of soil biochar aging on sorption of the herbicides MCPA, nicosulfuron, terbuthylazine, indaziflam, and fluoroethyldiaminotriazine.

    PubMed

    Trigo, Carmen; Spokas, Kurt A; Cox, Lucia; Koskinen, William C

    2014-11-12

    Sorption of four herbicides and a metabolite of indaziflam on a fresh macadamia nut biochar and biochars aged one or two years in soil was characterized. On fresh biochar, the sorption was terbuthylazine (Kd = 595) > indaziflam (Kd = 162) > MCPA (Kd = 7.5) > fluoroethyldiaminotriazine (Kd = 0.26) and nicosulfuron (Kd = 0). Biochar surface area increased with aging attributed to the loss of a surface film. This was also manifested in a decline in water extractable organic carbon with aging. Correspondingly, an increase in the aromaticity was observed. The higher surface area and porosity in aged biochar increased sorption of indaziflam (KdBC-2yr = 237) and fluoroethyldiaminotriazine (KdBC-1yr = 1.2 and KdBC-2yr = 3.0), but interestingly decreased sorption of terbuthylazine (KdBC-1yr = 312 and KdBC-2yr = 221) and MCPA (KdBC-1yr = 2 and KdBC-2yr = 2). These results will facilitate development of biochars for specific remediation purposes. PMID:25338136

  16. Direct and indirect effects of the herbicides Glyphosate, Bentazone and MCPA on eelgrass (Zostera marina).

    PubMed

    Nielsen, Line Winkel; Dahllöf, Ingela

    2007-04-20

    Eelgrass beds are important habitats for many organisms, but there has been a decline in the area covered by eelgrass during the last decades due to increased eutrophication resulting in increased shading from phytoplankton. The use of herbicides in terrestrial agriculture has also increased over the last century, and while the effects of herbicides on non-target organisms have been well studied in freshwater they are overlooked in coastal waters. It is not known if herbicides have any effect on the distribution of eelgrass (Zostera marina), or how natural phytoplankton communities respond to the same herbicides. Direct and indirect effects of the herbicides Glyphosate, Bentazone and MCPA both as single toxicants and as mixtures, on the eelgrass plants were investigated in this study. The direct effects on eelgrass were examined by measuring the four different endpoints; the relatively growth rate as length and weight, the chlorophyll a and b ratio, as well as the RNA-DNA ratio, at the end of a 3 days exposure period. The indirect effect was investigated by measuring the effect on a natural phytoplankton production from Roskilde Fjord six times during 1 year. The results showed that the chlorophyll a-b and RNA-DNA ratios were the most sensitive endpoints in single herbicide experiments. The effects of herbicide mixtures on eelgrass were much larger compared to the single substances. Nearly a halving was found for both the relatively growth rate in length and weight, and the RNA-DNA as well as the chlorophyll a-b ratios were also significant reduced. This indicates a possible synergistic effect, and calculations based on the concentration addition model indicate that the low concentrations mixture has a synergistic effect, whereas the high concentration mixture has an antagonistic effect on eelgrass (Z. marina). The low concentrations mixture is the one with the highest relevance for coastal areas. The effect on phytoplankton showed some variation over the year but

  17. Effect of DDT and MCPA (4-chloro-2-methylphenoxyacetic acid) on reproduction of the pond snail, Lymnaea stagnalis L

    SciTech Connect

    Woin, P.; Broenmark, C. )

    1992-01-01

    Reproduction is the single most important function in the life cycle of an organism. Successful reproduction determines fitness of organisms. The inability of an organism to complete any one stage of the reproductive process severely reduces its lifetime reproductive success. Disruptions in the reproduction will ultimately affect the abundance and distribution of the species. Therefore, laboratory tests of long-term impact of sublethal pollutant concentrations on organisms preferably is done on the reproductive success. Pollutants of diverse structure may affect the reproductive system which is sensitive to toxic agents. Certain pollutants, notably the organochlorine compounds, have been shown to affect the male and female reproductive systems. The authors have studied the effect of sublethal concentrations of DDT and the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) on the reproductive output of the pulmonate snail Lymnaea stagnalis under a 2-mon exposure period.

  18. Uptake of 4-chloro-2-methylphenoxyacetic acid (MCPA) from the apical membrane of Caco-2 cells by the monocarboxylic acid transporter

    SciTech Connect

    Kimura, Osamu; Tsukagoshi, Kensuke; Endo, Tetsuya

    2008-03-15

    The cellular uptake mechanism of 4-chloro-2-methylphenoxyacetic acid (MCPA), a phenoxyacetic acid derivative, was investigated using Caco-2 epithelial cells. The cells were incubated with 50 {mu}M MCPA at pH 6.0 and 37 deg. C, and the uptake of MCPA from the apical membranes was measured. The uptake of MCPA was significantly decreased by incubation at low temperature (4 {sup o}C) and markedly increased by lowering the extracellular pH. Pretreatment with a protonophore, carbonylcyanide-p-(trifluoromethoxy)phenylhydrazone (25 {mu}M), or metabolic inhibitors, 2,4-dinitrophenol (1 mM) and sodium azide (10 mM), significantly decreased the uptake of MCPA by 53%, 45% and 48%, respectively. Coincubation of MCPA with 10 mM L-lactic acid or {alpha}-cyano-4-hydroxycinnamate, which is a substrate or an inhibitor of the monocarboxylic acid transporters (MCTs), significantly decreased the uptake of MCPA by 31% and 20%, respectively, and coincubation with benzoic acid profoundly decreased the uptake by 68%. In contrast, coincubation with succinic acid (a dicarboxylic acid) did not affect the uptake. Kinetic analysis of initial MCPA uptake suggested that MCPA is taken up via a carrier-mediated process [K{sub m} = 1.37 {+-} 0.15 mM, V{sub max} = 115 {+-} 6 nmol (mg protein){sup -1} (3 min){sup -1}]. Lineweaver-Burk plots show that benzoic acid competitively inhibits the uptake of MCPA with a K{sub i} value of 4.68 {+-} 1.76 mM. A trans-stimulation effect on MCPA uptake was found in cells preloaded with benzoic acid. These results suggest that the uptake of MCPA from the apical membrane of Caco-2 cells is mainly mediated by common MCTs along with benzoic acid but also in part by L-lactic acid.

  19. The earthworm Aporrectodea caliginosa stimulates abundance and activity of phenoxyalkanoic acid herbicide degraders

    PubMed Central

    Liu, Ya-Jun; Zaprasis, Adrienne; Liu, Shuang-Jiang; Drake, Harold L; Horn, Marcus A

    2011-01-01

    2-Methyl-4-chlorophenoxyacetic acid (MCPA) is a widely used phenoxyalkanoic acid (PAA) herbicide. Earthworms represent the dominant macrofauna and enhance microbial activities in many soils. Thus, the effect of the model earthworm Aporrectodea caliginosa (Oligochaeta, Lumbricidae) on microbial MCPA degradation was assessed in soil columns with agricultural soil. MCPA degradation was quicker in soil with earthworms than without earthworms. Quantitative PCR was inhibition-corrected per nucleic acid extract and indicated that copy numbers of tfdA-like and cadA genes (both encoding oxygenases initiating aerobic PAA degradation) in soil with earthworms were up to three and four times higher than without earthworms, respectively. tfdA-like and 16S rRNA gene transcript copy numbers in soil with earthworms were two and six times higher than without earthworms, respectively. Most probable numbers (MPNs) of MCPA degraders approximated 4 × 105 gdw−1 in soil before incubation and in soil treated without earthworms, whereas MPNs of earthworm-treated soils were approximately 150 × higher. The aerobic capacity of soil to degrade MCPA was higher in earthworm-treated soils than in earthworm-untreated soils. Burrow walls and 0–5 cm depth bulk soil displayed higher capacities to degrade MCPA than did soil from 5–10 cm depth bulk soil, expression of tfdA-like genes in burrow walls was five times higher than in bulk soil and MCPA degraders were abundant in burrow walls (MPNs of 5 × 107 gdw−1). The collective data indicate that earthworms stimulate abundance and activity of MCPA degraders endogenous to soil by their burrowing activities and might thus be advantageous for enhancing PAA degradation in soil. PMID:20740027

  20. Evidence for the importance of litter as a co-substrate for MCPA dissipation in an agricultural soil.

    PubMed

    Saleh, Omar; Pagel, Holger; Enowashu, Esther; Devers, Marion; Martin-Laurent, Fabrice; Streck, Thilo; Kandeler, Ellen; Poll, Christian

    2016-03-01

    Environmental controls of 2-methyl-4-chlorophenoxyacetic acid (MCPA) degradation are poorly understood. We investigated whether microbial MCPA degraders are stimulated by (maize) litter and whether this process depends on concentrations of MCPA and litter. In a microcosm experiment, different amounts of litter (0, 10 and 20 g kg(-1)) were added to soils exposed to three levels of the herbicide (0, 5 and 30 mg kg(-1)). The treated soils were incubated at 20 °C for 6 weeks, and samples were taken after 1, 3 and 6 weeks of incubation. In soils with 5 mg kg(-1) MCPA, about 50 % of the MCPA was dissipated within 1 week of the incubation. Almost complete dissipation of the herbicide had occurred by the end of the incubation with no differences between the three litter amendments. At the higher concentration (30 mg kg(-1)), MCPA endured longer in the soil, with only 31 % of the initial amount being removed at the end of the experiment in the absence of litter. Litter addition greatly increased the dissipation rate with 70 and 80 % of the herbicide being dissipated in the 10 and 20 g kg(-1) litter treatments, respectively. Signs of toxic effects of MCPA on soil bacteria were observed from related phospholipid fatty acid (PLFA) analyses, while fungi showed higher tolerance to the increased MCPA levels. The abundance of bacterial tfdA genes in soil increased with the co-occurrence of litter and high MCPA concentration, indicating the importance of substrate availability in fostering MCPA-degrading bacteria and thereby improving the potential for removal of MCPA in the environment. PMID:25943518

  1. Adsorption and degradation of phenoxyalkanoic acid herbicides in soils: A review.

    PubMed

    Paszko, Tadeusz; Muszyński, Paweł; Materska, Małgorzata; Bojanowska, Monika; Kostecka, Małgorzata; Jackowska, Izabella

    2016-02-01

    The primary aim of the present review on phenoxyalkanoic acid herbicides-2-(2,4-dichlorophenoxy) acetic acid (2,4-D), 2-(4-chloro-2-methylphenoxy) acetic acid (MCPA), (2R)-2-(2,4-dichlorophenoxy) propanoic acid (dichlorprop-P), (2R)-2-(4-chloro-2-methylphenoxy) propanoic acid (mecoprop-P), 4-(2,4-dichlorophenoxy) butanoic acid (2,4-DB), and 4-(4-chloro-2-methylphenoxy) butanoic acid (MCPB)-was to compare the extent of their adsorption in soils and degradation rates to assess their potential for groundwater contamination. The authors found that adsorption decreased in the sequence of 2,4-DB > 2,4-D > MCPA > dichlorprop-P > mecoprop-P. Herbicides are predominantly adsorbed as anions-on organic matter and through a water-bridging mechanism with adsorbed Fe cations-and their neutral forms are adsorbed mainly on organic matter. Adsorption of anions of 2,4-D, MCPA, dichlorprop-P, and mecoprop-P is inversely correlated with their lipophilicity values, and modeling of adsorption of the compounds based on this relationship is possible. The predominant dissipation mechanism of herbicides in soils is bacterial degradation. The contribution of other mechanisms, such as degradation by fungi, photodegradation, or volatilization from soils, is much smaller. The rate of bacterial degradation decreased in the following order: 2,4-D > MCPA > mecoprop-P > dichlorprop-P. It was found that 2,4-D and MCPA have the lowest potential for leaching into groundwater and that mecoprop-P and dichlorprop-P have slightly higher potential. Because of limited data on adsorption and degradation of 2,4-DB and MCPB, estimation of their leaching potential was not possible.

  2. Adsorption and characterization of MCPA on DDTMA- and raw-montmorillonite: Surface sites involved.

    PubMed

    Santiago, Cintia C; Fernández, Mariela A; Torres Sánchez, Rosa M

    2016-01-01

    The 4-chloro-2-methylphenoxy acid (MCPA) is an herbicide widely used in agriculture, which generates a great concern about contamination of surface water and serious consequences for human health and the environment. In this work, the adsorption of MCPA on an Argentine montmorillonite (MMT) and its organo-montmorillonite product (OMMT) with different dodecyl trimethyl ammonium loading was investigated. MCPA adsorption on OMMT increases at least 3 times, with respect to the amount determined for MMT. X-ray diffraction and zeta potential analyses indicated the inner (interlayer) and outer surface participate as adsorption sites. Changes in surface electric charge and also interlayer expansion suggest that dimethyl amine (MCPA counterion) was also surface-adsorbed. The larger aggregates of OMMT, without and with MCPA, obtained compared to those of MMT samples, generate an improvement in the coagulation efficiency. This property, particularly after MCPA retention, allows an easier separation of the solids from the solution and enables a simple technological process application. PMID:26786275

  3. Impact of wheat straw biochar addition to soil on the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy)acetic acid and the growth of sunflower (Helianthus annuus L.).

    PubMed

    Tatarková, Veronika; Hiller, Edgar; Vaculík, Marek

    2013-06-01

    Biochar addition to agricultural soils might increase the sorption of herbicides, and therefore, affect other sorption-related processes such as leaching, dissipation and toxicity for plants. In this study, the impact of wheat straw biochar on the sorption, leaching and dissipation in a soil, and toxicity for sunflower of (4-chloro-2-methylphenoxy)acetic acid (MCPA), a commonly used ionizable herbicide, was investigated. The results showed that MCPA sorption by biochar and biochar-amended soil (1.0wt% biochar) was 82 and 2.53 times higher than that by the non-amended soil, respectively. However, desorption of MCPA from biochar-amended soil was only 1.17 times lower than its desorption in non-amended soil. Biochar addition to soil reduced both MCPA leaching and dissipation. About 35% of the applied MCPA was transported through biochar-amended soil, while up to 56% was recovered in the leachates transported through non-amended soil. The half-life value of MCPA increased from 5.2d in non-amended soil to 21.5 d in biochar-amended soil. Pot experiments with sunflower (Helianthus annuus L.) grown in MCPA-free, but biochar-amended soil showed no positive effect of biochar on the growth of sunflower in comparison to the non-amended soil. However, biochar itself significantly reduced the content of photosynthetic pigments (chlorophyll a, b) in sunflower. There was no significant difference in the phytotoxic effects of MCPA on sunflowers between the biochar-amended soil and the non-amended soil. Furthermore, MCPA had no effect on the photosynthetic pigment contents in sunflower.

  4. Behavior of MCPA in four intensive cropping soils amended with fresh, composted, and aged olive mill waste

    NASA Astrophysics Data System (ADS)

    López-Piñeiro, Antonio; Peña, David; Albarrán, Angel; Sánchez-Llerena, Javier; Becerra, Daniel

    2013-09-01

    An evaluation was made of the impact of olive mill waste and its organic matter transformation on the sorption, desorption, leaching, and degradation of the herbicide MCPA when the waste was applied to four Mediterranean soils. The soils were amended in the laboratory with fresh, composted, and field-aged olive mill waste (OW, COW, and AOW treatments, respectively). It was found that the greater the amount of OW applied to the soils, but especially the greater its organic matter maturity, the greater the adsorption of MCPA. Compared with unamended soils, at the 5% rate of application the adsorption capacity increased by between 9.8% and 40%, 148% and 224%, and by 258% for the OW, COW, and AOW amended soils, respectively. The hysteresis coefficients were significantly lower in the OW-amended soils than in AOW or COW-amended soils, indicating that the adsorbed MCPA could be easily desorbed in OW-amended soils if the amendment is not aged or composted. While the OW addition greatly extended the persistence of MCPA, the application of COW enhanced MCPA degradation in all the soils, as corresponded to the increased soil microbial activity indicated by the higher levels of soil dehydrogenase activity. Fresh OW amendment significantly increased the amount of MCPA leached (from 13.7% in the most alkaline soil to 36.7% in the most acidic, at the 5% rate of application), favored by the higher levels of water soluble organic carbon content. However, leaching losses of the herbicide were reduced by up to 39.9% and 55.3% in the COW- and AOW-amended soils at the 5% loading rate, respectively. The use of OW with a high degree of organic matter maturity may be regarded as a potentially useful management practice to reduce MCPA leaching in soils with low organic matter content. The application of fresh OW, however, could well increase the risk of groundwater contamination by this herbicide, especially in acidic soils.

  5. Behavior of MCPA in four intensive cropping soils amended with fresh, composted, and aged olive mill waste.

    PubMed

    López-Piñeiro, Antonio; Peña, David; Albarrán, Angel; Sánchez-Llerena, Javier; Becerra, Daniel

    2013-09-01

    An evaluation was made of the impact of olive mill waste and its organic matter transformation on the sorption, desorption, leaching, and degradation of the herbicide MCPA when the waste was applied to four Mediterranean soils. The soils were amended in the laboratory with fresh, composted, and field-aged olive mill waste (OW, COW, and AOW treatments, respectively). It was found that the greater the amount of OW applied to the soils, but especially the greater its organic matter maturity, the greater the adsorption of MCPA. Compared with unamended soils, at the 5% rate of application the adsorption capacity increased by between 9.8% and 40%, 148% and 224%, and by 258% for the OW, COW, and AOW amended soils, respectively. The hysteresis coefficients were significantly lower in the OW-amended soils than in AOW or COW-amended soils, indicating that the adsorbed MCPA could be easily desorbed in OW-amended soils if the amendment is not aged or composted. While the OW addition greatly extended the persistence of MCPA, the application of COW enhanced MCPA degradation in all the soils, as corresponded to the increased soil microbial activity indicated by the higher levels of soil dehydrogenase activity. Fresh OW amendment significantly increased the amount of MCPA leached (from 13.7% in the most alkaline soil to 36.7% in the most acidic, at the 5% rate of application), favored by the higher levels of water soluble organic carbon content. However, leaching losses of the herbicide were reduced by up to 39.9% and 55.3% in the COW- and AOW-amended soils at the 5% loading rate, respectively. The use of OW with a high degree of organic matter maturity may be regarded as a potentially useful management practice to reduce MCPA leaching in soils with low organic matter content. The application of fresh OW, however, could well increase the risk of groundwater contamination by this herbicide, especially in acidic soils. PMID:23911783

  6. Behavior of MCPA in four intensive cropping soils amended with fresh, composted, and aged olive mill waste.

    PubMed

    López-Piñeiro, Antonio; Peña, David; Albarrán, Angel; Sánchez-Llerena, Javier; Becerra, Daniel

    2013-09-01

    An evaluation was made of the impact of olive mill waste and its organic matter transformation on the sorption, desorption, leaching, and degradation of the herbicide MCPA when the waste was applied to four Mediterranean soils. The soils were amended in the laboratory with fresh, composted, and field-aged olive mill waste (OW, COW, and AOW treatments, respectively). It was found that the greater the amount of OW applied to the soils, but especially the greater its organic matter maturity, the greater the adsorption of MCPA. Compared with unamended soils, at the 5% rate of application the adsorption capacity increased by between 9.8% and 40%, 148% and 224%, and by 258% for the OW, COW, and AOW amended soils, respectively. The hysteresis coefficients were significantly lower in the OW-amended soils than in AOW or COW-amended soils, indicating that the adsorbed MCPA could be easily desorbed in OW-amended soils if the amendment is not aged or composted. While the OW addition greatly extended the persistence of MCPA, the application of COW enhanced MCPA degradation in all the soils, as corresponded to the increased soil microbial activity indicated by the higher levels of soil dehydrogenase activity. Fresh OW amendment significantly increased the amount of MCPA leached (from 13.7% in the most alkaline soil to 36.7% in the most acidic, at the 5% rate of application), favored by the higher levels of water soluble organic carbon content. However, leaching losses of the herbicide were reduced by up to 39.9% and 55.3% in the COW- and AOW-amended soils at the 5% loading rate, respectively. The use of OW with a high degree of organic matter maturity may be regarded as a potentially useful management practice to reduce MCPA leaching in soils with low organic matter content. The application of fresh OW, however, could well increase the risk of groundwater contamination by this herbicide, especially in acidic soils.

  7. Study on the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chloro-phenoxyacetic sodium (MCPA sodium) in natural agriculture-soils of Fuzhou, China using capillary electrophoresis.

    PubMed

    Fu, Fengfu; Xiao, Linxia; Wang, Wei; Xu, Xueqin; Xu, Liangjun; Qi, Guomin; Chen, Guonan

    2009-03-01

    A new method of analyzing trace 2,4-Dichlorophenoxyacetic acid (2,4-D) and 2-methy-4-chloro-lphenoxyacetic sodium (MCPA sodium) in soils by capillary electrophoresis (CE) has been developed in this study. The optimum analytical conditions including chemical component and concentration of buffer solution, pH, separation voltage and sample injection time were studied in detail. Under the optimum conditions, 2,4-D and MCPA sodium in soils can be speedy separated and determined within 20 min with detection limits of 0.15 microg/g (2,4-D) and 0.25 microg/g (MCPA sodium) , a RSD (n=6)<5% and a recovery>89%. With the help of analytical method developed in this study, the degradations of 2,4-D and MCPA sodium in natural agriculture-soils of Fuzhou were studied. The experimental results indicated that the degradations of 2,4-D and MCPA sodium follow first-order kinetics with degradation constants of 0.1509 day(-1) (2,4-D) and 0.2722 day(-1) (MCPA sodium) respectively. The degradation half-life were calculated to be 4.6 days (2,4-D) and 2.6 days (MCPA sodium) at 27 degrees C, implied that 2,4-D and MCPA sodium can be speedy degraded in natural agriculture-soils of Fuzhou, China.

  8. Cm-scale Heterogeneity in Degradation - Potential Impact on Leaching of MCPA through a Variably-Saturated Macroporous Clayey Till

    NASA Astrophysics Data System (ADS)

    Rosenbom, A. E.; Johnsen, A. R.; Aamand, J.; Binning, P. J.; Dechesne, A.; Smets, B. F.; "Cream-Spatial Heterogeneity"-Team

    2011-12-01

    Recent research has revealed a large variation in pesticide mineralization potentials, but little is known about the scale at which these heterogeneities impact the spreading of contaminants. A modeling study aiming at quantifying how heterogeneous degradation potentials in agricultural soil will affect MCPA degradation and leaching was conducted. 2D-distributions (96-well micro plate mineralization assay) of the mineralization potentials of phenoxy acid herbicides (MCPA, 2,4-D) representing layers in the upper meter of variably-saturated clayey till were applied. The rapid mineralization measured was represented by Monod mineralization kinetics, whereas the rest were either represented by slow 0-order mineralization kinetics or no degradation. Five 3D-modelling scenarios were set up using the COMSOL Multiphysics 4.1 toolbox (COMSOL Inc., Burlington, MA, USA): 1) simple matrix flow of water with no biodegradation of the MCPA at all nodes; 2) preferential flow (including a wormhole) of water with no biodegradation of the MCPA at all nodes; 3) simple matrix flow of water with average biodegradation of the MCPA at all nodes, which corresponds to results derived from a conventional homogenized soil sample; 4) simple matrix flow of water with the observed high variation in biodegradation of the MCPA corresponding to random variation in degradation; and 5) vertical structure in water flow combined with vertically structured degradation (defined hot spots and cold spots), which corresponds to a situation where both flow and degradation are associated with macropores/wormholes. Results show that cm-scale heterogeneity in degradation potential with simple matrix flow has a negligible effect on MCPA leaching at one meter below soil surface. By introducing a wormhole in the low-permeable 3D-soil modeling domain, however, the risk of MCPA-leaching below one meter depth increase drastically with low degradation potential along the wall of macropores/wormholes.

  9. Factors responsible for rapid dissipation of acidic herbicides in the coastal lagoons of the Camargue (Rhône River Delta, France).

    PubMed

    Al Housari, Fadi; Höhener, Patrick; Chiron, Serge

    2011-01-01

    This study was aimed at investigating which processes cause acidic herbicides (e.g., bentazone, MCPA and dichlorprop) to rapidly disappear in the lagoons of the Rhône delta, which are peculiar brackish and shallow aquatic environments. The use of the model MASAS (Modeling of Anthropogenic Substances in Aquatic Systems) revealed that sorption, sedimentation, volatilization, flushing and abiotic hydrolysis had a minor role in the attenuation of the investigated herbicides. Laboratory scale biodegradation and photodegradation studies were conducted to better assess the significance of these two processes in the natural attenuation of herbicides in brackish (lagoons) waters with respect to fresh waters (canals draining paddy fields). Herbicide biodegradation rates were significantly lower in lagoon water than in canal water. Consequently, photodegradation was the main dissipation route of all investigated herbicides. The contribution of indirect photolysis was relevant for MCPA and dichlorprop while direct photolysis dominated for bentazone removal. There is a need to further investigate the identity of phototransformation products of herbicides in lagoons.

  10. Comparative Inter-Species Pharmacokinetics of Phenoxyacetic Acid Herbicides and Related Organic Acids. Evidence that the Dog is Not a Relevant Species for Evaluation of Human Health Risk.

    SciTech Connect

    Timchalk, Chuck

    2004-07-15

    Phenoxyacetic acids including 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA) are widely utilized organic acid herbicides that have undergone extensive toxicity and pharmacokinetic analyses. The dog is particularly susceptible to the toxicity of phenoxyacetic acids and related organic acids relative to other species. Active renal clearance mechanisms for organic acids are ubiquitous in mammalian species, and thus a likely mechanism responsible for the increased sensitivity of the dog to these agents is linked to a lower capacity to secrete organic acids from the kidney. Using published data describing the pharmacokinetics of phenoxyacetic and structurally related organic acids in a variety of species including humans, inter-species comparative pharmacokinetics were evaluated using allometic parameter scaling. For both 2,4-D and MCPA the dog plasma half-life (t1/2) and renal clearance (Clr; ml hr-1) rates did not scale as a function of body weight across species; whereas for all other species evaluated, including humans, these pharmacokinetic parameters reasonably scaled. This exceptional response in the dog is clearly illustrated by comparing the plasma t1/2 at comparable doses of 2,4-D and MCPA, across several species. At a dosage of 5 mg/kg, in dogs the plasma t1/2 for 2,4-D and MCPA were {approx}92 - 106 hr and 63 hr, respectively, which is substantially longer than in the rat ({approx}1 and 6 hr, respectively) or in humans (12 and 11 hr, respectively). This longer t1/2, and slower elimination in the dog, results in substantially higher body burdens of these organic acids, at comparable doses, relative to other species. Although these results indicate the important role of renal transport clearance mechanisms as determinants of the clearance and potential toxicity outcomes of phenoxyacetic acid herbicides across several species, other contributing mechanisms such as reabsorption from the renal tubules is highly likely. These

  11. Influence of oligomeric herbicidal ionic liquids with MCPA and Dicamba anions on the community structure of autochthonic bacteria present in agricultural soil.

    PubMed

    Ławniczak, Ł; Syguda, A; Borkowski, A; Cyplik, P; Marcinkowska, K; Wolko, Ł; Praczyk, T; Chrzanowski, Ł; Pernak, J

    2016-09-01

    The aim of this study was to evaluate the impact of selected herbicidal ionic liquids (HILs), which exhibit high efficacy in terms of weed control and low toxicity, but may be persistent due to limited biodegradability, on the community structure of autochthonic bacteria present in agricultural soil. Four different oligomeric HILs (with two types of cations and different ratio of herbicidal anions) were synthesized and characterized by employing (1)H and (13)C NMR. The results of biodegradation assay indicated that none of the tested HILs could be classified as readily biodegradable (biodegradation rate ranged from 0 to 7%). The conducted field studies confirmed that the herbicidal efficacy of the HILs was higher compared to the reference herbicide mixture by 10 to 30%, depending on the dose and weed species. After termination of field studies, the soil treated with the tested HILs was subjected to next generation sequencing in order to investigate the potential changes in the bacterial community structure. Proteobacteria was the dominant phylum in all studied samples. Treatment with the studied HILs resulted in an increase of Actinobacteria compared to the reference herbicidal mixture. Differenced among the studied HILs were generally associated with a significantly higher abundance of Bacteroidetes in case of 1-HIL-Dicamba 1/3 and Firmicutes in case of 2-HIL-Dicamba 1/3. PMID:27135587

  12. Comparing Metabolic Functionalities, Community Structures, and Dynamics of Herbicide-Degrading Communities Cultivated with Different Substrate Concentrations

    PubMed Central

    Gözdereliler, Erkin; Boon, Nico; Aamand, Jens; De Roy, Karen; Granitsiotis, Michael S.; Albrechtsen, Hans-Jørgen

    2013-01-01

    Two 4-chloro-2-methylphenoxyacetic acid (MCPA)-degrading enrichment cultures selected from an aquifer on low (0.1 mg liter−1) or high (25 mg liter−1) MCPA concentrations were compared in terms of metabolic activity, community composition, population growth, and single cell physiology. Different community compositions and major shifts in community structure following exposure to different MCPA concentrations were observed using both 16S rRNA gene denaturing gradient gel electrophoresis fingerprinting and pyrosequencing. The communities also differed in their MCPA-mineralizing activities. The enrichments selected on low concentrations mineralized MCPA with shorter lag phases than those selected on high concentrations. Flow cytometry measurements revealed that mineralization led to cell growth. The presence of low-nucleic acid-content bacteria (LNA bacteria) was correlated with mineralization activity in cultures selected on low herbicide concentrations. This suggests that LNA bacteria may play a role in degradation of low herbicide concentrations in aquifers impacted by agriculture. This study shows that subpopulations of herbicide-degrading bacteria that are adapted to different pesticide concentrations can coexist in the same environment and that using a low herbicide concentration enables enrichment of apparently oligotrophic subpopulations. PMID:23124226

  13. Investigation of MCPA (4-Chloro-2-ethylphenoxyacetate) resistance in wild radish (Raphanus raphanistrum L.).

    PubMed

    Jugulam, Mithila; Dimeo, Natalie; Veldhuis, Linda J; Walsh, Michael; Hall, J Christopher

    2013-12-26

    The phenoxy herbicides (e.g., 2,4-D and MCPA) are used widely in agriculture for the selective control of broadleaf weeds. In Western Australia, the reliance on phenoxy herbicides has resulted in the widespread evolution of phenoxy resistance in wild radish (Raphanus raphanistrum) populations. In this research the inheritance and mechanism of MCPA resistance in wild radish were determined. Following classical breeding procedures, F1, F2, and backcross progeny were generated. The F1 progeny showed an intermediate response to MCPA, compared to parents, suggesting that MCPA resistance in wild radish is inherited as an incompletely dominant trait. Segregation ratios observed in F2 (3:1; resistant:susceptible) and backcross progeny (1:1; resistant to susceptible) indicated that the MCPA resistance is controlled by a single gene in wild radish. Radiolabeled MCPA studies suggested no difference in MCPA uptake or metabolism between resistant and susceptible wild radish; however, resistant plants rapidly translocated more (14)C-MCPA to roots than susceptible plants, which may have been exuded from the plant. Understanding the genetic basis and mechanism of phenoxy resistance in wild radish will help formulate prudent weed management strategies to reduce the incidence of phenoxy resistance.

  14. Electromembrane Surrounded Solid Phase Microextraction Followed by Injection Port Derivatization and Gas Chromatography-Flame Ionization Detector Analysis for Determination of Acidic Herbicides in Plant Tissue.

    PubMed

    Rezazadeh, Maryam; Yamini, Yadollah; Seidi, Shahram; Tahmasebi, Elham; Rezaei, Fatemeh

    2014-04-01

    Electromembrane surrounded solid phase microextraction (EM-SPME) of acidic herbicides was studied for the first time. In order to investigate the capability of this new microextraction technique to analyze acidic targets, chlorophenoxy acid (CPA) herbicides were quantified in plant tissue. 1-Octanol, was sustained in the pores of the wall of a hollow fiber and served as supported liquid membrane (SLM). Other EM-SPME related parameters, including extraction time, applied voltage, and pHs of the sample solution and the acceptor phase, were optimized using experimental design. A 20 min time frame was needed to reach the highest extraction efficiency of the analytes from a 24 mL alkaline sample solution across the organic liquid membrane and into the aqueous acceptor phase through a 50 V electrical field, and to their final adsorption on a carbonaceous anode. In addition to high sample cleanup, which made the proposed method appropriate for analysis of acidic compounds in a complicated media (plant tissue), 4.8% of 2-methyl-4-chlorophenoxyacetic acid (MCPA) and 0.6% of 2,4-dichlorophenoxyacetic acid (2,4-D) were adsorbed on the anode, resulting in suitable detection limits (less than 5 ng mL(-1)), and admissible repeatability and reproducibility (intra- and interassay precision were in the ranges of 5.2-8.5% and 8.8-12.0%, respectively). Linearity of the method was scrutinized within the ranges of 1.0-500.0 and 10.0-500.0 ng mL(-1) for MCPA and 2,4-D, respectively, and coefficients of determination greater than 0.9958 were obtained. Optimal conditions of EM-SPME of the herbicides were employed for analysis of CPAs in whole wheat tissue. PMID:24660667

  15. Pelargonic acid as a herbicide in sweet bell peppers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pelargonic acid, although not certified as organic, is naturally occurring in many plants, animals, and foods. It is also phytotoxic to plants as a contact herbicide, injuring and killing plants by destroying the cell membrane. Vegetable producers would benefit from additional herbicide options tha...

  16. Betaine and Carnitine Derivatives as Herbicidal Ionic Liquids.

    PubMed

    Pernak, Juliusz; Niemczak, Michał; Chrzanowski, Łukasz; Ławniczak, Łukasz; Fochtman, Przemysław; Marcinkowska, Katarzyna; Praczyk, Tadeusz

    2016-08-16

    This study focused on the synthesis and subsequent characterization of herbicidal ionic liquids based on betaine and carnitine, two derivatives of amino acids, which were used as cations. Four commonly used herbicides (2,4-D, MCPA, MCPP and Dicamba) were used as anions in simple (single anion) and oligomeric (two anions) salts. The obtained salts were subjected to analyzes regarding physicochemical properties (density, viscosity, refractive index, thermal decomposition profiles and solubility) as well as evaluation of their herbicidal activity under greenhouse and field conditions, toxicity towards rats and biodegradability. The obtained results suggest that the synthesized herbicidal ionic liquids displayed low toxicity (classified as category 4 compounds) and showed similar or improved efficacy against weed compared to reference herbicides. The highest increase was observed during field trials for salts containing 2,4-D as the anion, which also exhibited the highest biodegradability (>75 %). PMID:27374836

  17. A Systematic Review of Carcinogenic Outcomes and Potential Mechanisms from Exposure to 2,4-D and MCPA in the Environment

    PubMed Central

    von Stackelberg, Katherine

    2013-01-01

    Chlorophenoxy compounds, particularly 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxy)acetic acid (MCPA), are amongst the most widely used herbicides in the United States for both agricultural and residential applications. Epidemiologic studies suggest that exposure to 2,4-D and MCPA may be associated with increased risk non-Hodgkins lymphoma (NHL), Hodgkin's disease (HD), leukemia, and soft-tissue sarcoma (STS). Toxicological studies in rodents show no evidence of carcinogenicity, and regulatory agencies worldwide consider chlorophenoxies as not likely to be carcinogenic or unclassifiable as to carcinogenicity. This systematic review assembles the available data to evaluate epidemiologic, toxicological, pharmacokinetic, exposure, and biomonitoring studies with respect to key cellular events noted in disease etiology and how those relate to hypothesized modes of action for these constituents to determine the plausibility of an association between exposure to environmentally relevant concentrations of 2,4-D and MCPA and lymphohematopoietic cancers. The combined evidence does not support a genotoxic mode of action. Although plausible hypotheses for other carcinogenic modes of action exist, a comparison of biomonitoring data to oral equivalent doses calculated from bioassay data shows that environmental exposures are not sufficient to support a causal relationship. Genetic polymorphisms exist that are known to increase the risk of developing NHL. The potential interaction between these polymorphisms and exposures to chlorophenoxy compounds, particularly in occupational settings, is largely unknown. PMID:23533401

  18. Passive extraction and clean-up of phenoxy acid herbicides in samples from a groundwater plume using hollow fiber supported liquid membranes.

    PubMed

    Liu, Jing-Fu; Toräng, Lars; Mayer, Philipp; Jönsson, Jan Ake

    2007-08-10

    Hollow fiber supported liquid membranes were applied for the passive extraction of phenoxy acid herbicides from water samples. Polypropylene hollow fiber membranes (240 microm i.d., 30 microm wall thickness, 0.05 microm pore size, 30 cm length) were impregnated with 2.0% tri-n-octylphosphine oxide (TOPO) in di-n-hexyl ether in the pores of the fiber wall to form a liquid membrane. They were then filled with basic solution in the lumen as acceptor and finally placed into the sample (donor). Complete extraction of phenoxy acid herbicides including 2,4-D, MCPA, dichlorprop, and mecoprop from an acidified sample (4 mL, adjusted to pH 1.5 with HCl) into basic acceptor (10 microL of 0.2M NaOH) was achieved after 4 h of shaking (100 rpm) resulting in an enrichment factor of 400 times. The acceptor was then neutralized by addition of HCl and injected into a HPLC system for the determination of the phenoxy acid herbicides. Environmentally relevant salinity (0-3.5% NaCl) and dissolved organic matter (0-25 mg/L of dissolved organic carbon) had no significant effect on the extraction. The method provided extraction efficiencies of more than 91%, detection limits of 0.3-0.6 microg/L, and combined extraction and clean up in one single step. This procedure was applied to determine aqueous concentrations of phenoxy acid herbicides in groundwater samples collected from an old dumping site (Cheminova, Denmark) with detected concentrations up to 5800 microg/L. Although the samples were very dirty with large amounts of suspended particles, non-aqueous phase liquids (NAPLs) and dissolved organic matters, good spike recoveries (80-126%) were obtained for 10 of the 11 samples.

  19. Draft Genome Sequence of MCPA-Degrading Sphingomonas sp. Strain ERG5, Isolated from a Groundwater Aquifer in Denmark

    PubMed Central

    Nielsen, Tue Kjærgaard; Sørensen, Sebastian R.; Hansen, Lars Hestbjerg

    2015-01-01

    Sphingomonas sp. strain ERG5 was isolated from a bacterial community, originating from a groundwater aquifer polluted with low pesticide concentrations. This bacterium degrades 2-methyl-4-chlorophenoxyacetic acid (MCPA) in a wide spectrum of concentrations and has been shown to function in bioaugmented sand filters. Genes associated with MCPA degradation are situated on a putative conjugative plasmid. PMID:25676756

  20. Diffuse geographic distribution of herbicides in northern prairie wetlands.

    PubMed

    Donald, D B; Gurprasad, N P; Quinnett-Abbott, L; Cash, K

    2001-02-01

    The concentrations of herbicides in water from wetlands on landscapes where herbicides are not used should be less than on farms with moderate (conventional farms) and intense (minimum-till farms) herbicide use. In general, this hypothesis was not supported for wetlands situated in the Boreal Plains Ecozone of central Saskatchewan, Canada. The overall detection frequency of 10 commonly used herbicides was not significantly different among wildlife habitat with no pesticide use (44.4%), farms with no pesticide use (51.6%), conventional farms (54.9%), and minimum-till farms (56.5%, chi 2 = 5.64, p = 0.13). The herbicides (4-chloro-2-methylphenoxy) acetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D), bromoxynil, dicamba, mecoprop, and diclorprop accounted for 87% of all detections. In general, detection frequencies and concentrations of individual herbicides were similar on all land-use types. For example, the mean concentration of 2,4-D in water on the four land types ranged from 0.12 +/- 0.104 to 0.26 +/- 0.465 microgram/L, and MCPA ranged from 0.08 +/- 0.078 to 0.19 +/- 0.166 microgram/L. However, in the year of application, mean concentrations of MCPA and bromoxynil, but not 2,4-D, were significantly higher by about twofold in wetlands situated in fields where these herbicides were applied compared with all other wetlands. We propose that many agricultural pesticides are rapidly lost to the atmosphere at the time of application by processes such as volatilization from soil and plant evapotranspiration. Then, the herbicides used throughout the region may be directly absorbed to the surface of wetlands from the atmosphere, or they become entrained in local convective clouds, and are redistributed by rainfall in a relatively homogenous mixture over the agricultural landscape. The low levels of individual herbicides we found in most of the wetland waters would not cause chronic effects to aquatic biota.

  1. Study of the Effect of UV Radiation on the Decomposition of 4-Chloro-2-Methylphenoxyacetic Acid

    NASA Astrophysics Data System (ADS)

    Tchaikovskaya, O. N.; Karetnikova, E. A.; Sokolova, I. V.; Mayer, G. V.

    2013-12-01

    The influence of UV radiation wavelength on the disappearance kinetics of 4-chloro-2-methylphenoxyacetic acid (MCPA) in the presence of activated sludge and humic acids has been examined. Variations in the kinetic curves of MCPA removal in the presence of humic acids were determined from results on accumulation of carbon dioxide gas. Spectral-luminescence and chromato-mass-spectrometry data reveal the presence in the medium of the biotransformation product 2-methyl-4-chlorophenol, which is utilized after 14 days. Addition of humic acids, on the one hand, reduced the rates of subsequent biodecomposition of MCPA. On the other hand, in the process of transformation of the herbicide in the presence of humic acids a photobioproduct was detected which does not contain chlorine: 2-methylphenoxyacetic acid.

  2. Identification of the mcpA and mcpM genes, encoding methyl-accepting proteins involved in amino acid and l-malate chemotaxis, and involvement of McpM-mediated chemotaxis in plant infection by Ralstonia pseudosolanacearum (formerly Ralstonia solanacearum phylotypes I and III).

    PubMed

    Hida, Akiko; Oku, Shota; Kawasaki, Takeru; Nakashimada, Yutaka; Tajima, Takahisa; Kato, Junichi

    2015-11-01

    Sequence analysis has revealed the presence of 22 putative methyl-accepting chemotaxis protein (mcp) genes in the Ralstonia pseudosolanacearum GMI1000 genome. PCR analysis and DNA sequencing showed that the highly motile R. pseudosolanacearum strain Ps29 possesses homologs of all 22 R. pseudosolanacearum GMI1000 mcp genes. We constructed a complete collection of single mcp gene deletion mutants of R. pseudosolanacearum Ps29 by unmarked gene deletion. Screening of the mutant collection revealed that R. pseudosolanacearum Ps29 mutants of RSp0507 and RSc0606 homologs were defective in chemotaxis to l-malate and amino acids, respectively. RSp0507 and RSc0606 homologs were designated mcpM and mcpA. While wild-type R. pseudosolanacearum strain Ps29 displayed attraction to 16 amino acids, the mcpA mutant showed no response to 12 of these amino acids and decreased responses to 4 amino acids. We constructed mcpA and mcpM deletion mutants of highly virulent R. pseudosolanacearum strain MAFF106611 to investigate the contribution of chemotaxis to l-malate and amino acids to tomato plant infection. Neither single mutant exhibited altered virulence for tomato plants when tested by root dip inoculation assays. In contrast, the mcpM mutant (but not the mcpA mutant) was significantly less infectious than the wild type when tested by a sand soak inoculation assay, which requires bacteria to locate and invade host roots from sand. Thus, McpM-mediated chemotaxis, possibly reflecting chemotaxis to l-malate, facilitates R. pseudosolanacearum motility to tomato roots in sand.

  3. Potential organic herbicides for squash production: Pelargonic acid herbicides AXXE® and Scythe®

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic squash (Cucurbita pepo L.) producers need appropriate herbicides that can effectively provide season-long weed control. Although corn gluten meal has shown promise as an early-season pre-emergent organic herbicide in squash production, any uncontrolled weeds can inflict serious yield reducti...

  4. Resistance to herbicides inhibiting the biosynthesis of very-long-chain fatty acids.

    PubMed

    Busi, Roberto

    2014-09-01

    Herbicides that act by inhibiting the biosynthesis of very-long-chain fatty acids (VLCFAs) have been used to control grass weeds in major crops throughout the world for the past 60 years. VLCFA-inhibiting herbicides are generally highly selective in crops, induce similar symptoms in susceptible grasses and can be found within the herbicide groups classified by the HRAC as K3 and N. Even after many years of continuous use, only 12 grass weed species have evolved resistance to VLCFA-inhibiting herbicides. Here, the cases of resistance that have evolved in major grass weed species belonging to the Avena, Echinochloa and Lolium genera in three different agricultural systems are reviewed. In particular we explore the possible reasons why VLCFA herbicides have been slow to select resistant weeds, outline the herbicide mode of action and discuss the resistance mechanisms that are most likely to have been selected.

  5. Calibration of a passive sampling device for time-integrated sampling of hydrophilic herbicides in aquatic environments.

    PubMed

    Tran, Anh T K; Hyne, Ross V; Doble, P

    2007-03-01

    Two types of solid-phase materials, a styrenedivinylbenzene copolymer sorbent (embedded in a SDB-XC Empore disk) and a styrenedivinylbenzene copolymer sorbent modified with sulfonic acid functional groups (embedded in a SDB-RPS Empore disk), were compared as a receiving phase in a passive sampling device for monitoring polar pesticides. The SDB-XC Empore disk was selected for further evaluation, overlayed with either a polysulfone or a polyethersulfone diffusion membrane. The target herbicides included five nonionized herbicides (simazine, atrazine, diuron, clomazone, and metolachlor) and four phenoxy acid herbicides (dicamba, (2,4-dichlorophenoxy)acetic acid [2,4-D], (4-chloro-2-methylphenoxy)acetic acid [MCPA], and triclopyr) with log octanol/water partition coefficient (log K(OW)) values of less than three in water. Uptake of these herbicides generally was higher into a device constructed of a SDB-XC Empore disk as a receiving phase covered with a polyethersulfone membrane compared to a similar device covered with a polysulfone membrane. Using the device with a SDB-XC Empore disk covered with a polyethersulfone membrane, linear uptake of simazine, atrazine, diuron, clomazone, and metolachlor was observed for up to 21 d, and daily sampling rates of the herbicides from water in a laboratory flow-through system were determined. The uptake rate of each nonionized herbicide by the Empore disk-based passive sampler was linearly proportional to its concentration in the water, and the sampling rate was independent of the water concentrations over the 21-d period. Uptake of the phenoxy acid herbicides (2,4-D, MCPA, and triclopyr) obeyed first-order kinetics and rapidly reached equilibrium in the passive sampler after approximately 12 d of exposure. The Empore disk-based passive sampler displayed isotropic kinetics, with a release half-life for triclopyr of approximately 6 d.

  6. Determination and occurrence of phenoxyacetic acid herbicides and their transformation products in groundwater using ultra high performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    McManus, Sarah-Louise; Moloney, Mary; Richards, Karl G; Coxon, Catherine E; Danaher, Martin

    2014-01-01

    A sensitive method was developed and validated for ten phenoxyacetic acid herbicides, six of their main transformation products (TPs) and two benzonitrile TPs in groundwater. The parent compounds mecoprop, mecoprop-p, 2,4-D, dicamba, MCPA, triclopyr, fluroxypr, bromoxynil, bentazone, and 2,3,6-trichlorobenzoic acid (TBA) are included and a selection of their main TPs: phenoxyacetic acid (PAC), 2,4,5-trichloro-phenol (TCP), 4-chloro-2-methylphenol (4C2MP), 2,4-dichlorophenol (DCP), 3,5,6-trichloro-2-pyridinol (T2P), and 3,5-dibromo-4-hydroxybenzoic acid (BrAC), as well as the dichlobenil TPs 2,6-dichlorobenzamide (BAM) and 3,5-dichlorobenzoic acid (DBA) which have never before been determined in Irish groundwater. Water samples were analysed using an efficient ultra-high performance liquid chromatography (UHPLC) method in an 11.9 min separation time prior to detection by tandem mass spectrometry (MS/MS). The limit of detection (LOD) of the method ranged between 0.00008 and 0.0047 µg·L(-1) for the 18 analytes. All compounds could be detected below the permitted limits of 0.1 µg·L(-1) allowed in the European Union (EU) drinking water legislation. The method was validated according to EU protocols laid out in SANCO/10232/2006 with recoveries ranging between 71% and 118% at the spiked concentration level of 0.06 µg·L(-1). The method was successfully applied to 42 groundwater samples collected across several locations in Ireland in March 2012 to reveal that the TPs PAC and 4C2MP were detected just as often as their parent active ingredients (a.i.) in groundwater. PMID:25514054

  7. Determination and occurrence of phenoxyacetic acid herbicides and their transformation products in groundwater using ultra high performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    McManus, Sarah-Louise; Moloney, Mary; Richards, Karl G; Coxon, Catherine E; Danaher, Martin

    2014-12-10

    A sensitive method was developed and validated for ten phenoxyacetic acid herbicides, six of their main transformation products (TPs) and two benzonitrile TPs in groundwater. The parent compounds mecoprop, mecoprop-p, 2,4-D, dicamba, MCPA, triclopyr, fluroxypr, bromoxynil, bentazone, and 2,3,6-trichlorobenzoic acid (TBA) are included and a selection of their main TPs: phenoxyacetic acid (PAC), 2,4,5-trichloro-phenol (TCP), 4-chloro-2-methylphenol (4C2MP), 2,4-dichlorophenol (DCP), 3,5,6-trichloro-2-pyridinol (T2P), and 3,5-dibromo-4-hydroxybenzoic acid (BrAC), as well as the dichlobenil TPs 2,6-dichlorobenzamide (BAM) and 3,5-dichlorobenzoic acid (DBA) which have never before been determined in Irish groundwater. Water samples were analysed using an efficient ultra-high performance liquid chromatography (UHPLC) method in an 11.9 min separation time prior to detection by tandem mass spectrometry (MS/MS). The limit of detection (LOD) of the method ranged between 0.00008 and 0.0047 µg·L(-1) for the 18 analytes. All compounds could be detected below the permitted limits of 0.1 µg·L(-1) allowed in the European Union (EU) drinking water legislation. The method was validated according to EU protocols laid out in SANCO/10232/2006 with recoveries ranging between 71% and 118% at the spiked concentration level of 0.06 µg·L(-1). The method was successfully applied to 42 groundwater samples collected across several locations in Ireland in March 2012 to reveal that the TPs PAC and 4C2MP were detected just as often as their parent active ingredients (a.i.) in groundwater.

  8. Nuclear Magnetic Resonance Identification of New Sulfonic Acid Metabolites of Chloroacetanilide Herbicides

    USGS Publications Warehouse

    Morton, M.D.; Walters, F.H.; Aga, D.S.; Thurman, E.M.; Larive, C.K.

    1997-01-01

    The detection of the sulfonic acid metabolites of the chloroacetanilide herbicides acetochlor, alachlor, butachlor, propachlor, and, more recently, metolachlor in surface and ground water suggests that a common mechanism for dechlorination exists via the glutathione conjugation pathway. The identification of these herbicides and their metabolites is important due to growing public awareness and concern about pesticide levels in drinking water. Although these herbicides are regulated, little is known about the fate of their metabolites in soil. The sulfonic acid metabolites were synthesized by reaction of the parent compounds with an excess of sodium sulfite. Acetochlor, alachlor, butachlor, metolachlor, and propachlor and their sulfonic acid metabolites were studied by nuclear magnetic resonance spectroscopy and fast atom bombardment mass spectrometry. This paper provides a direct method for the preparation and characterization of these compounds that will be useful in the analysis and study of chloracetanilide herbicides and their metabolites.

  9. Effect of carbonaceous soil amendments on potential mobility of weak acid herbicides in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of carbonaceous amendments in soil has been proposed to decrease potential offsite transport of weak acid herbicides and metabolites by increasing their sorption to soil. The effects of organic olive mill waste, biochars from different feed stocks, and humic acid bound to clay on sorption of MCP...

  10. Determination of phenoxy acid herbicides in water by electron-capture and microcoulometric gas chromatography

    USGS Publications Warehouse

    Goerlitz, D.F.; Lamar, William L.

    1967-01-01

    A sensitive gas chromatographic method using microcoulometric titration and electron-capture detection for the analysis of 2,4-D, silvex, 2,4,5-T, and other phenoxy acid herbicides in water is described. The herbicides are extracted from unfiltered water samples (800-1,000 ml) by use of ethyl ether ; then the herbicides are concentrated and esterilied. To allow the analyst a choice, two esterilication procedures--using either boron trifluoride-methanol or diazomethane--are evaluated. Microcoulometric gas chromatography is specific for the detection of halogenated compounds such as the phenoxy acid herbicides whereas it does not respond to nonhalogenated components. Microcoulometric gas chromatography requires care and patience. It is not convenient for rapid screening of l-liter samples that contain less than 1 microgram of the herbicide. Although electroncapture gas chromatography is less selective and more critically affected by interfering substances, it is, nevertheless, convenient and more sensitive than microcoulometric gas chromatography. Two different liquid phases are used in the gas chromatographic columns--DC-200 silicone in one column and QF-1 silicone in the other. The performance of both columns is improved by the addition of Carbowax 20M. The Gas Chrom Q support is coated with the liquid phases by the 'frontal-analysis' technique. The practical lower limits for measurement of the phenoxy acid herbicides in water primarily depend upon the sample size, interferences present, anal instrumentation used. With l-liter samples of water, the practical lower limits of measurement are 10 ppt (parts per trillion) for 2,4-D and 2 ppt for silvex and 2,4,5-T when electron-capture detection is used, and approximately 20 ppt for each herbicide when analyzed by microcoulometric-titration gas chromatography. Recoveries of the herbicides immediately after addition to unfiltered water samples averaged 92 percent for 2,4-D, 90 percent for silvex, and 98 percent for 2

  11. DEVELOPMENTS IN THE SUPERCRITICAL FLUID EXTRACTION OF CHLOROPHENOXY ACID HERBICIDES FROM SOIL SAMPLES

    EPA Science Inventory

    Extraction of chlorophenoxy acid herbicides from soil samples with supercritical carbon dioxide as extractant and tetrabutylammonium hydroxide and methyl iodide as derivatization agents was investigated. The extraction was carried out at 400 atm and 80 C for 15 min static, follow...

  12. Determination of commonly used polar herbicides in agricultural drainage waters in Australia by HPLC.

    PubMed

    Tran, Anh T K; Hyne, Ross V; Doble, Philip

    2007-03-01

    The present study describes the application of different extraction techniques for the preconcentration of ten commonly found acidic and non-acidic polar herbicides (2,4-D, atrazine, bensulfuron-methyl, clomazone, dicamba, diuron, MCPA, metolachlor, simazine and triclopyr) in the aqueous environment. Liquid-liquid extraction (LLE) with dichloromethane, solid-phase extraction (SPE) using Oasis HLB cartridges or SBD-XC Empore disks were compared for extraction efficiency of these herbicides in different matrices, especially water samples from contaminated agricultural drainage water containing high concentrations of particulate matter. Herbicides were separated and quantified by high performance liquid chromatography (HPLC) with an ultraviolet detector. SPE using SDB-XC Empore disks was applied to determine target herbicides in the Murrumbidgee Irrigation Area (NSW, Australia) during a two-week survey from October 2005 to November 2005. The daily aqueous concentrations of herbicides from 24-h composite samples detected at two sites increased after run-off from a storm event and were in the range of: 0.1-17.8 microg l(-1), < 0.1-0.9 microg l(-1) and 0.2-17.8 microg l(-1) at site 1; < 0.1-3.5 microg l(-1), < 0.1-0.2 microg l(-1) and < 0.2-3.2 microg l(-1) at site 2 for simazine, atrazine and diuron, respectively.

  13. Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide.

    PubMed

    Song, Yaling

    2014-02-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) was the first synthetic herbicide to be commercially developed and has commonly been used as a broadleaf herbicide for over 60 years. It is a selective herbicide that kills dicots without affecting monocots and mimics natural auxin at the molecular level. Physiological responses of dicots sensitive to auxinic herbicides include abnormal growth, senescence, and plant death. The identification of auxin receptors, auxin transport carriers, transcription factors response to auxin, and cross-talk among phytohormones have shed light on the molecular action mode of 2,4-D as a herbicide. Here, the molecular action mode of 2,4-D is highlighted according to the latest findings, emphasizing the physiological process, perception, and signal transduction under herbicide treatment.

  14. Sorption of bentazone, dichlorprop, MCPA, and propiconazole in reference soils from Norway.

    PubMed

    Thorstensen, C W; Lode, O; Eklo, O M; Christiansen, A

    2001-01-01

    Sorption-desorption kinetic and isotherm studies were performed by the batch equilibrium technique in three Norwegian soils. The soils were a fine sandy loam, a loam, and a soil of highly decomposed organic material. Two commercially formulations were used, Triagran-P and Tilt, containing either a mixture of bentazone [3-isopropyl-1H-2, 1,3-benzothiadiazin-4(3H)-one 2,2-dioxide], dichlorprop [(R)-2-(2, 4-dichlorophenoxy)-propionic acid], and MCPA [(4-chloro-2-methylphenoxy)acetic acid], or propiconazole [(+/-)1-(2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2-ylmethyl)-1H-1,2,4-triazole] alone. Sorption-desorption equilibrium occurred within 10 h for all pesticides. The Freundlich isotherms indicated nonlinear sorption of bentazone, dichlorprop, MCPA, and propiconazole. For all pesticides the highest Freundlich adsorption coefficient (K(F)) values were in the soil with highest organic content and lowest pH. For the fine sandy loam and loam, which are representative Norwegian agricultural soils, the results indicate that bentazone, dichlorprop, and MCPA are mobile with KF values ranging from 0.07 to 1.50 mg1-1/n kg(-1) L1/n. Propiconazole is much less mobile with KF values ranging from 27.00 to 36.02 mg1-1/n kg(-1) L1/n in the agricultural soils.

  15. Effects of herbicides on the concentration of poisonous compounds in plants: a review.

    PubMed

    Williams, M C; James, L F

    1983-12-01

    Herbicides may raise, lower, or not affect the concentration of poisonous compounds in plants. Herbicides, 2,4,5-T and silvex controlled Wasatch milkvetch (Astragalus miser var oblongifolius) and markedly reduced the concentration of miserotoxin, a poisonous aliphatic nitro compound. The concentration of phototoxic furocoumarins in the leaves of spring parsley (Cymopterus watsonii) decreased to nontoxic concentrations 4 to 5 weeks after treatment with 2,4-D. The hydrocyanic acid content of wild cherry (Prunus spp) decreased after treatment with 2,4-D and 2,4,5-T, but increased in Sudangrass (Sorghum halapense) after treatment with 2,4-D. The alkaloid concentration in Barbey larkspur (Delphinium barbeyi) increased after treatment with 2,4,5-T or silvex, decreased in horsetail (Equisetum palustre) after treatment with MCPA, and was unaffected in Datura after treatment with several herbicides. The effect of herbicides on nitrate concentration in plants was dependent upon the species of plant and the herbicide used. PMID:6318617

  16. TRACE ANALYSIS OF FLUORESCEIN-DERIVATIZED PHENOXY ACID HERBICIDES BY MICELLAR ELECTROKINETIC CHROMATOGRAPHY WITH LASER-INDUCTED FLUORESCENCE DETECTION

    EPA Science Inventory

    Micellar electrokinetic chromatography (MEKC) with laser-induced fluorescence (LIF) detection was used for the trace analysis of phenoxy acid herbicides. Capillary electrophoresis (CE) with LIF detection, which has not previously been used for pesticide analysis, overcomes the po...

  17. Polymerin and lignimerin, as humic acid-like sorbents from vegetable waste, for the potential remediation of waters contaminated with heavy metals, herbicides, or polycyclic aromatic hydrocarbons.

    PubMed

    Capasso, Renato; De Martino, Antonio

    2010-10-13

    Polymerin is a humic acid-like polymer, which we previously recovered for the first time from olive oil mill waste waters (OMWW) only, and chemically and physicochemically characterized. We also previously investigated its versatile sorption capacity for toxic inorganic and organic compounds. Therefore, a review is presented on the removal, from simulated polluted waters, of cationic heavy metals [Cu(II), Zn, Cr(III)] and anionic ones [Cr(VI)) and As(V)] by sorption on this natural organic sorbent in comparison with its synthetic derivatives, K-polymerin, a ferrihydrite-polymerin complex and with ferrihydrite. An overview is also performed of the removal of ionic herbicides (2,4-D, paraquat, MCPA, simazine, and cyhalofop) by sorption on polymerin, ferrihydrite, and their complex and of the removal of phenanthrene, as a representative of polycyclic aromatic hydrocarbons, by sorption on this sorbent and its complexes with micro- or nanoparticles of aluminum oxide, pointing out the employment of all these sorbents in biobed systems, which might allow the remediation of water and protection of surface and groundwater. In addition, a short review is also given on the removal of Cu(II) and Zn from simulated contaminated waters, by sorption on the humic acid-like organic fraction, named lignimerin, which we previously isolated for the first time, in collaboration with a Chilean group, from cellulose mill Kraft waste waters (KCMWW) only. More specifically, the production methods and the characterization of the two natural sorbents (polymerin and lignimerin) and their derivatives (K-polymerin ferrihydrite-polymerin, polymerin-microAl(2)O(3) and -nanoAl(2)O(3), and H-lignimerin, respectively) as well as their sorption data and mechanism are reviewed. Published and original results obtained by the cyclic sorption on all of the considered sorbents for the removal of the above-mentioned toxic compounds from simulated waste waters are also reported. Moreover, sorption capacity

  18. Removal of compounds used as plasticizers and herbicides from water by means of gamma irradiation.

    PubMed

    Rivera-Utrilla, José; Daiem, Mahmoud M Abdel; Sánchez-Polo, Manuel; Ocampo-Pérez, Raúl; López-Peñalver, Jesús J; Velo-Gala, Inmaculada; Mota, Antonio J

    2016-11-01

    Gamma radiation has been used to induce the degradation of compounds used as plasticizers and herbicides such as phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) in aqueous solution, determining the dose constants, removal percentages, and radiation-chemical yields. The reaction rate constants of hydroxyl radical (HO), hydrated electron (eaq(-)) and hydrogen atom (H) with these pollutants were also obtained by means of competition kinetics, using 3-aminopyridine and atrazine as reference compounds. The results indicated that the elimination of these pollutants with gamma radiation mainly follows the oxidative pathway through reaction with HO radicals. The degradation by-products from the five pollutants were determined, detecting that the hydroxylation of the corresponding parent compounds was the main chemical process in the degradation of the pollutants. Moreover, a high decrease in the chemical oxygen demand has been observed for all pollutants. As expected, the degradation by-products generated by the irradiation of PA, BPA and DPA showed a lower toxicity than the parent compounds, however, in the case of 2,4-D and MCPA irradiation, interestingly, their by-products were more toxic than the corresponding original compounds. PMID:27366982

  19. Does microbial centimeter-scale heterogeneity impact MCPA degradation in and leaching from a loamy agricultural soil?

    PubMed

    Rosenbom, Annette E; Binning, Philip J; Aamand, Jens; Dechesne, Arnaud; Smets, Barth F; Johnsen, Anders R

    2014-02-15

    The potential for pesticide degradation varies greatly at the centimeter-scale in agricultural soil. Three dimensional numerical simulations were conducted to evaluate how such small-scale spatial heterogeneity may affect the leaching of the biodegradable pesticide 2-methyl-4-chlorophenoxyacetic acid (MCPA) in the upper meter of a variably-saturated, loamy soil profile. To incorporate realistic spatial variation in degradation potential, we used data from a site where 420 mineralization curves over 5 depths have been measured. Monod kinetics was fitted to the individual curves to derive initial degrader biomass values, which were incorporated in a reactive transport model to simulate heterogeneous biodegradation. Six scenarios were set up using COMSOL Multiphysics to evaluate the difference between models having different degrader biomass distributions (homogeneous, heterogeneous, or no biomass) and either matrix flow or preferential flow through a soil matrix with a wormhole. MCPA leached, within 250 days, below 1m only when degrader biomass was absent and preferential flow occurred. Both biodegradation in the plow layer and the microbially active lining of the wormhole contributed to reducing MCPA-leaching below 1m. The spatial distribution of initial degrader biomass within each soil matrix layer, however, had little effect on the overall MCPA-leaching. PMID:24291558

  20. Does microbial centimeter-scale heterogeneity impact MCPA degradation in and leaching from a loamy agricultural soil?

    PubMed

    Rosenbom, Annette E; Binning, Philip J; Aamand, Jens; Dechesne, Arnaud; Smets, Barth F; Johnsen, Anders R

    2014-02-15

    The potential for pesticide degradation varies greatly at the centimeter-scale in agricultural soil. Three dimensional numerical simulations were conducted to evaluate how such small-scale spatial heterogeneity may affect the leaching of the biodegradable pesticide 2-methyl-4-chlorophenoxyacetic acid (MCPA) in the upper meter of a variably-saturated, loamy soil profile. To incorporate realistic spatial variation in degradation potential, we used data from a site where 420 mineralization curves over 5 depths have been measured. Monod kinetics was fitted to the individual curves to derive initial degrader biomass values, which were incorporated in a reactive transport model to simulate heterogeneous biodegradation. Six scenarios were set up using COMSOL Multiphysics to evaluate the difference between models having different degrader biomass distributions (homogeneous, heterogeneous, or no biomass) and either matrix flow or preferential flow through a soil matrix with a wormhole. MCPA leached, within 250 days, below 1m only when degrader biomass was absent and preferential flow occurred. Both biodegradation in the plow layer and the microbially active lining of the wormhole contributed to reducing MCPA-leaching below 1m. The spatial distribution of initial degrader biomass within each soil matrix layer, however, had little effect on the overall MCPA-leaching.

  1. Determination of Acid Herbicides Using Modified QuEChERS with Fast Switching ESI(+)/ESI(-) LC-MS/MS.

    PubMed

    Sack, Chris; Vonderbrink, John; Smoker, Michael; Smith, Robert E

    2015-11-01

    A method for the determination of 35 acid herbicides in food matrices was developed, validated, and implemented. It utilizes a modified QuEChERS extraction procedure coupled with quantitation by liquid chromatography tandem mass spectrometry (LC-MS/MS). The acid herbicides analyzed are all organic carboxylic acids, including the older chlorophenoxy acid herbicides such as 2,4-dichlorophenoxyacetic acid (2,4-D), dicamba, 4-chlorophenoxyacetic acid (4-CPA), quinclorac, and many of the newer imidazolinone herbicides such as imazethapyr and imazaquin. In the procedure, 10 mL of water is added to 5 g of sample and then extracted with 1% formic acid in acetonitrile for 1 min. The acetonitrile phase is salted out of the extract by adding sodium chloride and magnesium sulfate, followed by centrifugation. The acetonitrile is diluted 1:1 with water to enable quantitation by LC-MS/MS using fast switching between positive and negative electrospray ionization modes. The average recoveries for all the compounds except aminocyclopyrachlor were 95% with a precision of 8%. The method detection limits for all residues were less than 10 ng/g, and the correlation coefficients for the calibration curves was greater than 0.99 for all but two compounds tested. The method was used successfully for the quantitation of acid herbicides in the FDA's total diet study. The procedure proved to be accurate, precise, linear, sensitive, and rugged.

  2. Occurrence and fate of the herbicide glyphosate and its degradate aminomethylphosphonic acid in the atmosphere

    USGS Publications Warehouse

    Chang, Feng-Chih; Simcik, M.F.; Capel, P.D.

    2011-01-01

    This is the first report on the ambient levels of glyphosate, the most widely used herbicide in the United States, and its major degradation product, aminomethylphosphonic acid (AMPA), in air and rain. Concurrent, weekly integrated air particle and rain samples were collected during two growing seasons in agricultural areas in Mississippi and Iowa. Rain was also collected in Indiana in a preliminary phase of the study. The frequency of glyphosate detection ranged from 60 to 100% in both air and rain. The concentrations of glyphosate ranged from 3 and from <0.1 to 2.5 µg/L in air and rain samples, respectively. The frequency of detection and median and maximum concentrations of glyphosate in air were similar or greater to those of the other high-use herbicides observed in the Mississippi River basin, whereas its concentration in rain was greater than the other herbicides. It is not known what percentage of the applied glyphosate is introduced into the air, but it was estimated that up to 0.7% of application is removed from the air in rainfall. Glyphosate is efficiently removed from the air; it is estimated that an average of 97% of the glyphosate in the air is removed by a weekly rainfall ≥30 mm.

  3. Occurrence and fate of the herbicide glyphosate and its degradate aminomethylphosphonic acid in the atmosphere.

    PubMed

    Chang, Feng-chih; Simcik, Matt F; Capel, Paul D

    2011-03-01

    This is the first report on the ambient levels of glyphosate, the most widely used herbicide in the United States, and its major degradation product, aminomethylphosphonic acid (AMPA), in air and rain. Concurrent, weekly integrated air particle and rain samples were collected during two growing seasons in agricultural areas in Mississippi and Iowa. Rain was also collected in Indiana in a preliminary phase of the study. The frequency of glyphosate detection ranged from 60 to 100% in both air and rain. The concentrations of glyphosate ranged from <0.01 to 9.1 ng/m(3) and from <0.1 to 2.5 µg/L in air and rain samples, respectively. The frequency of detection and median and maximum concentrations of glyphosate in air were similar or greater to those of the other high-use herbicides observed in the Mississippi River basin, whereas its concentration in rain was greater than the other herbicides. It is not known what percentage of the applied glyphosate is introduced into the air, but it was estimated that up to 0.7% of application is removed from the air in rainfall. Glyphosate is efficiently removed from the air; it is estimated that an average of 97% of the glyphosate in the air is removed by a weekly rainfall ≥ 30 mm.

  4. BOREAS TGB-7 Dry Deposition Herbicide and Organochlorine Flux Data

    NASA Technical Reports Server (NTRS)

    Waite, Don; Conrad, Sara K. (Editor); Hall, Forrest G. (Editor)

    2000-01-01

    The BOREAS TGB-7 team measured the concentration and flux of several agricultural pesticides in air, rainwater, and dry deposition samples in order to determine the associated yearly deposition rates. This data set contains information on the dry deposition flux of seven herbicides [2,4- dichlorophenoxyacidic_acid (2,4-D), bromoxynil, dicamb, 2-methyl-4-chlorophenoxyacetic acid (MCPA), triallate, trifluralin, and diclop-methyl] known to appear in the atmosphere of the Canadian prairies. Also, the concentration of three herbicides (atrazine, alachlor, and metolachlor), two groups of insecticides (lindane and breakdown products and dichloro-diphenyl-trichloroethane (DDT) and breakdown products), and several polychlorinated biphenyls commonly used in the central United States was measured. All of these chemicals are reported, in the literature, to be transported in the atmosphere. Many have been reported to occur in boreal and arctic food chains. The sampling was carried out from 16-Jun to 13-Aug-1993 and 04-May to 20-Jul-1994 at the BOREAS site in the Prince Albert National Park (Waskesiu). The data are stored in tabular ASCII files.

  5. BOREAS TGB-7 Rainwater Herbicide and Organochlorine Concentration Data

    NASA Technical Reports Server (NTRS)

    Waite, Don; Conrad, Sara K. (Editor); Hall, Forrest G. (Editor)

    2000-01-01

    The BOREAS TGB-7 team measured the concentration and flux of several agricultural pesticides in air and rainwater samples in order to determine the associated yearly deposition rates. This data set contains information on the rainwater concentration of seven herbicides [2,4- dichlorophenoxyacidic_acid (2,4-D), bromoxynil, dicamb, 2-methyl-4-chlorophenoxyacetic acid (MCPA), triallate, trifluralin, and diclop-methyl] known to appear in the atmosphere of the Canadian prairies. Also, the concentration of three herbicides (atrazine, alachlor, and metolachlor), two groups of insecticides (lindane and breakdown products and dichloro-diphenyl-trichloroethane (DDT) and breakdown products), and several polychlorinated biphenyls commonly used in the central United States was measured. All of these chemicals are reported, in the literature, to be transported in the atmosphere. Many have been reported to occur in boreal and arctic food chains. The sampling was carried out from 16-Jun to 13-Aug-1993 and 04-May to 20-Jul-1994 at the BOREAS site in the Prince Albert National Park (Waskesiu). The data are stored in tabular ASCII files.

  6. BOREAS TGB-7 Ambient Air Herbicide and Organochlorine Concentration Data

    NASA Technical Reports Server (NTRS)

    Waite, Don; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB)-7 team measured the concentration and flux of several agricultural pesticides in air, rainwater, and dry deposition samples in order to determine the associated yearly deposition rates. This data set contains information on the ambient air concentration of seven herbicides [2,4- dichlorophenoxyacidic_acid (2,4-D), bromoxynil, dicamb, 2-methyl-4-chlorophenoxyacetic acid (MCPA), triallate, trifluralin, and diclop-methyl] known to appear in the atmosphere of the Canadian prairies. Also, the concentration of three herbicides (atrazine, alachlor, and metolachlor), two groups of insecticides (lindane and breakdown products and dichloro-diphenyl-trichloroethane (DDT) and breakdown products), and several polychlorinated biphenyls commonly used in the central United States was measured. All of these chemicals are reported, in the literature, to be transported in the atmosphere. Many have been reported to occur in boreal and arctic food chains. The sampling was carried out from 16-Jun to 13-Aug-1993 and 04-May to 20-Jul-1994 at the BOREAS site in the Prince Albert National Park (Waskesiu). The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884).

  7. Stereoselective analysis of acid herbicides in natural waters by capillary electrophoresis.

    PubMed

    Polcaro, C M; Marra, C; Desiderio, C; Fanali, S

    1999-09-01

    A capillary electrophoretic method for the stereoselective analysis of aryloxypropionic and aryloxyphenoxypropionic acidic herbicides in ground water and river water was performed. Vancomycin and gamma-cyclodextrin were added to the background electrolyte (BGE) as chiral selectors. Water sample preconcentration was accomplished by solid-phase extraction on styrene-divinylbenzene packed cartridges (2 L of ground water and 1 L of river water). The analytical method allowed for the resolution of mecoprop, fenoprop, fluazifop and haloxyfop racemic mixtures in natural water samples spiked with enantiomer concentration levels in the range 0.1-0.13 ppb for ground water and 0.4-0.54 ppb for river water.

  8. [Effects of solution pH and simulated acid rain on the behavior of two sulfonylurea herbicides in soil].

    PubMed

    Zhang, Wei; Wang, Jin-Jun

    2007-03-01

    By the methods of batch equilibration and leaching, this paper studied the effects of solution pH and simulated acid rain on the behavior of bensulfuron-methyl and metsulfuron-methyl in soil. The results showed that the adsorption isotherms of these two herbicides fitted Freundlich equation well, and their adsorbed amounts reduced obviously with the increasing pH of water-soil system, which in turn promoted the translocation of the herbicides in soil. The adsorption coefficient (Kf) was positively correlated with soil organic matter and clay contents, while negatively correlated with soil pH. The higher pH of simulated acid rain had a greater contribution on the leaching of the two sulfonylurea herbicides, and their leached amount was increased with increasing acid rain. There was a close relationship between the leaching of the herbicides and the properties of soil. The soils with higher contents of organic matter and clay had a greater retention capability to the herbicides. PMID:17552202

  9. [Effects of solution pH and simulated acid rain on the behavior of two sulfonylurea herbicides in soil].

    PubMed

    Zhang, Wei; Wang, Jin-Jun

    2007-03-01

    By the methods of batch equilibration and leaching, this paper studied the effects of solution pH and simulated acid rain on the behavior of bensulfuron-methyl and metsulfuron-methyl in soil. The results showed that the adsorption isotherms of these two herbicides fitted Freundlich equation well, and their adsorbed amounts reduced obviously with the increasing pH of water-soil system, which in turn promoted the translocation of the herbicides in soil. The adsorption coefficient (Kf) was positively correlated with soil organic matter and clay contents, while negatively correlated with soil pH. The higher pH of simulated acid rain had a greater contribution on the leaching of the two sulfonylurea herbicides, and their leached amount was increased with increasing acid rain. There was a close relationship between the leaching of the herbicides and the properties of soil. The soils with higher contents of organic matter and clay had a greater retention capability to the herbicides.

  10. Effect of herbicidal application of 2,4-dichlorophenoxyacetic acid in Arabidopsis.

    PubMed

    Raghavan, Chitra; Ong, Eng Kok; Dalling, Michael J; Stevenson, Trevor W

    2005-01-01

    The whole genome expression pattern of Arabidopsis in response to the auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was evaluated using the Affymetrix ATH1-121501 array. Arabidopsis plants were grown in vitro and were exposed to 1 mM 2,4-D for 1 h, after which time gene transcription levels were measured. In response to the treatment 148 genes showed increased levels of transcription and concurrently 85 genes showed decreased levels of transcript. Genes which showed significant change in transcription levels belonged to the following functional categories: transcription, metabolism, cellular communication and signal transduction, subcellular localisation, transport facilitation, protein fate, protein with binding function or cofactor requirement and regulation of/interaction with cellular environment. Interestingly 25.3% of the genes regulated by the treatment could not be classified into a known functional category. The data obtained from these experiments were used to assess the current model of auxinic herbicide action and indicated that 2,4-D not only modulates the expression of auxin, ethylene and abscisic acid (ABA) pathways but also regulates a wide variety of other cellular functions.

  11. Effect of 2,4-Dichlorophenoxyacetic acid herbicide Escherichia coli growth, chemical, composition, and cellular envelope

    USGS Publications Warehouse

    Carr, R.S.; Biedenbach, J.M.; Hooten, R.L.

    2001-01-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) is a herbicide widely used in the world and mainly excreted by the renal route in exposed humans and animals. Herbicides can affect other nontarget organisms, such as Escherichia coli. We observed that a single exposure to 1 mM 2,4-D diminished growth and total protein content in all E. coli strains tested in vitro. In addition, successive exposures to 0.01 mM 2,4-D had a toxic effect decreasing growth up to early stationary phase. Uropathogenic E. coli adhere to epithelial cells mediated by fimbriae, adhesins, and hydrophobic properties. 2,4-D exposure of uropathogenic E. coli demonstrated altered hydrophobicity and fimbriation. Hydrophobicity index values obtained by partition in p-xylene/water were 300-420% higher in exposed cells than in control ones. Furthermore, values of hemagglutination titer, protein contents in fimbrial crude extract, and electron microscopy demonstrated a significant diminution of fimbriation in treated cells. Other envelope alterations could be detected, such as lipoperoxidation, evidenced by decreased polyunsaturated fatty acids and increased lipid degradation products (malonaldehyde), and motility diminution. These alterations decreased cell adherence to erythrocytes, indicating a diminished pathogenic capacity of the 2,4-D-exposed E. coli. ?? 2001 by John Wiley & Sons, Inc.

  12. Herbicide tolerant regenerates of potato.

    PubMed

    Wersuhn, G; Kirsch, K; Gienapp, R

    1987-08-01

    Culture-derived plants and cell cultures of potato (Solanum tuberosum L.) respond to the application of the herbicides SYS 67 ME (MCPA) and OMNIDEL (Na-2,2-dichloropropionate) in a comparable fashion. By gradually increasing the herbicide concentration, cell lines were developed which tolerated 50 mg/l of ME or 300 mg/l of OMNIDEL. Any further increase in concentration resulted in the death of all cell cultures. From cell cultures that had been able to grow on media supplemented with 30 mg/l of ME, regenerate plants were obtained that were also tolerant to this concentration. This new trait was retained even after repeated vegetative propagation of the plants.

  13. Controlled Release Formulations of Auxinic Herbicides

    NASA Astrophysics Data System (ADS)

    Kowalski, Witold J.; Siłowiecki, Andrzej.; Romanowska, Iwona; Glazek, Mariola; Bajor, Justyna; Cieciwa, Katarzyna; Rychter, Piotr

    2013-04-01

    Controlled release formulations are applied extensively for the release of active ingredients such as plant protection agents and fertilizers in response to growing concern for ecological problems associated with increased use of plant protection chemicals required for intensive agricultural practices [1]. We synthesized oligomeric mixtures of (R,S)-3-hydroxy butyric acid chemically bonded with 2,4-D, Dicamba and MCPA herbicides (HBA) respectively, and determined their molecular structure and molecular weight dispersion by the size exclusion chromatography, proton magnetic resonance spectrometry and electro-spray ionization mass spectrometry. Further we carried out bioassays of herbicidal effectiveness of the HBA herbicides vs. series of dicotyledonous weeds and crop injury tests [2, 3, 4]. Field bioassays were accomplished according to the EPPO standards [5]. Groups of representative weeds (the development stages in the BCCH scale: 10 - 30) were selected as targets. Statistical variabilities were assessed by the Fisher LSD test for plants treated with the studied herbicides in form of HBA oligomers, the reference herbicides in form of dimethyl ammonium salts (DMA), and untreated plants. No statistically significant differences in the crop injuries caused by the HBA vs. the DMA reference formulation were observed. The effectiveness of the HBA herbicides was lower through the initial period (ca. 2 weeks) relative to the DMA salts, but a significant increase in the effectiveness of the HBA systems followed during the remaining fraction of each assay. After 6 weeks all observed efficiencies approached 100%. The death of weeds treated with the HBA herbicides was delayed when compared with the DMA reference herbicides. The delayed uptake observed for the HBA oligomers relative to the DMA salts was due to controlled release phenomena. In case of the DMA salts the total amount of active ingredients was available at the target site. By contrast, the amount of an active

  14. Coupling of solvent-based de-emulsification dispersive liquid-liquid microextraction with high performance liquid chromatography for simultaneous simple and rapid trace monitoring of 2,4-dichlorophenoxyacetic acid and 2-methyl-4-chlorophenoxyacetic acid.

    PubMed

    Behbahani, Mohammad; Najafi, Fatemeh; Bagheri, Saman; Bojdi, Majid Kalate; Hassanlou, Parmoon Ghareh; Bagheri, Akbar

    2014-04-01

    A simple, rapid, and efficient sample pretreatment technique, based on solvent-based de-emulsification dispersive liquid-liquid microextraction (SD-DLLME), followed by high performance liquid chromatography (HPLC) has been developed for simultaneous preconcentration and trace detection of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) in water and urine samples. Some parameters such as acidity of solution, the amount of salt, type, and volume of extraction solvents, type of disperser/de-emulsifier solvent, and its volume were investigated and optimized. Under optimum extraction conditions, the limits of detections (LODs) of this method for MCPA and 2,4-D were 0.2 and 0.6 μg L(-1) (based on 3S(b)/m) in water and 0.4 and 1.6 μg L(-1) in urine, respectively. Furthermore, dynamic linear range of this method for MCPA and 2,4-D was 1-300 and 2-400 μg L(-1), repectively. Finally, the applicability of the proposed method was evaluated by extraction and determination of the herbicides in urine and different water samples.

  15. Herbicide clomazone effects on δ-aminolevulinic acid activity and metabolic parameters in Cyprinus carpio.

    PubMed

    Menezes, Charlene; Leitemperger, Jossiele; Murussi, Camila; Toni, Cândida; Araújo, Maria do Carmo Santos; Farias, Iria Luiza; Perazzo, Giselle Xavier; Barbosa, Nilda Vargas; Loro, Vania Lucia

    2014-04-01

    The objective of this study was to investigate δ-aminolevulinic acid (δ-ALA-D) activity and metabolic parameters of Cyprinus carpio exposed to clomazone herbicide. Fish were exposed 2.5, 5, 10 and 20 mg L(-1) of clomazone for 192 h. Results indicated that δ-ALA-D activity was decreased in the gills at concentrations of 5 and 10 mg L(-1). Liver glycogen increased, while muscle and gill glycogen levels decreased at 5, 10 and 20 mg L(-1). Glucose was increased in the gills and plasma. Lactate decreased in the gills and liver and increased in the muscle. Protein and amino acids levels increased in the liver and gills and decreased in the muscle. At a clomazone concentration of 20 mg L(-1), ammonia increased in the gills and muscle and decreased in the liver. The results indicated that the metabolic parameters of glycogen, lactate, protein and amino acids in liver, muscle and gills, blood glucose levels, and the enzyme δ-ALA-D in gills may be useful indicators of clomazone toxicity in carp.

  16. Gas chromatographic and mass spectrometric determination of chlorophenoxy acids and related herbicides as their (cyanoethyl)dimethylsilyl derivatives

    SciTech Connect

    Bertrand, M.J.; Ahmed, A.W.; Sarrasin, B.; Mallet, V.N.

    1987-05-01

    A method for using (2-cyanoethyl)dimethyl(diethylamino)silane to form derivatives with phenoxy acid herbicides and related compounds is presented. Results obtained with 18 compounds demonstrate that the reaction is quantitative and complete within minutes at room temperature. The derivatives formed can readily be analyzed by gas chromatography using a selective nitrogen-phosphorus detector which eliminates the need for rigorous cleanup of the sample required for detection by electron capture. Response-concentration plots show that detection is linear over several decades with limits of detection being in the low picogram range for all compounds studied. Mass spectral analysis of the derivatives of the 18 compounds studied indicates that the spectra are highly specific showing characteristic ions at (M-54), (M-82), and or (M-98) which are useful for structure confirmation or analysis at low levels by using selected ion monitoring. The analytical advantages of the approach for the analysis of acid herbicides are discussed.

  17. Adsorption and desorption variability of four herbicides used in paddy rice production.

    PubMed

    Alister, Claudio A; Araya, Manuel A; Kogan, Marcelo

    2011-01-01

    This investigation was performed to determine the effect of physicochemical soil properties on penoxsulam, molinate, bentazon, and MCPA adsorption-desorption processes. Four soils from Melozal (35° 43' S; 71° 41' W), Parral (36° 08' S; 71° 52' W), San Carlos (36° 24' S; 71° 57' W), and Panimavida (35° 44' S; 71° 24' W) were utilized. Herbicide adsorption reached equilibrium after 4 h in all soils. The Freundlich L-type isotherm described the adsorption process, which showed a high affinity between herbicides and sorption sites mainly because of hydrophobic and H-bonds interaction. Penoxsulam showed the highest adsorption coefficients (4.23 ± 0.72 to 10.69 ± 1.58 mL g⁻¹) and were related to soil pH. Molinate showed K(d) values between 1.72 ± 0.01 and 2.3 ± 0.01 mL g⁻¹ and were related to soil pH and organic matter, specifically to the amount of humic substances. Bentazon had a high relationship with pH and humic substances and its K(d) values were the lowest, ranging from 0.11 ± 0.01 to 0.42 ± 0.01 mL g⁻¹. MCPA K(d) ranged from 0.14 ± 0.02 to 2.72 ± 0.01 mL g⁻¹, however its adsorption was related to humic acids and clay content. According to these results, the soil factors that could explain the sorption process of the studied herbicides under paddy rice soil conditions, were principally humic substances and soil pH. Considering the sorption variability observed in this study and the potential risk for groundwater contamination, it is necessary to develop weed rice management strategies that limit use of herbicides that exhibit low soil adsorption in areas with predisposing conditions to soil leaching.

  18. Degradation of the Herbicide Mecoprop [2-(2-Methyl-4-Chlorophenoxy)Propionic Acid] by a Synergistic Microbial Community

    PubMed Central

    Lappin, Hilary M.; Greaves, Michael P.; Slater, J. Howard

    1985-01-01

    A microbial community isolated from wheat root systems was capable of growth on mecoprop as the sole carbon and energy source. When exposed to fresh herbicide additions, the community was able to shorten the lag phase from 30 days to less than 24 h. The community comprised two Pseudomonas species, an Alcaligenes species, a Flavobacterium species, and Acinetobacter calcoaceticus. None of the pure cultures was capable of growing on mecoprop. Certain combinations of two or more community constituents were required before growth commenced. The mecoprop-degrading community could also degrade 2,4-dichlorophenoxyacetic acid and 2-methyl-4-chlorophenoxyacetic acid but not 2,4,5-trichlorophenoxyacetic acid. PMID:16346731

  19. Degradation of the herbicide mecoprop [2-(2-methyl-4-chlorophenoxy)propionic Acid] by a synergistic microbial community.

    PubMed

    Lappin, H M; Greaves, M P; Slater, J H

    1985-02-01

    A microbial community isolated from wheat root systems was capable of growth on mecoprop as the sole carbon and energy source. When exposed to fresh herbicide additions, the community was able to shorten the lag phase from 30 days to less than 24 h. The community comprised two Pseudomonas species, an Alcaligenes species, a Flavobacterium species, and Acinetobacter calcoaceticus. None of the pure cultures was capable of growing on mecoprop. Certain combinations of two or more community constituents were required before growth commenced. The mecoprop-degrading community could also degrade 2,4-dichlorophenoxyacetic acid and 2-methyl-4-chlorophenoxyacetic acid but not 2,4,5-trichlorophenoxyacetic acid.

  20. Simultaneous determination of three chloroacetic acids, three herbicides, and 12 anions in water by ion chromatography.

    PubMed

    Luo, Ximing; Chen, Liang; Zhao, Yanqing

    2015-09-01

    An ion chromatography method was developed for the simultaneous detection of three soluble herbicides (glyphosate, bentazone and picloram), three chlorine disinfection byproducts (monochloroacetic acid, dichloroacetic acid and trichloroacetic acid) and 12 anions in water (Cl(-), Br(-), SO4(2-), CO3(2-), ClO3(-), ClO4(-), BrO3(-), PO4(3-), NO2(-), NO3(-), CH3COO(-) and COO(-)). High linearity (r(2) > 0.996) was observed for all target analytes for each respective concentration range. The limit of detection and limit of quantitation were between 0.21-0.85 and 0.06-25.46 μg/L, respectively. However, the interference effect of Cl(-), NO3(-) , SO4 (2-) and CO3(2-) on some target analytes must be considered during the analysis. Sample pre-treatment by a hydrogen column (H-column) required to reduce the negative effect of CO3(2-). Additionally, sample pre-treatment by a sliver-hydrogen column (Ag-H-column) is required when Cl(-) > 100 mg/L and SO4(2-) < 50 mg/L, and pre-treatment by both a barium column (Ba-column) and an H-column is required when Cl(-) > 100 mg/L and SO4(2-) > 50 mg/L. When Cl(-) > 100 mg/L, SO4(2-) > 50 mg/L and CO3(2-) > 20 mg/L, the sample pre-treatment by either an Ag-H-Ba-column or an Ag-H-column and Ba-column is required to minimize interference.

  1. Acceleration of the herbicide isoproturon degradation in wheat by glycosyltransferases and salicylic acid.

    PubMed

    Lu, Yi Chen; Zhang, Shuang; Yang, Hong

    2015-01-01

    Isoproturon (IPU) is a herbicide widely used to prevent weeds in cereal production. Due to its extensive use in agriculture, residues of IPU are often detected in soils and crops. Overload of IPU to crops is associated with human health risks. Hence, there is an urgent need to develop an approach to mitigate its accumulation in crops. In this study, the IPU residues and its degradation products in wheat were characterized using ultra performance liquid chromatography-time of fight tandem-mass spectrometer/mass spectrometer (UPLC-TOF-MS/MS). Most detected IPU-derivatives were sugar-conjugated. Degradation and glycosylation of IPU-derivatives could be enhanced by applying salicylic acid (SA). While more sugar-conjugated IPU-derivatives were identified in wheat with SA application, lower levels of IPU were detected, indicating that SA is able to accelerate intracellular IPU catabolism. All structures of IPU-derivatives and sugar-conjugated products were characterized. Comparative data were provided with specific activities and gene expression of certain glucosyltransferases. A pathway with IPU degradation and glucosylation was discussed. Our work indicates that SA-accelerated degradation is practically useful for wheat crops growing in IPU-contaminated soils because such crops with SA application can potentially lower or minimize IPU accumulation in levels below the threshold for adverse effects.

  2. Adsorption behavior of herbicide butachlor on typical soils in China and humic acids from the soil samples.

    PubMed

    Xu, Duanping; Xu, Zhonghou; Zhu, Shuquan; Cao, Yunzhe; Wang, Yu; Du, Xiaoming; Gu, Qingbao; Li, Fasheng

    2005-05-01

    Three kinds of soils in China, krasnozem, fluvo-aquic soil, and phaeozem, as well as the humic acids (HAs) isolated from them, were used to adsorb the herbicide butachlor from water. Under the experimental conditions, the adsorption amount of butachlor on soils was positively correlated with the content of soil organic matter. HAs extracted from different kinds of soils had different adsorption capacity for the tested herbicide, which was positively correlated with their content of carbonyls. The adsorption mechanism was studied using Fourier transform infrared spectroscopy and cross-polarization with magic angle spinning 13C nuclear magnetic resonance (CP-MAS 13C NMR) techniques. It was showed that the adsorption mainly took place on the C=O, phenolic and alcoholic O-H groups of HAs. It was also confirmed that the adsorption mechanism was hydrogen bonds formation between the above groups of HAs and butachlor molecules.

  3. Solanum lycopersicum IAA15 functions in the 2,4-dichlorophenoxyacetic acid herbicide mechanism of action by mediating abscisic acid signalling.

    PubMed

    Xu, Tao; Wang, Yanling; Liu, Xin; Gao, Song; Qi, Mingfang; Li, Tianlai

    2015-07-01

    2,4-Dichlorophenoxyacetic acid (2,4-D), an important plant growth regulator, is the herbicide most commonly used worldwide to control weeds. However, broad-leaf fruits and vegetables are extremely sensitive to herbicides, which can cause damage and result in lost crops when applied in a manner inconsistent with the directions. Despite detailed knowledge of the mechanism of 2,4-D, the regulation of auxin signalling is still unclear. For example, although the major mediators of auxin signalling, including auxin/indole acetic acid (AUX/IAA) proteins and auxin response factors (ARFs), are known to mediate auxinic herbicides, the underlying mechanisms are still unclear. In this study, the effects of 2,4-D on AUX/IAA gene expression in tomato were investigated, and the two most notably up-regulated genes, SlIAA15 and SlIAA29, were selected for further study. Western blotting revealed the substantial accumulation of both SlIAA15 and SlIAA29, and the expression levels of the corresponding genes were increased following abscisic acid (ABA) and ethylene treatment. Overexpressing SlIAA15, but not SlIAA29, induced a 2,4-D herbicide damage phenotype. The 35S::SlIAA15 line exhibited a strong reduction in leaf stomatal density and altered expression of some R2R3 MYB genes that are putatively involved in the regulation of stomatal differentiation. Further study revealed that root elongation in 35S::SlIAA15 was sensitive to ABA treatment, and was most probably due to the altered expression of an ABA signal transduction gene. In addition, the altered auxin sensitivities of SlIAA15 transformants were also explored. These results suggested that SlIAA15 plays an important role in determining the effects of the herbicide 2,4-D.

  4. Analysis and detection of the herbicides dimethenamid and flufenacet and their sulfonic and oxanilic acid degradates in natural water

    USGS Publications Warehouse

    Zimmerman, L.R.; Schneider, R.J.; Thurman, E.M.

    2002-01-01

    Dimethenamid [2-chloro-N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylethyl)acetamide] and flufenacet [N-(4-fluorophenyl)-N-(1-methylethyl)-2-(5-(trifluoromethyl)-1,3,4- thiadiazol-2-yl)oxy] were isolated by C-18 solid-phase extraction and separated from their ethanesulfonic acid (ESA) and oxanilic acid (OXA) degradates during their elution using ethyl acetate for the parent compound, followed by methanol for the polar degradates. The parent compounds were detected using gas chromatography-mass spectrometry in selected-ion mode. The ESA and OXA degradates were detected using high-performance liquid chromatography-electrospray mass spectrometry (HPLC-ESPMS) in negative-ion mode. The method detection limits for a 123-mL sample ranged from 0.01 to 0.07 ??g/L. These methods are compatible with existing methods and thus allow for analysis of 17 commonly used herbicides and 18 of their degradation compounds with one extraction. In a study of herbicide transport near the mouth of the Mississippi River during 1999 and 2000, dimethenamid and its ESA and OXA degradates were detected in surface water samples during the annual spring flushes. For flufenacet, the only detections at the study site were for the ESA degradates in samples collected at the peak of the herbicide spring flush in 2000. The low frequency of detections in surface water likely is due to dimethenamid and flufenacet being relatively new herbicides. In addition, detectable amounts of the stable degradates have not been detected in ground water.

  5. Resistance to herbicides caused by single amino acid mutations in acetyl-CoA carboxylase in resistant populations of grassy weeds.

    PubMed

    Jang, SoRi; Marjanovic, Jasmina; Gornicki, Piotr

    2013-03-01

    Eleven spontaneous mutations of acetyl-CoA carboxylase have been identified in many herbicide-resistant populations of 42 species of grassy weeds, hampering application of aryloxyphenoxypropionate, cyclohexadione and phenylpyrazoline herbicides in agriculture. IC(50) shifts (resistance indices) caused by herbicide-resistant mutations were determined using a recombinant yeast system that allows comparison of the effects of single amino acid mutations in the same biochemical background, avoiding the complexity inherent in the in planta experiments. The effect of six mutations on the sensitivity of acetyl-CoA carboxylase to nine herbicides representing the three chemical classes was studied. A combination of partially overlapping binding sites of the three classes of herbicides and the structure of their variable parts explains cross-resistance among and between the three classes of inhibitors, as well as differences in their specificity. Some degree of resistance was detected for 51 of 54 herbicide/mutation combinations. Introduction of new herbicides targeting acetyl-CoA carboxylase will depend on their ability to overcome the high degree of cross-resistance already existing in weed populations.

  6. Comparison of 16S rRNA gene phylogeny and functional tfdA gene distribution in thirty-one different 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid degraders.

    PubMed

    Baelum, Jacob; Jacobsen, Carsten S; Holben, William E

    2010-03-01

    31 different bacterial strains isolated using the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole source of carbon, were investigated for their ability to mineralize 2,4-D and the related herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA). Most of the strains mineralize 2,4-D considerably faster than MCPA. Three novel primer sets were developed enabling amplification of full-length coding sequences (CDS) of the three known tfdA gene classes known to be involved in phenoxy acid degradation. 16S rRNA genes were also sequenced; and in order to investigate possible linkage between tfdA gene classes and bacterial species, tfdA and 16S rRNA gene phylogeny was compared. Three distinctly different classes of tfdA genes were observed, with class I tfdA sequences further partitioned into the two sub-classes I-a and I-b based on more subtle differences. Comparison of phylogenies derived from 16S rRNA gene sequences and tfdA gene sequences revealed that most class II tfdA genes were encoded by Burkholderia sp., while class I-a, I-b and III genes were found in a more diverse array of bacteria.

  7. Measurement of aspartic acid in oilseed rape leaves under herbicide stress using near infrared spectroscopy and chemometrics.

    PubMed

    Zhang, Chu; Kong, Wenwen; Liu, Fei; He, Yong

    2016-01-01

    Oilseed rape is used as both food and a renewable energy resource. Physiological parameters, such as the amino acid aspartic acid, can indicate the growth status of oilseed rape. Traditional detection methods are laborious, time consuming, costly, and not usable in the field. Here, we investigate near infrared spectroscopy (NIRS) as a fast and non-destructive detection method of aspartic acid in oilseed rape leaves under herbicide stress. Different spectral pre-processing methods were compared for optimal prediction performance. The variable selection methods were applied for relevant variable selection, including successive projections algorithm (SPA), Monte Carlo-uninformative variable elimination (MC-UVE) and random frog (RF). The selected effective wavelengths (EWs) were used as input by multiple linear regression (MLR), partial least squares (PLS) and least-square support vector machine (LS-SVM). The best predictive performance was achieved by SPA-LS-SVM (Raw) model using 22 EWs, and the prediction results were Rp = 0.9962 and RMSEP = 0.0339 for the prediction set. The result indicated that NIR combined with LS-SVM is a powerful new method to detect aspartic acid in oilseed rape leaves under herbicide stress. PMID:27441244

  8. Mixed-mode solid-phase extraction coupled with liquid chromatography tandem mass spectrometry to determine phenoxy acid, sulfonylurea, triazine and other selected herbicides at nanogram per litre levels in environmental waters.

    PubMed

    Zhang, Pei; Bui, Anhduyen; Rose, Gavin; Allinson, Graeme

    2014-01-17

    The method presented uses a mixed-mode anion exchange SPE and liquid chromatography tandem mass spectrometry to analyze 5 sulfonylurea, 8 phenoxy acid, 12 triazine and 6 other herbicides in environmental waters. The mixed-mode SPE cartridge is able to retain a wide range of herbicides with acidic-neutral-basic characteristics, particularly the highly polar and acidic compounds clopyralid, dicamba and picloram. The neutral and basic herbicides can be effectively eluted with methanol, after which the acidic herbicides can be eluted using acidified methanol. The method has achieved an LOD of 0.7-3ng/L for the sulfonylureas, 4-12ng/L for the phenoxy acids and 0.4-30ng/L for the triazine and additional herbicides, with recoveries in the range 76-107%, 73-126%, and 65-104%, respectively. The precision of the method, calculated as relative standard deviation (RSD), was below 10% for both sulfonylurea and phenoxy acid herbicides, and less than 20% for the remaining herbicides. The developed method was used to determine the concentration of target herbicides in a range of environmental waters, and many of the target herbicides were detected at ng/L level.

  9. How benthic diatoms within natural communities respond to eight common herbicides with different modes of action.

    PubMed

    Wood, Rebecca J; Mitrovic, Simon M; Lim, Richard P; Kefford, Ben J

    2016-07-01

    Herbicides are common pollutants of rivers in agricultural regions. These contaminants include various types of chemicals with different modes of toxic action. Herbicides can have toxic effects on freshwater benthic diatoms, the base of the aquatic food web. We examined the effects of (non-mixture) herbicide exposure to the health of diatoms for eight common herbicides with three different modes of action; the photosystem II (PSII) inhibitors: atrazine, simazine, hexazinone, tebuthiuron and diuron; two auxinic herbicides: MCPA and 2,4-D; and the EPSP synthase inhibitor: glyphosate. Benthic diatoms within riverine communities were exposed to each herbicide in rapid toxicity tests at concentrations of 50, 200 and 500μgL(-1). The most sensitive taxa were Gomphonema spp. and Encyonema gracilis. Navicula cryptotenella was the most tolerant to herbicide exposure. There was no significant effect of the different herbicide modes of action at the community level. Herbicide mode of action did not alter which taxa were most sensitive within the community and sensitivity rankings of the dominant diatom taxa were similar for each of the eight herbicides. The consistency of the results between herbicides suggests that freshwater benthic diatoms may be suitable in situ indicators for detecting the toxicity of herbicides with differing modes of action.

  10. How benthic diatoms within natural communities respond to eight common herbicides with different modes of action.

    PubMed

    Wood, Rebecca J; Mitrovic, Simon M; Lim, Richard P; Kefford, Ben J

    2016-07-01

    Herbicides are common pollutants of rivers in agricultural regions. These contaminants include various types of chemicals with different modes of toxic action. Herbicides can have toxic effects on freshwater benthic diatoms, the base of the aquatic food web. We examined the effects of (non-mixture) herbicide exposure to the health of diatoms for eight common herbicides with three different modes of action; the photosystem II (PSII) inhibitors: atrazine, simazine, hexazinone, tebuthiuron and diuron; two auxinic herbicides: MCPA and 2,4-D; and the EPSP synthase inhibitor: glyphosate. Benthic diatoms within riverine communities were exposed to each herbicide in rapid toxicity tests at concentrations of 50, 200 and 500μgL(-1). The most sensitive taxa were Gomphonema spp. and Encyonema gracilis. Navicula cryptotenella was the most tolerant to herbicide exposure. There was no significant effect of the different herbicide modes of action at the community level. Herbicide mode of action did not alter which taxa were most sensitive within the community and sensitivity rankings of the dominant diatom taxa were similar for each of the eight herbicides. The consistency of the results between herbicides suggests that freshwater benthic diatoms may be suitable in situ indicators for detecting the toxicity of herbicides with differing modes of action. PMID:27037885

  11. Contamination of rice field water with sulfonylurea and phenoxy herbicides in the Muda Irrigation Scheme, Kedah, Malaysia.

    PubMed

    Ismail, B S; Prayitno, S; Tayeb, M A

    2015-07-01

    The purpose of the present study was to investigate the potential risk of herbicide contamination (2,4-dichlorophenoxy (2,4-D), 2-methyl-4-chlorophenoxyacetic acid (MCPA), metsulfuron, bensulfuron, and pyrazosulfuron) in the rice fields of the Muda Irrigation Scheme, Kedah, Malaysia. The study included two areas with different irrigation water sources namely non-recycled (N-RCL) and recycled (RCL) water. Periodic water sampling was carried out from the drainage canals during the planting period of the wet season 2006/2007 and dry season 2007. The HPLC-UV was used to detect herbicide residues in the water samples collected from the rice fields. The results showed that the concentration of sulfonylurea herbicides such as bensulfuron and metsulfuron in the rice field was 0.55 and 0.51 μg/L, respectively. The potential risk of contamination depended on the actual dosage of each herbicide applied by farmers to their rice fields. The potential risk of water pollution by the five herbicides studied in the area with RCL water tended to be more widespread compared to the area with N-RCL water due to surface water runoff with higher levels of weedicides to the surrounding areas. During the two seasons, 50-73% of the water samples collected from the area receiving RCL water contained the five herbicides studied at concentrations of more than 0.05 μg/L, and this percentage was higher than that from the areas receiving N-RCL water (45-69%). During the wet season, the overall total mean concentration of the eight herbicides found in the samples collected from the area with RCL water (6.27 μg/L) was significantly higher (P < 0.01) than that from the area receiving N-RCL water (2.39 μg/L). Meanwhile, during the dry season, there was no significant difference (P > 0.05) in the herbicide concentrations between the areas receiving RCL (6.16 μg/L) and N-RCL water (7.43 μg/L) water.

  12. QUANTITATION OF ABERRANT INTERLOCUS T-CELL RECEPTOR REARRANGEMENTS IN MOUSE THYMOCYTES AND THE EFFECT OF THE HERBICIDE 2,4- DICHLOROPHENOXYACETIC ACID

    EPA Science Inventory

    Quantitation of aberrant interlocus T-cell receptor rearrangements in mouse thymocytes and the effect of the herbicide 2,4- Dichlorophenoxyacetic acid

    Small studies in human populations have suggested a correlation between the frequency of errors in antigen receptor gene a...

  13. [Oxidative stress and antioxidant therapy with alpha-lipoic acid inclusion in acute poisoning by herbicide based on 2,4-dichlorphenoxyacetic acid].

    PubMed

    Kharchenko, O A; Balan, H M; Bubalo, N N; Mymrenko, T V

    2014-01-01

    In patients with acute poisoning amine salt herbicide 2,4-D develops oxidative stress with simultaneous inhibition of intracellular and extracellular antioxidant factors. These changes are more pronounced with neurological disorders that occur in conjunction with a toxic damage of liver or heart. The inclusion of a comprehensive detoxification therapy alpha-lipoic acid not only promotes a more pronounced therapeutic effect but also an earlier recourse cytolytic syndrome, a marked recovery of levels of malondialdehyde and indices of antioxidant system (superoxide dismutase and ceruloplasmin) than for patients in the comparison group. PMID:24908976

  14. Simultaneous enantiomeric determinations of acid and ester imidazolinone herbicides in a soil sample by two-dimensional direct chiral liquid chromatography.

    PubMed

    Polo-Díez, L M; Santos-Delgado, M J; Valencia-Cabrerizo, Y; León-Barrios, Y

    2015-11-01

    A two-dimensional HPLC method for the simultaneous direct chiral enantiomeric determination of acid and ester IMI herbicides has been described. Difficulties arising from differences in polarity were overcome. Firstly, the imazaphyr, imazethapyr and imazamethabenz methyl herbicides were separated in a C18 achiral column. Then, their respective enantiomers were separated using a protein chiral AGP(TM) column; a heart-cut mode was used. Mobile phases of the two systems were compatibilized, after optimizing by factorial design using multiple response analysis. The proposed method has been validated by recovery studies from an enriched soil sample. Important enantiomer parameters such as enantioresolution higher than 1.12, enantiomeric ratio (ER) close to 1 and enantiomeric fraction (EF) around 0.5 were obtained for standards, confirming that herbicides are present as racemates.

  15. [Synchronous extraction and determination of phenoxy acid herbicides in water by on-line monolithic solid phase microextraction-high performance liquid chromatography].

    PubMed

    Wang, Jiabin; Wu, Fangling; Zhao, Qi

    2015-08-01

    A C18 monolithic capillary column was utilized as the solid phase microextraction column to construct an in-tube SPME-HPLC system which was used to simultaneously extract and detect five phenoxy acid herbicides, including 2,4-dichlorophenoxyacetic acid (2,4-D), 2- (2-chloro)-phenoxy propionic acid (2,2-CPPA), 2-(3-chloro)-phenoxy propionic acid (2,3- CPPA), phenoxy propionic acid (PPA) and 2-(2,4-dichlorophenoxy) propionic acid (2,4-DP). The operating parameters of the in-tube SPME-HPLC system, including the length of the monolithic column, the sampling flow rate, the sampling time, the elution flow rate and the elution time, had been investigated in detail. The optimized operating parameters of the in-tube SPME-HPLC system were as follow: the length of the monolithic column was 20 cm, the sampling flow rate was 0. 04 mL/min, sampling time was 13 min; the elution flow rate was 0.02 mL/min, elution time was 5 min. Under the optimized conditions, the detection limits of the five phenoxy acid herbicides were as follows: 9 µg/L for PPA, 4 µg/L for 2,2-CPPA, 4 µg/L for 2,3-CPPA, 5 µg/L for 2,4-D, 5 µg/L for 2,4-DP. Compared with the HPLC method with direct injection, the combined system showed a good enrichment factors to the analytes. The recoveries of the five phenoxy acid herbicides were between 79.0% and 98.0% (RSD ≤ 3.9%). This method was successfully used to detect the five phenoxy acid herbicides in water samples with satisfactory results.

  16. Both foliar and residual applications of herbicides that inhibit amino acid biosynthesis induce alternative respiration and aerobic fermentation in pea roots.

    PubMed

    Armendáriz, O; Gil-Monreal, M; Zulet, A; Zabalza, A; Royuela, M

    2016-05-01

    The objective of this work was to ascertain whether there is a general pattern of carbon allocation and utilisation in plants following herbicide supply, independent of the site of application: sprayed on leaves or supplied to nutrient solution. The herbicides studied were the amino acid biosynthesis-inhibiting herbicides (ABIH): glyphosate, an inhibitor of aromatic amino acid biosynthesis, and imazamox, an inhibitor of branched-chain amino acid biosynthesis. All treated plants showed impaired carbon metabolism; carbohydrate accumulation was detected in both leaves and roots of the treated plants. The accumulation in roots was due to lack of use of available sugars as growth was arrested, which elicited soluble carbohydrate accumulation in the leaves due to a decrease in sink strength. Under aerobic conditions, ethanol fermentative metabolism was enhanced in roots of the treated plants. This fermentative response was not related to a change in total respiration rates or cytochrome respiratory capacity, but an increase in alternative oxidase capacity was detected. Pyruvate accumulation was detected after most of the herbicide treatments. These results demonstrate that both ABIH induce the less-efficient, ATP-producing pathways, namely fermentation and alternative respiration, by increasing the key metabolite, pyruvate. The plant response was similar not only for the two ABIH but also after foliar or residual application.

  17. Degradation and enantiomeric fractionation of mecoprop in soil previously exposed to phenoxy acid herbicides - New insights for bioremediation.

    PubMed

    Frková, Zuzana; Johansen, Anders; de Jonge, Lis Wollesen; Olsen, Preben; Gosewinkel, Ulrich; Bester, Kai

    2016-11-01

    Phenoxy acid-contaminated subsoils are common as a result of irregular disposal of residues and production wastes in the past. For enhancing in situ biodegradation at reducing conditions, biostimulation may be an effective option. Some phenoxy acids were marketed in racemic mixtures, and biodegradation rates may differ between enantiomers. Therefore, enantio-preferred degradation of mecoprop (MCPP) in soil was measured to get in-depth information on whether amendment with glucose (BOD equivalents as substrate for microbial growth) and nitrate (redox equivalents for oxidation) can stimulate bioremediation. The degradation processes were studied in soil sampled at different depths (3, 4.5 and 6m) at a Danish urban site with a history of phenoxy acid contamination. We observed preferential degradation of the R-enantiomer only under aerobic conditions in the soil samples from 3- and 6-m depth at environmentally relevant (nM) MCPP concentrations: enantiomer fraction (EF)<0.5. On the other hand, we observed preferential degradation of the S-enantiomer in all samples and treatments at elevated (μM) MCPP concentrations: EF>0.5. Three different microbial communities were discriminated by enantioselective degradation of MCPP: 1) aerobic microorganisms with little enantioselectivity, 2) aerobic microorganisms with R-selectivity and 3) anaerobic denitrifying organisms with S-selectivity. Glucose-amendment did not enhance MCPP degradation, while nitrate amendment enhanced the degradation of high concentrations of the herbicide. PMID:27432728

  18. Degradation and enantiomeric fractionation of mecoprop in soil previously exposed to phenoxy acid herbicides - New insights for bioremediation.

    PubMed

    Frková, Zuzana; Johansen, Anders; de Jonge, Lis Wollesen; Olsen, Preben; Gosewinkel, Ulrich; Bester, Kai

    2016-11-01

    Phenoxy acid-contaminated subsoils are common as a result of irregular disposal of residues and production wastes in the past. For enhancing in situ biodegradation at reducing conditions, biostimulation may be an effective option. Some phenoxy acids were marketed in racemic mixtures, and biodegradation rates may differ between enantiomers. Therefore, enantio-preferred degradation of mecoprop (MCPP) in soil was measured to get in-depth information on whether amendment with glucose (BOD equivalents as substrate for microbial growth) and nitrate (redox equivalents for oxidation) can stimulate bioremediation. The degradation processes were studied in soil sampled at different depths (3, 4.5 and 6m) at a Danish urban site with a history of phenoxy acid contamination. We observed preferential degradation of the R-enantiomer only under aerobic conditions in the soil samples from 3- and 6-m depth at environmentally relevant (nM) MCPP concentrations: enantiomer fraction (EF)<0.5. On the other hand, we observed preferential degradation of the S-enantiomer in all samples and treatments at elevated (μM) MCPP concentrations: EF>0.5. Three different microbial communities were discriminated by enantioselective degradation of MCPP: 1) aerobic microorganisms with little enantioselectivity, 2) aerobic microorganisms with R-selectivity and 3) anaerobic denitrifying organisms with S-selectivity. Glucose-amendment did not enhance MCPP degradation, while nitrate amendment enhanced the degradation of high concentrations of the herbicide.

  19. Specific and differential inhibition of very-long-chain fatty acid elongases from Arabidopsis thaliana by different herbicides

    PubMed Central

    Trenkamp, Sandra; Martin, William; Tietjen, Klaus

    2004-01-01

    In higher plants, very-long-chain fatty acids (VLCFAs) are the main constituents of hydrophobic polymers that prevent dessication at the leaf surface and provide stability to pollen grains. Of the 21 genes encoding VLCFA elongases (VLCFAEs) from Arabidopsis thaliana, 17 were expressed heterologously in Saccharomyces cerevisiae. Six VLCFAEs, including three known elongases (FAE1, KCS1, and KCS2) and three previously uncharacterized gene products (encoded by At5g43760, At1g04220, and At1g25450) were found to be enzymatically active with endogenous yeast fatty acid substrates and to some extent with externally supplied unsaturated substrates. The spectrum of VLCFAs accumulated in expressing yeast strains was determined by gas chromatography/mass spectrometry. Marked specificity was found among elongases tested with respect to their elongation products, which encompassed saturated and monounsaturated fatty acids 20–30 carbon atoms in length. The active VLCFAEs revealed highly distinct patterns of differential sensitivity to oxyacetamides, chloroacetanilides, and other compounds tested, whereas yeast endogenous VLCFA production, which involves its unrelated elongase (ELO) in sphingolipid synthesis, was unaffected. Several compounds inhibited more than one VLCFAE, and some inhibited all six active enzymes. These findings pinpoint VLCFAEs as the target of the widely used K3 class herbicides, which have been in commercial use for 50 years, provide important clues as to why spontaneous resistance to this class is rare, and point to complex patterns of substrate specificity and product spectrum among members of the Arabidopsis VLCFAE family. PMID:15277688

  20. Moisturizing lotions can increase transdermal absorption of the herbicide 2,4-dichlorophenoxacetic acid across hairless mouse skin.

    PubMed

    Brand, R M; Charron, A R; Sandler, V L; Jendrzejewski, J L

    2007-01-01

    Moisturizing lotions can be an effective treatment for occupationally induced dry skin. These compounds are designed to be hygroscopic and retain water to keep the stratum corneum hydrated, while at the same time enhancing the horny layer to prevent increases in transepidermal water loss (TEWL). Skin hydration levels, however, are known to influence barrier properties. The purpose of this work was to compare skin moisture levels induced by four commercially available moisturizing lotions with their capacity as transdermal penetration enhancers using the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) as a model chemical. Further, the effect of moisturizing the skin after washing with sodium lauryl sulfate (SLS) on transdermal absorption was determined. Skin moisture levels were also measured noninvasively and were correlated to penetration enhancement. Hairless mouse skin was pretreated with commercially available moisturizing lotions either with or without SLS washing and in vitro permeability studies were performed with the herbicide 2,4-D. The data demonstrate that pretreatment with three of the four lotions tested increased the transdermal absorption of 2,4-D as evidenced by cumulative penetration or faster lag times (p < 0.05). Skin moisture levels correlated with the penetration enhancement capabilities of the lotion. Washing the skin with 5% SDS increased the transdermal absorption of 2,4-D (p < 0.05) and application of moisturizing lotions increased the absorption further. In summary moisturizing lotions may influence transdermal penetration of the skin, with the more effective moisturizers having a greater effect on 2,4-D absorption.

  1. Dachtal Isomers and Acidic Herbicides and Pesticides in Eggs of Osprey (Pandion haliaetus) from the Seattle and Everett Areas, Washington, U.S.A

    USGS Publications Warehouse

    Chu, S.; Henny, Charles J.; Kaiser, James L.; Drouillard, K.G.; Haffner, G.D.; Letcher, R.J.

    2007-01-01

    Current-use chlorophenoxy herbicides including 2,4-dichlorophenoxyacetic acid, dicamba, triclopyr, dicamba, dimethyl tetrachloroterephthalate (DCPA or dacthal), and the metabolite of pyrethroids, 3-phenoxybenzoic acid (3-PBA), and the fungicide, chlorothalonil, were investigated in the eggs of osprey (Pandion haliaetus) that were collected from 15 sites from five study areas Puget Sound/Seattle area of Washington State, USA. DCPA differs from acidic chlorophenoxy herbicides, and is not readily hydrolyzed to free acid or acid metabolites, and thus we developed a new method. Of the 12 chlorophenoxy herbicides and chlorothalonil analyzed only DCPA could be quantified at six of these sites (2.0 to 10.3 pg/g fresh weight). However, higher levels (6.9 to 85.5 pg/g fresh weight) of the unexpected DCPA structural isomer, dimethyl tetrachlorophthalate (diMe-TCP) were quantified in eggs from all sites. diMe-TCP concentrations tended to be higher in eggs from the Everett Harbor area. As diMe-TCP is not an industrial product, and not commercially available, the source of diMe-TCP is unclear. Regardless, these findings indicate that DCPA and diMe-TCP can be accumulated in the food chain of fish-eating osprey, and transferred in ovo to eggs, and thus may be of concern to the health of the developing chick and the general reproductive health of this osprey population.

  2. The discovery of Arylex™ active and Rinskor™ active: Two novel auxin herbicides.

    PubMed

    Epp, Jeffrey B; Alexander, Anita L; Balko, Terry W; Buysse, Ann M; Brewster, William K; Bryan, Kristy; Daeuble, John F; Fields, Stephen C; Gast, Roger E; Green, Renard A; Irvine, Nicholas M; Lo, William C; Lowe, Christian T; Renga, James M; Richburg, John S; Ruiz, James M; Satchivi, Norbert M; Schmitzer, Paul R; Siddall, Thomas L; Webster, Jeffery D; Weimer, Monte R; Whiteker, Gregory T; Yerkes, Carla N

    2016-02-01

    Multiple classes of commercially important auxin herbicides have been discovered since the 1940s including the aryloxyacetates (2,4-D, MCPA, dichlorprop, mecoprop, triclopyr, and fluroxypyr), the benzoates (dicamba), the quinoline-2-carboxylates (quinclorac and quinmerac), the pyrimidine-4-carboxylates (aminocyclopyrachlor), and the pyridine-2-carboxylates (picloram, clopyralid, and aminopyralid). In the last 10 years, two novel pyridine-2-carboxylate (or picolinate) herbicides were discovered at Dow AgroSciences. This paper will describe the structure activity relationship study that led to the discovery of the 6-aryl-picolinate herbicides Arylex™ active (2005) and Rinskor™ active (2010). While Arylex was developed primarily for use in cereal crops and Rinskor is still in development primarily for use in rice crops, both herbicides will also be utilized in additional crops.

  3. Overview of herbicide mechanisms of action.

    PubMed Central

    Duke, S O

    1990-01-01

    Commercial herbicides exhibit many different mechanisms of action. Several enzymes involved in biosynthesis of amino acids are sites of action for herbicides. A large number of different herbicide classes inhibit photosynthesis by binding to the quinone-binding protein, D-1, to prevent photosynthetic electron transfer. Several different types of herbicides apparently cause accumulation of photodynamic porphyrins by inhibiting protoporphyrinogen oxidase. Bipyridyliums and heteropentalenes cause the production of superoxide radicals by energy diversion from photosystem I of photosynthesis. Lipid synthesis is the site of action of a broad array of herbicides used in controlling monocot weeds. Herbicides of several classes apparently act by inhibiting mitosis through direct interaction with tubulin. Several other molecular sites of herbicide action are known. Despite a growing body of knowledge, the exact molecular sites of action of many herbicides are unknown. Some herbicides are known to have more than one site of action. Virtually all knowledge of herbicide structure-activity relationships is semiempirical. In addition to site of action structure-activity relationships, herbicide structure and chemical properties also strongly influence absorption, translocation, bioactivation, and environmental stability. Considering how little is known about all the potential sites of herbicide action, it is unlikely that during the next decade more than a relatively small number of site-specific herbicide structure-activity relationships will be developed. PMID:1980104

  4. Long-term sub-lethal effects of low concentration commercial herbicide (glyphosate/pelargonic acid) formulation in Bryophyllum pinnatum.

    PubMed

    Pokhrel, Lok R; Karsai, Istvan

    2015-12-15

    Potential long-term (~7months) sub-lethal impacts of soil-applied low levels of Roundup herbicide formulation were investigated in a greenhouse environment using the vegetative clones of succulent non-crop plant model, Bryophyllum pinnatum (Lam.) Oken. An eleven day LC50 (concentration that killed 50% of the plants) was found to be 6.25% (~1.25mg glyphosate/mL and 1.25mg pelargonic acid/mL combined), and complete mortality occurred at 12.5%, of the field application rate (i.e., ~20mg glyphosate/mL and 20mg pelargonic acid/mL as active ingredients). While sub-lethal Roundup (1-5%) exposures led to hormesis-characterized by a significant increase in biomass and vegetative reproduction, higher concentrations (≥6.25%) were toxic. A significant interaction between Roundup concentrations and leaf biomass was found to influence the F1 plantlets' biomass. Biomass asymmetry generally increased with increasing Roundup concentrations, indicating that plants were more stressed at higher Roundup treatments but within the low-dose regime (≤5% of the as-supplied formulation). While leaf apex region demonstrated higher reproduction with lower biomass increase, leaf basal area showed lower reproduction with greater biomass increase, in plantlets. The results suggest long-term exposures to drifted low levels of Roundup in soil may promote biomass and reproduction in B. pinnatum.

  5. Long-term sub-lethal effects of low concentration commercial herbicide (glyphosate/pelargonic acid) formulation in Bryophyllum pinnatum.

    PubMed

    Pokhrel, Lok R; Karsai, Istvan

    2015-12-15

    Potential long-term (~7months) sub-lethal impacts of soil-applied low levels of Roundup herbicide formulation were investigated in a greenhouse environment using the vegetative clones of succulent non-crop plant model, Bryophyllum pinnatum (Lam.) Oken. An eleven day LC50 (concentration that killed 50% of the plants) was found to be 6.25% (~1.25mg glyphosate/mL and 1.25mg pelargonic acid/mL combined), and complete mortality occurred at 12.5%, of the field application rate (i.e., ~20mg glyphosate/mL and 20mg pelargonic acid/mL as active ingredients). While sub-lethal Roundup (1-5%) exposures led to hormesis-characterized by a significant increase in biomass and vegetative reproduction, higher concentrations (≥6.25%) were toxic. A significant interaction between Roundup concentrations and leaf biomass was found to influence the F1 plantlets' biomass. Biomass asymmetry generally increased with increasing Roundup concentrations, indicating that plants were more stressed at higher Roundup treatments but within the low-dose regime (≤5% of the as-supplied formulation). While leaf apex region demonstrated higher reproduction with lower biomass increase, leaf basal area showed lower reproduction with greater biomass increase, in plantlets. The results suggest long-term exposures to drifted low levels of Roundup in soil may promote biomass and reproduction in B. pinnatum. PMID:26311583

  6. Effects of selected herbicides on cytokine production in vitro.

    PubMed

    Hooghe, R J; Devos, S; Hooghe-Peters, E L

    2000-05-19

    To evaluate possible deleterious effects of commonly used herbicides on leukocytes, cytokine production was selected as a sensitive indicator. After in vitro exposure of human peripheral blood mononuclear cells from normal donors, the production of all 3 cytokines tested--interferon-gamma (a type 1 cytokine), interleukin-5 (a type 2 cytokine) and tumor necrosis factor-alpha (an inflammatory cytokine)--was impaired by up to 70, 50 and 70% respectively in a concentration-dependent manner in cultures exposed to atrazine (0.03-3 microM in 1% dimethylsulfoxide, DMSO). The effect paralleled that seen with dexamethasone, a known immunosuppressive agent. Other pesticides also dissolved in DMSO--mecoprop, simazine or MCPA (each up to 1 microM)--or dissolved in phosphate-buffered saline--diuron (up to 1 microM), isoproturon (up to 3 microM), metoxuron (up to 8 microM) or metamitron (up to 80 microM)--showed no concentration-related effects on cytokine production. There was, however, an inhibition of IFN-gamma and TNF-alpha production by simazine, metoxuron and mecoprop and of all three cytokines tested by diuron. MCPA (0.01 and 0.1 microM) stimulated the production of TNF-alpha. Thus, exposure to herbicides leading to plasma levels in the micromolar range induces imbalance in cytokine production.

  7. CZE separation of amitrol and triazine herbicides in environmental water samples with acid-assisted on-column preconcentration.

    PubMed

    Arribas, Alberto Sánchez; Moreno, Mónica; Bermejo, Esperanza; Zapardiel, Antonio; Chicharro, Manuel

    2011-01-01

    A simple analytical scheme for the detection and quantification of amitrol and triazine herbicides (atrazine, ametryn and atraton) and degradation product (2-hydroxyatrazine) in environmental water samples by CZE is reported. On-column preconcentration of analytes from untreated water samples (mineral, spring, tap and river water) is accomplished by introducing an acid plug (200 mM citrate of pH 2.0) after the sample and then proceeding with the CZE separation, using 100 mM formiate buffer of pH 3.5 as running buffer and 25.0 KV as separation voltage. UV detection at 200 nm provides LODs from 50 to 300 nM in untreated samples and they were lowered tenfold by sample preconcentration by evaporation. Calculated recoveries were typically higher than 90%. Minimal detectable concentration of the electroactive amitrol could be decreased about 20-fold when electrochemical detection was employed by monitoring the amperometric signal at +800 mV using a carbon paste electrode (LOD of 9.6 nM, 0.81 μg/L, versus 170 nM, 14.3 μg/L, using amperometric and UV detection, respectively) in untreated water samples.

  8. CZE separation of amitrol and triazine herbicides in environmental water samples with acid-assisted on-column preconcentration.

    PubMed

    Arribas, Alberto Sánchez; Moreno, Mónica; Bermejo, Esperanza; Zapardiel, Antonio; Chicharro, Manuel

    2011-01-01

    A simple analytical scheme for the detection and quantification of amitrol and triazine herbicides (atrazine, ametryn and atraton) and degradation product (2-hydroxyatrazine) in environmental water samples by CZE is reported. On-column preconcentration of analytes from untreated water samples (mineral, spring, tap and river water) is accomplished by introducing an acid plug (200 mM citrate of pH 2.0) after the sample and then proceeding with the CZE separation, using 100 mM formiate buffer of pH 3.5 as running buffer and 25.0 KV as separation voltage. UV detection at 200 nm provides LODs from 50 to 300 nM in untreated samples and they were lowered tenfold by sample preconcentration by evaporation. Calculated recoveries were typically higher than 90%. Minimal detectable concentration of the electroactive amitrol could be decreased about 20-fold when electrochemical detection was employed by monitoring the amperometric signal at +800 mV using a carbon paste electrode (LOD of 9.6 nM, 0.81 μg/L, versus 170 nM, 14.3 μg/L, using amperometric and UV detection, respectively) in untreated water samples. PMID:21254126

  9. The crystal structure of plant acetohydroxy acid isomeroreductase complexed with NADPH, two magnesium ions and a herbicidal transition state analog determined at 1.65 A resolution.

    PubMed Central

    Biou, V; Dumas, R; Cohen-Addad, C; Douce, R; Job, D; Pebay-Peyroula, E

    1997-01-01

    Acetohydroxy acid isomeroreductase catalyzes the conversion of acetohydroxy acids into dihydroxy valerates. This reaction is the second in the synthetic pathway of the essential branched side chain amino acids valine and isoleucine. Because this pathway is absent from animals, the enzymes involved in it are good targets for a systematic search for herbicides. The crystal structure of acetohydroxy acid isomeroreductase complexed with cofactor NADPH, Mg2+ ions and a competitive inhibitor with herbicidal activity, N-hydroxy-N-isopropyloxamate, was solved to 1.65 A resolution and refined to an R factor of 18.7% and an R free of 22.9%. The asymmetric unit shows two functional dimers related by non-crystallographic symmetry. The active site, nested at the interface between the NADPH-binding domain and the all-helical C-terminus domain, shows a situation analogous to the transition state. It contains two Mg2+ ions interacting with the inhibitor molecule and bridged by the carboxylate moiety of an aspartate residue. The inhibitor-binding site is well adjusted to it, with a hydrophobic pocket and a polar region. Only 24 amino acids are conserved among known acetohydroxy acid isomeroreductase sequences and all of these are located around the active site. Finally, a 140 amino acid region, present in plants but absent from other species, was found to make up most of the dimerization domain. PMID:9218783

  10. Exposures of 129 preschool children to organochlorines, organophosphates, pyrethroids, and acid herbicides at their homes and daycares in North Carolina.

    PubMed

    Morgan, Marsha K; Wilson, Nancy K; Chuang, Jane C

    2014-04-03

    Few data exist on the concurrent exposures of young children to past-use and current-use pesticides in their everyday environments. In this further analysis of study data, we quantified the potential exposures and intake doses of 129 preschool children, ages 20 to 66 months, to 16 pesticides (eight organochlorines, two organophosphates, three pyrethroids, and three acid herbicides). Environmental samples (soil, dust, outdoor air, and indoor air) and personal samples (hand wipes, solid food, and liquid food) were collected at 129 homes and 13 daycare centers in six counties in North Carolina between 2000 and 2001. α-Chlordane, γ-chlordane, heptachlor, chlorpyrifos, diazinon, cis-permethrin, trans-permethrin, and 2,4-dichlorophenoxyacetic acid (2,4-D) were detected ≥50% in two or more media in both settings. Of these pesticides, the children's estimated median potential intake doses through dietary ingestion, nondietary ingestion, and inhalation routes were the highest for 2,4-D and cis/trans-permethrin (both 4.84 ng/kg/day), cis/trans-permethrin (2.39 ng/kg/day), and heptachlor (1.71 ng/kg/day), respectively. The children's estimated median potential aggregate intake doses by all three routes were quantifiable for chlorpyrifos (4.6 ng/kg/day), cis/trans-permethrin (12.5 ng/kg/day), and 2,4-D (4.9 ng/kg/day). In conclusion, these children were likely exposed daily to several pesticides from several sources and routes at their homes and daycares.

  11. Exposures of 129 Preschool Children to Organochlorines, Organophosphates, Pyrethroids, and Acid Herbicides at Their Homes and Daycares in North Carolina

    PubMed Central

    Morgan, Marsha K.; Wilson, Nancy K.; Chuang, Jane C.

    2014-01-01

    Few data exist on the concurrent exposures of young children to past-use and current-use pesticides in their everyday environments. In this further analysis of study data, we quantified the potential exposures and intake doses of 129 preschool children, ages 20 to 66 months, to 16 pesticides (eight organochlorines, two organophosphates, three pyrethroids, and three acid herbicides). Environmental samples (soil, dust, outdoor air, and indoor air) and personal samples (hand wipes, solid food, and liquid food) were collected at 129 homes and 13 daycare centers in six counties in North Carolina between 2000 and 2001. α-Chlordane, γ-chlordane, heptachlor, chlorpyrifos, diazinon, cis-permethrin, trans-permethrin, and 2,4-dichlorophenoxyacetic acid (2,4-D) were detected ≥50% in two or more media in both settings. Of these pesticides, the children’s estimated median potential intake doses through dietary ingestion, nondietary ingestion, and inhalation routes were the highest for 2,4-D and cis/trans-permethrin (both 4.84 ng/kg/day), cis/trans-permethrin (2.39 ng/kg/day), and heptachlor (1.71 ng/kg/day), respectively. The children’s estimated median potential aggregate intake doses by all three routes were quantifiable for chlorpyrifos (4.6 ng/kg/day), cis/trans-permethrin (12.5 ng/kg/day), and 2,4-D (4.9 ng/kg/day). In conclusion, these children were likely exposed daily to several pesticides from several sources and routes at their homes and daycares. PMID:24705361

  12. Common and distinct gene expression patterns induced by the herbicides 2,4-dichlorophenoxyacetic acid, cinidon-ethyl and tribenuron-methyl in wheat.

    PubMed

    Pasquer, Frédérique; Ochsner, Urs; Zarn, Jürg; Keller, Beat

    2006-12-01

    In wheat, herbicides are used to control weeds. Little is known about the changes induced in the metabolism of tolerant plants after herbicide treatment. The impact of three herbicides [2,4-dichlorophenoxyacetic acid (2,4-D), cinidon-ethyl and tribenuron-methyl] on the wheat transcriptome was studied using cDNA microarrays. Gene expression of plants grown in a controlled environment or in the field was studied between 24 h and 2 weeks after treatment. Under controlled conditions, 2,4-D induced genes of the phenylpropanoid pathway soon after treatment. Cinidon-ethyl triggered peroxidase and defence-related gene expression under controlled conditions, probably because reactive oxygen species are released by photo-oxidation of protoporphyrin-IX. The same genes were upregulated in the field as under controlled conditions, albeit at a weaker level. These results show that cinidon-ethyl specifically induces genes involved in plant defence. Under controlled conditions, tribenuron-methyl did not change the expression profile immediately after treatment, but defence-related genes were upregulated after 1 week. Sulfonylurea compounds such as tribenuron-methyl specifically inhibit acetolactate synthase and are rapidly detoxified, but the activity of some of the resulting metabolites could explain later changes in gene expression. Finally, overexpression of the isopropylmalate synthase gene, involved in branched-chain amino acid synthesis, and of defence-related genes was observed in the field after sulfonylurea treatment. PMID:17054088

  13. Ion chromatographic analysis of selected free amino acids and cations to investigate the change of nitrogen metabolism by herbicide stress in soybean (glycine max).

    PubMed

    Jia, M; Keutgen, N; Matsuhashi, S; Mitzuniwa, C; Ito, T; Fujimura, T; Hashimoto, S

    2001-01-01

    A simple and reliable method for the determination of NH4+, K+, Na+, aspartic acid, asparagine, glutamine, and alanine by ion chromatography has been developed. It is suitable for monitoring changes of nitrogen metabolism in soybean because it can accurately measure concentrations o asparagine and NH4+, two key substances for nitrogen storage and transport in this plant species Analysis of asparagine distribution in soybean indicated that higher levels (up to 18.4 micromol g(-1) of fresh mass) occur in stems and lower levels in roots (2.0 micromol g(-1) of fresh mass) and leaves (1.6 micromol g(-1) of fresh mass). When the herbicide metsulfuron-methyl (0.5, 5, and 50 ppb) was applied via the nutrient solution to the root system, asparagine concentrations increased 3-6 times in stems roots, and leaves. Metsulfuron-methyl is known to impair the synthesis of branched amino acids and, in consequence, protein synthesis. Thus, nitrogen consumption was limited, leading to ar accumulation of asparagine. The possible use of this physiological response in agricultural practice to identify herbicide stress in soybean and to detect low-level residues of sulfonylurea herbicides ir the soil is discussed.

  14. Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays.

    PubMed

    Tang, Yanhong; Luo, Shenglian; Teng, Yarong; Liu, Chengbin; Xu, Xiangli; Zhang, Xilin; Chen, Liang

    2012-11-30

    A new photocatalyst, Ag nanoparticles (NPs) and reduced graphene oxide (RGO) co-decorated TiO(2) nanotube arrays (NTs) (Ag/RGO-TiO(2) NTs), was designed and facilely produced by combining electrodeposition and photoreduction processes. The structures and properties of the photocatalysts were characterized. The ternary catalyst exhibited almost 100% photocatalytic removal efficiency of typical herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) from water under simulated solar light irradiation. The photodegradation rate toward 2,4-D over Ag/RGO-TiO(2) NTs is 11.3 times that over bare TiO(2) NTs. After 10 successive cycles with 1600 min of irradiation, Ag/RGO-TiO(2) NTs maintained as high 2,4-D removal efficiency as 97.3% with excellent stability and easy recovery, which justifies the photocatalytic system a promising application for herbicide removal from water. PMID:23062512

  15. Coupling continuous subcritical water extraction, filtration, preconcentration, chromatographic separation and UV detection for the determination of chlorophenoxy acid herbicides in soils.

    PubMed

    Luque-García, J L; Luque de Castro, M D

    2002-06-14

    Subcritical water extraction has been coupled with filtration, preconcentration and chromatographic analysis for the determination of acid herbicides in different types of soil. Two experimental designs were used for the optimization of the leaching step. The use of water as extractant in the continuous mode at a flow-rate of 1 ml/min and 85 degrees C was sufficient for quantitative extraction of the analytes. A static extraction time was unnecessary for reducing the extraction time to 1 h. A minicolumn containing C18-Hydra as sorbent proved an excellent material for the quantitative preconcentration of the herbicides prior to individual chromatographic separation. A flow-injection manifold was used as interface for coupling the four steps, thus allowing automation of the whole analytical process. Recoveries of the target analytes ranged between 94.2 and 113.1%, and repeatabilities, expressed as relative standard deviations, were between 0.61 and 6.83%.

  16. Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays.

    PubMed

    Tang, Yanhong; Luo, Shenglian; Teng, Yarong; Liu, Chengbin; Xu, Xiangli; Zhang, Xilin; Chen, Liang

    2012-11-30

    A new photocatalyst, Ag nanoparticles (NPs) and reduced graphene oxide (RGO) co-decorated TiO(2) nanotube arrays (NTs) (Ag/RGO-TiO(2) NTs), was designed and facilely produced by combining electrodeposition and photoreduction processes. The structures and properties of the photocatalysts were characterized. The ternary catalyst exhibited almost 100% photocatalytic removal efficiency of typical herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) from water under simulated solar light irradiation. The photodegradation rate toward 2,4-D over Ag/RGO-TiO(2) NTs is 11.3 times that over bare TiO(2) NTs. After 10 successive cycles with 1600 min of irradiation, Ag/RGO-TiO(2) NTs maintained as high 2,4-D removal efficiency as 97.3% with excellent stability and easy recovery, which justifies the photocatalytic system a promising application for herbicide removal from water.

  17. The economic value of pelargonic acid as a natural herbicide in sweet bell peppers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economic return on investment in respect to weed control management practices continue to be an essential element in use of naturally occurring substances for weed control in vegetable production. Pelargonic acid, although not certified as organic, is naturally occurring in many plants, animals, and...

  18. DFT computation and experimental analysis of vibrational and electronic spectra of phenoxy acetic acid herbicides

    NASA Astrophysics Data System (ADS)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2013-05-01

    An absolute vibrational analysis has been attempted on the basis of experimental FTIR and NIR-FT Raman spectra with calculated vibrational wavenumbers and intensities of phenoxy acetic acids. The equilibrium geometry, bonding features and harmonic vibrational wavenumbers have been calculated with the help of B3LYP method with Dunning correlation consistent basis set aug-cc-pVTZ. The electronic structures of molecular fragments were described in terms of natural bond orbital analysis, which shows intermolecular Osbnd H⋯O and intramolecular Csbnd H⋯O hydrogen bonds. The electronic absorption spectra with different solvents have been investigated in combination with time-dependent density functional theory calculation. The pKa values of phenoxy acetic acids were compared.

  19. Regulation of Lipid Synthesis in Soybeans by Two Benzoic Acid Herbicides 1

    PubMed Central

    Muslih, Raad K.; Linscott, Dean L.

    1977-01-01

    The effects of 3-nitro-2,5-dichlorobenzoic acid (dinoben) and 3-amino-2,4-dichlorobenzoic acid (chloramben) on lipid formation and on the incorporation of various substrates into lipids by intact seeds and subcellular fractions of germinating soybean (Glycine max [L.] Merr. `Amsoy') were studied. Dinoben (20 μg/ml) inhibited synthesis of total lipids 67%, neutral lipids 73%, glycolipids 51%, and phospholipids 39% in germinating seeds. When polar lipids were analyzed further, inhibition of individual lipid classes was also observed. Chloramben (20 μg/ml) stimulated total lipid synthesis 25%. With the exception of the mitochondrial fraction where malonate thiokinase was absent, dinoben inhibited up to 99% the incorporation of acetate and malonate into lipids, but did not inhibit acetyl-CoA and malonyl-CoA incorporation. Chloramben stimulated the incorporation of all substrates tested into lipids by all fractions except the mitochondrial fraction when malonate was the substrate. When dinoben and chloramben were used in combinations, chloramben did not reverse the inhibitory effect of dinoben. It is concluded that the dinoben inhibitory effect is specific and is associated with the acetate and malonate thiokinase systems. The chloramben effect is stimulatory to either acetyl-CoA carboxylase or fatty acid synthetase or both. PMID:16660173

  20. Dispersive liquid-liquid-liquid microextraction combined with liquid chromatography for the determination of chlorophenoxy acid herbicides in aqueous samples.

    PubMed

    Tsai, Wan-Chun; Huang, Shang-Da

    2009-11-01

    A novel sample preparation method "Dispersive liquid-liquid-liquid microextraction" (DLLLME) was developed in this study. DLLLME was combined with liquid chromatography system to determine chlorophenoxy acid herbicide in aqueous samples. DLLLME is a rapid and environmentally friendly sample pretreatment method. In this study, 25microL of 1,1,2,2-tetrachloroethane was added to the sample solution and the targeted analytes were extracted from the donor phase by manually shaking for 90s. The organic phase was separated from the donor phase by centrifugation and was transferred into an insert. Acceptor phase was added to this insert. The analytes were then back-extracted into the acceptor phase by mixing the organic and acceptor phases by pumping those two solutions with a syringe plunger. After centrifugation, the organic phase was settled and removed with a microsyringe. The acceptor phase was injected into the UPLC system by auto sampler. Fine droplets were formed by shaking and pumping with the syringe plunger in DLLLME. The large interfacial area provided good extraction efficiency and shortened the extraction time needed. Conventional LLLME requires an extraction time of 40-60min; an extraction time of approximately 2min is sufficient with DLLLME. The DLLLME technique shows good linearity (r(2)>or=0.999), good repeatability (RSD: 4.0-12.2% for tap water; 5.7-8.5% for river water) and high sensitivity (LODs: 0.10-0.60microg/L for tap water; 0.11-0.95microg/L for river water).

  1. Synergism of herbicide toxicity by 5-aminolevulinic acid is related to physiological and ultra-structural disorders in crickweed (Malachium aquaticum L.).

    PubMed

    Xu, Ling; Zhang, Wenfang; Ali, Basharat; Islam, Faisal; Zhu, Jinwen; Zhou, Weijun

    2015-11-01

    Selection of effective herbicides to control weeds has been one of the major objectives of scientists. This study determines the differential tolerance or susceptibility of crickweed (Malachium aquaticum L.) to various concentration combinations of 5-aminolevulinic acid (ALA) (1, 10 and 100mg/L) and propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino)benzoate (ZJ0273) (100, 200, and 500mg/L). ALA was applied as pre- and post-treatment alone or in combination with ZJ0273. Results showed that ZJ0273 stress alone imposed negative effects on M. aquaticum seedling's growth, net photosynthetic rates and SPAD values, and the rate of decline was consistently increased with the increase in ZJ0273 concentration. The ZJ0273 treatment showed a gradual decrease in the activities of antioxidant enzymes peroxidase (POD), superoxide dismutase (SOD), and ascorbate peroxidase (APX), and increase in the accumulation of malondialdehyde (MDA). Changes in chloroplast swelling, increased number of plastoglobuli, disruption of thylakoid, disintegrated mitochondria and turbid nucleoplasm were noticed. Moreover, SDS-PAGE analysis of total proteins revealed that herbicide stress in the leaves was associated with the decrease or disappearance of some protein bands. Further, two-dimensional gel electrophoresis (2-DE) results showed that proteins in different spots were classified into three types for M. aquaticum. These results indicate that the combined treatment of ALA and ZJ0273 synergizes the herbicide toxicity which is different from its independent effects on M. aquaticum and thus, could improve weed control efficacy. PMID:26615151

  2. Comparing effects of low levels of herbicides on greenhouse- and field-grown potatoes (Solanum tuberosum L.), soybeans (Glycine max L.), and peas (Pisum sativum L.).

    PubMed

    Pfleeger, Thomas; Olszyk, David; Lee, E Henry; Plocher, Milton

    2011-02-01

    Although laboratory toxicology tests are generally easy to perform, cost effective, and readily interpreted, they have been questioned for their environmental relevance. In contrast, field tests are considered realistic while producing results that are difficult to interpret and expensive to obtain. Toxicology tests were conducted on potatoes, peas, and soybeans grown in a native soil in pots in the greenhouse and were compared to plants grown outside under natural environmental conditions to determine toxicological differences between environments, whether different plant developmental stages were more sensitive to herbicides, and whether these species were good candidates for plant reproductive tests. The reproductive and vegetative endpoints of the greenhouse plants and field-grown plants were also compared. The herbicides bromoxynil, glyphosate, MCPA ([4-chloro-2-methylphenoxy] acetic acid), and sulfometuron-methyl were applied at below field application rates to potato plants at two developmental stages. Peas and soybeans were exposed to sulfometuron-methyl at similar rates at three developmental stages. The effective herbicide concentrations producing a 25% reduction in a given measure differed between experimental conditions but were generally within a single order of magnitude within a species, even though there were differences in plant morphology. This study demonstrated that potatoes, peas, and soybeans grown in pots in a greenhouse produce phytotoxicity results similar to those grown outside in pots; that reproductive endpoints in many cases were more sensitive than vegetative ones; and that potato and pea plants are reasonable candidates for asexual and sexual reproductive phytotoxicity tests, respectively. Plants grown in pots in a greenhouse and outside varied little in toxicity. However, extrapolating those toxicity results to native plant communities in the field is basically unknown and in need of research.

  3. Predictors of 2,4-dichlorophenoxyacetic acid exposure among herbicide applicators.

    PubMed

    Bhatti, Parveen; Blair, Aaron; Bell, Erin M; Rothman, Nathaniel; Lan, Qing; Barr, Dana B; Needham, Larry L; Portengen, Lutzen; Figgs, Larry W; Vermeulen, Roel

    2010-03-01

    To determine the major factors affecting the urinary levels of 2,4-dichlorophenoxyacetic acid (2,4-D) among county noxious weed applicators in Kansas, we used a regression technique that accounted for multiple days of exposure. We collected 136 12-h urine samples from 31 applicators during the course of two spraying seasons (April to August of 1994 and 1995). Using mixed-effects models, we constructed exposure models that related urinary 2,4-D measurements to weighted self-reported work activities from daily diaries collected over 5 to 7 days before the collection of the urine sample. Our primary weights were based on an earlier pharmacokinetic analysis of turf applicators; however, we examined a series of alternative weighting schemes to assess the impact of the specific weights and the number of days before urine sample collection that were considered. The derived models accounting for multiple days of exposure related to a single urine measurement seemed robust with regard to the exact weights, but less to the number of days considered; albeit the determinants from the primary model could be fitted with marginal losses of fit to the data from the other weighting schemes that considered a different numbers of days. In the primary model, the total time of all activities (spraying, mixing, other activities), spraying method, month of observation, application concentration, and wet gloves were significant determinants of urinary 2,4-D concentration and explained 16% of the between-worker variance and 23% of the within-worker variance of urinary 2,4-D levels. As a large proportion of the variance remained unexplained, further studies should be conducted to try to systematically assess other exposure determinants.

  4. Oxidative photodegradation of herbicide fenuron in aqueous solution by natural iron oxide α-Fe2O3, influence of polycarboxylic acids.

    PubMed

    Kribéche, Mohamed El Amine; Mechakra, Hind; Sehili, Tahar; Brosillon, Stephan

    2016-01-01

    The photodegradation of the herbicide fenuron (1,1-dimethyl-3-phenylurea) by using a natural iron oxide (NIO), α-Fe2O3, in aqueous solution at acidic pH has been undertaken. The NIO was characterized by the Raman spectroscopy method. The degradation pathways and the formation of degradation products were studied. A high-pressure mercury lamp and sunlight were employed as light source. Fenuron photodegradation using NIO with oxalic acid followed the pseudo-first-order kinetics, the optimal experimental conditions were [oxalic acid]0 = 10(-3) M and [NIO] = 0.1 g L(-1) at pH 3. A UVA/NIO/oxalic acid system led to a low fenuron half-life (60 min). The results were even better when solar light is used (30 min). The variables studied were the doses of iron oxide, of carboxylic acids, the solution pH and the effect of sunlight irradiation. The effects of four carboxylic acids, oxalic, citric, tartaric and malic acids, on the fenuron photodegradation with NIO have been investigated, oxalic acid was the most effective carboxylic acid used at pH 3. A similar trend was observed for the removal of total organic carbon (TOC), 75% of TOC was removed. The analytical study showed many aromatic intermediates, short-chain carboxylic acids and inorganic ion. PMID:26102217

  5. Biological and molecular responses of Chironomus riparius (Diptera, Chironomidae) to herbicide 2,4-D (2,4-dichlorophenoxyacetic acid).

    PubMed

    Park, Kiyun; Park, Jungan; Kim, Jongkyu; Kwak, Inn-Sil

    2010-05-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) is an agricultural contaminant found in rural ground water. It remains to be determined whether neither 2,4-D poses environmental risks, nor is the mechanism of toxicity known at the molecular level. To evaluate the potential ecological risk of 2,4-D, we assessed the biological parameters including the survival rate, adult sex ratio of emerged adults, and mouthpart deformities in Chironomus riparius after long-term exposure to 2,4-D. The larvae were treated with 0.1, 1 or, 10microgL(-1) of 2,4-D for short- and long-term exposure periods. The sex ratio was changed in C. riparius exposed to only 10microgL(-1) of 2,4-D, whereas mouthpart deformities were observed as significantly higher in C. riparius exposed to 0.1microgL(-1) of 2,4-D. Survival rates were not significantly affected by 2,4-D. Furthermore, we evaluated the molecular and biochemical responses of biomarker genes such as gene expression of heat shock proteins (HSPs), ferritins and glutathione S-transferases (GSTs) in C. riparius exposed to 2,4-D for 24h. The expressions of HSP70, HSP40, HSP90 and GST levels in C. riparius were significantly increased after exposure to a 10microgL(-1) concentration of 2,4-D, whereas ferritin heavy and light chain gene expressions were significantly increased at all concentrations of 2,4-D exposure. Finally, these results may provide an important contribution to our understanding of the toxicology of 2,4-D herbicide in C. riparius. Moreover, the 2,4-D-mediated gene expressions may be generated by 2,4-D is the causative effects on most probable cause of the observed alterations. These biological, molecular and morphological parameters and the measured parameters can be used to monitor 2,4-D toxicity in an aquatic environment.

  6. Herbicide Persistence in Seawater Simulation Experiments.

    PubMed

    Mercurio, Philip; Mueller, Jochen F; Eaglesham, Geoff; Flores, Florita; Negri, Andrew P

    2015-01-01

    Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR). The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities). Very little degradation was recorded over the standard 60 d period (Experiment 1) so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated flood plumes

  7. Herbicide Persistence in Seawater Simulation Experiments.

    PubMed

    Mercurio, Philip; Mueller, Jochen F; Eaglesham, Geoff; Flores, Florita; Negri, Andrew P

    2015-01-01

    Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR). The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities). Very little degradation was recorded over the standard 60 d period (Experiment 1) so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated flood plumes

  8. The broad-leaf herbicide 2,4-dichlorophenoxyacetic acid turns rice into a living trap for a major insect pest and a parasitic wasp.

    PubMed

    Xin, Zhaojun; Yu, Zhaonan; Erb, Matthias; Turlings, Ted C J; Wang, Baohui; Qi, Jinfeng; Liu, Shengning; Lou, Yonggen

    2012-04-01

    Synthetic chemical elicitors of plant defense have been touted as a powerful means for sustainable crop protection. Yet, they have never been successfully applied to control insect pests in the field. We developed a high-throughput chemical genetics screening system based on a herbivore-induced linalool synthase promoter fused to a β-glucuronidase (GUS) reporter construct to test synthetic compounds for their potential to induce rice defenses. We identified 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin homolog and widely used herbicide in monocotyledonous crops, as a potent elicitor of rice defenses. Low doses of 2,4-D induced a strong defensive reaction upstream of the jasmonic acid and ethylene pathways, resulting in a marked increase in trypsin proteinase inhibitor activity and volatile production. Induced plants were more resistant to the striped stem borer Chilo suppressalis, but became highly attractive to the brown planthopper Nilaparvata lugens and its main egg parasitoid Anagrus nilaparvatae. In a field experiment, 2,4-D application turned rice plants into living traps for N. lugens by attracting parasitoids. Our findings demonstrate the potential of auxin homologs as defensive signals and show the potential of the herbicide to turn rice into a selective catch crop for an economically important pest. PMID:22313362

  9. The broad-leaf herbicide 2,4-dichlorophenoxyacetic acid turns rice into a living trap for a major insect pest and a parasitic wasp.

    PubMed

    Xin, Zhaojun; Yu, Zhaonan; Erb, Matthias; Turlings, Ted C J; Wang, Baohui; Qi, Jinfeng; Liu, Shengning; Lou, Yonggen

    2012-04-01

    Synthetic chemical elicitors of plant defense have been touted as a powerful means for sustainable crop protection. Yet, they have never been successfully applied to control insect pests in the field. We developed a high-throughput chemical genetics screening system based on a herbivore-induced linalool synthase promoter fused to a β-glucuronidase (GUS) reporter construct to test synthetic compounds for their potential to induce rice defenses. We identified 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin homolog and widely used herbicide in monocotyledonous crops, as a potent elicitor of rice defenses. Low doses of 2,4-D induced a strong defensive reaction upstream of the jasmonic acid and ethylene pathways, resulting in a marked increase in trypsin proteinase inhibitor activity and volatile production. Induced plants were more resistant to the striped stem borer Chilo suppressalis, but became highly attractive to the brown planthopper Nilaparvata lugens and its main egg parasitoid Anagrus nilaparvatae. In a field experiment, 2,4-D application turned rice plants into living traps for N. lugens by attracting parasitoids. Our findings demonstrate the potential of auxin homologs as defensive signals and show the potential of the herbicide to turn rice into a selective catch crop for an economically important pest.

  10. The effects of sublethal levels of 2,4-dichlorophenoxyacetic acid herbicide (2,4-D) on feeding behaviors of the crayfish O. rusticus.

    PubMed

    Browne, Amanda M; Moore, Paul A

    2014-08-01

    The widespread use of herbicides across the globe has increased the probability of synthetic chemicals entering freshwater habitats. On entering aquatic habitats, these chemicals target and disrupt both physiological and behavioral functioning in various aquatic organisms. Herbicides, such as 2,4-dichlorophenoxyacetic acid (2,4-D), can have negative impacts on chemoreception because these receptor cells are in direct contact with water-soluble chemicals in the environment. Studies focusing on lethal concentration (LC50) levels may understate the impact of herbicides within aquatic habitats because damage to the chemoreceptors can result in modified behaviors or lack of appropriate responses to environmental or social cues. The purpose of this experiment was to determine whether exposure to sublethal levels of 2,4-D alters the foraging behaviors of crayfish Orconectes rusticus. We hypothesized that crayfish exposed to greater concentrations of 2,4-D would be less successful in locating food or on locating food would consume smaller amounts possibly due to an inability to recognize the food odors in the contaminated waters. Crayfish were exposed to three sublethal levels of 2,4-D for 96 h and placed into a Y-maze system with a fish gelatin food source placed randomly in the right or left arm. Average walking speed, average time spent in the correct arm, and percent consumption were analyzed. Our data show that crayfish were impaired in their ability to forage effectively. These inabilities to locate and consume adequate amounts of food could result in lower body weights and decreased fitness in populations of crayfish exposed to 2,4-D in natural habitats.

  11. Herbicidal activity of cineole derivatives.

    PubMed

    Barton, Allan F M; Dell, Bernard; Knight, Allan R

    2010-09-22

    Essential oils and their constituents have potential as ecologically acceptable pesticides that may also have novel modes of action. In this work hydroxy and ester derivatives of the naturally occurring monoterpenoids 1,8-cineole 3, the main component in most eucalyptus oils, and 1,4-cineole 4 were prepared and their pre-emergence herbicidal activity against annual ryegrass (Lolium rigidum) and radish (Raphanus sativus var. Long Scarlet) investigated in laboratory-based bioassays. 1,8-Cineole, eucalyptus oil and all derivatives showed a dose-dependent herbicidal activity against annual ryegrass and radish with many of the derivatives showing improved herbicidal activity relative to 1,8-cineole and high-cineole eucalyptus oil. Increased activity of cineole ester derivatives compared to their associated hydroxy-cineole and carboxylic acid was not observed. No relationship between lipophilicity of the carboxylic acid portion of cineole ester derivatives and herbicidal activity was observed. The results indicate that these cineole derivatives could be environmentally acceptable herbicides.

  12. Application of pH-sensitive magnetic nanoparticles microgel as a sorbent for the preconcentration of phenoxy acid herbicides in water samples.

    PubMed

    Tabani, Hadi; Khodaei, Kamal; Bide, Yasamin; Zare, Farzaneh Dorabadi; Mirzaei, Saeed; Fakhari, Ali Reza

    2015-08-14

    Introducing new sorbents is an interesting and debatable issue in the field of sample preparation. In this study, for the first time, a pH-sensitive magnetic nanoparticles microgel, Fe3O4-SiO2-oly(4-vinylpyridine), was introduced as a new sorbent. The operating mechanism of this sorbent is based on changing the pH value of the sample and consequently the structure of this pH-sensitive microgel is changed. So that, at pH 6.0 the microgel was ready to accept and load the analytes (partial swelling), and when the pH was increased to 8.0, the microgel was closed and analytes were trapped inside the sorbent (deswelling). At pH 2.0 the microgel was opened and the analytes were released from the microgel (swelling). As the adsorption and desorption mechanism is based on changing the pH and only aqueous medium is used as the effluent solvent, this method is introduced as a green extraction method. The use of this microgel resulted in excellent figures of merit. The limits of quantitation and detection for herbicides were obtained within the range of 10-30 and 3-10 ng mL(-1), respectively. Finally, the proposed method was successfully applied to determine the concentration of phenoxy acid herbicides as hazardous materials in water samples.

  13. Differential response of young and adult leaves to herbicide 2,4-dichlorophenoxyacetic acid in pea plants: role of reactive oxygen species.

    PubMed

    Pazmiño, Diana M; Rodríguez-Serrano, María; Romero-Puertas, María C; Archilla-Ruiz, Angustias; Del Río, Luis A; Sandalio, Luisa M

    2011-11-01

    In this work the differential response of adult and young leaves from pea (Pisum sativum L.) plants to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) (23 mm) applied by foliar spraying was investigated. The concentration of 2,4-D (23 mm) and the time of treatment (72 h) were previously optimized in order to visualize its toxic effects on pea plants. Under these conditions, the herbicide induced severe disturbances in mesophyll cells structure and proliferation of vascular tissue in young leaves and increased acyl-CoA oxidase (ACX), xanthine oxidase (XOD) and lipoxygenase (LOX) activities in young leaves, and only ACX and LOX in adult leaves. This situation produced reactive oxygen species (ROS) over-accumulation favoured by the absence of significant changes in the enzymatic antioxidants, giving rise to oxidative damages to proteins and membrane lipids. An increase of ethylene took place in both young and adult leaves and the induction of genes encoding the stress proteins, PRP4A and HSP 71,2, was observed mainly in young leaves. These results suggest that ROS overproduction is a key factor in the effect of high concentrations of 2,4-D, and ROS can trigger a differential response in young and adult leaves, either epinasty development in young leaves or senescence processes in adult tissues.

  14. Fluorescence characterization of the interaction Suwannee river fulvic acid with the herbicide dichlorprop (2-(2,4-dichlorophenoxy)propionic acid) in the absence and presence of aluminum or erbium.

    PubMed

    Elkins, Kelly M; Dickerson, Matthew A; Traudt, Elizabeth M

    2011-11-01

    This study uses fluorescence spectroscopy to better understand the role of environmental metal ions in the interaction of charged herbicides with biochemical degradation product Suwannee River fulvic acid (SRFA). The interactions between the widely-used herbicide dichlorprop (2-(2,4-dichlorophenoxy)propionic acid) (DCPPA) with Al(3+) and the comparative metal Er(3+) were probed at pH 4.0. Fluorescence experiments on binary solutions at pH 4.0 clearly indicated that Al(3+) and Er(3+) strongly interact with both SRFA and DCPPA alone in solution as demonstrated by fluorescence quenching with DCPPA and enhancement with SRFA by Al(3+) and fluorescence quenching of both SRFA and DCPPA fluorescence by Er(3+). Titrating Al(3+) or Er(3+) to SRFA-DCPPA quenched SRFA fluorescence as compared to the SRFA-metal ion binary complexes. Formation constants were determined using the Ryan-Weber model for the titration data. The DCPPA fluorescence results strongly support the formation of DCPPA-Al(3+) and DCPPA-Er(3+) complexes at pH values above the pK(a) (3.0) of DCPPA. Excitation and emission data obtained on ternary solutions of SRFA-Al(3+)-DCPPA and SRFA-Er(3+)-DCPPA complexes at pH 4.0 suggest that at this pH where the predominant DCPPA species is negatively-charged, Al(3+) and Er(3+) metal ions may function to "bridge" negatively-charged fulvic acids to negatively-charged pesticides. Fluorescence data collected on UV-irradiated ternary complexes indicate that both metals can also bridge DCPPA interactions with SRFA under those conditions. The results of our studies suggest that creation of a herbicide-free boundary corridor is recommended near mines and runoff areas with metal ions in surface waters to control possible complexation among fulvic acids, DCPPA and metal ions that maintains these molecules in a bioavailable state to plants and animals.

  15. Quantitative Distribution and Metabolism of Auxin Herbicides in Roots 1

    PubMed Central

    Scott, Peter C.; Morris, Roy O.

    1970-01-01

    The internal concentrations of four auxin herbicides— 2,4-dichlorophenoxyacetic acid, dicamba, picloram, and naphthaleneacetic acid—were measured in the roots of treated pea seedlings. Intact seedlings were immersed in solutions of labeled herbicides at concentrations sufficient to produce toxic symptoms (inhibition of elongation, radial enlargement, and lateral root proliferation). Measurements of volume and herbicide content of segments taken sequentially along the root showed that an acropetal concentration gradient of each herbicide was established within the root immediately following treatment. Although there was a net loss of herbicide in the following 24 hours, the gradient was maintained. Initially, the concentration of herbicide in the root tips exceeded that in the external medium. In support of the contention that toxic symptoms due to herbicide treatment are caused by the presence of unmetabolized chemical at the site of action, it was found that metabolism was negligible for all herbicides except naphthaleneacetic acid. PMID:16657529

  16. Herbicide Transformation

    PubMed Central

    Lanzilotta, R. P.; Pramer, David

    1970-01-01

    Replacement cultures liberated 3,4-dichloroaniline (DCA) from 3,4-dichloropropionanilide (propanil). The kinetics of the conversion suggest a requirement for de novo enzyme synthesis, but the system was not influenced by chloramphenicol or puromycin. Enzyme activity was detected when acetanilide (Km = 0.195 mm) was used to replace propanil as substrate. Fungal acylamidase (E.C. 3.5.1., an aryl acylamine amidohydrolase) was concentrated by salt precipitation and characterized. The Fusarium solani acylamidase exhibited an optimum at pH 7.5 to 9.0 and was inactivated in 10 min at 50 C. The enzyme was not sensitive to methyl-carbamate or organophosphate insecticides, but the herbicide, Ramrod (N-isopropyl-2-chloroacetanilide), acted as a competitive inhibitor of acetanilide hydrolysis (Ki = 0.167 mm). Hydrolysis rates were decreased by various para substitutions of acetanilide. Chloro substitution in the acyl moiety of acetanilide also reduced the rate of hydrolysis. 3,4-Dichloroacetanilide was less susceptible to enzyme action than acetanilide, but 3,4-dichloropropionanilide was hydrolyzed much more rapidly than propionanilide. The fungal acylamidase was highly specific for N-acetylarylamines. It did not catalyze hydrolysis of formanilide, butyranilide, dicryl, Karsil, fenuron, monuron, or isopropyl-N-phenylcarbamate. It appears to differ from acylamidases that have been isolated from rice, rat liver, chick kidney, and Neurospora. PMID:5437306

  17. Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides.

    PubMed

    Abdel daiem, Mahmoud M; Rivera-Utrilla, José; Sánchez-Polo, Manuel; Ocampo-Pérez, Raúl

    2015-12-15

    The main aim of this study was to investigate the single, competitive, and dynamic adsorption of phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) on two activated carbons with different chemical natures and similar textural characteristics. The adsorption mechanism was also elucidated by analyzing the influence of solution pH and ionic strength. The activated carbons demonstrated high adsorption capacity to remove all micropollutants due to the presence of active sites on their surfaces, which increase dispersive interactions between the activated carbon graphene layers and the aromatic ring of pollutants. The adsorption capacity of the activated carbons increased in the order: DPAMCPA, which is directly related to: i) molecular size of pollutants; ii) chemical structure of pollutants, and iii) chemical properties of adsorbents. In most cases, the adsorption of contaminants is favored at acid pH (pH<5) due to the establishment of attractive electrostatic interactions. In dynamic regime, the amount of pollutant adsorbed was much higher for PA, followed by DPA, and was approximately similar for BPA, 2,4-D, and MCPA. Finally, the amount of BPA and DPA adsorbed on activated carbon decreased by around 50% and 70% in the presence of DPA and BPA, respectively, indicating that both compounds are adsorbed on the same adsorption sites of the activated carbon.

  18. Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides.

    PubMed

    Abdel daiem, Mahmoud M; Rivera-Utrilla, José; Sánchez-Polo, Manuel; Ocampo-Pérez, Raúl

    2015-12-15

    The main aim of this study was to investigate the single, competitive, and dynamic adsorption of phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) on two activated carbons with different chemical natures and similar textural characteristics. The adsorption mechanism was also elucidated by analyzing the influence of solution pH and ionic strength. The activated carbons demonstrated high adsorption capacity to remove all micropollutants due to the presence of active sites on their surfaces, which increase dispersive interactions between the activated carbon graphene layers and the aromatic ring of pollutants. The adsorption capacity of the activated carbons increased in the order: DPAMCPA, which is directly related to: i) molecular size of pollutants; ii) chemical structure of pollutants, and iii) chemical properties of adsorbents. In most cases, the adsorption of contaminants is favored at acid pH (pH<5) due to the establishment of attractive electrostatic interactions. In dynamic regime, the amount of pollutant adsorbed was much higher for PA, followed by DPA, and was approximately similar for BPA, 2,4-D, and MCPA. Finally, the amount of BPA and DPA adsorbed on activated carbon decreased by around 50% and 70% in the presence of DPA and BPA, respectively, indicating that both compounds are adsorbed on the same adsorption sites of the activated carbon. PMID:26282767

  19. Laboratory degradation studies of bentazone, dichlorprop, MCPA, and propiconazole in Norwegian soils.

    PubMed

    Thorstensen, C W; Lode, O

    2001-01-01

    Laboratory degradation studies were performed in Norwegian soils using two commercial formulations (Tilt and Triagran-P) containing either propiconazole alone or a combination of bentazone, dichlorprop, and MCPA. These soils included a fine sandy loam from Hole and a loam from Kroer, both of which are representative of Norwegian agricultural soils. The third soil was a highly decomposed organic material from the Froland forest. A fourth soil from the Skuterud watershed was used only for propiconazole degradation. After 84 d, less than 0.1% of the initial MCPA concentration remained in all three selected soils. For dichlorprop, the same results were found for the fine sandy loam and the organic-rich soil, but in the loam, 26% of the initial concentration remained. After 84 d, less than 0.1% of the initial concentration of bentazone remained in the organic-rich soil, but in the loam and the fine sandy loam 52 and 69% remained, respectively. Propiconazole was shown to be different from the other pesticides by its persistence. Amounts of initial concentration remaining varied from 40, 70, and 82% in the reference soils after 84 d for the organic-rich soil, fine sandy loam, and loam, respectively. The organic-rich soil showed the highest capacity to decompose all four pesticides. The results from the agricultural soils and the Skuterud watershed showed that the persistence of propiconazole was high. Pesticide degradation was approximated to first-order kinetics. Slow rates of degradation, where more than 50% of the pesticide remained in the soil after the 84-d duration of the experiment, did not fit well with first-order kinetics.

  20. Photocatalytic removal of 2,4-dichlorophenoxyacetic acid herbicide on copper oxide/titanium dioxide prepared by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Lee, Shu Chin; Hasan, Norhasnita; Lintang, Hendrik O.; Shamsuddin, Mustaffa; Yuliati, Leny

    2016-02-01

    In this work, suppression of the charge recombination on the titanium dioxide (TiO2) was reported by the addition of copper oxide (CuO), which led to a higher activity of TiO2 for removal of 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide. A series of CuO/TiO2 with CuO loadings of 0.1-1 wt% was prepared through a co-precipitation method. X-ray diffraction patterns revealed that the presence of CuO could not be detected as the low loading amount of CuO might have good dispersion on the surface of TiO2. Diffuse reflectance UV-visible spectra suggested that low loading amount of CuO did not influence the optical property of TiO2. Fluorescence spectroscopy revealed that TiO2 possessed a dominant emission peak of 407 nm at an excitation wavelength of 218 nm. The increasing loading amount of CuO decreased the emission intensity of TiO2, suggesting the successful reduction of charge recombination. After irradiation under UV light for 1 h, CuO(0.1 wt%)/TiO2 gave the highest percentage removal of the herbicide among the samples. The optimum loading amount of CuOmight improve the charge separation and reduce the electron-hole recombination on TiO2 without blocking the active sites, thus leading to the improved photocatalytic activity. This work showed that CuO/TiO2 is a potential photocatalyst for environmental remediation.

  1. Herbicide runoff along highways. 1. Field observations.

    PubMed

    Huang, Xinjiang; Pedersen, Theresa; Fischer, Michael; White, Richard; Young, Thomas M

    2004-06-15

    Herbicides are widely applied along highways to control roadside vegetation, and surface water is frequently nearby. To determine whether herbicide runoff along highways threatens water quality, a field study was conducted at two sites in northern California for three rainy seasons. The herbicides oryzalin, isoxaben, diuron, glyphosate, and clopyralid were selected for study to include compounds with significant variation in physical/chemical properties. Concentrations of herbicides in runoff were monitored for up to 11 storms following herbicide application, and 24 samples were collected per storm, providing unprecedented temporal detail. Flow-weighted event mean concentrations were calculated for each herbicide in each storm and ranged from below detection limits to 43.13 microg/L for oryzalin. The least soluble compounds, isoxaben and oryzalin, were detected in all storms monitored while the more soluble compounds, diuron and clopyralid, declined to levels below detection limits before monitoring was concluded. Very small amounts of glyphosate were mobilized, but its transformation product aminomethylphosphonic acid was detected at higher concentrations, in more storm events, and at greater depth in the soil profile. A first-order model successfully described the declining herbicide concentrations in spray zone soil and in surface runoff for all sites and herbicides. Fitted first-order coefficients were always higher for runoff than for soil, indicating that the herbicide that persists in the source zone becomes less available for runoff as the time since application increases. The percentage of the applied herbicide that was detected in surface runoff over a season ranged from 0.05% to 43.5%, and the most critical variables in controlling the variation were the solubility of the herbicide and the runoff volume. For a given herbicide and site, the most critical factors in determining seasonal herbicide loss to surface water were the timing and intensity of the

  2. Degradation of chloroacetanilide herbicides: The prevalence of sulfonic and oxanilic acid metabolites in Iowa groundwaters and surface waters

    USGS Publications Warehouse

    Kalkhoff, S.J.; Kolpin, D.W.; Thurman, E.M.; Ferrer, I.; Barcelo, D.

    1998-01-01

    Water samples were collected from 88 municipal wells throughout Iowa during the summer and were collected monthly at 12 stream sites in eastern Iowa from March to December 1996 to study the occurrence of the sulfonic and oxanilic metabolites of acetochlor, alachlor, and metolachlor. The sulfonic and oxanilic metabolites were present in almost 75% of the groundwater samples and were generally present from 3 to 45 times more frequently than their parent compounds. In groundwater, the median value of the summed concentrations of acetochlor, alachlor, and metolachlor was less than 0.05 μg/L, and the median value of the summed concentrations of the six metabolites was 1.2 μg/L. All surface water samples contained at least one detectable metabolite compound. Individual metabolites were detected from 2 to over 100 times more frequently than the parent compounds. In surface water, the median value of the summed concentrations of the three parent compounds was 0.13 μg/L, and the median value of the summed concentrations of the six metabolites was 6.4 μg/L. These data demonstrate the importance of analyzing both parent compounds and metabolites to more fully understand the environmental fate and transport of herbicides in the hydrologic system.

  3. Alterations in fatty acids of polar lipids in Salmo trutta on long-term exposure to a glyphosate-based herbicide (Roundup).

    PubMed

    Bayir, Mehtap; Sirkecioglu, A Necdet; Bayir, Abdulkadir; Aras, Mevlut

    2013-10-15

    Abstract: In present study, the effects of sublethal doses (10 and 20 mg L(-1)) of Roundup on fatty acid pattern in muscle and liver of brown trout were investigated. For this purpose, fish were held in experiment tanks for 1 month. While total MUFA wasn't influenced, the highest total SFA and total n-6 PUFA were determined in group 10 mg L(-1) and the lowest values were determined in control group and group 20 mg L(-1) in muscle, respectively. The highest and the lowest total n-3 PUFA was found in control group and group of 10 mg L(-1) in muscle, respectively. Total n-3/n-6 PUFA ratio and EPA+DHA level of group 10 mg L(-1) were lower than other groups in muscle. The amount of total n-3/n-6 PUFA, EPA + DHA and total n-3 PUFA of control group were found higher than treatment groups in liver. While the highest total SFA was determined in group 10 mg L(-1), there wasn't difference between control group and group 20 mg L(-1) in liver. Both of doses herbicide had higher value than control for total MUFA in liver. While Roundup didn't inhibit n-3 PUFA synthesis in the muscle, both concentrations, exhibited inhibitory effect on n-3 PUFA synthesis in the liver. This result probably consequence of its indirect effect on the some enzyme activities or gene expressions in fatty acid metabolism of brown trout.

  4. Comparative study on the biodegradability of morpholinium herbicidal ionic liquids.

    PubMed

    Ławniczak, Łukasz; Materna, Katarzyna; Framski, Grzegorz; Szulc, Alicja; Syguda, Anna

    2015-07-01

    This study focused on evaluating the toxicity as well as primary and ultimate biodegradability of morpholinium herbicidal ionic liquids (HILs), which incorporated MCPA, MCPP, 2,4-D or Dicamba anions. The studied HILs were also subjected to determination of surface active properties in order to assess their influence on toxicity and biodegradability. The study was carried out with microbiota isolated from different environmental niches: sediments from river channel, garden soil, drainage trench collecting agricultural runoff stream, agricultural soil and municipal waste repository. The obtained results revealed that resistance to toxicity and biodegradation efficiency of the microbiota increased in the following order: microbiota from the waste repository > microbiota from agricultural soil ≈ microbiota from an agricultural runoff stream > microbiota from garden soil > microbiota from the river sludge. It was observed that the toxicity of HILs increased with the hydrophobicity of the cation, however the influence of the anion was more notable. The highest toxicity was observed when MCPA was used as the anion (EC50 values ranging from 60 to 190 mg L(-1)). The results of ultimate biodegradation tests indicated that only HILs with 2,4-D as the anion were mineralized to some extent, with slightly higher values for HILs with the 4-decyl-4-ethylmorpholinium cation (10-31 %) compared to HILs with the 4,4-didecylmorpholinium cation (9-20 %). Overall, the cations were more susceptible (41-94 %) to primary biodegradation compared to anions (0-61 %). The obtained results suggested that the surface active properties of the studied HILs may influence their toxicity and biodegradability by bacteria in different environmental niches.

  5. Sublethal Exposure to Commercial Formulations of the Herbicides Dicamba, 2,4-Dichlorophenoxyacetic Acid, and Glyphosate Cause Changes in Antibiotic Susceptibility in Escherichia coli and Salmonella enterica serovar Typhimurium

    PubMed Central

    Kurenbach, Brigitta; Marjoshi, Delphine; Amábile-Cuevas, Carlos F.; Ferguson, Gayle C.; Godsoe, William; Gibson, Paddy

    2015-01-01

    ABSTRACT Biocides, such as herbicides, are routinely tested for toxicity but not for sublethal effects on microbes. Many biocides are known to induce an adaptive multiple-antibiotic resistance phenotype. This can be due to either an increase in the expression of efflux pumps, a reduced synthesis of outer membrane porins, or both. Exposures of Escherichia coli and Salmonella enterica serovar Typhimurium to commercial formulations of three herbicides—dicamba (Kamba), 2,4-dichlorophenoxyacetic acid (2,4-D), and glyphosate (Roundup)—were found to induce a changed response to antibiotics. Killing curves in the presence and absence of sublethal herbicide concentrations showed that the directions and the magnitudes of responses varied by herbicide, antibiotic, and species. When induced, MICs of antibiotics of five different classes changed up to 6-fold. In some cases the MIC increased, and in others it decreased. Herbicide concentrations needed to invoke the maximal response were above current food maximum residue levels but within application levels for all herbicides. Compounds that could cause induction had additive effects in combination. The role of soxS, an inducer of the AcrAB efflux pump, was tested in β-galactosidase assays with soxS-lacZ fusion strains of E. coli. Dicamba was a moderate inducer of the sox regulon. Growth assays with Phe-Arg β-naphtylamide (PAβN), an efflux pump inhibitor, confirmed a significant role of efflux in the increased tolerance of E. coli to chloramphenicol in the presence of dicamba and to kanamycin in the presence of glyphosate. Pathways of exposure with relevance to the health of humans, domestic animals, and critical insects are discussed. PMID:25805724

  6. Agro-industrial waste: a low cost adsorbent for effective removal of 4-chloro-2-methylphenoxyacetic acid herbicide in batch and packed bed modes.

    PubMed

    Deokar, Sunil K; Mandavgane, Sachin A; Kulkarni, Bhaskar D

    2016-08-01

    The present work describes the aqueous phase removal of 4-chloro-2-methylphenoxyacetic acid herbicide by rice husk ash (RHA) using batch and packed bed adsorption techniques. The effects of dosage, initial concentration, time, pH, temperature, and particle size of adsorbent in batch compared with effects of influent concentration, flow rate, and bed height in packed bed were studied. The particle size effect reveals that the removal is dependent on chemical composition (silica and carbon content) together with BET surface area of RHA. The aptness of Langmuir isotherm to batch data indicates the favorable adsorption whereas that of Temkin isotherm informs the heterogeneous nature of RHA. The kinetics of adsorption follows the pseudo-second order and Elovich models while thermodynamics of process indicates the exothermic adsorption. Among the models applied in packed bed study, the deactivation kinetic, Yoon-Nelson and bed depth service time (BDST) models are suitable to explain the packed bed adsorption. The adsorption capacity of RHA in packed bed study is found greater than that in batch. The adsorption capacity of RHA determined by the BDST model is 3019 mg/L for 90 % saturation of bed. The adsorption capacity of RHA based on weight is ∼2.3 times and that based on surface area is ∼55.55 times greater than that of granular activated carbon.

  7. Agro-industrial waste: a low cost adsorbent for effective removal of 4-chloro-2-methylphenoxyacetic acid herbicide in batch and packed bed modes.

    PubMed

    Deokar, Sunil K; Mandavgane, Sachin A; Kulkarni, Bhaskar D

    2016-08-01

    The present work describes the aqueous phase removal of 4-chloro-2-methylphenoxyacetic acid herbicide by rice husk ash (RHA) using batch and packed bed adsorption techniques. The effects of dosage, initial concentration, time, pH, temperature, and particle size of adsorbent in batch compared with effects of influent concentration, flow rate, and bed height in packed bed were studied. The particle size effect reveals that the removal is dependent on chemical composition (silica and carbon content) together with BET surface area of RHA. The aptness of Langmuir isotherm to batch data indicates the favorable adsorption whereas that of Temkin isotherm informs the heterogeneous nature of RHA. The kinetics of adsorption follows the pseudo-second order and Elovich models while thermodynamics of process indicates the exothermic adsorption. Among the models applied in packed bed study, the deactivation kinetic, Yoon-Nelson and bed depth service time (BDST) models are suitable to explain the packed bed adsorption. The adsorption capacity of RHA in packed bed study is found greater than that in batch. The adsorption capacity of RHA determined by the BDST model is 3019 mg/L for 90 % saturation of bed. The adsorption capacity of RHA based on weight is ∼2.3 times and that based on surface area is ∼55.55 times greater than that of granular activated carbon. PMID:27151241

  8. Inhibition of para-Hydroxyphenylpyruvate Dioxygenase by Analogues of the Herbicide Nitisinone As a Strategy to Decrease Homogentisic Acid Levels, the Causative Agent of Alkaptonuria.

    PubMed

    Laschi, Marcella; Bernardini, Giulia; Dreassi, Elena; Millucci, Lia; Geminiani, Michela; Braconi, Daniela; Marzocchi, Barbara; Botta, Maurizio; Manetti, Fabrizio; Santucci, Annalisa

    2016-04-01

    Alkaptonuria (AKU) is a rare multisystem metabolic disease caused by deficient activity of homogentisate 1,2-dioxygenase (HGD), which leads to the accumulation of homogentisic acid (HGA). Currently, there is no treatment for AKU. The sole drug with some beneficial effects is the herbicide nitisinone (1), an inhibitor of p-hydroxyphenylpyruvate dioxygenase (4-HPPD). 1 has been used as a life-saving drug in infants with type I tyrosinemia despite severe side effects due to the buildup of tyrosine. Four clinical trials of nitisinone to treat AKU have shown that 1 consistently decreases HGA levels, but also caused the accumulation of tyrosine in blood serum. Moreover, the human preclinical toxicological data for 1 are incomplete. In this work, we performed pharmacodynamics and toxicological evaluations of 1, providing the first report of LD50 values in human cells. Intracellular tyrosinemia was also evaluated. Three additional 4-HPPD inhibitors with a more favorable profile than that of 1 in terms of IC50, LD50, and tyrosine accumulation were also identified among commercially available compounds. These may be promising starting points for the development of new therapeutic strategies for the treatment of AKU.

  9. Inhibition of para-Hydroxyphenylpyruvate Dioxygenase by Analogues of the Herbicide Nitisinone As a Strategy to Decrease Homogentisic Acid Levels, the Causative Agent of Alkaptonuria.

    PubMed

    Laschi, Marcella; Bernardini, Giulia; Dreassi, Elena; Millucci, Lia; Geminiani, Michela; Braconi, Daniela; Marzocchi, Barbara; Botta, Maurizio; Manetti, Fabrizio; Santucci, Annalisa

    2016-04-01

    Alkaptonuria (AKU) is a rare multisystem metabolic disease caused by deficient activity of homogentisate 1,2-dioxygenase (HGD), which leads to the accumulation of homogentisic acid (HGA). Currently, there is no treatment for AKU. The sole drug with some beneficial effects is the herbicide nitisinone (1), an inhibitor of p-hydroxyphenylpyruvate dioxygenase (4-HPPD). 1 has been used as a life-saving drug in infants with type I tyrosinemia despite severe side effects due to the buildup of tyrosine. Four clinical trials of nitisinone to treat AKU have shown that 1 consistently decreases HGA levels, but also caused the accumulation of tyrosine in blood serum. Moreover, the human preclinical toxicological data for 1 are incomplete. In this work, we performed pharmacodynamics and toxicological evaluations of 1, providing the first report of LD50 values in human cells. Intracellular tyrosinemia was also evaluated. Three additional 4-HPPD inhibitors with a more favorable profile than that of 1 in terms of IC50, LD50, and tyrosine accumulation were also identified among commercially available compounds. These may be promising starting points for the development of new therapeutic strategies for the treatment of AKU. PMID:26947423

  10. Effect of 2,4-D herbicide (2,4-dichlorophenoxyacetic acid) on oxygen consumption and ammonium excretion of juveniles of Geophagus brasiliensis (Quoy & Gaimard, 1824) (Osteichthyes, Cichlidae).

    PubMed

    Barbieri, Edison

    2009-01-01

    Fish form important fisheries and aquaculture resources worldwide. In Brazil, pearl eartheater (Geophagus brasiliensis) is an important commercially exploited species and is an ideal animal for studying the impairment caused by the effects of herbicides that are often detected in the aquatic environment. The main purpose of the present study was to detect the acute toxicity of 2,4-dichlorophenoxyacetic acid (2,4-D) to G. brasiliensis and investigate its effects on oxygen consumption, ammonium excretion, and the neutral red retention time assay to estimate effects at the cellular level. Such investigations have not been carried out before with this species. First, the acute toxicity of 2,4-D to G. brasiliensis in terms of the 24-, 48-, 72-, and 96-h medium lethal concentration (LC(50)) was calculated to be 45.95, 32.49, 28.28, and 15.16 mg/l, respectively. Furthermore, it was found that exposure of fish to 40 mg/l 2,4-D caused reduction in oxygen consumption and ammonium excretion of 59% and 85%, respectively, in relation to the controls. Mean neutral red retention time assay was significantly lower in comparison with control for organisms exposed to 1, 5, 10, and 40 mg/l 2,4-D. However, the effects at the cellular level were progressive, suggesting that the fish are not able to recover from such increasing effects.

  11. [Herbicides in drinking water].

    PubMed

    Funari, E; Sampaolo, A

    1989-01-01

    Toxicological implications due to the use of herbicide-contaminated drinking water, as well as other organic chemicals, are related to their nature and levels. These implications can be defined for each substance on the basis of an adequate evaluation of epidemiological information and experimental data on animals. In this paper, World Health Organization's procedures for establishing guidelines for 11 herbicides widely used in Italy are described. Furthermore, data and information about the use of these herbicides and their levels in Italian drinking-water supplies are also reported and discussed. Finally, factors and conditions responsible for the groundwater contamination by some herbicides in determined areas are presented and discussed.

  12. Herbicides and plant hormesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbicide hormesis is commonly observed at sub-toxic doses of herbicides and other phytotoxins. The occurrence and magnitude of this phenomenon is influenced by plant growth stage and physiological status, environmental factors, the endpoint measured, and the timing between treatment and endpoint me...

  13. Sunlight responsive WO₃/ZnO nanorods for photocatalytic degradation and mineralization of chlorinated phenoxyacetic acid herbicides in water.

    PubMed

    Lam, Sze-Mun; Sin, Jin-Chung; Abdullah, Ahmad Zuhairi; Mohamed, Abdul Rahman

    2015-07-15

    Highly effective WO3/ZnO nanorods (NRs) were synthesized via a hydrothermal-deposition method for degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under natural sunlight. The structural properties of WO3/ZnO NRs such as morphology, crystal structure, porous properties and light absorption characteristics were investigated in detail. The X-ray diffraction and X-ray photoelectron spectroscopy results indicated that the prepared samples were two-phase photocatalysts consisted of WO3 and ZnO NRs. The UV-vis diffuse reflectance spectroscopy result showed that the addition of WO3 altered the optical properties of the photocatalysts. In contrast with the pure ZnO NRs, commercial anatase TiO2 and commercial WO3, the WO3/ZnO NRs showed excellent sunlight photocatalytic activities in degrading 2,4-D. The optimal WO3 loading and calcination temperature were also determined. Based on the band position, the synergetic effect of WO3 and ZnO NRs was the source of the enhanced photocatalytic activity as validated by PL and terephthalic acid-photoluminescence measurements. The reaction intermediates and degradation pathways of 2,4-D were elucidated by a HPLC method. In addition, the extent of mineralization during the 2,4-D degradation was also estimated using total organic carbon (TOC) and ion chromatography (IC) analyses.

  14. Herbicidal effects of sulfamethoxazole in Lemna gibba: using p-aminobenzoic acid as a biomarker of effect.

    PubMed

    Brain, Richard A; Ramirez, Alejandro J; Fulton, Barry A; Chambliss, C Kevin; Brooks, Bryan W

    2008-12-01

    Sulfamethoxazole (SMX) is among the most frequently detected antibiotics in the environment, heavily used in both human therapy and agriculture. Like other sulfonamides, SMX disrupts the folate biosynthetic pathway in bacteria, which was recently established as identical to that of plants, raising concerns over nontarget toxicity. Consequently, Lemna gibba was exposed to SMX to evaluate phytotoxic potency and mode of action (MOA) by HPLC-MS/MS measurement of p-aminobenzoic acid (pABA) metabolite levels, a precursor to folate biosynthesis and substrate of the target enzyme dihydropteroate synthase (DHPS). pABA levels were found to increase upon exposure to SMX following an exponential rise to a maxima regression model in a concentration-dependent manner. The EC50 for pABA content was 3.36 microg/L, 20 times lower than that of fresh weight (61.6 microg/L) and 40 times lower than frond number (132 microg/L) responses. These results suggest that, as in bacteria, sulfonamide antibiotics specifically disrupt folate biosynthesis via inhibition of DHPS. Analysis of pABA concentrations appears to provide a sulfonamide-specific biomarker of effect based on MOA with exceptional diagnostic capacity and sensitivity compared to traditional morphological end points. Using the EC50 for pABA content, a potential hazard was identified for L. gibba exposed to SMX, which would not have been detected based upon traditional standardized morphological approaches. PMID:19192826

  15. Adsorption and photodegradation kinetics of herbicide 2,4,5-trichlorophenoxyacetic acid with MgFeTi layered double hydroxides.

    PubMed

    Nguyen, Thi Kim Phuong; Beak, Min-wook; Huy, Bui The; Lee, Yong-Ill

    2016-03-01

    The calcined layered double hydroxides (cLDHs) Ti-doped and undoped MgFe for this study were prepared by co-precipitation method followed by calcination at 500 °C. The as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer Emmett Teller (BET) and UV-Vis diffuse reflectance spectrum (DRS) techniques and tested for adsorption and photodegradation (including photocatalytic and photo-Fenton-like) of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) in aqueous solutions under visible light irradiation. In the range of studied operating conditions, the as-prepared samples exhibited excellent photo-Fenton-like activity, leading to more than 80-95% degradation of 2,4,5-T at initial concentration of 100 mg L(-1) with 4 g calcined LDHs per liter, was accomplished in 360 min, while 2,4,5-T half-life time was as short as 99-182 min. The kinetics of adsorption and photodegradation of 2,4,5-T were also discussed. These results offered a green, low cost and high efficiency photocatalyst for environmental remediation.

  16. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)butanoic acid, and its metabolite MCPA, (4-chloro-2-methylphenoxy)acetic acid, in or on the following food... acid; tolerance for residues. 180.318 Section 180.318 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.318 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for...

  17. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)butanoic acid, and its metabolite MCPA, (4-chloro-2-methylphenoxy)acetic acid, in or on the following food... acid; tolerance for residues. 180.318 Section 180.318 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.318 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for...

  18. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)butanoic acid, and its metabolite MCPA, (4-chloro-2-methylphenoxy)acetic acid, in or on the following food... acid; tolerance for residues. 180.318 Section 180.318 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.318 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for...

  19. Effects of a herbicide mixture on primary and bacterial productivity in four prairie wetlands with varying salinities: an enclosure approach.

    PubMed

    Sura, Srinivas; Waiser, Marley J; Tumber, Vijay; Raina-Fulton, Renata; Cessna, Allan J

    2015-04-15

    Wetlands in the Prairie pothole region of Saskatchewan and Manitoba serve an important role in providing wildlife habitat, water storage and water filtration. They display a wide range of water quality parameters such as salinity, nutrients and major ions with sulfate as the dominant ion for the most saline wetlands. The differences in these water quality parameters among wetlands are reflected in the composition of aquatic plant communities and their productivity. Interspersed within an intensely managed agricultural landscape where pesticides are commonly used, mixtures of herbicides are often detected in these wetlands as well as in rivers, and drinking water reservoirs. One freshwater and three wetlands of varying salinity in the St. Denis National Wildlife Area, Saskatchewan, Canada were selected to study the effects of a mixture of eight herbicides (2,4-D, MCPA, dicamba, clopyralid, bromoxynil, mecoprop, dichlorprop, and glyphosate) on wetland microbial communities using an outdoor enclosure approach. Six enclosures (three controls and three treatments) were installed in each wetland and the herbicide mixture added to the treatment enclosures. The concentration of each herbicide in the enclosure water was that which would have resulted from a direct overspray of a 0.5-m deep wetland at its recommended field application rate. After herbicide addition, primary and bacterial productivity, and algal biomass were measured in both planktonic and benthic communities over 28 days. The herbicide mixture had a stimulatory effect on primary productivity in the nutrient-sufficient freshwater wetland while no stimulatory effect was observed in the nutrient-deficient saline wetlands. The differences observed in the effects of the herbicide mixture appear to be related to the nutrient bioavailability in these wetlands.

  20. Chromatographic characterisation, under highly aqueous conditions, of a molecularly imprinted polymer binding the herbicide 2,4-dichlorophenoxyacetic acid.

    PubMed

    Legido-Quigley, C; Oxelbark, J; De Lorenzi, E; Zurutuza-Elorza, A; Cormack, P A G

    2007-05-15

    The affinity of a 2,4-dichlorophenoxyacetic acid (2,4-D) molecularly imprinted polymer (MIP), which was synthesised directly in an aqueous organic solvent, for its template (2,4-D) was studied and compared with the affinity exhibited by two other reference (control) polymers, NIPA and NIPB, for the same analyte. Zonal chromatography was performed to establish the optimal selectivity, expressed as imprinting factor (IF), under chromatographic conditions more aqueous than those described so far in the literature. Frontal analysis (FA) was performed on columns packed with these polymers, using an optimized mobile phase composed of methanol/phosphate buffer (50/50, v/v), to extract adsorption isotherm data and retrieve binding parameters from the best isotherm model. Surprisingly, the template had comparable and strong affinity for both MIP (K = 3.8x10(4) M(-1)) and NIPA (K = 1.9x10(4) M(-1)), although there was a marked difference in the saturation capacities of selective and non-selective sites, as one would expect for an imprinted polymer. NIPB acts as a true control polymer in the sense that it has relatively low affinity for the template (K = 8.0x10(2) M(-1)). This work provides the first frontal chromatographic characterization of such a polymer in a water-rich environment over a wide concentration range. The significance of this work stems from the fact that the chromatographic approach used is generic and can be applied readily to other analytes, but also because there is an increasing demand for well-characterised imprinted materials that function effectively in aqueous media and are thus well-suited for analytical science applications involving, for example, biofluids and environmental water samples.

  1. Optimisation of the separation of herbicides by linear gradient high performance liquid chromatography utilising artificial neural networks.

    PubMed

    Tran, Anh T K; Hyne, Ross V; Pablo, Fleur; Day, W Roy; Doble, P

    2007-02-28

    An artificial neural network (ANN) was employed to model the chromatographic response surface for the linear gradient separation of 10 herbicides that are commonly detected in storm run-off water in agricultural catchments. The herbicides (dicamba, simazine, 2,4-D, MCPA, triclopyr, atrazine, diuron, clomazone, bensulfuron-methyl and metolachlor) were separated using reverse phase high performance liquid chromatography and detected with a photodiode array detector. The ANN was trained using the pH of the mobile phase and the slope of the acetonitrile/water gradient as input variables. A total of nine experiments were required to generate sufficient data to train the ANN to accurately describe the retention times of each of the herbicides within a defined experimental space of mobile phase pH range 3.0-4.8 and linear gradient slope 1-4% acetonitrile/min. The modelled chromatographic response surface was then used to determine the optimum separation within the experimental space. This approach allowed the rapid determination of experimental conditions for baseline resolution of all 10 herbicides. Illustrative examples of determination of these components in Milli-Q water, Sydney mains water and natural water samples spiked at 0.5-1mug/L are shown. Recoveries were over 70% for solid-phase extraction using Waters Oasis((R)) HLB 6cm(3) cartridges.

  2. Coupling of Molecular Imprinted Polymer Nanoparticles by High Performance Liquid Chromatography as an Efficient Technique for Sensitive and Selective Trace Determination of 4-Chloro-2-Methylphenoxy Acetic Acid in Complex Matrices

    PubMed Central

    OMIDI, Fariborz; BEHBAHANI, Mohammad; SAMADI, Saadi; SEDIGHI, Alireza; SHAHTAHERI, Seyed Jamaleddin

    2014-01-01

    Abstract Background 4-chloro-2-methylphenoxy acetic acid (MCPA) is one of the most important pesticides which is extensively used to control weeds in arable farmland. Exposure to this compound occurs in general population and persons who occupationally handle it. The aim of this present work was the preparation of MCPA imprinting polymer and its application as a selective sample preparation technique for trace determination of MCPA in biological and environmental samples. Methods In this study, MCPA imprinting polymer was obtained by precipitation polymerization using methacrylic acid (the functional monomer), ethylene glycol dimethacrylate (the cross-linker), 2, 2’-azobisisobutyronitrile (the initiator) and MCPA (the template molecule) in acetonitrile solution. The MIP-NPs were characterized by thermogravimetric analysis and scanning electron microscopy. The optimization process was carried out applying batch method. After optimization of the parameters, affecting the adsorption and desorption of analyte, urine and different water samples were used to determine MCPA. Results Imprinted MCPA molecules were removed from the polymeric structure using acetic acid in methanol (20:80 v/v %) as the eluting solvent. Both sorption and desorption process occur within 10 min. The maximum sorbent capacity of the molecular imprinted polymer is 87.4 mg g-1. The relative standard deviation and limit of detection for water samples by introduced selective solid phase extraction were 4.8% and 0.9 μg L-1, and these data for urine samples were 4.5% and 1.60 μg L-1, respectively. Conclusion The developed method was successfully applied to determine MCPA in urine and different water samples. PMID:26060766

  3. Herbicide levels in rivers draining two prairie agricultural watersheds

    SciTech Connect

    Muir, D.C.G.; Grift, N.P.

    1987-01-01

    A monitoring survey was conducted during 1984 on the Ochre and Turtle Rivers, which flow into Dauphin Lake in western Manitoba, Canada, to determine levels of the herbicides MCPA, diclofop-methyl, dicamba, bromoxynil, 2,4-D, triallate and trifluralin which were widely used in each watershed. Triallate concentrations exceeded 4 ng/L in 50% and 10% of the 21 samples taken from each of the Turtle and Ochre River, respectively, during the period March to October 1984. Trifluralin concentrations exceeded 3 ng/L in 14% and 10% of the samples from the respective rivers. Maximum concentrations did not exceed 25 ng/L and were unrelated to changes in river flow. Bromoxynil and diclofop were detected in the Turtle River, at concentrations of 113 and 476 ng/L, respectively, following a major high water event in late June, but were undetectable (<2 and 12 ng/L, respectively) at other sampling times. Dicamba and 2,4-D were detectable.

  4. Herbicide-resistant crops, resistant weeds, and herbicide drift

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New herbicide-resistance traits in corn and soybean may bring new management challenges for fruit and vegetable growers in the Mid-Atlantic region. Herbicide-resistant crops are an important weed management technology in row crop agriculture that allow growers to apply an herbicide to control weed...

  5. Biodegradation of a mixture of the herbicides ametryn, and 2,4-dichlorophenoxyacetic acid (2,4-D) in a compartmentalized biofilm reactor.

    PubMed

    Sandoval-Carrasco, Carlos A; Ahuatzi-Chacón, Deifilia; Galíndez-Mayer, Juvencio; Ruiz-Ordaz, Nora; Juárez-Ramírez, Cleotilde; Martínez-Jerónimo, Fernando

    2013-10-01

    In this work, an efficient degradation process for the removal of 2,4-D and ametryn, together with organic and inorganic adjuvants used in the commercial formulations of both herbicides, was developed. Although both compounds are toxic for microbial communities, ametryn is markedly more toxic than 2,4-D. In spite of this, the microbial consortium used could resist loading rates up to 31.5 mg L(-1) d(-1) of ametryn, with removal efficiencies up to 97% for both herbicides. Thus, an alternative use of this consortium could be bioaugmentation, as a tool to protect the structure and function of an activated-sludge biota against ametryn or 2,4-D shock loads. The process was carried out in a lab-scale prototype of aerobic biobarrier constructed as a compartmentalized fixed film reactor with airlift recirculation of oxygenated liquid.

  6. ANALYTICAL MASS SPECTROMETRY OF HERBICIDES

    EPA Science Inventory

    Herbicides are chemical substances that are applied to agricultural soils, gardens, lawns, or plants to destroy or to prevent the growth of undesirable vegetation. The herbicides included in this review are generally syntehtic organic compuonds that are ingredients in commercial...

  7. Low-dimensional coordination polymeric structures in alkali metal complex salts of the herbicide (2,4-dichlorophenoxy)acetic acid (2,4-D).

    PubMed

    Smith, Graham

    2015-02-01

    The Li, Rb and Cs complexes with the herbicide (2,4-dichlorophenoxy)acetic acid (2,4-D), namely poly[[aqua[μ3-(2,4-dichlorophenoxy)acetato-κ(3)O(1):O(1):O(1')]lithium(I)] dihydrate], {[Li(C8H5Cl2O3)(H2O)]·2H2O}n, (I), poly[μ-aqua-bis[μ3-(2,4-dichlorophenoxy)acetato-κ(4)O(1):O(1'):O(1'),Cl(2)]dirubidium(I)], [Rb2(C8H5Cl2O3)2(H2O)]n, (II), and poly[μ-aqua-bis[μ3-(2,4-dichlorophenoxy)acetato-κ(5)O(1):O(1'):O(1'),O(2),Cl(2)]dicaesium(I)], [Cs2(C8H5Cl2O3)2(H2O)]n, (III), respectively, have been determined and their two-dimensional polymeric structures are described. In (I), the slightly distorted tetrahedral LiO4 coordination involves three carboxylate O-atom donors, of which two are bridging, and a monodentate aqua ligand, together with two water molecules of solvation. Conjoined six-membered ring systems generate a one-dimensional coordination polymeric chain which extends along b and interspecies water O-H...O hydrogen-bonding interactions give the overall two-dimensional layers which lie parallel to (001). In hemihydrate complex (II), the irregular octahedral RbO5Cl coordination about Rb(+) comprises a single bridging water molecule which lies on a twofold rotation axis, a bidentate O(carboxy),Cl-chelate interaction and three bridging carboxylate O-atom bonding interactions from the 2,4-D ligand. A two-dimensional coordination polymeric layer structure lying parallel to (100) is formed through a number of conjoined cyclic bridges, including a centrosymmetric four-membered Rb2O2 ring system with an Rb...Rb separation of 4.3312 (5) Å. The coordinated water molecule forms intralayer aqua-carboxylate O-H...O hydrogen bonds. Complex (III) comprises two crystallographically independent (Z' = 2) irregular CsO6Cl coordination centres, each comprising two O-atom donors (carboxylate and phenoxy) and a ring-substituted Cl-atom donor from the 2,4-D ligand species in a tridentate chelate mode, two O-atom donors from bridging carboxylate groups and one from a

  8. A follow-up study of cancer incidence among workers in manufacture of phenoxy herbicides in Denmark.

    PubMed Central

    Lynge, E.

    1985-01-01

    The purpose of this cohort study is to shed further light on the potential carcinogenic effect indicated by a Swedish case control study of the 2,4-dichlorophenol and 4-chloro-ortho-cresol based phenoxy herbicides, unlikely to be contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD). In the present study it was the intention to include all persons employed in manufacture of phenoxy herbicides in Denmark before 1982. The predominant product was MCPA and only a very limited amount of 2,4,5-T was processed in one of the two factories included in the study. Registration of the cohort was based on company records, supplemented with data from a public pension scheme from 1964 onwards. Ninety-nine percent of registered employees could be followed up. Cancer cases were identified by linkage with the National Cancer Register. Totals of 3,390 males and 1,069 females were included in the study. In the analysis special attention was given to soft tissue sarcomas (STS) and malignant lymphomas (ML) which are the diagnostic groups indicated to be associated with exposure to phenoxy herbicides in the Swedish studies. Five cases of STS were observed among male employees in contrast to 1.84 expected cases. This result supports the Swedish observation of an increased risk of STS following exposure to phenoxy herbicides unlikely to be contaminated with 2,3,7,8-TCDD. However, several potential biases have to be taken into account in interpretation of this observation and these are discussed. Seven cases of ML were observed among male employees in contrast to 5.37 expected which does not support the Swedish observation of an excess risk. The total cancer risk among persons employed in manufacture and packaging of phenoxy herbicides was equivalent to the cancer risk in the Danish population. Among males thus employed 11 lung cancer cases were observed in contrast to 5.33 expected. Attention should be given to exposure to spray dried MCPA-sodium salt in the plants, but

  9. A Community-Engaged Approach to Developing a Mobile Cancer Prevention App: The mCPA Study Protocol

    PubMed Central

    2016-01-01

    Background Rapid growth of mobile technologies has resulted in a proliferation of lifestyle-oriented mobile phone apps. However, most do not have a theoretical framework and few have been developed using a community-based participatory research approach. A community academic team will develop a theory-based, culturally tailored, mobile-enabled, Web-based app—the Mobile Cancer Prevention App (mCPA)—to promote adherence to dietary and physical activity guidelines. Objective The aim of this study is to develop mCPA content with input from breast cancer survivors. Methods Members of SISTAAH (Survivors Involving Supporters to Take Action in Advancing Health) Talk (N=12), treated for Stages I-IIIc breast cancer for less than 1 year, 75 years of age or younger, and English-speaking and writing, will be recruited to participate in the study. To develop the app content, breast cancer survivors will engage with researchers in videotaped and audiotaped sessions, including (1) didactic instructions with goals for, benefits of, and strategies to enhance dietary intake and physical activity, (2) guided discussions for setting individualized goals, monitoring progress, and providing or receiving feedback, (3) experiential nutrition education through cooking demonstrations, and (4) interactive physical activity focused on walking, yoga, and strength training. Qualitative (focus group discussions and key informant interviews) and quantitative (sensory evaluation) methods will be used to evaluate the participatory process and outcomes. Results Investigators and participants anticipate development of an acceptable (frequency and duration of usage) feasible (structure, ease of use, features), and accessible mobile app available for intervention testing in early 2017. Conclusions Depending on the availability of research funding, mCPA testing, which will be initiated in Miami, will be extended to Chicago, Houston, Philadelphia, and Los Angeles. PMID:26935995

  10. NOVEL CHROMATOGRAPHIC SEPARATION AND CARBON SOLID PHASE EXTRACTION OF ACETANILIDE HERBICIDE DEGRADATION PRODUCTS

    EPA Science Inventory

    Six acetanilide herbicides are currently registered for use in the U.S. Over the past several years, ethanesufonic acid (ESA) and oxanilic acid (OA) degradatoin products of these acetanilide herbicides have been found in U.S. ground waters and surface waters. "Alachlor ESA and ...

  11. Synthesis and herbicidal activities of benzothiazole N,O-acetals.

    PubMed

    Ji, Zhiqin; Zhou, Fengxing; Wei, Shaopeng

    2015-10-01

    A new series of N,O-acetals were prepared via a simple one-pot reaction by the condensation of 2-amino-methybenzothiazole with aldehydes and alcohols. The title compounds were obtained in moderate to good yields in the presence of acid catalyst. Bioassay results indicated that some synthesized compounds had good herbicidal activity against both dicotyledon and monocotyledon weeds. This investigation provided a new type of herbicidal lead compounds, as well as its facile preparation method. PMID:26318996

  12. Brassica greens herbicide screening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to screen herbicides for potential use in brassica greens. Plots were in a RBD with 4 replications. The study was direct seeded on May 19, 2009 with a seeding rate of 272,000 seeds/acre (‘Savanna’ mustard). Treatments included trifluralin PPI + DCPA pre-emergence ap...

  13. Postemergence herbicides for calendula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calendula is an alternative oilseed crop whose seed oil is valued as a substitute for tung oil and a replacement for petroleum-based volatile organic compounds in paints and other coatings. Calendula is not yet grown extensively as an agronomic crop, and its tolerances to most herbicides are unknown...

  14. Evaluation of the genotoxicity of a herbicide formulation containing 3,6-dichloro-2-metoxybenzoic acid (dicamba) in circulating blood cells of the tropical fish Cnesterodon decemmaculatus.

    PubMed

    Ruiz de Arcaute, C; Soloneski, S; Larramendy, M L

    2014-10-01

    Acute toxicity and genotoxicity of the dicamba-based commercial herbicide formulation Banvel(®) were evaluated on Cnesterodon decemmaculatus (Pisces, Poeciliidae) exposed under laboratory conditions. A lethal effect was used as the end point for mortality, whereas frequency of micronuclei (MNs) and DNA single-strand breaks evaluated by the single cell gel electrophoresis assay were employed as end points for genotoxicity. Mortality studies revealed an LC50 96 h value of 1639 mg/L (range, 1471-1808) of dicamba. Furthermore, behavioral changes, e.g., gathering at the bottom of the aquarium, slowness in motion, abnormal swimming, and slow reaction, were observed. Whereas increased frequency of MNs was observed when 1229 mg/L dicamba was assayed for 48 h, no induction of MNs was observed in fish exposed to the herbicide for 96 h, regardless of the concentration of dicamba. Furthermore, other nuclear abnormalities, i.e., binucleated cells and lobed and notched nuclei, were induced in fish exposed for 48 h but not 96 h. Increase in the genetic damage index was observed in those treatments (lasting for both 48 and 96 h) within the 410-1229 mg/L dicamba concentration-range. This study represents the first evidence of acute lethal and sublethal effects exerted by dicamba on a piscine species native to Argentina. The results could indicate that dicamba-based formulation Banvel(®) is the less toxic emerging pollutant reported so far for C. decemmaculatus. Finally, our findings highlight the properties of this herbicide that jeopardize nontarget living species exposed to this agrochemical.

  15. Leaching and persistence of herbicides for kudzu (Pueraria montana) control on pine regeneration sites

    SciTech Connect

    Berisford, Yvette, C.; Bush, Parshall, B.; Taylor, John, W.

    2006-03-01

    Kudzu is an exotic vine that threatens forests in the southeastern United States. It can climb, overtop, and subsequently kill new seedlings or mature trees. Herbicides are commonly used to control kudzu; however, eradication might require retreatment for 3 to 10 yr in young stands and 7 to 10 yr for mature stands. Clopyralid, picloram, triclopyr, metsulfuron, and tebuthiuron exert various degrees of control, depending on soil type, meteorological conditions, herbicide formulation, seasonal application, characteristics of the kudzu stand, and frequency and number of herbicide. Field residue data for soil or leachate are lacking for all of these herbicides when they are used in actual forest regeneration programs in the Coastal Plain. These data are needed to assess the relative potential for the herbicides to leach into groundwater or to move off-site into sensitive ecological areas of the Coastal Plain in which sandy soils predominate and the groundwater tends to be shallow. As part of an integrated pest management program to control kudzu on forest regeneration areas at the Savannah River Site near New Ellenton, SC, five herbicides were evaluated from the standpoints of herbicide leaching, kudzu control, and plant community development. Three herbicide chemical families were represented. This included pyridinecarboxylic acid herbicides (clopyralid, picloram 1 2,4-D, and triclopyr), a sulfonylurea herbicide (metsulfuron), and a substituted urea herbicide (tebuthiuron).

  16. Evolution of herbicide resistance mechanisms in grass weeds.

    PubMed

    Matzrafi, Maor; Gadri, Yaron; Frenkel, Eyal; Rubin, Baruch; Peleg, Zvi

    2014-12-01

    Herbicide resistant weeds are becoming increasingly common, threatening global food security. Here, we present BrIFAR: a new model system for the functional study of mechanisms of herbicide resistance in grass weeds. We have developed a large collection of Brachypodium accessions, the BrI collection, representing a wide range of habitats. Wide screening of the responses of the accessions to four major herbicide groups (PSII, ACCase, ALS/AHAS and EPSPS inhibitors) identified 28 herbicide-resistance candidate accessions. Target-site resistance to PSII inhibitors was found in accessions collected from habitats with a known history of herbicide applications. An amino acid substitution in the psbA gene (serine264 to glycine) conferred resistance and also significantly affected the flowering and shoot dry weight of the resistant accession, as compared to the sensitive accession. Non-target site resistance to ACCase inhibitors was found in accessions collected from habitats with a history of herbicide application and from a nature reserve. In-vitro enzyme activity tests and responses following pre-treatment with malathion (a cytochrome-P450 inhibitor) indicated sensitivity at the enzyme level, and give strong support to diclofop-methyl and pinoxaden enhanced detoxification as NTS resistance mechanism. BrIFAR can promote better understanding of the evolution of mechanisms of herbicide resistance and aid the implementation of integrative management approaches for sustainable agriculture.

  17. Evolution of herbicide resistance mechanisms in grass weeds.

    PubMed

    Matzrafi, Maor; Gadri, Yaron; Frenkel, Eyal; Rubin, Baruch; Peleg, Zvi

    2014-12-01

    Herbicide resistant weeds are becoming increasingly common, threatening global food security. Here, we present BrIFAR: a new model system for the functional study of mechanisms of herbicide resistance in grass weeds. We have developed a large collection of Brachypodium accessions, the BrI collection, representing a wide range of habitats. Wide screening of the responses of the accessions to four major herbicide groups (PSII, ACCase, ALS/AHAS and EPSPS inhibitors) identified 28 herbicide-resistance candidate accessions. Target-site resistance to PSII inhibitors was found in accessions collected from habitats with a known history of herbicide applications. An amino acid substitution in the psbA gene (serine264 to glycine) conferred resistance and also significantly affected the flowering and shoot dry weight of the resistant accession, as compared to the sensitive accession. Non-target site resistance to ACCase inhibitors was found in accessions collected from habitats with a history of herbicide application and from a nature reserve. In-vitro enzyme activity tests and responses following pre-treatment with malathion (a cytochrome-P450 inhibitor) indicated sensitivity at the enzyme level, and give strong support to diclofop-methyl and pinoxaden enhanced detoxification as NTS resistance mechanism. BrIFAR can promote better understanding of the evolution of mechanisms of herbicide resistance and aid the implementation of integrative management approaches for sustainable agriculture. PMID:25443832

  18. Small (13)C/(12)C fractionation contrasts with large enantiomer fractionation in aerobic biodegradation of phenoxy acids.

    PubMed

    Qiu, Shiran; Gözdereliler, Erkin; Weyrauch, Philip; Lopez, Eva C Magana; Kohler, Hans-Peter E; Sørensen, Sebastian R; Meckenstock, Rainer U; Elsner, Martin

    2014-05-20

    Phenoxy acid herbicides are important groundwater contaminants. Stable isotope analysis and enantiomer analysis are well-recognized approaches for assessing in situ biodegradation in the field. In an aerobic degradation survey with six phenoxyacetic acid and three phenoxypropionic acid-degrading bacteria we measured (a) enantiomer-specific carbon isotope fractionation of MCPP ((R,S)-2-(4-chloro-2-methylphenoxy)-propionic acid), DCPP ((R,S)-2-(2,4-dichlorophenoxy)-propionic acid), and 4-CPP ((R,S)-2-(4-chlorophenoxy)-propionic acid); (b) compound-specific isotope fractionation of MCPA (4-chloro-2-methylphenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid); and (c) enantiomer fractionation of MCPP, DCPP, and 4-CPP. Insignificant or very slight (ε = -1.3‰ to -2.0‰) carbon isotope fractionation was observed. Equally small values in an RdpA enzyme assay (εea = -1.0 ± 0.1‰) and even smaller fractionation in whole cell experiments of the host organism Sphingobium herbicidovorans MH (εwc = -0.3 ± 0.1‰) suggest that (i) enzyme-associated isotope effects were already small, yet (ii) further masked by active transport through the cell membrane. In contrast, enantiomer fractionation in MCPP, DCPP, and 4-CPP was pronounced, with enantioselectivities (ES) of -0.65 to -0.98 with Sphingomonas sp. PM2, -0.63 to -0.89 with Sphingobium herbicidovorans MH, and 0.74 to 0.97 with Delftia acidovorans MC1. To detect aerobic biodegradation of phenoxypropionic acids in the field, enantiomer fractionation seems, therefore, a stronger indicator than carbon isotope fractionation.

  19. Gene encoding herbicide safener binding protein

    SciTech Connect

    Walton, J.D.; Scott-Craig, J.S.

    1999-10-26

    The cDNA encoding safener binding protein (SafBP), also referred to as SBP1, is presented. The deduced amino acid sequence is provided. Methods of making and using SBP1 and SafBP to alter a plant's sensitivity to certain herbicides or a plant's responsiveness to certain safeners are also provided, as well as expression vectors, transgenic plants or other organisms transfected with vectors and seeds from the plants.

  20. Biodegradation of acetanilide herbicides acetochlor and butachlor in soil.

    PubMed

    Ye, Chang-ming; Wang, Xing-jun; Zheng, He-hui

    2002-10-01

    The biodegradation of two acetanilide herbicides, acetochlor and butachlor in soil after other environmental organic matter addition were measured during 35 days laboratory incubations. The herbicides were applied to soil alone, soil-SDBS (sodium dodecylbenzene sulfonate) mixtures and soil-HA (humic acid) mixtures. Herbicide biodegradation kinetics were compared in the different treatment. Biodegradation products of herbicides in soil alone samples were identified by GC/MS at the end of incubation. Addition of SDBS and HA to soil decreased acetochlor biodegradation, but increased butachlor biodegradation. The biodegradation half-life of acetochlor and butachlor in soil alone, soil-SDBS mixtures and soil-HA mixtures were 4.6 d, 6.1 d and 5.4 d and 5.3 d, 4.9 d and 5.3 d respectively. The biodegradation products were hydroxyacetochlor and 2-methyl-6-ethylaniline for acetochlor, and hydroxybutachlor and 2,6-diethylaniline for butachlor.

  1. 77 FR 1679 - Notice of Receipt of Requests To Voluntarily Cancel Certain Pesticide Registrations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... Brand MCPA, 2-ethylhexyl Herbicide. este; Bromoxynil octanoate; Heptanoic acid, 2,6-dibromo-4- cyanophenyl ester. 000264-00799 Weco Max Brand 2,4-D, 2-ethylhexyl Herbicide. ester; Heptanoic acid, 2,6-dibromo-4- cyanophenyl ester; Bromoxynil octanoate. 000264-01071 Wolverine Power Heptanoic acid, 2,6-...

  2. Activation of hepatic NF-kappaB by the herbicide Dicamba (2-methoxy-3,6-dichlorobenzoic acid) in female and male rats.

    PubMed

    Espandiari, P; Ludewig, G; Glauert, H P; Robertson, L W

    1998-01-01

    Nuclear factor-kappaB is a transcription factor that is activated in many different cell types by pathologic stimuli, such as reactive oxygen intermediates. One class of hepatocarcinogens, the peroxisome proliferators, may produce reactive oxygen intermediates, and one potent peroxisome proliferator, ciprofibrate, was recently reported to activate nuclear factor-kappaB. In this study, we investigated whether Dicamba, a broad leaf herbicide and peroxisome proliferator, could activate nuclear factor-KB in the livers of rats. Female and male Sprague Dawley rats (n = 4) were fed diets containing either 0, 1, or 3% Dicamba or 0.01% ciprofibrate for 7 days. As expected, the potent peroxisome proliferator, ciprofibrate, significantly increased fatty acyl CoA oxidase, peroxisomal beta-oxidation, and catalase activities in male rats and, except for catalase, also in female rats. Dicamba significantly increased peroxisomal fatty acyl CoA oxidase, peroxisomal beta-oxidation, and catalase activities, but decreased the activity of the cytosolic antioxidant enzyme, Se-dependent glutathione peroxidase, in both female and male rats. Dicamba increased nuclear factor-kappaB binding in the nuclear protein of livers from male rats fed both the 1 and 3% Dicamba diets. However, the highest binding was seen in nuclear protein from female rats fed 3% Dicamba. Both supershift and cold competition assays confirmed that this DNA binding activity was specific for nuclear factor-kappaB. Our results in this study suggest that the herbicide and peroxisome proliferator Dicamba has the ability to activate nuclear factor-kappaB. PMID:9736482

  3. Impairment of carbon metabolism induced by the herbicide glyphosate.

    PubMed

    Orcaray, Luis; Zulet, Amaia; Zabalza, Ana; Royuela, Mercedes

    2012-01-01

    The herbicide glyphosate reduces plant growth and causes plant death by inhibiting the biosynthesis of aromatic amino acids. The objective of this work was to determine whether glyphosate-treated plants show a carbon metabolism pattern comparable to that of plants treated with herbicides that inhibit branched-chain amino acid biosynthesis. Glyphosate-treated plants showed impaired carbon metabolism with an accumulation of carbohydrates in the leaves and roots. The growth inhibition detected after glyphosate treatment suggested impaired metabolism that impedes the utilization of available carbohydrates or energy at the expected rate. These effects were common to both types of amino acid biosynthesis inhibitors. Under aerobic conditions, ethanolic fermentative metabolism was enhanced in the roots of glyphosate-treated plants. This fermentative response was not related to changes in the respiratory rate or to a limitation of the energy charge. This response, which was similar for both types of herbicides, might be considered a general response to stress conditions.

  4. Herbicide and nutrient transport from an irrigation district into the South Saskatchewan River.

    PubMed

    Cessna, A J; Elliott, J A; Tollefson, L; Nicholaichuk, W

    2001-01-01

    Pesticides and nutrients can be transported from treated agricultural land in irrigation runoff and thus can affect the quality of receiving waters. A 3-yr study was carried out to assess possible detrimental effects on the downstream water quality of the South Saskatchewan River due to herbicide and plant nutrient inputs via drainage water from an irrigation district. Automated water samplers and flow monitors were used to intensively sample the drainage water and to monitor daily flows in two major drainage ditches, which drained approximately 40% of the flood-irrigated land within the irrigation district. Over three years, there were no detectable inputs of ethalfluralin into the river and those of trifluralin were less than 0.002% of the amount applied to flood-irrigated fields. Inputs of MCPA, bromoxynil, dicamba and mecoprop were 0.06% or less of the amounts applied, whereas that for clopyralid was 0.31%. The relatively higher input (1.4%) of 2,4-D to the river was probably due its presence in the irrigation water. Corresponding inputs of P (as total P) and N (as nitrate plus ammonia) were 2.2 and 1.9% of applied fertilizer, respectively. Due to dilution of the drainage water in the river, maximum daily herbicide (with the exception of 2,4-D) and nutrient loadings to the river would not have resulted in significant concentration increases in the river water. There was no consistent remedial effect on herbicides entering the river due to passage of the drainage water through a natural wetland. In contrast, a considerable portion of the nutrients entering the river originated from the wetland.

  5. A composite transcriptional signature differentiates responses towards closely related herbicides in Arabidopsis thaliana and brassica napus

    EPA Science Inventory

    In this study, genome-wide expression profiling based on Affymetrix ATH1 arrays was used to identify discriminating responses of Arabidopsis thaliana to five herbicides, which contain active ingredients targeting two different branches of amino acid biosynthesis. One herbicide co...

  6. Sampling of herbicides in streams during flood events.

    PubMed

    Petersen, Jens; Grant, Ruth; Larsen, Søren E; Blicher-Mathiesen, Gitte

    2012-12-01

    In stream water xenobiotics usually occur as pulses in connection with floods caused by surface run-off and tile drainage following precipitation events. In streams located in small agricultural catchments we monitored herbicide concentrations during flood events by applying an intensive sampling programme of ½ h intervals for 7 h. In contrast to grab sampling under non-flood conditions, clearly elevated concentrations were recorded during the floods, and pulses varying in occurrence, duration and concentration were recorded. Pulses of recently applied herbicides were the most prominent, but also agricultural herbicides used in previous seasons caused pulses in the streams. Asynchronism of chemographs may be related to the characteristics of the compounds as well as their transport pathways and transformation in compartments between the source and the point of sampling in the stream. Thus, the occurrence of chemographs is difficult to predict, which ought to be taken into account when designing a sampling strategy. Even though the chemographs of herbicides and their transformation products (glyphosate and aminomethylphosphonic acid (AMPA) as well as terbuthylazine and desethylterbuthylazine) seem to be synchronous, their occurrence may still be difficult to predict. It is evident that grab sampling under non-flood conditions yields insufficient information on the dynamics of occurrence of herbicides in stream water, both with respect to environmental effects and the calculation of the load to a recipient. In conclusion, the design of a sampling strategy regarding herbicides in stream waters should adequately consider the aim of the investigation.

  7. Herbicide 2,4-dichlorophenoxyacetic acid (2,4-D)-induced cytogenetic damage in human lymphocytes in vitro in presence of erythrocytes.

    PubMed

    Soloneski, Sonia; González, Norma V; Reigosa, Miguel A; Larramendy, Marcelo L

    2007-11-01

    The genotoxic effects of 2,4-D and its commercial derivative 2,4-D DMA were studied by measuring sister chromatid exchange (SCE), cell-cycle progression and mitotic index in human whole blood (WBC) and plasma leukocyte cultures (PLC). Concentrations of 10, 25, 50 and 100 microg herbicide/ml were used during 72 h. In WBC, a significant increase in SCE frequency was observed within the 10-50 microg 2,4-D/ml and 25-100 microg 2,4-D DMA/ml dose range. Contrarily, in PLC, none of the concentrations employed affected the SCEs frequency. A significant delay in cell proliferation was observed in WBC after treatments with 25 and 50 microg 2,4-D/ml and 50 and 100 microg 2,4-D DMA/ml. In PLC, only 100.0 microg 2,4-D/ml altered cell-cycle progression. For both chemicals, a progressive dose-related inhibition of mitotic activity was observed. The results demonstrated that the presence of erythrocytes in the culture system modulated the DNA and cellular damage inflicted by 2,4-D and 2,4-D DMA into human lymphocytes in vitro as well as both 2,4-D and 2,4-D DMA were more potent genotoxic agents in the presence of human red cells.

  8. Sorption of polar herbicides and herbicide metabolites by biochar-amended soil.

    PubMed

    Dechene, Annika; Rosendahl, Ingrid; Laabs, Volker; Amelung, Wulf

    2014-08-01

    Biochar-amended soil has been proven to possess superior sorption capacities for several environmental pollutants compared with pure soil. However, the role of biochar in the immobilization of polar pesticides and their metabolites has hardly been tested. The aim of this study was therefore to investigate the effect of a soil amendment with biochar on the sorption of selected polar herbicides and herbicide metabolites (log Kow 0.3-<2). To simulate worst-case sorption, a sandy soil (1.7% organic matter) was amended with 1.5% biochar (fresh or composted) to determine sorption/desorption isotherms of the test compounds. One herbicide (imazamox) and three herbicide metabolites (methyl-desphenyl-chloridazon, metazachlor oxalic acid, metazachlor sulfonic acid) were tested, i.e. three anionic and one neutral polar compound. The results showed that the presence of biochar increased the sorption capacity of the soil only in the case of the uncharged compound methyl-desphenyl-chloridazon, for which the average distribution coefficients in biochar-amended soils were higher than in pure soil by a factor of 2.1-2.5. However, this effect rather seemed to reflect the increased soil organic carbon content after the addition of biochar than a preferred sorption of methyl-desphenyl-chloridazon to biochar. In the case of the three anionic compounds imazamox, metazachlor oxalic acid and metazachlor sulfonic acid, biochar amendment did not increase the sorption capacity of the soil for these compounds, presumably as a result of its negative net charge. Similarly, desorption experiments did not show any significant effect of the biochar amendment on desorption. This suggests that the potential of using biochar to mitigate the leaching of the tested polar pesticides or metabolites is limited.

  9. Current state of herbicides in herbicide-resistant crops.

    PubMed

    Green, Jerry M

    2014-09-01

    Current herbicide and herbicide trait practices are changing in response to the rapid spread of glyphosate-resistant weeds. Growers urgently needed glyphosate when glyphosate-resistant crops became available because weeds were becoming widely resistant to most commonly used selective herbicides, making weed management too complex and time consuming for large farm operations. Glyphosate made weed management easy and efficient by controlling all emerged weeds at a wide range of application timings. However, the intensive use of glyphosate over wide areas and concomitant decline in the use of other herbicides led eventually to the widespread evolution of weeds resistant to glyphosate. Today, weeds that are resistant to glyphosate and other herbicide types are threatening current crop production practices. Unfortunately, all commercial herbicide modes of action are over 20 years old and have resistant weed problems. The severity of the problem has prompted the renewal of efforts to discover new weed management technologies. One technology will be a new generation of crops with resistance to glyphosate, glufosinate and other existing herbicide modes of action. Other technologies will include new chemical, biological, cultural and mechanical methods for weed management. From the onset of commercialization, growers must now preserve the utility of new technologies by integrating their use with other weed management technologies in diverse and sustainable systems.

  10. Herbicide concentrations in the Mississippi River Basin - The importance of chloroacetanilide herbicide degradates

    USGS Publications Warehouse

    Rebich, R.A.; Coupe, R.H.; Thurman, E.M.

    2004-01-01

    The proportion of chloroacetanilide herbicide degradates, specifically the ethane sulfonic (ESA) and oxanilic (OA) acids, averaged 70% of the total herbicide concentration in samples from the Upper Mississippi River. In samples from the Missouri River and the Ohio River, the proportion of chloroacetanilide degradates in the total herbicide concentration was much less, 24% and 41%, respectively. The amount of tile drainage throughout the Mississippi River Basin appeared to be related to the occurrence and distribution of chloroacetanilide degradates in water samples. Pesticide concentrations in streams of the Mississippi River Basin have been well characterized. However, recent research demonstrates that in order to more fully understand the fate and transport of pesticides, the major pesticide degradates need to be included in the analysis. From March 1999 through May 2001, water samples from four major junctures of the Mississippi River Basin were collected and analyzed for a suite of herbicides and their degradate compounds. Each sampling site was selected to represent a major part of the Mississippi River: upper and lower Mississippi, Missouri and Ohio Rivers. Each basin has unique landscape variables, geology, hydrology, precipitation, and land use, which is reflected in the pesticide content at the most downstream sample site near the mouth of the Mississippi River. Atrazine was the most frequently detected herbicide (detected in 97% of the samples), followed by metolachlor (60%), and acetochlor (31%). The most frequently detected degradates were metolachlor ESA (69%), followed by deethylatrazine (62%), metolachlor OA (37%), and alachlor ESA (37%). Metolachlor ESA was detected more frequently than its parent compound (69 vs. 60%), as was alachlor ESA (37 vs. 9%). After an improvement was made in the analytical method, metolachlor ESA was detected in every sample, metolachlor OA in 89% of the samples, alachlor ESA in 84%, acetochlor ESA in 71%, and acetochlor

  11. Toxic and genotoxic effects of the 2,4-dichlorophenoxyacetic acid (2,4-D)-based herbicide on the Neotropical fish Cnesterodon decemmaculatus.

    PubMed

    Ruiz de Arcaute, C; Soloneski, S; Larramendy, M L

    2016-06-01

    Acute toxicity and genotoxicity of the 54.8% 2,4-D-based commercial herbicide DMA® were assayed on Cnesterodon decemmaculatus (Pisces, Poeciliidae). Whereas lethal effect was used as the end point for mortality, frequency of micronuclei (MNs), other nuclear abnormalities and primary DNA damage evaluated by the single cell gel electrophoresis (SCGE) assay were employed as end points for genotoxicity. Mortality studies demonstrated an LC50 96 h value of 1008 mg/L (range, 929-1070) of 2,4-D. Behavioral changes, e.g., gathering at the bottom of the aquarium, slowness in motion, slow reaction and abnormal swimming were observed. Exposure to 2,4-D within the 252-756 mg/L range increased the frequency of MNs in fish exposed for both 48 and 96 h. Whereas blebbed nuclei were induced in treatments lasting for 48 and 96 h, notched nuclei were only induced in fish exposed for 96 h. Regardless of both concentration and exposure time, 2,4-D did not induce lobed nuclei and binucleated erythrocytes. In addition, we found that exposure to 2,4-D within the 252-756 mg/L range increased the genetic damage index in treatments lasting for either 48 and 96 h. The results represent the first experimental evidence of the lethal and several sublethal effects, including behavioral alterations and two genotoxic properties namely the induction of MNs and primary DNA strand breaks, exerted by 2,4-D on an endemic organism as C. decemmaculatus.

  12. SulE, a sulfonylurea herbicide de-esterification esterase from Hansschlegelia zhihuaiae S113.

    PubMed

    Hang, Bao-Jian; Hong, Qing; Xie, Xiang-Ting; Huang, Xing; Wang, Cheng-Hong; He, Jian; Li, Shun-Peng

    2012-03-01

    De-esterification is an important degradation or detoxification mechanism of sulfonylurea herbicide in microbes and plants. However, the biochemical and molecular mechanisms of sulfonylurea herbicide de-esterification are still unknown. In this study, a novel esterase gene, sulE, responsible for sulfonylurea herbicide de-esterification, was cloned from Hansschlegelia zhihuaiae S113. The gene contained an open reading frame of 1,194 bp, and a putative signal peptide at the N terminal was identified with a predicted cleavage site between Ala37 and Glu38, resulting in a 361-residue mature protein. SulE minus the signal peptide was synthesized in Escherichia coli BL21 and purified to homogeneity. SulE catalyzed the de-esterification of a variety of sulfonylurea herbicides that gave rise to the corresponding herbicidally inactive parent acid and exhibited the highest catalytic efficiency toward thifensulfuron-methyl. SulE was a dimer without the requirement of a cofactor. The activity of the enzyme was completely inhibited by Ag(+), Cd(2+), Zn(2+), methamidophos, and sodium dodecyl sulfate. A sulE-disrupted mutant strain, ΔsulE, was constructed by insertion mutation. ΔsulE lost the de-esterification ability and was more sensitive to the herbicides than the wild type of strain S113, suggesting that sulE played a vital role in the sulfonylurea herbicide resistance of the strain. The transfer of sulE into Saccharomyces cerevisiae BY4741 conferred on it the ability to de-esterify sulfonylurea herbicides and increased its resistance to the herbicides. This study has provided an excellent candidate for the mechanistic study of sulfonylurea herbicide metabolism and detoxification through de-esterification, construction of sulfonylurea herbicide-resistant transgenic crops, and bioremediation of sulfonylurea herbicide-contaminated environments.

  13. DEGRADATION OF THE CHLORINATED PHENOXYACETATE HERBICIDES 2,4-DICHLOROPHENOXYACETIC ACID AND 2,4,5- TRICHLOROPHENOXYACETIC BY PURE AND MIXED BACTERIAL CULTURES

    EPA Science Inventory

    Combined cell suspensions of the 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-metabolizing organism Pseudomonas cepacia AC1100, and the 2,4-dichlorophenoxyacetic acid (2,4-D)-metabolizing organism Alcaligenes eutrophus JMP134 were shown to effectively degrade either of these compo...

  14. The direct and indirect effects of a glyphosate-based herbicide and nutrients on Chironomidae (Diptera) emerging from small wetlands.

    PubMed

    Baker, Leanne F; Mudge, Joseph F; Houlahan, Jeff E; Thompson, Dean G; Kidd, Karen A

    2014-09-01

    Laboratory and mesocosm experiments have demonstrated that some glyphosate-based herbicides can have negative effects on benthic invertebrate species. Although these herbicides are among the most widely used in agriculture, there have been few multiple-stressor, natural system-based investigations of the impacts of glyphosate-based herbicides in combination with fertilizers on the emergence patterns of chironomids from wetlands. Using a replicated, split-wetland experiment, the authors examined the effects of 2 nominal concentrations (2.88 mg acid equivalents/L and 0.21 mg acid equivalents/L) of the glyphosate herbicide Roundup WeatherMax, alone or in combination with nutrient additions, on the emergence of Chironomidae (Diptera) before and after herbicide-induced damage to macrophytes. There were no direct effects of treatment on the structure of the Chironomidae community or on the overall emergence rates. However, after macrophyte cover declined as a result of herbicide application, there were statistically significant increases in emergence in all but the highest herbicide treatment, which had also received no nutrients. There was a negative relationship between chironomid abundance and macrophyte cover on the treated sides of wetlands. Fertilizer application did not appear to compound the effects of the herbicide treatments. Although direct toxicity of Roundup WeatherMax was not apparent, the authors observed longer-term impacts, suggesting that the indirect effects of this herbicide deserve more consideration when assessing the ecological risk of using herbicides in proximity to wetlands. PMID:24899169

  15. The direct and indirect effects of a glyphosate-based herbicide and nutrients on Chironomidae (Diptera) emerging from small wetlands.

    PubMed

    Baker, Leanne F; Mudge, Joseph F; Houlahan, Jeff E; Thompson, Dean G; Kidd, Karen A

    2014-09-01

    Laboratory and mesocosm experiments have demonstrated that some glyphosate-based herbicides can have negative effects on benthic invertebrate species. Although these herbicides are among the most widely used in agriculture, there have been few multiple-stressor, natural system-based investigations of the impacts of glyphosate-based herbicides in combination with fertilizers on the emergence patterns of chironomids from wetlands. Using a replicated, split-wetland experiment, the authors examined the effects of 2 nominal concentrations (2.88 mg acid equivalents/L and 0.21 mg acid equivalents/L) of the glyphosate herbicide Roundup WeatherMax, alone or in combination with nutrient additions, on the emergence of Chironomidae (Diptera) before and after herbicide-induced damage to macrophytes. There were no direct effects of treatment on the structure of the Chironomidae community or on the overall emergence rates. However, after macrophyte cover declined as a result of herbicide application, there were statistically significant increases in emergence in all but the highest herbicide treatment, which had also received no nutrients. There was a negative relationship between chironomid abundance and macrophyte cover on the treated sides of wetlands. Fertilizer application did not appear to compound the effects of the herbicide treatments. Although direct toxicity of Roundup WeatherMax was not apparent, the authors observed longer-term impacts, suggesting that the indirect effects of this herbicide deserve more consideration when assessing the ecological risk of using herbicides in proximity to wetlands.

  16. Comparative toxicity of 20 herbicides to 5 periphytic algae and the relationship with mode of action.

    PubMed

    Nagai, Takashi; Taya, Kiyoshi; Yoda, Ikuko

    2016-02-01

    The authors used 5 species of periphytic algae to conduct toxicity assays of 20 herbicides. The 5 tested species represent riverine primary producers most likely to be affected by herbicides. A fluorescence microplate toxicity assay was used as an efficient and economical high-throughput assay. Toxicity characteristics were analyzed, focusing on their relationship to herbicide mode of action. The relative differences between 50% and 10% effect concentrations depended on herbicide mode of action, rather than tested species. Moreover, a clear relationship between sensitive species and herbicide mode of action was also observed. Green alga was most sensitive to herbicides of 2 mode of action groups: inhibitors of protoporphyrinogen oxidase and very long-chain fatty acid synthesis. Diatoms were most sensitive to herbicides of 1 mode of action group: 4-hydroxyphenyl-pyruvate-dioxygenase inhibitors. Cyanobacterium was most sensitive to herbicides of 1 mode of action group: inhibitors of acetolactate synthase. The species sensitivity distribution based on obtained data was also analyzed. The slopes of the species sensitivity distribution significantly differed among modes of action, suggesting that difference in species sensitivity is specific to the mode of action. In particular, differences in species sensitivity were markedly large for inhibitors of acetolactate synthase, protoporphyrinogen oxidase, and very long-chain fatty acid synthesis. The results clearly showed that a single algal species cannot represent the sensitivity of an algal assemblage. Therefore, multispecies algal toxicity data are essential for substances with specific modes of action.

  17. Gene encoding herbicide safener binding protein

    DOEpatents

    Walton, Jonathan D.; Scott-Craig, John S.

    1999-01-01

    The cDNA encoding safener binding protein (SafBP), also referred to as SBP1, is set forth in FIG. 5 and SEQ ID No. 1. The deduced amino acid sequence is provided in FIG. 5 and SEQ ID No. 2. Methods of making and using SBP1 and SafBP to alter a plant's sensitivity to certain herbicides or a plant's responsiveness to certain safeners are also provided, as well as expression vectors, transgenic plants or other organisms transfected with said vectors and seeds from said plants.

  18. Proximity to crops and residential to agricultural herbicides in Iowa

    USGS Publications Warehouse

    Ward, M.H.; Lubin, J.; Giglierano, J.; Colt, J.S.; Wolter, C.; Bekiroglu, N.; Camann, D.; Hartge, P.; Nuckols, J.R.

    2006-01-01

    Rural residents can be exposed to agricultural pesticides through the proximity of their homes to crop fields. Previously, we developed a method to create historical crop maps using a geographic information system. The aim of the present study was to determine whether crop maps are useful for predicting levels of crop herbicides in carpet dust samples from residences. From homes of participants in a case-control study of non-Hodgkin lymphoma in Iowa (1998-2000), we collected vacuum cleaner dust and measured 14 herbicides with high use on corn and soybeans in Iowa. Of 112 homes, 58% of residences had crops within 500 m of their home, an intermediate distance for primary drift from aerial and ground applications. Detection rates for herbicides ranged from 0% for metribuzin and cyanazine to 95% for 2,4-dichlorophenoxyacetic acid. Six herbicides used almost exclusively in agriculture were detected in 28% of homes. Detections and concentrations were highest in homes with an active farmer. Increasing acreage of corn and soybean fields within 750 m of homes was associated with significantly elevated odds of detecting agricultural herbicides compared with homes with no crops within 750 m (adjusted odds ratio per 10 acres = 1.06; 95% confidence interval, 1.02-1.11). Herbicide concentrations also increased significantly with increasing acreage within 750 m. We evaluated the distance of crop fields from the home at < 100, 101-250, 251-500, and 501-750 m. Including the crop buffer distance parameters in the model did not significantly improve the fit compared with a model with total acres within 750 m. Our results indicate that crop maps may be a useful method for estimating levels of herbicides in homes from nearby crop fields.

  19. Herbicides interfere with antigrazer defenses in Scenedesmus obliquus.

    PubMed

    Zhu, Xuexia; Sun, Yunfei; Zhang, Xingxing; Heng, Hailu; Nan, Haihong; Zhang, Lu; Huang, Yuan; Yang, Zhou

    2016-11-01

    The extensive application of herbicides has led to a serious threat of herbicide contamination to aquatic ecosystem. Herbicide exposure affects aquatic communities not only by exerting toxicity on single species but also by changing interspecific interactions. This study investigated the antigrazer defenses of the common green alga Scenedesmus obliquus against different herbicides [glyphosate, 2,4-dichlorophenoxyacetic acid (2,4-D), and atrazine] at various concentrations (0-2.0 mg L(-1)). In the presence of grazer (Daphnia)-derived cues, S. obliquus populations without herbicides formed high proportions of multicelled (e.g., four- and eight-celled) colonies. This result confirms that S. obliquus exhibits a morphological defense against grazing risk. At the low concentration range of 0.002-0.02 mg L(-1), the three herbicides exerted no influence on the growth and photosynthetic efficiency of S. obliquus, and multicelled colonies showed constant proportions. At the high concentration range of 0.20-2.0 mg L(-1), atrazine significantly inhibited the algal growth and photosynthesis whereas glyphosate or 2,4-D did not. Nonetheless, these levels of glyphosate or 2,4-D remarkably decreased the proportion of multicelled colonies, with reduced numbers of cells per particle in Daphnia filtrate-treated population. No eight-celled colony was formed after treatment with atrazine at 0.20-2.0 mg L(-1) despite the addition of Daphnia filtrate. These results suggest that herbicide exposure impairs antigrazer colonial morphs in phytoplankton although it is not sufficient to hamper algal growth. This phenomenon can increase the risk of predation by herbivores, thereby disrupting the inducible phytoplankton community. Furthermore, the predator-prey interactions between herbivores and phytoplankton can be potentially changed more seriously than previously considered.

  20. Herbicides interfere with antigrazer defenses in Scenedesmus obliquus.

    PubMed

    Zhu, Xuexia; Sun, Yunfei; Zhang, Xingxing; Heng, Hailu; Nan, Haihong; Zhang, Lu; Huang, Yuan; Yang, Zhou

    2016-11-01

    The extensive application of herbicides has led to a serious threat of herbicide contamination to aquatic ecosystem. Herbicide exposure affects aquatic communities not only by exerting toxicity on single species but also by changing interspecific interactions. This study investigated the antigrazer defenses of the common green alga Scenedesmus obliquus against different herbicides [glyphosate, 2,4-dichlorophenoxyacetic acid (2,4-D), and atrazine] at various concentrations (0-2.0 mg L(-1)). In the presence of grazer (Daphnia)-derived cues, S. obliquus populations without herbicides formed high proportions of multicelled (e.g., four- and eight-celled) colonies. This result confirms that S. obliquus exhibits a morphological defense against grazing risk. At the low concentration range of 0.002-0.02 mg L(-1), the three herbicides exerted no influence on the growth and photosynthetic efficiency of S. obliquus, and multicelled colonies showed constant proportions. At the high concentration range of 0.20-2.0 mg L(-1), atrazine significantly inhibited the algal growth and photosynthesis whereas glyphosate or 2,4-D did not. Nonetheless, these levels of glyphosate or 2,4-D remarkably decreased the proportion of multicelled colonies, with reduced numbers of cells per particle in Daphnia filtrate-treated population. No eight-celled colony was formed after treatment with atrazine at 0.20-2.0 mg L(-1) despite the addition of Daphnia filtrate. These results suggest that herbicide exposure impairs antigrazer colonial morphs in phytoplankton although it is not sufficient to hamper algal growth. This phenomenon can increase the risk of predation by herbivores, thereby disrupting the inducible phytoplankton community. Furthermore, the predator-prey interactions between herbivores and phytoplankton can be potentially changed more seriously than previously considered. PMID:27501311

  1. Dual action of phosphonate herbicides in plants affected by herbivore--model study on black bean aphid Aphis fabae rearing on broad bean Vicia faba plants.

    PubMed

    Lipok, Jacek

    2009-09-01

    The interactions between plants, herbicides and herbivore insects were studied as an aspect of possible side effect of the using of phosphonate herbicides. The experimental system was composed of phosphonate herbicides, broad bean Vicia faba (L.) plants and black bean aphid Aphis fabae (Scopoli). Two means of herbicide application, namely standard spraying and direct introduction of the herbicide into stem via glass capillary, were examined. The results obtained for N-2-piridylaminomethylene bisphosphonic acid and its derivatives show 10 times higher inhibition of the plant growth if glass capillary mode was used. When plants were infested by aphids 24h after the use of herbicide, a significant decrease in plant growth rate was observed in relation to plants treated with herbicides alone. Moreover, the sensitivity of aphids towards glyphosate, N-2-piridylaminomethylene bisphosphonic acid and its 3-methyl derivative introduced to artificial diet indicated that these herbicidal phosphonates possessed also insecticidal activity if applied in a systemic manner. Additionally, olfactometer measurements revealed that aphids preferred intact V. faba leaves over those that had been treated with sublethal doses of herbicides. The results achieved in these experiments indicate that the use of phosphonate herbicides decreases plant resistance and influences the number of aphids accompanied with treated plants. Regarding these facts it can be concluded that the combined effect of herbicide-induced stress and insect herbivory reduced plant fitness and thus should be considered as also a factor enabling the reduction of herbicide doses.

  2. Natural Compounds as Next-Generation Herbicides

    PubMed Central

    Dayan, Franck E.; Duke, Stephen O.

    2014-01-01

    Herbicides with new modes of action (MOAs) are badly needed due to the rapidly evolving resistance to commercial herbicides, but a new MOA has not been introduced in over 20 years. The greatest pest management challenge for organic agriculture is the lack of effective natural product herbicides. The structural diversity and evolved biological activity of natural phytotoxins offer opportunities for the development of both directly used natural compounds and synthetic herbicides with new target sites based on the structures of natural phytotoxins. Natural phytotoxins are also a source for the discovery of new herbicide target sites that can serve as the focus of traditional herbicide discovery efforts. There are many examples of strong natural phytotoxins with MOAs other than those used by commercial herbicides, which indicates that there are molecular targets of herbicides that can be added to the current repertoire of commercial herbicide MOAs. PMID:24784133

  3. Natural compounds as next-generation herbicides.

    PubMed

    Dayan, Franck E; Duke, Stephen O

    2014-11-01

    Herbicides with new modes of action (MOAs) are badly needed due to the rapidly evolving resistance to commercial herbicides, but a new MOA has not been introduced in over 20 years. The greatest pest management challenge for organic agriculture is the lack of effective natural product herbicides. The structural diversity and evolved biological activity of natural phytotoxins offer opportunities for the development of both directly used natural compounds and synthetic herbicides with new target sites based on the structures of natural phytotoxins. Natural phytotoxins are also a source for the discovery of new herbicide target sites that can serve as the focus of traditional herbicide discovery efforts. There are many examples of strong natural phytotoxins with MOAs other than those used by commercial herbicides, which indicates that there are molecular targets of herbicides that can be added to the current repertoire of commercial herbicide MOAs.

  4. Evaluation of potential embryotoxicity and teratogenicity of 42 herbicides, insecticides, and petroleum contaminants to mallard eggs

    USGS Publications Warehouse

    Hoffman, D.J.; Albers, P.H.

    1984-01-01

    Results are reported for the embryotoxicity of 42 environmental contaminants applied externally to mallard (Anas platyrhynchos) eggs including crude and refined petroleum, and commercial formulations of herbicides and insecticides. Many of the petroleum pollutants were embryotoxic and moderately teratogenic and had LD50s of 0.3 to 5 ?l per egg (~6?90 ?g/g egg). The most toxic was a commercial oil used for control of road dust followed by South Louisiana crude oil, Kuwait crude, no. 2 fuel oil, bunker C fuel oil, and industrial and automotive waste oil. Prudhoe Bay crude, unused crankcase oil, aviation kerosene, and aliphatic hydrocarbon mixtures were less toxic ( LD50s of 18 to over 75 ? l) and less teratogenic. The LD50s of herbicides and insecticides in aqueous emulsion were measured by egg immersion; the most toxic were paraquat and trifluralin (LD50s of about 1.5 Ibs/A; 1.7 kg/ha). Propanil, bromoxynil with MCPA, methyl diclofop, prometon, endrin, sulprofos, and parathion were toxic (LD50s of 7 to 40 Ibs/A; 7.8?44.8 kg/ha), whereas 2,4-D, glyphosate, atrazine, carbaryl, dalapon, dicamba, methomyl, and phosmet were only slightly toxic or not toxic (LD50s of 178 to over 500 Ibs/A; 199?560 kg/ha). Pesticides in nontoxic oil vehicle applied by microliter pipet were up to 18 times more toxic than when applied in water vehicle, which was probably due to better penetration of the pesticide past the eggshell and its membranes. Teratogenic effects and impaired embryonic growth are reported and results discussed in terms of potential hazard at field levels of application. A discussion is provided on the effects of pollutants on the eggs of other species of birds under laboratory and field conditions.

  5. Herbicides and herbicide degradates in shallow groundwater and the Cedar River near a municipal well field, Cedar Rapids, Iowa

    USGS Publications Warehouse

    Boyd, R.A.

    2000-01-01

    Water samples were collected near a Cedar Rapids, Iowa municipal well field from June 1998 to August 1998 and analyzed for selected triazine and acetanilide herbicides and degradates. The purpose of the study was to evaluate the occurrence of herbicides and herbicide degradates in the well field during a period following springtime application of herbicides to upstream cropland. The well field is in an alluvial aquifer adjacent to the Cedar River. Parent herbicide concentrations generally were greatest in June, and decreased in July and August. Atrazine was most frequently detected and occurred at the greatest concentrations; acetochlor, cyanazine and metolachlor also were detected, but at lesser concentrations than atrazine. Triazine degradate concentrations were relatively small (<0.50 ??g/l) and generally decreased from June to August. Although the rate of groundwater movement is relatively fast (approx. 1 m per day) in the alluvial aquifer near the Cedar River, deethylatrazine (DEA) to atrazine ratios in groundwater samples collected near the Cedar River indicate that atrazine and DEA probably are gradually transported into the alluvial aquifer from the Cedar River. Deisopropylatrazine (DIA) to DEA ratios in water samples indicate most DIA in the Cedar River and alluvial aquifer is produced by atrazine degradation, although some could be from cyanazine degradation. Acetanilide degradates were detected more frequently and at greater concentrations than their corresponding parent herbicides. Ethanesulfonic-acid (ESA) degradates comprised at least 80% of the total acetanilide-degradate concentrations in samples collected from the Cedar River and alluvial aquifer in June, July and August; oxanilic acid degradates comprised less than 20% of the total concentrations. ESA-degradate concentrations generally were smallest in June and greater in July and August. Acetanilide degradate concentrations in groundwater adjacent to the Cedar River indicate acetanilide

  6. Review of literature on herbicides, including phenoxy herbicides and associated dioxins. Volume 13: Analysis of recent literature on health effects and Volume 14: Annotated bibliography of recent literature on health effects

    SciTech Connect

    Not Available

    1989-06-15

    The report consists of a bibliography and critical review of scientific literature that became available during 1988 on the health effects of the herbicides (including impurities) used as defoliants in the Vietnam conflict. An attempt has been made to identify all scientific literature (including unpublished reports) relevant to the potential human health effects of the herbicidal preparation commonly referred to as Agent Orange, the herbicidal active ingredients 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichloroacetic acid and their esters, as well as polychlorinated dibenzo-p-dioxin, henceforth referred to as TCDD, known to be contaminating impurities of some phenoxy herbicide preparations, an the herbicides, picloram and cacodylic acid. The scope of the review does not include literature dealing exclusively with the chemistry, analysis, or environmental fate and effects of these compounds.

  7. A new concept for reduction of diffuse contamination by simultaneous application of pesticide and pesticide-degrading microorganisms.

    PubMed

    Onneby, Karin; Jonsson, Anders; Stenström, John

    2010-02-01

    Pesticide residues and their transformation products are frequently found in groundwater and surface waters. This study examined whether adding pesticide-degrading microorganisms simultaneously with the pesticide at application could significantly reduce diffuse contamination from pesticide use. Degradation of the phenoxyacetic acid herbicides MCPA (4-chloro-2-methylphenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) was studied in soil microcosm experiments after simultaneous spraying of herbicide and herbicide-degrading bacteria on an agricultural soil and on a sand with low degradation potential. The latter represented pesticide use on non-agricultural soils poor in microbial activity. Degradation and possible loss of herbicidal effect were also tested in a system with plants and the amounts of bacteria needed to give satisfactory MCPA-degradation rate and the survival of degrading bacteria in formulated MCPA were determined. The results showed >80-99% degradation of 2,4-D and MCPA in soil within 1 day and >99% within 3 days after inoculation with 10(5)-10(7) herbicide-degrading bacteria g(-1) dry weight of soil. Enhanced degradation of MCPA was also obtained in the presence of winter wheat and white mustard without loss of the intended herbicidal effect on white mustard. The survival of an isolated MCPA-degrading Sphingomonas sp. in three realistic concentrations of formulated MCPA was very poor, showing that in practical applications direct contact between the microorganisms and the pesticide formulation must be precluded. The applicability and economic feasibility of the method and the information needed to obtain a useable product for field use are discussed.

  8. Glyphosate and dicamba herbicide tank mixture effects on native plant and non-genetically engineered soybean seedlings.

    PubMed

    Olszyk, David; Pfleeger, Thomas; Lee, E Henry; Plocher, Milton

    2015-07-01

    Crops engineered to contain genes for tolerance to multiple herbicides may be treated with several herbicides to manage weeds resistant to each herbicide. Thus, nearby non-target plants may be subjected to increased exposure to several herbicides used in combination. Of particular concern are native plants, as well as adjacent crops which have not been genetically engineered for tolerance to herbicides. We evaluated responses of seven species of native plants grown in a greenhouse and treated less than field application rates of glyphosate and/or dicamba: Andropogon gerardii, Asclepias syriaca, Eutrochium purpureum, Oenothera biennis, Polyganum lapathifolium, Solidago canadensis and Tridens flavus, and non-herbicide resistant soybean (Glycine max, Oregon line M4). Herbicide concentrations were 0.03 or 0.1 × field application rates of 1122 g ha(-1) active ingredient (a.i) (831 g ha(-1) acid glyphosate) for glyphosate and 562 g ha(-1) a.i. for dicamba. In general, plant growth responses to combinations of glyphosate and dicamba were less than the sum of growth responses to the individual herbicides (i.e., antagonistic effect), primarily when one or both herbicides alone caused a large reduction in growth. E. purpureum, P. lapathifolium and S. canadensis were the most sensitive species to both herbicides, while A. gerardii was the most tolerant, with no response to either herbicide. The combinations of herbicides resulted in responses most similar to that from dicamba alone for G. max and from glyphosate alone for T. flavus. The results of this study indicated the need for more data such as effects on native plants in the field to assess risks to non-target plants from combinations of herbicides. PMID:25821135

  9. Glyphosate and dicamba herbicide tank mixture effects on native plant and non-genetically engineered soybean seedlings.

    PubMed

    Olszyk, David; Pfleeger, Thomas; Lee, E Henry; Plocher, Milton

    2015-07-01

    Crops engineered to contain genes for tolerance to multiple herbicides may be treated with several herbicides to manage weeds resistant to each herbicide. Thus, nearby non-target plants may be subjected to increased exposure to several herbicides used in combination. Of particular concern are native plants, as well as adjacent crops which have not been genetically engineered for tolerance to herbicides. We evaluated responses of seven species of native plants grown in a greenhouse and treated less than field application rates of glyphosate and/or dicamba: Andropogon gerardii, Asclepias syriaca, Eutrochium purpureum, Oenothera biennis, Polyganum lapathifolium, Solidago canadensis and Tridens flavus, and non-herbicide resistant soybean (Glycine max, Oregon line M4). Herbicide concentrations were 0.03 or 0.1 × field application rates of 1122 g ha(-1) active ingredient (a.i) (831 g ha(-1) acid glyphosate) for glyphosate and 562 g ha(-1) a.i. for dicamba. In general, plant growth responses to combinations of glyphosate and dicamba were less than the sum of growth responses to the individual herbicides (i.e., antagonistic effect), primarily when one or both herbicides alone caused a large reduction in growth. E. purpureum, P. lapathifolium and S. canadensis were the most sensitive species to both herbicides, while A. gerardii was the most tolerant, with no response to either herbicide. The combinations of herbicides resulted in responses most similar to that from dicamba alone for G. max and from glyphosate alone for T. flavus. The results of this study indicated the need for more data such as effects on native plants in the field to assess risks to non-target plants from combinations of herbicides.

  10. Spot Spraying Reduces Herbicide Concentrations in Runoff.

    PubMed

    Melland, Alice R; Silburn, D Mark; McHugh, Allen D; Fillols, Emilie; Rojas-Ponce, Samuel; Baillie, Craig; Lewis, Stephen

    2016-05-25

    Rainfall simulator trials were conducted on sugar cane paddocks across dry-tropical and subtropical Queensland, Australia, to examine the potential for spot spraying to reduce herbicide losses in runoff. Recommended rates of the herbicides glyphosate, 2,4-D, fluoroxypyr, atrazine, and diuron were sprayed onto 0, 20, 40, 50, 70, or 100% of the area of runoff plots. Simulated rainfall was applied 2 days after spraying to induce runoff at one plant cane and three ratoon crop sites. Over 50% of all herbicides were transported in the dissolved phase of runoff, regardless of the herbicide's sediment-water partition coefficient. For most sites and herbicides, runoff herbicide concentrations decreased with decreasing spray coverage and with decreasing herbicide load in the soil and cane residues. Importantly, sites with higher infiltration prior to runoff and lower total runoff had lower runoff herbicide concentrations. PMID:26479195

  11. Spot Spraying Reduces Herbicide Concentrations in Runoff.

    PubMed

    Melland, Alice R; Silburn, D Mark; McHugh, Allen D; Fillols, Emilie; Rojas-Ponce, Samuel; Baillie, Craig; Lewis, Stephen

    2016-05-25

    Rainfall simulator trials were conducted on sugar cane paddocks across dry-tropical and subtropical Queensland, Australia, to examine the potential for spot spraying to reduce herbicide losses in runoff. Recommended rates of the herbicides glyphosate, 2,4-D, fluoroxypyr, atrazine, and diuron were sprayed onto 0, 20, 40, 50, 70, or 100% of the area of runoff plots. Simulated rainfall was applied 2 days after spraying to induce runoff at one plant cane and three ratoon crop sites. Over 50% of all herbicides were transported in the dissolved phase of runoff, regardless of the herbicide's sediment-water partition coefficient. For most sites and herbicides, runoff herbicide concentrations decreased with decreasing spray coverage and with decreasing herbicide load in the soil and cane residues. Importantly, sites with higher infiltration prior to runoff and lower total runoff had lower runoff herbicide concentrations.

  12. Sarmentine, a natural herbicide from Piper species with multiple herbicide mechanisms of action

    PubMed Central

    Dayan, Franck E.; Owens, Daniel K.; Watson, Susan B.; Asolkar, Ratnakar N.; Boddy, Louis G.

    2015-01-01

    Sarmentine, 1-(1-pyrrolidinyl)-(2E,4E)-2,4-decadien-1-one, is a natural amide isolated from the fruits of Piper species. The compound has a number of interesting biological properties, including its broad-spectrum activity on weeds as a contact herbicide. Initial studies highlighted a similarity in response between plants treated with sarmentine and herbicidal soaps such as pelargonic acid (nonanoic acid). However, little was known about the mechanism of action leading to the rapid desiccation of foliage treated by sarmentine. In cucumber cotyledon disc-assays, sarmentine induced rapid light-independent loss of membrane integrity at 100 μM or higher concentration, whereas 3 mM pelargonic acid was required for a similar effect. Sarmentine was between 10 and 30 times more active than pelargonic acid on wild mustard, velvetleaf, redroot pigweed and crabgrass. Additionally, the potency of 30 μM sarmentine was greatly stimulated by light, suggesting that this natural product may also interfere with photosynthetic processes. This was confirmed by observing a complete inhibition of photosynthetic electron transport at that concentration. Sarmentine also acted as an inhibitor of photosystem II (PSII) on isolated thylakoid membranes by competing for the binding site of plastoquinone. This can be attributed in part to structural similarities between herbicides like sarmentine and diuron. While this mechanism of action accounts for the light stimulation of the activity of sarmentine, it does not account for its ability to destabilize membranes in darkness. In this respect, sarmentine has some structural similarity to crotonoyl-CoA, the substrate of enoyl-ACP reductase, a key enzyme in the early steps of fatty acid synthesis. Inhibitors of this enzyme, such as triclosan, cause rapid loss of membrane integrity in the dark. Sarmentine inhibited the activity of enoyl-ACP reductase, with an I50app of 18.3 μM. Therefore, the herbicidal activity of sarmentine appears to be a

  13. Resistance to acetyl-CoA carboxylase-inhibiting herbicides.

    PubMed

    Kaundun, Shiv S

    2014-09-01

    Resistance to acetyl-CoA carboxylase herbicides is documented in at least 43 grass weeds and is particularly problematic in Lolium, Alopecurus and Avena species. Genetic studies have shown that resistance generally evolves independently and can be conferred by target-site mutations at ACCase codon positions 1781, 1999, 2027, 2041, 2078, 2088 and 2096. The level of resistance depends on the herbicides, recommended field rates, weed species, plant growth stages, specific amino acid changes and the number of gene copies and mutant ACCase alleles. Non-target-site resistance, or in essence metabolic resistance, is prevalent, multigenic and favoured under low-dose selection. Metabolic resistance can be specific but also broad, affecting other modes of action. Some target-site and metabolic-resistant biotypes are characterised by a fitness penalty. However, the significance for resistance regression in the absence of ACCase herbicides is yet to be determined over a practical timeframe. More recently, a fitness benefit has been reported in some populations containing the I1781L mutation in terms of vegetative and reproductive outputs and delayed germination. Several DNA-based methods have been developed to detect known ACCase resistance mutations, unlike metabolic resistance, as the genes remain elusive to date. Therefore, confirmation of resistance is still carried out via whole-plant herbicide bioassays. A growing number of monocotyledonous crops have been engineered to resist ACCase herbicides, thus increasing the options for grass weed control. While the science of ACCase herbicide resistance has progressed significantly over the past 10 years, several avenues provided in the present review remain to be explored for a better understanding of resistance to this important mode of action.

  14. Best management practices for herbicide resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In spite of the recent focus on herbicide resistant weeds, herbicide resistant weeds are not new to agriculture; the first herbicide resistant weed was documented in 1957, with the first widespread resistance occurring in common groundsel with atrazine in the early 1970’s. Glyphosate resistant weed...

  15. Comparisons of herbicide treated and cultivated herbicide-resistant corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four glyphosate resistant corn (Zea mays L.) hybrids, a glufosinate-ammonium resistant hybrid, and a conventional atrazine resistant hybrid grown at Stoneville, MS in 2005, 2006, and 2007 with furrow irrigation were treated with thier respective herbicides and their growth, yeild, and mycotoxin inci...

  16. Herbicide regulation: a case study of Michigan.

    PubMed

    Barber, K R; House, P

    1995-01-01

    Lawn-care herbicides are a type of pesticide regulated under federal and state pesticide legislation. The Michigan Department of Agriculture implements herbicide regulation to protect the public's health and welfare. Yet, due to gaps that exist in all levels of government in the regulation of lawn-care herbicide application, the public is placed at risk. The federal pesticide legislation (Federal Insecticide, Fungicide, and Rodenticide Act) provides for a lower standard of safety in the classification of herbicides applied in the residential context as opposed to the agricultural context. Michigan legislation (The Pesticide Control Act) exempts from the law persons applying general herbicides on their own premises. The state does not require public notification of risks or safety precautions prior to commercial application of these herbicides. Furthermore, on-site inspections are not performed for residential application of herbicides and the state applicator certification program is not assessed for effectiveness.

  17. Introduction to Weeds and Herbicides.

    ERIC Educational Resources Information Center

    Hartwig, Nathan L.

    This agriculture extension service publication from Pennsylvania State University is an introduction to weed control and herbicide use. An initial discussion of the characteristics of weeds includes scientific naming, weed competition with crops, weed dispersal and dormancy, and conditions affecting weed seed germination. The main body of the…

  18. Transgenic Crops for Herbicide Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since their introduction in 1995, crops made resistant to the broad-spectrum herbicides glyphosate and glufosinate with transgenes are widely available and used in much of the world. As of 2008, over 80% of the transgenic crops grown world-wide have this transgenic trait. This technology has had m...

  19. Biotechnology: herbicide-resistant crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic, herbicide-resistant (HR) crops are planted on about 80% of the land covered by transgenic crops. More than 90% of HR crios are glyphosate-resistant (GR) crops, the others being resistant to glufosinate. The wide-scale adoption of HR crops, largely for economic reasons, has been the mos...

  20. Analysis of selected herbicide metabolites in surface and ground water of the United States

    USGS Publications Warehouse

    Scribner, E.A.; Thurman, E.M.; Zimmerman, L.R.

    2000-01-01

    One of the primary goals of the US Geological Survey (USGS) Laboratory in Lawrence, Kansas, is to develop analytical methods for the analysis of herbicide metabolites in surface and ground water that are vital to the study of herbicide fate and degradation pathways in the environment. Methods to measure metabolite concentrations from three major classes of herbicides - triazine, chloroacetanilide and phenyl-urea - have been developed. Methods for triazine metabolite detection cover nine compounds: six compounds are detected by gas chromatography/mass spectrometry; one is detected by high-performance liquid chromatography with diode-array detection; and eight are detected by liquid chromatography/mass spectrometry. Two metabolites of the chloroacetanilide herbicides - ethane sulfonic acid and oxanilic acid - are detected by high-performance liquid chromatography with diode-array detection and liquid chromatography/mass spectrometry. Alachlor ethane sulfonic acid also has been detected by solid-phase extraction and enzyme-linked immunosorbent assay. Six phenylurea metabolites are all detected by liquid chromatography/mass spectrometry; four of the six metabolites also are detected by gas chromatography/mass spectrometry. Additionally, surveys of herbicides and their metabolites in surface water, ground water, lakes, reservoirs, and rainfall have been conducted through the USGS laboratory in Lawrence. These surveys have been useful in determining herbicide and metabolite occurrence and temporal distribution and have shown that metabolites may be useful in evaluation of non-point-source contamination. Copyright (C) 2000 Elsevier Science B.V.

  1. Herbicides for Calendula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rising need for replacements for volatile organic compounds (VOC), which are used in the manufacture of paints, plastics, pesticides, etc., has placed demands on drying oils that may not be met by current sources. The primary source is eleostearic acid, or tung oil, which is derived from the see...

  2. Cross-Resistance to Herbicides in Annual Ryegrass (Lolium rigidum)

    PubMed Central

    Matthews, John M.; Holtum, Joseph A. M.; Liljegren, David R.; Furness, Barbara; Powles, Stephen B.

    1990-01-01

    Lolium rigidum biotype SR4/84 is resistant to the herbicides diclofop-methyl and chlorsulfuron when grown in the field, in pots, and in hydroponics. Similar extractable activities and affinities for acetyl-coenzyme A of carboxylase (ACCase), an enzyme inhibited by diclofop-methyl, were found for susceptible and resistant L. rigidum. ACCase activity from both biotypes was inhibited by diclofop-methyl, diclofop acid, haloxyfop acid, fluazifop acid, sethoxydim, and tralkoxydim but not by chlorsulfuron or trifluralin. Exposure of plants to diclofop-methyl did not induce any changes in either the extractable activities or the herbicide inhibition kinetics of ACCase. It is concluded that, in contrast to diclofop resistance in L. multiflorum and diclofop tolerance in many dicots, the basis of resistance to diclofop-methyl and to other aryloxyphenoxypropionate and cyclohexanedione herbicides in L. rigidum is not due to the altered inhibition characteristics or expression of the enzyme ACCase. The extractable activities and substrate affinity of acetolactate synthase (ALS), an enzyme inhibited by chlorsulfuron, from susceptible and resistant biotypes of L. rigidum were similar. ALS from susceptible and resistant plants was equally inhibited by chlorsulfuron. Prior exposure of plants to 100 millimolar chlorsulfuron did not affect the inhibition kinetics. It is concluded that resistance to chlorsulfuron is not caused by alterations in either the expression or inhibition characteristics of ALS. PMID:16667814

  3. Herbicides in streams. Midwestern United States

    USGS Publications Warehouse

    Goolsby, Donald A.; Thurman, E. Michael; Kolpin, Dana W.

    1991-01-01

    Results from a 2-year study of 149 streams geographically distributed across the corn-producing region of 10 midwestern States show that detectable concentrations of herbicides persist year round in most streams. Some herbicides exceeded proposed maximum contaminant levels for drinking water for periods of several weeks to several months following application. Atrazine was the most frequently detected and most persistent herbicide measured, followed by desethylatrazine and metolachlor. The seasonal distribution of atrazine indicates that aquifers contributing base flow to many of the streams are contaminated with herbicides.

  4. The impact of altered herbicide residues in transgenic herbicide-resistant crops on standard setting for herbicide residues.

    PubMed

    Kleter, Gijs A; Unsworth, John B; Harris, Caroline A

    2011-10-01

    The global area covered with transgenic (genetically modified) crops has rapidly increased since their introduction in the mid-1990s. Most of these crops have been rendered herbicide resistant, for which it can be envisaged that the modification has an impact on the profile and level of herbicide residues within these crops. In this article, the four main categories of herbicide resistance, including resistance to acetolactate-synthase inhibitors, bromoxynil, glufosinate and glyphosate, are reviewed. The topics considered are the molecular mechanism underlying the herbicide resistance, the nature and levels of the residues formed and their impact on the residue definition and maximum residue limits (MRLs) defined by the Codex Alimentarius Commission and national authorities. No general conclusions can be drawn concerning the nature and level of residues, which has to be done on a case-by-case basis. International residue definitions and MRLs are still lacking for some herbicide-crop combinations, and harmonisation is therefore recommended.

  5. Effects of the herbicide dicamba on nontarget plants and pollinator visitation.

    PubMed

    Bohnenblust, Eric W; Vaudo, Anthony D; Egan, J Franklin; Mortensen, David A; Tooker, John F

    2016-01-01

    Nearly 80% of all pesticides applied to row crops are herbicides, and these applications pose potentially significant ecotoxicological risks to nontarget plants and associated pollinators. In response to the widespread occurrence of weed species resistant to glyphosate, biotechnology companies have developed crops resistant to the synthetic-auxin herbicides dicamba and 2,4-dichlorophenoxyacetic acid (2,4-D); and once commercialized, adoption of these crops is likely to change herbicide-use patterns. Despite current limited use, dicamba and 2,4-D are often responsible for injury to nontarget plants; but effects of these herbicides on insect communities are poorly understood. To understand the influence of dicamba on pollinators, the authors applied several sublethal, drift-level rates of dicamba to alfalfa (Medicago sativa L.) and Eupatorium perfoliatum L. and evaluated plant flowering and floral visitation by pollinators. The authors found that dicamba doses simulating particle drift (≈1% of the field application rate) delayed onset of flowering and reduced the number of flowers of each plant species; however, plants that did flower produced similar-quality pollen in terms of protein concentrations. Further, plants affected by particle drift rates were visited less often by pollinators. Because plants exposed to sublethal levels of dicamba may produce fewer floral resources and be less frequently visited by pollinators, use of dicamba or other synthetic-auxin herbicides with widespread planting of herbicide-resistant crops will need to be carefully stewarded to prevent potential disturbances of plant and beneficial insect communities in agricultural landscapes.

  6. Uptake and Accumulation of the Herbicides Chlorsulfuron and Clopyralid in Excised Pea Root Tissue 1

    PubMed Central

    Devine, Malcolm D.; Bestman, Hank D.; Vanden Born, William H.

    1987-01-01

    The herbicides chlorsulfuron and clopyralid were taken up rapidly by excised pea root tissue and accumulated in the tissue to concentrations ten and four times those in the external medium, respectively. Uptake was related linearly to external herbicide concentration over a wide concentration range, implying that transport across the membrane is by nonfacilitated diffusion. Uptake of both compounds was influenced by pH, with greatest uptake at low pH. The pH dependence of uptake suggests that the herbicides (both of which are weak acids) are transported across the plasma membrane in the undissociated form, and accumulate in the cytoplasm by an ion trap mechanism. Most of the absorbed herbicide effluxed from the tissue when it was transferred to herbicide-free buffer, indicating that the accumulation was not due to irreversible binding. Consequently, both herbicides remain available for transfer to the phloem. These results can explain the high reported phloem mobility of clopyralid in intact plants. The low phloem mobility of chlorsulfuron must be accounted for by factors that override its ability to accumulate in the symplast. PMID:16665689

  7. Bacterial degradation of phenoxy herbicide mixtures 2,4-D and MCPP

    SciTech Connect

    Kyeheon Oh; Tuovinen, O.H. )

    1991-08-01

    The phenoxy herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-(2-methyl-4-chlorophenoxy)propionic acid (MCPP) have auxin-like growth regulating properties and are extensively used for the control of broad-leaf angiosperm weeds. The microbiological degradation of 2,4-D by pure and mixed cultures has been examined in a number of studies. The authors have previously evaluated the concurrent microbiological degradation of 2,4-D and MCPP in stirred tank reactors. For the present paper, they examined the utilization of the two substrates by three mixed cultures that had a previous history of growth with the respective single phenoxy herbicide.

  8. Differential Clomazone, Herbicide Tolerance among Sweetpotato Genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clomazone (Command 3ME) is a broad spectrum preemergence herbicide that is registered for use in sweetpotato [Ipomoea batatas L. (Lam.)]. It controls several important annual weeds that are not controlled by the other sweetpotato herbicides. Following clomazone application for weed control in the ...

  9. Resistance to AHAS inhibitor herbicides: current understanding.

    PubMed

    Yu, Qin; Powles, Stephen B

    2014-09-01

    Acetohydroxyacid synthase (AHAS) inhibitor herbicides currently comprise the largest site-of-action group (with 54 active ingredients across five chemical groups) and have been widely used in world agriculture since they were first introduced in 1982. Resistance evolution in weeds to AHAS inhibitors has been rapid and identified in populations of many weed species. Often, evolved resistance is associated with point mutations in the target AHAS gene; however non-target-site enhanced herbicide metabolism occurs as well. Many AHAS gene resistance mutations can occur and be rapidly enriched owing to a high initial resistance gene frequency, simple and dominant genetic inheritance and lack of major fitness cost of the resistance alleles. Major advances in the elucidation of the crystal structure of the AHAS (Arabidopsis thaliana) catalytic subunit in complex with various AHAS inhibitor herbicides have greatly improved current understanding of the detailed molecular interactions between AHAS, cofactors and herbicides. Compared with target-site resistance, non-target-site resistance to AHAS inhibitor herbicides is less studied and hence less understood. In a few well-studied cases, non-target-site resistance is due to enhanced rates of herbicide metabolism (metabolic resistance), mimicking that occurring in tolerant crop species and often involving cytochrome P450 monooxygenases. However, the specific herbicide-metabolising, resistance-endowing genes are yet to be identified in resistant weed species. The current state of mechanistic understanding of AHAS inhibitor herbicide resistance is reviewed, and outstanding research issues are outlined.

  10. Control of Butterfly Bush with Postemergence Herbicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butterfly bush (Buddleja davidii) is classified as invasive in several parts of the United States. Two experiments were conducted to evaluate the effectiveness of four herbicides and two application methods on postemergence butterfly bush control. The four herbicides included: Roundup (glyphosate)...

  11. Post-emergence herbicides useful in calendula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Easy and effective weed control is required by growers who are considering new industrial crops. Post-emergence herbicides typically are the products of choice by today’s growers. Unfortunately, post-emergence herbicides with proven safety margins are not known for calendula (Calendula officinalis),...

  12. Managing the evolution of herbicide resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbicide-resistant (HR) weeds are widespread threats to the sustainability, productivity, and profitability of many cropping systems. Efforts to combat their spread through herbicide rotation schedules have been marginally effective at best. Despite the scope of the problem, we lack sound empirical...

  13. Natural compounds as next generation herbicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbicides with new modes of action (MOAs) are badly needed because of rapidly evolving resistance to commercial herbicides, for which a new MOA has not been introduced for more than 20 years. The biggest pest management challenge for organic agriculture is the lack of effective natural product her...

  14. Precision Herbicide Application Technologies To Decrease Herbicide Losses in Furrow Irrigation Outflows in a Northeastern Australian Cropping System.

    PubMed

    Davis, Aaron M; Pradolin, Jordan

    2016-05-25

    This study compared water quality benefits of using precision herbicide application technologies in relation to traditional spraying approaches across several pre- and postemergent herbicides in furrow-irrigated canefarming systems. The use of shielded sprayers (herbicide banding) provided herbicide load reductions extending substantially beyond simple proportionate decreases in amount of active herbicide ingredient applied to paddocks. These reductions were due largely to the extra management control available to irrigating growers in relation to where both herbicides and irrigation water can be applied to paddocks, coupled with knowledge of herbicide toxicological and physicochemical properties. Despite more complex herbicide mixtures being applied in banded practices, banding provided capacity for greatly reduced environmental toxicity in off-paddock losses. Similar toxicological and loss profiles of alternative herbicides relative to recently regulated pre-emergent herbicides highlight the need for a carefully considered approach to integrating alternative herbicides into improved pest management. PMID:26795709

  15. Precision Herbicide Application Technologies To Decrease Herbicide Losses in Furrow Irrigation Outflows in a Northeastern Australian Cropping System.

    PubMed

    Davis, Aaron M; Pradolin, Jordan

    2016-05-25

    This study compared water quality benefits of using precision herbicide application technologies in relation to traditional spraying approaches across several pre- and postemergent herbicides in furrow-irrigated canefarming systems. The use of shielded sprayers (herbicide banding) provided herbicide load reductions extending substantially beyond simple proportionate decreases in amount of active herbicide ingredient applied to paddocks. These reductions were due largely to the extra management control available to irrigating growers in relation to where both herbicides and irrigation water can be applied to paddocks, coupled with knowledge of herbicide toxicological and physicochemical properties. Despite more complex herbicide mixtures being applied in banded practices, banding provided capacity for greatly reduced environmental toxicity in off-paddock losses. Similar toxicological and loss profiles of alternative herbicides relative to recently regulated pre-emergent herbicides highlight the need for a carefully considered approach to integrating alternative herbicides into improved pest management.

  16. Toxicological effects of selective herbicides on plant growth promoting activities of phosphate solubilizing Klebsiella sp. strain PS19.

    PubMed

    Ahemad, Munees; Saghir Khan, Md

    2011-02-01

    This study examines the effect of four herbicides, quizalafop-p-ethyl, clodinafop, metribuzin and glyphosate, on plant growth promoting activities like phosphate solubilization, siderophores, indole acetic acid, exo-polysaccharides, hydrogen cyanide and ammonia production by herbicide tolerant Klebsiella sp. strain PS19. The strain was isolated from mustard rhizosphere. The selected herbicides were applied two to three times at the recommended rates. Klebsiella sp. strain PS19 tolerated a concentration of 1600 μg/ml each of quizalafop-p-ethyl and clodinafop, and 3200 and 2800 μg/ml of metribuzin and glyphosate, respectively. The activities of Klebsiella sp. strain PS19 observed under in vitro environment were persistent in the presence of all herbicides at lower rates. The plant growth promoting activities even-though decreased regularly, but was not lost completely, as the concentration of each herbicide was increased from the recommended to three times of higher doses. Among all herbicides, quizalafop-p-ethyl, generally, showed maximum toxicity to plant growth promoting activities of Klebsiella sp. strain PS19. As an example, 40, 80 and 120 μg/l of quizalafop-p-ethyl added to liquid culture Pikovskaya medium, decreased phosphate solubilizing activity of strain PS19 by 93, 95 and 97%, respectively over untreated control. The study revealed that the higher rates of herbicides though decreased the plant growth promoting activity but it did not completely inhibit the metabolic activities of strain PS19. The herbicide tolerance together with growth promoting activities observed under herbicide stress suggests that Klebsiella sp. strain PS19 could be used as bacterial preparation for facilitating the growth and yields of crops even in soils polluted with herbicides.

  17. Toxicological effects of selective herbicides on plant growth promoting activities of phosphate solubilizing Klebsiella sp. strain PS19.

    PubMed

    Ahemad, Munees; Saghir Khan, Md

    2011-02-01

    This study examines the effect of four herbicides, quizalafop-p-ethyl, clodinafop, metribuzin and glyphosate, on plant growth promoting activities like phosphate solubilization, siderophores, indole acetic acid, exo-polysaccharides, hydrogen cyanide and ammonia production by herbicide tolerant Klebsiella sp. strain PS19. The strain was isolated from mustard rhizosphere. The selected herbicides were applied two to three times at the recommended rates. Klebsiella sp. strain PS19 tolerated a concentration of 1600 μg/ml each of quizalafop-p-ethyl and clodinafop, and 3200 and 2800 μg/ml of metribuzin and glyphosate, respectively. The activities of Klebsiella sp. strain PS19 observed under in vitro environment were persistent in the presence of all herbicides at lower rates. The plant growth promoting activities even-though decreased regularly, but was not lost completely, as the concentration of each herbicide was increased from the recommended to three times of higher doses. Among all herbicides, quizalafop-p-ethyl, generally, showed maximum toxicity to plant growth promoting activities of Klebsiella sp. strain PS19. As an example, 40, 80 and 120 μg/l of quizalafop-p-ethyl added to liquid culture Pikovskaya medium, decreased phosphate solubilizing activity of strain PS19 by 93, 95 and 97%, respectively over untreated control. The study revealed that the higher rates of herbicides though decreased the plant growth promoting activity but it did not completely inhibit the metabolic activities of strain PS19. The herbicide tolerance together with growth promoting activities observed under herbicide stress suggests that Klebsiella sp. strain PS19 could be used as bacterial preparation for facilitating the growth and yields of crops even in soils polluted with herbicides. PMID:20721665

  18. Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants

    SciTech Connect

    Somerville, Chris R.; Scieble, Wolf

    2000-10-11

    Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  19. Direct and indirect photolysis of two quinolinecarboxylic herbicides in aqueous systems.

    PubMed

    Pinna, Maria Vittoria; Pusino, Alba

    2012-02-01

    The photodegradation of two quinolinecarboxylic herbicides, 7-chloro-3-methylquinoline-8-carboxylic acid (QMe) and 3,7-dichloroquinoline-8-carboxylic acid (QCl), was studied in aqueous solution at different irradiation wavelengths. The effect of sunlight irradiation was investigated also in the presence of titanium dioxide (TiO(2)). UV irradiation degraded rapidly QMe affording 7-chloro-3-methylquinoline (MeQ) through a decarboxylation reaction. The reaction rate was lower in the presence of dissolved organic carbon (DOC) because of the adsorption of the herbicide on the organic components. Instead, QCl was stable under both UV light and sunlight irradiation. The irradiation of QMe or QCl solutions with simulated sunlight in the presence of TiO(2) produced the complete mineralization of the two herbicides.

  20. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    DOEpatents

    Somerville, Chris R.; Scheible, Wolf

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  1. Mitigation of plant penetration into radioactive waste utilizing herbicides

    SciTech Connect

    Cox, G.R.

    1982-01-01

    This paper describes the use of herbicides as an effective method of precluding plant root penetration into buried radioactive wastes. The discussed surface applications are selective herbicides to control broadleaf vegetation in grasses; nonselective herbicides, which control all vegetation; and slow-release forms of these herbicides to prolong effectiveness.

  2. Going natural: Effective weed control in squash with pelargonic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pelargonic acid, a natural, but not certified organic herbicide, has been shown to be phytotoxic, acting as a contact herbicide, injuring and killing plants through cell membrane disruption. Pelargonic acid, a fatty acid also known as nonanoic acid, is a nine-carbon chained organic compound found in...

  3. Environmental fate of herbicides trifluralin, metazachlor, metamitron and sulcotrione compared with that of glyphosate, a substitute broad spectrum herbicide for different glyphosate-resistant crops.

    PubMed

    Mamy, Laure; Barriuso, Enrique; Gabrielle, Benoît

    2005-09-01

    The introduction of crops resistant to the broad spectrum herbicide glyphosate, N-(phosphonomethyl)glycine, may constitute an answer to increased contamination of the environment by herbicides, since it should reduce the total amount of herbicide needed and the number of active ingredients. However, there are few published data comparing the fate of glyphosate in the environment, particularly in soil, with that of substitute herbicides. The objective of this study is to compare the fate of glyphosate in three soils with that of four herbicides frequently used on crops that might be glyphosate resistant: trifluralin, alpha,alpha,alpha-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine, and metazachlor, 2-chloro-N-(pyrazol-1-ylmethyl)acet-2',6'-xylidide for oilseed rape, metamitron, 4-amino-4,5-dihydro-3-methyl-6-phenyl-1,2,4-triazin-5-one for sugarbeet and sulcotrione, 2-(2-chloro-4-mesylbenzoyl)cyclohexane-1,3-dione for maize. The distribution of herbicides between the volatilized, mineralized, extractable and non-extractable fractions was studied, along with the formation of their metabolites in laboratory experiments using 14C-labelled herbicides, over a period of 140 days. The main dissipation pathways were mineralization for glyphosate and sulcotrione, volatilization for trifluralin and non-extractable residues formation for metazachlor and metamitron. The five herbicides had low persistence. Glyphosate had the shortest half-life, which varied with soil type, whereas trifluralin had the longest. The half-lives of metazachlor and sulcotrione were comparable, whereas that of metamitron was highly variable. Glyphosate, metazachlor and sulcotrione were degraded into persistent metabolites. Low amounts of trifluralin and metamitron metabolites were observed. At 140 days after herbicide applications, the amounts of glyphosate and its metabolite residues in soils were the lowest in two soils, but not in the third soil, a loamy sand with low pH. The environmental advantage

  4. Acetamide herbicides and their degradation products in ground water and surface water of the United States, 1993-2003

    USGS Publications Warehouse

    Scribner, Elisabeth A.; Dietze, Julie E.; Thurman, Michael

    2004-01-01

    During 1993 through 2003, the U.S. Geological Survey conducted a number of studies to investigate and document the occurrence, fate, and transport of acetamide herbicides and their degradation products in ground and surface water. As part of these studies, approximately 5,100 water samples were collected and analyzed for the acetamide parent herbicides acetochlor, alachlor, dimethenamid, flufenacet, and metolachlor and their degradation products ethanesulfonic acid, oxanilic acid, and sulfinyl acetic acid. During this period, various analytical methods were developed to detect and measure concentrations of acetamide herbicides and their degradation products in ground water and surface water. Results showed that the degradation products of acetamide herbicides in ground water were detected more frequently and occurred at higher concentrations than their parent compounds. Further study showed that the acetamide herbicides and their degradation products were detected more frequently in surface water than in ground water. In general, the parent compounds were detected at similar or greater frequencies than the degradation products in surface water. The developed methods and data were valuable for acquiring information about the occurrence, fate, and transport of the herbicides and their degradation products and the importance of analyzing for both parent compounds and their degradate products in water-quality studies.

  5. Global perspective of herbicide-resistant weeds.

    PubMed

    Heap, Ian

    2014-09-01

    Two hundred and twenty weed species have evolved resistance to one or more herbicides, and there are now 404 unique cases (species × site of action) of herbicide-resistant weeds globally. ALS inhibitor-resistant weeds account for about a third of all cases (133/404) and are particularly troublesome in rice and cereals. Although 71 weed species have been identified with triazine resistance, their importance has dwindled with the shift towards Roundup Ready® crops in the USA and the reduction of triazine usage in Europe. Forty-three grasses have evolved resistance to ACCase inhibitors, with the most serious cases being Avena spp., Lolium spp., Phalaris spp., Setaria spp. and Alopecurus myosuroides, infesting more than 25 million hectares of cereal production globally. Of the 24 weed species with glyphosate resistance, 16 have been found in Roundup Ready® cropping systems. Although Conyza canadensis is the most widespread glyphosate-resistant weed, Amaranthus palmeri and Amaranthus tuberculartus are the two most economically important glyphosate-resistant weeds because of the area they infest and the fact that these species have evolved resistance to numerous other herbicide sites of action, leaving growers with few herbicidal options for their control. The agricultural chemical industry has not brought any new herbicides with novel sites of action to market in over 30 years, making growers reliant on using existing herbicides in new ways. In addition, tougher registration and environmental regulations on herbicides have resulted in a loss of some herbicides, particularly in Europe. The lack of novel herbicide chemistries being brought to market combined with the rapid increase in multiple resistance in weeds threatens crop production worldwide.

  6. Hybridization using cytoplasmic male sterility, cytoplasmic herbicide tolerance, and herbicide tolerance from nuclear genes

    SciTech Connect

    Beversdorf, W.D.; Erickson, L.R.; Grant, I.

    1987-04-14

    An improved process is described for producing a substantially homogeneous population of plants of a predetermined hybrid variety of crop which is capable of undergoing self-pollination and cross-pollination. The process comprises: growing in a first planting area a substantially random population of cytoplasmic male sterile plants which exhibit cytoplasmic herbicide tolerance to at least one Type A herbicide and exhibit tolerance to at least one Type B herbicide which is attributable solely to homozygous dominant nuclear genes and male fertile plants which are homozygous recessive maintainer plants for the cytoplasmic male sterile plants and which lack the cytoplasmic herbicide tolerance to at least one Type A herbicide and exhibit tolerance to at least one Type B herbicide attributable solely to the homozygous dominant nuclear genes.

  7. Assessment of herbicide sorption by biochars and organic matter associated with soil and sediment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorption of two herbicides, fluridone (FLUN) and norflurazon (NORO), by whole sediment, two types of biochars and various soil/sediment organic matter (OM) fractions including nonhydrolyzable carbon (NHC), black carbon (BC) and humic acid (HA) was examined. The single-point organic carbon (OC)-norma...

  8. Peanut response to naturally-derived herbicides used in organic crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed-free irrigated trials were conducted in 2004 and 2005 to quantify phytotoxic effects of herbicides with the potential to be used in organic peanut production. Clove oil and citric plus acetic acid were each applied at vegetative emergence of peanut (VE), two weeks after VE (2 wk), four weeks a...

  9. ENZYMATIC COUPLING OF THE HERBICIDE BENTAZON WITH HUMUS MONOMERS AND CHARACTERIZATION OF REACTION PRODUCTS (R823847)

    EPA Science Inventory

    To elucidate the binding mechanism of the herbicide bentazon
    (3-isopropyl-1H-2,1,3-benzothiadiazine-4(3H)-one 2,2-dioxide) with
    humic monomers in the presence of an oxidative enzyme, the reaction of bentazon
    with catechol, caffeic acid, protocatechuic...

  10. Occurrence and load of selected herbicides and metabolites in the lower Mississippi River

    USGS Publications Warehouse

    Clark, G.M.; Goolsby, D.A.

    2000-01-01

    Analyses of water samples collected from the Mississippi River at Baton Rouge, Louisiana, during 1991-1997 indicate that hundreds of metric tons of herbicides and herbicide metabolites are being discharged annually to the Gulf of Mexico. Atrazine, metolachlor, and the ethane-sulfonic acid metabolite of alachlor (alachlor ESA) were the most frequently detected herbicides and, in general, were present in the largest concentrations. Almost 80% of the annual herbicide load to the Gulf of Mexico occurred during the growing season from May to August. The concentrations and loads of alachlor in the Mississippi River decreased dramatically after 1993 in response to decreased use in the basin. In contrast, the concentrations and loads of acetochlor increased after 1994, reflecting its role as a replacement for alachlor. The peak annual herbicide load occurred in 1993, when approximately 640 metric tons (t) of atrazine, 320 t of cyanazine, 215 t of metolachlor, 53 t of simazine, and 50 t of alachlor were discharged to the Gulf of Mexico. The annual loads of atrazine and cyanazine were generally 1-2% of the amount annually applied in the Mississippi River drainage basin; the annual loads of acetochlor, alachlor, and metolachlor were generally less than 1%. Despite a reduction in atrazine use, historical data do not indicate a long-term downward trend in the atrazine load to the Gulf of Mexico. Although a relation (r2=0.62) exists between the atrazine load and stream discharge during May to August, variations in herbicide use and rainfall patterns within subbasins can have a large effect on herbicide loads in the Mississippi River Basin and probably explain a large part of the annual variation in atrazine load to the Gulf of Mexico. Copyright (C) 2000 Elsevier Science B.V.

  11. Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes.

    PubMed

    Wright, Terry R; Shan, Guomin; Walsh, Terence A; Lira, Justin M; Cui, Cory; Song, Ping; Zhuang, Meibao; Arnold, Nicole L; Lin, Gaofeng; Yau, Kerrm; Russell, Sean M; Cicchillo, Robert M; Peterson, Mark A; Simpson, David M; Zhou, Ning; Ponsamuel, Jayakumar; Zhang, Zhanyuan

    2010-11-23

    Engineered glyphosate resistance is the most widely adopted genetically modified trait in agriculture, gaining widespread acceptance by providing a simple robust weed control system. However, extensive and sustained use of glyphosate as a sole weed control mechanism has led to field selection for glyphosate-resistant weeds and has induced significant population shifts to weeds with inherent tolerance to glyphosate. Additional weed control mechanisms that can complement glyphosate-resistant crops are, therefore, urgently needed. 2,4-dichlorophenoxyacetic acid (2,4-D) is an effective low-cost, broad-spectrum herbicide that controls many of the weeds developing resistance to glyphosate. We investigated the substrate preferences of bacterial aryloxyalkanoate dioxygenase enzymes (AADs) that can effectively degrade 2,4-D and have found that some members of this class can act on other widely used herbicides in addition to their activity on 2,4-D. AAD-1 cleaves the aryloxyphenoxypropionate family of grass-active herbicides, and AAD-12 acts on pyridyloxyacetate auxin herbicides such as triclopyr and fluroxypyr. Maize plants transformed with an AAD-1 gene showed robust crop resistance to aryloxyphenoxypropionate herbicides over four generations and were also not injured by 2,4-D applications at any growth stage. Arabidopsis plants expressing AAD-12 were resistant to 2,4-D as well as triclopyr and fluroxypyr, and transgenic soybean plants expressing AAD-12 maintained field resistance to 2,4-D over five generations. These results show that single AAD transgenes can provide simultaneous resistance to a broad repertoire of agronomically important classes of herbicides, including 2,4-D, with utility in both monocot and dicot crops. These transgenes can help preserve the productivity and environmental benefits of herbicide-resistant crops.

  12. Response of multiple seeded cocklebur and other cocklebur types to herbicide treatment.

    PubMed

    Abbas, Hamed K; Johnson, Bobbie J; Pantone, Dan J; Wax, Loyd M; Hine, Ron; Shier, W Thomas

    2005-07-01

    Multiple seeded cocklebur has been found in the last decade in Texas, and described as a biotype of Xanthium strumarium L with up to 25 seeds per bur instead of the usual two. The multiple seeded bur typically produces up to nine seedlings, causing concern that it may be harder to control than normal seeded common cocklebur. The efficacies of a series of fungal and conventional commercial herbicides have been compared in the greenhouse on seedlings of multiple seeded cocklebur from Texas (MSC-TX) and normal common cockleburs from Texas (NCC-TX), Arkansas (NCC-AR), Illinois (NCC-ILL) and two from Mississippi (NCC-MS#1, NCC-MS#2). Three measures of herbicidal activity (reductions in plant height and dry weight, and mortality) were used. The fungal herbicide Alternaria helianthi (Hansf) Tubaki & Nishihara at 1 x 10(5) conidia ml(-1) + 2 g liter(-1) Silwet L-77 with an 8-h dew period was an effective herbicide with all biotypes, as were the commercial chemical herbicides chlorimuron (14.8 g ha(-1)), imazaquin (29.6 g ha(-1)), sodium hydrogen methylarsonate (MSMA; 279.1 g ha(-1)) and imazethapyr (39.5 g ha(-1)). The membrane-disrupting organic arsenical MSMA was effective with all biotypes, whereas commercial chemical herbicides which act by inhibiting branched-chain amino acid synthesis (chlorimuron, imazaquin and imazethapyr) were less effective against normal seeded common cocklebur biotypes with short stature. These studies showed that multiple seeded cocklebur was at least as susceptible to the biological agent A helianthi and to the conventional commercial herbicides studied as were normal seeded cockleburs, suggesting that existing methods should be adequate to control this novel biotype. PMID:15712354

  13. Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes.

    PubMed

    Wright, Terry R; Shan, Guomin; Walsh, Terence A; Lira, Justin M; Cui, Cory; Song, Ping; Zhuang, Meibao; Arnold, Nicole L; Lin, Gaofeng; Yau, Kerrm; Russell, Sean M; Cicchillo, Robert M; Peterson, Mark A; Simpson, David M; Zhou, Ning; Ponsamuel, Jayakumar; Zhang, Zhanyuan

    2010-11-23

    Engineered glyphosate resistance is the most widely adopted genetically modified trait in agriculture, gaining widespread acceptance by providing a simple robust weed control system. However, extensive and sustained use of glyphosate as a sole weed control mechanism has led to field selection for glyphosate-resistant weeds and has induced significant population shifts to weeds with inherent tolerance to glyphosate. Additional weed control mechanisms that can complement glyphosate-resistant crops are, therefore, urgently needed. 2,4-dichlorophenoxyacetic acid (2,4-D) is an effective low-cost, broad-spectrum herbicide that controls many of the weeds developing resistance to glyphosate. We investigated the substrate preferences of bacterial aryloxyalkanoate dioxygenase enzymes (AADs) that can effectively degrade 2,4-D and have found that some members of this class can act on other widely used herbicides in addition to their activity on 2,4-D. AAD-1 cleaves the aryloxyphenoxypropionate family of grass-active herbicides, and AAD-12 acts on pyridyloxyacetate auxin herbicides such as triclopyr and fluroxypyr. Maize plants transformed with an AAD-1 gene showed robust crop resistance to aryloxyphenoxypropionate herbicides over four generations and were also not injured by 2,4-D applications at any growth stage. Arabidopsis plants expressing AAD-12 were resistant to 2,4-D as well as triclopyr and fluroxypyr, and transgenic soybean plants expressing AAD-12 maintained field resistance to 2,4-D over five generations. These results show that single AAD transgenes can provide simultaneous resistance to a broad repertoire of agronomically important classes of herbicides, including 2,4-D, with utility in both monocot and dicot crops. These transgenes can help preserve the productivity and environmental benefits of herbicide-resistant crops. PMID:21059954

  14. Glyphosate, other herbicides, and transformation products in Midwestern streams, 2002

    USGS Publications Warehouse

    Battaglin, W.A.; Kolpin, D.W.; Scribner, E.A.; Kuivila, K.M.; Sandstrom, M.W.

    2005-01-01

    The use of glyphosate has increased rapidly, and there is limited understanding of its environmental fate. The objective of this study was to document the occurrence of glyphosate and the transformation product aminomethylphosphonic acid (AMPA) in Midwestern streams and to compare their occurrence with that of more commonly measured herbicides such as acetochlor, atrazine, and metolachlor. Water samples were collected at sites on 51 streams in nine Midwestern states in 2002 during three runoff events: after the application of pre-emergence herbicides, after the application of post-emergence herbicides, and during harvest season. All samples were analyzed for glyphosate and 20 other herbicides using gas chromatography/mass spectrometry or high performance liquid chromatography/mass spectrometry. The frequency of glyphosate and AMPA detection, range of concentrations in runoff samples, and ratios of AMPA to glyphosate concentrations did not vary throughout the growing season as substantially as for other herbicides like atrazine, probably because of different seasonal use patterns. Glyphosate was detected at or above 0.1 μg/1 in 35 percent of pre-emergence, 40 percent of post-emergence, and 31 percent of harvest season samples, with a maximum concentration of 8.7 μg/1. AMPA was detected at or above 0.1 μg/1 in 53 percent of pre-emergence, 83 percent of post-emergence, and 73 percent of harvest season samples, with a maximum concentration of 3.6 μg/1. Glyphosate was not detected at a concentration at or above the U.S. Environmental Protection Agency's maximum contamination level (MCL) of 700 μg/1 in any sample. Atrazine was detected at or above 0.1 μg/1 in 94 percent of pre-emergence, 96 percent of post-emergence, and 57 percent of harvest season samples, with a maximum concentration of 55 μg/1. Atrazine was detected at or above its MCL (3 μg/1) in 57 percent of pre-emergence and 33 percent of post-emergence samples

  15. Electronic structure of herbicides: Atrazine and bromoxynil

    NASA Astrophysics Data System (ADS)

    Novak, Igor; Kovač, Branka

    2011-06-01

    The electronic structures of herbicides atrazine and bromoxynil have been investigated by UV photoelectron spectroscopy (UPS), quantum chemical calculations and comparison with X-ray diffraction, molecular docking and molecular dynamics studies. Their electronic and molecular structures are discussed in the context of their biological activity. This is the first report which correlates the molecular mechanism of biological activity of these herbicides with their experimentally determined electronic and molecular structures.

  16. Comparative environmental impacts of glyphosate and conventional herbicides when used with glyphosate-tolerant and non-tolerant crops.

    PubMed

    Mamy, Laure; Gabrielle, Benoît; Barriuso, Enrique

    2010-10-01

    The introduction of glyphosate-tolerant (GT) crops is expected to mitigate the environmental contamination by herbicides because glyphosate is less persistent and toxic than the herbicides used on non-GT crops. Here, we compared the environmental balances of herbicide applications for both crop types in three French field trials. The dynamic of herbicides and their metabolites in soil, groundwater and air was simulated with PRZM model and compared to field measurements. The associated impacts were aggregated with toxicity potentials calculated with the fate and exposure model USES for several environmental endpoints. The impacts of GT systems were lower than those of non-GT systems, but the accumulation in soils of one glyphosate metabolite (aminomethylphosphonic acid) questions the sustainability of GT systems. The magnitude of the impacts depends on the rates and frequency of glyphosate application being highest for GT maize monoculture and lowest for combination of GT oilseed rape and non-GT sugarbeet crops.

  17. Differential expression of acetohydroxyacid synthase genes in sunflower plantlets and its response to imazapyr herbicide.

    PubMed

    Breccia, Gabriela; Vega, Tatiana; Felitti, Silvina A; Picardi, Liliana; Nestares, Graciela

    2013-07-01

    Acetohydroxyacid synthase (AHAS) catalyzes the first reaction in branch chain amino acids biosynthesis. This enzyme is the target of several herbicides, including all members of the imidazolinone family. Little is known about the expression of the three acetohydroxyacid synthase genes (ahas1, ahas2 and ahas3) in sunflower. The aim of this work was to evaluate ahas gene expression and AHAS activity in different tissues of sunflower plantlets. Three genotypes differing in imidazolinone resistance were evaluated, two of which carry an herbicide resistant-endowing mutation known as Ahasl1-1 allele. In vivo and in vitro AHAS activity and transcript levels were higher in leaves than in roots. The ahas3 transcript was the less abundant in both tissues. No significant difference was observed between ahas1 and ahas2 transcript levels of the susceptible genotype but a higher ahas1 transcript level was observed in leaves of genotypes carrying Ahasl1-1 allele. Similar transcript levels were found for ahas1 and ahas2 in roots of genotypes carrying Ahasl1-1 allele whereas higher ahas2 abundance was found in the susceptible genotype. Herbicide treatment triggered tissue-specific, gene and genotype-dependent changes in ahas gene expression. AHAS activity was highly inhibited in the susceptible genotype. Differential responses were observed between in vitro and in vivo AHAS inhibition assays. These findings enhance our understanding of AHAS expression in sunflower genotypes differing for herbicide resistance and its response to herbicide treatment.

  18. Structure-toxicity relationship of chloroacetanilide herbicides: relative impact on soil microorganisms.

    PubMed

    Saha, Supradip; Dutta, Debashis; Karmakar, Rajib; Ray, Deb Prasad

    2012-09-01

    The research was carried out to ascertain the effect of three chloroacetanilide herbicides, alachlor, butachlor and pretilachlor on soil microbial biomass growth and activity. Laboratory experiments were performed in a silty clay loam soil to relate changes of soil enzymatic activity to the herbicide persistence under laboratory condition up to 42 days at three application rates. The results showed that all the three herbicides caused enhancement of dehydrogenase activity. Higher concentrations of herbicide resulted in enhancement of the enzymatic activity. In addition, a similar trend was observed in β-glucosidase and acid phosphatase activity, although urease activity decreased upon incubation for 42 days as compared with initial soil incubation values. Based on the extent of impact for dehydrogenase activity in soil, the order was pretilachlor>alachlor>butachlor; whereas in case of urease activity, the order changed to pretilachlor>butachlor>alachlor. The soil half-lives of alachlor, butachlor and pretilachlor respectively, were 9.3, 12.7 and 7.3 days, which could be accounted for in terms of their respective chemical structures, as well as variable adsorption, degradation, differential effects of the agents on soil microbes. Soil management practices and the differing physicochemical properties of the herbicides may contribute to their rates of decay in soil.

  19. Operational stability to changes in composition of herbicide mixtures fed to a laboratory-scale biobarrier.

    PubMed

    Ramos-Monroy, O; Ruiz-Ordaz, N; Galíndez-Mayer, J; Juárez-Ramirez, C; Nava-Arenas, I; Ordaz-Guillén, Y

    2013-02-01

    The main objective of this work was to evaluate the operational stability of a laboratory-scale aerobic biobarrier designed for the treatment of water contaminated by mixtures of three herbicides frequently found in agricultural runoffs, atrazine, simazine and 2,4-dichlorophenoxyacetic acid (2,4-D). The microbial consortium used to degrade the herbicides was composed by six cultivable bacterial strains, identified as members of the genera Variovorax, Sphingopyxis, Hydrocarboniphaga, Methylobacterium, Pseudomonas and Acinetobacter. The effect caused by a seventh member of the microbial consortium, a ciliated protozoa of the genus Colpoda, on the herbicides biodegradation kinetics, was also evaluated. The biodegradation of five combinations of the herbicides 2,4-D, atrazine and simazine was studied in the biobarrier, operated in steady state continuous culture at different volumetric loading rates. In all cases, removal efficiencies determined by chemical oxygen demand (COD) and HPLC were nearly 100 %. These results, joined to the null accumulation of aromatic byproducts of atrazine and simazine catabolism, show that after 495 days of operation, in the presence of the protozoa, the adaptability of the microbial consortium to changing environmental conditions allowed the complete removal of the mixture of herbicides.

  20. Protective responses induced by herbicide safeners in wheat

    PubMed Central

    Taylor, Victoria L.; Cummins, Ian; Brazier-Hicks, Melissa; Edwards, Robert

    2013-01-01

    Safeners are agrochemicals which enhance tolerance to herbicides in cereals including wheat (Triticum aestivum L.) by elevating the expression of xenobiotic detoxifying enzymes, such as glutathione transferases (GSTs). When wheat plants were spray-treated with three safener chemistries, namely cloquintocet mexyl, mefenpyr diethyl and fenchlorazole ethyl, an apparently identical subset of GSTs derived from the tau, phi and lambda classes accumulated in the foliage. Treatment with the closely related mefenpyr diethyl and fenchlorazole ethyl enhanced seedling shoot growth, but this effect was not determined with the chemically unrelated cloquintocet mexyl. Focussing on cloquintocet mexyl, treatments were found to only give a transient induction of GSTs, with the period of elevation being dose dependent. Examining the role of safener metabolism in controlling these responses, it was determined that cloquintocet mexyl was rapidly hydrolysed to the respective carboxylic acid. Studies with cloquintocet showed that the acid was equally effective at inducing GSTs as the ester and appeared to be the active safener. Studies on the tissue induction of GSTs showed that whilst phi and tau class enzymes were induced in all tissues, the induction of the lambda enzymes was restricted to the meristems. To test the potential protective effects of cloquintocet mexyl in wheat on chemicals other than herbicides, seeds were pre-soaked in safeners prior to sowing on soil containing oil and a range of heavy metals. Whilst untreated seeds were unable to germinate on the contaminated soil, safener treatments resulted in seedlings briefly growing before succumbing to the pollutants. Our results show that safeners exert a range of protective and growth promoting activities in wheat that extend beyond enhancing tolerance to herbicides. PMID:23564986

  1. Genetically Modified Herbicide-Tolerant Crops, Weeds, and Herbicides: Overview and Impact.

    PubMed

    Bonny, Sylvie

    2016-01-01

    Genetically modified (GM) crops have been and continue to be a subject of controversy despite their rapid adoption by farmers where approved. For the last two decades, an important matter of debate has been their impact on pesticide use, particularly for herbicide-tolerant (HT) crops. Some claim that these crops bring about a decrease in herbicide use, while others claim the opposite. In fact, since 1996, most cultivated GMOs have been GMHT crops, which involve the use of an associated herbicide, generally glyphosate. In their very first years of adoption, HT crops often led to some decrease in herbicide use. However, the repetition of glyphosate-tolerant crops and of glyphosate only applications in the same fields without sufficient alternation and herbicide diversity has contributed to the appearance of glyphosate-resistant weeds. These weeds have resulted in a rise in the use of glyphosate and other herbicides. This article explores this situation and the impacts of herbicide-resistant weeds, using an interdisciplinary approach and drawing on recent data. The paper analyzes the spread of GMHT crops worldwide and their consequences on herbicide use in the USA in particular. It then addresses the global development of glyphosate-resistant weeds and their impact, particularly focusing on the USA. Finally, the last section explores how industry, farmers, and weed scientists are coping with the spread of resistant weeds. The concluding comments deal more widely with trends in GM crops. PMID:26296738

  2. Genetically Modified Herbicide-Tolerant Crops, Weeds, and Herbicides: Overview and Impact

    NASA Astrophysics Data System (ADS)

    Bonny, Sylvie

    2016-01-01

    Genetically modified (GM) crops have been and continue to be a subject of controversy despite their rapid adoption by farmers where approved. For the last two decades, an important matter of debate has been their impact on pesticide use, particularly for herbicide-tolerant (HT) crops. Some claim that these crops bring about a decrease in herbicide use, while others claim the opposite. In fact, since 1996, most cultivated GMOs have been GMHT crops, which involve the use of an associated herbicide, generally glyphosate. In their very first years of adoption, HT crops often led to some decrease in herbicide use. However, the repetition of glyphosate-tolerant crops and of glyphosate only applications in the same fields without sufficient alternation and herbicide diversity has contributed to the appearance of glyphosate-resistant weeds. These weeds have resulted in a rise in the use of glyphosate and other herbicides. This article explores this situation and the impacts of herbicide-resistant weeds, using an interdisciplinary approach and drawing on recent data. The paper analyzes the spread of GMHT crops worldwide and their consequences on herbicide use in the USA in particular. It then addresses the global development of glyphosate-resistant weeds and their impact, particularly focusing on the USA. Finally, the last section explores how industry, farmers, and weed scientists are coping with the spread of resistant weeds. The concluding comments deal more widely with trends in GM crops.

  3. Genetically Modified Herbicide-Tolerant Crops, Weeds, and Herbicides: Overview and Impact.

    PubMed

    Bonny, Sylvie

    2016-01-01

    Genetically modified (GM) crops have been and continue to be a subject of controversy despite their rapid adoption by farmers where approved. For the last two decades, an important matter of debate has been their impact on pesticide use, particularly for herbicide-tolerant (HT) crops. Some claim that these crops bring about a decrease in herbicide use, while others claim the opposite. In fact, since 1996, most cultivated GMOs have been GMHT crops, which involve the use of an associated herbicide, generally glyphosate. In their very first years of adoption, HT crops often led to some decrease in herbicide use. However, the repetition of glyphosate-tolerant crops and of glyphosate only applications in the same fields without sufficient alternation and herbicide diversity has contributed to the appearance of glyphosate-resistant weeds. These weeds have resulted in a rise in the use of glyphosate and other herbicides. This article explores this situation and the impacts of herbicide-resistant weeds, using an interdisciplinary approach and drawing on recent data. The paper analyzes the spread of GMHT crops worldwide and their consequences on herbicide use in the USA in particular. It then addresses the global development of glyphosate-resistant weeds and their impact, particularly focusing on the USA. Finally, the last section explores how industry, farmers, and weed scientists are coping with the spread of resistant weeds. The concluding comments deal more widely with trends in GM crops.

  4. An interactive database to explore herbicide physicochemical properties.

    PubMed

    Gandy, Michael N; Corral, Maxime G; Mylne, Joshua S; Stubbs, Keith A

    2015-05-28

    Herbicides are an essential tool not only in weed management, but also in conservation tillage approaches to cropping. The first commercial herbicides were released in the 1940s and hundreds more since then, although genetic resistance to them is an issue. Here, we review the experimental and estimated physicochemical properties of 334 successful herbicidal compounds and make available a dynamic electronic database containing detailed analyses of the main chemical properties for herbicides and which adopts the Simplified Molecular-Input Line-Entry System (SMILES) for describing the structure of chemical molecules. This fully available resource allows for the rapid comparison of potential new herbicidal compounds to the chemical properties of known herbicides.

  5. METHOD 535: MEASUREMENT OF CHLOROACETANILIDE AND CHLOROACETAMIDE HERBICIDE DEGRADATES IN DRINKING WATER BY SOLID PHASE EXTRACTION AND LIQUID CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY (LC/MS/MS)

    EPA Science Inventory

    Over the past several years, ethanesulfonic acid (ESA) and oxanilic acid (OA) degradation products of acetanilide/acetamide herbicides have been found in U.S. ground waters and surface waters. The substitution of the sulfonic acid or the carbonic acid for the chlorine atom great...

  6. The chiral herbicide beflubutamid (I): Isolation of pure enantiomers by HPLC, herbicidal activity of enantiomers, and analysis by enantioselective GC-MS.

    PubMed

    Buerge, Ignaz J; Bächli, Astrid; De Joffrey, Jean-Pierre; Müller, Markus D; Spycher, Simon; Poiger, Thomas

    2013-07-01

    For many chiral pesticides, little information is available on the properties and fate of individual stereoisomers. A basic data set would, first of all, include stereoisomer-specific analytical methods and data on the biological activity of stereoisomers. The herbicide beflubutamid, which acts as an inhibitor of carotenoid biosynthesis, is currently marketed as racemate against dicotyledonous weeds in cereals. Here, we present analytical methods for enantiomer separation of beflubutamid and two metabolites based on chiral HPLC. These methods were used to assign the optical rotation and to prepare milligram quantities of the pure enantiomers for further characterization with respect to herbicidal activity. In addition, sensitive analytical methods were developed for enantiomer separation and quantification of beflubutamid and its metabolites at trace level, using chiral GC-MS. In miniaturized biotests with garden cress, (-)-beflubutamid showed at least 1000× higher herbicidal activity (EC50, 0.50 μM) than (+)-beflubutamid, as determined by analysis of chlorophyll a in 5-day-old leaves. The agricultural use of enantiopure (-)-beflubutamid rather than the racemic compound may therefore be advantageous from an environmental perspective. In further biotests, the (+)-enantiomer of the phenoxybutanoic acid metabolite showed effects on root growth, possibly via an auxin-type mode of action, but at 100× higher concentrations than the structurally related herbicide (+)-mecoprop. PMID:22849576

  7. Herbicide resistance modelling: past, present and future.

    PubMed

    Renton, Michael; Busi, Roberto; Neve, Paul; Thornby, David; Vila-Aiub, Martin

    2014-09-01

    Computer simulation modelling is an essential aid in building an integrated understanding of how different factors interact to affect the evolutionary and population dynamics of herbicide resistance, and thus in helping to predict and manage how agricultural systems will be affected. In this review, we first discuss why computer simulation modelling is such an important tool and framework for dealing with herbicide resistance. We then explain what questions related to herbicide resistance have been addressed to date using simulation modelling, and discuss the modelling approaches that have been used, focusing first on the earlier, more general approaches, and then on some newer, more innovative approaches. We then consider how these approaches could be further developed in the future, by drawing on modelling techniques that are already employed in other areas, such as individual-based and spatially explicit modelling approaches, as well as the possibility of better representing genetics, competition and economics, and finally the questions and issues of importance to herbicide resistance research and management that could be addressed using these new approaches are discussed. We conclude that it is necessary to proceed with caution when increasing the complexity of models by adding new details, but, with appropriate care, more detailed models will make it possible to integrate more current knowledge in order better to understand, predict and ultimately manage the evolution of herbicide resistance.

  8. The benefits of herbicide-resistant crops.

    PubMed

    Green, Jerry M

    2012-10-01

    Since 1996, genetically modified herbicide-resistant crops, primarily glyphosate-resistant soybean, corn, cotton and canola, have helped to revolutionize weed management and have become an important tool in crop production practices. Glyphosate-resistant crops have enabled the implementation of weed management practices that have improved yield and profitability while better protecting the environment. Growers have recognized their benefits and have made glyphosate-resistant crops the most rapidly adopted technology in the history of agriculture. Weed management systems with glyphosate-resistant crops have often relied on glyphosate alone, have been easy to use and have been effective, economical and more environmentally friendly than the systems they have replaced. Glyphosate has worked extremely well in controlling weeds in glyphosate-resistant crops for more than a decade, but some key weeds have evolved resistance, and using glyphosate alone has proved unsustainable. Now, growers need to renew their weed management practices and use glyphosate with other cultural, mechanical and herbicide options in integrated systems. New multiple-herbicide-resistant crops with resistance to glyphosate and other herbicides will expand the utility of existing herbicide technologies and will be an important component of future weed management systems that help to sustain the current benefits of high-efficiency and high-production agriculture.

  9. Herbicide resistance modelling: past, present and future.

    PubMed

    Renton, Michael; Busi, Roberto; Neve, Paul; Thornby, David; Vila-Aiub, Martin

    2014-09-01

    Computer simulation modelling is an essential aid in building an integrated understanding of how different factors interact to affect the evolutionary and population dynamics of herbicide resistance, and thus in helping to predict and manage how agricultural systems will be affected. In this review, we first discuss why computer simulation modelling is such an important tool and framework for dealing with herbicide resistance. We then explain what questions related to herbicide resistance have been addressed to date using simulation modelling, and discuss the modelling approaches that have been used, focusing first on the earlier, more general approaches, and then on some newer, more innovative approaches. We then consider how these approaches could be further developed in the future, by drawing on modelling techniques that are already employed in other areas, such as individual-based and spatially explicit modelling approaches, as well as the possibility of better representing genetics, competition and economics, and finally the questions and issues of importance to herbicide resistance research and management that could be addressed using these new approaches are discussed. We conclude that it is necessary to proceed with caution when increasing the complexity of models by adding new details, but, with appropriate care, more detailed models will make it possible to integrate more current knowledge in order better to understand, predict and ultimately manage the evolution of herbicide resistance. PMID:24585689

  10. Herbicide loss following application to a roadside.

    PubMed

    Ramwell, Carmel T; Heather, Andrew I J; Shepherd, Anthony J

    2002-07-01

    Risk assessments for herbicides applied to roads are limited by the lack of knowledge on the fate and behaviour of the compounds in the urban environment. This study was designed to address this deficiency by quantifying the percentage loss of six herbicides following application to a roadside. Herbicides were applied on two occasions to a 16-m length of roadside and kerb edge. An automatic water sampler was used to collect run-off, draining to a single gulley pot, until 25 mm of rain had fallen. Samples were analysed for glyphosate, atrazine, diuron, oxadiazon and oryzalin, and peak concentrations were 650, 2210, 1810, 390 and 70 micrograms litre-1 respectively. Isoxaben was also applied, but concentrations in run-off were below the limit of detection (10 micrograms litre-1). Herbicide concentrations all followed a similar pattern of rapid decline throughout the first rain event following application, with the majority of loss occurring within the first 10 mm of accumulated rainfall, but compounds of high solubility and low Koc produced the highest peak concentrations. For those compounds of relatively low solubility and moderate Koc, application rate may be an influential factor in determining herbicide loss for these compounds. The percentage loss of the active substances applied differed between compounds, ranging from < 10% to 73%. The ecotoxicological significance of the results is discussed.

  11. Reconnaissance data for glyphosate, other selected herbicides, their degradation products, and antibiotics in 51 streams in nine midwestern states, 2002

    USGS Publications Warehouse

    Scribner, Elisabeth A.; Battaglin, William A.; Dietze, Julie E.; Thurman, E.M.

    2003-01-01

    Since 1989, the U.S. Geological Survey has conducted periodic reconnaissance studies of streams in the Midwestern United States to determine the geographic and seasonal distribution of herbicide compounds. These studies have documented that large amounts of acetochlor, alachlor, atrazine, cyanazine, metolachlor, and their degradation products are flushed into streams during post-application runoff. Additional studies show that peak herbicide concentrations tend to occur during the first runoff after herbicide application and that herbicide flushes can occur during runoff for several weeks to months following application. Since the first stream study conducted in 1989, several significant changes in herbicide use have occurred. The most substantial change is the tripling in the use of glyphosate during the past 5 years. Over this same time period (1997-2001), usage of acetochlor and atrazine increased slightly, whereas alachlor, cyanazine, and metolachlor usage decreased. During 2002, 154 samples were collected from 51 streams in nine Midwestern States during three periods of runoff. This report provides a compilation of the analytical results of five laboratory methods. Results show that glyphosate was detected in 55 (36 percent) of the samples, and aminomethylphosphonic acid (a degradation product of glyphosate) was detected in 107 (69 percent) of the samples. Atrazine, the most frequently detected herbicide, was found in 93 percent of the samples, followed by metolachlor, found in 73 percent of the samples; metolachlor ethanesulfonic acid (ESA) and oxanilic acid (OXA) were the most frequently detected herbicide degradation products, both being found in more than 95 percent of the samples. The data presented here are valuable for comparison with results from the earlier reconnaissance studies.

  12. Herbicide-Resistant Crops: Utilities and Limitations for Herbicide-Resistant Weed Management

    PubMed Central

    2010-01-01

    Since 1996, genetically modified herbicide-resistant (HR) crops, particularly glyphosate-resistant (GR) crops, have transformed the tactics that corn, soybean, and cotton growers use to manage weeds. The use of GR crops continues to grow, but weeds are adapting to the common practice of using only glyphosate to control weeds. Growers using only a single mode of action to manage weeds need to change to a more diverse array of herbicidal, mechanical, and cultural practices to maintain the effectiveness of glyphosate. Unfortunately, the introduction of GR crops and the high initial efficacy of glyphosate often lead to a decline in the use of other herbicide options and less investment by industry to discover new herbicide active ingredients. With some exceptions, most growers can still manage their weed problems with currently available selective and HR crop-enabled herbicides. However, current crop management systems are in jeopardy given the pace at which weed populations are evolving glyphosate resistance. New HR crop technologies will expand the utility of currently available herbicides and enable new interim solutions for growers to manage HR weeds, but will not replace the long-term need to diversify weed management tactics and discover herbicides with new modes of action. This paper reviews the strengths and weaknesses of anticipated weed management options and the best management practices that growers need to implement in HR crops to maximize the long-term benefits of current technologies and reduce weed shifts to difficult-to-control and HR weeds. PMID:20586458

  13. Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management.

    PubMed

    Green, Jerry M; Owen, Micheal D K

    2011-06-01

    Since 1996, genetically modified herbicide-resistant (HR) crops, particularly glyphosate-resistant (GR) crops, have transformed the tactics that corn, soybean, and cotton growers use to manage weeds. The use of GR crops continues to grow, but weeds are adapting to the common practice of using only glyphosate to control weeds. Growers using only a single mode of action to manage weeds need to change to a more diverse array of herbicidal, mechanical, and cultural practices to maintain the effectiveness of glyphosate. Unfortunately, the introduction of GR crops and the high initial efficacy of glyphosate often lead to a decline in the use of other herbicide options and less investment by industry to discover new herbicide active ingredients. With some exceptions, most growers can still manage their weed problems with currently available selective and HR crop-enabled herbicides. However, current crop management systems are in jeopardy given the pace at which weed populations are evolving glyphosate resistance. New HR crop technologies will expand the utility of currently available herbicides and enable new interim solutions for growers to manage HR weeds, but will not replace the long-term need to diversify weed management tactics and discover herbicides with new modes of action. This paper reviews the strengths and weaknesses of anticipated weed management options and the best management practices that growers need to implement in HR crops to maximize the long-term benefits of current technologies and reduce weed shifts to difficult-to-control and HR weeds.

  14. Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management.

    PubMed

    Green, Jerry M; Owen, Micheal D K

    2011-06-01

    Since 1996, genetically modified herbicide-resistant (HR) crops, particularly glyphosate-resistant (GR) crops, have transformed the tactics that corn, soybean, and cotton growers use to manage weeds. The use of GR crops continues to grow, but weeds are adapting to the common practice of using only glyphosate to control weeds. Growers using only a single mode of action to manage weeds need to change to a more diverse array of herbicidal, mechanical, and cultural practices to maintain the effectiveness of glyphosate. Unfortunately, the introduction of GR crops and the high initial efficacy of glyphosate often lead to a decline in the use of other herbicide options and less investment by industry to discover new herbicide active ingredients. With some exceptions, most growers can still manage their weed problems with currently available selective and HR crop-enabled herbicides. However, current crop management systems are in jeopardy given the pace at which weed populations are evolving glyphosate resistance. New HR crop technologies will expand the utility of currently available herbicides and enable new interim solutions for growers to manage HR weeds, but will not replace the long-term need to diversify weed management tactics and discover herbicides with new modes of action. This paper reviews the strengths and weaknesses of anticipated weed management options and the best management practices that growers need to implement in HR crops to maximize the long-term benefits of current technologies and reduce weed shifts to difficult-to-control and HR weeds. PMID:20586458

  15. Inhibition of acetyl-coenzyme A carboxylase by two classes of grass-selective herbicides

    SciTech Connect

    Rendina, A.R.; Craig-Kennard, A.C.; Beaudoin, J.D.; Breen, M.K. )

    1990-05-01

    The selective grass herbicides diclofop, haloxyfop, and trifop (((aryloxy)phenoxy)propionic acids) and alloxydim, sethoxydim, and clethodim (cyclohexanediones) are potent, reversible inhibitors of acetyl-coenzyme A carboxylase (ACC) partially purified from barley, corn, and wheat. Although inhibition of the wheat enzyme by clethodim and diclofop is noncompetitive versus each of the substrates adenosine triphosphate (ATP), HCO{sub 3}{sup {minus}}, and acetyl-coenzyme A (acetyl-CoA), diclofop and clethodim are nearly competitive versus acetyl-CoA since the level of inhibition is most sensitive to the concentration of acetyl-CoA (K{sub is} < K{sub ii}). To conclusively show whether the herbicides interact at the biotin carboxylation site or the carboxyl transfer site, the inhibition of isotope exchange and partial reactions catalyzed at each site was studied with the wheat enzyme. Only the ({sup 14}C)acetyl-CoA-malonyl-CoA exchange and decarboxylation of ({sup 14}C)malonyl-CoA reactions are strongly inhibited by clethodim and diclofop, suggesting that the herbicides interfere with the carboxyl transfer site rather than the biotin carboxylation site of the enzyme. Double-inhibition studies with diclofop and clethodim suggest that the ((aryloxy)phenoxy)propionic acid and cyclohexanedione herbicides may bind to the same region of the enzyme.

  16. Effects of a glyphosate-based herbicide on the development of Common toads (Bufo bufo L.; Amphibia) at different temperatures

    NASA Astrophysics Data System (ADS)

    Baier, Fabian; Gruber, Edith; Spangl, Bernhard; Zaller, Johann G.

    2016-04-01

    Herbicides based on the active ingredient glyphosate are frequently applied in agriculture, horticulture and private gardens all over the world. Recently, leaching of glyphosate or its metabolite (AMPA) into water bodies inhabited by amphibians has been reported. However, very little is known about non-target effects of these herbicides on amphibians and even less is known to what extent different temperatures might alter these effects. Using climate chambers, we investigated the effects of the glyphosate-based herbicide Roundup PowerFlex® (480 g L-1 glyphosate, formulated as 588 g L-1 potassium salt) on the larval development of Common toads (Bufo bufo L.; Amphibia: Anura) under different temperature regimes (15°C vs. 20°C). We established five herbicide concentrations: 0, 1.5, 3, 4 mg acid equivalent L-1 and a 4 mg a.e. L-1 pulse treatment (totally three applications of 1.5, 1.5 and another 1 mg a.e. L-1) at each temperature in a full-factorial design. Each treatment combination was replicated five times, the experiment ran for 24 days. Results showed a highly significant effect of temperature on body length and body width but no effect of herbicide concentration on these growth parameters. Moreover, highly significant interactions between herbicide and temperature on body length and body width were observed suggesting that herbicides had different effects on different temperatures. In conclusion, although Roundup PowerFlex® at the tested concentrations appeared to have no acute toxicity to larvae of Common toads, the observed effects on tadpole morphology will potentially affect competitive interactions in spawning ponds of amphibia. Our findings of herbicide x temperature interactions might become more prevalent when human-induced climate change will lead to more extreme temperatures.

  17. Effects of the herbicide dicamba on nontarget plants and pollinator visitation.

    PubMed

    Bohnenblust, Eric W; Vaudo, Anthony D; Egan, J Franklin; Mortensen, David A; Tooker, John F

    2016-01-01

    Nearly 80% of all pesticides applied to row crops are herbicides, and these applications pose potentially significant ecotoxicological risks to nontarget plants and associated pollinators. In response to the widespread occurrence of weed species resistant to glyphosate, biotechnology companies have developed crops resistant to the synthetic-auxin herbicides dicamba and 2,4-dichlorophenoxyacetic acid (2,4-D); and once commercialized, adoption of these crops is likely to change herbicide-use patterns. Despite current limited use, dicamba and 2,4-D are often responsible for injury to nontarget plants; but effects of these herbicides on insect communities are poorly understood. To understand the influence of dicamba on pollinators, the authors applied several sublethal, drift-level rates of dicamba to alfalfa (Medicago sativa L.) and Eupatorium perfoliatum L. and evaluated plant flowering and floral visitation by pollinators. The authors found that dicamba doses simulating particle drift (≈1% of the field application rate) delayed onset of flowering and reduced the number of flowers of each plant species; however, plants that did flower produced similar-quality pollen in terms of protein concentrations. Further, plants affected by particle drift rates were visited less often by pollinators. Because plants exposed to sublethal levels of dicamba may produce fewer floral resources and be less frequently visited by pollinators, use of dicamba or other synthetic-auxin herbicides with widespread planting of herbicide-resistant crops will need to be carefully stewarded to prevent potential disturbances of plant and beneficial insect communities in agricultural landscapes. PMID:26184786

  18. Unintended effects of the herbicides 2,4-D and dicamba on lady beetles.

    PubMed

    Freydier, Laurène; Lundgren, Jonathan G

    2016-08-01

    Weed resistance to glyphosate and development of new GM crops tolerant to 2,4-dichlorophenoxyacetic acid (2,4-D) and dicamba is expected to lead to increased use of these herbicides in cropland. The lady beetle, Coleomegilla maculata is an important beneficial insect in cropland that is commonly used as an indicator species in safety evaluations of pesticides. Here, we examined the lethal and non-lethal effects of 2,4-D and dicamba active ingredients and commercial formulations to this lady beetle species, and tested for synergistic effects of the herbicides. Second instars of lady beetles were exposed to an experimental treatment, and their mortality, development, weight, sex ratio, fecundity, and mobility was evaluated. Using similar methods, a dose-response study was conducted on 2,4-D with and without dicamba. The commercial formulation of 2,4-D was highly lethal to lady beetle larvae; the LC90 of this herbicide was 13 % of the label rate. In this case, the "inactive" ingredients were a key driver of the toxicity. Dicamba active ingredient significantly increased lady beetle mortality and reduced their body weight. The commercial formulations of both herbicides reduced the proportion of males in the lady beetle population. The herbicides when used together did not act synergistically in their toxicity toward lady beetles versus when the chemistries were used independently. Our work shows that herbicide formulations can cause both lethal and sublethal effects on non-target, beneficial insects, and these effects are sometimes driven by the "inactive" ingredients. The field-level implications of shifts in weed management practices on insect management programs should receive further attention. PMID:27282375

  19. Imprinting of molecular recognition sites combined with π-donor-acceptor interactions using bis-aniline-crosslinked Au-CdSe/ZnS nanoparticles array on electrodes: Development of electrochemiluminescence sensor for the ultrasensitive and selective detection of 2-methyl-4-chlorophenoxyacetic acid.

    PubMed

    Yang, Yukun; Fang, Guozhen; Wang, Xiaomin; Liu, Guiyang; Wang, Shuo

    2016-03-15

    A novel strategy is reported for the fabrication of bis-aniline-crosslinked Au nanoparticles (NPs)-CdSe/ZnS quantum dots (QDs) array composite by facil one-step co-electropolymerization of thioaniline-functionalized AuNPs and thioaniline-functionalized CdSe/ZnS QDs onto thioaniline-functionalized Au elctrodes (AuE). Stable and enhanced cathodic electrochemiluminescence (ECL) of CdSe/ZnS QDs is observed on the modified electrode in neutral solution, suggesting promising applications in ECL sensing. An advanced ECL sensor is explored for detection of 2-methyl-4-chlorophenoxyacetic acid (MCPA) which quenches the ECL signal through electron-transfer pathway. The sensitive determination of MCPA with limit of detection (LOD) of 2.2 nmolL(-1) (S/N=3) is achieved by π-donor-acceptor interactions between MCPA and the bis-aniline bridging units. Impressively, the imprinting of molecular recognition sites into the bis-aniline-crosslinked AuNPs-CdSe/ZnS QDs array yields a functionalized electrode with an extremely sensitive response to MCPA in a linear range of 10 pmolL(-1)-50 μmolL(-1) with a LOD of 4.3 pmolL(-1 ()S/N=3). The proposed ECL sensor with high sensitivity, good selectivity, reproducibility and stability has been successfully applied for the determination of MCPA in real samples with satisfactory recoveries. In this study, ECL sensor combined the merits of QDs-ECL and molecularly imprinting technology is reported for the first time. The developed ECL sensor holds great promise for the fabrication of QDs-based ECL sensors with improved sensitivity and furthermore opens the door to wide applications of QDs-based ECL in food safety and environmental monitoring.

  20. Imprinting of molecular recognition sites combined with π-donor-acceptor interactions using bis-aniline-crosslinked Au-CdSe/ZnS nanoparticles array on electrodes: Development of electrochemiluminescence sensor for the ultrasensitive and selective detection of 2-methyl-4-chlorophenoxyacetic acid.

    PubMed

    Yang, Yukun; Fang, Guozhen; Wang, Xiaomin; Liu, Guiyang; Wang, Shuo

    2016-03-15

    A novel strategy is reported for the fabrication of bis-aniline-crosslinked Au nanoparticles (NPs)-CdSe/ZnS quantum dots (QDs) array composite by facil one-step co-electropolymerization of thioaniline-functionalized AuNPs and thioaniline-functionalized CdSe/ZnS QDs onto thioaniline-functionalized Au elctrodes (AuE). Stable and enhanced cathodic electrochemiluminescence (ECL) of CdSe/ZnS QDs is observed on the modified electrode in neutral solution, suggesting promising applications in ECL sensing. An advanced ECL sensor is explored for detection of 2-methyl-4-chlorophenoxyacetic acid (MCPA) which quenches the ECL signal through electron-transfer pathway. The sensitive determination of MCPA with limit of detection (LOD) of 2.2 nmolL(-1) (S/N=3) is achieved by π-donor-acceptor interactions between MCPA and the bis-aniline bridging units. Impressively, the imprinting of molecular recognition sites into the bis-aniline-crosslinked AuNPs-CdSe/ZnS QDs array yields a functionalized electrode with an extremely sensitive response to MCPA in a linear range of 10 pmolL(-1)-50 μmolL(-1) with a LOD of 4.3 pmolL(-1 ()S/N=3). The proposed ECL sensor with high sensitivity, good selectivity, reproducibility and stability has been successfully applied for the determination of MCPA in real samples with satisfactory recoveries. In this study, ECL sensor combined the merits of QDs-ECL and molecularly imprinting technology is reported for the first time. The developed ECL sensor holds great promise for the fabrication of QDs-based ECL sensors with improved sensitivity and furthermore opens the door to wide applications of QDs-based ECL in food safety and environmental monitoring. PMID:26569444

  1. Forecasting residual herbicide concentrations in soil

    NASA Astrophysics Data System (ADS)

    McGrath, Gavan; Scanlan, Craig; van Zwieten, Lukas; Rose, Mick; Rose, Terry

    2016-04-01

    High concentrations of herbicides remaining in soil at the time of planting can adversely impact agricultural production and lead to off-site impacts in streams and groundwater. Being able to forecast the likelihood of residual concentrations at specific times in the future offers the potential to improve environmental and economic outcomes. Here we develop a solution for the full transient probability density function for herbicide concentrations in soil as a function of rainfall variability. Quasi-analytical solutions that account for rainfall seasonality are also demonstrated. In addition, new rapid and relatively cost-effective bioassays to quantify herbicide concentrations in near real-time, offers opportunities for data assimilation approaches to improve forecast risks.

  2. Metsulfuron-methyl-based herbicidal ionic liquids.

    PubMed

    Pernak, Juliusz; Niemczak, Michał; Shamshina, Julia L; Gurau, Gabriela; Głowacki, Grzegorz; Praczyk, Tadeusz; Marcinkowska, Katarzyna; Rogers, Robin D

    2015-04-01

    Ten sulfonylurea-based herbicidal ionic liquids (HILs) were prepared by combining the metsulfuron-methyl anion with various cation types including quaternary ammonium ([bis(2-hydroxyethyl)methyloleylammonium](+), [2-hydroxyethyltrimethylammonium](+)), pyridinium ([1-dodecylpyridinium](+)), piperidinium ([1-methyl-1-propylpiperidinium](+)), imidazolium ([1-allyl-3-methylimidazolium](+), [1-butyl-3-methylimidazolium](+)), pyrrolidinium ([1-butyl-1-methylpyrrolidinium](+)), morpholinium ([4-decyl-4-methylmorpholinium](+)), and phosphonium ([trihexyltetradecylphosphonium](+) and [tetrabutylphosphonium](+)). Their herbicidal efficacy was studied in both greenhouse tests and field trials. Preliminary results for the greenhouse tests showed at least twice the activity for all HILs when compared to the activity of commercial Galmet 20 SG, with HILs with phosphonium cations being the most effective. The results of two-year field studies showed significantly less enhancement of activity than observed in the greenhouse; nonetheless, it was found that the herbicidal efficacy was higher than that of the commercial analog, and efficacy varied depending on the plant species. PMID:25734891

  3. Exogenous lipoid pneumonia caused by herbicide inhalation.

    PubMed

    Hotta, Takamasa; Tsubata, Yukari; Okimoto, Tamio; Hoshino, Teppei; Hamaguchi, Shun-Ichi; Isobe, Takeshi

    2016-09-01

    Exogenous lipoid pneumonia is caused by aspiration or inhalation of oily substances. Generally, lipoid pneumonia has non-specific clinical and radiological presentations and may be misdiagnosed as bacterial pneumonia. Our patient, a 68-year-old man who had been diagnosed with pneumonia on three previous occasions, was admitted to our hospital with a fourth similar episode. Computed tomography of the chest revealed extensive consolidations with air bronchograms in lung fields on the right side. The bronchoalveolar lavage fluid (BALF) increased ghost-like macrophages that stained positive for lipid. Our patient reported that he had sprayed herbicide in large quantities without wearing a mask. We analysed the BALF and herbicide by gas chromatography and diagnosed exogenous lipoid pneumonia caused by inhalation of herbicide. Clinicians should be aware of lipoid pneumonia, which may present as infectious pneumonia. PMID:27516888

  4. The aquatic ecotoxicology of triazine herbicides

    SciTech Connect

    Giddings, J.M.

    1996-10-01

    Triazine herbicides control plant growth by inhibiting photophosphorylation, but typically do not cause permanent cell damage or death. Effects on aquatic plants are reversible; photosynthesis resumes when the herbicide disappears from the water, and sometimes even while it is still present. Effects on aquatic plant communities are further ameliorated by species replacements, so the communities as a whole are less sensitive than their most sensitive species. Atrazine, a representative triazine herbicide, is toxic to aquatic plants (algae and macrophytes) at concentrations in the range of 20 to 200 {mu}g/L or less. Aquatic invertebrates and fish are much less sensitive than plants, with acute toxicity occurring at 1000 {mu}g/L or higher. Ecologically significant effects in aquatic ecosystems are likely only if plant communities are severely damaged by prolonged exposure to high atrazine concentrations.

  5. Discovery of new herbicide modes of action with natural phytotoxins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    About 20 modes of action (MOAs) are utilized by commercial herbicides, and almost 30 years have passed since the last new MOA was introduced. Rapidly increasing evolution of resistance to herbicides with these MOAs has greatly increased the need for herbicides with new MOAs. Combinatorial chemistry ...

  6. Tolerance evaluation of vegetatively established Miscanthus x giganteus to herbicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In spite of the recent focus on herbicide resistant weeds, herbicide resistant weeds are not new to agriculture; the first herbicide resistant weed was documented in 1957, with the first widespread resistance occurring in common groundsel with atrazine in the early 1970’s. Glyphosate resistant weed...

  7. Mode of Action Studies on Nitrodiphenyl Ether Herbicides 1

    PubMed Central

    Bowyer, John R.; Hallahan, Beverly J.; Camilleri, Patrick; Howard, Joy

    1989-01-01

    The nitrodiphenyl ether herbicide 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitroacetophenone oxime-o-(acetic acid, methyl ester) (DPEI) induces light- and O2-dependent lipid peroxidation and chlorophyll (Chl) bleaching in the green alga Scenedesmus obliquus. Under conditions of O2-limitation, these effects are diminished by prometyne and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), both inhibitors of photosynthetic electron transport. Mutants in which photosynthetic electron transport is blocked are also resistant to DPEI under conditions of O2-limitation. Light- and O2-dependent lipid peroxidation and Chl bleaching are also induced by 5-[2-chloro-4-(trifluoromethyl)phenoxy]-3-methoxyphthalide (DPEII), a diphenyl ether whose redox properties preclude reduction by photosystem I. However, these effects of DPEII are also inhibited by DCMU. Under conditions of high aeration, DCMU does not protect Scenedesmus cells from Chl bleaching induced by DPEI, but does protect against paraquat. DPEI, but not paraquat, induces tetrapyrrole formation in treated cells in the dark. This is also observed in a mutant lacking photosystem I but is suppressed under conditions likely to lead to O2 limitation. Our results indicate that, in contrast to paraquat, the role of photosynthetic electron transport in diphenyl ether toxicity in Scenedesmus is not to reduce the herbicide to a radical species which initiates lipid peroxidation. Its role is probably to maintain a sufficiently high O2 concentration, through water-splitting, in the algal suspension. PMID:16666600

  8. Quantifying vapor drift of dicamba herbicides applied to soybean.

    PubMed

    Egan, J Franklin; Mortensen, David A

    2012-05-01

    Recent advances in biotechnology have produced cultivars of corn, soybean, and cotton resistant to the synthetic-auxin herbicide dicamba. This technology will allow dicamba herbicides to be applied in new crops, at new periods in the growing season, and over greatly expanded areas, including postemergence applications in soybean. From past and current use in corn and small grains, dicamba vapor drift and subsequent crop injury to sensitive broadleaf crops has been a frequent problem. In the present study, the authors measured dicamba vapor drift in the field from postemergence applications to soybean using greenhouse-grown soybean as a bioassay system. They found that when the volatile dimethylamine formulation is applied, vapor drift could be detected at mean concentrations of 0.56 g acid equivalent dicamba/ha (0.1% of the applied rate) at 21 m away from a treated 18.3 × 18.3 m plot. Applying the diglycolamine formulation of dicamba reduced vapor drift by 94.0%. With the dimethylamine formulation, the extent and severity of vapor drift was significantly correlated with air temperature, indicating elevated risks if dimethylamine dicamba is applied early to midsummer in many growing regions. Additional research is needed to more fully understand the effects of vapor drift exposures to nontarget crops and wild plants. PMID:22362509

  9. A biosensor for organoarsenical herbicides and growth promoters

    PubMed Central

    Chen, Jian; Sun, Samio; Li, Chen-Zhong; Zhu, Yong-Guan; Rosen, Barry P.

    2014-01-01

    The toxic metalloid arsenic is widely distributed in food, water, and soil. While inorganic arsenic enters the environment primarily from geochemical sources, methylarsenicals either result from microbial biotransformation of inorganic arsenic or are introduced anthropogenically. Methylarsenicals such as monosodium methylarsonic acid (MSMA) have been extensively utilized as herbicides, and aromatic arsenicals such as roxarsone (Rox) are used as growth promoters for poultry and swine. Organoarsenicals are degraded to inorganic arsenic. The toxicological effects of arsenicals depend on their oxidation state, chemical composition, and bioavailability. Here we report that the active forms are the trivalent arsenic-containing species. We constructed a whole-cell biosensor utilizing a modified ArsR repressor that is highly selective toward trivalent methyl and aromatic arsenicals, with essentially no response to inorganic arsenic. The biosensor was adapted for in vitro detection of organoarsenicals using fluorescence anisotropy of ArsR-DNA interactions. It detects bacterial biomethylation of inorganic arsenite both in vivo and in vitro with detection limits of 10−7 M and linearity to 10−6 M for phenylarsenite and 5×10−6 M for methylarsenite. The biosensor detects reduced forms of MSMA and roxarsone and offers a practical, low cost method for detecting activate forms and breakdown products of organoarsenical herbicides and growth promoters. PMID:24359149

  10. Soil-dissipation kinetics of twelve herbicides used on a rain-fed barley crop in Spain.

    PubMed

    Díez, Cristina; Barrado, Enrique

    2010-06-01

    This study evaluated the dissipation kinetics under actual field conditions of twelve herbicides in a typical xerofluvent soil in Castilla y León (north central Spain) sustaining barley. The type of soil selected was that typically used in the Castilla y León region to cultivate barley under a rain-fed alternating crop-fallow rotation regimen. Treatments were conducted in spring as two replicates and the soil was sampled every day during the first week, once a week for the following few weeks and thereafter once every month. Soil samples were extracted with a suitable mixture of acetone, water and acetic acid (30:7.5:0.3) before their analysis by GC-MS (gas chromatography-mass spectrometry). Dissipation of the herbicides was well described by a biphasic kinetics pattern. The dissipation times DT50 and DT90 were in general lower than those reported in the literature, owing to a high initial dissipation rate because of volatilization and photolysis processes caused by high environmental temperatures. Herbicide degradation was also enhanced by their lack of sorption by this low colloid-content soil. However, the most persistent herbicides, triallate, flamprop, pendimethalin, terbutryn, and isoproturon, remained for 286 to 372 days in the soil, because low water and organic carbon content impaired microbial growth. In contrast, the phenoxy acid herbicides dissipated rapidly, with no detectable residues detected on harvesting the crop.

  11. Herbicides as stimulators regulators and ripeners

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of low doses of herbicide as plant growth regulators to increase sugar concentrations (ripen) in sugarcane prior to harvest plays an important role in the profitable and sustainable production of sugarcane in the U.S. as well as in other sugarcane industries around the world. Several studies...

  12. Enantioselectivity in the phytotoxicity of herbicide imazethapyr.

    PubMed

    Zhou, Qingyan; Xu, Chao; Zhang, Yongsong; Liu, Weiping

    2009-02-25

    Chiral compounds usually behave enantioselectively in phyto-biochemical processes. With the increasing application of chiral herbicides, their enantioselective phytotoxicity to plants merits further study, and little information is available in this area. The purpose of this study was to examine the enantioselective phytotoxicity of the herbicide imazethapyr (IM) on the roots of maize (Zea mays L.) seedlings. Enantiomers of IM were separated by HPLC, and their absolute configurations were confirmed as S-(+)-IM and R-(-)-IM by the octant rule. Plant growth measurements and morphological, microscopic, and ultrastructural observations were conducted after treatment with individual IM enantiomers and the racemate. Observations of root morphology showed that the root diameter significantly increased, whereas the root volume, surface area, and number of root tips decreased significantly. IM enantiomers selectively damaged root hair growth and significantly reduced the sloughing of border cells from the tips. IM also had adverse effects on cell organelles, such as statocytes, mitochondria, dictyosomes, and endoplasmic reticulum in maize roots. Moreover, cell membranes and cell walls were thicker than usual after IM treatment. All of the results showed the same trend that the R-(-)-IM affected the root growth of maize seedlings more severely than the S-(+)-IM. The inhibition abilities of (+/-)-IM was between S-(+)- and R-(-)-IM. The behavior of the active enantiomer, instead of just the racemate, may have more relevance to the herbicidal effects and ecological safety of IM. Therefore, enantiomeric differences should be considered when evaluating the bioavailability of the herbicide IM.

  13. SOIL ORGANIC AMENDMENT AS AFFECTING HERBICIDE FATE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The addition of organic amendments or organic wastes to soils have been shown to affect the fate of soil applied herbicides, although it is an issue very seldom considered when making the decision of fertilizing soil or disposing organic wastes. The addition of organic wastes to soils is viewed as v...

  14. The 1975 Insecticide, Herbicide, Fungicide Quick Guide.

    ERIC Educational Resources Information Center

    Page, Bill G.; Thomson, W. T.

    This is a quick guide for choosing a chemical to use to control a certain pest on a specific crop. Information in the book was obtained from manufacturers' labels and from the USDA and FDA pesticide summary. The book is divided into four parts: (1) insecticides, (2) herbicides, (3) fungicides, and (4) conversion tables. Each of the first three…

  15. Herbicide Resistance in Datura innoxia1

    PubMed Central

    Saxena, Praveen K.; King, John

    1988-01-01

    Cells resistant to the sulfonylurea herbicides chlorsulfuron and sulfometuron methyl were isolated from a predominantly haploid cell suspension culture of Datura innoxia P. Mill. Exponentially growing cell colonies (aggregates of about 40 cells) were mutagenized with ethyl methane sulfonate, subcultured for 10 days to allow growth recovery and plated on a medium containing either chlorsulfuron or sulfometuron methyl at a concentration (10−8 molar) which killed wild type cells. Surviving clones were picked up after 3 to 4 weeks, further proliferated as callus or cell suspension cultures, and tested for their resistance to both the sulfonylureas and imidazolinones, a chemically different class of herbicides. The variants were stable and showed high (100- to 1000-fold) resistance to the sulfonylureas. While some also exhibited cross resistance to imidazolinones, others showed no cross-resistance at all or, as in one case, greater sensitivity than wild type cells to the imidazolinones. Both classes of herbicides tested inhibited acetolactate synthase activity isolated from wild type cells. The acetolactate synthase of the resistant variants, however, was found to be resistant to the sulfonylureas and also to the imidazolinone(s) in those cells showing cross-resistance to the latter. The lack of cross-resistance observed in some cases provides evidence that the two groups of herbicides have slightly different sites on the acetolactate synthase molecule. Images Fig. 2 PMID:16666001

  16. Kudzu response to foliar applied herbicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical control is presently the most cost-effective means to control kudzu, however, many of the herbicides labeled for kudzu control have substantial non-target toxicity, poor selectivity, high cost, long soil persistence, high soil mobility and / or high use rates. The present study evaluated ot...

  17. ENVIRONMENTAL AND TOXICOLOGICAL PROPERTIES OF HERBICIDES

    EPA Science Inventory

    Herbicides comprise over 75% of all the agricultural pesticide use in the United States. This amounts to over 500 million pounds of active ingredients applied each year. The US EPA has the responsibility to register these products and label them for use such that unintended effec...

  18. Enantioselective stable isotope analysis (ESIA) of polar Herbicides

    NASA Astrophysics Data System (ADS)

    Maier, Michael; Qiu, Shiran; Elsner, Martin

    2013-04-01

    The complexity of aquatic systems makes it challenging to assess the environmental fate of chiral micropolutants. As an example, chiral herbicides are frequently detected in the environment (Buser and Muller, 1998); however, hydrological data is needed to determine their degradability from concentration measurements. Otherwise declining concentrations cannot unequivocally be attributed to degradation, but could also be caused by dilution effects. In contrast, isotope ratios or enantiomeric ratios are elegant alternatives that are independent of dilution and can even deliver insights into reaction mechanisms. To combine the advantages of both approaches we developed an enatioselective stable isotope analysis (ESIA) method to investigate the fate of the chiral herbicides 4-CPP ((RS)-2-(4-chlorophenoxy)-propionic acid), mecoprop (2-(4-Chloro-2-methylphenoxy)-propionic acid) and dichlorprop (2-(2,4-Dichlorophenoxy)-propionic acid). After testing the applicable concentration range of the method, enantioselective isotope fractionation was investigated by microbial degradation using dichlorprop as a model compound. The method uses enantioselective gas-chromatography (GC) to separate enantiomers. Subsequently samples are combusted online to CO2 and carbon isotope ratios are determined for each enantiomer by isotope-ratio-mass-spectrometry (IRMS). Because the analytes contain a polar carboxyl-group, samples were derivatised prior to GC-IRMS analysis with methanolic BF3 solution. Precise carbon isotope analysis (2σ ≤0.5‰) was achieved with a high sensitivity of ≥ 7 ng C that is needed on column for one analysis. Microbial degradation of the model compound dichlorprop was conducted with Delftia acidovorans MC1 and pronounced enantiomer fractionation, but no isotope fractionation was detected. The absence of isotope fractionation can be explained by two scenarios: either the degrading enzyme has no isotopic preference, or another step in the reaction without an isotopic

  19. Cellular membranes, the sites for the antifungal activity of the herbicide sethoxydim.

    PubMed

    Pakdaman, B S; Goltapeh, E Mohammadi; Sepehrifar, R; Pouriesa, M; Fard, M Rahimi; Moradi, F; Modarres, S A M

    2007-08-01

    The fungicidal effect of sethoxydim on the canola (Brassica napus var. Olifera) white stem rot pathogen (Sclerotinia sclerotiorum) encouraged us to conduct a series of studies on the mechanism of the antifungal activity of this herbicide commonly applied in Iranian fields under canola cultivation. Present preliminary studies on the changes in the level of Malondialdehyde (MDA) as the main product generated through peroxidation of polyunsaturated fatty acids indicated the disintegration of the fungal bilayer of plasma membrane as the result of the herbicidal treatment. Also, it was demonstrated that the amount of hydrogen peroxide in the treated samples was higher than the control samples with no herbicidal treatment. Therefore, our present results confirm the disintegration of the plasma membrane as one of the mechanism for the antifungal impact of sethoxydim. As with weed plants, the phytotoxic impact of this herbicide has been attributed to the inhibition of the first enzyme in the lipid biosynthesis pathway, acetyl-CoA carboxylase, therefore, it would be very interesting to study on this subject and the relations between the sensitivity of different fungi and their DNA and protein sequences of acetyl-CoA carboxylase. PMID:19070118

  20. Analysis of acetohydroxyacid synthase1 gene in chickpea conferring resistance to imazamox herbicide.

    PubMed

    Jain, Parul; Tar'an, Bunyamin

    2014-11-01

    Chickpea (Cicer arietinum L.) production in the Canadian prairies is challenging due to a lack of effective weed management mainly because of poor competition ability of the crop and limited registered herbicide options. Chickpea genotype with resistance to imidazolinone (IMI) herbicides has been identified. A point mutation in the acetohydroxyacid synthase1 (AHAS1) gene at C581 to T581, resulting in an amino acid substitution from Ala194 to Val194 (position 205, standardized to arabidopsis), confers the resistance to imazamox in chickpea. However, the molecular mechanism leading to the resistance is not fully understood. In many plant species, contrasting transcription levels of AHAS gene has been implicated in the resistant and susceptible genotypes in response to IMI. The objectives of this research were to compare the AHAS gene expression and AHAS enzyme activity in resistant and susceptible chickpea cultivars in response to imazamox herbicide treatment. Results from RT-qPCR indicated that there is no significant change in the transcript levels of AHAS1 between the susceptible and the resistant genotypes in response to imazamox treatment. Protein hydrophobic cluster analysis, protein-ligand docking analysis, and AHAS enzyme activity assay all indicated that the resistance to imazamox in chickpea is due to the alteration of interaction of the AHAS1 enzyme with the imazamox herbicide.

  1. Controlled release of water-soluble herbicides

    SciTech Connect

    Riggle, B.D.

    1985-01-01

    Pine kraft lignin was used to control the release of metribuzin (4-amino-6-tert-butyl-3-(methylthio)-as-triazin-5(4H)-one) and alachlor (2-chloro-2',6'-diethyl-N-methoxy-methyl acetanalide). Soil thin layer chromatography (TLC) analysis using /sup 14/C-metribuzin and /sup 14/C-alachlor demonstrated that NB-5203-58 series and PC940 series kraft lignins could retard the mobility of both herbicides after multiple soil TLC plate developments with water. Soil column chromatography analysis demonstrated that PC940C could retard the mobility of both herbicides after soil column water leaching by positioning the herbicides in the top portion of the soil column where the PC940C-herbicide mixture had been applied. There was a concentration effect where, as more PC940C was used, more /sup 14/C-labelled herbicide was retained in the top portion of the soil columns. Soil column chromatography and soil TLC plate analysis demonstrated that /sup 3/H-PC940C was immobile. Finally, PC940C significantly reduced metribuzin related phytotoxicity to field and greenhouse grown soybeans (Glycine max (L.) Merr.) which had been treated with PC940C rates of 0.77 and 1.15 L/ha and metribuzin rates of 0.42 and 0.84 kg/ha. The results for /sup 14/C-metribuzin and /sup 14/C-alachlor as well as the reduction in metribuzin related phytotoxicity to soybeans suggests that PC940C can effectively control the release of metribuzin and alachlor.

  2. Aryl chain analogues of the biotin vitamers as potential herbicides. Part 3.

    PubMed

    Ashkenazi, Tali; Pinkert, Dalia; Nudelman, Ayelet; Widberg, Ayala; Wexler, Barry; Wittenbach, Vernon; Flint, Dennis; Nudelman, Abraham

    2007-10-01

    Novel aryl chain isosters and analogues of 7-keto-8-aminopelargonic acid (KAPA) and 7,8-diaminopelargonic acid (DAPA), the vitamer intermediates involved in the biosynthetic pathway of biotin, possessing chain lengths of eight carbon atoms, were prepared and evaluated as potential herbicides. In the greenhouse test the most active compounds were the fluorinated derivative 9d and the selenophenyl/furan mixture 17m/17p, which were most active against Foxtail millet. In the more sensitive Arabidopsis test the most active substances were 9a and 17m, which displayed GR(50) (concentration of active compound causing 50% growth inhibition) values of 0.2 and 0.5 mg kg(-1) respectively (values of < 50 mg kg(-1) are considered herbicidal).

  3. Acute toxicity of Roundup® herbicide to three life stages of the freshwater shrimp Caridina nilotica (Decapoda: Atyidae)

    NASA Astrophysics Data System (ADS)

    Mensah, P. K.; Muller, W. J.; Palmer, C. G.

    Glyphosate based herbicides, including Roundup®, are frequently used in the chemical control of weeds and invading alien plant species in South Africa. These herbicides ultimately get into water courses directly or indirectly through processes such as drifting, leaching, surface runoff and foliar spray of aquatic nuisance plants. Despite their widespread use, no water quality guideline exists to protect indigenous South African freshwater organisms from the toxic effects of these herbicides. The toxicity of the herbicide Roundup® was assessed using three different life stages of the freshwater shrimp Caridina nilotica, a prevalent species in South African freshwater ecosystems. Neonate (<7 days post hatching (dph)), juvenile (>7 dph and <20 dph) and adult (>40 dph) shrimps were exposed to varying concentrations (1.5-50 mg/L acid equivalence (a.e.)) of the herbicide in 48 and 96 h acute toxicity tests in order to determine the most sensitive life-stage. The results showed neonates to be more sensitive to Roundup® than both juveniles and adults with mean 96 h LC 50 values of 2.5, 7.0 and 25.3 mg/L a.e. respectively. The estimated 96 h LC 50 of neonates is much lower than the application rate (20-30 mg/L a.e.), although the application’s impact will depend on the dilution rate of the applied concentration in the environment. All three life-stages of unexposed animals exhibited active and coordinated movement but exposed shrimps were erratic and slow in their movements, with neonates showing most of these behavioral irregularities. This study shows that low levels of the herbicide Roundup® may adversely affect C. nilotica health and survival. Thus, the herbicide should be carefully managed to minimize any negative impact on non-target freshwater organisms.

  4. Multiple Herbicide Resistance in Lolium multiflorum and Identification of Conserved Regulatory Elements of Herbicide Resistance Genes.

    PubMed

    Mahmood, Khalid; Mathiassen, Solvejg K; Kristensen, Michael; Kudsk, Per

    2016-01-01

    Herbicide resistance is a ubiquitous challenge to herbicide sustainability and a looming threat to control weeds in crops. Recently four genes were found constituently over-expressed in herbicide resistant individuals of Lolium rigidum, a close relative of Lolium multiflorum. These include two cytochrome P450s, one nitronate monooxygenase and one glycosyl-transferase. Higher expressions of these four herbicide metabolism related (HMR) genes were also observed after herbicides exposure in the gene expression databases, indicating them as reliable markers. In order to get an overview of herbicidal resistance status of L. multiflorum L, 19 field populations were collected. Among these populations, four populations were found to be resistant to acetolactate synthase (ALS) inhibitors while three exhibited resistance to acetyl-CoA carboxylase (ACCase) inhibitors in our initial screening and dose response study. The genotyping showed the presence of mutations Trp-574-Leu and Ile-2041-Asn in ALS and ACCase, respectively, and qPCR experiments revealed the enhanced expression of HMR genes in individuals of certain resistant populations. Moreover, co-expression networks and promoter analyses of HMR genes in O. sativa and A. thaliana resulted in the identification of a cis-regulatory motif and zinc finger transcription factors. The identified transcription factors were highly expressed similar to HMR genes in response to xenobiotics whereas the identified motif is known to play a vital role in coping with environmental stresses and maintaining genome stability. Overall, our findings provide an important step forward toward a better understanding of metabolism-based herbicide resistance that can be utilized to devise novel strategies of weed management. PMID:27547209

  5. Multiple Herbicide Resistance in Lolium multiflorum and Identification of Conserved Regulatory Elements of Herbicide Resistance Genes

    PubMed Central

    Mahmood, Khalid; Mathiassen, Solvejg K.; Kristensen, Michael; Kudsk, Per

    2016-01-01

    Herbicide resistance is a ubiquitous challenge to herbicide sustainability and a looming threat to control weeds in crops. Recently four genes were found constituently over-expressed in herbicide resistant individuals of Lolium rigidum, a close relative of Lolium multiflorum. These include two cytochrome P450s, one nitronate monooxygenase and one glycosyl-transferase. Higher expressions of these four herbicide metabolism related (HMR) genes were also observed after herbicides exposure in the gene expression databases, indicating them as reliable markers. In order to get an overview of herbicidal resistance status of L. multiflorum L, 19 field populations were collected. Among these populations, four populations were found to be resistant to acetolactate synthase (ALS) inhibitors while three exhibited resistance to acetyl-CoA carboxylase (ACCase) inhibitors in our initial screening and dose response study. The genotyping showed the presence of mutations Trp-574-Leu and Ile-2041-Asn in ALS and ACCase, respectively, and qPCR experiments revealed the enhanced expression of HMR genes in individuals of certain resistant populations. Moreover, co-expression networks and promoter analyses of HMR genes in O. sativa and A. thaliana resulted in the identification of a cis-regulatory motif and zinc finger transcription factors. The identified transcription factors were highly expressed similar to HMR genes in response to xenobiotics whereas the identified motif is known to play a vital role in coping with environmental stresses and maintaining genome stability. Overall, our findings provide an important step forward toward a better understanding of metabolism-based herbicide resistance that can be utilized to devise novel strategies of weed management. PMID:27547209

  6. Stress reactions in Vitis vinifera L. following soil application of the herbicide flumioxazin.

    PubMed

    Saladin, Gaëlle; Magné, Christian; Clément, Christophe

    2003-10-01

    In order to evaluate the stress effects of flumioxazin (fmx) on grapevine, a non-target plant (Vitis vinifera L.), physiological parameters such as carbohydrate content, water status or nitrogenous metabolites were investigated on fruiting cuttings and plants grown in vineyard. In the leaves of cuttings, the soil-applied herbicide induced stress manifestations including a decrease of the dry weight percentage and the soluble carbohydrate content during the first week after treatment. Thereafter, a decrease of the osmotic potential was observed, as well as a decrease of total protein content and a parallel accumulation of free amino acids, including proline. Altogether, these results suggest that soil-applied fmx induced a stress in grapevines, leading to leaf proteolysis. However, this stress was partially recovered 3 weeks after herbicide application, suggesting that the cuttings were capable to adapt to the fmx exposure. In the vineyard, the flumioxazin effects were still significant 5 months after the treatment, particularly in the CH cv. They included a decrease of the leaf dry weight percentage and soluble carbohydrate content, as well as an increase of the osmotic potential. The decrease of leaf soluble carbohydrates may have dramatic consequences for the berry growth and the reserve constitution. Moreover, treated plants were characterized by a decrease of the free amino acid content and an accumulation of ammonium, while the protein level did not significantly increase, suggesting a degradation of amino acids. The alteration of carbon and nitrogen status after herbicide treatment may affect the grapevine vigour in a long term.

  7. Hydrolysis of benzonitrile herbicides by soil actinobacteria and metabolite toxicity.

    PubMed

    Veselá, A B; Franc, M; Pelantová, H; Kubác, D; Vejvoda, V; Sulc, M; Bhalla, T C; Macková, M; Lovecká, P; Janů, P; Demnerová, K; Martínková, L

    2010-09-01

    The soil actinobacteria Rhodococcus rhodochrous PA-34, Rhodococcus sp. NDB 1165 and Nocardia globerula NHB-2 grown in the presence of isobutyronitrile exhibited nitrilase activities towards benzonitrile (approx. 1.1-1.9 U mg(-1) dry cell weight). The resting cell suspensions eliminated benzonitrile and the benzonitrile analogues chloroxynil (3,5-dichloro-4-hydroxybenzonitrile), bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) and ioxynil (3,5-diiodo-4-hydroxybenzonitrile) (0.5 mM each) from reaction mixtures at 30 degrees C and pH 8.0. The products were isolated and identified as the corresponding substituted benzoic acids. The reaction rates decreased in the order benzonitrile > chloroxynil > bromoxynil > ioxynil in all strains. Depending on the strain, 92-100, 70-90 and 30-51% of chloroxynil, bromoxynil and ioxynil, respectively, was hydrolyzed after 5 h. After a 20-h incubation, almost full conversion of chloroxynil and bromoxynil was observed in all strains, while only about 60% of the added ioxynil was converted into carboxylic acid. The product of ioxynil was not metabolized any further, and those of the other two herbicides very slowly. None of the nitrilase-producing strains hydrolyzed dichlobenil (2,6-dichlorobenzonitrile). 3,5-Dibromo-4-hydroxybenzoic acid exhibited less inhibitory effect than bromoxynil both on luminescent bacteria and germinating seeds of Lactuca sativa. 3,5-Diiodo-4-hydroxybenzoic acid only exhibited lower toxicity than ioxynil in the latter test. PMID:20204468

  8. Aryl Hydroxylation of the Herbicide Diclofop by a Wheat Cytochrome P-450 Monooxygenase 1

    PubMed Central

    Zimmerlin, Alfred; Durst, Francis

    1992-01-01

    Wheat (Triticum aestivum L. cv Etoile de Choisy) microsomes catalyzed the cytochrome P-450-dependent oxidation of the herbicide diclofop to three hydroxy-diclofop isomers. Hydroxylation was predominant at carbon 4, with migration of chlorine to carbon 5 (67%) and carbon 3 (25%). The 2,4-dichloro-5-hydroxy isomer was identified as a minor reaction product (8%). Substrate-specificity studies showed that the activity was not inhibited or was weakly inhibited by a range of xenobiotic or physiological cytochrome P-450 substrates, with the exception of lauric acid. Wheat microsomes also catalyze the metabolism of the herbicides chlorsulfuron, chlortoluron, and 2,4-dichlorophenoxyacetic acid and of the model substrate ethoxycoumarin, as well as the hydroxylation of the endogenous substrates cinnamic and lauric acids. Treatments of wheat seedlings with phenobarbital or the safener naphthalic acid anhydride enhanced the cytochrome P-450 content of the microsomes and all related activities except that of cinnamic acid 4-hydroxylase, which was reduced. The stimulation patterns of diclofop aryl hydroxylase and lauric acid hydroxylase were similar, in contrast with the other activities tested. Lauric acid inhibited competitively (Ki = 9 μm) the oxidation of diclofop and reciprocally. The similarity of diclofop aryl hydroxylase and lauric acid hydroxylase was further investigated by alternative substrate kinetics, autocatalytic inactivation, and computer-aided molecular modelisation studies, and the results suggest that both reactions are catalyzed by the same cytochrome P-450 isozyme. PMID:16653070

  9. Herbicide and pesticide occurrence in the soils of children's playgrounds in Sarajevo, Bosnia and Herzegovina.

    PubMed

    Sapcanin, Aida; Cakal, Mirsada; Imamovic, Belma; Salihovic, Mirsada; Pehlic, Ekrem; Jacimovic, Zeljko; Jancan, Gordan

    2016-08-01

    Pesticide pollution in Sarajevo public playgrounds is an important health and environmental issue, and the lack of information about it is causing concerns amongst the general population as well as researchers. Since children are in direct contact with surface soils on children's playgrounds, such soils should be much more carefully examined. Furthermore, herbicides and pesticides get transmitted from soil surfaces brought from outside the urban areas, or they get dispersed following their direct applications in urban areas. Infants' and children's health can be directly affected by polluted soils because of the inherent toxicity and widespread use of the different pesticides in urban environments such as playgrounds. In addition to that, the presence of chromated copper arsenate (CCA) wood preservative pesticide found as soil pollutant in playing equipment was also documented. Soil samples from playgrounds were collected and analyzed for triazines, carbamates, dithiocarbamates, phenolic herbicides and organochlorine pesticides. Samples for the determination of heavy metals Cu, Cr and As were prepared by microwave-assisted acid digestion, and the findings were determined by using an inductively coupled plasma optical emission spectrometer. Triazines, carbamates, dithiocarbamates, chlorphenoxy compounds, phenolic herbicides, organochlorine pesticides and organotin compounds were detected in playground soils and their determined concentrations (mg/kg) were respectively found as follows: <0.005, <0.05, <0.5, < 0.4, <0.1, <0.001 and <0.004. The determined contents (mg/kg) of Cu, Cr and As were in the ranges from 16.77 to 80.21, from 7.14 to 15.45 and from 3.31 to 4.43, respectively. Our preliminary results raise concerns about potential adverse effects of herbicides and pesticides on human health, which strengthens the case for a more preventative and protective approach to the uncontrolled presence of herbicides and pesticides in Sarajevo's playground soils. PMID

  10. Herbicide and pesticide occurrence in the soils of children's playgrounds in Sarajevo, Bosnia and Herzegovina.

    PubMed

    Sapcanin, Aida; Cakal, Mirsada; Imamovic, Belma; Salihovic, Mirsada; Pehlic, Ekrem; Jacimovic, Zeljko; Jancan, Gordan

    2016-08-01

    Pesticide pollution in Sarajevo public playgrounds is an important health and environmental issue, and the lack of information about it is causing concerns amongst the general population as well as researchers. Since children are in direct contact with surface soils on children's playgrounds, such soils should be much more carefully examined. Furthermore, herbicides and pesticides get transmitted from soil surfaces brought from outside the urban areas, or they get dispersed following their direct applications in urban areas. Infants' and children's health can be directly affected by polluted soils because of the inherent toxicity and widespread use of the different pesticides in urban environments such as playgrounds. In addition to that, the presence of chromated copper arsenate (CCA) wood preservative pesticide found as soil pollutant in playing equipment was also documented. Soil samples from playgrounds were collected and analyzed for triazines, carbamates, dithiocarbamates, phenolic herbicides and organochlorine pesticides. Samples for the determination of heavy metals Cu, Cr and As were prepared by microwave-assisted acid digestion, and the findings were determined by using an inductively coupled plasma optical emission spectrometer. Triazines, carbamates, dithiocarbamates, chlorphenoxy compounds, phenolic herbicides, organochlorine pesticides and organotin compounds were detected in playground soils and their determined concentrations (mg/kg) were respectively found as follows: <0.005, <0.05, <0.5, < 0.4, <0.1, <0.001 and <0.004. The determined contents (mg/kg) of Cu, Cr and As were in the ranges from 16.77 to 80.21, from 7.14 to 15.45 and from 3.31 to 4.43, respectively. Our preliminary results raise concerns about potential adverse effects of herbicides and pesticides on human health, which strengthens the case for a more preventative and protective approach to the uncontrolled presence of herbicides and pesticides in Sarajevo's playground soils.

  11. Synthesis and herbicidal activity evaluation of novel α-amino phosphonate derivatives containing a uracil moiety.

    PubMed

    Che, Jian-yi; Xu, Xiao-yun; Tang, Zi-long; Gu, Yu-cheng; Shi, De-qing

    2016-02-15

    A series of novel α-amino phosphonate derivatives containing a uracil moiety 3a-3l were designed and synthesized by a Lewis acid (magnesium perchlorate) catalyzed the Kabachnik-Fields reaction. The bioassays {in vitro, in vivo [Glass House 1 (GH1) and Glass House 2 (GH2)]} showed that most of compounds 3 exhibited excellent and selective herbicidal activities; for example, in GH1 test, compounds 3b, 3d, 3f, 3h and 3j showed excellent and wide spectrum herbicidal activities at the dose of 1000 g/ha, and compounds 3b and 3j exhibited 100% inhibition activities against the four plants in both post- and pre-emergence treatments. Moreover, most of compounds 3 showed higher inhibition against Amaranthus retroflexus and Digitaria sanguinalis than Glyphosate did in pre-emergence treatment. In GH2 test, the four compounds (3b, 3d, 3h and 3j) exhibited 100% inhibition against Solanum nigrum, Amaranthus retroflexus and Ipomoea hederacea in post-emergence treatment and displayed 100% inhibition against Solanum nigrum, Amaranthus retroflexus in pre-emergence treatment at the rate of 250 g/ha, and compound 3b showed the best and broad spectrum herbicidal activities against the six test plants. However, the four compounds displayed weaker herbicidal activities against Lolium perenne and Echinochloa crus-galli than the other four plants at the rate of 250 g/ha in both pre- and post-emergence treatments. So, compounds 3 can be used as a lead compound for further structure optimization for developing potential selective herbicidal agent. Their preliminary structure-activity relationships were also investigated. PMID:26786699

  12. Evolved polygenic herbicide resistance in Lolium rigidum by low-dose herbicide selection within standing genetic variation

    PubMed Central

    Busi, Roberto; Neve, Paul; Powles, Stephen

    2013-01-01

    The interaction between environment and genetic traits under selection is the basis of evolution. In this study, we have investigated the genetic basis of herbicide resistance in a highly characterized initially herbicide-susceptible Lolium rigidum population recurrently selected with low (below recommended label) doses of the herbicide diclofop-methyl. We report the variability in herbicide resistance levels observed in F1 families and the segregation of resistance observed in F2 and back-cross (BC) families. The selected herbicide resistance phenotypic trait(s) appear to be under complex polygenic control. The estimation of the effective minimum number of genes (NE), depending on the herbicide dose used, reveals at least three resistance genes had been enriched. A joint scaling test indicates that an additive-dominance model best explains gene interactions in parental, F1, F2 and BC families. The Mendelian study of six F2 and two BC segregating families confirmed involvement of more than one resistance gene. Cross-pollinated L. rigidum under selection at low herbicide dose can rapidly evolve polygenic broad-spectrum herbicide resistance by quantitative accumulation of additive genes of small effect. This can be minimized by using herbicides at the recommended dose which causes high mortality acting outside the normal range of phenotypic variation for herbicide susceptibility. PMID:23798973

  13. Comparison of extraction solvents and conditions for herbicide residues in milled rice with liquid chromatography-diode array detection analysis (LC-DAD).

    PubMed

    Niell, S; Pareja, L; Geis Asteggiante, L; Cesio, M V; Heinzen, H

    2010-02-01

    Different extraction procedures and clean-up methods were compared in order to develop a sample preparation procedure for the multi-residue analysis of six post-emergence herbicides (metsulfuron methyl, bensulfuron methyl, pyrazosulfuron ethyl, bentazone, bispyribac sodium and cyhalofop butyl) in rice grains followed by liquid chromatography-diode array detection (LC-DAD). Optimum results were obtained dispersing milled rice grain in water, followed by the addition of 1% acetic acid in acetonitrile, MgSO(4) and sodium acetate as a modification of the quick, easy, cheap, effective, rugged and safe (QuEChERS) method but no primary and secondary amine (PSA) sorbent was added due to the acidic nature of the herbicides. The method was further expanded to other post-emergence herbicides (quinclorac, clomazone and propanil). Except for quinclorac, which cannot be analysed with this method, the recoveries of the other eight herbicides were in the range 73-111%, with relative standard deviations lower than 12%. Limits of detection (LODs) ranged from 0.03 to 0.08 mg kg(-1). A single analyst can extract twelve samples in 4 h. The method presented here allows the simultaneous residue determination of the most common post-emergence herbicides employed in cultivating rice. It is simple, rapid, sensitive, and can be applied routinely to polished rice grain herbicide residue analysis.

  14. Synonymous mutation gene design to overexpress ACCase in creeping bentgrass to obtain resistance to ACCase-inhibiting herbicides.

    PubMed

    Heckart, Douglas L; Schwartz, Brian M; Raymer, Paul L; Parrott, Wayne A

    2016-08-01

    Overexpression of a native gene can cause expression of both introduced and native genes to be silenced by posttranscriptional gene silencing (PTGS) mechanisms. PTGS mechanisms rely on sequence identity between the transgene and native genes; therefore, designing genes with mutations that do not cause amino acid changes, known as synonymous mutations, may avoid PTGS. For proof of concept, the sequence of acetyl-coA carboxylase (ACCase) from creeping bentgrass (Agrostis stolonifera L.) was altered with synonymous mutations. A native bentgrass ACCase was cloned and used as a template for the modified gene. Wild-type (WT) and modified genes were further modified with a non-synonymous mutation, coding for an isoleucine to leucine substitution at position 1781, known to confer resistance to ACCase-inhibiting herbicides. Five-hundred calli of creeping bentgrass 'Penn A-4' were inoculated with Agrobacterium containing either the WT or modified genes, with or without the herbicide-resistance mutation. Six herbicide-resistant-transgenic events containing the modified gene with the 1781 mutation were obtained. Transcription of the modified ACCase was confirmed in transgenic plants, showing that gene-silencing mechanisms were avoided. Transgenic plants were confirmed to be resistant to the ACCase-inhibiting herbicide, sethoxydim, providing evidence that the modified gene was functional. The result is a novel herbicide-resistance trait and shows that overexpression of a native enzyme with a gene designed with synonymous mutations is possible. PMID:27116460

  15. Evidence for behavioral preference toward environmental concentrations of urban-use herbicides in a model adult fish.

    PubMed

    Tierney, Keith B; Sekela, Mark A; Cobbler, Christine E; Xhabija, Besa; Gledhill, Melissa; Ananvoranich, Sirinart; Zielinski, Barbara S

    2011-09-01

    Fish live in waters of contaminant flux. In three urban, fish-bearing waterways of British Columbia, Canada, we found the active ingredients of WeedEx, KillEx, and Roundup herbicide formulations (2,4-D, dicamba, glyphosate, and mecoprop) at low to high ng/L concentrations (0.26 to 309 ng/L) in routine conditions, i.e., no rain for at least one week. Following rain, these concentrations increased by an average of eightfold, suggesting runoff as a major route of herbicide introduction in these waterways. To determine whether fish might be able to limit point-source exposures through sensory-driven behaviors, we introduced pulses of representative herbicide mixtures to individual adult zebrafish (a model species) in flow-through tanks. Fish did the opposite of limit exposure; they chose to spend more time in pulses of herbicide mixtures representative of those that may occur with rain events. This attraction response was not altered by a previous 4-d exposure to lower concentrations of the mixtures, suggesting fish will not learn from previous exposures. However, previous exposures did alter an attraction response to an amino acid prevalent in food (L-alanine). The present study demonstrates that fish living within urban waterways may elect to place themselves in herbicide-contaminated environments and that these exposures may alter their behavioral responses to cues necessary for survival.

  16. Non-target-site herbicide resistance: a family business.

    PubMed

    Yuan, Joshua S; Tranel, Patrick J; Stewart, C Neal

    2007-01-01

    We have witnessed a dramatic increase in the frequency and diversity of herbicide-resistant weed biotypes over the past two decades, which poses a threat to the sustainability of agriculture at both local and global levels. In addition, non-target-site mechanisms of herbicide resistance seem to be increasingly implicated. Non-target-site herbicide resistance normally involves the biochemical modification of the herbicide and/or the compartmentation of the herbicide (and its metabolites). In contrast to herbicide target site mutations, fewer non-target mechanisms have been elucidated at the molecular level because of the inherently complicated biochemical processes and the limited genomic information available for weedy species. To further understand the mechanisms of non-target-site resistance, we propose an integrated genomics approach to dissect systematically the functional genomics of four gene families in economically important weed species. PMID:17161644

  17. Hazard and risk of herbicides for marine microalgae.

    PubMed

    Sjollema, Sascha B; Martínezgarcía, Gema; van der Geest, Harm G; Kraak, Michiel H S; Booij, Petra; Vethaak, A Dick; Admiraal, Wim

    2014-04-01

    Due to their specific effect on photosynthesis, herbicides pose a potential threat to coastal and estuarine microalgae. However, comprehensive understanding of the hazard and risk of these contaminants is currently lacking. Therefore the aim of the present study was to investigate the toxic effects of four ubiquitous herbicides (atrazine, diuron, Irgarol(®)1051 and isoproturon) and herbicide mixtures on marine microalgae. Using a Pulse Amplitude Modulation (PAM) fluorometry based bioassay we demonstrated a clear species and herbicide specific toxicity and showed that the current environmental legislation does not protect algae sufficiently against diuron and isoproturon. Although a low actual risk of herbicides in the field was demonstrated, monitoring data revealed that concentrations occasionally reach potential effect levels. Hence it cannot be excluded that herbicides contribute to observed changes in phytoplankton species composition in coastal waters, but this is likely to occur only occasionally. PMID:24463473

  18. An interactive database to explore herbicide physicochemical properties.

    PubMed

    Gandy, Michael N; Corral, Maxime G; Mylne, Joshua S; Stubbs, Keith A

    2015-05-28

    Herbicides are an essential tool not only in weed management, but also in conservation tillage approaches to cropping. The first commercial herbicides were released in the 1940s and hundreds more since then, although genetic resistance to them is an issue. Here, we review the experimental and estimated physicochemical properties of 334 successful herbicidal compounds and make available a dynamic electronic database containing detailed analyses of the main chemical properties for herbicides and which adopts the Simplified Molecular-Input Line-Entry System (SMILES) for describing the structure of chemical molecules. This fully available resource allows for the rapid comparison of potential new herbicidal compounds to the chemical properties of known herbicides. PMID:25895669

  19. Non-target-site herbicide resistance: a family business.

    PubMed

    Yuan, Joshua S; Tranel, Patrick J; Stewart, C Neal

    2007-01-01

    We have witnessed a dramatic increase in the frequency and diversity of herbicide-resistant weed biotypes over the past two decades, which poses a threat to the sustainability of agriculture at both local and global levels. In addition, non-target-site mechanisms of herbicide resistance seem to be increasingly implicated. Non-target-site herbicide resistance normally involves the biochemical modification of the herbicide and/or the compartmentation of the herbicide (and its metabolites). In contrast to herbicide target site mutations, fewer non-target mechanisms have been elucidated at the molecular level because of the inherently complicated biochemical processes and the limited genomic information available for weedy species. To further understand the mechanisms of non-target-site resistance, we propose an integrated genomics approach to dissect systematically the functional genomics of four gene families in economically important weed species.

  20. Hazard and risk of herbicides for marine microalgae.

    PubMed

    Sjollema, Sascha B; Martínezgarcía, Gema; van der Geest, Harm G; Kraak, Michiel H S; Booij, Petra; Vethaak, A Dick; Admiraal, Wim

    2014-04-01

    Due to their specific effect on photosynthesis, herbicides pose a potential threat to coastal and estuarine microalgae. However, comprehensive understanding of the hazard and risk of these contaminants is currently lacking. Therefore the aim of the present study was to investigate the toxic effects of four ubiquitous herbicides (atrazine, diuron, Irgarol(®)1051 and isoproturon) and herbicide mixtures on marine microalgae. Using a Pulse Amplitude Modulation (PAM) fluorometry based bioassay we demonstrated a clear species and herbicide specific toxicity and showed that the current environmental legislation does not protect algae sufficiently against diuron and isoproturon. Although a low actual risk of herbicides in the field was demonstrated, monitoring data revealed that concentrations occasionally reach potential effect levels. Hence it cannot be excluded that herbicides contribute to observed changes in phytoplankton species composition in coastal waters, but this is likely to occur only occasionally.

  1. Herbicide Metabolites in Surface Water and Groundwater: Introduction and Overview

    USGS Publications Warehouse

    Thurman, E.M.; Meyer, M.T.

    1996-01-01

    Several future research topics for herbicide metabolites in surface and ground water are outlined in this chapter. They are herbicide usage, chemical analysis of metabolites, and fate and transport of metabolites in surface and ground water. These three ideas follow the themes in this book, which are the summary of a symposium of the American Chemical Society on herbicide metabolites in surface and ground water. First, geographic information systems allow the spatial distribution of herbicide-use data to be combined with geochemical information on fate and transport of herbicides. Next these two types of information are useful in predicting the kinds of metabolites present and their probable distribution in surface and ground water. Finally, methods development efforts may be focused on these specific target analytes. This chapter discusses these three concepts and provides an introduction to this book on the analysis, chemistry, and fate and transport of herbicide metabolites in surface and ground water.

  2. Isolation and characterization of Bradyrhizobium sp. SR1 degrading two β-triketone herbicides.

    PubMed

    Romdhane, Sana; Devers-Lamrani, Marion; Martin-Laurent, Fabrice; Calvayrac, Christophe; Rocaboy-Faquet, Emilie; Riboul, David; Cooper, Jean-François; Barthelmebs, Lise

    2016-03-01

    In this study, a bacterial strain able to use sulcotrione, a β-triketone herbicide, as sole source of carbon and energy was isolated from soil samples previously treated with this herbicide. Phylogenetic study based on16S rRNA gene sequence showed that the isolate has 100 % of similarity with several Bradyrhizobium and was accordingly designated as Bradyrhizobium sp. SR1. Plasmid profiling revealed the presence of a large plasmid (>50 kb) in SR1 not cured under nonselective conditions. Its transfer to Escherichia coli by electroporation failed to induce β-triketone degrading capacity, suggesting that degrading genes possibly located on this plasmid cannot be expressed in E. coli or that they are not plasmid borne. The evaluation of the SR1 ability to degrade various synthetic (mesotrione and tembotrione) and natural (leptospermone) triketones showed that this strain was also able to degrade mesotrione. Although SR1 was able to entirely dissipate both herbicides, degradation rate of sulcotrione was ten times higher than that of mesotrione, showing a greater affinity of degrading-enzyme system to sulcotrione. Degradation pathway of sulcotrione involved the formation of 2-chloro-4-mesylbenzoic acid (CMBA), previously identified in sulcotrione degradation, and of a new metabolite identified as hydroxy-sulcotrione. Mesotrione degradation pathway leads to the accumulation of 4-methylsulfonyl-2-nitrobenzoic acid (MNBA) and 2-amino-4 methylsulfonylbenzoic acid (AMBA), two well-known metabolites of this herbicide. Along with the dissipation of β-triketones, one could observe the decrease in 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibition, indicating that toxicity was due to parent molecules, and not to the formed metabolites. This is the first report of the isolation of bacterial strain able to transform two β-triketones. PMID:25903192

  3. Adsorption of herbicides using activated carbons

    SciTech Connect

    Derbyshire, F.; Jagtoyen, M.; Lafferty, C.; Kimber, G.

    1996-12-31

    This paper describes the results of research in which novel activated carbons have been examined for their efficacy in water treatment and, specifically, for the adsorption of a common herbicide and wood preservative, sodium pentachlorophenolate. To place this work in context, the introduction will discuss first some of the considerations of using activated carbons for water treatment, and then certain aspects of the authors research that has led to this particular topic.

  4. Toxicity of herbicides in highway runoff.

    PubMed

    Huang, Xinjiang; Fong, Stephanie; Deanovic, Linda; Young, Thomas M

    2005-09-01

    Previous field monitoring at two highway sites found highway-applied herbicides in storm water runoff at maximum concentrations ranging from 10 microg/L for glyphosate and diuron to as high as 200 microg/L for oryzalin. To determine whether these herbicides at these concentrations can cause any toxicity to aquatic organisms, a standard toxicity study was conducted. Storm water was collected along Highway 37, Sonoma County, California, USA, and the herbicides isoxaben, oryzalin, diuron, clopyralid, and glyphosate were spiked into the storm water at the highest concentrations observed during the five previous field-monitoring campaigns. Three different toxicity studies were conducted and the results showed the following: No significant reduction in reproduction or increase in mortality relative to the control for an 8-d Ceriodaphnia (water flea) toxicity test; no significant increase in mortality or decrease in biomass compared to the control during a 7-d Pimephales (fish) toxicity test; and, in a 96-h Selenastrum (algae) toxicity test, both the 10-microg/L diuron treatment and the combined 50-microg/L isoxaben plus 200-microg/L oryzalin treatment produced significant (p < 0.05) reductions in algal growth compared to the controls, although the 30-microg/L clopyralid or 10-microg/L glyphosate treatments did not exhibit any toxic effects. PMID:16193763

  5. Toxicity of herbicides in highway runoff.

    PubMed

    Huang, Xinjiang; Fong, Stephanie; Deanovic, Linda; Young, Thomas M

    2005-09-01

    Previous field monitoring at two highway sites found highway-applied herbicides in storm water runoff at maximum concentrations ranging from 10 microg/L for glyphosate and diuron to as high as 200 microg/L for oryzalin. To determine whether these herbicides at these concentrations can cause any toxicity to aquatic organisms, a standard toxicity study was conducted. Storm water was collected along Highway 37, Sonoma County, California, USA, and the herbicides isoxaben, oryzalin, diuron, clopyralid, and glyphosate were spiked into the storm water at the highest concentrations observed during the five previous field-monitoring campaigns. Three different toxicity studies were conducted and the results showed the following: No significant reduction in reproduction or increase in mortality relative to the control for an 8-d Ceriodaphnia (water flea) toxicity test; no significant increase in mortality or decrease in biomass compared to the control during a 7-d Pimephales (fish) toxicity test; and, in a 96-h Selenastrum (algae) toxicity test, both the 10-microg/L diuron treatment and the combined 50-microg/L isoxaben plus 200-microg/L oryzalin treatment produced significant (p < 0.05) reductions in algal growth compared to the controls, although the 30-microg/L clopyralid or 10-microg/L glyphosate treatments did not exhibit any toxic effects.

  6. Chromatographic methods for analysis of triazine herbicides.

    PubMed

    Abbas, Hana Hassan; Elbashir, Abdalla A; Aboul-Enein, Hassan Y

    2015-01-01

    Gas chromatography (GC) and high-performance liquid chromatography (HPLC) coupled to different detectors, and in combination with different sample extraction methods, are most widely used for analysis of triazine herbicides in different environmental samples. Nowadays, many variations and modifications of extraction and sample preparation methods such as solid-phase microextraction (SPME), hollow fiber-liquid phase microextraction (HF-LPME), stir bar sportive extraction (SBSE), headspace-solid phase microextraction (HS-SPME), dispersive liquid-liquid microextraction (DLLME), dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO), ultrasound-assisted emulsification microextraction (USAEME), and others have been introduced and developed to obtain sensitive and accurate methods for the analysis of these hazardous compounds. In this review, several analytical properties such as linearity, sensitivity, repeatability, and accuracy for each developed method are discussed, and excellent results were obtained for the most of developed methods combined with GC and HPLC techniques for the analysis of triazine herbicides. This review gives an overview of recent publications of the application of GC and HPLC for analysis of triazine herbicides residues in various samples.

  7. Multiple-herbicide resistance in Echinochloa crus-galli var. formosensis, an allohexaploid weed species, in dry-seeded rice.

    PubMed

    Iwakami, Satoshi; Hashimoto, Masato; Matsushima, Ken-ichi; Watanabe, Hiroaki; Hamamura, Kenshiro; Uchino, Akira

    2015-03-01

    Biotypes of Echinochloa crus-galli var. formosensis with resistance to cyhalofop-butyl, an acetyl-CoA carboxylase (ACCase) inhibitor, have been found in dry-seeded rice fields in Okayama, Japan. We collected two lines with suspected resistance (Ecf27 and Ecf108) from dry-seeded rice fields and investigated their sensitivity to cyhalofop-butyl and other herbicides. Both lines exhibited approximately 7-fold higher resistance to cyhalofop-butyl than a susceptible line. Ecf108 was susceptible to penoxsulam, an acetolactate synthase (ALS) inhibitor. On the other hand, Ecf27 showed resistance to penoxsulam and two other ALS inhibitors: propyrisulfuron and pyriminobac-methyl. The alternative herbicides butachlor, thiobencarb, and bispyribac-sodium effectively controlled both lines. To examine the molecular mechanisms of resistance, we amplified and sequenced the target-site encoding genes in Ecf27, Ecf108, and susceptible lines. Partial sequences of six ACCase genes and full-length sequences of three ALS genes were examined. One of the ACCase gene sequences encodes a truncated aberrant protein due to a frameshift mutation in both lines. Comparisons of the genes among Ecf27, Ecf108, and the susceptible lines revealed that none of the ACCases and ALSs in Ecf27 and Ecf108 have amino acid substitutions that are known to confer herbicide resistance, although a single amino acid substitution was found in each of three ACCases in Ecf108. Our study reveals the existence of a multiple-herbicide resistant biotype of E. crus-galli var. formosensis at Okayama, Japan that shows resistance to cyhalofop-butyl and several ALS inhibitors. We also found a biotype that is resistant only to cyhalofop-butyl among the tested herbicides. The resistance mechanisms are likely to be non-target-site based, at least in the multiple-herbicide resistant biotype.

  8. Phytotoxicity of four photosystem II herbicides to tropical seagrasses.

    PubMed

    Flores, Florita; Collier, Catherine J; Mercurio, Philip; Negri, Andrew P

    2013-01-01

    Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50) over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zosteramuelleri and Haloduleuninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m '), indicating reduced photosynthesis and maximum effective yields (Fv/Fm ) corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect seagrass meadows of

  9. Indirect sources of herbicide exposure for families on Ontario farms.

    PubMed

    Arbuckle, Tye E; Bruce, Dana; Ritter, Len; Hall, J Christopher

    2006-01-01

    Although direct contact during mixing/loading, application or repair and clean-up is the major pathway by which individuals living on farms are exposed to herbicides, indirect sources such as contact with contaminated surfaces may also contribute. As part of a biomonitoring study to measure the nature and extent of exposure of farm families to herbicides, we attempted to identify potential indirect sources of exposure in a subset of 32 Ontario farms. Herbicide residues in drinking water samples as well as surface swipes of common surfaces within the home were measured and compared with urinary concentrations of the applicator, spouse and child. Residues of 2,4-dichlorophenoxyacetic acid (2,4-D) were measured on all surfaces that were tested, with the highest levels found on the washing machine knob and wash-up faucet within the home. Drinking water was not a significant source of exposure to 2,4-D for farm families. Urine samples of family members were weakly correlated with residues of 2,4-D measured on the exterior door knob. The applicators in our study, the most highly exposed subpopulation in our study group, had exposures that were less than one-third of the exposure on a daily, lifetime basis deemed to be safe by regulatory agencies in Canada and the United States. As 2,4-D residues were detected on surfaces in farm homes where 2,4-D was not reportedly used at that time, this suggests that 2,4-D applied during a previous season (or on a neighbouring farm) may be tracked into the home and persist on hard surfaces and be a chronic, albeit low level, source of exposure for family members. Pesticide applicators and their families should be counselled on hygienic practices (e.g. removing footware and washing soiled hands prior to entering the home) to reduce indirect sources of exposure. Journal of Exposure Science and Environmental Epidemiology (2006) 16, 98-104. doi:10.1038/sj.jea.7500441; published online 13 July 2005. PMID:16015277

  10. Sorption and predicted mobility of herbicides in Baltic soils.

    PubMed

    Sakaliene, Ona; Papiernik, Sharon K; Koskinen, William C; Spokas, Kurt A

    2007-08-01

    This study was undertaken to determine sorption coefficients of eight herbicides (alachlor, amitrole, atrazine, simazine, dicamba, imazamox, imazethapyr, and pendimethalin) to seven agricultural soils from sites throughout Lithuania. The measured sorption coefficients were used to predict the susceptibility of these herbicides to leach to groundwater. Soil-water partitioning coefficients were measured in batch equilibrium studies using radiolabeled herbicides. In most soils, sorption followed the general trend pendimethalin > alachlor > atrazine approximately amitrole approximately simazine > imazethapyr > imazamox > dicamba, consistent with the trends in hydrophobicity (log K(ow)) except in the case of amitrole. For several herbicides, sorption coefficients and calculated retardation factors were lowest (predicted to be most susceptible to leaching) in a soil of intermediate organic carbon content and sand content. Calculated herbicide retardation factors were high for soils with high organic carbon contents. Estimated leaching times under saturated conditions, assuming no herbicide degradation and no preferential water flow, were more strongly affected by soil textural effects on predicted water flow than by herbicide sorption effects. All herbicides were predicted to be slowest to leach in soils with high clay and low sand contents, and fastest to leach in soils with high sand content and low organic matter content. Herbicide management is important to the continued increase in agricultural production and profitability in the Baltic region, and these results will be useful in identifying critical areas requiring improved management practices to reduce water contamination by pesticides.

  11. Movement of water and the herbicides atrazine and isoproturon through a large structured clay soil core

    NASA Astrophysics Data System (ADS)

    Beck, Angus J.; Lam, Venessa; Edward Henderson, D.; Beven, Keith J.; Harris, Graham L.; Roger Howse, K.; "Johnny" Johnston, A. E.; Jones, Kevin C.

    1995-09-01

    A large (1.1 m × 0.8 m in diameter) core of strongly cracked clay soil was instrumented with eight suction samplers, ten zero-suction samplers and sixteen pressure transducer tensiometers. Results of three rainfall events labelled with potassium bromide, pentafluorobenzoic acid and 2,6-difluorobenzoic acid indicate rapid bypass flow, matrix advection and mixing of water between the soil macropores and the matrix all occurred. Generally, no sharp distinction was observed between crack flow and matrix advection; water flow was best described by a continuum of flow phenomena. Before rainfall application, the herbicides atrazine and isoproturon were applied to the soil surface at rates typically used in the field (2.475 kg active ingredient/ha). Rapid bypass flow in large cracks, by which some of the solutes were transported with limited contact with the soil, was mainly responsible for redistribution of the herbicides and their movement to depth in short time periods. Over the course of the experiments 0.23 pore volumes of rainfall were applied to the core but only 0.02 pore volumes were recovered by gravity drainage. Less than 1% of the herbicides applied was lost in water draining from the soil core.

  12. Degradation of the herbicides clomazone, paraquat, and glyphosate by thermally activated peroxydisulfate.

    PubMed

    Diaz Kirmser, Elena M; Mártire, Daniel O; Gonzalez, Mónica C; Rosso, Janina A

    2010-12-22

    Activated sodium peroxydisulfate has the potential to in situ destruct many organic contaminants because of the generation of the stronger oxidant sulfate radical. From photochemical activation of peroxydisulfate in flash-photolysis experiments, the bimolecular rate constants for the reaction of sulfate radical with glyphosate (1.6 × 10(8) M(-1) s(-1)) and paraquat (1.2 × 10(9) M(-1) s(-1)) at 25 °C were obtained. Thermal activation of peroxydisulfate was shown to degrade the herbicides clomazone, paraquat, and glyphosate. Although the herbicide degradation was observed to take place in less than 1 h, the mineralization of the organic carbon required longer reaction times, because of the formation of stable organic intermediates. For similar initial total organic carbon (TOC) values, TOC profiles were similar for experiments with different substrates (the herbicides, humic acids, and a mixture of glyphosate and humic acids), which indicates that the mineralization of all of the samples is limited by the production of SO(4)(•) (-) radicals. A linear correlation between the initial amount of SO(4)(•) (-) needed per mole of C and the average oxidation state was found.

  13. Variation in amphibian response to two formulations of glyphosate-based herbicides.

    PubMed

    Edge, Christopher; Gahl, Meghan; Thompson, Dean; Hao, Chunyan; Houlahan, Jeff

    2014-11-01

    Variation in toxicity among formulations and species makes it difficult to extrapolate results to all species and all formulations of herbicides. The authors exposed larval wood frogs (Lithobates sylvaticus) from 4 populations to 2 glyphosate-based herbicides, Roundup Weed and Grass Control® and Roundup WeatherMax®. The 96-h median lethal concentration values for both formulations varied among the populations (Roundup Weed and Grass Control, 0.14 mg acid equivalents (a.e.)/L to 1.10 mg a.e./L; Roundup WeatherMax, 4.94 mg a.e./L to 8.26 mg a.e./L), demonstrating that toxicity varies among the formulations and that susceptibility may differ among populations.

  14. DNA analysis of herbarium Specimens of the grass weed Alopecurus myosuroides reveals herbicide resistance pre-dated herbicides.

    PubMed

    Délye, Christophe; Deulvot, Chrystel; Chauvel, Bruno

    2013-01-01

    Acetyl-CoA carboxylase (ACCase) alleles carrying one point mutation that confers resistance to herbicides have been identified in arable grass weed populations where resistance has evolved under the selective pressure of herbicides. In an effort to determine whether herbicide resistance evolves from newly arisen mutations or from standing genetic variation in weed populations, we used herbarium specimens of the grass weed Alopecurus myosuroides to seek mutant ACCase alleles carrying an isoleucine-to-leucine substitution at codon 1781 that endows herbicide resistance. These specimens had been collected between 1788 and 1975, i.e., prior to the commercial release of herbicides inhibiting ACCase. Among the 734 specimens investigated, 685 yielded DNA suitable for PCR. Genotyping the ACCase locus using the derived Cleaved Amplified Polymorphic Sequence (dCAPS) technique identified one heterozygous mutant specimen that had been collected in 1888. Occurrence of a mutant codon encoding a leucine residue at codon 1781 at the heterozygous state was confirmed in this specimen by sequencing, clearly demonstrating that resistance to herbicides can pre-date herbicides in weeds. We conclude that point mutations endowing resistance to herbicides without having associated deleterious pleiotropic effects can be present in weed populations as part of their standing genetic variation, in frequencies higher than the mutation frequency, thereby facilitating their subsequent selection by herbicide applications.

  15. DNA Analysis of Herbarium Specimens of the Grass Weed Alopecurus myosuroides Reveals Herbicide Resistance Pre-Dated Herbicides

    PubMed Central

    Délye, Christophe; Deulvot, Chrystel; Chauvel, Bruno

    2013-01-01

    Acetyl-CoA carboxylase (ACCase) alleles carrying one point mutation that confers resistance to herbicides have been identified in arable grass weed populations where resistance has evolved under the selective pressure of herbicides. In an effort to determine whether herbicide resistance evolves from newly arisen mutations or from standing genetic variation in weed populations, we used herbarium specimens of the grass weed Alopecurus myosuroides to seek mutant ACCase alleles carrying an isoleucine-to-leucine substitution at codon 1781 that endows herbicide resistance. These specimens had been collected between 1788 and 1975, i.e., prior to the commercial release of herbicides inhibiting ACCase. Among the 734 specimens investigated, 685 yielded DNA suitable for PCR. Genotyping the ACCase locus using the derived Cleaved Amplified Polymorphic Sequence (dCAPS) technique identified one heterozygous mutant specimen that had been collected in 1888. Occurrence of a mutant codon encoding a leucine residue at codon 1781 at the heterozygous state was confirmed in this specimen by sequencing, clearly demonstrating that resistance to herbicides can pre-date herbicides in weeds. We conclude that point mutations endowing resistance to herbicides without having associated deleterious pleiotropic effects can be present in weed populations as part of their standing genetic variation, in frequencies higher than the mutation frequency, thereby facilitating their subsequent selection by herbicide applications. PMID:24146749

  16. Hyperspectral sensing to detect the impact of herbicide drift on cotton growth and yield

    NASA Astrophysics Data System (ADS)

    Suarez, L. A.; Apan, A.; Werth, J.

    2016-10-01

    Yield loss in crops is often associated with plant disease or external factors such as environment, water supply and nutrient availability. Improper agricultural practices can also introduce risks into the equation. Herbicide drift can be a combination of improper practices and environmental conditions which can create a potential yield loss. As traditional assessment of plant damage is often imprecise and time consuming, the ability of remote and proximal sensing techniques to monitor various bio-chemical alterations in the plant may offer a faster, non-destructive and reliable approach to predict yield loss caused by herbicide drift. This paper examines the prediction capabilities of partial least squares regression (PLS-R) models for estimating yield. Models were constructed with hyperspectral data of a cotton crop sprayed with three simulated doses of the phenoxy herbicide 2,4-D at three different growth stages. Fibre quality, photosynthesis, conductance, and two main hormones, indole acetic acid (IAA) and abscisic acid (ABA) were also analysed. Except for fibre quality and ABA, Spearman correlations have shown that these variables were highly affected by the chemical. Four PLS-R models for predicting yield were developed according to four timings of data collection: 2, 7, 14 and 28 days after the exposure (DAE). As indicated by the model performance, the analysis revealed that 7 DAE was the best time for data collection purposes (RMSEP = 2.6 and R2 = 0.88), followed by 28 DAE (RMSEP = 3.2 and R2 = 0.84). In summary, the results of this study show that it is possible to accurately predict yield after a simulated herbicide drift of 2,4-D on a cotton crop, through the analysis of hyperspectral data, thereby providing a reliable, effective and non-destructive alternative based on the internal response of the cotton leaves.

  17. Effects of the glyphosate-based herbicide Roundup WeatherMax® on metamorphosis of wood frogs (Lithobates sylvaticus) in natural wetlands.

    PubMed

    Lanctôt, C; Robertson, C; Navarro-Martín, L; Edge, C; Melvin, S D; Houlahan, J; Trudeau, V L

    2013-09-15

    Amphibian tadpoles develop in aquatic environments where they are susceptible to the effects of pesticides and other environmental contaminants. Glyphosate-based herbicides are currently the most commonly used herbicide in the world and have been shown to affect survival and development of tadpoles under laboratory and mesocosm conditions. In the present study, whole wetland manipulations were used to determine if exposure to an agriculturally relevant application of Roundup WeatherMax(®), a herbicide formulation containing the potassium salt of glyphosate and an undisclosed surfactant, influences the development of wood frog tadpoles (Lithobates sylvaticus) under natural conditions. Wetlands were divided in half with an impermeable curtain so that each wetland contained a treatment and control side. Tadpoles were exposed to two pulses of this herbicide at an environmentally realistic concentration (ERC, 0.21 mg acid equivalent (a.e.)/L) and the predicted maximum environmental concentration (PMEC, 2.89 mg a.e./L), after which abundance, growth, development, and mRNA levels of genes involved in tadpole metamorphosis were measured. Results present little evidence that exposure to this herbicide affects abundance, growth and development of wood frog tadpoles. As part of the Long-term Experimental Wetlands Area (LEWA) project, this research demonstrates that typical agricultural use of Roundup WeatherMax(®) poses minimal risk to larval amphibian development. However, our gene expression data (mRNA levels) suggests that glyphosate-based herbicides have the potential to alter hormonal pathways during tadpole development.

  18. Herbicides and herbicide degradation products in upper midwest agricultural streams during august base-flow conditions

    USGS Publications Warehouse

    Kalkhoff, S.J.; Lee, K.E.; Porter, S.D.; Terrio, P.J.; Thurman, E.M.

    2003-01-01

    Herbicide concentrations in streams of the U.S. Midwest have been shown to decrease through the growing season due to a variety of chemical and physical factors. The occurrence of herbicide degradation products at the end of the growing season is not well known. This study was conducted to document the occurrence of commonly used herbicides and their degradation products in Illinois, Iowa, and Minnesota streams during base-flow conditions in August 1997. Atrazine, the most frequently detected herbicide (94%), was present at relatively low concentrations (median 0.17 μg L−1). Metolachlor was detected in 59% and cyanazine in 37% of the samples. Seven of nine compounds detected in more than 50% of the samples were degradation products. The total concentration of the degradation products (median of 4.4 μg L−1) was significantly greater than the total concentration of parent compounds (median of 0.26 μg L−1). Atrazine compounds were present less frequently and in significantly smaller concentrations in streams draining watersheds with soils developed on less permeable tills than in watersheds with soils developed on more permeable loess. The detection and concentration of triazine compounds was negatively correlated with antecedent rainfall (April–July). In contrast, acetanalide compounds were positively correlated with antecedant rainfall in late spring and early summer that may transport the acetanalide degradates into ground water and subsequently into nearby streams. The distribution of atrazine degradation products suggests regional differences in atrazine degradation processes.

  19. Effect of herbicide adjuvants on the biodegradation rate of the methylthiotriazine herbicide prometryn.

    PubMed

    Pérez-Bárcena, José Fernando; Ahuatzi-Chacón, Deifilia; Castillo-Martínez, Karla Lizzette; Ruiz-Ordaz, Nora; Galíndez-Mayer, Juvencio; Juárez-Ramírez, Cleotilde; Ramos-Monroy, Oswaldo

    2014-06-01

    A microbial community, selected by its ability to degrade triazinic herbicides was acclimatized by successive transfers in batch cultures. Initially, its ability to degrade prometryn, was evaluated using free cells or cells attached to fragments of a porous support. As carbon, nitrogen and sulfur sources, prometryn, (98.8 % purity), or Gesagard, a herbicide formulation containing 44.5 % prometryn and 65.5 % of adjuvants, were used. In batch cultures, a considerable delay in the degradation of prometryn, presumptively caused by the elevated concentration of inhibitory adjuvants, occurred. When pure prometryn was used, volumetric removal rates remarkably higher than those obtained with the herbicide formulation were estimated by fitting the raw experimental data to sigmoidal decay models, and differentiating them. When the microbial consortium was immobilized in a continuously operated biofilm reactor, the negative effect of adjuvants on the rate and removal efficiency of prometryn could not be detected. Using the herbicide formulation, the consortium showed volumetric removal rates greater than 20 g m(-3) h(-1), with prometryn removal efficiencies of 100 %. The predominant bacterial strains isolated from the microbial consortium were Microbacterium sp., Enterobacter sp., Acinetobacter sp., and Flavobacterium sp. Finally, by comparison of the prometryn removal rates with others reported in the literature, it can be concluded that the use of microbial consortia immobilized in a biofilm reactor operated in continuous regime offer better results than batch cultures of pure microbial strains.

  20. Sarmentine, a natural herbicide from Piper species with multiple herbicide mechanisms of action

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sarmentine, 1-(1-pyrrolidinyl)-(2E,4E)-2,4-decadien-1-one, is a natural amide isolated from the fruits of Piper species. The compound has a number of interesting biological properties, including its broad-spectrum activity on weeds as a contact herbicide. Initial studies highlighted a similarity in ...

  1. Development of multi-residue analysis of herbicides in cereal grain by ultra-performance liquid chromatography-electrospray ionization-mass spectrometry.

    PubMed

    Dong, Xinfeng; Liang, Shuxuan; Shi, Zhihong; Sun, Hanwen

    2016-02-01

    A rapid and sensitive method was developed for the determination of 50 herbicides in cereal grain by ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS). Using acetonitrile effectively extracted 22 kinds of triazine and other basic herbicides, and using 90:10 v/v acetonitrile-phosphate buffer (pH = 7.5) effectively extracted other 28 herbicides. Chromatographic separation was achieved using gradient elution with acetonitrile-water as a mobile phase for 22 triazine and phenylurea herbicides and with 5mM ammonium acetate aqueous solution containing 0.1% formic acid-acetonitrile as a mobile phase for other 28 herbicides. Using matrix-matched standard calibration curve effectively reduced the indirect matrix effects, ensured accurate quantification for these herbicides. The response was linear over two orders of magnitude with a correlation coefficients (r(2)) higher than 0.992. The limits of quantification for the herbicides varied from 0.2 to 25.6 μg kg(-1). The intra- and inter-day precisions (relative standard deviation, RSD) were 2.2-9.3% and 5.7-17.1%, respectively. The recovery varied from 61.6% to 110% with the RSD of 1.6-11.8%. Analyzing soybean, corn and wheat samples from 17 counties evaluated this method. The developed and validated method has high sensitivity, satisfactory recovery and precision, can ensure the multi-class multi-residue analysis at low μg kg(-1) level for the most herbicides in cereal grain.

  2. [Participation of dexamethasone and E and C vitamins in the modulation of the hepatotoxic effect induced by fomesafen and 2,4-D amino herbicides, in rats ].

    PubMed

    Orfila, Luz; Mendoza, Solangela; Rodríguez, Jesús; Arvelo, Francisco

    2002-01-01

    The fomesafen and 2,4-D amine herbicide induce cytotoxic effects at hepatic level in rats, such as: hepatomegaly, hyperplasia and increase in the enzymes activity which participate in the processes of peroxisomal beta-oxidation of fatty acids. In this work, the effect of vitamin E and C was evaluated, as well as, the dexamethasone in the modulation of these hepatotoxic effects. Sprague-Dawley rats were treated with the herbicides and with the agents to be evaluated. The different treatments were given during 15 days orally route. The herbicides combined with the dexamethasone and antioxidant agents were administrated only and simultaneously with the herbicides. Once concluded the different treatment, the rats were weighed and sacrificed. It was evaluated the liver size and liver fragments were obtained to determine the enzymatic activity of Fatty Acyl CoA-oxidase (FACO) and cellular number. The results showed that the hepatomegaly induced by fomesafen was inhibited by the vitamins and by the dexamethasone, while any effect was not observed in the group of rats treated with 2,4-D amine. None of the agents modulated the FACO activity induced by herbicides in treated rats. However, the dexamethasone showed a protective effect in the hyperplasia induced by two herbicides. The hepatotoxic effects induced by the herbicides responded to a different mechanism due to the differences of the effects observed at the antioxidant agents. On the other hand, the inhibition of the cellular proliferation by the dexamethasone does not keep relation with the responsible mechanisms of inducing the oxidant stress into FACO activity. Under experimental conditions of this study, the use of these agents does not guarantee protection against the hepatotoxic effects induced by the herbicides.

  3. Underlying Resistance Mechanisms in the Cynosurus echinatus Biotype to Acetyl CoA Carboxylase-Inhibiting Herbicides.

    PubMed

    Fernández, Pablo; Alcántara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo; Osuna, María D; De Prado, Rafael

    2016-01-01

    Hedgehog dogtail (Cynosurus echinatus) is an annual grass, native to Europe, but also widely distributed in North and South America, South Africa, and Australia. Two hedgehog dogtail biotypes, one diclofop-methyl (DM)-resistant and one DM-susceptible were studied in detail for experimental dose-response resistance mechanisms. Herbicide rates that inhibited shoot growth by 50% (GR50) were determined for DM, being the resistance factor (GR50R/GR50S) of 43.81. When amitrole (Cyt. P450 inhibitor) was applied before treatment with DM, the R biotype growth was significantly inhibited (GR50 of 1019.9 g ai ha(-1)) compared with the GR50 (1484.6 g ai ha(-1)) found for the R biotype without pretreatment with amitrole. However, GR50 values for S biotype do not vary with or without amitrole pretreatment. Dose-response experiments carried out to evaluate cross-resistance, showed resistance to aryloxyphenoxypropionate (APP), cyclohexanedione (CHD) and phenylpyrazoline (PPZ) inhibiting herbicides. Both R and S biotypes had a similar (14)C-DM uptake and translocation. The herbicide was poorly distributed among leaves, the rest of the shoot and roots with unappreciable acropetal and/or basipetal DM translocation at 96 h after treatment (HAT). The metabolism of (14)C-DM, D-acid and D-conjugate metabolites were identified by thin-layer chromatography. The results showed that DM resistance in C. echinatus is likely due to enhanced herbicide metabolism, involving Cyt. P450 as was demonstrated by indirect assays (amitrole pretreatment). The ACCase in vitro assays showed that the target site was very sensitive to APP, CHD and PPZ herbicides in the C. echinatus S biotype, while the R biotype was insensitive to the previously mentioned herbicides. DNA sequencing studies confirmed that C. echinatus cross-resistance to ACCase inhibitors has been conferred by specific ACCase double point mutations Ile-2041-Asn and Cys-2088-Arg. PMID:27148285

  4. Underlying Resistance Mechanisms in the Cynosurus echinatus Biotype to Acetyl CoA Carboxylase-Inhibiting Herbicides

    PubMed Central

    Fernández, Pablo; Alcántara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo; Osuna, María D.; De Prado, Rafael

    2016-01-01

    Hedgehog dogtail (Cynosurus echinatus) is an annual grass, native to Europe, but also widely distributed in North and South America, South Africa, and Australia. Two hedgehog dogtail biotypes, one diclofop-methyl (DM)-resistant and one DM-susceptible were studied in detail for experimental dose-response resistance mechanisms. Herbicide rates that inhibited shoot growth by 50% (GR50) were determined for DM, being the resistance factor (GR50R/GR50S) of 43.81. When amitrole (Cyt. P450 inhibitor) was applied before treatment with DM, the R biotype growth was significantly inhibited (GR50 of 1019.9 g ai ha-1) compared with the GR50 (1484.6 g ai ha-1) found for the R biotype without pretreatment with amitrole. However, GR50 values for S biotype do not vary with or without amitrole pretreatment. Dose-response experiments carried out to evaluate cross-resistance, showed resistance to aryloxyphenoxypropionate (APP), cyclohexanedione (CHD) and phenylpyrazoline (PPZ) inhibiting herbicides. Both R and S biotypes had a similar 14C-DM uptake and translocation. The herbicide was poorly distributed among leaves, the rest of the shoot and roots with unappreciable acropetal and/or basipetal DM translocation at 96 h after treatment (HAT). The metabolism of 14C-DM, D-acid and D-conjugate metabolites were identified by thin-layer chromatography. The results showed that DM resistance in C. echinatus is likely due to enhanced herbicide metabolism, involving Cyt. P450 as was demonstrated by indirect assays (amitrole pretreatment). The ACCase in vitro assays showed that the target site was very sensitive to APP, CHD and PPZ herbicides in the C. echinatus S biotype, while the R biotype was insensitive to the previously mentioned herbicides. DNA sequencing studies confirmed that C. echinatus cross-resistance to ACCase inhibitors has been conferred by specific ACCase double point mutations Ile-2041-Asn and Cys-2088-Arg. PMID:27148285

  5. Growth Regulator Herbicides Prevent Invasive Annual Grass Seed Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Auxinic herbicides, such as 2,4-D and dicamba, that act as plant growth regulators are commonly used for broadleaf weed control in cereal crops (e.g. wheat, barley), grasslands, and non-croplands. If applied at later growth stages, while cereals are developing reproductive parts, the herbicides can...

  6. Are Herbicide Resistant Crops The Answer To Controlling Cascuta?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbicide tolerant crop technology could provide new management strategies for the control of parasitic plants. Three herbicide-tolerant oilseed rape genotypes were used to examine the response of attached C. campestris to glyphosate, imazamox and glufosinate. C. campestris was allowed to establi...

  7. ACETANILIDE HERBICIDE DEGRADATION PRODUCTS BY LC/MS

    EPA Science Inventory

    Acetanilide herbicides are frequently applied in the U.S. on crops (corn, soybeans, popcorn, etc.) to control broadleaf and annual weeds. The acetanilide and acetamide herbicides currently registered for use in the U.S. are alachlor, acetochlor, metolachlor, propachlor, flufen...

  8. Confirmation of resistance to herbicides and evaluation of resistance levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As cases of resistance to herbicides escalate worldwide, there is increasing demand from growers to test for weed resistance and how to manage it. Scientists have developed resistance testing protocols for numerous herbicides and weed species. Growers need immediate answers and scientists are faced ...

  9. Rainfastness and adsorption of herbicides on hard surfaces.

    PubMed

    Spanoghe, Pieter; Claeys, Johan; Pinoy, Luc; Steurbaut, Walter

    2005-08-01

    Herbicides are still used to control weeds on hard surfaces, including municipal, private and industrial sites. Used under unfavourable conditions, especially when rain occurs shortly after application, herbicides may run off to surface waters. Such losses of herbicides from hard surfaces are estimated to be much higher than for herbicides used in arable fields. In this study, three kinds of hard surface were evaluated: asphalt, concrete surface and gravel (fine and coarse). Three herbicides were applied: glyphosate, diuron and diflufenican. Adsorption isotherms of diuron and diflufenican to the three surfaces were determined. At different times after treatment with the herbicides, rainfall was simulated by use of a rain-droplet spray nozzle, and the run-off was collected for analysis. After this run-off event, the materials were immersed in water to measure desorption which, together with the compound in the run-off, gave a measure of the dislodgable residues. The apolar herbicides diuron and especially diflufenican adsorbed strongly to asphalt. The polar herbicide glyphosate lost 75% in run-off from asphalt but was adsorbed strongly to soil and concrete pavement.

  10. Herbicide-resistant crop biotechnology: potential and pitfalls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbicide-resistant crops are an important agricultural biotechnology that can enable farmers to effectively control weeds without harming their crops. Glyphosate-resistant (i.e. Roundup Ready) crops have been the most commercially successful varieties of herbicide-resistant crops and have been plan...

  11. Expanding the eco-evolutionary context of herbicide resistance research.

    PubMed

    Neve, Paul; Busi, Roberto; Renton, Michael; Vila-Aiub, Martin M

    2014-09-01

    The potential for human-driven evolution in economically and environmentally important organisms in medicine, agriculture and conservation management is now widely recognised. The evolution of herbicide resistance in weeds is a classic example of rapid adaptation in the face of human-mediated selection. Management strategies that aim to slow or prevent the evolution of herbicide resistance must be informed by an understanding of the ecological and evolutionary factors that drive selection in weed populations. Here, we argue for a greater focus on the ultimate causes of selection for resistance in herbicide resistance studies. The emerging fields of eco-evolutionary dynamics and applied evolutionary biology offer a means to achieve this goal and to consider herbicide resistance in a broader and sometimes novel context. Four relevant research questions are presented, which examine (i) the impact of herbicide dose on selection for resistance, (ii) plant fitness in herbicide resistance studies, (iii) the efficacy of herbicide rotations and mixtures and (iv) the impacts of gene flow on resistance evolution and spread. In all cases, fundamental ecology and evolution have the potential to offer new insights into herbicide resistance evolution and management.

  12. Spatial variation in sorption and dissipation is herbicide-dependent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In eroded landforms, soil properties that influence herbicide fate are highly variable with landscape position. Understanding the variation in herbicide sorption and dissipation is essential to characterize weed control efficacy and availability for off-site transport. We evaluated the sorption and/...

  13. Kudzu Suppression by Herbicides in Two-Year Field trials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbicides are currently the principle means of halting the spread of kudzu (Pueraria montana var lobata) and reclaiming kudzu-infested lands. The efficacy of several herbicides on this invasive weed has been well-established, but these chemicals can be prohibitively expensive, come with significan...

  14. Herbicide Leaching Column for a Weed Science Teaching Laboratory.

    ERIC Educational Resources Information Center

    Ahrens, W. H.

    1986-01-01

    Presents an experiment which enables weed science students to observe first-hand the process of herbicide leaching in soils. Features of this technique which demonstrate the movement of herbicide within a column of soil are outlined. Diagrams are provided of the apparatus employed in the exercise. (ML)

  15. Manuka oil a natural herbicide with preemergence activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural herbicides approved in organic agriculture are primarily non-selective burn-down essential oils applied POST. Multiple applications are often required due to their low efficacy. To address this problem, the in vivo herbicidal activity of manuka oil, the essential oil distilled from Leptosp...

  16. Herbicide volatilization trumps runoff losses, a multi-year investigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface runoff and volatilization are two processes critical to herbicide off-site transport. To determine the relevance of these off-site transport mechanisms, runoff and turbulent vapor fluxes were simultaneously monitored on the same site for eight years. Site location, herbicide formulations, ...

  17. Groundwater resources impact assessment for triazine herbicides

    SciTech Connect

    Waldman, E.; Barrett, M.R.; Behl, E.

    1996-10-01

    The Environmental Fate and Ground Water Branch of EPA`s Office of Pesticide Programs (OPP) has conducted a Water Resources Impact Assessment of the potential for triazine herbicides to be transported to ground and surface waters (only ground-water is discussed in this paper). The herbicides discussed in this document include atrazine, cyanazine, simazine, and prometon. Part of OPP`s regulatory mission is to prevent contamination of ground and surface water resources resulting from the normal use of registered pesticides. OPP has recently produced several resource documents to support such activities at the federal, state, and local levels (e.g., the Pesticides and Ground-Water Strategy and the Pesticides in Ground Water Database). This Water Resources Impact Assessment will also be useful in assisting state and regional agencies in customizing risk reduction strategies and to implement proposed pollution prevention measures. Major conclusions include: Atrazine is the most frequently detected pesticide in ground water in virtually the entire Midwestern United States, and especially in Nebraska, Iowa, Illinois, and Indiana. The Pesticides in Ground Water Database 1992 Report indicates that atrazine has been detected in 32 out of the 40 states that have reported monitoring data, and in 1,512 wells (6%) of the wells sampled. Based on EPA`s National Pesticide Survey (NPS), 4.7% of rural domestic drinking water wells in the U.S. (490,000 wells) are estimated to contain atrazine, mostly at concentrations less than 0.12 {mu}g/L (the MCL for atrazine is 3 {mu}g/L). Triazine herbicides other than atrazine (simazine, cyanazine, and prometon) have had much less impact on ground-water quality than atrazine, primarily because they are less intensively used.

  18. Effects of herbicide applications in wheat fields

    PubMed Central

    Varshney, Sugandha; Hayat, Shamshul; Alyemeni, Mohammed Nasser; Ahmad, Aqil

    2012-01-01

    The present review encompasses the physiological and yield constraints of herbicide applications with special reference to wheat productivity. Post-independence lagging of Indian agriculture to feed its population led to haphazard use of chemical pesticides and weedicides which deteriorated the productivity pay-off particularly of wheat and rice. Past some decades witnessed the potential use of certain phytohormones in augmenting abiotic stress to get rid of yield gap and productivity constraints. We summed up with reviewing the potential role of these natural regulators in overcoming above mentioned drawbacks to substitute or to integrate these chemicals with the use of plant hormones. PMID:22516826

  19. Adsorption of herbicides using activated carbons

    SciTech Connect

    Derbyshire, F.; Jagtoyan, M.; Lafferty, C.; Kimber, G.

    1996-10-01

    This work describes development of a series of novel activated carbon materials and their testing for possible water treatment applications by studying the adsorption of sodium pentachlorphenolate, PCP (a common herbicide/wood preservative). Although the application of activated carbons is an established technology for the treatment of public water supplies, there is a growing need for materials with higher selectivity and adsorptive capacities as well as high abrasion resistance. The materials that will be discussed include extruded wood-derived carbons with novel pore size distributions and high hardness, as well as activated carbon fiber composites. Comparisons will be made with commercial granular water treatment carbons.

  20. Deciphering the evolution of herbicide resistance in weeds.

    PubMed

    Délye, Christophe; Jasieniuk, Marie; Le Corre, Valérie

    2013-11-01

    Resistance to herbicides in arable weeds is increasing rapidly worldwide and threatening global food security. Resistance has now been reported to all major herbicide modes of action despite the development of resistance management strategies in the 1990s. We review here recent advances in understanding the genetic bases and evolutionary drivers of herbicide resistance that highlight the complex nature of selection for this adaptive trait. Whereas early studied cases of resistance were highly herbicide-specific and largely under monogenic control, cases of greatest concern today generally involve resistance to multiple modes of action, are under polygenic control, and are derived from pre-existing stress response pathways. Although 'omics' approaches should enable unraveling the genetic bases of complex resistances, the appearance, selection, and spread of herbicide resistance in weed populations can only be fully elucidated by focusing on evolutionary dynamics and implementing integrative modeling efforts.

  1. Remediation of waters contaminated with ionic herbicides by sorption on polymerin.

    PubMed

    Sannino, F; Iorio, M; De Martino, A; Pucci, M; Brown, C D; Capasso, R

    2008-02-01

    This study investigated the sorption of paraquat and 2,4-D on polymerin, the humic acid-like fraction of olive mill wastewater. Effects of pH, contact time, initial concentration and sorbent dosage on the sorption of both herbicides were studied. The sorption mechanism of paraquat on polymerin was consistent with the ion exchange of this herbicide with Ca, Mg and K natively occurring in the sorbent; in contrast, 2,4-D was bound to polymerin by hydrogen bonding. Simulated wastewaters contaminated with paraquat were purified after three sorption cycles on polymerin renewed at each cycle, at a solid/liquid ratio of 0.5, whereas those containing 2,4-D showed a maximal residue removal of 44% after two sorption cycles at the same ratio. The possible application of this model to other water-soluble herbicides, as well as the possible exploitation of polymerin as a bio-filter for the decontamination of pollution point sources is briefly discussed.

  2. Unique cellular effect of the herbicide bromoxynil revealed by electrophysiological studies using characean cells.

    PubMed

    Shimmen, Teruo

    2010-09-01

    In a previous paper, we proposed that the primary action of the herbicide bromoxynil (BX; 3,5-dibromo-4-hydroxybenzonitrile) is cytosol acidification, based on the fact that bromoxynil induced the inhibition of cytoplasmic streaming and cell death of Chara corallina in acidic external medium (Morimoto and Shimmen in J Plant Res 121:227-233, 2008). In the present study, electrophysiological analysis of the BX effect was carried out in internodal cells of C. corallina. Upon addition of BX, a large and rapid pH-dependent depolarization was induced, supporting our hypothesis. Ioxynil, which belongs to the same group as bromoxynil, also induced a large and rapid membrane depolarization in a pH-dependent manner. On the other hand, four herbicides belonging to other groups of herbicides did not induce such a membrane depolarization. Thus, BX has a unique cellular effect. The decrease in the electro-chemical potential gradient for H(+) across the plasma membrane appears to result in inhibition of cell growth and disturbance of intracellular homeostasis in the presence of BX.

  3. 2,4-D resistance in wild radish: reduced herbicide translocation via inhibition of cellular transport

    PubMed Central

    Goggin, Danica E.; Cawthray, Gregory R.; Powles, Stephen B.

    2016-01-01

    Resistance to auxinic herbicides is increasing in a range of dicotyledonous weed species, but in most cases the biochemical mechanism of resistance is unknown. Using 14C-labelled herbicide, the mechanism of resistance to 2,4-dichlorophenoxyacetic acid (2,4-D) in two wild radish (Raphanus raphanistrum L.) populations was identified as an inability to translocate 2,4-D out of the treated leaf. Although 2,4-D was metabolized in wild radish, and in a different manner to the well-characterized crop species wheat and bean, there was no difference in metabolism between the susceptible and resistant populations. Reduced translocation of 2,4-D in the latter was also not due to sequestration of the herbicide, or to reduced uptake by the leaf epidermis or mesophyll cells. Application of auxin efflux or ABCB transporter inhibitors to 2,4-D-susceptible plants caused a mimicking of the reduced-translocation resistance phenotype, suggesting that 2,4-D resistance in the populations under investigation could be due to an alteration in the activity of a plasma membrane ABCB-type auxin transporter responsible for facilitating long-distance transport of 2,4-D. PMID:26994475

  4. Co-exposure of silver nanoparticles and chiral herbicide imazethapyr to Arabidopsis thaliana: Enantioselective effects.

    PubMed

    Wen, Yuezhong; Zhang, Lijuan; Chen, Zunwei; Sheng, Xiaolin; Qiu, Jiguo; Xu, Dongmei

    2016-02-01

    In this study, we investigated the possible combined exposure effects of silver nanoparticles (Ag-NPs) and chiral herbicide imazethapyr (IM) on Arabidopsis thaliana. Herein, we show that co-exposure of Ag-NPs and chiral herbicide IM to A. thaliana can amplify the enantioselective ecotoxicity. It was found that after co-exposure of the herbicidally active 0.2 μM (R)-IM and 100 μM Ag-NPs, the silver concentration in roots was 1.40-fold higher than the co-exposure of Ag-NPs and (S)-enantiomer, as well as occurring in shoots that Ag-NPs combined with (R)-IM increased the Ag(+) concentration 77.78% than that with (S)-IM, suggesting an (R)-enantiomer preferential silver uptake. Increase of Ag(+) release under co-exposure of Ag-NPs and (R)-enantiomer was also observed. Our experiments indicated that under co-exposure of Ag-NPs and (R)-enantiomers, more accumulated amino acids can form more adducts with Ag(+), resulting in more Ag(+) release from Ag-NPs and higher ecotoxicity.

  5. Proteomic and histopathological response in the gills of Poecilia reticulata exposed to glyphosate-based herbicide.

    PubMed

    Rocha, Thiago Lopes; Santos, Ana Paula Rezende Dos; Yamada, Áureo Tatsumi; Soares, Célia Maria de Almeida; Borges, Clayton Luiz; Bailão, Alexandre Melo; Sabóia-Morais, Simone Maria Teixeira

    2015-07-01

    Glyphosate-based herbicides (GBH) are one of the most used herbicide nowadays, whilst there is growing concern over their impact on aquatic environment. Since data about the early proteomic response and toxic mechanisms of GBH in fish is very limited, the aim of this study was to investigate the early toxicity of GBH in the gills of guppies Poecilia reticulata using a proteomic approach associated with histopathological index. Median lethal concentration (LC50,96 h) was determined and LC50,96h values of guppies exposed to GBH were 3.6 ± 0.4 mg GLIL(-1). Using two-dimensional gel electrophoresis associated with mass spectrometry, 14 proteins regulated by GBH were identified, which are involved in different cell processes, as energy metabolism, regulation and maintenance of cytoskeleton, nucleic acid metabolism and stress response. Guppies exposed to GBH at 1.82 mg GLIL(-1) showed time-dependent histopathological response in different epithelial and muscle cell types. The histopathological indexes indicate that GBH cause regressive, vascular and progressive disorders in the gills of guppies. This study helped to unravel the molecular and tissue mechanisms associated with GBH toxicity, which are potential biomarkers for biomonitoring water pollution by herbicides.

  6. The environmental fate of arsenic in surface soil contaminated by historical herbicide application.

    PubMed

    Qi, Yongqiang; Donahoe, Rona J

    2008-11-01

    Soils from many industrial sites are contaminated with arsenic because of the historical application of herbicide containing arsenic trioxide. The strong affinity of aqueous arsenic species for soil components has led to the retention of significant amounts of arsenic in surface soils decades after the original source application. Soil collected from a site which received a one-time surficial application of arsenical herbicide in the 1950s was investigated to understand the fate of arsenic under natural leaching conditions. Sequential chemical extraction of the contaminated soil revealed that the majority of the arsenic is in its secondary form. The synthetic acid rain leaching of arsenic from the weathered soil can be divided into two distinct stages. During the first stage, the leachate arsenic concentration underwent a rapid decline which suggests an equilibrium-controlled release event. The second leaching stage was marked by a slow, steady release of arsenic, a signature of a kinetically controlled process. A mathematical approach was employed to identify and describe the two distinct arsenic releasing processes (equilibrium desorption and kinetic desorption). This model considers both desorption processes simultaneously and produces leachate arsenic concentrations in good agreement with the measured data. According to the modeling results, 20% of the arsenic remaining in the soil resides in the herbicide source material after five decades of natural leaching; 25% exists on reversible adsorption sites and 55% is present on irreversible adsorption sites.

  7. Real World of Industrial Chemistry: The Challenge of Herbicides for Aquatic Weeds.

    ERIC Educational Resources Information Center

    Martin, Dean F.; Martin, Barbara B.

    1985-01-01

    Discusses problems in selecting the correct herbicide for use in controlling aquatic weeds, considering specificity, size of the market, fear of trace contaminants, and herbicide resistance in weeds. Also summarizes some successful herbicides, providing a table listing mode of action of some herbicides used for control of aquatic plants. (JN)

  8. Research methods in weed science: herbicide absorption and translocation in plants using radioisotopes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbicide absorption and translocation in plants is a key component in the study of herbicide physiology, mode of action, selectivity, resistance mechanisms, and in the registration process. Radioactive herbicides have been in use for over half-a-century in the research and study of herbicide absorp...

  9. Washoff of Residual Photosystem II Herbicides from Sugar Cane Trash under a Rainfall Simulator.

    PubMed

    Dang, Aaditi; Silburn, Mark; Craig, Ian; Shaw, Melanie; Foley, Jenny

    2016-05-25

    Herbicides are often applied to crop residues, but their fate has not been well studied. We measured herbicide washoff from sugar cane trash during simulated rainfall, at 1, 8, and 40 days after spraying (DAS), to provide insight into herbicide fate and for use in modeling. Herbicides included are commonly used in the sugar industry, either in Australia or in Brazil. Concentrations of all herbicides and applied Br tracer in washoff declined exponentially over time. The rate of washoff during rainfall declined with increasing DAS. Cumulative washoff as a function of rainfall was similar for most herbicides, although the most soluble herbicides did have more rapid washoff. Some but not all herbicides became more resistant to washoff with increasing DAS. Of the total mass washed off, 80% washed off in the first 30 mm (∼40 min) of rainfall for most herbicides. Little herbicide remained on the trash after rainfall, implying nearly complete washoff. PMID:26964670

  10. Washoff of Residual Photosystem II Herbicides from Sugar Cane Trash under a Rainfall Simulator.

    PubMed

    Dang, Aaditi; Silburn, Mark; Craig, Ian; Shaw, Melanie; Foley, Jenny

    2016-05-25

    Herbicides are often applied to crop residues, but their fate has not been well studied. We measured herbicide washoff from sugar cane trash during simulated rainfall, at 1, 8, and 40 days after spraying (DAS), to provide insight into herbicide fate and for use in modeling. Herbicides included are commonly used in the sugar industry, either in Australia or in Brazil. Concentrations of all herbicides and applied Br tracer in washoff declined exponentially over time. The rate of washoff during rainfall declined with increasing DAS. Cumulative washoff as a function of rainfall was similar for most herbicides, although the most soluble herbicides did have more rapid washoff. Some but not all herbicides became more resistant to washoff with increasing DAS. Of the total mass washed off, 80% washed off in the first 30 mm (∼40 min) of rainfall for most herbicides. Little herbicide remained on the trash after rainfall, implying nearly complete washoff.

  11. Protocols for Robust Herbicide Resistance Testing in Different Weed Species.

    PubMed

    Panozzo, Silvia; Scarabel, Laura; Collavo, Alberto; Sattin, Maurizio

    2015-07-02

    Robust protocols to test putative herbicide resistant weed populations at whole plant level are essential to confirm the resistance status. The presented protocols, based on whole-plant bioassays performed in a greenhouse, can be readily adapted to a wide range of weed species and herbicides through appropriate variants. Seed samples from plants that survived a field herbicide treatment are collected and stored dry at low temperature until used. Germination methods differ according to weed species and seed dormancy type. Seedlings at similar growth stage are transplanted and maintained in the greenhouse under appropriate conditions until plants have reached the right growth stage for herbicide treatment. Accuracy is required to prepare the herbicide solution to avoid unverifiable mistakes. Other critical steps such as the application volume and spray speed are also evaluated. The advantages of this protocol, compared to others based on whole plant bioassays using one herbicide dose, are related to the higher reliability and the possibility of inferring the resistance level. Quicker and less expensive in vivo or in vitro diagnostic screening tests have been proposed (Petri dish bioassays, spectrophotometric tests), but they provide only qualitative information and their widespread use is hindered by the laborious set-up that some species may require. For routine resistance testing, the proposed whole plant bioassay can be applied at only one herbicide dose, so reducing the costs.

  12. Herbicide interchange between a stream and the adjacent alluvial aquifer

    USGS Publications Warehouse

    Wang, W.; Squillace, P.

    1994-01-01

    Herbicide interchange between a stream and the adjacent alluvial aquifer and quantification of herbicide bank storage during high streamflow were investigated at a research site on the Cedar River flood plain, 10 km southeast of Cedar Rapids, Iowa. During high streamflow in March 1990, alachlor, atrazine, and metolachlor were detected at concentrations above background in water from wells as distant as 20, 50, and 10 m from the river's edge, respectively. During high streamflow in May 1990, alachlor, atrazine, cyanazine, and metolachlor were detected at concentrations above background as distant as 20, 50, 10, and 20 m from the river's edge, respectively. Herbicide bank storage took place during high streamflow when hydraulic gradients were from the river to the alluvial aquifer and the laterally infiltrating river water contained herbicide concentrations larger than background concentrations in the aquifer. The herbicide bank storage can be quantified by multiplying herbicide concentration by the "effective area" that a well represented and an assumed porosity of 0.25. During March 1990, herbicide bank storage values were calculated to be 1.7,79, and 4.0 mg/m for alachlor, atrazine, and metolachlor, respectively. During May 1990, values were 7.1, 54, 11, and 19 mg/m for alachlor, atrazine, cyanazine, and metolachlor, respectively. ?? 1994 American Chemical Society.

  13. Herbicidal treatments for control of Cannabis sativa L.

    PubMed

    Horowitz, M

    1977-01-01

    In order to test herbicides for the destruction of illicit stands of cannabis (Cannabis sativa L.) a series of commercially available herbicides were sprayed on glasshouse-grown plants having 2 to 6 leaves. The following herbicides caused complete kill or severe injury to cannabis plants: (a) herbicides with root and foliage activity--ametryn, atrazine, metribuzin, prometryn, terbutryne, diuron, fluometuron, linuron, methabenzthiazuron, phenobenzuron, ethofumesate, karbutilate, methazole and oxadiazon; and (b) foliar-acting herbicides with brief or no soil persistence--amitrole, bentazon, 2,4-D, diquat + paraquat, glyphosate and phenmedipham. In field experiments herbicides of the latter group, and ioxynil, metribuzin, and a MSMA-cacodylate mixture, caused death or severe damage to young cannabis plants. Glyphosate, ioxynil and bentazon destroyed developed cannabis plants. In glasshouse and field experiments the following herbicides applied to young cannabis plants caused marked deformations of stems, leaves and/or inflorescences: barban, butralin, dalapon, difenzoquat, dinitramine, diphenamid, IPC, napropamide, penoxalin, triffuralin, and U-27267. PMID:585583

  14. Protocols for Robust Herbicide Resistance Testing in Different Weed Species.

    PubMed

    Panozzo, Silvia; Scarabel, Laura; Collavo, Alberto; Sattin, Maurizio

    2015-01-01

    Robust protocols to test putative herbicide resistant weed populations at whole plant level are essential to confirm the resistance status. The presented protocols, based on whole-plant bioassays performed in a greenhouse, can be readily adapted to a wide range of weed species and herbicides through appropriate variants. Seed samples from plants that survived a field herbicide treatment are collected and stored dry at low temperature until used. Germination methods differ according to weed species and seed dormancy type. Seedlings at similar growth stage are transplanted and maintained in the greenhouse under appropriate conditions until plants have reached the right growth stage for herbicide treatment. Accuracy is required to prepare the herbicide solution to avoid unverifiable mistakes. Other critical steps such as the application volume and spray speed are also evaluated. The advantages of this protocol, compared to others based on whole plant bioassays using one herbicide dose, are related to the higher reliability and the possibility of inferring the resistance level. Quicker and less expensive in vivo or in vitro diagnostic screening tests have been proposed (Petri dish bioassays, spectrophotometric tests), but they provide only qualitative information and their widespread use is hindered by the laborious set-up that some species may require. For routine resistance testing, the proposed whole plant bioassay can be applied at only one herbicide dose, so reducing the costs. PMID:26167668

  15. Herbicide contamination and dispersion pattern in lowland springs.

    PubMed

    Laini, Alex; Bartoli, Marco; Lamastra, Lucrezia; Capri, Ettore; Balderacchi, Matteo; Trevisan, Marco

    2012-11-01

    Herbicides reduce the diversity of flora and fauna in freshwater ecosystems and also contaminate groundwater due to leaching. Herbicide contamination can be a serious threat for all groundwater-dependent ecosystems (GDE), altering their chemical and biological quality. Successful management to protect GDE is dependent on detailed knowledge of the hydrogeological and hydrochemical features of the surrounding environment. We consider the possible diffuse contamination by herbicides of groundwater and of GDE as lowland springs, semi-artificial ecosystems with elevated biodiversity. The main objectives of the present work were thus: (1) to map herbicide contamination in lowland springs, (2) to evaluate the potential risk for biota and (3) to quantify the extent of the area from which the herbicide use can affect the water quality of lowland springs. In June and August 2009, nearly 23 springs within the Po River Plain (Northern Italy) were sampled and analyzed for five herbicides used to control weeds in maize. Hydrogeological properties, half-lives of the herbicides and their concentrations in both groundwater and springs were used to quantify the area from which the contamination could originate. Such evaluation was performed by means of GIS techniques. Terbuthylazine were the only herbicide found, together with its metabolite desethylterbuthylazine. In 16 out of 84 measurements, their concentrations were above the threshold for drinking water; however, they were always below the ecotoxicological end-points of aquatic flora and fauna. Spatial analyses reveal that the theoretical area from which herbicides can contaminate spring water is within a distance varying between a few and 1800 m. Our findings indicate that conservation plans should focus on the fields adjacent to or surrounding the springs and should address the optimization of irrigation practices, restoration of buffer strips, crop rotation and in general more sustainable agricultural practices in the

  16. Molecular and phenotypic characterization of Als1 and Als2 mutations conferring tolerance to acetolactate synthase herbicides in soybean

    PubMed Central

    Walter, Kay L; Strachan, Stephen D; Ferry, Nancy M; Albert, Henrik H; Castle, Linda A; Sebastian, Scott A

    2014-01-01

    BACKGROUND Sulfonylurea (SU) herbicides are effective because they inhibit acetolactate synthase (ALS), a key enzyme in branched-chain amino acid synthesis required for plant growth. A soybean line known as W4-4 was developed through rounds of seed mutagenesis and was demonstrated to have a high degree of ALS-based resistance to both post-emergence and pre-emergence applications of a variety of SU herbicides. This report describes the molecular and phenotypic characterization of the Als1 and Als2 mutations that confer herbicide resistance to SUs and other ALS inhibitors. RESULTS The mutations are shown to occur in two different ALS genes that reside on different chromosomes: Als1 (P178S) on chromosome 4 and Als2 (W560L) on chromosome 6 (P197S and W574L in Arabidopsis thaliana). CONCLUSION Although the Als1 and Als2 genes are unlinked, the combination of these two mutations is synergistic for improved tolerance of soybeans to ALS-inhibiting herbicides. © 2014 DuPont Pioneer. Pest Management Science published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:24425499

  17. Modeling arsenic desorption from herbicide-contaminated soils.

    PubMed

    Qi, Yongqiang; Donahoe, Rona J

    2009-06-01

    The application of arsenical herbicides has created legacy environmental problems by contaminating soil in some agricultural areas and at various industrial sites. Numerous previous studies have suggested that the adsorption of arsenic by common soil components is largely controlled by kinetic factors. Four arsenic-contaminated soil samples collected from industrial sites were characterized and subjected to sequential leaching using a synthetic acid rain solution in order to study the release of arsenic. A dual-site numerical sorption-desorption model was constructed that describes arsenic desorption from these soils in terms of two different release mechanisms: Release from type I (equilibrium) and type II (kinetic) sorption sites. Arsenic held on both type I and II sorption sites is accessible through extensive acid rain leaching. Arsenic desorption from these sites follows a linear Kd model; the manner of approaching the Kd model, however, differs. Arsenic desorption from type I sites reached equilibrium with the aqueous phase under the physical environment provided by the experiment (shaking for 24 h at 25 degrees C), while desorption from type II sites followed a first-order kinetic pattern when approaching equilibrium. During synthetic acid rain sequential leaching of the soils, type I sites released their sorbed arsenic rapidly and subsequent desorption was dominated by the kinetic release of arsenic from type II sites. This shift in desorption mechanism dominance generated data corresponding to two intersecting straight lines in the n-logC dimension for all four soils. The dual-site desorption model was solved analytically and proven to be successful in simulating sorption processes where two different mechanisms are simultaneously controlling the aqueous concentration of a trace element.

  18. Triazine herbicide resistance in the photosynthetic bacterium Rhodopseudomonas sphaeroides

    SciTech Connect

    Brown, A.E.; Gilbert, C.W.; Guy, R.; Arntzen, C.J.

    1984-10-01

    The photoaffinity herbicide azidoatrazine (2-azido-4-ethylamino-6-isopropylamino-s-triazine) selectively labels the L subunit of the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides. Herbicide-resistant mutants retain the L subunit and have altered binding properties for methylthio- and chloro-substituted triazines as well as altered equilibrium constants for electron transfer between primary and secondary electron acceptors. We suggest that a subtle alteration in the L subunit is responsible for herbicide resistance and that the L subunit is the functional analog of the 32-kDa Q/sub B/ protein of chloroplast membranes. 42 references, 6 figures, 1 table.

  19. Removal of clomazone herbicide from a synthetic effluent by electrocoagulation.

    PubMed

    Benincá, Cristina; Vargas, Fernanda T; Martins, Manoel L; Gonçalves, Fábio F; Vargas, Rodrigo P; Freire, Flavio B; Zanoelo, Everton F

    2016-01-01

    The aim of this work was to investigate the kinetics of removal of clomazone herbicide from an aqueous solution by electrocoagulation. The experiments were performed in a cylindrical batch reactor with six aluminum electrodes in monopolar mode, arranged in series and connected to a digital DC power. The aqueous solution (tap water + clomazone) with initial pH close to 7.9 was always treated at ambient temperature (≈20 °C) and atmospheric pressure for 5,400 s. For a confidence level of 95% the rate constant of electrocoagulation and the efficiency of removal of clomazone at equilibrium were 2.1 × 10(-3) ± 0.5 × 10(-3) s(-1) and 97.7 ± 2.2%, respectively. The final chemical oxygen demand was 88% lower than that measured initially, while turbidity and apparent color were totally removed from the synthetic solution at a rate close to that of formation of aluminum hydroxides. Some reaction intermediates, such as benzonitrile-2-chloro and 2-chloro-hex-2,4-diene-1,6-dioic-acid determined by gas chromatography mass spectrometry (GC-MS) analysis, explain the ratio of equilibrium to initial total organic carbon approximately between 0.6 and 0.8 at a probability of 95%.

  20. Determination of the herbicide fluroxypyr in oil matrices.

    PubMed

    Muhamad, Halimah B; Ai, Tan Yew; Sahid, Ismail B

    2008-02-01

    The purpose of this study was to develop a method for the determination of fluroxypyr (4-amino-3,5-dichloro-6-fluro2-pyridyloxyacetic acid) residue in palm oil namely crude palm oil (CPO) and crude palm kernel oil (CPKO). The method involves the extraction of the herbicide from the oil matrix followed by low temperature precipitation and finally quantification of the residues using the high performance liquid chromatography (HPLC). The extraction efficiency of the method was evaluated by conducting recovery studies. The recovery of fluroxypyr from the fortified CPO samples ranged from 78%-111% with the relative values for the coefficient of variation ranging from 1.4 to 8.6%. Furthermore, the recovery of fluroxypyr from the spiked CPKO samples ranged from 91-107% with the relative values for the coefficient of variation ranging from 0.6 to 4.5%. The minimum detection limit of fluroxypyr in CPO and CPKO was 0.05 microg/g. The method was used to determine fluroxypyr residues from the field-treated samples of CPO and CPKO. When fluroxypyr was used for weed control in oil palm plantations no residue was detected in CPO and CPKO irrespective of the sampling interval and the dosage applied at the recommended or double the manufacturer's recommended dosage.

  1. Removal of clomazone herbicide from a synthetic effluent by electrocoagulation.

    PubMed

    Benincá, Cristina; Vargas, Fernanda T; Martins, Manoel L; Gonçalves, Fábio F; Vargas, Rodrigo P; Freire, Flavio B; Zanoelo, Everton F

    2016-01-01

    The aim of this work was to investigate the kinetics of removal of clomazone herbicide from an aqueous solution by electrocoagulation. The experiments were performed in a cylindrical batch reactor with six aluminum electrodes in monopolar mode, arranged in series and connected to a digital DC power. The aqueous solution (tap water + clomazone) with initial pH close to 7.9 was always treated at ambient temperature (≈20 °C) and atmospheric pressure for 5,400 s. For a confidence level of 95% the rate constant of electrocoagulation and the efficiency of removal of clomazone at equilibrium were 2.1 × 10(-3) ± 0.5 × 10(-3) s(-1) and 97.7 ± 2.2%, respectively. The final chemical oxygen demand was 88% lower than that measured initially, while turbidity and apparent color were totally removed from the synthetic solution at a rate close to that of formation of aluminum hydroxides. Some reaction intermediates, such as benzonitrile-2-chloro and 2-chloro-hex-2,4-diene-1,6-dioic-acid determined by gas chromatography mass spectrometry (GC-MS) analysis, explain the ratio of equilibrium to initial total organic carbon approximately between 0.6 and 0.8 at a probability of 95%. PMID:27332840

  2. Pelargonic acid - a potential organic aquatic herbicide for duckweed management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Duckweed (Lemna spp.) are small, free floating aquatic plants that flourish on stagnant, or slow moving, water surfaces throughout the continental U.S. Members of the genus are among the smallest flowering plants, providing food for fish and fowl, but their aggressive growth and invasive habit make...

  3. Mode of action of a herbicide : johnsongrass and methanearsonic Acid.

    PubMed

    Knowles, F C; Benson, A A

    1983-02-01

    Johnsongrass (Sorghum halepense (L.) Pers.) is sensitive to methanearsonate, foliar application resulting in a topkill. Investigation of the pattern of photosynthesis by radioautography revealed an accumulation of malate in methanearsonate-treated leaves. Accumulation of malate was attributed to an inhibition of NADP(+)-malic enzyme which was found to be sensitive to sulfhydryl group reagents including arsenosomethane, CH(3)AsO. Methanearsonate was found to act as an oxidant in the Hill reaction using spinach chloroplasts, the photoproduct being a sulfhydryl group reagent.These results suggest that methanearsonate inhibits CO(2) release from malate in bundle sheath cells, depriving the plant of its source of carbon for sucrose production. The mechanism of inhibition of enzymes sensitive to sulfhydryl group reagents by arsenosomethane is addressed.

  4. Detection of bromacil herbicide in ponderosa pine

    SciTech Connect

    Ferenbaugh, R.W.; Spall, W.D.; LaCombe, D.M.

    1981-08-01

    Bromacil is a substituted uracil herbicide, 5-bromo-3-sec-butyl-6-methyluracil. Because it is readily absorbed through the root system of plants, bromacil usually is applied to the soil as an aqueous solution or suspension during or just before periods of active plnt growth. Until recently, bromacil was used as part of a vegetation control program along roadways at the Los Alamos National Laboratory. The prescribed method of application was to spray a four-foot wide strip of bromacil solution along the edges of roadways with a spray-bar. During the late spring and early summer of 1978, bromacil was determined to be the proximate cause of damage to numerous trees at substantial distances away from roadways at Los Alamos. This paper describes the investigation that was undertaken to determine the cause of the tree mortality.

  5. Biochemical Decomposition of the Herbicide N-(3,4-Dichlorophenyl)-2-Methylpentanamide and Related Compounds

    PubMed Central

    Sharabi, Nagim El-Din; Bordeleau, Lucien M.

    1969-01-01

    Organisms capable of decomposing N-(3,4-dichlorophenyl)-2-methylpentanamide (Karsil) were isolated, identified, and tested for their ability to hydrolyze this herbicide. Primary products of Karsil decomposition by cells and cell-free extracts of a Penicillium sp. were identified as 2-methyl-valeric acid and 3,4-dichloroaniline. The Karsil acylamidase (EC 3.5.1.a aryl acylamine amidohydrolase) was an induced enzyme. It was partially purified and tested for its ability to hydrolyze 25 related compounds. Some relations between the structures of these compounds and their susceptibility to enzymatic hydrolysis were discerned. PMID:5373674

  6. The herbicide Glyphosate affects nitrification in the Elbe estuary, Germany

    NASA Astrophysics Data System (ADS)

    Sanders, Tina; Lassen, Stephan

    2015-04-01

    The Elbe River is one of the biggest European rivers discharging into the North Sea. It also transports high amounts of nutrients and pollutants like pesticides. Important source regions of both nutrients and pollutants are located within the river catchment, which is dominated by agricultural land-use. From these agricultural soils, pesticides can be carried via the river and estuary into the North Sea. Glyphosate (N-(phosphonomethyl) glycine) is the most commonly used herbicide worldwide and mainly used to regulate unwanted plant growth and for the expedition of crop ripening. In Germany, ~ 6000 tons of glyphosate are applied yearly in agriculture and private use. Glyphosate is degradable by microorganisms and has a half-life in water of 35 to 60 days. This herbicide specifically inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), an enzyme that catalyzes the biosynthesis of essential aromatic amino acids in plants, fungi, and bacteria. Nitrifying bacteria, which play an important role in the internal nitrogen cycling in the Elbe estuary, also possess this enzyme. The aim of our study was to quantify the concentration of glyphosate in water and sediment samples of the Elbe to get an overview about relevant environmental levels and to assess the impact of glyphosate on inhibition of nitrifying activities. To quantify the effect of glyphosate on nitrification activity, natural samples as well as pure cultures of Nitrosomonas europea (strain Nm50) were incubated with different concentrations of glyphosate over a period of some weeks. The nitrifying activity was determined according to changes of the nitrite and nitrate concentration as well as the cell number. Glyphosate was detectable in water and sediment samples in the Elbe estuary with up to 5 ppb mainly in the Port of Hamburg region. In both incubation experiments an inhibiting effect of glyphosate on nitrification could be shown. The incubated natural water sample was affected by a glyphosate

  7. Surrogates for herbicide removal in stormwater biofilters.

    PubMed

    Zhang, Kefeng; Deletic, Ana; Page, Declan; McCarthy, David T

    2015-09-15

    Real time monitoring of suitable surrogate parameters are critical to the validation of any water treatment processes, and is of particularly high importance for validation of natural stormwater treatment systems. In this study, potential surrogates for herbicide removal in stormwater biofilters (also known as stormwater bio-retention or rain-gardens) were assessed using field challenge tests and matched laboratory column experiments. Differential UV absorbance at 254mn (ΔUVA254), total phosphorus (ΔTP), dissolved phosphorus (ΔDP), total nitrogen (ΔTN), ammonia (ΔNH3), nitrate and nitrite (ΔNO3+NO2), dissolved organic carbon (ΔDOC) and total suspended solids (ΔTSS) were compared with glyphosate, atrazine, simazine and prometryn removal rates. The influence of different challenge conditions on the performance of each surrogate was studied. Differential TP was significantly and linearly related to glyphosate reduction (R(2) = 0.75-0.98, P < 0.01), while ΔTP and ΔUVA254 were linearly correlated (R(2) = 0.44-0.84, P < 0.05) to the reduction of triazines (atrazine, simazine and prometryn) in both field and laboratory tests. The performance of ΔTP and ΔUVA254 as surrogates for herbicides were reliable under normal and challenge dry conditions, but weaker correlations were observed under challenge wet conditions. Of those tested, ΔTP is the most promising surrogate for glyphosate removal and ΔUVA254 is a suitable surrogate for triazines removal in stormwater biofilters.

  8. A silviculture application of the glyphosate-based herbicide VisionMAX to wetlands has limited direct effects on amphibian larvae.

    PubMed

    Edge, Christopher B; Thompson, Dean G; Hao, Chunyan; Houlahan, Jeff E

    2012-10-01

    Herbicides are commonly used in agriculture and silviculture to reduce interspecific competition among plants and thereby enhance crop growth, quality, and volume. Internationally, glyphosate-based herbicides are the most widely used herbicides in both of these sectors. Laboratory and mesocosm studies have demonstrated that some formulations are toxic to amphibian larvae below concentrations that approximate predicted maximal or "worst-case" exposure scenarios. However, field studies have not found evidence of toxicity at these concentrations. The authors conducted a replicated field experiment involving 10 naturalized wetlands split in half with an impermeable plastic barrier to assess the direct toxicity of a glyphosate formulation commonly used in silviculture (VisionMAX™). The herbicide formulation was applied directly to the surface of one side of each wetland at one of two target aqueous exposure rates (high = 2,880, low = 550 µg acid equivalents [a.e.]/L), and the other side was left as an untreated control. The survival and growth of green frog larvae (Lithobates clamitans) were assessed for two years following herbicide treatment. The herbicide did not have a negative impact on survival or growth of L. clamitans larvae at either treatment level. In fact, mean larval abundance was typically greater in the treated sides than in control sides within the year of herbicide application. These results indicate that typical silviculture use of VisionMAX poses negligible risk to larval amphibians, likely because the combined effects of sorption and degradation in natural wetlands limit the exposure magnitude and duration. PMID:22833320

  9. Metabolic responses in root nodules of Phaseolus vulgaris and Vicia sativa exposed to the imazamox herbicide.

    PubMed

    García-Garijo, A; Tejera, N A; Lluch, C; Palma, F

    2014-05-01

    Alterations on growth, amino acids metabolism and some antioxidant enzyme activities as result of imazamox treatment were examined in determinate and indeterminate nodules, formed by Phaseolus vulgaris and Vicia sativa, respectively. Young seedlings of both legumes were inoculated with their respective microsymbionts and grown under controlled conditions. At vegetative growth, plants were treated with imazamox (250μM) in the nutrient solution and harvested 7days after. Imazamox was mainly accumulated in V. sativa where concentrations were more than six fold higher than those detected in P. vulgaris. Nodule dry weight and total nitrogen content were reduced by the herbicide treatment: the highest decrease of nodule biomass (50%) and nitrogen content (40%) were registered in V. sativa and P. vulgaris, respectively. The concentration of branched-chain amino acids (BCAA) did not change in neither determinate nor indeterminate nodules even though the acetohydroxyacid synthase activity decreased in root and nodules of both symbioses with the herbicide application. Based on this last result and taking into account that total free amino acids increased in roots but not in nodules of common vetch, a possible BCAA translocation from root to nodule could occur. Our results suggest that the maintenance of BCAA balance in nodule become a priority for the plant in such conditions. The involvement of activities glutathione-S-transferase, guaiacol peroxidase and superoxide dismutase in the response of the symbioses to imazamox are also discussed.

  10. Ragweed Parthenium (Parthenium hysterophorus) Control with Preemergence and Postemergence Herbicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field and greenhouse experiments were conducted during 2005 and 2006 at Stoneville, MS to determine control of ragweed parthenium with several preemergence (PRE) and postemergence (POST) herbicides registered for use in corn, cotton, peanut, rice, and soybean. Norflurazon, pendimethalin, clomazone, ...

  11. Response of avian communities to herbicide-induced vegetation changes

    USGS Publications Warehouse

    Morrison, M.L.; Meslow, E.C.

    1984-01-01

    The relationships between avian communities and herbicide modification of vegetation were analyzed on early-growth clear-cuts in western Oregon that had received phenoxy herbicide treatment 1 or 4 years previously. For both 1 and 4 years post-spray, vegetation development was greater in the third height interval (> 3.0 m) on untreated sites. All measures of vegetative diversity on untreated sites exceeded those on treated sites. Overall density and diversity of birds were similar between treated and untreated sites. Several bird species altered their foraging behavior on treated sites, i.e., birds using deciduous trees increased use of shrubs on treated sites. The primary effect of herbicide application was a reduction in the complexity of vegetation, a condition due primarity to the removal of deciduous trees. Small patches of deciduous trees scattered in clear-cuts treated with phenoxy herbicides can maintain an avian community similar to that on untreated sites.

  12. Herbicide contamination of surficial groundwater in Northern Italy.

    PubMed

    Guzzella, Licia; Pozzoni, Fiorenzo; Giuliano, Giuseppe

    2006-07-01

    Data on herbicide pollution in groundwater are rather scarce; monitoring data are based on single investigation, focussing on limited area and on few compounds of interest. The large number of approved active ingredients (approximately 600 chemicals) makes difficult to obtain an accurate and actual information on herbicide application in different countries, even if herbicides are the second most important class of pesticides used in the European Union. The results of a two-year monitoring campaign undertaken in two areas intensively cultivated at Lombardy, Northern Italy, showed a diffuse groundwater contamination due to active ingredients and their metabolites. More than 50% of samples overcame M.A.C. and the most common herbicides were Atrazine, Terbuthylazine and Metolachlor, while DEA and DET metabolites were often characterized by greater concentrations than their relative active principles.

  13. Impacts of forest herbicides on wildlife: Toxicity and habitat alteration

    USGS Publications Warehouse

    Morrison, M.L.; Meslow, E.C.

    1983-01-01

    This paper begins with a review of both laboratory and field studies on tbe possible direct toxic effects of herbicides on terrestrial vertebrates, primarily birds and mammals. Alteration of the palatability of forage and changes in reproductive success are also discussed. Emphasis is placed on the use of herbicides in forestry; studies dealing with agricultural systems are referenced where appropriate. The indirect effects of herbicides on wildlife-habitat are then conceptualized and quantified using data from a 3-year study on effects of phenoxy and glyphosate herbicides on bird and small mammal communities in western Oregon. Data on density and habitat use are presented and compared with data available from other geographic regions.

  14. Impact of dry-wet and freeze-thaw events on pesticide mineralizing populations and their activity in wetland ecosystems: A microcosm study.

    PubMed

    Vandermeeren, Pieter; Baken, Stijn; Vanderstukken, Ruben; Diels, Jan; Springael, Dirk

    2016-03-01

    Riparian wetlands are proposed to mitigate diffuse pollution of surface water by pesticides in agricultural landscapes. Wetland ecosystems though are highly dynamic environments and seasonal disturbances such as freezing and drying can affect microbial population sizes in the sediment and their functionality including pesticide biodegradation, which has hardly been studied. This study examined the effect of artificially induced dry-wet or freeze-thaw events on the mineralization of the pesticides isoproturon (IPU) and 2-methoxy-4-chlorophenoxy acetic acid (MCPA) in wetland microcosms, either without or with prior enrichment of IPU/MCPA degrading populations. Without prior enrichment, mineralization of IPU and MCPA was significantly reduced after exposure to especially freeze-thaw events, as evidenced by lower mineralization rates and longer lag times compared to non-exposed microcosms. However, herbicide mineralization kinetics correlated poorly with cell numbers of herbicide mineralizers as estimated by a most probable number (MPN) approach and the number of IPU and MCPA mineralizers was unexpectedly higher in freeze-thaw and dry-wet cycle exposed setups compared to the control setups. This suggested that the observed effects of season-bound disturbances were due to other mechanisms than decay of pesticide mineralizers. In addition, in systems in which the growth of pesticide mineralizing bacteria was stimulated by amendment of IPU and MCPA, exposure to a freeze-thaw or dry-wet event only marginally affected the herbicide mineralization kinetics. Our results show that season bound environmental disturbances can affect pesticide mineralization kinetics in wetlands but that this effect can depend on the history of pesticide applications. PMID:26714290

  15. Allergic contact dermatitis due to a herbicide (barban).

    PubMed Central

    Hogan, D J; Lane, P R

    1985-01-01

    Canadian farmers are using increasing amounts of herbicides. Often they do not use adequate skin protection. Two cases of severe allergic contact dermatitis due to the herbicide barban are described. Patch testing with various substances, including barban, confirmed the diagnosis. Sensitization studies in guinea pigs and in one of the authors showed that barban is a potent sensitizer. It is recommended that if skin contact with barban occurs the skin be washed immediately with soap and water. Images Fig. 1 PMID:3971254

  16. Combined herbicide and saline stress differentially modulates hormonal regulation and antioxidant defense system in Oryza sativa cultivars.

    PubMed

    Islam, Faisal; Ali, Basharat; Wang, Jian; Farooq, Muhammad A; Gill, Rafaqat A; Ali, Shafaqat; Wang, Danying; Zhou, Weijun

    2016-10-01

    Plants are simultaneously exposed to a combination of biotic and abiotic stresses in field conditions. Crops respond to the combined stress in a unique way which cannot be understood by extrapolating the results of individual stress. In the present study, effects of individual and combined stress of herbicide (2,4-dichlorophenoxyacetic acid) and salinity (NaCl) on two Oryza sativa cultivars (ZJ 88 and XS 134) were investigated. Both herbicide and saline stress affected the plant growth differentially and produced oxidative stress in rice cultivars. Interestingly, the combination of herbicide and salinity showed a significant protection to both rice cultivars by reducing ROS (H2O2, O2(-)) and lipid peroxidation through modulation of enzymatic (SOD, POD, CAT and APX) and non-enzymatic (TSP, sugars, phenolic and proline) antioxidants. In addition, active regulation of transcript levels of genes encoding Na(+) and K(+) (OsHKT1;5, OsLti6a,b, OsHKT2;1, OsSOS1, OsCNGC1, OsNHX1 and OsAKT1) transporter proteins reduced sodium and enhanced potassium accumulation under combined stress, resulted a better growth and ionic homeostasis in both rice cultivars. The production of ABA and IAA was significantly higher in cultivar XS 134 compared to cultivar ZJ 88 under control conditions. However, combined herbicide and saline stress enhanced the accumulation of phytohormones (IAA and ABA) and transcription of ethylene in cultivar ZJ 88, which might be one of the factors responsible for poor salt tolerance in sensitive cultivar. These findings indicated that herbicide application under saline stress confers tolerance to salinity in rice cultivars, likely by reducing oxidative damage, modulating mineral absorption, upgradation of antioxidant defense and by dynamic regulation of key genes involved in Na(+) and K(+) homeostasis in plants. PMID:27258572

  17. Combined herbicide and saline stress differentially modulates hormonal regulation and antioxidant defense system in Oryza sativa cultivars.

    PubMed

    Islam, Faisal; Ali, Basharat; Wang, Jian; Farooq, Muhammad A; Gill, Rafaqat A; Ali, Shafaqat; Wang, Danying; Zhou, Weijun

    2016-10-01

    Plants are simultaneously exposed to a combination of biotic and abiotic stresses in field conditions. Crops respond to the combined stress in a unique way which cannot be understood by extrapolating the results of individual stress. In the present study, effects of individual and combined stress of herbicide (2,4-dichlorophenoxyacetic acid) and salinity (NaCl) on two Oryza sativa cultivars (ZJ 88 and XS 134) were investigated. Both herbicide and saline stress affected the plant growth differentially and produced oxidative stress in rice cultivars. Interestingly, the combination of herbicide and salinity showed a significant protection to both rice cultivars by reducing ROS (H2O2, O2(-)) and lipid peroxidation through modulation of enzymatic (SOD, POD, CAT and APX) and non-enzymatic (TSP, sugars, phenolic and proline) antioxidants. In addition, active regulation of transcript levels of genes encoding Na(+) and K(+) (OsHKT1;5, OsLti6a,b, OsHKT2;1, OsSOS1, OsCNGC1, OsNHX1 and OsAKT1) transporter proteins reduced sodium and enhanced potassium accumulation under combined stress, resulted a better growth and ionic homeostasis in both rice cultivars. The production of ABA and IAA was significantly higher in cultivar XS 134 compared to cultivar ZJ 88 under control conditions. However, combined herbicide and saline stress enhanced the accumulation of phytohormones (IAA and ABA) and transcription of ethylene in cultivar ZJ 88, which might be one of the factors responsible for poor salt tolerance in sensitive cultivar. These findings indicated that herbicide application under saline stress confers tolerance to salinity in rice cultivars, likely by reducing oxidative damage, modulating mineral absorption, upgradation of antioxidant defense and by dynamic regulation of key genes involved in Na(+) and K(+) homeostasis in plants.

  18. Herbicidal treatments for control of Papaver somniferum L.

    PubMed

    Horowitz, M

    1980-01-01

    Fifty-five commercially available herbicides were evaluated for possible use to destroy illicit opium poppy crops (Papaver somniferum). In the first stage, herbicides were sprayed on poppy plants grown in containers. The following compounds killed poppy plants: (a) herbicides with typical foliar activity--amitrole, bromoxynil, 2,4-D, glyphosate, ioxynil and paraquat; and (b) herbicides with root and foliar activity--the triazines ametryn, atrazine, metribuzin, prometryn, simazine and terbutryn; the substituted ureas benzthiazuron, chloroxuron, diuron, fluometuron, linuron, methabenzthiazuron, neburon and phenobenzuron; and the miscellaneous compounds karbutilate, methazole, oxadiazon and pyrazon. Severe but sublethal injury was caused by cycloate, EPTC, molinate, pobulate, cacodylate + MSMA, ethofumesate, perfluidone and phenmedipham. Abnormal development of vegetative or reproductive parts of the plant was induced by benefin, butralin, dinitramine, pendimethalin, trifluralin, diphenamid, napropamide, dalapon and propham. Efficient herbicides with negligible persistence in soil at the doses applied were evaluated on poppy plants in the field at various stages of growth. Small plants were severely injured by 2,4-D, killed rapidly by bromoxynil, ioxynil, paraquat (in mixture + diquat), and more slowly by glyphosate and metribuzin. The resistance to herbicides increased with the age of the poppy plant. Severe damage with partial kill of developed plants was obtained with bromoxynil, ioxynil, glyphosate, and paraquat + diquat; the last treatment produced the fastest effect.

  19. Molecular genotyping of herbicide resistance in P. minor: ACCase resistance.

    PubMed

    Singh, Rajender; Sharma, Davinder; Raghav, Nishu; Chhokar, Rajender Singh; Sharma, Indu

    2015-02-01

    Little seed canary grass (Phalaris minor Retz.) populations resistant to herbicides that inhibit acetyl-CoA carboxylase (ACCase) represent an increasingly important weed control problem in northern India. The objective of this study was to develop DNA-based markers to differentiate herbicide-resistant and herbicide-susceptible population of P. minor. Primers were designed to amplify the conserved region carrying two reported mutations Trp2027 to Cys and Ile2041 to Asn conferring ACCase inhibitor resistance in several grass weeds and subjected to single-strand conformational polymorphism (SSCP) to detect the mutations. Five distinctive electrophoretic patterns on non-denaturing PAGE were observed, and four patterns were found to be associated with ACCase herbicide resistance in P. minor. The PCR-SSCP test developed in this study confirmed 17 resistant populations to contain mutations in CT domain of ACCase gene. This is the first report of rapid and easy molecular diagnosis of ACCase herbicide-resistant and herbicide-sensitive population of P. minor through PCR-SSCP analysis.

  20. Herbicidal treatments for control of Papaver somniferum L.

    PubMed

    Horowitz, M

    1980-01-01

    Fifty-five commercially available herbicides were evaluated for possible use to destroy illicit opium poppy crops (Papaver somniferum). In the first stage, herbicides were sprayed on poppy plants grown in containers. The following compounds killed poppy plants: (a) herbicides with typical foliar activity--amitrole, bromoxynil, 2,4-D, glyphosate, ioxynil and paraquat; and (b) herbicides with root and foliar activity--the triazines ametryn, atrazine, metribuzin, prometryn, simazine and terbutryn; the substituted ureas benzthiazuron, chloroxuron, diuron, fluometuron, linuron, methabenzthiazuron, neburon and phenobenzuron; and the miscellaneous compounds karbutilate, methazole, oxadiazon and pyrazon. Severe but sublethal injury was caused by cycloate, EPTC, molinate, pobulate, cacodylate + MSMA, ethofumesate, perfluidone and phenmedipham. Abnormal development of vegetative or reproductive parts of the plant was induced by benefin, butralin, dinitramine, pendimethalin, trifluralin, diphenamid, napropamide, dalapon and propham. Efficient herbicides with negligible persistence in soil at the doses applied were evaluated on poppy plants in the field at various stages of growth. Small plants were severely injured by 2,4-D, killed rapidly by bromoxynil, ioxynil, paraquat (in mixture + diquat), and more slowly by glyphosate and metribuzin. The resistance to herbicides increased with the age of the poppy plant. Severe damage with partial kill of developed plants was obtained with bromoxynil, ioxynil, glyphosate, and paraquat + diquat; the last treatment produced the fastest effect. PMID:6905769

  1. Simulating the dissipation of two herbicides using micro paddy lysimeters.

    PubMed

    Nhung, Dang Thi Tuyet; Phong, Thai Khanh; Watanabe, Hirozumi; Iwafune, Takashi; Thuyet, Dang Quoc

    2009-11-01

    A set of packed micro paddy lysimeters, placed in a greenhouse, was used to simulate the dissipation of two herbicides, simetryn and thiobencarb, in a controlled environment. Data from a field monitoring study in 2003, including the soil condition and water balances, were used in the simulation. The herbicides were applied and monitored over a period of 21 d. The water balances under two water management scenarios, intermittent irrigation management (AI) and continuous irrigation management (CI), were simulated. In the AI scenario, the pattern of herbicide dissipation in the surface water of the field were simulated, following the first-order kinetics. In the CI scenario, similarity was observed in most lysimeter and field concentrations, but there were differences in some data points. Dissipation curves of both herbicides in the surface water of the two simulated scenarios were not significantly different (P>0.05) from the field data except for intercept of the thiobencarb curve in the CI scenario. The distribution of simetryn and thiobencarb in the soil profile after simulation were also similar to the field data. The highest concentrations of both herbicides were found on the topsoil layer at 0-2.5 cm depth. Only a small amount of herbicides moved down to the deeper soil layers. Micro paddy lysimeters are thus a good alternative for the dissipation study of pesticides in the paddy environment. PMID:19811801

  2. The increasing importance of herbicides in worldwide crop production.

    PubMed

    Gianessi, Leonard P

    2013-10-01

    Herbicide use is increasingly being adopted around the world. Many developing countries (India, China, Bangladesh) are facing shortages of workers to hand weed fields as millions of people move from rural to urban areas. In these countries, herbicides are far cheaper and more readily available than labor for hand weeding. History shows that in industrializing countries in the past, including the United States, Germany, Japan and South Korea, the same phenomenon has occurred-as workers have left agriculture, herbicides have been adopted. It is inevitable that herbicide use will increase in sub-Saharan Africa, not only because millions of people are leaving rural areas, creating shortages of hand weeders, but also because of the need to increase crop yields. Hand weeding has never been a very efficient method of weed control-often performed too late and not frequently enough. Uncontrolled weeds have been a major cause of low crop yields in sub-Saharan Africa for a long time. In many parts of the world, herbicides are being increasingly used to replace tillage in order to improve environmental conditions. In comparison with tillage, herbicide use reduces erosion, fuel use, greenhouse gas emissions and nutrient run-off and conserves water.

  3. Novel Insight into the Genetic Context of the cadAB Genes from a 4-chloro-2-methylphenoxyacetic Acid-Degrading Sphingomonas

    PubMed Central

    Nielsen, Tue Kjærgaard; Xu, Zhuofei; Gözdereliler, Erkin; Aamand, Jens; Hansen, Lars Hestbjerg; Sørensen, Sebastian R.

    2013-01-01

    The 2-methyl-4-chlorophenoxyacetic (MCPA) acid-degrader Sphingomonas sp. ERG5 has recently been isolated from MCPA-degrading bacterial communities. Using Illumina-sequencing, the 5.7 Mb genome of this isolate was sequenced in this study, revealing the 138 kbp plasmid pCADAB1 harboring the 32.5 kbp composite transposon Tn6228 which contains genes encoding proteins for the removal of 2,4-dichlorophenoxyacetic acid (2,4-D) and MCPA, as well as the regulation of this pathway. Transposon Tn6228 was confirmed by PCR to be situated on the plasmid and also exist in a circular intermediate state - typical of IS3 elements. The canonical tfdAα-gene of group III 2,4-D degraders, encoding the first step in degradation of 2,4-D and related compounds, was not present in the chromosomal contigs. However, the alternative cadAB genes, also providing the initial degradation step, were found in Tn6228, along with the 2,4-D-degradation-associated genes tfdBCDEFKR and cadR. Putative reductase and ferredoxin genes cadCD of Rieske non-heme iron oxygenases were also present in close proximity to cadAB, suggesting that these might have an unknown role in the initial degradation reaction. Parts of the composite transposon contain sequence displaying high similarity to previously analyzed 2,4-D degradation genes, suggesting rapid dissemination and high conservation of the chlorinated-phenoxyacetic acid (PAA)-degradation genotype among the sphingomonads. PMID:24391756

  4. Measuring Rates of Herbicide Metabolism in Dicot Weeds with an Excised Leaf Assay.

    PubMed

    Ma, Rong; Skelton, Joshua J; Riechers, Dean E

    2015-01-01

    In order to isolate and accurately determine rates of herbicide metabolism in an obligate-outcrossing dicot weed, waterhemp (Amaranthus tuberculatus), we developed an excised leaf assay combined with a vegetative cloning strategy to normalize herbicide uptake and remove translocation as contributing factors in herbicide-resistant (R) and -sensitive (S) waterhemp populations. Biokinetic analyses of organic pesticides in plants typically include the determination of uptake, translocation (delivery to the target site), metabolic fate, and interactions with the target site. Herbicide metabolism is an important parameter to measure in herbicide-resistant weeds and herbicide-tolerant crops, and is typically accomplished with whole-plant tests using radiolabeled herbicides. However, one difficulty with interpreting biokinetic parameters derived from whole-plant methods is that translocation is often affected by rates of herbicide metabolism, since polar metabolites are usually not mobile within the plant following herbicide detoxification reactions. Advantages of the protocol described in this manuscript include reproducible, accurate, and rapid determination of herbicide degradation rates in R and S populations, a substantial decrease in the amount of radiolabeled herbicide consumed, a large reduction in radiolabeled plant materials requiring further handling and disposal, and the ability to perform radiolabeled herbicide experiments in the lab or growth chamber instead of a greenhouse. As herbicide resistance continues to develop and spread in dicot weed populations worldwide, the excised leaf assay method developed and described herein will provide an invaluable technique for investigating non-target site-based resistance due to enhanced rates of herbicide metabolism and detoxification.

  5. Work plan for determining the occurrence of glyphosate, its transformation product AMPA, other herbicide compounds, and antibiotics in midwestern United States streams, 2002

    USGS Publications Warehouse

    Battaglin, W.A.; Thurman, E.M.; Kolpin, D.W.; Scribner, E.A.; Sandstrom, M.W.; Kuivila, K.M.

    2003-01-01

    The objective of this study is to determine the distribution of glyphosate and its primary transformation product aminomethylphosphonic acid (AMPA) in midwestern streams during post-application and harvest-season runoff events. Water samples will be collected in 2002 during two post-herbicide-application runoff events and one harvest-season runoff event from 53 sites on streams in the Midwestern United States. All samples will be analyzed at the U.S. Geological Survey Organic Geochemistry Research Laboratory in Lawrence, Kansas, for glyphosate and 20 other herbicides. Samples will also be analyzed for a glyphosate transformation product (AMPA) and 26 other herbicide transformation products, using GC/MS or HPLC/MS. Selected samples will be analyzed for 36 antibiotics or antibiotic transformational products. Results from this study will represent the first broad-scale investigation of glyphosate and AMPA in U.S. water resources.

  6. Surface water-ground water interaction: Herbicide transport into municipal collector wells

    USGS Publications Warehouse

    Verstraeten, Ingrid M.; Carr, J.D.; Steele, G.V.; Thurman, E.M.; Bastian, K.C.; Dormedy, D.F.

    1999-01-01

    During spring runoff events, herbicides in the Platte River are transported through an alluvial aquifer into collector wells located on an island in the river in 6 to 7 d. During two spring runoff events in 1995 and 1996, atrazine [2-chloro-4-ethylamino-6-isopropylamino-s-triazine] concentrations in water from these wells reached approximately 7 ??g/L, 70 times more than the background concentration in ground water. Concentrations of herbicides and metabolites in the collector wells generally were one-half to one-fifth the concentrations of herbicides in the river for atrazine, alachlor [2-chloro-2'-6'-diethyl-N-(methoxymethyl)-acetanilide], alachlor ethane-sulfonic acid (ESA) [2-((2,6-diethylphenyl) (methoxymethyl)amino)-2- oxoethane-sulfonic acid], metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N- (2-methoxy-1-methylethyl)acetamide], cyanazine [2-((4-chloro-6-(ethyl-amino)- 1,3,5 triazin-2-yl)-amino)-2-methylpropionitrile], and acetochlor [2-chloro- N-(ethoxymethyl)-N-(2-ethyl-6methyl-phenyl) acetamide], suggesting that 20 to 50% river water could be present in the water from the collector wells, assuming no degradation. The effect of the river on the quality of water from the collector wells can be reduced through selective management of horizontal laterals of the collector wells. The quality of the water from the collector wells is dependent on the (i) selection of the collector well used, (ii) number and selection of laterals used, (iii) chemical characteristics of the contaminant, and (iv) relative mixing of the Platte River and a major upstream tributary.

  7. Establishment of Bacterial Herbicide Degraders in a Rapid Sand Filter for Bioremediation of Phenoxypropionate-Polluted Groundwater.

    PubMed

    Feld, Louise; Nielsen, Tue Kjærgaard; Hansen, Lars Hestbjerg; Aamand, Jens; Albers, Christian Nyrop

    2015-11-20

    In this study, we investigated the establishment of natural bacterial degraders in a sand filter treating groundwater contaminated with the phenoxypropionate herbicides (RS)-2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) and (RS)-2-(2,4-dichlorophenoxy)propanoic acid (DCPP) and the associated impurity/catabolite 4-chlorophenoxypropanoic acid (4-CPP). A pilot facility was set up in a contaminated landfill site. Anaerobic groundwater was pumped up and passed through an aeration basin and subsequently through a rapid sand filter, which is characterized by a short residence time of the water in the filter. For 3 months, the degradation of DCPP, MCPP, and 4-CPP in the sand filter increased to 15 to 30% of the inlet concentration. A significant selection for natural bacterial herbicide degraders also occurred in the sand filter. Using a most-probable-number (MPN) method, we found a steady increase in the number of culturable phenoxypropionate degraders, reaching approximately 5 × 10(5) degraders per g sand by the end of the study. Using a quantitative PCR targeting the two phenoxypropionate degradation genes, rdpA and sdpA, encoding stereospecific dioxygenases, a parallel increase was observed, but with the gene copy numbers being about 2 to 3 log units higher than the MPN. In general, the sdpA gene was more abundant than the rdpA gene, and the establishment of a significant population of bacteria harboring sdpA occurred faster than the establishment of an rdpA gene-carrying population. The identities of the specific herbicide degraders in the sand filter were assessed by Illumina MiSeq sequencing of 16S rRNA genes from sand filter samples and from selected MPN plate wells. We propose a list of potential degrader bacteria involved in herbicide degradation, including representatives belonging to the Comamonadaceae and Sphingomonadales.

  8. Establishment of Bacterial Herbicide Degraders in a Rapid Sand Filter for Bioremediation of Phenoxypropionate-Polluted Groundwater.

    PubMed

    Feld, Louise; Nielsen, Tue Kjærgaard; Hansen, Lars Hestbjerg; Aamand, Jens; Albers, Christian Nyrop

    2016-02-01

    In this study, we investigated the establishment of natural bacterial degraders in a sand filter treating groundwater contaminated with the phenoxypropionate herbicides (RS)-2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) and (RS)-2-(2,4-dichlorophenoxy)propanoic acid (DCPP) and the associated impurity/catabolite 4-chlorophenoxypropanoic acid (4-CPP). A pilot facility was set up in a contaminated landfill site. Anaerobic groundwater was pumped up and passed through an aeration basin and subsequently through a rapid sand filter, which is characterized by a short residence time of the water in the filter. For 3 months, the degradation of DCPP, MCPP, and 4-CPP in the sand filter increased to 15 to 30% of the inlet concentration. A significant selection for natural bacterial herbicide degraders also occurred in the sand filter. Using a most-probable-number (MPN) method, we found a steady increase in the number of culturable phenoxypropionate degraders, reaching approximately 5 × 10(5) degraders per g sand by the end of the study. Using a quantitative PCR targeting the two phenoxypropionate degradation genes, rdpA and sdpA, encoding stereospecific dioxygenases, a parallel increase was observed, but with the gene copy numbers being about 2 to 3 log units higher than the MPN. In general, the sdpA gene was more abundant than the rdpA gene, and the establishment of a significant population of bacteria harboring sdpA occurred faster than the establishment of an rdpA gene-carrying population. The identities of the specific herbicide degraders in the sand filter were assessed by Illumina MiSeq sequencing of 16S rRNA genes from sand filter samples and from selected MPN plate wells. We propose a list of potential degrader bacteria involved in herbicide degradation, including representatives belonging to the Comamonadaceae and Sphingomonadales. PMID:26590282

  9. Establishment of Bacterial Herbicide Degraders in a Rapid Sand Filter for Bioremediation of Phenoxypropionate-Polluted Groundwater

    PubMed Central

    Feld, Louise; Nielsen, Tue Kjærgaard; Hansen, Lars Hestbjerg; Aamand, Jens

    2015-01-01

    In this study, we investigated the establishment of natural bacterial degraders in a sand filter treating groundwater contaminated with the phenoxypropionate herbicides (RS)-2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) and (RS)-2-(2,4-dichlorophenoxy)propanoic acid (DCPP) and the associated impurity/catabolite 4-chlorophenoxypropanoic acid (4-CPP). A pilot facility was set up in a contaminated landfill site. Anaerobic groundwater was pumped up and passed through an aeration basin and subsequently through a rapid sand filter, which is characterized by a short residence time of the water in the filter. For 3 months, the degradation of DCPP, MCPP, and 4-CPP in the sand filter increased to 15 to 30% of the inlet concentration. A significant selection for natural bacterial herbicide degraders also occurred in the sand filter. Using a most-probable-number (MPN) method, we found a steady increase in the number of culturable phenoxypropionate degraders, reaching approximately 5 × 105 degraders per g sand by the end of the study. Using a quantitative PCR targeting the two phenoxypropionate degradation genes, rdpA and sdpA, encoding stereospecific dioxygenases, a parallel increase was observed, but with the gene copy numbers being about 2 to 3 log units higher than the MPN. In general, the sdpA gene was more abundant than the rdpA gene, and the establishment of a significant population of bacteria harboring sdpA occurred faster than the establishment of an rdpA gene-carrying population. The identities of the specific herbicide degraders in the sand filter were assessed by Illumina MiSeq sequencing of 16S rRNA genes from sand filter samples and from selected MPN plate wells. We propose a list of potential degrader bacteria involved in herbicide degradation, including representatives belonging to the Comamonadaceae and Sphingomonadales. PMID:26590282

  10. Degradation of chloroacetanilide herbicides and bacterial community composition in lab-scale wetlands.

    PubMed

    Elsayed, Omniea Fawzy; Maillard, Elodie; Vuilleumier, Stéphane; Millet, Maurice; Imfeld, Gwenaël

    2015-07-01

    Degradation of chloroacetanilide herbicides rac-metolachlor, acetochlor, and alachlor, as well as associated bacterial populations, were evaluated in vertical upflow wetland columns using a combination of hydrochemical and herbicide analyses, and DNA-based approaches. Mass dissipation of chloroacetanilides, continuously supplied at 1.8-1.9 μM for 112 days, mainly occurred in the rhizosphere zone under nitrate and sulphate-reducing conditions, and averaged 61±14%, 52±12% and 29±19% for acetochlor, alachlor and rac-metolachlor, respectively. Metolachlor enantiomer fractions of 0.494±0.009 in the oxic zone and 0.480±0.005 in the rhizosphere zone indicated preferential biodegradation of the S-enantiomer. Chloroacetanilide ethane sulfonic acid and oxanilic acid degradates were detected at low concentrations only (0.5 nM), suggesting extensive degradation and the operation of yet unknown pathways for chloroacetanilide degradation. Hydrochemical parameters and oxygen concentration were major drivers of bacterial composition, whereas exposure to chloroacetanilides had no detectable impact. Taken together, the results underline the importance of anaerobic degradation of chloroacetanilides in wetlands, and highlight the potential of complementary chemical and biological approaches to characterise processes involved in the environmental dissipation of chloroacetanilides.

  11. Residues of insecticides, fungicides, and herbicides on Ontario-grown vegetables, 1980-1985.

    PubMed

    Frank, R; Braun, H E; Ripley, B D

    1987-01-01

    Between 1980 and 1985, 354 composite vegetable samples representing 9 vegetable commodities were collected from farm deliveries to the market place in Ontario, Canada. All samples were analyzed for insecticides, 275 for fungicides, and 135 for herbicides. The analyses included organochlorine, organophosphorus, synthetic pyrethroid, and N-methylcarbamate insecticides; dithiocarbamate, acylalanine, phthalimide, dicarboximide, and other fungicides; and, chlorophenoxy acid, chlorobenzoic acid, bipyridilium, phenylurea, carbamate, and other herbicides. The commodities tested included asparagus, beans, carrots, cauliflower, cucumbers, onions, potatoes, sweet corn, and tomatoes. In most samples, pesticide residues were below the detection limits (i.e., 0.005 to 0.1 mg/kg), and most of the positive findings were a fraction (i.e., less than 1 to 20%) of the maximum residue limit (MRL) permitted for each commodity under the Canadian Food and Drugs Act and Regulations. A small number of samples had residues that exceeded the MRL, and these involved aldicarb and linuron on potatoes and chlorobromuron on carrots.

  12. Metabolism-Based Herbicide Resistance and Cross-Resistance in Crop Weeds: A Threat to Herbicide Sustainability and Global Crop Production1

    PubMed Central

    Yu, Qin; Powles, Stephen

    2014-01-01

    Weedy plant species that have evolved resistance to herbicides due to enhanced metabolic capacity to detoxify herbicides (metabolic resistance) are a major issue. Metabolic herbicide resistance in weedy plant species first became evident in the 1980s in Australia (in Lolium rigidum) and the United Kingdom (in Alopecurus myosuroides) and is now increasingly recognized in several crop-weed species as a looming threat to herbicide sustainability and thus world crop production. Metabolic resistance often confers resistance to herbicides of different chemical groups and sites of action and can extend to new herbicide(s). Cytochrome P450 monooxygenase, glycosyl transferase, and glutathione S-transferase are often implicated in herbicide metabolic resistance. However, precise biochemical and molecular genetic elucidation of metabolic resistance had been stalled until recently. Complex cytochrome P450 superfamilies, high genetic diversity in metabolic resistant weedy plant species (especially cross-pollinated species), and the complexity of genetic control of metabolic resistance have all been barriers to advances in understanding metabolic herbicide resistance. However, next-generation sequencing technologies and transcriptome-wide gene expression profiling are now revealing the genes endowing metabolic herbicide resistance in plants. This Update presents an historical review to current understanding of metabolic herbicide resistance evolution in weedy plant species. PMID:25106819

  13. Balance between herbicidal activity and toxicity effect: a case study of the joint effects of triazine and phenylurea herbicides on Selenastrum capricornutum and Photobacterium phosphoreum.

    PubMed

    Ge, Hongming; Lin, Zhifen; Yao, Zhifeng; Gao, Ya; Cong, Yongping; Yu, Hongxia

    2014-05-01

    The use of herbicide mixtures has become a cost-effective strategy against the evolution of herbicide resistance to protect global food production. Much research has focused on investigating either the herbicidal activities or the toxicity effects of herbicides; however, few of them have investigated both factors. This study investigates the balance between herbicidal activity for Selenastrum capricornutum and toxicity effect toward Photobacterium phosphoreum by determining the joint effects of triazine (simetryn, atrazine, prometon and prometryn) and phenylurea (fenuron, monuron, monolinuron and diuron) herbicides. The results showed that among the four triazines, only simetryn exhibited a unique effect (formation of a pi-sigma bond with the D1 microalga protein and an H-bond with the Luc photobacterial protein); and among 16 triazine-phenylurea binary mixtures, only the mixtures containing simetryn resulted in TU1 values (herbicidal activities of mixtures on S. capricornutum) >TU2 values (toxicity effects of mixtures on P. phosphoreum). However, the other 12 mixtures, which did not contain simetryn, showed the opposite result (TU1herbicide mixtures was proposed. Meanwhile, some suggestions are provided firstly for herbicide combinations based on the balance between herbicidal activity and toxicity effect, which will encourage thoughtful efforts for how to best combine herbicides in a sustainable way. PMID:24681700

  14. Metabolism-based herbicide resistance and cross-resistance in crop weeds: a threat to herbicide sustainability and global crop production.

    PubMed

    Yu, Qin; Powles, Stephen

    2014-11-01

    Weedy plant species that have evolved resistance to herbicides due to enhanced metabolic capacity to detoxify herbicides (metabolic resistance) are a major issue. Metabolic herbicide resistance in weedy plant species first became evident in the 1980s in Australia (in Lolium rigidum) and the United Kingdom (in Alopecurus myosuroides) and is now increasingly recognized in several crop-weed species as a looming threat to herbicide sustainability and thus world crop production. Metabolic resistance often confers resistance to herbicides of different chemical groups and sites of action and can extend to new herbicide(s). Cytochrome P450 monooxygenase, glycosyl transferase, and glutathione S-transferase are often implicated in herbicide metabolic resistance. However, precise biochemical and molecular genetic elucidation of metabolic resistance had been stalled until recently. Complex cytochrome P450 superfamilies, high genetic diversity in metabolic resistant weedy plant species (especially cross-pollinated species), and the complexity of genetic control of metabolic resistance have all been barriers to advances in understanding metabolic herbicide resistance. However, next-generation sequencing technologies and transcriptome-wide gene expression profiling are now revealing the genes endowing metabolic herbicide resistance in plants. This Update presents an historical review to current understanding of metabolic herbicide resistance evolution in weedy plant species.

  15. Leaching of three sulfonylurea herbicides during sprinkler irrigation.

    PubMed

    Cessna, Allan J; Elliott, Jane A; Bailey, Jonathan

    2010-01-01

    Sulfonylurea herbicides are widely applied on the Canadian prairies to control weeds in a variety of crops. Several sulfonylurea herbicides are mobile in soil, and there is concern about their possible movement to ground water. This study was performed to assess the susceptibility of three sulfonylurea herbicides commonly used in prairie crop production to leach under a worst-case scenario. Thifensulfuron-methyl, tribenuron-methyl, and rimsulfuron were applied to a 9-ha tile-drained field, and then approximately 300 mm of irrigation water were applied over a 2-wk period using a center pivot. The commencement of tile-drain flow corresponded to the rise of the water table above tile-drain depth, and peak flow rates corresponded to the greatest depths of ground water above the tile drains. The volume of irrigation water intercepted by the tile drains in each quadrant was determined by site hydrology and represented <10% of the irrigation water applied. Concentrations of thifensulfuron-methyl, tribenuron-methyl, and rimsulfuron in the tile-drain effluent ranged (analysis by liquid chromatography/tandem mass spectrometry) from 2.0 to 248 ng L(-1), not detected (nd) to 55 ng L(-1), and nd to 497 ng L(-1), respectively. Total herbicide transport from the root zone in each quadrant was estimated at <0.5% of the amount of each sulfonylurea herbicide applied. Thifensulfuron-methyl was the only herbicide detected in ground water, with concentrations ranging from 1.2 to 2.5 ng L(-1). With the frequency and amount of rainfall typically encountered in the prairie region of Canada, detectable concentrations (>1 ng L(-1)) of these sulfonylurea herbicides in ground water would be unlikely. PMID:20048324

  16. Broad 4-Hydroxyphenylpyruvate Dioxygenase Inhibitor Herbicide Tolerance in Soybean with an Optimized Enzyme and Expression Cassette[W][OPEN

    PubMed Central

    Siehl, Daniel L.; Tao, Yumin; Albert, Henrik; Dong, Yuxia; Heckert, Matthew; Madrigal, Alfredo; Lincoln-Cabatu, Brishette; Lu, Jian; Fenwick, Tamara; Bermudez, Ericka; Sandoval, Marian; Horn, Caroline; Green, Jerry M.; Hale, Theresa; Pagano, Peggy; Clark, Jenna; Udranszky, Ingrid A.; Rizzo, Nancy; Bourett, Timothy; Howard, Richard J.; Johnson, David H.; Vogt, Mark; Akinsola, Goke; Castle, Linda A.

    2014-01-01

    With an optimized expression cassette consisting of the soybean (Glycine max) native promoter modified for enhanced expression driving a chimeric gene coding for the soybean native amino-terminal 86 amino acids fused to an insensitive shuffled variant of maize (Zea mays) 4-hydroxyphenylpyruvate dioxygenase (HPPD), we achieved field tolerance in transgenic soybean plants to the HPPD-inhibiting herbicides mesotrione, isoxaflutole, and tembotrione. Directed evolution of maize HPPD was accomplished by progressively incorporating amino acids from naturally occurring diversity and novel substitutions identified by saturation mutagenesis, combined at random through shuffling. Localization of heterologously expressed HPPD mimicked that of the native enzyme, which was shown to be dually targeted to chloroplasts and the cytosol. Analysis of the native soybean HPPD gene revealed two transcription start sites, leading to transcripts encoding two HPPD polypeptides. The N-terminal region of the longer encoded peptide directs proteins to the chloroplast, while the short form remains in the cytosol. In contrast, maize HPPD was found almost exclusively in chloroplasts. Evolved HPPD enzymes showed insensitivity to five inhibitor herbicides. In 2013 field trials, transgenic soybean events made with optimized promoter and HPPD variant expression cassettes were tested with three herbicides and showed tolerance to four times the labeled rates of mesotrione and isoxaflutole and two times the labeled rates of tembotrione. PMID:25192697

  17. Isolation from Agricultural Soil and Characterization of a Sphingomonas sp. Able To Mineralize the Phenylurea Herbicide Isoproturon

    PubMed Central

    Sørensen, Sebastian R.; Ronen, Zeev; Aamand, Jens

    2001-01-01

    A soil bacterium (designated strain SRS2) able to metabolize the phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was isolated from a previously IPU-treated agricultural soil. Based on a partial analysis of the 16S rRNA gene and the cellular fatty acids, the strain was identified as a Sphingomonas sp. within the α-subdivision of the proteobacteria. Strain SRS2 was able to mineralize IPU when provided as a source of carbon, nitrogen, and energy. Supplementing the medium with a mixture of amino acids considerably enhanced IPU mineralization. Mineralization of IPU was accompanied by transient accumulation of the metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, and 4-isopropyl-aniline identified by high-performance liquid chromatography analysis, thus indicating a metabolic pathway initiated by two successive N-demethylations, followed by cleavage of the urea side chain and finally by mineralization of the phenyl structure. Strain SRS2 also transformed the dimethylurea-substituted herbicides diuron and chlorotoluron, giving rise to as-yet-unidentified products. In addition, no degradation of the methoxy-methylurea-substituted herbicide linuron was observed. This report is the first characterization of a pure bacterial culture able to mineralize IPU. PMID:11722885

  18. Partitioning of penoxsulam, a new sulfonamide herbicide.

    PubMed

    Jabusch, Thomas W; Tjeerdema, Ronald S

    2005-09-01

    Penoxsulam (trade name Granite) is a new acetolactate synthase (ALS) inhibitor herbicide for postemergence control of annual grasses, sedges, and broadleaf weeds in rice culture. This study was done to understand the equilibrium phase partitioning of penoxsulam to soil and air under conditions simulating California rice field conditions. Partitioning of penoxsulam was determined between soil and water (Kd) by the batch equilibrium method and between air and water (K(H)) by the gas-purge method. In four representative soils from the Sacramento Valley, the Kd values ranged from 0.14 to 5.05 and displayed a modest increase with soil pH. In soil amended with manure compost, soil sorption increased 4-fold with increasing soil organic matter content, but was still low with a Kd of 0.4 in samples with high organic carbon contents of 15%. Penoxsulam was confirmed to be extremely nonvolatile and did not partition into air at any measurable rate at 20 or 40 degrees C. K(H) (pH 7) was estimated at 4.6 x 10(-15) Pa x L x mol(-1) on the basis of available water solubility and vapor pressure data. The results imply that soil and air partitioning of penoxsulam do not significantly affect its potential for degradation or offsite movement in water.

  19. Acute Oral Poisoning Due to Chloracetanilide Herbicides

    PubMed Central

    Seok, Su-Jin; Choi, Sang-Cheon; Yang, Jong-Oh; Lee, Eun-Young; Song, Ho-Yeon; Hong, Sae-Yong

    2012-01-01

    Chloracetanilide herbicides (alachlor, butachlor, metachlor) are used widely. Although there are much data about chronic low dose exposure to chloracetanilide in humans and animals, there are few data about acute chloracetanilide poisoning in humans. This study investigated the clinical feature of patients following acute oral exposure to chloracetanilide. We retrospectively reviewed the data on the patients who were admitted to two university hospitals from January 2006 to December 2010. Thirty-five patients were enrolled. Among them, 28, 5, and 2 cases of acute alachlor, metachlor, butachlor poisoning were included. The mean age was 49.8 ± 15.4 yr. The poison severity score (PSS) was 17 (48.6%), 10 (28.6%), 5 (14.3%), 2 (5.7%), and 1 (2.9%) patients with a PSS of 0, 1, 2, 3, and 4, respectively. The age was higher for the symptomatic patients (1-4 PSS) than that for the asymptomatic patients (0 PSS) (43.6 ± 15.2 vs 55.7 ± 13.5). The arterial blood HCO3 ¯ was lower in the symptomatic patients (1-4 PSS) than that in the asymptomatic patients (0 PSS). Three patients were a comatous. One patient died 24 hr after the exposure. In conclusion, although chloracetanilide poisoning is usually of low toxicity, elder patients with central nervous system symptoms should be closely monitored and cared after oral exposure. PMID:22323855

  20. Acute oral poisoning due to chloracetanilide herbicides.

    PubMed

    Seok, Su-Jin; Choi, Sang-Cheon; Gil, Hyo-Wook; Yang, Jong-Oh; Lee, Eun-Young; Song, Ho-Yeon; Hong, Sae-Yong

    2012-02-01

    Chloracetanilide herbicides (alachlor, butachlor, metachlor) are used widely. Although there are much data about chronic low dose exposure to chloracetanilide in humans and animals, there are few data about acute chloracetanilide poisoning in humans. This study investigated the clinical feature of patients following acute oral exposure to chloracetanilide. We retrospectively reviewed the data on the patients who were admitted to two university hospitals from January 2006 to December 2010. Thirty-five patients were enrolled. Among them, 28, 5, and 2 cases of acute alachlor, metachlor, butachlor poisoning were included. The mean age was 49.8 ± 15.4 yr. The poison severity score (PSS) was 17 (48.6%), 10 (28.6%), 5 (14.3%), 2 (5.7%), and 1 (2.9%) patients with a PSS of 0, 1, 2, 3, and 4, respectively. The age was higher for the symptomatic patients (1-4 PSS) than that for the asymptomatic patients (0 PSS) (43.6 ± 15.2 vs 55.7 ± 13.5). The arterial blood HCO₃⁻ was lower in the symptomatic patients (1-4 PSS) than that in the asymptomatic patients (0 PSS). Three patients were a comatous. One patient died 24 hr after the exposure. In conclusion, although chloracetanilide poisoning is usually of low toxicity, elder patients with central nervous system symptoms should be closely monitored and cared after oral exposure.

  1. Microorganisms capable of metabolizing the herbicide metolachlor.

    PubMed Central

    Saxena, A; Zhang, R W; Bollag, J M

    1987-01-01

    We screened several strains of microorganisms and microbial populations for their ability to mineralize or transform the herbicide metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetami de] because such cultures would potentially be useful in the cleanup of contaminated sites. Although we used various inocula and enrichment culture techniques, we were not able to isolate microorganisms that could mineralize metolachlor. However, strains of Bacillus circulans, Bacillus megaterium, Fusarium sp., Mucor racemosus, and an actinomycete were found to transform metolachlor. Several metabolites could be determined with high-performance liquid chromatography. The tolerance of the strains to high concentrations of metolachlor was also evaluated for the usefulness of the strains for decontamination. Tolerance of the actinomycete to metolachlor concentrations over 200 ppm (200 micrograms/ml) was low and could not be increased by doubling the sucrose concentration in the growth medium or by using a large biomass as inoculum. However, a Fusarium sp. could grow and transform metolachlor up to a concentration of 300 ppm. PMID:3105457

  2. Herbicide Phosphinothricin Causes Direct Stimulation Hormesis

    PubMed Central

    Dragićević, Milan; Platiša, Jelena; Nikolić, Radomirka; Todorović, Slađana; Bogdanović, Milica; Mitić, Nevena; Simonović, Ana

    2013-01-01

    Herbicide phosphinothricin (PPT) inhibits glutamine synthetase (GS), a key enzyme in nitrogen assimilation, thus causing ammonia accumulation, glutamine depletion and eventually plant death. However, the growth response of Lotus corniculatus L. plants immersed in solutions with a broad range of PPT concentrations is biphasic, with pronounced stimulating effect on biomass production at concentrations ≤ 50 μM and growth inhibition at higher concentrations. The growth stimulation at low PPT concentrations is a result of activation of chloroplastic isoform GS2, while the growth suppression is caused by inhibition of both cytosolic GS1 and GS2 at higher PPT concentrations. Since the results are obtained in cell-free system (e.g. protein extracts), to which the principles of homeostasis are not applicable, this PPT effect is an unambiguous example of direct stimulation hormesis. A detailed molecular mechanism of concentration-dependent interaction of both PPT and a related GS inhibitor, methionine sulfoximine, with GS holoenzymes is proposed. The mechanism is in concurrence with all experimental and literature data. PMID:23983663

  3. Finding minimal herbicide concentrations in ground water? Try looking for their degradates

    USGS Publications Warehouse

    Kolpin, D.W.; Thurman, E.M.; Linhart, S.M.

    2000-01-01

    Extensive research has been conducted regarding the occurrence of herbicides in the hydrologic system, their fate, and their effects on human health and the environment. Few studies, however, have considered herbicide transformation products (degradates). In this study of Iowa ground water, herbicide degradates were frequently detected. In fact, herbicide degradates were eight of the 10 most frequently detected compounds. Furthermore, a majority of a herbicide's measured concentration was in the form of its degradates — ranging from 55 to over 99%. The herbicide detection frequencies and concentrations varied significantly among the major aquifer types sampled. These differences, however, were much more pronounced when herbicide degradates were included. Aquifer types presumed to have the most rapid recharge rates (alluvial and bedrock/karst region aquifers) were those most likely to contain detectable concentrations of herbicide compounds. Two indirect estimates of ground-water age (depth of well completion and dissolved-oxygen concentration) were used to separate the sampled wells into general vulnerability classes (low, intermediate, and high). The results show that the herbicide detection frequencies and concentrations varied significantly among the vulnerability classes regardless of whether or not herbicide degradates were considered. Nevertheless, when herbicide degradates were included, the frequency of herbicide compound detection within the highest vulnerability class approached 90%, and the median total herbicide residue concentration increased over an order of magnitude, relative to the parent compounds alone, to 2 μg/l. The results from this study demonstrate that obtaining data on herbicide degradates is critical for understanding the fate of herbicides in the hydrologic system. Furthermore, the prevalence of herbicide degradates documented in this study suggests that to accurately determine the overall effect on human health and the environment of

  4. Influence of herbicide-resistant canola on the environmental impact of weed management.

    PubMed

    Brimner, Theresa A; Gallivan, Gordon James; Stephenson, Gerald R

    2005-01-01

    The growth of herbicide-resistant canola varieties increased from 10% of the canola area in Canada in 1996, when the technology was first introduced, to 80% in 2000. From 1995 to 2000, the amount of herbicide active ingredient applied per hectare of canola declined by 42.8% and the Environmental Impact (EI) per hectare, calculated using the Environmental Impact Quotient for individual herbicides and the amounts of active ingredients applied, declined 36.8%. The amount of herbicide active ingredient per hectare applied to conventional canola was consistently higher than that applied to herbicide-resistant canola each year between 1996 and 2000. Similarly, the EI of herbicide use per hectare in conventional canola was higher than that of herbicide-resistant canola during the same time period. Since 1996, herbicide use has shifted from broadcast applications of soil-active herbicides to post-emergence applications of herbicides with broad-spectrum foliar activity. The decline in herbicide use and EI since the introduction of herbicide-resistant varieties was due to increased use of chemicals with lower application rates, a reduced number of applications and a decreased need for herbicide combinations.

  5. Degradates provide insight to spatial and temporal trends of herbicides in ground water

    USGS Publications Warehouse

    Kolpin, D.W.; Schnoebelen, D.J.; Thurman, E.M.

    2004-01-01

    During 2001, 86 municipal wells in Iowa were sampled and analyzed for 21 herbicide parent compounds and 24 herbicide degradates. The frequency of detection increased from 17% when only herbicide parent compounds were considered to 53% when both herbicide parents and degradates were considered. Thus, the transport of herbicide compounds to ground water is substantially underestimated when herbicide degradates are not considered. A significant difference in the results among the major aquifer types was apparent only when both herbicide parent compounds and their degradates were considered. In addition, including herbicide degradates greatly improved the statistical relation to the age of the water being sampled. When herbicide parent compounds are considered, only 40% of the wells lacking a herbicide detection could be explained by the age of the water predating herbicide use. However, when herbicide degradates were also considered, 80% of the ground water samples lacking a detection could be explained by the age of the water predating herbicide use. Finally, a temporal pattern in alachlor concentrations in ground water could only be identified when alachlor degradates were considered.

  6. Herbicides and transformation products in surface waters of the Midwestern United States

    USGS Publications Warehouse

    Battaglin, W.A.; Thurman, E.M.; Kalkhoff, S.J.; Porter, S.D.

    2003-01-01

    Most herbicides applied to crops are adsorbed by plants or transformed (degraded) in the soil, but small fractions are lost from fields and either move to streams in overland runoff, near surface flow, or subsurface drains, or they infiltrate slowly to ground water. Herbicide transformation products (TPs) can be more or less mobile and more or less toxic in the environment than their source herbicides. To obtain information on the concentrations of selected herbicides and TPs in surface waters of the Midwestern United States, 151 water samples were collected from 71 streams and five reservoir outflows in 1998. These samples were analyzed for 13 herbicides and 10 herbicide TPs. Herbicide TPs were found to occur as frequently or more frequently than source herbicides and at concentrations that were often larger than their source herbicides. Most samples contained a mixture of more than 10 different herbicides or TPs. The ratios of TPs to herbicide concentrations can be used to determine the source of herbicides in streams. Results of a two-component mixing model suggest that on average 90 percent or more of the herbicide mass in Midwestern streams during early summer runoff events originates from the runoff and 10 percent or less comes from increased ground water discharge.

  7. Influence of herbicide-resistant canola on the environmental impact of weed management.

    PubMed

    Brimner, Theresa A; Gallivan, Gordon James; Stephenson, Gerald R

    2005-01-01

    The growth of herbicide-resistant canola varieties increased from 10% of the canola area in Canada in 1996, when the technology was first introduced, to 80% in 2000. From 1995 to 2000, the amount of herbicide active ingredient applied per hectare of canola declined by 42.8% and the Environmental Impact (EI) per hectare, calculated using the Environmental Impact Quotient for individual herbicides and the amounts of active ingredients applied, declined 36.8%. The amount of herbicide active ingredient per hectare applied to conventional canola was consistently higher than that applied to herbicide-resistant canola each year between 1996 and 2000. Similarly, the EI of herbicide use per hectare in conventional canola was higher than that of herbicide-resistant canola during the same time period. Since 1996, herbicide use has shifted from broadcast applications of soil-active herbicides to post-emergence applications of herbicides with broad-spectrum foliar activity. The decline in herbicide use and EI since the introduction of herbicide-resistant varieties was due to increased use of chemicals with lower application rates, a reduced number of applications and a decreased need for herbicide combinations. PMID:15593073

  8. The structure-activity relationship in herbicidal monosubstituted sulfonylureas

    SciTech Connect

    Li, Zheng-Ming; Ma, Yi; Guddat, Luke; Cheng, Pei-Quan; Wang, Jian-Guo; Pang, Siew S; Dong, Yu-Hui; Lai, Cheng-Ming; Wang, Ling-Xiu; Jia, Guo-Feng; Li, Yong-Hong; Wang, Su-Hua; Liu, Jie; Zhao, Wei-Guang; Wang, Bao-Lei

    2012-05-24

    The herbicide sulfonylurea (SU) belongs to one of the most important class of herbicides worldwide. It is well known for its ecofriendly, extreme low toxicity towards mammals and ultralow dosage application. The original inventor, G Levitt, set out structure-activity relationship (SAR) guidelines for SU structural design to attain superhigh bioactivity. A new approach to SU molecular design has been developed. After the analysis of scores of SU products by X-ray diffraction methodology and after greenhouse herbicidal screening of 900 novel SU structures synthesized in the authors laboratory, it was found that several SU structures containing a monosubstituted pyrimidine moiety retain excellent herbicidal characteristics, which has led to partial revision of the Levitt guidelines. Among the novel SU molecules, monosulfuron and monosulfuron-ester have been developed into two new herbicides that have been officially approved for field application and applied in millet and wheat fields in China. A systematic structural study of the new substrate-target complex and the relative mode of action in comparison with conventional SU has been carried out. A new mode of action has been postulated.

  9. Cloud based, Open Source Software Application for Mitigating Herbicide Drift

    NASA Astrophysics Data System (ADS)

    Saraswat, D.; Scott, B.

    2014-12-01

    The spread of herbicide resistant weeds has resulted in the need for clearly marked fields. In response to this need, the University of Arkansas Cooperative Extension Service launched a program named Flag the Technology in 2011. This program uses color-coded flags as a visual alert of the herbicide trait technology within a farm field. The flag based program also serves to help avoid herbicide misapplication and prevent herbicide drift damage between fields with differing crop technologies. This program has been endorsed by Southern Weed Science Society of America and is attracting interest from across the USA, Canada, and Australia. However, flags have risk of misplacement or disappearance due to mischief or severe windstorms/thunderstorms, respectively. This presentation will discuss the design and development of a cloud-based, free application utilizing open-source technologies, called Flag the Technology Cloud (FTTCloud), for allowing agricultural stakeholders to color code their farm fields for indicating herbicide resistant technologies. The developed software utilizes modern web development practices, widely used design technologies, and basic geographic information system (GIS) based interactive interfaces for representing, color-coding, searching, and visualizing fields. This program has also been made compatible for a wider usability on different size devices- smartphones, tablets, desktops and laptops.

  10. Effects of the herbicide imazapyr on juvenile Oregon spotted frogs

    USGS Publications Warehouse

    Yahnke, Amy E.; Grue, Christian E.; Hayes, Marc P.; Troiano, Alexandra T.

    2013-01-01

    Conflict between native amphibians and aquatic weed management in the Pacific Northwest is rarely recognized because most native stillwater-breeding amphibian species move upland during summer, when herbicide application to control weeds in aquatic habitats typically occurs. However, aquatic weed management may pose a risk for aquatic species present in wetlands through the summer, such as the Oregon spotted frog (OSF, Rana pretiosa), a state endangered species in Washington. Acute toxicity of herbicides used to control aquatic weeds tends to be low, but the direct effects of herbicide tank mixes on OSFs have remained unexamined. We exposed juvenile OSFs to tank mixes of the herbicide imazapyr, a surfactant, and a marker dye in a 96-h static-renewal test. The tank mix was chosen because of its low toxicity to fish and its effectiveness in aquatic weed control. Concentrations were those associated with low-volume (3.5 L/ha) and high-volume (7.0 L/ha) applications of imazapyr and a clean-water control. Following exposure, frogs were reared for two months in clean water to identify potential latent effects on growth. Endpoints evaluated included feeding behavior, growth, and body and liver condition indices. We recorded no mortalities and found no significant differences for any end point between the herbicide-exposed and clean-water control frogs. The results suggest that imazapyr use in wetland restoration poses a low risk of direct toxic effects on juvenile OSFs.

  11. Effects of the herbicide imazapyr on juvenile Oregon spotted frogs.

    PubMed

    Yahnke, Amy E; Grue, Christian E; Hayes, Marc P; Troiano, Alexandra T

    2013-01-01

    Conflict between native amphibians and aquatic weed management in the Pacific Northwest is rarely recognized because most native stillwater-breeding amphibian species move upland during summer, when herbicide application to control weeds in aquatic habitats typically occurs. However, aquatic weed management may pose a risk for aquatic species present in wetlands through the summer, such as the Oregon spotted frog (OSF, Rana pretiosa), a state endangered species in Washington. Acute toxicity of herbicides used to control aquatic weeds tends to be low, but the direct effects of herbicide tank mixes on OSFs have remained unexamined. We exposed juvenile OSFs to tank mixes of the herbicide imazapyr, a surfactant, and a marker dye in a 96-h static-renewal test. The tank mix was chosen because of its low toxicity to fish and its effectiveness in aquatic weed control. Concentrations were those associated with low-volume (3.5 L/ha) and high-volume (7.0 L/ha) applications of imazapyr and a clean-water control. Following exposure, frogs were reared for two months in clean water to identify potential latent effects on growth. Endpoints evaluated included feeding behavior, growth, and body and liver condition indices. We recorded no mortalities and found no significant differences for any end point between the herbicide-exposed and clean-water control frogs. The results suggest that imazapyr use in wetland restoration poses a low risk of direct toxic effects on juvenile OSFs.

  12. EEI pulls out of herbicide fight: utilities plan alliance

    SciTech Connect

    Utroska, D.

    1980-07-01

    The Edison Electric Institute has decided it will not go into battle against the Environmental Protection Agency over the agency's suspension and possible cancellation of the herbicide 2,4,5-T. The herbicide is used extensively by electric utilities for woody brush control along transmission and distribution rights-of-way. Edison Electric Institute determined that the cost to participate in the hearing was not in line with the total amount of information the company could offer. Although Dow Chemical Co., the principal manufacturer of the chemical, still plans to testify at the hearing on benefits, several utility companies are attempting to organize a consortium of interested utilities to testify instead of the manufacturer. The Environmental Protection Agency's recent questioning of another herbicide, 2,4-D, has prompted greater interest in 2,4,5-T support. The chemical 2,4-D constitutes the base for many of the most important alternate herbicides. With both 2,4-D and 2,4,5-T banned, many feel the herbicide industry would collapse. Interest in 2,4,5-T began in 1976 when a causal relationship between spontaneous abortions and forest spraying with dioxin was suggested by eight women living in Alsea, Oregon. (SAC)

  13. Aging effects on the availability of herbicides to runoff transfer.

    PubMed

    Louchart, Xavier; Voltz, Marc

    2007-02-15

    Realistic estimation of sorption parameters is essential to predict long-term herbicide availability in soils and their contamination of surface water and groundwater. This study examined the temporal change of an effective partition coefficient Kd(eff) for the herbicides simazine, diuron, and oryzalin from a 0.12 ha field experiment during 7 vineyard growing seasons. Kd(eff) is the ratio of solvent extractable herbicide concentrations in the top soil (0-2 cm) to the average concentrations in runoff water and is considered to assess the effective availability of herbicides to runoff transfer. Kd(eff) increased largely with aging time since application, from values similar to those of the literature (determined in 24 h batch conditions, Kd(ref)), up to 88, 164, and 30 times these initial values for simazine, diuron, and oryzalin respectively. The seasonal variation of Kd(eff) values between years and compounds could be adequately described by a unique model, taking into account the cumulative rainfall since application and Kd(ref) of each compound. This simple model was able to represent the influence of the soil moisture content and its changes in the different biological and physicochemical processes that may contribute to the (bio)available, sorbed, or entrapped state of any of the studied herbicides with aging time under Mediterranean climate.

  14. Catchment-scale herbicides transport: Theory and application

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Thomet, M.; Botter, G.; Rinaldo, A.

    2013-02-01

    This paper proposes and tests a model which couples the description of hydrologic flow and transport of herbicides at catchment scales. The model accounts for streamflow components' age to characterize short and long term fluctuations of herbicide flux concentrations in stream waters, whose peaks exceeding a toxic threshold are key to exposure risk of aquatic ecosystems. The model is based on a travel time formulation of transport embedding a source zone that describes near surface herbicide dynamics. To this aim we generalize a recently proposed scheme for the analytical derivation of travel time distributions to the case of solutes that can be partially taken up by transpiration and undergo chemical degradation. The framework developed is evaluated by comparing modeled hydrographs and atrazine chemographs with those measured in the Aabach agricultural catchment (Switzerland). The model proves reliable in defining complex transport features shaped by the interplay of long term processes, related to the persistence of solute components in soils, and short term dynamics related to storm inter-arrivals. The effects of stochasticity in rainfall patterns and application dates on concentrations and loads in runoff are assessed via Monte Carlo simulations, highlighting the crucial role played by the first rainfall event occurring after herbicide application. A probabilistic framework for critical determinants of exposure risk to aquatic communities is defined. Modeling of herbicides circulation at catchment scale thus emerges as essential tools for ecological risk assessment.

  15. Phenylurea herbicide sorption to biochars and agricultural soil

    PubMed Central

    WANG, DAOYUAN; MUKOME, FUNGAI N. D.; YAN, DENGHUA; WANG, HAO; SCOW, KATE M.; PARIKH, SANJAI J.

    2016-01-01

    Biochar is increasingly been used as a soil amendment to improve water holding capacity, reduce nutrient leaching, increase soil pH and also as a means to reduce contamination through sorption of heavy metals or organic pollutants. The sorption behavior of three phenylurea herbicides (monuron, diuron, linuron) on five biochars (Enhanced Biochar, Hog Waste, Turkey Litter, Walnut Shell and Wood Feedstock) and an agricultural soil (Yolo silt loam) was investigated using a batch equilibration method. Sorption isotherms of herbicides to biochars were well described by the Freundlich model (R2 = 0.93 -- 0.97). The adsorption KF values ranged from 6.94 to 1306.95 mg kg−1 and indicated the sorption of herbicides in the biochars and Yolo soil was in the sequence of linuron > diuron > monuron and walnut shell biochar > wood feedstock biochar > turkey litter biochar > enhanced biochar > hog waste biochar > Yolo soil. These data show that sorption of herbicides to biochar can have both positive (reduced off-site transport) and negative (reduced herbicide efficacy) implications and specific biochar properties, such as H/C ratio and surface area, should be considered together with soil type, agriculture chemical and climate condition in biochar application to agricultural soil to optimize the system for both agricultural and environmental benefits. PMID:26065514

  16. Phenylurea herbicide sorption to biochars and agricultural soil.

    PubMed

    Wang, Daoyuan; Mukome, Fungai N D; Yan, Denghua; Wang, Hao; Scow, Kate M; Parikh, Sanjai J

    2015-01-01

    Biochar is increasingly been used as a soil amendment to improve water-holding capacity, reduce nutrient leaching, increase soil pH, and also as a means to reduce contamination through sorption of heavy metals or organic pollutants. The sorption behavior of three phenylurea herbicides (monuron, diuron and linuron) on five biochars (Enhanced Biochar, Hog Waste, Turkey Litter, Walnut Shell and Wood Feedstock) and an agricultural soil (Yolo silt loam) was investigated using a batch equilibration method. Sorption isotherms of herbicides to biochars were well described by the Freundlich model (R(2) = 0.93-0.97). The adsorption KF values ranged from 6.94 to 1306.95 mg kg(-1) and indicated the sorption of herbicides in the biochars and Yolo soil was in the sequence of linuron > diuron > monuron and walnut shell biochar > wood feedstock biochar > turkey litter biochar > enhanced biochar > hog waste biochar > Yolo soil. These data show that sorption of herbicides to biochar can have both positive (reduced off-site transport) and negative (reduced herbicide efficacy) implications and specific biochar properties, such as H/C ratio and surface area, should be considered together with soil type, agriculture chemical and climate condition in biochar application to agricultural soil to optimize the system for both agricultural and environmental benefits. PMID:26065514

  17. Reducing the risks of herbicide resistance: best management practices and recommendations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbicides are the foundation of weed control in commercial crop production. However, herbicide-resistant weed populations are developing rapidly in response to selection pressure. Critical practices include reducing selection through diversification of weed control techniques, minimizing spread of ...

  18. Assessing the additive risks of PSII herbicide exposure to the Great Barrier Reef.

    PubMed

    Lewis, Stephen E; Schaffelke, Britta; Shaw, Melanie; Bainbridge, Zoë T; Rohde, Ken W; Kennedy, Karen; Davis, Aaron M; Masters, Bronwyn L; Devlin, Michelle J; Mueller, Jochen F; Brodie, Jon E

    2012-01-01

    Herbicide residues have been measured in the Great Barrier Reef lagoon at concentrations which have the potential to harm marine plant communities. Monitoring on the Great Barrier Reef lagoon following wet season discharge show that 80% of the time when herbicides are detected, more than one are present. These herbicides have been shown to act in an additive manner with regards to photosystem-II inhibition. In this study, the area of the Great Barrier Reef considered to be at risk from herbicides is compared when exposures are considered for each herbicide individually and also for herbicide mixtures. Two normalisation indices for herbicide mixtures were calculated based on current guidelines and PSII inhibition thresholds. The results show that the area of risk for most regions is greatly increased under the proposed additive PSII inhibition threshold and that the resilience of this important ecosystem could be reduced by exposure to these herbicides.

  19. ASSESSING THE RISKS OF NON-TARGET TERRESTRIAL PLANTS FROM HERBICIDES

    EPA Science Inventory

    Use of chemical herbicides to reduce weed competition is a major contributing factor to the high productivity of conventional intensive agricultural cropping systems. However, because of their inherent phytotoxicity, movement of herbicides from target crops and soils can adverse...

  20. Bioactivity of Several Herbicides on the Nanogram Level Under Different Soil Moisture Conditions.

    PubMed

    Jung, S C; Kuk, Y I; Senseman, S A; Ahn, H G; Seong, C N; Lee, D J

    2015-01-01

    In this study, a double-tube centrifuge method was employed to determine the effects of soil moisture on the bioactivity of cafenstrole, pretilachlor, benfuresate, oxyfluorfen and simetryn. In general, the available herbicide concentration in soil solution (ACSS) showed little change as soil moisture increased for herbicides. The total available herbicide in soil solution (TASS) typically increased as soil moisture increased for all herbicides. The relationship between TASS and % growth rate based on dry weight showed strong linear relationships for both cafenstrole and pretilachlor, with r2 values of 0.95 and 0.84, respectively. Increasing TASS values were consistent with increasing herbicide water solubility, with the exception of the ionizable herbicide simetryn. Plant absorption and % growth rate exhibited a strong linear relationship with TASS. According to the results suggested that TASS was a better predictor of herbicidal bioactivity than ACSS for all herbicides under unsaturated soil moisture conditions. PMID:26328425

  1. 33 CFR Appendix E to Part 273 - Preventive Safety Measures in Handling of Herbicides

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... When herbicides or defoliants volatize, the resulting vapors may be poisonous to humans, and they may damage nearby plants, crops or shrubbery; also, herbicides or defoliants containing chlorates may be...

  2. Bioactivity of Several Herbicides on the Nanogram Level Under Different Soil Moisture Conditions.

    PubMed

    Jung, S C; Kuk, Y I; Senseman, S A; Ahn, H G; Seong, C N; Lee, D J

    2015-01-01

    In this study, a double-tube centrifuge method was employed to determine the effects of soil moisture on the bioactivity of cafenstrole, pretilachlor, benfuresate, oxyfluorfen and simetryn. In general, the available herbicide concentration in soil solution (ACSS) showed little change as soil moisture increased for herbicides. The total available herbicide in soil solution (TASS) typically increased as soil moisture increased for all herbicides. The relationship between TASS and % growth rate based on dry weight showed strong linear relationships for both cafenstrole and pretilachlor, with r2 values of 0.95 and 0.84, respectively. Increasing TASS values were consistent with increasing herbicide water solubility, with the exception of the ionizable herbicide simetryn. Plant absorption and % growth rate exhibited a strong linear relationship with TASS. According to the results suggested that TASS was a better predictor of herbicidal bioactivity than ACSS for all herbicides under unsaturated soil moisture conditions.

  3. Fluorescent Pseudomonas isolates from Mississippi Delta oxbow lakes: in vitro herbicide biotransformations.

    PubMed

    Zablotowicz, R M; Locke, M A; Hoagland, R E; Knight, S S; Cash, B

    2001-01-01

    Fluorescent pseudomonads were a major component [log (10) 4.2-6.1 colony-forming units mL-1] of the culturable heterotrophic gram-negative bacterioplankton observed in three Mississippi Delta oxbow lakes in this study. Pure cultures of fluorescent pseudomonads were isolated from three Mississippi Delta oxbow lakes (18 per lake), using selective media S-1. Classical physiological tests and Biolog GN plates were used in criteria for taxonomic identification. Most isolates were identified as biotypes of Pseudomonas fluorescens 55% (II), 7% (III), and 25% (V). About 7% of the isolates were identified as P. putida and 7% as non-fluorescent Pseudomonas-like. Cell suspensions of these isolates were tested for their ability to metabolize/co-metabolize six 14C-radiolabeled herbicides (2,4-dichlorophenoxyacetic acid (2,4-D), cyanazine, fluometuron, metolachlor, propanil, and trifluralin) that are commonly used for crop production in this geographical area. Almost all (53 of 54) isolates transformed trifluralin via aromatic nitroreduction. Most isolates (70%) dechlorinated metolachlor to polar metabolites via glutathione conjugation. About 60% of the isolates hydrolyzed the amide bond of propanil (a rice herbicide) to dichloroaniline, with the highest frequency of propanil-hydrolyzing isolates observed in the lake from the watershed with rice cultivation. All propanil-hydrolyzing isolates were identified as P. fluorescens biotype II. No metabolism of cyanazine or fluometuron was observed by any isolates tested, indicating little or no potential for N-dealkylation among this group of bacterioplankton. No mineralization of 2,4-D labeled in either the carboxyl or ring position was observed. These results indicate that reductive and hydrolytic pathways for herbicide co-metabolism (aromatic nitroreduction, aryl acylamidase, and glutathione conjugation) are common in Mississippi Delta aquatic fluorescent pseudomonads; however, the potential for certain oxidative transformations (N

  4. Triazolopyrimidines as a New Herbicidal Lead for Combating Weed Resistance Associated with Acetohydroxyacid Synthase Mutation.

    PubMed

    Liu, Yu-Chao; Qu, Ren-Yu; Chen, Qiong; Yang, Jing-Fang; Cong-Wei, Niu; Zhen, Xi; Yang, Guang-Fu

    2016-06-22

    Acetohydroxyacid synthase (AHAS; also known as acetolactate synthase; EC 2.2.1.6, formerly EC 4.1.3.18) is the first common enzyme in the biosynthetic pathway leading to the branched-chain amino acids in plants and a wide range of microorganisms. Weed resistance to AHAS-inhibiting herbicides, increasing at an exponential rate, is becoming a global problem and leading to an urgent demand of developing novel compounds against both resistant and wild AHAS. In the present work, a series of novel 2-aroxyl-1,2,4-triazolopyrimidine derivatives (a total of 55) were designed and synthesized with the aim to discover an antiresistant lead compound. Fortunately, the screening results indicated that many of the newly synthesized compounds showed a better, even excellent, inhibition effect against both the wild-type Arabidopsis thaliana AHAS and P197L mutants. Among them, compounds 5-3 to 5-17, compounds 5-19 to 5-26, compounds 5-28 to 5-45, and compound 5-48 have the lower values of resistance factor (RF) and display a potential power to overcome resistance associated with the P197L mutation in the enzyme levels. Further greenhouse in vivo assay showed that compounds 5-15 and 5-20 displayed "moderate" to "good" herbicidal activity against both the wild type-and the resistant (P197L mutation) Descurainia sophia, even at a rate as low as 0.9375 (g of ai/ha). The above results indicated that these two compounds could be used as new leads for the future development of antiresistance herbicides. PMID:27265721

  5. Phylogenetic and degradation characterization of Burkholderia cepacia WZ1 degrading herbicide quinclorac.

    PubMed

    Lü, Zhenmei; Min, Hang; Wu, Shuwen; Ruan, Aidong

    2003-11-01

    Strain WZI capable of degrading quinclorac was isolated from a pesticide manufactory soil and considered to be Burkholderia cepacia, belonged to bacteria, Proteobacteria, beta-Proteobacteria, based on morphology, physio-biochemical properties, whole cell fatty acid analysis and a partial sequencing of 16S rDNA. Strain WZ1 decomposed 90% of quinclorac at original concentration of 1000 mg L(-1) within 11 days. GC/MS analysis showed that the strain degraded quinclorac to 3,7-dichloro-8-quinoline and the cracked residue 2-chloro, 1,4-benzenedicarboxylic acid, indicating that the metabolic pathway was initiated by process of decarboxylation followed by cleavage of the aromatic ring. Stain WZ1 was also able to degrade some other herbicides and aromatic compounds, including 2,4,5-T, phenol, naphthalene and hydrochinone etc. This paper describes for the first time Phylogenetic and degradation characterization of a pure bacterium which, is able to mineralize quinclorac.

  6. Heterologous expression of a Tpo1 homolog from Arabidopsis thaliana confers resistance to the herbicide 2,4-D and other chemical stresses in yeast.

    PubMed

    Cabrito, Tânia R; Teixeira, Miguel C; Duarte, Alexandra A; Duque, Paula; Sá-Correia, Isabel

    2009-10-01

    The understanding of the molecular mechanisms underlying acquired herbicide resistance is crucial in dealing with the emergence of resistant weeds. Saccharomyces cerevisiae has been used as a model system to gain insights into the mechanisms underlying resistance to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The TPO1 gene, encoding a multidrug resistance (MDR) plasma membrane transporter of the major facilitator superfamily (MFS), was previously found to confer resistance to 2,4-D in yeast and to be transcriptionally activated in response to the herbicide. In this work, we demonstrate that Tpo1p is required to reduce the intracellular concentration of 2,4-D. ScTpo1p homologs encoding putative plasma membrane MFS transporters from the plant model Arabidopsis thaliana were analyzed for a possible role in 2,4-D resistance. At5g13750 was chosen for further analysis, as its transcript levels were found to increase in 2,4-D stressed plants. The functional heterologous expression of this plant open reading frame in yeast was found to confer increased resistance to the herbicide in Deltatpo1 and wild-type cells, through the reduction of the intracellular concentration of 2,4-D. Heterologous expression of At5g13750 in yeast also leads to increased resistance to indole-3-acetic acid (IAA), Al(3+) and Tl(3+). At5g13750 is the first plant putative MFS transporter to be suggested as possibly involved in MDR.

  7. Holadysenterine, a natural herbicidal constituent from Drechslera australiensis for management of Rumex dentatus.

    PubMed

    Akbar, Muhammad; Javaid, Arshad; Ahmed, Ejaz; Javed, Tariq; Clary, Jacob

    2014-01-15

    Rumex dentatus L. is a problematic weed of wheat. Bioassay-directed isolation of culture filtrates of a plant pathogenic fungus Drechslera australiensis gave holadysenterine as the main herbicidal constituent against this weed of wheat. Leaf disc bioassay showed that herbicidal activity of holadysenterine was comparable to that of synthetic herbicide 2,4-D. This is the first report of this herbicidal compound from the genus Drechslera.

  8. Changes in concentrations of triazine and acetamide herbicides by bank filtration, ozonation, and chlorination in a public water supply

    USGS Publications Warehouse

    Verstraeten, Ingrid M.; Thurman, E.M.; Lindsey, M.E.; Lee, E.C.; Smith, R.D.

    2002-01-01

    The changes in triazine and acetamide concentrations in water during natural and artificial treatment by bank filtration, ozonation, filtration, and chlorination were measured at the well field and drinking water treatment plant of Lincoln, Nebraska, USA. The city's groundwater supply is affected by induced infiltration and transport of triazines and acetamide herbicides from the Platte River in late spring and early summer. The objective of the study was to evaluate the effect of infiltration and treatment on the presence of triazines and acetamides in drinking water. Samples of river water, well water, and public supply water at various stages of water treatment were collected from 1997-1999 during spring-runoff when the presence of herbicides in the Platte River is largest. In 1999, parent compounds were reduced by 76% of the concentration present in river water (33% by bank filtration, 41% by ozonation, and 1.5% by chlorination). Metabolites of herbicides for which analytical techniques existed were reduced by 21% (plus 26% by bank filtration, minus 23% by ozonation, and minus 24% by chlorination). However, increases in concentrations of specific metabolite compounds were identified after bank filtration and ozonation. After bank filtration, increases in cyanazine amide, cyanazine acid, and deethylcyanazine acid were identified. After ozonation, concentrations of deisopropylatrazine, deethylatrazine, didealkylatrazine, atrazine amide-I, hydroxydeethylatrazine, hydroxydeisopopylatrazine, deethylcyanazine acid, and deethylcyanazine increased. Concentrations of cyanazine acid and ethanesulfonic and oxanilic acids of acetamides decreased during ozonation. Our findings suggest that bank filtration and ozonation of water in part can shift the assessment of risk to human health associated with the consumption of the water from the parent compounds to their degradation products.

  9. Changes in concentrations of triazine and acetamide herbicides by bank filtration, ozonation, and chlorination in a public water supply

    NASA Astrophysics Data System (ADS)

    Verstraeten, I. M.; Thurman, E. M.; Lindsey, M. E.; Lee, E. C.; Smith, R. D.

    2002-09-01

    The changes in triazine and acetamide concentrations in water during natural and artificial treatment by bank filtration, ozonation, filtration, and chlorination were measured at the well field and drinking water treatment plant of Lincoln, Nebraska, USA. The city's groundwater supply is affected by induced infiltration and transport of triazines and acetamide herbicides from the Platte River in late spring and early summer. The objective of the study was to evaluate the effect of infiltration and treatment on the presence of triazines and acetamides in drinking water. Samples of river water, well water, and public supply water at various stages of water treatment were collected from 1997-1999 during spring-runoff when the presence of herbicides in the Platte River is largest. In 1999, parent compounds were reduced by 76% of the concentration present in river water (33% by bank filtration, 41% by ozonation, and 1.5% by chlorination). Metabolites of herbicides for which analytical techniques existed were reduced by 21% (plus 26% by bank filtration, minus 23% by ozonation, and minus 24% by chlorination). However, increases in concentrations of specific metabolite compounds were identified after bank filtration and ozonation. After bank filtration, increases in cyanazine amide, cyanazine acid, and deethylcyanazine acid were identified. After ozonation, concentrations of deisopropylatrazine, deethylatrazine, didealkylatrazine, atrazine amide-I, hydroxydeethylatrazine, hydroxydeisopopylatrazine, deethylcyanazine acid, and deethylcyanazine increased. Concentrations of cyanazine acid and ethanesulfonic and oxanilic acids of acetamides decreased during ozonation. Our findings suggest that bank filtration and ozonation of water in part can shift the assessment of risk to human health associated with the consumption of the water from the parent compounds to their degradation products.

  10. Presumption of Herbicide Exposure and Presumption of Disability During Service for Reservists Presumed Exposed to Herbicide. Interim final rule.

    PubMed

    2015-06-19

    The Department of Veterans Affairs (VA) is amending its regulation governing individuals presumed to have been exposed to certain herbicides. Specifically, VA is expanding the regulation to include an additional group consisting of individuals who performed service in the Air Force or Air Force Reserve under circumstances in which they had regular and repeated contact with C-123 aircraft known to have been used to spray an herbicide agent ("Agent Orange'') during the Vietnam era. In addition, the regulation will establish a presumption that members of this group who later develop an Agent Orange presumptive condition were disabled during the relevant period of service, thus establishing that this service constituted "active, naval, military or air service.'' The effect of this action is to presume herbicide exposure for these individuals and to allow individuals who were exposed to herbicides during reserve service to establish veteran status for VA purposes and eligibility for some VA benefits. The need for this action results from a recent decision by the Secretary of Veterans Affairs to acknowledge that individuals who had regular and repeated exposure to C-123 aircraft that the United States Air Force used to spray the herbicides in Vietnam during Operation Ranch Hand were exposed to Agent Orange. PMID:26103644

  11. Monitoring of herbicide effect in maize based on electrical measurements

    NASA Astrophysics Data System (ADS)

    Cseresnyés, I.; Fekete, G.; Végh, K.; Székács, A.; Mörtl, M.; Rajkai, K.

    2012-07-01

    The effect of the herbicide acetochlor on root growth was studied by a non-destructive electrical impedance and capacitance method in pot experiments on maize. Acetochlor was applied both as single active ingredient and mixed with safener AD-67 in two dosages. Without safener addition, acetochlor had a permanent inhibiting effect on plant root expansion. The safener AD-67 was capable of providing protective effect against herbicide application. High correlations between root electrical impedance or capacitance and the root dry mass or surface area under our laboratory conditions were confirmed by plant harvest method. Root electrical impedance and capacitance measurements proved to be valid for monitoring the effect of the herbicide influencing root development and for distinguishing plant groups subjected to different stress conditions.

  12. Synthesis and herbicidal activity of substituted pyrazole isothiocyanates.

    PubMed

    Wu, Hua; Feng, Jun-Tao; Lin, Kai-Chun; Zhang, Xing

    2012-01-01

    Isothiocyanates and substituted pyrazoles were combined to form a series of novel isothiocyanates with highly effective herbicidal activity. The target compounds were analyzed by elemental analysis, 1H-NMR, EI-MS and IR spectroscopy. The synthesized compounds, particularly compounds 3-1 and 3-7, exhibited good herbicidal activities against four weeds. The EC(50) values of compound 3-1 against Echinochloa crusgalli L., Cyperus iria L., Dactylis glomerata L., and Trifolium repens L. were 64.32, 65.83, 62.42, and 67.72 µg/mL, respectively. The EC(50) values of compound 3-7 against E. crusgalli L., C. iria L., D. glomerata L., T. repens L. were 65.33, 64.90, 59.41 and 67.41 µg/mL, respectively. Compounds 3-1 and 3-7 may be further optimized as lead compounds for new herbicides. PMID:23075815

  13. Agricultural herbicide transport in a first-order intermittent stream, Nebraska, USA

    USGS Publications Warehouse

    Vogel, J.R.; Linard, J.I.

    2011-01-01

    The behavior of herbicides in surface waters is a function of many variables, including scale of the watershed, physical and chemical properties of the herbicide, physical and chemical properties of the soil, rainfall intensity, and time of year. In this study, the transport of 6 herbicides and 12 herbicide degradates was examined during the 2004 growing season in an intermediate-scale agricultural watershed (146 ha) that is drained by a first-order intermittent stream, and the mass load for each herbicide in the stream was estimated. The herbicide load during the first week of storm events after application ranged from 17% of annual load for trifluralin to 84% of annual load for acetochlor. The maximum weekly herbicide load in the stream was generally within the first 3 weeks after application for those compounds that were applied within the watershed during 2004, and later for herbicides not applied within the watershed during 2004 but still detected in the stream. The apparent dominant mode of herbicide transport in the stream-determined by analysis amongst herbicide and conservative ion concentrations at different points in the hydrograph and in base flow samples-was either overland runoff or shallow subsurface flow, depending on the elapsed time after application and type of herbicide. The load as a percentage of use (LAPU) for the parent compounds in this study was similar to literature values for those compounds applied by the farmer within the watershed, but smaller for those herbicides that had rainfall as their only source within the watershed.

  14. Transcript markers of herbicide stress in Arabidopsis and their cross-species extrapolation to Brassica

    EPA Science Inventory

    Low concentrations and short environmental persistence times of some herbicides make it difficult to develop analytical methods to detect herbicide residues in plants or soils. In contrast, genomics may provide tools to identify herbicide exposure to plants in field settings. Usi...

  15. Herbicide-Resistance in Crops and Weeds: A Historical and Current Perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbicides are the principal economic means of weed management on >90% of U.S. farmland. Herbicide-resistant crop cultivars have been used widely since 1995. Pest disciplines and other life sciences have various definitions of resistance that share commonalities. Development of herbicide resistant w...

  16. Use of controlled release herbicides in waste burial sites

    SciTech Connect

    Burton, F.G.; Cataldo, D.A.; Cline, J.F.; Skiens, W.E.

    1981-07-01

    Controlled-release formulations of herbicides have been applied to the soil in the manner traditional for herbicides: on the surface or mixed into the top few inches of soil. The controlled-release formulation allows another option that we propose to use: to place herbicides, contained in controlled-release formulations, in a layer at least a foot below the surface of the soil, in order to prevent root penetration below that level. Ideally, the herbicide will prevent root tip cell division but will not translocate within the plant, thus assuring that the plant will survive, preserving the ground cover. Trifluralin is one of the herbicides which does not translocate and was chosen for use in this study. A number of applications for this technology are possible; particularly in waste management. In the present studies, we used two different forms of polymeric carrier/delivery (PCD) systems to investigate the controlled release of herbicides. In the initial study, a sheet was made of homogeneous mixtures of an individual polymer and trifluralin. We made several of these sheets, using a different polymer each time (with trifluralin) to compare release rates from the various polymers. We also fabricated cylindrical pellets in two sizes from mixtures of Profax/sup a/ PS-1600 polypropylene and trifluralin, formulated to determine the interaction of PCD systems with soil. Also developed is a trifluralin-releasing device with a theoretical effective lifetime approaching 100 years. The system was designed specifically to protect the asphalt layer or clay/aggregate barriers on uranium mill tailings piles. PCD devices composed of pellets could also be implanted over burial sites for radioactive and/or toxic materials, preventing translocation of those materials to plant shoots, and thence into the biosphere.

  17. Dacthal and chlorophenoxy herbicides and chlorothalonil fungicide in eggs of osprey (Pandion haliaetus) from the Duwamish-Lake Washington-Puget Sound area of Washington state, USA

    USGS Publications Warehouse

    Chu, S.; Henny, C.J.; Kaiser, J.L.; Drouillard, K.G.; Haffner, G.D.; Letcher, R.J.

    2007-01-01

    Current-use chlorophenoxy herbicides including 2,4-dichlorophenoxyacetic acid, dicamba, triclopyr, dicamba, dimethyl tetrachloroterephthalate (DCPA or dacthal), and the metabolite of pyrethroids, 3-phenoxybenzoic acid (3-PBA), and the fungicide, chlorothalonil, were investigated in the eggs of osprey (Pandion haliaetus) that were collected from 15 sites from five study areas Puget Sound/Seattle area of Washington State, USA. DCPA differs from acidic chlorophenoxy herbicides, and is not readily hydrolyzed to free acid or acid metabolites, and thus we developed a new method. Of the 12 chlorophenoxy herbicides and chlorothalonil analyzed only DCPA could be quantified at six of these sites (2.0 to 10.3 pg/g fresh weight). However, higher levels (6.9 to 85.5 pg/g fresh weight) of the unexpected DCPA structural isomer, dimethyl tetrachlorophthalate (diMe-TCP) were quantified in eggs from all sites. diMe-TCP concentrations tended to be higher in eggs from the Everett Harbor area. As diMe-TCP is not an industrial product, and not commercially available, the source of diMe-TCP is unclear. Regardless, these findings indicate that DCPA and diMe-TCP can be accumulated in the food chain of fish-eating osprey, and transferred in ovo to eggs, and thus may be of concern to the health of the developing chick and the general reproductive health of this osprey population. ?? 2006 Elsevier Ltd. All rights reserved.

  18. Dacthal and chlorophenoxy herbicides and chlorothalonil fungicide in eggs of osprey (Pandion haliaetus) from the Duwamish-Lake Washington-Puget Sound area of Washington state, USA.

    PubMed

    Chu, Shaogang; Henny, Charles J; Kaiser, James L; Drouillard, Ken G; Haffner, G Douglas; Letcher, Robert J

    2007-01-01

    Current-use chlorophenoxy herbicides including 2,4-dichlorophenoxyacetic acid, dicamba, triclopyr, dicamba, dimethyl tetrachloroterephthalate (DCPA or dacthal), and the metabolite of pyrethroids, 3-phenoxybenzoic acid (3-PBA), and the fungicide, chlorothalonil, were investigated in the eggs of osprey (Pandion haliaetus) that were collected from 15 sites from five study areas Puget Sound/Seattle area of Washington State, USA. DCPA differs from acidic chlorophenoxy herbicides, and is not readily hydrolyzed to free acid or acid metabolites, and thus we developed a new method. Of the 12 chlorophenoxy herbicides and chlorothalonil analyzed only DCPA could be quantified at six of these sites (2.0 to 10.3 pg/g fresh weight). However, higher levels (6.9 to 85.5 pg/g fresh weight) of the unexpected DCPA structural isomer, dimethyl tetrachlorophthalate (diMe-TCP) were quantified in eggs from all sites. diMe-TCP concentrations tended to be higher in eggs from the Everett Harbor area. As diMe-TCP is not an industrial product, and not commercially available, the source of diMe-TCP is unclear. Regardless, these findings indicate that DCPA and diMe-TCP can be accumulated in the food chain of fish-eating osprey, and transferred in ovo to eggs, and thus may be of concern to the health of the developing chick and the general reproductive health of this osprey population. PMID:16707197

  19. Residual herbicide study on selected Hanford Site roadsides

    SciTech Connect

    Smith, J.L.; Kemp, C.J.; Sackschewsky, M.R.

    1993-08-01

    Westinghouse Hanford Company routinely treats roadsides with herbicides to control undesirable plant growth. An experiment was conducted to test perennial grass germination in soils adjacent to roadways of the Hanford Site. The primary variable was the distance from the roadside. A simple germination test was executed in a controlled-environment chamber to determine the residual effects of these applications. As expected, the greatest herbicide activity was found directly adjacent to the roadway, approximately 0 to 20 ft (0 to 6.3 m) from the roadway.

  20. Disease associated with exposure to certain herbicide agents: peripheral neuropathy.

    PubMed

    2013-09-01

    The Department of Veterans Affairs (VA) adopts as a final rule its proposal to amend its adjudication regulations by clarifying and expanding the terminology regarding presumptive service connection for acute and subacute peripheral neuropathy associated with exposure to certain herbicide agents. This amendment implements a decision by the Secretary of Veterans Affairs based on findings from the National Academy of Sciences (NAS) Institute of Medicine report, Veterans and Agent Orange: Update 2010. It also amends VA's regulation governing retroactive awards for certain diseases associated with herbicide exposure as required by court orders in the class action litigation of Nehmer v. U.S. Department of Veterans Affairs. PMID:24040683

  1. Disease associated with exposure to certain herbicide agents: peripheral neuropathy.

    PubMed

    2013-09-01

    The Department of Veterans Affairs (VA) adopts as a final rule its proposal to amend its adjudication regulations by clarifying and expanding the terminology regarding presumptive service connection for acute and subacute peripheral neuropathy associated with exposure to certain herbicide agents. This amendment implements a decision by the Secretary of Veterans Affairs based on findings from the National Academy of Sciences (NAS) Institute of Medicine report, Veterans and Agent Orange: Update 2010. It also amends VA's regulation governing retroactive awards for certain diseases associated with herbicide exposure as required by court orders in the class action litigation of Nehmer v. U.S. Department of Veterans Affairs.

  2. Natural attenuation of chloroacetinilide herbicides in aquatic systems

    USGS Publications Warehouse

    Graham, D.W.; Graham, W.H.; DeNoyelles, F.; Smith, V.H.; ,

    1999-01-01

    A 4-yr research program that studied the transformation of alachlor and metolachlor in aquatic systems using field microcosms is presented. The field microcosms provided an accurate simulation of natural ecosystems while also permitting the controlled creation of numerous contamination scenarios and sufficient replication to allow statistical evaluation of the results. Different treatments were assessed including conditions as diverse as anaerobic, eutrophic waters typical of nutrient-rich wetland to aerobic, oligotrophic waters typical of the epilimnion of Canadian glacial lake. Herbicide transformation rate was most strongly affected by water temperature, oxygen conditions, nutrient levels within the system, and the specific herbicide assessed.

  3. Dopaminergic toxicity of the herbicide atrazine in rat striatal slices

    PubMed Central

    Filipov, Nikolay M.; Stewart, Molly A.; Carr, Russell L.; Sistrunk, Shannon C.

    2007-01-01

    A possible link between Parkinson’s disease and pesticide exposure has been suggested, and recently it was shown that the herbicide atrazine (ATR) modulates catecholamine metabolism in PC12 cells and affects basal ganglia function in vivo. Hence, the objectives of this study were to: (i) determine if ATR is capable of modulating dopamine (DA) metabolism in striatal tissue slices in vitro and (ii) to explore possible mechanisms of its effects. Striatal tissues from adult male Sprague Dawley rats were incubated with up to 500 μM ATR in a metabolic shaker bath at 37 °C and an atmosphere of 95% O2 and 5% CO2 for 4 h. At the end of incubation, samples were collected for both tissue and media levels of DA and its metabolites (3,4-dihydroxyphenylacetic acid, DOPAC and homovanillic acid, HVA), which were determined by high-performance liquid chromatography with electrochemical detection (HPLC-ECD). To gain some mechanistic insight in to the way ATR affects DA metabolism, several pharmacological manipulations were performed. Striata exposed to ATR at concentrations of 100 μM and greater had a dose-dependent decrease of tissue levels of DA. At doses of ATR 50 μM and greater, the DOPAC+HVA/DA ratio was dose-dependently increased. Tyrosine hydroxylase (TH, the rate-limiting enzyme in DA synthesis) protein levels and activity were not affected by ATR treatment. However, high potassium induced DA release into the medium was decreased, whereas the increase in media DA observed in the presence of the DA uptake inhibitor nomifensine was increased even further by ATR in a dose-dependent manner. All of these effects of ATR were observed at levels that were not toxic to the tissue, as LDH release into the medium (lactate dehydrogenase, an index of non-specific cytotoxicity) was not affected by ATR. Taken together, results from this study suggest that ATR decreases tissue DA levels not by affecting TH activity, but possibly by interfering with the vesicular storage and

  4. Crystal structures of two novel sulfonylurea herbicides in complex with Arabidopsis thaliana acetohydroxyacid synthase

    SciTech Connect

    Wang, Jian-Guo; Lee, Patrick K.-M.; Dong, Yu-Hui; Pang, Siew Siew; Duggleby, Ronald G.; Li, Zheng-Ming; Guddat, Luke W.

    2009-08-17

    Acetohydroxyacid synthase (AHAS; EC 2.2.1.6) is the first enzyme in the biosynthetic pathway of the branched-chain amino acids. It catalyzes the conversion of two molecules of pyruvate into 2-acetolactate or one molecule of pyruvate and one molecule of 2-ketobutyrate into 2-aceto-2-hydroxybutyrate. AHAS requires the cofactors thiamine diphosphate (ThDP), Mg{sup 2+} and FAD for activity. The herbicides that target this enzyme are effective in protecting a broad range of crops from weed species. However, resistance in the field is now a serious problem worldwide. To address this, two new sulfonylureas, monosulfuron and monosulfuron ester, have been developed as commercial herbicides in China. These molecules differ from the traditional sulfonylureas in that the heterocyclic ring attached to the nitrogen atom of the sulfonylurea bridge is monosubstituted rather than disubstituted. The structures of these compounds in complex with the catalytic subunit of Arabidopsis thaliana AHAS have been determined to 3.0 and 2.8 {angstrom}, respectively. In both complexes, these molecules are bound in the tunnel leading to the active site, such that the sole substituent of the heterocyclic ring is buried deepest and oriented towards the ThDP. Unlike the structures of Arabidopsis thaliana AHAS in complex with the classic disubstituted sulfonylureas, where ThDP is broken, this cofactor is intact and present most likely as the hydroxylethyl intermediate.

  5. Environmental Fate of Chiral Herbicide Fenoxaprop-ethyl in Water-Sediment Microcosms

    NASA Astrophysics Data System (ADS)

    Jing, Xu; Yao, Guojun; Liu, Donghui; Liu, Mingke; Wang, Peng; Zhou, Zhiqiang

    2016-05-01

    The environmental fate of the herbicide fenoxaprop-ethyl (FE) in water, sediment and water-sediment microcosm was studied and degradation products fenoxaprop (FA), ethyl-2-(4-hydroxyphenoxy)propanoate (EHPP), 2-(4-hydroxyphenoxy)propanoic acid (HPPA) and 6-chloro-2,3-dihydrobenzoxazol-2-one (CDHB) were monitored. FE, FA, EHPP and HPPA were chiral and the environmental behavior was investigated on an enantiomeric level. In water, sediment and water-sediment microcosms, fenoxaprop-ethyl degraded very fast with half-lives less than 1 day and it was found the herbicidally inactive S-enantiomer degraded faster. Fenoxaprop was the main primary degradation product which was quickly formed and the further degradation was relatively slow with half-lives of 6.4-12.4 days, and the S-enantiomer degraded faster too. EHPP, HPPA and CDHB could be found and S-EHPP and S-HPPA were degraded preferentially. The effects of microorganism and water content were investigated and it was found that the enantioselectivity was attributed to microorganisms. In sediment, the main degradation pathway of fenoxaprop-ethyl was hydrolysis and the degradation rate of fenoxaprop-ethyl increased with water content. The degradation products and enantioselectivity should be considered for the impact of fenoxaprop-ethyl on the aquatic system.

  6. Environmental Fate of Chiral Herbicide Fenoxaprop-ethyl in Water-Sediment Microcosms

    NASA Astrophysics Data System (ADS)

    Jing, Xu; Yao, Guojun; Liu, Donghui; Liu, Mingke; Wang, Peng; Zhou, Zhiqiang

    2016-05-01

    The environmental fate of the herbicide fenoxaprop-ethyl (FE) in water, sediment and water-sediment microcosm was studied and degradation products fenoxaprop (FA), ethyl-2-(4-hydroxyphenoxy)propanoate (EHPP), 2-(4-hydroxyphenoxy)propanoic acid (HPPA) and 6-chloro-2,3-dihydrobenzoxazol-2-one (CDHB) were monitored. FE, FA, EHPP and HPPA were chiral and the environmental behavior was investigated on an enantiomeric level. In water, sediment and water-sediment microcosms, fenoxaprop-ethyl degraded very fast with half-lives less than 1 day and it was found the herbicidally inactive S-enantiomer degraded faster. Fenoxaprop was the main primary degradation product which was quickly formed and the further degradation was relatively slow with half-lives of 6.4–12.4 days, and the S-enantiomer degraded faster too. EHPP, HPPA and CDHB could be found and S-EHPP and S-HPPA were degraded preferentially. The effects of microorganism and water content were investigated and it was found that the enantioselectivity was attributed to microorganisms. In sediment, the main degradation pathway of fenoxaprop-ethyl was hydrolysis and the degradation rate of fenoxaprop-ethyl increased with water content. The degradation products and enantioselectivity should be considered for the impact of fenoxaprop-ethyl on the aquatic system.

  7. Environmental Fate of Chiral Herbicide Fenoxaprop-ethyl in Water-Sediment Microcosms

    PubMed Central

    Jing, Xu; Yao, Guojun; Liu, Donghui; Liu, Mingke; Wang, Peng; Zhou, Zhiqiang

    2016-01-01

    The environmental fate of the herbicide fenoxaprop-ethyl (FE) in water, sediment and water-sediment microcosm was studied and degradation products fenoxaprop (FA), ethyl-2-(4-hydroxyphenoxy)propanoate (EHPP), 2-(4-hydroxyphenoxy)propanoic acid (HPPA) and 6-chloro-2,3-dihydrobenzoxazol-2-one (CDHB) were monitored. FE, FA, EHPP and HPPA were chiral and the environmental behavior was investigated on an enantiomeric level. In water, sediment and water-sediment microcosms, fenoxaprop-ethyl degraded very fast with half-lives less than 1 day and it was found the herbicidally inactive S-enantiomer degraded faster. Fenoxaprop was the main primary degradation product which was quickly formed and the further degradation was relatively slow with half-lives of 6.4–12.4 days, and the S-enantiomer degraded faster too. EHPP, HPPA and CDHB could be found and S-EHPP and S-HPPA were degraded preferentially. The effects of microorganism and water content were investigated and it was found that the enantioselectivity was attributed to microorganisms. In sediment, the main degradation pathway of fenoxaprop-ethyl was hydrolysis and the degradation rate of fenoxaprop-ethyl increased with water content. The degradation products and enantioselectivity should be considered for the impact of fenoxaprop-ethyl on the aquatic system. PMID:27225540

  8. Environmental Fate of Chiral Herbicide Fenoxaprop-ethyl in Water-Sediment Microcosms.

    PubMed

    Jing, Xu; Yao, Guojun; Liu, Donghui; Liu, Mingke; Wang, Peng; Zhou, Zhiqiang

    2016-01-01

    The environmental fate of the herbicide fenoxaprop-ethyl (FE) in water, sediment and water-sediment microcosm was studied and degradation products fenoxaprop (FA), ethyl-2-(4-hydroxyphenoxy)propanoate (EHPP), 2-(4-hydroxyphenoxy)propanoic acid (HPPA) and 6-chloro-2,3-dihydrobenzoxazol-2-one (CDHB) were monitored. FE, FA, EHPP and HPPA were chiral and the environmental behavior was investigated on an enantiomeric level. In water, sediment and water-sediment microcosms, fenoxaprop-ethyl degraded very fast with half-lives less than 1 day and it was found the herbicidally inactive S-enantiomer degraded faster. Fenoxaprop was the main primary degradation product which was quickly formed and the further degradation was relatively slow with half-lives of 6.4-12.4 days, and the S-enantiomer degraded faster too. EHPP, HPPA and CDHB could be found and S-EHPP and S-HPPA were degraded preferentially. The effects of microorganism and water content were investigated and it was found that the enantioselectivity was attributed to microorganisms. In sediment, the main degradation pathway of fenoxaprop-ethyl was hydrolysis and the degradation rate of fenoxaprop-ethyl increased with water content. The degradation products and enantioselectivity should be considered for the impact of fenoxaprop-ethyl on the aquatic system. PMID:27225540

  9. Controlled release of the herbicide simazine from computationally designed molecularly imprinted polymers.

    PubMed

    Piletska, Elena V; Turner, Nicholas W; Turner, Anthony P F; Piletsky, Sergey A

    2005-11-01

    The present study describes the development of materials suitable for environmental control of algae. Molecularly imprinted polymers (MIPs) were used as simazine carriers able to provide the controlled release of simazine into water. Three polymers were designed using computational modelling. The selection of methacrylic acid (MA) and hydroxyethyl methacrylate (HEM) as functional monomers was based on results obtained using the Leapfrog algorithm. A cross-linked polymer made without functional monomers was also prepared and tested as a control. The release of simazine from all three polymers was studied. It was shown that the presence of functional monomers is important for polymer affinity and for controlled release of herbicide. The speed of release of herbicide correlated with the calculated binding characteristics. The high-affinity MA-based polymer released approximately 2% and the low-affinity HEM-based polymer released approximately 27% of the template over 25 days. The kinetics of simazine release from HEM-based polymer show that total saturation of an aqueous environment could be achieved over a period of 3 weeks and this corresponds to the maximal simazine solubility in water. The possible use of these types of polymers in the field of controlled release is discussed.

  10. Functional and structural characterization of two Bacillus megaterium nitroreductases biotransforming the herbicide mesotrione.

    PubMed

    Carles, Louis; Besse-Hoggan, Pascale; Joly, Muriel; Vigouroux, Armelle; Moréra, Solange; Batisson, Isabelle

    2016-05-15

    Mesotrione is a selective herbicide belonging to the triketone family, commonly used on maize cultures since 2003. A mesotrione-transforming Bacillus megaterium Mes11 strain isolated from an agricultural soil was used as a model to identify the key enzymes initiating the biotransformation of this herbicide. Two enzymes (called NfrA1 and NfrA2/YcnD) were identified, and functionally and structurally characterized. Both belong to the NfsA FRP family of the nitro-FMN reductase superfamily (type I oxygen-insensitive nitroreductase) and show optimal pH and temperature of 6-6.5 and 23-25°C, respectively. Both undergo a Ping Pong Bi Bi mechanism, with NADPH and NADPH/NADH as cofactors for NfrA1 and NfrA2/YcnD, respectively. It is interesting that both can also reduce various nitro compounds including pesticides, antibiotics, one prodrug and 4-methylsulfonyl-2-nitrobenzoic acid, one of the mesotrione metabolites retrieved from the environment. The present study constitutes the first identification of mesotrione-transforming enzymes. These enzymes (or their corresponding genes) could be used as biomarkers to predict the capacity of ecosystems to transform mesotrione and assess their contamination by both the parent molecule and/or the metabolites. PMID:27005432

  11. Effervescence assisted on-site liquid phase microextraction for the determination of five triazine herbicides in water.

    PubMed

    Liu, Xueke; Shen, Zhigang; Wang, Peng; Liu, Chang; Zhou, Zhiqiang; Liu, Donghui

    2014-12-01

    A novel effervescence assisted on-site liquid phase microextraction has been developed for the determination of five triazine herbicides in water. The use of an effervescent tablet composed of citric acid, sodium bicarbonate and 1-undecanol (extraction solvent) was the core of the method. The triazine herbicides in water were extracted by 1-undecanol released from tablet under effervescence and determined by ultra-high pressure liquid chromatography tandem mass spectrometer. The experimental variables, including NaCl concentration, temperature, weight of effervescent tablet, volume of extraction solvent and pH value, were screened by a Plackett-Burman design and optimized by a Box-Behnken design. Under the optimized conditions, good linearity was obtained in the range of 0.05-10 μg L(-1) with correlation coefficients ranging from 0.9936 to 0.9988. The limits of quantification were between 7.6 and 26.4 ng L(-1), and the recoveries were in 71.4-93.2% with relative standard deviations of 2.5-10.9%. This method, which does not require centrifugation and any special apparatus, was successfully applied to determine triazine herbicides in real waters, promising to be a way to speed field sampling procedures for the organic pollutants monitoring in water. PMID:25456587

  12. An innovative bovine odorant binding protein-based filtering cartridge for the removal of triazine herbicides from water.

    PubMed

    Bianchi, Federica; Basini, Giuseppina; Grolli, Stefano; Conti, Virna; Bianchi, Francesco; Grasselli, Francesca; Careri, Maria; Ramoni, Roberto

    2013-01-01

    Odorant binding protein (OBP) is a multi-functional scavenger for small hydrophobic molecules dissolved in the mucus lining the nasal epithelia of mammals, characterized by broad ligand binding specificity towards a large number of structurally unrelated natural and synthetic molecules of different chemical classes. Here, we demonstrate for the first time the application of OBP as the active element of an innovative filtering matrix for the removal of environmental pollutants such as triazine herbicides from water samples. The filtering device, obtained by coupling histidine-tagged bovine OBP to a nickel nitrilotriacetic acid (Ni-NTA) agarose resin, was characterized in terms of retention capacity for the herbicides atrazine, simazine, and propazine. Analysis of these herbicides at trace levels with solid-phase microextraction followed by gas chromatography-mass spectrometry using the selected ion monitoring mode proved the capabilities of the proposed device for the decontamination of surface and groundwater samples in the 0.2-2,300 μg/L concentration range, obtaining a reduction in the triazine content greater than 97 %, thus suggesting its possible use for the potabilization of water.

  13. Stability and recovery of triazine and chloroacetamide herbicides from pH adjusted water samples by using empore solid-phase extraction disks and gas chromatography with ion trap mass spectrometry.

    PubMed

    Mueller, T C; Senseman, S A; Carson, K H; Sciumbato, A S

    2001-01-01

    Empore disks were used to successfully extract herbicide residues from a difficult-to-analyze surface water source and deionized water. Herbicide recoveries were lower in surface water at 7,14, or 21 days after fortification and storage at 4 degrees C, presumably due to chemical sorption onto precipitated organic particulates. The addition of acid to the samples, as recommended in EPA Method 525.2, did not affect recoveries of alachlor and metolachlor, but reduced recoveries of atrazine, simazine, and cyanazine. Treatment of water samples with sodium hypochlorite did not affect alachlor or metolachlor recoveries, but greatly reduced the recovery of all triazine herbicides. This indicates that addition of acid or sodium hypochlorite to water samples may be detrimental to triazine analysis.

  14. Herbicides and nitrate in near-surface aquifers in the midcontinental United States, 1991

    USGS Publications Warehouse

    Kolpin, Dana W.; Burkart, Michael R.; Thurman, E. Michael

    1994-01-01

    Hydrogeologic factors, land use, agricultural practices, local features, and water chemistry were analyzed for possible relation to herbicide and excess-nitrate detections. Herbicides and excess nitrate were detected more frequently in near-surface unconsolidated aquifers than in nearsurface bedrock aquifers. The depth to the top of the aquifer was inversely related to the frequency of detection of herbicides and excess nitrate. The proximity of streams to sampled wells also affected the frequency of herbicide detection. Significant seasonal differences were determined for the frequency of herbicide detection, but not for the frequency of excess nitrate.

  15. Factors affecting herbicide yields in the Chesapeake Bay watershed, June 1994

    USGS Publications Warehouse

    Hainly, R.A.; Kahn, J.M.

    1996-01-01

    Median concentrations and instantaneous yields of alachlor, metolachlor, atrazine, cyanazine, and simazine were generally highest at sites in the Lower Susquehanna River Basin and in agricultural subbasins. Instantaneous herbicide yields are related to land use, hydrogeologic setting, streamflow yield, and agricultural row cropping practices. The significance of these relations may be affected by the interdependence of the factors. The percentage of basin area planted in corn is the most influential factor in the prediction of herbicide yield. Instantaneous yields of all five herbicides measured in June 1994 related poorly to averaged 199094 herbicide use. Annually averaged herbicide-use data are too general to use as a predictor for short-term herbicide yields. An evaluation of factors affecting herbicide yields could be refined with more-current land use and land cover information and a more accurate estimate of the percentage of basin area planted in corn. Factors related to herbicide yields can be used to predict herbicide yields in other basins within the Chesapeake Bay watershed and to develop an estimate of herbicide loads to Chesapeake Bay.Median concentrations and instantaneous yields of alachlor, metolachlor, atrazine, cyanazine, and simazine were generally highest at sites in the Lower Susquehanna River Basin and in agricultural subbasins. Instantaneous herbicide yields are related to land use, hydrogeologic setting, streamflow yield, and agricultural row cropping practices. The significance of these relations may be affected by the interdependence of the factors. The percentage of basin area planted in corn is the most influential factor in the prediction of herbicide yield. Instantaneous yields of all five herbicides measured in June 1994 related poorly to averaged 1990-94 herbicide use. Annually averaged herbicide-use data are too general to use as a predictor for short-term herbicide yields. An evaluation of factors affecting herbicide yields could

  16. Effect of some herbicides used in Nigeria on Rhizobium phaseoli, Azotobacter vinelandii and Bacillus subtilis.

    PubMed

    Adeleye, I A; Okorodudu, E; Lawal, O

    2004-04-01

    The effect of three herbicides namely Agroxone, Atranex 50SC and 2,4-Damine on Azotobacter vinelandii, Rhizobium phaseoli and Bacillus subtilis were studied. These bacteria were isolated from a bean-garden in Lagos. The results revealed that 2, 4-Damine was the most toxic of the three herbicides studied and Azotobacter vinelandii was found to be most sensitive to the herbicides. There was a reduction in LC50 of herbicides with increased number of days. The percentage survival decreased with increased concentration of herbicides and days for Rhizobium phaseoli and Azotobacter vinelandii while an initial reduction in population was followed by increased percentage survival of organisms for Bacillus subtilis.

  17. Influence of herbicide active ingredient, nozzle type, orifice size, spray pressure, and carrier volume rate on spray droplet size characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent concerns on herbicide spray drift and its subsequent impact on the surrounding environment and herbicide efficacy have prompted applicators to focus on methods to reduce off-target movement of herbicides. Herbicide applications are complex processes and as such few studies have been conducted...

  18. Effects of herbicide-treated host plants on the development of Mamestra brassicae L. caterpillars.

    PubMed

    Hahn, Melanie; Geisthardt, Martin; Brühl, Carsten A

    2014-11-01

    Herbicides are widely used pesticides that affect plants by changing their chemistry. In doing so, herbicides might also influence the quality of plants as food for herbivores. To study the effects of herbicides on host plant quality, 3 plant species (Plantago lanceolata L., P. major L., and Ranunculus acris L.) were treated with sublethal rates of either a sulfonylurea (Atlantis WG, Bayer CropScience) or a glyphosate (Roundup LB Plus, Monsanto) herbicide, and the development of caterpillars of the cabbage moth Mamestra brassicae L. that fed on these plants was observed. Of the 6 tested plant-herbicide combinations, 1 combination (R. acris + sulfonylurea herbicide) resulted in significantly lower caterpillar weight, increased time to pupation, and increased overall development time compared with larvae that were fed unsprayed plants. These results might be caused by a lower nutritional value of these host plants or increased concentrations of secondary metabolites that are involved in plant defense. The results of the present and other studies suggest potential risks to herbivores that feed on host plants treated with sublethal rates of herbicides. However, as the effects of herbicides on host plant quality appear to be species-specific and as there are numerous plant-herbicide-herbivore relationships in agricultural landscapes, a general reduction in herbicide contamination of nontarget habitats (e.g., field margins) might mitigate the negative effects of herbicides on host plant quality.

  19. Management of herbicide resistance in wheat cropping systems: learning from the Australian experience.

    PubMed

    Walsh, Michael J; Powles, Stephen B

    2014-09-01

    Herbicide resistance continues to escalate in weed populations infesting global wheat (Triticum aestivum L.) crops, threatening grain production and thereby food supply. Conservation wheat production systems are reliant on the use of efficient herbicides providing low-cost, selective weed control in intensive cropping systems. The resistance-driven loss of herbicide resources combined with limited potential for new herbicide molecules means greater emphasis must be placed on preserving existing herbicides. For more than two decades, since the initial recognition of the dramatic consequences of herbicide resistance, the challenge of introducing additional weed control strategies into herbicide-based weed management programmes has been formidable. Throughout this period, herbicide resistance has expanded unabated across the world's wheat production regions. However, in Australia, where herbicide resources have become desperately depleted, the adoption of harvest weed seed control is evidence, at last, of a successful approach to sustainable weed management in wheat production systems. Growers routinely including strategies to target weed seeds during crop harvest, as part of herbicide-based weed management programmes, are now realising significant weed control and crop production benefits. When combined with an attitude of zero weed tolerance, there is evidence of a sustainable weed control future for wheat production systems. The hard-learned lessons of Australian growers can now be viewed by global wheat producers as an example of how to stop the continual loss of herbicide resources in productive cropping systems.

  20. Effects of herbicide-treated host plants on the development of Mamestra brassicae L. caterpillars.

    PubMed

    Hahn, Melanie; Geisthardt, Martin; Brühl, Carsten A

    2014-11-01

    Herbicides are widely used pesticides that affect plants by changing their chemistry. In doing so, herbicides might also influence the quality of plants as food for herbivores. To study the effects of herbicides on host plant quality, 3 plant species (Plantago lanceolata L., P. major L., and Ranunculus acris L.) were treated with sublethal rates of either a sulfonylurea (Atlantis WG, Bayer CropScience) or a glyphosate (Roundup LB Plus, Monsanto) herbicide, and the development of caterpillars of the cabbage moth Mamestra brassicae L. that fed on these plants was observed. Of the 6 tested plant-herbicide combinations, 1 combination (R. acris + sulfonylurea herbicide) resulted in significantly lower caterpillar weight, increased time to pupation, and increased overall development time compared with larvae that were fed unsprayed plants. These results might be caused by a lower nutritional value of these host plants or increased concentrations of secondary metabolites that are involved in plant defense. The results of the present and other studies suggest potential risks to herbivores that feed on host plants treated with sublethal rates of herbicides. However, as the effects of herbicides on host plant quality appear to be species-specific and as there are numerous plant-herbicide-herbivore relationships in agricultural landscapes, a general reduction in herbicide contamination of nontarget habitats (e.g., field margins) might mitigate the negative effects of herbicides on host plant quality. PMID:25143001

  1. Evaluating the degradation of the herbicides picloram and 2,4-D in a compartmentalized reactive biobarrier with internal liquid recirculation.

    PubMed

    Ordaz-Guillén, Yolanda; Galíndez-Mayer, Cutberto Juvencio; Ruiz-Ordaz, Nora; Juárez-Ramírez, Cleotilde; Santoyo-Tepole, Fortunata; Ramos-Monroy, Oswaldo

    2014-01-01

    Tordon is a widely used herbicide formulation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-amino-3,5,6-trichloropicolinic acid (picloram), and it is considered a toxic herbicide. The purposes of this work were to assess the feasibility of a microbial consortium inoculated in a lab-scale compartmentalized biobarrier, to remove these herbicides, and isolate, identify, and evaluate their predominant microbial constituents. Volumetric loading rates of herbicides ranging from 31.2 to 143.9 g m(-3) day(-1), for 2,4-D, and 12.8 to 59.3 g m(-3) day(-1) for picloram were probed; however, the top operational limit of the biobarrier, detected by a decay in the removal efficiency, was not reached. At the highest loading rates probed, high average removal efficiencies of 2,4-D, 99.56 ± 0.44; picloram, 94.58 ± 2.62; and chemical oxygen demand (COD), 89.42 ± 3.68, were obtained. It was found that the lab-scale biofilm reactor efficiently removed both herbicides at dilution rates ranging from 0.92 to 4.23 day(-1), corresponding to hydraulic retention times from 1.087 to 0.236 days. On the other hand, few microbial strains able to degrade picloram are reported in the literature. In this work, three of the nine bacterial strains isolated cometabolically degrade picloram. They were identified as Hydrocarboniphaga sp., Tsukamurella sp., and Cupriavidus sp.

  2. Fourier transform of delayed fluorescence as an indicator of herbicide concentration.

    PubMed

    Guo, Ya; Tan, Jinglu

    2014-12-21

    It is well known that delayed fluorescence (DF) from Photosystem II (PSII) of plant leaves can be potentially used to sense herbicide pollution and evaluate the effect of herbicides on plant leaves. The research of using DF as a measure of herbicides in the literature was mainly conducted in time domain and qualitative correlation was often obtained. Fourier transform is often used to analyze signals. Viewing DF signal in frequency domain through Fourier transform may allow separation of signal components and provide a quantitative method for sensing herbicides. However, there is a lack of an attempt to use Fourier transform of DF as an indicator of herbicide. In this work, the relationship between the Fourier transform of DF and herbicide concentration was theoretically modelled and analyzed, which immediately yielded a quantitative method to measure herbicide concentration in frequency domain. Experiments were performed to validate the developed method.

  3. Pollen Expression of Herbicide Target Site Resistance Genes in Annual Ryegrass (Lolium rigidum).

    PubMed Central

    Richter, J.; Powles, S. B.

    1993-01-01

    Herbicide resistance can occur either through target-site insensitivity or by nontarget site-based mechanisms. Two herbicide-resistant biotypes of Lolium rigidum Gaud., one resistant to acetolactate synthase (ALS)-inhibiting herbicides (biotype WLR1) and the other resistant to acetyl CoA carboxylase (ACCase)-inhibiting herbicides (biotype WLR96) through target-site insensitivity at the whole plant and enzymic levels, were found to express this resistance in the pollen. Pollen produced by resistant biotypes grew uninhibited when challenged with herbicide, whereas that from a susceptible biotype was inhibited. A third biotype, SLR31, resistant to ACCase-inhibiting and certain ALS-inhibiting herbicides at the whole plant level through nontarget site-based mechanisms, did not exhibit this expression in the pollen. The technique described may form the basis for a rapid screen for certain nuclear-encoded, target site-based herbicide-resistance mechanisms. PMID:12231886

  4. Herbicides in ground water of the Midwest: A regional study of shallow aquifers, 1991-94

    USGS Publications Warehouse

    Kolpin, Dana W.; Stamer, J.K.; Goolsby, D.A.; Thurman, E.M.

    1998-01-01

    The intensive herbicide use associated with the 'Corn Belt' marks the Midwestern United States as a region where herbicide contamination of ground water could be a problem. To better understand the regional occurrence of herbicides in shallow aquifers of the Midwest, a sampling network of 303 wells across 12 States was developed. The results documented relatively widespread, low-level concentrations of herbicides in the shallow aquifers sampled. The most frequently detected compounds, however, were the transformation products of these herbicides. A relation was determined between herbicide occurrence and the general age of the ground water sampled. Water that recharged ground water within the past 40 years was much more likely to contain herbicides than water recharged earlier.

  5. Citrullus Germplasm Lines Vary in Clomazone Herbicide Tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences between Citrullus germplasm lines in clomazone injury were first observed when the herbicide was used for weed control in fields containing germplasm lines of watermelon breeding project at the U.S. Vegetable Laboratory, Charleston, SC. The objectives of this investigation were to asses...

  6. Tolerance to the Herbicide Clomazone in Watermelon Plant Introductions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pre-emergence herbicide clomazone (trade name: Command 3ME), is widely used in watermelon production in the US for suppression of annual grasses and broadleaf weeds growing in between plastic beds. Exposure of young watermelon plants to clomazone can cause moderate or severe injury that is expr...

  7. Identification of citrullus lanatus germplasm lines tolerant to clomazone herbicide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clomazone herbicide is registered for use in watermelon; however, crop tolerance is marginal and the recommended use rates (0.07 to 0.1 kg ai ha-1) are lower for watermelon than for some other crops. In a greenhouse germplasm evaluation experiment including 56 germplasm accessions and watermelon cu...

  8. Palmer Amaranth Identification and Documentation of Herbicide Resistance in Argentina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Palmer amaranth (Amaranthuspalmeri S. Wats.) has greatly disrupted agricultural practices in the US with its rapid growth and rapid evolution of herbicide resistance. This weed species is now suspected in Argentina. To document whether the suspected plant populations are indeed Palmer amaranth, mo...

  9. Sorption of the herbicide aminocyclopyrachlor by cation modified clay minerals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminocyclopyrachlor is a newly registered herbicide for the control of broadleaf weeds, grasses, vines and woody species in non-crops, turf, sod farms, and residential areas. At typical soil pH levels, aminocyclopyrachlor is in the anionic form. Anionic pesticides are generally weakly retained by mo...

  10. Herbicide-resistant weed management: focus on glyphosate.

    PubMed

    Beckie, Hugh J

    2011-09-01

    This review focuses on proactive and reactive management of glyphosate-resistant (GR) weeds. Glyphosate resistance in weeds has evolved under recurrent glyphosate usage, with little or no diversity in weed management practices. The main herbicide strategy for proactively or reactively managing GR weeds is to supplement glyphosate with herbicides of alternative modes of action and with soil-residual activity. These herbicides can be applied in sequences or mixtures. Proactive or reactive GR weed management can be aided by crop cultivars with alternative single or stacked herbicide-resistance traits, which will become increasingly available to growers in the future. Many growers with GR weeds continue to use glyphosate because of its economical broad-spectrum weed control. Government farm policies, pesticide regulatory policies and industry actions should encourage growers to adopt a more proactive approach to GR weed management by providing the best information and training on management practices, information on the benefits of proactive management and voluntary incentives, as appropriate. Results from recent surveys in the United States indicate that such a change in grower attitudes may be occurring because of enhanced awareness of the benefits of proactive management and the relative cost of the reactive management of GR weeds.

  11. Reactions of Sweet Corn Hybrids to Prevalent Diseases and Herbicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This 27-year summary is of University of Illinois sweet corn nurseries from 1984 to 2010, and includes the reactions of 800 hybrids to eight diseases and three herbicides. Commercially-available and pre-commercial hybrids included 547 shrunken-2 hybrids (317 yellow, 152 bi-color, and 78 white), 117 ...

  12. Assessing off-taraget impacts of herbicide drift on plants

    EPA Science Inventory

    Plants and plant communities provide vital economic services including production of food and fiber crops for direct human consumption and ecosystem services including wildlife habitat and cycling of nutrients and energy. These services can be impacted if herbicides drift from t...

  13. Modelling the effect of fluctuating herbicide concentrations on algae growth.

    PubMed

    Copin, Pierre-Jean; Coutu, Sylvain; Chèvre, Nathalie

    2015-03-01

    Herbicide concentrations fluctuate widely in watercourses after crop applications and rain events. The level of concentrations in pulses can exceed the water chronic quality criteria. In the present study, we proposed modelling the effects of successive pulse exposure on algae. The deterministic model proposed is based on two parameters: (i) the typical growth rate of the algae, obtained by monitoring growth rates of several successive batch cultures in growth media, characterizing both the growth of the control and during the recovery periods; (ii) the growth rate of the algae exposed to pulses, determined from a dose-response curve obtained with a standard toxicity test. We focused on the herbicide isoproturon and on the freshwater alga Scenedesmus vacuolatus, and we validated the model prediction based on effect measured during five sequential pulse exposures in laboratory. The comparison between the laboratory and the modelled effects illustrated that the results yielded were consistent, making the model suitable for effect prediction of the herbicide photosystem II inhibitor isoproturon on the alga S. vacuolatus. More generally, modelling showed that both pulse duration and level of concentration play a crucial role. The application of the model to a real case demonstrated that both the highest peaks and the low peaks with a long duration affect principally the cell density inhibition of the alga S. vacuolatus. It is therefore essential to detect these characteristic pulses when monitoring of herbicide concentrations are conducted in rivers. PMID:25499055

  14. Species-specific sensitivity of aquatic macrophytes towards two herbicides.

    PubMed

    Cedergreen, Nina; Spliid, Niels Henrik; Streibig, Jens C

    2004-07-01

    The s-triazine herbicide terbutylazine, an inhibitor of photosystem II, is often found in surface waters in concentrations < 1 microg L(-1), but concentrations up to 13 microg L(-1) have been measured. To study the effect on the aquatic flora, we tested the sensitivity of 10 aquatic macrophyte species and a natural epiphyte community in a 2-week laboratory multispecies test at constant terbutylazine concentrations and two irradiance regimes. The data were described by a log-logistic concentration-response model and species sensitivity distributions (SSDs) were created from the EC50 and EC10 values. The 5% hazard concentration (HC5) of the EC10-based SSD for terbutylazine was 1 and 3 microg L(-1); hence the low chronic terbutylazine concentrations measured in the environment are not likely to affect the macrophyte community. To compare the species sensitivity between different groups of herbicides, SSDs were constructed from a published study on the sulfonylurea metsulfuron-methyl, an inhibitor of acetolactate synthase. There was no correlation between species-specific sensitivity to the two herbicides; hence, the combined exposure of different herbicides might affect the macrophyte community more broadly rather than seriously affecting a few susceptible species. Evaluating the standard procedure of leaving at least a factor of 100 between the EC50 of standard tests on Lemna sp. and the predicted environmental concentration seems to be protective for at least 95% of the macrophyte species for both terbutylazine and metsulfuron-methyl. PMID:15223257

  15. Evaluation of Reflex (fomesafen) herbicide for watermelon in Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effective preemergence herbicides are needed for weed control in watermelon grown from transplants. Reflex (fomesafen) was found to be effective and to exhibit crop safety in southeast USA. Trials were conducted during 2011 and 2012 in southeast Oklahoma to determine if this product would be useful...

  16. NEGATIVE-ION MASS SPECTROMETRY OF SULFONYLUREA HERBICIDES

    EPA Science Inventory

    Sulfonylurea herbicides have been studied using neg-ion desorption chem.-ionization (DCI) mass spectrometry (MS) and DCI-MS/MS techniques. Both {M-H]- and M.- ions were obsd. in the DCI mass spectra. The collisonally activated dissocn. (CAD) spectra were characteristic of the str...

  17. Factors Influencing Observed Tillage Impacts on Herbicide Transport

    NASA Astrophysics Data System (ADS)

    Pappas, E. A.; Huang, C.; Smith, D. R.

    2009-04-01

    The widespread use and potential human health effects of the herbicides atrazine and glyphosate have generated interest in establishing how no-tillage impacts loading of these herbicides to runoff water in comparison to other tillage practices. In this study, potentially confounding factos such as time in tillage practice and type and distribution of residue cover, are weighed against inherent tillage impacts to soil structure in terms of relative effects on herbicide transport with runoff water. In this study, two small watersheds (one in no-till (NT) and one rotational till (RT)) were monitored during the first three years since conversion of the RT watershed from NT. In addition, rainfall simulation was applied to plots within each watershed during the first, third, and fifth years since the conversion. Runoff atrazine and glyphosate losses from RT areas were compared to losses from NT areas as a ratio of RT:NT. Results indicate a trend of increasing RT:NT value with time in tillage. Watershed monitoring indicated greater herbicide loading to runoff water from the NT watershed than the RT watershed during the first year since RT conversion, but this relationship reversed by the third year since conversion to RT. In addition, rainfall simulations were performed on small boxes of NT or RT soil having varying types and levels of residue cover in an attempt to isolate residue cover effects from true tillage effects.

  18. Herbicide resistance in weeds: Survey, characterization, and mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this paper is to present a systematic diagnostic approach towards the characterization of herbicide resistance in a given weed population with regards to profile (single, multiple, cross resistance), magnitude (fold level), mechanism, and related bio-physiological aspects. Diagnosing her...

  19. Herbicide-resistant weed management: focus on glyphosate.

    PubMed<