Science.gov

Sample records for acid hf etching

  1. SEMICONDUCTOR TECHNOLOGY: Wet etching characteristics of a HfSiON high-k dielectric in HF-based solutions

    NASA Astrophysics Data System (ADS)

    Yongliang, Li; Qiuxia, Xu

    2010-03-01

    The wet etching properties of a HfSiON high-k dielectric in HF-based solutions are investigated. HF-based solutions are the most promising wet chemistries for the removal of HfSiON, and etch selectivity of HF-based solutions can be improved by the addition of an acid and/or an alcohol to the HF solution. Due to densification during annealing, the etch rate of HfSiON annealed at 900 °C for 30 s is significantly reduced compared with as-deposited HfSiON in HF-based solutions. After the HfSiON film has been completely removed by HF-based solutions, it is not possible to etch the interfacial layer and the etched surface does not have a hydrophobic nature, since N diffuses to the interface layer or Si substrate formation of Si-N bonds that dissolves very slowly in HF-based solutions. Existing Si-N bonds at the interface between the new high-k dielectric deposit and the Si substrate may degrade the carrier mobility due to Coulomb scattering. In addition, we show that N2 plasma treatment before wet etching is not very effective in increasing the wet etch rate for a thin HfSiON film in our case.

  2. Strongly reduced Si surface recombination by charge injection during etching in diluted HF/HNO3.

    PubMed

    Greil, Stefanie M; Schöpke, Andreas; Rappich, Jörg

    2012-08-27

    Herein, we investigate the behaviour of the surface recombination of light-induced charge carriers during the etching of Si in alkaline (KOH) and acidic etching solutions of HF/HNO(3)/CH(3)COOH (HNA) or HF/HNO(3)/H(3)PO(4) (HNP) at different concentration ratios of HF and HNO(3) by means of photoluminescence (PL) measurements. The surface recombination velocity is strongly reduced during the first stages of etching in HF/HNO(3)-containing solutions pointing to a interface well passivated by the etching process, where a positive surface charge is induced by hole injection from NO-related surface species into the Si near-surface region (back surface field effect). This injected charge leads to a change in band bending by about 150 mV that repulses the light-induced charge carriers from the surface and therefore enhances the photoluminescence intensity, since non-radiative surface recombination is reduced.

  3. Ultradeep fused silica glass etching with an HF-resistant photosensitive resist for optical imaging applications

    NASA Astrophysics Data System (ADS)

    Nagarah, John M.; Wagenaar, Daniel A.

    2012-03-01

    Microfluidic and optical sensing platforms are commonly fabricated in glass and fused silica (quartz) because of their optical transparency and chemical inertness. Hydrofluoric acid (HF) solutions are the etching media of choice for deep etching into silicon dioxide substrates, but processing schemes become complicated and expensive for etching times greater than 1 h due to the aggressiveness of HF migration through most masking materials. We present here etching into fused silica more than 600 µm deep while keeping the substrate free of pits and maintaining a polished etched surface suitable for biological imaging. We utilize an HF-resistant photosensitive resist (HFPR) which is not attacked in 49% HF solution. Etching characteristics are compared for substrates masked with the HFPR alone and the HFPR patterned on top of Cr/Au and polysilicon masks. We used this etching process to fabricate suspended fused silica membranes, 8-16 µm thick, and show that imaging through the membranes does not negatively affect image quality of fluorescence microscopy of biological tissue. Finally, we realize small through-pore arrays in the suspended membranes. Such devices will have applications in planar electrophysiology platforms, especially where optical imaging is required.

  4. Dental zirconia can be etched by hydrofluoric acid.

    PubMed

    Sriamporn, Tool; Thamrongananskul, Niyom; Busabok, Chumphol; Poolthong, Sushit; Uo, Motohiro; Tagami, Junji

    2014-01-01

    The surface morphology and crystal structure change of dental zirconia after hydrofluoric acid (HF) etching were evaluated. Four groups of sintered zirconia specimens were 1) control group, 2) immersion in 9.5%HF at 25°C for 1, 2, 3, or 24 h, 3) immersion in 9.5%HF at 80°C for 1, 3, 5, or 30 min and 4) immersion in 48%HF at 25°C for 30 or 60 min. The specimens were evaluated under SEM and XRD. The SEM analysis revealed changes in surface topography for all the HF-etched zirconia specimens. The irregularities surface increased with increasingly longer immersion times and higher etching solution temperatures. The XRD analysis of the HFetched zirconia specimens revealed the presence of a crystalline monoclinic phase along with a tetragonal form. It was concluded HF can etch dental zirconia ceramic, creating micro-morphological changes. Tetragonal-to-monoclinic phase transformation was induced on the etched zirconia surface.

  5. HF-based etching processes for improving laser damage resistance of fused silica optical surfaces

    SciTech Connect

    Suratwala, T I; Miller, P E; Bude, J D; Steele, R A; Shen, N; Monticelli, M V; Feit, M D; Laurence, T A; Norton, M A; Carr, C W; Wong, L L

    2010-02-23

    The effect of various HF-based etching processes on the laser damage resistance of scratched fused silica surfaces has been investigated. Conventionally polished and subsequently scratched fused silica plates were treated by submerging in various HF-based etchants (HF or NH{sub 4}F:HF at various ratios and concentrations) under different process conditions (e.g., agitation frequencies, etch times, rinse conditions, and environmental cleanliness). Subsequently, the laser damage resistance (at 351 or 355 nm) of the treated surface was measured. The laser damage resistance was found to be strongly process dependent and scaled inversely with scratch width. The etching process was optimized to remove or prevent the presence of identified precursors (chemical impurities, fracture surfaces, and silica-based redeposit) known to lead to laser damage initiation. The redeposit precursor was reduced (and hence the damage threshold was increased) by: (1) increasing the SiF{sub 6}{sup 2-} solubility through reduction in the NH4F concentration and impurity cation impurities, and (2) improving the mass transport of reaction product (SiF{sub 6}{sup 2-}) (using high frequency ultrasonic agitation and excessive spray rinsing) away from the etched surface. A 2D finite element crack-etching and rinsing mass transport model (incorporating diffusion and advection) was used to predict reaction product concentration. The predictions are consistent with the experimentally observed process trends. The laser damage thresholds also increased with etched amount (up to {approx}30 {micro}m), which has been attributed to: (1) etching through lateral cracks where there is poor acid penetration, and (2) increasing the crack opening resulting in increased mass transport rates. With the optimized etch process, laser damage resistance increased dramatically; the average threshold fluence for damage initiation for 30 {micro}m wide scratches increased from 7 to 41 J/cm{sup 2}, and the statistical

  6. Fabrication of silicon nanowire arrays by macroscopic galvanic cell-driven metal catalyzed electroless etching in aerated HF solution.

    PubMed

    Liu, Lin; Peng, Kui-Qing; Hu, Ya; Wu, Xiao-Ling; Lee, Shuit-Tong

    2014-03-01

    Macroscopic galvanic cell-driven metal catalyzed electroless etching (MCEE) of silicon in aqueous hydrofluoric acid (HF) solution is devised to fabricate silicon nanowire (SiNW) arrays with dissolved oxygen acting as the one and only oxidizing agent. The key aspect of this strategy is the use of a graphite or other noble metal electrode that is electrically coupled with silicon substrate.

  7. Unveiling the shape-diversified silicon nanowires made by HF/HNO3 isotropic etching with the assistance of silver

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Yun; Wong, Ching-Ping

    2014-12-01

    Hydrofluoric (HF)/nitric (HNO3)/acetic (CH3COOH) acid, normally referred to as the HNA method, is a widely utilized technique for performing isotropic etching on silicon (Si) in industrial Si-based processing and device construction. Here, we reported a novel etching strategy based on a HF/HNO3 process with the assistance of silver (Ag) nano-seeds, offering good controllability in preparing diversified Si nanostructure arrays with particularly smooth top surfaces. The involved mechanism was visualized by systematically investigating both the time and temperature dependencies on the etching kinetics with various ratios of HF to HNO3. Moreover, by testing different Ag+-ion containing oxidants on Si etching, we have re-examined the state-of-the-art metal-assisted chemical etching (MaCE) using HF/AgNO3 etchants. In contrast with previous reports, we found that the interplay of hole injections from Ag+ and NO3- ions to the valence band of Si collectively contributes to the unidirectional dissolution of Si. Finally, we explored the engineering of the Ag nano-seeds to regularize the orientation of the etched nanowires formed on non-Si (100) wafers, which further provides a reliable pathway for constructing the desired morphologies of one-dimensional Si nanostructures regardless of wafer orientation.Hydrofluoric (HF)/nitric (HNO3)/acetic (CH3COOH) acid, normally referred to as the HNA method, is a widely utilized technique for performing isotropic etching on silicon (Si) in industrial Si-based processing and device construction. Here, we reported a novel etching strategy based on a HF/HNO3 process with the assistance of silver (Ag) nano-seeds, offering good controllability in preparing diversified Si nanostructure arrays with particularly smooth top surfaces. The involved mechanism was visualized by systematically investigating both the time and temperature dependencies on the etching kinetics with various ratios of HF to HNO3. Moreover, by testing different Ag

  8. Quantitative coverage and stability of hydrogen-passivation layers on HF-etched Si(1-x)Gex surfaces

    NASA Astrophysics Data System (ADS)

    Wilde, Markus; Fukutani, Katsuyuki; Koh, Shinji; Sawano, Kentarou; Shiraki, Yasuhiro

    2005-07-01

    This study investigates the stability of surface hydride layers passivating silicon-germanium alloys against contamination in ambient conditions after treatment in dilute hydrofluoric acid (HF), which is of central importance to the fabrication of SiGe-based semiconductor devices. We report quantitative hydrogen coverages on HF-etched Si(1-x)Gex surfaces (x=0,0.30,0.60,0.82), determined after air-to-vacuum transfer by H-specific H1(N15,αγ)C12 nuclear reaction analysis. Combination of this coverage information with analysis of the zero-point vibrational properties and N15-ion-induced desorption kinetics of the surface H atoms enables the distinction of well-passivated SiGe surfaces terminated exclusively by hydrides of Si and Ge from those partially covered by contaminating adsorbates. It is found that the resistance of HF-etched Si(1-x)Gex alloys against recontamination is drastically reduced at increasing Ge contents. Pure Si(100)-H is stably passivated at least up to 1week in air by a layer of 1.3±0.1 monolayer total H coverage. Si0.70Ge0.30 initially resembles H-passivated Si(100) but shows indications of moderate contamination after 1week in air. The HF treatment does not produce stable passivation layers on Ge-rich alloys (x⩾0.60), which suffer heavy recontamination within minutes after removal from the HF solution.

  9. Determination of total fluoride in HF/HNO3/H2SiF6 etch solutions by new potentiometric titration methods.

    PubMed

    Weinreich, Wenke; Acker, Jörg; Gräber, Iris

    2007-03-30

    In the photovoltaic industry the etching of silicon in HF/HNO(3) solutions is a decisive process for cleaning wafer surfaces or to produce certain surface morphologies like polishing or texturization. With regard to cost efficiency, a maximal utilisation of etch baths in combination with highest quality and accuracy is strived. To provide an etch bath control realised by a replenishment with concentrated acids the main constituents of these HF/HNO(3) etch solutions including the reaction product H(2)SiF(6) have to be analysed. Two new methods for the determination of the total fluoride content in an acidic etch solution based on the precipitation titration with La(NO(3))(3) are presented within this paper. The first method bases on the proper choice of the reaction conditions, since free fluoride ions have to be liberated from HF and H(2)SiF(6) at the same time to be detected by a fluoride ion-selective electrode (F-ISE). Therefore, the sample is adjusted to a pH of 8 for total cleavage of the SiF(6)(2-) anion and titrated in absence of buffers. In a second method, the titration with La(NO(3))(3) is followed by a change of the pH-value using a HF resistant glass-electrode. Both methods provide consistent values, whereas the analysis is fast and accurate, and thus, applicable for industrial process control. PMID:19071540

  10. Bond strengths of all-ceramics: acid vs laser etching.

    PubMed

    Gökçe, B; Ozpinar, B; Dündar, M; Cömlekoglu, E; Sen, B H; Güngör, M A

    2007-01-01

    Various applications of dental lasers on dental materials have been proposed for surface modifications. This study evaluated whether laser etching could be an alternative to hydrofluoric acid (HF) etching. One hundred and ten lithia-based all-ceramic specimens (Empress 2) (R: 4 mm, h: 4 mm) were prepared and divided into five groups (n = 22/group). The untreated specimens served as the control, while one of the experimental groups was treated with 9.5% HF for 30 seconds. Three remaining test groups were treated with different laser (Er:YAG laser wavelength:2940 nm, OpusDent) power settings: 300 mJ, 600 mJ and 900 mJ. Ten specimens in each group were luted to the other 10 specimens by a dual-curing cement (Variolink II), and shear-bond strength (SBS) tests were performed (Autograph, crosshead speed: 0.5 mm/minute). The results were statistically analyzed (Kruskal Wallis and Mann Whitney-U, alpha = .05). Mean SBS (MPa) were 31.9 +/- 4.0, 41.4 +/- 4.3, 42.8 +/- 6.2, 29.2 +/- 4.5 and 27.4 +/- 3.8 for the control and HF, 300, 600 and 900 mJ groups, respectively. SEM evaluations revealed different surface morphologies depending on the laser parameters. The differences between HF acid and 300 mJ, when compared with the control, 600 and 900 mJ groups, were significant (p < .05). The 300 mJ laser group exhibited the highest shear-bond strength values, indicating that laser etching could also be used for surface treatments.

  11. Low Temperature Silicon Surface Cleaning by HF Etching/Ultraviolet Ozone Cleaning (HF/UVOC) Method (I)—Optimization of the HF Treatment—

    NASA Astrophysics Data System (ADS)

    Suemitsu, Maki; Kaneko, Tetsuya; Miyamoto, Nobuo

    1989-12-01

    Several variations of fluoric acid (HF) treatments of silicon substrates were examined for their adaptability as a pretreatment method for a silicon epitaxy process. Treatments with and without distilled, deionized (DI) water rinse, of different HF concentrations, and of different methods of HF supply were tested and their residual carbonic impurity contents were measured using RHEED. As a result, HF treatments by themselves were found to be insufficient in passivating the surface dangling bonds irrespective of the method of HF supply: dipping into the solution or exposure to the vapor. The optimum procedure of HF treatment thus proposed is a succession of (a) HF dipping, (b) DI-water rinsing, (c) nitrogen-gas blowing, and (d) UV-ozone cleaning.

  12. Etching characteristics of high-k dielectric HfO{sub 2} thin films in inductively coupled fluorocarbon plasmas

    SciTech Connect

    Takahashi, Kazuo; Ono, Kouichi; Setsuhara, Yuichi

    2005-11-15

    Inductively coupled fluorocarbon (CF{sub 4}/Ar and C{sub 4}F{sub 8}/Ar) plasmas were used to etch HfO{sub 2}, which is a promising high-dielectric-constant material for the gate of complementary metal-oxide-semiconductor devices. The etch rates of HfO{sub 2} in CF{sub 4}/Ar plasmas exceeded those in C{sub 4}F{sub 8}/Ar plasmas. The tendency for etch rates to become higher in fluorine-rich (high F/C ratio) conditions indicates that HfO{sub 2} can be chemically etched by fluorine-containing species. In C{sub 4}F{sub 8}/Ar plasmas with a high Ar dilution ratio, the etch rate of HfO{sub 2} increased with increasing bias power. The etch rate of Si, however, decreased with bias power, suggesting that the deposition of carbon-containing species increased with increasing the power and inhibited the etching of Si. The HfO{sub 2}/Si selectivity monotonically increased with increasing power, then became more than 5 at the highest tested bias power. The carbon-containing species to inhibit etching of Si play an important role in enhancing the HfO{sub 2}/Si selectivity in C{sub 4}F{sub 8}/Ar plasmas.

  13. Effect of hydrofluoric acid (HF) concentration to pores size diameter of silicon membrane.

    PubMed

    Burham, Norhafizah; Hamzah, Azrul Azlan; Majlis, Burhanuddin Yeop

    2014-01-01

    This paper studies parameters which affect the pore size diameter of a silicon membrane. Electrochemical etching is performed in characterise the parameter involved in this process. The parameter has been studied is volume ratio of hydrofluoric acid (HF) and ethanol as an electrolyte aqueous for electrochemical etch. This electrolyte aqueous solution has been mixed between HF and ethanol with volume ratio 3:7, 5:5, 7:3 and 9:1. As a result, the higher volume of HF in this electrolyte gives the smallest pore size diameter compared to the lower volume of HF. These samples have been dipped into HF and ethanol electrolyte aqueous with supplied 25 mA/cm2 current density for 20, 30, 40, and 50 minutes. The samples will inspect under Scanning Electron Microscope (SEM) to execute the pore formations on silicon membrane surface.

  14. Ion-radical synergy in HfO2 etching studied with a XeF2/Ar+ beam setup

    NASA Astrophysics Data System (ADS)

    Gevers, P. M.; Beijerinck, H. C. W.; van de Sanden, M. C. M.; Kessels, W. M. M.

    2008-04-01

    To gain more insight into fundamental aspects of the etching behavior of Hf-based high-k materials in plasma etch reactors, HfO2 films were etched in a multiple-beam setup consisting of a low energy Ar+ ion beam and a XeF2 radical beam. The etch rate and etch products were monitored by real-time ellipsometry and mass spectrometry, respectively. Although etching of HfO2 in XeF2/Ar+ chemistry is mainly a physical effect, an unambiguous proof of the ion-radical synergistic effect for the etching of HfO2 is presented. The etch yield for 400 eV Ar+ ions at a substrate temperature of 300 °C was 0.3 atoms/ion for Ar+ sputtering and increased to 2 atoms/ion when XeF2 was also supplied. The etch yield proved to follow the common square root of ion energy dependence both for pure sputtering and radical enhanced etching, with a threshold energy at room temperature of 69±17 eV for Ar+ ions and 54±14 eV for Ar+ ions with XeF2.

  15. The effect of HF etching on the surface quality and figure of fused silica optics

    NASA Astrophysics Data System (ADS)

    Xu, Jiafeng; Xu, Xueke; Wei, Chaoyang; Gao, Wenlan; Yang, Minghong; Shao, Jianda; Liu, Shijie

    2015-08-01

    The effect of deep HF etching on the surface quality and figure of fused silica optics has been investigated systematically. Fused silica samples (100 mm in diameter x 10 mm thick) were manufactured using the conventional grinding and polishing process. These processed samples are etched with different removal depth. Initially, the surface quality of fused silica samples is characterized in terms of surface roughness and surface defects. Many digs not more than 1μm deep are emerged which originates from the micron grinding cracks and crack pits. These digs worsened the surface roughness and frosted the sample. While submillimeter subsurface damage exposed through etching appear as sparkling dots under the high power lamp. The average total length of millimeter scratches on single surfaces is over 200 mm. Not all millimeter scratches could be exposed until removal depth of up to 2 μm. Finally, the surface figure behavior during deep etching has also been figured out. Etching on the edge of the upper surface of samples placed horizontally went faster than on the inside parts. The surface of samples placed vertically assumed a more complicated removal distribution, which can be both explained in terms of "fringe tip effect". For the change of surface figure PV, the initial surface figure feature plays an important role as well as the etching removal distribution.

  16. Optical detection of concentrations for mixed acid: HF and HNO3

    NASA Astrophysics Data System (ADS)

    Kang, Gumin; Kim, Kyoungsik

    2009-02-01

    Mixed acid, which consist of HF and HNO3, is used as a good etchant for silicon dioxide in the wet etching and pickling process of stainless steel. The optical detection of concentration for such mixed acids is crucial to optimize and cut costs in the manufacturing process. Optical detection in the IR regime has been utilized to measure the concentration of the mixed acid for HF and HNO3, because that has several strong absorption peaks, which is contributed by vibrational mode of each acid molecular in this spectrum. In this research, we observed the concentrations of mixed acid to consist of HF and HNO3, as we measured the absorption intensity of OH- stretch and NO3 - stretch band by optical spectroscopy. The concentration range of HF over 1.5-3 wt% and that of HNO3 over 2-10 wt% were studied in room temperature.

  17. Mechanisms for plasma etching of HfO{sub 2} gate stacks with Si selectivity and photoresist trimming

    SciTech Connect

    Shoeb, Juline; Kushner, Mark J.

    2009-11-15

    To minimize leakage currents resulting from the thinning of the insulator in the gate stack of field effect transistors, high-dielectric constant (high-k) metal oxides, and HfO{sub 2} in particular, are being implemented as a replacement for SiO{sub 2}. To speed the rate of processing, it is desirable to etch the gate stack (e.g., metal gate, antireflection layers, and dielectric) in a single process while having selectivity to the underlying Si. Plasma etching using Ar/BCl{sub 3}/Cl{sub 2} mixtures effectively etches HfO{sub 2} while having good selectivity to Si. In this article, results from integrated reactor and feature scale modeling of gate-stack etching in Ar/BCl{sub 3}/Cl{sub 2} plasmas, preceded by photoresist trimming in Ar/O{sub 2} plasmas, are discussed. It was found that BCl{sub n} species react with HfO{sub 2}, which under ion impact, form volatile etch products such as B{sub m}OCl{sub n} and HfCl{sub n}. Selectivity to Si is achieved by creating Si-B bonding as a precursor to the deposition of a BCl{sub n} polymer which slows the etch rate relative to HfO{sub 2}. The low ion energies required to achieve this selectivity then challenge one to obtain highly anisotropic profiles in the metal gate portion of the stack. Validation was performed with data from literature. The effect of bias voltage and key reactant probabilities on etch rate, selectivity, and profile are discussed.

  18. The removal torque of titanium screw inserted in rabbit tibia treated by dual acid etching.

    PubMed

    Cho, Sung-Am; Park, Kyung-Tae

    2003-09-01

    Chemical acid etching alone of the titanium implant surface have the potential to greatly enhance osseointegration without adding particulate matter (e.g. TPS or hydroxyapatite) or embedding surface contaminants (e.g. grit particles). The aims of the present study were to evaluate any differences between the machined and dual acid etching implants with the removal torque as well as topographic analysis. A total of 40 custom-made, screw-shaped, commercially pure titanium implants with length of 5 mm and an outer diameter of 3.75 mm were divided into 4 groups, 10 screws in each, and chemical modification of the titanium implant surfaces were achieved using HF and HCl/H(2)SO(4) dual acid etching. The first exposure was to hydrofluoric acid and the second was to a combination of hydrochloric acid and sulfuric acid. The tibia metaphysics was exposed by incisions through the skin, fascia, and periosteum. One implant of each group was inserted in every rabbit, 2 in each proximal tibia metaphysics. Every rabbit received 3 implants with acid etched surfaces and 1 implant with a machined surface. Twelve weeks post-surgically, 7 rabbits were sacrificed, Subsequently, the leg was stabilized and the implant was removed under reverse torque rotation with a digital torque gauge (Mark-10 Corporation, USA) (Fig. 1). Twelve weeks after implant placement, the removal torque mean values were the dual acid etched implants (24%HF+HCl/H(2)SO(4), group C) required a higher average force (34.7 Ncm), than the machined surface implants (group A) (p=0.045) (Mann-Whiteney test). Scanning electron micrographs of acid etching of the titanium surface created an even distribution of very small (1-2 microm) peaks and valleys, while machining of the titanium surface created typical microscopically grooved surface characteristics. Nonetheless, there was no difference in surface topography between each acid etched implant groups. Therefore, chemically acid etching implant surfaces have higher

  19. Plasma etching of Hf-based high-k thin films. Part II. Ion-enhanced surface reaction mechanisms

    SciTech Connect

    Martin, Ryan M.; Blom, Hans-Olof; Chang, Jane P.

    2009-03-15

    The mechanism for ion-enhanced chemical etching of hafnium aluminate thin films in Cl{sub 2}/BCl{sub 3} plasmas was investigated in this work, specifically how the film composition, ion energy, and plasma chemistry determine their etch rates. Several compositions of Hf{sub 1-x}Al{sub x}O{sub y} thin films ranging from pure HfO{sub 2} to pure Al{sub 2}O{sub 3} were etched in BCl{sub 3}/Cl{sub 2} plasmas and their etch rates were found to scale with {radical}(E{sub ion}) in both Cl{sub 2} and BCl{sub 3} plasmas. In Cl{sub 2} plasmas, a transition point was observed around 50 eV, where the etch rate was significantly enhanced while the linear dependence to {radical}(E{sub ion}) was maintained, corresponding to a change in the removal of fully chlorinated to less chlorinated reaction products. In BCl{sub 3} plasma, deposition dominates at ion energies below 50 eV, while etching occurs above that energy with an etch rate of three to seven times that in Cl{sub 2}. The faster etch rate in BCl{sub 3} was attributed to a change in the dominant ion from Cl{sub 2}{sup +} in Cl{sub 2} plasma to BCl{sub 2}{sup +} in BCl{sub 3}, which facilitated the formation of more volatile etch products and their removal. The surface chlorination (0-3 at. %) was enhanced with increasing ion energy while the amount of boron on the surface increases with decreasing ion energy, highlighting the effect of different plasma chemistries on the etch rates, etch product formation, and surface termination.

  20. Morphology and chemical termination of HF-etched Si{sub 3}N{sub 4} surfaces

    SciTech Connect

    Liu, Li-Hong; Debenedetti, William J. I.; Peixoto, Tatiana; Gokalp, Sumeyra; Shafiq, Natis; Veyan, Jean-François; Chabal, Yves J.; Michalak, David J.; Hourani, Rami

    2014-12-29

    Several reports on the chemical termination of silicon nitride films after HF etching, an important process in the microelectronics industry, are inconsistent claiming N-H{sub x}, Si-H, or fluorine termination. An investigation combining infrared and x-ray photoelectron spectroscopies with atomic force and scanning electron microscopy imaging reveals that under some processing conditions, salt microcrystals are formed and stabilized on the surface, resulting from products of Si{sub 3}N{sub 4} etching. Rinsing in deionized water immediately after HF etching for at least 30 s avoids such deposition and yields a smooth surface without evidence of Si-H termination. Instead, fluorine and oxygen are found to terminate a sizeable fraction of the surface in the form of Si-F and possibly Si-OH bonds. The relatively unique fluorine termination is remarkably stable in both air and water and could lead to further chemical functionalization pathways.

  1. The Effect of HF/NH4F Etching on the Morphology of Surface Fractures on Fused Silica

    SciTech Connect

    Wong, L; Suratwala, T; Feit, M D; Miller, P E; Steele, R A

    2008-04-03

    The effects of HF/NH{sub 4}F, wet chemical etching on the morphology of individual surface fractures (indentations, scratches) and of an ensemble of surface fractures (ground surfaces) on fused silica glass has been characterized. For the individual surface fractures, a series of static or dynamic (sliding) Vickers and Brinnell indenters were used to create radial, lateral, Hertzian cone and trailing indentation fractures on a set of polished fused silica substrates which were subsequently etched. After short etch times, the visibility of both surface and subsurface cracks is significantly enhanced when observed by optical microscopy. This is attributed to the removal of the polishing-induced Bielby layer and the increased width of the cracks following etching allowing for greater optical scatter at the fracture interface. The removal of material during etching was found to be isotropic except in areas where the etchant has difficulty penetrating or in areas that exhibit significant plastic deformation/densification. Isolated fractures continue to etch, but will never be completely removed since the bottom and top of the crack both etch at the same rate. The etching behavior of ensembles of closely spaced cracks, such as those produced during grinding, has also been characterized. This was done using a second set of fused silica samples that were ground using either fixed or loose abrasives. The resulting samples were etched and both the etch rate and the morphology of the surfaces were monitored as a function of time. Etching results in the formation of a series of open cracks or cusps, each corresponding to the individual fractures originally on the surface of the substrate. During extended etching, the individual cusps coalesce with one another, providing a means of reducing the depth of subsurface damage and the peak-to-valley roughness. In addition, the material removal rate of the ground surfaces was found to scale with the surface area of the cracks as a

  2. Effect of hydrofluoric acid etching duration on the roughness and flexural strength of a lithium disilicate-based glass ceramic.

    PubMed

    Zogheib, Lucas Villaça; Bona, Alvaro Della; Kimpara, Estevão Tomomitsu; McCabe, John F

    2011-01-01

    The aim of this study was to examine the effect of different acid etching times on the surface roughness and flexural strength of a lithium disilicate-based glass ceramic. Ceramic bar-shaped specimens (16 mm x 2 mm x 2 mm) were produced from ceramic blocks. All specimens were polished and sonically cleaned in distilled water. Specimens were randomly divided into 5 groups (n=15). Group A (control) no treatment. Groups B-E were etched with 4.9% hydrofluoric acid (HF) for 4 different etching periods: 20 s, 60 s, 90 s and 180 s, respectively. Etched surfaces were observed under scanning electron microscopy. Surface profilometry was used to examine the roughness of the etched ceramic surfaces, and the specimens were loaded to failure using a 3-point bending test to determine the flexural strength. Data were analyzed using one-way ANOVA and Tukey's test (?=0.05). All etching periods produced significantly rougher surfaces than the control group (p<0.05). Roughness values increased with the increase of the etching time. The mean flexural strength values were (MPa): A=417 ± 55; B=367 ± 68; C=363 ± 84; D=329 ± 70; and E=314 ± 62. HF etching significantly reduced the mean flexural strength as the etching time increased (p=0.003). In conclusion, the findings of this study showed that the increase of HF etching time affected the surface roughness and the flexural strength of a lithium disilicate-based glass ceramic, confirming the study hypothesis.

  3. Ion-radical synergy in HfO{sub 2} etching studied with a XeF{sub 2}/Ar{sup +} beam setup

    SciTech Connect

    Gevers, P. M.; Beijerinck, H. C. W.; Sanden, M. C. M. van de; Kessels, W. M. M.

    2008-04-15

    To gain more insight into fundamental aspects of the etching behavior of Hf-based high-k materials in plasma etch reactors, HfO{sub 2} films were etched in a multiple-beam setup consisting of a low energy Ar{sup +} ion beam and a XeF{sub 2} radical beam. The etch rate and etch products were monitored by real-time ellipsometry and mass spectrometry, respectively. Although etching of HfO{sub 2} in XeF{sub 2}/Ar{sup +} chemistry is mainly a physical effect, an unambiguous proof of the ion-radical synergistic effect for the etching of HfO{sub 2} is presented. The etch yield for 400 eV Ar{sup +} ions at a substrate temperature of 300 deg. C was 0.3 atoms/ion for Ar{sup +} sputtering and increased to 2 atoms/ion when XeF{sub 2} was also supplied. The etch yield proved to follow the common square root of ion energy dependence both for pure sputtering and radical enhanced etching, with a threshold energy at room temperature of 69{+-}17 eV for Ar{sup +} ions and 54{+-}14 eV for Ar{sup +} ions with XeF{sub 2}.

  4. HF-(NH₄)₂S₂O₈-HCl Mixtures for HNO₃- and NOx-free Etching of Diamond Wire- and SiC-Slurry-Sawn Silicon Wafers: Reactivity Studies, Surface Chemistry, and Unexpected Pyramidal Surface Morphologies.

    PubMed

    Stapf, André; Gondek, Christoph; Lippold, Marcus; Kroke, Edwin

    2015-04-29

    The wet-chemical treatment of silicon wafers is an important production step in photovoltaic and semiconductor industries. Solutions containing hydrofluoric acid, ammonium peroxodisulfate, and hydrochloric acid were investigated as novel acidic, NOx-free etching mixtures for texturization and polishing of monocrystalline silicon wafers. Etching rates as well as generated surface morphologies and properties are discussed in terms of the composition of the etching mixture. The solutions were analyzed with Raman and UV/vis spectroscopy as well as ion chromatography (IC). The silicon surfaces were investigated by scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), diffuse reflection infrared spectroscopy (DRIFT), and X-ray photoelectron spectroscopy (XPS). Surprisingly, pyramidal surface structures were found after etching SiC-slurry as well as diamond wire-sawn monocrystalline Si(100) wafers with hydrochloric acid-rich HF-(NH4)2S2O8-HCl mixtures. Acidic etching solutions are generally not known for anisotropic etching. Thus, the HNO3-free mixtures might allow to replace KOH/i-propanol and similar alkaline solutions for texturization of monosilicon wafers at room temperature with less surface contamination. Besides, common HNO3-based etching mixtures may be replaced by the nitrate-free system, leading to significant economic and ecological advantages.

  5. Orthodontic bonding to acid- or laser-etched prebleached enamel

    PubMed Central

    Ozdemir, Fulya; Cakan, Umut; Gonul, Nese

    2013-01-01

    Objective Bonding forces of brackets to enamel surfaces may be affected by the procedures used for bleaching and enamel etching. The aim of this study was to investigate the bonding strength of orthodontic brackets to laser-etched surfaces of bleached teeth. Methods In a nonbleached control group, acid etching (group A) or Er:YAG laser application (group B) was performed prior to bracket bonding (n = 13 in each group). Similar surface treatments were performed at 1 day (groups C and D; n = 13 in each subgroup) or at 3 weeks (groups E and F; n = 13 in each subgroup) after 38% hydrogen peroxide bleaching in another set of teeth. The specimens were debonded after thermocycling. Results Laser etching of bleached teeth resulted in clinically unacceptable low bonding strength. In the case of acid-etched teeth, waiting for 3 weeks before attachment of brackets to the bleached surfaces resulted in similar, but not identical, bond strength values as those obtained with nonbleached surfaces. However, in the laser-etched groups, the bonding strength after 3 weeks was the same as that for the nonbleached group. Conclusions When teeth bleached with 38% hydrogen peroxide are meant to be bonded immediately, acid etching is preferable. PMID:23814709

  6. Spectrometric analysis of process etching solutions of the photovoltaic industry--determination of HNO3, HF, and H2SiF6 using high-resolution continuum source absorption spectrometry of diatomic molecules and atoms.

    PubMed

    Bücker, Stefan; Acker, Jörg

    2012-05-30

    The surface of raw multicrystalline silicon wafers is treated with HF-HNO(3) mixtures in order to remove the saw damage and to obtain a well-like structured surface of low reflectivity, the so-called texture. The industrial production of solar cells requires a consistent level of texturization for tens of thousands of wafers. Therefore, knowing the actual composition of the etch bath is a key element in process control in order to maintain a certain etch rate through replenishment of the consumed acids. The present paper describes a novel approach to quantify nitric acid (HNO(3)), hydrofluoric acid (HF), and hexafluosilicic acid (H(2)SiF(6)) using a high-resolution continuum source graphite furnace absorption spectrometer. The concentrations of Si (via Si atom absorption at the wavelength 251.611 nm, m(0),(Si)=130 pg), of nitrate (via molecular absorption of NO at the wavelength 214.803 nm, [Formula: see text] ), and of total fluoride (via molecular absorption of AlF at the wavelength 227.46 nm, m(0,F)=13 pg) were measured against aqueous standard solutions. The concentrations of H(2)SiF(6) and HNO(3) are directly obtained from the measurements. The HF concentration is calculated from the difference between the total fluoride content, and the amount of fluoride bound as H(2)SiF(6). H(2)SiF(6) and HNO(3) can be determined with a relative uncertainty of less than 5% and recoveries of 97-103% and 96-105%, respectively. With regards to HF, acceptable results in terms of recovery and uncertainty are obtained for HF concentrations that are typical for the photovoltaic industry. The presented procedure has the unique advantage that the concentration of both, acids and metal impurities in etch solutions, can be routinely determined by a single analytical instrument. PMID:22608457

  7. In Vitro Evaluation of Microleakage Around Orthodontic Brackets Using Laser Etching and Acid Etching Methods

    PubMed Central

    Toodehzaeim, Mohammad Hossein; Yassaei, Sogra; Karandish, Maryam; Farzaneh, Sedigeh

    2014-01-01

    Objective: path of microleakage between the enamel and adhesive potentially allows microbial ingress that may consequently cause enamel decalcification. The aim of this study was to compare microleakage of brackets bonded either by laser or acid etching techniques. Materials and Method: The specimens were 33 extracted premolars that were divided into three groups as the acid etching group (group 1), laser etching with Er:YAG at 100 mJ and 15 Hz for 15s (group 2), and laser etching with Er:YAG at 140 mJ and 15 Hz for 15s (group 3). After photo polymerization, the teeth were subjected to 500 thermal cycles. Then the specimens were sealed with nail varnish, stained with 2% methylen blue for 24hs, sectioned, and examined under a stereomicroscope. They were scored for marginal microleakage that occurred between the adhesive-enamel and bracket-adhesive interfaces from the occlusal and gingival margins. Data were analyzed with the Kruskal- Wallis test. Results: For the adhesive-enamel and bracket-adhesive surfaces, significant differences were not observed between the three groups. Conclusion: According to this study, the Er:YAG laser with 1.5 and 2.1 watt settings may be used as an adjunctive for preparing the surface for orthodontic bracket bonding. PMID:25628661

  8. Lateral GaN nanowire prepared by using two-step TMAH wet etching and HfO2 sidewall spacer

    NASA Astrophysics Data System (ADS)

    Im, Ki-Sik; Won, Chul-Ho; Vodapally, Sindhuri; Son, Dong-Hyeok; Jo, Young-Woo; Park, YoHan; Lee, Jae-Hoon; Lee, Jung-Hee

    2016-05-01

    The initially dry-etched GaN layer with trapezoidal cross-section was laterally etched along the <11 2 bar0> direction in the tetramethyl ammonium hydroxide (TMAH) solution to form a sidewall normal to the direction, which is corresponding to the (11 2 bar0) plane. On the other hand, the etched sidewall still maintains the trapezoidal shape with angle of 58.4° when etched along the <1 1 bar00> direction, which is corresponding to the (1 1 bar01) plane. The GaN lateral nanowires with two different types of cross-sections, Ω-shape which is connected to underlying thick buffer layer through very narrow neck region and rectangle shape which is completely separated from underlying buffer layer, were realized with second lateral TMAH wet etching along the <11 2 bar0> direction and by using the atomic layer deposited (ALD) HfO2 layer as a sidewall spacer. The shape is dependent on both the height of the second dry-etched GaN sidewall below the HfO2 spacer and the second wet etching time in TMAH solution. It was found that the dangling bond density at the surface of the crystal plane is responsible for the strong lateral anisotropic etching property of the GaN layer in TMAH solution.

  9. Enhanced ferro-actuator with a porosity-controlled membrane using the sol-gel process and the HF etching method

    NASA Astrophysics Data System (ADS)

    Kim, KiSu; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2016-01-01

    In this paper, we propose a ferro-actuator using a porous polyvinylidene difluoride (PVDF) membrane. In detail, we fabricated the silica-embedded PVDF membrane using a sol-gel process with PVDF solution and tetraethyl orthosilicate (TEOS) solution, where the size of the silica was determined by the ratio of the PVDF and TEOS solutions. Using hydrofluoric acid (HF) etching, the silica were removed from the silica-embedded PVDF membrane, and porous PVDF membranes with different porosities were obtained. Finally, through absorption of a ferrofluid on the porous PVDF membrane, the proposed ferro-actuator using porous PVDF membranes with different porosities was fabricated. We executed the characterization and actuation test as follows. First, the silica size of the silica-embedded PVDF membrane and the pore size of the porous PVDF membrane were analyzed using scanning electron microscopy (SEM) imaging. Second, energy-dispersive x-ray spectroscopy analysis showed that the silica had clearly been removed from the silica-embedded PVDF membrane by HF etching. Third, through x-ray photoelectron spectroscopy and vibrating sample magnetometer (VSM) of the ferro-actuators, we found that more ferrofluids were absorbed by the porous PVDF membrane when the pore of the membrane was smaller and uniformly distributed. Finally, we executed tip displacement and a blocking force test of the proposed ferro-actuator using the porous PVDF membrane. Similar to the VSM result, the ferro-actuator that used a porous PVDF membrane with smaller pores exhibited better actuation performance. The ferro-actuator that used a porous PVDF membrane displayed a tip displacement that was about 7.2-fold better and a blocking force that was about 6.5-fold better than the ferro-actuator that used a pure PVDF membrane. Thus, we controlled the pore size of the porous PVDF membrane and enhanced the actuation performance of the ferro-actuator using a porous PVDF membrane.

  10. Feedback control of HfO{sub 2} etch processing in inductively coupled Cl{sub 2}/N{sub 2}/Ar plasmas

    SciTech Connect

    Lin Chaung; Leou, K.-C.; Li, T.-C.; Lee, L.-S.; Tzeng, P.-J.

    2008-09-15

    The etch rate of HfO{sub 2} etch processing has been feedback controlled in inductively coupled Cl{sub 2}/N{sub 2}/Ar plasmas. The ion current and the root mean square rf voltage on the wafer stage, which are measured using a commercial impedance meter connected to the wafer stage, are chosen as controlled variables because the positive-ion flux and ion energy incident upon the wafer surface are the key factors that determine the etch rate. Two 13.56 MHz rf generators are used to adjust the inductively coupled plasma power and bias power which control ion density and ion energy, respectively. The adopted HfO{sub 2} etch processing used rather low rf voltage. The ion-current value obtained by the power/voltage method is underestimated, so the neural-network model was developed to assist estimating the correct ion-current value. The experimental results show that the etch-rate variation of the closed-loop control is smaller than that of the open-loop control. However, the first wafer effect cannot be eliminated using closed-loop control and thus to achieve a constant etch rate, the chamber-conditioning procedure is required in this etch processing.

  11. Fabrication of HfO2 patterns by laser interference nanolithography and selective dry etching for III-V CMOS application

    PubMed Central

    2011-01-01

    Nanostructuring of ultrathin HfO2 films deposited on GaAs (001) substrates by high-resolution Lloyd's mirror laser interference nanolithography is described. Pattern transfer to the HfO2 film was carried out by reactive ion beam etching using CF4 and O2 plasmas. A combination of atomic force microscopy, high-resolution scanning electron microscopy, high-resolution transmission electron microscopy, and energy-dispersive X-ray spectroscopy microanalysis was used to characterise the various etching steps of the process and the resulting HfO2/GaAs pattern morphology, structure, and chemical composition. We show that the patterning process can be applied to fabricate uniform arrays of HfO2 mesa stripes with tapered sidewalls and linewidths of 100 nm. The exposed GaAs trenches were found to be residue-free and atomically smooth with a root-mean-square line roughness of 0.18 nm after plasma etching. PACS: Dielectric oxides 77.84.Bw, Nanoscale pattern formation 81.16.Rf, Plasma etching 52.77.Bn, Fabrication of III-V semiconductors 81.05.Ea PMID:21711946

  12. Characterization and adsorption properties of diatomaceous earth modified by hydrofluoric acid etching.

    PubMed

    Tsai, Wen-Tien; Lai, Chi-Wei; Hsien, Kuo-Jong

    2006-05-15

    This work was a study of the chemical modification of diatomaceous earth (DE) using hydrofluoric acid (HF) solution. Under the experimental conditions investigated, it was found that HF under controlled conditions significantly etched inward into the interior of the existing pore structure in the clay mineral due to its high content of silica, leaving a framework possessing a larger BET surface area (ca. 10 m2 g(-1)) in comparison with that (ca. 4 m2 g(-1)) of its precursor (i.e., DE). Further, the results indicated that the HF concentration is a more determining factor in creating more open pores than other process parameters (temperature, holding time, and solid/liquid ratio). This observation was also in close agreement with the examinations by the silicon analysis, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The adsorption kinetics and the adsorption isotherm of methylene blue onto the resulting clay adsorbent can be well described by a pseudo-second-order reaction model and the Freundlich model, respectively.

  13. Effects of in situ N{sub 2} plasma treatment on etch of HfO{sub 2} in inductively coupled Cl{sub 2}/N{sub 2} plasmas

    SciTech Connect

    Lin Chaung; Leou, K.-C.; Fan, Y.-C.; Li, T.-C.; Chang, K.-H.; Lee, L.-S.; Tzeng, P.-J.

    2007-05-15

    The etch selectivity of HfO{sub 2} to Si reported to date is poor. To improve the selectivity, one needs to either increase the etch rate of HfO{sub 2} or decrease the etch rate of Si. In this work, the authors investigate the etch selectivity of HfO{sub 2} in Cl{sub 2}/N{sub 2} plasmas. In particular, the effects of in situ N{sub 2} plasma treatment of HfO{sub 2} and Si were investigated. The silicon substrate was exposed to nitrogen plasma and was nitrided, which was confirmed by x-ray photoelectron spectroscopy. The nitrided Si etching was suppressed in Cl{sub 2}/N{sub 2} plasmas. The effectiveness of nitridation was studied with varying the plasma power, bias power, pressure, and N{sub 2} plasma exposure time. The results show that the etch resistance increased with increased power and decreased pressure. A minimum exposure time was required to obtain etch resistant property. The applied bias power increased the etch rate of Si substrate, so it should not be used during N{sub 2} plasma treatment. Fortunately, the etch rate of HfO{sub 2} was increased by the nitridation process. Therefore, HfO{sub 2}/Si selectivity can be improved by nitridation and became higher than 5 under proper exposure condition.

  14. The dual role of silver during silicon etching in HF solution

    PubMed Central

    2012-01-01

    It was reported that during silicon etching, silver was subjected to have a controversial role. Some researchers debate that silver protects silicon, and, at the same time, other ones confirm that silver catalyzes silicon underneath. In this paper, we give experimental results arguing the dual role that silver has during the formation of silicon nanostructures. We give a proof that the role of silver depends on the experimental details and the intrinsic properties of silver during its deposition on the silicon wafer. Through our investigations, we tracked the silver particles that indicated which mechanism is involved. Characterizations of the prepared samples were made using a scanning electron microscope. PMID:22888998

  15. The dual role of silver during silicon etching in HF solution.

    PubMed

    Abouda-Lachiheb, Manel; Nafie, Nesma; Bouaicha, Mongi

    2012-01-01

    It was reported that during silicon etching, silver was subjected to have a controversial role. Some researchers debate that silver protects silicon, and, at the same time, other ones confirm that silver catalyzes silicon underneath. In this paper, we give experimental results arguing the dual role that silver has during the formation of silicon nanostructures. We give a proof that the role of silver depends on the experimental details and the intrinsic properties of silver during its deposition on the silicon wafer. Through our investigations, we tracked the silver particles that indicated which mechanism is involved. Characterizations of the prepared samples were made using a scanning electron microscope.

  16. Influence of acid-etching and ceramic primers on the repair of a glass ceramic.

    PubMed

    Queiroz, J R C; Souza, Rodrigo O A; Nogueira Junior, L; Ozcan, M; Bottino, M A

    2012-01-01

    The objective of this study was to evaluate the influence of different primers on the microtensile bond strength (μTBS) between a feldspathic ceramic and two composites. Forty blocks (6.0 x 6.0 x 5.0 mm³) were prepared from Vita Mark II . After polishing, they were randomly divided into 10 groups according to the surface treatment: Group 1, hydrofluoric acid 10% (HF) + silane; Group 2, CoJet + silane; Group 3, HF + Metal/Zirconia Primer; Group 4, HF + Clearfil Primer; Group 5, HF + Alloy Primer; Group 6, HF + V-Primer; Group 7, Metal/Zirconia Primer; Group 8, Clearfil Primer; Group 9, Alloy Primer; Group 10, V-Primer. After each surface treatment, an adhesive was applied and one of two composite resins was incrementally built up. The sticks obtained from each block (bonded area: 1.0 mm² ± 0.2 mm) were stored in distilled water at 37 degrees C for 30 days and submitted to thermocycling (7,000 cycles; 5 degrees C/55 degrees C ± 1 degree C). The μTBS test was carried out using a universal testing machine (1.0 mm/min). Data were analyzed using ANOVA and a Tukey test (a = 0.05). The surface treatments significantly affected the results (P < 0.05); no difference was observed between the composites (P > 0.05). The bond strength means (MPa) were as follows: Group 1a = 29.6; Group 1b = 33.7; Group 2a = 28.9; Group 2b = 27.1; Group 3a = 13.8; Group 3b = 14.9; Group 4a = 18.6; Group 4b = 19.4; Group 5a = 15.3; Group 5b = 16.5; Group 6a = 11; Group 6b = 18; Groups 7a to 10b = 0. While the use of primers alone was not sufficient for adequate bond strengths to feldspathic ceramic, HF etching followed by any silane delivered higher bond strength. PMID:22414522

  17. Influence of acid-etching and ceramic primers on the repair of a glass ceramic.

    PubMed

    Queiroz, J R C; Souza, Rodrigo O A; Nogueira Junior, L; Ozcan, M; Bottino, M A

    2012-01-01

    The objective of this study was to evaluate the influence of different primers on the microtensile bond strength (μTBS) between a feldspathic ceramic and two composites. Forty blocks (6.0 x 6.0 x 5.0 mm³) were prepared from Vita Mark II . After polishing, they were randomly divided into 10 groups according to the surface treatment: Group 1, hydrofluoric acid 10% (HF) + silane; Group 2, CoJet + silane; Group 3, HF + Metal/Zirconia Primer; Group 4, HF + Clearfil Primer; Group 5, HF + Alloy Primer; Group 6, HF + V-Primer; Group 7, Metal/Zirconia Primer; Group 8, Clearfil Primer; Group 9, Alloy Primer; Group 10, V-Primer. After each surface treatment, an adhesive was applied and one of two composite resins was incrementally built up. The sticks obtained from each block (bonded area: 1.0 mm² ± 0.2 mm) were stored in distilled water at 37 degrees C for 30 days and submitted to thermocycling (7,000 cycles; 5 degrees C/55 degrees C ± 1 degree C). The μTBS test was carried out using a universal testing machine (1.0 mm/min). Data were analyzed using ANOVA and a Tukey test (a = 0.05). The surface treatments significantly affected the results (P < 0.05); no difference was observed between the composites (P > 0.05). The bond strength means (MPa) were as follows: Group 1a = 29.6; Group 1b = 33.7; Group 2a = 28.9; Group 2b = 27.1; Group 3a = 13.8; Group 3b = 14.9; Group 4a = 18.6; Group 4b = 19.4; Group 5a = 15.3; Group 5b = 16.5; Group 6a = 11; Group 6b = 18; Groups 7a to 10b = 0. While the use of primers alone was not sufficient for adequate bond strengths to feldspathic ceramic, HF etching followed by any silane delivered higher bond strength.

  18. Shear bond strength of orthodontic brackets after acid-etched and erbium-doped yttrium aluminum garnet laser-etched

    PubMed Central

    Alavi, Shiva; Birang, Reza; Hajizadeh, Fatemeh

    2014-01-01

    Background: Laser ablation has been suggested as an alternative method to acid etching; however, previous studies have obtained contrasting results. The purpose of this study was to compare the shear bond strength (SBS) and fracture mode of orthodontic brackets that are bonded to enamel etched with acid and erbium-doped yttrium aluminum garnet (Er:YAG) laser. Materials and Methods: In this experimental in vitro study, buccal surfaces of 15 non-carious human premolars were divided into mesial and distal regions. Randomly, one of the regions was etched with 37% phosphoric acid for 15 s and another region irradiated with Er:YAG laser at 100 mJ energy and 20 Hz frequency for 20 s. Stainless steel brackets were then bonded using Transbond XT, following which all the samples were stored in distilled water for 24 h and then subjected to 500 thermal cycles. SBS was tested by a chisel edge, mounted on the crosshead of universal testing machine. After debonding, the teeth were examined under ×10 magnification and adhesive remnant index (ARI) score determined. SBS and ARI scores of the two groups were then compared using t-test and Mann-Whitney U test. Significant level was set at P < 0.05. Results: The mean SBS of the laser group (16.61 ± 7.7 MPa) was not significantly different from that of the acid-etched group (18.86 ± 6.09 MPa) (P = 0.41). There was no significant difference in the ARI scores between two groups (P = 0.08). However, in the laser group, more adhesive remained on the brackets, which is not suitable for orthodontic purposes. Conclusion: Laser etching at 100 mJ energy produced bond strength similar to acid etching. Therefore, Er:YAG laser may be an alternative method for conventional acid-etching. PMID:25097641

  19. Effect of hydrofluoric acid etching on shear bond strength of an indirect resin composite to an adhesive cement.

    PubMed

    Hori, Sayaka; Minami, Hiroyuki; Minesaki, Yoshito; Matsumura, Hideo; Tanaka, Takuo

    2008-07-01

    This study evaluated the effect of 1% hydrofluoric acid (HF) treatment on the bonding of an adhesive cement (Panavia F 2.0) to an indirect resin composite (Estenia C&B). Pairs of composite disks (10 and 8 mm in diameter by 3 mm thickness) were prepared. Adhesive surfaces were pretreated with either airborne particle abrasion or HF etching before being soaked for 30 seconds, five minutes or 10 minutes, with or without application of silane coupling agent. Adhesive specimens were fabricated by cementing a pair of treated disks. Shear bond strength was determined before and after 50,000 times of thermocycling (4 and 60 degrees C). All data were statistically analyzed using two-way ANOVA and Bonferroni's test (a=0.05). Bond strength achieved with five minutes of HF etching (18.3+/-1.1 MPa) was significantly higher (P=0.0025) than that obtained with airborne particle abrasion followed by application of silane coupling agent (14.3+/-1.8 MPa) after thermocycling.

  20. Plasma etching of Hf-based high-k thin films. Part I. Effect of complex ions and radicals on the surface reactions

    SciTech Connect

    Martin, Ryan M.; Chang, Jane P.

    2009-03-15

    The effect of ion and radical compositions in BCl{sub 3}/Cl{sub 2} plasmas was assessed in this work with a focus on the formation of etch products in patterning hafnium aluminate, a potential high-k gate oxide material. The plasma composition became increasingly more complex as the percentage of boron trichloride was increased, which led to the formation of a significant amount of boron-containing species including B{sup +}, BCl{sup +}, BCl{sub 2}{sup +}, BCl{sub 3}{sup +}, B{sub 2}Cl{sub 3}{sup +}, and B{sub 2}OCl{sub 3}{sup +} in the plasma. The BCl{sub 2}{sup +} ions were found to be the dominant species in BCl{sub 3} containing plasmas at most conditions; however, increasing the pressure or decreasing the power led to an increase in the formation of higher mass ions. Several compositions of Hf{sub 1-x}Al{sub x}O{sub y} thin films ranging from pure HfO{sub 2} to pure Al{sub 2}O{sub 3} were etched in BCl{sub 3}/Cl{sub 2} plasmas as functions of ion energy and plasma composition. The etch product distributions were measured and the dominant metal-containing etch products were HfCl{sub x} and AlCl{sub x} in a Cl{sub 2} plasma and HfCl{sub x}, HfBOCl{sub 4}, and Al{sub x}Cl{sub y} in a BCl{sub 3} plasma, and their concentrations increased with increasing ion energy. Oxygen was detected removed in the form of ClO in Cl{sub 2} and as trichloroboroxin ((BOCl){sub 3}) in BCl{sub 3}. Both the etch rate and the etch product formation are enhanced in BCl{sub 3}/Cl{sub 2} plasmas, as compared to those in Cl{sub 2} plasmas, due to the change in the composition and reactivity of the dominant ions and radicals.

  1. Bonding to enamel/dentin etched with phosphoric and hydrofluoric acids.

    PubMed

    Barghi, Nassar; Covington, Kendra; Fischer, Dan E; Herbold, Edward T

    2004-10-01

    Repairing porcelain intraorally allows clinicians to provide their patients with a conservative means of treating fractured or debonded restorations. This requires, however, the etching of both porcelain and tooth structure with etching solutions. It is thus relevant to understand the effect that different etching procedures have on shear bond strengths of composite resins to both dentin and enamel structures. Based on the results of this investigation, the authors recommend isolation of tooth structures and the etching of porcelain with hydrofluoric acid.

  2. Effect of acid etching time and technique on bond strength of an etch-and-rinse adhesive.

    PubMed

    Faria-e-Silva, André L; Silva, João L; Almeida, Thauanna G; Veloso, Francielle B; Ribeiro, Sandra M; Andrade, Tiago D; Vilas-Boas, Bruna V; Martins, Marisa C; Menezes, Murilo S

    2011-01-01

    The aim of this study was to evaluate the effect of acid etching time and technique on bond strength of a two-step etch-and-rinse adhesive system to dentin and enamel. Thirty human third molars were mesio-distally sectioned, parallel to the long axis of each tooth, in two halves. Buccal/lingual surfaces were abraded to obtain both flat exposed enamel and dentine. The etchant was applied with and without the use of dispensing tips provided by manufacturer. When the tip was not used, the etchant was agitated (active) over the substrate or left undisturbed (passive). The etchings were done for 15 or 30s. After rinsing the acid, the adhesive XP Bond (Dentsply Caulk, Milford, DE, USA) was applied and light-cured. Resin composite cylinders were built up on dentin and enamel substrates. A shear load was applied to the samples at a crosshead speed of 0.5 mm/min until failure. Data were statistically analyzed by three-way ANOVA and Tukey test (alpha = 0.05). There was no difference between the etching techniques in bonding to enamel. Application with the tip or active without the tip promoted higher bond strength to dentin than passive application. Extending the etching time reduced the bond strength to dentin and did not alter the values for enamel. The passive application without tips produced the lowest bond strength when the etchant was applied for 15s. All techniques demonstrated similar values for application during 30s. The acid etching time and technique significantly influence the bond strength of etch-and-rinse adhesive to dentin. PMID:22010410

  3. In-situ etch rate study of Hf{sub x}La{sub y}O{sub z} in Cl{sub 2}/BCl{sub 3} plasmas using the quartz crystal microbalance

    SciTech Connect

    Marchack, Nathan; Kim, Taeseung; Chang, Jane P.; Blom, Hans-Olof

    2015-05-15

    The etch rate of Hf{sub x}La{sub y}O{sub z} films in Cl{sub 2}/BCl{sub 3} plasmas was measured in-situ in an inductively coupled plasma reactor using a quartz crystal microbalance and corroborated by cross-sectional SEM measurements. The etch rate depended on the ion energy as well as the plasma chemistry. In contrast to other Hf-based ternary oxides, the etch rate of Hf{sub x}La{sub y}O{sub z} films was higher in Cl{sub 2} than in BCl{sub 3}. In the etching of Hf{sub 0.25}La{sub 0.12}O{sub 0.63}, Hf appeared to be preferentially removed in Cl{sub 2} plasmas, per surface compositional analysis by x-ray photoelectron spectroscopy and the detection of HfCl{sub 3} generation in mass spectroscopy. These findings were consistent with the higher etch rate of Hf{sub 0.25}La{sub 0.12}O{sub 0.63} than that of La{sub 2}O{sub 3}.

  4. Plasma etching of Hf-based high-k thin films. Part III. Modeling the reaction mechanisms

    SciTech Connect

    Martin, Ryan M.; Chang, Jane P.

    2009-03-15

    A generalized etch rate model was formulated to describe metal oxide etching in complex plasma chemistries, based on the understanding gained from detailed plasma characterization and experimental investigation into the metal oxide etching mechanisms. Using a surface site balance-based approach, the correct etch rate dependencies on neutral-to-ion flux ratio, ion energy, competing deposition and etching reaction pathways, and film properties were successfully incorporated into the model. The applicability of the model was assessed by fitting to experimental etch rate data in both Cl{sub 2} and BCl{sub 3} chemistries. Plasma gas phase analysis as well as etch and deposition rate measurements were used to calculate initial values and appropriate ranges for model parameter variation. Physically meaningful parameter values were extracted from the modeling fitting to the experimental data, thereby demonstrating the applicability of this model in assessing the plasma etching of other complex materials systems.

  5. Etching study of poled lithium tantalate crystal using wet etching technique with ultrasonic assistance

    NASA Astrophysics Data System (ADS)

    Gao, Z. D.; Wang, Q. J.; Zhang, Y.; Zhu, S. N.

    2008-02-01

    Utilizing the difference in etching rates of the positive and negative domains in an acid solution, domain pattern can be fabricated on the polarity surface of a congruent lithium tantalate crystal. Our results show that the ultrasonic agitation can improve the etching rate. An enhanced factor up to six was realized under a 50 W of ultrasonic power in a mixture with volumetric ratio of HF to H 2SO 4 at 1:2. The dependences of etching morphology on etching time and etching etchant for congruent lithium tantalate crystal were studied. The technique is applicable to fabricating three-dimensional microstructures on the surface of ferroelectric crystals.

  6. [Recovery of fluoride orally on the acid-etched tooth surface].

    PubMed

    Tanaka, M; Kobayashi, K; Okumura, F; Ono, H; Kadoma, Y; Imai, Y

    1989-01-01

    There are many reports concerning the recovery phenomenon of acid-etched enamel surfaces of teeth. Many studies of surface hardness, acid resistant properties, radiolucency, and surface morphology suggest that orally the acid-etched enamel reverts to a state nearly similar to that of the intact enamel before the acid etching. This study was conducted in order to verify the existence of the recovery phenomenon of fluoride on acid-etched enamel, because the surface layer of a high fluoride concentration is removed from the surface enamel by the acid etching. The deciduous upper central incisors of both sides were etched with phosphoric acid. The fluoride content of one incisor was measured immediately after the etching and that of the opposite incisor was also measured in vivo after 4 weeks, during which period no special fluoride was used. The fluoride content of the tooth surface in the mouth after 4 weeks significantly increased by about 50 ppm, when compared to that immediately after the acid etching. No significant relationship was found between the fluoride increase and the fluoride concentration of the patients' saliva and drinking water which were the probable supply sources of fluoride for the teeth. No relationship was found between the fluoride increase and the number of second deciduous molars with defects or fillings, which was counted as a measure of the patient's susceptibility to caries.

  7. Plasma-Enhanced Atomic Layer Deposition of SiN-AlN Composites for Ultra Low Wet Etch Rates in Hydrofluoric Acid.

    PubMed

    Kim, Yongmin; Provine, J; Walch, Stephen P; Park, Joonsuk; Phuthong, Witchukorn; Dadlani, Anup L; Kim, Hyo-Jin; Schindler, Peter; Kim, Kihyun; Prinz, Fritz B

    2016-07-13

    The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposited (ALD) of hydrofluoric acid (HF) etch resistant and electrically insulating films for sidewall spacer processing. Silicon nitride (SiN) has been the prototypical material for this need and extensive work has been conducted into realizing sufficiently lower wet etch rates (WERs) as well as leakage currents to meet industry needs. In this work, we report on the development of plasma-enhanced atomic layer deposition (PEALD) composites of SiN and AlN to minimize WER and leakage current density. In particular, the role of aluminum and the optimum amount of Al contained in the composite structures have been explored. Films with near zero WER in dilute HF and leakage currents density similar to pure PEALD SiN films could be simultaneously realized through composites which incorporate ≥13 at. % Al, with a maximum thermal budget of 350 °C.

  8. Micro-PIXE and micro-RBS characterization of micropores in porous silicon prepared using microwave-assisted hydrofluoric acid etching.

    PubMed

    Ahmad, Muthanna; Grime, Geoffrey W

    2013-04-01

    Porous silicon (PS) has been prepared using a microwave-assisted hydrofluoric acid (HF) etching method from a silicon wafer pre-implanted with 5 MeV Cu ions. The use of microbeam proton-induced X-ray emission (micro-PIXE) and microbeam Rutherford backscattering techniques reveals for the first time the capability of these techniques for studying the formation of micropores. The porous structures observed from micro-PIXE imaging results are compared to scanning electron microscope images. It was observed that the implanted copper accumulates in the same location as the pores and that at high implanted dose the pores form large-scale patterns of lines and concentric circles. This is the first work demonstrating the use of microwave-assisted HF etching in the formation of PS.

  9. Plasma-Enhanced Atomic Layer Deposition of SiN-AlN Composites for Ultra Low Wet Etch Rates in Hydrofluoric Acid.

    PubMed

    Kim, Yongmin; Provine, J; Walch, Stephen P; Park, Joonsuk; Phuthong, Witchukorn; Dadlani, Anup L; Kim, Hyo-Jin; Schindler, Peter; Kim, Kihyun; Prinz, Fritz B

    2016-07-13

    The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposited (ALD) of hydrofluoric acid (HF) etch resistant and electrically insulating films for sidewall spacer processing. Silicon nitride (SiN) has been the prototypical material for this need and extensive work has been conducted into realizing sufficiently lower wet etch rates (WERs) as well as leakage currents to meet industry needs. In this work, we report on the development of plasma-enhanced atomic layer deposition (PEALD) composites of SiN and AlN to minimize WER and leakage current density. In particular, the role of aluminum and the optimum amount of Al contained in the composite structures have been explored. Films with near zero WER in dilute HF and leakage currents density similar to pure PEALD SiN films could be simultaneously realized through composites which incorporate ≥13 at. % Al, with a maximum thermal budget of 350 °C. PMID:27295338

  10. Dilute hydrogen plasma cleaning of boron from silicon after etching of HfO{sub 2} films in BCl{sub 3} plasmas: Substrate temperature dependence

    SciTech Connect

    Wang Chunyu; Donnelly, Vincent M.

    2009-01-15

    The authors have investigated the effects of elevated substrate temperature (T{sub s}) on cleaning of boron residues from silicon substrates in 1%H{sub 2}-Ar plasmas, following etching of HfO{sub 2} in BCl{sub 3} plasmas. Vacuum-transfer x-ray photoelectron spectroscopy (XPS) provided a measure of total B removal rates, as well as information on individual BCl{sub x}O{sub y} moities. B cleaning rates increased with T{sub s} in an Arrhenius manner, with an apparent activation energy of 1.7 kcal/mol. Conversely, the Si etching rate decreased with increasing substrate temperature with an apparent activation energy of -0.8 kcal/mol. Therefore, when considering selectivity with respect to Si etching, it is advantageous to remove B at higher T{sub s}. For example, at T{sub s}=235 deg. C, {approx}90% of B is cleaned from Si in 10 s, while <1.5 nm of Si is removed. An apparent diffusion of H into the near-surface region of Si at higher temperatures, detected indirectly by a shift and broadening of the Si(2p) XPS peak, may limit the maximum optimum substrate temperature, however. It was also found that Si does not etch in 1%H{sub 2}/Ar plasmas if an oxide layer is present.

  11. A Comparison of Shear Bond Strengths of Metal and Ceramic Brackets using Conventional Acid Etching Technique and Er:YAG Laser Etching

    PubMed Central

    Yassaei, Sogra; Fekrazad, Reza; Shahraki, Neda; Goldani Moghadam, Mahdjoube

    2014-01-01

    Background and aims. The aim of this study was to compare shear bond strength (SBS) of metal and ceramic brackets bonded to enamel using acid versus Er:YAG laser etching. Materials and methods. Eighty premolars were divided into 4 groups: AM (acid etching/ metal brackets), AC (acid etching/ ceramic brackets), LM (laser etching/ metal brackets) and LC (laser etching/ ceramic brackets). Enamel condition-ing was done using acid in AC and AM and Er:YAG laser in LC and LM. Brackets were debonded with a Dartec machine and the SBSs were determined. Adhesive remnant index was evaluated under a stereomicroscope. Two additional teeth were conditioned with acid and laser for scanning electron microscopy examination. Comparisons of SBS value were done by ANOVA test. Results. statistical analyses showed that SBSs of acid groups were significantly higher than that of laser groups, but dif-ferences between SBS values of AC/ AM and LC/LM were not significant. SEM examination revealed different etching pattern. Conclusion. Low power Er:YAG laser etching offers clinically acceptable SBS which besides its other superiorities to acid etching can be an appropriate alternative for bonding of ceramic brackets. PMID:25024836

  12. Effects of additive C{sub 4}F{sub 8} during inductively coupled BCl{sub 3}/C{sub 4}F{sub 8}/Ar plasma etching of TaN and HfO{sub 2} for gate stack patterning

    SciTech Connect

    Ko, J. H.; Kim, D. Y.; Park, M. S.; Lee, N.-E.; Lee, S. S.; Ahn, Jinho; Mok, Hyungsoo

    2007-07-15

    In this work, the authors investigated the etching characteristics of TaN and HfO{sub 2} layers for gate stack patterning in BCl{sub 3}/Ar and BCl{sub 3}/C{sub 4}F{sub 8}/Ar inductively coupled plasmas and the effects of C{sub 4}F{sub 8} addition on the etch selectivity of the TaN to the HfO{sub 2} layer. Addition of C{sub 4}F{sub 8} gas to the BCl{sub 3}/Ar chemistry improved the TaN/HfO{sub 2} etch selectivity because adding the C{sub 4}F{sub 8} gas enhances the formation of the CF{sub x}Cl{sub y} passivation layer on HfO{sub 2} surface and decreased the HfO{sub 2} etch rate more rapidly than the TaN etch rate in a disproportionate way. Reduction in the etch time for HfO{sub 2} layer also increases the TaN/HfO{sub 2} etch selectivity because the etch time gets closer to the initiation time for HfO{sub 2} etching.

  13. Low Temperature Silicon Surface Cleaning by HF Etching/Ultraviolet Ozone Cleaning (HF/UVOC) Method (II)—in situ UVOC

    NASA Astrophysics Data System (ADS)

    Kaneko, Tetsuya; Suemitsu, Maki; Miyamoto, Nobuo

    1989-12-01

    A new method to obtain clean silicon surfaces using a thermal treatment at as low as 700°C is proposed. The method consists of an ex situ treatment of HF dipping followed by a rinse in distilled, deionized water and in situ treatments of both UVOC under low oxygen pressure and annealing in vacuo. From the Arrhenius plot of the removal rate of the surface oxide, two mechanisms corresponding to a diffusion of the volatile product, SiO, and a reaction between oxygen and silicon are suggested to exist, with activation energies 3.7 eV and 1.9 eV, respectively.

  14. An in vitro comparison of acid etched vs. nonacid etched dentin bonding agents/composite interfaces over primary dentin.

    PubMed

    Donly, K J; Keprta, M; Stratmann, R G

    1991-01-01

    The purpose of this study was to evaluate acid etchant penetration on dentin bonding agents and its effect on the composite resin bond strength. Forty primary molars were mounted, then the buccal and lingual surfaces were prepared into dentin. The teeth were divided into four groups of 10, and four dentin bonding agents were placed on the buccal and lingual surfaces of exposed dentin, as recommended by the manufacturers. One surface of each tooth was etched randomly for 60 sec with 35% phosphoric acid. A standardized tube of composite resin was placed on each dentin surface and polymerized for 60 sec. The tubes were sheared off with an Instron Testing Machine. The specimens then were sectioned to be examined by a scanning electron microscope (SEM). Results demonstrated shear strengths (kg/cm2) of etched (e) and unetched (u) bonding agents to be: Scotchbond (3M Dental Products, St. Paul, MN) (e) 116.7 +/- 37.7, (u) 116.7 +/- 63.0; Scotchbond 2 (3M Dental Products, St. Paul, MN) (e) 112.0 +/- 40.6, (u) 127.0 +/- 38.7; Gluma (Bayer Dental, Leverkusen, Federal Republic of Germany) (e) 80.1 +/- 21.7, (u) 107.0 +/- 16.6; Bondlite (Kerr Manufacturing Co., Romulus, MI) (e) 53.4 +/- 34.7, (u) 79.1 +/- 26.3. The analysis of variance (ANOVA) demonstrated a statistical significance in variance at the P less than 0.001 level. Scheffe's Test indicated no statistically significant differences between the bond strengths of etched vs. nonetched dentin bonding agents and composite resin. SEM evaluation indicated that the acid etchant penetrated none of the dentin bonding agents. PMID:1886824

  15. Morphological categorization of acid-base resistant zones with self-etching primer adhesive systems.

    PubMed

    Inoue, Go; Nikaido, Toru; Sadr, Alireza; Tagami, Junji

    2012-01-01

    This study investigated the influence of the composition of self-etching primer adhesive systems on the morphology of acid-base resistant zones (ABRZs). One-step self-etching primer systems (Clearfil Tri-S Bond, G-Bond, and One-Up Bond F Plus) and two-step self-etching primer systems (Clearfil SE Bond, Clearfil Protect Bond, UniFil Bond, and Mac Bond II) were used in this study. Each adhesive was applied on prepared dentin disk surfaces, and a resin composite was placed between two dentin disks. All resin-bonded specimens were subjected to acid-base challenge. Observation under a scanning electron microscope (SEM) revealed the creation of an ABRZ adjacent to the hybrid layer for all the self-etch primer adhesive systems, even when non-fluoride releasing adhesives were used. The presence of fluoride in two-step self-etching adhesive significantly increased the thickness of ABRZ created. Results suggested that an ABRZ was created with the use of self-etching primer adhesive systems, but its morphology differed between one-and two-step self-etching primer adhesive systems and was influenced by fluoride release activity.

  16. Early odontoblastic layer response to cavity preparation and acid etching in rats.

    PubMed

    Nemeth, Lidija; Erman, Andreja; Stiblar-Martincic, Draga

    2006-01-01

    The aim of this study was to establish the early odontoblastic layer response and quantitatively to estimate the number of odontoblasts after cavity preparation with and without acid etching. Half of 56 cavities prepared on rats' first upper molars were acid etched. Qualitative and morphometric analyses were made on histological and ultrathin sections 5 min, 6 h, 24 h and 72 h post-operatively. Under the etched cavity, a greater disarrangement of odontoblasts was found, modifications in nuclear shape and condensed chromatin 5 min. post-operatively. An additional reduction of odontoblast number was detected and an increase of aspirated cell number 5 min, 6 h and 24 h post-operatively, pronounced hyperaemia 6, 24 and 72 hours post-operatively and increased odontoblast number 72 hours post-operatively, compared to unetched cavities. In conclusion, injury to the odontoblastic layer was greater, but numerical renewal of the odontoblastic layer began earlier in etched cavities compared to unetched cavities. PMID:17044256

  17. Comparative Evaluation of the Etching Pattern of Er,Cr:YSGG & Acid Etching on Extracted Human Teeth-An ESEM Analysis

    PubMed Central

    Mazumdar, Dibyendu; Ranjan, Shashi; Krishna, Naveen Kumar; Kole, Ravindra; Singh, Priyankar; Lakiang, Deirimika; Jayam, Chiranjeevi

    2016-01-01

    Introduction Etching of enamel and dentin surfaces increases the surface area of the substrate for better bonding of the tooth colored restorative materials. Acid etching is the most commonly used method. Recently, hard tissue lasers have been used for this purpose. Aim The aim of the present study was to evaluate and compare the etching pattern of Er,Cr:YSGG and conventional etching on extracted human enamel and dentin specimens. Materials and Methods Total 40 extracted non-diseased teeth were selected, 20 anterior and 20 posterior teeth each for enamel and dentin specimens respectively. The sectioned samples were polished by 400 grit Silicon Carbide (SiC) paper to a thickness of 1.0 ± 0.5 mm. The enamel and dentin specimens were grouped as: GrE1 & GrD1 as control specimens, GrE2 & GrD2 were acid etched and GrE3 & GrD3 were lased. Acid etching was done using Conditioner 36 (37 % phosphoric acid) according to manufacturer instructions. Laser etching was done using Er,Cr:YSGG (Erbium, Chromium : Ytrium Scandium Gallium Garnet) at power settings of 3W, air 70% and water 20%. After surface treatment with assigned agents the specimens were analyzed under ESEM (Environmental Scanning Electron Microscope) at X1000 and X5000 magnification. Results Chi Square and Student “t” statistical analysis was used to compare smear layer removal and etching patterns between GrE2-GrE3. GrD2 and GrD3 were compared for smear layer removal and diameter of dentinal tubule opening using the same statistical analysis. Chi-square test for removal of smear layer in any of the treated surfaces i.e., GrE2-E3 and GrD2-D3 did not differ significantly (p>0.05). While GrE2 showed predominantly type I etching pattern (Chi-square=2.78, 0.05

    0.10) and GrE3 showed type III etching (Chi-square=4.50, p<0.05). The tubule diameters were measured using GSA (Gesellschaft fur Softwareentwicklung und Analytik, Germany) image analyzer and the ‘t’ value of student ‘t’ test was 18.10 which was a

  18. Correlation of film density and wet etch rate in hydrofluoric acid of plasma enhanced atomic layer deposited silicon nitride

    NASA Astrophysics Data System (ADS)

    Provine, J.; Schindler, Peter; Kim, Yongmin; Walch, Steve P.; Kim, Hyo Jin; Kim, Ki-Hyun; Prinz, Fritz B.

    2016-06-01

    The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposition (ALD) of silicon nitride (SiNx), particularly for use a low k dielectric spacer. One of the key material properties needed for SiNx films is a low wet etch rate (WER) in hydrofluoric (HF) acid. In this work, we report on the evaluation of multiple precursors for plasma enhanced atomic layer deposition (PEALD) of SiNx and evaluate the film's WER in 100:1 dilutions of HF in H2O. The remote plasma capability available in PEALD, enabled controlling the density of the SiNx film. Namely, prolonged plasma exposure made films denser which corresponded to lower WER in a systematic fashion. We determined that there is a strong correlation between WER and the density of the film that extends across multiple precursors, PEALD reactors, and a variety of process conditions. Limiting all steps in the deposition to a maximum temperature of 350 °C, it was shown to be possible to achieve a WER in PEALD SiNx of 6.1 Å/min, which is similar to WER of SiNx from LPCVD reactions at 850 °C.

  19. Bone growth enhancement in vivo on press-fit titanium alloy implants with acid etched microtexture.

    PubMed

    Daugaard, Henrik; Elmengaard, Brian; Bechtold, Joan E; Soballe, Kjeld

    2008-11-01

    Early bone ongrowth secures long-term fixation of primary implants inserted without cement. Implant surfaces roughened with a texture on the micrometer scale are known to be osseoconductive. The aim of this study was to evaluate the bone formation at the surface of acid etched implants modified on the micro-scale. We compared implants with a nonparticulate texture made by chemical milling (hydrofluoric acid, nitric acid) (control) with implants that had a dual acid etched (hydrofluoric acid, hydrochloric acid) microtexture surface superimposed on the primary chemically milled texture. We used an experimental joint replacement model with cylindrical titanium implants (Ti-6Al-4V) inserted paired and press-fit in cancellous tibia metaphyseal bone of eight canines for 4 weeks and evaluated by histomorphometric quantification. A significant twofold median increase was seen for bone ongrowth on the acid etched surface [median, 36.1% (interquartile range, 24.3-44.6%)] compared to the control [18.4% (15.6-20.4%)]. The percentage of fibrous tissue at the implant surface and adjacent bone was significantly less for dual acid textured implants compared with control implants. These results show that secondary roughening of titanium alloy implant surface by dual acid etching increases bone formation at the implant bone interface. PMID:18186059

  20. Bone growth enhancement in vivo on press-fit titanium alloy implants with acid etched microtexture

    PubMed Central

    Daugaard, Henrik; Elmengaard, Brian; Bechtold, Joan E.; Soballe, Kjeld

    2013-01-01

    Early bone ongrowth secures long-term fixation of primary implants inserted without cement. Implant surfaces roughened with a texture on the micrometer scale are known to be osseoconductive. The aim of this study was to evaluate the bone formation at the surface of acid etched implants modified on the micro-scale. We compared implants with a nonparticulate texture made by chemical milling (hydrofluoric acid, nitric acid) (control) with implants that had a dual acid etched (hydrofluoric acid, hydrochloric acid) microtexture surface superimposed on the primary chemically milled texture. We used an experimental joint replacement model with cylindrical titanium implants (Ti-6Al-4V) inserted paired and press-fit in cancellous tibia metaphyseal bone of eight canines for 4 weeks and evaluated by histomorphometric quantification. A significant twofold median increase was seen for bone ongrowth on the acid etched surface [median, 36.1% (interquartile range, 24.3–44.6%)] compared to the control [18.4% (15.6–20.4%)]. The percentage of fibrous tissue at the implant surface and adjacent bone was significantly less for dual acid textured implants compared with control implants. These results show that secondary roughening of titanium alloy implant surface by dual acid etching increases bone formation at the implant bone interface. PMID:18186059

  1. Evaluating EDTA as a substitute for phosphoric acid-etching of enamel and dentin.

    PubMed

    Imbery, Terence A; Kennedy, Matthew; Janus, Charles; Moon, Peter C

    2012-01-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes released when dentin is acid-etched. The enzymes are capable of destroying unprotected collagen fibrils that are not encapsulated by the dentin adhesive. Chlorhexidine applied after etching inhibits the activation of released MMPs, whereas neutral ethylenediamine tetra-acetic acid (EDTA) prevents the release of MMPs. The purpose of this study was to determine if conditioning enamel and dentin with EDTA can be a substitute for treating acid-etching enamel and dentin with chlorhexidine. A column of composite resin was bonded to enamel and dentin after conditioning. Shear bond strengths were evaluated after 48 hours and after accelerated aging for three hours in 12% sodium hypochlorite. Shear bond strengths ranged from 15.6 MP a for accelerated aged EDTA enamel specimens to 26.8 MPa for dentin conditioned with EDTA and tested after 48 hours. A three-way ANOVA and a Tukey HSD test found statistically significant differences among the eight groups and the three independent variables (P < 0.05). EDTA was successfully substituted for phosphoric acid-etched enamel and dentin treated with chlorhexidine. Interactions of conditioning agent and aging were significant for dentin but not for enamel. In an effort to reduce the detrimental effects of MMPs, conditioning enamel and dentin with EDTA is an alternative to treating acid-etched dentin and enamel with chlorhexidine.

  2. Immunohistochemical and ultrastructural evaluation of the effects of phosphoric acid etching on dentin proteoglycans.

    PubMed

    Oyarzún, A; Rathkamp, H; Dreyer, E

    2000-12-01

    It has been reported that phosphoric acid (PA) produces structural and molecular alterations in dentin collagen fibrils; however, no relevant information exists on the influence of etching with PA on dentin non-collagenous macromolecules. The present study investigated, by immunohistochemistry and ultrastructural histochemistry, the behavior of dentin proteoglycans (PG) after etching human dentin samples with 35% PA gel (thickened with colloidal silica) or with a 35% PA liquid for 15, 30 and 120 s. Immunolabeling with a mouse monoclonal anti-chondroitin sulfate antibody demonstrated that glycosaminoglycans (GAG) were preserved within dentinal tubules opened to the surface after etching with PA gel. In addition, the cationic tracer polyethyleneimine, used for the ultramicroscopic localization of PG anionic sites, revealed that treatment of dentin samples with PA gel preserved the polyanionic peritubular PG in the etched area. On the other hand, etching with the PA liquid produced loss of peritubular GAG and PG anionic sites in the etched dentin surface. The results obtained indicated that similar concentrations of PA in gel or liquid formulations differently affect the organization of dentin PG. The clinical significance of these in vitro findings and the structural and molecular interactions of dentin PG with adhesive systems are still unknown.

  3. Analysis methods for meso- and macroporous silicon etching baths

    NASA Astrophysics Data System (ADS)

    Nehmann, Julia B.; Kajari-Schröder, Sarah; Bahnemann, Detlef W.

    2012-07-01

    Analysis methods for electrochemical etching baths consisting of various concentrations of hydrofluoric acid (HF) and an additional organic surface wetting agent are presented. These electrolytes are used for the formation of meso- and macroporous silicon. Monitoring the etching bath composition requires at least one method each for the determination of the HF concentration and the organic content of the bath. However, it is a precondition that the analysis equipment withstands the aggressive HF. Titration and a fluoride ion-selective electrode are used for the determination of the HF and a cuvette test method for the analysis of the organic content, respectively. The most suitable analysis method is identified depending on the components in the electrolyte with the focus on capability of resistance against the aggressive HF.

  4. Effect of acid etching of glass ionomer cement surface on the microleakage of sandwich restorations.

    PubMed

    Bona, Alvaro Della; Pinzetta, Caroline; Rosa, Vinícius

    2007-06-01

    The purposes of this study were to evaluate the sealing ability of different glass ionomer cements (GICs) used for sandwich restorations and to assess the effect of acid etching of GIC on microleakage at GIC-resin composite interface. Forty cavities were prepared on the proximal surfaces of 20 permanent human premolars (2 cavities per tooth), assigned to 4 groups (n=10) and restored as follows: Group CIE - conventional GIC (CI) was applied onto the axial and cervical cavity walls, allowed setting for 5 min and acid etched (E) along the cavity margins with 35% phosphoric acid for 15 s, washed for 30 s and water was blotted; the adhesive system was applied and light cured for 10 s, completing the restoration with composite resin light cured for 40 s; Group CIN - same as Group CIE, except for acid etching of the CI surface; Group RME - same as CIE, but using a resin modified GIC (RMGIC); Group RMN - same as Group RME, except for acid etching of the RMGIC surface. Specimens were soaked in 1% methylene blue dye solution at 24 degrees C for 24 h, rinsed under running water for 1 h, bisected longitudinally and dye penetration was measured following the ISO/TS 11405-2003 standard. Results were statistically analyzed by Kruskal-Wallis and chi-square tests (a=0.05). Dye penetration scores were as follow: CIE - 2.5; CIN - 2.5; RME - 0.9; and RMN - 0.6. The results suggest that phosphoric acid etching of GIC prior to the placement of composite resin does not improve the sealing ability of sandwich restorations. The RMGIC was more effective in preventing dye penetration at the GIC-resin composite-dentin interfaces than CI.

  5. In vivo Acid Etching Effect on Bacteria within Caries-Affected Dentin

    PubMed Central

    Gu, F.; Bresciani, E.; Barata, T.J.; Fagundes, T.C.; Navarro, M.F.; Dickens, S.H.; Fenno, J.C.; Peters, M.C.

    2010-01-01

    Acid etching procedures may disrupt residual bacteria and contribute to the success of incomplete caries removal followed by adhesive restoration. This study evaluated the in vivo effect of acid etching on cariogenic bacterial activity within affected dentin after minimally invasive treatment of caries lesions. Twenty-eight carious permanent teeth received standardized selective caries removal and random acid etch treatment (E) or not (NE) prior to adhesive restoration. Baseline and 3-month dentin biopsies were collected. The number of bacteria and activity of total bacterial cells and Streptococcus mutans were determined by quantitative PCR and RT-PCR. No statistically significant differences were observed in total bacterial number and activity between E and NE treatments (p > 0.3008). For NE, however, the residual S. mutans bacterial cells were reduced (p = 0.0027), while the activity per cell was significantly increased (p = 0.0010) after reentry at 3 months after restoration. This effect was not observed in group E. Although no significant differences were found between groups, this study suggests that acid etching of affected dentin prior to adhesive restoration may directly or indirectly have an inhibitive effect on the activity of residual cariogenic bacteria. Further research is required to investigate this potential effect. PMID:20861631

  6. Acid Etching and Plasma Sterilization Fail to Improve Osseointegration of Grit Blasted Titanium Implants

    PubMed Central

    Saksø, Mikkel; Jakobsen, Stig S; Saksø, Henrik; Baas, Jørgen; Jakobsen, Thomas; Søballe, Kjeld

    2012-01-01

    Interaction between implant surface and surrounding bone influences implant fixation. We attempted to improve the bone-implant interaction by 1) adding surface micro scale topography by acid etching, and 2) removing surface-adherent pro-inflammatory agents by plasma cleaning. Implant fixation was evaluated by implant osseointegration and biomechanical fixation. The study consisted of two paired animal sub-studies where 10 skeletally mature Labrador dogs were used. Grit blasted titanium alloy implants were inserted press fit in each proximal tibia. In the first study grit blasted implants were compared with acid etched grit blasted implants. In the second study grit blasted implants were compared with acid etched grit blasted implants that were further treated with plasma sterilization. Implant performance was evaluated by histomorphometrical investigation (tissue-to-implant contact, peri-implant tissue density) and mechanical push-out testing after four weeks observation time. Neither acid etching nor plasma sterilization of the grit blasted implants enhanced osseointegration or mechanical fixation in this press-fit canine implant model in a statistically significant manner. PMID:22962567

  7. Metal etching composition

    NASA Technical Reports Server (NTRS)

    Otousa, Joseph E. (Inventor); Thomas, Clark S. (Inventor); Foster, Robert E. (Inventor)

    1991-01-01

    The present invention is directed to a chemical etching composition for etching metals or metallic alloys. The composition includes a solution of hydrochloric acid, phosphoric acid, ethylene glycol, and an oxidizing agent. The etching composition is particularly useful for etching metal surfaces in preparation for subsequent fluorescent penetrant inspection.

  8. Temperature Rise Induced by Light Curing Unit Can Shorten Enamel Acid-Etching Time

    PubMed Central

    Najafi Abrandabadi, Ahmad; Sheikh-Al-Eslamian, Seyedeh Mahsa; Panahandeh, Narges

    2015-01-01

    Objectives: The aim of this in-vitro study was to assess the thermal effect of light emitting diode (LED) light curing unit on the enamel etching time. Materials and Methods: Three treatment groups with 15 enamel specimens each were used in this study: G1: Fifteen seconds of etching, G2: Five seconds of etching, G3: Five seconds of etching plus LED light irradiation (simultaneously). The micro shear bond strength (μSBS) of composite resin to enamel was measured. Results: The mean μSBS values ± standard deviation were 51.28±2.35, 40.47±2.75 and 50.00±2.59 MPa in groups 1, 2 and 3, respectively. There was a significant difference between groups 1 and 2 (P=0.013) and between groups 2 and 3 (P=0.032) in this respect, while there was no difference between groups 1 and 3 (P=0.932). Conclusion: Simultaneous application of phosphoric acid gel over enamel surface and light irradiation using a LED light curing unit decreased enamel etching time to five seconds without compromising the μSBS. PMID:27559352

  9. Phosphoric acid-etching promotes bond strength and formation of acid-base resistant zone on enamel.

    PubMed

    Li, N; Nikaido, T; Alireza, S; Takagaki, T; Chen, J-H; Tagami, J

    2013-01-01

    This study examined the effect of phosphoric acid (PA) etching on the bond strength and acid-base resistant zone (ABRZ) formation of a two-step self-etching adhesive (SEA) system to enamel. An etch-and-rinse adhesive (EAR) system Single Bond (SB) and a two-step SEA system Clearfil SE Bond (SE) were used. Human teeth were randomly divided into four groups according to different adhesive treatments: 1) SB; 2) SE; 3) 35% PA etching→SE primer→SE adhesive (PA/SEp+a); (4) 35% PA etching→SE adhesive (PA/SEa). Microshear bond strength to enamel was measured and then statistically analyzed using one-way analysis of variance and the Tukey honestly significant difference test. The failure mode was recorded and analyzed by χ( 2 ) test. The etching pattern of the enamel surface was observed with scanning electron microscope (SEM). The bonded interface was exposed to a demineralizing solution (pH=4.5) for 4.5 hours and then 5% sodium hypochlorite with ultrasonication for 30 minutes. After argon-ion etching, the interfacial ultrastructure was observed using SEM. The microshear bond strength to enamel of the SE group was significantly lower (p<0.05) than that of the three PA-etched groups, although the latter three were not significantly different from one another. The ABRZ was detected in all the groups. In morphological observation, the ABRZ in the three PA-etched groups were obviously thicker compared with the SE group with an irregular wave-shaped edge.

  10. Effect of EDTA and Phosphoric Acid Pretreatment on the Bonding Effectiveness of Self-Etch Adhesives to Ground Enamel

    PubMed Central

    Ibrahim, Ihab M.; Elkassas, Dina W.; Yousry, Mai M.

    2010-01-01

    Objectives: This in vitro study determined the effect of enamel pretreatment with phosphoric acid and ethylenediaminetetraacetic acid (EDTA) on the bond strength of strong, intermediary strong, and mild self-etching adhesive systems. Methods: Ninety sound human premolars were used. Resin composite cylinders were bonded to flat ground enamel surfaces using three self-etching adhesive systems: strong Adper Prompt L-Pop (pH=0.9–1.0), intermediary strong AdheSE (pH=1.6–1.7), and mild Frog (pH=2). Adhesive systems were applied either according to manufacturer instructions (control) or after pretreatment with either phosphoric acid or EDTA (n=10). After 24 hours, shear bond strength was tested using a universal testing machine at a cross-head speed of 0.5 mm/minute. Ultra-morphological characterization of the surface topography and resin/enamel interfaces as well as representative fractured enamel specimens were examined using scanning electron microscopy (SEM). Results: Neither surface pretreatment statistically increased the mean shear bond strength values of either the strong or the intermediary strong self-etching adhesive systems. However, phosphoric acid pretreatment significantly increased the mean shear bond strength values of the mild self-etching adhesive system. SEM examination of enamel surface topography showed that phosphoric acid pretreatment deepened the same etching pattern of the strong and intermediary strong adhesive systems but converted the irregular etching pattern of the mild self-etching adhesive system to a regular etching pattern. SEM examination of the resin/enamel interface revealed that deepening of the etching pattern was consistent with increase in the length of resin tags. EDTA pretreatment had a negligible effect on ultra-morphological features. Conclusions: Use of phosphoric acid pretreatment can be beneficial with mild self-etching adhesive systems for bonding to enamel. PMID:20922162

  11. Hydrofluoric acid etched stainless steel wire for solid-phase microextraction.

    PubMed

    Xu, Hua-Ling; Li, Yan; Jiang, Dong-Qing; Yan, Xiu-Ping

    2009-06-15

    Stainless steel wire has been widely used as the substrate of solid-phase microextraction (SPME) fibers to overcome the shortcomings of conventional silica fibers such as fragility, by many researchers. However, in previous reports various sorbent coatings are always required in conjunction with the stainless steel wire for SPME. In this work, we report the bare stainless steel wire for SPME without the need for any additional coatings taking advantage of its high mechanical and thermal stability. To evaluate the performance of stainless steel wire for SPME, polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, ethylbenzene, chlorobenzene, n-propylbenzene, aniline, phenol, n-hexane, n-octane, n-decane, n-undecane, n-dodecane, chloroform, trichloroethylene, n-octanol, and butanol were tested as analytes. Although the stainless steel wire had almost no extraction capability toward the tested analytes before etching, it did exhibit high affinity to the tested PAHs after etching with hydrofluoric acid. The etched stainless steel wire gave a much bigger enhancement factor (2541-3981) for the PAHs than the other analytes studied (< or = 515). Etching with hydrofluoric acid produced a porous and flower-like structure with Fe(2)O(3), FeF(3), Cr(2)O(3), and CrF(2) on the surface of the stainless steel wire, giving high affinity to the PAHs due to cation-pi interaction. On the basis of the high selectivity of the etched stainless steel wire for PAHs, a new SPME method was developed for gas chromatography with flame ionization detection to determine PAHs with the detection limits of 0.24-0.63 microg L(-1). The precision for six replicate extractions using one SPME fiber ranged from 2.9% to 5.3%. The fiber-to-fiber reproducibility for three parallel prepared fibers was 4.3-8.8%. One etched stainless steel wire can stand over 250 cycles of SPME without significant loss of extraction efficiency. The developed etched stainless steel wire is very stable, highly selective, and

  12. Effect of acid etching on bond strength of nanoionomer as an orthodontic bonding adhesive

    PubMed Central

    Khan, Saba; Verma, Sanjeev K.; Maheshwari, Sandhya

    2015-01-01

    Aims: A new Resin Modified Glass Ionomer Cement known as nanoionomer containing nanofillers of fluoroaluminosilicate glass and nanofiller 'clusters' has been introduced. An in-vitro study aimed at evaluating shear bond strength (SBS) and adhesive remnant index (ARI) of nanoionomer under etching/unetched condition for use as an orthodontic bonding agent. Material and Methods: A total of 75 extracted premolars were used, which were divided into three equal groups of 25 each: 1-Conventional adhesive (Enlight Light Cure, SDS, Ormco, CA, USA) was used after and etching with 37% phosphoric acid for 30 s, followed by Ortho Solo application 2-nanoionomer (Ketac™ N100, 3M, ESPE, St. Paul, MN, USA) was used after etching with 37% phosphoric acid for 30 s 3-nanoionomer was used without etching. The SBS testing was performed using a digital universal testing machine (UTM-G-410B, Shanta Engineering). Evaluation of ARI was done using scanning electron microscopy. The SBS were compared using ANOVA with post-hoc Tukey test for intergroup comparisons and ARI scores were compared with Chi-square test. Results: ANOVA (SBS, F = 104.75) and Chi-square (ARI, Chi-square = 30.71) tests revealed significant differences between groups (P < 0.01). The mean (SD) SBS achieved with conventional light cure adhesive was significantly higher (P < 0.05) (10.59 ± 2.03 Mpa, 95% CI, 9.74-11.41) than the nanoionomer groups (unetched 4.13 ± 0.88 Mpa, 95% CI, 3.79-4.47 and etched 9.32 ± 1.87 Mpa, 95% CI, 8.58-10.06). However, nanoionomer with etching, registered SBS in the clinically acceptable range of 5.9–7.8 MPa, as suggested by Reynolds (1975). The nanoionomer groups gave significantly lower ARI values than the conventional adhesive group. Conclusion: Based on this in-vitro study, nanoionomer with etching can be successfully used as an orthodontic bonding agent leaving less adhesive remnant on enamel surface, making cleaning easier. However, in-vivo studies are needed to confirm the validity

  13. Scanning Acoustic Microscopy Investigation of Frequency-Dependent Reflectance of Acid-Etched Human Dentin Using Homotopic Measurements

    PubMed Central

    Marangos, Orestes; Misra, Anil; Spencer, Paulette; Katz, J. Lawrence

    2013-01-01

    Composite restorations in modern restorative dentistry rely on the bond formed in the adhesive-infiltrated acid-etched dentin. The physical characteristics of etched dentin are, therefore, of paramount interest. However, characterization of the acid-etched zone in its natural state is fraught with problems stemming from a variety of sources including its narrow size, the presence of water, heterogeneity, and spatial scale dependency. We have developed a novel homotopic (same location) measurement methodology utilizing scanning acoustic microscopy (SAM). Homotopic measurements with SAM overcome the problems encountered by other characterization/ imaging methods. These measurements provide us with acoustic reflectance at the same location of both the pre- and post-etched dentin in its natural state. We have applied this methodology for in vitro measurements on dentin samples. Fourier spectra from acid-etched dentin showed amplitude reduction and shifts of the central frequency that were location dependent. Through calibration, the acoustic reflectance of acid-etched dentin was found to have complex and non-monotonic frequency dependence. These data suggest that acid-etching of dentin results in a near-surface graded layer of varying thickness and property gradations. The measurement methodology described in this paper can be applied to systematically characterize mechanical properties of heterogeneous soft layers and interfaces in biological materials. PMID:21429849

  14. Comparison of shear bond strength of composite resin to enamel surface with laser etching versus acid etching: An in vitro evaluation

    PubMed Central

    Hoshing, Upendra A; Patil, Suvarna; Medha, Ashish; Bandekar, Siddhesh Dattatray

    2014-01-01

    Introduction: The aim of the study is in vitro evaluation of the shear bond strength of composite resin bonded to enamel which is pretreated using acid etchant and Er,Cr:Ysgg. Materials and Methods: 40 extracted human teeth were divided in two groups of 20 each (Groups A and B). In Group A, prepared surface of enamel was etched using 37% phosphoric acid (Scotchbond, 3M). In Group B, enamel was surface treated by a an Er, Cr: YSGG laser system (Waterlase MD, Biolase Technology Inc., San Clemente, CA, USA) operating at a wavelength of 2,780 nm and having a pulse duration of 140-200 microsecond with a repetition rate of 20 Hz and 40 Hz. Bonding agent ((Scotchbond Multipurpose, 3M) was applied over the test areas on 20 samples of Groups A and B each, and light cured. Composite resin (Ceram X duo Nanoceramic restorative, Densply) was applied onto the test areas as a 3 × 3 mm diameter bid, and light cured. The samples were tested for shear bond strength. Results: Mean shear bond strength for acid-etched enamel (26.41 ± 0.66MPa, range 25.155 to 27.150 MPa) was significantly higher (P < 0.01) than for laser-etched enamel (16.23 ± 0.71MPa, range 15.233 to 17.334 MPa). Conclusions: For enamel surface, mean shear bond strength of bonded composite obtained after laser etching were significantly lower than those obtained after acid etching. PMID:25125842

  15. Laser micromachined and acid-etched Fabry-Perot cavities in silica fibres

    NASA Astrophysics Data System (ADS)

    Machavaram, V. R.; Tuck, C. J.; Teagle, M. C.; Badcock, R. A.; Fernando, G. F.

    2006-01-01

    This paper reports on two techniques for creating Fabry-Perot cavities in conventional single- and multi-mode optical fibres. The authors have reported previously on the design and fabrication of extrinsic fibre Fabry-Perot interferometric multi-functional sensors. Here, the authors report on two novel techniques for creating intrinsic fibre optic sensors based on the Fabry-Perot etalon. The first technique involved the use of hydrofluoric acid to preferentially etch the core of the optical fibre. This technique is simple to carry out and provides a cost-effective means for manufacturing intrinsic fibre Fabry-Perot sensors. In the second technique, a 157 nm excimer laser along with a custom-designed beam delivery system was used to ablate (micro-machine) near-paralleled walled cavities through the diameter of the optical fibre (outer diameter of 125 μm). The paper details the experimental methodology and the associated instrumentation for the two techniques. The acid etched and laser ablated cavities were characterised using a 3-D surface profiler, optical and scanning electron microscopy. The feasibility of using these cavities as intrinsic fibre Fabry-Perot strain sensors is demonstrated. This was achieved by surface-mounting the acid etched cavities on to composite tensile test specimens. The output from the optical fibre devices was compared with surface-mounted electrical resistance strain gauges.

  16. Preliminary observations of lung injury produced by instillation of HF in acidic and neutral buffer

    SciTech Connect

    Brainard, J.R.; Kinkead, S.A.; Kober, E.M.; Sebring, R.J.; Stavert, D.M.; Lehnert, B.E.

    1990-01-01

    Perfluoroisobutylene (PFIB) is an extremely toxic organofluoride that can be produced during pyrolysis of tetrafluoroethylene polymers, including Teflon{reg sign}. Inhalation of PFIB at very low concentrations causes acute lung injury, the hallmark of which is pulmonary edema. Several lines of evidence have suggested that hydrolysis of PFIB and resulting production of hydrofluoric acid may be responsible for pulmonary damage. In order to investigate the potential involvement of hydrofluoric acid in producing lung injury and its relationship to the mechanism of fluorocarbon toxicity, we have compared the pulmonary injury produced by PFIB, by dissociated (H{sup +} and F{sup {minus}}), and by undissociated (HF) hydrofluoric acid in the deep lung. By delivering hydrofluoric acid by intratracheal instillation in neutral buffer, we demonstrate that F{sup {minus}} produces no significant pulmonary injury as assessed by increased in lung weight and ultrastructural changes. Similarly, instillation of acid buffer alone demonstrated that H{sup +} did not produce detectable lung injury. Instillation of HF produced changes in lung weight and ultrastructure similar to those observed in PFIB-treated rats. However, the ultrastructural studies show that in contrast to inhalation of PFIB, which produces both endothelial and epithelial cell damage, instillation of HF appears to exert its injurious effects only upon epithelial cells. 9 refs., 1 fig.

  17. Microstructure and Corrosion Behavior of Hf-40 Wt Pct Ti Alloy in Nitric Acid Medium for Reprocessing Applications

    NASA Astrophysics Data System (ADS)

    Jayaraj, J.; Ravi, K. R.; Mallika, C.; Kamachi Mudali, U.

    2016-09-01

    The Hf-40 wt pct Ti (Hf-Ti) alloy was developed for neutron poison application in the spent nuclear fuel reprocessing plant. The furnace-cooled Hf-Ti sample exhibited the microstructure comprising equiaxed-α, lamellar-α, and feathery-α. The water-quenched Hf-Ti sample confirmed the presence of lath and internally twinned martensite. In comparison to the furnace-cooled sample, low corrosion current density and passivation current density values obtained for the water-quenched Hf-Ti in 6 M HNO3 at 298 K (25 °C) indicated better passivation ability. The martensitic structure exhibited high hardness (660 HV) and negligible corrosion rate in 6 M nitric acid at 298 K (25 °C). X-ray photoelectron spectroscopic (XPS) analysis confirmed that passivation behavior of this alloy was due to the protective passive film composed of TiO2 and HfO2.

  18. Effect of acid etching time and technique on interfacial characteristics of the adhesive-dentin bond using differential staining.

    PubMed

    Wang, Yong; Spencer, Paulette

    2004-06-01

    Dentin bonding using the total-etch method has been claimed to be technique-sensitive. The aim of this study is to examine the effect of acid-etch variations on the dentin demineralization and interfacial structure of the adhesive-dentin bond using a differential staining technique. Single Bond adhesive with 35% phosphoric acid gel was used. The occlusal one-third of the crown was removed from 60 extracted, unerupted human third molars. Smear layers were created by abrading the dentin with 600 grit SiC under water for 30 s. The prepared teeth were randomly assigned to four groups according to etching time (Group 1, 10 s; Group 2, 15 s; Group 3, 30 s; Group 4, 60 s). In each group, the etching gel was: (i) applied and spread to the dentin surface and left to stand undisturbed; (ii) applied and gently agitated during etching; (iii) applied without using dispensing tips for the syringe and left for the same period as above. After rinsing, the etched dentin was then treated with the adhesive per manufacturers' instructions. 3-5 micro m thin sections of the adhesive/dentin (a/d) interface were cut with a microtome and stained with Goldner's trichrome. Stained, thin sections from each prepared tooth were imaged with light microscopy. The depth and extent of dentin demineralization, and the a/d interdiffusion zone were clearly visible by this differential staining microtechnique. The thickness of the interdiffusion zone increased as a function of etching time. However, the etchant gel application methods have a significant influence on dentin demineralization. Although agitating acid gel facilitates the penetration and etching into dentin, it should not be recommended, especially for longer etching time. These results indicated that the etching technique has a large effect on the profile of both dentin demineralization and interfacial structure.

  19. Investigation of Acid-Etched CO2 Laser Ablated Enamel Surfaces Using Polarization Sensitive Optical Coherence Tomography

    PubMed Central

    Nahm, Byung J.; Kang, Hobin; Chan, Kenneth; Fried, Daniel

    2012-01-01

    A carbon dioxide laser operating at the highly absorbed wavelength of 9.3μm with a pulse duration of 10–15μs is ideally suited for caries removal and caries prevention. The enamel thermally modified by the laser has enhanced resistance to acid dissolution. This is an obvious advantage for caries prevention; however, it is often necessary to etch the enamel surface to increase adhesion to composite restorative materials and such surfaces may be more resistant to etching. The purpose of the study was to non-destructively measure the susceptibility of laser-ablated enamel surfaces to acid dissolution before and after acid-etching using Polarization Sensitive Optical Coherence Tomography (PS-OCT). PS-OCT was used to acquire images of bovine enamel surfaces after exposure to laser irradiation at ablative fluence, acid-etching, and a surface softened dissolution model. The integrated reflectivity from lesion and the lesion depth were measured using PS-OCT. Samples were also sectioned for examination by Polarized Light Microscopy (PLM). PS-OCT images showed that acid-etching greatly accelerated the formation of subsurface lesions on both laser-irradiated and non-irradiated surfaces (P<0.05). A 37.5% phosphoric acid etch removed the laser modified enamel layer after 5–10 seconds. PMID:23539418

  20. Investigation of acid-etched CO2 laser ablated enamel surfaces using polarization sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nahm, Byung J.; Kang, Hobin; Chan, Kenneth; Fried, Daniel

    2012-01-01

    A carbon dioxide laser operating at the highly absorbed wavelength of 9.3μm with a pulse duration of 10-15μs is ideally suited for caries removal and caries prevention. The enamel thermally modified by the laser has enhanced resistance to acid dissolution. This is an obvious advantage for caries prevention; however, it is often necessary to etch the enamel surface to increase adhesion to composite restorative materials and such surfaces may be more resistant to etching. The purpose of the study was to non-destructively measure the susceptibility of laser-ablated enamel surfaces to acid dissolution before and after acid-etching using Polarization Sensitive Optical Coherence Tomography (PS-OCT). PS-OCT was used to acquire images of bovine enamel surfaces after exposure to laser irradiation at ablative fluence, acid-etching, and a surface softened dissolution model. The integrated reflectivity from lesion and the lesion depth were measured using PS-OCT. Samples were also sectioned for examination by Polarized Light Microscopy (PLM). PS-OCT images showed that acid-etching greatly accelerated the formation of subsurface lesions on both laser-irradiated and non-irradiated surfaces (P<0.05). A 37.5% phosphoric acid etch removed the laser modified enamel layer after 5-10 seconds.

  1. Micro/nanofabrication of poly(L-lactic acid) using focused ion beam direct etching

    NASA Astrophysics Data System (ADS)

    Oyama, Tomoko Gowa; Hinata, Toru; Nagasawa, Naotsugu; Oshima, Akihiro; Washio, Masakazu; Tagawa, Seiichi; Taguchi, Mitsumasa

    2013-10-01

    Micro/nanofabrication of biocompatible and biodegradable poly(L-lactic acid) (PLLA) using focused Ga ion beam direct etching was evaluated for future bio-device applications. The fabrication performance was determined with different ion fluences and fluxes (beam currents), and it was found that the etching speed and fabrication accuracy were affected by irradiation-induced heat. Focused ion beam (FIB)-irradiated surfaces were analyzed using micro-area X-ray photoelectron spectroscopy. Owing to reactions such as the physical sputtering of atoms and radiation-induced decomposition, PLLA was gradually carbonized with increasing C=C bonds. Controlled micro/nanostructures of PLLA were fabricated with C=C bond-rich surfaces expected to have good cell attachment properties.

  2. Influence of pH, bleaching agents, and acid etching on surface wear of bovine enamel

    PubMed Central

    Soares, Ana Flávia; Bombonatti, Juliana Fraga Soares; Alencar, Marina Studart; Consolmagno, Elaine Cristina; Honório, Heitor Marques; Mondelli, Rafael Francisco Lia

    2016-01-01

    ABSTRACT Development of new materials for tooth bleaching justifies the need for studies to evaluate the changes in the enamel surface caused by different bleaching protocols. Objective The aim of this study was to evaluate the bovine dental enamel wear in function of different bleaching gel protocols, acid etching and pH variation. Material and Methods Sixty fragments of bovine teeth were cut, obtaining a control and test areas. In the test area, one half received etching followed by a bleaching gel application, and the other half, only the bleaching gel. The fragments were randomly divided into six groups (n=10), each one received one bleaching session with five hydrogen peroxide gel applications of 8 min, activated with hybrid light, diode laser/blue LED (HL) or diode laser/violet LED (VHL) (experimental): Control (C); 35% Total Blanc Office (TBO35HL); 35% Lase Peroxide Sensy (LPS35HL); 25% Lase Peroxide Sensy II (LPS25HL); 15% Lase Peroxide Lite (LPL15HL); and 10% hydrogen peroxide (experimental) (EXP10VHL). pH values were determined by a pHmeter at the initial and final time periods. Specimens were stored, subjected to simulated brushing cycles, and the superficial wear was determined (μm). ANOVA and Tukey´s tests were applied (α=0.05). Results The pH showed a slight decrease, except for Group LPL15HL. Group LPS25HL showed the highest degree of wear, with and without etching. Conclusion There was a decrease from the initial to the final pH. Different bleaching gels were able to increase the surface wear values after simulated brushing. Acid etching before bleaching increased surface wear values in all groups. PMID:27008254

  3. Nitric-phosphoric acid etching effects on the surface chemical composition of CdTe thin film.

    NASA Astrophysics Data System (ADS)

    Irfan, Irfan; Ding, Huanjun; Xia, Wei; Lin, Hao; Tang, Ching W.; Gao, Yongli

    2009-03-01

    Nitric-phosphoric (NP) acid etching has been regarded as one of the most successful methods for the formation of low resistance back contact with the metal electrode in CdTe based solar cells. We report back surface chemical composition for eight different durations of NP etching of CdTe polycrystalline thin film. We studied the surfaces with x-ray photoemission spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS), inverse photoemission spectroscopy (IEPS) and atomic force microscopy (AFM). Etching dependence on the back surface composition and electronic structure was observed. Valence and conduction band shifts relative to the Fermi level of the system with different etching duration were analyzed. The sample was left in open ambient condition for three weeks and XPS data were obtained again in order to study the difference in surface chemical composition with the pristine CdTe film. Unetched and highly etched part of the sample were sputtered and the depth profile analyzed.

  4. Shear bond strength and debonding characteristics of metal and ceramic brackets bonded with conventional acid-etch and self-etch primer systems: An in-vivo study

    PubMed Central

    Mirzakouchaki, Behnam; Sharghi, Reza; Shirazi, Samaneh; Moghimi, Mahsan; Shahrbaf, Shirin

    2016-01-01

    Background Different in-vitro studies have reported various results regarding shear bond strength (SBS) of orthodontic brackets when SEP technique is compared to conventional system. This in-vivo study was designed to compare the effect of conventional acid-etching and self-etching primer adhesive (SEP) systems on SBS and debonding characteristics of metal and ceramic orthodontic brackets. Material and Methods 120 intact first maxillary and mandibular premolars of 30 orthodontic patients were selected and bonded with metal and ceramic brackets using conventional acid-etch or self-etch primer system. The bonded brackets were incorporated into the wire during the study period to simulate the real orthodontic treatment condition. The teeth were extracted and debonded after 30 days. The SBS, debonding characteristics and adhesive remnant indices (ARI) were determined in all groups. Results The mean SBS of metal brackets was 10.63±1.42 MPa in conventional and 9.38±1.53 MPa in SEP system, (P=0.004). No statistically significant difference was noted between conventional and SEP systems in ceramic brackets. The frequency of 1, 2 and 3 ARI scores and debonding within the adhesive were the most common among all groups. No statistically significant difference was observed regarding ARI or failure mode of debonded specimens in different brackets or bonding systems. Conclusions The SBS of metal brackets bonded using conventional system was significantly higher than SEP system, although the SBS of SEP system was clinically acceptable. No significant difference was found between conventional and SEP systems used with ceramic brackets. Total SBS of metal brackets was significantly higher than ceramic brackets. Due to adequate SBS of SEP system in bonding the metal brackets, it can be used as an alternative for conventional system. Key words:Shear bond strength, Orthodontic brackets, Adhesive remnant index, self-etch. PMID:26855704

  5. The Effect of Hydrofluoric Acid Etching Duration on the Surface Micromorphology, Roughness, and Wettability of Dental Ceramics.

    PubMed

    Ramakrishnaiah, Ravikumar; Alkheraif, Abdulaziz A; Divakar, Darshan Devang; Matinlinna, Jukka P; Vallittu, Pekka K

    2016-05-27

    The current laboratory study is evaluating the effect of hydrofluoric acid etching duration on the surface characteristics of five silica-based glass ceramics. Changes in the pore pattern, crystal structure, roughness, and wettability were compared and evaluated. Seventy-five rectangularly shaped specimens were cut from each material (IPS e-max™, Dentsply Celtra™, Vita Suprinity™, Vita mark II™, and Vita Suprinity FC™); the sectioned samples were finished, polished, and ultrasonically cleaned. Specimens were randomly assigned into study groups: control (no etching) and four experimental groups (20, 40, 80 and 160 s of etching). The etched surfaces' microstructure including crystal structure, pore pattern, pore depth, and pore width was studied under a scanning electron microscope, and the surface roughness and wettability were analyzed using a non-contact surface profilometer and a contact angle measuring device, respectively. The results were statistically analyzed using one-way analysis of variance (ANOVA) and the post hoc Tukey's test. The results showed a significant change in the pore number, pore pattern, crystal structure, surface roughness, and wettability with increased etching duration. Etching for a short time resulted in small pores, and etching for longer times resulted in wider, irregular grooves. A significant increase in the surface roughness and wettability was observed with an increase in the etching duration. The findings also suggested a strong association between the surface roughness and wettability.

  6. The Effect of Hydrofluoric Acid Etching Duration on the Surface Micromorphology, Roughness, and Wettability of Dental Ceramics

    PubMed Central

    Ramakrishnaiah, Ravikumar; Alkheraif, Abdulaziz A.; Divakar, Darshan Devang; Matinlinna, Jukka P.; Vallittu, Pekka K.

    2016-01-01

    The current laboratory study is evaluating the effect of hydrofluoric acid etching duration on the surface characteristics of five silica-based glass ceramics. Changes in the pore pattern, crystal structure, roughness, and wettability were compared and evaluated. Seventy-five rectangularly shaped specimens were cut from each material (IPS e-max™, Dentsply Celtra™, Vita Suprinity™, Vita mark II™, and Vita Suprinity FC™); the sectioned samples were finished, polished, and ultrasonically cleaned. Specimens were randomly assigned into study groups: control (no etching) and four experimental groups (20, 40, 80 and 160 s of etching). The etched surfaces’ microstructure including crystal structure, pore pattern, pore depth, and pore width was studied under a scanning electron microscope, and the surface roughness and wettability were analyzed using a non-contact surface profilometer and a contact angle measuring device, respectively. The results were statistically analyzed using one-way analysis of variance (ANOVA) and the post hoc Tukey’s test. The results showed a significant change in the pore number, pore pattern, crystal structure, surface roughness, and wettability with increased etching duration. Etching for a short time resulted in small pores, and etching for longer times resulted in wider, irregular grooves. A significant increase in the surface roughness and wettability was observed with an increase in the etching duration. The findings also suggested a strong association between the surface roughness and wettability. PMID:27240353

  7. Shear Bond Strength of an Etch-and-rinse Adhesive to Er:YAG Laser- and/or Phosphoric Acid-treated Dentin

    PubMed Central

    Davari, Abdolrahim; Sadeghi, Mostafa; Bakhshi, Hamid

    2013-01-01

    Background and aims. Er:YAG laser irradiation has been claimed to improve the adhesive properties of dentin; therefore, it has been proposed as an alternative to acid etching. The aim of this in vitro study was to investigate the shear bond strength of an etch-and-rinse adhesive system to dentin surfaces following Er:YAG laser and/or phosphoric acid etching. Materials and methods. The roots of 75 sound maxillary premolars were sectioned below the CEJ and the crowns were embedded in auto-polymerizing acrylic resin with the buccal surfaces facing up. The buccal surfaces were ground using a diamond bur and polished until the dentin was exposed; the samples were randomly divided into five groups (n=15) according to the surface treatment: (1) acid etching; (2) laser etching; (3) laser etching followed by acid etching; (4) acid etching followed by laser etching and (5) no acid etching and no laser etching (control group). Composite resin rods (Point 4, Kerr Co) were bonded to treated dentin surfaces with an etch-and-rise adhesive system (Optibond FL, Kerr Co) and light-cured.After storage for two weeks at 37°C and 100% humidity and then thermocycling, bond strength was measured with a Zwick Universal Testing Machine at a crosshead speed of 1 mm/min. Data was analyzed using parametric and non-parametric tests (P<0.05). Results. Mean shear bond strength for acid etching (20.1±1.8 MPa) and acid+laser (15.6±3.5 MPa) groups were significantly higher than those for laser+acid (15.6±3.5 MPa), laser etching (14.1±3.4 MPa) and control (8.1±2.1 MPa) groups. However, there were no significant differences between acid etching and acid+laser groups, and between laser+acid and laser groups. Conclusion. When the cavity is prepared by bur, it is not necessary to etch the dentin surface by Er:YAG laser following acid etching and acid etching after laser etching. PMID:23875083

  8. Facile transition from hydrophilicity to superhydrophilicity and superhydrophobicity on aluminum alloy surface by simple acid etching and polymer coating

    NASA Astrophysics Data System (ADS)

    Liu, Wenyong; Sun, Linyu; Luo, Yuting; Wu, Ruomei; Jiang, Haiyun; Chen, Yi; Zeng, Guangsheng; Liu, Yuejun

    2013-09-01

    The transition from the hydrophilic surface to the superhydrophilic and superhydrophobic surface on aluminum alloy via hydrochloric acid etching and polymer coating was investigated by contact angle (CA) measurements and scanning electron microscope (SEM). The effects of etching and polymer coating on the surface were discussed. The results showed that a superhydrophilic surface was facilely obtained after acid etching for 20 min and a superhydrophobic surface was readily fabricated by polypropylene (PP) coating after acid etching. When the etching time was 30 min, the CA was up to 157̊. By contrast, two other polymers of polystyrene (PS) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after acid etching. The results showed that the CA was up to 159̊ by coating PP-g-MAH, while the CA was only 141̊ by coating PS. By modifying the surface with the silane coupling agent before PP coating, the durability and solvent resistance performance of the superhydrophobic surface was further improved. The micro-nano concave-convex structures of the superhydrophilic surface and the superhydrophobic surface were further confirmed by scanning electron microscope (SEM). Combined with the natural hydrophilicity of aluminum alloy, the rough micro-nano structures of the surface led to the superhydrophilicity of the aluminum alloy surface, while the rough surface structures led to the superhydrophobicity of the aluminum alloy surface by combination with the material of PP with the low surface free energy.

  9. Color Stability of Enamel following Different Acid Etching and Color Exposure Times

    PubMed Central

    Jahanbin, Arezoo; Basafa, Mohammad; Moazzami, Mostafa; Basafa, Behnoush; Eslami, Neda

    2014-01-01

    Background and aims. The aim of this study was to evaluate the effect of different etching times on enamel color stability after immediate versus delayed exposure to colored artificial saliva (CAS). Materials and methods. Human first premolars were divided into five groups of twenty. A colorimeter was used according to the CIE system on the mid-buccal and mid-lingual surfaces to evaluate initial tooth color. Samples in group A remained unetched. In groups B to E, buccal and lingual surfaces were initially etched with phosphoric acid for 15 and 60 seconds, respectively. Then, the samples in groups A and C were immersed in colored artificial saliva (cola+saliva). In group B, the teeth were immersed in simple artificial saliva (AS). Samples in groups D and E were immersed in AS for 24 and 72 hours, respectively before being immersed in colored AS. The teeth were immersed for one month in each solution before color measurement. During the test period, the teeth were retrieved from the staining solution and stored in AS for five minutes. This was repeated 60 times. Color changes of buccal and lingual surfaces were calculated. Kruskal-Wallis and Wilcoxon tests were used for statistical analysis (α ≤0.05). Results. There were no significant differences between the groups in term of ΔE of buccal (P = 0.148) and lingual surfaces (P = 0.73). Conclusion. Extended time of etching did not result in significant enamel color change. Immediate and delayed exposure of etched enamel to staining solutions did not result in clinically detectable tooth color changes. PMID:25093048

  10. Effect of storage and acid etching on the tensile bond strength of composite resins to glass ionomer cement.

    PubMed

    Mesquita, M F; Domitti, S S; Consani, S; de Goes, M F

    1999-01-01

    This in vitro study evaluates the effect of storage time and acid etching on the tensile bond strength of glass ionomer cement to composite resins. The bonded assemblies were stored at 100% relative humidity and 37 degrees C for 1 hour, 1 day, 1 week, 1 month and 3 months. The test specimen was loaded at tension to failure on an Otto Wolpert-Werke testing instrument with a crosshead speed of 6 mm/min. The results showed a significant statistical difference for etched Vidrion F when compared to etched Ketac Bond at all storage periods. The unetched samples were statistically similar at 3 months, with the highest values for Vidrion F.

  11. Influence of HF acid catalyst concentration on properties of aerogel low-k thin films

    NASA Astrophysics Data System (ADS)

    Gaikwad, A. S.; Gupta, S. A.; Mahajan, A. M.

    2016-08-01

    The effect of hydrofluoric acid (HF) catalyst concentration in coating solution on chemical, physical and structural properties of silica aerogel thin films was investigated. The aerogel films were synthesized by using a sol–gel spin coating method followed by aging in ethanol and CO2 supercritical drying. The refractive index (RI) is observed to be reduced from 1.32 to 1.13 and porosity percentage increased from 30.21% to 71.64% in accordance with increasing HF concentration. Deposition of silica aerogel was confirmed from Fourier transform infrared spectroscopy measurement. The nanoporous nature of deposited films was confirmed from field effect scanning electron microscopy and observed pore diameter is in the range of 3.33 to 6.69 nm. The nanoporous nature of the film was also validated from atomic force microscopy and root mean square roughness was observed to be increased from 2.31 nm to 3.2 nm with increasing acid catalyst concentration in the coating solution. The calculated dielectric constant from CV measurement of fabricated metal–insulator–semiconductor structure for the silica aerogel formed at 0.8 ml HF concentration is observed to be 1.73. These deposited nanoporous silica aerogel low-k films with lower k value and smaller pore size have application as interlayer dielectric materials to minimize the disadvantages of porous materials.

  12. Influence of HF acid catalyst concentration on properties of aerogel low-k thin films

    NASA Astrophysics Data System (ADS)

    Gaikwad, A. S.; Gupta, S. A.; Mahajan, A. M.

    2016-08-01

    The effect of hydrofluoric acid (HF) catalyst concentration in coating solution on chemical, physical and structural properties of silica aerogel thin films was investigated. The aerogel films were synthesized by using a sol-gel spin coating method followed by aging in ethanol and CO2 supercritical drying. The refractive index (RI) is observed to be reduced from 1.32 to 1.13 and porosity percentage increased from 30.21% to 71.64% in accordance with increasing HF concentration. Deposition of silica aerogel was confirmed from Fourier transform infrared spectroscopy measurement. The nanoporous nature of deposited films was confirmed from field effect scanning electron microscopy and observed pore diameter is in the range of 3.33 to 6.69 nm. The nanoporous nature of the film was also validated from atomic force microscopy and root mean square roughness was observed to be increased from 2.31 nm to 3.2 nm with increasing acid catalyst concentration in the coating solution. The calculated dielectric constant from CV measurement of fabricated metal-insulator-semiconductor structure for the silica aerogel formed at 0.8 ml HF concentration is observed to be 1.73. These deposited nanoporous silica aerogel low-k films with lower k value and smaller pore size have application as interlayer dielectric materials to minimize the disadvantages of porous materials.

  13. In situ chemical functionalization of gallium nitride with phosphonic acid derivatives during etching.

    PubMed

    Wilkins, Stewart J; Greenough, Michelle; Arellano, Consuelo; Paskova, Tania; Ivanisevic, Albena

    2014-03-01

    In situ functionalization of polar (c plane) and nonpolar (a plane) gallium nitride (GaN) was performed by adding (3-bromopropyl) phosphonic acid or propyl phosphonic acid to a phosphoric acid etch. The target was to modulate the emission properties and oxide formation of GaN, which was explored through surface characterization with atomic force microscopy, X-ray photoelectron spectroscopy, photoluminescence (PL), inductively coupled plasma-mass spectrometry, and water contact angle. The use of (3-bromopropyl) phosphonic acid and propyl phosphonic acid in phosphoric acid demonstrated lower amounts of gallium oxide formation and greater hydrophobicity for both sample sets, while also improving PL emission of polar GaN samples. In addition to crystal orientation, growth-related factors such as defect density in bulk GaN versus thin GaN films residing on sapphire substrates were investigated as well as their responses to in situ functionalization. Thin nonpolar GaN layers were the most sensitive to etching treatments due in part to higher defect densities (stacking faults and threading dislocations), which accounts for large surface depressions. High-quality GaN (both free-standing bulk polar and bulk nonpolar) demonstrated increased sensitivity to oxide formation. Room-temperature PL stands out as an excellent technique to identify nonradiative recombination as observed in the spectra of heteroepitaxially grown GaN samples. The chemical methods applied to tune optical and physical properties of GaN provide a quantitative framework for future novel chemical and biochemical sensor development.

  14. Comparative Study of the Effect of Acid Etching on Enamel Surface Roughness between Pumiced and Non-pumiced Teeth

    PubMed Central

    Abreu, Lucas Guimarães; Paiva, Saul Martins; Pretti, Henrique; Lages, Elizabeth Maria Bastos; Júnior, João Batista Novães; Ferreira, Ricardo Alberto Neto

    2015-01-01

    Background: The objective was to perform a comparative analysis of the effect of acid etching on enamel roughness between pumiced and non-pumiced teeth. Materials and Methods: The sample was composed of 32 dental surfaces divided into two groups: Group 1-16 surfaces having received pumice prophylaxis; and Group 2-16 surfaces not having received pumice prophylaxis. The teeth were kept in saline until the first record of surface roughness prior to etching. For each surface, a roughness graph was obtained through trials using a surface roughness tester. This procedure was repeated two more times at different locations for a total of three readings which, later, were converted in a mean value. The teeth were then acid etched with a 37% phosphoric acid for 60 s, rinsed with water, air dried, and tested with the roughness tester again using the same protocol described for baseline. The Quantikov image analysis program was used to measure the length of the graphs. The average value of the lengths was recorded for each surface before and after etching. The increase in roughness caused by acid etching was calculated and compared between groups. Results: The mean increase in roughness caused by the etching was 301 µm (11.37%) in Group 1 and 214 µm (8.33%) in Group 2. No statistically significant difference was found between samples with and without pumice prophylaxis (P = 0.283). Conclusion: The present study showed that the effect of acid etching on enamel roughness was not significantly affected by prior pumice prophylaxis. PMID:26435607

  15. In vitro remineralization of acid-etched human enamel with Ca 3SiO 5

    NASA Astrophysics Data System (ADS)

    Dong, Zhihong; Chang, Jiang; Deng, Yan; Joiner, Andrew

    2010-02-01

    Bioactive and inductive silicate-based bioceramics play an important role in hard tissue prosthetics such as bone and teeth. In the present study, a model was established to study the acid-etched enamel remineralization with tricalcium silicate (Ca 3SiO 5, C 3S) paste in vitro. After soaking in simulated oral fluid (SOF), Ca-P precipitation layer was formed on the enamel surface, with the prolonged soaking time, apatite layer turned into density and uniformity and thickness increasingly from 250 to 350 nm for 1 day to 1.7-1.9 μm for 7 days. Structure of apatite crystals was similar to that of hydroxyapatite (HAp). At the same time, surface smoothness of the remineralized layer is favorable for the oral hygiene. These results suggested that C 3S treated the acid-etched enamel can induce apatite formation, indicating the biomimic mineralization ability, and C 3S could be used as an agent of inductive biomineralization for the enamel prosthesis and protection.

  16. Cell Adhesion and in Vivo Osseointegration of Sandblasted/Acid Etched/Anodized Dental Implants

    PubMed Central

    Kim, Mu-Hyon; Park, Kyeongsoon; Choi, Kyung-Hee; Kim, Soo-Hong; Kim, Se Eun; Jeong, Chang-Mo; Huh, Jung-Bo

    2015-01-01

    The authors describe a new type of titanium (Ti) implant as a Modi-anodized (ANO) Ti implant, the surface of which was treated by sandblasting, acid etching (SLA), and anodized techniques. The aim of the present study was to evaluate the adhesion of MG-63 cells to Modi-ANO surface treated Ti in vitro and to investigate its osseointegration characteristics in vivo. Four different types of Ti implants were examined, that is, machined Ti (control), SLA, anodized, and Modi-ANO Ti. In the cell adhesion study, Modi-ANO Ti showed higher initial MG-63 cell adhesion and induced greater filopodia growth than other groups. In vivo study in a beagle model revealed the bone-to-implant contact (BIC) of Modi-ANO Ti (74.20% ± 10.89%) was much greater than those of machined (33.58% ± 8.63%), SLA (58.47% ± 12.89), or ANO Ti (59.62% ± 18.30%). In conclusion, this study demonstrates that Modi-ANO Ti implants produced by sandblasting, acid etching, and anodizing improve cell adhesion and bone ongrowth as compared with machined, SLA, or ANO Ti implants. These findings suggest that the application of Modi-ANO surface treatment could improve the osseointegration of dental implant. PMID:25955650

  17. Stretchability of Silver Films on Thin Acid-Etched Rough Polydimethylsiloxane Substrates Fabricated by Electrospray Deposition

    NASA Astrophysics Data System (ADS)

    Mehdi, S. M.; Cho, K. H.; Kang, C. N.; Choi, K. H.

    2015-07-01

    This paper investigates the fabrication of Ag films through the electrospray deposition (ESD) technique on sub-millimeter-thick acid-etched rough polydimethylsiloxane (PDMS) substrates having both low and high modulus of elasticity. The main focus of the study is on the stretchable behavior of ESD-deposited Ag nanoparticles-based thin films on these substrates when subjected to axial strains. Experimental results suggest that the as-fabricated films on thin acid-etched rough low modulus PDMS has an average stretchability of 5.6% with an average increase in the resistance that is 23 times that of the initial resistance at electrical failure (complete rupture of the films). Comparatively, the stretchability of Ag films on the high modulus PDMS was found to be 3 times higher with 4.65 times increase in the resistance at electrical failure. Also, a high positive value of the piezoresistive coefficient for these films suggests that the resistivity changes during stretching, and thus deviation from the simplified models is inevitable. Based on these results, new models are presented that quantify the changes in resistance with strain.

  18. Optical fiber nanoprobe preparation for near-field optical microscopy by chemical etching under surface tension and capillary action.

    PubMed

    Mondal, Samir K; Mitra, Anupam; Singh, Nahar; Sarkar, S N; Kapur, Pawan

    2009-10-26

    We propose a technique of chemical etching for fabrication of near perfect optical fiber nanoprobe (NNP). It uses photosensitive single mode optical fiber to etch in hydro fluoric (HF) acid solution. The difference in etching rate for cladding and photosensitive core in HF acid solution creates capillary ring along core-cladding boundary under a given condition. The capillary ring is filled with acid solution due to surface tension and capillary action. Finally it creates near perfect symmetric tip at the apex of the fiber as the height of the acid level in capillary ring decreases while width of the ring increases with continuous etching. Typical tip features are short taper length (approximately 4 microm), large cone angle (approximately 38 degrees ), and small probe tip dimension (<100 nm). A finite difference time domain (FDTD) analysis is also presented to compare near field optics of the NNP with conventional nanoprobe (CNP). The probe may be ideal for near field optical imaging and sensor applications.

  19. Influence of Organic Acids from the Oral Biofilm on the Bond Strength of Self-Etch Adhesives to Dentin.

    PubMed

    Amaral, Cristiane Mariote; Correa, Danielly de Sá; Miragaya, Luciana Meirelles; Silva, Eduardo Moreira da

    2015-10-01

    The aim of this study was to evaluate the microtensile bond strength of self-etch adhesive systems to dentin after storage in acids from oral biofilm. Three adhesive systems were used in the study: a two-step self-etch adhesive for use with a silorane-based resin composite (Filtek P90 adhesive system - P90), a two-step self-etch adhesive (Clearfil SE Bond - CSE) and a one-step self-etch adhesive (Adper Easy One - AEO). The bond strength of these products was evaluated by bonding resin composite (Filtek Z350 for CSE and AEO; and Filtek P90 for P90) to 90 bovine dentin tooth fragments, according to the manufacturer's instructions. After 24 h of water storage at 37 °C, the specimens were sectioned into beams (1 mm2) divided and stored in distilled water, lactic acid and propionic acid, for 7 and 30 days. After storage, the specimens were tested for microtensile bond strength. Data were analyzed by three-way ANOVA and Tukey´s test (α=0.05). CSE presented the highest microtensile bond strength after storage in distilled water for 7 and 30 days. The microtensile bond strength of all adhesive systems was lower after storage in lactic acid and propionic acid than after water storage. Significant difference was not found between storage times. PMID:26647935

  20. Shear bond strength of resin cement to an acid etched and a laser irradiated ceramic surface

    PubMed Central

    Motro, Pelin Fatma Karagoz; Yurdaguven, Haktan

    2013-01-01

    PURPOSE To evaluate the effects of hydrofluoric acid etching and Er,Cr:YSGG laser irradiation on the shear bond strength of resin cement to lithium disilicate ceramic. MATERIALS AND METHODS Fifty-five ceramic blocks (5 mm × 5 mm × 2 mm) were fabricated and embedded in acrylic resin. Their surfaces were finished with 1000-grit silicon carbide paper. The blocks were assigned to five groups: 1) 9.5% hydrofluoric-acid etching for 60 s; 2-4), 1.5-, 2.5-, and 6-W Er,Cr:YSGG laser applications for 60 seconds, respectively; and 5) no treatment (control). One specimen from each group was examined using scanning electron microscopy. Ceramic primer (Rely X ceramic primer) and adhesive (Adper Single Bond) were applied to the ceramic surfaces, followed by resin cement to bond the composite cylinders, and light curing. Bonded specimens were stored in distilled water at 37℃ for 24 hours. Shear bond strengths were determined by a universal testing machine at 1 mm/min crosshead speed. Data were analyzed using Kruskal-Wallis and Mann-Whitney U-tests (α=0.05). RESULTS Adhesion was significantly stronger in Group 2 (3.88 ± 1.94 MPa) and Group 3 (3.65 ± 1.87 MPa) than in Control group (1.95 ± 1.06 MPa), in which bonding values were lowest (P<.01). No significant difference was observed between Group 4 (3.59 ± 1.19 MPa) and Control group. Shear bond strength was highest in Group 1 (8.42 ± 1.86 MPa; P<.01). CONCLUSION Er,Cr:YSGG laser irradiation at 1.5 and 2.5 W increased shear bond strengths between ceramic and resin cement compared with untreated ceramic surfaces. Irradiation at 6 W may not be an efficient ceramic surface treatment technique. PMID:23755333

  1. Resin–dentin bonds to EDTA-treated vs. acid-etched dentin using ethanol wet-bonding

    PubMed Central

    Sauro, Salvatore; Toledano, Manuel; Aguilera, Fatima Sánchez; Mannocci, Francesco; Pashley, David H.; Tay, Franklin R.; Watson, Timothy F.; Osorio, Raquel

    2013-01-01

    Objective To compare resin–dentin bond strengths and the micropermeability of hydrophobic vs. hydrophilic resins bonded to acid-etched or EDTA-treated dentin, using the ethanol wet-bonding technique. Methods Flat dentin surfaces from extracted human third molars were conditioned before bonding with: 37% H3PO4 (15 s) or 0.1 M EDTA (60 s). Five experimental resin blends of different hydrophilicities and one commercial adhesive (SBMP: Scotchbond Multi-Purpose) were applied to ethanol wet-dentin (1 min) and light-cured (20 s). The solvated resins were used as primers (50% ethanol/50% comonomers) and their respective neat resins were used as the adhesive. The resin-bonded teeth were stored in distilled water (24 h) and sectioned in beams for microtensile bond strength testing. Modes of failure were examined by stereoscopic light microscopy and SEM. Confocal tandem scanning microscopy (TSM) interfacial characterization and micropermeability were also performed after filling the pulp chamber with 1 wt% aqueous rhodamine-B. Results The most hydrophobic resin 1 gave the lowest bond strength values to acid-etched dentin and all beams failed prematurely when the resin was applied to EDTA-treated dentin. Resins 2 and 3 gave intermediate bond strengths to both conditioned substrates. Resin 4, an acidic hydrophilic resin, gave the highest bond strengths to both EDTA-treated and acid-etched dentin. Resin 5 was the only hydrophilic resin showing poor resin infiltration when applied on acid-etched dentin. Significance The ethanol wet-bonding technique may improve the infiltration of most of the adhesives used in this study into dentin, especially when applied to EDTA-treated dentin. The chemical composition of the resin blends was a determining factor influencing the ability of adhesives to bond to EDTA-treated or 37% H3PO4 acid-etched dentin, when using the ethanol wet-bonding technique in a clinically relevant time period. PMID:20074787

  2. Comparative Evaluation of Tensile – Bond Strength of An Orthodontic Adhesive with and without Fluoride Application, After Acid Etching -An Invitro Study

    PubMed Central

    Yugandhar, G; Ramana, I Venkata; Srinivas, K; Yadav, S. Sarjeev Singh

    2015-01-01

    Background Fixed appliances hinder the effective control of plaque accumulation and white spot lesions may develop under the ill fitting bands or adjacent to the stainless steel brackets during orthodontic treatment particularly the etching process. Aims and Objectives Comparative study of tensile bond strength of an orthodontic adhesive with and without fluoride application after acid etching to know the effect of fluoride on bond strength. Materials and Methods This study is carried out on 90 non carious human premolar teeth, and divided in 6 groups with each group of 15 specimens. In those Groups I and IV were control group acid etch treatment, Group II and V is 1.23% APF gel (acid etch plus APF gel treatment,) and group III and VI is 8% SnF2 (acid etch plus SnF2 treatment). Samples of Group I, II and III bond strength were tested after 24 h and groups IV, V and VI after one month on microtechtensometer machine. The scanning electron microscope (SEM) investigation was carried out for the 2 specimens for the control group after acid etch and 4 specimens after acid etch with fluoride application for fluoride groups. Results Control and SnF2 treated groups was found to be nearly similar to the control group whereas APF treated group showed less focal holes than the other 2 groups. Conclusion Fluoride application after acid etching without having an adverse effect on bond strength but we can prevent the white spot lesions and caries. PMID:26023648

  3. HVPE homoepitaxial growth of high quality bulk GaN using acid wet etching method and its mechanism analysis

    NASA Astrophysics Data System (ADS)

    Liu, Nanliu; Cheng, Yutian; Wu, Jiejun; Li, Xingbin; Yu, Tongjun; Xiong, Huan; Li, Wenhui; Chen, Jiao; Zhang, Guoyi

    2016-11-01

    In this paper, crack-free 2-inch bulk GaN wafer with the thickness up to 3 mm was obtained by HVPE homoepitaxy. A new method of acid wet etching was used to pre-treat GaN substrate before re-growth. The formation of the mesh-like subsurface crack and interface layer were found to be suppressed between the re-growth layer and as-grown GaN substrate. EDS and time varied contact angle measurement proved that chemical etching would decrease the oxygen related surface adsorption and increase atoms diffusion length during HVPE homoepitaxial growth. Moreover, Morphology, Low temperature photoluminescence measurements indicated a reduction in stress of wet etching treated as-grown GaN substrate due to etching effect on its N face. High quality bulk GaN with the dislocation density of 1×106 cm-2 was achieved by using wet etching and HVPE multiple re-growth. It would offer a simple method to obtain bulk GaN with thicker layer and high quality.

  4. Rate controlled metal assisted chemical etching to fabricate vertical and uniform Si nanowires

    NASA Astrophysics Data System (ADS)

    Song, Ari; Yun, Seokhun; Lokhande, Vaibhav; Ji, Taeksoo

    2016-03-01

    Mac(metal assisted chemical) etching is a simple, low-cost and anisotropic etching method to make Si NWs (silicon nanowires). In this method, smaller surface area is damaged compared to dry etching process, either. Mac etching uses a combination of an oxide removal acid (e.g. HF), an oxidant (e.g. H2O2) with a noble metal (e.g. Au, Ag, Pt, etc.) as the catalyst. Typically, the Si beneath the noble metal is etched faster than the Si without noble metal coverage by electron transfer mechanism at the noble metal /solution and the noble metal/Si interface. While Mac etching to build Si NWs, unwanted etching occurs in the bulk silicon layer resulting from excess hole diffusion caused by the increase in hole concentration at the nearby metal layers. In this study, we explored the ratio of oxidant to oxide removal acid in the Mac etching solution that is most effective in etching the Si underneath the noble metal layer suppressing the unwanted etching. At the optimized ratio, Si NWs were fabricated at a faster rate with good uniformity.

  5. Improvement in etching rate for epilayer lift-off with surfactant

    NASA Astrophysics Data System (ADS)

    Wu, Fan-Lei; Horng, Ray-Hua; Lu, Jian-Heng; Chen, Chun-Li; Kao, Yu-Cheng

    2013-03-01

    In this study, the GaAs epilayer is quickly separated from GaAs substrate by epitaxial lift-off (ELO) process with mixture etchant solution. The HF solution mixes with surfactant as mixture etchant solution to etch AlAs sacrificial layer for the selective wet etching of AlAs sacrificial layer. Addiction surfactants etchant significantly enhance the etching rate in the hydrofluoric acid etching solution. It is because surfactant provides hydrophilicity to change the contact angle with enhances the fluid properties of the mixture etchant between GaAs epilayer and GaAs substrate. Arsine gas was released from the etchant solution because the critical reaction product in semiconductor etching is dissolved arsine gas. Arsine gas forms a bubble, which easily displaces the etchant solution, before the AlAs layer was undercut. The results showed that acetone and hydrofluoric acid ratio of about 1:1 for the fastest etching rate of 13.2 μm / min. The etching rate increases about 4 times compared with pure hydrofluoric acid, moreover can shorten the separation time about 70% of GaAs epilayer with GaAs substrate. The results indicate that etching ratio and stability are improved by mixture etchant solution. It is not only saving the epilayer and the etching solution exposure time, but also reducing the damage to the epilayer structure.

  6. Inactivation of Matrix-bound MMPs by Cross-linking Agents in Acid Etched Dentin

    PubMed Central

    Scheffel, Débora Lopes Salles; Hebling, Josimeri; Scheffel, Régis Henke; Agee, Kelly A.; Turco, Gianluca; de Souza Costa, Carlos Alberto; Pashley, David H.

    2014-01-01

    Objectives Published TEM analysis of in vivo resin-dentin bonds shows that in 44 months almost 70% of collagen fibrils from the hybrid layer disappear. Matrix metalloproteinases (MMPs) play an important role in that process and are thought to be the main factor responsible for the solubitization of dentin collagen. Therefore, this study aimed to evaluate the inactivation of matrix-bound MMPs by carbodiimide (EDC) or proanthocyanidin (PA) both cross-linking agents, or the MMP-inhibitor, chlorhexidine (CHX), on acid-etched dentin using a simplified MMP assay method. Methods Dentin beams (1×1×6mm) were obtained from mid-coronal dentin of sound third molars and randomly divided into 6 groups (G) according to the dentin treatment: G1: Deionized water (control), G2: 0.1M EDC, G3: 0.5M EDC, G4: 0.5M EDC+35% HEMA, G5: 5% Proanthocyanidin (PA) and G6: 2% CHX. The beams were etched for 15s with 37% phosphoric acid, rinsed and then immersed for 60s in one of the treatment solutions. The total MMP activity of dentin was analyzed for 1 h by colorimetric assay (Sensolyte). Data were submitted to Wilcoxon non-parametric test and Mann-Whitney tests (p>0.05). Results All experimental cross-linking solutions significantly reduced MMP activity compared to control, except 0.1M EDC (53.6% ±16.1). No difference was observed between cross-linking agents and 2% CHX 0.5M EDC + 35% HEMA (92.3% ±8.0) was similar to 0.5M EDC (89.1% ±6.4), 5% PA (100.8% ±10.9) and 2% CHX (83.4% ±10.9). Conclusion Dentin treatment with cross-linking agents is effective to significantly reduce MMP activity. Mixing 0.5M EDC and 35% HEMA did not influence EDC inhibitor potential. PMID:23786610

  7. Optimization of silver-assisted nano-pillar etching process in silicon

    NASA Astrophysics Data System (ADS)

    Azhari, Ayu Wazira; Sopian, Kamaruzzaman; Desa, Mohd Khairunaz Mat; Zaidi, Saleem H.

    2015-12-01

    In this study, a respond surface methodology (RSM) model is developed using three-level Box-Behnken experimental design (BBD) technique. This model is developed to investigate the influence of metal-assisted chemical etching (MACE) process variables on the nanopillars profiles created in single crystalline silicon (Si) substrate. Design-Expert® software (version 7.1) is employed in formulating the RSM model based on five critical process variables: (A) concentration of silver (Ag), (B) concentration of hydrofluoric acid (HF), (C) concentration of hydrogen peroxide (H2O2), (D) deposition time, and (E) etching time. This model is supported by data from 46 experimental configurations. Etched profiles as a function of lateral etching rate, vertical etching rate, height, size and separation between the Si trenches and etching uniformity are characterized using field emission scanning electron microscope (FE-SEM). A quadratic regression model is developed to correlate critical process variables and is validated using the analysis of variance (ANOVA) methodology. The model exhibits near-linear dependence of lateral and vertical etching rates on both the H2O2 concentration and etching time. The predicted model is in good agreement with the experimental data where R2 is equal to 0.80 and 0.67 for the etching rate and lateral etching respectively. The optimized result shows minimum lateral etching with the average pore size of about 69 nm while the maximum etching rate is estimated at around 360 nm/min. The model demonstrates that the etching process uniformity is not influenced by either the etchant concentration or the etching time. This lack of uniformity could be attributed to the surface condition of the wafer. Optimization of the process parameters show adequate accuracy of the model with acceptable percentage errors of 6%, 59%, 1.8%, 38% and 61% for determination of the height, separation, size, the pore size and the etching rate respectively.

  8. Effect of the application time of phosphoric acid and self-etch adhesive systems to sclerotic dentin

    PubMed Central

    MENA-SERRANO, Alexandra Patricia; GARCIA, Eugenio Jose; PEREZ, Miguel Muñoz; MARTINS, Gislaine Cristine; GRANDE, Rosa Helena Miranda; LOGUERCIO, Alessandro Dourado; REIS, Alessandra

    2013-01-01

    Objectives: To evaluate the effect of application time on the resin-dentin bond strength (µTBS) and etching pattern of adhesive systems applied on sclerotic dentine. Material and Methods: A total of forty-two bovine incisors had their roots removed. The 1-step self-etch GO (SDI), the 2-step self-etch Adper SE Bond (3MESPE) and the 35% phosphoric acid (3MESPE) from the 2-step etch-and-rinse Adper Single Bond 2 (3MESPE) were applied on the bovine incisal surfaces according to the manufacturer's instructions or duplicating the recommended conditioning time. After adhesive application, thirty teeth were restored with composite resin, stored for 24 h in distilled water at 37º C, and sectioned into resin-dentin bonded sticks (0.8 mm2) and tested according to the µTBS at 0.5 mm/min. The etching pattern of the remaining twelve teeth (n=4 for each material) was examined under scanning electron microscopy. Each tooth was divided into a buccal-to-lingual direction into three thirds, and each third randomly assigned to the groups: control (no treatment), according to the manufacturers' instructions and duplicating the recommended application time. The µTBS and the relative percentage of the tubule area opening were evaluated by two-way repeated measures ANOVA and Tukey's tests (α=0.05). Results: The duplication of the conditioning time favored only the GO adhesive (p<0.05). Both application methods significantly increased the tubule area opening (p<0.05) compared to the controls. Conclusions: The efficacy of duplicating the conditioning time was only effective for the 1-step self-etch adhesive system tested. PMID:23739856

  9. Experimental and theoretical spectroscopic studies of anticancer drug rosmarinic acid using HF and density functional theory

    NASA Astrophysics Data System (ADS)

    Mariappan, G.; Sundaraganesan, N.; Manoharan, S.

    2012-11-01

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of anticancer drug of rosmarinic acid. The optimized molecular structure, atomic charges, vibrational frequencies, natural bond orbital analysis and ultraviolet-visible spectral interpretation of rosmarinic acid have been studied by performing HF and DFT/B3LYP/6-31G(d,p) level of theory. The FT-IR (solid and solution phase), FT-Raman (solid phase) spectra were recorded in the region 4000-400 and 3500-50 cm-1, respectively. The UV-Visible absorption spectra of the compound that dissolved in ethanol were recorded in the range of 200-800 nm. The scaled wavenumbers are compared with the experimental values. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The formation of hydrogen bond was investigated in terms of the charge density by the NBO calculations. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations.

  10. Influence of hydrofluoric acid concentration on the flexural strength of a feldspathic ceramic.

    PubMed

    Venturini, Andressa B; Prochnow, Catina; May, Liliana G; Bottino, Marco C; Felipe Valandro, Luiz

    2015-08-01

    This study evaluated the effects of etching with increasing hydrofluoric (HF) acid concentrations on the roughness and flexural strength of a feldspathic ceramic. One hundred and fifty ceramic specimens (14×4×1.2 mm(2)) were produced from ceramic blocks (VitaBlocks Mark II). All specimens were polished, chamfered and sonically cleaned in isopropyl alcohol. Specimens were randomly divided into 5 groups (n=30): SC (control) no ceramic surface etching; HF1, HF3, HF5 and HF10 ceramic surface etching for 60s with 1%, 3%, 5% and 10% HF acid concentrations, respectively. Profilometry was performed in all specimens to evaluate roughness prior to flexural strength testing. Data were analyzed using one-way ANOVA and Tukey׳s test (α=0.05). Weibull module (m) and characteristic stress (σc) were also determined. HF acid etching, regardless of the concentration used, led to significantly rougher surfaces than the control (p<0.05). However, the mean flexural strength values were not statistically different among the etched groups (106.47 to 102.02 MPa). Acid etching significantly reduced the mean flexural strength when compared with the control (143.3 MPa). Weibull modulus of the groups was similar, except for the HF5 group that was higher compared to HF3. Flexural strength was similarly affected by the different HF acid concentrations tested, but roughness increased higher the acid concentration. Ceramic etching led to a significant reduction in strength when compared to the untreated ceramic, regardless of its concentration.

  11. Bone contact around acid-etched implants: a histological and histomorphometrical evaluation of two human-retrieved implants.

    PubMed

    Degidi, Marco; Petrone, Giovanna; Iezzi, Giovanna; Piattelli, Adriano

    2003-01-01

    The surface characteristics of dental implants play an important role in their clinical success. One of the most important surface characteristics of implants is their surface topography or roughness. Many techniques for preparing dental implant surfaces are in clinical use: turning, plasma spraying, coating, abrasive blasting, acid etching, and electropolishing. The Osseotite surface is prepared by a process of thermal dual etching with hydrochloric and sulfuric acid, which results in a clean, highly detailed surface texture devoid of entrapped foreign material and impurities. This seems to enhance fibrin attachment to the implant surface during the clotting process. The authors retrieved 2 Osseotite implants after 6 months to repair damage to the inferior alveolar nerve. Histologically, both implants appeared to be surrounded by newly formed bone. No gaps or fibrous tissues were present at the interface. The mean bone-implant contact percentage was 61.3% (+/- 3.8%). PMID:12614080

  12. Formation of nanostructured silicon surfaces by stain etching

    PubMed Central

    2014-01-01

    In this work, we report the fabrication of ordered silicon structures by chemical etching of silicon in vanadium oxide (V2O5)/hydrofluoric acid (HF) solution. The effects of the different etching parameters including the solution concentration, temperature, and the presence of metal catalyst film deposition (Pd) on the morphologies and reflective properties of the etched Si surfaces were studied. Scanning electron microscopy (SEM) was carried out to explore the morphologies of the etched surfaces with and without the presence of catalyst. In this case, the attack on the surfaces with a palladium deposit begins by creating uniform circular pores on silicon in which we distinguish the formation of pyramidal structures of silicon. Fourier transform infrared spectroscopy (FTIR) demonstrates that the surfaces are H-terminated. A UV-Vis-NIR spectrophotometer was used to study the reflectance of the structures obtained. A reflectance of 2.21% from the etched Si surfaces in the wavelength range of 400 to 1,000 nm was obtained after 120 min of etching while it is of 4.33% from the Pd/Si surfaces etched for 15 min. PMID:25435830

  13. Anodic etching of p-type cubic silicon carbide

    NASA Technical Reports Server (NTRS)

    Harris, G. L.; Fekade, K.; Wongchotigul, K.

    1992-01-01

    p-Type cubic silicon carbide was anodically etched using an electrolyte of HF:HCl:H2O. The etching depth was determined versus time with a fixed current density of 96.4 mA/sq cm. It was found that the etching was very smooth and very uniform. An etch rate of 22.7 nm/s was obtained in a 1:1:50 HF:HCl:H2O electrolyte.

  14. Facet dependent binding and etching: ultra-sensitive colorimetric visualization of blood uric acid by unmodified silver nanoprisms.

    PubMed

    Tan, Kanghui; Yang, Guang; Chen, Huide; Shen, Pengfei; Huang, Yucheng; Xia, Yunsheng

    2014-09-15

    By combination of experiments and density functional theory calculations, we present a simple but effective "facet dependent binding and etching" strategy for non-enzymatic and non-aggregated colorimetric sensing of blood uric acid (UA), using unmodified Ag nanoprisms as the signal readout. In the absence of UA, the triangular Ag nanoprisms are etched alongside (110) facets by H2O2 and form round nanodiscs, and a more than 160 nm surface plasmon resonance (SPR) blue shift is observed. Because of special affinity between UA and side facets of the Ag nanoprisms, pre-added UA can well protect the Ag nanoprisms from etching. Such protection effect can be used for well quantifying UA in the range of 10-3000 nM, based on the inverse proportion of the SPR blue shift with the added analyte. Due to very thin plate morphology (5 nm) and facet dependent binding/etching effects of the Ag nanoprisms, the sensing system has ultrahigh sensitivity. The detection limit is only 10nM, which is about 2 to 4 orders of magnitude lower than that of previous colorimetric sensing systems. In addition to accurate quantitation, the proposed strategy can conveniently discriminate the patient of hyperuricemia from normal person by naked eyes. So, the present simple, low-cost and visualized UA chemosensor has great potential in the applications for point-of-care diagnostics.

  15. Note: Dissolved hydrogen detection in power transformer oil based on chemically etched fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Ma, Guo-ming; Song, Hong-tu; Zhou, Hong-yang; Li, Cheng-rong; Luo, Ying-ting; Wang, Hong-bin

    2015-10-01

    A fiber Bragg grating (FBG) sensor based on chemically etched cladding to detect dissolved hydrogen is proposed and studied in this paper. Low hydrogen concentration tests have been carried out in mixed gases and transformer oil to investigate the repeatability and sensitivity. Moreover, to estimate the influence of etched cladding thickness, a physical model of FBG-based hydrogen sensor is analyzed. Experimental results prove that thin cladding chemically etched by HF acid solution improves the response to hydrogen detection in oil effectively. At last, the sensitivity of FBG sensor chemically etched 16 μm could be as high as 0.060 pm/(μl/l), increased by more than 30% in comparison to un-etched FBG.

  16. Note: Dissolved hydrogen detection in power transformer oil based on chemically etched fiber Bragg grating.

    PubMed

    Jiang, Jun; Ma, Guo-ming; Song, Hong-tu; Zhou, Hong-yang; Li, Cheng-rong; Luo, Ying-ting; Wang, Hong-bin

    2015-10-01

    A fiber Bragg grating (FBG) sensor based on chemically etched cladding to detect dissolved hydrogen is proposed and studied in this paper. Low hydrogen concentration tests have been carried out in mixed gases and transformer oil to investigate the repeatability and sensitivity. Moreover, to estimate the influence of etched cladding thickness, a physical model of FBG-based hydrogen sensor is analyzed. Experimental results prove that thin cladding chemically etched by HF acid solution improves the response to hydrogen detection in oil effectively. At last, the sensitivity of FBG sensor chemically etched 16 μm could be as high as 0.060 pm/(μl/l), increased by more than 30% in comparison to un-etched FBG.

  17. Comparison of bond strength and surface morphology of dental enamel for acid and Nd-YAG laser etching

    NASA Astrophysics Data System (ADS)

    Parmeswearan, Diagaradjane; Ganesan, Singaravelu; Ratna, P.; Koteeswaran, D.

    1999-05-01

    Recently, laser pretreatment of dental enamel has emerged as a new technique in the field of orthodontics. However, the changes in the morphology of the enamel surface is very much dependent on the wavelength of laser, emission mode of the laser, energy density, exposure time and the nature of the substance absorbing the energy. Based on these, we made a comparative in vitro study on laser etching with acid etching with reference to their bond strength. Studies were conducted on 90 freshly extracted, non carious, human maxillary or mandibular anteriors and premolars. Out of 90, 60 were randomly selected for laser irradiation. The other 30 were used for conventional acid pretreatment. The group of 60 were subjected to Nd-YAG laser exposure (1060 nm, 10 Hz) at differetn fluences. The remaining 30 were acid pretreated with 30% orthophosphoric acid. Suitable Begg's brackets were selected and bound to the pretreated surface and the bond strength were tested using Instron testing machine. The bond strength achieved through acid pretreatment is found to be appreciably greater than the laser pretreated tooth. Though the bond strength achieved through the acid pretreated tooth is found to be significantly greater than the laser pretreated specimens, the laser pretreatement is found to be successful enough to produce a clinically acceptable bond strength of > 0.60 Kb/mm. Examination of the laser pre-treated tooth under SEM showed globule formation which may produce the mechanical interface required for the retention of the resin material.

  18. Micro/nanofabrication of poly({sub L}-lactic acid) using focused ion beam direct etching

    SciTech Connect

    Oyama, Tomoko Gowa; Nagasawa, Naotsugu; Taguchi, Mitsumasa; Hinata, Toru; Washio, Masakazu; Oshima, Akihiro; Tagawa, Seiichi

    2013-10-14

    Micro/nanofabrication of biocompatible and biodegradable poly({sub L}-lactic acid) (PLLA) using focused Ga ion beam direct etching was evaluated for future bio-device applications. The fabrication performance was determined with different ion fluences and fluxes (beam currents), and it was found that the etching speed and fabrication accuracy were affected by irradiation-induced heat. Focused ion beam (FIB)-irradiated surfaces were analyzed using micro-area X-ray photoelectron spectroscopy. Owing to reactions such as the physical sputtering of atoms and radiation-induced decomposition, PLLA was gradually carbonized with increasing C=C bonds. Controlled micro/nanostructures of PLLA were fabricated with C=C bond-rich surfaces expected to have good cell attachment properties.

  19. Effect of Fluoride on the Morphology of Calcium Phosphate Crystals Grown on Acid-Etched Human Enamel

    PubMed Central

    Fan, Y.; Sun, Z.; Moradian-Oldak, J.

    2009-01-01

    The aim of this study was to examine the effect of fluoride ion concentration on the morphology of calcium phosphate crystals grown on acid-etched enamel as a model for tooth enamel erosion. Samples were immersed in calcification solution for 16 h and changes in crystal morphology were monitored by field emission scanning electron microscopy. Without fluoride, plate-like octacalcium phosphate crystals (20 nm thick, 2–10 μm wide) were formed. With 1–10 mg/l fluoride, arrays of denser needle-like nanocrystals (20–30 nm wide, >500 nm in length) were formed. We conclude that there is a minimal fluoride concentration (1 mg/l) that dramatically affects the morphology of calcium phosphate crystals grown on etched enamel in vitro. PMID:19321991

  20. Influence of duration of phosphoric acid pre-etching on bond durability of universal adhesives and surface free-energy characteristics of enamel.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Watanabe, Hidehiko; Johnson, William W; Latta, Mark A; Miyazaki, Masashi

    2016-08-01

    The purpose of this study was to evaluate the influence of duration of phosphoric acid pre-etching on the bond durability of universal adhesives and the surface free-energy characteristics of enamel. Three universal adhesives and extracted human molars were used. Two no-pre-etching groups were prepared: ground enamel; and enamel after ultrasonic cleaning with distilled water for 30 s to remove the smear layer. Four pre-etching groups were prepared: enamel pre-etched with phosphoric acid for 3, 5, 10, and 15 s. Shear bond strength (SBS) values of universal adhesive after no thermal cycling and after 30,000 or 60,000 thermal cycles, and surface free-energy values of enamel surfaces, calculated from contact angle measurements, were determined. The specimens that had been pre-etched showed significantly higher SBS and surface free-energy values than the specimens that had not been pre-etched, regardless of the aging condition and adhesive type. The SBS and surface free-energy values did not increase for pre-etching times of longer than 3 s. There were no significant differences in SBS values and surface free-energy characteristics between the specimens with and without a smear layer. The results of this study suggest that phosphoric acid pre-etching of enamel improves the bond durability of universal adhesives and the surface free-energy characteristics of enamel, but these bonding properties do not increase for phosphoric acid pre-etching times of longer than 3 s. PMID:27315775

  1. Influence of duration of phosphoric acid pre-etching on bond durability of universal adhesives and surface free-energy characteristics of enamel.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Watanabe, Hidehiko; Johnson, William W; Latta, Mark A; Miyazaki, Masashi

    2016-08-01

    The purpose of this study was to evaluate the influence of duration of phosphoric acid pre-etching on the bond durability of universal adhesives and the surface free-energy characteristics of enamel. Three universal adhesives and extracted human molars were used. Two no-pre-etching groups were prepared: ground enamel; and enamel after ultrasonic cleaning with distilled water for 30 s to remove the smear layer. Four pre-etching groups were prepared: enamel pre-etched with phosphoric acid for 3, 5, 10, and 15 s. Shear bond strength (SBS) values of universal adhesive after no thermal cycling and after 30,000 or 60,000 thermal cycles, and surface free-energy values of enamel surfaces, calculated from contact angle measurements, were determined. The specimens that had been pre-etched showed significantly higher SBS and surface free-energy values than the specimens that had not been pre-etched, regardless of the aging condition and adhesive type. The SBS and surface free-energy values did not increase for pre-etching times of longer than 3 s. There were no significant differences in SBS values and surface free-energy characteristics between the specimens with and without a smear layer. The results of this study suggest that phosphoric acid pre-etching of enamel improves the bond durability of universal adhesives and the surface free-energy characteristics of enamel, but these bonding properties do not increase for phosphoric acid pre-etching times of longer than 3 s.

  2. Epidermal lipids and the natural history of hydrofluoric acid (HF) injury.

    PubMed

    Noonan, T; Carter, E J; Edelman, P A; Zawacki, B E

    1994-06-01

    To explain several fortuitous observations, we hypothesized that there is a naturally occurring lipid 'barrier' to HF injury in guinea-pig skin and sought to characterize both the barrier and its role in the natural history of such injuries. Under anaesthesia, the dorsal trunk skin of groups of guinea-pigs was gently clipped of hair, washed with chloroform, soap and water, acetone or nothing (controls), and examined histologically for the presence of neutral lipid. Thereafter, in animal groups similarly washed, 1.5 in x 1.5 in (38 mm x 38 mm) areas were exposed to 40 per cent HF for up to 50 min and: (a) mean percentages of exposed areas with gross necrosis 5 days postinjury plotted on dose-response curves; or (b) less than 4 h after exposure to HF, intra-aortic India ink was injected and skin specimens examined to discern depth of ischaemia and necrosis. In contrast to controls, washing reduced neutral lipid in epidermis and significantly (at P < 0.001) increased susceptibility to injury by HF. With very rare (but interesting) exceptions, HF injury was found to be full thickness in depth with ischaemia and coagulative necrosis. In this study, development of guinea-pig skin necrosis due to HF was typically an 'all-or-nothing' 'barrier-penetration' phenomenon relating as much to the integrity of an epidermal lipid barrier as to the duration and intensity of noxious exposure.

  3. Surface modification via wet chemical etching of single-crystalline silicon for photovoltaic application.

    PubMed

    Reshak, A H; Shahimin, M M; Shaari, S; Johan, N

    2013-11-01

    The potential of solar cells have not been fully tapped due to the lack of energy conversion efficiency. There are three important mechanisms in producing high efficiency cells to harvest solar energy; reduction of light reflectance, enhancement of light trapping in the cell and increment of light absorption. The current work represent studies conducted in surface modification of single-crystalline silicon solar cells using wet chemical etching techniques. Two etching types are applied; alkaline etching (KOH:IPA:DI) and acidic etching (HF:HNO3:DI). The alkaline solution resulted in anisotropic profile that leads to the formation of inverted pyramids. While acidic solution formed circular craters along the front surface of silicon wafer. This surface modification will leads to the reduction of light reflectance via texturizing the surface and thereby increases the short circuit current and conversion rate of the solar cells. PMID:24139943

  4. Surface modification via wet chemical etching of single-crystalline silicon for photovoltaic application.

    PubMed

    Reshak, A H; Shahimin, M M; Shaari, S; Johan, N

    2013-11-01

    The potential of solar cells have not been fully tapped due to the lack of energy conversion efficiency. There are three important mechanisms in producing high efficiency cells to harvest solar energy; reduction of light reflectance, enhancement of light trapping in the cell and increment of light absorption. The current work represent studies conducted in surface modification of single-crystalline silicon solar cells using wet chemical etching techniques. Two etching types are applied; alkaline etching (KOH:IPA:DI) and acidic etching (HF:HNO3:DI). The alkaline solution resulted in anisotropic profile that leads to the formation of inverted pyramids. While acidic solution formed circular craters along the front surface of silicon wafer. This surface modification will leads to the reduction of light reflectance via texturizing the surface and thereby increases the short circuit current and conversion rate of the solar cells.

  5. Micromorphology of ceramic etching pattern for two CAD-CAM and one conventional feldspathic porcelain and need for post-etching cleaning.

    PubMed

    Onisor, Ioana; Rocca, Giovanni Tommaso; Krejci, Ivo

    2014-01-01

    The aim of this in vitro study was to observe the effect of hydrofluoric acid (HF) on the surface of two glass ceramics for Cerec and to compare it with the effect on a conventional glass ceramic. Discs were cut from a feldspathic ceramic block (VitaMKII) and from a leucite reinforced glass ceramic (IPS EMPRESS CAD) for Cerec. 5% and 9% HF concentrations were used during 1 min and 2 min each. Afterwards samples were thoroughly water rinsed for 30 s. Half of the 9% HF 1 min samples were subsequently submitted to a complex post-etching cleaning. All samples were observed under a scanning electron microscope (SEM). The conventional feldspathic ceramic samples were built up on a refractory die and a platinum foil. They were treated with 9% HF for 2 min and water rinsed for 30 s. Half of the samples were submitted to the same post-etching cleaning protocol. All samples were examined under SEM and EDX. The Cerec ceramic samples and the platinum foil ones were clean and free of any precipitate after 30 s of water rinsing. Acid concentration, times of application and the postetching cleaning treatment did not influence the cleanliness of the samples. A thick layer of deposit was observed only on the refractory die samples. This was only diminished after the post-etching treatment. The EDX analysis detected the presence of fluoride (F) only on the refractory die samples.

  6. Early endosseous integration enhanced by dual acid etching of titanium: a torque removal study in the rabbit.

    PubMed

    Klokkevold, P R; Johnson, P; Dadgostari, S; Caputo, A; Davies, J E; Nishimura, R D

    2001-08-01

    Textured implant surfaces are thought to enhance endosseous integration. Torque removal forces have been used as a biomechanical measure of anchorage, or endosseous integration, in which the greater forces required to remove implants may be interpreted as an increase in the strength of bony integration. The purpose of this study was to compare the torque resistance to removal of screw-shaped titanium implants having a dual acid-etched surface (Osseotite) with implants having either a machined surface, or a titanium plasma spray surface that exhibited a significantly more complex surface topography. Three custom screw-shaped implant types - machined, dual acid-etched (DAE), and titanium plasma sprayed (TPS) - were used in this study. Each implant surface was characterized by scanning electron microscopy and optical profilometry. One DAE implant was placed into each distal femur of eighteen adult New Zealand White rabbits along with one of the other implant types. Thus, each rabbit received two DAE implants and one each of the machined, or TPS, implants. All implants measured 3.25 mm in diameter x 4.00 mm in length without holes, grooves or slots to resist rotation. Eighteen rabbits were used for reverse torque measurements. Groups of six rabbits were sacrificed following one, two and three month healing periods. Implants were removed by reverse torque rotation with a digital torque-measuring device. Three implants with the machined surface preparation failed to achieve endosseous integration. All other implants were anchored by bone. Mean torque values for machined, DAE and TPS implants at one, two and three months were 6.00+/-0.64 N-cm, 9.07+/-0.67 N-cm and 6.73+/-0.95 N-cm; 21.86+/-1.37 N-cm, 27.63+/-3.41 N-cm and 27.40+/-3.89 N-cm; and 27.48+/-1.61 N-cm, 44.28+/-4.53 N-cm and 59.23+/-3.88 N-cm, respectively. Clearly, at the earliest time point the stability of DAE implants was comparable to that of TPS implants, while that of the machined implants was an order of

  7. Bond strength of composite to dentin: effect of acid etching and laser irradiation through an uncured self-etch adhesive system

    NASA Astrophysics Data System (ADS)

    Castro, F. L. A.; Carvalho, J. G.; Andrade, M. F.; Saad, J. R. C.; Hebling, J.; Lizarelli, R. F. Z.

    2014-08-01

    This study evaluated the effect on micro-tensile bond strength (µ-TBS) of laser irradiation of etched/unetched dentin through an uncured self-etching adhesive. Dentinal surfaces were treated with Clearfil SE Bond Adhesive (CSE) either according to the manufacturer’s instructions (CSE) or without applying the primer (CSE/NP). The dentin was irradiated through the uncured adhesive, using an Nd:YAG laser at 0.75 or 1 W power settings. The adhesive was cured, composite crowns were built up, and the teeth were sectioned into beams (0.49 mm2) to be stressed under tension. Data were analyzed using one-way ANOVA and Tukey statistics (α = 5%). Dentin of the fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM). The results showed that non-etched irradiated surfaces presented higher µ-TBS than etched and irradiated surfaces (p < 0.05). Laser irradiation alone did not lead to differences in µ-TBS (p > 0.05). SEM showed solidification globules on the surfaces of the specimens. The interfaces were similar on irradiated and non-irradiated surfaces. Laser irradiation of dentin through the uncured adhesive did not lead to higher µ-TBS when compared to the suggested manufacturer’s technique. However, this treatment brought benefits when performed on unetched dentin, since bond strengths were higher when compared to etched dentin.

  8. A comparative study of shear bond strength of orthodontic bracket after acid-etched and Er:YAG treatment on enamel surface

    NASA Astrophysics Data System (ADS)

    Leão, Juliana C.; Mota, Cláudia C. B. O.; Cassimiro-silva, Patricia F.; Gomes, Anderson S. L.

    2016-02-01

    This study aimed to evaluate the shear bond strength (SBS) of teeth prepared for orthodontic bracket bonding with 37% phosphoric acid and Er:YAG laser. Forty bovine incisors were divided into two groups. In Group I, the teeth were conditioned with 37% phosphoric acid and brackets were bonded with Transbond XT; in Group II, the teeth were irradiated with Er:YAG and bonding with Transbond XT. After SBS test, the adhesive remnant index was determined. Adhesion to dental hard tissues after Er:YAG laser etching was inferior to that obtained after acid etching but exceeded what is believed to be clinically sufficient strength, and therefore can be used in patients.

  9. Surface Topographical Changes of a Failing Acid-Etched Long-Term in Function Retrieved Dental Implant.

    PubMed

    Monje, Alberto; González-García, Raúl; Fernández-Calderón, María Coronada; Hierro-Oliva, Margarita; González-Martín, María Luisa; Del Amo, Fernando Suarez-Lopez; Galindo-Moreno, Pablo; Wang, Hom-Lay; Monje, Florencio

    2016-02-01

    The aim of the present study was to report the main topographical and chemical changes of a failing 18-year in function retrieved acid-etching implant in the micro- and nanoscales. A partially edentulous 45 year old rehabilitated with a dental implant at 18 years of age exhibited mobility. After careful examination, a 3.25 × 13-mm press-fit dental implant was retrieved. Scanning electron microscope (SEM) analysis was carried out to study topographical changes of the retrieved implant compared with an unused implant with similar topographical characteristics. Moreover, X-ray photoelectron spectroscopy (XPS) analysis was used to study the surface composition of the retrieved failing implant. Clear changes related to the dual dioxide layer are present as visible in ≥×500 magnification. In addition, it was found that, for the retrieved implant, the surface composition consisted mainly of Ti2p, O1s, C1s, and Al2p. Also, a meaningful decrease of N and C was noticed, whereas the peaks of Ti2p, Al2p, and O1s increased when analyzing deeper (up to ×2000s) in the sample. It was shown that the superficial surface of a retrieved press-fit dual acid-etched implant 18 years after placement is impaired. However, the causes and consequences for these changes cannot be determined. PMID:25642739

  10. Characterization and biocompatibility of a titanium dental implant with a laser irradiated and dual-acid etched surface.

    PubMed

    Hsu, Shan-Hui; Liu, Bai-Shuan; Lin, Wen-Hung; Chiang, Heng-Chieh; Huang, Shih-Ching; Cheng, Shih-Shyong

    2007-01-01

    The biological properties of commercial pure titanium (cp-Ti) dental implants can be improved by surface treatment. In this study, the cp-Ti surfaces were prepared to enable machined surfaces (TM) to be compared to the machined, sandblasted, laser irradiated and dual-acid etched surfaces (TA). The surface elements and roughness were characterized. The biocompatibility was evaluated by cell and organ culture in vitro. The removal torque was measured in rabbit implantation. Surface characterization revealed that TA surface was more oxidized than TM surface. The TA surface had micrometric, beehive-like coarse concaves. The average roughness (2.28 mum) was larger than that typical of acid-etched surfaces. Extracts of both materials were not cytotoxic to bone cells. The morphology of cells attached on the TA surface was superior to that on the TM surface. TA promoted cell migration and repaired damaged bones more effectively in organ culture. The formation of bone-like nodules on TA disk exceeded that on TM disk. Rabbit tibia implantation also proved that TA implant had greater removal torque value. These results suggested that TA had good osteoconductivity and was a potential material for dental implantation. PMID:17264387

  11. Surface Topographical Changes of a Failing Acid-Etched Long-Term in Function Retrieved Dental Implant.

    PubMed

    Monje, Alberto; González-García, Raúl; Fernández-Calderón, María Coronada; Hierro-Oliva, Margarita; González-Martín, María Luisa; Del Amo, Fernando Suarez-Lopez; Galindo-Moreno, Pablo; Wang, Hom-Lay; Monje, Florencio

    2016-02-01

    The aim of the present study was to report the main topographical and chemical changes of a failing 18-year in function retrieved acid-etching implant in the micro- and nanoscales. A partially edentulous 45 year old rehabilitated with a dental implant at 18 years of age exhibited mobility. After careful examination, a 3.25 × 13-mm press-fit dental implant was retrieved. Scanning electron microscope (SEM) analysis was carried out to study topographical changes of the retrieved implant compared with an unused implant with similar topographical characteristics. Moreover, X-ray photoelectron spectroscopy (XPS) analysis was used to study the surface composition of the retrieved failing implant. Clear changes related to the dual dioxide layer are present as visible in ≥×500 magnification. In addition, it was found that, for the retrieved implant, the surface composition consisted mainly of Ti2p, O1s, C1s, and Al2p. Also, a meaningful decrease of N and C was noticed, whereas the peaks of Ti2p, Al2p, and O1s increased when analyzing deeper (up to ×2000s) in the sample. It was shown that the superficial surface of a retrieved press-fit dual acid-etched implant 18 years after placement is impaired. However, the causes and consequences for these changes cannot be determined.

  12. Patterning of platinum (Pt) thin films by chemical wet etching in Aqua Regia

    NASA Astrophysics Data System (ADS)

    Köllensperger, P. A.; Karl, W. J.; Ahmad, M. M.; Pike, W. T.; Green, M.

    2012-06-01

    The chemical and physical properties of platinum (Pt) make it a useful material for microelectromechanical systems and microfluidic applications such as lab-on-a-chip devices. Platinum thin-films are frequently employed in applications where electrodes with high chemical stability, low electrical resistance or a high melting point are needed. Due to its chemical inertness it is however also one of the most difficult metals to pattern. The gold standard for patterning is chlorine RIE etching, a capital-intensive process not available in all labs. Here we present simple fabrication protocols for wet etching Pt thin-films in hot Aqua Regia based on sputtered Ti/Pt/Cr and Cr/Pt/Cr metal multilayers. Chromium (Cr) or titanium (Ti) is used as an adhesion layer for the Pt. Cr is used as a hard masking layer during the Pt etch as it can be easily and accurately patterned with photoresist and withstands the Aqua Regia. The Cr pattern is transferred into the Pt and the Cr mask later removed. Only standard chemicals and cleanroom equipment/tools are required. Prior to the Aqua Regia etch any surface passivation on the Pt is needs to be removed. This is usually achieved by a quick dip in dilute hydrofluoric acid (HF). HF is usually also used for wet-etching the Ti adhesion layer. We avoid the use of HF for both steps by replacing the HF-dip with an argon (Ar) plasma treatment and etching the Ti layer with a hydrogen peroxide (H2O2) based etchant.

  13. UV-induced graft polymerization of acrylic acid in the sub-micronchannels of oxidized PET track-etched membrane

    NASA Astrophysics Data System (ADS)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Taltenov, Abzal A.

    2015-12-01

    In this article, we report on functionalization of track-etched membrane based on poly(ethylene terephthalate) (PET TeMs) oxidized by advanced oxidation systems and by grafting of acrylic acid using photochemical initiation technique for the purpose of increasing functionality thus expanding its practical application. Among advanced oxidation processes (H2O2/UV) system had been chosen to introduce maximum concentration of carboxylic acid groups. Benzophenone (BP) photo-initiator was first immobilized on the surfaces of cylindrical pores which were later filled with aq. acrylic acid solution. UV-irradiation from both sides of PET TeMs has led to the formation of grafted poly(acrylic acid) (PAA) chains inside the membrane sub-micronchannels. Effect of oxygen-rich surface of PET TeMs on BP adsorption and subsequent process of photo-induced graft polymerization of acrylic acid (AA) were studied by ESR. The surface of oxidized and AA grafted PET TeMs was characterized by UV-vis, ATR-FTIR, XPS spectroscopies and by SEM.

  14. Micro fiber-optic Fabry-Perot interferometer fabricated by chemical etching of Er-doped fiber

    NASA Astrophysics Data System (ADS)

    Gong, Yuan; Rao, Yun-Jiang; Guo, Yu; Wu, Yu; Ran, Zeng-Ling

    2009-10-01

    Micro extrinsic fiber-optic Fabry-Perot interferometers (MEFPI) are fabricated by chemically etching Er-doped fiber and then splicing the etched fiber to a single-mode fiber, for the first time to our knowledge. By using the mixture of Hydrochloric (HCl) acid and Hydrofluoric (HF) acid as etching solution, a cavity length of up to ~27 μm and a maximum fringe contrast of ~24dB are obtained. Experimental results show that the MEFPI is insensitive to temperature change but highly sensitive to strain, with temperature and strain sensitivities of ~0.65 pm/°C and 3.15 pm/ μɛ, respectively. Such type of MEFPI sensors based on the etched Er-doped fiber is compact, cost-effective and especially suitable for mass production, offering great potential for a wide range of applications.

  15. Evaluation of Bone Healing on Sandblasted and Acid Etched Implants Coated with Nanocrystalline Hydroxyapatite: An In Vivo Study in Rabbit Femur

    PubMed Central

    Melin Svanborg, Lory; Meirelles, Luiz; Franke Stenport, Victoria; Currie, Fredrik; Andersson, Martin

    2014-01-01

    This study aimed at investigating if a coating of hydroxyapatite nanocrystals would enhance bone healing over time in trabecular bone. Sandblasted and acid etched titanium implants with and without a submicron thick coat of hydroxyapatite nanocrystals (nano-HA) were implanted in rabbit femur with healing times of 2, 4, and 9 weeks. Removal torque analyses and histological evaluations were performed. The torque analysis did not show any significant differences between the implants at any healing time. The control implant showed a tendency of more newly formed bone after 4 weeks of healing and significantly higher bone area values after 9 weeks of healing. According to the results from this present study, both control and nano-HA surfaces were biocompatible and osteoconductive. A submicron thick coating of hydroxyapatite nanocrystals deposited onto blasted and acid etched screw shaped titanium implants did not enhance bone healing, as compared to blasted and etched control implants when placed in trabecular bone. PMID:24723952

  16. Improving UV laser damage threshold of fused silica optics by wet chemical etching technique

    NASA Astrophysics Data System (ADS)

    Ye, Hui; Li, Yaguo; Yuan, Zhigang; Wang, Jian; Xu, Qiao; Yang, Wei

    2015-07-01

    Fused silica is widely used in high-power laser systems because of its good optical performance and mechanical properties. However, laser damage initiation and growth induced by 355 nm laser illumination in optical elements have become a bottleneck in the development of high energy laser system. In order to improve the laser-induced damage threshold (LIDT), the fused silica optics were treated by two types of HF-based etchants: 1.7%wt. HF acid and buffer oxide etchant (BOE: the mixture of 0.4%wt. HF and 12%wt. NH4F), respectively, for varied etching time. Damage testing shows that both the etchants increase the damage threshold at a certain depth of material removal, but further removal of material lowers the LIDT markedly. The etching rates of both etchants keep steady in our processing procedure, ~58 μg/min and ~85 μg/min, respectively. The micro-surface roughness (RMS and PV) increases as etching time extends. The hardness (H) and Young's modulus (E) of the fused silica etched for diverse time, measured by nano-indenter, show no solid evidence that LIDT can be related to hardness or Young's modulus.

  17. Bone contact around osseointegrated implants: histologic analysis of a dual-acid-etched surface implant in a diabetic patient.

    PubMed

    Bugea, Calogero; Luongo, Roberto; Di Iorio, Donato; Cocchetto, Roberto; Celletti, Renato

    2008-04-01

    The clinical applicability and predictability of osseointegrated implants in healthy patients have been studied extensively. Although successful treatment of patients with medical conditions including diabetes, arthritis, and cardiovascular disease has been described, insufficient information is available to determine the effects of diabetes on the process of osseointegration. An implant placed and intended to support an overdenture in a 65-year-old diabetic woman was prosthetically unfavorable and was retrieved after 2 months. It was then analyzed histologically. No symptoms of implant failure were detected, and histomorphometric evaluation showed the bone-to-implant contact percentage to be 80%. Osseointegration can be obtained when implants with a dual-acid-etched surface are placed in properly selected diabetic patients. PMID:18546810

  18. Changes in the surface of bone and acid-etched and sandblasted implants following implantation and removal

    PubMed Central

    Eroglu, Cennet Neslihan; Ertugrul, Abdullah Seckin; Eskitascioglu, Murat; Eskitascioglu, Gurcan

    2016-01-01

    Objective: The aim of this study was to determine whether there are any changes in the surface of bone or implant structures following the removal of a screwed dental implant. Materials and Methods: For this, six individual samples of acid-etched and sandblasted implants from three different manufacturers’ implant systems were used. They were screwed in a D1 bovine bone, and they were removed after primary stabilization. The bone and implant surfaces are evaluated with scanning electron microscope. Results: Through examination of the surfaces of the bone prior to implantation and of the used and unused implant surfaces, it was found that inhomogeneity in the implant surface can cause microcracking in the bone. Conclusions: This is attributed to the stress induced during the implantation of self-tapping implants and suggests that a tap drill may be required in some instances to protect the implant surface. PMID:27011744

  19. Visible luminescence from silicon wafers subjected to stain etches

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; George, T.; Ksendzov, A.; Vasquez, R. P.

    1992-01-01

    Etching of Si in a variety of solutions is known to cause staining. These stain layers consist of porous material similar to that produced by anodic etching of Si in HF solutions. In this work, photoluminescence peaked in the red from stain-etched Si wafers of different dopant types, concentrations, and orientations produced in solutions of HF:HNO3:H2O was observed. Luminescence is also observed in stain films produced in solutions of NaNO2 in HF, but not in stain films produced in solutions of CrO3 in HF. The luminescence spectra are similar to those reported recently for porous Si films produced by anodic etching in HF solutions. However, stain films are much easier to produce, requiring no special equipment.

  20. Redox buffered hydrofluoric acid etchant for the reduction of galvanic attack during release etching of MEMS devices having noble material films

    DOEpatents

    Hankins, Matthew G.

    2009-10-06

    Etchant solutions comprising a redox buffer can be used during the release etch step to reduce damage to the structural layers of a MEMS device that has noble material films. A preferred redox buffer comprises a soluble thiophosphoric acid, ester, or salt that maintains the electrochemical potential of the etchant solution at a level that prevents oxidation of the structural material. Therefore, the redox buffer preferentially oxidizes in place of the structural material. The sacrificial redox buffer thereby protects the exposed structural layers while permitting the dissolution of sacrificial oxide layers during the release etch.

  1. Micro-shear bond strength and surface micromorphology of a feldspathic ceramic treated with different cleaning methods after hydrofluoric acid etching

    PubMed Central

    STEINHAUSER, Henrique Caballero; TURSSI, Cecília Pedroso; FRANÇA, Fabiana Mantovani Gomes; do AMARAL, Flávia Lucisano Botelho; BASTING, Roberta Tarkany

    2014-01-01

    Objective The aim of this study was to evaluate the effect of feldspathic ceramic surface cleaning on micro-shear bond strength and ceramic surface morphology. Material and Methods Forty discs of feldspathic ceramic were prepared and etched with 10% hydrofluoric acid for 2 minutes. The discs were randomly distributed into five groups (n=8): C: no treatment, S: water spray + air drying for 1 minute, US: immersion in ultrasonic bath for 5 minutes, F: etching with 37% phosphoric acid for 1 minute, followed by 1-minute rinse, F+US: etching with 37% phosphoric acid for 1 minute, 1-minute rinse and ultrasonic bath for 5 minutes. Composite cylinders were bonded to the discs following application of silane and hydrophobic adhesive for micro-shear bond strength testing in a universal testing machine at 0.5 mm/min crosshead speed until failure. Stereomicroscopy was used to classify failure type. Surface micromorphology of each treatment type was evaluated by scanning electron microscopy at 500 and 2,500 times magnification. Results One-way ANOVA test showed no significant difference between treatments (p=0.3197) and the most common failure types were cohesive resin cohesion followed by adhesive failure. Micro-shear bond strength of the feldspathic ceramic substrate to the adhesive system was not influenced by the different surface cleaning techniques. Absence of or less residue was observed after etching with hydrofluoric acid for the groups US and F+US. Conclusions Combining ceramic cleaning techniques with hydrofluoric acid etching did not affect ceramic bond strength, whereas, when cleaning was associated with ultrasound, less residue was observed. PMID:24676577

  2. In vivo remineralization of acid-etched enamel in non-brushing areas as influenced by fluoridated orthodontic adhesive and toothpaste.

    PubMed

    Praxedes-Neto, Otávio José; Borges, Boniek Castillo Dutra; Florêncio-Filho, Cícero; Farias, Arthur Costa Rodrigues; Drennan, John; De Lima, Kenio Costa

    2012-07-01

    This study aimed to evaluate the in vivo remineralization of acid-etched enamel in non-brushing areas as influenced by fluoridated orthodontic adhesive and toothpaste. One hundred and twenty teeth from 30 volunteers were selected. The teeth were assigned to four treatments: no treatment (negative control); 37% phosphoric acid-etching (PAE) (positive control); PAE + resin-modified glass ionomer cement (RMGIC); and, PAE + composite resin. Patients brushed teeth with fluoridated (n = 15) or non-fluoridated (n = 15) toothpastes, so that etched enamel was protected with screens and it was not in contact with the brush bristles. Remineralization was evaluated by means of laser fluorescence (LF), environmental scanning electronic microscopy, and energy dispersive spectrometry after extraction. The LF means were compared by means of Wilcoxon and Mann Whitney tests. Environmental scanning electron microscopy scores were compared among the groups using a Kruskal Wallis test, whereas the Ca/P ratio was evaluated by means of an Analysis of Variance with subparcels (treatments) and Tukey's post-hoc test. There were no statistically significant differences between the tooth pastes and between the orthodontic adhesives evaluated. Most teeth presented only partial enamel remineralization. Therefore, the fluoride released by the RMGIC was not enough to cause increased crystal regrowth in the acid-etched enamel. The use of fluoridated toothpaste did not provide positive additional effect.

  3. Comparison of Shear Bond Strength of Orthodontic Brackets Bonded to Enamel Prepared By Er:YAG Laser and Conventional Acid-Etching

    PubMed Central

    Hosseini, M.H.; Namvar, F.; Chalipa, J.; Saber, K.; Chiniforush, N.; Sarmadi, S.; Mirhashemi, A.H.

    2012-01-01

    Introduction: The purpose of this study was to compare shear bond strength (SBS) of orthodontic brackets bonded to enamel prepared by Er:YAG laser with two different powers and conventional acid-etching. Materials and Methods: Forty-five human premolars extracted for orthodontic purposes were randomly assigned to three groups based on conditioning method: Group 1- conventional etching with 37% phosphoric acid; Group 2- irradiation with Er:YAG laser at 1 W; and Group 3- irradiation with Er:YAG laser at 1.5 W. Metal brackets were bonded on prepared enamel using a light-cured composite. All groups were subjected to thermocycling process. Then, the specimens mounted in auto-cure acryle and shear bond strength were measured using a universal testing machine with a crosshead speed of 0.5 mm per second. After debonding, the amount of resin remaining on the teeth was determined using the adhesive remnant index (ARI) scored 1 to 5. One-way analysis of variance was used to compare shear bond strengths and the Kruskal-Wallis test was performed to evaluate differences in the ARI for different etching types. Results: The mean and standard deviation of conventional acid-etch group, 1W laser group and 1.5W laser group was 3.82 ± 1.16, 6.97 ± 3.64 and 6.93 ± 4.87, respectively. Conclusion: The mean SBS obtained with an Er:YAG laser operated at 1W or 1.5W is approximately similar to that of conventional etching. However, the high variability of values in bond strength of irradiated enamel should be considered to find the appropriate parameters for applying Er:YAG laser as a favorable alternative for surface conditioning. PMID:22924098

  4. Replacement of liquid H{sub 2}SO{sub 4} and HF with solid acid catalysts: A study of mixed metal phosphates as solid acid catalysts

    SciTech Connect

    Jackson, N.B.; Nenoff, T.M.; Thoma, S.G.; Kohler, S.D.

    1997-10-01

    The primary purpose of this LDRD was to identify and optimize materials as solid acid catalysts for the replacement of environmentally hazardous liquid acids such as H{sub 2}SO{sub 4} and HF which are used as catalysts in both the petroleum and chemical industries. Liquid acids have significant safety, environmental and engineering difficulties associated with their use in process chemistry. Special equipment/materials need to be used with liquid acids. Hydrofluoric acid poses unique safety problems due to it insipid attack on skin and tissue as well as its tendency to plume and travel long distances as a plume when it is released in the atmosphere. Therefore, any time a solid acid catalyst can be used to replace a liquid acid in a processes step, significant environmental, safety, and financial gains can be realized. The majority of work in this LDRD was performed on novel mixed metal phosphates which are a new solid acid catalyst material. Primarily the model reaction, 2-methyl-2-pentene isomerization, was used to determine acidity. These materials were tested for their activity, their deactivation and their stability. In addition, some of the phosphate materials were synthesized using templates in order to try to form a three dimensional network material from these phosphates. The amorphous sulfated zirconium-titanium phosphates were more acidic, as measured by olefin isomerization, than sulfated zirconia. However, they showed some of the same failings as sulfated zirconia in that they deactivated quickly and lost sulfur in a reducing atmosphere. Certain of the mixed metal phosphates, particularly tantalum-containing phosphates, showed strong acidity compared to sulfated zirconia as measured by olefin isomerization reaction.

  5. Distinguishing shocked from tectonically deformed quartz by the use of the SEM and chemical etching

    USGS Publications Warehouse

    Gratz, A.J.; Fisler, D.K.; Bohor, B.F.

    1996-01-01

    Multiple sets of crystallographically-oriented planar deformation features (PDFs) are generated by high-strain-rate shock waves at pressures of > 12 GPa in naturally shocked quartz samples. On surfaces, PDFs appear as narrow (50-500 nm) lamellae filled with amorphosed quartz (diaplectic glass) which can be etched with hydrofluoric acid or with hydrothermal alkaline solutions. In contrast, slow-strain-rate tectonic deformation pressure produces wider, semi-linear and widely spaced arrays of dislocation loops that are not glass filled. Etching samples with HF before examination in a scanning electron microscope (SEM) allows for unambiguous visual distinction between glass-filled PDFs and glass-free tectonic deformation arrays in quartz. This etching also reveals the internal 'pillaring' often characteristic of shock-induced PDFs. This technique is useful for easily distinguishing between shock and tectonic deformation in quartz, but does not replace optical techniques for characterizing the shock features.

  6. Humic Acid Complexation of Th, Hf and Zr in Ligand Competition Experiments: Metal Loading and Ph Effects

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.

    2014-01-01

    The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values

  7. Method for Fabricating Textured High-Haze ZnO:Al Transparent Conduction Oxide Films on Chemically Etched Glass Substrates.

    PubMed

    Park, Hyeongsik; Nam, Sang-Hun; Shin, Myunghun; Ju, Minkyu; Lee, Youn-Jung; Yu, Jung-Hoon; Jung, Junhee; Kim, Sunbo; Ahn, Shihyun; Boo, Jin-Hyo; Yi, Junsin

    2016-05-01

    We developed a technique for forming textured aluminum-doped zinc oxide (ZnO:Al) transparent conductive oxide (TCO) films on glass substrates, which were etched using a mixture of hydrofluoric (HF) and hydrochloric (HCl) acids. The etching depth and surface roughness increased with an increase in the HF content and the etching time. The HF-based residues produced insoluble hexafluorosilicate anion- and oxide impurity-based semipermeable films, which reduced the etching rate. Using a small amount of HCl dissolved the Ca compounds, helping to fragment the semipermeable film. This formed random, complex structures on the glass substrates. The angled deposition of three layers of ZnO:Al led to the synthesis of multiscaled ZnO:Al textures on the glass substrates. The proposed approach resulted in textured ZnO:Al TCO films that exhibited high transmittance (-80%) and high haze (> 40%) values over wavelengths of 400-1000 nm, as well as low sheet resistances (< 18 Ω/sq)..Si tandem solar cells based on the ZnO:Al textured TCO films exhibited photocurrents and cell efficiencies that were 40% higher than those of cells with conventional TCO films. PMID:27483840

  8. Study on the impact of silicon doping level on the trench profile using metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Cao, Zhe; Huang, Qiyu; Zhao, Chuanrui; Zhang, Qing

    2016-10-01

    Metal-assisted chemical etching (MACE) has been used as a promising alternative method to fabricate micro/nano-structures on silicon substrates inexpensively. In this paper, profiles of deep trenches on silicon substrates, with different doping levels, fabricated by MACE were studied. A layer of interconnected gold islands was first deposited onto the silicon substrate as catalyst. Electrochemical etching was then performed in a hydrofluoric acid (HF) and hydrogen peroxide (H2O2) mixture solution with different HF-to-H2O2 ratio ρ (ρ = [HF]/([HF] + [H2O2])). Vertical deep trenches were fabricated successfully by using this method. It was observed that even under identical experimental condition, sidewalls with various tilting angles and different morphology could still form on silicon substrates with different resistivity. This possibly because with different resistivity silicon substrate, the gradient of holes in it greatly changed, and so did the final morphology. As a result, the tilting angle of etched trench sidewall can be tuned from 6° to 96° using silicon substrates with different resistivity and etchants with different ρ. By applying the angle-tuning technique revealed in this study, high aspect ratio patterns with vertical sidewalls could be fabricated and three-dimensional complex structures could be designed and realized in the future. [Figure not available: see fulltext.

  9. Effect of sodium sulfite, carboxylic monomer, and phosphoric acid etching on bonding of tri-n-butylborane initiated resin to human enamel.

    PubMed

    Nogawa, Hiroshi; Koizumi, Hiroyasu; Akazawa, Nobutaka; Hiraba, Haruto; Nakamura, Mitsuo; Matsumura, Hideo

    2015-03-01

    The purpose of the present study is evaluation of bonding durability of tri-n-butylborane (TBB) initiated resin without 4-methacryloyloxyethyl trimellitate anhydride (4-META) joined to human enamel. Ground human enamel was bonded with TBB resin under six surface conditions: 1) as ground, 2) primed with Teeth Primer, 3) sodium sulfite solution, 4) 4-META solution, 5) acetone-water, and 6) phosphoric acid etching. Pre- and post-thermocycling bond strengths and change in strength after thermocycling were compared. Etching enamel with 35-45% phosphoric acid enhanced bonding durability between enamel and TBB-initiated resin. Priming with Teeth Primer or 4-META solution improved bond strength between enamel and TBB-initiated resin. Sodium sulfite had little effect on enamel bonding in the present bonding systems. PMID:25807904

  10. Fabrication, characterization, and biological assessment of multilayer DNA coatings on sandblasted-dual acid etched titanium surface.

    PubMed

    Liu, Li; Song, Li-Na; Yang, Guo-Li; Zhao, Shi-Fang; He, Fu-Ming

    2011-06-01

    As local gene therapy has received attention, immobilizing functional gene onto irregular oral implant surface has become an advanced challenge. Electrostatic layer-by-layer (LBL) assembly technique could achieve this goal and allow local and efficient administration of genes to the target cells. In this study, multilayers of cationic lipid/plasmid DNA (pEGFP-C1) complex (LDc) and anionic hyaluronic acid were assembled onto sandblasted-dual acid etched titanium disks by the LBL technique. Surface characteristics of the coatings were performed by x-ray photospectroscopy (XPS), contact angle measurements, and scanning electron microscopy (SEM). The cell biological characteristics of the coatings were evaluated by in vitro experiments. SEM results demonstrated that the porous titanium surface was gradually flattened with the increase of the multilayer. The XPS survey indicated that the N element was found from the coating. The coating degradation and pEGFP-C1 releasing kinetics showed that the more assembled layer numbers were, the larger the amount of DNA released in the first 30 h. MC3T3-E1 cells were cultured directly on the DNA-loaded surface. Higher enhanced green fluorescent protein (EGFP) expression efficiency was achieved by increasing the number of layers when cells were cultured after 24 or 72 h. The MC3T3-E1 cell viability on the surface of multilayer DNA coatings was significantly higher than that on control porous titanium surface. It was concluded that the approach established by the LBL technique had great potential in immobilizing gene coatings onto the porous titanium surface and subsequently influenced the function of the cultured cell. PMID:21448994

  11. Petrologic and experimental evidence for the etching of garnets by organic acids in the upper Jurassic Morrision Formation, northwestern New Mexico.

    USGS Publications Warehouse

    Hansley, P.L.

    1987-01-01

    Etching of garnets and partial to complete dissolution of other aluminosilicate minerals were caused by high concentrations of organic acids generated during the maturation of epigenetic organic matter (predominantly type-III kerogen) in the Morrison Formation. The presence of authigenic phases that form near 100oC indicates that temperatures were high enough during diagenesis to cause the thermal degradation of kerogen.-from Author

  12. Spectroscopic-ellipsometric study of native oxide removal by liquid phase HF process

    NASA Astrophysics Data System (ADS)

    Kurhekar, Anil Sudhakar; Apte, Prakash R.

    2013-02-01

    Ex situ spectroscopic ellipsometry (SE) measurements have been employed to investigate the effect of liquid-phase hydrofluoric acid (HF) cleaning on Si<100> surfaces for microelectromechanical systems application. The hydrogen terminated (H-terminated) Si surface was realized as an equivalent dielectric layer, and SE measurements are performed. The SE analyses indicate that after a 20-s 100:5 HF dip with rinse, the Si (100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si (100) surface was observed and analyzed by the ex-situ SE. Evidence for desorption of the H-terminated Si surface layer is studied using Fourier transform infrared spectroscopy and ellipsometry, and discussed. This piece of work explains the usage of an ex situ, non-destructive technique capable of showing state of passivation, the H-termination of Si<100> surfaces.

  13. Spectroscopic-ellipsometric study of native oxide removal by liquid phase HF process

    PubMed Central

    Kurhekar, Anil Sudhakar; Apte, Prakash R

    2014-01-01

    Ex situ spectroscopic ellipsometry (SE) measurements have been employed to investigate the effect of liquid-phase hydrofluoric acid (HF) cleaning on Si<100> surfaces for microelectromechanical systems application. The hydrogen terminated (H-terminated) Si surface was realized as an equivalent dielectric layer, and SE measurements are performed. The SE analyses indicate that after a 20-s 100:5 HF dip with rinse, the Si (100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si (100) surface was observed and analyzed by the ex-situ SE. Evidence for desorption of the H-terminated Si surface layer is studied using Fourier transform infrared spectroscopy and ellipsometry, and discussed. This piece of work explains the usage of an ex situ, non-destructive technique capable of showing state of passivation, the H-termination of Si<100> surfaces. PMID:24619506

  14. No Positive Effect of Acid Etching or Plasma Cleaning on Osseointegration of Titanium Implants in a Canine Femoral Condyle Press-Fit Model

    PubMed Central

    Saksø, H; Jakobsen, T; Saksø, M; Baas, J; Jakobsen, SS; Soballe, K

    2013-01-01

    Purpose: Implant surface treatments that improve early osseointegration may prove useful in long-term survival of uncemented implants. We investigated Acid Etching and Plasma Cleaning on titanium implants. Methods: In a randomized, paired animal study, four porous coated Ti implants were inserted into the femurs of each of ten dogs. PC (Porous Coating; control)PC+PSHA (Plasma Sprayed Hydroxyapatite; positive control)PC+ET (Acid Etch)PC+ET+PLCN (Plasma Cleaning) After four weeks mechanical fixation was evaluated by push-out test and osseointegration by histomorphometry. Results: The PSHA-coated implants were better osseointegrated than the three other groups on outer surface implant porosity (p<0.05) while there was no statistical difference in deep surface implant porosity when compared with nontreated implant. Within the deep surface implant porosity, there was more newly formed bone in the control group compared to the ET and ET+PCLN groups (p<0.05). In all compared groups, there was no statistical difference in any biomechanical parameter. Conclusions: In terms of osseointegration on outer surface implant porosity PC+PSHA was superior to the other three groups. Neither the acid etching nor the plasma cleaning offered any advantage in terms of implant osseointegration. There was no statistical difference in any of the biomechanical parameters among all groups in the press-fit model at 4 weeks of evaluation time. PMID:23341850

  15. Effects of heat treating silane and different etching techniques on glass fiber post push-out bond strength.

    PubMed

    Samimi, P; Mortazavi, V; Salamat, F

    2014-01-01

    The aims of this study were to compare two pretreatment methods of a fiber post and to evaluate the effect of heat treatment to applied silane on the push-out bond strength for different levels of root. In this in vitro study, 40 glass fiber posts were divided into five groups (n=8) according to the kind of surface treatment applied. They were then inserted into extracted and endodontically treated human canines using a self-etch resin cement (Panavia F2.0, Kuraray, Japan). Group HF+S = hydrofluoric acid (HF) etching and silane (S) application; group HF+S+WP = HF etching and heat-treated silane application and warmed posts (WP); group H2O2+S = hydrogen peroxide etching and silane application; group H2O2+S+WP = hydrogen peroxide and heat-treated-silane application and warmed post; and group C, the control group, received no pretreatment. After completion of thermal cycling (1000 cycles, 5-55°C), all specimens were cut horizontally to obtain three sections. Each section was subjected to a push-out test, and the test results were analyzed using two-way analysis of variance, post-hoc Tukey honestly significant difference test, and a paired sample t-test (α=0.05). It was found that bond strength was not statistically influenced by the kind of etching material used (p=0.224), but was significantly affected by heat treatment of applied silane (p<0.001). The interaction between these two factors was not statistically significant (p=0.142). Group HF+S+WP showed the highest bond strength (12.56±1.73 MPa) (p<0.05). Scanning electron microscopy revealed the effect of the different treatments on the surface characteristics of posts. In the four pretreated groups, the bond strength decreased significantly from the coronal to the apical root canal sections (p≤0.05). The results of this study show that the use of heat-treated silane significantly enhances the push-out bond strength of the fiber posts to root. HF acid etching with heat-treated silane application led to the

  16. Separative recovery with lime of phosphate and fluoride from an acidic effluent containing H3PO4, HF and/or H2SiF6.

    PubMed

    Gouider, Mbarka; Feki, Mongi; Sayadi, Sami

    2009-10-30

    Fluoride content and flow-rate of fertilizer plant wastewater from phosphoric acid and/or triple superphosphate (TSP) production lead to the discharge of several thousand tons of fluoride (F(-)) per year and even more for phosphate (PO4(3-)). Since sustainability is an important environmental concern, the removal methods should allow phosphorus and fluoride to be recycled as a sustainable products for use as raw materials either in agricultural or industrial applications. In the present work, separative recovery with lime of these two target species was investigated. A preliminary speciation study, carried out on the crude effluent, showed that two forms of fluoride: HF and H2SiF6 are present in a highly acidic medium (pH approximately 2). Evidence that fluoride is present under both free (HF) and combined (H2SiF6) forms, in the phosphate-containing effluent, was provided by comparing potentiometric titration curves of a crude wastewater sample and synthetic acid mixtures containing H3PO4, HF and H2SiF6. In a second step synthetic effluent containing mixtures of the following acids: HF, H2SiF6 and H3PO4, were treated with lime. The behaviour of these compounds under lime treatment was analysed. The data showed that fluoride has a beneficial effect on phosphate removal. Moreover, by acting on the precipitation pH, a "selective" recovery of fluoride and phosphate ions was possible either from phosphoric acid/hydrofluoric acid or phosphoric acid/hexafluorosilicic acid mixtures. Indeed, the first stage of the separative recovery, led to a fluoride removal efficiency of 97-98% from phosphoric acid/hydrofluoric acid mixture. It was of 93-95% from phosphoric acid/hexafluorosilicic acid mixture. During the second stage, the phosphate precipitation reached 99.8% from both acidic mixtures whereas it did not exceed 82% from a solution containing H3PO4 alone. The XRD and IR analyses showed that during lime treatment, a H2SiF6 hydrolysis occurred, instead of CaSiF6 solid

  17. Modulated regeneration of acid-etched human tooth enamel by a functionalized dendrimer that is an analog of amelogenin.

    PubMed

    Chen, Mei; Yang, Jiaojiao; Li, Jiyao; Liang, Kunneng; He, Libang; Lin, Zaifu; Chen, Xingyu; Ren, Xiaokang; Li, Jianshu

    2014-10-01

    In the bioinspired repair process of tooth enamel, it is important to simultaneously mimic the organic-matrix-induced biomineralization and increase the binding strength at the remineralization interface. In this work, a fourth-generation polyamidoamine dendrimer (PAMAM) is modified by dimethyl phosphate to obtain phosphate-terminated dendrimer (PAMAM-PO3H2) since it has a similar dimensional scale and peripheral functionalities to that of amelogenin, which plays important role in the natural development process of enamel. Its phosphate group has stronger affinity for calcium ion than carboxyl group and can simultaneously provide strong hydroxyapatite (HA)-binding capability. The MTT assay demonstrates the low cytotoxicity of PAMAM-PO3H2. Adsorption tests indicate that PAMAM-PO3H2 can be tightly adsorbed on the human tooth enamel. Scanning electron microscopy and X-ray diffraction are used to analyze the remineralization process. After being incubated in artificial saliva for 3weeks, there is a newly generated HA layer of 11.23μm thickness on the acid-etched tooth enamel treated by PAMAM-PO3H2, while the thickness for the carboxyl-terminated one (PAMAM-COOH) is only 6.02μm. PAMAM-PO3H2 can regulate the remineralization process to form ordered new crystals oriented along the Z-axis and produce an enamel prism-like structure that is similar to that of natural tooth enamel. The animal experiment also demonstrates that PAMAM-PO3H2 can induce significant HA regeneration in the oral cavity of rats. Thus PAMAM-PO3H2 shows great potential as a biomimetic restorative material for human tooth enamel.

  18. Effect of modifications of dual acid-etched implant surfaces on periimplant bone formation. Part II: calcium phosphate coatings.

    PubMed

    Schliephake, H; Aref, A; Scharnweber, D; Rösler, S; Sewing, A

    2009-01-01

    The aim of the present study was to test the hypothesis that calcium phosphate coatings of dual acid-etched surfaces (DAEs) can improve periimplant bone regeneration. Ten adult female foxhounds received experimental titanium screw implants in the mandible 3 months after removal of all premolar teeth. Five types of surface states were evaluated in each animal: (i) implants with a machined surface (MS) (Control 1); (ii) implants with a DAE (Control 2); (iii) implants with a DAE coated with collagen I (Control 3); (iv) implants with a DAE with mineralized collagen I; and (v) implants with a DAE with a hydroxylapatite (HA) coating. Periimplant bone regeneration was assessed by histomorphometry after 1 and 3 months in five dogs each by measuring bone implant contact (BIC) and the volume density of the newly formed periimplant bone (BVD). After 1 month, mean BIC of experimental implants did not differ significantly from implants with DAE and collagen-coated surfaces, but was significantly higher than the MS implants. BVD was enhanced significantly only in implants with mineralized collagen coating compared with DAE and collagen-coated controls. After 3 months, the mean values of BIC had increased significantly in the group of implants with HA and mineralized collagen coating but were not significantly different from implants with DAE and collagen-coated surfaces. The same held true for the mean BVD values. In conclusion, the present study could not verify the hypothesis that calcium phosphate coatings of DAEs in the present form enhanced periimplant bone formation compared with the DAE surface alone. PMID:19126106

  19. Surface Properties and Osteoblastic Cytocompatibility of Two Blasted and Acid-Etched Titanium Implant Systems with Distinct Microtopography

    PubMed Central

    Mesquita, Pedro; Gomes, Pedro de Sousa; Sampaio, Paula; Juodzbalys, Gintaras; Afonso, Américo

    2012-01-01

    ABSTRACT Objectives The aim of this study is to compare two commercially available screw-type sandblasted and acid-etched (SLA) Ti implant systems from Eckermann Laboratorium S.L., with similar geometry and distinct microtopography, regarding surface properties and osteoblastic cytocompatibility. Material and Methods Implant I (referred as a conventional SLA system) and Implant II (a system patented as Eckcyte®) were characterized for macro and microtopograpphy, surface roughness and chemical composition. For the cytocompatibility studies, human bone marrow osteoblastic cells were seeded over the implants' surface, and the cell response was assessed for cell adhesion and proliferation, alkaline phosphatase (ALP) activity and matrix mineralization. Results Implant I presented a rough surface with irregularly shaped and sized cavities among flatter-appearing areas, whereas Implant II exhibited a homogeneous rough microporous surface. Compared to Implant I, Implant II presented higher Ra values (0.8 [SD 0.008] μm and 1.21 [SD 0.15] μm, respectively, P < 0.05) and also increased values of Rz, Rt and Rsm, a more negative value of Rsk, and similar RKu values. XPS showed the expected presence of Ti, O, C and N; Al, Si, F, P and Ca were detected in low concentrations. Implant II exhibited significantly lower Al levels. Both implants supported the adhesion, proliferation and differentiation of osteoblastic cells. Implant II showed a thicker fibrilar cell layer and an earlier onset and more abundant matrix mineralization. Conclusions The homogeneous rough and microporous surface of Implant II is most probably a main contributor for its improved cell response. PMID:24422006

  20. Evaluation of an endosseous titanium implant with a sandblasted and acid-etched surface in the canine mandible: radiographic results.

    PubMed

    Cochran, D L; Nummikoski, P V; Higginbottom, F L; Hermann, J S; Makins, S R; Buser, D

    1996-09-01

    Previous studies have demonstrated in short-term experiments that sandblasted and acid-etched (SLA) titanium implant had a greater bone-to-implant contact than a titanium plasma-sprayed (TPS) implant in non-oral bone. In the present study, an SLA implant was compared radiographically to a TPS implant under unloaded and loaded conditions in the canine mandible for up to 15 months. 69 implants were placed in 6 foxhounds. Standardized radiographs were taken at baseline, preload, 3, 6, 9, and 12 months of loading. Loaded implants were restored with gold crowns similar to the natural dentition. Radiographic assessment of the bone response to the implants was carried out by measuring the distance between the implant shoulder and the most coronal bone-to-implant contact (DIB) and by evaluated of bone density changes using computer-assisted densitometric image analysis (CADIA). 5 different areas-of-interest (AOI) were defined coronally and apically along the implant. DIB measurements revealed that SLA implants had significantly less bone height loss (0.52 mm) than TPS implants (0.69 mm) at the preload evaluation (p = 0.0142) as well as at 3 months of loading (0.73 mm/1.06 mm; p = 0.0337). This difference was maintained between the implant types during the 1-year follow-up period. The same trend was also evident for CADIA measurements with SLA implants showing higher crestal bone density values when comparing preload to baseline data (p = 0.0890) and 3 months to baseline data (p = 0.0912). No measurable bone density changes were apparent in the apical areas of either implant. These results suggest that SLA implants are superior to TPS implants as measured radiographically in oral bone under unloaded and loaded conditions.

  1. Selective emitter using a screen printed etch barrier in crystalline silicon solar cell.

    PubMed

    Song, Kyuwan; Kim, Bonggi; Lee, Hoongjoo; Lee, Youn-Jung; Park, Cheolmin; Balaji, Nagarajan; Ju, Minkyu; Choi, Jaewoo; Yi, Junsin

    2012-07-23

    The low level doping of a selective emitter by etch back is an easy and low cost process to obtain a better blue response from a solar cell. This work suggests that the contact resistance of the selective emitter can be controlled by wet etching with the commercial acid barrier paste that is commonly applied in screen printing. Wet etching conditions such as acid barrier curing time, etchant concentration, and etching time have been optimized for the process, which is controllable as well as fast. The acid barrier formed by screen printing was etched with HF and HNO3 (1:200) solution for 15 s, resulting in high sheet contact resistance of 90 Ω/sq. Doping concentrations of the electrode contact portion were 2 × 1021 cm-3 in the low sheet resistance (Rs) region and 7 × 1019 cm-3 in the high Rs region. Solar cells of 12.5 × 12.5 cm2 in dimensions with a wet etch back selective emitter Jsc of 37 mAcm-2, open circuit voltage (Voc) of 638.3 mV and efficiency of 18.13% were fabricated. The result showed an improvement of about 13 mV on Voc compared to those of the reference solar cell fabricated with the reactive-ion etching back selective emitter and with Jsc of 36.90 mAcm-2, Voc of 625.7 mV, and efficiency of 17.60%.

  2. Selective emitter using a screen printed etch barrier in crystalline silicon solar cell

    PubMed Central

    2012-01-01

    The low level doping of a selective emitter by etch back is an easy and low cost process to obtain a better blue response from a solar cell. This work suggests that the contact resistance of the selective emitter can be controlled by wet etching with the commercial acid barrier paste that is commonly applied in screen printing. Wet etching conditions such as acid barrier curing time, etchant concentration, and etching time have been optimized for the process, which is controllable as well as fast. The acid barrier formed by screen printing was etched with HF and HNO3 (1:200) solution for 15 s, resulting in high sheet contact resistance of 90 Ω/sq. Doping concentrations of the electrode contact portion were 2 × 1021 cm−3 in the low sheet resistance (Rs) region and 7 × 1019 cm−3 in the high Rs region. Solar cells of 12.5 × 12.5 cm2 in dimensions with a wet etch back selective emitter Jsc of 37 mAcm−2, open circuit voltage (Voc) of 638.3 mV and efficiency of 18.13% were fabricated. The result showed an improvement of about 13 mV on Voc compared to those of the reference solar cell fabricated with the reactive-ion etching back selective emitter and with Jsc of 36.90 mAcm−2, Voc of 625.7 mV, and efficiency of 17.60%. PMID:22823978

  3. Uniform nano-ripples on the sidewall of silicon carbide micro-hole fabricated by femtosecond laser irradiation and acid etching

    SciTech Connect

    Khuat, Vanthanh; Chen, Tao; Gao, Bo; Si, Jinhai Ma, Yuncan; Hou, Xun

    2014-06-16

    Uniform nano-ripples were observed on the sidewall of micro-holes in silicon carbide fabricated by 800-nm femtosecond laser and chemical selective etching. The morphology of the ripple was analyzed using scanning electronic microscopy. The formation mechanism of the micro-holes was attributed to the chemical reaction of the laser affected zone with mixed solution of hydrofluoric acid and nitric acid. The formation of nano-ripples on the sidewall of the holes could be attributed to the standing wave generated in z direction due to the interference between the incident wave and the reflected wave.

  4. Effects of Acid Treatment on Dental Zirconia: An In Vitro Study.

    PubMed

    Xie, Haifeng; Shen, Shuping; Qian, Mengke; Zhang, Feimin; Chen, Chen; Tay, Franklin R

    2015-01-01

    The aim of this study was to evaluate the effects of hydrofluoric (HF) acid, acetic acid, and citric acid treatments on the physical properties and structure of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) at ambient temperature. In total, 110 bar-shaped zirconia specimens were randomly assigned to 11 groups. The specimens in the control group (C) received no surface treatment, while those in the Cage group were hydrothermally aged at 134°C and 0.2 MPa for 20 h. Ten specimens each were immersed at ambient temperature in 5% and 40% HF acid for 2 h (40HF0), 1 day (5HF1, 40HF1), and 5 days (5HF5, 40HF5), while 10 each were immersed at ambient temperature in 10% acetic acid and 20% citric acid for 7 (AC7, CI7) and 14 days (AC14, CI14). X-ray diffraction (XRD) was used to quantitatively estimate the monoclinic phase. Furthermore, flexural strength, surface roughness, and surface Vickers hardness were measured after treatment. Scanning electron microscopy (SEM) was used to characterize the surface morphology. The Cage group specimens exhibited an increased monoclinic phase and flexural strength. Furthermore, 40% HF acid immersion decreased the flexural strength and surface hardness and deteriorated the surface finish, while 5% HF acid immersion only decreased the surface hardness. All the HF acid-immersed specimens showed an etched surface texture on SEM observations, while the other groups did not. These findings suggest that the treatment of Y-TZP with 40% HF acid at ambient temperature causes potential damage, while treatment with 5% HF acid, acetic acid, and citric acid is safe.

  5. Effects of Acid Treatment on Dental Zirconia: An In Vitro Study

    PubMed Central

    Xie, Haifeng; Shen, Shuping; Qian, Mengke; Zhang, Feimin; Chen, Chen; Tay, Franklin R.

    2015-01-01

    The aim of this study was to evaluate the effects of hydrofluoric (HF) acid, acetic acid, and citric acid treatments on the physical properties and structure of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) at ambient temperature. In total, 110 bar-shaped zirconia specimens were randomly assigned to 11 groups. The specimens in the control group (C) received no surface treatment, while those in the Cage group were hydrothermally aged at 134°C and 0.2 MPa for 20 h. Ten specimens each were immersed at ambient temperature in 5% and 40% HF acid for 2 h (40HF0), 1 day (5HF1, 40HF1), and 5 days (5HF5, 40HF5), while 10 each were immersed at ambient temperature in 10% acetic acid and 20% citric acid for 7 (AC7, CI7) and 14 days (AC14, CI14). X-ray diffraction (XRD) was used to quantitatively estimate the monoclinic phase. Furthermore, flexural strength, surface roughness, and surface Vickers hardness were measured after treatment. Scanning electron microscopy (SEM) was used to characterize the surface morphology. The Cage group specimens exhibited an increased monoclinic phase and flexural strength. Furthermore, 40% HF acid immersion decreased the flexural strength and surface hardness and deteriorated the surface finish, while 5% HF acid immersion only decreased the surface hardness. All the HF acid-immersed specimens showed an etched surface texture on SEM observations, while the other groups did not. These findings suggest that the treatment of Y-TZP with 40% HF acid at ambient temperature causes potential damage, while treatment with 5% HF acid, acetic acid, and citric acid is safe. PMID:26301413

  6. Effect of acid vapor etching on morphological and opto-electric properties of flat silicon and silicon nanowire arrays: A comparative study

    NASA Astrophysics Data System (ADS)

    Amri, Chohdi; Ouertani, Rachid; Hamdi, Abderrahmen; Ezzaouia, Hatem

    2016-03-01

    In this paper, we report a comparative study between porous silicon (pSi) and porous silicon nanowires (pSiNWs). Acid Vapor Etching (AVE) treatment has been used to perform porous structure on flat Si and SiNWs array substrates respectively. SiNW structure is prepared by the widely used Silver catalyzed etching method. SEM and TEM images show that AVE treatment induces porous structure in the whole Si wafer and the SiNW sidewall. Comparatively to pSi, pSiNWs exhibit a low reflectivity in the whole spectral range which decreases with etching duration. However, the reflectivity of pSi changes with porous layer thickness. Both pSi and pSiNWs exhibit a significant PL peak situated at 2 eV. PL peaks are attributed to the quantum confinement effect in the silicon nanocrystallites (SiNCs). We discussed the significant enhancement in the peak intensities and a shift toward lower energy displayed in Raman spectra for both pSi and pSiNWs. We reported a correlative study of the AVE treatment effect on the minority carrier life time of flat silicon and SiNW arrays with the passivation effect of chemical induced silicon oxides highlighted by FTIR spectra.

  7. Optical investigation of the intergrowth structure and accessibility of Brønsted acid sites in etched SSZ-13 zeolite crystals by confocal fluorescence microscopy.

    PubMed

    Sommer, Linn; Svelle, Stian; Lillerud, Karl Petter; Stöcker, Michael; Weckhuysen, Bert M; Olsbye, Unni

    2010-11-01

    Template decomposition followed by confocal fluorescence microscopy reveals a tetragonal-pyramidal intergrowth of subunits in micrometer-sized nearly cubic SSZ-13 zeolite crystals. In order to accentuate intergrowth boundaries and defect-rich areas within the individual large zeolite crystals, a treatment with an etching NaOH solution is applied. The defective areas are visualized by monitoring the spatial distribution of fluorescent tracer molecules within the individual SSZ-13 crystals by confocal fluorescence microscopy. These fluorescent tracer molecules are formed at the inner and outer crystal surfaces by utilizing the catalytic activity of the zeolite in the oligomerization reaction of styrene derivatives. This approach reveals various types of etching patterns that are an indication for the defectiveness of the studied crystals. We can show that specially one type of crystals, denoted as core-shell type, is highly accessible to the styrene molecules after etching. Despite the large crystal dimensions, the whole core-shell type SSZ-13 crystal is utilized for catalytic reaction. Furthermore, the confocal fluorescence microscopy measurements indicate a nonuniform distribution of the catalytically important Brønsted acid sites underlining the importance of space-resolved measurements. PMID:20496927

  8. Effects of Dextrose and Lipopolysaccharide on the Corrosion Behavior of a Ti-6Al-4V Alloy with a Smooth Surface or Treated with Double-Acid-Etching

    PubMed Central

    Faverani, Leonardo P.; Assunção, Wirley G.; de Carvalho, Paulo Sérgio P.; Yuan, Judy Chia-Chun; Sukotjo, Cortino; Mathew, Mathew T.; Barao, Valentim A.

    2014-01-01

    Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (α = 0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (p<0.05) for the Ti-6Al-4V alloy with surface treatment by double-acid-etching. The combination of dextrose and lipopolysaccharide was correlated with the Icorr (corrosion current density) and Ipass (p<0.05). The acid-treated groups showed a significant increase in Cdl values and reduced Rp values (p<0.05, t-test). According to the topography, there was an increase in surface roughness (R2 = 0.726, p<0.0001 for the smooth surface; R2 = 0.405, p = 0.036 for the double-acid-etching-treated surface). The microhardness of the smooth Ti-6Al-4V alloy decreased (p<0.05) and that of the treated Ti-6Al-4V alloy increased (p<0.0001). Atomic force microscopy showed changes in the microstructure of the Ti-6Al-4V alloy by increasing the surface thickness mainly in the group associated with dextrose and lipopolysaccharide. The combination of dextrose and lipopolysaccharide affected the corrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no

  9. Effects of dextrose and lipopolysaccharide on the corrosion behavior of a Ti-6Al-4V alloy with a smooth surface or treated with double-acid-etching.

    PubMed

    Faverani, Leonardo P; Assunção, Wirley G; de Carvalho, Paulo Sérgio P; Yuan, Judy Chia-Chun; Sukotjo, Cortino; Mathew, Mathew T; Barao, Valentim A

    2014-01-01

    Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (α = 0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (p<0.05) for the Ti-6Al-4V alloy with surface treatment by double-acid-etching. The combination of dextrose and lipopolysaccharide was correlated with the Icorr (corrosion current density) and Ipass (p<0.05). The acid-treated groups showed a significant increase in Cdl values and reduced Rp values (p<0.05, t-test). According to the topography, there was an increase in surface roughness (R2 = 0.726, p<0.0001 for the smooth surface; R2 = 0.405, p = 0.036 for the double-acid-etching-treated surface). The microhardness of the smooth Ti-6Al-4V alloy decreased (p<0.05) and that of the treated Ti-6Al-4V alloy increased (p<0.0001). Atomic force microscopy showed changes in the microstructure of the Ti-6Al-4V alloy by increasing the surface thickness mainly in the group associated with dextrose and lipopolysaccharide. The combination of dextrose and lipopolysaccharide affected the corrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no

  10. Effect of acid etching on marginal adaptation of mineral trioxide aggregate to apical dentin: microcomputed tomography and scanning electron microscopy analysis.

    PubMed

    Al-Fouzan, Khalid; Al-Garawi, Ziad; Al-Hezaimi, Khalid; Javed, Fawad; Al-Shalan, Thakib; Rotstein, Ilan

    2012-12-01

    The present investigation assessed the effect of acid etching on marginal adaptation of white- and gray-colored mineral trioxide aggregate (MTA) to apical dentin using microcomputed tomography (micro-CT) and scanning electron microscopy (SEM). Sixty-four extracted single-rooted human maxillary teeth were used. Following root-end resection and apical preparation, the teeth were equally divided into four groups according to the following root end filling materials: (i) white-colored MTA (WMTA), (ii) etched WMTA (EWMTA), (iii) gray-colored MTA (GMTA) and (iv) etched GMTA (EGMTA). After 48 h, the interface between root-end filling materials and the dentinal walls was assessed using micro-CT and SEM. Data were statistically analyzed using the Kruskal-Wallis and Dunn tests. Micro-CT analysis revealed gap volumes between the apical cavity dentin walls and EGMTA, GMTA, EWMTA and WMTA of (0.007 1±0.004) mm(3), (0.053±0.002) mm(3), (0.003 6±0.001) mm(3) and (0.005 9±0.002) mm(3) respectively. SEM analysis revealed gap sizes for EGMTA, WMTA, EWMTA and GMTA to be (492.3±13.8) µm, (594.5±17.12) µm, (543.1±15.33) µm and (910.7±26.2) µm respectively. A significant difference in gap size between root end preparations filled with GMTA and EGMTA was found (P<0.05). No significance difference in gap size between WMTA and EWMTA were found in either SEM or micro-CT analysis. In conclusion, pre-etching of apical dentin can provide a better seal for GMTA but not for WMTA. PMID:23306857

  11. 24% Indigenously Prepared Ethylene Diamine Tetra Acetic Acid Compared to Self-Etching Adhesives and their Effect on Shear Bond Strength of Composites in Primary Teeth: An In-vitro Study

    PubMed Central

    Nagar, Priya; Tandil, Yogesh L.; T.P., Chandru; Gupta, Anamika; Kalaria, Devendra; Kumar, Prafful

    2015-01-01

    Background: Over the years, it has been known that 34% phosphoric acid is the benchmark in etchants with the best shear bond strength shown with composites in primary teeth. However, with latest technological advancements and innovations, in order to reduce the number of steps and less damage to the tooth structure, non-rinse conditioner (NRC) & Single-Etch and various other etchants have been tried and tested. These etchants have been found to have shear bond strength comparable to phosphoric acid. In this study, indigenously prepared 24% ethylenediaminetetraacetic acid (EDTA) has been compared with established etchants, as to prove if their shear bond strength was closely related. As it is a well-known fact that EDTA could be less damaging to the enamel during etching and hence can be an alternative for etching of primary teeth. Materials and Methods: For the study 60 caries-free primary molars were used, they were sectioned in the middle, after making area for bonding; the marked area was then etched using different etchants for 30 s. Each of the teeth was then rinsed and bonded with composite resin and thermocycling was done. Shear bond strength testing was done on the composite using Universal Testing Machine. Results: Results of the study showed that phosphoric acid showed the highest bond strength, closely followed by Single Etch (Adper Prompt) and NRC, then by EDTA. Conclusions: About 24% EDTA can be another comparable replacement for phosphoric acid if used with a Single Etch Primer, like Prime and Bond NT on primary teeth. 34% phosphoric acid has the highest bond strength values with composite resin. Single etch followed by NRC has the second and third highest bond strength values, which are comparable to phosphoric acid. PMID:26464540

  12. Surface characteristics of dentin experimentally exposed to hydrofluoric acid.

    PubMed

    Pioch, Thomas; Jakob, Heiko; García-Godoy, Franklin; Götz, Hermann; Dörfer, Christof E; Staehle, Hans J

    2003-08-01

    The purpose of this study was to test the effect of hydrofluoric acid (HF) on the surface characteristics of dentin in vitro. Dentin was exposed in 50 human molars and divided into five groups according to different etching schedules: (i) no etching, (ii) 15 s HF, (iii) 15 s H3PO4, (iv) 15 s HF and 15 s H3PO4, (v) 15 s H3PO4 and 15 s HF. Teeth were examined under a scanning electron microscope equipped with energy-dispersive X-ray (EDX) or two layers of fluorescence-labeled primer followed by the composite were applied, and the teeth were sectioned and examined using confocal laser scanning microscopy (CLSM). With scanning electron microscopy, no openings of dentinal tubules were found in groups (i), (ii), and (iv). In group (v) only a few tubules were opened and in group (iii) the smear layer was completely removed and tubules appeared open. The EDX analysis revealed that fluoride was incorporated into the dentin surface when HF was used. With CLSM, distinct hybrid layers could be detected only in group (iii). In group (v) the hybrid layer appeared less established compared with group (iii). No dentin hybridization was found in groups (i), (ii), and (iv). It is concluded that HF has the ability to close the openings of dentin tubules which were opened due to etching by phosphoric acid and cannot dissolve the smear layer.

  13. Early bone response to sandblasted, dual acid-etched and H2O2/HCl treated titanium implants: an experimental study in the rabbit.

    PubMed

    He, F M; Yang, G L; Li, Y N; Wang, X X; Zhao, S F

    2009-06-01

    The aim of this study was to evaluate the influence of a roughened H(2)O(2)/HCl heat-treated titanium surface on peri-implant bone formation at an early stage in vivo. 24 Ti(6)Al(4)V alloy implants were used; half were treated by sandblasted and dual acid-etched treatments (control group), while the others were treated by sandblasted, dual acid-etched and H(2)O(2)/HCl heat treatments (test group). The morphology and roughness were analyzed by field emission SEM and atomic force microscopy. The implants were inserted into the femora of 12 adult white rabbits. After 2 and 4 weeks, femora block specimens were prepared for histological and histomorphometric analysis. SEM micrographs showed that multilevel and different sized pits were formed on both surfaces. New bone formation was observed on both implant surfaces. Test implants demonstrated a greater mean percentage of bone-implant contact as compared with controls at 2 (46.84 vs. 41.81, p=0.000) and 4 weeks (49.43 vs. 44.87, p=0.006) of healing. It is concluded that the H(2)O(2)/HCl heat-treated rough titanium surface promoted enhanced bone apposition during the early stages of new bone formation around the implant. PMID:19406618

  14. Ethylene Diamine Tetraacetic Acid Etched Quantum Dots as a "Turn-On" Fluorescence Probe for Detection of Trace Zinc in Food.

    PubMed

    Liu, Wei; Wei, Fangdi; Xu, Guanhong; Wu, Yanzi; Hu, Chunting; Song, Quan; Yang, Jing; Hu, Qin

    2016-06-01

    In the present paper, a simple and rapid "turn-on" fluorescence sensor for Zn2+ based on ethylene diamine tetraacetic acid (EDTA) etched CdTe quantum dots (QDs) was developed. First, the initial bright fluorescence of mercaptopropionic acid (MPA) capped CdTe QDs was effectively quenched by EDTA, and then the presence of Zn2+ could "turn on" the weak fluorescence of QDs quenched by EDTA due to the formation of ZnS passivation shell. The increase of fluorescence intensity of EDTA etched QDs was found to be linear with the concentration of Zn2+ added. Under the optimum conditions, the calibration curve of this method showed good linearity in the concentration range of 9.1-1 09.1 μM of Zn2+ with the correlation coefficient R2 = 0.998. The limit of detection (3σ/K) was 2 μM. The developed QDs-based sensor was successfully applied to detect trace zinc in zinc fortified table salts and energy drinks with satisfactory results. PMID:27427745

  15. Nanopores in GaN by electrochemical anodization in hydrofluoric acid: Formation and mechanism

    NASA Astrophysics Data System (ADS)

    Chen, Danti; Xiao, Hongdi; Han, Jung

    2012-09-01

    We report the use of hydrofluoric acid (HF) as an electrolyte in etching and porosifying GaN. HF is found to be effective in rendering a wide range of nanoporous morphology, from curved branches to highly parallel straight pores. Under suitable conditions, the porosification proceeds at a rate greater than 100 μm/min. To elucidate the etching mechanism, cyclic voltammetry is performed, together with a parametric mapping of electrolysis variables such as the doping of GaN, the concentration of HF electrolyte, and the anodization voltage. We demonstrate that the formation of nanoporous structures is largely due to the local breakdown of the reverse-biased semiconductor junction. A quantitative agreement between the estimated width of space-charge region and the observed variation in morphology lends support to a depletion layer model developed previously in the etching of porous-Si.

  16. Determination of structural and vibrational spectroscopic features of neutral and anion forms of dinicotinic acid by using NMR, infrared and Raman experimental methods combined with DFT and HF.

    PubMed

    Kose, E; Bardak, F; Atac, A; Karabacak, M; Cipiloglu, M A

    2013-10-01

    In this study; the experimental (NMR, infrared and Raman) and theoretical (HF and DFT) analysis of dinicotinic acid were presented. (1)H and (13)C NMR spectra were recorded in DMSO solution and chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The vibrational spectra of dinicotinic acid were recorded by FT-Raman and FT-IR spectra in the range of 4000-10 cm(-1) and 4000-400 cm(-1), respectively. To determine the most stable neutral conformer of molecule, the selected torsion angle was changed every 10° and molecular energy profile was calculated from 0° to 360°. The geometrical parameters and energies were obtained for all conformers form from density functional theory (DFT/B3LYP) and HF with 6-311++G(d,p) basis set calculations. However, the results of the most stable neutral and two anion forms (anion(-1) and anion(-2) forms) of dinicotinic acid are reported here. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational wavenumbers, calculated with scaled quantum mechanics (SQM) method and PQS program. PMID:23747433

  17. Determination of structural and vibrational spectroscopic features of neutral and anion forms of dinicotinic acid by using NMR, infrared and Raman experimental methods combined with DFT and HF

    NASA Astrophysics Data System (ADS)

    Kose, E.; Bardak, F.; Atac, A.; Karabacak, M.; Cipiloglu, M. A.

    2013-10-01

    In this study; the experimental (NMR, infrared and Raman) and theoretical (HF and DFT) analysis of dinicotinic acid were presented. 1H and 13C NMR spectra were recorded in DMSO solution and chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The vibrational spectra of dinicotinic acid were recorded by FT-Raman and FT-IR spectra in the range of 4000-10 cm-1 and 4000-400 cm-1, respectively. To determine the most stable neutral conformer of molecule, the selected torsion angle was changed every 10° and molecular energy profile was calculated from 0° to 360°. The geometrical parameters and energies were obtained for all conformers form from density functional theory (DFT/B3LYP) and HF with 6-311++G(d,p) basis set calculations. However, the results of the most stable neutral and two anion forms (anion-1 and anion-2 forms) of dinicotinic acid are reported here. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational wavenumbers, calculated with scaled quantum mechanics (SQM) method and PQS program.

  18. Use of zirconium oxychloride to neutralize HF in the microwave-assisted acid dissolution of ceramic glazes for their chemical analysis by ICP-OES.

    PubMed

    Dondi, M; Fabbri, B; Mingazzini, C

    1998-04-01

    The use of a zirconium compound (ZrOCl(2)) to neutralize HF in the microwave-assisted acid dissolution of ceramic glazes for their chemical analysis was tested. Zr is a strong complexing agent for the fluorine ion and permits the determination of those elements which would form insoluble fluorides. The use of Zr implies strong spectral interferences and a high salt content; however, we found that at least 27 elements can be measured with low detection limits, and satisfactory precision and accuracy. In addition, the use of ZrOCl(2) would permit the complete analysis of a ceramic glaze with a single attack when acid-resistant mineral phases are not present. For potassium determinations in acid matrix, the addition of an ionization buffer was studied in order to increase sensitivity, avoiding ionization interferences and non-linear calibration curves. PMID:18967112

  19. Analysis of the Microbial Community in an Acidic Hollow-Fiber Membrane Biofilm Reactor (Hf-MBfR) Used for the Biological Conversion of Carbon Dioxide to Methane.

    PubMed

    Shin, Hyun Chul; Ju, Dong-Hun; Jeon, Byoung Seung; Choi, Okkyoung; Kim, Hyun Wook; Um, Youngsoon; Lee, Dong-Hoon; Sang, Byoung-In

    2015-01-01

    Hydrogenotrophic methanogens can use gaseous substrates, such as H2 and CO2, in CH4 production. H2 gas is used to reduce CO2. We have successfully operated a hollow-fiber membrane biofilm reactor (Hf-MBfR) for stable and continuous CH4 production from CO2 and H2. CO2 and H2 were diffused into the culture medium through the membrane without bubble formation in the Hf-MBfR, which was operated at pH 4.5-5.5 over 70 days. Focusing on the presence of hydrogenotrophic methanogens, we analyzed the structure of the microbial community in the reactor. Denaturing gradient gel electrophoresis (DGGE) was conducted with bacterial and archaeal 16S rDNA primers. Real-time qPCR was used to track changes in the community composition of methanogens over the course of operation. Finally, the microbial community and its diversity at the time of maximum CH4 production were analyzed by pyrosequencing methods. Genus Methanobacterium, related to hydrogenotrophic methanogens, dominated the microbial community, but acetate consumption by bacteria, such as unclassified Clostridium sp., restricted the development of acetoclastic methanogens in the acidic CH4 production process. The results show that acidic operation of a CH4 production reactor without any pH adjustment inhibited acetogenic growth and enriched the hydrogenotrophic methanogens, decreasing the growth of acetoclastic methanogens. PMID:26694756

  20. Analysis of the Microbial Community in an Acidic Hollow-Fiber Membrane Biofilm Reactor (Hf-MBfR) Used for the Biological Conversion of Carbon Dioxide to Methane

    PubMed Central

    Jeon, Byoung Seung; Choi, Okkyoung; Kim, Hyun Wook; Um, Youngsoon; Lee, Dong-Hoon; Sang, Byoung-In

    2015-01-01

    Hydrogenotrophic methanogens can use gaseous substrates, such as H2 and CO2, in CH4 production. H2 gas is used to reduce CO2. We have successfully operated a hollow-fiber membrane biofilm reactor (Hf-MBfR) for stable and continuous CH4 production from CO2 and H2. CO2 and H2 were diffused into the culture medium through the membrane without bubble formation in the Hf-MBfR, which was operated at pH 4.5–5.5 over 70 days. Focusing on the presence of hydrogenotrophic methanogens, we analyzed the structure of the microbial community in the reactor. Denaturing gradient gel electrophoresis (DGGE) was conducted with bacterial and archaeal 16S rDNA primers. Real-time qPCR was used to track changes in the community composition of methanogens over the course of operation. Finally, the microbial community and its diversity at the time of maximum CH4 production were analyzed by pyrosequencing methods. Genus Methanobacterium, related to hydrogenotrophic methanogens, dominated the microbial community, but acetate consumption by bacteria, such as unclassified Clostridium sp., restricted the development of acetoclastic methanogens in the acidic CH4 production process. The results show that acidic operation of a CH4 production reactor without any pH adjustment inhibited acetogenic growth and enriched the hydrogenotrophic methanogens, decreasing the growth of acetoclastic methanogens. PMID:26694756

  1. Dry etching of metallization

    NASA Technical Reports Server (NTRS)

    Bollinger, D.

    1983-01-01

    The production dry etch processes are reviewed from the perspective of microelectronic fabrication applications. The major dry etch processes used in the fabrication of microelectronic devices can be divided into two categories - plasma processes in which samples are directly exposed to an electrical discharge, and ion beam processes in which samples are etched by a beam of ions extracted from a discharge. The plasma etch processes can be distinguished by the degree to which ion bombardment contributes to the etch process. This, in turn is related to capability for anisotropic etching. Reactive Ion Etching (RIE) and Ion Beam Etching are of most interest for etching of thin film metals. RIE is generally considered the best process for large volume, anisotropic aluminum etching.

  2. Process for etching mixed metal oxides

    DOEpatents

    Ashby, C.I.H.; Ginley, D.S.

    1994-10-18

    An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.

  3. Process for etching mixed metal oxides

    DOEpatents

    Ashby, Carol I. H.; Ginley, David S.

    1994-01-01

    An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.

  4. Effects of texturization due to chemical etching and laser on the optical properties of multicrystalline silicon for applications in solar cells

    NASA Astrophysics Data System (ADS)

    Vera, D.; Mass, J.; Manotas, M.; Cabanzo, R.; Mejia, E.

    2016-02-01

    In this work we carried out the texturization of surfaces of multicrystalline silicon type-p in order to decrease the reflection of light on the surface, using the chemical etching method and then a treatment with laser. In the first method, it was immersed in solutions of HF:HNO3:H2O, HF:HNO3:CH3COOH, HF:HNO3:H3PO4, in the proportion 14:01:05, during 30 seconds, 1, 2 and 3 minutes. Subsequently with a laser (ND:YAG) grids were generated beginning with parallel lines separated 50μm. The samples were analyzed by means of diffuse spectroscopy (UV-VIS) and scanning electron micrograph (SEM) before and after the laser treatment. The lowest result of reflectance obtained by HF:HNO3:H2O during 30 seconds, was of 15.5%. However, after applying the treatment with laser the reflectance increased to 17.27%. On the other hand, the samples treated (30 seconds) with acetic acid and phosphoric acid as diluents gives as a result a decrease in the reflectance values after applying the laser treatment from 21.97% to 17.79% and from 27.73% to 20.03% respectively. The above indicates that in some cases it is possible to decrease the reflectance using jointly the method of chemical etching and then a laser treatment.

  5. Etching of Crystalline ZnO Surfaces upon Phosphonic Acid Adsorption: Guidelines for the Realization of Well-Engineered Functional Self-Assembled Monolayers.

    PubMed

    Ostapenko, Alexandra; Klöffel, Tobias; Eußner, Jens; Harms, Klaus; Dehnen, Stefanie; Meyer, Bernd; Witte, Gregor

    2016-06-01

    Functionalization of metal oxides by means of covalently bound self-assembled monolayers (SAMs) offers a tailoring of surface electronic properties such as their work function and, in combination with its large charge carrier mobility, renders ZnO a promising conductive oxide for use as transparent electrode material in optoelectronic devices. In this study, we show that the formation of phosphonic acid-anchored SAMs on ZnO competes with an unwanted chemical side reaction, leading to the formation of surface precipitates and severe surface damage at prolonged immersion times of several days. Combining atomic force microscopy (AFM), X-ray diffraction (XRD), and thermal desorption spectroscopy (TDS), the stability and structure of the aggregates formed upon immersion of ZnO single crystal surfaces of different orientations [(0001̅), (0001), and (101̅0)] in phenylphosphonic acid (PPA) solution were studied. By intentionally increasing the immersion time to more than 1 week, large crystalline precipitates are formed, which are identified as zinc phosphonate. Moreover, the energetics and the reaction pathway of this transformation have been evaluated using density functional theory (DFT), showing that zinc phosphonate is thermodynamically more favorable than phosphonic acid SAMs on ZnO. Precipitation is also found for phosphonic acids with fluorinated aromatic backbones, while less precipitation occurs upon formation of SAMs with phenylphosphinic anchoring units. By contrast, no precipitates are formed when PPA monolayer films are prepared by sublimation under vacuum conditions, yielding smooth surfaces without noticeable etching. PMID:27159837

  6. Copper-assisted, anti-reflection etching of silicon surfaces

    SciTech Connect

    Toor, Fatima; Branz, Howard

    2014-08-26

    A method (300) for etching a silicon surface (116) to reduce reflectivity. The method (300) includes electroless deposition of copper nanoparticles about 20 nanometers in size on the silicon surface (116), with a particle-to-particle spacing of 3 to 8 nanometers. The method (300) includes positioning (310) the substrate (112) with a silicon surface (116) into a vessel (122). The vessel (122) is filled (340) with a volume of an etching solution (124) so as to cover the silicon surface (116). The etching solution (124) includes an oxidant-etchant solution (146), e.g., an aqueous solution of hydrofluoric acid and hydrogen peroxide. The silicon surface (116) is etched (350) by agitating the etching solution (124) with, for example, ultrasonic agitation, and the etching may include heating (360) the etching solution (124) and directing light (365) onto the silicon surface (116). During the etching, copper nanoparticles enhance or drive the etching process.

  7. Fabrication of luminescent porous silicon with stain etches and evidence that luminescence originates in amorphous layers

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; George, T.; Ksendzov, A.; Lin, T. L.; Pike, W. T.; Vasquez, R. P.; Wu, Z.-C.

    1992-01-01

    Simple immersion of Si in stain etches of HF:HNO3:H2O or NaNO2 in aqueous HF was used to produce films exhibiting luminescence in the visible similar to that of anodically-etched porous Si. All of the luminescent samples consist of amorphous porous Si in at least the near surface region. No evidence was found for small crystalline regions within these amorphous layers.

  8. Metal assisted anodic etching of silicon.

    PubMed

    Lai, Chang Quan; Zheng, Wen; Choi, W K; Thompson, Carl V

    2015-07-01

    Metal assisted anodic etching (MAAE) of Si in HF, without H2O2, is demonstrated. Si wafers were coated with Au films, and the Au films were patterned with an array of holes. A Pt mesh was used as the cathode while the anodic contact was made through either the patterned Au film or the back side of the Si wafer. Experiments were carried out on P-type, N-type, P(+)-type and N(+)-type Si wafers and a wide range of nanostructure morphologies were observed, including solid Si nanowires, porous Si nanowires, a porous Si layer without Si nanowires, and porous Si nanowires on a thick porous Si layer. Formation of wires was the result of selective etching at the Au-Si interface. It was found that when the anodic contact was made through P-type or P(+)-type Si, regular anodic etching due to electronic hole injection leads to formation of porous silicon simultaneously with metal assisted anodic etching. When the anodic contact was made through N-type or N(+)-type Si, generation of electronic holes through processes such as impact ionization and tunnelling-assisted surface generation were required for etching. In addition, it was found that metal assisted anodic etching of Si with the anodic contact made through the patterned Au film essentially reproduces the phenomenology of metal assisted chemical etching (MACE), in which holes are generated through metal assisted reduction of H2O2 rather than current flow. These results clarify the linked roles of electrical and chemical processes that occur during electrochemical etching of Si. PMID:26059556

  9. Tobacco etch virus infectivity in Capsicum spp. is determined by a maximum of three amino acids in the viral virulence determinant VPg.

    PubMed

    Perez, Kari; Yeam, Inhwa; Kang, Byoung-Cheorl; Ripoll, Daniel R; Kim, Jinhee; Murphy, John F; Jahn, Molly M

    2012-12-01

    Potyvirus resistance in Capsicum spp. has been attributed to amino acid substitutions at the pvr1 locus that cause conformational shifts in eukaryotic translation initiation factor eIF4E. The viral genome-linked protein (VPg) sequence was isolated and compared from three Tobacco etch virus (TEV) strains, highly aphid-transmissible (HAT), Mex21, and N, which differentially infect Capsicum genotypes encoding Pvr1(+), pvr1, and pvr1(2). Viral chimeras were synthesized using the TEV-HAT genome, replacing HAT VPg with Mex21 or N VPg. TEV HAT did not infect pepper plants homozygous for either the pvr1 or pvr1(2) allele. However, the novel chimeric TEV strains, TEVHAT(Mex21-VPg) and TEV-HAT(N-VPg), infected pvr1 and pvr1(2) pepper plants, respectively, demonstrating that VPg is the virulence determinant in this pathosystem. Three dimensional structural models predicted interaction between VPg and the susceptible eIF4E genotype in every case, while resistant genotypes were never predicted to interact. To determine whether there is a correlation between physical interaction of VPg with eIF4E and infectivity, the effects of amino acid variation within VPg were assessed. Interaction between pvr1(2) eIF4E and N VPg was detected in planta, implying that the six amino acid differences in N VPg relative to HAT VPg are responsible for restoring the physical interaction and infectivity.

  10. Evaluation of dentin bonding performance and acid-base resistance of the interface of two-step self-etching adhesive systems.

    PubMed

    IIda, Yasuhiro; Nikaido, Toru; Kitayama, Shuzo; Takagaki, Tomohiro; Inoue, Go; Ikeda, Masaomi; Foxton, Richard M; Tagami, Junji

    2009-07-01

    The purpose of this study was to evaluate dentin bond strengths and to observe the adhesive-dentin interface after acid-base challenge using fluoride-free and fluoride-releasing self-etching adhesive systems; Clearfil SE Bond (SE), FL-Bond (FL) and FL-Bond II(FL II). Fifteen dentin surfaces from human molars were ground and bonded with one of three adhesive systems. The microtensile bond strength (muTBS) test was performed at a crosshead speed of 1 mm/min. The interface of the bonded specimens after acid-base challenge were also examined by a SEM. The muTBS of SE were significantly higher than those of FL and FL II (p<0.05), however, there were no significant differences between FL and FL II (p>0.05). An acid-base resistant zone (ABRZ) was observed in all the groups, however, formation of the ABRZ was material dependent. Fluoride-release from the adhesive is a key factor to create thick ABRZ.

  11. Spinner For Etching Of Semiconductor Wafers

    NASA Technical Reports Server (NTRS)

    Lombardi, Frank

    1989-01-01

    Simple, inexpensive apparatus coats semiconductor wafers uniformly with hydrofluoric acid for etching. Apparatus made in part from small commercial electric-fan motor. Features bowl that collects acid. Silicon wafer placed on platform and centered on axis; motor switched on. As wafer spins, drops of hydrofluoric acid applied from syringe. Centrifugal force spreads acid across wafer in fairly uniform sheet.

  12. Metal-assisted chemical etch porous silicon formation method

    DOEpatents

    Li, Xiuling; Bohn, Paul W.; Sweedler, Jonathan V.

    2004-09-14

    A thin discontinuous layer of metal such as Au, Pt, or Au/Pd is deposited on a silicon surface. The surface is then etched in a solution including HF and an oxidant for a brief period, as little as a couple seconds to one hour. A preferred oxidant is H.sub.2 O.sub.2. Morphology and light emitting properties of porous silicon can be selectively controlled as a function of the type of metal deposited, Si doping type, silicon doping level, and/or etch time. Electrical assistance is unnecessary during the chemical etching of the invention, which may be conducted in the presence or absence of illumination.

  13. Effect of cavity preparation method on microtensile bond strength of a self-etching primer vs phosphoric acid etchant to enamel.

    PubMed

    de Souza-Zaroni, Wanessa Christine; Delfino, Carina Sinclér; Ciccone-Nogueira, Juliane Cristina; Palma-Dibb, Regina Guenka; Corona, Silmara Aparecida Milori

    2007-10-01

    This study evaluated the effect of cavity preparation using air abrasion or carbide bur on bond strength to enamel treated with a self-etching primer (Tyrian SPE) or a phosphoric acid etchant. Twenty-four molars were divided into three groups: high-speed; standard handpiece (ST air abrasion) or supersonic handpiece (SP air abrasion) of the same air-abrasive system. The enamel surfaces were treated with one of the two etchants and the same adhesive agent One Step Plus, and then composite buildups were done with Filtek Z250. After 24 h at 37 degrees C, beams (0.8 mm2) were obtained and subjected to tensile stress in a universal testing machine (0.5 mm/min). The data were submitted to analysis of variance and Tukey's test (P < 0.05). For the conditioning agents, it was observed that the specimens conditioned with phosphoric acid presented superior results than the specimens that used Tyrian SPE. For the preparation techniques, it was verified that the SP air abrasion groups showed the highest bond strengths and carbide-bur groups presented the lowest bond strengths when the specimens were conditioned with Tyrian SPE. It can be concluded that the influence of the cavity preparation method was dependent on the conditioning system used, only when using carbide-bur preparation technique.

  14. Study of oxide etching for MOSFET-based MEMS-bio sensor

    NASA Astrophysics Data System (ADS)

    Sharma, Vikas; Sachdev, K.; Khanna, V. K.

    2013-02-01

    This paper reports on the wet etching using buffer HF solution and dry etching by reactive ion etching technique of thermally grown SiO2 acting as field oxide. This field oxide layer forms source-drain window in ISFET devices based on Metal Oxide-Semiconductor Field-Effect Transistor (MOSFET) for their potential device application. The resultant pattern is measured by surface profiling of MOSFET structure using 500 × 20 μm2 gate dimensions mask.

  15. Alkaline etch system qualification

    SciTech Connect

    Goldammer, S.E.; Pemberton, S.E.; Tucker, D.R.

    1997-04-01

    Based on the data from this qualification activity, the Atotech etch system, even with minimum characterization, was capable of etching production printed circuit products as good as those from the Chemcut system. Further characterization of the Atotech system will improve its etching capability. In addition to the improved etch quality expected from further characterization, the Atotech etch system has additional features that help reduce waste and provide for better consistency in the etching process. The programmable logic controller and computer will allow operators to operate the system manually or from pre-established recipes. The evidence and capabilities of the Atotech system made it as good as or better than the Chemcut system for etching WR products. The Printed Wiring Board Engineering Department recommended that the Atotech system be released for production. In December 1995, the Atotech system was formerly qualified for production.

  16. Preparation and structures of coordination complexes of the very hard Lewis acids ZrF4 and HfF4.

    PubMed

    Benjamin, Sophie L; Levason, William; Pugh, David; Reid, Gillian; Zhang, Wenjian

    2012-10-28

    [MF(4)(dmso)(2)] (M = Zr or Hf) and [MF(4)(dmf)(2)], prepared by dissolving MF(4)·nH(2)O in the appropriate solvent, have been used as synthons for a range of complexes of these otherwise intractable tetrafluorides. These reagents react with OPR(3) (R = Me or Ph) or OAsPh(3) (L) in anhydrous CH(2)Cl(2) to form six-coordinate [MF(4)L(2)] which exist as a mixture of cis (predominant form) and trans isomers in CH(2)Cl(2) solution but which crystallise as trans (OPPh(3), OAsPh(3)) or cis (OPMe(3)) forms. Cis-[ZrF(4)(OAsPh(3))(2)] crystals were obtained from MeCN. Cis-[MF(4)(pyNO)(2)] and eight-coordinate (distorted dodecahedral) [MF(4)(L-L)(2)] (L-L = 2,2'-bipy, or 1,10-phen), and [MF(4)(Me(4)-cyclam)] were also obtained. Attempts to prepare complexes with the N-heterocyclic carbene, 1,3-(2,6-di-isopropylphenyl)imidazol-2-ylidene (IDiPP) or alkyl diphosphines were unsuccessful. Crystal structures are reported for trans-[ZrF(4)(OPPh(3))(2)], cis- and trans-[ZrF(4)(OAsPh(3))(2)], cis-[HfF(4)(OPMe(3))(2)], [ZrF(4)(2,2'-bipy)(2)], cis-[HfF(4)(dmf)(2)], and geometric isomers (both pentagonal bipyramidal) of [(dmso)(2)F(3)M(μ-F)(2)MF(3)(dmso)(2)]. The failed attempts to make IDiPP adducts led to crystals of [IDiPPH](3)[M(3)F(15)] containing discrete anions based upon a triangle of M atoms with single F bridges. The results are compared with previous work on TiF(4) adducts and with complexes of MCl(4), and demonstrate that the MF(4) are very hard Lewis acids, with a marked preference for O- over N-donors. PMID:22955291

  17. Quantification of proteins using enhanced etching of Ag coated Au nanorods by the Cu2+/bicinchoninic acid pair with improved sensitivity

    NASA Astrophysics Data System (ADS)

    Liu, Wenqi; Hou, Shuai; Yan, Jiao; Zhang, Hui; Ji, Yinglu; Wu, Xiaochun

    2015-12-01

    Plasmonic nanosensors show great potential in ultrasensitive detection, especially with the plasmon peak position as the detection modality. Herein, a new sensitive but simple total protein quantification method termed the SPR-BCA assay is demonstrated by combining plasmonic nanosensors with protein oxidation by Cu2+. The easy tuning of localized surface plasmon resonance (LSPR) features of plasmonic nanostructures makes them ideal sensing platforms. We found that the Cu2+/bicinchoninic acid (BCA) pair exhibits accelerated etching of Au@Ag nanorods and results in the LSPR peak shift. A linear relationship between Cu2+ and the LSPR shift is found in a double logarithmic coordinate. Such double logarithm relationship is transferred to the concentration of proteins. Theoretical simulation shows that Au nanorods with large aspect ratios and small core sizes show high detection sensitivity. Via optimized sensor design, we achieved an increased sensitivity (the limit of detection was 3.4 ng ml-1) and a wide working range (0.5 to 1000 μg ml-1) compared with the traditional BCA assay. The universal applicability of our method to various proteins further proves its potential in practical applications.Plasmonic nanosensors show great potential in ultrasensitive detection, especially with the plasmon peak position as the detection modality. Herein, a new sensitive but simple total protein quantification method termed the SPR-BCA assay is demonstrated by combining plasmonic nanosensors with protein oxidation by Cu2+. The easy tuning of localized surface plasmon resonance (LSPR) features of plasmonic nanostructures makes them ideal sensing platforms. We found that the Cu2+/bicinchoninic acid (BCA) pair exhibits accelerated etching of Au@Ag nanorods and results in the LSPR peak shift. A linear relationship between Cu2+ and the LSPR shift is found in a double logarithmic coordinate. Such double logarithm relationship is transferred to the concentration of proteins. Theoretical

  18. Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics

    NASA Astrophysics Data System (ADS)

    Srivastava, Sanjay K.; Kumar, Dinesh; Schmitt, S. W.; Sood, K. N.; Christiansen, S. H.; Singh, P. K.

    2014-05-01

    Vertically aligned silicon nanowire (SiNW) arrays have been fabricated over a large area using a silver-assisted single-step electroless wet chemical etching (EWCE) method, which involves the etching of silicon wafers in aqueous hydrofluoric acid (HF) and silver nitrate (AgNO3) solution. A comprehensive systematic investigation on the influence of different parameters, such as the etching time (up to 15 h), solution temperature (10-80 °C), AgNO3 (5-200 mM) and HF (2-22 M) concentrations, and properties of the multi-crystalline silicon (mc-Si) wafers, is presented to establish a relationship of these parameters with the SiNW morphology. A linear dependence of the NW length on the etch time is obtained even at higher temperature (10-50 °C). The activation energy for the formation of SiNWs on Si(100) has been found to be equal to ˜0.51 eV . It has been shown for the first time that the surface area of the Si wafer exposed to the etching solution is an important parameter in determining the etching kinetics in the single-step process. Our results establish that single-step EWCE offers a wide range of parameters by means of which high quality vertical SiNWs can be produced in a very simple and controlled manner. A mechanism for explaining the influence of various parameters on the evolution of the NW structure is discussed. Furthermore, the SiNW arrays have extremely low reflectance (as low as <3% for Si(100) NWs and <12% for mc-Si NWs) compared to ˜35% for the polished surface in the 350-1000 nm wavelength range. The remarkably low reflection surface of SiNW arrays has great potential for use as an effective light absorber material in novel photovoltaic architectures, and other optoelectronic and photonic devices.

  19. FT-IR and FT-Raman vibrational analysis, ab initio HF and DFT simulations of isocyanic acid 1-naphthyl ester.

    PubMed

    Shoba, D; Karabacak, M; Periandy, S; Ramalingam, S

    2011-10-15

    The Fourier transform infrared and Fourier transform Raman spectra of isocyanic acid 1-naphthyl ester (C(11)H(7)NO) [ICANE] are recorded in solid phase, the harmonic vibrational frequencies, infrared intensities, Raman activities, bond length, bond angle and dihedral angle are calculated by HF and DFT methods by using different basis set. A detailed vibrational spectral analysis has been carried out and assignments of observed fundamental bands have been proposed on basis of peak positions and relative intensities. The scaled theoretical frequencies showed very good agreement with experimental values. A detailed interpretations of the infrared and Raman spectra of isocyanic acid 1-naphthyl ester are reported, the theoretical spectra for infrared and Raman spectrum of title molecule have been constructed. The effect due to the substitutions of isocyanato group is also investigated. A study on the electronic properties, such as excitation energies and wavelengths, are performed with different solvent by time-dependent DFT (TD-DFT) approach. HOMO and LUMO energies are calculated that these energies show charge transfer occurs within the molecule. PMID:21764630

  20. FT-IR and FT-Raman vibrational analysis, ab initio HF and DFT simulations of isocyanic acid 1-naphthyl ester.

    PubMed

    Shoba, D; Karabacak, M; Periandy, S; Ramalingam, S

    2011-10-15

    The Fourier transform infrared and Fourier transform Raman spectra of isocyanic acid 1-naphthyl ester (C(11)H(7)NO) [ICANE] are recorded in solid phase, the harmonic vibrational frequencies, infrared intensities, Raman activities, bond length, bond angle and dihedral angle are calculated by HF and DFT methods by using different basis set. A detailed vibrational spectral analysis has been carried out and assignments of observed fundamental bands have been proposed on basis of peak positions and relative intensities. The scaled theoretical frequencies showed very good agreement with experimental values. A detailed interpretations of the infrared and Raman spectra of isocyanic acid 1-naphthyl ester are reported, the theoretical spectra for infrared and Raman spectrum of title molecule have been constructed. The effect due to the substitutions of isocyanato group is also investigated. A study on the electronic properties, such as excitation energies and wavelengths, are performed with different solvent by time-dependent DFT (TD-DFT) approach. HOMO and LUMO energies are calculated that these energies show charge transfer occurs within the molecule.

  1. Effects of rhBMP-2 on Sandblasted and Acid Etched Titanium Implant Surfaces on Bone Regeneration and Osseointegration: Spilt-Mouth Designed Pilot Study.

    PubMed

    Kim, Nam-Ho; Lee, So-Hyoun; Ryu, Jae-Jun; Choi, Kyung-Hee; Huh, Jung-Bo

    2015-01-01

    This study was conducted to evaluate effects of rhBMP-2 applied at different concentrations to sandblasted and acid etched (SLA) implants on osseointegration and bone regeneration in a bone defect of beagle dogs as pilot study using split-mouth design. Methods. For experimental groups, SLA implants were coated with different concentrations of rhBMP-2 (0.1, 0.5, and 1 mg/mL). After assessment of surface characteristics and rhBMP-2 releasing profile, the experimental groups and untreated control groups (n = 6 in each group, two animals in each group) were placed in split-mouth designed animal models with buccal open defect. At 8 weeks after implant placement, implant stability quotients (ISQ) values were recorded and vertical bone height (VBH, mm), bone-to-implant contact ratio (BIC, %), and bone volume (BV, %) in the upper 3 mm defect areas were measured. Results. The ISQ values were highest in the 1.0 group. Mean values of VBH (mm), BIC (%), and BV (%) were greater in the 0.5 mg/mL and 1.0 mg/mL groups than those in 0.1 and control groups in buccal defect areas. Conclusion. In the open defect area surrounding the SLA implant, coating with 0.5 and 1.0 mg/mL concentrations of rhBMP-2 was more effective, compared with untreated group, in promoting bone regeneration and osseointegration. PMID:26504807

  2. Physico/chemical characterization and in vivo evaluation of nanothickness bioceramic depositions on alumina-blasted/acid-etched Ti-6Al-4V implant surfaces.

    PubMed

    Coelho, Paulo G; Lemons, Jack E

    2009-08-01

    The objective of this study was to physico/chemically characterize and evaluate the in vivo performance of two nanothickness ion beam assisted depositions (IBAD) of bioceramic coatings on implants in a beagle model. Alumina-blasted/acid-etched (AB/AE) Ti-6Al-4V implants were subjected to two different IBAD depositions (IBAD I and IBAD II), which were physico/chemically characterized by SEM, EDS, XPS, XPS + ion-beam milling (depth profiling), XRD, AFM, and ToF-SIMS. A beagle dog tibia model was utilized for histomorphometric and biomechanical (torque) comparison between AB/AE, IBAD I, IBAD II, and plasma-sprayed hydroxyapatite (PSHA) coated implants that remained in vivo for 3 and 5 weeks. The coatings were characterized as amorphous Ca-P with high Ca/P stoichiometries with thicknesses of an order of magnitude difference (IBAD I = 30-50 nm and IBAD II = 300-500 nm). The histomorphometric and biomechanical testing results showed that the 300-500 nm thickness deposition (IBAD II) and PSHA positively modulated bone healing at early implantation times. PMID:18508352

  3. Comparative Study of the Early Loading of Resorbable Blasting Media and Sandblasting with Large-grit and Acid-etching Surface Implants: A Retrospective Cohort Study

    PubMed Central

    Kim, Sung-Beom; Kim, Young-Kyun; Kim, Su-Gwan; Oh, Ji-Su; Kim, Byung-Hoon

    2014-01-01

    Purpose: This study compares the prognosis (the survival rate and marginal bone loss) of resorbable blasting media (RBM) surface implants and sandblasting with large-grit and acid-etching (SLA) surface implants in the early loading. Methods: This study targeted 123 patients treated by implants installation from January 2008 to March 2010. The loading was initiated in the maxilla within three to four months and in the mandible within one to two months. The types of restoration were single crown and fixed partial prosthesis. Those functioned over one year. The implants were classified by the surface of implants as Group 1: RBM surface (GS III; OSSTEM, Busan, Korea) and, Group 2: SLA surface (Superline; Dentium, Seoul, Korea). The groups were categorized by maxilla and mandible and compared by survival rate, marginal bone loss through clinical records evaluation, and radiographic measurements. Results: The marginal bone loss in the maxilla was 0.14±0.34 mm (Group 1) and 0.30±0.37 mm (Group 2), a statistically significant difference (P <0.05). In the mandible those were 0.28±0.54 mm (Group 1) and 0.20±0.33 mm (Group 2), not significant (P >0.05). There was no significant difference of marginal bone loss between maxilla and mandible by groups. During observation there was no implant failure, a survival rate of 100%. Conclusion: Both surfaces showed an excellent survival rate, and the marginal bone loss was not substantial. PMID:27489842

  4. Early bone response to machined, sandblasting acid etching (SLA) and novel surface-functionalization (SLAffinity) titanium implants: characterization, biomechanical analysis and histological evaluation in pigs.

    PubMed

    Chiang, Hsi-Jen; Hsu, Heng-Jui; Peng, Pei-Wen; Wu, Ching-Zong; Ou, Keng-Liang; Cheng, Han-Yi; Walinski, Christopher J; Sugiatno, Erwan

    2016-02-01

    The purpose of the present study was to examine early tissue response and osseointegration in the animal model. The surface morphologies of SLAffinity were characterized using scanning electron microscopy and atomic force microscopy. The microstructures were examined by X-ray diffraction, and hardness was measured by nanoindentation. Moreover, the safety and toxicity properties were evaluated using computer-aided programs and cell cytotoxicity assays. In the animal model, implants were installed in the mandibular canine-premolar area of 12 miniature pigs. Each pig received three implants: machine, sandblasted, large grit, acid-etched, and SLAffinity-treated implants. The results showed that surface treatment did affect bone-to-implant contact (BIC) significantly. At 3 weeks, the SLAffinity-treated implants were found to present significantly higher BIC values than the untreated implants. The SLAffinity treatments enhanced osseointegration significantly, especially at early stages of bone tissue healing. As described above, the results of the present study demonstrate that the SLAffinity treatment is a reliable surface modification method.

  5. Effect of erbium-doped: yttrium, aluminium and garnet laser irradiation on the surface microstructure and roughness of sand-blasted, large grit, acid-etched implants

    PubMed Central

    Lee, Ji-Hun; Kwon, Young-Hyuk; Herr, Yeek; Shin, Seung-Il

    2011-01-01

    Purpose The present study was performed to evaluate the effect of erbium-doped: yttrium, aluminium and garnet (Er:YAG) laser irradiation on sand-blasted, large grit, acid-etched (SLA) implant surface microstructure according to varying energy levels and application times of the laser. Methods The implant surface was irradiated by the Er:YAG laser under combined conditions of 100, 140, or 180 mJ/pulse and an application time of 1 minute, 1.5 minutes, or 2 minutes. Scanning electron microscopy (SEM) was used to examine the surface roughness of the specimens. Results All experimental conditions of Er:YAG laser irradiation, except the power setting of 100 mJ/pulse for 1 minute and 1.5 minutes, led to an alteration in the implant surface. SEM evaluation showed a decrease in the surface roughness of the implants. However, the difference was not statistically significant. Alterations of implant surfaces included meltdown and flattening. More extensive alterations were present with increasing laser energy and application time. Conclusions To ensure no damage to their surfaces, it is recommended that SLA implants be irradiated with an Er:YAG laser below 100 mJ/pulse and 1.5 minutes for detoxifying the implant surfaces. PMID:21811689

  6. Adult stem cells properties in terms of commitment, aging and biological safety of grit-blasted and Acid-etched ti dental implants surfaces.

    PubMed

    Gardin, Chiara; Ferroni, Letizia; Bressan, Eriberto; Calvo-Guirado, José L; Degidi, Marco; Piattelli, Adriano; Zavan, Barbara

    2014-01-01

    Titanium (Ti) is one of the most widely used biomaterials for manufacturing dental implants. The implant surface properties strongly influence osseointegration. The aim of the present study was to in vitro investigate the characteristics of Ti dental implants in terms of mutagenicity, hemocompatibility, biocompatibility, osteoinductivity and biological safety. The Ames test was used to test the mutagenicity of the Ti dental implants, and the hemolysis assay for evaluating their hemocompatibility. Human adipose - derived stem cells (ADSCs) were then seeded onto these implants in order to evaluate their cytotoxicity. Gene expression analyzing with real-time PCR was carried out to investigate the osteoinductivity of the biomaterials. Finally, the genetic stability of the cells cultured onto dental implants was determined by karyotyping. Our results demonstrated that Ti dental implants are not mutagenic, do not cause hemolysis, and are biocompatible. The MTT assay revealed that ADSCs, seeded on Ti dental implants, proliferate up to 30 days in culture. Moreover, ADSCs loaded on Ti dental implants show a substantial expression of some osteoblast specific markers, such as COL1A1, OPN, ALPL, and RUNX2, as well as chromosomal stability after 30 days of culture in a medium without osteogenic factors. In conclusion, the grit-blasted and acid-etched treatment seems to favor the adhesion and proliferation of ADSCs and improve the osteoinductivity of Ti dental implant surfaces.

  7. Effects of rhBMP-2 on Sandblasted and Acid Etched Titanium Implant Surfaces on Bone Regeneration and Osseointegration: Spilt-Mouth Designed Pilot Study

    PubMed Central

    Kim, Nam-Ho; Lee, So-Hyoun; Ryu, Jae-Jun; Choi, Kyung-Hee; Huh, Jung-Bo

    2015-01-01

    This study was conducted to evaluate effects of rhBMP-2 applied at different concentrations to sandblasted and acid etched (SLA) implants on osseointegration and bone regeneration in a bone defect of beagle dogs as pilot study using split-mouth design. Methods. For experimental groups, SLA implants were coated with different concentrations of rhBMP-2 (0.1, 0.5, and 1 mg/mL). After assessment of surface characteristics and rhBMP-2 releasing profile, the experimental groups and untreated control groups (n = 6 in each group, two animals in each group) were placed in split-mouth designed animal models with buccal open defect. At 8 weeks after implant placement, implant stability quotients (ISQ) values were recorded and vertical bone height (VBH, mm), bone-to-implant contact ratio (BIC, %), and bone volume (BV, %) in the upper 3 mm defect areas were measured. Results. The ISQ values were highest in the 1.0 group. Mean values of VBH (mm), BIC (%), and BV (%) were greater in the 0.5 mg/mL and 1.0 mg/mL groups than those in 0.1 and control groups in buccal defect areas. Conclusion. In the open defect area surrounding the SLA implant, coating with 0.5 and 1.0 mg/mL concentrations of rhBMP-2 was more effective, compared with untreated group, in promoting bone regeneration and osseointegration. PMID:26504807

  8. Adult Stem Cells Properties in Terms of Commitment, Aging and Biological Safety of Grit-Blasted and Acid-Etched Ti Dental Implants Surfaces

    PubMed Central

    Gardin, Chiara; Ferroni, Letizia; Bressan, Eriberto; Calvo - Guirado, José L.; Degidi, Marco; Piattelli, Adriano; Zavan, Barbara

    2014-01-01

    Titanium (Ti) is one of the most widely used biomaterials for manufacturing dental implants. The implant surface properties strongly influence osseointegration. The aim of the present study was to in vitro investigate the characteristics of Ti dental implants in terms of mutagenicity, hemocompatibility, biocompatibility, osteoinductivity and biological safety. The Ames test was used to test the mutagenicity of the Ti dental implants, and the hemolysis assay for evaluating their hemocompatibility. Human adipose - derived stem cells (ADSCs) were then seeded onto these implants in order to evaluate their cytotoxicity. Gene expression analyzing with real-time PCR was carried out to investigate the osteoinductivity of the biomaterials. Finally, the genetic stability of the cells cultured onto dental implants was determined by karyotyping. Our results demonstrated that Ti dental implants are not mutagenic, do not cause hemolysis, and are biocompatible. The MTT assay revealed that ADSCs, seeded on Ti dental implants, proliferate up to 30 days in culture. Moreover, ADSCs loaded on Ti dental implants show a substantial expression of some osteoblast specific markers, such as COL1A1, OPN, ALPL, and RUNX2, as well as chromosomal stability after 30 days of culture in a medium without osteogenic factors. In conclusion, the grit-blasted and acid-etched treatment seems to favor the adhesion and proliferation of ADSCs and improve the osteoinductivity of Ti dental implant surfaces. PMID:25635249

  9. In vivo assessment of bone ingrowth potential of three-dimensional e-beam produced implant surfaces and the effect of additional treatment by acid etching and hydroxyapatite coating.

    PubMed

    Biemond, J Elizabeth; Hannink, Gerjon; Jurrius, Annemarijn M G; Verdonschot, Nico; Buma, Pieter

    2012-03-01

    The bone ingrowth potential of three-dimensional E-beam-produced implant surfaces was examined by histology and compared to a porous plasma-sprayed control. The effects of acid etching and a hydroxyapatite (HA) coating were also evaluated by histology. Specimens were implanted in the distal femur of 10 goats. Histological analysis of bone ingrowth was performed 6 weeks after implantation. The E-beam-produced surfaces showed significantly better bone ingrowth compared to the plasma-sprayed control. Additional treatment of the E-beam surface structures with a HA coating, further improved bone ingrowth potential of these structures significantly. Acid etching of the E-beam structures did not influence bone ingrowth significantly. In conclusion, the HA-coated, E-beam-produced structures are promising potential implant surfaces.

  10. Comparison of alkaline phosphatase activity of MC3T3-E1 cells cultured on different Ti surfaces: modified sandblasted with large grit and acid-etched (MSLA), laser-treated, and laser and acid-treated Ti surfaces

    PubMed Central

    Li, Lin-Jie; Kim, So-Nam

    2016-01-01

    PURPOSE In this study, the aim of this study was to evaluate the effect of implant surface treatment on cell differentiation of osteoblast cells. For this purpose, three surfaces were compared: (1) a modified SLA (MSLA: sand-blasted with large grit, acid-etched, and immersed in 0.9% NaCl), (2) a laser treatment (LT: laser treatment) titanium surface and (3) a laser and acid-treated (LAT: laser treatment, acid-etched) titanium surface. MATERIALS AND METHODS The MSLA surfaces were considered as the control group, and LT and LAT surfaces as test groups. Alkaline phosphatase expression (ALP) was used to quantify osteoblastic differentiation of MC3T3-E1 cell. Surface roughness was evaluated by a contact profilometer (URFPAK-SV; Mitutoyo, Kawasaki, Japan) and characterized by two parameters: mean roughness (Ra) and maximum peak-to-valley height (Rt). RESULTS Scanning electron microscope revealed that MSLA (control group) surface was not as rough as LT, LAT surface (test groups). Alkaline phosphatase expression, the measure of osteoblastic differentiation, and total ALP expression by surface-adherent cells were found to be highest at 21 days for all three surfaces tested (P<.05). Furthermore, ALP expression levels of MSLA and LAT surfaces were significantly higher than expression levels of LT surface-adherent cells at 7, 14, and 21 days, respectively (P<.05). However, ALP expression levels between MSLA and LAT surface were equal at 7, 14, and 21 days (P>.05). CONCLUSION This study suggested that MSLA and LAT surfaces exhibited more favorable environment for osteoblast differentiation when compared with LT surface, the results that are important for implant surface modification studies. PMID:27350860

  11. Etching properties and electrical characterization of surfaces of silicon-on-insulator substrates in presence of halogens

    SciTech Connect

    Abbadie, A.; Hamaide, G.; Chaupin, M.; Brunier, F.; Mariolle, D.; Martinez, E.; Maehliss, J.

    2012-03-15

    We have studied the etching properties of silicon-on-insulator (SOI) substrates in recently developed chromium-free solutions containing halogens. We have shown that the presence of halogen compounds X (I{sup -}, Br{sup -}...) in HF/HNO{sub 3}/CH{sub 3}COOH solutions is required for a selective and preferential etching on SOI. The etching rate of such solutions increases with the dissolved halogen concentrations. The chemical reactivity of Si-X (X = Br{sup -}, I{sup -}..) bonds has been analyzed by X-ray Photoelectron Spectroscopy (XPS), Pseudo-MOS (flatband potential) and Kelvin Force Microscopy (KFM) measurements. A negative shift of flatband potential values is explained by an increasing concentration of halogen compounds in the solution and a substitution of Si-H (F) bonds by Si-X bonds during the reaction. Though Si-X bonds, and more particularly Si-I bonds, have been confirmed only at trace levels using XPS, we believe that the formation of Si-X bonds is supported by a mechanism of surface dipoles. Unexpectedly, no significant change in work function could be detected using KFM measurements. Some suggestions, based on KFM technique improvements, are made to explain such results. Finally, though the interaction mechanism between silicon, fluoride, iodide, and nitric acid is not clearly elucidated by our experimental results, the formation of Si-halogen bonds is crucial for etching and defect decoration capability.

  12. Etching properties and electrical characterization of surfaces of silicon-on-insulator substrates in presence of halogens

    NASA Astrophysics Data System (ADS)

    Abbadie, A.; Hamaide, G.; Mariolle, D.; Chaupin, M.; Brunier, F.; Martinez, E.; Mähliß, J.

    2012-03-01

    We have studied the etching properties of silicon-on-insulator (SOI) substrates in recently developed chromium-free solutions containing halogens. We have shown that the presence of halogen compounds X (I-, Br-…) in HF/HNO3/CH3COOH solutions is required for a selective and preferential etching on SOI. The etching rate of such solutions increases with the dissolved halogen concentrations. The chemical reactivity of Si-X (X = Br-, I-..) bonds has been analyzed by X-ray Photoelectron Spectroscopy (XPS), Pseudo-MOS (flatband potential) and Kelvin Force Microscopy (KFM) measurements. A negative shift of flatband potential values is explained by an increasing concentration of halogen compounds in the solution and a substitution of Si-H (F) bonds by Si-X bonds during the reaction. Though Si-X bonds, and more particularly Si-I bonds, have been confirmed only at trace levels using XPS, we believe that the formation of Si-X bonds is supported by a mechanism of surface dipoles. Unexpectedly, no significant change in work function could be detected using KFM measurements. Some suggestions, based on KFM technique improvements, are made to explain such results. Finally, though the interaction mechanism between silicon, fluoride, iodide, and nitric acid is not clearly elucidated by our experimental results, the formation of Si-halogen bonds is crucial for etching and defect decoration capability.

  13. Biological functionalization and patterning of porous silicon prepared by Pt-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Li, Hong-Fang; Han, Huan-Mei; Wu, Ya-Guang; Xiao, Shou-Jun

    2010-04-01

    Porous silicon fabricated via Pt-assisted chemical etching of p-type Si (1 0 0) in 1:1:1 EtOH/HF/H 2O 2 solution possesses a longer durability in air and in aqueous media than anodized one, which is advantageous for biomedical applications. Its surface SiH x ( x = 1 and 2) species can react with 10-undecylenic acid completely under microwave irradiation, and subsequent derivatizations of the end carboxylic acid result in affinity capture of proteins. We applied two approaches to produce protein microarrays: photolithography and spotting. The former provides a homogeneous microarray with a very low fluorescence background, while the latter presents an inhomogeneous microarray with a high noise background.

  14. Er:YAG laser radiation etching of enamel

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Jelinkova, Helena; Krejsa, Otakar; Hamal, Karel; Kubelka, Jiri; Prochazka, Stanislav

    1996-12-01

    This study compares the effects of acid treatment and Er:YAG laser radiation on the enamel. The permanent human molars were used. Oval cavities in the buccal surface were prepared and the edges of cavities were irradiated by Er:YAG radiation. The energy of laser was 105 mJ and repetition rate 1 Hz. The radiation was focused by CaF2 lens and the sample was placed in the focus. Ten samples were etched by 35 percent phosphoric acid during 60 s. Than cavities were filled with composite resin following manufacturers directions. By laser etching the structure enamel in section was rougher. The optimal connection between the enamel and composite resin was achieved in 75 percent by acid etching and in 79.2 percent by Er:YAG laser etching. Er:YAG laser etching could be alternative method for etching of enamel.

  15. Metal etching with reactive gas cluster ion beams using pickup cell

    SciTech Connect

    Toyoda, Noriaki; Yamada, Isao

    2012-11-06

    Mixed gas cluster ion beams were formed using pickup cell for metal etching. O{sub 2} neutral clusters pick up acetic acid and formed mixed cluster beam. By using O{sub 2}-GCIB with acetic acid, enhancement of Cu etching was observed. Because of dense energy deposition by GCIB, etching of Cu proceeds by CuO formation, enhancement of chemical reaction with acetic acid and desorption of etching products. Surface roughening was not observed on poly crystalline Cu because of the small dependence of etching rate on crystal orientation. Halogen free and low-temperature metal etching with GCIB using pickup cell is possible.

  16. Metal etching with reactive gas cluster ion beams using pickup cell

    NASA Astrophysics Data System (ADS)

    Toyoda, Noriaki; Yamada, Isao

    2012-11-01

    Mixed gas cluster ion beams were formed using pickup cell for metal etching. O2 neutral clusters pick up acetic acid and formed mixed cluster beam. By using O2-GCIB with acetic acid, enhancement of Cu etching was observed. Because of dense energy deposition by GCIB, etching of Cu proceeds by CuO formation, enhancement of chemical reaction with acetic acid and desorption of etching products. Surface roughening was not observed on poly crystalline Cu because of the small dependence of etching rate on crystal orientation. Halogen free and low-temperature metal etching with GCIB using pickup cell is possible.

  17. Sputtered gold mask for deep chemical etching of silicon

    NASA Technical Reports Server (NTRS)

    Pisciotta, B. P.; Gross, C.; Olive, R. S.

    1975-01-01

    Sputtered mask resists chemical attack from acid and has adherence to withstand prolonged submergence in etch solution without lifting from silicon surface. Even under prolonged etch conditions with significant undercutting, gold mask maintained excellent adhesion to silicon surface and imperviousness to acid.

  18. The isotopic composition of zinc, palladium, silver, cadmium, tin, and tellurium in acid-etched residues of the Allende meteorite

    SciTech Connect

    Loss, R.D.; Rosman, K.J.R.; De Laeter, J.R. )

    1990-12-01

    The isotopic and elemental abundances of Zn, Pd, Ag, Cd, Sn, and Te have been measured in three acid-resistant residues extracted from the Allende meteorite. High-efficiency, low-contamination ion-exchange procedures were developed to separate and purify the nanogram amounts of these elements present. Elemental-abundance determinations performed by Mass Spectrometric Isotope Dilution agree with previously published work for similarly derived residues. No isotope anomalies similar to those found for Xe (Xe-HL) in these samples were detected for any of these elements, which is consistent with the residues not being derived directly from the Xe-HL carriers. The lack of major Te-isotope anomalies does not support earlier reports of {sup 126}Te and {sup 130}Te excesses which were measured by neutron activation in similar samples. Small excesses were detected in the minor isotopes of Sn and Te, but these may be due to measurement problems associated with the small ion currents obtained for these samples. Two of the residue solutions contain Cd with up to several percent excesses for {sup 106}Cd and {sup 108}Cd. Interpretations of these results are limited by the unknown nature of the carrier minerals in the residues but may indicate the presence of a p-process component in Allende residues.

  19. Nanoparticle-based etching of silicon surfaces

    DOEpatents

    Branz, Howard; Duda, Anna; Ginley, David S.; Yost, Vernon; Meier, Daniel; Ward, James S.

    2011-12-13

    A method (300) of texturing silicon surfaces (116) such to reduce reflectivity of a silicon wafer (110) for use in solar cells. The method (300) includes filling (330, 340) a vessel (122) with a volume of an etching solution (124) so as to cover the silicon surface 116) of a wafer or substrate (112). The etching solution (124) is made up of a catalytic nanomaterial (140) and an oxidant-etchant solution (146). The catalytic nanomaterial (140) may include gold or silver nanoparticles or noble metal nanoparticles, each of which may be a colloidal solution. The oxidant-etchant solution (146) includes an etching agent (142), such as hydrofluoric acid, and an oxidizing agent (144), such as hydrogen peroxide. Etching (350) is performed for a period of time including agitating or stirring the etching solution (124). The etch time may be selected such that the etched silicon surface (116) has a reflectivity of less than about 15 percent such as 1 to 10 percent in a 350 to 1000 nanometer wavelength range.

  20. Photoluminescence from stain-etched polycrystalline Si thin films

    NASA Astrophysics Data System (ADS)

    Steckl, A. J.; Xu, J.; Mogul, H. C.

    1993-04-01

    Visible room-temperature photoluminescence has been observed from stain-etched polycrystalline Si thin films. Poly-Si thin films deposited on oxidized Si and quartz substrates became porous (PoSi) after stain-etching in a 1:3:5 solution of HF:HNO3:H2O. Under UV excitation, the stain-etched doped and undoped poly-Si films produce uniform orange-red (about 650 nm) luminescence very similar to that obtained from stain-etched crystalline Si substrates. Stained amorphous thin films did not exhibit photoluminescence. Luminescent patterns with sub-micrometer (about 0.6 micron) dimensions have been obtained for the first time from PoSi produced from poly-Si films.

  1. Five-year retrospective radiographic follow-up study of dental implants with sandblasting with large grit, and acid etching-treated surfaces

    PubMed Central

    2015-01-01

    Objectives The purpose of this study is to evaluate five-year radiographic follow-up results of the Korean sandblasting with large grit, and acid etching (SLA)-treated implant system. Materials and Methods The subjects of the study are 54 patients who have been followed-up to date, of the patients who underwent implant surgery from May 1, 2009 to April 30, 2011. In all, 176 implant placements were performed. Radiographs were taken before the first surgery, immediately after the first and second surgeries, immediately and six months after the final prosthesis installation, and every year after that. Bone loss was evaluated by the method suggested by Romanos and Nentwig. Results A total of 176 implant placements were performed-122 in men and 54 in women. These patients have been followed-up for an average of 4.9 years. In terms of prosthetic appliances, there were 156 bridges and 20 single prostheses. Nine implants installed in the maxillary molar area, three in the mandibular molar area and two in the maxillary premolar area were included in group M, with bone loss less than 2 mm at the crestal aspect of the implant. Of these, eight implants were single prostheses. In all, six implants failed-four in the mandible and two in the maxilla. All of these failures occurred in single-implant cases. The implant survival rate was 98.1% on the maxilla and 94.3% on the mandible, with an overall survival of 96.6%. Conclusion Within the limitations of this study, implants with the SLA surface have a very superior survival rate in relatively poor bone environments such as the maxilla. PMID:26734558

  2. Towards refractive index sensitivity of long-period gratings at level of tens of µm per refractive index unit: fiber cladding etching and nano-coating deposition.

    PubMed

    Śmietana, Mateusz; Koba, Marcin; Mikulic, Predrag; Bock, Wojtek J

    2016-05-30

    In this work we report experimental results on optimizing the refractive index (RI) sensitivity of long-period gratings (LPGs) by fiber cladding etching and thin aluminum oxide (Al2O3) overlay deposition. The presented LPG takes advantage of work in the dispersion turning point (DTP) regime as well as the mode transition (MT) effect for higher-order cladding modes (LP09 and LP010). The MT was obtained by depositing Al2O3 overlays with single-nanometer precision using the Atomic Layer Deposition method (ALD). Etching of both the overlay and the fiber cladding was performed using hydrofluoric acid (HF). For shallow etching of the cladding, i.e., DTP observed at next = 1.429 and 1.439 RIU for an LPG with no overlay, followed by deposition of an overlay of up to 167 nm in thickness, HF etching allowed for post-deposition fine-tuning of the overlay thickness resulting in a significant increase in RI sensitivity mainly at the DTP of the LP09 cladding mode. However, at an external RI (next) above 1.39 RIU, the DTP of LP010 was noticed, and its RI sensitivity exceeded 9,000 nm/RIU. Deeper etching of the cladding, i.e., DTP observed for next above 1.45 RIU, followed by the deposition of thicker overlays (up to 201 nm in thickness) allowed the sensitivity to reach values of over 40,000 nm/RIU in a narrow RI range. Sensitivity exceeding 20,000 nm/RIU was obtained in an RI range suitable for label-free biosensing applications. PMID:27410112

  3. Chemical etching of deformation sub-structures in quartz

    NASA Astrophysics Data System (ADS)

    Wegner, M. W.; Christie, J. M.

    1983-02-01

    Chemical etching of dislocations has been studied in natural and synthetic quartz single crystals, in deformed synthetic quartz and in naturally and experimentally deformed quartzites. The ability of different etchants to produce polished or preferentially etched surfaces on quartz is described. Dislocation etching was achieved on all crystal planes examined by using a saturated solution of ammonium bifluoride as the etchant. Appropriate etching times were determined for etching quartzites for grain size, subgrain boundaries, deformation lamellae, dislocations and twins. Growth and polished surfaces of synthetic single crystal quartz were similarly etched and dislocation etch pits, characteristic of various orientations were found. The use of ammonium bifluoride proved to be expecially advantageous for the basal plane, producing a polished surface with etch pits, suitable for dislocation etch pit counting. “Double” etch pits have been found on Dauphiné twin boundaries on the basal plane and the first order prism, using this etchant. Slip lines and deformation bands were suitably etched on deformed synthetic crystal surfaces for identification of the slip planes. Other acidic etchants have been explored and their application to the study of deformation structures in quartz crystals is discussed.

  4. The restoration of serial numbers on vehicle glass using hydrofluoric acid.

    PubMed

    Miller, Ruben J

    2013-05-10

    Very little research has been carried out investigating techniques for the restoration of obliterated serial numbers on vehicle glass. A study into the effectiveness of hydrofluoric (HF) acid, a known etchant for glass, has been performed. Character sequences previously etched into panes of vehicle glass were sanded to varying depths and attempts were made to restore the sequences by polishing and using a range of concentrations of HF acid. A concentration of 30% HF acid gave at least a 50% restoration of the sequence if up to approximately 30 μm of glass had been removed during obliteration. Recovery improves if less glass is removed, but not if the concentration of the acid is increased. It appears that removal of glass below the level of the original characters makes subsequent restoration using this technique impossible.

  5. Feasibility of hydrofluoric acid etched sand particles for enrichment and determination of polychlorinated biphenyls at trace levels in environmental water samples.

    PubMed

    Xing, Han-Zhu; Chen, Xiang-Feng; Wang, Xia; Wang, Ming-Lin; Zhao, Ru-Song

    2014-06-01

    This study aims to investigate the feasibility of etched sand particles being used as solid-phase extraction adsorbents to enrich polychlorinated biphenyls (PCBs), which are typical persistent organic pollutants in the environment, at trace levels. Gas chromatography-tandem mass spectrometry was selected to detect the compounds. Etched sand particles exhibited excellent merits on the enrichment of PCBs. Related important factors affecting extraction efficiencies were investigated and optimized in detail. Under optimized conditions, low limits of detection (0.42 to 3.69 ng L(-1)), wide linear range (10 to 1,000 ng L(-1)), and high repeatability (1.9 to 8.2%) were achieved. The developed method was validated with several real water samples, and satisfactory results were obtained. All of these findings indicate that etched sand particles would be useful for the enrichment and determination of organic pollutants at trace levels in water samples.

  6. Geochronology, geochemistry, and Hf isotopes of Jurassic intermediate-acidic intrusions in the Xing'an Block, northeastern China: Petrogenesis and implications for subduction of the Paleo-Pacific oceanic plate

    NASA Astrophysics Data System (ADS)

    Dong, Yu; Ge, Wen-chun; Yang, Hao; Xu, Wen-liang; Zhang, Yan-long; Bi, Jun-hui; Liu, Xi-wen

    2016-03-01

    Zircon U-Pb dating, whole-rock geochemistry, Hf isotopic compositions, and regional geological observations of Jurassic intermediate-acidic intrusions in the Xing'an Block, northeastern China, are presented to constrain their petrogenesis and the tectonic evolution of the Paleo-Pacific Ocean. Zircon U-Pb age dating indicates that the intrusions were emplaced in three stages: during the Early Jurassic (180-177 Ma), Middle Jurassic (171-170 Ma), and Late Jurassic (∼151 Ma). Despite the wide range in ages of the intrusions, the magmas of Jurassic acidic intrusions were likely derived from a similar or common source and experienced different degrees of magmatic differentiation, as inferred from their geochemical and Hf isotopic characteristics. The Jurassic acidic intrusions are characterized by high SiO2 and total Na2O + K2O, low MgO, and I-type affinities, suggesting that the primary magmas were derived from partial melting of lower crustal material. These findings, combined with their εHf(t) values and two-stage model ages, indicate the primary magmas originated from partial melting of juvenile crustal material accreted during the Neoproterozoic to Phanerozoic. The Middle Jurassic intermediate-acidic rocks (diorites and granodiorites of the TJ pluton) have SiO2 contents of 57.96-69.10 wt.%, MgO contents of 4.48-1.81 wt.%, and high Mg numbers (45-54). They are enriched in large ion lithophile elements (e.g., Rb, Ba, Th, U, and K) and light rare earth elements, depleted in high field strength elements (e.g., Nb, Ta, Zr, Hf, and Ti) and heavy rare earth elements, and have εHf(t) values of +6.5 to +9.1. These data suggest that the magma was derived from partial melting of a depleted mantle wedge that had been metasomatized by subduction-related fluids. According to these findings and previous studies that focused on contemporaneous magmatic-tectonic activity in northeastern China, we conclude that the generation of Jurassic intermediate-acidic intrusions in the Xing

  7. Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces.

    PubMed

    Hao, Bian; Liu, Hewei; Chen, Feng; Yang, Qing; Qu, Pubo; Du, Guangqing; Si, Jinhai; Wang, Xianhua; Hou, Xun

    2012-06-01

    This work reveals a cost-efficient and flexible approach to various microlens arrays on polymers, which is essential to micro-optics elements. An 800-nm femtosecond laser is employed to control the hydrofluoric (HF) acid etching process on silica glasses, and concave microstructures with smooth curved surfaces are produced by this method. Then, the micro-structured glass templates can serve as molds for replicating microlenses on polymers. In this paper, a high-ordered microlens array with over 16,000 hexagonal-shaped lenses is fabricated on poly (dimethyl siloxane) [PDMS], and its perfect light-gathering ability and imaging performance are demonstrated. The flexibility of this method is demonstrated by successful preparation of several concave molds with different patterns which are difficult to be obtained by other methods. This technique provides a new route to small-scaled, smooth and curved surfaces which is widely used in micro-optics, biochemical analysis and superhydrophobic interface. PMID:22714321

  8. SEMICONDUCTOR TECHNOLOGY: TaN wet etch for application in dual-metal-gate integration technology

    NASA Astrophysics Data System (ADS)

    Yongliang, Li; Qiuxia, Xu

    2009-12-01

    Wet-etch etchants and the TaN film method for dual-metal-gate integration are investigated. Both HF/HN O3/H2O and NH4OH/H2O2 solutions can etch TaN effectively, but poor selectivity to the gate dielectric for the HF/HNO3/H2O solution due to HF being included in HF/HNO3/H2O, and the fact that TaN is difficult to etch in the NH4OH/H2O2 solution at the first stage due to the thin TaOxNy layer on the TaN surface, mean that they are difficult to individually apply to dual-metal-gate integration. A two-step wet etching strategy using the HF/HNO3/H2O solution first and the NH4OH/H2O2 solution later can fully remove thin TaN film with a photo-resist mask and has high selectivity to the HfSiON dielectric film underneath. High-k dielectric film surfaces are smooth after wet etching of the TaN metal gate and MOSCAPs show well-behaved C-V and Jg-Vg characteristics, which all prove that the wet etching of TaN has little impact on electrical performance and can be applied to dual-metal-gate integration technology for removing the first TaN metal gate in the PMOS region.

  9. Detection of hydrofluoric acid by a SiO2 sol-gel coating fiber-optic probe based on reflection-based localized surface plasmon resonance.

    PubMed

    Chen, I-Cherng; Lin, Shiu-Shiung; Lin, Tsao-Jen; Du, Je-Kang

    2011-01-01

    A novel fiber-optic probe based on reflection-based localized surface plasmon resonance (LSPR) was developed to quantify the concentration of hydrofluoric acid (HF) in aqueous solutions. The LSPR sensor was constructed with a gold nanoparticle-modified PMMA fiber, integrated with a SiO(2) sol-gel coating. This fiber-sensor was utilized to assess the relationship between HF concentration and SiO(2) sol-gel layer etching reduction. The results demonstrated the LSPR sensor was capable of detecting HF-related erosion of hydrofluoric acid solutions of concentrations ranging from 1% to 5% using Relative RI Change Rates. The development of the LSPR sensor constitutes the basis of a detector with significant sensitivity for practical use in monitoring HF solution concentrations.

  10. Detection of Hydrofluoric Acid by a SiO2 Sol-Gel Coating Fiber-Optic Probe Based on Reflection-Based Localized Surface Plasmon Resonance

    PubMed Central

    Chen, I-Cherng; Lin, Shiu-Shiung; Lin, Tsao-Jen; Du, Je-Kang

    2011-01-01

    A novel fiber-optic probe based on reflection-based localized surface plasmon resonance (LSPR) was developed to quantify the concentration of hydrofluoric acid (HF) in aqueous solutions. The LSPR sensor was constructed with a gold nanoparticle-modified PMMA fiber, integrated with a SiO2 sol-gel coating. This fiber-sensor was utilized to assess the relationship between HF concentration and SiO2 sol-gel layer etching reduction. The results demonstrated the LSPR sensor was capable of detecting HF-related erosion of hydrofluoric acid solutions of concentrations ranging from 1% to 5% using Relative RI Change Rates. The development of the LSPR sensor constitutes the basis of a detector with significant sensitivity for practical use in monitoring HF solution concentrations. PMID:22319388

  11. Controlling optical properties and surface morphology of dry etched porous silicon

    NASA Astrophysics Data System (ADS)

    Cheung, Maurice C.-K.; Roche, Philip J. R.; Hajj-Hassan, Mohamad; Kirk, Andrew G.; Mi, Zetian; Chodavarapu, Vamsy P.

    2011-01-01

    Porous silicon is a potentially useful substrate for fluorescence and scattering enhancement, with a large surface to volume ratio and thermal stability providing a potentially regenerable host matrix for sensor development. A simple process using XeF2 gas phase etching for creating porous silicon is explained. Moreover, how pores diameter can be controlled reproducibly with commensurate effects upon the silicon reflection and pore distribution is discussed. In previous work with this new system, it was clear that control on pore size and morphology was required and a systematic optimization of process conditions was performed to produce greater consistency of the result. The influence of the duration of the pre-etching processing in HF, concentration of the HF in the pre-etching process, and the XeF2 exposure time during the dry etching on surface morphology, pore size, and optical reflectance is explored.

  12. Effect of stannous fluoride and dilute hydrofluoric acid on early enamel erosion over time in vivo.

    PubMed

    Hjortsjö, C; Jonski, G; Thrane, P S; Saxegaard, E; Young, A

    2009-01-01

    Recent experimental in vivo studies have shown that aqueous solutions of stannous fluoride (SnF(2)) and hydrofluoric acid (HF) can reduce enamel solubility after 5 min. The aim of this study was to evaluate the longer-term protective effect of SnF(2) (0.78%, pH 2.9) and HF (0.2%, pH 2.0) (both approximately 0.1 mol/l F) using the same experimental model. Labial surfaces of healthy anterior teeth (all four surfaces when possible, otherwise a pair of surfaces) in 103 subjects (n = 399 teeth) were exposed to citric acid (0.01 mol/l, pH 2.7). The acid was applied using a peristaltic pump (5 ml, 6 ml/min) and was collected in coded test tubes (etch I). The test solutions were then applied to the same surfaces of the teeth (1 min, 6 ml/min). After either 1, 7, 14 or 28 days, citric acid was again applied to the same surfaces and subsequently collected (etch II). Enamel solubility was examined by assessment of calcium concentration in etch I and etch II solutions using atom absorption spectroscopy. Median values were calculated for all time periods and statistical analysis was carried out using the Wilcoxon signed-ranks test. Results showed that HF reduced enamel solubility by 54 and 36% after 1 and 7 days, respectively. After 14 and 28 days, there was no longer any effect. SnF(2) showed no protective effect after the first day. Given these results, repeated application of HF and especially SnF(2) may be necessary to improve the protective effect of these fluorides, and this requires further testing.

  13. Ion beam sputter etching

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.

    1986-01-01

    An ion beam etching process which forms extremely high aspect ratio surface microstructures using thin sputter masks is utilized in the fabrication of integrated circuits. A carbon rich sputter mask together with unmasked portions of a substrate is bombarded with inert gas ions while simultaneous carbon deposition occurs. The arrival of the carbon deposit is adjusted to enable the sputter mask to have a near zero or even slightly positive increase in thickness with time while the unmasked portions have a high net sputter etch rate.

  14. Morphological Changes of Human Dentin after Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) and Carbon Dioxide (CO2) Laser Irradiation and Acid-etch Technique: An Scanning Electron Microscopic (SEM) Evaluation

    PubMed Central

    Shahabi, Sima; Chiniforush, Nasim; Juybanpoor, Nasrin

    2013-01-01

    Introduction: The aim of this study was to investigate the morphological changes of human dentin after Erbium-Doped Yttrium Aluminum Garnet (Er:YAG), Carbon Dioxide(CO2) laser-irradiation and acid-etching by means of scanning electron microscopic (SEM) Methods: 9 extracted human third molars were used in this study. The teeth were divided in three groups: first group, CO2 laser with power of 1.5 w and frequency of 80 Hz; second group, Er:YAG laser with output power of 1.5 W frequency of 10 Hz, very short pulse with water and air spray was applied; and third group, samples were prepared by acid-etching 37% for 15 sec and rinsed with air-water spray for 20 sec. Then, the samples were prepared for SEM examination. Results: Melting and cracks can be observed in CO2 laser but in Er:YAG laser cleanedablated surfaces and exposed dentinal tubules, without smear layer was seen. Conclusion: It can be concluded that Er:YAG laser can be an alternative technique for surface treatment and can be considered as safe as the conventional methods. But CO2 laser has some thermal side effects which make this device unsuitable for this purpose. PMID:25606306

  15. The evolution of the surface morphology of silicon during aqueous etching

    NASA Astrophysics Data System (ADS)

    Newton, Theresa Anne

    The morphology of etched silicon surfaces is of great technological importance because silicon is widely used in the production of microelectronics and microelectromechanical systems (MEMS). In this thesis, I use scanning tunneling microscopy (STM), a kinetic Monte Carlo etching simulator, and micromachined test patterns to investigate the chemical reactions controlling aqueous etching of silicon. The kinetic dependence of the rate of Si(111) etching in NH4F on [HF] and [OH--] is measured. The etch rate is found to have an approximately first order dependence on [OH--] and essentially no dependence on [HF]. This rate dependence lends support to a proposed mechanism in which the rate-limiting step in NH4F etching of silicon is the oxidation of the surface site, followed by quick removal of the oxidized site by HF. The site-specific rates of isopropanol and ethanol reaction on a Si(111) surface are studied through a combination of kinetic competition with an etchant of known anisotropy and concentration-dependent morphological changes. These rates are quantified by comparing STM images with kinetic Monte Carlo simulations of the etched surface. The isopropoxide ion binds to a surface site and slows etching at the bound site. This changes the anisotropy of the etchant. Ethanol induces similar morphological changes. The effect of alcohol pK a is also studied using a micromachined test pattern. Low p Ka halogenated alcohols are also studied. There is a strong correlation between the macroscopic and microscopic etch rate anisotropies of non-halogenated alcohols; however, halogenated alcohols had little effect on the macroscopic etch rate anisotropies. The sensitivity of surface vibrational spectroscopy to surface morphology is also studied. The variation in the lineshape of the Si--H stretch vibration of etched Si(111) surfaces due to atomic-scale etch pits, anisotropic etching, and surface steps is modeled through the use of kinetic Monte Carlo simulations. The in

  16. Chemical downstream etching of tungsten

    SciTech Connect

    Blain, M.G.; Jarecki, R.L.; Simonson, R.J.

    1998-07-01

    The downstream etching of tungsten and tungsten oxide has been investigated. Etching of chemical vapor deposited tungsten and e-beam deposited tungsten oxide samples was performed using atomic fluorine generated by a microwave discharge of argon and NF{sub 3}. Etching was found to be highly activated with activation energies approximated to be 6.0{plus_minus}0.5thinspkcal/mol and 5.4{plus_minus}0.4thinspkcal/mol for W and WO{sub 3}, respectively. In the case of F etching of tungsten, the addition of undischarged nitric oxide (NO) directly into the reaction chamber results in the competing effects of catalytic etch rate enhancement and the formation of a nearly stoichiometric WO{sub 3} passivating tungsten oxide film, which ultimately stops the etching process. For F etching of tungsten oxide, the introduction of downstream NO reduces the etch rate. {copyright} {ital 1998 American Vacuum Society.}

  17. Fabrication of porous silicon by metal-assisted etching using highly ordered gold nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Scheeler, Sebastian P.; Ullrich, Simon; Kudera, Stefan; Pacholski, Claudia

    2012-08-01

    A simple method for the fabrication of porous silicon (Si) by metal-assisted etching was developed using gold nanoparticles as catalytic sites. The etching masks were prepared by spin-coating of colloidal gold nanoparticles onto Si. An appropriate functionalization of the gold nanoparticle surface prior to the deposition step enabled the formation of quasi-hexagonally ordered arrays by self-assembly which were translated into an array of pores by subsequent etching in HF solution containing H2O2. The quality of the pattern transfer depended on the chosen preparation conditions for the gold nanoparticle etching mask. The influence of the Si surface properties was investigated by using either hydrophilic or hydrophobic Si substrates resulting from piranha solution or HF treatment, respectively. The polymer-coated gold nanoparticles had to be thermally treated in order to provide a direct contact at the metal/Si interface which is required for the following metal-assisted etching. Plasma treatment as well as flame annealing was successfully applied. The best results were obtained for Si substrates which were flame annealed in order to remove the polymer matrix - independent of the substrate surface properties prior to spin-coating (hydrophilic or hydrophobic). The presented method opens up new resources for the fabrication of porous silicon by metal-assisted etching. Here, a vast variety of metal nanoparticles accessible by well-established wet-chemical synthesis can be employed for the fabrication of the etching masks.

  18. Multiple-mask chemical etching

    NASA Technical Reports Server (NTRS)

    Cannon, D. L.

    1969-01-01

    Multiple masking techniques use lateral etching to reduce the total area of the high etch-rate oxide exposed to the chemical etchant. One method uses a short-term etch to remove the top layer from the silicon oxide surface, another acts before the top layer is grown.

  19. Etching fission tracks in zircons

    USGS Publications Warehouse

    Naeser, C.W.

    1969-01-01

    A new technique has been developed whereby fission tracks can be etched in zircon with a solution of sodium hydroxide at 220??C. Etching time varied between 15 minutes and 5 hours. Colored zircon required less etching time than the colorless varieties.

  20. Orthodox etching of HVPE-grown GaN

    SciTech Connect

    Weyher, J.L.; Lazar, S.; Macht, L.; Liliental-Weber, Z.; Molnar,R.J.; Muller, S.; Nowak, G.; Grzegory, I.

    2006-08-10

    Orthodox etching of HVPE-grown GaN in molten eutectic of KOH + NaOH (E etch) and in hot sulfuric and phosphoric acids (HH etch) is discussed in detail. Three size grades of pits are formed by the preferential E etching at the outcrops of threading dislocations on the Ga-polar surface of GaN. Using transmission electron microscopy (TEM) as the calibration tool it is shown that the largest pits are formed on screw, intermediate on mixed and the smallest on edge dislocations. This sequence of size does not follow the sequence of the Burgers values (and thus the magnitude of the elastic energy) of corresponding dislocations. This discrepancy is explained taking into account the effect of decoration of dislocations, the degree of which is expected to be different depending on the lattice deformation around the dislocations, i.e. on the edge component of the Burgers vector. It is argued that the large scatter of optimal etching temperatures required for revealing all three types of dislocations in HVPE-grown samples from different sources also depends upon the energetic status of dislocations. The role of kinetics for reliability of etching in both etches is discussed and the way of optimization of the etching parameters is shown.

  1. Fractionation of Zr and Hf in surface processes

    SciTech Connect

    Chyi, L.L.; Garg, A.N.

    1985-01-01

    Zircons from a pegmatite near Tuxedo, North Carolina were crushed and treated with different reagents under different conditions. The treated and untreated samples were determined for Zr and Hf with radiochemical neutron activation analysis. Zircons treated with 50% sulfuric acid were having lowered Zr content and Zr/Hf ratio. The conclusions are that a portion of Zr and Hf in zircons is sensitive to leaching, and Zr appears to be selectively leached over Hf. The conclusions of this work support the observations of small dissolutions of Zr in both acidic podzolic soils and in alkaline laterites, of lower Zr content in soils on glacial drift, and of lower Zr/Hf ratios in loess deposits from various parts of the world. The fractionation of Zr and Hf in surface processes appears to be due to selective leaching. Weakening of Zr-O over Hf-O bonds in zircon by fission projectiles is postulated to be the viable process. The observed fractionation from leaching experiments suggest that areas receiving leachates such as swamps, lakes, and oceans should have high to very high Zr/Hf ratios preserved in rocks. High ratios are found in the Springfield (No. 9) Coal, the Green River Shale, and various limestones. High ratio is also found in orchard leaves, which grow by absorbing leachate from soil.

  2. Etching patterns of Co-Cr alloys for bonded cast restorations.

    PubMed

    Ekstrand, K; Ruyter, I E

    1987-09-01

    Resin-bonded bridges may replace missing teeth and act as splints in periodontal treatment. The objective of this study was to investigate the etch pattern after electrolytic etching of selected Co-Cr alloys in hydrochloric acid and to assess the changes in alloy composition after different etching times. The alloys investigated were Vitallium, Wironit, Wironium, Nobilium Hard, and Niranium NN. Alloy specimens were electrolytically etched in a hydrochloric acid solution for 1, 2, 5, and 10 min. The etched specimens were examined in a light microscope and a scanning electron microscope (SEM). Different etching patterns were revealed in the various alloys. Microprobe analyses after the etching of Vitallium showed generally that Co was released and that Cr content increased at the surface. PMID:3305640

  3. Influence of preliminary etching on the stability of bonds created by one-step self-etch bonding systems.

    PubMed

    Taschner, Michael; Nato, Fernando; Mazzoni, Annalisa; Frankenberger, Roland; Falconi, Mirella; Petschelt, Anselm; Breschi, Lorenzo

    2012-06-01

    We evaluated the effects of preliminary etching of dentine on the stability of the bond created by one-step self-etch adhesives under different storage conditions. Adper Easy Bond (3M ESPE) and iBond Self-Etch (iBond SE; Heraeus Kulzer) were applied with an etch-and-rinse (i.e. after preliminary phosphoric acid etching for 15 s) or a self-etch approach. Resin-dentine bonded specimens were sectioned perpendicularly to the adhesive interface according to the 'non-trimming technique'. Beams were stored in artificial saliva for 24 h, 6 months, or 1 yr at 37°C, or in 10% NaOCl for 5 h at room temperature, and then stressed until failure; the microtensile bond strengths were calculated. Interfacial nanoleakage of additional teeth was evaluated using light microscopy or transmission electron microscopy. Adper Easy Bond showed higher bond strength than iBond SE, regardless of the dentine treatment. Similar microtensile bond strength results were obtained for teeth subjected to artificial ageing in 10% NaOCl for 5 h at room temperature and for teeth stored in artificial saliva for 6 months at 37°C. The additional etching step increased the microtensile bond strength for Adper Easy Bond and iBond SE. This study supports the use of one-step adhesives on etched dentine because of the increased bond strength compared with their application onto smear-layer-covered dentine, regardless of storage conditions. PMID:22607341

  4. In situ study of HfO{sub 2} atomic layer deposition on InP(100)

    SciTech Connect

    Dong, H.; Brennan, B.; Kim, J.; Hinkle, C. L.; Wallace, R. M.; Zhernokletov, D.

    2013-04-29

    The interfacial chemistry of the native oxide and chemically treated InP samples during atomic layer deposition (ALD) HfO{sub 2} growth at 250 Degree-Sign C has been studied by in situ X-ray photoelectron spectroscopy. The In-oxide concentration is seen to gradually decrease on the native oxide and acid etched samples. No significant changes of the P-oxide concentrations are detected, while the P-oxides chemical states are seen to change gradually during the initial cycles of ALD on the native oxide and the chemically treated samples. (NH{sub 4}){sub 2}S treatment strongly decreases In-oxide and P-oxide concentrations prior to ALD and maintains low concentrations during the ALD process.

  5. Efficient Nanostructured 'Black' Silicon Solar Cell by Copper-Catalyzed Metal-Assisted Etching

    SciTech Connect

    Toor, Fatima; Oh, Jihun; Branz, Howard M.

    2014-09-13

    Here, we produce low-reflectivity nanostructured ‘black’ silicon (bSi) using copper (Cu) nanoparticles as the catalyst for metal-assisted etching and demonstrate a 17.0%-efficient Cu-etched bSi solar cell without any vacuum-deposited anti-reflection coating. We found that the concentration ratio of HF to H2O2 in the etch solution provides control of the nanostructure morphology. The solar-spectrum-weighted average reflection (Rave) for bSi is as low as 3.1% on Cu-etched planar samples; we achieve lower reflectivity by nanostructuring of micron-scale pyramids. Successful Cu-based anti-reflection etching requires a concentration ratio [HF]/[H2O2] ≥ 3. Our 17.0%-efficient Cu-etched bSi photovoltaic cell with a pyramid-texture has a Rave of 3% and an open circuit voltage (Voc) of 616 mV that might be further improved by reducing near-surface phosphorus (P) densities.

  6. Bond strength between resin composite and etched and non-etched glass ionomer.

    PubMed

    Zanata, R L; Navarro, M F; Ishikiriama, A; da Silva e Souza Júnior, M H; Delazari, R C

    1997-01-01

    The authors evaluated, in vitro, the effects of etching glass ionomer cements prior to the application of a bonding agent and a resin composite on the bond strength of the glass ionomer/resin composite interface. Six glass ionomer cements were tested using the same bonding agent/resin composite system (Scotchbond Multipurpose/Z 100). For each material, 16 specimens were prepared and divided into two groups. Eight of the specimens were not etched while eight were etched with 37% phosphoric acid for 15 seconds. All the materials were used according to the manufacturers' instructions. Glass ionomer cylinders were prepared and were mounted in an assembly apparatus and the bonding agent/resin composite transferred to a demarcated area on the cement surface. The specimens were stored for 24 hours in distilled water at 37 degrees C and thermocycled. After thermocycling, the specimens were placed in a testing machine and a shear load applied with a knife-edged rod at the glass ionomer/resin composite interface. The shear bond strength was calculated and expressed in MPa. Data were analyzed by ANOVA and the Tukey-Kramer test. There were no significant differences among the shear bond strengths of the resin composite to etched and non-etched glass ionomer cements.

  7. Feature Modeling of HfO2 Atomic Layer Deposition Using HfCl4/H2O

    NASA Astrophysics Data System (ADS)

    Stout, Phillip J.; Adams, Vance; Ventzek, Peter L. G.

    2003-03-01

    A Monte Carlo based feature scale model (Papaya) has been applied to atomic layer deposition (ALD) of HfO2 using HfCl_4/H_20. The model includes physical effects of transport to surface, specular and diffusive reflection within feature, adsorption, surface diffusion, deposition and etching. Discussed will be the 3D feature modeling of HfO2 deposition in assorted features (vias and trenches). The effect of feature aspect ratios, pulse times, cycle number, and temperature on film thickness, feature coverage, and film Cl fraction (surface/bulk) will be discussed. Differences between HfO2 ALD on blanket wafers and in features will be highlighted. For instance, the minimum pulse times sufficient for surface reaction saturation on blanket wafers needs to be increased when depositing on features. Also, HCl products created during the HfCl4 and H_20 pulses are more likely to react within a feature than at the field, reducing OH coverage within the feature (vs blanket wafer) thus limiting the maximum coverage attainable for a pulse over a feature.

  8. Selective Etching of Semiconductor Glassivation

    NASA Technical Reports Server (NTRS)

    Casper, N.

    1982-01-01

    Selective etching technique removes portions of glassivation on a semi-conductor die for failure analysis or repairs. A periodontal needle attached to a plastic syringe is moved by a microprobe. Syringe is filled with a glass etch. A drop of hexane and vacuum pump oil is placed on microcircuit die and hexane is allowed to evaporate leaving a thin film of oil. Microprobe brings needle into contact with area of die to be etched.

  9. Etching of enamel for direct bonding with a thulium fiber laser

    NASA Astrophysics Data System (ADS)

    Kabaş Sarp, Ayşe S.; Gülsoy, Murat

    2011-03-01

    Background: Laser etching of enamel for direct bonding can decrease the risk of surface enamel loss and demineralization which are the adverse effects of acid etching technique. However, in excess of +5.5°C can cause irreversible pulpal responses. In this study, a 1940- nm Thulium Fiber Laser in CW mode was used for laser etching. Aim: Determination of the suitable Laser parameters of enamel surface etching for direct bonding of ceramic brackets and keeping that intrapulpal temperature changes below the threshold value. Material and Method: Polycrystalline ceramic orthodontic brackets were bonded on bovine teeth by using 2 different kinds of etching techniques: Acid and Laser Etching. In addition to these 3 etched groups, there was also a group which was bonded without etching. Brackets were debonded with a material testing machine. Breaking time and the load at the breaking point were measured. Intrapulpal temperature changes were recorded by a K-type Thermocouple. For all laser groups, intrapulpal temperature rise was below the threshold value of 5.5°C. Results and Conclusion: Acid-etched group ( 11.73 MPa) significantly required more debonding force than 3- second- irradiated ( 5.03 MPa) and non-etched groups ( 3.4 MPa) but the results of acid etched group and 4- second- irradiated group (7.5 MPa) showed no significant difference. Moreover, 4- second irradiated group was over the minimum acceptable value for clinical use. Also, 3- second lasing caused a significant reduction in time according to acid-etch group. As a result, 1940- nm laser irradiation is a promising method for laser etching.

  10. Scanning electron microscopy evaluation of the effect of etching agents on human enamel surface.

    PubMed

    Zanet, Caio G; Arana-Chavez, Victor E; Fava, Marcelo

    2006-01-01

    Acid etching promotes microporosities on enamel surface, which provide a better bonding surface to adhesive materials. The purpose of this study was to comparatively analyze the microstructure of enamel surface after etching with 37% phosphoric acid or with two self-etching primers, Non-rinse conditioner (NRC) and Clearfil SE Bond (CSEB) using scanning electron microscopy. Thirty sound premolars were divided into 3 groups with ten teeth each: Group 1: the buccal surface was etched with 37% phosphoric acid for 15 seconds; Group 2: the buccal surface was etched with NRC for 20 seconds; Group 3: the buccal surface was etched with CSEB for 20 seconds. Teeth from Group 1 were rinsed with water; teeth from all groups were air-dried for 15 seconds. After that, all specimens were processed for scanning electron microscopy and analyzed in a Jeol 6100 SEM. The results showed deeper etching when the enamel surface was etched with 37% phosphoric acid, followed by NRC and CSEB. It is concluded that 37% phosphoric acid is still the best agent for a most effective enamel etching. PMID:16683674

  11. Characterization of Three Novel Fatty Acid- and Retinoid-Binding Protein Genes (Ha-far-1, Ha-far-2 and Hf-far-1) from the Cereal Cyst Nematodes Heterodera avenae and H. filipjevi

    PubMed Central

    Peng, Huan; Luo, Shujie; Huang, Wenkun; Cui, Jiangkuan; Li, Xin; Kong, Lingan; Jiang, Daohong; Chitwood, David J.; Peng, Deliang

    2016-01-01

    Heterodera avenae and H. filipjevi are major parasites of wheat, reducing production worldwide. Both are sedentary endoparasitic nematodes, and their development and parasitism depend strongly on nutrients obtained from hosts. Secreted fatty acid- and retinol-binding (FAR) proteins are nematode-specific lipid carrier proteins used for nutrient acquisition as well as suppression of plant defenses. In this study, we obtained three novel FAR genes Ha-far-1 (KU877266), Ha-far-2 (KU877267), Hf-far-1 (KU877268). Ha-far-1 and Ha-far-2 were cloned from H. avenae, encoding proteins of 191 and 280 amino acids with molecular masses about 17 and 30 kDa, respectively and sequence identity of 28%. Protein Blast in NCBI revealed that Ha-FAR-1 sequence is 78% similar to the Gp-FAR-1 protein from Globodera pallida, while Ha-FAR-2 is 30% similar to Rs-FAR-1 from Radopholus similis. Only one FAR protein Hf-FAR-1was identified in H. filipjevi; it had 96% sequence identity to Ha-FAR-1. The three proteins are alpha-helix-rich and contain the conserved domain of Gp-FAR-1, but Ha-FAR-2 had a remarkable peptide at the C-terminus which was random-coil-rich. Both Ha-FAR-1 and Hf-FAR-1 had casein kinase II phosphorylation sites, while Ha-FAR-2 had predicted N-glycosylation sites. Phylogenetic analysis showed that the three proteins clustered together, though Ha-FAR-1 and Hf-FAR-1 adjoined each other in a plant-parasitic nematode branch, but Ha-FAR-2 was distinct from the other proteins in the group. Fluorescence-based ligand binding analysis showed the three FAR proteins bound to a fluorescent fatty acid derivative and retinol and with dissociation constants similar to FARs from other species, though Ha-FAR-2 binding ability was weaker than that of the two others. In situ hybridization detected mRNAs of Ha-far-1 and Ha-far-2 in the hypodermis. The qRT-PCR results showed that the Ha-far-1and Ha-far-2 were expressed in all developmental stages; Ha-far-1 expressed 70 times more than Ha-far-2 in

  12. Characterization of Three Novel Fatty Acid- and Retinoid-Binding Protein Genes (Ha-far-1, Ha-far-2 and Hf-far-1) from the Cereal Cyst Nematodes Heterodera avenae and H. filipjevi.

    PubMed

    Qiao, Fen; Luo, Lilian; Peng, Huan; Luo, Shujie; Huang, Wenkun; Cui, Jiangkuan; Li, Xin; Kong, Lingan; Jiang, Daohong; Chitwood, David J; Peng, Deliang

    2016-01-01

    Heterodera avenae and H. filipjevi are major parasites of wheat, reducing production worldwide. Both are sedentary endoparasitic nematodes, and their development and parasitism depend strongly on nutrients obtained from hosts. Secreted fatty acid- and retinol-binding (FAR) proteins are nematode-specific lipid carrier proteins used for nutrient acquisition as well as suppression of plant defenses. In this study, we obtained three novel FAR genes Ha-far-1 (KU877266), Ha-far-2 (KU877267), Hf-far-1 (KU877268). Ha-far-1 and Ha-far-2 were cloned from H. avenae, encoding proteins of 191 and 280 amino acids with molecular masses about 17 and 30 kDa, respectively and sequence identity of 28%. Protein Blast in NCBI revealed that Ha-FAR-1 sequence is 78% similar to the Gp-FAR-1 protein from Globodera pallida, while Ha-FAR-2 is 30% similar to Rs-FAR-1 from Radopholus similis. Only one FAR protein Hf-FAR-1was identified in H. filipjevi; it had 96% sequence identity to Ha-FAR-1. The three proteins are alpha-helix-rich and contain the conserved domain of Gp-FAR-1, but Ha-FAR-2 had a remarkable peptide at the C-terminus which was random-coil-rich. Both Ha-FAR-1 and Hf-FAR-1 had casein kinase II phosphorylation sites, while Ha-FAR-2 had predicted N-glycosylation sites. Phylogenetic analysis showed that the three proteins clustered together, though Ha-FAR-1 and Hf-FAR-1 adjoined each other in a plant-parasitic nematode branch, but Ha-FAR-2 was distinct from the other proteins in the group. Fluorescence-based ligand binding analysis showed the three FAR proteins bound to a fluorescent fatty acid derivative and retinol and with dissociation constants similar to FARs from other species, though Ha-FAR-2 binding ability was weaker than that of the two others. In situ hybridization detected mRNAs of Ha-far-1 and Ha-far-2 in the hypodermis. The qRT-PCR results showed that the Ha-far-1and Ha-far-2 were expressed in all developmental stages; Ha-far-1 expressed 70 times more than Ha-far-2 in

  13. Microtensile bond strength of a resin-based fissure sealant to Er,Cr:YSGG laser-etched primary enamel.

    PubMed

    Sungurtekin-Ekci, Elif; Oztas, Nurhan

    2016-05-01

    The aim of this study was to evaluate the effect of Er,Cr:YSGG laser pre-treatment alone, or associated with acid-etching, on the microtensile bond strength of a resin-based fissure sealant to primary enamel. Twenty-five human primary molars were randomly divided into five groups including (1) 35 % acid etching, (2) 2.5-W laser etching, (3) 3.5-W laser etching, (4) 2.5-W laser etching + acid etching, and (5) 3.5-W laser etching + acid etching. Er,Cr:YSGG laser was used at a wavelength of 2.780 nm and pulse duration of 140-200 μs with a repetition rate of 20 Hz. Following surface pre-treatment, the fissure sealant (ClinPro™, 3M Dental Products) was applied. Each tooth was sectioned and subjected to microtensile testing. Kruskal-Wallis test was used for statistical analysis. The level of significance was set at p < 0.05. The microtensile bond strength values of group 1 were significantly higher than those of group 2, while no statistically significant difference was detected between groups 1, 3, 4, and 5. It was concluded that 3.5-W laser etching produced results comparable to conventional acid etching technique, whereas 2.5-W laser etching was not able to yield adequate bonding performance.

  14. Improvement of photocatalytic activity of brookite titanium dioxide nanorods by surface modification using chemical etching

    NASA Astrophysics Data System (ADS)

    Zhang, Linjie; Menendez-Flores, Victor M.; Murakami, Naoya; Ohno, Teruhisa

    2012-05-01

    Surface morphology of brookite titanium dioxide (TiO2) nanorods was modified by chemical etching with aqueous hydrogen (H2O2)-ammonia (NH3) or sulfuric acid (H2SO4) solution. The brookite nanorods after chemical etching were characterized by TEM, SAED, FE-SEM, XRD and specific surface area measurements. Brookite nanorods after chemical etching with H2O2-NH3 solution exposed new crystal faces in the tips, and nanorods with sharper tips were observed. On the other hand, etching with H2SO4 at 200 °C induced morphological changes in the tip faces and broadened the angle between tip faces as a result of dissolution along the [0 0 1] direction, though brookite nanorods were only slightly etched after etching with H2SO4 at room temperature. Photocatalytic activity of brookite nanorods was tested by toluene decomposition in gas phase under ultraviolet irradiation. Brookite nanorods etched with H2O2-NH3 solution showed higher photocatalytic activity than that of brookite nanorods before etching. In the case of H2SO4 etching at 200 °C, brookite nanorods after etching exhibited lower photocatalytic activity. One reason for this may be that the formation of newly exposed crystal faces by H2O2-NH3 etching improved separation of redox sites due to their strong oxidation ability.

  15. Fabrication and photocatalytic properties of silicon nanowires by metal-assisted chemical etching: effect of H2O2 concentration

    PubMed Central

    2012-01-01

    In the current study, monocrystalline silicon nanowire arrays (SiNWs) were prepared through a metal-assisted chemical etching method of silicon wafers in an etching solution composed of HF and H2O2. Photoelectric properties of the monocrystalline SiNWs are improved greatly with the formation of the nanostructure on the silicon wafers. By controlling the hydrogen peroxide concentration in the etching solution, SiNWs with different morphologies and surface characteristics are obtained. A reasonable mechanism of the etching process was proposed. Photocatalytic experiment shows that SiNWs prepared by 20% H2O2 etching solution exhibit the best activity in the decomposition of the target organic pollutant, Rhodamine B (RhB), under Xe arc lamp irradiation for its appropriate Si nanowire density with the effect of Si content and contact area of photocatalyst and RhB optimized. PMID:23217211

  16. Submicron patterned metal hole etching

    DOEpatents

    McCarthy, Anthony M.; Contolini, Robert J.; Liberman, Vladimir; Morse, Jeffrey

    2000-01-01

    A wet chemical process for etching submicron patterned holes in thin metal layers using electrochemical etching with the aid of a wetting agent. In this process, the processed wafer to be etched is immersed in a wetting agent, such as methanol, for a few seconds prior to inserting the processed wafer into an electrochemical etching setup, with the wafer maintained horizontal during transfer to maintain a film of methanol covering the patterned areas. The electrochemical etching setup includes a tube which seals the edges of the wafer preventing loss of the methanol. An electrolyte composed of 4:1 water: sulfuric is poured into the tube and the electrolyte replaces the wetting agent in the patterned holes. A working electrode is attached to a metal layer of the wafer, with reference and counter electrodes inserted in the electrolyte with all electrodes connected to a potentiostat. A single pulse on the counter electrode, such as a 100 ms pulse at +10.2 volts, is used to excite the electrochemical circuit and perform the etch. The process produces uniform etching of the patterned holes in the metal layers, such as chromium and molybdenum of the wafer without adversely effecting the patterned mask.

  17. Encapsulants for protecting MEMS devices during post-packaging release etch

    DOEpatents

    Peterson, Kenneth A.

    2005-10-18

    The present invention relates to methods to protect a MEMS or microsensor device through one or more release or activation steps in a "package first, release later" manufacturing scheme: This method of fabrication permits wirebonds, other interconnects, packaging materials, lines, bond pads, and other structures on the die to be protected from physical, chemical, or electrical damage during the release etch(es) or other packaging steps. Metallic structures (e.g., gold, aluminum, copper) on the device are also protected from galvanic attack because they are protected from contact with HF or HCL-bearing solutions.

  18. ZERODUR: bending strength data for etched surfaces

    NASA Astrophysics Data System (ADS)

    Hartmann, Peter; Leys, Antoine; Carré, Antoine; Kerz, Franca; Westerhoff, Thomas

    2014-07-01

    In a continuous effort since 2007 a considerable amount of new data and information has been gathered on the bending strength of the extremely low thermal expansion glass ceramic ZERODUR®. By fitting a three parameter Weibull distribution to the data it could be shown that for homogenously ground surfaces minimum breakage stresses exist lying much higher than the previously applied design limits. In order to achieve even higher allowable stress values diamond grain ground surfaces have been acid etched, a procedure widely accepted as strength increasing measure. If surfaces are etched taking off layers with thickness which are comparable to the maximum micro crack depth of the preceding grinding process they also show statistical distributions compatible with a three parameter Weibull distribution. SCHOTT has performed additional measurement series with etch solutions with variable composition testing the applicability of this distribution and the possibility to achieve further increase of the minimum breakage stress. For long term loading applications strength change with time and environmental media are important. The parameter needed for prediction calculations which is combining these influences is the stress corrosion constant. Results from the past differ significantly from each other. On the basis of new investigations better information will be provided for choosing the best value for the given application conditions.

  19. Continuous-flow Mass Production of Silicon Nanowires via Substrate-Enhanced Metal-Catalyzed Electroless Etching of Silicon with Dissolved Oxygen as an Oxidant

    NASA Astrophysics Data System (ADS)

    Hu, Ya; Peng, Kui-Qing; Liu, Lin; Qiao, Zhen; Huang, Xing; Wu, Xiao-Ling; Meng, Xiang-Min; Lee, Shuit-Tong

    2014-01-01

    Silicon nanowires (SiNWs) are attracting growing interest due to their unique properties and promising applications in photovoltaic devices, thermoelectric devices, lithium-ion batteries, and biotechnology. Low-cost mass production of SiNWs is essential for SiNWs-based nanotechnology commercialization. However, economic, controlled large-scale production of SiNWs remains challenging and rarely attainable. Here, we demonstrate a facile strategy capable of low-cost, continuous-flow mass production of SiNWs on an industrial scale. The strategy relies on substrate-enhanced metal-catalyzed electroless etching (MCEE) of silicon using dissolved oxygen in aqueous hydrofluoric acid (HF) solution as an oxidant. The distinct advantages of this novel MCEE approach, such as simplicity, scalability and flexibility, make it an attractive alternative to conventional MCEE methods.

  20. Continuous-flow mass production of silicon nanowires via substrate-enhanced metal-catalyzed electroless etching of silicon with dissolved oxygen as an oxidant.

    PubMed

    Hu, Ya; Peng, Kui-Qing; Liu, Lin; Qiao, Zhen; Huang, Xing; Wu, Xiao-Ling; Meng, Xiang-Min; Lee, Shuit-Tong

    2014-01-13

    Silicon nanowires (SiNWs) are attracting growing interest due to their unique properties and promising applications in photovoltaic devices, thermoelectric devices, lithium-ion batteries, and biotechnology. Low-cost mass production of SiNWs is essential for SiNWs-based nanotechnology commercialization. However, economic, controlled large-scale production of SiNWs remains challenging and rarely attainable. Here, we demonstrate a facile strategy capable of low-cost, continuous-flow mass production of SiNWs on an industrial scale. The strategy relies on substrate-enhanced metal-catalyzed electroless etching (MCEE) of silicon using dissolved oxygen in aqueous hydrofluoric acid (HF) solution as an oxidant. The distinct advantages of this novel MCEE approach, such as simplicity, scalability and flexibility, make it an attractive alternative to conventional MCEE methods.

  1. Bond strength with various etching times on young permanent teeth

    SciTech Connect

    Wang, W.N.; Lu, T.C. )

    1991-07-01

    Tensile bond strengths of an orthodontic resin cement were compared for 15-, 30-, 60-, 90-, or 120-second etching times, with a 37% phosphoric acid solution on the enamel surfaces of young permanent teeth. Fifty extracted premolars from 9- to 16-year-old children were used for testing. An orthodontic composite resin was used to bond the bracket directly onto the buccal surface of the enamel. The tensile bond strengths were tested with an Instron machine. Bond failure interfaces between bracket bases and teeth surfaces were examined with a scanning electron microscope and calculated with mapping of energy-dispersive x-ray spectrometry. The results of tensile bond strength for 15-, 30-, 60-, or 90-second etching times were not statistically different. For the 120-second etching time, the decrease was significant. Of the bond failures, 43%-49% occurred between bracket and resin interface, 12% to 24% within the resin itself, 32%-40% between resin and tooth interface, and 0% to 4% contained enamel fragments. There was no statistical difference in percentage of bond failure interface distribution between bracket base and resin, resin and enamel, or the enamel detachment. Cohesive failure within the resin itself at the 120-second etching time was less than at other etching times, with a statistical significance. To achieve good retention, to decrease enamel loss, and to reduce moisture contamination in the clinic, as well as to save chairside time, a 15-second etching time is suggested for teenage orthodontic patients.

  2. Controlled in situ etch-back

    NASA Technical Reports Server (NTRS)

    Mattauch, R. J.; Seabaugh, A. C. (Inventor)

    1981-01-01

    A controlled in situ etch-back technique is disclosed in which an etch melt and a growth melt are first saturated by a source-seed crystal and thereafter etch-back of a substrate takes place by the slightly undersaturated etch melt, followed by LPE growth of a layer by the growth melt, which is slightly supersaturated.

  3. Etching and Growth of GaAs

    NASA Technical Reports Server (NTRS)

    Seabaugh, A. C.; Mattauch, R., J.

    1983-01-01

    In-place process for etching and growth of gallium arsenide calls for presaturation of etch and growth melts by arsenic source crystal. Procedure allows precise control of thickness of etch and newly grown layer on substrate. Etching and deposition setup is expected to simplify processing and improve characteristics of gallium arsenide lasers, high-frequency amplifiers, and advanced integrated circuits.

  4. Decontamination of metals using chemical etching

    DOEpatents

    Lerch, Ronald E.; Partridge, Jerry A.

    1980-01-01

    The invention relates to chemical etching process for reclaiming contaminated equipment wherein a reduction-oxidation system is included in a solution of nitric acid to contact the metal to be decontaminated and effect reduction of the reduction-oxidation system, and includes disposing a pair of electrodes in the reduced solution to permit passage of an electrical current between said electrodes and effect oxidation of the reduction-oxidation system to thereby regenerate the solution and provide decontaminated equipment that is essentially radioactive contamination-free.

  5. Femtosecond laser etching of dental enamel for bracket bonding.

    PubMed

    Kabas, Ayse Sena; Ersoy, Tansu; Gülsoy, Murat; Akturk, Selcuk

    2013-09-01

    The aim is to investigate femtosecond laser ablation as an alternative method for enamel etching used before bonding orthodontic brackets. A focused laser beam is scanned over enamel within the area of bonding in a saw tooth pattern with a varying number of lines. After patterning, ceramic brackets are bonded and bonding quality of the proposed technique is measured by a universal testing machine. The results are compared to the conventional acid etching method. Results show that bonding strength is a function of laser average power and the density of the ablated lines. Intrapulpal temperature changes are also recorded and observed minimal effects are observed. Enamel surface of the samples is investigated microscopically and no signs of damage or cracking are observed. In conclusion, femtosecond laser exposure on enamel surface yields controllable patterns that provide efficient bonding strength with less removal of dental tissue than conventional acid-etching technique.

  6. Effect of HF leaching on 14C dates of pottery

    NASA Astrophysics Data System (ADS)

    Goslar, Tomasz; Kozłowski, Janusz; Szmyt, Marzena; Czernik, Justyna

    2013-01-01

    This paper presents the experiments with 14C dating of two potsherds, which contained carbon dispersed rather homogeneously in their clay fabric. After AAA treatment, the potsherds still appeared to be contaminated with young carbon, presumably connected with humic acids. To make removal of humic acids more effective, we treated the sherds with HF acid of different concentration. The 14C results obtained demonstrate that HF treatment indeed helps to remove humic contaminants, but it also mobilizes carbon bound to raw clay, which may make 14C dates too old. We conclude therefore, that using a simple combination of HF and AAA treatment seems insufficient in reliable 14C dating of carbon homogeneously dispersed in the volume of potsherds.

  7. Dry Ice Etches Terrain

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1

    Every year seasonal carbon dioxide ice, known to us as 'dry ice,' covers the poles of Mars. In the south polar region this ice is translucent, allowing sunlight to pass through and warm the surface below. The ice then sublimes (evaporates) from the bottom of the ice layer, and carves channels in the surface.

    The channels take on many forms. In the subimage shown here (figure 1) the gas from the dry ice has etched wide shallow channels. This region is relatively flat, which may be the reason these channels have a different morphology than the 'spiders' seen in more hummocky terrain.

    Observation Geometry Image PSP_003364_0945 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 15-Apr-2007. The complete image is centered at -85.4 degrees latitude, 104.0 degrees East longitude. The range to the target site was 251.5 km (157.2 miles). At this distance the image scale is 25.2 cm/pixel (with 1 x 1 binning) so objects 75 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel . The image was taken at a local Mars time of 06:57 PM and the scene is illuminated from the west with a solar incidence angle of 75 degrees, thus the sun was about 15 degrees above the horizon. At a solar longitude of 219.6 degrees, the season on Mars is Northern Autumn.

  8. Which self-etch bonding systems are suitable for which clinical indications?

    PubMed

    Haller, Bernd

    2013-10-01

    Self-etch bonding systems are promoted as a time-saving and user-friendly alternative to etch-and-rinse bonding systems. Self-etch adhesives are characterized by a relatively mild etching effect, resulting in a relatively low incidence of postoperative hypersensitivity. On the other hand, their mild etching effect causes a reduction in bond strength to enamel compared to that achieved with phosphoric acid etching. All-in-one adhesives still suffer from less-than-optimal initial bond strengths and from inadequate durability of the bond. Future developments need to focus on the elimination of water deposits along the adhesive interface of all-in-one adhesives. While self-etch adhesives may yield acceptable results when applied in combination with light-cured composite resin, their acidic monomers inhibit the polymerization of auto-cured and dual-cured composite resins. Unfortunately, most "self-cure" or "dual-cure" activators do not overcome this problem. This incompatibility has to be taken into consideration when using self-etch adhesives for adhesive cementation and for core build-up restorations. When assessing self-etch bonding systems, it should be noted that they do not represent a homogenous category of materials but rather comprise a great variety of different types of products, each with specific strengths and weaknesses. PMID:23971056

  9. Molecular structure, vibrational spectroscopic (FT-IR, FT-Raman), UV-vis spectra, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis, thermodynamic properties of benzophenone 2,4-dicarboxylic acid by ab initio HF and density functional method

    NASA Astrophysics Data System (ADS)

    Chaitanya, K.

    2012-02-01

    The FT-IR (4000-450 cm -1) and FT-Raman spectra (3500-100 cm -1) of benzophenone 2,4-dicarboxylic acid (2,4-BDA) have been recorded in the condensed state. Density functional theory calculation with B3LYP/6-31G(d,p) basis set have been used to determine ground state molecular geometries (bond lengths and bond angles), harmonic vibrational frequencies, infrared intensities, Raman activities and bonding features of the title compounds. The assignments of the vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability ( β0) and related properties ( β, α0 and Δ α) of 2,4-BDA is calculated using HF/6-31G(d,p) method on the finite-field approach. The stability of molecule has been analyzed by using NBO analysis. The calculated first hyperpolarizability shows that the molecule is an attractive molecule for future applications in non-linear optics. The calculated HOMO and LUMO energies show that charge transfer occurs within these molecules. Mulliken population analysis on atomic charges is also calculated. Because of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated. Finally, the UV-vis spectra and electronic absorption properties were explained and illustrated from the frontier molecular orbitals.

  10. Crackless linear through-wafer etching of Pyrex glass using liquid-assisted CO2 laser processing

    NASA Astrophysics Data System (ADS)

    Chung, C. K.; Sung, Y. C.; Huang, G. R.; Hsiao, E. J.; Lin, W. H.; Lin, S. L.

    2009-03-01

    Pyrex glass etching is an important technology for the microfluid application to lab-on-a-chip devices, but suffers from very low etching rate and mask-requiring process in conventional HF/BOE wet or plasma dry etching as well as thermal induced crack surface by CO2 laser processing. In this paper, we applied the liquid-assisted laser processing (LALP) method for linear through-wafer deep etching of Pyrex glass without mask materials to obtain a crackless surface at very fast etching rates up to 25 μm/s for a 20 mm long trench. The effect of laser scanning rate and water depth on the etching of the 500 μm thick Pyrex glass immersed in liquid water was investigated. The smooth surface without cracks can be achieved together with the much reduced height of bulge via an appropriate parameter control. A mechanism of thermal stress reduction in water and shear-force-enhanced debris removal is discussed. The quality improvement of glass etching using LALP is due to the cooling effect of the water to reduce the temperature gradient for a crackless surface and natural convection during etching to carry away the debris for diminishing bulge formation.

  11. Bonding with self-etching primers--pumice or pre-etch? An in vitro study.

    PubMed

    Fitzgerald, Ian; Bradley, Gerard T; Bosio, Jose A; Hefti, Arthur F; Berzins, David W

    2012-04-01

    The purpose of this study was to compare the shear bond strengths (SBSs) of orthodontic brackets bonded with self-etching primer (SEP) using different enamel surface preparations. A two-by-two factorial study design was used. Sixty human premolars were harvested, cleaned, and randomly assigned to four groups (n = 15 per group). Teeth were bathed in saliva for 48 hours to form a pellicle. Treatments were assigned as follows: group 1 was pumiced for 10 seconds and pre-etched for 5 seconds with 37 per cent phosphoric acid before bonding with SEP (Transbond Plus). Group 2 was pumiced for 10 seconds before bonding. Group 3 was pre-etched for 5 seconds before bonding. Group 4 had no mechanical or chemical preparation before bonding. All teeth were stored in distilled water for 24 hours at 37°C before debonding. The SBS values and adhesive remnant index (ARI) score were recorded. The SBS values (± 1 SD) for groups 1-4 were 22.9 ± 6.6, 16.1 ± 7.3, 36.2 ± 8.2, and 13.1 ± 10.1 MPa, respectively. Two-way analysis of variance and subsequent contrasts showed statistically significant differences among treatment groups. ARI scores indicated the majority of adhesive remained on the bracket for all four groups. Pre-etching the bonding surface for 5 seconds with 37 per cent phosphoric acid, instead of pumicing, when using SEPs to bond orthodontic brackets, resulted in greater SBSs.

  12. QM Computations on Complete Nucleic Acids Building Blocks: Analysis of the Sarcin-Ricin RNA Motif Using DFT-D3, HF-3c, PM6-D3H, and MM Approaches.

    PubMed

    Kruse, Holger; Havrila, Marek; Šponer, Jiřı

    2014-06-10

    A set of conformations obtained from explicit solvent molecular dynamics (MD) simulations of the Sarcin-Ricin internal loop (SRL) RNA motif is investigated using quantum mechanical (QM, TPSS-D3/def2-TZVP DFT-D3) and molecular mechanics (MM, AMBER parm99bsc0+χol3 force field) methods. Solvent effects are approximated using implicit solvent methods (COSMO for DFT-D3; GB and PB for MM). Large-scale DFT-D3 optimizations of the full 11-nucleotide motif are compared to MM results and reveal a higher flexibility of DFT-D3 over the MM in the optimization procedure. Conformational energies of the SRL motif expose significant differences in the DFT-D3 and MM energy descriptions that explain difficulties in MD simulations of the SRL motif. The TPSS-D3 data are in excellent agreement with results obtained by the hybrid functionals PW6B95-D3 and M06-2X. Computationally more efficient methods such as PM6-D3H and HF-3c show promising but partly inconsistent results. It is demonstrated that large-scale DFT-D3 computations on complete nucleic acids building blocks are a viable tool to complement the picture obtained from MD simulations and can be used as benchmarks for faster computational methods. Methodological challenges of large-scale QM computations on nucleic acids such as missing solvent-solute interactions and the truncation of the studied systems are discussed. PMID:26580782

  13. Fabrication of axicon microlenses on capillaries and microstructured fibers by wet etching.

    PubMed

    Bachus, Kyle; Filho, Elton Soares de Lima; Wlodarczyk, Kamila; Oleschuk, Richard; Messaddeq, Younes; Loock, Hans-Peter

    2016-09-01

    A facile method is presented for the fabrication of microlenses at the facet of fused silica capillaries and microstructured fibers. After submersion in hydrogen fluoride solution water is pumped slowly through the center hole of the capillary microchannel to create an etchant gradient extending from the capillary axis. The desired axicon angle is generated by adjusting the etching time and/or concentration of the etchant. Similarly, flow- assisted HF etching of a custom microstructured fiber containing nine microchannels produces nine individual microlenses simultaneously at the fiber facet, where each microaxicon lens shows a similar focusing pattern. A theoretical model of the flow-assisted etching process is used to determine the axicon angle and post angle. Also, a simple ray-based model was applied to characterize the focusing properties of the microaxicons in good agreement with experimental observations. PMID:27607641

  14. Si oxyhydrides on stain-etched porous Si thin films and correlation with crystallinity and photoluminescence

    NASA Astrophysics Data System (ADS)

    Steckl, A. J.; Xu, J.; Mogul, H. C.; Prokes, S. M.

    1995-05-01

    Porous Si has been fabricated from amorphous and polycrystalline Si films by stain-etching in HF:HNO3:H2O. Infrared transmission measurements have revealed an absorption peak at 880-890 cm(sup - 1) only in crystalline porous Si samples. This peak is probably due to an SiH2 bending mode in the presence of oxygen. Similarly, only crystalline PoSi films exhibit visible (approximately 650-670 nm) photoluminescence under UV excitation. Amorphous PoSi samples do not luminesce even after very long etch times, in spite of greatly increased porosity. Therefore, it appears that there exists a unique correlation between the presence of crystallinity in the starting Si film and the presence of surface oxyhydrides and photoluminescence after stain-etching.

  15. Wet Chemical Etching Survey of III-Nitrides

    SciTech Connect

    Abernathy, C.R.; Cho, H.; Hays, D.C.; MacKenzie, J.D.; Pearton, S.J.; Ren, F.; Shul, R.J.; Vartuli, C.B.; Zolper, J.C.

    1999-02-04

    Wet chemical etching of GaN, InN, AlN, InAlN and InGaN was investigated in various acid and base solutions at temperatures up to 75 C. Only KOH-based solutions were found to etch AlN and InAlN. No etchants were found for the other nitrides, emphasizing their extreme lack of chemical reactivity. The native oxide on most of the nitrides could be removed in potassium tetraborate at 75 C, or HCl/H{sub 2}O at 25 C.

  16. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-06-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effect of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that, after a 20-sec 9:1 HF dip without rinse, the Si (100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si (100) surface was observed, in an ultrahigh vacuum chamber (UHV), and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface layer, after being heated to about 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  17. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-08-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effects of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that after a 20-s 9:1 HF dip without rinse, the Si(100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si(100) surface was observed, in an ultrahigh vacuum (UHV) chamber, and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface-layer, after being heated to approximately 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  18. Plasma Etching Improves Solar Cells

    NASA Technical Reports Server (NTRS)

    Bunyan, S. M.

    1982-01-01

    Etching front surfaces of screen-printed silicon photovoltaic cells with sulfur hexafluoride plasma found to increase cell performance while maintaining integrity of screen-printed silver contacts. Replacement of evaporated-metal contacts with screen-printed metal contacts proposed as one way to reduce cost of solar cells for terrestrial applications.

  19. Chemical etching of nitinol stents.

    PubMed

    Katona, Bálint; Bognár, Eszter; Berta, Balázs; Nagy, Péter; Hirschberg, Kristóf

    2013-01-01

    At present the main cause of death originates from cardiovascular diseases. Primarily the most frequent cause is vessel closing thus resulting in tissue damage. The stent can help to avoid this. It expands the narrowed vessel section and allows free blood flow. The good surface quality of stents is important. It also must have adequate mechanical characteristics or else it can be damaged which can easily lead to the fracture of the implant. Thus, we have to consider the importance of the surface treatment of these implants. In our experiments the appropriate design was cut from a 1.041 mm inner diameter and 0.100 mm wall thickness nitinol tube by using Nd:YAG laser device. Then, the stent was subjected to chemical etching. By doing so, the burr created during the laser cutting process can be removed and the surface quality refined. In our research, we changed the time of chemical etching and monitored the effects of this parameter. The differently etched stents were subjected to microscopic analysis, mass measurement and in vivo environment tests. The etching times that gave suitable surface and mechanical features were identified.

  20. On the interest of carbon-coated plasma reactor for advanced gate stack etching processes

    SciTech Connect

    Ramos, R.; Cunge, G.; Joubert, O.

    2007-03-15

    In integrated circuit fabrication the most wide spread strategy to achieve acceptable wafer-to-wafer reproducibility of the gate stack etching process is to dry-clean the plasma reactor walls between each wafer processed. However, inherent exposure of the reactor walls to fluorine-based plasma leads to formation and accumulation of nonvolatile fluoride residues (such as AlF{sub x}) on reactor wall surfaces, which in turn leads to process drifts and metallic contamination of wafers. To prevent this while keeping an Al{sub 2}O{sub 3} reactor wall material, a coating strategy must be used, in which the reactor is coated by a protective layer between wafers. It was shown recently that deposition of carbon-rich coating on the reactor walls allows improvements of process reproducibility and reactor wall protection. The authors show that this strategy results in a higher ion-to-neutral flux ratio to the wafer when compared to other strategies (clean or SiOCl{sub x}-coated reactors) because the carbon walls load reactive radical densities while keeping the same ion current. As a result, the etching rates are generally smaller in a carbon-coated reactor, but a highly anisotropic etching profile can be achieved in silicon and metal gates, whose etching is strongly ion assisted. Furthermore, thanks to the low density of Cl atoms in the carbon-coated reactor, silicon etching can be achieved almost without sidewall passivation layers, allowing fine critical dimension control to be achieved. In addition, it is shown that although the O atom density is also smaller in the carbon-coated reactor, the selectivity toward ultrathin gate oxides is not reduced dramatically. Furthermore, during metal gate etching over high-k dielectric, the low level of parasitic oxygen in the carbon-coated reactor also allows one to minimize bulk silicon reoxidation through HfO{sub 2} high-k gate dielectric. It is then shown that the BCl{sub 3} etching process of the HfO{sub 2} high-k material is highly

  1. Influence of catalytic gold and silver metal nanoparticles on structural, optical, and vibrational properties of silicon nanowires synthesized by metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Dawood, M. K.; Tripathy, S.; Dolmanan, S. B.; Ng, T. H.; Tan, H.; Lam, J.

    2012-10-01

    We report on the structural and vibrational characterization of silicon (Si) nanowire arrays synthesized by metal-assisted chemical etching (MACE) of Si deposited with metal nanoparticles. Gold (Au) and silver (Ag) metal nanoparticles were synthesized by glancing angle deposition, and MACE was performed in a mixture of H2O2 and HF solution. We studied the structural differences between Au and Ag-etched Si nanowires. The morphology of the synthesized nanowires was characterized by scanning electron microscopy and transmission electron microscopy. The optical and vibrational properties of the Si nanostructures were studied by photoluminescence and Raman spectroscopy using three different excitation sources (UV, visible, and near-infrared) and are correlated to their microstructures. The structural differences between Au-etched and Ag-etched nanowires are due to the higher degree of hole injection by the Au nanoparticle and diffusion into the Si nanowires, causing enhanced Si etching by HF on the nanowire surface. Au-etched nanowires were observed to be mesoporous throughout the nanowire while Ag-etched nanowires consisted of a thin porous layer around the crystalline core. In addition, the surface-enhanced resonant Raman scattering observed is attributed to the presence of the sunken metal nanoparticles. Such Si nanostructures may be useful for a wide range of applications such as photovoltaic and biological and chemical sensing.

  2. Corrosion Behavior of Nickel Alloys in Wet Hydrofluoric Acid

    SciTech Connect

    Rebak, R B

    2004-02-06

    Hydrofluoric acid is a water solution of hydrogen fluoride (HF). Hydrofluoric acid is used widely in diverse types of industrial applications; traditionally, it is used in pickling solutions in the metal industry, in the fabrication of chlorofluorocarbon compounds, as an alkylation agent for gasoline and as an etching agent in the industry of glass. In recent years, hydrofluoric acid has extensively been used in the manufacture of semiconductors and microelectronics during the wet chemical cleaning of silicon wafers. Hydrofluoric acid can be considered a reducing acid and although it is chemically classified as weaker than, for example, sulfuric or hydrochloric acids, it is extremely corrosive. This acid is also particularly toxic and poses greater health hazard than most other acids. The corrosion behavior of metals in hydrofluoric acid has not been as systematic studied in the laboratory as for other common inorganic acids. This is largely because tests using hydrofluoric acid cannot be run in standard equipment and because of the toxic nature of this acid. Moreover, short-term weight loss laboratory corrosion tests in hydrofluoric acid can be frustrating since the results are not as highly reproducible as in the case of other acids such as sulfuric or hydrochloric. One of the reasons is because hydrofluoric acid commonly attacks the coupons used for testing in a non-uniform manner. That is, the corrosive power of this acid is not aimed to uniform thinning but mostly to localized penetration below the skin of the metal in the form of thin cracks, voids, pits, trenches and sometimes intergranular attack. Figure 1 shows the cross section of a coupon of Alloy 600 (N06600) exposed for 336 h to the vapor phase of a solution of 20% HF at 93 C. In cases where internal penetration occurs such as in Figure 1, it may not be recommended to use corrosion rates based on weight loss for material selection.

  3. Apparatus for edge etching of semiconductor wafers

    NASA Technical Reports Server (NTRS)

    Casajus, A.

    1986-01-01

    A device for use in the production of semiconductors, characterized by etching in a rapidly rotating etching bath is described. The fast rotation causes the surface of the etching bath to assume the form of a paraboloid of revolution, so that the semiconductor wafer adjusted at a given height above the resting bath surface is only attacked by etchant at the edges.

  4. Nanoscrews: Asymmetrical Etching of Silver Nanowires.

    PubMed

    Tan, Rachel Lee Siew; Chong, Wen Han; Feng, Yuhua; Song, Xiaohui; Tham, Chu Long; Wei, Jun; Lin, Ming; Chen, Hongyu

    2016-08-31

    World's smallest screws with helical threads are synthesized via mild etching of Ag nanowires. With detailed characterization, we show that this nanostructure arises not from the transformation of the initial lattice, but the result of a unique etching mode. Three-dimensional printed models are used to illustrate the evolution of etch pits, from which a possible mechanism is postulated. PMID:27513181

  5. Semiconductor etching by hyperthermal neutral beams

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K. (Inventor); Giapis, Konstantinos P. (Inventor)

    1999-01-01

    An at-least dual chamber apparatus and method in which high flux beams of fast moving neutral reactive species are created, collimated and used to etch semiconductor or metal materials from the surface of a workpiece. Beams including halogen atoms are preferably used to achieve anisotropic etching with good selectivity at satisfactory etch rates. Surface damage and undercutting are minimized.

  6. In situ study of the role of substrate temperature during atomic layer deposition of HfO{sub 2} on InP

    SciTech Connect

    Dong, H.; Santosh, K.C.; Qin, X.; Brennan, B.; McDonnell, S.; Kim, J.; Zhernokletov, D.; Hinkle, C. L.; Cho, K.; Wallace, R. M.

    2013-10-21

    The dependence of the “self cleaning” effect of the substrate oxides on substrate temperature during atomic layer deposition (ALD) of HfO{sub 2} on various chemically treated and native oxide InP (100) substrates is investigated using in situ X-ray photoelectron spectroscopy. The removal of In-oxide is found to be more efficient at higher ALD temperatures. The P oxidation states on native oxide and acid etched samples are seen to change, with the total P-oxide concentration remaining constant, after 10 cycles of ALD HfO{sub 2} at different temperatures. An (NH{sub 4}){sub 2} S treatment is seen to effectively remove native oxides and passivate the InP surfaces independent of substrate temperature studied (200 °C, 250 °C and 300 °C) before and after the ALD process. Density functional theory modeling provides insight into the mechanism of the changes in the P-oxide chemical states.

  7. Advanced HF anti-jam network architecture

    NASA Astrophysics Data System (ADS)

    Jackson, E. M.; Horner, Robert W.; Cai, Khiem V.

    The Hughes HF2000 system was developed using a flexible architecture which utilizes a wideband RF front-end and extensive digital signal processing. The HF2000 antijamming (AJ) mode was field tested via an HF skywave path between Fullerton, CA and Carlsbad, CA (about 100 miles), and it was shown that reliable fast frequency-hopping data transmission is feasible at 2400 b/s without adaptive equalization. The necessary requirements of an HF communication network are discussed, and how the HF2000 AJ mode can be used to support those requirements is shown. The Hughes HF2000 AJ mode system architecture is presented.

  8. Si nanowires arrays fabricated by wet chemical etching for antireflection and self-cleaning

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, Xiaotao; Lai, Wuxing; Tang, Zirong

    2011-11-01

    Here we report a simple and cost effective fabrication technique, which created large area vertical Si nanowires (diameter in ~200 nm) by means of silver induced wet chemical etching on single crystalline Si substrates. By this technique, Si nanowires were fabricated on single crystalline in aqueous 5M HF and 0.02M AgNO3 solution at room temperature. The scanning electron microscope (SEM) images indicate that etched silicon wafers consist of dense and nearly vertically aligned one-dimensional nanostructures. Length of Si nanowires was found to increase linearly with etching time (0-300 min). The mechanism of vertical nanowires formation can be understood as being a self-assembled Ag induced selective etching process based on the localized microscopic electrochemical cell model. A low reflectivity averaged ~1.7% from 450 to 790 nm was observed. The nanometer scale rough surface can make water droplet either in the so-called Wenzel or the Cassie regime, which can increase contact angle (CA). High CA makes the surface hydrophobicity and self-cleaning. Water CA (150°) was observed on the etched Si surface. Such antireflection (AR) and self-cleaning surface may have potential applications for silicon solar cells.

  9. Si nanowires arrays fabricated by wet chemical etching for antireflection and self-cleaning

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, Xiaotao; Lai, Wuxing; Tang, Zirong

    2012-02-01

    Here we report a simple and cost effective fabrication technique, which created large area vertical Si nanowires (diameter in ~200 nm) by means of silver induced wet chemical etching on single crystalline Si substrates. By this technique, Si nanowires were fabricated on single crystalline in aqueous 5M HF and 0.02M AgNO3 solution at room temperature. The scanning electron microscope (SEM) images indicate that etched silicon wafers consist of dense and nearly vertically aligned one-dimensional nanostructures. Length of Si nanowires was found to increase linearly with etching time (0-300 min). The mechanism of vertical nanowires formation can be understood as being a self-assembled Ag induced selective etching process based on the localized microscopic electrochemical cell model. A low reflectivity averaged ~1.7% from 450 to 790 nm was observed. The nanometer scale rough surface can make water droplet either in the so-called Wenzel or the Cassie regime, which can increase contact angle (CA). High CA makes the surface hydrophobicity and self-cleaning. Water CA (150°) was observed on the etched Si surface. Such antireflection (AR) and self-cleaning surface may have potential applications for silicon solar cells.

  10. Effects of wet etch processing on laser-induced damage of fused silica surfaces

    SciTech Connect

    Battersby, C.L.; Kozlowski, M.R.; Sheehan, L.M.

    1998-12-22

    Laser-induced damage of transparent fused silica optical components by 355 nm illumination occurs primarily at surface defects produced during the grinding and polishing processes. These defects can either be surface defects or sub-surface damage.Wet etch processing in a buffered hydrogen fluoride (HF) solution has been examined as a tool for characterizing such defects. A study was conducted to understand the effects of etch depth on the damage threshold of fused silica substrates. The study used a 355 nm, 7.5 ns, 10 Hz Nd:YAG laser to damage test fused silica optics through various wet etch processing steps. Inspection of the surface quality was performed with Nomarski microscopy and Total Internal Reflection Microscopy. The damage test data and inspection results were correlated with polishing process specifics. The results show that a wet etch exposes subsurface damage while maintaining or improving the laser damage performance. The benefits of a wet etch must be evaluated for each polishing process.

  11. Formation of GaP nanocones and micro-mesas by metal-assisted chemical etching.

    PubMed

    Kim, Jaehoon; Oh, Jihun

    2016-02-01

    Metal-assisted chemical etching (MaCE) of a (100) n-type GaP using patterned Pd catalysts in a mixed solution of HF and H2O2 at room temperature is reported for the first time. Various patterns of Pd catalysts, i.e., meshes and patches, with length scales ranging from 200 nm to several μm were used. Depending on the sizes of the Pd catalysts, GaP exhibits two distinctively different MaCE mechanisms: the conventional and inverse MaCE. With Pd nanomeshes, the ordered arrays of GaP nanocones were formed by the preferential removal of GaP directly under the Pd catalysts by the MaCE mechanism. When Pd micro-patches with several μm in length were used, bare GaP uncovered with the Pd patches was selectively dissolved to form GaP micro-mesa structures, following an inverse MaCE mechanism. We attribute these size-dependent etching behaviors to the dissolution limited etching characteristics of GaP during MaCE. Furthermore, we show that etched GaP structures can exhibit both mechanisms when a micro-patterned Pd nanomesh is used. The morphological evolution of etched GaP structures produced by MaCE is also presented. PMID:26780962

  12. Post-Synthetic Anisotropic Wet-Chemical Etching of Colloidal Sodalite ZIF Crystals.

    PubMed

    Avci, Civan; Ariñez-Soriano, Javier; Carné-Sánchez, Arnau; Guillerm, Vincent; Carbonell, Carlos; Imaz, Inhar; Maspoch, Daniel

    2015-11-23

    Controlling the shape of metal-organic framework (MOF) crystals is important for understanding their crystallization and useful for myriad applications. However, despite the many advances in shaping of inorganic nanoparticles, post-synthetic shape control of MOFs and, in general, molecular crystals remains embryonic. Herein, we report using a simple wet-chemistry process at room temperature to control the anisotropic etching of colloidal ZIF-8 and ZIF-67 crystals. Our work enables uniform reshaping of these porous materials into unprecedented morphologies, including cubic and tetrahedral crystals, and even hollow boxes, by an acid-base reaction and subsequent sequestration of leached metal ions. Etching tests on these ZIFs reveal that etching occurs preferentially in the crystallographic directions richer in metal-ligand bonds; that, along these directions, the etching rate tends to be faster on the crystal surfaces of higher dimensionality; and that the etching can be modulated by adjusting the pH of the etchant solution.

  13. Anion Exchange Behavior Of Ti, Zr, Hf, Nb And Ta As Homologues Of Rf And Db In Mixed HF--Acetone Solutions

    SciTech Connect

    Aksenov, N. V.; Bozhikov, G. A.; Starodub, G. Ya.; Dmitriev, S. N.; Filosofov, D. V.; Sun Jin, Jon; Radchenko, V. I.; Lebedev, N. A.; Novgorodov, A. F.

    2010-04-30

    We studied in detail the sorption behavior of Ti, Zr, Hf, Nb and Ta on AG 1 anion exchange resin in HF-acetone mixed solutions as a function of organic cosolvent and acid concentrations. Anion exchange behavior was found to be strongly acetone concentration dependent. The distribution coefficients of Ti, Zr, Hf and Nb increased and those of Ta decreased with increasing content of acetone in HF solutions. With increasing HF concentration anion exchange equilibrium analysis indicated the formation of fluoride complexes of group 4 elements with charge-3 and Ta---2. For Nb the slope of-2 increased up to-5. Optimal conditions for separation of the elements using AIX chromatography were found. Group 4 elements formed MF{sub 7}{sup 3-} (M = Ti, Zr, Hf) complexes whose sorption decreased Ti>Hf>Zr in reverse order of complex stability. This fact is of particular interest for studying ion exchange behavior of Rf compared to Ti. The advantages of studying chemical properties of Rf and Db in aqueous HF solutions mixed with organic solvents are briefly discussed.

  14. Cryogenic electron beam induced chemical etching.

    PubMed

    Martin, Aiden A; Toth, Milos

    2014-11-12

    Cryogenic cooling is used to enable efficient, gas-mediated electron beam induced etching (EBIE) in cases where the etch rate is negligible at room and elevated substrate temperatures. The process is demonstrated using nitrogen trifluoride (NF3) as the etch precursor, and Si, SiO2, SiC, and Si3N4 as the materials volatilized by an electron beam. Cryogenic cooling broadens the range of precursors that can be used for EBIE, and enables high-resolution, deterministic etching of materials that are volatilized spontaneously by conventional etch precursors as demonstrated here by NF3 and XeF2 EBIE of silicon. PMID:25333843

  15. Enamel resistance to demineralization following Er:YAG laser etching for bonding orthodontic brackets

    PubMed Central

    Ahrari, Farzaneh; Poosti, Maryam; Motahari, Pourya

    2012-01-01

    Background: Several studies have shown that laser-etching of enamel for bonding orthodontic brackets could be an appropriate alternative for acid conditioning, since a potential advantage of laser could or might be caries prevention. This study compared enamel resistance to demineralization following etching with acid phosphoric or Er:YAG laser for bonding orthodontic brackets. Materials and Methods: Fifty sound human premolars were divided into two equal groups. In the first group, enamel was etched with 37% phosphoric acid for 15 seconds. In the second group, Er:YAG laser (wavelength, 2 940 nm; 300 mJ/pulse, 10 pulses per second, 10 seconds) was used for tooth conditioning. The teeth were subjected to 4-day PH-cycling process to induce caries-like lesions. The teeth were then sectioned and the surface area of the lesion was calculated in each microphotographs and expressed in pixel. The total surface of each specimen was 196 608 pixels. Results: Mean lesion areas were 7 171 and 7532 pixels for Laser-etched and Acid-etched groups, respectively. The two sample t-test showed that there was no significant difference in lesion area between the two groups (P = 0.914). Conclusion: Although Er:YAG laser seems promising for etching enamel before bonding orthodontic brackets, it does not reduce enamel demineralization when exposed to acid challenge. PMID:23162591

  16. Ion-beam-assisted etching of diamond

    NASA Technical Reports Server (NTRS)

    Efremow, N. N.; Geis, M. W.; Flanders, D. C.; Lincoln, G. A.; Economou, N. P.

    1985-01-01

    The high thermal conductivity, low RF loss, and inertness of diamond make it useful in traveling wave tubes operating in excess of 500 GHz. Such use requires the controlled etching of type IIA diamond to produce grating like structures tens of micrometers deep. Previous work on reactive ion etching with O2 gave etching rates on the order of 20 nm/min and poor etch selectivity between the masking material (Ni or Cr) and the diamond. An alternative approach which uses a Xe(+) beam and a reactive gas flux of NO2 in an ion-beam-assisted etching system is reported. An etching rate of 200 nm/min was obtained with an etching rate ratio of 20 between the diamond and an aluminum mask.

  17. Surface composition analysis of HF vapour cleaned silicon by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Ermolieff, A.; Martin, F.; Amouroux, A.; Marthon, S.; Westendorp, J. F. M.

    1991-06-01

    X-ray photoelectron spectroscopy (XPS) measurements on silicon surfaces treated by HF gaseous cleaning are described. Various cleaning recipes, which essentially differ by the amount of water present during the reaction were studied; the composition of the silicon surface was measured in terms of monolayer coverage of oxygen, fluorine and carbon. These gaseous cleaned surfaces are compared with those of commonly deglazed silicon samples by using an aqueous HF bath. The F(1s), O(1s), Si(2p), C(1s) photoelectron lines were monitored, and concentrations determined as usual by integration of the lines after removal of the non-linear backgroune. The F(1s), C(1s) and Si(2p) lines were decomposed into several components corresponding to different chemical bonds. The results show that the amount of fluorine is directly correlated with the amount of oxygen: the higher the oxygen level on the sample, the more important is the fluorine content till 0.7 ML, essentially in a O sbnd Si sbnd F bonding state. For more aggresive etching leaving less than one monolayer of oxygen, the Si sbnd F bond becomes predominant. The ratio of the SiF to OSiF concentrations is a significant signature of the deoxidation state of the surface. Hydrophobicity of the water appears in the range of 25% Si sbnd F bonds. With very aggresive etching processes, 67% Si sbnd F bonds and 33% O sbnd Si sbnd F bonds are reached and the total amount of fluoride drops below 0.3 ML. For comparison, only Si sbnd F bonds are observed after a wet etching in a dilute HF bath without a rinse with a much lower fluorine concentration. The balance between Si sbnd F and O sbnd Si sbnd F remains stable and seems to be representative of the surface states provided by the etching process.

  18. Fabrication of ultra-high aspect ratio silicon nanopores by electrochemical etching

    SciTech Connect

    Schmidt, Torsten; Zhang, Miao; Linnros, Jan; Yu, Shun

    2014-09-22

    We report on the formation of ultra-high aspect ratio nanopores in silicon bulk material using photo-assisted electrochemical etching. Here, n-type silicon is used as anode in contact with hydrofluoric acid. Based on the local dissolution of surface atoms in pre-defined etching pits, pore growth and pore diameter are, respectively, driven and controlled by the supply of minority charge carriers generated by backside illumination. Thus, arrays with sub-100 nm wide pores were fabricated. Similar to macropore etching, it was found that the pore diameter is proportional to the etching current, i.e., smaller etching currents result in smaller pore diameters. To find the limits under which nanopores with controllable diameter still can be obtained, etching was performed at very low current densities (several μA cm{sup −2}). By local etching, straight nanopores with aspect ratios above 1000 (∼19 μm deep and ∼15 nm pore tip diameter) were achieved. However, inherent to the formation of such narrow pores is a radius of curvature of a few nanometers at the pore tip, which favors electrical breakdown resulting in rough pore wall morphologies. Lowering the applied bias is adequate to reduce spiking pores but in most cases also causes etch stop. Our findings on bulk silicon provide a realistic chance towards sub-10 nm pore arrays on silicon membranes, which are of great interest for molecular filtering and possibly DNA sequencing.

  19. Plasmoids for etching and deposition

    NASA Astrophysics Data System (ADS)

    Pothiraja, Ramasamy; Bibinov, Nikita; Awakowicz, Peter

    2014-11-01

    In this manuscript we show fascinating properties of plasmoids, which are known to be self-sustained plasma entities, and can exist without being in contact with any power supply. Plasmoids are produced in a filamentary discharge in a Ar/CH4 mixture with a high production rate of about 105 s-1. It is observed that plasmoids etch the solid amorphous hydrocarbon film with high efficiency. Energy density of the plasmoid, which is estimated on the basis of glowing area of plasmoids in the photographic image and sublimation enthalpy of the etched hydrocarbon film, amounts to about 90 J m-3. This value is much lower than the energy density of observed ball lightning (natural plasmoid). A very surprising property is an attraction between plasmoids, and the formation of plasmoid-groups. Because of this attractive force, carbon material, which is collected in plasmoids by etching of the hydrocarbon film or by propagation through a methane/argon gas mixture, is compressed into crystals.

  20. Effects of Bias Pulsing on Etching of SiO2 Pattern in Capacitively-Coupled Plasmas for Nano-Scale Patterning of Multi-Level Hard Masks.

    PubMed

    Kim, Sechan; Choi, Gyuhyun; Chae, Heeyeop; Lee, Nae-Eung

    2016-05-01

    In order to study the effects of bias pulsing on the etching characteristics of a silicon dioxide (SiO2) layer using multi-level hard mask (MLHM) structures of ArF photoresist/bottom anti-reflected coating/SiO2/amorphous carbon layer (ACL)/SiO2, the effects of bias pulsing conditions on the etch characteristics of a SiO2 layer with an ACL mask pattern in C4F8/CH2F2/O2/Ar etch chemistries were investigated in a dual-frequency capacitively-coupled plasma (CCP) etcher. The effects of the pulse frequency, duty ratio, and pulse-bias power in the 2 MHz low-frequency (LF) power source were investigated in plasmas generated by a 27.12 MHz high-frequency (HF) power source. The etch rates of ACL and SiO2 decreased, but the etch selectivity of SiO2/ACL increased with decreasing duty ratio. When the ACL and SiO2 layers were etched with increasing pulse frequency, no significant change was observed in the etch rates and etch selectivity. With increasing LF pulse-bias power, the etch rate of ACL and SiO2 slightly increased, but the etch selectivity of SiO2/ACL decreased. Also, the precise control of the critical dimension (CD) values with decreasing duty ratio can be explained by the protection of sidewall etching of SiO2 by increased passivation. Pulse-biased etching was successfully applied to the patterning of the nano-scale line and space of SiO2 using an ACL pattern. PMID:27483889

  1. Metal-assisted chemical etching of Ge surface and its effect on photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyo; Choo, Hyeokseong; Kim, Changheon; Oh, Eunseok; Seo, Dongwan; Lim, Sangwoo

    2016-05-01

    Ge surfaces were etched by means of metal-assisted chemical etching (MaCE). The behavior of the MaCE reaction in diluted H2O2 was compared with that of a conventional etchant of HF/H2O2/H2O mixture (FPM). Herein we first report that a pyramidal structure on Ge (0 0 1) can be prepared by MaCE in dilute H2O2 solution, without the use of HF. Contrastingly, an octagonal trench structure was prepared by 4/5/1 FPM treatment of Ge (0 0 1) surface. This octagonal structure consisted of a square base, four large facets connected to the base, and other four small facets adjacent to the four large facets, which were considered to be (0 0 1), {1 1 0}, and {1 1 1}, respectively. The octagonal trench was formed as a result of the difference in etch rate of Ge depending on the orientation: {1 0 0} > {1 1 0} > {1 1 1}. Ge surfaces treated by MaCE exhibited improved solar cell efficiency due to their improved light absorption, which led to significant increases in the cells' short circuit current and fill factor. The results suggest that optimized MaCE procedures can be an effective method to improve the performance of Ge-based photovoltaic devices.

  2. Metal Oleate Induced Etching and Growth of Semiconductor Nanocrystals, Nanorods, and Their Heterostructures.

    PubMed

    Oh, Nuri; Shim, Moonsub

    2016-08-24

    Unexpected etching of nanocrystals, nanorods, and their heterostructures by one of the most commonly used metal precursors, metal oleates, is reported. Zn oleate is shown to etch CdS nanorods anisotropically, where the length decreases without a significant change in the diameter. Sodium oleate enhances the etch rate, whereas oleic acid alone does not cause etching, indicating the importance of the countercation on the rate of oleate induced etching. Subsequent addition of Se precursors to the partially etched nanorods in Zn oleate solution can lead to epitaxial growth of CdSe particles rather than the expected ZnSe growth, despite an excess amount of Zn precursors being present. The composition of this epitaxial growth can be varied from CdSe to ZnSe, depending on the amount of excess oleic acid or the reaction temperature. Similar tuning of composition can be observed when starting with collinear CdSe/CdS/CdSe rod/rod/rod heterostructures and spherical CdS (or CdSe/CdS core/shell) nanocrystals. Conversion of collinear rod/rod/rod structures to barbells and interesting rod growth from nearly spherical particles among other structures can also result due to the initial etching effect of metal oleates. These observations have important implications on our understanding of nanocrystal heterostructure synthesis and open up new routes to varying the composition and morphology of these materials. PMID:27485673

  3. In-Plasma Photo-Assisted Etching

    NASA Astrophysics Data System (ADS)

    Economou, Demetre

    2015-09-01

    A methodology to precisely control the ion energy distribution (IED) on a substrate allowed the study of silicon etching as a function of ion energy at near-threshold energies. Surprisingly, a substantial etching rate was observed, independent of ion energy, when the ion energy was below the ion-assisted etching threshold (~ 16 eV for etching silicon with chlorine plasma). Careful experiments led to the conclusion that this ``sub-threshold'' etching was due to photons, predominately at wavelengths <1700 Å. Among the plasmas investigated, photo-assisted etching (PAE) was lowest in Br2/Ar gas mixtures and highest in HBr/Cl2/Ar. Above threshold etching rates scaled with the square root of ion energy. PAE rates scaled with the product of surface halogen coverage (measured by X-ray photoelectron spectroscopy) and Ar emission intensity (7504 Å). Scanning electron and atomic force microscopy (SEM and AFM) revealed that photo-etched surfaces were very rough, quite likely due to the inability of the photo-assisted process to remove contaminants from the surface. In-plasma PAE may be be a complicating factor for processes that require low ion energies, such as atomic layer etching. On the other hand PAE could produce sub-10 nm high aspect ratio (6:1) features by highly selective plasma etching to transfer nascent nanopatterns in silicon. Work supported by DOE Plasma Science Center and NSF.

  4. Effect of enamel etching time on roughness and bond strength.

    PubMed

    Barkmeier, Wayne W; Erickson, Robert L; Kimmes, Nicole S; Latta, Mark A; Wilwerding, Terry M

    2009-01-01

    The current study examined the effect of different enamel conditioning times on surface roughness and bond strength using an etch-and-rinse system and four self-etch adhesives. Surface roughness (Ra) and composite to enamel shear bond strengths (SBS) were determined following the treatment of flat ground human enamel (4000 grit) with five adhesive systems: (1) Adper Single Bond Plus (SBP), (2) Adper Prompt L-Pop (PLP), (3) Clearfil SE Bond (CSE), (4) Clearfil S3 Bond (CS3) and (5) Xeno IV (X4), using recommended treatment times and an extended treatment time of 60 seconds (n = 10/group). Control groups were also included for Ra (4000 grit surface) and SBS (no enamel treatment and Adper Scotchbond Multi-Purpose Adhesive). For surface roughness measurements, the phosphoric acid conditioner of the SBP etch-and-rinse system was rinsed from the surface with an air-water spray, and the other four self-etch adhesive agents were removed with alternating rinses of water and acetone. A Proscan 2000 non-contact profilometer was used to determine Ra values. Composite (Z100) to enamel bond strengths (24 hours) were determined using Ultradent fixtures and they were debonded with a crosshead speed of 1 mm/minute. The data were analyzed with ANOVA and Fisher's LSD post-hoc test. The etch-and- rinse system (SBP) produced the highest Ra (microm) and SBS (MPa) using both the recommended treatment time (0.352 +/- 0.028 microm and 40.5 +/- 6.1 MPa) and the extended treatment time (0.733 +/- 0.122 microm and 44.2 +/- 8.2 MPa). The Ra and SBS of the etch-and-rinse system were significantly greater (p < 0.05) than all the self-etch systems and controls. Increasing the treatment time with phosphoric acid (SBP) and PLP produced greater surface roughness (p < 0.05) but did not result in significantly higher bond strengths (p > 0.05). PMID:19363978

  5. Designer HF-Based Fluorination Reagent: Highly Regioselective Synthesis of Fluoroalkenes and gem-Difluoromethylene Compounds from Alkynes

    PubMed Central

    2015-01-01

    Hydrogen fluoride (HF) and selected nonbasic and weakly coordinating (toward cationic metal) hydrogen-bond acceptors (e.g., DMPU) can form stable complexes through hydrogen bonding. The DMPU/HF complex is a new nucleophilic fluorination reagent that has high acidity and is compatible with cationic metal catalysts. The gold-catalyzed mono- and dihydrofluorination of alkynes using the DMPU/HF complex yields synthetically important fluoroalkenes and gem-difluoromethlylene compounds regioselectively. PMID:25260170

  6. Fabrication of IR-transparent microfluidic devices by anisotropic etching of channels in CaF2.

    PubMed

    Lehmkuhl, Brynson; Noblitt, Scott D; Krummel, Amber T; Henry, Charles S

    2015-11-21

    A simple fabrication method for generating infrared (IR) transparent microfluidic devices using etched CaF2 is demonstrated. To etch microfluidic channels, a poly(dimethylsiloxane) (PDMS) microfluidic device was reversibly sealed on a CaF2 plate and acid was pumped through the channel network to perform anisotropic etching of the underlying CaF2 surface. To complete the CaF2 microfluidic device, another CaF2 plate was sealed over the etched channel using a 700 nm thick layer of PDMS adhesive. The impact of different acids and their concentrations on etching was studied, with HNO3 giving the best results in terms of channel roughness and etch rates. Etch rate was determined at etching times ranging from 4-48 hours and showed a linear correlation with etching time. The IR transparency of the CaF2 device was established using a Fourier Transform IR microscope and showed that the device could be used in the mid-IR region. Finally, utility of the device was demonstrated by following the reaction of N-methylacetamide and D2O, which results in an amide peak shift to 1625 cm(-1) from 1650 cm(-1), using an FTIR microscope. PMID:26450455

  7. Method for etching thin films of niboium and niobium-containing compounds for preparing superconductive circuits

    DOEpatents

    Kampwirth, R.T.; Schuller, I.K.; Falco, C.M.

    1979-11-23

    An improved method of preparing thin film superconducting electrical circuits of niobium or niobium compounds is provided in which a thin film of the niobium or niobium compound is applied to a nonconductive substrate and covered with a layer of photosensitive material. The sensitive material is in turn covered with a circuit pattern exposed and developed to form a mask of the circuit in photoresistive material on the surface of the film. The unmasked excess niobium film is removed by contacting the substrate with an aqueous etching solution of nitric acid, sulfuric acid, and hydrogen fluoride, which will rapidly etch the niobium compound without undercutting the photoresist. A modification of the etching solution will permit thin films to be lifted from the substrate without further etching.

  8. Method for etching thin films of niobium and niobium-containing compounds for preparing superconductive circuits

    DOEpatents

    Kampwirth, Robert T.; Schuller, Ivan K.; Falco, Charles M.

    1981-01-01

    An improved method of preparing thin film superconducting electrical circuits of niobium or niobium compounds in which a thin film of the niobium or niobium compound is applied to a nonconductive substrate, and covered with a layer of photosensitive material. The sensitive material is in turn covered with a circuit pattern exposed and developed to form a mask of the circuit in photoresistive material on the surface of the film. The unmasked excess niobium film is removed by contacting the substrate with an aqueous etching solution of nitric acid, sulfuric acid and hydrogen fluoride, which will rapidly etch the niobium compound without undercutting the photoresist. A modification of the etching solution will permit thin films to be lifted from the substrate without further etching.

  9. Evaluation of over-etching technique in the endodontically treated tooth restoration

    PubMed Central

    Migliau, Guido; Piccoli, Luca; Besharat, Laith Konstantinos; Di Carlo, Stefano; Pompa, Giorgio

    2015-01-01

    Summary The main purpose of a post-endodontic restoration with posts is to guarantee the retention of the restorative material. The aim of the study was to examine, through the push-out test, how bond strength between the post and the dentin varied with etching time with 37% orthophosphoric acid, before cementation of a glass fiber post. Moreover, it has been examined if over-etching (application time of the acid: 2 minutes) was an effective technique to improve the adhesion to the endodontic substrate, after highlighting the problems of adhesion concerning its anatomical characteristics and the changes after the endodontic treatment. Highest bond strength values were found by etching the substrate for 30 sec., while over-etching didn’t improve bond strength to the endodontic substrate. PMID:26161247

  10. Plasma surface interactions in nanoscale processing: Preservation of low-k integrity and high-k gate-stack etching with silicon selectivity

    NASA Astrophysics Data System (ADS)

    Shoeb, Juline

    Plasma-surface interactions are very important in the fabrication of the nm-sized features of integrated circuits. Plasma processes are employed to produce high-resolution patterns in many of the thin layers of silicon integrated circuits and to remove masking layers while maintaining high selectivity. Integrated plasma processes consisting of sequential steps such as etch, clean and surface modification, are used in semiconductor industries. The surface in contact with the process plasma is exposed to the fluxes of neutrals, ions, molecules, electrons and photons. Modeling of surface reaction mechanisms requires the determination of the characterizations of fluxes (e.g. composition, magnitude, energy and angle) and development of the reaction mechanisms of the processes such as adsorption, reflection, bond breaking and etch product evolution, while reproducing the experimental results. When modeling the reaction mechanism for an entirely new material, the experimental data is often fragmentary. Therefore, fundamental principles such as bond energies and volatility of the etch products must be considered to develop the mechanism. In this thesis, results from a computational investigation of porous low-k SiCOH etching in fluorocarbon plasmas, damage during cleaning of CFx polymer etch residue in Ar/O2 and He/H2 plasmas, NH3 plasma pore sealing and low-k degradation due to water uptake, will be discussed. The plasma etching of HfO2 gate-stacks is also computationally investigated with an emphasis on the selectivity between HfO2 and Si.

  11. Etching method for photoresists or polymers

    NASA Technical Reports Server (NTRS)

    Lerner, Narcinda R. (Inventor); Wydeven, Theodore J., Jr. (Inventor)

    1991-01-01

    A method for etching or removing polymers, photoresists, and organic contaminants from a substrate is disclosed. The method includes creating a more reactive gas species by producing a plasma discharge in a reactive gas such as oxygen and contacting the resulting gas species with a sacrificial solid organic material such as polyethylene or polyvinyl fluoride, reproducing a highly reactive gas species, which in turn etches the starting polymer, organic contaminant, or photoresist. The sample to be etched is located away from the plasma glow discharge region so as to avoid damaging the substrate by exposure to high energy particles and electric fields encountered in that region. Greatly increased etching rates are obtained. This method is highly effective for etching polymers such as polyimides and photoresists that are otherwise difficult or slow to etch downstream from an electric discharge in a reactive gas.

  12. Laser-driven fusion etching process

    DOEpatents

    Ashby, C.I.H.; Brannon, P.J.; Gerardo, J.B.

    1987-08-25

    The surfaces of solids are etched by a radiation-driven chemical reaction. The process involves exposing a substrate coated with a layer of a reactant material on its surface to radiation, e.g., a laser, to induce localized melting of the substrate which results in the occurrence of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic substrates, e.g., LiNbO/sub 3/, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  13. Laser-driven fusion etching process

    DOEpatents

    Ashby, Carol I. H.; Brannon, Paul J.; Gerardo, James B.

    1989-01-01

    The surfaces of solid ionic substrates are etched by a radiation-driven chemical reaction. The process involves exposing an ionic substrate coated with a layer of a reactant material on its surface to radiation, e.g. a laser, to induce localized melting of the substrate which results in the occurrance of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic salt substrates, e.g., a solid inorganic salt such as LiNbO.sub.3, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  14. Etching of glass microchips with supercritical water.

    PubMed

    Karásek, Pavel; Grym, Jakub; Roth, Michal; Planeta, Josef; Foret, František

    2015-01-01

    A novel method of etching channels in glass microchips with the most tunable solvent, water, was tested as an alternative to common hydrogen fluoride-containing etchants. The etching properties of water strongly depend on temperature and pressure, especially in the vicinity of the water critical point. The chips were etched at the subcritical, supercritical and critical temperature of water, and the resulting channel shape, width, depth and surface morphology were studied by scanning electron microscopy and 3D laser profilometry. Channels etched with the hot water were compared with the chips etched with standard hydrogen fluoride-containing solution. Depending on the water pressure and temperature, the silicate dissolved from the glass could be re-deposited on the channel surface. This interesting phenomenon is described together with the conditions necessary for its utilization. The results illustrate the versatility of pure water as a glass etching and surface morphing agent.

  15. Etching radical controlled gas chopped deep reactive ion etching

    DOEpatents

    Olynick, Deidre; Rangelow, Ivo; Chao, Weilun

    2013-10-01

    A method for silicon micromachining techniques based on high aspect ratio reactive ion etching with gas chopping has been developed capable of producing essentially scallop-free, smooth, sidewall surfaces. The method uses precisely controlled, alternated (or chopped) gas flow of the etching and deposition gas precursors to produce a controllable sidewall passivation capable of high anisotropy. The dynamic control of sidewall passivation is achieved by carefully controlling fluorine radical presence with moderator gasses, such as CH.sub.4 and controlling the passivation rate and stoichiometry using a CF.sub.2 source. In this manner, sidewall polymer deposition thicknesses are very well controlled, reducing sidewall ripples to very small levels. By combining inductively coupled plasmas with controlled fluorocarbon chemistry, good control of vertical structures with very low sidewall roughness may be produced. Results show silicon features with an aspect ratio of 20:1 for 10 nm features with applicability to nano-applications in the sub-50 nm regime. By comparison, previous traditional gas chopping techniques have produced rippled or scalloped sidewalls in a range of 50 to 100 nm roughness.

  16. Evaluation of shear bond strength of orthodontic brackets bonded with Er-YAG laser etching

    PubMed Central

    Raji, S. Hamid; Birang, Reza; Majdzade, Fateme; Ghorbanipour, Reza

    2012-01-01

    Background: Based on contradictory findings concerning the use of lasers for enamel etching, the purpose of this study was to investigate the shear bond strength of teeth prepared for bonding with Er-YAG laser etching and compare them with phosphoric acid etching. Materials and Methods: In this in vitro study forty – eight premolars, extracted for orthodontic purposes were randomly divided in to three groups. Thirty-two teeth were exposed to laser energy for 25 s: 16 teeth at 100 mj setting and 16 teeth at 150 mj setting. Sixteen teeth were etched with 37% phosphoric acid. The shear bond strength of bonded brackets with the Transbond XT adhesive system was measured with the Zwick testing machine. Descriptive statistics, Kolmogorov–Smirnov test, of homogeneity of variances, one- way analysis of variances and Tukey's test and Kruskal Wallis were used to analyze the data. Results: The mean shear bond strength of the teeth lased with 150 mj was 12.26 ± 4.76 MPa, which was not significantly different from the group with acid etching (15.26 ± 4.16 MPa). Irradiation with 100 mj resulted in mean bond strengths of 9.05 ± 3.16 MPa, which was significantly different from that of acid etching (P < 0.001). Conclusions: laser etching at 150 and 100 mj was adequate for bond strength but the failure pattern of brackets bonded with laser etching is dominantly at adhesive – enamel interface and is not safe for enamel during debonding. PMID:23087733

  17. Selective etching of silicon carbide films

    DOEpatents

    Gao, Di; Howe, Roger T.; Maboudian, Roya

    2006-12-19

    A method of etching silicon carbide using a nonmetallic mask layer. The method includes providing a silicon carbide substrate; forming a non-metallic mask layer by applying a layer of material on the substrate; patterning the mask layer to expose underlying areas of the substrate; and etching the underlying areas of the substrate with a plasma at a first rate, while etching the mask layer at a rate lower than the first rate.

  18. Controlled ion implant damage profile for etching

    DOEpatents

    Arnold, Jr., George W.; Ashby, Carol I. H.; Brannon, Paul J.

    1990-01-01

    A process for etching a material such as LiNbO.sub.3 by implanting ions having a plurality of different kinetic energies in an area to be etched, and then contacting the ion implanted area with an etchant. The various energies of the ions are selected to produce implant damage substantially uniformly throughout the entire depth of the zone to be etched, thus tailoring the vertical profile of the damaged zone.

  19. The dipolar endofullerene HF@C60.

    PubMed

    Krachmalnicoff, Andrea; Bounds, Richard; Mamone, Salvatore; Alom, Shamim; Concistrè, Maria; Meier, Benno; Kouřil, Karel; Light, Mark E; Johnson, Mark R; Rols, Stéphane; Horsewill, Anthony J; Shugai, Anna; Nagel, Urmas; Rõõm, Toomas; Carravetta, Marina; Levitt, Malcolm H; Whitby, Richard J

    2016-10-01

    The cavity inside fullerenes provides a unique environment for the study of isolated atoms and molecules. We report the encapsulation of hydrogen fluoride inside C60 using molecular surgery to give the endohedral fullerene HF@C60. The key synthetic step is the closure of the open fullerene cage with the escape of HF minimized. The encapsulated HF molecule moves freely inside the cage and exhibits quantization of its translational and rotational degrees of freedom, as revealed by inelastic neutron scattering and infrared spectroscopy. The rotational and vibrational constants of the encapsulated HF molecules were found to be redshifted relative to free HF. The NMR spectra display a large (1)H-(19)F J coupling typical of an isolated species. The dipole moment of HF@C60 was estimated from the temperature dependence of the dielectric constant at cryogenic temperatures and showed that the cage shields around 75% of the HF dipole. PMID:27657872

  20. The dipolar endofullerene HF@C60

    NASA Astrophysics Data System (ADS)

    Krachmalnicoff, Andrea; Bounds, Richard; Mamone, Salvatore; Alom, Shamim; Concistrè, Maria; Meier, Benno; Kouřil, Karel; Light, Mark E.; Johnson, Mark R.; Rols, Stéphane; Horsewill, Anthony J.; Shugai, Anna; Nagel, Urmas; Rõõm, Toomas; Carravetta, Marina; Levitt, Malcolm H.; Whitby, Richard J.

    2016-10-01

    The cavity inside fullerenes provides a unique environment for the study of isolated atoms and molecules. We report the encapsulation of hydrogen fluoride inside C60 using molecular surgery to give the endohedral fullerene HF@C60. The key synthetic step is the closure of the open fullerene cage with the escape of HF minimized. The encapsulated HF molecule moves freely inside the cage and exhibits quantization of its translational and rotational degrees of freedom, as revealed by inelastic neutron scattering and infrared spectroscopy. The rotational and vibrational constants of the encapsulated HF molecules were found to be redshifted relative to free HF. The NMR spectra display a large 1H-19F J coupling typical of an isolated species. The dipole moment of HF@C60 was estimated from the temperature dependence of the dielectric constant at cryogenic temperatures and showed that the cage shields around 75% of the HF dipole.

  1. Dry etching technologies for reflective multilayer

    NASA Astrophysics Data System (ADS)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Kase, Yoshihisa; Yoshimori, Tomoaki; Muto, Makoto; Nonaka, Mikio; Iwami, Munenori

    2012-11-01

    We have developed a highly integrated methodology for patterning Extreme Ultraviolet (EUV) mask, which has been highlighted for the lithography technique at the 14nm half-pitch generation and beyond. The EUV mask is characterized as a reflective-type mask which is completely different compared with conventional transparent-type of photo mask. And it requires not only patterning of absorber layer without damaging the underlying multi reflective layers (40 Si/Mo layers) but also etching multi reflective layers. In this case, the dry etch process has generally faced technical challenges such as the difficulties in CD control, etch damage to quartz substrate and low selectivity to the mask resist. Shibaura Mechatronics ARESTM mask etch system and its optimized etch process has already achieved the maximal etch performance at patterning two-layered absorber. And in this study, our process technologies of multi reflective layers will be evaluated by means of optimal combination of process gases and our optimized plasma produced by certain source power and bias power. When our ARES™ is used for multilayer etching, the user can choose to etch the absorber layer at the same time or etch only the multilayer.

  2. Method for dry etching of transition metals

    DOEpatents

    Ashby, C.I.H.; Baca, A.G.; Esherick, P.; Parmeter, J.E.; Rieger, D.J.; Shul, R.J.

    1998-09-29

    A method for dry etching of transition metals is disclosed. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorus-containing {pi}-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/{pi}-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the {pi}-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the {pi}-acceptor ligand for forming the volatile transition metal/{pi}-acceptor ligand complex.

  3. Method for dry etching of transition metals

    DOEpatents

    Ashby, Carol I. H.; Baca, Albert G.; Esherick, Peter; Parmeter, John E.; Rieger, Dennis J.; Shul, Randy J.

    1998-01-01

    A method for dry etching of transition metals. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorous-containing .pi.-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/.pi.-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the .pi.-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the .pi.-acceptor ligand for forming the volatile transition metal/.pi.-acceptor ligand complex.

  4. Environmentally friendly HF (DF) lasers

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.

    2016-08-01

    Dedicated to the 100th anniversary of the birth of Academician A M Prokhorov, this paper reviews the physics of self-sustained volume discharge without preionization—self-initiated volume discharge (SIVD)—in the working mixtures of non-chain hydrofluoride HF (deuterofluoride (DF)) lasers. The dynamics of SIVD in discharge gaps with different geometries is thoroughly described. The mechanisms for the restriction of current density in a diffuse channel in electric discharges in SF6 and SF6 based mixtures (which determines whether SIVD is possible) are proposed and analyzed using simple models. The most probable mechanisms are the electron impact dissociation of SF6 and other mixture components, electron–ion recombination and electron attachment to vibrationally excited SF6 molecules. Starting from a comparative analysis of the rate coefficients of these processes, it is shown that electron–ion recombination is capable of compensating for electron detachment from negative ions via electron impact. It is also established that SIVD is not only observed in SF6, but also in other strongly electronegative gases. The factors that determine the uniformity of the active medium in non-chain HF (DF) lasers are analyzed. Some special features of non-chain HF (DF) lasers with different apertures operating are carefully examined. Consideration is given to the problem of increasing the aperture and discharge volume of non-chain HF (DF) lasers. Based on our experimental results, the possibility of increasing the energy of such lasers to ~1 kJ and above is shown.

  5. Environmentally friendly HF (DF) lasers

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.

    2016-08-01

    Dedicated to the 100th anniversary of the birth of Academician A M Prokhorov, this paper reviews the physics of self-sustained volume discharge without preionization—self-initiated volume discharge (SIVD)—in the working mixtures of non-chain hydrofluoride HF (deuterofluoride (DF)) lasers. The dynamics of SIVD in discharge gaps with different geometries is thoroughly described. The mechanisms for the restriction of current density in a diffuse channel in electric discharges in SF6 and SF6 based mixtures (which determines whether SIVD is possible) are proposed and analyzed using simple models. The most probable mechanisms are the electron impact dissociation of SF6 and other mixture components, electron-ion recombination and electron attachment to vibrationally excited SF6 molecules. Starting from a comparative analysis of the rate coefficients of these processes, it is shown that electron-ion recombination is capable of compensating for electron detachment from negative ions via electron impact. It is also established that SIVD is not only observed in SF6, but also in other strongly electronegative gases. The factors that determine the uniformity of the active medium in non-chain HF (DF) lasers are analyzed. Some special features of non-chain HF (DF) lasers with different apertures operating are carefully examined. Consideration is given to the problem of increasing the aperture and discharge volume of non-chain HF (DF) lasers. Based on our experimental results, the possibility of increasing the energy of such lasers to ~1 kJ and above is shown.

  6. AFM and SEM study of the effects of etching on IPS-Empress 2 TM dental ceramic

    NASA Astrophysics Data System (ADS)

    Luo, X.-P.; Silikas, N.; Allaf, M.; Wilson, N. H. F.; Watts, D. C.

    2001-10-01

    The aim of this study was to investigate the effects of increasing etching time on the surface of the new dental material, IPS-Empress 2 TM glass ceramic. Twenty one IPS-Empress 2 TM glass ceramic samples were made from IPS-Empress 2 TM ingots through lost-wax, hot-pressed ceramic fabrication technology. All samples were highly polished and cleaned ultrasonically for 5 min in acetone before and after etching with 9.6% hydrofluoric acid gel. The etching times were 0, 10, 20, 30, 60, 90 and 120 s respectively. Microstructure was analysed by scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to evaluate the surface roughness and topography. Observations with SEM showed that etching with hydrofluoric acid resulted in preferential dissolution of glass matrix, and that partially supported crystals within the glass matrix were lost with increasing etching time. AFM measurements indicated that etching increased the surface roughness of the glass-ceramic. A simple least-squares linear regression was used to establish a relationship between surface roughness parameters ( Ra, RMS), and etching time, for which r2>0.94. This study demonstrates the benefits of combining two microscopic methods for a better understanding of the surface. SEM showed the mode of action of hydrofluoric acid on the ceramic and AFM provided valuable data regarding the extent of surface degradation relative to etching time.

  7. Etch challenges for DSA implementation in CMOS via patterning

    NASA Astrophysics Data System (ADS)

    Pimenta Barros, P.; Barnola, S.; Gharbi, A.; Argoud, M.; Servin, I.; Tiron, R.; Chevalier, X.; Navarro, C.; Nicolet, C.; Lapeyre, C.; Monget, C.; Martinez, E.

    2014-03-01

    This paper reports on the etch challenges to overcome for the implementation of PS-b-PMMA block copolymer's Directed Self-Assembly (DSA) in CMOS via patterning level. Our process is based on a graphoepitaxy approach, employing an industrial PS-b-PMMA block copolymer (BCP) from Arkema with a cylindrical morphology. The process consists in the following steps: a) DSA of block copolymers inside guiding patterns, b) PMMA removal, c) brush layer opening and finally d) PS pattern transfer into typical MEOL or BEOL stacks. All results presented here have been performed on the DSA Leti's 300mm pilot line. The first etch challenge to overcome for BCP transfer involves in removing all PMMA selectively to PS block. In our process baseline, an acetic acid treatment is carried out to develop PMMA domains. However, this wet development has shown some limitations in terms of resists compatibility and will not be appropriated for lamellar BCPs. That is why we also investigate the possibility to remove PMMA by only dry etching. In this work the potential of a dry PMMA removal by using CO based chemistries is shown and compared to wet development. The advantages and limitations of each approach are reported. The second crucial step is the etching of brush layer (PS-r-PMMA) through a PS mask. We have optimized this step in order to preserve the PS patterns in terms of CD, holes features and film thickness. Several integrations flow with complex stacks are explored for contact shrinking by DSA. A study of CD uniformity has been addressed to evaluate the capabilities of DSA approach after graphoepitaxy and after etching.

  8. Improvement of thickness uniformity of bulk silicon wafer by numerically controlled local wet etching

    NASA Astrophysics Data System (ADS)

    Nagano, Mikinori; Mitani, Takuro; Ueda, Kazuaki; Zettsu, Nobuyuki; Yamamura, Kazuya

    2009-04-01

    We have developed numerically controlled local wet etching (NC-LWE) as a novel deterministic subaperture figuring and finishing method, which is suitable for fabricating various optical components and for finishing functional materials. In this method, a chemical reaction between the etchant and the surface of the workpiece removes the surface without degrading the physical properties of the workpiece material. Furthermore, the processing properties of NC-LWE are insensitive to external disturbances, such as the vibration or thermal deformation of the machine or the workpiece, because of its noncontact removal mechanism. By applying the NC-LWE process using a HF/HNO 3 mixture to etch silicon, we corrected the thickness distribution of a bulk silicon wafer with a diameter of 200 mm and achieved a total thickness variation of less than 0.23 μm within a diameter of 190 mm.

  9. Fabrication of visibly photoluminescent Si microstructures by focused ion beam implantation and wet etching

    NASA Astrophysics Data System (ADS)

    Xu, J.; Steckl, A. J.

    1994-10-01

    A technique is reported for the fabrication of optically active Si microstructures embedded in a crystalline Si (c-Si) substrate. The process combines Si microstructure fabrication by localized high dose Ga+ (1016/cm2) focused ion beam (FIB) implantation at 30 kV into n-type (100) Si followed by anisotropic etching in KOH:H2O (1:5 by volume). Self-selective porous Si (PoSi) formation of the microstructures is obtained by stain etching in HF:HNO3:H2O (1:3:5 by volume). Upon UV 365 nm or Ar+ 488 nm excitation, selective visible room-temperature photoluminescence (PL) was observed from the Si microstructures only. The PL, peaked at ˜670 nm with a full width at half-magnitude (FWHM) of ˜130 nm, is similar to that of PoSi obtained from c-Si substrate.

  10. One-year clinical evaluation of the bonding effectiveness of a one-step, self-etch adhesive in noncarious cervical lesion therapy.

    PubMed

    Faye, Babacar; Sarr, Mouhamed; Bane, Khaly; Aidara, Adjaratou Wakha; Niang, Seydina Ousmane; Kane, Abdoul Wakhabe

    2015-01-01

    This study evaluated the one-year clinical performance of a one-step, self-etch adhesive (Optibond All-in-One, Kerr, CA, USA) combined with a composite (Herculite XRV Ultra, Kerr Hawe, CA, USA) to restore NCCLs with or without prior acid etching. Restorations performed by the same practitioner were evaluated at baseline and after 3, 6, and 12 months using modified USPHS criteria. At 6 months, the recall rate was 100%. The retention rate was 84.2% for restorations with prior acid etching, but statistically significant differences were observed between baseline and 6 months. Without acid etching, the retention rate was 77%, and no statistically significant difference was noted between 3 and 6 months. Marginal integrity (93.7% with and 87.7% without acid etching) and discoloration (95.3% with and 92.9% without acid etching) were scored as Alpha or Bravo, with better results after acid etching. After one year, the recall rate was 58.06%. Loss of pulp vitality, postoperative sensitivity, or secondary caries were not observed. After one year retention rate was of 90.6% and 76.9% with and without acid conditioning. Optibond All-in-One performs at a satisfactory clinical performance level for restoration of NCCLs after 12 months especially after acid etching. PMID:25810720

  11. One-Year Clinical Evaluation of the Bonding Effectiveness of a One-Step, Self-Etch Adhesive in Noncarious Cervical Lesion Therapy

    PubMed Central

    Faye, Babacar; Sarr, Mouhamed; Bane, Khaly; Aidara, Adjaratou Wakha; Niang, Seydina Ousmane; Kane, Abdoul Wakhabe

    2015-01-01

    This study evaluated the one-year clinical performance of a one-step, self-etch adhesive (Optibond All-in-One, Kerr, CA, USA) combined with a composite (Herculite XRV Ultra, Kerr Hawe, CA, USA) to restore NCCLs with or without prior acid etching. Restorations performed by the same practitioner were evaluated at baseline and after 3, 6, and 12 months using modified USPHS criteria. At 6 months, the recall rate was 100%. The retention rate was 84.2% for restorations with prior acid etching, but statistically significant differences were observed between baseline and 6 months. Without acid etching, the retention rate was 77%, and no statistically significant difference was noted between 3 and 6 months. Marginal integrity (93.7% with and 87.7% without acid etching) and discoloration (95.3% with and 92.9% without acid etching) were scored as Alpha or Bravo, with better results after acid etching. After one year, the recall rate was 58.06%. Loss of pulp vitality, postoperative sensitivity, or secondary caries were not observed. After one year retention rate was of 90.6% and 76.9% with and without acid conditioning. Optibond All-in-One performs at a satisfactory clinical performance level for restoration of NCCLs after 12 months especially after acid etching. PMID:25810720

  12. Photoelectrochemical etching of silicon carbide (SiC) and its characterization

    NASA Technical Reports Server (NTRS)

    Collins, D. M.; Harris, G. L.; Wongchotigul, K.

    1995-01-01

    Silicon carbide (SiC) is an attractive semiconductor material for high speed, high density, and high temperature device applications due to its wide bandgap (2.2-3.2 eV), high thermal conductivity, and high breakdown electric field (4 x 10(exp 6) V/cm). An instrumental process in the fabrication of semiconductor devices is the ability to etch in a highly controlled and selective manner for direct patterning techniques. A novel technique in etching using electrochemistry is described. This procedure involves the ultraviolet (UV) lamp-assisted photoelectrochemical etching of n-type 3C- and 6H-SiC to enhance the processing capability of device structures in SiC. While under UV illumination, the samples are anodically biased in an HF based aqueous solution since SiC has photoconductive properties. In order for this method to be effective, the UV light must be able to enhance the production of holes in the SiC during the etching process thus providing larger currents with light from the photocurrents generated than those currents with no light. Otherwise dark methods would be used as in the case of p-type 3C-SiC. Experiments have shown that the I/V characteristics of the SiC-electrolyte interface reveal a minimum etch voltage of 3 V and 4 V for n- and p-type 3C-SiC, respectively. Hence it is possible for etch-stops to occur. Etch rates calculated have been as high as 0.67 micrometer/min for p-type, 1.4 micrometer/min for n-type, and 1.1 micrometer/min for pn layer. On n-type 3C- SiC, an oxide formation is present where after etching a yellowish layer corresponds to a low Si/C ratio and a white layer corresponds to a high Si/C ratio. P-type 3C-SiC shows a grayish layer. Additionally, n-type 6H-SiC shows a brown layer with a minimum etch voltage of 3 V.

  13. Fabrication mechanism of friction-induced selective etching on Si(100) surface

    PubMed Central

    2012-01-01

    As a maskless nanofabrication technique, friction-induced selective etching can easily produce nanopatterns on a Si(100) surface. Experimental results indicated that the height of the nanopatterns increased with the KOH etching time, while their width increased with the scratching load. It has also found that a contact pressure of 6.3 GPa is enough to fabricate a mask layer on the Si(100) surface. To understand the mechanism involved, the cross-sectional microstructure of a scratched area was examined, and the mask ability of the tip-disturbed silicon layer was studied. Transmission electron microscope observation and scanning Auger nanoprobe analysis suggested that the scratched area was covered by a thin superficial oxidation layer followed by a thick distorted (amorphous and deformed) layer in the subsurface. After the surface oxidation layer was removed by HF etching, the residual amorphous and deformed silicon layer on the scratched area can still serve as an etching mask in KOH solution. The results may help to develop a low-destructive, low-cost, and flexible nanofabrication technique suitable for machining of micro-mold and prototype fabrication in micro-systems. PMID:22356699

  14. Etching with electron beam generated plasmas

    SciTech Connect

    Leonhardt, D.; Walton, S.G.; Muratore, C.; Fernsler, R.F.; Meger, R.A.

    2004-11-01

    A modulated electron beam generated plasma has been used to dry etch standard photoresist materials and silicon. Oxygen-argon mixtures were used to etch organic resist material and sulfur hexafluoride mixed with argon or oxygen was used for the silicon etching. Etch rates and anisotropy were determined with respect to gas compositions, incident ion energy (from an applied rf bias) and plasma duty factor. For 1818 negative resist and i-line resists the removal rate increased nearly linearly with ion energy (up to 220 nm/min at 100 eV), with reasonable anisotropic pattern transfer above 50 eV. Little change in etch rate was seen as gas composition went from pure oxygen to 70% argon, implying the resist removal mechanism in this system required the additional energy supplied by the ions. With silicon substrates at room temperature, mixtures of argon and sulfur hexafluoride etched approximately seven times faster (1375 nm/min) than mixtures of oxygen and sulfur hexafluoride ({approx}200 nm/min) with 200 eV ions, the difference is attributed to the passivation of the silicon by involatile silicon oxyfluoride (SiO{sub x}F{sub y}) compounds. At low incident ion energies, the Ar-SF{sub 6} mixtures showed a strong chemical (lateral) etch component before an ion-assisted regime, which started at {approx}75 eV. Etch rates were independent of the 0.5%-50% duty factors studied in this work.

  15. Simulation of Etching Profiles Using Level Sets

    NASA Technical Reports Server (NTRS)

    Hwang, Helen; Govindan, T. R.; Meyyappan, M.; Arnold, James O. (Technical Monitor)

    1998-01-01

    Using plasma discharges to etch trenches and via holes in substrates is an important process in semiconductor manufacturing. Ion enhanced etching involves both neutral fluxes, which are isotropic, and ion fluxes, which are anisotropic. The angular distributions for the ions determines the degree of vertical etch, while the amount of the neutral fluxes determines the etch rate. We have developed a 2D profile evolution simulation which uses level set methods to model the plasma-substrate interface. Using level sets instead of traditional string models avoids the use of complicated delooping algorithms. The simulation calculates the etch rate based on the fluxes and distribution functions of both ions and neutrals. We will present etching profiles of Si substrates in low pressure (10s mTorr) Ar/Cl2 discharges for a variety of incident ion angular distributions. Both ion and neutral re-emission fluxes are included in the calculation of the etch rate, and their contributions to the total etch profile will be demonstrated. In addition, we will show RIE lag effects as a function of different trench aspect ratios. (For sample profiles, please see http://www.ipt.arc.nasa.gov/hwangfig1.html)

  16. Note: electrochemical etching of sharp iridium tips.

    PubMed

    Lalanne, Jean-Benoît; Paul, William; Oliver, David; Grütter, Peter H

    2011-11-01

    We describe an etching procedure for the production of sharp iridium tips with apex radii of 15-70 nm, as determined by scanning electron microscopy, field ion microscopy, and field emission measurements. A coarse electrochemical etch followed by zone electropolishing is performed in a relatively harmless calcium chloride solution with high success rate.

  17. Adhesion of resin composite to hydrofluoric acid-exposed enamel and dentin in repair protocols.

    PubMed

    Saracoglu, A; Ozcan, M; Kumbuloglu, O; Turkun, M

    2011-01-01

    Intraoral repairs of ceramic fixed-dental-prostheses (FDP) often include cervical recessions that require pretreatment of the exposed tooth surfaces either before or after the ceramic is conditioned with hydrofluoric (HF) acid gel. The sequence of repair protocol may cross-contaminate the exposed etched enamel or dentin surfaces during the application or rinsing process and thereby affect the adhesion. This study evaluated the influence of HF acid gel with two concentrations on bond strengths of composite to enamel and dentin. Human third molars (N=100, n=10 per group) with similar sizes were selected and randomly divided into 10 groups. Flat surfaces of enamel and dentin were created by wet ground finishing. Before or after the enamel (E) or dentin (D) was conditioned with phosphoric acid (P), substrate surfaces were conditioned with either 9.5% HF (HF(9.5)) or 5% HF (HF(5)). Subsequently, a bonding agent (B) was applied. The experimental groups by conditioning sequence were as follows where the first letter of the group abbreviation represents the substrate (E or D) followed by the acid type and concentration: group 1 (EPHF(9.5)), group 2 (EPHF(5)), group 3 (EHF(9.5)P), group 4 (EHF(5)P), group 5 (DPHF(9.5)), group 6 (DPHF(5)), group 7 (DHF(9.5)P), and group 8 (DHF(5)P). Group 9 (EPB) and group 10 (DPB) acted as the control groups. Repair resin was adhered incrementally onto the conditioned enamel and dentin in polyethylene molds. Each layer was photo-polymerized for 40 seconds. All specimens were thermocycled (×1000, 5°-55°C) and subjected to shear test (universal testing machine, 1 mm/min). Specimens that debonded during thermocycling were considered as 0 MPa. The bond strength data were analyzed using Kruskal-Wallis test and failure types using the chi-square test (α=0.05). Overall, the bond results (MPa) were lower on dentin than on enamel (p<0.01). EPB (25.6 ± 6.6) and DPB (20.2 ± 4.9) control groups showed significantly higher results than those of

  18. Adhesion of resin composite to hydrofluoric acid-exposed enamel and dentin in repair protocols.

    PubMed

    Saracoglu, A; Ozcan, M; Kumbuloglu, O; Turkun, M

    2011-01-01

    Intraoral repairs of ceramic fixed-dental-prostheses (FDP) often include cervical recessions that require pretreatment of the exposed tooth surfaces either before or after the ceramic is conditioned with hydrofluoric (HF) acid gel. The sequence of repair protocol may cross-contaminate the exposed etched enamel or dentin surfaces during the application or rinsing process and thereby affect the adhesion. This study evaluated the influence of HF acid gel with two concentrations on bond strengths of composite to enamel and dentin. Human third molars (N=100, n=10 per group) with similar sizes were selected and randomly divided into 10 groups. Flat surfaces of enamel and dentin were created by wet ground finishing. Before or after the enamel (E) or dentin (D) was conditioned with phosphoric acid (P), substrate surfaces were conditioned with either 9.5% HF (HF(9.5)) or 5% HF (HF(5)). Subsequently, a bonding agent (B) was applied. The experimental groups by conditioning sequence were as follows where the first letter of the group abbreviation represents the substrate (E or D) followed by the acid type and concentration: group 1 (EPHF(9.5)), group 2 (EPHF(5)), group 3 (EHF(9.5)P), group 4 (EHF(5)P), group 5 (DPHF(9.5)), group 6 (DPHF(5)), group 7 (DHF(9.5)P), and group 8 (DHF(5)P). Group 9 (EPB) and group 10 (DPB) acted as the control groups. Repair resin was adhered incrementally onto the conditioned enamel and dentin in polyethylene molds. Each layer was photo-polymerized for 40 seconds. All specimens were thermocycled (×1000, 5°-55°C) and subjected to shear test (universal testing machine, 1 mm/min). Specimens that debonded during thermocycling were considered as 0 MPa. The bond strength data were analyzed using Kruskal-Wallis test and failure types using the chi-square test (α=0.05). Overall, the bond results (MPa) were lower on dentin than on enamel (p<0.01). EPB (25.6 ± 6.6) and DPB (20.2 ± 4.9) control groups showed significantly higher results than those of

  19. Surface engineering on CeO2 nanorods by chemical redox etching and their enhanced catalytic activity for CO oxidation

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Zhang, Zhiyun; Li, Jing; Ma, Yuanyuan; Qu, Yongquan

    2015-07-01

    Controllable surface properties of nanocerias are desired for various catalytic processes. There is a lack of efficient approaches to adjust the surface properties of ceria to date. Herein, a redox chemical etching method was developed to controllably engineer the surface properties of ceria nanorods. Ascorbic acid and hydrogen peroxide were used to perform the redox chemical etching process, resulting in a rough surface and/or pores on the surface of ceria nanorods. Increasing the etching cycles induced a steady increase of the specific surface area, oxygen vacancies and surface Ce3+ fractions. As a result, the etched nanorods delivered enhanced catalytic activity for CO oxidation, compared to the non-etched ceria nanorods. Our method provides a novel and facile approach to continuously adjust the surface properties of ceria for practical applications.Controllable surface properties of nanocerias are desired for various catalytic processes. There is a lack of efficient approaches to adjust the surface properties of ceria to date. Herein, a redox chemical etching method was developed to controllably engineer the surface properties of ceria nanorods. Ascorbic acid and hydrogen peroxide were used to perform the redox chemical etching process, resulting in a rough surface and/or pores on the surface of ceria nanorods. Increasing the etching cycles induced a steady increase of the specific surface area, oxygen vacancies and surface Ce3+ fractions. As a result, the etched nanorods delivered enhanced catalytic activity for CO oxidation, compared to the non-etched ceria nanorods. Our method provides a novel and facile approach to continuously adjust the surface properties of ceria for practical applications. Electronic supplementary information (ESI) available: Diameter distributions of as-prepared and etched samples, optical images, specific catalytic data of CO oxidation and comparison of CO oxidation. See DOI: 10.1039/c5nr01846c

  20. Graphene nanoribbons: Relevance of etching process

    SciTech Connect

    Simonet, P. Bischoff, D.; Moser, A.; Ihn, T.; Ensslin, K.

    2015-05-14

    Most graphene nanoribbons in the experimental literature are patterned using plasma etching. Various etching processes induce different types of defects and do not necessarily result in the same electronic and structural ribbon properties. This study focuses on two frequently used etching techniques, namely, O{sub 2} plasma ashing and O{sub 2 }+ Ar reactive ion etching (RIE). O{sub 2} plasma ashing represents an alternative to RIE physical etching for sensitive substrates, as it is a more gentle chemical process. We find that plasma ashing creates defective graphene in the exposed trenches, resulting in instabilities in the ribbon transport. These are probably caused by more or larger localized states at the edges of the ashed device compared to the RIE defined device.

  1. Mechanisms of Hydrocarbon Based Polymer Etch

    NASA Astrophysics Data System (ADS)

    Lane, Barton; Ventzek, Peter; Matsukuma, Masaaki; Suzuki, Ayuta; Koshiishi, Akira

    2015-09-01

    Dry etch of hydrocarbon based polymers is important for semiconductor device manufacturing. The etch mechanisms for oxygen rich plasma etch of hydrocarbon based polymers has been studied but the mechanism for lean chemistries has received little attention. We report on an experimental and analytic study of the mechanism for etching of a hydrocarbon based polymer using an Ar/O2 chemistry in a single frequency 13.56 MHz test bed. The experimental study employs an analysis of transients from sequential oxidation and Ar sputtering steps using OES and surface analytics to constrain conceptual models for the etch mechanism. The conceptual model is consistent with observations from MD studies and surface analysis performed by Vegh et al. and Oehrlein et al. and other similar studies. Parameters of the model are fit using published data and the experimentally observed time scales.

  2. Aspect ratio dependent etching lag reduction in deep silicon etch processes

    SciTech Connect

    Lai, S.L.; Johnson, D.; Westerman, R.

    2006-07-15

    Microelectromechanical system (MEMS) device fabrication often involves three dimensional structures with high aspect ratios. Moreover, MEMS designs require structures with different dimensions and aspect ratios to coexist on a single microchip. There is a well-documented aspect ratio dependent etching (ARDE) effect in deep silicon etching processes. For features with different dimensions etched simultaneously, the ARDE effect causes bigger features to be etched at faster rates. In practice, ARDE effect has many undesired complications to MEMS device fabrication. This article presents a physical model to describe the time division multiplex (TDM) plasma etch processes and thereafter the experimental results on ARDE lag reduction. The model breaks individual plasma etch cycles in the TDM plasma etch processes into polymer deposition, polymer removal, and spontaneous silicon etching stages. With the insights gained from the model and control over the passivation and etch steps, it has been demonstrated that ARDE lag can be controlled effectively. Experiments have shown that a normal ARDE lag can be changed to an inverse ARDE lag. Under optimized conditions, the ARDE lag is reduced to below 2%-3% for trenches with widths ranging from 2.5 to 100 {mu}m, while maintaining good etch profile in trenches with different dimensions. Such results are achieved at etch rates exceeding 2 {mu}m/min.

  3. CE8N -- A new generation of HF modified stainless steel for refinery service

    SciTech Connect

    Gapinski, G.E.

    1995-11-01

    A new generation of HF Modified stainless steel has been developed for hydrocracker/hydrotreater transfer line piping system applications. The new alloy, CE8N, contains lower carbon and higher nitrogen than previous versions of HF Modified. This new alloy offers improved aged toughness, increased resistance to sensitization, and enhanced polythionic acid-stress corrosion cracking resistance. Strength levels of the new alloy are somewhat below CE20N at temperatures up to 850 F (454 C).

  4. Correlation between surface chemistry and ion energy dependence of the etch yield in multicomponent oxides etching

    SciTech Connect

    Berube, P.-M.; Poirier, J.-S.; Margot, J.; Stafford, L.; Ndione, P. F.; Chaker, M.; Morandotti, R.

    2009-09-15

    The influence of surface chemistry in plasma etching of multicomponent oxides was investigated through measurements of the ion energy dependence of the etch yield. Using pulsed-laser-deposited Ca{sub x}Ba{sub (1-x)}Nb{sub 2}O{sub 6} (CBN) and SrTiO{sub 3} thin films as examples, it was found that the etching energy threshold shifts toward values larger or smaller than the sputtering threshold depending on whether or not ion-assisted chemical etching is the dominant etching pathway and whether surface chemistry is enhancing or inhibiting desorption of the film atoms. In the case of CBN films etched in an inductively coupled Cl{sub 2} plasma, it is found that the chlorine uptake is inhibiting the etching reaction, with the desorption of nonvolatile NbCl{sub 2} and BaCl{sub 2} compounds being the rate-limiting step.

  5. Silver ion mediated shape control of platinum nanoparticles: Removal of silver by selective etching leads to increased catalytic activity

    SciTech Connect

    Grass, Michael E.; Yue, Yao; Habas, Susan E.; Rioux, Robert M.; Teall, Chelsea I.; Somorjai, G.A.

    2008-01-09

    A procedure has been developed for the selective etching of Ag from Pt nanoparticles of well-defined shape, resulting in the formation of elementally-pure Pt cubes, cuboctahedra, or octahedra, with a largest vertex-to-vertex distance of {approx}9.5 nm from Ag-modified Pt nanoparticles. A nitric acid etching process was applied Pt nanoparticles supported on mesoporous silica, as well as nanoparticles dispersed in aqueous solution. The characterization of the silica-supported particles by XRD, TEM, and N{sub 2} adsorption measurements demonstrated that the structure of the nanoparticles and the mesoporous support remained conserved during etching in concentrated nitric acid. Both elemental analysis and ethylene hydrogenation indicated etching of Ag is only effective when [HNO{sub 3}] {ge} 7 M; below this concentration, the removal of Ag is only {approx}10%. Ethylene hydrogenation activity increased by four orders of magnitude after the etching of Pt octahedra that contained the highest fraction of silver. High-resolution transmission electron microscopy of the unsupported particles after etching demonstrated that etching does not alter the surface structure of the Pt nanoparticles. High [HNO{sub 3}] led to the decomposition of the capping agent, polyvinylpyrollidone (PVP); infrared spectroscopy confirmed that many decomposition products were present on the surface during etching, including carbon monoxide.

  6. Optimal conditions for the preparation of superhydrophobic surfaces on al substrates using a simple etching approach

    NASA Astrophysics Data System (ADS)

    Ruan, Min; Li, Wen; Wang, Baoshan; Luo, Qiang; Ma, Fumin; Yu, Zhanlong

    2012-07-01

    Many methods have been proposed to develop the fabrication techniques for superhydrophobic surfaces. However, such techniques are still at their infant stage and suffer many shortcomings. In this paper, the superhydrophobic surfaces on an Al substrate were prepared by a simple etching method. Effects of etching time, modifiers, and modification concentration and time were investigated, and optimal conditions for the best superhydrophobicity were studied. It was demonstrated that for etching the aluminum plate in Beck's dislocation, if the etching time was 15 s, modifier was Lauric acid-ethanol solution, and modification concentration and time was 5% and 1.5 h, respectively, the surface exhibited a water contact angle as high as 167.5° and a contact angle hysteresis as low as 2.3°.

  7. Surface etching, chemical modification and characterization of silicon nitride and silicon oxide—selective functionalization of Si3N4 and SiO2

    NASA Astrophysics Data System (ADS)

    Liu, Li-Hong; Michalak, David J.; Chopra, Tatiana P.; Pujari, Sidharam P.; Cabrera, Wilfredo; Dick, Don; Veyan, Jean-François; Hourani, Rami; Halls, Mathew D.; Zuilhof, Han; Chabal, Yves J.

    2016-03-01

    The ability to selectively chemically functionalize silicon nitride (Si3N4) or silicon dioxide (SiO2) surfaces after cleaning would open interesting technological applications. In order to achieve this goal, the chemical composition of surfaces needs to be carefully characterized so that target chemical reactions can proceed on only one surface at a time. While wet-chemically cleaned silicon dioxide surfaces have been shown to be terminated with surficial Si-OH sites, chemical composition of the HF-etched silicon nitride surfaces is more controversial. In this work, we removed the native oxide under various aqueous HF-etching conditions and studied the chemical nature of the resulting Si3N4 surfaces using infrared absorption spectroscopy (IRAS), x-ray photoelectron spectroscopy (XPS), low energy ion scattering (LEIS), and contact angle measurements. We find that HF-etched silicon nitride surfaces are terminated by surficial Si-F and Si-OH bonds, with slightly subsurface Si-OH, Si-O-Si, and Si-NH2 groups. The concentration of surficial Si-F sites is not dependent on HF concentration, but the distribution of oxygen and Si-NH2 displays a weak dependence. The Si-OH groups of the etched nitride surface are shown to react in a similar manner to the Si-OH sites on SiO2, and therefore no selectivity was found. Chemical selectivity was, however, demonstrated by first reacting the -NH2 groups on the etched nitride surface with aldehyde molecules, which do not react with the Si-OH sites on a SiO2 surface, and then using trichloro-organosilanes for selective reaction only on the SiO2 surface (no reactivity on the aldehyde-terminated Si3N4 surface).

  8. Authigenic phases and biomass contents drive Zr, Hf and REE distributions in anoxic lake sediments

    NASA Astrophysics Data System (ADS)

    Censi, P.; Saiano, F.; Zuddas, P.; Nicosia, A.; Mazzola, S.; Raso, M.

    2013-05-01

    REE, Zr and Hf distributions in seafloor sediments collected from the hypersaline, anoxic Thetis, Kryos, Medee and Tyro deep-sea basins from the Eastern Mediterranean were determined in light of their mineralogical composition, and biomass contents. Mineralogical investigations demonstrate that all the studied sediments show a similar mineralogy. Detritic assemblages mainly consist of quartz, gypsum and calcite with Mg contents ranging from 0 to about 7%, often of a bioclastic nature. On the contrary, authigenic parageneses are formed by halite, bischofite, dolomite and calcite, with Mg contents up to 22%. Textural evidences of biological activity were also identified. In sediments from the Medee and Tyro basins, REE, Zr and Hf distributions were analysed in the fraction soluble in nitric acid, whereas in materials coming from the Thetis and Kryos basins, the water-soluble sediment fraction had been previously removed and REE, Zr and Hf distributions were investigated in the residue. This approach evidenced that shale-normalised REE patterns of the whole fraction soluble in nitric acid show strong intermediate REE (MREE) enrichments that give way to positive Gd anomalies once water-soluble minerals are removed. Y/Ho ratios are clustered around chondritic values justified by the occurrence of detritic minerals whereas Zr/Hf values span a~wider range from slightly subchondritic to superchondritic terms. Negative Gd anomalies, subchondritic Y/Ho and Zr/Hf values are found in Mg-carbonate rich samples suggesting that authigenic Mg-carbonates partition Ho and Hf with respect to Y and Zr during their crystallization from brines. Textural observations and biomass analyses highlighted effects of biological activities in sediments involving Zr and Hf enrichments and the highest Zr/Hf values according to the preferential Zr removal onto biological surfaces, without partitioning Y with respect to Ho. These first data suggest that Zr/Hf ratio and REE distributions can

  9. Light Enhanced Hydrofluoric Acid Passivation: A Sensitive Technique for Detecting Bulk Silicon Defects.

    PubMed

    Grant, Nicholas E

    2016-01-01

    A procedure to measure the bulk lifetime (>100 µsec) of silicon wafers by temporarily attaining a very high level of surface passivation when immersing the wafers in hydrofluoric acid (HF) is presented. By this procedure three critical steps are required to attain the bulk lifetime. Firstly, prior to immersing silicon wafers into HF, they are chemically cleaned and subsequently etched in 25% tetramethylammonium hydroxide. Secondly, the chemically treated wafers are then placed into a large plastic container filled with a mixture of HF and hydrochloric acid, and then centered over an inductive coil for photoconductance (PC) measurements. Thirdly, to inhibit surface recombination and measure the bulk lifetime, the wafers are illuminated at 0.2 suns for 1 min using a halogen lamp, the illumination is switched off, and a PC measurement is immediately taken. By this procedure, the characteristics of bulk silicon defects can be accurately determined. Furthermore, it is anticipated that a sensitive RT surface passivation technique will be imperative for examining bulk silicon defects when their concentration is low (<10(12) cm(-3)).

  10. Atomic layer etching of Al2O3 using sequential, self-limiting thermal reactions with Sn(acac)2 and hydrogen fluoride.

    PubMed

    Lee, Younghee; George, Steven M

    2015-02-24

    The atomic layer etching (ALE) of Al2O3 was demonstrated using sequential, self-limiting thermal reactions with tin(II) acetylacetonate (Sn(acac)2) and hydrogen fluoride (HF) as the reactants. The Al2O3 samples were Al2O3 atomic layer deposition (ALD) films grown using trimethylaluminum and H2O. The HF source was HF-pyridine. Al2O3 was etched linearly with atomic level precision versus number of reactant cycles. The Al2O3 ALE was monitored at temperatures from 150 to 250 °C. Quartz crystal microbalance (QCM) studies revealed that the sequential Sn(acac)2 and HF reactions were self-limiting versus reactant exposure. QCM measurements also determined that the mass change per cycle (MCPC) increased with temperature from -4.1 ng/(cm(2) cycle) at 150 °C to -18.3 ng/(cm(2) cycle) at 250 °C. These MCPC values correspond to etch rates from 0.14 Å/cycle at 150 °C to 0.61 Å/cycle at 250 °C based on the Al2O3 ALD film density of 3.0 g/cm(3). X-ray reflectivity (XRR) analysis confirmed the linear removal of Al2O3 and measured an Al2O3 ALE etch rate of 0.27 Å/cycle at 200 °C. The XRR measurements also indicated that the Al2O3 films were smoothed by Al2O3 ALE. The overall etching reaction is believed to follow the reaction Al2O3 + 6Sn(acac)2 + 6HF → 2Al(acac)3 + 6SnF(acac) + 3H2O. In the proposed reaction mechanism, the Sn(acac)2 reactant donates acac to the substrate to produce Al(acac)3. The HF reactant allows SnF(acac) and H2O to leave as reaction products. The thermal ALE of many other metal oxides using Sn(acac)2 or other metal β-diketonates, together with HF, should be possible by a similar mechanism. This thermal ALE mechanism may also be applicable to other materials such as metal nitrides, metal phosphides, metal sulfides and metal arsenides.

  11. Atomic layer etching of Al2O3 using sequential, self-limiting thermal reactions with Sn(acac)2 and hydrogen fluoride.

    PubMed

    Lee, Younghee; George, Steven M

    2015-02-24

    The atomic layer etching (ALE) of Al2O3 was demonstrated using sequential, self-limiting thermal reactions with tin(II) acetylacetonate (Sn(acac)2) and hydrogen fluoride (HF) as the reactants. The Al2O3 samples were Al2O3 atomic layer deposition (ALD) films grown using trimethylaluminum and H2O. The HF source was HF-pyridine. Al2O3 was etched linearly with atomic level precision versus number of reactant cycles. The Al2O3 ALE was monitored at temperatures from 150 to 250 °C. Quartz crystal microbalance (QCM) studies revealed that the sequential Sn(acac)2 and HF reactions were self-limiting versus reactant exposure. QCM measurements also determined that the mass change per cycle (MCPC) increased with temperature from -4.1 ng/(cm(2) cycle) at 150 °C to -18.3 ng/(cm(2) cycle) at 250 °C. These MCPC values correspond to etch rates from 0.14 Å/cycle at 150 °C to 0.61 Å/cycle at 250 °C based on the Al2O3 ALD film density of 3.0 g/cm(3). X-ray reflectivity (XRR) analysis confirmed the linear removal of Al2O3 and measured an Al2O3 ALE etch rate of 0.27 Å/cycle at 200 °C. The XRR measurements also indicated that the Al2O3 films were smoothed by Al2O3 ALE. The overall etching reaction is believed to follow the reaction Al2O3 + 6Sn(acac)2 + 6HF → 2Al(acac)3 + 6SnF(acac) + 3H2O. In the proposed reaction mechanism, the Sn(acac)2 reactant donates acac to the substrate to produce Al(acac)3. The HF reactant allows SnF(acac) and H2O to leave as reaction products. The thermal ALE of many other metal oxides using Sn(acac)2 or other metal β-diketonates, together with HF, should be possible by a similar mechanism. This thermal ALE mechanism may also be applicable to other materials such as metal nitrides, metal phosphides, metal sulfides and metal arsenides. PMID:25604976

  12. Plasma etching in a multipolar discharge

    NASA Astrophysics Data System (ADS)

    Wicker, T. E.; Mantei, T. D.

    1985-03-01

    Etching of silicon and SiO2 has been investigated in a dc plasma discharge confined by a multipolar surface magnetic field layer. The reactive plasma is produced by primary ionizing electrons drawn from heated tungsten filaments and confined by permanent magnets. Electrical probe measurements show that a uniform high-density plasma (1010-1011 cm-3) is sustained in SF6-O2 at very low pressure (0.2-2.0×10-3 Torr). Substrates are biased independently of plasma production by a low-frequency alternating voltage (0-400 V) applied to the substrate through a blocking capacitor. Anisotropic profiles are etched into Si in SF6-20% O2 with etch rates in excess of 1 μm/min at 2×10-3 Torr. The etch rate increases with increasing primary electron current (up to 3 A) and energy (up to 60 eV), gas pressure (up to 2.0×10-3 Torr), substrate bias voltage, and the addition of up to 20% O2. For higher ionizing electron energies (>60 eV) and higher gas pressure (>2.0×10-3 Torr), etching is partially blocked by residue formation. The etch anisotropy depends mainly on substrate bias, increasing for higher values of bias voltage. The Si:SiO2 etch selectivity is typically 10-20, becoming large with decreasing substrate bias and plasma ion density.

  13. Fe-catalyzed etching of graphene layers

    NASA Astrophysics Data System (ADS)

    Cheng, Guangjun; Calizo, Irene; Hight Walker, Angela; PML, NIST Team

    We investigate the Fe-catalyzed etching of graphene layers in forming gas. Fe thin films are deposited by sputtering onto mechanically exfoliated graphene, few-layer graphene (FLG), and graphite flakes on a Si/SiO2 substrate. When the sample is rapidly annealed in forming gas, particles are produced due to the dewetting of the Fe thin film and those particles catalyze the etching of graphene layers. Monolayer graphene and FLG regions are severely damaged and that the particles catalytically etch channels in graphite. No etching is observed on graphite for the Fe thin film annealed in nitrogen. The critical role of hydrogen indicates that this graphite etching process is catalyzed by Fe particles through the carbon hydrogenation reaction. By comparing with the etched monolayer and FLG observed for the Fe film annealed in nitrogen, our Raman spectroscopy measurements identify that, in forming gas, the catalytic etching of monolayer and FLG is through carbon hydrogenation. During this process, Fe particles are catalytically active in the dissociation of hydrogen into hydrogen atoms and in the production of hydrogenated amorphous carbon through hydrogen spillover.

  14. Etch Characteristics of GaN using Inductively Coupled Cl{sub 2} Plasma Etching

    SciTech Connect

    Rosli, Siti Azlina; Aziz, A. Abdul

    2008-05-20

    In this study, the plasma characteristics and GaN etch properties of inductively coupled Cl{sub 2}/Ar plasmas were investigated. It has shown that the results of a study of inductively coupled plasma (ICP) etching of gallium nitride by using Cl{sub 2}/Ar is possible to meet the requirement (anisotropy, high etch rate and high selectivity), simultaneously. We have investigated the etching rate dependency on the percentage of Argon in the gas mixture, the total pressure and DC voltage. We found that using a gas mixture with 20 sccm of Ar, the optimum etch rate of GaN was achieved. The etch rate were found to increase with voltage, attaining a maximum rate 2500 A/min at -557 V. The addition of an inert gas, Ar is found to barely affect the etch rate. Surface morphology of the etched samples was verified by scanning electron microscopy and atomic force microscopy. It was found that the etched surface was anisotropic and the smoothness of the etched surface is comparable to that of polished wafer.

  15. Dynamics of ion-assisted etching

    NASA Astrophysics Data System (ADS)

    Sebel, Petrus Gerardus Maria

    In this thesis a study is presented on the fundamentals of ion-assisted etching of silicon. The research was performed in the Atomic Physics and Quantum Electronics Group (AQT/B) of the Physics Department at the Eindhoven University of Technology. Etching is a key technique in the production process of integrated circuits. Industrial etching is usually done in a plasma reactor. However, to unravel the detailed mechanisms determining the etch process, a different approach was chosen. In this scheme, well defined beams of XeF2 and Ar + ions are directed towards the Si sample in an ultra-high vacuum (UHV) setup. In this way the relevant ingredients of a plasma (neutrals and ions) are simulated. The etching reaction is monitored by a quadruple mass spectrometer (QMS) which detects the desorption of non-reacted XeF2 and the main reaction products SiF4 and SiF2. We conclude that we have obtained a detailed microscopic picture of the etching of silicon by beams of neutrals and ions. However, there is still a gap between beam etching and plasma etching. To bridge this gap an ellipsometer has been added to our setup, because it is a common non-invasive diagnostic tool used in a plasma reactor. In addition, also a sample exchange mechanism was installed to facilitate the frequent exchange of samples. The first ellipsometric results of spontaneous etching show the construction of a reaction layer followed by surface roughening. The XeF2 dose needed to build the reaction layer as derived from the ellipsometric results is in good agreement with results from the mass spectrometer. Additional experiments have to be performed to obtain a full understanding of the roughening of the surface, but a first link between microscopic and macroscopic features has been established. (Abstract shortened by UMI.)

  16. Influence of ion mixing on the energy dependence of the ion-assisted chemical etch rate in reactive plasmas

    SciTech Connect

    Stafford, L.; Pearton, S. J.; Margot, J.

    2006-09-15

    Recently, Stafford et al. [Appl. Phys. Lett. 87, 071502 (2005)] have shown that in contrast to the etch yield on a saturated surface, the ion-assisted chemical etch rate cannot universally be modeled by a simple square-root energy dependence. This results from the surface coverage by reactive neutral species being also a function of the ion energy. In this work, we further point out that depending on the plasma-material combination, the etch rate can exhibit two regimes that are characterized by different dependences on the ion energy. While these results are inconsistent with currently available models, we show that they can be interpreted by taking into account ion mixing effects on the desorption rate of volatile reaction products involved in the model of Stafford et al. Application of this rate model to the etching of Si, SiO{sub 2}, HfO{sub 2}, and ZrO{sub 2} in chlorine and fluorine plasma chemistries provides an excellent description of the simultaneous dependence of the etch rate on ion energy and on ion and reactive neutral fluxes.

  17. Formation of Mosaic Silicon Oxide Structure during Metal-Assisted Electrochemical Etching of Silicon at High Current Density

    NASA Astrophysics Data System (ADS)

    Cao, Dao Tran; Anh, Cao Tuan; Ngan, Luong Truc Quynh

    2016-05-01

    We have used constant-current, metal-assisted electrochemical etching of silicon in HF/H2O2/ethanol electrolyte to fabricate porous silicon. We found that, at large enough current density, the sponge-like porous silicon structure is replaced by a mosaic structure, which includes islands of various shapes emerging between trenches that have been etched downward. Energy-dispersive x-ray analysis showed that the surface of the mosaic pieces was covered with silicon oxide, while little silicon oxide developed on the surface of trenches. We suggest that the appearance of the mosaic structure can be explained by the increase in the oxidation rate of silicon when the anodic current density increases, combined with no change in the dissolution rate of silicon oxide into the solution. Consequently, above a certain value of anodic current density, there is sufficient residual silicon oxide on the etched surface to create a continuous thin film. However, if the silicon oxide layer is too thick (e.g., due to too high anodic current density or too long etching time), it will become cracked (formation of mosaic pieces), likely due to differences in thermal expansion coefficient between the amorphous silicon oxide layer and crystalline silicon substrate. The oxide is cracked at locations with many defects, and the cracks reveal the silicon substrate. Therefore, at the locations where cracks occur, etching will go sideways and downward, creating trenches.

  18. Si nanowires by a single-step metal-assisted chemical etching process on lithographically defined areas: formation kinetics

    PubMed Central

    2011-01-01

    In this paper, we investigate the formation kinetics of Si nanowires [SiNWs] on lithographically defined areas using a single-step metal-assisted chemical etching process in an aqueous HF/AgNO3 solution. We show that the etch rate of Si, and consequently, the SiNW length, is much higher on the lithographically defined areas compared with that on the non-patterned areas. A comparative study of the etch rate in the two cases under the same experimental conditions showed that this effect is much more pronounced at the beginning of the etching process. Moreover, it was found that in both cases, the nanowire formation rate is linear with temperature in the range from 20°C to 50°C, with almost the same activation energy, as obtained from an Arrhenius plot (0.37 eV in the case of non-patterned areas, while 0.38 eV in the case of lithographically patterned areas). The higher etch rate on lithographically defined areas is mainly attributed to Si surface modification during the photolithographic process. PACS: 68; 68.65-k. PMID:22087735

  19. Dry etching method for compound semiconductors

    DOEpatents

    Shul, Randy J.; Constantine, Christopher

    1997-01-01

    A dry etching method. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators.

  20. Dry etching method for compound semiconductors

    DOEpatents

    Shul, R.J.; Constantine, C.

    1997-04-29

    A dry etching method is disclosed. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators. 1 fig.

  1. Method of sputter etching a surface

    DOEpatents

    Henager, Jr., Charles H.

    1984-01-01

    The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion.

  2. Method of sputter etching a surface

    DOEpatents

    Henager, C.H. Jr.

    1984-02-14

    The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion. 4 figs.

  3. Microleakage and penetration depth of three types of materials in fissure sealant: self-etching primer vs etching: an in vitro study.

    PubMed

    Gillet, D; Nancy, J; Dupuis, V; Dorignac, G

    2002-01-01

    Clinical preventive procedures must be done after a risk assessment. One of the risk factors is the occlusal morphology of the posterior teeth. These caries-free fissures must be sealed. This first in vitro experimentation of the study evaluated the microleakage and the penetration depth of three types of materials by Vivadent: Helioseal F, Tetric, Tetric Flow. The teeth were etched with phosphoric acid and bonded using a one bottle bonding in order to determine the best material for the sealing of the fissure. The depth of penetration of fuschine dye as well as that of the tested material was measured with a grid. The results, compared to the depth of the fissures, are expressed in percentage of penetration. The results were as follows: penetration of fuschine dye: 0% for the 2 composites, 100% for Helioseal F; penetration of the materials: 96.90% for Helioseal F, 70.82 for Tetric and 86.10 for Tetric Flow (significant difference, Wilcoxon test = 0.0105). In this first in vitro study, Tetric Flow shows no microleakage and is more efficient when compared to Helioseal F and Tetric in obturating deep fissures of non carious bicuspids. The second experiment of the study evaluated the microleakage and the penetration depth of Tetric Flow when it is bonded by two different methods: Group 1: total etch (phosphoric acid) and Scotch-bond 1 (3M), and Group 2: self-etching primer with Prompt (Espe). There was no significant difference (p > 0.03) between classical bonding vs self-etching primer. The self-etching primer Prompt is very efficient vs phosphoric acid in obturating the fissures of non carious bicuspids with Tetric Flow. It is concluded that for prevention by sealing, using a flowable ceromer (Tetric Flow) with the self-etching (Prompt), is a really good technique.

  4. Surface engineering on CeO₂ nanorods by chemical redox etching and their enhanced catalytic activity for CO oxidation.

    PubMed

    Gao, Wei; Zhang, Zhiyun; Li, Jing; Ma, Yuanyuan; Qu, Yongquan

    2015-07-21

    Controllable surface properties of nanocerias are desired for various catalytic processes. There is a lack of efficient approaches to adjust the surface properties of ceria to date. Herein, a redox chemical etching method was developed to controllably engineer the surface properties of ceria nanorods. Ascorbic acid and hydrogen peroxide were used to perform the redox chemical etching process, resulting in a rough surface and/or pores on the surface of ceria nanorods. Increasing the etching cycles induced a steady increase of the specific surface area, oxygen vacancies and surface Ce(3+) fractions. As a result, the etched nanorods delivered enhanced catalytic activity for CO oxidation, compared to the non-etched ceria nanorods. Our method provides a novel and facile approach to continuously adjust the surface properties of ceria for practical applications.

  5. The chemistry screening for ultra low-k dielectrics plasma etching

    NASA Astrophysics Data System (ADS)

    Zotovich, A.; Krishtab, M.; Lazzarino, F.; Baklanov, M. R.

    2014-12-01

    Nowadays, some of the important problems in microelectronics technological node scaling down are related to interconnect delay, dynamic power consumption and crosstalk. This compels introduction and integration of new materials with low dielectric permittivity (low-k materials) as insulator in interconnects. One of such materials under consideration for sub 10 nm technology node is a spin-coated organosilicate glass layer with ordered porosity (37-40%) and a k-value of 2.2 (OSG 2.2). High porosity leads to significant challenges during the integration and one of them is a material degradation during the plasma etching. The low-k samples have been etched in a CCP double frequency plasma chamber from TEL. Standard recipes developed for microporous materials with k<2.5 and based on mixture of C4F8 and CF4 with N2, O2 and Ar were found significantly damaging for high-porous ULK materials. The standard etch recipe was compared with oxygen free etch chemistries based on mixture CF4 with CH2F2 and Ar assuming that the presence of oxygen in the first recipe will have significant negative impact in high porous ULK materials. The film damage has been analyzed using FTIR spectroscopy and the k-value has been extracted by capacitance CV-measurements. There was indirectly shown that vacuum ultraviolet photons cause the main damage of low-k, whereas radicals and ions are not so harmful. Trench structures have been etched in low-k film and cross-SEM analysis with and without HF dipping has been performed to reveal patterning capability and visualize the sidewall damage and. The bottom roughness was analyzed by AFM.

  6. Synergistic etch rates during low-energetic plasma etching of hydrogenated amorphous carbon

    SciTech Connect

    Hansen, T. A. R.; Weber, J. W.; Colsters, P. G. J.; Mestrom, D. M. H. G.; Sanden, M. C. M. van de; Engeln, R.

    2012-07-01

    The etch mechanisms of hydrogenated amorphous carbon thin films in low-energetic (<2 eV) high flux plasmas are investigated with spectroscopic ellipsometry. The results indicate a synergistic effect for the etch rate between argon ions and atomic hydrogen, even at these extremely low kinetic energies. Ion-assisted chemical sputtering is the primary etch mechanism in both Ar/H{sub 2} and pure H{sub 2} plasmas, although a contribution of swift chemical sputtering to the total etch rate is not excluded. Furthermore, ions determine to a large extent the surface morphology during plasma etching. A high influx of ions enhances the etch rate and limits the surface roughness, whereas a low ion flux promotes graphitization and leads to a large surface roughness (up to 60 nm).

  7. Carrier-lifetime-controlled selective etching process for semiconductors using photochemical etching

    DOEpatents

    Ashby, Carol I. H.; Myers, David R.

    1992-01-01

    The minority carrier lifetime is significantly much shorter in semiconductor materials with very high impurity concentrations than it is in semiconductor materials with lower impurity concentration levels. This phenomenon of reduced minority carrier lifetime in semiconductor materials having high impurity concentration is utilized to advantage for permitting highly selective semiconductor material etching to be achieved using a carrier-driven photochemical etching reaction. Various means may be employed for increasing the local impurity concentration level in specific near-surface regions of a semiconductor prior to subjecting the semiconductor material to a carrier-driven photochemical etching reaction. The regions having the localized increased impurity concentration form a self-aligned mask inhibiting photochemical etching at such localized regions while the adjacent regions not having increased impurity concentrations are selectively photochemically etched. Liquid- or gas-phase etching may be performed.

  8. Black Germanium fabricated by reactive ion etching

    NASA Astrophysics Data System (ADS)

    Steglich, Martin; Käsebier, Thomas; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2016-09-01

    A reactive ion etching technique for the preparation of statistical "Black Germanium" antireflection surfaces, relying on self-organization in a Cl2 etch chemistry, is presented. The morphology of the fabricated Black Germanium surfaces is the result of a random lateral distribution of pyramidal etch pits with heights around (1450 ± 150) nm and sidewall angles between 80° and 85°. The pyramids' base edges are oriented along the <110> crystal directions of Germanium, indicating a crystal anisotropy of the etching process. In the Vis-NIR, the tapered Black Germanium surface structure suppresses interface reflection to <2.5 % for normal incidence and still to <6 % at an angle of incidence of 70°. The presented Black Germanium might find applications as low-cost AR structure in optoelectronics and IR optics.

  9. Epoxy bond and stop etch fabrication method

    DOEpatents

    Simmons, Jerry A.; Weckwerth, Mark V.; Baca, Wes E.

    2000-01-01

    A class of epoxy bond and stop etch (EBASE) microelectronic fabrication techniques is disclosed. The essence of such techniques is to grow circuit components on top of a stop etch layer grown on a first substrate. The first substrate and a host substrate are then bonded together so that the circuit components are attached to the host substrate by the bonding agent. The first substrate is then removed, e.g., by a chemical or physical etching process to which the stop etch layer is resistant. EBASE fabrication methods allow access to regions of a device structure which are usually blocked by the presence of a substrate, and are of particular utility in the fabrication of ultrafast electronic and optoelectronic devices and circuits.

  10. Symphony and cacophony in ion track etching: how to control etching results

    NASA Astrophysics Data System (ADS)

    Fink, D.; Kiv, A.; Cruz, S. A.; Muñoz H., G.; Vacík, J.

    2012-07-01

    In general, etching of two identical ion-irradiated polymer foils in the same vessel with the same etchant for the same times does not lead to identical track shapes in both foils. In contrast, the track shapes, the etching speeds, and consequently also the etchant consumption of the two foils diverge increasingly with increasing etching times, unless this is prevented by forceful external equilibration of the system. This tendency toward divergence of a system of multiple ion tracks originates from its lack of self-synchronization during etching. A theory has been developed for this case that also shows general applicability to other diverging effects in human life.

  11. Method for anisotropic etching in the manufacture of semiconductor devices

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor); Cross, Jon B. (Inventor)

    1993-01-01

    Hydrocarbon polymer coatings used in microelectronic manufacturing processes are anisotropically etched by hyperthermal atomic oxygen beams (translational energies of 0.2 to 20 eV, preferably 1 to 10 eV). Etching with hyperthermal oxygen atom species obtains highly anisotropic etching with sharp boundaries between etched and mask protected areas.

  12. Method for anisotropic etching in the manufacture of semiconductor devices

    DOEpatents

    Koontz, Steven L.; Cross, Jon B.

    1993-01-01

    Hydrocarbon polymer coatings used in microelectronic manufacturing processes are anisotropically etched by atomic oxygen beams (translational energies of 0.2-20 eV, preferably 1-10 eV). Etching with hyperthermal (kinetic energy>1 eV) oxygen atom species obtains highly anisotropic etching with sharp boundaries between etched and mask-protected areas.

  13. Plasma/Neutral-Beam Etching Apparatus

    NASA Technical Reports Server (NTRS)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  14. Equilibrium and rate constants, and reaction mechanism of the HF dissociation in the HF(H2O)7 cluster by ab initio rare event simulations.

    PubMed

    Elena, Alin Marin; Meloni, Simone; Ciccotti, Giovanni

    2013-12-12

    We perform restrained hybrid Monte Carlo (MC) simulations to compute the equilibrium constant of the dissociation reaction of HF in HF(H2O)7. We find that the HF is a stronger acid in the cluster than in the bulk, and its acidity is higher at lower T. The latter phenomenon has a vibrational entropic origin, resulting from a counterintuitive balance of intra- and intermolecular terms. We find also a temperature dependence of the reactions mechanism. At low T (≤225 K) the dissociation reaction follows a concerted path, with the H atoms belonging to the relevant hydrogen bond chain moving synchronously. At higher T (300 K), the first two hydrogen atoms move together, forming an intermediate metastable state having the structure of an eigen ion (H9O4(+)), and then the third hydrogen migrates completing the reaction. We also compute the dissociation rate constant, kRP. At very low T (≤75 K) kRP depends strongly on the temperature, whereas it gets almost constant at higher T’s. With respect to the bulk, the HF dissociation in the HF(H2O)7 is about 1 order of magnitude faster. This is due to a lower free energy barrier for the dissociation in the cluster.

  15. Plasma etching: Yesterday, today, and tomorrow

    SciTech Connect

    Donnelly, Vincent M.; Kornblit, Avinoam

    2013-09-15

    The field of plasma etching is reviewed. Plasma etching, a revolutionary extension of the technique of physical sputtering, was introduced to integrated circuit manufacturing as early as the mid 1960s and more widely in the early 1970s, in an effort to reduce liquid waste disposal in manufacturing and achieve selectivities that were difficult to obtain with wet chemistry. Quickly, the ability to anisotropically etch silicon, aluminum, and silicon dioxide in plasmas became the breakthrough that allowed the features in integrated circuits to continue to shrink over the next 40 years. Some of this early history is reviewed, and a discussion of the evolution in plasma reactor design is included. Some basic principles related to plasma etching such as evaporation rates and Langmuir–Hinshelwood adsorption are introduced. Etching mechanisms of selected materials, silicon, silicon dioxide, and low dielectric-constant materials are discussed in detail. A detailed treatment is presented of applications in current silicon integrated circuit fabrication. Finally, some predictions are offered for future needs and advances in plasma etching for silicon and nonsilicon-based devices.

  16. Investigations of Wafer Scale Etching with Xenon Difluoride

    NASA Astrophysics Data System (ADS)

    Chen, K. N.; Hoivik, N.; Lin, C. Y.; Young, A.; Ieong, M.; Shahidi, G.

    2006-03-01

    A good and uniform bulk silicon wafer etching method can be applied to the wafer thinning process in MEMS and 3D applications. In this study, the use of a Xenon Difluoride (XeF2) gas-phase etching system, operating at room temperature, has been investigated for bulk silicon wafer thinning. We investigated the Si-wafer surface morphology and profile following each XeF2 etching process cycle. Theoretical results are used to compare with the experimental results as well. A clean wafer surface by proper surface treatments is significant to achieve a uniform surface profile and morphology for XeF2 etching. A proper design of etching cycle with nitrogen ambient during etching is necessary to achieve the fastest and uniform silicon etching rate. The silicon etching rate is reported as a function of etching pressure, nitrogen pressure, and etching duration.

  17. Investigation of Nitride Morphology After Self-Aligned Contact Etch

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Keil, J.; Helmer, B. A.; Chien, T.; Gopaladasu, P.; Kim, J.; Shon, J.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Self-Aligned Contact (SAC) etch has emerged as a key enabling technology for the fabrication of very large-scale memory devices. However, this is also a very challenging technology to implement from an etch viewpoint. The issues that arise range from poor oxide etch selectivity to nitride to problems with post etch nitride surface morphology. Unfortunately, the mechanisms that drive nitride loss and surface behavior remain poorly understood. Using a simple langmuir site balance model, SAC nitride etch simulations have been performed and compared to actual etched results. This approach permits the study of various etch mechanisms that may play a role in determining nitride loss and surface morphology. Particle trajectories and fluxes are computed using Monte-Carlo techniques and initial data obtained from double Langmuir probe measurements. Etched surface advancement is implemented using a shock tracking algorithm. Sticking coefficients and etch yields are adjusted to obtain the best agreement between actual etched results and simulated profiles.

  18. Spent nuclear fuel recycling with plasma reduction and etching

    SciTech Connect

    Kim, Yong Ho

    2012-06-05

    A method of extracting uranium from spent nuclear fuel (SNF) particles is disclosed. Spent nuclear fuel (SNF) (containing oxides of uranium, oxides of fission products (FP) and oxides of transuranic (TRU) elements (including plutonium)) are subjected to a hydrogen plasma and a fluorine plasma. The hydrogen plasma reduces the uranium and plutonium oxides from their oxide state. The fluorine plasma etches the SNF metals to form UF6 and PuF4. During subjection of the SNF particles to the fluorine plasma, the temperature is maintained in the range of 1200-2000 deg K to: a) allow any PuF6 (gas) that is formed to decompose back to PuF4 (solid), and b) to maintain stability of the UF6. Uranium (in the form of gaseous UF6) is easily extracted and separated from the plutonium (in the form of solid PuF4). The use of plasmas instead of high temperature reactors or flames mitigates the high temperature corrosive atmosphere and the production of PuF6 (as a final product). Use of plasmas provide faster reaction rates, greater control over the individual electron and ion temperatures, and allow the use of CF4 or NF3 as the fluorine sources instead of F2 or HF.

  19. Surface/interface morphology and bond strength to glass ceramic etched for different periods.

    PubMed

    Naves, Lucas Z; Soares, Carlos J; Moraes, Rafael R; Gonçalves, Luciano S; Sinhoreti, Mário Alexandre C; Correr-Sobrinho, Lourenço

    2010-01-01

    This study evaluated the influence of etching periods on the surface/interface morphology and bond strength to glass ceramic with or without application of an unfilled resin after silane. Ceramic discs were divided into 12 groups, defined by etching time with 10% hydrofluoric acid: G1/G7--etching for 10 seconds, G2/G8--20 seconds; G3/G9--40 seconds; G4/G10--60 seconds; G5/G11--120 seconds and G6/G12--60 + 60 seconds. All the groups were silanated after etching and G7 - G12 received a layer of unfilled resin after silane. Microshear testing using resin cement was performed, with 12 resin cylinders tested per group. The data was submitted to two-way ANOVA and the Student-Newman-Keuls' test (p<0.05). Evaluation of the etching pattern and bonding interfaces was conducted by SEM. The bond strength means (MPa) were: 19.4 +/- 3.5, 22.3 +/- 5.1, 22.2 +/- 3.2, 17.8 +/- 2.1, 15.3 +/- 3.0 and 14.3 +/- 1.8 for G1-G6 and 17.4 +/- 4.8, 21.3 +/- 2.1, 21.1 +/- 2.3, 24.7 +/- 5.8, 20.4 +/- 2.2 and 18.5 +/- 4.6 for G7-G12. Poor etching was detected after 10 seconds of conditioning; whereas deep channels were extensively observed on surfaces etched for 120 and 60 + 60 seconds. Unfilled voids underlying the ceramic-cement interface were detected when only silane was applied. Full completion of the irregularities on G11 was detected using unfilled resin. When only silane was applied, the 60-second group and those etched for longer periods showed lower bond strengths. When both silane and unfilled resin were applied, all etching periods generally showed similar values. In conclusion, the etching period influenced the surface/interface topography and bond strength to ceramic. The application of unfilled resin was able to infiltrate all unfilled voids beneath the ceramic-cement interface, except on re-etched surfaces.

  20. Assessment of Microshear Bond Strength: Self-Etching Sealant versus Conventional Sealant

    PubMed Central

    Biria, Mina; Ghasemi, Amir; Torabzadeh, Hassan; Shisheeian, Arash; Baghban, Alireza Akbarzadeh

    2014-01-01

    Objective Recently, self-etching fissure sealants have been introduced to reduce technical sensitivity; however, their efficacy should be assessed. The aim of this study was to assess of the microshear bond strength of self-etching and conventional fissure sealants. Materials and Methods: Thirty non-carious third molars were randomly divided into three groups (N=10). Microcylinders of Concise fissure sealant were bonded to prepared buccal and lingual surfaces using the two following procedures. In the first group, phosphoric acid was used to prepare the substrate; whereas in group two, Concise was used in combination with Prompt L-Pop. In group 3, a self-etching fissure sealant (Enamel Loc) was utilized per se. After 24 hours, the samples were subjected to 500 rounds of thermocycling and shear bond testing using a microtensile tester machine with a crosshead speed of 0.5mm/min. Data were analyzed using one-way repeated measure ANOVA and Bonferroni Post HOC tests (SPSS version 16). Results: The mean and standard deviation of microshear bond strength of the groups were as follows: Group 1: Concise+ etching (14.59 ± 1.19 MPa), Group 2: Concise+Prompt L-Pop (12.86 ± 1.98 MPa), and Group 3: Enamel Loc (5.59 ± 0.72 MPa). One-way ANOVA revealed that all the differences were significant and the conventional sealant exhibited the highest mean bond strength. Conclusion: Conventional sealant using phosphoric acid etch application prior to fissure sealant application demonstrated more bond strength in comparison with that of self-etch bonding and self-etch sealant. PMID:24910688

  1. Peculiarities of latent track etching in SiO2/Si structures irradiated with Ar, Kr and Xe ions

    NASA Astrophysics Data System (ADS)

    Al'zhanova, A.; Dauletbekova, A.; Komarov, F.; Vlasukova, L.; Yuvchenko, V.; Akilbekov, A.; Zdorovets, M.

    2016-05-01

    The process of latent track etching in SiO2/Si structures irradiated with 40Ar (38 MeV), 84Kr (59 MeV) and 132Xe (133 and 200 MeV) ions has been investigated. The experimental results of SiO2 etching in a hydrofluoric acid solution have been compared with the results of computer simulation based on the thermal spike model. It has been confirmed that the formation of a molten region along the swift ion trajectory with minimum radius of 3 nm can serve as a theoretical criterion for the reproducible latent track etching tracks in SiO2.

  2. Chemically Etched Open Tubular and Monolithic Emitters for Nanoelectrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Page, Jason S.; Luo, Quanzhou; Moore, Ronald J.; Orton, Daniel J.; Tang, Keqi; Smith, Richard D.

    2006-11-15

    We have developed a new procedure for fabricating fused silica emitters for electrospray ionization-mass spectrometry (ESI-MS) in which the end of a bare fused silica capillary is immersed into aqueous hydrofluoric acid, and water is pumped through the capillary to prevent etching of the interior. Surface tension causes the etchant to climb the capillary exterior, and the etch rate in the resulting meniscus decreases as a function of distance from the bulk solution. Etching continues until the silica touching the hydrofluoric acid reservoir is completely removed, essentially stopping the etch process. The resulting emitters have no internal taper, making them much less prone to clogging compared to e.g. pulled emitters. The high aspect ratios and extremely thin walls at the orifice facilitate very low flow rate operation; stable ESI-MS signals were obtained for model analytes from 5-μm-diameter emitters at a flow rate of 5 nL/min with a high degree of inter-emitter reproducibility. In extensive evaluation, the etched emitters were found to enable approximately four times as many LC-MS analyses of proteomic samples before failing compared with conventional pulled emitters. The fabrication procedure was also employed to taper the ends of polymer monolith-containing silica capillaries for use as ESI emitters. In contrast to previous work, the monolithic material protrudes beyond the fused silica capillaries, improving the monolith-assisted electrospray process.

  3. Detection of HCl and HF by TTFMS and WMS.

    PubMed

    De Luca, Anna Chiara; Pesce, Giuseppe; Rusciano, Giulia; Sasso, Antonio

    2006-04-01

    In this work we discuss on a compact spectrometer based on DFB diode lasers for detection of chloridric and fluoridric acids. HCl and HF concentrations are determined through optical absorption of the P(4) line (lambda=1.7 microm) and the R(3) line (lambda=1.3 microm), respectively. Both lines belong to first overtone vibrational bands and their line strengths are 7.8 x 10(-21)cm/molecule for HCl and 2.8 x 10(-20)cm/molecule for HF. We chose these lines for their relative high intensities and because they are quite far from water vapour lines which represent the main interfering gas for trace-gases analysis. To detect these species we used two different high frequency modulation techniques: two-tone frequency modulation spectroscopy (f(1)=800 MHz and f(2)=804 MHz) was used for HCl while for HF we followed a simpler approach based on wavelength modulation spectroscopy (f=600 kHz). We demonstrate that the two techniques provide comparable detection limit of about 80 ppbV at atmospheric pressure. Positive testing of our spectrometer makes it suitable for in situ measurements of exhaust gases coming from waste incinerators.

  4. Optical scattering modeling of etched ZnO:Al superstrates and device simulation studies of a-Si:H solar cells with different texture morphologies.

    PubMed

    Yan, Xia; Li, Weimin; Aberle, Armin G; Venkataraj, Selvaraj

    2016-08-20

    Transparent conductive oxide (TCO) materials have been widely used as the front electrodes of thin-film amorphous silicon (a-Si:H) solar cells. To improve the performance of solar cells, textured front TCO is required as the optical layer which effectively scatters the incoming light and thus enhances the photon absorption within the device. One promising TCO material is aluminum-doped zinc oxide (AZO), which is most commonly prepared by magnetron sputtering. After deposition, sputtered AZO films are typically wet-chemically etched using diluted hydrochloric (HCl) or hydrofluoric (HF) acid to obtain rough surface morphologies. In this paper, we report the effects of a textured AZO front electrode on the performance of a-Si:H solar cells based on optical scattering modeling and electrical device simulations, involving four different AZO surface morphologies. The simulated light scattering behaviors indicate that a better textured surface not only scatters more light, but also allows more light get transmitted into the absorber (∼90% of visible light), due to greatly reduced front reflection by the rough surface. Device simulation results show that the two-step AZO texturing process should give improved a-Si:H solar cell performance, with an enhanced short-circuit current density of 16.5  mA/cm2, which leads to a high photovoltaic (PV) efficiency of 9.9%. PMID:27556994

  5. Etching rate control of mask material for XeF2 etching using UV exposure

    NASA Astrophysics Data System (ADS)

    Sugano, Koji; Tabata, Osamu

    2001-09-01

    A new technique to control etching rates of mask materials during XeF2 etching was proposed. By exposing Si sample with SiO2 and Si3N4 as mask materials to UV light of 3 W/cm2 during XeF2 etching, the etching rates of SiO2 and Si3N4 were dramatically increased from 2.52 angstrom/pulse to 42.0 angstrom/pulse and from 27.3 angstrom/pulse to 403 angstrom/pulse, respectively. This new technique allows us to remove the mask material selectively and change the mask pattern by UV light exposure during in- situ etching process without additional photolithography step and opens a new silicon micromachining process for 3- dimensional fabrication. The multi-step Si structure was successfully realized by this technique.

  6. Plasma characteristics and etch uniformity in CF4 magnetron etching using an annular permanent magnet

    NASA Astrophysics Data System (ADS)

    Kinoshita, Haruhisa; Ishida, Toshimasa; Ohno, Seigo

    1987-11-01

    Etch characteristics of SiO2 and Si obtained by magnetron etching using an annular permanent magnet were analyzed. From these analyses, etch characteristics were found to be classified into three regimes. Remarkable enhancements in SiO2 etch rate, 25-40 times, were observed at constant Vrf by applying magnetic field of 150 G. Ion densities over the cathode were found to be distributed linearly along the E×B drift direction. Such an ion density distribution will be formed by the repeated process (ionization→ion bombardment→electron emission and drift→ionization). Etch distribution can be averaged and flattened to a uniformity of below ±2% by the magnetic field being rotated in 90° steps.

  7. Polymer etching in the oxygen afterglow - Increased etch rates with increased reactor loading

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.; Wydeven, T.

    1989-01-01

    Reactor loading has an effect on the etch rate (rate of decrease of film thickness) of films of polyvinylfluoride (Tedlar) and polyethylene exposed in the afterglow of an RF discharge in oxygen. The etch rate is found to increase with the total surface area of the polymer exposed in the reactor. The etch rates of polypyromellitimide (Kapton H) and polystyrene under these conditions are very low. However, the etch rate of these polymers is greatly enhanced by adding either Tedlar or polyethylene to the reactor. A kinetic model is proposed based on the premise that the oxygen atoms produced by the RF discharge react with Tedlar or polyethylene to produce a much more reactive species, which dominates the etching of the polymers studied.

  8. Two modes of surface roughening during plasma etching of silicon: Role of ionized etch products

    SciTech Connect

    Nakazaki, Nobuya Tsuda, Hirotaka; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2014-12-14

    Atomic- or nanometer-scale surface roughening has been investigated during Si etching in inductively coupled Cl{sub 2} plasmas, as a function of rf bias power or ion incident energy E{sub i}, by varying feed gas flow rate, wafer stage temperature, and etching time. The experiments revealed two modes of surface roughening which occur depending on E{sub i}: one is the roughening mode at low E{sub i} < 200–300 eV, where the root-mean-square (rms) roughness of etched surfaces increases with increasing E{sub i}, exhibiting an almost linear increase with time during etching (t < 20 min). The other is the smoothing mode at higher E{sub i}, where the rms surface roughness decreases substantially with E{sub i} down to a low level < 0.4 nm, exhibiting a quasi-steady state after some increase at the initial stage (t < 1 min). Correspondingly, two different behaviors depending on E{sub i} were also observed in the etch rate versus √(E{sub i}) curve, and in the evolution of the power spectral density distribution of surfaces. Such changes from the roughening to smoothing modes with increasing E{sub i} were found to correspond to changes in the predominant ion flux from feed gas ions Cl{sub x}{sup +} to ionized etch products SiCl{sub x}{sup +} caused by the increased etch rates at increased E{sub i}, in view of the results of several plasma diagnostics. Possible mechanisms for the formation and evolution of surface roughness during plasma etching are discussed with the help of Monte Carlo simulations of the surface feature evolution and classical molecular dynamics simulations of etch fundamentals, including stochastic roughening and effects of ion reflection and etch inhibitors.

  9. Dry etched SiO2 Mask for HgCdTe Etching Process

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Ye, Z. H.; Sun, C. H.; Deng, L. G.; Zhang, S.; Xing, W.; Hu, X. N.; Ding, R. J.; He, L.

    2016-09-01

    A highly anisotropic etching process with low etch-induced damage is indispensable for advanced HgCdTe (MCT) infrared focal plane array (IRFPA) detectors. The inductively coupled plasma (ICP) enhanced reactive ion etching technique has been widely adopted in manufacturing HgCdTe IRFPA devices. An accurately patterned mask with sharp edges is decisive to accomplish pattern duplication. It has been reported by our group that the SiO2 mask functions well in etching HgCdTe with high selectivity. However, the wet process in defining the SiO2 mask is limited by ambiguous edges and nonuniform patterns. In this report, we patterned SiO2 with a mature ICP etching technique, prior to which a thin ZnS film was deposited by thermal evaporation. The SiO2 film etching can be terminated at the auto-stopping point of the ZnS layer thanks to the high selectivity of SiO2/ZnS in SF6 based etchant. Consequently, MCT etching was directly performed without any other treatment. This mask showed acceptable profile due to the maturity of the SiO2 etching process. The well-defined SiO2 pattern and the etched smooth surfaces were investigated with scanning electron microscopy and atomic force microscope. This new mask process could transfer the patterns exactly with very small etch-bias. A cavity with aspect-ratio (AR) of 1.2 and root mean square roughness of 1.77 nm was achieved first, slightly higher AR of 1.67 was also get with better mask profile. This masking process ensures good uniformity and surely benefits the delineation of shrinking pixels with its high resolution.

  10. Can HF heating generate ESF bubbles?

    NASA Astrophysics Data System (ADS)

    Zawdie, K. A.; Huba, J. D.

    2014-12-01

    The injection of powerful HF waves into the ionosphere can lead to strong electron heating followed by a pressure perturbation which can locally reduce the plasma density. In the postsunset equatorial ionosphere, density perturbations can provide the seed to generate equatorial spread F (ESF) bubbles. In this paper, a modified version of the SAMI3/ESF ionosphere code is used to model the density depletions created by HF heating and to determine if ESF bubbles can be artificially generated. It is found that HF heating primarily redistributes plasma along the geomagnetic field and does not significantly perturb the flux tube integrated conductivities. Thus, HF heating does not appear to be a viable method to seed or generate ESF bubbles.

  11. Shear bond strength of metal brackets to feldspathic porcelain treated by Nd:YAG laser and hydrofluoric acid.

    PubMed

    Hosseini, Mohammad Hashem; Sobouti, Farhad; Etemadi, Ardavan; Chiniforush, Nasim; Shariati, Mahsa

    2015-02-01

    Adult orthodontic treatment requires bonding orthodontic attachment to dental restorations. Ceramics are commonly used as esthetic restorative materials for the crowns and bridges. The present study evaluated the shear bond strength of metal orthodontic brackets to the feldspathic porcelain surfaces following conditioning by different powers of neodymium-doped yttrium aluminum garnet (Nd:YAG) laser and hydrofluoric acid as a conventional method. Seventy-two glazed porcelain samples were prepared and randomly attributed to six equal groups of 12. In the conventional hydrofluoric (HF) group, the specimens were etched by 9.6% hydrofluoric acid for 4 min. In laser groups, samples were conditioned by 0.75-, 1-, 1.25-, 1.5-, and 2-W Nd:YAG laser for 10 s. Metal brackets were bonded to porcelain samples and after being stored in distilled water for 24 h, they were subjected to thermocycling for 500 cycles. The debonding was carried out by a Zwick testing machine. The data were statistically analyzed by ANOVA and Tamhane multiple comparisons tests. The mean ± SD of the shear bond strength in the laser group 0.75, 1, 1.25, 1.5, and 2 W and HF group was 2.2 ± 0.9, 4.2 ± 1.1, 4.9 ± 2.4, 7 ± 1.7, 9.6 ± 2.7, and 9.4 ± 2.5, respectively. Together with the increased power of laser, the mean shear bond strength was increased continuously and no significant differences were found between the HF group and the laser groups with power of 1.5 or 2 W. Also, there was no significant difference between all test groups in ARI scores. There was no significant difference between bond strength of laser groups with power of 1.5 and 2 W and HF-etched group. So, Nd:YAG laser with appropriate parameters can be used as an alternative method for porcelain etching.

  12. Patterning enhancement techniques by reactive ion etch

    NASA Astrophysics Data System (ADS)

    Honda, Masanobu; Yatsuda, Koichi

    2012-03-01

    The root causes of issues in state-of-the-arts resist mask are low plasma tolerance in etch and resolution limit in lithography. This paper introduces patterning enhancement techniques (PETs) by reactive ion etch (RIE) that solve the above root causes. Plasma tolerance of resist is determined by the chemical structure of resin. We investigated a hybrid direct current (DC) / radio frequency (RF) RIE to enhance the plasma tolerance with several gas chemistries. The DC/RF hybrid RIE is a capacitive coupled plasma etcher with a superimposed DC voltage, which generates a ballistic electron beam. We clarified the mechanism of resist modification, which resulted in higher plasma tolerance[1]. By applying an appropriate gas to DC superimposed (DCS) plasma, etch resistance and line width roughness (LWR) of resist were improved. On the other hand, RIE can patch resist mask. RIE does not only etch but also deposits polymer onto the sidewall with sedimentary type gases. In order to put the deposition technique by RIE in practical use, it is very important to select an appropriate gas chemistry, which can shrink CD and etch BARC. By applying this new technique, we successfully fabricated a 35-nm hole pattern with a minimum CD variation.

  13. Plasma etching a ceramic composite. [evaluating microstructure

    NASA Technical Reports Server (NTRS)

    Hull, David R.; Leonhardt, Todd A.; Sanders, William A.

    1992-01-01

    Plasma etching is found to be a superior metallographic technique for evaluating the microstructure of a ceramic matrix composite. The ceramic composite studied is composed of silicon carbide whiskers (SiC(sub W)) in a matrix of silicon nitride (Si3N4), glass, and pores. All four constituents are important in evaluating the microstructure of the composite. Conventionally prepared samples, both as-polished or polished and etched with molten salt, do not allow all four constituents to be observed in one specimen. As-polished specimens allow examination of the glass phase and porosity, while molten salt etching reveals the Si3N4 grain size by removing the glass phase. However, the latter obscures the porosity. Neither technique allows the SiC(sub W) to be distinguished from the Si3N4. Plasma etching with CF4 + 4 percent O2 selectively attacks the Si3N4 grains, leaving SiC(sub W) and glass in relief, while not disturbing the pores. An artifact of the plasma etching reaction is the deposition of a thin layer of carbon on Si3N4, allowing Si3N4 grains to be distinguished from SiC(sub W) by back scattered electron imaging.

  14. Pulsed plasma etching for semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Economou, Demetre J.

    2014-07-01

    Power-modulated (pulsed) plasmas have demonstrated several advantages compared to continuous wave (CW) plasmas. Specifically, pulsed plasmas can result in a higher etching rate, better uniformity, and less structural, electrical or radiation (e.g. vacuum ultraviolet) damage. Pulsed plasmas can also ameliorate unwanted artefacts in etched micro-features such as notching, bowing, micro-trenching and aspect ratio dependent etching. As such, pulsed plasmas may be indispensable in etching of the next generation of micro-devices with a characteristic feature size in the sub-10 nm regime. This work provides an overview of principles and applications of pulsed plasmas in both electropositive (e.g. argon) and electronegative (e.g. chlorine) gases. The effect of pulsing the plasma source power (source pulsing), the electrode bias power (bias pulsing), or both source and bias power (synchronous pulsing), on the time evolution of species densities, electron energy distribution function and ion energy and angular distributions on the substrate is discussed. The resulting pulsed plasma process output (etching rate, uniformity, damage, etc) is compared, whenever possible, to that of CW plasma, under otherwise the same or similar conditions.

  15. Survey reveals nature of corrosion in HF alky units

    SciTech Connect

    Dobis, J.D. ); Clarida, D.R. ); Richert, J.P. )

    1995-03-06

    The results of a National Association of Corrosion Engineers survey of 62 HF alkylation units reveal relatively low incidence of service-related cracking of carbon steel. Hydrogen blistering, however, is prevalent, especially in the main acid circuit and overhead condensers. Based on these and other survey results, several recommendations are made to enable refiners to monitor and reduce corrosion in these special units. The paper discusses the survey results, construction materials, post-weld heat treatments, small-diameter piping, construction inspection, bolting, gaskets, block valves, maintenance practices, cracking, blistering, areas of vulnerability, and recommendations.

  16. Reactive Ion Etching for Randomly Distributed Texturing of Multicrystalline Silicon Solar Cells

    SciTech Connect

    ZAIDI, SALEEM H

    2002-05-01

    The quality of low-cost multicrystalline silicon (mc-Si) has improved to the point that it forms approximately 50% of the worldwide photovoltaic (PV) power production. The performance of commercial mc-Si solar cells still lags behind c-Si due in part to the inability to texture it effectively and inexpensively. Surface texturing of mc-Si has been an active field of research. Several techniques including anodic etching [1], wet acidic etching [2], lithographic patterning [3], and mechanical texturing [4] have been investigated with varying degrees of success. To date, a cost-effective technique has not emerged.

  17. A relative humidity sensing probe based on etched thin-core fiber coated with polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Yang, Zaihang; Zhou, Libin; Liu, Nan; Gang, Tingting; Qiao, Xueguang; Hu, Manli

    2015-12-01

    A relative humidity (RH) sensing probe based on etched thin-core fiber (TCF) coated with polyvinyl alcohol (PVA) is proposed and experimentally demonstrated.This sensor is constructed by splicing a section of TCF with a single mode fiber (SMF), then part of the TCF's cladding is etched by hydrofluoric acid solution and finally the tip of TCF is coated with PVA. Experimental results demonstrate that this sensor can measure the ambient RH by demodulating the power variation of reflection spectrum. The power demodulation method make this sensor can ignore the temperature cross-sensitivity and have an extensive application prospect.

  18. Hybrid chemical etching of femtosecond laser irradiated structures for engineered microfluidic devices

    NASA Astrophysics Data System (ADS)

    LoTurco, S.; Osellame, R.; Ramponi, R.; Vishnubhatla, K. C.

    2013-08-01

    We report on the fabrication of 3D buried micro-structures in fused silica glass using the selective chemical etching along femtosecond laser irradiated zones. Specifically, we have exploited a novel approach combining two different etching agents in successive steps. The widely used hydrofluoric acid solution, which provides fast volume removal, and potassium hydroxide solution, which exhibits high selectivity, are used to fabricate microfluidic structures. We demonstrate that this hybrid approach takes advantage of both of the individual etchants’ special characteristics and facilitates prototyping and fabrication of complex geometries for microfluidic devices.

  19. Solderability enhancement of copper through chemical etching

    SciTech Connect

    Stevenson, J.O.; Guilinger, T.R.; Hosking, F.M.; Yost, F.G.; Sorensen, N.R.

    1995-05-01

    Sandia National Laboratories has established a Cooperative Research and Development Agreement with consortium members of the National Center for Manufacturing Sciences (NCMS) to develop fundamental generic technology in the area of printed wiring board materials and surface finishes. Improved solderability of copper substrates is an important component of the Sandia-NCMS program. The authors are investigating the effects of surface roughness on the wettability and solderability behavior of several different types of copper board finishes. In this paper, the authors present roughness and solderability characterizations for a variety of chemically-etched copper substrates. Initial testing on six chemical etches demonstrate that surface roughness can be greatly enhanced through chemical etching. Noticeable improvements in solder wettability were observed to accompany increases in roughness. A number of different algorithms and measures of roughness were used to gain insight into surface morphologies that lead to improved solderability.

  20. Surface-tension-tailored aqueous ink for low-temperature deposition of high-k HfO2 thin film

    NASA Astrophysics Data System (ADS)

    Han, Sun Woong; Lee, Keun Ho; Yoo, Young Bum; Park, Jee Ho; Song, Kie Moon; Baik, Hong Koo

    2016-08-01

    In this paper, solution-based deposition of HfO2 thin film at low temperature was demonstrated. By using aqueous HfCl4 solution, the precursor was effectively decomposed with low annealing temperature of 150 °C. Thus it is preferable to use this solution for dielectric coating on flexible substrates. To achieve conformal coating on substrate, formic acid as a cosolvent was added to aqueous ink solution to reduce surface tension of the solution. Due to improved coating quality of HfO2 thin film, the fabricated HfO2 gate dielectric shows reliable breakdown characteristics and low leakage current.

  1. The Effect of Hydrofluoric Acid Concentration on the Bond Strength and Morphology of the Surface and Interface of Glass Ceramics to a Resin Cement.

    PubMed

    Sundfeld Neto, D; Naves, L Z; Costa, A R; Correr, A B; Consani, S; Borges, G A; Correr-Sobrinho, L

    2015-01-01

    The purpose of this study was to evaluate the influence of various concentrations of hydrofluoric acid (HF) on the surface/interface morphology and μ-shear bond strength (μSBS) between IPS Empress Esthetic (EST) (Ivoclar Vivadent) and IPS e.max Press (EMX) (Ivoclar Vivadent) ceramics and resin cement. Ceramic blocks were divided into 12 groups for each kind of ceramic. Six different HF concentrations were evaluated: 1%, 2.5%, 5%, 7.5%, 10%, and 15%. All groups were silanated after etching, and half of the specimens within each group received a thin layer of unfilled resin (UR). Three resin cement cylinders were prepared on each ceramic block for μSBS testing. The specimens were stored in distilled water at 37°C for 24 hours. The μSBS test was carried out in a universal testing machine at a crosshead speed of 0.5 mm/min until fracture. The data were submitted to three-way analysis of variance and multiple comparisons were performed using the Tukey post hoc test (p<0.05). The etched surfaces and bonded interfaces were evaluated using scanning electron microscopy. μSBS means (MPa) for 1%, 2.5%, 5%, 7.5%, 10%, and 15% HF concentrations were, respectively, 25.2, 27.2, 30.1, 31.4, 33.3, and 31.8. μSBS means with or without UR application measured 32.24 and 27.4, respectively; EST and EMX measured 29.8 and 29.9, respectively. For the HF concentrations, 10% and 15% showed higher μSBS means than did 1% and 2.5% (p<0.05); 7.5% was higher than 1% (p<0.05); and no statistical differences were found among the other concentrations (p>0.05). When evaluating UR, μSBS mean was significantly higher and better infiltration was observed on the etched surfaces. No statistical difference was found between the ceramics. The HF concentration and UR influenced the bond strength and surface/interface morphology.

  2. Analytical model of plasma-chemical etching in planar reactor

    NASA Astrophysics Data System (ADS)

    Veselov, D. S.; Bakun, A. D.; Voronov, Yu A.; Kireev, V. Yu; Vasileva, O. V.

    2016-09-01

    The paper discusses an analytical model of plasma-chemical etching in planar diode- type reactor. Analytical expressions of etch rate and etch anisotropy were obtained. It is shown that etch anisotropy increases with increasing the ion current and ion energy. At the same time, etch selectivity of processed material decreases as compared with the mask. Etch rate decreases with the distance from the centre axis of the reactor. To decrease the loading effect, it is necessary to reduce the wafer temperature and pressure in the reactor, as well as increase the gas flow rate through the reactor.

  3. Radicals Are Required for Thiol Etching of Gold Particles.

    PubMed

    Dreier, Timothy A; Ackerson, Christopher J

    2015-08-01

    Etching of gold with an excess of thiol ligand is used in both synthesis and analysis of gold particles. Mechanistically, the process of etching gold with excess thiol is unclear. Previous studies have obliquely considered the role of oxygen in thiolate etching of gold. Herein, we show that oxygen or a radical initiator is a necessary component for efficient etching of gold by thiolates. Attenuation of the etching process by radical scavengers in the presence of oxygen, and the restoration of activity by radical initiators under inert atmosphere, strongly implicate the oxygen radical. These data led us to propose an atomistic mechanism in which the oxygen radical initiates the etching process.

  4. Radicals are required for thiol etching of gold particles

    PubMed Central

    Dreier, Timothy A.

    2016-01-01

    Etching of gold with excess thiol ligand is used in both synthesis and analysis of gold particles. Mechanistically, the process of etching gold with excess thiol is opaque. Previous studies have obliquely considered the role of oxygen in thiolate etching of gold. Herein, we show that oxygen or a radical initator is a necessary component for efficient etching of gold by thiolates. Attenuation of the etching process by radical scavengers in the presence of oxygen, and the restoration of activity by radical initiators under inert atmosphere, strongly implicate the oxygen radical. These data led us to propose an atomistic mechanism in which the oxygen radical initiates the etching process. PMID:26089294

  5. Theoretical influence of third molecule on reaction channels of weakly bound complex CO2? HF systems

    NASA Astrophysics Data System (ADS)

    Chen, Shyh-Jong; Chen, Cheng; Hong, Yaw-Shun

    In this investigation, reaction channels of weakly bound complexes CO2?HF, CO2?HF?NH3, CO2?HF?H2O and CO2?HF?CH3OH systems were established at the B3LYP/6-311++G(3df,2pd) level, using the Gaussian 98 program. The conformers of syn-fluoroformic acid or syn-fluoroformic acid plus a third molecule (NH3, H2O, or CH3OH) were found to be more stable than the conformers of the related anti-fluoroformic acid or anti-fluoroformic acid plus a third molecule (NH3, H2O, or CH3OH). However, the weakly bound complexes were found to be more stable than either the related syn- and anti-type fluoroformic acid or the acid plus third molecule (NH3, H2O, or CH3OH) conformers. They decomposed into CO2 + HF, CO2 + NH4F, CO2 + H3OF or CO2 + (CH3)OH2F combined molecular systems. The weakly bound complexes have four reaction channels, each of which includes weakly bound complexes and related systems. Moreover, each reaction channel includes two transition state structures. The transition state between the weakly bound complex and anti-fluoroformic acid type structure (T13) is significantly larger than that of internal rotation (T23) between the syn- and anti-FCO2H (or FCO2H?NH3, FCO2H?H2O, or FCO2H?CH3OH) structures. However, adding the third molecule NH3, H2O, or CH3OH can significantly reduce the activation energy of T13. The catalytic strengths of the third molecules are predicted to follow the order H2O < NH3 < CH3OH.

  6. Environmentally benign semiconductor processing for dielectric etch

    NASA Astrophysics Data System (ADS)

    Liao, Marci Yi-Ting

    Semiconductor processing requires intensive usage of chemicals, electricity, and water. Such intensive resource usage leaves a large impact on the environment. For instance, in Silicon Valley, the semiconductor industry is responsible for 80% of the hazardous waste sites contaminated enough to require government assistance. Research on environmentally benign semiconductor processing is needed to reduce the environmental impact of the semiconductor industry. The focus of this dissertation is on the environmental impact of one aspect of semiconductor processing: patterning of dielectric materials. Plasma etching of silicon dioxide emits perfluorocarbons (PFCs) gases, like C2F6 and CF4, into the atmosphere. These gases are super global warming/greenhouse gases because of their extremely long atmospheric lifetimes and excellent infrared absorption properties. We developed the first inductively coupled plasma (ICP) abatement device for destroying PFCs downstream of a plasma etcher. Destruction efficiencies of 99% and 94% can be obtained for the above mentioned PFCs, by using O 2 as an additive gas. Our results have lead to extensive modeling in academia as well as commercialization of the ICP abatement system. Dielectric patterning of hi-k materials for future device technology brings different environment challenges. The uncertainty of the hi-k material selection and the patterning method need to be addressed. We have evaluated the environmental impact of three different dielectric patterning methods (plasma etch, wet etch and chemical-mechanical polishing), as well as, the transistor device performances associated with the patterning methods. Plasma etching was found to be the most environmentally benign patterning method, which also gives the best device performance. However, the environmental concern for plasma etching is the possibility of cross-contamination from low volatility etch by-products. Therefore, mass transfer in a plasma etcher for a promising hi

  7. Controlled electrochemical etching of nanoporous Si anodes and its discharge behavior in alkaline Si-air batteries.

    PubMed

    Park, Dong-Won; Kim, Soeun; Ocon, Joey D; Abrenica, Graniel Harne A; Lee, Jae Kwang; Lee, Jaeyoung

    2015-02-11

    We report the fabrication of nanoporous silicon (nPSi) electrodes via electrochemical etching to form a porous Si layer with controllable thickness and pore size. Varying the etching time and ethanolic HF concentration results in different surface morphologies, with various degrees of electrolyte access depending on the pore characteristics. Optimizing the etching condition leads to well-developed nPSi electrodes, which have thick porous layers and smaller pore diameter and exhibit improved discharge behavior as anodes in alkaline Si-air cells in contrast to flat Si anode. Although electrochemical etching is effective in improving the interfacial characteristics of Si in terms of high surface area, we observed that mild anodization occurs and produces an oxide overlayer. We then show that this oxide layer in nPSi anodes can be effectively removed to produce an nPSi anode with good discharge behavior in an actual alkaline Si-air cell. In the future, the combination of high surface area nPSi anodes with nonaqueous electrolytes (e.g., room-temperature ionic liquid electrolyte) to minimize the strong passivation behavior and self-discharge in Si could lead to Si-air cells with a stable voltage profile and high anode utilization.

  8. Controlled electrochemical etching of nanoporous Si anodes and its discharge behavior in alkaline Si-air batteries.

    PubMed

    Park, Dong-Won; Kim, Soeun; Ocon, Joey D; Abrenica, Graniel Harne A; Lee, Jae Kwang; Lee, Jaeyoung

    2015-02-11

    We report the fabrication of nanoporous silicon (nPSi) electrodes via electrochemical etching to form a porous Si layer with controllable thickness and pore size. Varying the etching time and ethanolic HF concentration results in different surface morphologies, with various degrees of electrolyte access depending on the pore characteristics. Optimizing the etching condition leads to well-developed nPSi electrodes, which have thick porous layers and smaller pore diameter and exhibit improved discharge behavior as anodes in alkaline Si-air cells in contrast to flat Si anode. Although electrochemical etching is effective in improving the interfacial characteristics of Si in terms of high surface area, we observed that mild anodization occurs and produces an oxide overlayer. We then show that this oxide layer in nPSi anodes can be effectively removed to produce an nPSi anode with good discharge behavior in an actual alkaline Si-air cell. In the future, the combination of high surface area nPSi anodes with nonaqueous electrolytes (e.g., room-temperature ionic liquid electrolyte) to minimize the strong passivation behavior and self-discharge in Si could lead to Si-air cells with a stable voltage profile and high anode utilization. PMID:25594400

  9. Dry-etching properties of TiN for metal/high-k gate stack using BCl{sub 3}-based inductively coupled plasma

    SciTech Connect

    Kim, Dong-Pyo; Yang Xue; Woo, Jong-Chang; Um, Doo-Seung; Kim, Chang-Il

    2009-11-15

    The etch rate of TiN film and the selectivities of TiN/SiO{sub 2} and TiN/HfO{sub 2} were systematically investigated in Cl{sub 2}/BCl{sub 3}/Ar plasmas as functions of Cl{sub 2} flow rate, radio-frequency (rf) power, and direct-current (dc) bias voltage under different substrate temperatures of 10 and 80 degree sign C. The etch rate of TiN films increased with increasing Cl{sub 2} flow rate, rf power, and dc-bias voltage at a fixed substrate temperature. In addition, the etch rate of TiN films at 80 degree sign C were higher than that at 10 degree sign C when other plasma parameters were fixed. However, the selectivities of TiN/SiO{sub 2} and TiN/HfO{sub 2} showed different tendencies compared with etch-rate behavior as a function of rf power and dc bias voltage. The relative-volume densities of Ar (750.0 nm), Cl (725.2 nm), and Cl{sup +} (386.6 nm) were monitored with an optical-emission spectroscopy. When rf power increased, the relative-volume densities of all studied particles were increased. X-ray photoelectron spectroscopy was carried out to detect nonvolatile etch by-products from the surface, and nonvolatile peaks (TiCl{sub x} bonds) in Ti 2p and Cl 2p were observed due to their high melting points. Based on the experimental results, we can conclude that the TiN etch is dependent on the substrate temperature when other plasma parameters are fixed. This can be explained by the enhanced chemical pathway with the assistance of ion bombardment.

  10. The behaviour of REE and Zr-Hf fractionation in the volcanic waters of Nevado del Ruiz system (Colombia)

    NASA Astrophysics Data System (ADS)

    Inguaggiato, Claudio; Censi, Paolo; Zuddas, Pierpaolo; Makario Londoño, John; Chacón, Zoraida; Alzate, Diego; Brusca, Lorenzo; D'Alessandro, Walter

    2015-04-01

    The geochemical behaviour of Rare Earth Element (REE), Zr and Hf have been investigated in the thermal waters of Nevado del Ruiz volcanic system. These fluids are characterised by a wide range of pH ranging between 1.0 and 8.8. The acidic waters are sulphate dominated with different Cl/SO4 ratios. The Nevado del Ruiz waters allowed to investigate the behaviour of investigated elements in a wide spectrum of pH and chemical composition of water. The important role of the pH and the ionic complexes have been evidenced in the distribution of REE, Zr and Hf in the aqueous phase. The pH rules the precipitation of authigenic oxyhydroxides of Fe, Al producing changes in REE, Zr, Hf amount and strong anomalies of Cerium and Europium. Y-Ho and Zr-Hf (twin pairs) have different behaviour in strong acidic waters with respect to the water with higher pH. Yttrium and Ho have the same behaviour of Zr and Hf in waters with pH near neutral-to-neutral, showing super-chondritic ratios. The twin pairs showed to be sensitive to the co-precipitation and/or adsorption onto the surface of authigenic particulate suggesting an enhanced scavenging of Ho and Hf respect to Y and Zr, leading to super-chondritic ratios. In acidic waters a different behaviour of twin pairs occurs with chondritic Y/Ho ratios (reflecting the Y/Ho ratio of average local rock) and sub-chondritic Zr/Hf ratios. For the first time, Zr and Hf have been investigated in natural acidic fluids to understand the behaviour of these elements in extreme acidic conditions and different major anions chemistry. Zr/Hf molar ratio changes from 4.75 to 49.29 in water with pH<3.6. In strong acidic waters, a different fractionation of Zr and Hf have been recognised as function of major anion contents (Cl and SO4), suggesting the formation of complexes leading to sub-chondritic Zr/Hf molar ratios.

  11. Etching of fused silica fiber by metallic laser-induced backside wet etching technique

    NASA Astrophysics Data System (ADS)

    Vass, Cs.; Kiss, B.; Kopniczky, J.; Hopp, B.

    2013-08-01

    The tip of multimode fused silica fiber (core diameter: 550 μm) was etched by metallic laser-induced backside wet etching (M-LIBWE) method. Frequency doubled, Q-switched Nd:YAG laser (λ = 532 nm; τFWHM = 8 ns) was used as laser source. The laser beam was coupled into the fiber by a fused silica lens with a focal length of 1500 mm. The other tip of the fiber was dipped into liquid gallium metallic absorber. The etching threshold fluence was measured to be 475 mJ/cm2, while the highest fluence, which resulted etching without breaking the fiber, was 1060 mJ/cm2. The progress of etching was followed by optical microscopy, and the etch rate was measured to be between 20 and 37 nm/pulse depending on the applied laser energy. The surface morphologies of the etched tips were studied by scanning electron microscopy. A possible application of the structured fibers was also tested.

  12. Alternative process for thin layer etching: Application to nitride spacer etching stopping on silicon germanium

    SciTech Connect

    Posseme, N. Pollet, O.; Barnola, S.

    2014-08-04

    Silicon nitride spacer etching realization is considered today as one of the most challenging of the etch process for the new devices realization. For this step, the atomic etch precision to stop on silicon or silicon germanium with a perfect anisotropy (no foot formation) is required. The situation is that none of the current plasma technologies can meet all these requirements. To overcome these issues and meet the highly complex requirements imposed by device fabrication processes, we recently proposed an alternative etching process to the current plasma etch chemistries. This process is based on thin film modification by light ions implantation followed by a selective removal of the modified layer with respect to the non-modified material. In this Letter, we demonstrate the benefit of this alternative etch method in term of film damage control (silicon germanium recess obtained is less than 6 A), anisotropy (no foot formation), and its compatibility with other integration steps like epitaxial. The etch mechanisms of this approach are also addressed.

  13. Systematically controlling Kapitza conductance via chemical etching

    NASA Astrophysics Data System (ADS)

    Duda, John C.; Hopkins, Patrick E.

    2012-03-01

    We measure the thermal interface conductance between thin aluminum films and silicon substrates via time-domain thermoreflectance from 100 to 300 K. The substrates are chemically etched prior to aluminum deposition, thereby offering a means of controlling interface roughness. We find that conductance can be systematically varied by manipulating roughness. In addition, transmission electron microscopy confirms the presence of a conformal oxide for all roughnesses, which is then taken into account via a thermal resistor network. This etching process provides a robust technique for tuning the efficiency of thermal transport while alleviating the need for laborious materials growth and/or processing.

  14. Laser etching of enamel for direct bonding with an Er,Cr:YSGG hydrokinetic laser system.

    PubMed

    Uşümez, Serdar; Orhan, Metin; Uşümez, Aslihan

    2002-12-01

    Irradiation of enamel with laser energy changes the physical and chemical characteristics of the enamel surface, and these alterations hold promise for the conditioning of enamel for bonding procedures. This laboratory study examined the influence of laser irradiation of enamel at 2 different power settings with an erbium, chromium: yttrium, scandium, gallium, garnet (Er,Cr:YSGG) hydrokinetic laser system (Millennium System, Biolase Technology, Inc; San Clemente, Calif) on the shear bond strength of orthodontic appliances and compared these with that of acid-etching. The prepared surfaces of 40 noncarious, intact, extracted premolars were exposed to laser energy: 20 teeth at 2-W setting (5.6 J/cm(2)) and 20 teeth at 1-W setting (2.7 J/cm(2)) of the commercial laser unit. Twenty teeth were etched with 37% orthophosphoric acid. Brackets were bonded with an orthodontic no-mix adhesive, and shear bond strength was determined with a universal testing machine. Data were analyzed with Kruskal-Wallis and Mann-Whitney U tests. Etched and restored surfaces of an acid-etched tooth and a 2-W laser-irradiated tooth were examined with scanning electron microscopy (SEM). Laser treatment under 2 W resulted in bond strengths of 7.11 +/- 4.56 megapascals (MPa), which was not significantly different from that of acid etching (8.23 +/- 2.30 MPa). Laser irradiation at 1 W resulted in bond strengths of 5.64 +/- 3.19 MPa, which was significantly different from that of acid etching (P <.05). However, large SD and coefficient of variation values of both laser groups made reliability of this method as an enamel conditioner questionable. Scanning electron microscopy studies of the restored irradiated surfaces showed good surface characteristics, whereas the lased surface was still more irregular than the restored acid-etched sample. Although laser devices are effectively used in some other areas of dentistry, enamel conditioning with an Er,Cr:YSGG laser cannot be considered a successful

  15. Laser etching of enamel for direct bonding with an Er,Cr:YSGG hydrokinetic laser system.

    PubMed

    Uşümez, Serdar; Orhan, Metin; Uşümez, Aslihan

    2002-12-01

    Irradiation of enamel with laser energy changes the physical and chemical characteristics of the enamel surface, and these alterations hold promise for the conditioning of enamel for bonding procedures. This laboratory study examined the influence of laser irradiation of enamel at 2 different power settings with an erbium, chromium: yttrium, scandium, gallium, garnet (Er,Cr:YSGG) hydrokinetic laser system (Millennium System, Biolase Technology, Inc; San Clemente, Calif) on the shear bond strength of orthodontic appliances and compared these with that of acid-etching. The prepared surfaces of 40 noncarious, intact, extracted premolars were exposed to laser energy: 20 teeth at 2-W setting (5.6 J/cm(2)) and 20 teeth at 1-W setting (2.7 J/cm(2)) of the commercial laser unit. Twenty teeth were etched with 37% orthophosphoric acid. Brackets were bonded with an orthodontic no-mix adhesive, and shear bond strength was determined with a universal testing machine. Data were analyzed with Kruskal-Wallis and Mann-Whitney U tests. Etched and restored surfaces of an acid-etched tooth and a 2-W laser-irradiated tooth were examined with scanning electron microscopy (SEM). Laser treatment under 2 W resulted in bond strengths of 7.11 +/- 4.56 megapascals (MPa), which was not significantly different from that of acid etching (8.23 +/- 2.30 MPa). Laser irradiation at 1 W resulted in bond strengths of 5.64 +/- 3.19 MPa, which was significantly different from that of acid etching (P <.05). However, large SD and coefficient of variation values of both laser groups made reliability of this method as an enamel conditioner questionable. Scanning electron microscopy studies of the restored irradiated surfaces showed good surface characteristics, whereas the lased surface was still more irregular than the restored acid-etched sample. Although laser devices are effectively used in some other areas of dentistry, enamel conditioning with an Er,Cr:YSGG laser cannot be considered a successful

  16. Nanometer scale high-aspect-ratio trench etching at controllable angles using ballistic reactive ion etching

    SciTech Connect

    Cybart, Shane; Roediger, Peter; Ulin-Avila, Erick; Wu, Stephen; Wong, Travis; Dynes, Robert

    2012-11-30

    We demonstrate a low pressure reactive ion etching process capable of patterning nanometer scale angled sidewalls and three dimensional structures in photoresist. At low pressure the plasma has a large dark space region where the etchant ions have very large highly-directional mean free paths. Mounting the sample entirely within this dark space allows for etching at angles relative to the cathode with minimal undercutting, resulting in high-aspect ratio nanometer scale angled features. By reversing the initial angle and performing a second etch we create three-dimensional mask profiles.

  17. Formation of Mach angle profiles during wet etching of silica and silicon nitride materials

    NASA Astrophysics Data System (ADS)

    Ghulinyan, M.; Bernard, M.; Bartali, R.; Pucker, G.

    2015-12-01

    In integrated circuit technology peeling of masking photoresist films is a major drawback during the long-timed wet etching of materials. It causes an undesired film underetching, which is often accompanied by a formation of complex etch profiles. Here we report on a detailed study of wedge-shaped profile formation in a series of silicon oxide, silicon oxynitride and silicon nitride materials during wet etching in a buffered hydrofluoric acid (BHF) solution. The shape of etched profiles reflects the time-dependent adhesion properties of the photoresist to a particular material and can be perfectly circular, purely linear or a combination of both, separated by a knee feature. Starting from a formal analogy between the sonic boom propagation and the wet underetching process, we model the wedge formation mechanism analytically. This model predicts the final form of the profile as a function of time and fits the experimental data perfectly. We discuss how this knowledge can be extended to the design and the realization of optical components such as highly efficient etch-less vertical tapers for passive silicon photonics.

  18. HF Accelerated Electron Fluxes, Spectra, and Ionization

    NASA Astrophysics Data System (ADS)

    Carlson, Herbert C.; Jensen, Joseph B.

    2015-10-01

    Wave particle interactions, an essential aspect of laboratory, terrestrial, and astrophysical plasmas, have been studied for decades by transmitting high power HF radio waves into Earth's weakly ionized space plasma, to use it as a laboratory without walls. Application to HF electron acceleration remains an active area of research (Gurevich in Usp Fizicheskikh Nauk 177(11):1145-1177, 2007) today. HF electron acceleration studies began when plasma line observations proved (Carlson et al. in J Atmos Terr Phys 44:1089-1100, 1982) that high power HF radio wave-excited processes accelerated electrons not to ~eV, but instead to -100 times thermal energy (10 s of eV), as a consequence of inelastic collision effects on electron transport. Gurevich et al (J Atmos Terr Phys 47:1057-1070, 1985) quantified the theory of this transport effect. Merging experiment with theory in plasma physics and aeronomy, enabled prediction (Carlson in Adv Space Res 13:1015-1024, 1993) of creating artificial ionospheres once ~GW HF effective radiated power could be achieved. Eventual confirmation of this prediction (Pedersen et al. in Geophys Res Lett 36:L18107, 2009; Pedersen et al. in Geophys Res Lett 37:L02106, 2010; Blagoveshchenskaya et al. in Ann Geophys 27:131-145, 2009) sparked renewed interest in optical inversion to estimate electron spectra in terrestrial (Hysell et al. in J Geophys Res Space Phys 119:2038-2045, 2014) and planetary (Simon et al. in Ann Geophys 29:187-195, 2011) atmospheres. Here we present our unpublished optical data, which combined with our modeling, lead to conclusions that should meaningfully improve future estimates of the spectrum of HF accelerated electron fluxes. Photometric imaging data can significantly improve detection of emissions near ionization threshold, and confirm depth of penetration of accelerated electrons many km below the excitation altitude. Comparing observed to modeled emission altitude shows future experiments need electron density profiles

  19. Plasma etching of the Group-III nitrides

    SciTech Connect

    Shul, R.; Pearton, S.J.; Abernathy, C.R.

    1996-01-01

    In reactive ion etching (RIE) of GaN, the ion bombardment can damage the material, so it is necessary to develop plasma etch processes. This paper reports etching of GaN in an ECR (electron cyclotron resonance) etch system using both the ECR/RIE mode and the RIE-only mode. Group III (Ga, In, Al) nitride ECR etching is reviewed as a function of plasma chemistry, power, temperature, and pressure; as the ECR microwave power increased, the ion density and etch rates increased, with the etch rate increasing the most for InN. GaN etch rates > 6500 {angstrom}/min have been observed in the ECR/RIE mode. 2 figs, 6 refs.

  20. Transferring resist microlenses into silicon by reactive ion etching

    NASA Astrophysics Data System (ADS)

    Eisner, Martin; Schwider, Johannes

    1996-10-01

    Reactive ion etching (RIE) is known as an effective technique for high precision anisotropic etching with a minimum loss of the critical dimensions provided by the photoresist or other masking materials. RIE can also be used to transfer continuous forms such as spherical resist microlenses into substrate materials (e.g., quartz glass or silicon). The form of the lenses can be considerably controlled by changing the etch rate ratio between resist and the substrate. This was achieved by varying the etch gas compound, especially the amount of oxygen, during the etching or by changing the applied power. Measured etch rates for silicon are given to demonstrate the possibilities of lens shaping. The surface roughness of the etched lenses was one of the main problems. The roughness could be minimized by adding helium to the etch gases for heat removal and by increasing the resist rinse time after the wet chemical development.

  1. Admittance spectroscopy of CdTe /CdS solar cells subjected to varied nitric-phosphoric etching conditions

    NASA Astrophysics Data System (ADS)

    Proskuryakov, Y. Y.; Durose, K.; Taele, B. M.; Welch, G. P.; Oelting, S.

    2007-01-01

    In this work we investigate the electric and structural properties of CdTe /CdS solar cells subjected to a nitric-phosphoric (NP) acid etching procedure, employed for the formation of a Te-rich layer before back contacting. The etching time is used as the only variable parameter in the study, while admittance spectroscopy is employed for the characterization of the cells' electric properties as well as for the analysis of the defect energy levels. Particular attention was also given to the characteristics of unetched devices and it is shown that despite the larger height of back-contact barrier such samples show well defined admittance spectra, as well as allow for extraction of as much as five defect levels in the range of 0.08-0.9eV above the valence band. In contrast, admittance characteristics of the etched samples show a decrease of the number of the detectable trap levels with increasing etching time. (Hence it is usual for only one or two trap levels to be reported in the literature for finished devices.) The latter leads to the anomalous Arrhenius energy plots as well as the breakdown of low-frequency capacitance characteristics for samples etched with times larger than 30s. The observed effects are attributed to physical thinning of the cells, the etching out of grain boundaries, and the tellurium enrichment of the CdTe surface by NP etching. We also perform analysis of the back-contact barrier height as extracted from dark I-V measurements at different temperatures. The dependence of this barrier height on NP etching time is compared with that of conversion efficiency, from which conclusions are drawn about both positive and negative effects of the nitric-phosphoric etch.

  2. Etch Profile Simulation Using Level Set Methods

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    Etching and deposition of materials are critical steps in semiconductor processing for device manufacturing. Both etching and deposition may have isotropic and anisotropic components, due to directional sputtering and redeposition of materials, for example. Previous attempts at modeling profile evolution have used so-called "string theory" to simulate the moving solid-gas interface between the semiconductor and the plasma. One complication of this method is that extensive de-looping schemes are required at the profile corners. We will present a 2D profile evolution simulation using level set theory to model the surface. (1) By embedding the location of the interface in a field variable, the need for de-looping schemes is eliminated and profile corners are more accurately modeled. This level set profile evolution model will calculate both isotropic and anisotropic etch and deposition rates of a substrate in low pressure (10s mTorr) plasmas, considering the incident ion energy angular distribution functions and neutral fluxes. We will present etching profiles of Si substrates in Ar/Cl2 discharges for various incident ion energies and trench geometries.

  3. Technique for etching monolayer and multilayer materials

    DOEpatents

    Bouet, Nathalie C. D.; Conley, Raymond P.; Divan, Ralu; Macrander, Albert

    2015-10-06

    A process is disclosed for sectioning by etching of monolayers and multilayers using an RIE technique with fluorine-based chemistry. In one embodiment, the process uses Reactive Ion Etching (RIE) alone or in combination with Inductively Coupled Plasma (ICP) using fluorine-based chemistry alone and using sufficient power to provide high ion energy to increase the etching rate and to obtain deeper anisotropic etching. In a second embodiment, a process is provided for sectioning of WSi.sub.2/Si multilayers using RIE in combination with ICP using a combination of fluorine-based and chlorine-based chemistries and using RF power and ICP power. According to the second embodiment, a high level of vertical anisotropy is achieved by a ratio of three gases; namely, CHF.sub.3, Cl.sub.2, and O.sub.2 with RF and ICP. Additionally, in conjunction with the second embodiment, a passivation layer can be formed on the surface of the multilayer which aids in anisotropic profile generation.

  4. Recent observations of HF and HCl in the upper stratosphere

    NASA Technical Reports Server (NTRS)

    Zander, R.

    1981-01-01

    Concentrations of gas phase hydrofluoric acid and hydrochloric acid have been determined in the upper stratosphere from near-infrared solar spectra recorded in the course of balloon flights from Palestine, Texas, in October 1978 and in September 1979. The average mixing ratios for HF deduced respectively from these flights are (4.8 plus or minus .3) x 10 to the -10th ppv above 30.3km and (6.2 plus or minus .5) x 10 to the -10th ppv above 36.8km. This observed difference is ascribed to an increase in the HF concentration out to at least 37km. The HCl mixing ratios deduced from the 1978 flight yield (4.5 plus or minus .6) x 10 to the -10th ppv at 21.7km, (7.5 plus or minus .7) x 10 to the -10th ppv at 27.5 km and (2.1 plus or minus .4) x 10 to the -9th ppv above 30.5km. Observations in 1979 imply an average HCl mixing ratio above 36.8km of (2.4 plus or minus .4) x 10 to the -9th ppv. Our data do not indicate a measurable temporal trend of the HCl concentration above 30km.

  5. A high performance HfSiON/TaN NMOSFET fabricated using a gate-last process

    NASA Astrophysics Data System (ADS)

    Xu, Gao-Bo; Xu, Qiu-Xia; Yin, Hua-Xiang; Zhou, Hua-Jie; Yang, Tao; Niu, Jie-Bin; Yu, Jia-Han; Li, Jun-Feng; Zhao, Chao

    2013-11-01

    A gate-last process for fabricating HfSiON/TaN n-channel metal-oxide-semiconductor-field-effect transistors (NMOSFETs) is presented. In the process, a HfSiON gate dielectric with an equivalent oxide thickness of 10 Å was prepared by a simple physical vapor deposition method. Poly-Si was deposited on the HfSiON gate dielectric as a dummy gate. After the source/drain formation, the poly-Si dummy gate was removed by tetramethylammonium hydroxide (TMAH) wet-etching and replaced by a TaN metal gate. Because the metal gate was formed after the ion-implant doping activation process, the effects of the high temperature process on the metal gate were avoided. The fabricated device exhibits good electrical characteristics, including good driving ability and excellent sub-threshold characteristics. The device's gate length is 73 nm, the driving current is 117 μA/μm under power supply voltages of VGS = VDS = 1.5 V and the off-state current is only 4.4 nA/μm. The lower effective work function of TaN on HfSiON gives the device a suitable threshold voltage (~ 0.24 V) for high performance NMOSFETs. The device's excellent performance indicates that this novel gate-last process is practical for fabricating high performance MOSFETs.

  6. Optimization of Track Etched Makrofol Etching Conditions for Short-term Exposure Duration

    NASA Astrophysics Data System (ADS)

    Moreno, V.; Font, Ll.

    Exposure time of nuclear track detectors at humid environments is normally limited to a few weeks because filter used to avoid humidity is not completely waterproof and, after several months, some parts of detector start to degrade. In other really extreme measurement conditions, like high aerosol content, high or low temperatures, etc., the exposure time also requires a reduction. Then detector detection limit becomes a problem, unless radon concentrations were high. In those cases where radon levels are not high enough a better detection efficiency is required. In our laboratory we use passive detectors based on the track etched Makrofol DE foil covered with aluminized Mylar and they are analyzed by means of an electrochemical etching. Our standard etching conditions allow analyzing detectors generally exposed for periods between three and six months. We have optimized our etching conditions to reduce the exposure time down to a month for common radon concentration values.

  7. Multilayer Badges Indicate Depths Of Ion Sputter Etches

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Matossian, J. N.; Garvin, H. L.

    1994-01-01

    Multilayer badges devised to provide rapid, in-place indications of ion sputter etch rates. Badges conceived for use in estimating ion erosion of molybdenum electrodes used in inert-gas ion thrustors. Concept adapted to measure ion erosion in industrial sputter etching processes used for manufacturing of magnetic, electronic, and optical devices. Badge etched when bombarded by energetic ions. Badge layers exposed using mask. Contrast between layers facilitates counting of layers to determine etch depth.

  8. High index contrast polysiloxane waveguides fabricated by dry etching

    SciTech Connect

    Madden, S. J.; Zhang, M. Y.; Choi, D.-Y.; Luther-Davies, B.; Charters, R.

    2009-05-15

    The authors demonstrate the production of low loss enhanced index contrast waveguides by reactive ion etching of IPG trade mark sign polysiloxane thin films. The use of a silica mask and CHF{sub 3}/O{sub 2} etch gas led to large etch selectivity between the silica and IPG trade mark sign of >20 and etch rates of >100 nm/min. This work indicates that compact optical circuits could be successfully fabricated for telecommunication applications using polysiloxane films.

  9. Lu-Hf constraints on the evolution of lunar basalts

    SciTech Connect

    Fujimaki, H.; Tatsumoto, M.

    1984-02-15

    Very low Ti basalts andd green glass samples from the moon show high Lu/Hf ratios and low Hf concentrations. Low-Ti lunar basalts show high and variable Lu/Hf ratios and higher Hf concentrations, whereas high-Ti lunar basalts show low Lu/Hf ratios and high Hf concentrations. KREEP basalts have constant Lu/Hf ratios and high but variable Hf concentrations. Using the Lu-Hf behavior as a constraint, we propose a model for the mare basalts evolution. This constraint requires extensive crystallization of the primary lunar magma ocean prior to formation of the lunar mare basalt sources and the KREEP basalts. Mare basalts are produced by the melting of the cumulate rocks, and KREEP basalts represent the residual liquid of the magma ocean.

  10. LOCALIZED MECHANICS OF DENTIN SELF-ETCHING ADHESIVE SYSTEM

    PubMed Central

    Anchieta, Rodolfo Bruniera; Rocha, Eduardo Passos; Ko, Ching-Chang; Sundfeld, Renato Herman; Martin, Manoel; Archangelo, Carlos Marcelo

    2007-01-01

    The bond strength of composite resins (CRs) to dentin is influenced by the interfacial microstructure of the hybrid layer (HL) and the resin tags (TAG). The contemporary self-etching primer adhesive systems overcame the inconvenient of the etch-and-rinse protocol. Studies, however, have demonstrated that HL thickness and TAG length vary according to the wetting time and additional use of acid-etching prior to self-etching primers. This study investigated the localized stress distribution in the HL and the dentin/adhesive interface. Two HL thicknesses (3 or 6 μm), two TAG lengths (13 or 17 μm) and two loading conditions (perpendicular and oblique-25o) were investigated by the finite element (FE) analysis. Five two-dimensional FE models (M) of a dentin specimen restored with CR (38 x 64 μm) were constructed: Ml - no HL and no TAG; M2 - 3 μm of HL and 13 μm of TAG; M3 - 3 μm of HL and 17 μm of TAG; M4 - 6 μm of HL and 13 μm of TAG; and M5 - 6 μm of HL and 17 μm of TAG. Two distributed loadings (L) (20N) were applied on CR surface: L1 - perpendicular, and L2 - oblique (25°). Fixed interfacial conditions were assigned on the border of the dentin specimen. Ansys 10.0 (Ansys®, Houston, PA, USA) software was used to calculate the stress fields. The peak of von Mises (σvM) and maximum principal stress (σmax) was higher in L2 than in L1. Microstructures (HL and TAG) had no effect on local stresses for L1. Decreasing HL decreased σvM and σmax in all structures for L2, but the TAG length had influence only on the peributular dentin. The thickness of HL had more influence on the σvM and σmax than TAG length. The peritubular dentin and its adjacent structures showed the highest σvM and σmax, mainly in the oblique loading. PMID:19089152

  11. Dopant Selective Reactive Ion Etching of Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Okojie, Robert (Inventor)

    2016-01-01

    A method for selectively etching a substrate is provided. In one embodiment, an epilayer is grown on top of the substrate. A resistive element may be defined and etched into the epilayer. On the other side of the substrate, the substrate is selectively etched up to the resistive element, leaving a suspended resistive element.

  12. CR-39 track etching and blow-up method

    DOEpatents

    Hankins, Dale E.

    1987-01-01

    This invention is a method of etching tracks in CR-39 foil to obtain uniformly sized tracks. The invention comprises a step of electrochemically etching the foil at a low frequency and a "blow-up" step of electrochemically etching the foil at a high frequency.

  13. Characterization of electric discharge machining, subsequent etching and shot-peening as a surface treatment for orthopedic implants

    NASA Astrophysics Data System (ADS)

    Stráský, Josef; Havlíková, Jana; Bačáková, Lucie; Harcuba, Petr; Mhaede, Mansour; Janeček, Miloš

    2013-09-01

    Presented work aims at multi-method characterization of combined surface treatment of Ti-6Al-4V alloy for biomedical use. Surface treatment consists of consequent use of electric discharge machining (EDM), acid etching and shot peening. Surface layers are analyzed employing scanning electron microscopy and energy dispersive X-ray spectroscopy. Acid etching by strong Kroll's reagent is capable of removing surface layer of transformed material created by EDM. Acid etching also creates partly nanostructured surface and significantly contributes to the enhanced proliferation of the bone cells. The cell growth could be positively affected by the superimposed bone-inspired structure of the surface with the morphological features in macro-, micro- and nano-range. Shot peening significantly improves poor fatigue performance after EDM. Final fatigue performance is comparable to benchmark electropolished material without any adverse surface effect. The proposed three-step surface treatment is a low-cost process capable of producing material that is applicable in orthopedics.

  14. Comparison of HfCl4, HfI4, TEMA-Hf, and TDMA-Hf as precursors in early growing stages of HfO2 films deposited by ALD: A DFT study

    NASA Astrophysics Data System (ADS)

    Cortez-Valadez, M.; Fierro, C.; Farias-Mancilla, J. R.; Vargas-Ortiz, A.; Flores-Acosta, M.; Ramírez-Bon, R.; Enriquez-Carrejo, J. L.; Soubervielle-Montalvo, C.; Mani-Gonzalez, P. G.

    2016-06-01

    The final structure of HfO2 films grown by atomic layer deposition (ALD) after reaction with OH- ions has been analyzed by DFT (density functional theory). The interaction of the precursors: HfCl4 (hafnium tetrachloride), HfI4 (hafnium tetraiodide), TEMA-Hf (tetrakis-ethylmethylamino hafnium), and TDMA-Hf (tetrakis-dimethylamino hafnium) with HO-H was studied employing the B3LYP (Becke 3-parameter, Lee-Yang-Parr) hybrid functional and the PBE (Perdew-Burke-Ernzerhof) generalized gradient functional. The structural evolution at the Si(100) surface has been analyzed by LDA (local density approximation). The structural parameters: bond length and bond angle, and the vibrational parameters for the optimized structures are also reported. The presence of hafnium silicate at the interface was detected. The infrared spectra and structural parameters obtained in this work agree with previously reported experimental results.

  15. HF Radio Wave Production of Artificial Ionospheres

    NASA Astrophysics Data System (ADS)

    Carlson, Herbert

    In 1993 it was predicted that artificial ionospheres would be produced by high power HF radio waves, once HF transmitters approached a GWatt ERP. When that threshold was very recently achieved, such production was indeed detected and published at two high latitude high power HF facilities. Here we review: the first-principles logic behind that prediction, which aspects of such production are critically dependent on magnetic latitude, and which aspects of such production depend only on physical parameters independent of latitude. These distinctions follow directly from decomposition of the problem of ionization production into its components of: radio-wave propagation, wave-particle interactions, electron transport, and quantitative elastic/inelastic cross-sections. We outline this analysis to show that, within the context of early observations, the production of ionization is inevitable, and only a question of competing instability thresholds, and scale of ionization production. This illustrates complimentary aeronomy and plasma physics to advance understanding of both.

  16. HF emissions in manufacturing traditional ceramics

    SciTech Connect

    Brosnan, D.A.

    1997-01-01

    Hydrogen fluoride (HF) evolves in kiln drafts during the preheating of clay-based ceramics. The fluorine source is clay dehydroxylation, i.e., the decomposition of clay crystals. Fluorine evolution can continue in the kiln soak zone as fluorine compounds formed during the initial fluorine-evolution period eventually decompose. Because North America clays exhibit a wide range of fluorine content--typically 200--1,200 ppm--the quantity of HF emitted varies considerably from one manufacturing site to another. Variables in firing--such as preheat rate, soak temperature and exit gas temperature--also affect the emission quantity. Because HF is classified as a hazardous air pollutant under the US Clean Air Act, it is subject to federal regulation, and individual states can impose more stringent regulations than the federal standards. Several states already have imposed such regulations.

  17. Characterization of three novel fatty acid- and retinoid-binding protein genes (Ha-far-1, Ha-far-2 and Hf-far-1) from the cereal cyst nematodes Heterodera avenae and H. filipjevi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heterodera avenae and H. filipjevi are major parasites of wheat, reducing production worldwide. Both are sedentary endoparasitic nematodes, and their development and parasitism depend strongly on nutrients obtained from hosts. Secreted fatty acid- and retinoid-binding (FAR) proteins are nematode-spe...

  18. Noble gases in 'phase Q' - Closed-system etching of an Allende residue

    NASA Technical Reports Server (NTRS)

    Wieler, Rainer; Baur, Heinrich; Signer, Peter; Anders, Edward; Lewis, Roy S.

    1991-01-01

    Results are presented from an analysis, in nearly pure form, of noble gases from the 'phase-Q' in an HF/HCl residue of the Allende C3V meteorite, using the closed-system stepped etching technique developed by Wieler et al. (1986) and Benkert et al. (1988) to extract noble gases from the residue. The results yield precise values of element and isotope abundances of all five noble gases in phase-Q, which is the major carrier of the planetary gases in carbonaceous chondrites. It was found that Ne-Q and Xe-Q in Allende are very similar to trapped gases in ureilites and in oxidizable carriers in several classes of ordinary chandrites, indicating that Q-gases are present in the formation locations of all these meteorites.

  19. Removal of uranium from aqueous HF solutions

    DOEpatents

    Pulley, Howard; Seltzer, Steven F.

    1980-01-01

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

  20. Modeling Wet Chemical Etching of Surface Flaws on Fused Silica

    SciTech Connect

    Feit, M D; Suratwala, T I; Wong, L L; Steele, W A; Miller, P E; Bude, J D

    2009-10-28

    Fluoride-based wet chemical etching of fused silica optical components is useful to open up surface fractures for diagnostic purposes, to create surface topology, and as a possible mitigation technique to remove damaged material. To optimize the usefulness of etching , it is important to understand how the morphology of etched features changes as a function of the amount of material removed. In this study, we present two geometric etch models that describe the surface topology evolution as a function of the amount etched. The first model, referred to as the finite-difference etch model, represents the surface as an array of points in space where at each time-step the points move normal to the local surface. The second model, referred to as the surface area-volume model, more globally describes the surface evolution relating the volume of material removed to the exposed surface area. These etch models predict growth and coalescence of surface fractures such as those observed on scratches and ground surfaces. For typical surface fractures, simulations show that the transverse growth of the cracks at long etch times scales with the square root of etch time or the net material removed in agreement with experiment. The finite-difference etch model has also been applied to more complex structures such as the etching of a CO{sub 2} laser-mitigated laser damage site. The results indicate that etching has little effect on the initial morphology of this site implying little change in downstream scatter and modulation characteristics upon exposure to subsequent high fluence laser light. In the second part of the study, the geometric etch model is expanded to include fluid dynamics and mass transport. This later model serves as a foundation for understanding related processes such as the possibility of redeposition of etch reaction products during the etching, rinsing or drying processes.

  1. Coalescence of silver clusters by immersion in diluted HF solution

    SciTech Connect

    Milazzo, R. G.; Mio, A. M.; D’Arrigo, G.; Spinella, C.; Grimaldi, M. G.; Rimini, E.

    2015-07-14

    The galvanic displacement deposition of silver on H-terminated Si (100) in the time scale of seconds is instantaneous and characterized by a cluster density of 10{sup 11}-10{sup 12} cm{sup −2}. The amount of deposited Ag follows a t{sup 1/2} dependence in agreement with a Cottrell diffusion limited mechanism. At the same time, during the deposition, the cluster density reduces by a factor 5. This behavior is in contrast with the assumption of immobile clusters. We show in the present work that coalescence and aggregation occur also in the samples immersed in the diluted hydrofluoric acid (HF) solution without the presence of Ag{sup +}. Clusters agglomerate according to a process of dynamic coalescence, typical of colloids, followed by atomic redistribution at the contact regions with the generation of multiple internal twins and stacking-faults. The normalized size distributions in terms of r/r{sub mean} follow also the prediction of the Smoluchowski ripening mechanism. No variation of the cluster density occurs for samples immersed in pure H{sub 2}O solution. The different behavior might be associated to the strong attraction of clusters to oxide-terminated Si surface in presence of water. The silver clusters are instead weakly bound to hydrophobic H-terminated Si in presence of HF. HF causes then the detachment of clusters and a random movement on the silicon surface with mobility of about 10{sup −13} cm{sup 2}/s. Attractive interaction (probably van der Waals) among particles promotes coarsening.

  2. The microwave spectrum and properties of the propyne-HF complex

    NASA Astrophysics Data System (ADS)

    Shea, J. A.; Bumgarner, R. E.; Henderson, Giles

    1984-05-01

    The microwave spectrum of the weakly bound propyne-HF/DF complex was recorded in the region between 6 and 16 GHz. The J=0-1 and J=1-2 a-dipole lines, each with a torsional counterpart due to internal rotation of the methyl top, were observed. The spectrum was characteristic of a distorted T-shaped asymmetric top exhibiting torsional splitting caused by a low barrier to internal rotation of the methyl top relative to the propyne-HF frame. Deuterium substitution of HF confirms that the acidic hydrogen of HF is located between the F atom and the propyne triple bond. The spectroscopic constants given below are consistent with the fluorine atom's being displaced toward the methyl group from a line perpendicular to and bisecting the propyne triple bond, suggesting a weak hydrogen bond interaction between fluorine and the methyl protons. UFRULE2 Propyne-HF Propyne-DF UFRULE1 A(MHz) 8722(9) 8644(12) B(MHz) 3919(3) 3886(6) C(MHz) 2753(1) 2728(2) Daa(kHz) ṡ ṡ ṡ -23(6) χaa(kHz) ṡ ṡ ṡ 163(6) V3(cm-1) 100(50) 100(50) UFRULE2

  3. Reactive sputter etching of magnetic materials in an HCl plasma

    SciTech Connect

    Heijman, M.G.J.

    1988-12-01

    In an rf low-pressure HCl plasma NiZn and MnZn ferrite etch up to five times as fast as in an otherwise comparable Ar sputter etch process. Selectivity towards Al/sub 2/O/sub 3/ as an etch mask is of order 10. No redeposited material and very little trenching are seen. The etched slopes have a steepness up to 70/sup 0/, resulting from redeposition and enhanced etching on the sidewalls. This is shown by experiments and by computer simulations.

  4. Research on wet etching at MEMS torsion mirror optical switch

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Wang, Jifeng; Luo, Yuan

    2002-10-01

    Etching is a very important technique at MEMS micromachining. There are two kinds of etching processing, the one is wet etching and the other is dry etching. In this paper, wet selective etching with KOH and tetramethyl ammonium hydroxide (TMAH) etchants is researched in order to make a torsion mirror optical switch. The experiments results show that TMAH with superphosphate is more suitable at MEMS torsion mirror optical switch micromachining than KOH, and it also has good compatibility with IC processing. Also our experiments results show some different with other reported research data. More work will be done to improve the yield rate of MEMS optical switch.

  5. ICP etching of GaAs via hole contacts

    SciTech Connect

    Shul, R.J.; Baca, A.G.; Briggs, R.D.; McClellan, G.B.; Pearton, S.J.; Constantine, C.

    1996-09-01

    Deep etching of GaAs is a critical process step required for many device applications including fabrication of through-substrate via holes for monolithic microwave integrated circuits (MMICs). Use of high-density plasmas, including inductively coupled plasmas (ICP), offers an alternative approach to etching vias as compared to more conventional parallel plate reactive ion etch systems. This paper reports ICP etching of GaAs vias at etch rates of about 5.3 {mu}m/min with via profiles ranging from highly anistropic to conical.

  6. Chemically assisted ion beam etching of polycrystalline and (100)tungsten

    NASA Technical Reports Server (NTRS)

    Garner, Charles

    1987-01-01

    A chemically assisted ion-beam etching technique is described which employs an ion beam from an electron-bombardment ion source and a directed flux of ClF3 neutrals. This technique enables the etching of tungsten foils and films in excess of 40 microns thick with good anisotropy and pattern definition over areas of 30 sq mm, and with a high degree of selectivity. (100) tungsten foils etched with this process exhibit preferred-orientation etching, while polycrystalline tungsten films exhibit high etch rates. This technique can be used to pattern the dispenser cathode surfaces serving as electron emitters in traveling-wave tubes to a controlled porosity.

  7. Development of Wet-Etching Tools for Precision Optical Figuring

    SciTech Connect

    Rushford, M C; Dixit, S N; Hyde, R; Britten, J A; Nissen, J; Aasen, M; Toeppen, J; Hoaglan, C; Nelson, C; Summers, L; Thomas, I

    2004-01-27

    This FY03 final report on Wet Etch Figuring involves a 2D thermal tool. Its purpose is to flatten (0.3 to 1 mm thickness) sheets of glass faster thus cheaper than conventional sub aperture tools. An array of resistors on a circuit board was used to heat acid over the glass Optical Path Difference (OPD) thick spots and at times this heating extended over the most of the glass aperture. Where the acid is heated on the glass it dissolves faster. A self-referencing interferometer measured the glass thickness, its design taking advantage of the parallel nature and thinness of these glass sheets. This measurement is used in close loop control of the heating patterns of the circuit board thus glass and acid. Only the glass and acid were to be moved to make the tool logistically simple to use in mass production. A set of 4-circuit board, covering 80 x 80-cm aperture was ordered, but only one 40 x 40-cm board was put together and tested for this report. The interferometer measurement of glass OPD was slower than needed on some glass profiles. Sometimes the interference fringes were too fine to resolve which would alias the sign of the glass thickness profile. This also caused the phase unwrapping code (FLYNN) to struggle thus run slowly at times taking hours, for a 10 inch square area. We did extensive work to improve the speed of this code. We tried many different phase unwrapping codes. Eventually running (FLYNN) on a farm of networked computers. Most of the work reported here is therefore limited to a 10-inch square aperture. Researched into fabricating a better interferometer lens from Plexiglas so to have less of the scattered light issues of Fresnel lens groves near field scattering patterns, this set the Nyquest limit. There was also a problem with the initial concept of wetting the 1737 glass on its bottom side with acid. The wetted 1737 glass developed an Achromatic AR coating, spoiling the reflection needed to see glass thickness interference fringes. In response

  8. Porous siliconformation and etching process for use in silicon micromachining

    DOEpatents

    Guilinger, Terry R.; Kelly, Michael J.; Martin, Jr., Samuel B.; Stevenson, Joel O.; Tsao, Sylvia S.

    1991-01-01

    A reproducible process for uniformly etching silicon from a series of micromechanical structures used in electrical devices and the like includes providing a micromechanical structure having a silicon layer with defined areas for removal thereon and an electrochemical cell containing an aqueous hydrofluoric acid electrolyte. The micromechanical structure is submerged in the electrochemical cell and the defined areas of the silicon layer thereon are anodically biased by passing a current through the electrochemical cell for a time period sufficient to cause the defined areas of the silicon layer to become porous. The formation of the depth of the porous silicon is regulated by controlling the amount of current passing through the electrochemical cell. The micromechanical structure is then removed from the electrochemical cell and submerged in a hydroxide solution to remove the porous silicon. The process is subsequently repeated for each of the series of micromechanical structures to achieve a reproducibility better than 0.3%.

  9. Si etching with reactive neutral beams of very low energy

    SciTech Connect

    Hara, Yasuhiro; Hamagaki, Manabu; Mise, Takaya; Iwata, Naotaka; Hara, Tamio

    2014-12-14

    A Si etching process has been investigated with reactive neutral beams (NBs) extracted using a low acceleration voltage of less than 100 V from CF{sub 4} and Ar mixed plasmas. The etched Si profile shows that the etching process is predominantly anisotropic. The reactive NB has a constant Si etching rate in the acceleration voltage range from 20 V to 80 V. It is considered that low-energy NBs can trigger Si etching because F radicals adsorb onto the Si surface and weaken Si–Si bonds. The etching rate per unit beam flux is 33 times higher than that with Ar NB. These results show that the low-energy reactive NB is useful for damage-free high speed Si etching.

  10. Properties of TNF-1 track etch detector

    NASA Astrophysics Data System (ADS)

    Ogura, K.; Asano, M.; Yasuda, N.; Yoshida, M.

    2001-12-01

    We have developed a new plastic track etch detector labeled TNF-1, which is the copolymer of CR-39 monomer with N-isopropylacrylamide (NIPAAm). It was found that copoly(CR-39/NIPAAm/ antioxidant) composed in weight ratio of 99/1/0.01 is highly sensitive to low linear energy transfer (LET) particles in the region below 10 keV/μm of LET 200 eV. TNF-1 is the most sensitive plastic track etch detector reported so far and is able to record normally incident protons up to the energy of 27 MeV. This paper gives results of our studies on the track responses of TNF-1 as well as the brief results obtained by the performance tests of TNF-1 in various dosimetric experiments such as space radiation dosimetry, dosimetry for heavy ion cancer therapy and neutron dosimetry. These results are compared with the results obtained for CR-39 track detectors.

  11. Theoretical study of reaction channels for the weakly bound complex systems created with HF, CO2, and various amines

    NASA Astrophysics Data System (ADS)

    Chen, Shyh-Jong; Chen, Cheng; Hong, Yaw-Shun

    This investigation conducted reaction channels of weakly bound complexes CO2...HF, CO2...HF...NH3, CO2...HF...NH2CH3, CO2...HF...NH(CH3)2, and CO2...HF...N(CH3)3 systems, using the Gaussian 98 package at the B3LYP/6-311++G(3df,2pd) level. The syn-fluoroformic acid or syn-fluoroformic acid plus NH3 or amine conformers are more stable than the related anti-fluoroformic acid or anti-fluoroformic acid plus NH3 or amine conformers. However, the above-mentioned weakly bound complexes are more stable than both the related syn- and anti-type fluoroformic acid or acid plus NH3 or amine conformers and their related decomposed into CO2 + HF or CO2 + NHR3F (RH, CH3) combined molecular systems. Five reaction channels of the weakly bound complexes exist. Each channel includes weakly bound complexes and their related above-mentioned systems. Moreover, each reaction channel contains two transition states. The transition state between the weakly bound complex and anti-fluoroformic acid type structure (T13) is significantly higher than that of internal rotation (T23) between syn- and anti-FCO2H (or FCO2H...NR3) structures. However, the above-mentioned T13 can significantly decrease its energy by adding the third molecule NH3 or NR3 (RH or CH3). The more CH3 that is substituted in NR3 of the reaction channel, the lower the activation energy of the transition state in the system is affected.

  12. Origin of Excess 176Hf in Meteorites

    NASA Astrophysics Data System (ADS)

    Thrane, Kristine; Connelly, James N.; Bizzarro, Martin; Meyer, Bradley S.; The, Lih-Sin

    2010-07-01

    After considerable controversy regarding the 176Lu decay constant (λ176Lu), there is now widespread agreement that (1.867 ± 0.008) × 10-11 yr-1 as confirmed by various terrestrial objects and a 4557 Myr meteorite is correct. This leaves the 176Hf excesses that are correlated with Lu/Hf elemental ratios in meteorites older than ~4.56 Ga meteorites unresolved. We attribute 176Hf excess in older meteorites to an accelerated decay of 176Lu caused by excitation of the long-lived 176Lu ground state to a short-lived 176m Lu isomer. The energy needed to cause this transition is ascribed to a post-crystallization spray of cosmic rays accelerated by nearby supernova(e) that occurred after 4564.5 Ma. The majority of these cosmic rays are estimated to penetrate accreted material down to 10-20 m, whereas a small fraction penetrate as deep as 100-200 m, predicting decreased excesses of 176Hf with depth of burial at the time of the irradiation event.

  13. Shapes of agglomerates in plasma etching reactors

    SciTech Connect

    Huang, F.Y.; Kushner, M.J.

    1997-05-01

    Dust particle contamination of wafers in reactive ion etching (RIE) plasma tools is a continuing concern in the microelectronics industry. It is common to find that particles collected on surfaces or downstream of the etch chamber are agglomerates of smaller monodisperse spherical particles. The shapes of the agglomerates vary from compact, high fractal dimension structures to filamentary, low fractal dimension structures. These shapes are important with respect to the transport of particles in RIE tools under the influence electrostatic and ion drag forces, and the possible generation of polarization forces. A molecular dynamics simulation has been developed to investigate the shapes of agglomerates in plasma etching reactors. We find that filamentary, low fractal dimension structures are generally produced by smaller ({lt}100s nm) particles in low powered plasmas where the kinetic energy of primary particles is insufficient to overcome the larger Coulomb repulsion of a compact agglomerate. This is analogous to the diffusive regime in neutral agglomeration. Large particles in high powered plasmas generally produce compact agglomerates of high fractal dimension, analogous to ballistic agglomeration of neutrals. {copyright} {ital 1997 American Institute of Physics.}

  14. Etching of moldavities under natural conditions

    NASA Technical Reports Server (NTRS)

    Knobloch, V.; Knoblochova, Z.; Urbanec, Z.

    1983-01-01

    The hypothesis that a part of the lechatellierites which originated by etching from a basic moldavite mass became broken off after deposition of moldavite in the sedimentation layer is advanced. Those found close to the original moldavite were measured for statistical averaging of length. The average length of lechatelierite fibers per cubic mm of moldavite mass volume was determined by measurement under a microscope in toluene. The data were used to calculate the depth of the moldavite layer that had to be etched to produce the corresponding amount of lechatelierite fragments. The calculations from five "fields" of moldavite surface, where layers of fixed lechatelierite fragments were preserved, produced values of 2.0, 3.1, 3.5, 3.9 and 4.5. Due to inadvertent loss of some fragments the determined values are somewhat lower than those found in references. The difference may be explained by the fact that the depth of the layer is only that caused by etching after moldavite deposition.

  15. Photoluminescence of etched SiC nanowires

    NASA Astrophysics Data System (ADS)

    Stewart, Polite D., Jr.; Rich, Ryan; Zerda, T. W.

    2010-10-01

    SiC nanowires were produced from carbon nanotubes and nanosize silicon powder in a tube furnace at temperatures between 1100^oC and 1350^oC. SiC nanowires had average diameter of 30 nm and very narrow size distribution. The compound possesses a high melting point, high thermal conductivity, and excellent wear resistance. The surface of the SiC nanowires after formation is covered by an amorphous layer. The composition of that layer is not fully understood, but it is believed that in addition to amorphous SiC it contains various carbon and silicon compounds, and SiO2. The objective of the research was to modify the surface structure of these SiC nanowires. Modification of the surface was done using the wet etching method. The etched nanowires were then analyzed using Fourier Transform Infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and photoluminescence (PL). FTIR and TEM analysis provided valid proof that the SiC nanowires were successfully etched. Also, the PL results showed that the SiC nanowire core did possess a fluorescent signal.

  16. Pattern inspection of etched multilayer EUV mask

    NASA Astrophysics Data System (ADS)

    Iida, Susumu; Hirano, Ryoichi; Amano, Tsuyoshi; Watanabe, Hidehiro

    2015-10-01

    Patterned mask inspection for an etched multilayer (ML) EUV mask was investigated. In order to optimize the mask structure from the standpoint of not only a pattern inspection by using a projection electron microscope (PEM), but also by considering the other fabrication processes using electron beam (EB) techniques such as CD metrology and mask repair, we employed a conductive layer between the ML and substrate. By measuring the secondary electron emission coefficients (SEECs) of the candidate materials for conductive layer, we evaluated the image contrast and the influence of charging effect. In the cases of 40-pair-ML, 16 nm sized extrusion and intrusion defects were found to be detectable more than 10 sigma in hp 44 nm, 40 nm, and 32 nm line and space (L/S) patterns. Reducing 40-pair-ML to 20-pair-ML degraded the image contrast and the defect detectability. However, by selecting B4C as a conductive layer, 16 nm sized defects remained detectable. These defects were also detected after the etched part was refilled with Si. Moreover, the simulation shows a high sensitivity for detecting the residual-type defects (etching residues). A double layer structure with 2.5-nm-thik B4C on metal film used as a conductive layer was found to have sufficient conductivity and also was found to be free from the surface charging effect and influence of native oxide.

  17. Laser etching of polymer masked leadframes

    NASA Astrophysics Data System (ADS)

    Ho, C. K.; Man, H. C.; Yue, T. M.; Yuen, C. W.

    1997-02-01

    A typical electroplating production line for the deposition of silver pattern on copper leadframes in the semiconductor industry involves twenty to twenty five steps of cleaning, pickling, plating, stripping etc. This complex production process occupies large floor space and has also a number of problems such as difficulty in the production of rubber masks and alignment, generation of toxic fumes, high cost of water consumption and sometimes uncertainty on the cleanliness of the surfaces to be plated. A novel laser patterning process is proposed in this paper which can replace many steps in the existing electroplating line. The proposed process involves the application of high speed laser etching techniques on leadframes which were protected with polymer coating. The desired pattern for silver electroplating is produced by laser ablation of the polymer coating. Excimer laser was found to be most effective for this process as it can expose a pattern of clean copper substrate which can be silver plated successfully. Previous working of Nd:YAG laser ablation showed that 1.06 μm radiation was not suitable for this etching process because a thin organic and transparent film remained on the laser etched region. The effect of excimer pulse frequency and energy density upon the removal rate of the polymer coating was studied.

  18. Characteristics of HfO2/Hf-based bipolar resistive memories

    NASA Astrophysics Data System (ADS)

    Jinshun, Bi; Zhengsheng, Han

    2015-06-01

    Nano-scale Hf/HfO2-based resistive random-access-memory (RRAM) devices were fabricated. The cross-over between top and bottom electrodes of RRAM forms the metal-insulator-metal sandwich structure. The electrical responses of RRAM are studied in detail, including forming process, SET process and RESET process. The correlations between SET voltage and RESET voltage, high resistance state and low resistance state are discussed. The electrical characteristics of RRAM are in a strong relationship with the compliance current in the SET process. The conduction mechanism of nano-scale Hf/HfO2-based RRAM can be explained by the quantum point contact model. Project supported by the National Natural Science Foundation of China (Nos. 11179003, 61176095).

  19. Simultaneous observation of HF-enhanced plasma waves and HF-wave self-focusing

    SciTech Connect

    Frey, A.; Duncan, L.M.

    1984-07-01

    Intense HF-radiowaves of the ordinary mode transmitted from the ground enhance plasma waves near the reflection height. These have been extensively studied in the past by the use of Incohernt-Scatter-Radars. Intense HF-radiowaves propagating in the ionosphere also produce electron density irregularities with scale sizes much larger than the HF wavelength of approx.60 m. These have been observed by radio star intensity scintillations. For the past 2 years a new method was used at Arecibo, P.R. which allows radar- and scintillation-measurements at 430 MHz to be performed simultaneously along the same line of sight. The scale sizes deduced from the scintillation measurements are shorter than the scale sizes observed with the radar and are inconsistent with the HF-power density thresholds predicted by existing theories.

  20. [Advances in the research of treatment of hydrofluoric acid burn].

    PubMed

    Wang, Xin-gang; Zhang, Yuan-hai; Han, Chun-mao

    2013-08-01

    Hydrofluoric acid (HF) is one of the most common inorganic acids used widely in industrial circle. HF not only causes cutaneous burn, but also induces systemic toxicity by its unique injury mechanism. Accurate and timely diagnosis and treatment are critical after HF burns. To date, the strategies for treating HF burns have been developed, mainly including topical treatments and systematic support. However, there is no standard treatment strategy with wide acceptance in the world. This paper presents a comprehensive overview of the advances in the research of strategies for the treatment of HF burns.

  1. Texturing a pyramid-like structure on a silicon surface via the synergetic effect of copper and Fe(III) in hydrofluoric acid solution

    NASA Astrophysics Data System (ADS)

    Cao, Ming; Li, Shaoyuan; Deng, Jianxin; Li, Yuping; Ma, Wenhui; Zhou, Yang

    2016-05-01

    An innovative approach is proposed to texture a pyramid structure on a silicon surface via Cu-catalyzed chemical etching in the HF/FeCl3 system. The surface and cross-section morphologies of the formed pyramid structure were examined by scanning electron microscopy and atomic force microscopy. The results revealed that numerous silicon pyramid-like structures with hemlines of 0.1 ∼ 3 μm and height of 0.1 ∼ 2 μm are close together, and the top angle of the pyramid structure is 90°. Additionally, the systematic study of the effects of the etching time and the concentration of FeCl3 on the pyramid-like structures by the atom configuration model of silicon crystal faces demonstrated that the etching proceeds preferentially along the <1 0 0> directions of silicon. A formation mechanism of the pyramid-like structure is proposed. The results imply that the synergetic effect of Cu nanoparticles and Fe(III) could conveniently generate a pyramid-like architecture on the surface of silicon in hydrofluoric acid solution.

  2. Time-varying wetting behavior on copper wafer treated by wet-etching

    NASA Astrophysics Data System (ADS)

    Tu, Sheng-Hung; Wu, Chuan-Chang; Wu, Hsing-Chen; Cheng, Shao-Liang; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2015-06-01

    The wet cleaning process in semiconductor fabrication often involves the immersion of the copper wafer into etching solutions and thereby its surface properties are significantly altered. The wetting behavior of a copper film deposited on silicon wafer is investigated after a short dip in various etching solutions. The etchants include glacial acetic acid and dilute solutions of nitric acid, hydrofluoric acid, and tetramethylammonium hydroxide. It was found that in most cases a thin oxide layer still remains on the surface of as-received Cu wafers when they are subject to etching treatments. However, a pure Cu wafer can be obtained by the glacial acetic acid treatment and its water contact angle (CA) is about 45°. As the pure Cu wafer is placed in the ambient condition, the oxide thickness grows rapidly to the range of 10-20 Å within 3 h and the CA on the hydrophilic surface also rises. In the vacuum, it is surprising to find that the CA and surface roughness of the pure Cu wafer can grow significantly. These interesting results may be attributed to the rearrangement of surface Cu atoms to reduce the surface free energy.

  3. Steady-state damage profiles due to reactive ion etching and ion-assisted etching

    SciTech Connect

    Davis, R.J.; Jha, P.

    1995-03-01

    Ion damage of materials due to reactive ion etching and ion-assisted etching is formulated as a dynamic problem involving the etch rate, damage creation due to ions, diffusion, and ion range effects. The differential equation is solved in the steady-state assuming an exponentially decreasing damage creation function. The ratio {ital D}/{ital a}{epsilon}, where {ital D} is the damage coefficient, {ital a} the inherent depth of ion damage, and {epsilon} the etch rate is shown to be an important parameter determining the steady-state damage profile. Results are examined for situations in which the parameter is much less than or much greater than unity, corresponding to range- and diffusion-dominated profiles, respectively. In both situations, steady-state damage profiles will be quite sensitive to the etch rate of the surface. We suggest some experiments which may elucidate the separate contributions of ion channeling and diffusion to observed damage depth profiles. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}

  4. Etching characteristics of LiNbO{sub 3} in reactive ion etching and inductively coupled plasma

    SciTech Connect

    Ren, Z.; Yu, S.; Heard, P. J.; Marshall, J. M.; Thomas, P. A.

    2008-02-01

    The etching characteristics of congruent LiNbO{sub 3} single crystals including doped LiNbO{sub 3} and proton-changed LiNbO{sub 3} have been studied in reactive ion etching (RIE) and inductively coupled plasma (ICP) etching tools, using different recipes of gas mixtures. The effects of parameters including working pressure, RIE power, and ICP power are investigated and analyzed by measurement of etching depth, selectivity, uniformity, etched surface state, and sidewall profile by means of focused ion beam etching, energy-dispersive x-ray analysis, secondary ion mass spectroscopy, scanning electron microscopy, and surface profilometry. The effects of a sample carrier wafer coating have also been investigated. Optimized processes with high etching rates, good mask selectivity, and a near-vertical profile have been achieved. Ridge waveguides on proton-exchanged LiNbO{sub 3} have been fabricated and optically measured.

  5. Fabry-Pérot cavities based on chemical etching for high temperature and strain sensing

    NASA Astrophysics Data System (ADS)

    Tafulo, Paula A. R.; Jorge, P. A. S.; Santos, J. L.; Frazão, O.

    2011-05-01

    In this paper, two novel hybrid multimode/single mode fiber Fabry-Pérot (FP) cavities were compared. The cavities fabricated by chemical etching are presented as high temperature and strain sensors. In order to produce this FP cavity a single mode fiber was spliced to a graded index multimode fiber with 62.5 μm core diameter. The multimode fiber was cut approximately 150 μm away from the splice. Then the tip of the fiber containing the multimode fiber segment was dipped into a solution of 48% of HF during 8 minutes, creating a concavity due to the fact that the reaction between HF and the germanium doped fiber core is much faster than the reaction between HF and the pure silica cladding. By this method a concavity of approximately 100 μm deep was created at the fiber tip. Two different FP cavities can be fabricated. The first cavity is obtained when a spliced with an identical tip concavity fiber (Sensor A) and the second is created when a tip concavity is spliced to a single mode fiber (Sensor B). The Fabry-Perot cavities were tested as a high temperature sensor in the range between room temperature and 800°C and as strain sensors. A reversible shift of the interferometric peaks with temperature allowed to estimate a sensitivity of 0.75 +/- 0.03 pm/°C and 0.98 +/- 0.04 pm/°C for the sensor A and B respectively. For strain measurement sensor A demonstrated a sensitivity of 1.85 +/- 0.07 pm/μɛ and sensor B showed a sensitivity of 3.14 +/- 0.05 pm/μɛ. The sensors demonstrated the feasibility of low cost fiber optic sensors for high temperature and strain.

  6. Anisotropic Ta{sub 2}O{sub 5} waveguide etching using inductively coupled plasma etching

    SciTech Connect

    Muttalib, Muhammad Firdaus A. Chen, Ruiqi Y.; Pearce, Stuart J.; Charlton, Martin D. B.

    2014-07-01

    Smooth and vertical sidewall profiles are required to create low loss rib and ridge waveguides for integrated optical device and solid state laser applications. In this work, inductively coupled plasma (ICP) etching processes are developed to produce high quality low loss tantalum pentoxide (Ta{sub 2}O{sub 5}) waveguides. A mixture of C{sub 4}F{sub 8} and O{sub 2} gas are used in combination with chromium (Cr) hard mask for this purpose. In this paper, the authors make a detailed investigation of the etch process parameter window. Effects of process parameters such as ICP power, platen power, gas flow, and chamber pressure on etch rate and sidewall slope angle are investigated. Chamber pressure is found to be a particularly important factor, which can be used to tune the sidewall slope angle and so prevent undercut.

  7. NiCr etching in a reactive gas

    SciTech Connect

    Ritter, J.; Boucher, R.; Morgenroth, W.; Meyer, H. G.

    2007-05-15

    The authors have etched NiCr through a resist mask using Cl/Ar based chemistry in an electron cyclotron resonance etch system. The optimum gas mixture and etch parameters were found for various ratios of Ni to Cr, based on the etch rate, redeposits, and the etch ratio to the mask. The introduction of O{sub 2} into the chamber, which is often used in the etching of Cr, served to both increase and decrease the etch rate depending explicitly on the etching parameters. Etch rates of >50 nm min{sup -1} and ratios of >1 (NiCr:Mask) were achieved for NiCr (80:20). Pattern transfer from the mask into the NiCr was achieved with a high fidelity and without redeposits for a Cl/Ar mix of 10% Ar (90% Cl{sub 2}) at an etch rate of {approx_equal}50 nm min{sup -1} and a ratio of 0.42 (NiCr:ZEP 7000 e-beam mask)

  8. Influence of the doping level on the porosity of silicon nanowires prepared by metal-assisted chemical etching.

    PubMed

    Geyer, Nadine; Wollschläger, Nicole; Fuhrmann, Bodo; Tonkikh, Alexander; Berger, Andreas; Werner, Peter; Jungmann, Marco; Krause-Rehberg, Reinhard; Leipner, Hartmut S

    2015-06-19

    A systematic method to control the porosity of silicon nanowires is presented. This method is based on metal-assisted chemical etching (MACE) and takes advantage of an HF/H2O2 etching solution and a silver catalyst in the form of a thin patterned film deposited on a doped silicon wafer. It is found that the porosity of the etched nanowires can be controlled by the doping level of the wafer. For low doping concentrations, the wires are primarily crystalline and surrounded by only a very thin layer of porous silicon (pSi) layer, while for highly doped silicon, they are porous in their entire volume. We performed a series of controlled experiments to conclude that there exists a well-defined critical doping concentration separating the crystalline and porous regimes. Furthermore, transmission electron microscopy investigations showed that the pSi has also a crystalline morphology on a length scale smaller than the pore size, determined from positron annihilation lifetime spectroscopy to be mesoscopic. Based on the experimental evidence, we devise a theoretical model of the pSi formation during MACE and apply it for better control of the nanowire morphology.

  9. Synthesis of nanocrystals in KNb(Ge,Si)O{sub 5} glasses and chemical etching of nanocrystallized glass fibers

    SciTech Connect

    Enomoto, Itaru; Benino, Yasuhiko; Fujiwara, Takumi; Komatsu, Takayuki . E-mail: komatsu@chem.nagaokaut.ac.jp

    2006-06-15

    The nanocrystallization behavior of 25K{sub 2}O-25Nb{sub 2}O{sub 5}-(50-x)GeO{sub 2}-xSiO{sub 2} glasses with x=0,25,and50 (i.e., KNb(Ge,Si)O{sub 5} glasses) and the chemical etching behavior of transparent nanocrystallized glass fibers have been examined. All glasses show nanocrystallization, and the degree of transparency of the glasses studied depends on the heat treatment temperature. Transparent nanocrystallized glasses can be obtained if the glasses are heat treated at the first crystallization peak temperature. Transparent nanocrystallized glass fibers with a diameter of about 100{mu}m in 25K{sub 2}O-25Nb{sub 2}O{sub 5}-50GeO{sub 2} are fabricated, and fibers with sharpened tips (e.g., the taper length is about 450{mu}m and the tip angle is about 12{sup o}) are obtained using a meniscus chemical etching method, in which etching solutions of 10wt%-HF/hexane and 10M-NaOH/hexane are used. Although the tip (aperture size) has not a nanoscaled size, the present study suggests that KNb(Ge,Si)O{sub 5} nanocrystallized glass fibers have a potential for new near-field optical fiber probes with high refractive indices of around n=1.8 and high dielectric constants of around {epsilon}=58 (1kHz, room temperature)

  10. Electrolytic Transport Through Cylindrical Etched Pores in Polyethylene Terepthalate Track-Etched Membrane

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjeev; Chakarvarti, S. K.

    In the present work, electrolytic transport phenomena is studied for different electrolytes (LiCl, NaCl, KCl of different concentrations) at room temperature (25 ± 2°C) through etched pores with different diameters having cylindrical shape in track-etched membranes of polyethylene terepthalate (PET) with pore density of the order of 106/cm2. Electric potential has been used as the driving force. It has been observed that electrolytic transport through pores is different for different electrolytes, depending strongly on size of cations and is independent of size of anions. In the case of cylindrical pores, there has not been found appreciable change in forward and backward resistances.

  11. K = 6+ Isomers in Hf, yb and W Nuclei

    NASA Astrophysics Data System (ADS)

    Rath, Aswini Kumar; Walker, P. M.; Praharaj, C. R.; Xu, F. R.

    Using deformed Hartree-Fock and angular momentum projection (PHF) technique we try to understand the intrinsic structure and the systematics in the life times of K = 6+ isomers in the Hf isotopes (in 172-178Hf nuclei) and N = 104 Yb, Hf and W isotones. The band structure in 172Hf is reasonably well reproduced. The variation in the B(E2;2+ → 0+) values in the Hf isotopes as well as N = 104 isotones are well reproduced. The calculated K-forbidden E2 transition probabilities from the isomer bandheads to the 4+ yrast states qualitatively explain the variation of the lifetimes with N and Z.

  12. Chemical etching and EDAX analysis of beryllium-free nickel-chromium ceramo-metal alloy.

    PubMed

    Atta, O M; Mosleh, I E; Shehata, M T

    1995-10-01

    A chemical etching technique is described for producing etch patterns in beryllium-free nickel chromium ceramo-metal alloy. Disc-shaped samples were chemically etched, evaluated with SEM and analysed by the EDAX technique. Scanning electron micrographs revealed, profound retentive cavities. The EDAX analysis provided a comprehensive interpretation of the etch mechanism. The obtained results show that the developed chemical etching has the potential to produce a highly retentive etched surface with less problematic and less technique sensitive than electrolytic etching.

  13. Interface engineered HfO2-based 3D vertical ReRAM

    NASA Astrophysics Data System (ADS)

    Hudec, Boris; Wang, I.-Ting; Lai, Wei-Li; Chang, Che-Chia; Jančovič, Peter; Fröhlich, Karol; Mičušík, Matej; Omastová, Mária; Hou, Tuo-Hung

    2016-06-01

    We demonstrate a double-layer 3D vertical resistive random access memory (ReRAM) stack implementing a Pt/HfO2/TiN memory cell. The HfO2 switching layer is grown by atomic layer deposition on the sidewall of a SiO2/TiN/SiO2/TiN/SiO2 multilayer pillar. A steep vertical profile was achieved using CMOS-compatible TiN dry etching. We employ in situ TiN bottom interface engineering by ozone, which results in (a) significant forming voltage reduction which allows for forming-free operation in AC pulsed mode, and (b) non-linearity tuning of low resistance state by current compliance during Set operation. The vertical ReRAM shows excellent read and write disturb immunity between vertically stacked cells, retention over 104 s and excellent switching stability at 400 K. Endurance of 107 write cycles was achieved using 100 ns wide AC pulses while fast switching speed using pulses of only 10 ns width is also demonstrated. The active switching region was evaluated to be located closer to the bottom interface which allows for the observed high endurance.

  14. Prediction of plasma-induced damage distribution during silicon nitride etching using advanced three-dimensional voxel model

    SciTech Connect

    Kuboi, Nobuyuki Tatsumi, Tetsuya; Kinoshita, Takashi; Shigetoshi, Takushi; Fukasawa, Masanaga; Komachi, Jun; Ansai, Hisahiro

    2015-11-15

    The authors modeled SiN film etching with hydrofluorocarbon (CH{sub x}F{sub y}/Ar/O{sub 2}) plasma considering physical (ion bombardment) and chemical reactions in detail, including the reactivity of radicals (C, F, O, N, and H), the area ratio of Si dangling bonds, the outflux of N and H, the dependence of the H/N ratio on the polymer layer, and generation of by-products (HCN, C{sub 2}N{sub 2}, NH, HF, OH, and CH, in addition to CO, CF{sub 2}, SiF{sub 2}, and SiF{sub 4}) as ion assistance process parameters for the first time. The model was consistent with the measured C-F polymer layer thickness, etch rate, and selectivity dependence on process variation for SiN, SiO{sub 2}, and Si film etching. To analyze the three-dimensional (3D) damage distribution affected by the etched profile, the authors developed an advanced 3D voxel model that can predict the time-evolution of the etched profile and damage distribution. The model includes some new concepts for gas transportation in the pattern using a fluid model and the property of voxels called “smart voxels,” which contain details of the history of the etching situation. Using this 3D model, the authors demonstrated metal–oxide–semiconductor field-effect transistor SiN side-wall etching that consisted of the main-etch step with CF{sub 4}/Ar/O{sub 2} plasma and an over-etch step with CH{sub 3}F/Ar/O{sub 2} plasma under the assumption of a realistic process and pattern size. A large amount of Si damage induced by irradiated hydrogen occurred in the source/drain region, a Si recess depth of 5 nm was generated, and the dislocated Si was distributed in a 10 nm deeper region than the Si recess, which was consistent with experimental data for a capacitively coupled plasma. An especially large amount of Si damage was also found at the bottom edge region of the metal–oxide–semiconductor field-effect transistors. Furthermore, our simulation results for bulk fin-type field-effect transistor side-wall etching

  15. Soft X-ray photoemission studies of Hf oxidation

    SciTech Connect

    Suzer, S.; Sayan, S.; Banaszak Holl, M.M.; Garfunkel, E.; Hussain, Z.; Hamdan, N.M.

    2002-02-01

    Soft X-Ray Photoemission Spectroscopy using surface sensitive Synchrotron Radiation has been applied to accurately determine the binding energy shifts and the valence band offset of the HfO2 grown on Hf metal. Charging of oxide films under x-rays (or other irradiation) is circumvented by controlled and sequential in-situ oxidation. Photoemission results show the presence of metallic Hf (from the substrate) with the 4f7/2 binding energy of 14.22 eV, fully oxidized Hf (from HfO2) with the 4f7/2 binding energy of 18.16 eV, and at least one clear suboxide peak. The position of the valence band of HfO2 with respect to the Hf(m) Fermi level is determined as 4.05 eV.

  16. Spray etching 2 µm features in 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sudipta; Ujihara, Motoki; Lee, Dong Gun; Chen, Jerry; Lei, Stanley; Carman, Greg P.

    2006-12-01

    304 stainless steel samples were patterned with either a photoresist (PR) mask or a silicon nitride (Si3Ni4) mask and then subjected to either wet immersion etching or spray etching techniques with ferric chloride (FeCl3). The silicon nitride mask provides much better adhesion to the stainless steel substrate resulting in less undercut compared to the PR mask. When a silicon nitride mask was subjected to spray etching, better adhesion and less undercut enabled features as small as 1.8 µm with an etch depth of 5.6 µm. This is an order of magnitude smaller than current spray etching techniques (20-50 µm) used in the steel industry. This procedure will allow spray etching features for batch fabrication for a variety of metals including steels, aluminum, nickel-based alloys and copper-based alloys with microscale resolution.

  17. Experiment and Results on Plasma Etching of SRF cavities

    SciTech Connect

    Upadhyay, Janardan; Im, Do; Peshl, J.; Vuskovic, Leposova; Popovic, Svetozar; Valente, Anne-Marie; Phillips, H. Lawrence

    2015-09-01

    The inner surfaces of SRF cavities are currently chemically treated (etched or electropolished) to achieve the state of the art RF performance. We designed an apparatus and developed a method for plasma etching of the inner surface for SRF cavities. The process parameters (pressure, power, gas concentration, diameter and shape of the inner electrode, temperature and positive dc bias at inner electrode) are optimized for cylindrical geometry. The etch rate non-uniformity has been overcome by simultaneous translation of the gas point-of-entry and the inner electrode during the processing. A single cell SRF cavity has been centrifugally barrel polished, chemically etched and RF tested to establish a baseline performance. This cavity is plasma etched and RF tested afterwards. The effect of plasma etching on the RF performance of this cavity will be presented and discussed.

  18. ECR, ICP, and RIE plasma etching of GaN

    SciTech Connect

    Shul, R.J.; McClellan, G.B.; Rieger, D.J.; Hafich, M.J.

    1996-06-01

    The group III-nitrides continue to generate interest due to their wide band gaps and high dielectric constants. These materials have made significant impact on the compound semiconductor community as blue and ultraviolet light emitting diodes (LEDs). Realization of more advanced devices; including lasers and high temperature electronics, requires dry etch processes which are well controlled, smooth, highly anisotropic and have etch rates exceeding 0.5 {mu}m/min. In this paper, we compare electron cyclotron resonance (ECR), inductively coupled plasma (ICP), and reactive ion etch (RIE) etch results for GaN. These are the first ICP etch results reported for GaN. We also report ECR etch rates for GaN as a function of growth technique.

  19. Reduction of oxide microtrenching by electron beam assisted etching

    NASA Astrophysics Data System (ADS)

    Watanabe, M.; Shaw, D. M.; Collins, G. J.

    2000-10-01

    High density plasma etching of submicron wide oxide trenches often results in non-ideal etched features. For example, microtrenching is the result of higher etch rate near the side wall as compared to the center of the trench. Herein, we apply a previously reported[1] high energy (100 - 900 eV) electron beam directed at the etching wafer surface to reduce microtrenching during the etching of 0.5 micron wide silicon dioxide (SiO2) trench patterns in an inductively coupled fluorocarbon plasma. The directed electron beam neutralizes the positive charge buildup at the bottom of the trench and reduces the microtrench formation. Scanning Electron Microscopy (SEM) images of features etched with and without the electron beam show that the electron beam is effective in reducing microtrenching. [1] D. M. Shaw, M. Watanabe, G. J. Collins, and H. Sugai, Jpn. J. Appl. Phys. 38, 87 (1999).

  20. The WISP/HF system for Spacelab

    NASA Technical Reports Server (NTRS)

    James, H. G.

    1980-01-01

    The high frequency part of the waves in space plasmas system, WISP/HF, is a flexible shuttle Spacelab instrument for transmitting, receiving, and processing signals in the 0.3 to 30 MHz range. It permits a wide range of plasma wave experiments in the ionosphere including studies of the transmitting antenna, fundamentals of electromagnetic (EM) and electrostatic (ES) waves in magnetoplasmas, instabilities and nonlinearities, and remote sounding of ionospheric structure. Collaborative investigations involving other WISP equipment (e.g., antenna and propagation studies with the WISP/VLF system) or other Spacelab facilities (e.g., beam plasma interactions using charged particle guns) are envisaged. A few specific examples illustrate the relevance of WISP/HF to current scientific interest. The overall goal is to help build a comprehensive understanding of plasmaspheric wave physics through group studies.

  1. Studies of dispersion energy in hydrogen-bonded systems. H2O-HOH, H2O-HF, H3N-HF, HF-HF

    NASA Astrophysics Data System (ADS)

    Szcześniak, M. M.; Scheiner, Steve

    1984-02-01

    Dispersion energy is calculated in the systems H2O-HOH, H2O-HF, H3N-HF, and HF-HF as a function of the intermolecular separation using a variety of methods. M≂ller-Plesset perturbation theory to second and third orders is applied in conjunction with polarized basis sets of 6-311G** type and with an extended basis set including a second set of polarization functions (DZ+2P). These results are compared to a multipole expansion of the dispersion energy, based on the Unsöld approximation, carried out to the inverse tenth power of the intermolecular distance. Pairwise evaluation is also carried out using both atom-atom and bond-bond formulations. The MP3/6-311G** results are in generally excellent accord with the leading R-6 term of the multipole expansion. This expansion, if carried out to the R-10 term, reproduces extremely well previously reported dispersion energies calculated via variation-perturbation theory. Little damping of the expansion is required for intermolecular distances equal to or greater than the equilibrium separation. Although the asymptotic behavior of the MP2 dispersion energy is somewhat different than that of the other methods, augmentation of the basis set by a second diffuse set of d functions leads to quite good agreement in the vicinity of the minima. Both the atom-atom and bond-bond parametrization schemes are in good qualitative agreement with the other methods tested. All approaches produce similar dependence of the dispersion energy upon the angular orientation between the two molecules involved in the H bond.

  2. Ion beam sputter etching and deposition of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.

    1978-01-01

    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanisms and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.

  3. Etched-multilayer phase shifting masks for EUV lithography

    DOEpatents

    Chapman, Henry N.; Taylor, John S.

    2005-04-05

    A method is disclosed for the implementation of phase shifting masks for EUV lithography. The method involves directly etching material away from the multilayer coating of the mask, to cause a refractive phase shift in the mask. By etching into the multilayer (for example, by reactive ion etching), rather than depositing extra material on the top of the multilayer, there will be minimal absorption loss associated with the phase shift.

  4. Ion beam sputter etching and deposition of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.

    1978-01-01

    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanism and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.

  5. Photoinduced laser etching of a diamond surface

    SciTech Connect

    Kononenko, V V; Komlenok, M S; Pimenov, S M; Konov, V I

    2007-11-30

    Nongraphitising ablation of the surface of a natural diamond single crystal irradiated by nanosecond UV laser pulses is studied experimentally. For laser fluences below the diamond graphitisation threshold, extremely low diamond etching rates (less than 1nm/1000 pulses) are obtained and the term nanoablation is used just for this process. The dependence of the nanoablation rate on the laser fluence is studied for samples irradiated both in air and in oxygen-free atmosphere. The effect of external heating on the nanoablation rate is analysed and a photochemical mechanism is proposed for describing it. (interaction of laser radiation with matter. laser plasma)

  6. SERVE-HF: More Questions Than Answers.

    PubMed

    Javaheri, Shahrokh; Brown, Lee K; Randerath, Winfried; Khayat, Rami

    2016-04-01

    The recent online publication of the SERVE-HF trial that evaluated the effect of treating central sleep apnea (CSA) with an adaptive servoventilation (ASV) device in patients with heart failure and reduced ejection fraction (HFrEF) has raised serious concerns about the safety of ASV in these patients. Not only was ASV ineffective but post hoc analysis found excess cardiovascular mortality in treated patients. The authors cited as one explanation an unfounded notion that CSA is a compensatory mechanism with a protective effect in HFrEF patients. We believe that there are several possible considerations that are more likely to explain the results of SERVE-HF. In this commentary, we consider methodological issues including the use of a previous-generation ASV device that constrained therapeutic settings to choices that are no longer in wide clinical use. Patient selection, data collection, and treatment adherence as well as group crossovers were not discussed in the trial as potential confounding factors. We have developed alternative reasons that could potentially explain the results and that can be explored by post hoc analysis of the SERVE-HF data. We believe that our analysis is of critical value to the field and of particular importance to clinicians treating these patients. PMID:26836904

  7. Anisotropic etching of Al by a directed Cl2 flux

    NASA Technical Reports Server (NTRS)

    Efremow, N. N.; Geis, M. W.; Mountain, R. W.; Lincoln, G. A.; Randall, J. N.

    1986-01-01

    A new Al etching technique is described that uses an ion beam from a Kaufman ion source and a directed Cl2 flux. The ion beam is used primarily to remove the native oxide and to allow the Cl2 to spontaneously react with the Al film forming volatile Al2Cl6. By controlling both the flux equivalent pressure of Cl2 and the ion beam current, this etching technique makes possible the anisotropic etching of Al with etch rates from 100 nm/min to nearly 10 microns/min with a high degree of selectivity.

  8. Influence of track-etching on polycarbonate membrane permittivity

    NASA Astrophysics Data System (ADS)

    Allaeys, J.-F.; Marcilhac, B.; Mage, J.-C.

    2007-06-01

    The complex dielectric permittivity of track-etched polycarbonate (PC) membranes is measured and compared with raw polymer membranes. Membranes at different steps of the track-etching process are compared. Dielectric loss is a key factor for microwave nanowired substrate devices, and better knowledge of the materials is necessary for choosing the most suited polymer for applications. Our experimental data on track-etched and raw PC are similar, and the PC dielectric loss at every track-etching step is lower than the raw polyimide dielectric loss.

  9. Physics and chemistry of complex oxide etching and redeposition control

    NASA Astrophysics Data System (ADS)

    Margot, Joëlle

    2012-10-01

    Since its introduction in the 1970s, plasma etching has become the universal method for fine-line pattern transfer onto thin films and is anticipated to remain so in foreseeable future. Despite many success stories, plasma etching processes fail to meet the needs for several of the newest materials involved in advanced devices for photonic, electronic and RF applications like ferroelectrics, electro-optic materials, high-k dielectrics, giant magnetoresistance materials and unconventional conductors. In this context, the work achieved over the last decade on the etching of multicomponent oxides thin films such as barium strontium titanate (BST), strontium titanate (STO) and niobate of calcium and barium (CBN) will be reviewed. These materials present a low reactivity with usual etching gases such as fluorinated and chlorinated gases, their etching is mainly governed by ion sputtering and reactive gases sometimes interact with surface materials to form compounds that inhibit etching. The etching of platinum will also be presented as an example of unconventional conductor materials for which severe redeposition limits the achievable etching quality. Finally, it will be shown how simulation can help to understand the etching mechanisms and to define avenues for higher quality patterning.

  10. Molecular Dynamics Simulations Of Nanometer-Scale Feature Etch

    SciTech Connect

    Vegh, J. J.; Graves, D. B.

    2008-09-23

    Molecular dynamics (MD) simulations have been carried out to examine fundamental etch limitations. Beams of Ar{sup +}, Ar{sup +}/F and CF{sub x}{sup +} (x = 2,3) with 2 nm diameter cylindrical confinement were utilized to mimic 'perfect' masks for small feature etching in silicon. The holes formed during etch exhibit sidewall damage and passivation as a result of ion-induced mixing. The MD results predict a minimum hole diameter of {approx}5 nm after post-etch cleaning of the sidewall.

  11. Room temperature formation of Hf-silicate layer by pulsed laser deposition with Hf-Si-O ternary reaction control

    NASA Astrophysics Data System (ADS)

    Hotta, Yasushi; Ueoka, Satoshi; Yoshida, Haruhiko; Arafune, Koji; Ogura, Atsushi; Satoh, Shin-ichi

    2016-10-01

    We investigated the room temperature growth of HfO2 layers on Si substrates by pulsed laser deposition under ultra-high vacuum conditions. The laser fluence (LF) during HfO2 layer growth was varied as a growth parameter in the experiments. X-ray photoemission spectroscopy (XPS) was used to observe the interface chemical states of the HfO2/Si samples produced by various LFs. The XPS results indicated that an interface Hf-silicate layer formed, even at room temperature, and that the thickness of this layer increased with increasing pulsed LF. Additionally, Hf-Si bonds were increasingly formed at the interface when the LF was more than 2 J/cm2. This bond formation process was related to decomposition of HfO2 to its atomic states of Hf and O by multiphoton photochemical processes for bandgap excitation of the HfO2 polycrystalline target. However, the Hf-Si bond content of the interface Hf-silicate layer is controllable under high LF conditions. The results presented here represent a practical contribution to the development of room temperature processing of Hf-compound based devices.

  12. Effect of chemical etching and aging in boiling water on the corrosion resistance of Nitinol wires with black oxide resulting from manufacturing process.

    PubMed

    Shabalovskaya, S; Rondelli, G; Anderegg, J; Simpson, B; Budko, S

    2003-07-15

    The effect of chemical etching in a HF/HNO(3) acid solution and aging in boiling water on the corrosion resistance of Nitinol wires with black oxide has been evaluated with the use of potentiodynamic, modified potentiostatic ASTM F746, and scratch tests. Scanning-electron microscopy, elemental XPS, and Auger analysis were employed to characterize surface alterations induced by surface treatment and corrosion testing. The effect of aging in boiling water on the temperatures of martensitic transformations and shape recovery was evaluated by means of measuring the wire electroresistance. After corrosion tests, as-received wires revealed uniformly cracked surfaces reminiscent of the stress-corrosion-cracking phenomenon. These wires exhibited negative breakdown potentials in potentiostatic tests and variable breakdown potentials in potentiodynamic tests (- 100 mV to + 400 mV versus SCE). Wires with treated surfaces did not reveal cracking or other traces of corrosion attacks in potentiodynamic tests up to + 900-1400-mV potentials and no pitting after stimulation at + 800 mV in potentiostatic tests. They exhibited corrosion behavior satisfactory for medical applications. Significant improvement of corrosion parameters was observed on the reverse scans in potentiodynamic tests after exposure of treated wires to potentials > 1000 mV. In scratch tests, the prepared surfaces repassivated only at low potentials, comparable to that of stainless steel. Tremendous improvement of the corrosion behavior of treated Nitinol wires is associated with the removal of defect surface material and the growth of stable TiO(2) oxide. The role of precipitates in the corrosion resistance of Nitinol-scratch repassivation capacity in particular-is emphasized in the discussion.

  13. Effect of C:F Deposition on Etching of SiCOH Low-k Films in CHF3 60 MHz/2 MHz Dual-Frequency Capacitively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Shi, Guofeng; Ye, Chao; Xu, Yijun; Huang, Hongwei; Yuan, Yuan; Ning, Zhaoyuan

    2010-08-01

    Effect of C:F deposition on SiCOH etching in a CHF3 dual-frequency capacitively couple plasma, driven by a high-frequency source of 60 MHz (HF) and a low-frequency source of 2 MHz (LF) simultaneously, is investigated. With the increase in LF power, the change of C:F layer from dense C:F layer to porous C:F layer and further to C:F filling gaps was observed, which led to the transition from films deposition to films etching. The change of C:F layer is related to the bombardment by energetic ions and CF2 concentration in the plasma. As the LF power increased to 35~40 W, the energetic ions and the low CF2 concentration led to a suppression of C:F deposition. Therefore, the SiCOH films can be etched at higher LF power.

  14. Total rock dissolution using ammonium bifluoride (NH4HF2) in screw-top Teflon vials: a new development in open-vessel digestion.

    PubMed

    Zhang, Wen; Hu, Zhaochu; Liu, Yongsheng; Chen, Haihong; Gao, Shan; Gaschnig, Richard M

    2012-12-18

    Complete sample digestion is a prerequisite for achieving reproducible and accurate analytical results for geological samples. Open-vessel acid digestions successfully dissolve mafic samples, but this method cannot achieve complete dissolution of felsic samples, because of the presence of refractory minerals such as zircon. In this study, an efficient and simplified digestion technique using the solid compound NH(4)HF(2) in a screw-top vial has been developed for multielement analysis of different types of rock samples. NH(4)HF(2) has a higher boiling point (239.5 °C) than conventional acids such as HF, HNO(3) and HCl, which allows for an elevated digestion temperature in open vessels, enabling the decomposition of refractory phases. Similar to HF, HNO(3) and HCl, ultrapure NH(4)HF(2) can be produced using a conventional PFA sub-boiling (heating and cooling) purification system. A digestion time of 2-3 h for 200 mg NH(4)HF(2) in a Savillex Teflon vial at 230 °C is sufficient to digest 50 mg of the felsic rock GSP-2, which is ~6 times faster than using conventional closed-vessel acid digestion at 190 °C (high-pressure PTFE digestion bomb). The price of a Savillex Teflon vial is far less than the price of a high-pressure PTFE digestion bomb (consisting of a PTFE inner vessel and an outer stainless steel pressure jacket). Moreover, the NH(4)HF(2)-open-vessel acid digestion is not hampered by the formation of insoluble fluorides. We have successfully applied the NH(4)HF(2)-open-vessel acid digestion to the digestion of a series of international geological reference materials, including mafic to felsic igneous rocks and shales. This method provides an effective, simple, economical, and comparatively safe dissolution method that combines the advantages of both the open- and closed-vessel digestion methods. PMID:23176404

  15. Total rock dissolution using ammonium bifluoride (NH4HF2) in screw-top Teflon vials: a new development in open-vessel digestion.

    PubMed

    Zhang, Wen; Hu, Zhaochu; Liu, Yongsheng; Chen, Haihong; Gao, Shan; Gaschnig, Richard M

    2012-12-18

    Complete sample digestion is a prerequisite for achieving reproducible and accurate analytical results for geological samples. Open-vessel acid digestions successfully dissolve mafic samples, but this method cannot achieve complete dissolution of felsic samples, because of the presence of refractory minerals such as zircon. In this study, an efficient and simplified digestion technique using the solid compound NH(4)HF(2) in a screw-top vial has been developed for multielement analysis of different types of rock samples. NH(4)HF(2) has a higher boiling point (239.5 °C) than conventional acids such as HF, HNO(3) and HCl, which allows for an elevated digestion temperature in open vessels, enabling the decomposition of refractory phases. Similar to HF, HNO(3) and HCl, ultrapure NH(4)HF(2) can be produced using a conventional PFA sub-boiling (heating and cooling) purification system. A digestion time of 2-3 h for 200 mg NH(4)HF(2) in a Savillex Teflon vial at 230 °C is sufficient to digest 50 mg of the felsic rock GSP-2, which is ~6 times faster than using conventional closed-vessel acid digestion at 190 °C (high-pressure PTFE digestion bomb). The price of a Savillex Teflon vial is far less than the price of a high-pressure PTFE digestion bomb (consisting of a PTFE inner vessel and an outer stainless steel pressure jacket). Moreover, the NH(4)HF(2)-open-vessel acid digestion is not hampered by the formation of insoluble fluorides. We have successfully applied the NH(4)HF(2)-open-vessel acid digestion to the digestion of a series of international geological reference materials, including mafic to felsic igneous rocks and shales. This method provides an effective, simple, economical, and comparatively safe dissolution method that combines the advantages of both the open- and closed-vessel digestion methods.

  16. A thick CESL stressed ultra-small (Lg=40-nm) SiGe-channel MOSFET fabricated with 193-nm scanner lithography and TEOS hard mask etching

    NASA Astrophysics Data System (ADS)

    Liao, Wen-Shiang; Chen, Tung-Hung; Lin, Hsin-Hung; Chang, Wen-Tung; Shih, Tommy; Tsen, Huan-Chiu; Chung, Lee

    2007-03-01

    A 100Å-thick SiGe (22.5%) channel MOSFET with gate length down to 40nm has been successfully integrated with 14Å nitrided gate oxide as well as a 1200Å high-compressive PECVD ILD-SiNx stressing layer as the contact etching stop layer (CESL) that enhances the PMOS electron mobility with +33% current gain. To achieve a poly-Si gate length target of 400Å (40nm), a 193nm scanner lithography and an aggressive oxide hard mask etching techniques were used. First, a 500Å-thick TEOS hard mask layer was deposited upon the 1500Å-thick poly-Si gate electrode. Second, both 1050Å-thick bottom anti-reflective coating (BARC) and 2650Å-thick photoresist (P/R) were coated and a 193nm scanner lithography tool was used for the gate layout patterning with nominal logic 90nm exposure energy. Then, a deep sub-micron plasma etcher was used for an aggressive P/R and BARC trimming down processing and the TEOS hard mask was subsequently plasma etched in another etching chamber without breaking the plasma etcher's vacuum. Continuously, the P/R and BARC were removed with a plasma ashing and RCA cleaning. Moreover, the patterned Si-fin capping oxide can be further trimmed down with a diluted HF (aq) solution (DHF) while rendering the RCA cleaning process and the remained TEOS hard mask is still thick enough for the subsequent poly-Si gate main etching. Finally, an ultra narrow poly-Si gate length of 40nm with promising PMOS drive current enhancement can be formed through a second poly-Si etching, which is above the underneath SiGe (22.5%) conduction channel as well as its upper 14Å-thick nitrided gate oxide.

  17. LU-HF Age and Isotope Systematics of ALH84001

    NASA Technical Reports Server (NTRS)

    Righter, M.; Lapen, T. J.; Brandon, A. D.; Beard, B. L.; Shafer, J. T.; Peslier, A. H.

    2009-01-01

    Allan Hills (ALH) 84001 is an orthopyroxenite that is unique among the Martian meteorites in having the oldest inferred crystallization age (approx..4.5 to 4.0 Gyr) [e.g., 1-6 and references therein 7]. Its ancient origin makes this stone a critical constraint on early history of Mars, in particular the evolution of different planetary crust and mantle reservoirs. However, because there is significant variability in reported crystallization ages, determination of initial isotope compositions is imprecise making assessment of planetary reservoirs difficult. Here we report a new Lu-Hf mineral isochron age, initial Hf-176/Hf-177 isotope composition, and inferred Martian mantle source compositions for ALH84001 that place constraints on longlived source reservoirs for the enriched shergottite suite of Martian meteorites including Shergotty, Zagami, NWA4468, NWA856, RBT04262, LAR06319, and Los Angeles. Sm-Nd isotope analyses are under way for the same mineral aliquots analyzed for Lu-Hf. The Lu-Hf system was utilized because Lu and Hf are both lithophile and refractory and are not easily redistributed during short-lived thermal pulses associated with shock metamorphism. Moreover, chromite has relatively modest Hf concentrations with very low Lu/Hf ratios [9] yielding tight constraints on initial Hf-176/Hf-177 isotope compositions

  18. Aspect-ratio-dependent etching of polymers as interlayer dielectrics

    NASA Astrophysics Data System (ADS)

    Kim, Gusung

    2000-08-01

    The reactive ion etching of the polymer has been studied in CF4-O2, SF6, and N2 plasmas to understand the contributions of aspect-ratio dependent etching (ARDE), an anisotropic etch profiles, and the etch rate for one of low-k polymers, Divinyl bis-benzocyclobutene (BCB, silicon containing spin-on polymer). A new experimental process (Type B) was implemented to determine the ARDE in which the AR remains constant during the entire experiment. These samples showed the uniform etch rate for all trenches. However, in conventional structure (Type A), using a SiO2 hardmask for patterning, ARDE phenomena can be observed. In the range of 30--35% CF4 in O2, BCB shows the maximum etch rate, and this coincides with the maximum in the oxygen concentration. Complete anisotropic profiles can be obtained at low pressure where the fluorine atom concentration is low. The highest etch rates are achieved at the higher pressures where fluorine and oxygen atom concentrations are high, but with an increase in the amount of profile tapering in Type A. In Type B samples, etching gives increased undercutting and bowing with an increase in pressure. At low pressure, the sidewall profile is vertical regardless of the aspect ratio of the pattern. No oxide is exposed to the CF4-O2 plasma and undercutting occurs with an increase of fluorine concentration. In large trenches, polymer residue and micromasking phenomena were observed in both cases. Specifically, the surface roughness of etched BCB in CF 4-O2 was much higher than in SF6 and N2. Lateral etching of the BCB, mask erosion and faceting of the hardmask were more prominently observed with SF6. SF6 produces a very clean surface and no residue at the bottom of a trench. In N2 plasma, the etch rate of BCB is very low due to physical ion bombardment and trenches are formed by mask erosion and micro-trenching.

  19. Comparison of Buffer Effect of Different Acids During Sandstone Acidizing

    NASA Astrophysics Data System (ADS)

    Umer Shafiq, Mian; Khaled Ben Mahmud, Hisham; Hamid, Mohamed Ali

    2015-04-01

    The most important concern of sandstone matrix acidizing is to increase the formation permeability by removing the silica particles. To accomplish this, the mud acid (HF: HCl) has been utilized successfully for many years to stimulate the sandstone formations, but still it has many complexities. This paper presents the results of laboratory investigations of different acid combinations (HF: HCl, HF: H3PO4 and HF: HCOOH). Hydrofluoric acid and fluoboric acid are used to dissolve clays and feldspar. Phosphoric and formic acids are added as a buffer to maintain the pH of the solution; also it allows the maximum penetration of acid into the core sample. Different tests have been performed on the core samples before and after the acidizing to do the comparative study on the buffer effect of these acids. The analysis consists of permeability, porosity, color change and pH value tests. There is more increase in permeability and porosity while less change in pH when phosphoric and formic acids were used compared to mud acid. From these results it has been found that the buffer effect of phosphoric acid and formic acid is better than hydrochloric acid.

  20. Etching process for improving the strength of a laser-machined silicon-based ceramic article

    DOEpatents

    Copley, Stephen M.; Tao, Hongyi; Todd-Copley, Judith A.

    1991-01-01

    A process for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength.