Science.gov

Sample records for acid hybridization probes

  1. Fluorescent hybridization probes for nucleic acid detection.

    PubMed

    Guo, Jia; Ju, Jingyue; Turro, Nicholas J

    2012-04-01

    Due to their high sensitivity and selectivity, minimum interference with living biological systems, and ease of design and synthesis, fluorescent hybridization probes have been widely used to detect nucleic acids both in vivo and in vitro. Molecular beacons (MBs) and binary probes (BPs) are two very important hybridization probes that are designed based on well-established photophysical principles. These probes have shown particular applicability in a variety of studies, such as mRNA tracking, single nucleotide polymorphism (SNP) detection, polymerase chain reaction (PCR) monitoring, and microorganism identification. Molecular beacons are hairpin oligonucleotide probes that present distinctive fluorescent signatures in the presence and absence of their target. Binary probes consist of two fluorescently labeled oligonucleotide strands that can hybridize to adjacent regions of their target and generate distinctive fluorescence signals. These probes have been extensively studied and modified for different applications by modulating their structures or using various combinations of fluorophores, excimer-forming molecules, and metal complexes. This review describes the applicability and advantages of various hybridization probes that utilize novel and creative design to enhance their target detection sensitivity and specificity.

  2. Kit for detecting nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    2001-01-01

    A kit is provided for detecting a target nucleic acid sequence in a sample, the kit comprising: a first hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a first portion of the target sequence, the first hybridization probe including a first complexing agent for forming a binding pair with a second complexing agent; and a second hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a second portion of the target sequence to which the first hybridization probe does not selectively hybridize, the second hybridization probe including a detectable marker; a third hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a first portion of the target sequence, the third hybridization probe including the same detectable marker as the second hybridization probe; and a fourth hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a second portion of the target sequence to which the third hybridization probe does not selectively hybridize, the fourth hybridization probe including the first complexing agent for forming a binding pair with the second complexing agent; wherein the first and second hybridization probes are capable of simultaneously hybridizing to the target sequence and the third and fourth hybridization probes are capable of simultaneously hybridizing to the target sequence, the detectable marker is not present on the first or fourth hybridization probes and the first, second, third, and fourth hybridization probes each include a competitive nucleic acid sequence which is sufficiently complementary to a third portion of the target sequence that the competitive sequences of the first, second, third, and fourth hybridization probes compete with each other to hybridize to the third portion of the

  3. Continuously tunable nucleic acid hybridization probes.

    PubMed

    Wu, Lucia R; Wang, Juexiao Sherry; Fang, John Z; Evans, Emily R; Pinto, Alessandro; Pekker, Irena; Boykin, Richard; Ngouenet, Celine; Webster, Philippa J; Beechem, Joseph; Zhang, David Yu

    2015-12-01

    In silico-designed nucleic acid probes and primers often do not achieve favorable specificity and sensitivity tradeoffs on the first try, and iterative empirical sequence-based optimization is needed, particularly in multiplexed assays. We present a novel, on-the-fly method of tuning probe affinity and selectivity by adjusting the stoichiometry of auxiliary species, which allows for independent and decoupled adjustment of the hybridization yield for different probes in multiplexed assays. Using this method, we achieved near-continuous tuning of probe effective free energy. To demonstrate our approach, we enforced uniform capture efficiency of 31 DNA molecules (GC content, 0-100%), maximized the signal difference for 11 pairs of single-nucleotide variants and performed tunable hybrid capture of mRNA from total RNA. Using the Nanostring nCounter platform, we applied stoichiometric tuning to simultaneously adjust yields for a 24-plex assay, and we show multiplexed quantitation of RNA sequences and variants from formalin-fixed, paraffin-embedded samples.

  4. Continuously Tunable Nucleic Acid Hybridization Probes

    PubMed Central

    Wu, Lucia R.; Wang, J. Sherry; Fang, John Z.; Reiser, Emily; Pinto, Alessandro; Pekker, Irena; Boykin, Richard; Ngouenet, Celine; Webster, Philippa J.; Beechem, Joseph; Zhang, David Yu

    2015-01-01

    In silico designed nucleic acid probes and primers often fail to achieve favorable specificity and sensitivity tradeoffs on the first try, and iterative empirical sequence-based optimization is needed, particularly in multiplexed assays. Here, we present a novel, on-the-fly method of tuning probe affinity and selectivity via the stoichiometry of auxiliary species, allowing independent and decoupled adjustment of hybridization yield for different probes in multiplexed assays. Using this method, we achieve near-continuous tuning of probe effective free energy (0.03 kcal·mol−1 granularity). As applications, we enforced uniform capture efficiency of 31 DNA molecules (GC content 0% – 100%), maximized signal difference for 11 pairs of single nucleotide variants, and performed tunable hybrid-capture of mRNA from total RNA. Using the Nanostring nCounter platform, we applied stoichiometric tuning to simultaneously adjust yields for a 24-plex assay, and we show multiplexed quantitation of RNA sequences and variants from formalin-fixed, paraffin-embedded samples (FFPE). PMID:26480474

  5. Detection and isolation of nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, J.N.; Straume, T.; Bogen, K.T.

    1997-04-01

    A method for detecting a target nucleic acid sequence in a sample is provided using hybridization probes which competitively hybridize to a target nucleic acid. According to the method, a target nucleic acid sequence is hybridized to first and second hybridization probes which are complementary to overlapping portions of the target nucleic acid sequence, the first hybridization probe including a first complexing agent capable of forming a binding pair with a second complexing agent and the second hybridization probe including a detectable marker. The first complexing agent attached to the first hybridization probe is contacted with a second complexing agent, the second complexing agent being attached to a solid support such that when the first and second complexing agents are attached, target nucleic acid sequences hybridized to the first hybridization probe become immobilized on to the solid support. The immobilized target nucleic acids are then separated and detected by detecting the detectable marker attached to the second hybridization probe. A kit for performing the method is also provided. 7 figs.

  6. Detection and isolation of nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    1997-01-01

    A method for detecting a target nucleic acid sequence in a sample is provided using hybridization probes which competitively hybridize to a target nucleic acid. According to the method, a target nucleic acid sequence is hybridized to first and second hybridization probes which are complementary to overlapping portions of the target nucleic acid sequence, the first hybridization probe including a first complexing agent capable of forming a binding pair with a second complexing agent and the second hybridization probe including a detectable marker. The first complexing agent attached to the first hybridization probe is contacted with a second complexing agent, the second complexing agent being attached to a solid support such that when the first and second complexing agents are attached, target nucleic acid sequences hybridized to the first hybridization probe become immobilized on to the solid support. The immobilized target nucleic acids are then separated and detected by detecting the detectable marker attached to the second hybridization probe. A kit for performing the method is also provided.

  7. Real-time assays with molecular beacons and other fluorescent nucleic acid hybridization probes.

    PubMed

    Marras, Salvatore A E; Tyagi, Sanjay; Kramer, Fred Russell

    2006-01-01

    A number of formats for nucleic acid hybridization have been developed to identify DNA and RNA sequences that are involved in cellular processes and that aid in the diagnosis of genetic and infectious diseases. The introduction of hybridization probes with interactive fluorophore pairs has enabled the development of homogeneous hybridization assays for the direct identification of nucleic acids. A change in the fluorescence of these probes indicates the presence of a target nucleic acid, and there is no need to separate unbound probes from hybridized probes. The advantages of homogeneous hybridization assays are their speed and simplicity. In addition, homogeneous assays can be combined with nucleic acid amplification, enabling the detection of rare target nucleic acids. These assays can be followed in real time, providing quantitative determination of target nucleic acids over a broad range of concentrations.

  8. Selection of fluorophore and quencher pairs for fluorescent nucleic acid hybridization probes.

    PubMed

    Marras, Salvatore A E

    2006-01-01

    With the introduction of simple and relatively inexpensive methods for labeling nucleic acids with nonradioactive labels, doors have been opened that enable nucleic acid hybridization probes to be used for research and development, as well as for clinical diagnostic applications. The use of fluorescent hybridization probes that generate a fluorescence signal only when they bind to their target enables real-time monitoring of nucleic acid amplification assays. The use of hybridization probes that bind to the amplification products in real-time markedly improves the ability to obtain quantitative results. Furthermore, real-time nucleic acid amplification assays can be carried out in sealed tubes, eliminating carryover contamination. Because fluorescent hybridization probes are available in a wide range of colors, multiple hybridization probes, each designed for the detection of a different nucleic acid sequence and each labeled with a differently colored fluorophore, can be added to the same nucleic acid amplification reaction, enabling the development of high-throughput multiplex assays. It is therefore important to carefully select the labels of hybridization probes, based on the type of hybridization probe used in the assay, the number of targets to be detected, and the type of apparatus available to perform the assay. This chapter outlines different aspects of choosing appropriate labels for the different types of fluorescent hybridization probes used with different types of spectrofluorometric thermal cyclers.

  9. Detection and isolation of nucleic acid sequences using a bifunctional hybridization probe

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    2000-01-01

    A method for detecting and isolating a target sequence in a sample of nucleic acids is provided using a bifunctional hybridization probe capable of hybridizing to the target sequence that includes a detectable marker and a first complexing agent capable of forming a binding pair with a second complexing agent. A kit is also provided for detecting a target sequence in a sample of nucleic acids using a bifunctional hybridization probe according to this method.

  10. Oligonucleotide microarrays with stem-loop probes: enhancing the hybridization of nucleic acids for sensitive analysis.

    PubMed

    Mahajan, Shweta; Swami, Archana; Sethi, Dalip; Kumar, P; Gupta, K C

    2008-06-15

    We have demonstrated that the dynamics of nucleic acid hybridization in microarrays depend on the physical structure of immobilized probes. We have immobilized oligonucleotide-3'-phosphates with and without stem-loop structure on epoxylated glass surface, followed by hybridization under different conditions, viz., hybridization buffer, pH condition, temperature and ionic strength. In a comparative study, we have established that array constructed using probes with stem-loop structure displayed approximately 2.2 times higher hybridization signals than the probes without it. The stem-loop DNA array format is simple and flexible in design and thus potentially useful in various DNA diagnostic tests.

  11. Interactive fluorophore and quencher pairs for labeling fluorescent nucleic acid hybridization probes.

    PubMed

    Marras, Salvatore A E

    2008-03-01

    The use of fluorescent nucleic acid hybridization probes that generate a fluorescence signal only when they bind to their target enables real-time monitoring of nucleic acid amplification assays. Real-time nucleic acid amplification assays markedly improves the ability to obtain qualitative and quantitative results. Furthermore, these assays can be carried out in sealed tubes, eliminating carryover contamination. Fluorescent nucleic acid hybridization probes are available in a wide range of different fluorophore and quencher pairs. Multiple hybridization probes, each designed for the detection of a different nucleic acid sequence and each labeled with a differently colored fluorophore, can be added to the same nucleic acid amplification reaction, enabling the development of high-throughput multiplex assays. In order to develop robust, highly sensitive and specific real-time nucleic acid amplification assays it is important to carefully select the fluorophore and quencher labels of hybridization probes. Selection criteria are based on the type of hybridization probe used in the assay, the number of targets to be detected, and the type of apparatus available to perform the assay. This article provides an overview of different aspects of choosing appropriate labels for the different types of fluorescent hybridization probes used with different types of spectrofluorometric thermal cyclers currently available.

  12. A new class of homogeneous nucleic acid probes based on specific displacement hybridization

    PubMed Central

    Li, Qingge; Luan, Guoyan; Guo, Qiuping; Liang, Jixuan

    2002-01-01

    We have developed a new class of probes for homogeneous nucleic acid detection based on the proposed displacement hybridization. Our probes consist of two complementary oligodeoxyribonucleotides of different length labeled with a fluorophore and a quencher in close proximity in the duplex. The probes on their own are quenched, but they become fluorescent upon displacement hybridization with the target. These probes display complete discrimination between a perfectly matched target and single nucleotide mismatch targets. A comparison of double-stranded probes with corresponding linear probes confirms that the presence of the complementary strand significantly enhances their specificity. Using four such probes labeled with different color fluorophores, each designed to recognize a different target, we have demonstrated that multiple targets can be distinguished in the same solution, even if they differ from one another by as little as a single nucleotide. Double-stranded probes were used in real-time nucleic acid amplifications as either probes or as primers. In addition to its extreme specificity and flexibility, the new class of probes is simple to design and synthesize, has low cost and high sensitivity and is accessible to a wide range of labels. This class of probes should find applications in a variety of areas wherever high specificity of nucleic acid hybridization is relevant. PMID:11788731

  13. Hybridization properties of long nucleic acid probes for detection of variable target sequences, and development of a hybridization prediction algorithm.

    PubMed

    Ohrmalm, Christina; Jobs, Magnus; Eriksson, Ronnie; Golbob, Sultan; Elfaitouri, Amal; Benachenhou, Farid; Strømme, Maria; Blomberg, Jonas

    2010-11-01

    One of the main problems in nucleic acid-based techniques for detection of infectious agents, such as influenza viruses, is that of nucleic acid sequence variation. DNA probes, 70-nt long, some including the nucleotide analog deoxyribose-Inosine (dInosine), were analyzed for hybridization tolerance to different amounts and distributions of mismatching bases, e.g. synonymous mutations, in target DNA. Microsphere-linked 70-mer probes were hybridized in 3M TMAC buffer to biotinylated single-stranded (ss) DNA for subsequent analysis in a Luminex® system. When mismatches interrupted contiguous matching stretches of 6 nt or longer, it had a strong impact on hybridization. Contiguous matching stretches are more important than the same number of matching nucleotides separated by mismatches into several regions. dInosine, but not 5-nitroindole, substitutions at mismatching positions stabilized hybridization remarkably well, comparable to N (4-fold) wobbles in the same positions. In contrast to shorter probes, 70-nt probes with judiciously placed dInosine substitutions and/or wobble positions were remarkably mismatch tolerant, with preserved specificity. An algorithm, NucZip, was constructed to model the nucleation and zipping phases of hybridization, integrating both local and distant binding contributions. It predicted hybridization more exactly than previous algorithms, and has the potential to guide the design of variation-tolerant yet specific probes.

  14. Hybridization properties of long nucleic acid probes for detection of variable target sequences, and development of a hybridization prediction algorithm

    PubMed Central

    Öhrmalm, Christina; Jobs, Magnus; Eriksson, Ronnie; Golbob, Sultan; Elfaitouri, Amal; Benachenhou, Farid; Strømme, Maria; Blomberg, Jonas

    2010-01-01

    One of the main problems in nucleic acid-based techniques for detection of infectious agents, such as influenza viruses, is that of nucleic acid sequence variation. DNA probes, 70-nt long, some including the nucleotide analog deoxyribose-Inosine (dInosine), were analyzed for hybridization tolerance to different amounts and distributions of mismatching bases, e.g. synonymous mutations, in target DNA. Microsphere-linked 70-mer probes were hybridized in 3M TMAC buffer to biotinylated single-stranded (ss) DNA for subsequent analysis in a Luminex® system. When mismatches interrupted contiguous matching stretches of 6 nt or longer, it had a strong impact on hybridization. Contiguous matching stretches are more important than the same number of matching nucleotides separated by mismatches into several regions. dInosine, but not 5-nitroindole, substitutions at mismatching positions stabilized hybridization remarkably well, comparable to N (4-fold) wobbles in the same positions. In contrast to shorter probes, 70-nt probes with judiciously placed dInosine substitutions and/or wobble positions were remarkably mismatch tolerant, with preserved specificity. An algorithm, NucZip, was constructed to model the nucleation and zipping phases of hybridization, integrating both local and distant binding contributions. It predicted hybridization more exactly than previous algorithms, and has the potential to guide the design of variation-tolerant yet specific probes. PMID:20864443

  15. Application of locked nucleic acid-based probes in fluorescence in situ hybridization.

    PubMed

    Fontenete, Sílvia; Carvalho, Daniel; Guimarães, Nuno; Madureira, Pedro; Figueiredo, Céu; Wengel, Jesper; Azevedo, Nuno Filipe

    2016-07-01

    Fluorescence in situ hybridization (FISH) employing nucleic acid mimics as probes is becoming an emerging molecular tool in the microbiology area for the detection and visualization of microorganisms. However, the impact that locked nucleic acid (LNA) and 2'-O-methyl (2'-OMe) RNA modifications have on the probe that is targeting microorganisms is unknown. In this study, the melting and hybridization efficiency properties of 18 different probes in regards to their use in FISH for the detection of the 16S rRNA of Helicobacter pylori were compared. For the same sequence and target, probe length and the type of nucleic acid mimics used as mixmers in LNA-based probes strongly influence the efficiency of detection. LNA probes with 10 to 15 mers showed the highest efficiency. Additionally, the combination of 2'-OMe RNA with LNA allowed an increase on the fluorescence intensities of the probes. Overall, these results have significant implications for the design and applications of LNA probes for the detection of microorganisms.

  16. Permeabilization of mycolic-acid-containing actinomycetes for in situ hybridization with fluorescently labelled oligonucleotide probes.

    PubMed

    Macnaughton, S J; O'Donnell, A G; Embley, T M

    1994-10-01

    The application of whole-cell hybridization using labelled oligonucleotide probes in microbial systematics and ecology is limited by difficulties in permeabilizing many Gram-positive organisms. In this investigation paraformaldehyde treatment, acid methanolysis and acid hydrolysis were evaluated as a means of permeabilizing mycolic-acid-containing actinomycetes prior to hybridization with a fluorescently labelled oligonucleotide probe designed to bind to a conserved sequence of bacterial 16S rRNA. Methods were evaluated on stationary-phase cultures of Gordona bronchialis, Mycobacterium fortuitum, Nocardia asteroides, N. brasiliensis, Rhodococcus equi, R. erythropolis, R. fascians, R. rhodochrous and Tsukamurella paurometabola, none of which could be probed following 4% (w/v) paraformaldehyde fixation. For comparison and to test the general applicability of mild acid pretreatments, Bacillus subtilis, Lactobacillus plantarum, Escherichia coli and Pseudomonas putida were also studied. The data showed that most of the mycolic-acid-containing organisms were successfully permeabilized by mild acid hydrolysis in 1 M HCl at 37 degrees C. Cells were treated for different lengths of time. In general, the mycolic-acid-containing organisms required between 30 and 50 min hydrolysis, whereas B. subtilis, E. coli and P. putida were rendered permeable in only 10 min. Interestingly, L. plantarum could not be permeabilized using acid hydrolysis even after 60 min exposure to 1 M HCl.

  17. Label-Free Potentiometry for Detecting DNA Hybridization Using Peptide Nucleic Acid and DNA Probes

    PubMed Central

    Goda, Tatsuro; Singi, Ankit Balram; Maeda, Yasuhiro; Matsumoto, Akira; Torimura, Masaki; Aoki, Hiroshi; Miyahara, Yuji

    2013-01-01

    Peptide nucleic acid (PNA) has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM)-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry. PMID:23435052

  18. Label-free potentiometry for detecting DNA hybridization using peptide nucleic acid and DNA probes.

    PubMed

    Goda, Tatsuro; Singi, Ankit Balram; Maeda, Yasuhiro; Matsumoto, Akira; Torimura, Masaki; Aoki, Hiroshi; Miyahara, Yuji

    2013-02-07

    Peptide nucleic acid (PNA) has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM)-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry.

  19. Intrinsically Labeled Fluorescent Oligonucleotide Probes on Quantum Dots for Transduction of Nucleic Acid Hybridization.

    PubMed

    Shahmuradyan, Anna; Krull, Ulrich J

    2016-03-15

    Quantum dots (QDs) have been widely used in chemical and biosensing due to their unique photoelectrical properties and are well suited as donors in fluorescence resonance energy transfer (FRET). Selective hybridization interactions of oligonucleotides on QDs have been determined by FRET. Typically, the QD-FRET constructs have made use of labeled targets or have implemented labeled sandwich format assays to introduce dyes in proximity to the QDs for the FRET process. The intention of this new work is to explore a method to incorporate the acceptor dye into the probe molecule. Thiazole orange (TO) derivatives are fluorescent intercalating dyes that have been used for detection of double-stranded nucleic acids. One such dye system has been reported in which single-stranded oligonucleotide probes were doubly labeled with adjacent thiazole orange derivatives. In the absence of the fully complementary (FC) oligonucleotide target, the dyes form an H-aggregate, which results in quenching of fluorescence emission due to excitonic interactions between the dyes. The hybridization of the FC target to the probe provides for dissociation of the aggregate as the dyes intercalate into the double stranded duplex, resulting in increased fluorescence. This work reports investigation of the dependence of the ratiometric signal on the type of linkage used to conjugate the dyes to the probe, the location of the dye along the length of the probe, and the distance between adjacent dye molecules. The limit of detection for 34mer and 90mer targets was found to be identical and was 10 nM (2 pmol), similar to analogous QD-FRET using labeled oligonucleotide target. The detection system could discriminate a one base pair mismatch (1BPM) target and was functional without substantial compromise of the signal in 75% serum. The 1BPM was found to reduce background signal, indicating that the structure of the mismatch affected the environment of the intercalating dyes.

  20. Human papillomavirus 35 nucleic acid hybridization probes and methods for employing the same

    SciTech Connect

    Lorincz, A.T.

    1989-07-18

    This patent describes an HPV 35 hybridization probe comprising a member selected from the group consisting of (i) HPV 35 DNA or fragments thereof labelled with a marker and (ii) HPV 35 RNA or fragments thereof labelled with a marker.

  1. Human papillomavirus 43 nucleic acid hybridization probes and methods for employing the same

    SciTech Connect

    Lorincz, A.T.

    1989-07-18

    This patent describes an HPV 43 hybridization probe comprising a member selected from the group consisting of (i) HPV 43 DNA or fragments thereof labelled with a marker and (ii) HPV 43 RNA or fragments thereof labelled with a marker.

  2. Human papillomavirus 56 nucleic acid hybridization probes and methods for employing the same

    SciTech Connect

    Lorinez, A.T.

    1990-03-13

    This patent describes an HPV 56 hybridization probe. It comprises: a member selected from the group consisting of HPV 56 DNA or fragments thereof labelled with a marker and HPV 56 RNA or fragments thereof labelled with a marker.

  3. Human papillomavirus 44 nucleic acid hybridization probes and methods for employing the same

    SciTech Connect

    Lorincz, A.T.

    1989-07-18

    This patent describes an HPV 44 hybridization probe comprising a member selected from the group consisting of (1) HPV 44 DNA or fragments thereof labelled with a marker and (ii) HPV 44 RNA or fragments thereof labelled with a marker.

  4. Exploring the Hybridization Thermodynamics of Spherical Nucleic Acids to Tailor Probes for Diagnostic and Therapeutic Applications

    NASA Astrophysics Data System (ADS)

    Randeria, Pratik Shailesh

    Spherical nucleic acids (SNAs), three-dimensional nanoparticle conjugates composed of densely packed and highly oriented oligonucleotides around organic or inorganic nanoparticles, are an emergent class of nanostructures that show promise as single-entity agents for intracellular messenger RNA (mRNA) detection and gene regulation. SNAs exhibit superior biocompatibility and biological properties compared to linear oligonucleotides, enabling them to overcome many of the limitations of linear oligonucleotides for use in biomedical applications. However, the origins of these biologically attractive properties are not well understood. In this dissertation, the chemistry underlying one such property is studied in detail, and the findings are applied towards the rational design of more effective SNAs for diagnostic and therapeutic applications. Chapter 1 introduces the synthesis of SNAs, the unique properties that make them superior to linear nucleic acids for biomedicine, and previously studied applications of these structures. Chapter 2 focuses on quantitatively studying the impact of the chemical structure of the SNA on its ability to hybridize multiple complementary nucleic acids. This chapter lays the groundwork for understanding the factors that govern SNA hybridization thermodynamics and how to tailor SNAs to increase their binding affinity to target mRNA strands. Chapters 3 and 4 capitalize on this knowledge to engineer probes for intracellular mRNA detection and gene regulation applications. Chapter 3 reports the development of an SNA-based probe that can simultaneously report the expression level of two different mRNA transcripts in live cells and differentiate diseased cells from non-diseased cells. Chapter 4 investigates the use of topically-applied SNAs to down-regulate a critical mediator of impaired wound healing in diabetic mice to accelerate wound closure. This study represents the first topical therapeutic application of SNA nanotechnology to treat open

  5. Hybridization probe for femtomolar quantification of selected nucleic acid sequences on a disposable electrode.

    PubMed

    Jenkins, Daniel M; Chami, Bilal; Kreuzer, Matthias; Presting, Gernot; Alvarez, Anne M; Liaw, Bor Yann

    2006-04-01

    Mixed monolayers of electroactive hybridization probes on gold surfaces of a disposable electrode were investigated as a technology for simple, sensitive, selective, and rapid gene identification. Hybridization to the ferrocene-labeled hairpin probes reproducibly diminished cyclic redox currents, presumably due to a displacement of the label from the electrode. Observed peak current densities were roughly 1000x greater than those observed in previous studies, such that results could easily be interpreted without the use of algorithms to correct for background polarization currents. Probes were sensitive to hybridization with a number of oligonucleotide sequences with varying homology, but target oligonucleotides could be distinguished from competing nontarget sequences based on unique "melting" profiles from the probe. Detection limits were demonstrated down to nearly 100 fM, which may be low enough to identify certain genetic conditions or infections without amplification. This technology has rich potential for use in field devices for gene identification as well as in gene microarrays.

  6. Identification of random nucleic acid sequence aberrations using dual capture probes which hybridize to different chromosome regions

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    1998-01-01

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration.

  7. Identification of random nucleic acid sequence aberrations using dual capture probes which hybridize to different chromosome regions

    DOEpatents

    Lucas, J.N.; Straume, T.; Bogen, K.T.

    1998-03-24

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration. 14 figs.

  8. A non-radioactive in situ hybridization method based on mercurated nucleic acid probes and sulfhydryl-hapten ligands.

    PubMed Central

    Hopman, A H; Wiegant, J; Tesser, G I; Van Duijn, P

    1986-01-01

    Mercurated nucleic acid probes can be used for non-radioactive in situ hybridization. The principle of the method is based on the reaction of the mercurated pyrimidine residues of the in situ hybridized probe with the sulfhydryl group of a ligand which contains a hapten. Next, the hapten is immunocytochemically detected. Previous experiments showed that stable coupling of the sulfhydryl ligands could only be obtained when positively charged amino groups are present in the ligand. On basis of this finding, ligands were synthesized containing a sulfhydryl group, two lysyl residues and hapten groups such as trinitrophenyl, fluorescyl and biotinyl. The ligands, free or bound to mercurated nucleic acids, were immunochemically characterized in ELISAs. The method was shown to be specific and sensitive in the detection of target DNA in situ on microscopic preparations and in dot-blot hybridization reactions on nitrocellulose. Images PMID:3748817

  9. Identification of Dekkera bruxellensis (Brettanomyces) from wine by fluorescence in situ hybridization using peptide nucleic acid probes.

    PubMed

    Stender, H; Kurtzman, C; Hyldig-Nielsen, J J; Sørensen, D; Broomer, A; Oliveira, K; Perry-O'Keefe, H; Sage, A; Young, B; Coull, J

    2001-02-01

    A new fluorescence in situ hybridization method using peptide nucleic acid (PNA) probes for identification of Brettanomyces is described. The test is based on fluorescein-labeled PNA probes targeting a species-specific sequence of the rRNA of Dekkera bruxellensis. The PNA probes were applied to smears of colonies, and results were interpreted by fluorescence microscopy. The results obtained from testing 127 different yeast strains, including 78 Brettanomyces isolates from wine, show that the spoilage organism Brettanomyces belongs to the species D. bruxellensis and that the new method is able to identify Brettanomyces (D. bruxellensis) with 100% sensitivity and 100% specificity.

  10. Identification of Dekkera bruxellensis (Brettanomyces) from Wine by Fluorescence In Situ Hybridization Using Peptide Nucleic Acid Probes

    PubMed Central

    Stender, Henrik; Kurtzman, Cletus; Hyldig-Nielsen, Jens J.; Sørensen, Ditte; Broomer, Adam; Oliveira, Kenneth; Perry-O'Keefe, Heather; Sage, Andrew; Young, Barbara; Coull, James

    2001-01-01

    A new fluorescence in situ hybridization method using peptide nucleic acid (PNA) probes for identification of Brettanomyces is described. The test is based on fluorescein-labeled PNA probes targeting a species-specific sequence of the rRNA of Dekkera bruxellensis. The PNA probes were applied to smears of colonies, and results were interpreted by fluorescence microscopy. The results obtained from testing 127 different yeast strains, including 78 Brettanomyces isolates from wine, show that the spoilage organism Brettanomyces belongs to the species D. bruxellensis and that the new method is able to identify Brettanomyces (D. bruxellensis) with 100% sensitivity and 100% specificity. PMID:11157265

  11. Differentiation of Candida albicans and Candida dubliniensis by Fluorescent In Situ Hybridization with Peptide Nucleic Acid Probes

    PubMed Central

    Oliveira, Kenneth; Haase, Gerhard; Kurtzman, Cletus; Hyldig-Nielsen, Jens Jo/rgen; Stender, Henrik

    2001-01-01

    The recent discovery of Candida dubliniensis as a separate species that traditionally has been identified as Candida albicans has led to the development of a variety of biochemical and molecular methods for the differentiation of these two pathogenic yeasts. rRNA sequences are well-established phylogenetic markers, and probes targeting species-specific rRNA sequences have been used in diagnostic assays for the detection and identification of microorganisms. Peptide nucleic acid (PNA) is a DNA mimic with improved hybridization characteristics, and the neutral backbone of PNA probes offers significant advantages in whole-cell in situ hybridization assays. In this study, we developed PNA probes targeting the rRNAs of C. albicans and C. dubliniensis and applied them to a fluorescence in situ hybridization method (PNA FISH) for differentiation between C. albicans and C. dubliniensis. Liquid cultures were smeared onto microscope slides, heat fixed, and then hybridized for 30 min. Unhybridized PNA probe was removed by washing, and smears were examined by fluorescence microscopy. Evaluation of the PNA FISH method using smears of 79 C. dubliniensis and 70 C. albicans strains showed 100% sensitivity and 100% specificity for both PNA probes. We concluded that PNA FISH is a powerful tool for the differentiation of C. albicans and C. dubliniensis. PMID:11682542

  12. Visualization of the mycelia of wood-rotting fungi by fluorescence in situ hybridization using a peptide nucleic acid probe.

    PubMed

    Nakada, Yuji; Nakaba, Satoshi; Matsunaga, Hiroshi; Funada, Ryo; Yoshida, Makoto

    2013-01-01

    White rot fungus, Phanerochaete chrysosporium, and brown rot fungus, Postia placenta, grown on agar plates, were visualized by fluorescence in situ hybridization (FISH) using a peptide nucleic acid (PNA) probe. Mycelia grown on wood chips were also clearly detected by PNA-FISH following blocking treatment. To the best of our knowledge, this is the first report on the visualization of fungi in wood by FISH.

  13. Probing the transition state for nucleic acid hybridization using phi-value analysis.

    PubMed

    Kim, Jandi; Shin, Jong-Shik

    2010-04-27

    Genetic regulation by noncoding RNA elements such as microRNA and small interfering RNA (siRNA) involves hybridization of a short single-stranded RNA with a complementary segment in a target mRNA. The physical basis of the hybridization process between the structured nucleic acids is not well understood primarily because of the lack of information about the transition-state structure. Here we use transition-state theory, inspired by phi-value analysis in protein folding studies, to provide quantitative analysis of the relationship between changes in the secondary structure stability and the activation free energy. Time course monitoring of the hybridization reaction was performed under pseudo-steady-state conditions using a single fluorophore. The phi-value analysis indicates that the native secondary structure remains intact in the transition state. The nativelike transition state was confirmed via examination of the salt dependence of the hybridization kinetics, indicating that the number of sodium ions associated with the transition state was not substantially affected by changes in the native secondary structure. These results propose that hybridization between structured nucleic acids undergoes a transition state leading to formation of a nucleation complex and then is followed by sequential displacement of preexisting base pairings involving successive small energy barriers. The proposed mechanism might provide new insight into physical processes during small RNA-mediated gene silencing, which is essential to selection of a target mRNA segment for siRNA design.

  14. Peptide nucleic acid probe for protein affinity purification based on biotin-streptavidin interaction and peptide nucleic acid strand hybridization.

    PubMed

    Tse, Jenny; Wang, Yuanyuan; Zengeya, Thomas; Rozners, Eriks; Tan-Wilson, Anna

    2015-02-01

    We describe a new method for protein affinity purification that capitalizes on the high affinity of streptavidin for biotin but does not require dissociation of the biotin-streptavidin complex for protein retrieval. Conventional reagents place both the selectively reacting group (the "warhead") and the biotin on the same molecule. We place the warhead and the biotin on separate molecules, each linked to a short strand of peptide nucleic acid (PNA), synthetic polymers that use the same bases as DNA but attached to a backbone that is resistant to attack by proteases and nucleases. As in DNA, PNA strands with complementary base sequences hybridize. In conditions that favor PNA duplex formation, the warhead strand (carrying the tagged protein) and the biotin strand form a complex that is held onto immobilized streptavidin. As in DNA, the PNA duplex dissociates at moderately elevated temperature; therefore, retrieval of the tagged protein is accomplished by a brief exposure to heat. Using iodoacetate as the warhead, 8-base PNA strands, biotin, and streptavidin-coated magnetic beads, we demonstrate retrieval of the cysteine protease papain. We were also able to use our iodoacetyl-PNA:PNA-biotin probe for retrieval and identification of a thiol reductase and a glutathione transferase from soybean seedling cotyledons.

  15. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. I. Covalent immobilization of oligonucleotide probes onto the nylon].

    PubMed

    Dmitrienko, E V; Pyshnaia, I A; Pyshnyĭ, D V

    2010-01-01

    The features of UV-induced immobilization of oligonucleotides on a nylon membranes and the effectiveness of enzymatic labeling of immobilized probes at heterophase detection of nucleic acids are studied. Short terminal oligothymidilate (up to 10 nt) sequences are suggested to attach to the probe via a flexible ethylene glycol based linker. The presence of such fragment enhances the intensity of immobilization and reduces UV-dependent degradation of the targeted (sequence-specific) part of the probe by reducing the dose needed for the immobilization of DNA. The optimum dose of UV-irradiation is determined to be ~0.4 J/cm(2) at the wavelength 254 nm. This dose provides high level of hybridization signal for immobilized probes with various nucleotide composition of the sequence specific moiety. The amide groups of the polyamide are shown to play the key role in the photoinduced immobilization of nucleic acids, whereas the primary amino groups in the structure of PA is not the center responsible for the covalent binding of DNA by UV-irradiation, as previously believed. Various additives in the soaking solution during the membrane of UV-dependent immobilization of probes are shown to influence its effectiveness. The use of alternative to UV-irradiation system of radical generation are shown to provide the immobilization of oligonucleotides onto the nylon membrane.

  16. Hybridization-based detection of Helicobacter pylori at human body temperature using advanced locked nucleic acid (LNA) probes.

    PubMed

    Fontenete, Sílvia; Guimarães, Nuno; Leite, Marina; Figueiredo, Céu; Wengel, Jesper; Filipe Azevedo, Nuno

    2013-01-01

    The understanding of the human microbiome and its influence upon human life has long been a subject of study. Hence, methods that allow the direct detection and visualization of microorganisms and microbial consortia (e.g. biofilms) within the human body would be invaluable. In here, we assessed the possibility of developing a variant of fluorescence in situ hybridization (FISH), named fluorescence in vivo hybridization (FIVH), for the detection of Helicobacter pylori. Using oligonucleotide variations comprising locked nucleic acids (LNA) and 2'-O-methyl RNAs (2'OMe) with two types of backbone linkages (phosphate or phosphorothioate), we were able to successfully identify two probes that hybridize at 37 °C with high specificity and sensitivity for H. pylori, both in pure cultures and in gastric biopsies. Furthermore, the use of this type of probes implied that toxic compounds typically used in FISH were either found to be unnecessary or could be replaced by a non-toxic substitute. We show here for the first time that the use of advanced LNA probes in FIVH conditions provides an accurate, simple and fast method for H. pylori detection and location, which could be used in the future for potential in vivo applications either for this microorganism or for others.

  17. Hybridization-Based Detection of Helicobacter pylori at Human Body Temperature Using Advanced Locked Nucleic Acid (LNA) Probes

    PubMed Central

    Fontenete, Sílvia; Guimarães, Nuno; Leite, Marina; Figueiredo, Céu; Wengel, Jesper; Filipe Azevedo, Nuno

    2013-01-01

    The understanding of the human microbiome and its influence upon human life has long been a subject of study. Hence, methods that allow the direct detection and visualization of microorganisms and microbial consortia (e.g. biofilms) within the human body would be invaluable. In here, we assessed the possibility of developing a variant of fluorescence in situ hybridization (FISH), named fluorescence in vivo hybridization (FIVH), for the detection of Helicobacter pylori. Using oligonucleotide variations comprising locked nucleic acids (LNA) and 2’-O-methyl RNAs (2’OMe) with two types of backbone linkages (phosphate or phosphorothioate), we were able to successfully identify two probes that hybridize at 37 °C with high specificity and sensitivity for H. pylori, both in pure cultures and in gastric biopsies. Furthermore, the use of this type of probes implied that toxic compounds typically used in FISH were either found to be unnecessary or could be replaced by a non-toxic substitute. We show here for the first time that the use of advanced LNA probes in FIVH conditions provides an accurate, simple and fast method for H. pylori detection and location, which could be used in the future for potential in vivo applications either for this microorganism or for others. PMID:24278398

  18. Fluorescence In Situ Hybridization with Peptide Nucleic Acid Probes for Rapid Identification of Candida albicans Directly from Blood Culture Bottles

    PubMed Central

    Rigby, Susan; Procop, Gary W.; Haase, Gerhard; Wilson, Deborah; Hall, Geraldine; Kurtzman, Cletus; Oliveira, Kenneth; Von Oy, Sabina; Hyldig-Nielsen, Jens J.; Coull, James; Stender, Henrik

    2002-01-01

    A new fluorescence in situ hybridization (FISH) method that uses peptide nucleic acid (PNA) probes for identification of Candida albicans directly from positive-blood-culture bottles in which yeast was observed by Gram staining (herein referred to as yeast-positive blood culture bottles) is described. The test (the C. albicans PNA FISH method) is based on a fluorescein-labeled PNA probe that targets C. albicans 26S rRNA. The PNA probe is added to smears made directly from the contents of the blood culture bottle and hybridized for 90 min at 55°C. Unhybridized PNA probe is removed by washing of the mixture (30 min), and the smears are examined by fluorescence microscopy. The specificity of the method was confirmed with 23 reference strains representing phylogenetically related yeast species and 148 clinical isolates covering the clinically most significant yeast species, including C. albicans (n = 72), C. dubliniensis (n = 58), C. glabrata (n = 5), C. krusei (n = 2), C. parapsilosis (n = 4), and C. tropicalis (n = 3). The performance of the C. albicans PNA FISH method as a diagnostic test was evaluated with 33 routine and 25 simulated yeast-positive blood culture bottles and showed 100% sensitivity and 100% specificity. It is concluded that this 2.5-h method for the definitive identification of C. albicans directly from yeast-positive blood culture bottles provides important information for optimal antifungal therapy and patient management. PMID:12037084

  19. Fluorescence in situ Hybridization method using Peptide Nucleic Acid probes for rapid detection of Lactobacillus and Gardnerella spp.

    PubMed Central

    2013-01-01

    Background Bacterial vaginosis (BV) is a common vaginal infection occurring in women of reproductive age. It is widely accepted that the microbial switch from normal microflora to BV is characterized by a decrease in vaginal colonization by Lactobacillus species together with an increase of Gardnerella vaginalis and other anaerobes. Our goal was to develop and optimize a novel Peptide Nucleic Acid (PNA) Fluorescence in situ Hybridization assay (PNA FISH) for the detection of Lactobacillus spp. and G. vaginalis in mixed samples. Results Therefore, we evaluated and validated two specific PNA probes by using 36 representative Lactobacillus strains, 22 representative G. vaginalis strains and 27 other taxonomically related or pathogenic bacterial strains commonly found in vaginal samples. The probes were also tested at different concentrations of G. vaginalis and Lactobacillus species in vitro, in the presence of a HeLa cell line. Specificity and sensitivity of the PNA probes were found to be 98.0% (95% confidence interval (CI), from 87.8 to 99.9%) and 100% (95% CI, from 88.0 to 100.0%), for Lactobacillus spp.; and 100% (95% CI, from 92.8 to 100%) and 100% (95% CI, from 81.5 to 100.0%) for G. vaginalis. Moreover, the probes were evaluated in mixed samples mimicking women with BV or normal vaginal microflora, demonstrating efficiency and applicability of our PNA FISH. Conclusions This quick method accurately detects Lactobacillus spp. and G. vaginalis species in mixed samples, thus enabling efficient evaluation of the two bacterial groups, most frequently encountered in the vagina. PMID:23586331

  20. DNA/DNA in situ hybridization with enzyme linked probes

    SciTech Connect

    Grillo, S.; Mosher, M.; Charles, P.; Henry, S.; Taub, F.

    1987-05-01

    A non-radioactive in situ nucleic acid hybridization method which requires no antibodies, haptens, avidin or biotin intermediateries is presented. Horseradish peroxidase (HRP) labeled nucleic acid probes are hybridized in situ for 2 hours or less, followed by brief washing of hybridized cells and the direct detection of in situ hybrids with diaminobenzidine (DAB). Application of this method to the detection of Human Papilloma Virus (HPV) in human cells is shown.

  1. Double-labeled donor probe can enhance the signal of fluorescence resonance energy transfer (FRET) in detection of nucleic acid hybridization

    PubMed Central

    Okamura, Yukio; Kondo, Satoshi; Sase, Ichiro; Suga, Takayuki; Mise, Kazuyuki; Furusawa, Iwao; Kawakami, Shigeki; Watanabe, Yuichiro

    2000-01-01

    A set of fluorescently-labeled DNA probes that hybridize with the target RNA and produce fluorescence resonance energy transfer (FRET) signals can be utilized for the detection of specific RNA. We have developed probe sets to detect and discriminate single-strand RNA molecules of plant viral genome, and sought a method to improve the FRET signals to handle in vivo applications. Consequently, we found that a double-labeled donor probe labeled with Bodipy dye yielded a remarkable increase in fluorescence intensity compared to a single-labeled donor probe used in an ordinary FRET. This double-labeled donor system can be easily applied to improve various FRET probes since the dependence upon sequence and label position in enhancement is not as strict. Furthermore this method could be applied to other nucleic acid substances, such as oligo RNA and phosphorothioate oligonucleotides (S-oligos) to enhance FRET signal. Although the double-labeled donor probes labeled with a variety of fluorophores had unexpected properties (strange UV-visible absorption spectra, decrease of intensity and decay of donor fluorescence) compared with single-labeled ones, they had no relation to FRET enhancement. This signal amplification mechanism cannot be explained simply based on our current results and knowledge of FRET. Yet it is possible to utilize this double-labeled donor system in various applications of FRET as a simple signal-enhancement method. PMID:11121494

  2. Positively charged polymer brush-functionalized filter paper for DNA sequence determination following Dot blot hybridization employing a pyrrolidinyl peptide nucleic acid probe.

    PubMed

    Laopa, Praethong S; Vilaivan, Tirayut; Hoven, Voravee P

    2013-01-07

    As inspired by the Dot blot analysis, a well known technique in molecular biology and genetics for detecting biomolecules, a new paper-based platform for colorimetric detection of specific DNA sequences employing peptide nucleic acid (PNA) as a probe has been developed. In this particular study, a pyrrolidinyl PNA bearing a conformationally rigid d-prolyl-2-aminocyclopentanecarboxylic acid backbone (acpcPNA) was used as a probe. The filter paper was modified to be positively charged with grafted polymer brushes of quaternized poly(dimethylamino)ethyl methacrylate (QPDMAEMA) prepared by surface-initiated polymerization of 2-(dimethylamino)ethyl methacrylate from the filter paper via ARGET ATRP followed by quaternization with methyl iodide. Following the Dot blot format, a DNA target was first immobilized via electrostatic interactions between the positive charges of the QPDMAEMA brushes and negative charges of the phosphate backbone of DNA. Upon hybridization with the biotinylated pyrrolidinyl peptide nucleic acid (b-PNA) probe, the immobilized DNA can be detected by naked eye observation of the yellow product generated by the enzymatic reaction employing HRP-labeled streptavidin. It has been demonstrated that this newly developed assay was capable of discriminating between complementary and single base mismatch targets at a detection limit of at least 10 fmol. In addition, the QPDMAEMA-grafted filter paper exhibited a superior performance to the commercial membranes, namely Nylon 66 and nitrocellulose.

  3. Focused upon hybridization: rapid and high sensitivity detection of DNA using isotachophoresis and peptide nucleic acid probes.

    PubMed

    Ostromohov, Nadya; Schwartz, Ortal; Bercovici, Moran

    2015-09-15

    We present a novel assay for rapid and high sensitivity detection of nucleic acids without amplification. Utilizing the neutral backbone of peptide nucleic acids (PNA), our method is based on the design of low electrophoretic mobility PNA probes, which do not focus under isotachophoresis (ITP) unless bound to their target sequence. Thus, background noise associated with free probes is entirely eliminated, significantly improving the signal-to-noise ratio while maintaining a simple single-step assay requiring no amplification steps. We provide a detailed analytical model and experimentally demonstrate the ability to detect targets as short as 17 nucleotides (nt) and a limit of detection of 100 fM with a dynamic range of 5 decades. We also demonstrate that the assay can be successfully implemented for detection of DNA in human serum without loss of signal. The assay requires 15 min to complete, and it could potentially be used in applications where rapid and highly sensitive amplification-free detection of nucleic acids is desired.

  4. Cellular delivery of quantum dot-bound hybridization probe for detection of intracellular pre-microRNA using chitosan/poly(γ-glutamic acid) complex as a carrier.

    PubMed

    Geng, Yao; Lin, Dajie; Shao, Lijia; Yan, Feng; Ju, Huangxian

    2013-01-01

    A quantum dot (QD)-bound hybridization probe was designed for detection of intracellular pre-miRNA using chitosan (CS)/poly(γ-glutamic acid) (γ-PGA) complex as a gene vector. The probe was prepared by assembling thiolated RNA to gold nanoparticle (Au NP) via Au-S bond and then binding 3'-end amine of the RNA to the carboxy group capped on quantum dot surface. The QD-RNA-Au NP probe was assembled on the vector by mixing with aqueous γ-PGA solution and then CS solution to construct a gene delivery system for highly effective cellular uptake and delivery. After the probe was released from CS/γ-PGA complex to the cytoplasm by electrostatic repulsion at intracellular pH, it hybridized with pre-miRNA precursor as target. The formed product was then cleaved by RNase III Dicer, leading to the separation of QDs from Au NPs and fluorescence emission of QDs, which could be detected by confocal microscopic imaging to monitor the amount of the intracellular pre-miRNA precursor. The in vitro assays revealed that the QD-RNA-Au NP was a robust, sensitive and selective probe for quantitative detection of target pre-miRNA. Using MDA-MB231 and MCF-7 breast cancer cells as models, the relative amount of pre-miRNA let-7a could be successfully compared. Since the amount of miRNA is related to the progress and prognosis of cancer, this strategy could be expected to hold promising application potential in medical research and clinical diagnostics.

  5. Optimization of peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) for the detection of bacteria: The effect of pH, dextran sulfate and probe concentration.

    PubMed

    Rocha, Rui; Santos, Rita S; Madureira, Pedro; Almeida, Carina; Azevedo, Nuno F

    2016-05-20

    Fluorescence in situ hybridization (FISH) is a molecular technique widely used for the detection and characterization of microbial populations. FISH is affected by a wide variety of abiotic and biotic variables and the way they interact with each other. This is translated into a wide variability of FISH procedures found in the literature. The aim of this work is to systematically study the effects of pH, dextran sulfate and probe concentration in the FISH protocol, using a general peptide nucleic acid (PNA) probe for the Eubacteria domain. For this, response surface methodology was used to optimize these 3 PNA-FISH parameters for Gram-negative (Escherichia coli and Pseudomonas fluorescens) and Gram-positive species (Listeria innocua, Staphylococcus epidermidis and Bacillus cereus). The obtained results show that a probe concentration higher than 300nM is favorable for both groups. Interestingly, a clear distinction between the two groups regarding the optimal pH and dextran sulfate concentration was found: a high pH (approx. 10), combined with lower dextran sulfate concentration (approx. 2% [w/v]) for Gram-negative species and near-neutral pH (approx. 8), together with higher dextran sulfate concentrations (approx. 10% [w/v]) for Gram-positive species. This behavior seems to result from an interplay between pH and dextran sulfate and their ability to influence probe concentration and diffusion towards the rRNA target. This study shows that, for an optimum hybridization protocol, dextran sulfate and pH should be adjusted according to the target bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Arrays of probes for positional sequencing by hybridization

    DOEpatents

    Cantor, Charles R.; Prezetakiewiczr, Marek; Smith, Cassandra L.; Sano, Takeshi

    2008-01-15

    This invention is directed to methods and reagents useful for sequencing nucleic acid targets utilizing sequencing by hybridization technology comprising probes, arrays of probes and methods whereby sequence information is obtained rapidly and efficiently in discrete packages. That information can be used for the detection, identification, purification and complete or partial sequencing of a particular target nucleic acid. When coupled with a ligation step, these methods can be performed under a single set of hybridization conditions. The invention also relates to the replication of probe arrays and methods for making and replicating arrays of probes which are useful for the large scale manufacture of diagnostic aids used to screen biological samples for specific target sequences. Arrays created using PCR technology may comprise probes with 5'- and/or 3'-overhangs.

  7. A Nucleic Acid Probe and Method for the Rapid Detection of Typhoid Fever Bacteria.

    DTIC Science & Technology

    This invention relates to a nucleic acid probe and method for the rapid detection of typhoid fever bacteria by use of a nucleic acid hybridization...a nucleic acid hybridization reaction with a clinical specimen containing typhoid fever bacteria.

  8. Development of a peptide nucleic acid probe to Trichosporon species and identification of trichosporonosis by use of in situ hybridization in formalin-fixed and paraffin-embedded (FFPE) sections.

    PubMed

    Shinozaki, Minoru; Okubo, Yoichiro; Sasai, Daisuke; Nakayama, Haruo; Murayama, Somay Yamagata; Ide, Tadashi; Wakayama, Megumi; Ishiwatari, Takao; Tochigi, Naobumi; Nemoto, Tetsuo; Shibuya, Kazutoshi

    2013-01-01

    In order to identify Trichosporon species in formalin-fixed and paraffin-embedded sections from which visual discrimination of non-glabrata Candida species is mostly ineffective but critical for the choice of antifungals, we tested the usefulness of a newly designed peptide nucleic acid probe (PNA) for in situ hybridization (ISH). Results confirmed the usefulness of ISH with our PNA probe in identifying Trichosporon species from Candida albicans.

  9. Hexagonal cobalt oxyhydroxide-carbon dots hybridized surface: high sensitive fluorescence turn-on probe for monitoring of ascorbic acid in rat brain following brain ischemia.

    PubMed

    Li, Linbo; Wang, Chao; Liu, Kangyu; Wang, Yuhan; Liu, Kun; Lin, Yuqing

    2015-03-17

    In this study, we report a novel and efficient fluorescence probe synthesized by Tris(hydroxymethyl)aminomethane-derived carbon dots (CDs)-modified hexagonal cobalt oxyhydroxide(CoOOH) nanoflakes (Tris-derived CDs-CoOOH) for monitoring of cerebral ascorbic acid (AA) in brain microdialysate. The as-prepared Tris-derived CDs with the fluorescence quantum yield of 7.3% are prepared by a one-step pyrolysis strategy of the sole precursor and used as the signal output. After being hybridized with CoOOH nanoflakes to form Tris-derived CDs-CoOOH, the luminescence of the Tris-derived CDs can be efficiently quenched by CoOOH via fluorescence resonance energy transfer (FRET). Due to the specific redox reaction between the enediol group of AA and hexagonal CoOOH nanoflakes, AA can reduce the hexagonal CoOOH nanoflakes in the Tris-derived CDs-CoOOH and lead to collapse of the hybrized structure, then the release of Tris-derived CDs, and thus finally the fluorescence recovery. Moreover, cobalt ions (II), generated by CoOOH nanoflakes oxidizing AA, almost have no obvious interference on the fluorescence probe, i.e., Tris-derived CDs, which could be ascribed to the surface of Tris-derived CDs containing a few strong chelation groups such as amino/carboxyl/thiol groups, instead of plenty of -OH groups with weak chelation with Co(2+). On the basis of this feature, the Tris-derived CDs-CoOOH fluorescent probe demonstrates a linear range from 100 nM to 20 μM with the detection limit of ∼50 nM, i.e., with an improved sensitivity toward AA detection. Compared with other turn-on fluorescent methods using convenient fluorophore-nitroxide fluorescent probes for detection of AA, the method demonstrated here possesses a facial synthesis route, lower limit of detection, and wider linear range, which validates sensing of AA in the cerebral systems during the calm/ischemia process. This study provides a fluorescence assay for the simple yet facial detection of AA in the cerebral systems and

  10. A nucleic acid probe labeled with desmethyl thiazole orange: a new type of hybridization-sensitive fluorescent oligonucleotide for live-cell RNA imaging.

    PubMed

    Okamoto, Akimitsu; Sugizaki, Kaori; Yuki, Mizue; Yanagisawa, Hiroyuki; Ikeda, Shuji; Sueoka, Takuma; Hayashi, Gosuke; Wang, Dan Ohtan

    2013-01-14

    A new fluorescent nucleotide with desmethyl thiazole orange dyes, D'(505), has been developed for expansion of the function of fluorescent probes for live-cell RNA imaging. The nucleoside unit of D'(505) for DNA autosynthesis was soluble in organic solvents, which made the preparation of nucleoside units and the reactions in the cycles of DNA synthesis more efficient. The dyes of D'(505)-containing oligodeoxynucleotide were protonated below pH 7 and the oligodeoxynucleotide exhibited hybridization-sensitive fluorescence emission through the control of excitonic interactions of the dyes of D'(505). The simplified procedure and effective hybridization-sensitive fluorescence emission produced multicolored hybridization-sensitive fluorescent probes, which were useful for live-cell RNA imaging. The acceptor-bleaching method gave us information on RNA in a specific cell among many living cells.

  11. Signal enhancement for gene detection based on a redox reaction of [Fe(CN)(6)](4-) mediated by ferrocene at the terminal of a peptide nucleic acid as a probe with hybridization-amenable conformational flexibility.

    PubMed

    Aoki, Hiroshi; Tao, Hiroaki

    2008-07-01

    Electrochemically enhanced DNA detection was demonstrated by utilizing the couple of a synthesized ferrocene-terminated peptide nucleic acid (PNA) with a cysteine anchor and a sacrificial electron donor [Fe(CN)(6)](4-). DNA detection sensors were prepared by modifying a gold electrode surface with a mixed monolayer of the probe PNA and 11-hydroxy-1-undecanethiol (11-HUT), protecting [Fe(CN)(6)](4-) from any unexpected redox reaction. Before hybridization, the terminal ferrocene moiety of the probe was subject to a redox reaction due to the flexible probe structure and, in the presence of [Fe(CN)(6)](4-), the observed current was amplified based on regeneration of the ferrocene moiety. Hybridization decreased the redox current of the ferrocene. This occurred because hybridization rigidified the probe structure: the ferrocene moiety was then removed from the electrode surface, and the redox reaction of [Fe(CN)(6)](4-) was again prevented. The change in the anodic current before and after hybridization was enhanced 1.75-fold by using the electron donor [Fe(CN)(6)](4-). Sequence-specific detection of the complementary target DNA was also demonstrated.

  12. Simulation-guided DNA probe design for consistently ultraspecific hybridization

    NASA Astrophysics Data System (ADS)

    Wang, Juexiao Sherry; Zhang, David Yu

    2015-07-01

    Hybridization of complementary sequences is one of the central tenets of nucleic acid chemistry; however, the unintended binding of closely related sequences limits the accuracy of hybridization-based approaches to analysing nucleic acids. Thermodynamics-guided probe design and empirical optimization of the reaction conditions have been used to enable the discrimination of single-nucleotide variants, but typically these approaches provide only an approximately 25-fold difference in binding affinity. Here we show that simulations of the binding kinetics are both necessary and sufficient to design nucleic acid probe systems with consistently high specificity as they enable the discovery of an optimal combination of thermodynamic parameters. Simulation-guided probe systems designed against 44 sequences of different target single-nucleotide variants showed between a 200- and 3,000-fold (median 890) higher binding affinity than their corresponding wild-type sequences. As a demonstration of the usefulness of this simulation-guided design approach, we developed probes that, in combination with PCR amplification, detect low concentrations of variant alleles (1%) in human genomic DNA.

  13. Simulation-Guided DNA Probe Design for Consistently Ultraspecific Hybridization

    PubMed Central

    Wang, J. Sherry; Zhang, David Yu

    2015-01-01

    Hybridization of complementary sequences is one of the central tenets of nucleic acid chemistry; however, the unintended binding of closely related sequences limits the accuracy of hybridization-based approaches for analyzing nucleic acids. Thermodynamics-guided probe design and empirical optimization of reaction conditions have been used to enable discrimination of single nucleotide variants, but typically these approaches provide only an approximate 25-fold difference in binding affinity. Here we show that simulations of the binding kinetics are both necessary and sufficient to design nucleic acid probe systems with consistently high specificity as they enable the discovery of an optimal combination of thermodynamic parameters. Simulation-guided probe systems designed against 44 different target single nucleotide variants sequences showed between 200- and 3000-fold (median 890) higher binding affinity than their corresponding wildtype sequences. As a demonstration of the usefulness of this simulation-guided design approach we developed probes which, in combination with PCR amplification, we use to detect low concentrations of variant alleles (1%) in human genomic DNA. PMID:26100802

  14. Simulation-guided DNA probe design for consistently ultraspecific hybridization.

    PubMed

    Wang, Juexiao Sherry; Zhang, David Yu

    2015-07-01

    Hybridization of complementary sequences is one of the central tenets of nucleic acid chemistry; however, the unintended binding of closely related sequences limits the accuracy of hybridization-based approaches to analysing nucleic acids. Thermodynamics-guided probe design and empirical optimization of the reaction conditions have been used to enable the discrimination of single-nucleotide variants, but typically these approaches provide only an approximately 25-fold difference in binding affinity. Here we show that simulations of the binding kinetics are both necessary and sufficient to design nucleic acid probe systems with consistently high specificity as they enable the discovery of an optimal combination of thermodynamic parameters. Simulation-guided probe systems designed against 44 sequences of different target single-nucleotide variants showed between a 200- and 3,000-fold (median 890) higher binding affinity than their corresponding wild-type sequences. As a demonstration of the usefulness of this simulation-guided design approach, we developed probes that, in combination with PCR amplification, detect low concentrations of variant alleles (1%) in human genomic DNA.

  15. Computer programs used to aid in the selection of DNA hybridization probes.

    PubMed Central

    Raupach, R E

    1984-01-01

    This paper describes a package of three programs which used together aid in selecting the best possible sequence to be used as a DNA hybridization probe. This system searches an amino acid sequence for four adjacent amino acids with the fewest possible corresponding mRNA sequences, calculates their probability of occurrence, and locates the positions of wobbles and mismatches between the DNA hybridization probe and the possible mRNA sequences. PMID:6546442

  16. Optimizing the specificity of nucleic acid hybridization

    NASA Astrophysics Data System (ADS)

    Zhang, David Yu; Chen, Sherry Xi; Yin, Peng

    2012-03-01

    The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed ‘toehold exchange’ probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 °C to 37 °C, from 1 mM Mg2+ to 47 mM Mg2+, and with nucleic acid concentrations from 1 nM to 5 µM. Experiments with RNA also showed effective single-base change discrimination.

  17. Optimizing the specificity of nucleic acid hybridization.

    PubMed

    Zhang, David Yu; Chen, Sherry Xi; Yin, Peng

    2012-01-22

    The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed 'toehold exchange' probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 °C to 37 °C, from 1 mM Mg(2+) to 47 mM Mg(2+), and with nucleic acid concentrations from 1 nM to 5 µM. Experiments with RNA also showed effective single-base change discrimination.

  18. Optimizing the specificity of nucleic acid hybridization

    PubMed Central

    Zhang, David Yu; Chen, Sherry Xi; Yin, Peng

    2014-01-01

    The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed ‘toehold exchange’ probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 °C to 37 °C, from 1 mM Mg2+ to 47 mM Mg2+, and with nucleic acid concentrations from 1 nM to 5 μM. Experiments with RNA also showed effective single-base change discrimination. PMID:22354435

  19. Probing Compositional Variation within Hybrid Nanostructures

    SciTech Connect

    Yuhas, Benjamin D.; Habas, Susan E.; Fakra, Sirine C.; Mokari, Taleb

    2010-06-22

    We present a detailed analysis of the structural and magnetic properties of solution-grown PtCo-CdS hybrid structures in comparison to similar free-standing PtCo alloy nanoparticles. X-ray absorption spectroscopy is utilized as a sensitive probe for identifying subtle differences in the structure of the hybrid materials. We found that the growth of bimetallic tips on a CdS nanorod substrate leads to a more complex nanoparticle structure composed of a PtCo alloy core and thin CoO shell. The core-shell architecture is an unexpected consequence of the different nanoparticle growth mechanism on the nanorod tip, as compared to free growth in solution. Magnetic measurements indicate that the PtCo-CdS hybrid structures are superparamagnetic despite the presence of a CoO shell. The use of X-ray spectroscopic techniques to detect minute differences in atomic structure and bonding in complex nanosystems makes it possible to better understand and predict catalytic or magnetic properties for nanoscale bimetallic hybrid materials.

  20. [Diagnosed tuberculosis using specific DNA probe hybridization methods].

    PubMed

    Furuta, Itaru; Yamazumi, Toshiaki

    2002-11-01

    In Japan, reported cases of tuberculosis had declined nearly every year until 1995. However, in 1997 newly recorded cases began increasing for the first time in more than 38 years. Recent studies using DNA fingerprinting show that person- to person transmission may account for as many as one-third of new cases of tuberculosis in citizen populations. Nucleic acid hybridization methods using specific DNA probes can specifically identify M. tuberculosis and other mycobacterial species. Rapid nucleic acid amplification techniques such as polymerase chain reaction methods allow direct identification of M. tuberculosis in clinical specimens. Is 6110 has been exploited extensively as a clonal marker in molecular epidemiology studies of tuberculosis. The emergence of resistance to antituberculosis drugs is a relevant matter worldwide. A recent genotypic method allows earlier detection of RFP-resistant and INH-resistant stains using probes for mutation in rpoB and in katG.

  1. Unravelling the Bacterial Vaginosis-Associated Biofilm: A Multiplex Gardnerella vaginalis and Atopobium vaginae Fluorescence In Situ Hybridization Assay Using Peptide Nucleic Acid Probes

    PubMed Central

    Hardy, Liselotte; Jespers, Vicky; Dahchour, Nassira; Mwambarangwe, Lambert; Musengamana, Viateur; Vaneechoutte, Mario; Crucitti, Tania

    2015-01-01

    Bacterial vaginosis (BV), a condition defined by increased vaginal discharge without significant inflammation, is characterized by a change in the bacterial composition of the vagina. Lactobacillus spp., associated with a healthy vaginal microbiome, are outnumbered by BV-associated organisms. These bacteria could form a polymicrobial biofilm which allows them to persist in spite of antibiotic treatment. In this study, we examined the presence of Gardnerella vaginalis and Atopobium vaginae in vaginal biofilms using Peptide Nucleic Acid (PNA) probes targeting these bacteria. For this purpose, we developed three new PNA probes for A. vaginae. The most specific A. vaginae probe, AtoITM1, was selected and then used in an assay with two existing probes, Gard162 and BacUni-1, to evaluate multiplex FISH on clinical samples. Using quantitative polymerase chain reaction (qPCR) as the gold standard, we demonstrated a sensitivity of 66.7% (95% confidence interval: 54.5% - 77.1%) and a specificity of 89.4% (95% confidence interval: 76.1% - 96%) of the new AtoITM1 probe. FISH enabled us to show the presence of a polymicrobial biofilm in bacterial vaginosis, in which Atopobium vaginae is part of a Gardnerella vaginalis-dominated biofilm. We showed that the presence of this biofilm is associated with high bacterial loads of A. vaginae and G. vaginalis. PMID:26305575

  2. Unravelling the Bacterial Vaginosis-Associated Biofilm: A Multiplex Gardnerella vaginalis and Atopobium vaginae Fluorescence In Situ Hybridization Assay Using Peptide Nucleic Acid Probes.

    PubMed

    Hardy, Liselotte; Jespers, Vicky; Dahchour, Nassira; Mwambarangwe, Lambert; Musengamana, Viateur; Vaneechoutte, Mario; Crucitti, Tania

    2015-01-01

    Bacterial vaginosis (BV), a condition defined by increased vaginal discharge without significant inflammation, is characterized by a change in the bacterial composition of the vagina. Lactobacillus spp., associated with a healthy vaginal microbiome, are outnumbered by BV-associated organisms. These bacteria could form a polymicrobial biofilm which allows them to persist in spite of antibiotic treatment. In this study, we examined the presence of Gardnerella vaginalis and Atopobium vaginae in vaginal biofilms using Peptide Nucleic Acid (PNA) probes targeting these bacteria. For this purpose, we developed three new PNA probes for A. vaginae. The most specific A. vaginae probe, AtoITM1, was selected and then used in an assay with two existing probes, Gard162 and BacUni-1, to evaluate multiplex FISH on clinical samples. Using quantitative polymerase chain reaction (qPCR) as the gold standard, we demonstrated a sensitivity of 66.7% (95% confidence interval: 54.5% - 77.1%) and a specificity of 89.4% (95% confidence interval: 76.1% - 96%) of the new AtoITM1 probe. FISH enabled us to show the presence of a polymicrobial biofilm in bacterial vaginosis, in which Atopobium vaginae is part of a Gardnerella vaginalis-dominated biofilm. We showed that the presence of this biofilm is associated with high bacterial loads of A. vaginae and G. vaginalis.

  3. Expanding probe repertoire and improving reproducibility in human genomic hybridization

    PubMed Central

    Dorman, Stephanie N.; Shirley, Ben C.; Knoll, Joan H. M.; Rogan, Peter K.

    2013-01-01

    Diagnostic DNA hybridization relies on probes composed of single copy (sc) genomic sequences. Sc sequences in probe design ensure high specificity and avoid cross-hybridization to other regions of the genome, which could lead to ambiguous results that are difficult to interpret. We examine how the distribution and composition of repetitive sequences in the genome affects sc probe performance. A divide and conquer algorithm was implemented to design sc probes. With this approach, sc probes can include divergent repetitive elements, which hybridize to unique genomic targets under higher stringency experimental conditions. Genome-wide custom probe sets were created for fluorescent in situ hybridization (FISH) and microarray genomic hybridization. The scFISH probes were developed for detection of copy number changes within small tumour suppressor genes and oncogenes. The microarrays demonstrated increased reproducibility by eliminating cross-hybridization to repetitive sequences adjacent to probe targets. The genome-wide microarrays exhibited lower median coefficients of variation (17.8%) for two HapMap family trios. The coefficients of variations of commercial probes within 300 nt of a repetitive element were 48.3% higher than the nearest custom probe. Furthermore, the custom microarray called a chromosome 15q11.2q13 deletion more consistently. This method for sc probe design increases probe coverage for FISH and lowers variability in genomic microarrays. PMID:23376933

  4. Functional nucleic acid probes and uses thereof

    DOEpatents

    Nilsen-Hamilton, Marit

    2006-10-03

    The present invention provides functional nucleic acid probes, and methods of using functional nucleic acid probes, for binding a target to carry out a desired function. The probes have at least one functional nucleic acid, at least one regulating nucleic acid, and at least one attenuator. The functional nucleic acid is maintained in an inactive state by the attenuator and activated by the regulating nucleic acid only in the presence of a regulating nucleic acid target. In its activated state the functional nucleic acid can bind to its target to carry out a desired function, such as generating a signal, cleaving a nucleic acid, or catalyzing a reaction.

  5. Evaluation of dual-color fluorescence in situ hybridization with peptide nucleic acid probes for the detection of Mycobacterium tuberculosis and non-tuberculous mycobacteria in clinical specimens.

    PubMed

    Kim, Namhee; Lee, Seung Hee; Yi, Jongyoun; Chang, Chulhun L

    2015-09-01

    Peptide nucleic acid (PNA) probes are artificial DNA analogues with a hydrophobic nature that can penetrate the mycobacterial cell wall. We evaluated a FISH method for simultaneous detection and identification of Mycobacterium tuberculosis (MTB) and non-tuberculous mycobacteria (NTM) in clinical respiratory specimens using differentially labeled PNA probes. PNA probes targeting the mycobacterial 16S ribosomal RNA were synthesized. The cross-reactivity of MTB- and NTM-specific probes was examined with reference strains and 10 other frequently isolated bacterial species. A total of 140 sputum specimens were analyzed, comprising 100 MTB-positive specimens, 21 NTM-positive specimens, and 19 MTB/NTM-negative specimens; all of them were previously confirmed by PCR and culture. The PNA FISH test results were graded by using the United States Centers for Disease Control and Prevention-recommended scale and compared with the results from the fluorochrome acid-fast bacterial stain. The MTB- and NTM-specific PNA probes showed no cross-reactivity with other tested bacterial species. The test results demonstrated 82.9% agreement with the culture results with diagnostic sensitivity of 80.2% and diagnostic specificity of 100.0% (kappa=0.52, 95% confidence interval: 0.370-0.676). Dual-color PNA FISH showed high specificity for detecting and identifying mycobacteria in clinical specimens. However, because of its relatively low sensitivity, this method could be more applicable to culture confirmation. In application to direct specimens, the possibility of false-negative results needs to be considered.

  6. Controlling microarray DNA hybridization efficiency by probe-surface distance and external surface electrostatics

    NASA Astrophysics Data System (ADS)

    Qamhieh, K.; Pettitt, B. Montgomery

    2015-03-01

    DNA microarrays are analytical devices designed to determine the composition of multicomponent solutions of nucleic acids, DNA or RNA. These devices are promising technology for diverse applications, including sensing, diagnostics, and drug/gene delivery. Here, we modify a hybridization adsorption isotherm to study the effects of probe-surface distance and the external electrostatic fields, on the oligonucleotide hybridization in microarray and how these effects are varies depending on surface probe density and target concentration. This study helps in our understanding on-surface hybridization mechanisms, and from it we can observe a significant effect of the probe-surface distance, and the external electrostatic fields, on the hybridization yield. In addition we present a simple new criteria to control the oligonucleotide hybridization efficiency by providing a chart illustrating the effects of all factors on the DNA-hybridization efficiency.

  7. Molecular beacons: nucleic acid hybridization and emerging applications.

    PubMed

    Antony, T; Subramaniam, V

    2001-12-01

    Molecular beacons (MBs) are a novel class of nucleic acid probes that become fluorescent when bound to a complementary sequence. Because of this characteristic, coupled with the sequence specificity of nucleic acid hybridization and the sensitivity of fluorescence techniques, MBs are very useful probes for a variety of applications requiring the detection of DNA or RNA. We survey various applications of MBs, including the monitoring of DNA triplex formation, and describe recent developments in MB design that enhance their sensitivity.

  8. A Nucleic Acid Probe and Method for the Detection of Shigella and Enteroinvasive E. coli Bacteria.

    DTIC Science & Technology

    This invention relates to nucleic acid probes and a method for the rapid detection of Shigella and enteroinvasive Escherichia coli, the causative agents of bacterial dysentery, by use of a nucleic acid hybridization probe, equivalent to a plasmid DNA region encoding one of 4 specific invasion-associated, peptides of all strains of Shigella and enterinvasive E . coli , in a nucleic acid hybridization reaction with a clinical specimen containing dysentery bacteria.

  9. Nucleic acid probes in diagnostic medicine

    NASA Technical Reports Server (NTRS)

    Oberry, Phillip A.

    1991-01-01

    The need for improved diagnostic procedures is outlined and variations in probe technology are briefly reviewed. A discussion of the application of probe technology to the diagnosis of disease in animals and humans is presented. A comparison of probe versus nonprobe diagnostics and isotopic versus nonisotopic probes is made and the current state of sequence amplification is described. The current market status of nucleic acid probes is reviewed with respect to their diagnostic application in human and veterinary medicine. Representative product examples are described and information on probes being developed that offer promise as future products is discussed.

  10. Fluorescence In Situ Hybridization Probe Preparation.

    PubMed

    Tolomeo, Doron; Stanyon, Roscoe R; Rocchi, Mariano

    2017-01-01

    The public human genome sequencing project utilized a hierarchical approach. A large number of BAC/PAC clones, with an insert size approximate from 50 kb to 300 kb, were identified and finely mapped with respect to the Sequence Tagged Site (STS) physical map and with respect to each other. A "golden path" of BACs, covering the entire human genome, was then selected and each clone was fully sequenced. The large number of remaining BACs was not fully sequenced, but the availability of the end sequence (~800-1000 bp) at each end allowed them to be very precisely mapped on the human genome.The search for copy number variations of the human genome used several strategies. One of these approaches took advantage of the fact that fosmid clones, contrary to BAC/PAC clones, have a fixed insert size (~40 kb) (Kidd et al., Nature 453: 56-64, 2008). In this context, the ends of ~7 million fosmid clones were sequenced, and therefore it was possible to precisely map these clones on the human genome.In summary, a large number of genomic clones (GC) are available for FISH experiments. They usually yield bright FISH signals and are extremely precious for molecular cytogenetics, and in particular cancer cytogenetics. The already-labeled probes available commercially are usually based on a combination of such GCs. The present chapter summarizes the protocols for extracting, labeling, and hybridization onto slides of DNA obtained from GC.

  11. Employing double-stranded DNA probes on colloidal substrates for competitive hybridization events

    NASA Astrophysics Data System (ADS)

    Baker, Bryan Alexander

    DNA has found application beyond its biological function in the cell in a variety of materials assembly systems as well as nucleic acid-based detection devices. In the current research, double-stranded DNA probes are applied in both a colloidal particle assembly and fluorescent assay approach utilizing competitive hybridization interactions. The responsiveness of the double-stranded probes (dsProbes) was tuned by sequence design and tested against a variety of nucleic acid targets. Chapter 1 provides a review of the particle substrate used in the current research, colloidal particles, as well as examines previous applications of DNA in assembly and nucleic acid detection formats. Chapter 2 discusses the formation of fluorescent satellites, or similarly termed fluorescent micelles, via DNA hybridization. The effects of DNA duplex sequence, temperature at which assembly occurs, and oligonucleotide density are variables considered with preferential assembly observed for low oligonucleotide density particles. Chapter 3 demonstrates the controlled disassembly of these satellite structures via competitive hybridization with a soluble target strand. Chapter 4 examines DNA duplexes as fluorescent dsProbes and characterizes the kinetics of competitive hybridization between immobilized dsProbes and solution targets of interest. The sequence-based affinities of dsProbes as well as location of an embedded target sequence are both variables explored in this study. Based on the sequence design of the dsProbes, a range of kinetics responses are observed. Chapter 5 also examines the kinetics of competitive hybridization with dsProbes but with a focus on the specificity of competitive target by including mismatches within a short 15 base competitive target. Chapter 6 examines the effects of dsProbe orientation relative to the particle surface as well as substrate particle size. The kinetics of displacement of DNA targets with those of RNA targets of analogous sequence are also

  12. Method for analyzing nucleic acids by means of a substrate having a microchannel structure containing immobilized nucleic acid probes

    DOEpatents

    Ramsey, J. Michael; Foote, Robert S.

    2003-12-09

    A method and apparatus for analyzing nucleic acids includes immobilizing nucleic probes at specific sites within a microchannel structure and moving target nucleic acids into proximity to the probes in order to allow hybridization and fluorescence detection of specific target sequences.

  13. Method for analyzing nucleic acids by means of a substrate having a microchannel structure containing immobilized nucleic acid probes

    DOEpatents

    Ramsey, J. Michael; Foote, Robert S.

    2002-01-01

    A method and apparatus for analyzing nucleic acids includes immobilizing nucleic probes at specific sites within a microchannel structure and moving target nucleic acids into proximity to the probes in order to allow hybridization and fluorescence detection of specific target sequences.

  14. Nonenzymatic catalytic signal amplification for nucleic acid hybridization assays

    NASA Technical Reports Server (NTRS)

    Fan, Wenhong (Inventor); Cassell, Alan M. (Inventor); Han, Jie (Inventor)

    2006-01-01

    Devices, methods, and kits for amplifying the signal from hybridization reactions between nucleic acid probes and their cognate targets are presented. The devices provide partially-duplexed, immobilized probe complexes, spatially separate from and separately addressable from immobilized docking strands. Cognate target acts catalytically to transfer probe from the site of probe complex immobilization to the site of immobilized docking strand, generating a detectable signal. The methods and kits of the present invention may be used to identify the presence of cognate target in a fluid sample.

  15. Normalization and centering of array-based heterologous genome hybridization based on divergent control probes.

    PubMed

    Darby, Brian J; Jones, Kenneth L; Wheeler, David; Herman, Michael A

    2011-05-21

    Hybridization of heterologous (non-specific) nucleic acids onto arrays designed for model-organisms has been proposed as a viable genomic resource for estimating sequence variation and gene expression in non-model organisms. However, conventional methods of normalization that assume equivalent distributions (such as quantile normalization) are inappropriate when applied to non-specific (heterologous) hybridization. We propose an algorithm for normalizing and centering intensity data from heterologous hybridization that makes no prior assumptions of distribution, reduces the false appearance of homology, and provides a way for researchers to confirm whether heterologous hybridization is suitable. Data are normalized by adjusting for Gibbs free energy binding, and centered by adjusting for the median of a common set of control probes assumed to be equivalently dissimilar for all species. This procedure was compared to existing approaches and found to be as successful as Loess normalization at detecting sequence variations (deletions) and even more successful than quantile normalization at reducing the accumulation of false positive probe matches between two related nematode species, Caenorhabditis elegans and C. briggsae. Despite the improvements, we still found that probe fluorescence intensity was too poorly correlated with sequence similarity to result in reliable detection of matching probe sequence. Cross-species hybridizations can be a way to adapt genome-enabled tools for closely related non-model organisms, but data must be appropriately normalized and centered in a way that accommodates hybridization of nucleic acids with diverged sequence. For short, 25-mer probes, hybridization intensity alone may be insufficiently correlated with sequence similarity to allow reliable inference of homology at the probe level.

  16. Normalization and centering of array-based heterologous genome hybridization based on divergent control probes

    PubMed Central

    2011-01-01

    Background Hybridization of heterologous (non-specific) nucleic acids onto arrays designed for model-organisms has been proposed as a viable genomic resource for estimating sequence variation and gene expression in non-model organisms. However, conventional methods of normalization that assume equivalent distributions (such as quantile normalization) are inappropriate when applied to non-specific (heterologous) hybridization. We propose an algorithm for normalizing and centering intensity data from heterologous hybridization that makes no prior assumptions of distribution, reduces the false appearance of homology, and provides a way for researchers to confirm whether heterologous hybridization is suitable. Results Data are normalized by adjusting for Gibbs free energy binding, and centered by adjusting for the median of a common set of control probes assumed to be equivalently dissimilar for all species. This procedure was compared to existing approaches and found to be as successful as Loess normalization at detecting sequence variations (deletions) and even more successful than quantile normalization at reducing the accumulation of false positive probe matches between two related nematode species, Caenorhabditis elegans and C. briggsae. Despite the improvements, we still found that probe fluorescence intensity was too poorly correlated with sequence similarity to result in reliable detection of matching probe sequence. Conclusions Cross-species hybridizations can be a way to adapt genome-enabled tools for closely related non-model organisms, but data must be appropriately normalized and centered in a way that accommodates hybridization of nucleic acids with diverged sequence. For short, 25-mer probes, hybridization intensity alone may be insufficiently correlated with sequence similarity to allow reliable inference of homology at the probe level. PMID:21600029

  17. Identification of Cannabis sativa L. using the 1-kbTHCA synthase-fluorescence in situ hybridization probe.

    PubMed

    Jeangkhwoa, Pattraporn; Bandhaya, Achirapa; Umpunjun, Puangpaka; Chuenboonngarm, Ngarmnij; Panvisavas, Nathinee

    2017-03-01

    This study reports a successful application of fluorescence in situ hybridization (FISH) technique in the identification of Cannabis sativa L. cells recovered from fresh and dried powdered plant materials. Two biotin-16-dUTP-labeled FISH probes were designed from the Cannabis-specific tetrahydrocannabinolic acid synthase (THCAS) gene and the ITS region of the 45S rRNA gene. Specificity of probe-target hybridization was tested against the target and 4 non-target plant species, i.e., Humulus lupulus, Mitragyna speciosa, Papaver sp., and Nicotiana tabacum. The 1-kb THCA synthase hybridization probe gave Cannabis-specific hybridization signals, unlike the 700-bp Cannabis-ITS hybridization probe. Probe-target hybridization was also confirmed against 20 individual Cannabis plant samples. The 1-kb THCA synthase and 700-bp Cannabis-ITS hybridization probes clearly showed 2 hybridization signals per cell with reproducibility. The 1-kb THCA synthase probe did not give any FISH signal when tested against H. lupulus, its closely related member of the Canabaceae family. It was also showed that 1-kb THCA synthase FISH probe can be applied to identify small amount of dried powdered Cannabis material with an addition of rehydration step prior to the experimental process. This study provided an alternative identification method for Cannabis trace. Copyright © 2016. Published by Elsevier B.V.

  18. Nucleic acid in-situ hybridization detection of infectious agents

    NASA Astrophysics Data System (ADS)

    Thompson, Curtis T.

    2000-04-01

    Limitations of traditional culture methods and newer polymerase chain reaction (PCR)-based methods for detection and speciation of infectious agents demonstrate the need for more rapid and better diagnostics. Nucleic acid hybridization is a detection technology that has gained wide acceptance in cancer and prenatal cytogenetics. Using a modification of the nucleic acid hybridization technique known as fluorescence in-situ hybridization, infectious agents can be detected in a variety of specimens with high sensitivity and specificity. The specimens derive from all types of human and animal sources including body fluids, tissue aspirates and biopsy material. Nucleic acid hybridization can be performed in less than one hour. The result can be interpreted either using traditional fluorescence microscopy or automated platforms such as micro arrays. This paper demonstrates proof of concept for nucleic acid hybridization detection of different infectious agents. Interpretation within a cytologic and histologic context is possible with fluorescence microscopic analysis, thereby providing confirmatory evidence of hybridization. With careful probe selection, nucleic acid hybridization promises to be a highly sensitive and specific practical diagnostic alternative to culture, traditional staining methods, immunohistochemistry and complicated nucleic acid amplification tests.

  19. Fast hybridization solution for the detection of immobilized nucleic acids.

    PubMed

    Yang, T T; Kain, S R

    1995-03-01

    We have developed a fast hybridization solution, termed ExpressHyb, for the rapid and sensitive detection of nucleic acids immobilized on membrane supports. This solution reduces typical hybridization times of 12-24 h to as little as 1 h while simultaneously increasing the sensitivity of detection in many applications. Using ExpressHyb, human beta-actin mRNA was detected on a human multiple tissue Northern (MTN) blot following a 30-min hybridization, with optimal detection occurring with a 1-h hybridization interval. The moderately abundant human glyceraldehyde-3-phosphate dehydrogenase (G3PDH) mRNA was detected using similar hybridization conditions and yielded improved signal-to-background characteristics relative to overnight hybridizations in conventional solutions. ExpressHyb can be used with either 32P- or digoxigenin-labeled probes and works effectively with both cDNA and oligonucleotide probes. For non-isotopic detection in particular, ExpressHyb reduces the nonspecific background commonly encountered with this technique. In cDNA library screening, ExpressHyb was found to both reduce the time required for effective hybridizations and to increase the number of positive colonies obtained relative to conventional overnight procedures. Taken together, these results illustrate the broad capability of ExpressHyb Hybridization Solution to improve nucleic acid detection in a variety of important techniques.

  20. Synthetic oligonucleotide probes deduced from amino acid sequence data. Theoretical and practical considerations.

    PubMed

    Lathe, R

    1985-05-05

    Synthetic probes deduced from amino acid sequence data are widely used to detect cognate coding sequences in libraries of cloned DNA segments. The redundancy of the genetic code dictates that a choice must be made between (1) a mixture of probes reflecting all codon combinations, and (2) a single longer "optimal" probe. The second strategy is examined in detail. The frequency of sequences matching a given probe by chance alone can be determined and also the frequency of sequences closely resembling the probe and contributing to the hybridization background. Gene banks cannot be treated as random associations of the four nucleotides, and probe sequences deduced from amino acid sequence data occur more often than predicted by chance alone. Probe lengths must be increased to confer the necessary specificity. Examination of hybrids formed between unique homologous probes and their cognate targets reveals that short stretches of perfect homology occurring by chance make a significant contribution to the hybridization background. Statistical methods for improving homology are examined, taking human coding sequences as an example, and considerations of codon utilization and dinucleotide frequencies yield an overall homology of greater than 82%. Recommendations for probe design and hybridization are presented, and the choice between using multiple probes reflecting all codon possibilities and a unique optimal probe is discussed.

  1. Linear RNA amplification for the production of microarray hybridization probes.

    PubMed

    Klebes, Ansgar; Kornberg, Thomas B

    2008-01-01

    To understand Drosophila development and other genetically controlled processes, it is often desirable to identify differences in gene expression levels. An experimental approach to investigate these processes is to catalog the transcriptome by hybridization of mRNA to DNA microbar-rays. In these experiments mRNA-derived hybridization probes are produced and hybridized to an array of DNA spots on a solid support. The labeled cDNAs of the complex hybridization probe will bind to their complementary sequences and provide quantification of the relative concentration of the corresponding transcript in the starting material. However, such approaches are often limited by the scarcity of the experimental sample because standard methods of probe preparation require microgram quantities of mRNA template. Linear RNA amplification can alleviate such limitations to support the generation of microarray hybridization probes from a few 100 pg of mRNA. These smaller quantities can be isolated from a few 100 cells. Here, we present a linear amplification protocol designed to preserve both the relative abundance of transcripts as well as their sequence complexity.

  2. Method for nucleic acid hybridization using single-stranded DNA binding protein

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1996-01-01

    Method of nucleic acid hybridization for detecting the presence of a specific nucleic acid sequence in a population of different nucleic acid sequences using a nucleic acid probe. The nucleic acid probe hybridizes with the specific nucleic acid sequence but not with other nucleic acid sequences in the population. The method includes contacting a sample (potentially including the nucleic acid sequence) with the nucleic acid probe under hybridizing conditions in the presence of a single-stranded DNA binding protein provided in an amount which stimulates renaturation of a dilute solution (i.e., one in which the t.sub.1/2 of renaturation is longer than 3 weeks) of single-stranded DNA greater than 500 fold (i.e., to a t.sub.1/2 less than 60 min, preferably less than 5 min, and most preferably about 1 min.) in the absence of nucleotide triphosphates.

  3. DNA hybridization probe for clinical diagnosis of Entamoeba histolytica.

    PubMed Central

    Samuelson, J; Acuna-Soto, R; Reed, S; Biagi, F; Wirth, D

    1989-01-01

    As an alternative to microscopic identification of Entamoeba histolytica parasites isolated from stool, a sensitive and species-specific DNA hybridization probe was made for rapid diagnosis of E. histolytica parasites in clinical samples directly applied to nylon membranes. The DNA hybridization probe was made by screening a genomic library of a virulent HM-1:IMSS strain of E. histolytica to detect recombinant plasmids containing highly repeated parasite DNA sequences. Four plasmid clones that reacted across Entamoeba species coded for highly repeated rRNA genes of E. histolytica. Four other plasmid clones were E. histolytica specific in that they bound to four axenized and nine xenic strains of E. histolytica but did not recognize closely related E. histolytica-like Laredo, Entamoeba moshkovskii, or Entamoeba invadens parasites. The diagnostic clones detected as few as eight cultured amoebae and did not distinguish between pathogenic and nonpathogenic zymodemes of E. histolytica. The diagnostic clones were sequenced and contained 145-base-pair sequences which appear to be tandemly repeated in the genome. No stable transcript which is homologous to the diagnostic DNA was detected. In a study of stool samples from Mexico City shown by microscopy to contain E. histolytica, Entamoeba coli, Giardia lamblia, Endolimax nana, Trichuris trichiuria, and Chilomastix mesnili parasites, the DNA hybridization probe demonstrated a sensitivity of 1.0 and a specificity of 0.93. We conclude that the DNA hybridization probe can be used for rapid and accurate diagnosis of E. histolytica parasites. Images PMID:2542361

  4. Modeling Formamide Denaturation of Probe-Target Hybrids for Improved Microarray Probe Design in Microbial Diagnostics

    PubMed Central

    Yilmaz, L. Safak; Loy, Alexander; Wright, Erik S.; Wagner, Michael; Noguera, Daniel R.

    2012-01-01

    Application of high-density microarrays to the diagnostic analysis of microbial communities is challenged by the optimization of oligonucleotide probe sensitivity and specificity, as it is generally unfeasible to experimentally test thousands of probes. This study investigated the adjustment of hybridization stringency using formamide with the idea that sensitivity and specificity can be optimized during probe design if the hybridization efficiency of oligonucleotides with target and non-target molecules can be predicted as a function of formamide concentration. Sigmoidal denaturation profiles were obtained using fluorescently labeled and fragmented 16S rRNA gene amplicon of Escherichia coli as the target with increasing concentrations of formamide in the hybridization buffer. A linear free energy model (LFEM) was developed and microarray-specific nearest neighbor rules were derived. The model simulated formamide melting with a denaturant m-value that increased hybridization free energy (ΔG°) by 0.173 kcal/mol per percent of formamide added (v/v). Using the LFEM and specific probe sets, free energy rules were systematically established to predict the stability of single and double mismatches, including bulged and tandem mismatches. The absolute error in predicting the position of experimental denaturation profiles was less than 5% formamide for more than 90 percent of probes, enabling a practical level of accuracy in probe design. The potential of the modeling approach for probe design and optimization is demonstrated using a dataset including the 16S rRNA gene of Rhodobacter sphaeroides as an additional target molecule. The LFEM and thermodynamic databases were incorporated into a computational tool (ProbeMelt) that is freely available at http://DECIPHER.cee.wisc.edu. PMID:22952791

  5. Time-resolved detection probe for homogeneous nucleic acid analyses in one-step format.

    PubMed

    Laitala, Ville; Ylikoski, Alice; Raussi, Hanna-Mari; Ollikka, Pia; Hemmilä, Ilkka

    2007-02-01

    We report here an extension of homogeneous assays based on fluorescence intensity and lifetime measuring on DNA hybridization. A novel decay probe that allows simple one-step nucleic acid detection with subnanomolar sensitivity, and is suitable for closed-tube applications, is introduced. The decay probe uses fluorescence resonance energy transfer (FRET) between a europium chelate donor and an organic fluorophore acceptor. The substantial change in the acceptor emission decay time on hybridization with the target sequence allows the direct separation of the hybridized and unhybridized probe populations in a time-resolved measurement. No additional sample manipulation or self-hybridization of the probes is required. The wavelength and decay time of a decay probe can be adjusted according to the selection of probe length and acceptor fluorophore, thereby making the probes applicable to multiplexed assays. Here we demonstrate the decay probe principle and decay probe-based, one-step, dual DNA assay using celiac disease-related target oligonucleotides (single-nucleotide polymorphisms [SNPs]) as model analytes. Decay probes showed specific response for their complementary DNA target and allowed good signal deconvolution based on simultaneous optical and temporal filtering. This technique potentially could be used to further increase the number of simultaneously detected DNA targets in a simple one-step homogeneous assay.

  6. C2'-pyrene-functionalized triazole-linked DNA: universal DNA/RNA hybridization probes.

    PubMed

    Sau, Sujay P; Hrdlicka, Patrick J

    2012-01-06

    Development of universal hybridization probes, that is, oligonucleotides displaying identical affinity toward matched and mismatched DNA/RNA targets, has been a longstanding goal due to potential applications as degenerate PCR primers and microarray probes. The classic approach toward this end has been the use of "universal bases" that either are based on hydrogen-bonding purine derivatives or aromatic base analogues without hydrogen-bonding capabilities. However, development of probes that result in truly universal hybridization without compromising duplex thermostability has proven challenging. Here we have used the "click reaction" to synthesize four C2'-pyrene-functionalized triazole-linked 2'-deoxyuridine phosphoramidites. We demonstrate that oligodeoxyribonucleotides modified with the corresponding monomers display (a) minimally decreased thermal affinity toward DNA/RNA complements relative to reference strands, (b) highly robust universal hybridization characteristics (average differences in thermal denaturation temperatures of matched vs mismatched duplexes involving monomer W are <1.7 °C), and (c) exceptional affinity toward DNA targets containing abasic sites opposite of the modification site (ΔT(m) up to +25 °C). The latter observation, along with results from absorption and fluorescence spectroscopy, suggests that the pyrene moiety is intercalating into the duplex whereby the opposing nucleotide is pushed into an extrahelical position. These properties render C2'-pyrene-functionalized triazole-linked DNA as promising universal hybridization probes for applications in nucleic acid chemistry and biotechnology.

  7. Fluorescent-labeled oligonucleotide probes: detection of hybrid formation in solution by fluorescence polarization spectroscopy.

    PubMed Central

    Murakami, A; Nakaura, M; Nakatsuji, Y; Nagahara, S; Tran-Cong, Q; Makino, K

    1991-01-01

    Fluorescein-labeled oligonucleotides as DNA-probes were synthesized and used to monitor hybrid formation, namely to detect DNA or oligonucleotide sequence in solution. The introduction of fluorescein to oligonucleotides was carried out by oxidation of a hydrogen phosphonate linkage with ethylenediamine or hexamethylenediamine as a tether and by a subsequent labeling of the primary amine moiety by FITC. Fluorescence anisotropy, r, was adopted as an index to monitor the behavior of F-probe in solution. An increase in the anisotropy was observed upon an increase in the chain-length of F-probe. When F-Probe formed a hybrid with its complementary oligonucleotide in solution, the r value increased compared to that of F-Probe itself. These observations clearly indicate that measurements of r in solution will readily lead to the monitoring of the presence of a hybrid in solution. Consequently, it is promising to detect a certain nucleic acid sequence in solution using fluorescent-labeled oligonucleotides. PMID:1870966

  8. Fluorescence In Situ Hybridization Probe Validation for Clinical Use.

    PubMed

    Gu, Jun; Smith, Janice L; Dowling, Patricia K

    2017-01-01

    In this chapter, we provide a systematic overview of the published guidelines and validation procedures for fluorescence in situ hybridization (FISH) probes for clinical diagnostic use. FISH probes-which are classified as molecular probes or analyte-specific reagents (ASRs)-have been extensively used in vitro for both clinical diagnosis and research. Most commercially available FISH probes in the United States are strictly regulated by the U.S. Food and Drug Administration (FDA), the Centers for Disease Control and Prevention (CDC), the Centers for Medicare & Medicaid Services (CMS) the Clinical Laboratory Improvement Amendments (CLIA), and the College of American Pathologists (CAP). Although home-brewed FISH probes-defined as probes made in-house or acquired from a source that does not supply them to other laboratories-are not regulated by these agencies, they too must undergo the same individual validation process prior to clinical use as their commercial counterparts. Validation of a FISH probe involves initial validation and ongoing verification of the test system. Initial validation includes assessment of a probe's technical specifications, establishment of its standard operational procedure (SOP), determination of its clinical sensitivity and specificity, development of its cutoff, baseline, and normal reference ranges, gathering of analytics, confirmation of its applicability to a specific research or clinical setting, testing of samples with or without the abnormalities that the probe is meant to detect, staff training, and report building. Ongoing verification of the test system involves testing additional normal and abnormal samples using the same method employed during the initial validation of the probe.

  9. Peptide nucleic acid probes with charged photocleavable mass markers

    PubMed Central

    Ball, Rachel J; Green, Philip S; Gale, Nittaya; Langley, G John

    2010-01-01

    Halogen-labelled peptide organic acid (HPOA) monomers have been synthesised and incorporated into sequence-specific peptide nucleic acid (PNA) probes. Three different types of probe have been prepared; the unmodified PNA probe, the PNA probe with a mass marker, and the PNA probe with photocleavable mass marker. All three types of probe have been used in model studies to develop a mass spectrometry-based hybridisation assay for detection of point mutations in DNA. PMID:21687524

  10. Detection of cyclin D1 mRNA by hybridization sensitive NIC-oligonucleotide probe.

    PubMed

    Kovaliov, Marina; Segal, Meirav; Kafri, Pinhas; Yavin, Eylon; Shav-Tal, Yaron; Fischer, Bilha

    2014-05-01

    A large group of fluorescent hybridization probes, includes intercalating dyes for example thiazole orange (TO). Usually TO is coupled to nucleic acids post-synthetically which severely limits its use. Here, we have developed a phosphoramidite monomer, 10, and prepared a 2'-OMe-RNA probe, labeled with 5-(trans-N-hexen-1-yl-)-TO-2'-deoxy-uridine nucleoside, dU(TO), (Nucleoside bearing an Inter-Calating moiety, NIC), for selective mRNA detection. We investigated a series of 15-mer 2'-OMe-RNA probes, targeting the cyclin D1 mRNA, containing one or several dU(TO) at various positions. dU(TO)-2'-OMe-RNA exhibited up to 7-fold enhancement of TO emission intensity upon hybridization with the complementary RNA versus that of the oligomer alone. This NIC-probe was applied for the specific detection of a very small amount of a breast cancer marker, cyclin D1 mRNA, in total RNA extract from cancerous cells (250 ng/μl). Furthermore, this NIC-probe was found to be superior to our related NIF (Nucleoside with Intrinsic Fluorescence)-probe which could detect cyclin D1 mRNA target only at high concentrations (1840 ng/μl). Additionally, dU(T) can be used as a monomer in solid-phase oligonucleotide synthesis, thus avoiding the need for post-synthetic modification of oligonucleotide probes. Hence, we propose dU(TO) oligonucleotides, as hybridization probes for the detection of specific RNA in homogeneous solutions and for the diagnosis of breast cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Selectivity of Hybridization Controlled by the Density of Solid Phase Synthesized DNA Probes on Glass Substrates

    NASA Astrophysics Data System (ADS)

    Song, Fayi; Krull, Ulrich J.

    Optical biochip design based on varying the density of immobilized single-stranded DNA (ssDNA) oligonucleotide probes was examined. A method of immobilization was developed to yield various densities of probe molecules using photochemical activation of surfaces and in situ solid phase synthesis for DNA immobilization. High surface density of ssDNA probe (up to 1 × 1013 probes/cm2) was obtained using the immobilization method. The densities and extent of hybridization of nucleic acids were determined using confocal fluorescence microscopy. Selective hybridization of targets associated with spinal muscular atrophy containing single nucleotide polymorphisms (SNP), and their thermal denaturation profiles were investigated to examine the sensitivity and selectivity for SNP detection. The detection limit was less than 16 pM at room temperature. Single base mismatch discrimination was demonstrated based on control of melt temperature by selection of probe density, and temperature differences of 12-15°C could be achieved for SNP determination. Importantly, the results demonstrate that poor control of probe density can result in significant variability of selectivity, as seen by melt temperature shifts of up to 5°C in the density range that was investigated.

  12. Hybridization-based biosensor containing hairpin probes and use thereof

    DOEpatents

    Miller, Benjamin L.; Strohsahl, Christopher M.

    2010-10-12

    A sensor chip that includes: a fluorescence quenching surface; a nucleic acid probe that contains first and second ends with the first end bound to the fluorescence quenching surface, and is characterized by being able to self-anneal into a hairpin conformation; and a first fluorophore bound to the second end of the first nucleic acid molecule. When the first nucleic acid molecule is in the hairpin conformation, the fluorescence quenching surface substantially quenches fluorescent emissions by the first fluorophore; and when the first nucleic acid molecule is in a non-hairpin conformation, fluorescent emissions by the fluorophore are substantially free of quenching by the fluorescence quenching surface. Various nucleic acid probes, methods of making the sensor chip, biological sensor devices that contain the sensor chip, and their methods of use are also disclosed.

  13. Hybridization probe pairs and single-labeled probes: an alternative approach for genotyping and quantification.

    PubMed

    Froehlich, Thomas; Geulen, Oliver

    2008-01-01

    Real-time polymerase chain reaction (PCR) has become a standard tool in both quantitative gene expression and genetic variation analysis. Data collection is performed throughout the PCR process, thus combining amplification and detection into a single step. This can be achieved by combining a variety of different fluorescent chemistries that correlate the concentration of an amplified PCR product to changes in fluorescence intensity. Hybridization probe pairs and single-labeled probes are sequence-specific, dye-labeled oligonucleotides, used in real-time PCR approaches, in particular for genotyping of single nucleotide polymorphisms (SNPs). In that case, a detector probe is designed to cover the polymorphism. Allelic variants are identified and differentiated via post-PCR melting curve analysis. A single melting curve can distinguish different T (m)s, and differently labeled probes may be used, theoretically allowing multiplexed genotyping of several SNPs.

  14. Detection of hepatitis A virus in seeded estuarine samples by hybridization with cDNA probes

    SciTech Connect

    Jiang, X.; Estes, M.K.; Metcalf, T.G.; Melnick, J.L

    1986-10-01

    The development and trials of a nucleic acid hybridization test for the detection of hepatitis A virus (HAV) in estuarine samples within 48 h are described. Approximately 10/sup 4/ physical particlels of HAV per dot could be detected. Test sensitivity was optimized by the consideration of hydbridization stringency, /sup 32/P energy level, probe concentration, and nucleic acid binding to filters. Test specificity was shown by a lack of cross-hybridization with other enteroviruses and unrelated nucleic acids. Potential false-positive reactions between bacterial DNA in samples and residual vector DNA contamination of purified nucleotide sequences in probes were eliminated by DNase treatment of samples. Humic acid at concentrations of up to 100 mg/liter caused only insignificant decreases in test sensitivity. Interference with hybridization by organic components of virus-containing eluates was removed by proteinase K digestion followed by phenol extraction and ethanol precipitation. The test is suitable for detecting naturally occurring HAV in samples from polluted estuarine environments.

  15. Detection of genetic variation using dual-labeled peptide nucleic acid (PNA) probe-based melting point analysis.

    PubMed

    Hur, Deokhwe; Kim, Myoung Sug; Song, Minsik; Jung, Jinwook; Park, Heekyung

    2015-01-01

    Thermal denaturation of probe-target hybrid is highly reproducible, and which makes probe melting point analysis reliable in the detection of mutations, polymorphisms and epigenetic differences in DNA. To improve resolution of these detections, we used dual-labeled (quencher and fluorescence), full base of peptide nucleic acid (PNA) probe for fluorescence probe based melting point analysis. Because of their uncharged nature and peptide bond-linked backbone, PNA probes have more favorable hybridization properties, which make a large difference in the melting temperature between specific hybridization and partial hybridization. Here, we have shown that full base dual-labeled PNA is apt material for fluorescence probe-based melting point analysis with large difference in the melting temperature between full specific hybridization and that of partial hybridization, including insertion and deletion. In case of narrowly distributed mutations, PNA probe effectively detects three mutations in a single reaction tube with three probes. Moreover, we successfully diagnose virus analogues with amplification and melting temperature signal. Lastly, Melting temperature of PNA oligomer can be easily adjusted just by adding gamma-modified PNA probe. The PNA probes offer advantage of improved flexibility in probe design, which could be used in various applications in mutation detection among a wide range of spectrums.

  16. Comparative examination of probe labeling methods for microarray hybridization

    NASA Astrophysics Data System (ADS)

    Burke, David I.; Woodward, Karen; Setterquist, Robert A.; Kawasaki, Ernest S.

    2001-06-01

    For detection of differential gene expression, confocal laser based scanners are now capable of analyzing microarrays using one to five wavelengths. This allows investigators to choose among several labeling methods. Here we compare direct incorporation and indirect methods (amino-allyl and dendrimers) for labeling cDNA probes. We assessed reproducible sensitivity of each probe preparation method in two ways. First, by comparing hybridization intensities for limit of signal detection and second by measuring the lowest detectable concentration of a known ratio of mixed DNA (spikes). Limit of detection assay was done using arrays of mixed targets consisting of a serially diluted human specific gene fragment (HU1) and an undiluted DNA of chloramphenicol acetyl tranferase (CAT) gene. Then, individual single target arrays of CAT and HU1 DNA were used to determine the lowest detectable spike ratio of each labeling method. The results of this study will be presented and their significance for the analysis of microarrays will be discussed.

  17. A novel fluorescent probe: europium complex hybridized T7 phage.

    PubMed

    Liu, Chin-Mei; Jin, Qiaoling; Sutton, April; Chen, Liaohai

    2005-01-01

    We report on the creation of a novel fluorescent probe of europium-complex hybridized T7 phage. It was made by filling a ligand-displayed T7 ghost phage with a fluorescent europium complex particle. The structure of the hybridized phage, which contains a fluorescent inorganic core surrounded by a ligand-displayed capsid shell, was confirmed by electron microscope, energy-dispersive X-ray analysis (EDX), bioassays, and fluorescence spectrometer. More importantly, as a benefit of the phage display technology, the hybridized phage has the capability to integrate an affinity reagent against virtually any target molecules. The approach provides an original method to fluorescently "tag" a bioligand and/or to "biofunctionalize" a fluorophore particle. By using other types of materials such as radioactive or magnetic particles to fill the ghost phage, we envision that the hybridized phages represent a new class of fluorescent, magnetic, or radioprobes for imaging and bioassays and could be used both in vitro and in vivo.

  18. A homogeneous nucleic acid hybridization assay based on strand displacement.

    PubMed Central

    Vary, C P

    1987-01-01

    A homogeneous nucleic acid hybridization assay which is conducted in solution and requires no separation steps is described. The assay is based on the concept of strand displacement. In the strand displacement assay, an RNA "signal strand" is hybridized within a larger DNA strand termed the "probe strand", which is, in turn, complementary to the target nucleic acid of interest. Hybridization of the target nucleic acid with the probe strand ultimately results in displacement of the RNA signal strand. Strand displacement, therefore, causes conversion of the RNA from double to single-stranded form. The single-strand specificity of polynucleotide phosphorylase (EC 2.7.7.8) allows discrimination between double-helical and single-stranded forms of the RNA signal strand. As displacement proceeds, free RNA signal strands are preferentially phosphorolyzed to component nucleoside diphosphates, including adenosine diphosphate. The latter nucleotide is converted to ATP by pyruvate kinase(EC 2.7.1.40). Luciferase catalyzed bioluminescence is employed to measure the ATP generated as a result of strand displacement. Images PMID:3309890

  19. Modeling Hybridization Kinetics of Gene Probes in a DNA Biochip Using FEMLAB.

    PubMed

    Munir, Ahsan; Waseem, Hassan; Williams, Maggie R; Stedtfeld, Robert D; Gulari, Erdogan; Tiedje, James M; Hashsham, Syed A

    2017-05-29

    Microfluidic DNA biochips capable of detecting specific DNA sequences are useful in medical diagnostics, drug discovery, food safety monitoring and agriculture. They are used as miniaturized platforms for analysis of nucleic acids-based biomarkers. Binding kinetics between immobilized single stranded DNA on the surface and its complementary strand present in the sample are of interest. To achieve optimal sensitivity with minimum sample size and rapid hybridization, ability to predict the kinetics of hybridization based on the thermodynamic characteristics of the probe is crucial. In this study, a computer aided numerical model for the design and optimization of a flow-through biochip was developed using a finite element technique packaged software tool (FEMLAB; package included in COMSOL Multiphysics) to simulate the transport of DNA through a microfluidic chamber to the reaction surface. The model accounts for fluid flow, convection and diffusion in the channel and on the reaction surface. Concentration, association rate constant, dissociation rate constant, recirculation flow rate, and temperature were key parameters affecting the rate of hybridization. The model predicted the kinetic profile and signal intensities of eighteen 20-mer probes targeting vancomycin resistance genes (VRGs). Predicted signal intensities and hybridization kinetics strongly correlated with experimental data in the biochip (R² = 0.8131).

  20. Synthesis of circular double-stranded DNA having single-stranded recognition sequence as molecular-physical probe for nucleic acid hybridization detection based on atomic force microscopy imaging.

    PubMed

    Nakano, Koji; Matsunaga, Hideshi; Murata, Masaharu; Soh, Nobuaki; Imato, Toshihiko

    2009-08-01

    A new class of DNA probes having a mechanically detectable tag is reported. The DNA probe, which consists of a single-stranded recognition sequence and a double-stranded circular DNA entity, was prepared by polymerase reaction. M13mp18 single strand and a 32mer oligodeoxynucleotide whose 5'-end is decorated with the recognition sequence were used in combination as template and primer, respectively. We have successfully demonstrated that the DNA probe is useful for bioanalytical purposes: by deliberately attaching target DNA molecules onto Au(111) substrates and by mechanically reading out the tag-entity using a high-resolution microscopy including atomic force microscopy, visualization/detection of the individual target/probe DNA conjugate was possible simply yet straightforwardly. The present DNA probe can be characterized as a 100%-nucleic acid product material. It is simply available by one-pod synthesis. A surface topology parameter, image roughness, has witnessed its importance as a quantitative analysis index with particular usability in the present visualization/detection method.

  1. Photoswitchable non-fluorescent thermochromic dye-nanoparticle hybrid probes

    PubMed Central

    Harrington, Walter N.; Haji, Mwafaq R.; Galanzha, Ekaterina I.; Nedosekin, Dmitry A.; Nima, Zeid A.; Watanabe, Fumiya; Ghosh, Anindya; Biris, Alexandru S.; Zharov, Vladimir P.

    2016-01-01

    Photoswitchable fluorescent proteins with controllable light–dark states and spectral shifts in emission in response to light have led to breakthroughs in the study of cell biology. Nevertheless, conventional photoswitching is not applicable for weakly fluorescent proteins and requires UV light with low depth penetration in bio-tissue. Here we introduce a novel concept of photoswitchable hybrid probes consisting of thermochromic dye and absorbing nanoparticles, in which temperature-sensitive light–dark states and spectral shifts in absorption can be switched through controllable photothermal heating of doped nanoparticles. The proof-of-concept is demonstrated through the use of two different types of temperature-sensitive dyes doped with magnetic nanoparticles and reversibly photoswitched by a near-infrared laser. Photoacoustic imaging revealed the high contrast of these probes, which is sufficient for their visualization in cells and deep tissue. Our results suggest that these new photoswitchable multicolour probes can be used for multimodal cellular diagnostics and potentially for magnetic and photothermal therapy. PMID:27824110

  2. Photoswitchable non-fluorescent thermochromic dye-nanoparticle hybrid probes.

    PubMed

    Harrington, Walter N; Haji, Mwafaq R; Galanzha, Ekaterina I; Nedosekin, Dmitry A; Nima, Zeid A; Watanabe, Fumiya; Ghosh, Anindya; Biris, Alexandru S; Zharov, Vladimir P

    2016-11-08

    Photoswitchable fluorescent proteins with controllable light-dark states and spectral shifts in emission in response to light have led to breakthroughs in the study of cell biology. Nevertheless, conventional photoswitching is not applicable for weakly fluorescent proteins and requires UV light with low depth penetration in bio-tissue. Here we introduce a novel concept of photoswitchable hybrid probes consisting of thermochromic dye and absorbing nanoparticles, in which temperature-sensitive light-dark states and spectral shifts in absorption can be switched through controllable photothermal heating of doped nanoparticles. The proof-of-concept is demonstrated through the use of two different types of temperature-sensitive dyes doped with magnetic nanoparticles and reversibly photoswitched by a near-infrared laser. Photoacoustic imaging revealed the high contrast of these probes, which is sufficient for their visualization in cells and deep tissue. Our results suggest that these new photoswitchable multicolour probes can be used for multimodal cellular diagnostics and potentially for magnetic and photothermal therapy.

  3. Photoswitchable non-fluorescent thermochromic dye-nanoparticle hybrid probes

    NASA Astrophysics Data System (ADS)

    Harrington, Walter N.; Haji, Mwafaq R.; Galanzha, Ekaterina I.; Nedosekin, Dmitry A.; Nima, Zeid A.; Watanabe, Fumiya; Ghosh, Anindya; Biris, Alexandru S.; Zharov, Vladimir P.

    2016-11-01

    Photoswitchable fluorescent proteins with controllable light–dark states and spectral shifts in emission in response to light have led to breakthroughs in the study of cell biology. Nevertheless, conventional photoswitching is not applicable for weakly fluorescent proteins and requires UV light with low depth penetration in bio-tissue. Here we introduce a novel concept of photoswitchable hybrid probes consisting of thermochromic dye and absorbing nanoparticles, in which temperature-sensitive light–dark states and spectral shifts in absorption can be switched through controllable photothermal heating of doped nanoparticles. The proof-of-concept is demonstrated through the use of two different types of temperature-sensitive dyes doped with magnetic nanoparticles and reversibly photoswitched by a near-infrared laser. Photoacoustic imaging revealed the high contrast of these probes, which is sufficient for their visualization in cells and deep tissue. Our results suggest that these new photoswitchable multicolour probes can be used for multimodal cellular diagnostics and potentially for magnetic and photothermal therapy.

  4. Probe kit for identifying a base in a nucleic acid

    DOEpatents

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    2001-01-01

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  5. Probing DNA hybridization efficiency and single base mismatch by X-ray photoelectron spectroscopy.

    PubMed

    Liu, Zheng-Chun; Zhang, Xin; He, Nong-Yue; Lu, Zu-Hong; Chen, Zhen-Cheng

    2009-07-01

    We demonstrated the use of X-ray photoelectron spectroscopy (XPS) to study DNA hybridization. Target DNA labeled with hexachloro-fluorescein (HEX) was hybridized to DNA arrays with four different probes. Each probe dot of the hybridized arrays was detected with XPS. The XPS Cl2p peak areas were found to decrease with an increase in mismatched bases in DNA probes. The Cl2p core-level peak area ratio of a probe perfectly matched to one, two and three base-mismatched probes accorded well with the results of conventional fluorescent imaging, which shows that XPS is a potential tool for analyzing DNA arrays. The DNA arrays' hybridization efficiency was assessed by the molar ratio of chlorine to phosphorus in a DNA strand, which was determined from the relevant XPS Cl2p and P2p core-level peak areas after hybridization. This could provide a new method to detect DNA hybridization efficiency.

  6. Methods of staining target chromosomal DNA employing high complexity nucleic acid probes

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Ol'li-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2006-10-03

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  7. Foldamers with Hybrid Biological and Synthetic Sequences as Selective DNA Fluorescent Probes

    PubMed Central

    Wang, Wei; Wan, Wei; Stachiw, Andrew; Li, Alexander D.Q.

    2008-01-01

    Foldable polymers with alternating single strand deoxyribonucleic acid (ssDNA) and planar fluorescent organic chromophores can self-organize into folded nanostructures and hence are hybrid foldamers with biological sequences and synthetic properties. The biological sequence provides highly specific molecular recognition properties while the physical properties of synthetic chromophores offer sensitive fluorescence detection. In this paper, we describe that rational designed hybrid foldamers exhibit potential in the detection of polynucleotides. Under strictly controlled laboratory conditions, fluorescence measurements indicate that configuration change due to binding of polynucleotides with one or two mismatched bases can be readily distinguished. These results shed light on the design and construction of nanostructured foldamers with actuator and sensory properties, which may find important applications as biological probes. PMID:16086577

  8. Multiplexed quantification of bacterial 16S rRNA by solution hybridization with oligonucleotide probes and affinity capture.

    PubMed

    Satokari, Reetta M; Kataja, Kari; Söderlund, Hans

    2005-07-01

    Multiplexed and quantitative analysis of nucleic acid sequences in complex mixtures is essential in various applications of microbiological research. We have developed a method based on solution hybridization between biotinylated nucleic acid targets and multiple fluorophore-labeled oligonucleotide probes of distinct sizes. The biotin-nucleic acid-probe complexes are captured on magnetic streptavidin-coated microparticles and washed. The hybridized probes are eluted and their identity and quantity are determined by capillary electrophoresis. The signal intensities of the recorded probes correspond to the amount of target nucleic acid in the mixture, and the size indicates the target. Based on this principle and 16S rRNA-specific oligonucleotide probes, we set up an application for the relative quantification of different groups of clostridia and related organisms in a mixed bacterial population. The lower detection limit is 0.05 ng of total RNA and the linear range of measurement is 10(2). The method allowed accurate and highly repeatable quantification of the proportion of clostridia in human feces. Further, we discuss other applications of the method such as quantitative transcriptional analysis of eukaryotic microorganisms, which can be performed without conversion of mRNA to cDNA.

  9. Quantitative rRNA-targeted solution-based hybridization assay using peptide nucleic acid molecular beacons.

    PubMed

    Li, Xu; Morgenroth, Eberhard; Raskin, Lutgarde

    2008-12-01

    The potential of a solution-based hybridization assay using peptide nucleic acid (PNA) molecular beacon (MB) probes to quantify 16S rRNA of specific populations in RNA extracts of environmental samples was evaluated by designing PNA MB probes for the genera Dechloromonas and Dechlorosoma. In a kinetic study with 16S rRNA from pure cultures, the hybridization of PNA MB to target 16S rRNA exhibited a higher final hybridization signal and a lower apparent rate constant than the hybridizations to nontarget 16S rRNAs. A concentration of 10 mM NaCl in the hybridization buffer was found to be optimal for maximizing the difference between final hybridization signals from target and nontarget 16S rRNAs. Hybridization temperatures and formamide concentrations in hybridization buffers were optimized to minimize signals from hybridizations of PNA MB to nontarget 16S rRNAs. The detection limit of the PNA MB hybridization assay was determined to be 1.6 nM of 16S rRNA. To establish proof for the application of PNA MB hybridization assays in complex systems, target 16S rRNA from Dechlorosoma suillum was spiked at different levels to RNA isolated from an environmental (bioreactor) sample, and the PNA MB assay enabled effective quantification of the D. suillum RNA in this complex mixture. For another environmental sample, the quantitative results from the PNA MB hybridization assay were compared with those from clone libraries.

  10. Systematic Spatial Bias in DNA Microarray Hybridization Is Caused by Probe Spot Position-Dependent Variability in Lateral Diffusion

    PubMed Central

    Haider, Susanne; Horn, Matthias; Wagner, Michael; Stocker, Roman; Loy, Alexander

    2011-01-01

    Background The hybridization of nucleic acid targets with surface-immobilized probes is a widely used assay for the parallel detection of multiple targets in medical and biological research. Despite its widespread application, DNA microarray technology still suffers from several biases and lack of reproducibility, stemming in part from an incomplete understanding of the processes governing surface hybridization. In particular, non-random spatial variations within individual microarray hybridizations are often observed, but the mechanisms underpinning this positional bias remain incompletely explained. Methodology/Principal Findings This study identifies and rationalizes a systematic spatial bias in the intensity of surface hybridization, characterized by markedly increased signal intensity of spots located at the boundaries of the spotted areas of the microarray slide. Combining observations from a simplified single-probe block array format with predictions from a mathematical model, the mechanism responsible for this bias is found to be a position-dependent variation in lateral diffusion of target molecules. Numerical simulations reveal a strong influence of microarray well geometry on the spatial bias. Conclusions Reciprocal adjustment of the size of the microarray hybridization chamber to the area of surface-bound probes is a simple and effective measure to minimize or eliminate the diffusion-based bias, resulting in increased uniformity and accuracy of quantitative DNA microarray hybridization. PMID:21858215

  11. Development of Peptide Nucleic Acid Probes for Detection of the HER2 Oncogene

    PubMed Central

    Song, Young K.; Evangelista, Jennifer; Aschenbach, Konrad; Johansson, Peter; Wen, Xinyu; Chen, Qingrong; Lee, Albert; Hempel, Heidi; Gheeya, Jinesh S.; Getty, Stephanie; Gomez, Romel; Khan, Javed

    2013-01-01

    Peptide nucleic acids (PNAs) have gained much interest as molecular recognition tools in biology, medicine and chemistry. This is due to high hybridization efficiency to complimentary oligonucleotides and stability of the duplexes with RNA or DNA. We have synthesized 15/16-mer PNA probes to detect the HER2 mRNA. The performance of these probes to detect the HER2 target was evaluated by fluorescence imaging and fluorescence bead assays. The PNA probes have sufficiently discriminated between the wild type HER2 target and the mutant target with single base mismatches. Furthermore, the probes exhibited excellent linear concentration dependence between 0.4 to 400 fmol for the target gene. The results demonstrate potential application of PNAs as diagnostic probes with high specificity for quantitative measurements of amplifications or over-expressions of oncogenes. PMID:23593123

  12. The effects of multiple probes on the hybridization of target DNA on surfaces.

    PubMed

    Welling, Ryan C; Knotts, Thomas A

    2015-01-07

    DNA microarrays have disruptive potential in many fields including genetics and medicine, but the technology has yet to find widespread clinical use due to poor reliability. Microarrays work on the principle of hybridization and can only be as dependable as this process is reliable. As such, a significant amount of theoretical research has been done to understand hybridization on surfaces on the molecular level. Previous simulations of a target strand with a single, surface-tethered probe molecule have yielded valuable insights, but such is an ideal system and little is known about the effects of multiple probes-a situation that more closely approximates the real system. This work uses molecular simulation to determine the specific differences in duplex stability between one, three, six, and nine tethered probes on a surface. The results show that it is more difficult for a single target to hybridize to a probe as the number of probes on the surface increases due to crowding effects; however, once hybridized, the duplex is more stable than when fewer probes are present. The data also indicate that hybridization of a target to a probe on the face of a group of probes is more stable than hybridization to probes at the edge or center locations. Taken as a whole, the results offer new insights into the cause of the poor reproducibility exhibited by microarrays.

  13. Quantification of Gordona amarae Strains in Foaming Activated Sludge and Anaerobic Digester Systems with Oligonucleotide Hybridization Probes

    PubMed Central

    de los Reyes, M. Fiorella; de los Reyes, Francis L.; Hernandez, Mark; Raskin, Lutgarde

    1998-01-01

    Previous studies have shown the predominance of mycolic acid-containing filamentous actinomycetes (mycolata) in foam layers in activated sludge systems. Gordona (formerly Nocardia) amarae often is considered the major representative of this group in activated sludge foam. In this study, small-subunit rRNA genes of four G. amarae strains were sequenced, and the resulting sequences were compared to the sequence of G. amarae type strain SE-6. Comparative sequence analysis showed that the five strains used represent two lines of evolutionary descent; group 1 consists of strains NM23 and ASAC1, and group 2 contains strains SE-6, SE-102, and ASF3. The following three oligonucleotide probes were designed: a species-specific probe for G. amarae, a probe specific for group 1, and a probe targeting group 2. The probes were characterized by dissociation temperature and specificity studies, and the species-specific probe was evaluated for use in fluorescent in situ hybridizations. By using the group-specific probes, it was possible to place additional G. amarae isolates in their respective groups. The probes were used along with previously designed probes in membrane hybridizations to determine the abundance of G. amarae, group 1, group 2, bacterial, mycolata, and Gordona rRNAs in samples obtained from foaming activated sludge systems in California, Illinois, and Wisconsin. The target groups were present in significantly greater concentrations in activated sludge foam than in mixed liquor and persisted in anaerobic digesters. Hybridization results indicated that the presence of certain G. amarae strains may be regional or treatment plant specific and that previously uncharacterized G. amarae strains may be present in some systems. PMID:9647822

  14. The vector homology problem in diagnostic nucleic acid hybridization of clinical specimens.

    PubMed Central

    Ambinder, R F; Charache, P; Staal, S; Wright, P; Forman, M; Hayward, S D; Hayward, G S

    1986-01-01

    Nucleic acid hybridization techniques using cloned probes are finding application in assays of clinical specimens in research and diagnostic laboratories. The probes that we and others have used are recombinant plasmids composed of viral inserts and bacterial plasmid vectors such as pBR322. We suspected that there was material homologous to pBR322 present in many clinical samples. because hybridization occurred in samples which lacked evidence of virus by other techniques. If the presence of this vector-homologous material was unrecognized, hybridization in the test sample might erroneously be interpreted as indicating the presence of viral sequences. In this paper we demonstrate specific hybridization of labeled pBR322 DNA with DNA from various clinical samples. Evidence is presented that nonspecific probe trapping could not account for this phenomenon. In mixing experiments, it is shown that contamination of clinical samples with bacteria would explain such a result. Approaches tested to circumvent this problem included the use of isolated insert probes, alternate cloning vectors, and cold competitor pBR322 DNA in prehybridization and hybridization mixes. None proved entirely satisfactory. We therefore emphasize that it is essential that all hybridization detection systems use a control probe of the vector alone in order to demonstrate the absence of material with vector homology in the specimen tested. Images PMID:3013928

  15. A DNA origami nanorobot controlled by nucleic acid hybridization.

    PubMed

    Torelli, Emanuela; Marini, Monica; Palmano, Sabrina; Piantanida, Luca; Polano, Cesare; Scarpellini, Alice; Lazzarino, Marco; Firrao, Giuseppe

    2014-07-23

    A prototype for a DNA origami nanorobot is designed, produced, and tested. The cylindrical nanorobot (diameter of 14 nm and length of 48 nm) with a switchable flap, is able to respond to an external stimulus and reacts by a physical switch from a disarmed to an armed configuration able to deliver a cellular compatible message. In the tested design the robot weapon is a nucleic acid fully contained in the inner of the tube and linked to a single point of the internal face of the flap. Upon actuation the nanorobot moves the flap extracting the nucleic acid that assembles into a hemin/G-quadruplex horseradish peroxidase mimicking DNAzyme catalyzing a colorimetric reaction or chemiluminescence generation. The actuation switch is triggered by an external nucleic acid (target) that interacts with a complementary nucleic acid that is beard externally by the nanorobot (probe). Hybridization of probe and target produces a localized structural change that results in flap opening. The flap movement is studied on a two-dimensional prototype origami using Förster resonance energy transfer and is shown to be triggered by a variety of targets, including natural RNAs. The nanorobot has potential for in vivo biosensing and intelligent delivery of biological activators.

  16. Developing Targeted Hybrid Imaging Probes by Chelator Scaffolding

    PubMed Central

    2017-01-01

    Positron emission tomography (PET) as well as optical imaging (OI) with peptide receptor targeting probes have proven their value for oncological applications but also show restrictions depending on the clinical field of interest. Therefore, the combination of both methods, particularly in a single molecule, could improve versatility in clinical routine. This proof of principle study aims to show that a chelator, Fusarinine C (FSC), can be utilized as scaffold for novel dimeric dual-modality imaging agents. Two targeting vectors (a minigastrin analogue (MG11) targeting cholecystokinin-2 receptor overexpression (CCK2R) or integrin αVβ3 targeting cyclic pentapeptides (RGD)) and a near-infrared fluorophore (Sulfo-Cyanine7) were conjugated to FSC. The probes were efficiently labeled with gallium-68 and in vitro experiments including determination of logD, stability, protein binding, cell binding, internalization, and biodistribution studies as well as in vivo micro-PET/CT and optical imaging in U-87MG αVβ3- and A431-CCK2R expressing tumor xenografted mice were carried out. Novel bioconjugates showed high receptor affinity and highly specific targeting properties at both receptors. Ex vivo biodistribution and micro-PET/CT imaging studies revealed specific tumor uptake accompanied by slow blood clearance and retention in nontargeted tissues (spleen, liver, and kidneys) leading to visualization of tumors at early (30 to 120 min p.i.). Excellent contrast in corresponding optical imaging studies was achieved especially at delayed time points (24 to 72 h p.i.). Our findings show the proof of principle of chelator scaffolding for hybrid imaging agents and demonstrate FSC being a suitable bifunctional chelator for this approach. Improvements to fine-tune pharmacokinetics are needed to translate this into a clinical setting. PMID:28462989

  17. Terbium fluorescence as a sensitive, inexpensive probe for UV-induced damage in nucleic acids.

    PubMed

    El-Yazbi, Amira F; Loppnow, Glen R

    2013-07-05

    Much effort has been focused on developing methods for detecting damaged nucleic acids. However, almost all of the proposed methods consist of multi-step procedures, are limited, require expensive instruments, or suffer from a high level of interferences. In this paper, we present a novel simple, inexpensive, mix-and-read assay that is generally applicable to nucleic acid damage and uses the enhanced luminescence due to energy transfer from nucleic acids to terbium(III) (Tb(3+)). Single-stranded oligonucleotides greatly enhance the Tb(3+) emission, but duplex DNA does not. With the use of a DNA hairpin probe complementary to the oligonucleotide of interest, the Tb(3+)/hairpin probe is applied to detect ultraviolet (UV)-induced DNA damage. The hairpin probe hybridizes only with the undamaged DNA. However, the damaged DNA remains single-stranded and enhances the intrinsic fluorescence of Tb(3+), producing a detectable signal directly proportional to the amount of DNA damage. This allows the Tb(3+)/hairpin probe to be used for sensitive quantification of UV-induced DNA damage. The Tb(3+)/hairpin probe showed superior selectivity to DNA damage compared to conventional molecular beacons probes (MBs) and its sensitivity is more than 2.5 times higher than MBs with a limit of detection of 4.36±1.2 nM. In addition, this probe is easier to synthesize and more than eight times cheaper than MBs, which makes its use recommended for high-throughput, quantitative analysis of DNA damage.

  18. Rapid hybridization of nucleic acids using isotachophoresis

    PubMed Central

    Bercovici, Moran; Han, Crystal M.; Liao, Joseph C.; Santiago, Juan G.

    2012-01-01

    We use isotachophoresis (ITP) to control and increase the rate of nucleic acid hybridization reactions in free solution. We present a new physical model, validation experiments, and demonstrations of this assay. We studied the coupled physicochemical processes of preconcentration, mixing, and chemical reaction kinetics under ITP. Our experimentally validated model enables a closed form solution for ITP-aided reaction kinetics, and reveals a new characteristic time scale which correctly predicts order 10,000-fold speed-up of chemical reaction rate for order 100 pM reactants, and greater enhancement at lower concentrations. At 500 pM concentration, we measured a reaction time which is 14,000-fold lower than that predicted for standard second-order hybridization. The model and method are generally applicable to acceleration of reactions involving nucleic acids, and may be applicable to a wide range of reactions involving ionic reactants. PMID:22733732

  19. The effects of multiple probes on the hybridization of target DNA on surfaces

    NASA Astrophysics Data System (ADS)

    Welling, Ryan C.; Knotts, Thomas A.

    2015-01-01

    DNA microarrays have disruptive potential in many fields including genetics and medicine, but the technology has yet to find widespread clinical use due to poor reliability. Microarrays work on the principle of hybridization and can only be as dependable as this process is reliable. As such, a significant amount of theoretical research has been done to understand hybridization on surfaces on the molecular level. Previous simulations of a target strand with a single, surface-tethered probe molecule have yielded valuable insights, but such is an ideal system and little is known about the effects of multiple probes—a situation that more closely approximates the real system. This work uses molecular simulation to determine the specific differences in duplex stability between one, three, six, and nine tethered probes on a surface. The results show that it is more difficult for a single target to hybridize to a probe as the number of probes on the surface increases due to crowding effects; however, once hybridized, the duplex is more stable than when fewer probes are present. The data also indicate that hybridization of a target to a probe on the face of a group of probes is more stable than hybridization to probes at the edge or center locations. Taken as a whole, the results offer new insights into the cause of the poor reproducibility exhibited by microarrays.

  20. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter.

    PubMed

    Melton, D A; Krieg, P A; Rebagliati, M R; Maniatis, T; Zinn, K; Green, M R

    1984-09-25

    A simple and efficient method for synthesizing pure single stranded RNAs of virtually any structure is described. This in vitro transcription system is based on the unusually specific RNA synthesis by bacteriophage SP6 RNA polymerase which initiates transcription exclusively at an SP6 promoter. We have constructed convenient cloning vectors that contain an SP6 promoter immediately upstream from a polylinker sequence. Using these SP6 vectors, optimal conditions have been established for in vitro RNA synthesis. The advantages and uses of SP6 derived RNAs as probes for nucleic acid blot and solution hybridizations are demonstrated. We show that single stranded RNA probes of a high specific activity are easy to prepare and can significantly increase the sensitivity of nucleic acid hybridization methods. Furthermore, the SP6 transcription system can be used to prepare RNA substrates for studies on RNA processing (1,5,9) and translation (see accompanying paper).

  1. High affinity γPNA sandwich hybridization assay for rapid detection of short nucleic acid targets with single mismatch discrimination.

    PubMed

    Goldman, Johnathan M; Zhang, Li Ang; Manna, Arunava; Armitage, Bruce A; Ly, Danith H; Schneider, James W

    2013-07-08

    Hybridization analysis of short DNA and RNA targets presents many challenges for detection. The commonly employed sandwich hybridization approach cannot be implemented for these short targets due to insufficient probe-target binding strengths for unmodified DNA probes. Here, we present a method capable of rapid and stable sandwich hybridization detection for 22 nucleotide DNA and RNA targets. Stable hybridization is achieved using an n-alkylated, polyethylene glycol γ-carbon modified peptide nucleic acid (γPNA) amphiphile. The γPNA's exceptionally high affinity enables stable hybridization of a second DNA-based probe to the remaining bases of the short target. Upon hybridization of both probes, an electrophoretic mobility shift is measured via interaction of the n-alkane modification on the γPNA with capillary electrophoresis running buffer containing nonionic surfactant micelles. We find that sandwich hybridization of both probes is stable under multiple binding configurations and demonstrate single base mismatch discrimination. The binding strength of both probes is also stabilized via coaxial stacking on adjacent hybridization to targets. We conclude with a discussion on the implementation of the proposed sandwich hybridization assay as a high-throughput microRNA detection method.

  2. Zip nucleic acids are potent hydrolysis probes for quantitative PCR

    PubMed Central

    Paris, Clément; Moreau, Valérie; Deglane, Gaëlle; Voirin, Emilie; Erbacher, Patrick; Lenne-Samuel, Nathalie

    2010-01-01

    Zip nucleic acids (ZNAs) are oligonucleotides conjugated with cationic spermine units that increase affinity for their target. ZNAs were recently shown to enable specific and sensitive reactions when used as primers for polymerase chain reaction (PCR) and reverse-transcription. Here, we report their use as quantitative PCR hydrolysis probes. Ultraviolet duplex melting data demonstrate that attachment of cationic residues to the 3′ end of an oligonucleotide does not alter its ability to discriminate nucleotides nor the destabilization pattern relative to mismatch location in the oligonucleotide sequence. The stability increase provided by the cationic charges allows the use of short dual-labeled probes that significantly improve single-nucleotide polymorphism genotyping. Longer ZNA probes were shown to display reduced background fluorescence, therefore, generating greater sensitivity and signal level as compared to standard probes. ZNA probes thus provide broad flexibility in assay design and also represent an effective alternative to minor groove binder- and locked nucleic-acid-containing probes. PMID:20071749

  3. Genotyping male-specific RNA coliphages by hybridization with oligonucleotide probes.

    PubMed Central

    Hsu, F C; Shieh, Y S; van Duin, J; Beekwilder, M J; Sobsey, M D

    1995-01-01

    F-specific (F+) RNA coliphages are prevalent in sewage and other fecal wastes of humans and animals. There are four antigenically distinct serogroups of F+ RNA coliphages, and those predominating in humans (groups II and III) differ from those predominating in animals (groups I and IV). Hence, it may be possible to distinguish between human and animal wastes by serotyping F+ RNA coliphage isolates. Because serotyping is laborious and requires scarce antiserum reagents, we investigated genotyping using synthetic oligonucleotide probes as an alternative approach to distinguishing the four groups of F+ RNA coliphages. Oligoprobes I, II, III, IV, A, and B were selected to detect group I, II, III, IV, I plus II, and III plus IV phages, respectively. Methods for phage transfer from zones of lysis on a host cell lawn to candidate membrane filters and fixation of genomic nucleic acid on the membranes were optimized. The oligoprobes, which were end labeled with digoxigenin, were applied in DNA-RNA hybridization, and hybrids were observed by colorimetric, immunoenzymatic detection. Of 203 isolates of F+ RNA coliphages from environmental samples of water, wastes, and shellfish, 99.5 and 96.6% could be classified into each group by serotyping and genotyping, respectively. Probes A and B correctly identified 100% of the isolates. On the basis of these results, this method for genotyping F+ RNA coliphages appears to be practical and reliable for typing isolates in field samples. PMID:8526509

  4. Development of probes for differentiation of infectious bursal disease virus strains of various virulence by dot-blot hybridization.

    PubMed

    Katari, R S; Tiwari, A K; Butchaiah, G; Kataria, J M

    2000-10-01

    Two different radio-labeled nucleic acid probes, prepared from reverse transcription-polymerase chain reaction (RT-PCR) amplified variable region of VP2 and VP1 gene sequences of a highly virulent infectious bursal disease virus (IBDV), were tested for their ability to detect field isolates of IBDV directly in clinical bursal tissue specimens and vaccine strains of IBDV in tissue cultures. The VP2 gene probe was able to detect both field isolates and vaccine strains of IBDV under high as well as low stringency while the VP1 gene probe could differentiate under high stringency field isolates from vaccine strains, hybridizing only with RNA of field isolates. The sensitivity of both the probes was found to be 4 ng of purified viral RNA.

  5. Whole-cell hybridization of Methanosarcina cells with two new oligonucleotide probes.

    PubMed Central

    Sørensen, A H; Torsvik, V L; Torsvik, T; Poulsen, L K; Ahring, B K

    1997-01-01

    Two new oligonucleotide probes targeting the 16S rRNA of the methanogenic genus Methanosarcina were developed. The probes have the following sequences (Escherichia coli numbering): probe SARCI551, 5'-GAC CCAATAATCACGATCAC-3', and probe SARCI645, 5'-TCCCGGTTCCAAGTCTGGC-3'. In situ hybridization with the fluorescently labelled probes required several modifications of standard procedures. Cells of Methanosarcina mazeii S-6 were found to lyse during the hybridization step if fixed in 3% formaldehyde and stored in 50% ethanol. Lysis was, however, not observed with cells fixed and stored in 1.6% formaldehyde-0.85% NaCl. Extensive autofluorescence of the cells was found upon hybridization in the presence of 5 mM EDTA, but successful hybridization could be obtained without addition of this compound. The mounting agent Citifluor AF1, often used in conjugation with the fluorochrome fluorescein, was found to wash the labelled probes out of the cells. Stable labelling could be obtained with rhodamine-labelled probes when the specimen was mounted in immersion oil, and high hybridization intensities of the Methanosarcina cells were found even in the presence of biomass from an anaerobic reactor. The inherent high autofluorescence of the biomass could be lowered by use of a highly specific narrow-band filter. The probes were found to be specific for Methanosarcina and useful for detection of this genus in samples from anaerobic reactors. PMID:9251192

  6. Identification of vaccine-related polioviruses by hybridization with specific RNA probes.

    PubMed Central

    De, L; Nottay, B; Yang, C F; Holloway, B P; Pallansch, M; Kew, O

    1995-01-01

    We developed RNA probes for the identification of poliovirus isolates by blot hybridization. Two sets of vaccine strain-specific probes were prepared. They complemented variable genomic domains within (i) the 5'-untranslated region and (ii) the amino-terminal codons of VP1. An enterovirus group probe (EV/5UT) matching highly conserved 5'-untranslated region sequences was used to estimate the quantities of poliovirus (or enterovirus) RNA in the samples. Poliovirus sequences amplified from Sabin strain virion RNA templates by PCR were inserted into the pUC18 plasmid vector. The antisense PCR primer for each probe set contained sequences encoding a T7 promoter. Hybrids were detected by a sensitive nonisotopic method. RNA probes were labeled by incorporation of digoxigenin-uridylate into the transcripts. The binding of probe to immobilized poliovirus RNAs was visualized by hydrolysis of the chemiluminescent substrate 4-methoxy-4-(3-phosphate-phenyl)-spiro-(1,2-dioxetane-3,2'-adamant ane) catalyzed by alkaline phosphatase conjugated to anti-digoxigenin (Fab) fragments. The specificities of the probes were evaluated with a panel of poliovirus isolates that had previously been characterized by sequence analysis. The RNAs of vaccine-related isolates hybridized with the appropriate probe sets. Wild polioviruses representing a broad spectrum of contemporary genotypes were recognized by the inabilities of their genomes to form stable hybrids with the Sabin strain-specific probes. PMID:7751358

  7. The use of fluorescein for labeling genomic probes in the checkerboard DNA-DNA hybridization method.

    PubMed

    do Nascimento, Cássio; Santos Barbosa, Rodrigo Edson; Mardegan Issa, João Paulo; Watanabe, Evandro; Yoko Ito, Izabel; Monesi, Nadia; Albuquerque Junior, Rubens Ferreira de

    2008-01-01

    Molecular methods that permit the simultaneous detection and quantification of a large number of microbial species are currently employed in the evaluation of complex ecosystems. The checkerboard DNA-DNA hybridization technique enables the simultaneous identification of distinct bacterial species in a large number of dental samples. The original technique employed digoxigenin-labeled whole genomic DNA probes which were detected by chemiluminescence. In this study, we present an alternative protocol for labeling and detecting whole genomic DNA probes in the Checkerboard DNA-DNA hybridization method. Whole genomic DNA was extracted from five bacterial species and labeled with fluorescein. The fluorescein labeled whole genomic DNA probes were hybridized against whole genomic DNA or subgingival plaque samples in a checkerboard hybridization format, followed by chemiluminescent detection. Our results reveal that fluorescein is a viable and adequate alternative labeling reagent to be employed in the checkerboard DNA-DNA hybridization technique.

  8. Rapid sex determination on buccal smears using DNA probes and fluorescence in situ hybridization

    SciTech Connect

    Giraldez, R.A.; Harris, C.

    1994-09-01

    Hybridization of dual-labeled DNA probes for the repetitive sequences on the X and Y chromosomes allows a fast, non-invasive, more reliable method for sex determination that current cytogenetic Barr body and Y chromatin assays. Scrapes of squamous epithelial cells were collected from the oral cavity of 14 subjects (5{male}, 9{female}) and smeared onto silanized slides. The smears were allowed to air dry. Samples were blinded and then fixed in 50% methanol/50% glacial acetic acid for 10 minutes, and allowed to dry. The slides were incubated in a pretreatment solution containing 30% sodium bisulfite at 45{degrees}C for 10 minutes. They were rinsed in 2XSSC pH 7.0 and then dehydrated through a series of 70%, 85%, and 100% ethanols at room temperature and allowed to air dry. A probe mixture (30 {mu}L containing 10 ng/{mu}L biotin-labeled DXZ1 and digoxigenin-labeled DYZ1/DYZ3 in 70% Formamide/2XSSC) was aliquoted onto each slide, coverslipped, and sealed with rubber cement. Probe and target DNA were simultaneously denatured at 72{degrees}C on a slide warmer for 6 minutes. Probe was allowed to hybridize overnight in a humidified chamber at 37{degrees}C. Slides were postwashed at 72{degrees}C in 0.5xSSC pH 7.0 for 5 minutes, then soaked at room temperature 1XPBD for 2 minutes, and detected with rhodamine/anti-digoxigenin-FITC/avidin for 15 minutes at 37{degrees}C. Slides were soaked 3X in 1XPBD and then counterstained with 15 {mu}L 0.05 {mu}g/mL DAP1/Antifade. 200 nuclei were scored for the presence of one green (X), two green (XX), one green and one red (XY), or a single red (Y) signal, using a fluorescent microscope equipped with a triple band pass filter. Greater than 90% of the hybridized nuclei from each of the 14 cases studied conformed to the sex chromosome pattern. The modal number in 9 cases showed two green signals (XX), and a green and a red signal (XY) in the other 5 cases; this was in complete agreement with the cytogenetic results.

  9. Mismatch discrimination in fluorescent in situ hybridization using different types of nucleic acids.

    PubMed

    Fontenete, Silvia; Silvia, Fontenete; Barros, Joana; Joana, Barros; Madureira, Pedro; Pedro, Madureira; Figueiredo, Céu; Céu, Figueiredo; Wengel, Jesper; Jesper, Wengel; Azevedo, Nuno Filipe; Filipe, Azevedo Nuno

    2015-05-01

    In the past few years, several researchers have focused their attention on nucleic acid mimics due to the increasing necessity of developing a more robust recognition of DNA or RNA sequences. Fluorescence in situ hybridization (FISH) is an example of a method where the use of these novel nucleic acid monomers might be crucial to the success of the analysis. To achieve the expected accuracy in detection, FISH probes should have high binding affinity towards their complementary strands and discriminate effectively the noncomplementary strands. In this study, we investigate the effect of different chemical modifications in fluorescent probes on their ability to successfully detect the complementary target and discriminate the mismatched base pairs by FISH. To our knowledge, this paper presents the first study where this analysis is performed with different types of FISH probes directly in biological targets, Helicobacter pylori and Helicobacter acinonychis. This is also the first study where unlocked nucleic acids (UNA) were used as chemistry modification in oligonucleotides for FISH methodologies. The effectiveness in detecting the specific target and in mismatch discrimination appears to be improved using locked nucleic acids (LNA)/2'-O-methyl RNA (2'OMe) or peptide nucleic acid (PNA) in comparison to LNA/DNA, LNA/UNA, or DNA probes. Further, the use of LNA modifications together with 2'OMe monomers allowed the use of shorter fluorescent probes and increased the range of hybridization temperatures at which FISH would work.

  10. Group-specific small-subunit rRNA hybridization probes to characterize filamentous foaming in activated sludge systems.

    PubMed Central

    de los Reyes, F L; Ritter, W; Raskin, L

    1997-01-01

    Foaming in activated sludge systems is characterized by the formation of a thick, chocolate brown-colored scum that floats on the surface of aeration basins and secondary clarifiers. These viscous foams have been associated with the presence of filamentous mycolic acid-containing actinomycetes. To aid in evaluating the microbial representation in foam, we developed and characterized group-, genus-, and species-specific oligonucleotide probes targeting the small subunit rRNA of the Mycobacterium complex, Gordona spp., and Gordona (Nocardia) amarae, respectively. The use of a universal base analog, 5-nitroindole, in oligonucleotide probe design was evaluated by comparing the characteristics of two different versions of the Mycobacterium complex probe. The temperature of dissociation of each probe was determined. Probe specificity studies with a diverse collection of 67 target and nontarget rRNAs demonstrated the specificity of the probes to the target groups. Whole-cell hybridizations with fluorescein- and rhodamine-labeled probes were performed with pure cultures of various members of the Mycobacterium complex as well as with environmental samples from a full-scale activated sludge plant which experienced foaming. Quantitative membrane hybridizations with activated sludge and anaerobic digester foam showed that 15.0 to 18.3% of the total small-subunit rRNAs could be attributed to members of the Mycobacterium complex, of which a vast majority consisted of Gordona rRNA. Several G. amarae strains made up only a very small percentage of the Gordona strains present. We demonstrated that group-specific rRNA probes are useful tools for the in situ monitoring and identification of filamentous bacteria in activated sludge systems. PMID:9055425

  11. Group-specific small-subunit rRNA hybridization probes to characterize filamentous foaming in activated sludge systems.

    PubMed

    de los Reyes, F L; Ritter, W; Raskin, L

    1997-03-01

    Foaming in activated sludge systems is characterized by the formation of a thick, chocolate brown-colored scum that floats on the surface of aeration basins and secondary clarifiers. These viscous foams have been associated with the presence of filamentous mycolic acid-containing actinomycetes. To aid in evaluating the microbial representation in foam, we developed and characterized group-, genus-, and species-specific oligonucleotide probes targeting the small subunit rRNA of the Mycobacterium complex, Gordona spp., and Gordona (Nocardia) amarae, respectively. The use of a universal base analog, 5-nitroindole, in oligonucleotide probe design was evaluated by comparing the characteristics of two different versions of the Mycobacterium complex probe. The temperature of dissociation of each probe was determined. Probe specificity studies with a diverse collection of 67 target and nontarget rRNAs demonstrated the specificity of the probes to the target groups. Whole-cell hybridizations with fluorescein- and rhodamine-labeled probes were performed with pure cultures of various members of the Mycobacterium complex as well as with environmental samples from a full-scale activated sludge plant which experienced foaming. Quantitative membrane hybridizations with activated sludge and anaerobic digester foam showed that 15.0 to 18.3% of the total small-subunit rRNAs could be attributed to members of the Mycobacterium complex, of which a vast majority consisted of Gordona rRNA. Several G. amarae strains made up only a very small percentage of the Gordona strains present. We demonstrated that group-specific rRNA probes are useful tools for the in situ monitoring and identification of filamentous bacteria in activated sludge systems.

  12. Hybridization and sequencing of nucleic acids using base pair mismatches

    DOEpatents

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    2001-01-01

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  13. Improved Performance of DNA Microarray Multiplex Hybridization Using Probes Anchored at Several Points by Thiol-Ene or Thiol-Yne Coupling Chemistry.

    PubMed

    Bañuls, Maria-Jose; Jiménez-Meneses, Pilar; Meyer, Albert; Vasseur, Jean-Jacques; Morvan, François; Escorihuela, Jorge; Puchades, Rosa; Maquieira, Ángel

    2017-02-15

    Nucleic acid microarray-based assay technology has shown lacks in reproducibility, reliability, and analytical sensitivity. Here, a new strategy of probe attachment modes for silicon-based materials is built up. Thus, hybridization ability is enhanced by combining thiol-ene or thiol-yne click chemistry reactions with a multipoint attachment of polythiolated probes. The viability and performance of this approach was demonstrated by specifically determining Salmonella PCR products up to a 20 pM sensitivity level.

  14. Detection of bluetongue virus serotype 17 in Culicoides variipennis by nucleic acid blot and sandwich hybridization techniques.

    PubMed Central

    Schoepp, R J; Bray, J F; Olson, K E; el-Hussein, A; Holbrook, F R; Blair, C D; Roy, P; Beaty, B J

    1990-01-01

    Molecular hybridization techniques were developed for the detection and surveillance of bluetongue virus (BTV) serotype 17 in the insect vector Culicoides variipennis, a biting midge. Radiolabeled RNA and cDNA probes were generated from sequences of the L3 segment of BTV serotype 17. These probes were used to detect BTV RNA in pools of infected C. variipennis by hybridizing the probes directly to analyte immobilized on nylon membranes or by using a nucleic acid sandwich hybridization test. Hybridization procedures were able to detect 1 infected C. variipennis in a pool of 50 and as little as 3.55 log10 50% tissue culture infective doses per ml of virus. These hybridization techniques provide an alternative to virus isolation for the surveillance of BTV in vector populations. Images PMID:2172294

  15. A simple and rapid method for the preparation of homologous DNA oligonucleotide hybridization probes from heterologous gene sequences and probes.

    PubMed

    Maxwell, E S; Sarge, K D

    1988-11-30

    We describe a simple and rapid method for the preparation of homologous DNA oligonucleotide probes for hybridization analysis and/or cDNA/genomic library screening. With this method, a synthetic DNA oligonucleotide derived from a known heterologous DNA/RNA/protein sequence is annealed to an RNA preparation containing the gene transcript of interest. Any unpaired 3'-terminal oligonucleotides of the heterologous DNA primer are then removed using the 3' exonuclease activity of the DNA Polymerase I Klenow fragment before primer extension/dideoxynucleotide sequencing of the annealed RNA species with AMV reverse transcriptase. From the determined RNA sequence, a completely homologous DNA oligonucleotide probe is then prepared. This approach has been used to prepare a homologous DNA oligonucleotide probe for the successful library screening of the yeast hybRNA gene starting with a heterologous mouse hybRNA DNA oligonucleotide probe.

  16. Time-Resolved Nucleic Acid Hybridization Beacons Utilizing Unimolecular and Toehold-Mediated Strand Displacement Designs.

    PubMed

    Massey, Melissa; Ancona, Mario G; Medintz, Igor L; Algar, W Russ

    2015-12-01

    Nucleic acid hybridization probes are sought after for numerous assay and imaging applications. These probes are often limited by the properties of fluorescent dyes, prompting the development of new probes where dyes are paired with novel or nontraditional luminescent materials. Luminescent terbium complexes are an example of such a material, and these complexes offer several unique spectroscopic advantages. Here, we demonstrate two nonstem-loop designs for light-up nucleic acid hybridization beacons that utilize time-resolved Förster resonance energy transfer (TR-FRET) between a luminescent Lumi4-Tb cryptate (Tb) donor and a fluorescent reporter dye, where time-resolved emission from the dye provides an analytical signal. Both designs are based on probe oligonucleotides that are labeled at their opposite termini with Tb and a fluorescent reporter dye. In one design, a probe is partially blocked with a quencher dye-labeled oligonucleotide, and target hybridization is signaled through toehold-mediated strand displacement and loss of a competitive FRET pathway. In the other design, the intrinsic folding properties of an unblocked probe are utilized in combination with a temporal mechanism for signaling target hybridization. This temporal mechanism is based on a recently elucidated "sweet spot" for TR-FRET measurements and exploits distance control over FRET efficiencies to shift the Tb lifetime within or outside the time-gated detection window for measurements. Both the blocked and unblocked beacons offer nanomolar (femtomole) detection limits, response times on the order of minutes, multiplexing through the use of different reporter dyes, and detection in complex matrices such as serum and blood. The blocked beacons offer better mismatch selectivity, whereas the unblocked beacons are simpler in design. The temporal mechanism of signaling utilized with the unblocked beacons also plays a significant role with the blocked beacons and represents a new and effective

  17. DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes

    PubMed Central

    Gaylord, Brent S.; Heeger, Alan J.; Bazan, Guillermo C.

    2002-01-01

    The light-harvesting properties of cationic conjugated polymers are used to sensitize the emission of a dye on a specific peptide nucleic acid (PNA) sequence for the purpose of homogeneous, “real-time” DNA detection. Signal transduction is controlled by hybridization of the neutral PNA probe and the negative DNA target. Electrostatic interactions bring the hybrid complex and cationic polymer within distances required for Förster energy transfer. Conjugated polymer excitation provides fluorescein emission >25 times higher than that obtained by exciting the dye, allowing detection of target DNA at concentrations of 10 pM with a standard fluorometer. A simple and highly sensitive assay with optical amplification that uses the improved hybridization behavior of PNA/DNA complexes is thus demonstrated. PMID:12167673

  18. A comparative hybridization analysis of yeast DNA with Paramecium parafusin- and different phosphoglucomutase-specific probes.

    PubMed

    Wyroba, E; Satir, B H

    2000-01-01

    Molecular probes designed for the parafusin (PFUS), the Paramecium exocytic-sensitive phosphoglycoprotein, gave distinct hybridization patterns in Saccharomyces cerevisiae genomic DNA when compared with different phosphoglucomutase specific probes. These include two probes identical to segments of yeast phosphoglucomutase (PGM) genes 1 and 2. Neither of the PGM probes revealed the 7.4 and 5.9 kb fragments in Bgl II-cut yeast DNA digest detected with the 1.6 kb cloned PFUS cDNA and oligonucleotide constructed to the PFUS region (insertion 3--I-3) not found in other species. PCR amplification with PFUS-specific primers generated yeast DNA-species of the predicted molecular size which hybridized to the I-3 probe. A search of the yeast genome database produced an unassigned nucleotide sequence that showed 55% identity to parafusin gene and 37% identity to PGM2 (the major isoform of yeast phosphoglucomutase) within the amplified region.

  19. Genotyping of the CCR5 chemokine receptor by isothermal NASBA amplification and differential probe hybridization.

    PubMed

    Romano, J W; Tetali, S; Lee, E M; Shurtliff, R N; Wang, X P; Pahwa, S; Kaplan, M H; Ginocchio, C C

    1999-11-01

    The human CCR5 chemokine receptor functions as a coreceptor with CD4 for infection by macrophage-tropic isolates of human immunodeficiency virus type 1 (HIV-1). A mutated CCR5 allele which encodes a protein that does not function as a coreceptor for HIV-1 has been identified. Thus, expression of the wild-type and/or mutation allele is relevant to determining the infectability of patient peripheral blood mononuclear cells (PBMC) and affects disease progression in vivo. We developed a qualitative CCR5 genotyping assay using NASBA, an isothermal nucleic acid amplification technology. The method involves three enzymes and two oligonucleotides and targets the CCR5 mRNA, which is expressed in PBMC at a copy number higher than 2, the number of copies of DNA present encoding the gene. The single oligonucleotide set amplifies both alleles, and genotyping is achieved by separate hybridizations of wild-type- and mutation-specific probes directly to the single-stranded RNA amplification product. Assay sensitivity and specificity were demonstrated with RNAs produced in vitro from plasmid clones bearing the DNA encoding each allele. No detectable cross-reactivity between wild-type and mutation probes was found, and 50 copies of each allele were readily detectable. Analysis of patient samples found that 20% were heterozygous and 1% were homozygous for the CCR5 mutation. Thus, NASBA is a sensitive and specific means of rapidly determining CCR5 genotype and provides several technical advantages over alternative assay systems.

  20. Genotyping of the CCR5 Chemokine Receptor by Isothermal NASBA Amplification and Differential Probe Hybridization

    PubMed Central

    Romano, Joseph W.; Tetali, Surya; Lee, Eun Mi; Shurtliff, Roxanne N.; Wang, Xue Ping; Pahwa, Savita; Kaplan, Mark H.; Ginocchio, Christine C.

    1999-01-01

    The human CCR5 chemokine receptor functions as a coreceptor with CD4 for infection by macrophage-tropic isolates of human immunodeficiency virus type 1 (HIV-1). A mutated CCR5 allele which encodes a protein that does not function as a coreceptor for HIV-1 has been identified. Thus, expression of the wild-type and/or mutation allele is relevant to determining the infectibility of patient peripheral blood mononuclear cells (PBMC) and affects disease progression in vivo. We developed a qualitative CCR5 genotyping assay using NASBA, an isothermal nucleic acid amplification technology. The method involves three enzymes and two oligonucleotides and targets the CCR5 mRNA, which is expressed in PBMC at a copy number higher than 2, the number of copies of DNA present encoding the gene. The single oligonucleotide set amplifies both alleles, and genotyping is achieved by separate hybridizations of wild-type- and mutation-specific probes directly to the single-stranded RNA amplification product. Assay sensitivity and specificity were demonstrated with RNAs produced in vitro from plasmid clones bearing the DNA encoding each allele. No detectable cross-reactivity between wild-type and mutation probes was found, and 50 copies of each allele were readily detectable. Analysis of patient samples found that 20% were heterozygous and 1% were homozygous for the CCR5 mutation. Thus, NASBA is a sensitive and specific means of rapidly determining CCR5 genotype and provides several technical advantages over alternative assay systems. PMID:10548593

  1. Development of a diagnostic test for Johne's disease using a DNA hybridization probe.

    PubMed Central

    Hurley, S S; Splitter, G A; Welch, R A

    1989-01-01

    A DNA probe, M13 mpHAW71, that detects Mycobacterium paratuberculosis in the fecal material of infected animals was developed for use in the diagnosis of Johne's disease. The probe detected as few as 10(5) M. paratuberculosis when hybridized under stringent conditions to total genomic DNA purified from bovine fecal material. When the probe was used diagnostically, it did not differentiate members of the Mycobacterium avium-M. intracellulare-M. paratuberculosis complex. Compared with culturing, the DNA probe identified 34.4% more mycobacterium-containing fecal samples, and testing took only 72 h to complete. Images PMID:2768445

  2. Directly incorporating fluorochromes into DNA probes by PCR increases the efficience of fluorescence in situ hybridization

    SciTech Connect

    Dittmer, Joy

    1996-05-01

    The object of this study was to produce a directly labeled whole chromosome probe in a Degenerative Oligonucleotide Primed-Polymerase Chain Reaction (DOP-PCR) that will identify chromosome breaks, deletions, inversions and translocations caused by radiation damage. In this study we amplified flow sorted chromosome 19 using DOP-PCR. The product was then subjected to a secondary DOP PCR amplification, After the secondary amplification the DOP-PCR product was directly labeled in a tertiary PCR reaction with rhodamine conjugated with dUTP (FluoroRed) to produce a DNA fluorescent probe. The probe was then hybridized to human metaphase lymphocytes on slides, washed and counterstained with 4{prime},6-diamino-2-phenylindole (DAPI). The signal of the FluoroRed probe was then compared to a signal of a probe labeled with biotin and stained with avidin fluorescein isothio cynate (FITC) and anti-avidin FITC. The results show that the probe labeled with FluoroRed gave signals as bright as the probe with biotin labeling. The FluoroRed probe had less noise than the biotin labeled probe. Therefore, a directly labeled probe has been successfully produced in a DOP-PCR reaction. In future a probe labeled with FluoroRed will be produced instead of a probe labeled with biotin to increase efficiency.

  3. Phylogenetic group- and species-specific oligonucleotide probes for single-cell detection of lactic acid bacteria in oral biofilms

    PubMed Central

    2011-01-01

    Background The purpose of this study was to design and evaluate fluorescent in situ hybridization (FISH) probes for the single-cell detection and enumeration of lactic acid bacteria, in particular organisms belonging to the major phylogenetic groups and species of oral lactobacilli and to Abiotrophia/Granulicatella. Results As lactobacilli are known for notorious resistance to probe penetration, probe-specific assay protocols were experimentally developed to provide maximum cell wall permeability, probe accessibility, hybridization stringency, and fluorescence intensity. The new assays were then applied in a pilot study to three biofilm samples harvested from variably demineralized bovine enamel discs that had been carried in situ for 10 days by different volunteers. Best probe penetration and fluorescent labeling of reference strains were obtained after combined lysozyme and achromopeptidase treatment followed by exposure to lipase. Hybridization stringency had to be established strictly for each probe. Thereafter all probes showed the expected specificity with reference strains and labeled the anticipated morphotypes in dental plaques. Applied to in situ grown biofilms the set of probes detected only Lactobacillus fermentum and bacteria of the Lactobacillus casei group. The most cariogenic biofilm contained two orders of magnitude higher L. fermentum cell numbers than the other biofilms. Abiotrophia/Granulicatella and streptococci from the mitis group were found in all samples at high levels, whereas Streptococcus mutans was detected in only one sample in very low numbers. Conclusions Application of these new group- and species-specific FISH probes to oral biofilm-forming lactic acid bacteria will allow a clearer understanding of the supragingival biome, its spatial architecture and of structure-function relationships implicated during plaque homeostasis and caries development. The probes should prove of value far beyond the field of oral microbiology, as many of

  4. Signal intensities of radiolabeled cRNA probes used alone or in combination with non-isotopic in situ hybridization histochemistry

    PubMed Central

    Son, Jong-Hyun; Winzer-Serhan, Ursula H.

    2009-01-01

    This study addressed the question of whether radioactive hybridization signal intensities are reduced in combined isotopic and non-isotopic double in situ hybridization (DISH) compared with those in single in situ hybridization (ISH). Non-isotopic Digoxigenin (Dig)-labeled hybrids were detected using an alkaline phosphatase (AP) enzymatic reaction which results in NBT/BCIP-salt precipitation that could shield S35-radiation from penetrating to the surface. Sections were plastic coated of with 2% parlodion to prevent a chemical reaction between AP and developer during processing of the photosensitive emulsion, which could further reduce radioactive hybridization signal detection by autoradiography. We used DISH with a hybridization cocktail of radioactive S35- and Dig-labeled GAD67 cRNA probes. In order to avoid competition for the same complementary sequence, the probes were directed towards different sequences of the glutamic acid decarboxylase (GAD67) mRNA, resulting in co-detection of isotopic and non-isotopic hybrids in close to 100% of GAD67 positive cells. Quantitation of autoradiograms showed that there was no reduction of autoradiographic signal intensity from S35-labeled hybrids in the presence of Dig-labeled hybrids. Plastic coating of single or dual hybridized sections did not reduce the radioactive signal intensity. When mRNAs for nicotinic acetylcholine receptor (nAChR) subunits were detected with subunit specific S35-labeled cRNA probes in GAD67 hippocampal interneurons the total numbers of nAChR subunit expressing cells remained the same in single or double hybridized sections even for low abundant mRNAs. Together, these results indicate that combined radioactive and non-radioactive DISH does not interfere with the detection of the radiation signal from the S35-labeled hybrids, and neither specificity nor sensitivity is compromised. PMID:19428522

  5. Effect of probe characteristics on the subtractive hybridization efficiency of human genomic DNA

    PubMed Central

    2010-01-01

    Background The detection sensitivity of low abundance pathogenic species by polymerase chain reaction (PCR) can be significantly enhanced by removing host nucleic acids. This selective removal can be performed using a magnetic bead-based solid phase with covalently immobilized capture probes. One of the requirements to attain efficient host background nucleic acids subtraction is the capture probe characteristics. Findings In this study we investigate how various capture probe characteristics influence the subtraction efficiency. While the primary focus of this report is the impact of probe length, we also studied the impact of probe conformation as well as the amount of capture probe attached to the solid phase. The probes were immobilized on magnetic microbeads functionalized with a phosphorous dendrimer. The subtraction efficiency was assessed by quantitative real time PCR using a single-step capture protocol and genomic DNA as target. Our results indicate that short probes (100 to 200 bp) exhibit the best subtraction efficiency. Additionally, higher subtraction efficiencies with these probes were obtained as the amount of probe immobilized on the solid phase decreased. Under optimal probes condition, our protocol showed a 90 - 95% subtraction efficiency of human genomic DNA. Conclusions The characteristics of the capture probe are important for the design of efficient solid phases. The length, conformation and abundance of the probes determine the capture efficiency of the solid phase. PMID:20406484

  6. Fiber-based hybrid probe for non-invasive cerebral monitoring in neonatology

    NASA Astrophysics Data System (ADS)

    Rehberger, Matthias; Giovannella, Martina; Pagliazzi, Marco; Weigel, Udo; Durduran, Turgut; Contini, Davide; Spinelli, Lorenzo; Pifferi, Antonio; Torricelli, Alessandro; Schmitt, Robert

    2015-07-01

    Improved cerebral monitoring systems are needed to prevent preterm infants from long-term cognitive and motor restrictions. Combining advanced near-infrared diffuse spectroscopy measurement technologies, time-resolved spectroscopy (TRS) and diffuse correlation spectroscopy (DCS) will introduce novel indicators of cerebral oxygen metabolism and blood flow for neonatology. For non-invasive sensing a fiber-optical probe is used to send and receive light from the infant head. In this study we introduce a new fiber-based hybrid probe that is designed for volume production. The probe supports TRS and DCS measurements in a cross geometry, thus both technologies gain information on the same region inside the tissue. The probe is highly miniaturized to perform cerebral measurements on heads of extreme preterm infants down to head diameters of 6cm. Considerations concerning probe production focus on a reproducible accuracy in shape and precise optical alignment. In this way deviations in measurement data within a series of probes should be minimized. In addition to that, requirements for clinical use like robustness and hygiene are considered. An additional soft-touching sleeve made of FDA compatible silicone allows for a flexible attachment with respect to the individual anatomy of each patient. We present the technical concept of the hybrid probe and corresponding manufacturing methods. A prototype of the probe is shown and tested on tissue phantoms as well as in vivo to verify its operational reliability.

  7. Development of a Hybrid Optical Biopsy Probe to Improve Prostate Cancer Diagnosis

    DTIC Science & Technology

    2012-06-01

    TELEPHONE NUMBER (include area code) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Development of a Hybrid Optical Biopsy Probe to...can be developed for guiding needle biopsy for prostate cancer diagnosis. Multi-modal optical measurements to be utilized for the study are (1) light...which collect light scattering and auto-fluorescence from the prostate tissue, into a transrectal-ultrasound, needle- biopsy probe. In the

  8. Color multiplexing hybridization probes using the apolipoprotein E locus as a model system for genotyping.

    PubMed

    Bernard, P S; Pritham, G H; Wittwer, C T

    1999-09-10

    Fluorescent hybridization probes were multiplexed for color genotyping of the apolipoprotein E locus using model oligonucleotide targets. Fluorescence resonance energy transfer was observed during adjacent hybridization of 3'-fluorescein-labeled "donor" probes paired with 5'-labeled "acceptor" probes with different emission spectra reporting at codons 112 and 158. The acceptor dyes emitted at either 640 nm (LightCycler Red 640) or 705 nm (LightCycler Red 705) and were monitored with a LightCycler, a thermal cycler with an integrated fluorimeter. The color of the acceptor dye identified each site and the characteristic melting temperatures of the fluorescein-labeled probes identified single base changes within each codon. Color compensation of temperature-dependent spectral overlap was applied to completely separate each channel. Competition between the probes and the complementary strand for the target sequence decreased resonance energy transfer, indicating an advantage of single-stranded target. Hybridization probes of the same length, but different GC content are T(m) shifted by the same amount during A:C mismatch duplex melting. Genotyping was optimal at both sites if melting curve analysis was preceded by a slow (1 degrees C/s) annealing phase. Although each site preferred different concentrations of Mg(2+) and target strand for optimal genotyping, conditions for multiplexing were found. This method, along with an appropriate amplification technique, should allow real-time multiplex genotyping from genomic DNA.

  9. Biomimetic growth of gallic acid-ZnO hybrid assemblies and their applications

    NASA Astrophysics Data System (ADS)

    Sarker, Nazmul H.; Barnaby, Stacey N.; Fath, Karl R.; Frayne, Stephen H.; Nakatsuka, Nako; Banerjee, Ipsita A.

    2012-03-01

    In this study, we probed the biomimetic formation of gallic acid (GA)-ZnO nanoparticle hybrids. It was found that the morphologies formed were dependent upon pH values, resulting in GA-ZnO hybrids of varying shapes such as micro or nanoplates or fibers. The formed supramolecular GA-ZnO hybrids were found to be luminescent as indicated by confocal microscopy and were utilized for the photocatalytic degradation of the organic dye methylene blue. We also explored the bactericidal effects of the hybrids on Staphylococcus aureus ( S. aureus) as well as Escherichia Coli ( E. Coli). Thus, we have developed a new class of shape-controlled nanohybrid assemblies via mild, green synthetic methods that may be utilized for photocatalytic degradation for environmental remediation as well as for antibacterial applications.

  10. Designer nucleic acids to probe and program the cell.

    PubMed

    Krishnan, Yamuna; Bathe, Mark

    2012-12-01

    Recent advances in nucleic acid sequencing, structural, and computational technologies have resulted in dramatic progress in our understanding of nucleic acid structure and function in the cell. This knowledge, together with the predictable base-pairing of nucleic acids and powerful synthesis and expression capabilities now offers the unique ability to program nucleic acids to form precise 3D architectures with diverse applications in synthetic and cell biology. The unique modularity of structural motifs that include aptamers, DNAzymes, and ribozymes, together with their well-defined construction rules, enables the synthesis of functional higher-order nucleic acid complexes from these subcomponents. As we illustrate here, these highly programmable, smart complexes are increasingly enabling researchers to probe and program the cell in a sophisticated manner that moves well beyond the use of nucleic acids for conventional genetic manipulation alone.

  11. In situ hybridization with labeled probes: assessment of african Swine Fever virus in formalin-fixed paraffin-embedded tissues.

    PubMed

    Ballester, Maria; Rodríguez, Fernando

    2015-01-01

    In situ hybridization (ISH) has become a very valuable molecular diagnostic tool to detect specific DNA or RNA sequences in biological samples through the use of complementary DNA- or RNA-labeled probes. Here, we describe an optimized in situ hybridization protocol to detect African swine fever virus (ASFV) DNA in formalin-fixed, paraffin-embedded tissues using digoxigenin-labeled probes.

  12. DNA probe attachment on plastic surfaces and microfluidic hybridization array channel devices with sample oscillation.

    PubMed

    Liu, Yingjie; Rauch, Cory B

    2003-06-01

    DNA probe immobilization on plastic surfaces and device assembly are both critical to the fabrication of microfluidic hybridization array channel (MHAC) devices. Three oligonucleotide (oligo) probe immobilization procedures were investigated for attaching oligo probes on four different types of plastic surfaces (polystyrene, polycarbonate, poly(methylmethacrylate), and polypropylene). These procedures are the Surmodics procedure, the cetyltrimethylammonium bromide (CTAB) procedure, and the Reacti-Bind procedure. To determine the optimal plastic substrate and attachment chemistry for array fabrication, we investigated plastic hydrophobicity, intrinsic fluorescence, and oligo attachment efficiency. The Reacti-Bind procedure is least effective for attaching oligo probes in the microarray format. The CTAB procedure performs well enough to use in array fabrication, and the concentration of CTAB has a significant effect on oligo immobilization efficiency. We also found that use of amine-modified oligo probes resulted in better immobilization efficiency than use of unmodified oligos with the CTAB procedure. The oligo probe immobilization on plastic surfaces by the Surmodics procedure is the most effective with regard to probe spot quality and hybridization sensitivity. A DNA hybridization assay on such a device results in a limit of detection of 12pM. Utilizing a CO(2) IR laser machining and adhesive layer approach, we have developed an improved procedure for realizing a DNA microarray inside a microfluidic channel. This device fabrication procedure allows for more feasible spot placement in the channel and reduced sample adsorption by adhesive tapes used in the fabrication procedure. We also demonstrated improved hybridization kinetics and increased detection sensitivity in MHAC devices by implementing sample oscillation inside the channel. A limit of detection of 5pM has been achieved in MHAC devices with sample oscillation.

  13. Towards Fluorescence In Vivo Hybridization (FIVH) Detection of H. pylori in Gastric Mucosa Using Advanced LNA Probes

    PubMed Central

    Fontenete, Sílvia; Leite, Marina; Guimarães, Nuno; Madureira, Pedro; Ferreira, Rui Manuel; Figueiredo, Céu; Wengel, Jesper; Azevedo, Nuno Filipe

    2015-01-01

    In recent years, there have been several attempts to improve the diagnosis of infection caused by Helicobacter pylori. Fluorescence in situ hybridization (FISH) is a commonly used technique to detect H. pylori infection but it requires biopsies from the stomach. Thus, the development of an in vivo FISH-based method (FIVH) that directly detects and allows the visualization of the bacterium within the human body would significantly reduce the time of analysis, allowing the diagnosis to be performed during endoscopy. In a previous study we designed and synthesized a phosphorothioate locked nucleic acid (LNA)/ 2’ O-methyl RNA (2’OMe) probe using standard phosphoramidite chemistry and FISH hybridization was then successfully performed both on adhered and suspended bacteria at 37°C. In this work we simplified, shortened and adapted FISH to work at gastric pH values, meaning that the hybridization step now takes only 30 minutes and, in addition to the buffer, uses only urea and probe at non-toxic concentrations. Importantly, the sensitivity and specificity of the FISH method was maintained in the range of conditions tested, even at low stringency conditions (e.g., low pH). In conclusion, this methodology is a promising approach that might be used in vivo in the future in combination with a confocal laser endomicroscope for H. pylori visualization. PMID:25915865

  14. Insulin-Insulin-like Growth Factors Hybrids as Molecular Probes of Hormone:Receptor Binding Specificity.

    PubMed

    Křížková, Květoslava; Chrudinová, Martina; Povalová, Anna; Selicharová, Irena; Collinsová, Michaela; Vaněk, Václav; Brzozowski, Andrzej M; Jiráček, Jiří; Žáková, Lenka

    2016-05-31

    Insulin, insulin-like growth factors 1 and 2 (IGF-1 and -2, respectively), and their receptors (IR and IGF-1R) are the key elements of a complex hormonal system that is essential for the development and functioning of humans. The C and D domains of IGFs (absent in insulin) likely play important roles in the differential binding of IGF-1 and -2 to IGF-1R and to the isoforms of IR (IR-A and IR-B) and specific activation of these receptors. Here, we attempted to probe the impact of IGF-1 and IGF-2 D domains (DI and DII, respectively) and the IGF-2 C domain (CII) on the receptor specificity of these hormones. For this, we made two types of insulin hybrid analogues: (i) with the C-terminus of the insulin A chain extended by the amino acids from the DI and DII domains and (ii) with the C-terminus of the insulin B chain extended by some amino acids derived from the CII domain. The receptor binding affinities of these analogues and their receptor autophosphorylation potentials were characterized. Our results indicate that the DI domain has a more negative impact than the DII domain does on binding to IR, and that the DI domain Pro-Leu-Lys residues are important factors for a different IR-A versus IR-B binding affinity of IGF-1. We also showed that the additions of amino acids that partially "mimic" the CII domain, to the C-terminus of the insulin B chain, change the binding and autophosphorylation specificity of insulin in favor of the "metabolic" IR-B isoform. This opens new venues for rational enhancement of insulin IR-B specificity by modifications beyond the C-terminus of its B chain.

  15. Silver ions-mediated conformational switch: facile design of structure-controllable nucleic acid probes.

    PubMed

    Wang, Yongxiang; Li, Jishan; Wang, Hao; Jin, Jianyu; Liu, Jinhua; Wang, Kemin; Tan, Weihong; Yang, Ronghua

    2010-08-01

    Conformationally constraint nucleic acid probes were usually designed by forming an intramolecular duplex based on Watson-Crick hydrogen bonds. The disadvantages of these approaches are the inflexibility and instability in complex environment of the Watson-Crick-based duplex. We report that this hydrogen bonding pattern can be replaced by metal-ligation between specific metal ions and the natural bases. To demonstrate the feasibility of this principle, two linear oligonucleotides and silver ions were examined as models for DNA hybridization assay and adenosine triphosphate detection. The both nucleic acids contain target binding sequences in the middle and cytosine (C)-rich sequences at the lateral portions. The strong interaction between Ag(+) ions and cytosines forms stable C-Ag(+)-C structures, which promises the oligonucleotides to form conformationally constraint formations. In the presence of its target, interaction between the loop sequences and the target unfolds the C-Ag(+)-C structures, and the corresponding probes unfolding can be detected by a change in their fluorescence emission. We discuss the thermodynamic and kinetic opportunities that are provided by using Ag(+) ion complexes instead of traditional Watson-Crick-based duplex. In particular, the intrinsic feature of the metal-ligation motif facilitates the design of functional nucleic acids probes by independently varying the concentration of Ag(+) ions in the medium.

  16. Automated design of probes for rRNA-targeted fluorescence in situ hybridization reveals the advantages of using dual probes for accurate identification.

    PubMed

    Wright, Erik S; Yilmaz, L Safak; Corcoran, Andrew M; Ökten, Hatice E; Noguera, Daniel R

    2014-08-01

    Fluorescence in situ hybridization (FISH) is a common technique for identifying cells in their natural environment and is often used to complement next-generation sequencing approaches as an integral part of the full-cycle rRNA approach. A major challenge in FISH is the design of oligonucleotide probes with high sensitivity and specificity to their target group. The rapidly expanding number of rRNA sequences has increased awareness of the number of potential nontargets for every FISH probe, making the design of new FISH probes challenging using traditional methods. In this study, we conducted a systematic analysis of published probes that revealed that many have insufficient coverage or specificity for their intended target group. Therefore, we developed an improved thermodynamic model of FISH that can be applied at any taxonomic level, used the model to systematically design probes for all recognized genera of bacteria and archaea, and identified potential cross-hybridizations for the selected probes. This analysis resulted in high-specificity probes for 35.6% of the genera when a single probe was used in the absence of competitor probes and for 60.9% when up to two competitor probes were used. Requiring the hybridization of two independent probes for positive identification further increased specificity. In this case, we could design highly specific probe sets for up to 68.5% of the genera without the use of competitor probes and 87.7% when up to two competitor probes were used. The probes designed in this study, as well as tools for designing new probes, are available online (http://DECIPHER.cee.wisc.edu).

  17. Automated Design of Probes for rRNA-Targeted Fluorescence In Situ Hybridization Reveals the Advantages of Using Dual Probes for Accurate Identification

    PubMed Central

    Yilmaz, L. Safak; Corcoran, Andrew M.; Ökten, Hatice E.; Noguera, Daniel R.

    2014-01-01

    Fluorescence in situ hybridization (FISH) is a common technique for identifying cells in their natural environment and is often used to complement next-generation sequencing approaches as an integral part of the full-cycle rRNA approach. A major challenge in FISH is the design of oligonucleotide probes with high sensitivity and specificity to their target group. The rapidly expanding number of rRNA sequences has increased awareness of the number of potential nontargets for every FISH probe, making the design of new FISH probes challenging using traditional methods. In this study, we conducted a systematic analysis of published probes that revealed that many have insufficient coverage or specificity for their intended target group. Therefore, we developed an improved thermodynamic model of FISH that can be applied at any taxonomic level, used the model to systematically design probes for all recognized genera of bacteria and archaea, and identified potential cross-hybridizations for the selected probes. This analysis resulted in high-specificity probes for 35.6% of the genera when a single probe was used in the absence of competitor probes and for 60.9% when up to two competitor probes were used. Requiring the hybridization of two independent probes for positive identification further increased specificity. In this case, we could design highly specific probe sets for up to 68.5% of the genera without the use of competitor probes and 87.7% when up to two competitor probes were used. The probes designed in this study, as well as tools for designing new probes, are available online (http://DECIPHER.cee.wisc.edu). PMID:24928876

  18. SNP detection using peptide nucleic acid probes and conjugated polymers: applications in neurodegenerative disease identification.

    PubMed

    Gaylord, Brent S; Massie, Michelle R; Feinstein, Stuart C; Bazan, Guillermo C

    2005-01-04

    A strategy employing a combination of peptide nucleic acid (PNA) probes, an optically amplifying conjugated polymer (CP), and S1 nuclease enzyme is capable of detecting SNPs in a simple, rapid, and sensitive manner. The recognition is accomplished by sequence-specific hybridization between the uncharged, fluorescein-labeled PNA probe and the DNA sequence of interest. After subsequent treatment with S1 nuclease, the cationic water soluble CP electrostatically associates with the remaining anionic PNA/DNA complex, leading to sensitized emission of the labeled PNA probe via FRET from the CP. The generation of fluorescent signal is controlled by strand-specific electrostatic interactions and is governed by the complementarity of the probe/target pair. To assess the method, we compared the ability of the sensor system to detect normal, wild-type human DNA sequences, and those sequences containing a single base mutation. Specifically, we examined a PNA probe complementary to a region of the gene encoding the microtubule associated protein tau. The probe sequence covers a known point mutation implicated in a dominant neurodegenerative dementia known as frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), which has clinical and molecular similarities to Alzheimer's disease. By using an appropriate PNA probe, the conjugated polymer poly[(9,9-bis(6'-N,N,N-trimethylammoniumhexylbromide)fluorene)-co-phenylene] and S1 nuclease, unambiguous FRET signaling is achieved for the wild-type DNA and not the mutant sequence harboring the SNP. Distance relationships in the CP/PNA assay are also discussed to highlight constraints and demonstrate improvements within the system.

  19. Hybridization-triggered fluorescence detection of DNA with minor groove binder-conjugated probes

    NASA Astrophysics Data System (ADS)

    Afonina, Irina A.; Lokhov, Sergey G.; Belousov, Yevheniy S.; Reed, Michael W.; Lukhtanov, Eugeny A.; Shishkina, Irina G.; Gorn, Vladimir V.; Sanders, Silvia M.; Walburger, David K.; Hoekstra, Merl F.; Vermeulen, Nicolaas M. J.

    2002-06-01

    Fluorogenic 2'-deoxynucleotide probes containing a minor groove binding-quencher compound at the 5'-end and a fluorophore at the 3'-end, were recently described. These probes fluoresce upon hybridization to the complementary target. The 5'-MGB-quencher group prevents 5'-nuclease digestion by Taq polymerase during homogeneous amplification. The 5'-MGB-quencher-oligonucleotide-fluor (MGB-Q-ODN-Fl) probes displayed a dynamic range of 7 order of magnitude, with an ultimate sensitivity of better than 5 copies per sample. The high sensitivity and specificity is illustrated by the application of the probes in single nucleotide polymorphism detection, final load determination and gene expression analyses. This paper summarizes new developments in sequence detection, gene expression and SNP analysis using new Tm prediction software to design robust 5'-MGB-Q-ODN-Fl probes. Furthermore, the software is capable of estimating the Tm of probes containing a modified base. Due to G:G self-association, many G-rich probes and primers are poor performers in amplification reactions. The software recognizes such sequences and substitution of G with 6-Amino-1,5-dihydro-pyrazolo(3,4- d)pyrimidin-4-one (PPG) is indicated, when necessary to eliminate G:G self-association. Examples of improved performance of PPG containing primers and probes is demonstrated.

  20. Amplified detection of nucleic acid by G-quadruplex based hybridization chain reaction.

    PubMed

    Dong, Juan; Cui, Xin; Deng, Yun; Tang, Zhuo

    2012-01-01

    A protein-free, isothermal, self-amplified nucleic acid sensing system which was a G-quadruplex integrated hybridization chain reaction (GQ-HCR) system was developed. The G-quadruplex was closed two-thirds in the loop and one-third in the stem of one of the GQ-HCR hairpin probes. In the absence of the target molecule, the GQ-HCR probes stayed as inactive meta-stable hairpin structures and the G-quadruplex was inert. Reversely, the GQ-HCR probes could be cross-opened to start a hybridization chain reaction and the closed G-quadruplex could be released to be free when the GQ-HCR probes came across the target molecule. The GQ-HCR nucleic acid sensing system could detect as low as 7.5 nM ssDNA or RNA by the colorimetric method and 4 nM ssDNA by the fluorometric method. Less than 10 copies of dsDNA template could also be detected when PCR was combined with the GQ-HCR system (PCR+GQ-HCR). Because of these advantages, the GQ-HCR system was also studied for application in visual chip detection to obtain a satisfactory repeatable and specific result.

  1. D-region blunt probe data analysis using hybrid computer techniques

    NASA Technical Reports Server (NTRS)

    Burkhard, W. J.

    1973-01-01

    The feasibility of performing data reduction techniques with a hybrid computer was studied. The data was obtained from the flight of a parachute born probe through the D-region of the ionosphere. A presentation of the theory of blunt probe operation is included with emphasis on the equations necessary to perform the analysis. This is followed by a discussion of computer program development. Included in this discussion is a comparison of computer and hand reduction results for the blunt probe launched on 31 January 1972. The comparison showed that it was both feasible and desirable to use the computer for data reduction. The results of computer data reduction performed on flight data acquired from five blunt probes are also presented.

  2. Genotype-specific RNA probes for direct identification of wild polioviruses by blot hybridization.

    PubMed Central

    De, L; Yang, C F; Da Silva, E; Boshell, J; Cáceres, P; Gómez, J R; Pallansch, M; Kew, O

    1997-01-01

    We have developed RNA probes for the direct identification of wild poliovirus isolates by blot hybridization. The probes are complementary to sequences of the first 30 to 32 codons of VP1, which evolve more extensively (approximately 1.5-fold) than the rest of VP1. To illustrate our general approach, we describe the design of probes specific to each of four major genotypes recently endemic (1981 to 1991) to the Americas: Andean type 1, Brazil type 1, Brazil type 3, and Central America-Mexico type 3. A wild isolate of each genotype was selected according to molecular and epidemiologic criteria to be representative of the principal lineages in circulation. Variable VP1 sequences of the representative isolates were amplified by the reverse transcriptase PCR and were inserted into a plasmid vector containing a T7 promoter. The in vitro transcripts, labeled with digoxigenin, served as probes. These formed stable hybrids only with RNAs of isolates of the corresponding genotypes. Hybrids were detected by a sensitive chemiluminescence assay, capable under normal diagnostic conditions of detecting specific wild poliovirus sequences in samples containing up to a 100-fold excess of Sabin vaccine strain-related sequences of the same serotype. PMID:9350743

  3. Analysis of microRNA expression by in situ hybridization with RNA oligonucleotide probes

    PubMed Central

    Thompson, Robert C.; Deo, Monika; Turner, David L.

    2007-01-01

    In situ hybridization is an important tool for analyzing gene expression and developing hypotheses about gene functions. The discovery of hundreds of microRNA (miRNA) genes in animals has provided new challenges for analyzing gene expression and functions. The small size of the mature miRNAs (∼20-24 nucleotides in length) presents difficulties for conventional in situ hybridization methods. However, we have developed a modified in situ hybridization method for detection of mammalian miRNAs in tissue sections, based upon the use of RNA oligonucleotide probes in combination with highly specific wash conditions. Here we present detailed procedures for detection of miRNAs in tissue sections or cultured cells. The methods described can utilize either nonradioactive hapten-conjugated probes that are detected by enzyme-coupled antibodies, or radioactively labeled probes that are detected by autoradiography. The ability to visualize miRNA expression patterns in tissue sections provides an additional tool for the analyses of miRNA expression and function. In addition, the use of radioactively labeled probes should facilitate quantitative analyses of changes in miRNA gene expression. PMID:17889803

  4. Hybrids of Nucleic Acids and Carbon Nanotubes for Nanobiotechnology

    PubMed Central

    Umemura, Kazuo

    2015-01-01

    Recent progress in the combination of nucleic acids and carbon nanotubes (CNTs) has been briefly reviewed here. Since discovering the hybridization phenomenon of DNA molecules and CNTs in 2003, a large amount of fundamental and applied research has been carried out. Among thousands of papers published since 2003, approximately 240 papers focused on biological applications were selected and categorized based on the types of nucleic acids used, but not the types of CNTs. This survey revealed that the hybridization phenomenon is strongly affected by various factors, such as DNA sequences, and for this reason, fundamental studies on the hybridization phenomenon are important. Additionally, many research groups have proposed numerous practical applications, such as nanobiosensors. The goal of this review is to provide perspective on biological applications using hybrids of nucleic acids and CNTs. PMID:28347014

  5. What controls the hybridization thermodynamics of spherical nucleic acids?

    PubMed

    Randeria, Pratik S; Jones, Matthew R; Kohlstedt, Kevin L; Banga, Resham J; Olvera de la Cruz, Monica; Schatz, George C; Mirkin, Chad A

    2015-03-18

    The hybridization of free oligonucleotides to densely packed, oriented arrays of DNA modifying the surfaces of spherical nucleic acid (SNA)-gold nanoparticle conjugates occurs with negative cooperativity; i.e., each binding event destabilizes subsequent binding events. DNA hybridization is thus an ever-changing function of the number of strands already hybridized to the particle. Thermodynamic quantification of this behavior reveals a 3 orders of magnitude decrease in the binding constant for the capture of a free oligonucleotide by an SNA conjugate as the fraction of pre-hybridized strands increases from 0 to ∼30%. Increasing the number of pre-hybridized strands imparts an increasing enthalpic penalty to hybridization that makes binding more difficult, while simultaneously decreasing the entropic penalty to hybridization, which makes binding more favorable. Hybridization of free DNA to an SNA is thus governed by both an electrostatic barrier as the SNA accumulates charge with additional binding events and an effect consistent with allostery, where hybridization at certain sites on an SNA modify the binding affinity at a distal site through conformational changes to the remaining single strands. Leveraging these insights allows for the design of conjugates that hybridize free strands with significantly higher efficiencies, some of which approach 100%.

  6. Multiple components in restriction enzyme digests of mammalian (insectivore), avian and reptilian genomic DNA hybridize with murine immunoglobulin VH probes.

    PubMed

    Litman, G W; Berger, L; Jahn, C L

    1982-06-11

    High molecular weight genomic DNAs isolated from an insectivore, Tupaia, and a representative reptilian, Caiman, and avian, Gallus, were digested with restriction endonucleases transferred to nitrocellulose and hybridized with nick-translated probes of murine VH genes. The derivations of the probes designated S107V (1) and mu 107V (2,3) have been described previously. Under conditions of reduced stringency, multiple hybridizing components were observed with Tupaia and Caiman; only mu mu 107V exhibited significant hybridization with the separated fragments of Gallus DNA. The nick-translated S107V probe was digested with Fnu4H1 and subinserts corresponding to the 5' and 3' regions both detected multiple hybridizing components in Tupaia and Caiman DNA. A 5' probe lacking the leader sequence identified the same components as the intact 5' probe, suggesting that VH coding regions distant as the reptilians may possess multiple genetic components which exhibit significant homology with murine immunoglobulin in VH regions.

  7. DNA Hybridization Probe for Use in Determining Restricted Nodulation among Bradyrhizobium japonicum Serocluster 123 Field Isolates

    PubMed Central

    Sadowsky, Michael J.; Cregan, Perry B.; Keyser, Harold H.

    1990-01-01

    Several soybean plant introduction (PI) genotypes have recently been described which restrict nodulation of Bradyrhizobium japonicum serocluster 123 in an apparently serogroup-specific manner. While PI 371607 restricts nodulation of strains in serogroup 123 and some in serogroup 127, those in serogroup 129 are not restricted. When DNA regions within and around the B. japonicum I-110 common nodulation genes were used as probes to genomic DNA from the serogroup strains USDA 123, USDA 127, and USDA 129, several of the probes differentially hybridized to the nodulation-restricted and -unrestricted strains. One of the gene regions, cloned in plasmid pMJS12, was subsequently shown to hybridize to 4.6-kilobase EcoRI fragments from DNAs from nodulation-restricted strains and to larger fragments in nodulation-unrestricted strains. To determine if the different hybridization patterns could be used to predict nodulation restriction, we hybridized pMJS12 to EcoRI-digested genomic DNAs from uncharacterized serocluster 123 field isolates. Of the 36 strains examined, 15 were found to have single, major, 4.6-kilobase hybridizing EcoRI fragments. When tested for nodulation, 80% (12 of 15) of the strains were correctly predicted to be restricted for nodulation of the PI genotypes. In addition, hybridization patterns obtained with pMJS12 and nodulation phenotypes on PI 371607 indicated that there are at least three types of serogroup 127 strains. Our results suggest that the pMJS12 gene probe may be useful in selecting compatible host-strain combinations and in determining the suitability of field sites for the placement of soybean genotypes containing restrictive nodulation alleles. Images PMID:16348217

  8. Fabrication of Uniform DNA-Conjugated Hydrogel Microparticles via Replica Molding for Facile Nucleic Acid Hybridization Assays

    PubMed Central

    Lewis, Christina L.; Choi, Chang-Hyung; Lin, Yan; Lee, Chang-Soo; Yi, Hyunmin

    2010-01-01

    We identify and investigate several critical parameters in the fabrication of single-stranded DNA conjugated poly(ethylene glycol) (PEG) microparticles based on replica molding (RM) for highly uniform and robust nucleic acid hybridization assays. The effects of PEG-diacrylate, probe DNA, and photoinitiator concentrations on the overall fluorescence and target DNA penetration depth upon hybridization are examined. Fluorescence and confocal microscopy results illustrate high conjugation capacity of probe and target DNA, femtomole sensitivity, and sequence specificity. Combined these findings demonstrate a significant step toward simple, robust, and scalable procedures to manufacture highly uniform and high capacity hybridization assay particles in a well-controlled manner by exploiting many advantages that the batch processing-based RM technique offers. We envision that the results presented here may be readily applied to rapid and high throughput hybridization assays for a wide variety of applications in bioprocess monitoring, food safety, and biological threat detection. PMID:20527819

  9. Fabrication of uniform DNA-conjugated hydrogel microparticles via replica molding for facile nucleic acid hybridization assays.

    PubMed

    Lewis, Christina L; Choi, Chang-Hyung; Lin, Yan; Lee, Chang-Soo; Yi, Hyunmin

    2010-07-01

    We identify and investigate several critical parameters in the fabrication of single-stranded DNA conjugated poly(ethylene glycol) (PEG) microparticles based on replica molding (RM) for highly uniform and robust nucleic acid hybridization assays. The effects of PEG-diacrylate, probe DNA, and photoinitiator concentrations on the overall fluorescence and target DNA penetration depth upon hybridization are examined. Fluorescence and confocal microscopy results illustrate high conjugation capacity of the probe and target DNA, femtomole sensitivity, and sequence specificity. Combined, these findings demonstrate a significant step toward simple, robust, and scalable procedures to manufacture highly uniform and high-capacity hybridization assay particles in a well-controlled manner by exploiting many advantages that the batch processing-based RM technique offers. We envision that the results presented here may be readily applied to rapid and high-throughput hybridization assays for a wide variety of applications in bioprocess monitoring, food safety, and biological threat detection.

  10. Biotin-labeled synthetic oligodeoxyribonucleotides: chemical synthesis and uses as hybridization probes.

    PubMed Central

    Chollet, A; Kawashima, E H

    1985-01-01

    Oligodeoxynucleotides have been selectively labeled with biotin at their 5'-termini through an aminoalkylphosphoramide linker arm by an efficient chemical method. The reactions were performed in aqueous solution on unprotected oligonucleotides and were insensitive of the sequence and length of the oligonucleotide. 5'-biotin-labeled oligonucleotides were hybridized to dot, Southern and genomic blots of target plasmid DNA immobilized on nitrocellulose filters. Detection level is about 2 fmole. There is no noticeable disturbance of the strength and selectivity of hybridization of the 5'-biotin-labeled probes in comparison with non-modified DNA. Images PMID:4000941

  11. Probing strongly hybridized nuclear-electronic states in a model quantum ferromagnet

    NASA Astrophysics Data System (ADS)

    Kovacevic, I.; Babkevich, P.; Jeong, M.; Piatek, J. O.; Boero, G.; Rønnow, H. M.

    2016-12-01

    We present direct local-probe evidence for strongly hybridized nuclear-electronic spin states of an Ising ferromagnet LiHoF4 in a transverse magnetic field. The nuclear-electronic states are addressed via a magnetic resonance in the GHz frequency range using coplanar resonators and a vector network analyzer. The magnetic resonance spectrum is successfully traced over the entire field-temperature phase diagram, which is remarkably well reproduced by mean-field calculations. Our method can be directly applied to a broad class of materials containing rare-earth ions for probing the substantially mixed nature of the nuclear and electronic moments.

  12. Immobilization-free electrochemical DNA detection with anthraquinone-labeled pyrrolidinyl peptide nucleic acid probe.

    PubMed

    Kongpeth, Jutatip; Jampasa, Sakda; Chaumpluk, Piyasak; Chailapakul, Orawon; Vilaivan, Tirayut

    2016-01-01

    Electrochemical detection provides a simple, rapid, sensitive and inexpensive method for DNA detection. In traditional electrochemical DNA biosensors, the probe is immobilized onto the electrode. Hybridization with the DNA target causes a change in electrochemical signal, either from the intrinsic signal of the probe/target or through a label or a redox indicator. The major drawback of this approach is the requirement for probe immobilization in a controlled fashion. In this research, we take the advantage of different electrostatic properties between PNA and DNA to develop an immobilization-free approach for highly sequence-specific electrochemical DNA sensing on a screen-printed carbon electrode (SPCE) using a square-wave voltammetric (SWV) technique. Anthraquinone-labeled pyrrolidinyl peptide nucleic acid (AQ-PNA) was employed as a probe together with an SPCE that was modified with a positively-charged polymer (poly quaternized-(dimethylamino-ethyl)methacrylate, PQDMAEMA). The electrostatic attraction between the negatively-charged PNA-DNA duplex and the positively-charged modified SPCE attributes to the higher signal of PNA-DNA duplex than that of the electrostatically neutral PNA probe, resulting in a signal change. The calibration curve of this proposed method exhibited a linear range between 0.35 and 50 nM of DNA target with a limit of detection of 0.13 nM (3SD(blank)/Slope). The sub-nanomolar detection limit together with a small sample volume required (20 μL) allowed detection of <10 fmol (<1 ng) of DNA. With the high specificity of the pyrrolidinyl PNA probe used, excellent discrimination between complementary and various single-mismatched DNA targets was obtained. An application of this new platform for a sensitive and specific detection of isothermally-amplified shrimp's white spot syndrome virus (WSSV) DNA was successfully demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    SciTech Connect

    Nan, Alexandrina Bunge, Alexander; Turcu, Rodica

    2015-12-23

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  14. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    NASA Astrophysics Data System (ADS)

    Nan, Alexandrina; Bunge, Alexander; Turcu, Rodica

    2015-12-01

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  15. Design, Preparation, and Characterization of PNA-Based Hybridization Probes for Affibody-Molecule-Mediated Pretargeting.

    PubMed

    Westerlund, Kristina; Honarvar, Hadis; Tolmachev, Vladimir; Eriksson Karlström, Amelie

    2015-08-19

    In radioimmunotherapy, the contrast between tumor and normal tissue can be improved by using a pretargeting strategy with a primary targeting agent, which is conjugated to a recognition tag, and a secondary radiolabeled molecule binding specifically to the recognition tag. The secondary molecule is injected after the targeting agent has accumulated in the tumor and is designed to have a favorable biodistribution profile, with fast clearance from blood and low uptake in normal tissues. In this study, we have designed and evaluated two complementary peptide nucleic acid (PNA)-based probes for specific and high-affinity association in vivo. An anti-HER2 Affibody-PNA chimera, Z(HER2:342)-SR-HP1, was produced by a semisynthetic approach using sortase A catalyzed ligation of a recombinantly produced Affibody molecule to a PNA-based HP1-probe assembled using solid-phase chemistry. A complementary HP2 probe carrying a DOTA chelator and a tyrosine for dual radiolabeling was prepared by solid-phase synthesis. Circular dichroism (CD) spectroscopy and UV thermal melts showed that the probes can hybridize to form a structured duplex with a very high melting temperature (T(m)), both in HP1:HP2 and in Z(HER2:342)-SR-HP1:HP2 (T(m) = 86-88 °C), and the high binding affinity between Z(HER2:342)-SR-HP1 and HP2 was confirmed in a surface plasmon resonance (SPR)-based binding study. Following a moderately fast association (1.7 × 10(5) M(-1) s(-1)), the dissociation of the probes was extremely slow and <5% dissociation was observed after 17 h. The equilibrium dissociation constant (K(D)) for Z(HER2:342)-SR-HP1:HP2 binding to HER2 was estimated by SPR to be 212 pM, suggesting that the conjugation to PNA does not impair Affibody binding to HER2. The biodistribution profiles of (111)In- and (125)I-labeled HP2 were measured in NMRI mice, showing very fast blood clearance rates and low accumulation of radioactivity in kidneys and other organs. The measured radioactivity in blood was 0.63

  16. Molecular hybridization with DNA-probes as a laboratory diagnostic test for influenza viruses.

    PubMed

    Pljusnin, A Z; Rozhkova, S A; Nolandt, O V; Bryantseva, E A; Kuznetsov, O K; Noskov, F S

    1987-01-01

    The possibilities of using DNA-copies of different influenza A virus genes cloned with recombinant bacterial plasmids for the detection of virus-specific RNA by molecular dot-hybridization were analyzed. High specificity of RNA identification has been demonstrated and it has been shown expedient to use DNA-probes with high-conservative virus genes (polymerase, nucleoprotein, or matrix) for the detection of influenza A virus subtypes (H1N1, H2N2, H3N2) and probes with corresponding hemagglutinin genes for the differentiation of the subtypes H3N2 and H1N1. The results of nasopharyngeal specimens testing proved the effectiveness of molecular dot-hybridization in epidemiological studies of influenza outbreaks, especially of mixed etiology.

  17. Identification of cDNAs by direct hybridization using cosmid probes

    SciTech Connect

    Lennon, G.G.; Lieuallen, K.

    1993-12-01

    The goal of this effort is to quickly obtain as many chromosome-specific cDNAs with as much map and sequence detail as possible. Many techniques have been proposed to isolate and identify genes within defined genomic regions; the technique discussed here is direct hybridization of a relatively complex genomic probe, an entire cosmid clone, to cDNA libraries. This method continues to be a straightforward technique with a fair number of successes.

  18. Probe hybridization array typing: a binary typing method for Escherichia coli.

    PubMed

    Srinivasan, U; Zhang, L; France, A M; Ghosh, D; Shalaby, W; Xie, J; Marrs, C F; Foxman, B

    2007-01-01

    The ability to distinguish between Escherichia coli strains is critical for outbreak investigations. Binary typing, based on the presence or absence of genetic material, provides a high-throughput alternative to gel- and PCR-based typing techniques that generate complex banding patterns and lack uniform interpretation criteria. We developed, validated, and determined the discriminatory power of an E. coli binary typing method, probe hybridization array typing (PHAT). In PHAT, the absence or presence of genetic material is identified by using DNA hybridization to produce a reproducible and portable fingerprint for each genome. PHAT probes were generated from genome subtractive hybridization experiments. We PHAT typed the ECOR collection of strains from a variety of geographical locations, and 33 rectal E. coli strains selected from college-aged women with urinary tract infection. In the set of 33 human rectal strains, the discriminatory power of PHAT (98%) equaled that of multilocus sequence typing (MLST) and pulsed-field gel electrophoresis. However, for ECOR strains, which include nonhuman strains, the current set of PHAT probes was less discriminating than MLST, ribotyping, and enterobacterial repetitive intergenic consensus sequence PCR (80% versus 97, 92, and 97%, respectively). When we limited the analysis to ECOR strains of B2 and D lineage, which are associated with human infection, current PHAT probes were highly discriminatory (94%). PHAT can be applied in a high-throughput format (i.e., "library on a slide"), the discriminatory ability can be varied based on the probe set, and PHAT is readily adapted to other bacterial species with high variation in genetic content.

  19. Cloned polynucleotide and synthetic oligonucleotide probes used in colony hybridization are equally efficient in the identification of enterotoxigenic Escherichia coli

    SciTech Connect

    Sommerfelt, H.; Kalland, K.H.; Raj, P.; Moseley, S.L.; Bhan, M.K.; Bjorvatn, B.

    1988-11-01

    Restriction endonuclease-generated polynucleotide and synthetically produced oligonucleotide gene probes used in colony hybridization assays proved to be efficient for the detection and differentiation of enterotoxigenic Escherichia coli. To compare their relative efficiencies, these two sets of probes were radiolabeled with /sup 32/P and were applied to 74 strains of E. coli with known enterotoxin profiles and to 156 previously unexamined E. coli isolates. The enterotoxigenic bacteria Vibrio cholerae O1, Vibrio cholerae non-O1 (NAG), Yersinia enterocolitica, and E. coli harboring the plasmid vectors of the polynucleotide gene probes were examined for further evaluation of probe specificity. The two classes of probes showed a perfect concordance in their specific detection and differentiation of enterotoxigenic E. coli. In the analysis of six strains, the signal strength on autoradiography after hybridization with oligonucleotides was weaker than that obtained after hybridization with polynucleotide probes. The probes did not hybridize with DNA from V. cholerae O1, V. cholerae non-O1 (NAG), or Y. enterocolitica. The strains of E. coli harboring the plasmid vectors of the polynucleotide gene probes were, likewise, negative in the hybridization assays.

  20. Design and Application of Hybrid Magnetic Field-Eddy Current Probe

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Wallace, Terryl; Newman, Andy; Leser, Paul; Simpson, John

    2013-01-01

    The incorporation of magnetic field sensors into eddy current probes can result in novel probe designs with unique performance characteristics. One such example is a recently developed electromagnetic probe consisting of a two-channel magnetoresistive sensor with an embedded single-strand eddy current inducer. Magnetic flux leakage maps of ferrous materials are generated from the DC sensor response while high-resolution eddy current imaging is simultaneously performed at frequencies up to 5 megahertz. In this work the design and optimization of this probe will be presented, along with an application toward analysis of sensory materials with embedded ferromagnetic shape-memory alloy (FSMA) particles. The sensory material is designed to produce a paramagnetic to ferromagnetic transition in the FSMA particles under strain. Mapping of the stray magnetic field and eddy current response of the sample with the hybrid probe can thereby image locations in the structure which have experienced an overstrain condition. Numerical modeling of the probe response is performed with good agreement with experimental results.

  1. Uprobe 2008: an online resource for universal overgo hybridization-based probe retrieval and design†

    PubMed Central

    Sullivan, Robert T.; Morehouse, Caroline B.; Thomas, James W.

    2008-01-01

    Cross-species sequence comparisons are a prominent method for analyzing genomic DNA and an ever increasing number of species are being selected for whole-genome sequencing. Targeted comparative genomic sequencing is a complementary approach to whole-genome shotgun sequencing and can produce high-quality sequence assemblies of orthologous chromosomal regions of interest from multiple species. Genomic libraries necessary to support targeted mapping and sequencing projects are available for more than 90 vertebrates. An essential step for utilizing these and other genomic libraries for targeted mapping and sequencing is the development of the hybridization-based probes, which are necessary to screen a genomic library of interest. The Uprobe website (http://uprobe.genetics.emory.edu) provides a public online resource for identifying or designing ‘universal’ overgo-hybridization probes from conserved sequences that can be used to efficiently screen one or more genomic libraries from a designated group of species. Currently, Uprobe provides the ability to search or design probes for use in broad groups of species, including mammals and reptiles, as well as more specific clades, including marsupials, carnivores, rodents and nonhuman primates. In addition, Uprobe has the capability to design custom probes from multiple-species sequence alignments provided by the user, thus providing a general tool for targeted comparative physical mapping. PMID:18515352

  2. Detection of human papillomavirus type 6/11 DNA in conjunctival papillomas by in situ hybridization with radioactive probes

    SciTech Connect

    McDonnell, P.J.; McDonnell, J.M.; Kessis, T.; Green, W.R.; Shah, K.V.

    1987-11-01

    Twenty-three conjunctival papillomas and 28 conjunctival dysplasias were examined for human papillomavirus (HPV)-DNA sequences by in situ hybridization with nick-translated /sup 35/S-labeled HPV probes. Adjacent paraffin sections were hybridized with HPV type 2, 6, 16, and 18 probes at Tm - 17 degrees C. Fifteen tissues, all papillomas, displayed positive hybridization with the HPV-6 probe. Infection with HPV-6 (or the closely related HPV-11) appeared to be responsible for most of the conjunctival papillomas of children and young adults. The presence of genital tract HPV-6 in these lesions suggests that some of the infections were acquired during passage through an infected birth canal. The lack of hybridization in adult conjunctival dysplasias indicates either that HPVs are not associated with this condition or that the probes and the technique utilized were not adequate for demonstration of this association.

  3. Association of a cucumber mosaic virus strain with mosaic disease of banana, Musa paradisiaca--an evidence using immuno/nucleic acid probe.

    PubMed

    Srivastava, A; Raj, S K; Haq, Q M; Srivastava, K M; Singh, B P; Sane, P V

    1995-12-01

    Virus causing severe chlorosis/mosaic disease of banana was identified as a strain of cucumber mosaic virus (CMV). Association of CMV with the disease was established by Western immunoblot using polyclonal antibodies to CMV-T and slot blot hybridization with nucleic acid probe of CMV-P genome.

  4. ESTIMATION OF BACTERIAL CELL NUMBERS IN HUMIC ACID-RICH SALT MARSH SEDIMENTS WITH PROBES DIRECTED TO 16S RIBOSOMAL DNA

    EPA Science Inventory

    The feasibility of using probes directed towards ribosomal DNAs (rDNAs) as a quantitative approach to estimating cell numbers was examined and applied to study the structure of a bacterial community in humic acid-rich salt marsh sediments. Hybridizations were performed with membr...

  5. ESTIMATION OF BACTERIAL CELL NUMBERS IN HUMIC ACID-RICH SALT MARSH SEDIMENTS WITH PROBES DIRECTED TO 16S RIBOSOMAL DNA

    EPA Science Inventory

    The feasibility of using probes directed towards ribosomal DNAs (rDNAs) as a quantitative approach to estimating cell numbers was examined and applied to study the structure of a bacterial community in humic acid-rich salt marsh sediments. Hybridizations were performed with membr...

  6. Human leukocyte antigen haplotype phasing by allele-specific enrichment with peptide nucleic acid probes

    PubMed Central

    Murphy, Nicholas M; Pouton, Colin W; Irving, Helen R

    2014-01-01

    Targeted capture of large fragments of genomic DNA that enrich for human leukocyte antigen (HLA) system haplotypes has utility in haematopoietic stem cell transplantation. Current methods of HLA matching are based on inference or familial studies of inheritance; and each approach has its own inherent limitations. We have designed and tested a probe–target-extraction method for capturing specific HLA haplotypes by hybridization of peptide nucleic acid (PNA) probes to alleles of the HLA-DRB1 gene. Short target fragments contained in plasmids were initially used to optimize the method followed by testing samples of genomic DNA from human subjects with preselected HLA haplotypes and obtained approximately 10% enrichment for the specific haplotype. When performed with high-molecular-weight genomic DNA, 99.0% versus 84.0% alignment match was obtained for the specific haplotype probed. The allele-specific target enrichment that we obtained can facilitate the elucidation of haplotypes between the 65 kb separating the HLA-DRB1 and the HLA-DQA1 genes, potentially spanning a total distance of at least 130 kb. Allele-specific target enrichment with PNA probes is a straightforward technique that has the capability to improve the resolution of DNA and whole genome sequencing technologies by allowing haplotyping of enriched DNA and crucially, retaining the DNA methylation profile. PMID:24936514

  7. Computer selection of oligonucleotide probes from amino acid sequences for use in gene library screening.

    PubMed

    Yang, J H; Ye, J H; Wallace, D C

    1984-01-11

    We present a computer program, FINPROBE, which utilizes known amino acid sequence data to deduce minimum redundancy oligonucleotide probes for use in screening cDNA or genomic libraries or in primer extension. The user enters the amino acid sequence of interest, the desired probe length, the number of probes sought, and the constraints on oligonucleotide synthesis. The computer generates a table of possible probes listed in increasing order of redundancy and provides the location of each probe in the protein and mRNA coding sequence. Activation of a next function provides the amino acid and mRNA sequences of each probe of interest as well as the complementary sequence and the minimum dissociation temperature of the probe. A final routine prints out the amino acid sequence of the protein in parallel with the mRNA sequence listing all possible codons for each amino acid.

  8. High accuracy plasma density measurement using hybrid Langmuir probe and microwave interferometer method.

    PubMed

    Deline, C; Gilchrist, B E; Dobson, C; Jones, J E; Chavers, D G

    2007-11-01

    High spatial resolution plasma density measurements have been taken as part of an investigation into magnetic nozzle physics at the NASA/MSFC Propulsion Research Center. These measurements utilized a Langmuir triple probe scanned across the measurement chord of either of two stationary rf interferometers. By normalizing the scanned profile to the microwave interferometer line-integrated density measurement for each electrostatic probe measurement, the effect of shot-to-shot variation of the line-integrated density can be removed. In addition, by summing the voltage readings at each radial position in a transverse scan, the line density can be reconstituted, allowing the absolute density to be determined, assuming that the shape of the profile is constant from shot to shot. The spatial and temporal resolutions of this measurement technique depend on the resolutions of the scanned electrostatic probe and the interferometer. The measurement accuracy is 9%-15%, which is on the order of the accuracy of the rf interferometer. The measurement technique was compared directly with both scanning rf interferometer and standard Langmuir probe theory. The hybrid technique compares favorably with the scanning rf interferometer, and appears more accurate than probe theory alone. Additionally, our measurement technique is generally applicable even for nonaxisymmetric plasmas.

  9. Tracing hybrid incompatibilities to single amino acid substitutions.

    PubMed

    Harrison, J Scott; Burton, Ronald S

    2006-03-01

    Deleterious interactions among genes cause reductions in fitness of interpopulation hybrids (hybrid breakdown). Identifying genes involved in hybrid breakdown has proven difficult, and few studies have addressed the molecular basis of this widespread phenomenon. Because proper function of the mitochondrial electron transport system (ETS) requires a coadapted set of nuclear and mitochondrial gene products, ETS genes present an attractive system for studying the evolution of coadapted gene complexes within isolated populations and the loss of fitness in interpopulation hybrids. Here we show the effects of single amino acid substitutions in cytochrome c (CYC) on its functional interaction with another ETS protein, cytochrome c oxidase (COX) in the intertidal copepod Tigriopus californicus. The individual and pairwise consequences of three naturally occurring amino acid substitutions in CYC are examined by site-directed mutagenesis and found to differentially effect the rates of CYC oxidation by COX variants from different source populations. In one case, we show that interpopulation hybrid breakdown in COX activity can be attributed to a single naturally occurring amino acid substitution in CYC.

  10. A ribosomal DNA fragment of Listeria monocytogenes and its use as a genus-specific probe in an aqueous-phase hybridization assay.

    PubMed Central

    Emond, E; Fliss, I; Pandian, S

    1993-01-01

    cDNAs were prepared from the total RNA of Listeria monocytogenes ATCC 19118 and used as probes to screen a genomic library of the same strain. Four clones were identified which contained ribosomal DNA fragments. Recombinant DNA from one of them was fractionated and differentially hybridized with the cDNA probes to RNA of L. monocytogenes and Kurthia zopfii. The resulting hybridization pattern revealed an HpaII fragment of 0.8 kb that was specific for the L. monocytogenes strain. The nucleotide sequence of this fragment showed 159 bases of the 3' end of the 16S rRNA gene, 243 bases of the spacer region, and 382 bases of the 5' end of the 23S rRNA gene. In dot blot hybridization assays, the 32P-labeled 784-bp fragment was specific only for Listeria species. Dot blot assays revealed that the 32P-labeled fragment can easily detect > or = 10 pg of total nucleic acids from pure cultures of L. monocytogenes, which corresponds to approximately 300 bacteria. This fragment was also used as a probe in an assay named the heteroduplex nucleic acid (HNA) enzyme-linked immunosorbent assay. In this system, the biotinylated DNA probe is hybridized in the aqueous phase with target RNA molecules and then specific HNAs are captured by HNA-specific antibodies. Captured HNA molecules are revealed with an enzyme conjugate of streptavidin. In a preliminary HNA enzyme-linked immunosorbent assay, the 784-bp fragment maintained its specificity for Listeria spp. and could detect 5 x 10(2) cells in artificially contaminated meat homogenate. Images PMID:8368854

  11. [Fluorescence in situ hybridization with DNA probes derived from individual chromosomes and chromosome regions].

    PubMed

    Bogomolov, A G; Karamysheva, T V; Rubtsov, N B

    2014-01-01

    A significant part of the eukaryotic genomes consists of repetitive DNA, which can form large clusters or distributed along euchromatic chromosome regions. Repeats located in chromosomal regions make a problem in analysis and identification of the chromosomal material with fluorescence in situ hybridization (FISH). In most cases, the identification of chromosome regions using FISH requires detection of the signal produced with unique sequences. The feasibility, advantages and disadvantages of traditional methods of suppression of repetitive DNA hybridization, methods of repeats-free probe construction and methods of chromosome-specific DNA sequences visualization using image processing of multicolor FISH results are considered in the paper. The efficiency of different techniques for DNA probe generation, different FISH protocols, and image processing of obtained microscopic images depends on the genomic size and structure of analyzing species. This problem was discussed and different approaches were considered for the analysis of the species with very large genome, rare species and species which specimens are too small in size to obtain the amount of genomic and Cot-1 DNA required for suppression of repetitive DNA hybridization.

  12. Single and multiple molecular beacon probes for DNA hybridization studies on a silica glass surface

    NASA Astrophysics Data System (ADS)

    Fang, Xiaohong; Liu, Xiaojing; Tan, Weihong

    1999-05-01

    Surface immobilizable molecular beacons have been developed for DNA hybridization studies on a silica glass plate. Molecular beacons are a new class of oligonucleotide probes that have a loop-and-stem structure with a fluorophore and a quencher attached to the two ends of the stem. They only emit intense fluorescence when hybridize to their target molecules. This provides an excellent selectivity for the detection of DNA molecules. We have designed biotinylated molecular beacons which can be immobilized onto a solid surface. The molecular beacon is synthesized using DABCYL as the quencher and an optical stable dye, tetramethylrhodamine, as the fluorophore. Mass spectrometry is used to confirm the synthesized molecular beacon. The molecular beacons have been immobilized onto a silica surface through biotin-avidin binding. The surface immobilized molecular beacons have been used for the detection of target DNA with subnanomolar analytical sensitivity. have also immobilized two different molecular beacons on a silica surface in spatially resolved microscopic regions. The hybridization study of these two different molecular beacon probes has shown excellent selectivity for their target sequences. The newly designed molecular beacons are intended for DNA molecular interaction studies at an interface and for the development of ultrasensitive DNA sensors for a variety of applications including disease diagnosis, disease mechanism studies, new drug development, and in the investigation of molecular interactions between DNA molecules and other interesting biomolecules.

  13. Hybrid probing technique for coordinate measurement with optically trapped micro sphere

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuki; Michihata, Masaki; Mizutani, Yasuhiro; Takaya, Yasuhiro

    2016-11-01

    Engineered surfaces have been fabricated to provide enhanced properties such as low friction, anti-adhesive behavior, or low reflection of light. At micro-scales, surface force highly affects the functionality of mechanical parts. In order to reduce surface force such as friction, micro mechanical parts that have engineered surfaces are demanded. In order to investigate the functionality of the textured micro parts, it is necessary to evaluate both the three-dimensional shape and the surface topography along with its geometry. Then we propose novel hybrid probing technique using an optically trapped micro sphere. Tightly focused laser beam makes it possible for a dielectric micro sphere to sustain near the focal point in the air. The dynamic behavior of the micro sphere changes as the result of the interaction of the surface. Therefore, the surface is detected by monitoring the micro sphere. This enables the three-dimensional shape measurement of the substrate. On the other hand, Surface topography is imaged with the lensing effect of the trapped micro sphere. Therefore, this trapped sphere is used as both a probe for coordinate metrology and a micro-lens in optical microscopy in this study. This present investigation deals with the development and fundamental validation of the hybrid probing system with the optically trapped micro sphere. The measurement result with high performance was demonstrated using the tilted diffraction grating.

  14. Principles of nucleic acid hybridization and comparison with monoclonal antibody technology for the diagnosis of infectious diseases.

    PubMed Central

    Edberg, S. C.

    1985-01-01

    Until the 1980s the diagnosis of specific etiologic agents of infectious diseases rested with their isolation in vitro and identification by analysis of their phenotypic characteristics. In the 1970s the concept of a microbial species evolved from phenotypic analysis to nucleic acid homology. Currently, nucleic acid sequences specific for a given species are being isolated and amplified and utilized not only to identify the pathogen after it has been grown in vitro but also elucidate it directly in biological material. The procedures for making nucleic acid hybridization probes are analogous to the generation of monoclonal antibody tests. Currently, research and development are centered in choosing the particular nucleic acid to analyze, establishing the most efficient vector system for amplifying the nucleic acid, generating an efficient means of selecting the particular nucleic acid fragment specific for the microorganism, and in measuring the hybridization reaction. While immunological techniques have been utilized in the clinical laboratory for over thirty years, the means of detecting nucleic acid hybridization reactions are just beginning to be usable in the clinical diagnostic laboratory. Much of nucleic acid hybridization research is proprietary, and a particular challenge is to develop a means whereby information can be used for the progress of science as a whole when generated by private ownership. Images FIG. 4 PMID:3004048

  15. Caged molecular beacons: controlling nucleic acid hybridization with light.

    PubMed

    Wang, Chunming; Zhu, Zhi; Song, Yanling; Lin, Hui; Yang, Chaoyong James; Tan, Weihong

    2011-05-28

    We have constructed a novel class of light-activatable caged molecular beacons (cMBs) that are caged by locking two stems with a photo-labile biomolecular interaction or covalent bond. With the cMBs, the nucleic acid hybridization process can be easily controlled with light, which offers the possibility for a high spatiotemporal resolution study of intracellular mRNAs.

  16. Method for producing labeled single-stranded nucleic acid probes

    DOEpatents

    Dunn, John J.; Quesada, Mark A.; Randesi, Matthew

    1999-10-19

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.

  17. Detection of Chromosomal Inversions Using Non-Repetitive Nucleic Acid Probes

    NASA Technical Reports Server (NTRS)

    Bailey, Susan M. (Inventor); Ray, F. Andrew (Inventor); Goodwin, Edwin H. (Inventor); Bedford, Joel S. (Inventor); Cornforth, Michael N. (Inventor)

    2014-01-01

    A method and a kit for the identification of chromosomal inversions are described. Single-stranded sister chromatids are generated, for example by CO-FISH. A plurality of non-repetitive, labeled probes of relatively small size are hybridized to portions of only one of a pair of single-stranded sister chromatids. If no inversion exists, all of the probes will hybridize to a first chromatid. If an inversion has occurred, these marker probes will be detected on the sister chromatid at the same location as the inversion on the first chromatid.

  18. Detection of chromosomal inversions using non-repetitive nucleic acid probes

    NASA Technical Reports Server (NTRS)

    Bailey, Susan M. (Inventor); Ray, F. Andrew (Inventor); Goodwin, Edwin H. (Inventor); Bedford, Joel S. (Inventor); Cornforth, Michael N. (Inventor)

    2012-01-01

    A method for the identification of chromosomal inversions is described. Single-stranded sister chromatids are generated, for example by CO-FISH. A plurality of non-repetitive, labeled probes of relatively small size are hybridized to portions of only one of a pair of single-stranded sister chromatids. If no inversion exists, all of the probes will hybridize to a first chromatid. If an inversion has occurred, these marker probes will be detected on the sister chromatid at the same location as the inversion on the first chromatid.

  19. Detection of Huanglongbing (citrus greening) disease by nucleic acid spot hybridization.

    PubMed

    Gopal, Kuraba; Sudarsan, Sundeep; Gopi, Venati; Naidu, Latchireddy Naram; Ramaiah, Maniyaram; Sreenivasulu, Yasodam; Wesley, Edward

    2009-01-01

    Polymerase chain reaction (PCR) amplification with primers specific to the rDNA region successfully amplified the 1160-bp DNA fragment from a Huanglongbing (HLB)-infected sweet orange sample with mottling symptoms leaves, but not from healthy sweet orange plants. The PCR product of 1160-bp was used as probe labeled with biotin for detection of the HLB pathogen in the nucleic acid spot hybridization (NASH) test. It was found that the HLB pathogen could be detected up to 1:100 dilution in HLB-infected tissue. Total DNA extracted from HLB-infected tissue was diluted 2-fold as 900 ng in TE buffer and spotted on a nitrocellulose membrane. Strong signals were observed up to 225 ng of DNA dilution, whereas a moderate signal was recorded at 112 ng. No hybridization signal was observed in the healthy samples, while strong signals were observed in the positive control.

  20. Label-free DNA hybridization detection by various spectroscopy methods using triphenylmethane dyes as a probe

    NASA Astrophysics Data System (ADS)

    Tu, Jiaojiao; Cai, Changqun; Ma, Ying; Luo, Lin; Weng, Chao; Chen, Xiaoming

    2012-12-01

    A new assay is developed for direct detection of DNA hybridization using triphenylmethane dye as a probe. It is based on various spectroscopic methods including resonance light scattering (RLS), circular dichroism (CD), ultraviolet spectra and fluorescence spectra, as well as atomic force microscopy (AFM), six triphenylmethane dyes interact with double strand DNA (dsDNA) and single strand DNA (ssDNA) were investigated, respectively. The interaction results in amplified resonance light scattering signals and enables the detection of hybridization without the need for labeling DNA. Mechanism investigations have shown that groove binding occurs between dsDNA and these triphenylmethane dyes, which depends on G-C sequences of dsDNA and the molecular volumes of triphenylmethane dyes. Our present approaches display the advantages of simple and fast, accurate and reliable, and the artificial samples were determined with satisfactory results.

  1. Carrier-phonon interactions in hybrid halide perovskites probed with ultrafast anisotropy studies

    NASA Astrophysics Data System (ADS)

    Rivett, Jasmine P. H.; Richter, Johannes M.; Price, Michael B.; Credgington, Dan; Deschler, Felix

    2016-09-01

    Hybrid halide perovskites are at the frontier of optoelectronic research due to their excellent semiconductor properties and solution processability. For this reason, much attention has recently been focused on understanding photoexcited charge-carrier generation and recombination in these materials. Conversely, very few studies have so far been devoted to understanding carrier-carrier and carrier-phonon scattering mechanisms in these materials. This is surprising given that carrier scattering mechanisms fundamentally limit charge-carrier motilities and therefore the performance of photovoltaic devices. We apply linear polarization selective transient absorption measurements to polycrystalline CH3NH3PbBr3 hybrid halide perovskite films as an effective way of studying the scattering processes in these materials. Comparison of the photo induced bleach signals obtained when the linear polarizations of the pump and probe are aligned either parallel or perpendicular to one another, reveal a significant difference in spectral intensity and shape within the first few hundred femtoseconds after photoexcitation.

  2. Monitoring of microbial communities by flow cytometry and rRNA-targeted hybridization probes

    SciTech Connect

    Wallner, G.; Amann, R. |

    1995-12-31

    Flow cytometry in combination with ribosomal RNA (rRNA) based fluorescence in situ hybridization is a new technique for the analysis of microbial communities. Oligonucleotide probes directed against ribosomal RNA allow the identification of species or groups of microorganisms. Combined with flow cytometry, up to several thousand cells per second can be classified. In addition to the identification and specific enumeration of microorganisms, further information on the distribution of cell size, DNA and ribosome content -- and therefore an assessment of activity -- within the entire community of subpopulations can be obtained. This technique is much more accurate, informative, and rapid than classical culture-dependent methods. Data of activated sludge samples hybridized with fluorescein labelled oligonucleotides and counterstained with the DNA-specific dye Hoechst 33342 are presented as examples for its applicability to complex microbial communities.

  3. Guided assembly of metal and hybrid conductive probes using floating potential dielectrophoresis.

    PubMed

    Puigmartí-Luis, Josep; Stadler, Johannes; Schaffhauser, Daniel; del Pino, Angel Pérez; Burg, Brian R; Dittrich, Petra S

    2011-03-01

    We present the site-selective, parallel and reproducible formation of conductive gold and tetrathiafulvalene-gold (TTF-Au) hybrid micro- and nanowires from their respective ion salt and cation-radical solutions. While the formation of micro- and nanowires by means of dielectrophoresis with directly coupled electrodes has been thoroughly investigated in recent studies, we present here the first relevant example of metal and hybrid wire assembly obtained by floating potential dielectrophoresis. In this configuration, the assembly of micro- and nanowires is achieved by capacitively coupling a large electrode (bias electrode) to a conductive substrate (p-doped Si) separated by an insulating oxide layer. In contrast to former studies, this allows parallel production of micro- and nanowires with only one pair of electrodes connected to a sine wave generator. We further demonstrate that these structures are suitable probes for localized surface enhanced Raman spectroscopy (SERS).

  4. Label-free DNA hybridization detection by various spectroscopy methods using triphenylmethane dyes as a probe.

    PubMed

    Tu, Jiaojiao; Cai, Changqun; Ma, Ying; Luo, Lin; Weng, Chao; Chen, Xiaoming

    2012-12-01

    A new assay is developed for direct detection of DNA hybridization using triphenylmethane dye as a probe. It is based on various spectroscopic methods including resonance light scattering (RLS), circular dichroism (CD), ultraviolet spectra and fluorescence spectra, as well as atomic force microscopy (AFM), six triphenylmethane dyes interact with double strand DNA (dsDNA) and single strand DNA (ssDNA) were investigated, respectively. The interaction results in amplified resonance light scattering signals and enables the detection of hybridization without the need for labeling DNA. Mechanism investigations have shown that groove binding occurs between dsDNA and these triphenylmethane dyes, which depends on G-C sequences of dsDNA and the molecular volumes of triphenylmethane dyes. Our present approaches display the advantages of simple and fast, accurate and reliable, and the artificial samples were determined with satisfactory results. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Monitoring of microbial communities by flow cytometry and rRNA-targeted hybridization probes

    NASA Astrophysics Data System (ADS)

    Wallner, Guenter; Amann, Rudolf

    1995-10-01

    Flow cytometry in combination with ribosomal RNA (rRNA) based fluorescence in situ hybridization is a new technique for the analysis of microbial communities. Oligonucleotide probes directed against ribosomal RNA allow the identification of species or groups of micro- organisms. Combined with flow cytometry, up to several thousand cells per second can be classified. In addition to the identification and specific enumeration of micro-organisms, further information on the distribution of cell size, DNA and ribosome content -- and therefore an assessment of activity -- within the entire community or subpopulations can be obtained. This technique is much more accurate, informative, and rapid than classical culture-dependent methods. Data of activated sludge samples hybridized with fluorescein labeled oligonucleotides and counterstained with the DNA-specific dye Hoechst 33342 are presented as examples for its applicability to complex microbial communities.

  6. Localization of miRNAs by In Situ Hybridization in Plants Using Conventional Oligonucleotide Probes.

    PubMed

    Hernández-Castellano, Sara; Nic-Can, Geovanny I; De-la-Peña, Clelia

    2017-01-01

    Among the epigenetic mechanisms studied with a greater interest in the last decade are the microRNAs (miRNAs). These small noncoding RNA sequences that are approximately 17-22 nucleotides in length play an essential role in many biological processes of various organisms, including plants. The analysis of spatiotemporal expression of miRNAs provides a better understanding of the role of these small molecules in plant development, cell differentiation, and other processes; but such analysis is also an important method for the validation of biological functions. In this work, we describe the optimization of an efficient protocol for the spatiotemporal analysis of miRNA by in situ hybridization using different plant tissues embedded in paraffin. Instead of LNA-modified probes that are typically used for this work, we use conventional oligonucleotide probes that yield a high specificity and clean distribution of miRNAs.

  7. A novel design of whole-genome microarray probes for Saccharomyces cerevisiae which minimizes cross-hybridization

    PubMed Central

    Talla, Emmanuel; Tekaia, Fredj; Brino, Laurent; Dujon, Bernard

    2003-01-01

    Background Numerous DNA microarray hybridization experiments have been performed in yeast over the last years using either synthetic oligonucleotides or PCR-amplified coding sequences as probes. The design and quality of the microarray probes are of critical importance for hybridization experiments as well as subsequent analysis of the data. Results We present here a novel design of Saccharomyces cerevisiae microarrays based on a refined annotation of the genome and with the aim of reducing cross-hybridization between related sequences. An effort was made to design probes of similar lengths, preferably located in the 3'-end of reading frames. The sequence of each gene was compared against the entire yeast genome and optimal sub-segments giving no predicted cross-hybridization were selected. A total of 5660 novel probes (more than 97% of the yeast genes) were designed. For the remaining 143 genes, cross-hybridization was unavoidable. Using a set of 18 deletant strains, we have experimentally validated our cross-hybridization procedure. Sensitivity, reproducibility and dynamic range of these new microarrays have been measured. Based on this experience, we have written a novel program to design long oligonucleotides for microarray hybridizations of complete genome sequences. Conclusions A validated procedure to predict cross-hybridization in microarray probe design was defined in this work. Subsequently, a novel Saccharomyces cerevisiae microarray (which minimizes cross-hybridization) was designed and constructed. Arrays are available at Eurogentec S. A. Finally, we propose a novel design program, OliD, which allows automatic oligonucleotide design for microarrays. The OliD program is available from authors. PMID:14499002

  8. Synthesis and Characterization of Hybrid Hyaluronic Acid-Gelatin Hydrogels

    PubMed Central

    Camci-Unal, Gulden; Cuttica, Davide; Annabi, Nasim; Demarchi, Danilo; Khademhosseini, Ali

    2013-01-01

    Biomimetic hybrid hydrogels have generated broad interest in tissue engineering and regenerative medicine. Hyaluronic acid (HA) and gelatin (hydrolyzed collagen) are naturally derived polymers and biodegradable under physiological conditions. Moreover, collagen and HA are major components of the extracellular matrix (ECM) in most of the tissues (e.g. cardiovascular, cartilage, neural). When used as a hybrid material, HA-gelatin hydrogels may enable mimicking the ECM of native tissues. Although HA-gelatin hybrid hydrogels are promising biomimetic substrates, their material properties have not been thoroughly characterized in the literature. Herein, we generated hybrid hydrogels with tunable physical and biological properties by using different concentrations of HA and gelatin. The physical properties of the fabricated hydrogels including swelling ratio, degradation, and mechanical properties were investigated. In addition, in vitro cellular responses in both two and three dimensional (2D and 3D) culture conditions were assessed. It was found that the addition of gelatin methacrylate (GelMA) into HA methacrylate (HAMA) promoted cell spreading in the hybrid hydogels. Moreover, the hybrid hydrogels showed significantly improved mechanical properties compared to their single component analogs. The HAMA-GelMA hydrogels exhibited remarkable tunability behavior and may be useful for cardiovascular tissue engineering applications. PMID:23419055

  9. Probing the Specificity Determinants of Amino Acid Recognition by Arginase

    SciTech Connect

    Shishova, E.; Di Costanzo, L; Emig, F; Ash, D; Christianson, D

    2009-01-01

    Arginase is a binuclear manganese metalloenzyme that serves as a therapeutic target for the treatment of asthma, erectile dysfunction, and atherosclerosis. In order to better understand the molecular basis of inhibitor affinity, we have employed site-directed mutagenesis, enzyme kinetics, and X-ray crystallography to probe the molecular recognition of the amino acid moiety (i.e., the ?-amino and ?-carboxylate groups) of substrate l-arginine and inhibitors in the active site of arginase I. Specifically, we focus on (1) a water-mediated hydrogen bond between the substrate ?-carboxylate and T135, (2) a direct hydrogen bond between the substrate ?-carboxylate and N130, and (3) a direct charged hydrogen bond between the substrate ?-amino group and D183. Amino acid substitutions for T135, N130, and D183 generally compromise substrate affinity as reflected by increased KM values but have less pronounced effects on catalytic function as reflected by minimal variations of kcat. As with substrate KM values, inhibitor Kd values increase for binding to enzyme mutants and suggest that the relative contribution of intermolecular interactions to amino acid affinity in the arginase active site is water-mediated hydrogen bond < direct hydrogen bond < direct charged hydrogen bond. Structural comparisons of arginase with the related binuclear manganese metalloenzymes agmatinase and proclavaminic acid amidinohydrolase suggest that the evolution of substrate recognition in the arginase fold occurs by mutation of residues contained in specificity loops flanking the mouth of the active site (especially loops 4 and 5), thereby allowing diverse guanidinium substrates to be accommodated for catalysis.

  10. Flow cytometric sorting of fecal bacteria after in situ hybridization with polynucleotide probes.

    PubMed

    Bruder, Lena M; Dörkes, Marcel; Fuchs, Bernhard M; Ludwig, Wolfgang; Liebl, Wolfgang

    2016-10-01

    The gut microbiome represents a key contributor to human physiology, metabolism, immune function, and nutrition. Elucidating the composition and genetics of the gut microbiota under various conditions is essential to understand how microbes function individually and as a community. Metagenomic analyses are increasingly used to study intestinal microbiota. However, for certain scientific questions it is sufficient to examine taxon-specific submetagenomes, covering selected bacterial genera in a targeted manner. Here we established a new variant of fluorescence in situ hybridization (FISH) combined with fluorescence-activated cell sorting (FACS), providing access to the genomes of specific taxa belonging to the complex community of the intestinal microbiota. In contrast to standard oligonucleotide probes, the RNA polynucleotide probe used here, which targets domain III of the 23S rRNA gene, extends the resolution power in environmental samples by increasing signal intensity. Furthermore, cells hybridized with the polynucleotide probe are not subjected to harsh pretreatments, and their genetic information remains intact. The protocol described here was tested on genus-specifically labeled cells in various samples, including complex fecal samples from different laboratory mouse types that harbor diverse intestinal microbiota. Specifically, as an example for the protocol described here, RNA polynucleotide probes could be used to label Enterococcus cells for subsequent sorting by flow cytometry. To detect and quantify enterococci in fecal samples prior to enrichment, taxon-specific PCR and qPCR detection systems have been developed. The accessibility of the genomes from taxon-specifically sorted cells for subsequent molecular analyses was demonstrated by amplification of functional genes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Kinetics of Oligonucleotide Hybridization to DNA Probe Arrays on High-Capacity Porous Silica Substrates

    PubMed Central

    Glazer, Marc I.; Fidanza, Jacqueline A.; McGall, Glenn H.; Trulson, Mark O.; Forman, Jonathan E.; Frank, Curtis W.

    2007-01-01

    We have investigated the kinetics of DNA hybridization to oligonucleotide arrays on high-capacity porous silica films that were deposited by two techniques. Films created by spin coating pure colloidal silica suspensions onto a substrate had pores of ∼23 nm, relatively low porosity (35%), and a surface area of 17 times flat glass (for a 0.3-μm film). In the second method, latex particles were codeposited with the silica by spin coating and then pyrolyzed, which resulted in larger pores (36 nm), higher porosity (65%), and higher surface area (26 times flat glass for a 0.3-μm film). As a result of these favorable properties, the templated silica hybridized more quickly and reached a higher adsorbed target density (11 vs. 8 times flat glass at 22°C) than the pure silica. Adsorption of DNA onto the high-capacity films is controlled by traditional adsorption and desorption coefficients, as well as by morphology factors and transient binding interactions between the target and the probes. To describe these effects, we have developed a model based on the analogy to diffusion of a reactant in a porous catalyst. Adsorption values (ka, kd, and K) measured on planar arrays for the same probe/target system provide the parameters for the model and also provide an internally consistent comparison for the stability of the transient complexes. The interpretation of the model takes into account factors not previously considered for hybridization in three-dimensional films, including the potential effects of heterogeneous probe populations, partial probe/target complexes during diffusion, and non-1:1 binding structures. The transient complexes are much less stable than full duplexes (binding constants for full duplexes higher by three orders of magnitude or more), which may be a result of the unique probe density and distribution that is characteristic of the photolithographically patterned arrays. The behavior at 22°C is described well by the predictive equations for

  12. Radical generating coordination complexes as tools for rapid and effective fragmentation and fluorescent labeling of nucleic acids for microchip hybridization.

    SciTech Connect

    Kelly, J. J.; Chernov, B. N.; Mirzabekov, A. D.; Bavykin, S. G.; Biochip Technology Center; Northwestern Univ.; Engelhardt Inst. of Molecular Biology

    2002-01-01

    DNA microchip technology is a rapid, high-throughput method for nucleic acid hybridization reactions. This technology requires random fragmentation and fluorescent labeling of target nucleic acids prior to hybridization. Radical-generating coordination complexes, such as 1,10-phenanthroline-Cu(II) (OP-Cu) and Fe(II)-EDTA (Fe-EDTA), have been commonly used as sequence nonspecific 'chemical nucleases' to introduce single-strand breaks in nucleic acids. Here we describe a new method based on these radical-generating complexes for random fragmentation and labeling of both single- and double-stranded forms of RNA and DNA. Nucleic acids labeled with the OP-Cu and the Fe-EDTA protocols revealed high hybridization specificity in hybridization with DNA microchips containing oligonucleotide probes selected for identification of 16S rRNA sequences of the Bacillus group microorganisms.We also demonstrated cDNA- and cRNA-labeling and fragmentation with this method. Both the OP-Cu and Fe-EDTA fragmentation and labeling procedures are quick and inexpensive compared to other commonly used methods. A column-based version of the described method does not require centrifugation and therefore is promising for the automation of sample preparations in DNA microchip technology as well as in other nucleic acid hybridization studies.

  13. Nucleic acid sandwich hybridization assay with quantum dot-induced fluorescence resonance energy transfer for pathogen detection.

    PubMed

    Chou, Cheng-Chung; Huang, Yi-Han

    2012-12-04

    This paper reports a nucleic acid sandwich hybridization assay with a quantum dot (QD)-induced fluorescence resonance energy transfer (FRET) reporter system. Two label-free hemagglutinin H5 sequences (60-mer DNA and 630-nt cDNA fragment) of avian influenza viruses were used as the targets in this work. Two oligonucleotides (16 mers and 18 mers) that specifically recognize two separate but neighboring regions of the H5 sequences were served as the capturing and reporter probes, respectively. The capturing probe was conjugated to QD655 (donor) in a molar ratio of 10:1 (probe-to-QD), and the reporter probe was labeled with Alexa Fluor 660 dye (acceptor) during synthesis. The sandwich hybridization assay was done in a 20 μL transparent, adhesive frame-confined microchamber on a disposable, temperature-adjustable indium tin oxide (ITO) glass slide. The FRET signal in response to the sandwich hybridization was monitored by a homemade optical sensor comprising a single 400 nm UV light-emitting diode (LED), optical fibers, and a miniature 16-bit spectrophotometer. The target with a concentration ranging from 0.5 nM to 1 μM was successfully correlated with both QD emission decrease at 653 nm and dye emission increase at 690 nm. To sum up, this work is beneficial for developing a portable QD-based nucleic acid sensor for on-site pathogen detection.

  14. Nucleic Acid Sandwich Hybridization Assay with Quantum Dot-Induced Fluorescence Resonance Energy Transfer for Pathogen Detection

    PubMed Central

    Chou, Cheng-Chung; Huang, Yi-Han

    2012-01-01

    This paper reports a nucleic acid sandwich hybridization assay with a quantum dot (QD)-induced fluorescence resonance energy transfer (FRET) reporter system. Two label-free hemagglutinin H5 sequences (60-mer DNA and 630-nt cDNA fragment) of avian influenza viruses were used as the targets in this work. Two oligonucleotides (16 mers and 18 mers) that specifically recognize two separate but neighboring regions of the H5 sequences were served as the capturing and reporter probes, respectively. The capturing probe was conjugated to QD655 (donor) in a molar ratio of 10:1 (probe-to-QD), and the reporter probe was labeled with Alexa Fluor 660 dye (acceptor) during synthesis. The sandwich hybridization assay was done in a 20 μL transparent, adhesive frame-confined microchamber on a disposable, temperature-adjustable indium tin oxide (ITO) glass slide. The FRET signal in response to the sandwich hybridization was monitored by a homemade optical sensor comprising a single 400 nm UV light-emitting diode (LED), optical fibers, and a miniature 16-bit spectrophotometer. The target with a concentration ranging from 0.5 nM to 1 μM was successfully correlated with both QD emission decrease at 653 nm and dye emission increase at 690 nm. To sum up, this work is beneficial for developing a portable QD-based nucleic acid sensor for on-site pathogen detection. PMID:23211753

  15. Visual detection of nucleic acids based on lateral flow biosensor and hybridization chain reaction amplification.

    PubMed

    Ying, Na; Ju, Chuanjing; Li, Zhongyi; Liu, Wensen; Wan, Jiayu

    2017-03-01

    In this study, a new lateral flow nucleic acid biosensor (LFNAB) using hybridization chain reaction (HCR) for signal amplification was developed for visual detection of nucleic acids with high sensitivity and low cost. A "sandwich-type" detection strategy was employed in our design. The sandwich system of capture probe (CP)/target DNA/reporter probe (RP)-HCR complexes was fabricated as the sensing platform. As the initiator strand, reporter probe propagated a chain reaction of hybridization events between the two hairpin probes modified with biotin, and determined whether long nicked DNA polymers were formed. The biotin-labeled double-strand DNA polymers then introduced numerous Streptavidin (SA)-labeled gold nanoparticles (AuNPs) on the lateral flow device. The CP/target DNA/RP-HCR complexes were captured on the test zone by the specific reaction between anti-Fam monoclonal antibody (anti-Fam mAb) on the test zone and Fam of the complexes. The accumulation of AuNPs on the test zone of the biosensor enabled the visual detection of specific sequences. The detection limit of specific DNA was as low as 1.76pM, which was about 2 orders lower than that of the LFNAB without HCR amplification. And the detection limit of Salmonella was 3×10(3)cfumL(-1). In conclusion, this visual detection system, HCR-LFNAB, is suitable for non-specialist personnel and point-of-care (POC) diagnosis in low-resource settings.

  16. Observation and Quantification of Telomere and Repetitive Sequences Using Fluorescence In Situ Hybridization (FISH) with PNA Probes in Caenorhabditis elegans.

    PubMed

    Seo, Beomseok; Lee, Junho

    2016-08-04

    Telomere is a ribonucleoprotein structure that protects chromosomal ends from aberrant fusion and degradation. Telomere length is maintained by telomerase or an alternative pathway, known as alternative lengthening of telomeres (ALT)(1). Recently, C. elegans has emerged as a multicellular model organism for the study of telomere and ALT(2). Visualization of repetitive sequences in the genome is critical in understanding the biology of telomeres. While telomere length can be measured by telomere restriction fragment assay or quantitative PCR, these methods only provide the averaged telomere length. On the contrary, fluorescence in situ hybridization (FISH) can provide the information of the individual telomeres in cells. Here, we provide protocols and representative results of the method to determine telomere length of C. elegans by fluorescent in situ hybridization. This method provides a simple, but powerful, in situ procedure that does not cause noticeable damage to morphology. By using fluorescently labeled peptide nucleic acid (PNA) and digoxigenin-dUTP-labeled probe, we were able to visualize two different repetitive sequences: telomere repeats and template of ALT (TALT) in C. elegans embryos and gonads.

  17. Organic/inorganic hybrid amine and sulfonic acid tethered silica materials: Synthesis, characterization and application

    NASA Astrophysics Data System (ADS)

    Hicks, Jason Christopher

    The major goals of this thesis were to: (1) create a site-isolated aminosilica material with higher amine loadings than previously reported isolation methods, (2) use spectroscopic, reactivity, and catalytic (olefin polymerization precatalysts) probes to determine isolation of amine groups on these organic/inorganic hybrid materials, (3) synthesize an organic/inorganic hybrid material capable of activating Group 4 olefin polymerization precatalysts, and (4) synthesize a high amine loaded organic/inorganic hybrid material capable of reversibly capturing CO2 in a simulated flue gas stream. The underlying motivation of this research involved the synthesis and design of novel amine and sulfonic acid materials. Traditional routes to synthesize aminosilicas have led to the formation of a high loading of multiple types of amine sites on the silica surface. Part of this research involved the creation of a new aminosilica material via a protection/deprotection method designed to prevent multiple sites, while maintaining a relatively high loading. As a characterization technique, fluorescence spectroscopy of pyrene-based fluorophores loaded on traditional aminosilicas and site-isolated aminosilicas was used to probe the degree of site-isolation obtained with these methods. Also, this protection/deprotection method was compared to other reported isolation techniques with heterogeneous Group 4 constrained-geometry inspired catalysts (CGCs). It was determined that the degree of separation of the amine sites could be controlled with protection/deprotection methods. Furthermore, an increase in the reactivity of the amines and the catalytic activity of CGCs built off of the amines was determined for aminosilicas synthesized by a protection/deprotection method. The second part of this work involved developing organic/inorganic hybrid materials as heterogeneous Bronsted acidic cocatalysts for activation of olefin polymerization precatalysts. This was the first reported organic

  18. Flow Cytometric Analysis of Characteristics of Hybridization of Species-Specific Fluorescent Oligonucleotide Probes to rRNA of Marine Nanoflagellates

    PubMed Central

    Rice, J.; Sleigh, M. A.; Burkill, P. H.; Tarran, G. A.; O'Connor, C. D.; Zubkov, M. V.

    1997-01-01

    Identification problems restrict quantitative ecological research on specific nanoflagellates. Identification by specific oligonucleotide probes permits use of flow cytometry for enumeration and measurement of size of nanoflagellates in statistically meaningful samples. Flow cytometry also permits measurement of intensity of probe binding by cells. Five fluorescent probes targeted to different regions of the small subunit rRNA of the common marine flagellate Paraphysomonas vestita all hybridized with cells of this flagellate. Cells fixed with trichloroacetic acid gave detectable signals at a probe concentration of 15 aM and specific fluorescence increased almost linearly to 1.5 fM, but at higher concentrations nonspecific binding increased sharply. Three flagellates, P. vestita, Paraphysomonas imperforata, and Pteridomonas danica, all bound a general eukaryotic probe approximately in proportion to their cell size, but the specific P. vestita probe gave 14 times more fluorescence with P. vestita than with either of the other flagellates. Cell fluorescence increased during the early growth of a batch culture and decreased toward the stationary phase; cell size changed in a comparable manner. Cell fluorescence intensity may allow inferences about growth rate, but whether fluorescence (assumed to reflect ribosome number) merely correlates with cell biomass or changes in a more complex manner remains unresolved. PMID:16535558

  19. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity.

    PubMed

    Guzman, Juan David

    2014-11-25

    Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC) of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.

  20. Tetrahedral DNA probe coupling with hybridization chain reaction for competitive thrombin aptasensor.

    PubMed

    Chen, Ying-Xu; Huang, Ke-Jing; He, Liu-Liu; Wang, Yi-Han

    2017-09-15

    A novel competitive aptasensor for thrombin detection is developed by using a tetrahedral DNA (T-DNA) probe and hybridization chain reaction (HCR) signal amplification. Sulfur and nitrogen co-doped reduced graphene oxide (SN-rGO) is firstly prepared by a simple reflux method and used for supporting substrate of biosensor. Then, T-DNA probe is modified on the electrode by Au-S bond and a competition is happened between target thrombin and the complementary DNA (cDNA) of aptamer. The aptamer binding to thrombin forms an aptamer-target conjugate and make the cDNA remained, and subsequently hybridizes with the vertical domain of T-DNA. Finally, the cDNAs trigger HCR, which results in a great current response by the catalysis of horseradish peroxidase to the hydrogen peroxide + hydroquinone system. For thrombin detection, the proposed biosensor shows a wide linearity range of 10(-13)-10(-8)M and a low detection limit of 11.6fM (S/N = 3), which is hopeful to apply in biotechnology and clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A quick and simple FISH protocol with hybridization-sensitive fluorescent linear oligodeoxynucleotide probes.

    PubMed

    Wang, Dan Ohtan; Matsuno, Hitomi; Ikeda, Shuji; Nakamura, Akiko; Yanagisawa, Hiroyuki; Hayashi, Yasunori; Okamoto, Akimitsu

    2012-01-01

    Fluorescence in situ hybridization (FISH) is a powerful tool used in karyotyping, cytogenotyping, cancer diagnosis, species specification, and gene-expression analysis. Although widely used, conventional FISH protocols are cumbersome and time consuming. We have now developed a FISH method using exciton-controlled hybridization-sensitive fluorescent oligodeoxynucleotide (ECHO) probes. ECHO-FISH uses a 25-min protocol from fixation to mounting that includes no stringency washing steps. We use ECHO-FISH to detect both specific DNA and RNA sequences with multicolor probes. ECHO-FISH is highly reproducible, stringent, and compatible with other fluorescent cellular labeling techniques. The resolution allows detection of intranuclear speckles of poly(A) RNA in HeLa cells and dissociated hippocampal primary cultures, and mRNAs in the distal dendrites of hippocampal neurons. We also demonstrate detection of telomeric and centromeric DNA on metaphase mouse chromosomes. The simplicity of the ECHO-FISH method will likely accelerate cytogenetic and gene-expression analysis with high resolution.

  2. Direct fluorescence in situ hybridization on human metaphase chromosomes using quantum dot-platinum labeled DNA probes

    SciTech Connect

    Hwang, Gyoyeon; Lee, Hansol; Lee, Jiyeon

    2015-11-13

    The telomere shortening in chromosomes implies the senescence, apoptosis, or oncogenic transformation of cells. Since detecting telomeres in aging and diseases like cancer, is important, the direct detection of telomeres has been a very useful biomarker. We propose a telomere detection method using a newly synthesized quantum dot (QD) based probe with oligonucleotide conjugation and direct fluorescence in situ hybridization (FISH). QD-oligonucleotides were prepared with metal coordination bonding based on platinum-guanine binding reported in our previous work. The QD-oligonucleotide conjugation method has an advantage where any sequence containing guanine at the end can be easily bound to the starting QD-Pt conjugate. A synthesized telomeric oligonucleotide was bound to the QD-Pt conjugate successfully and this probe hybridized specifically on the telomere of fabricated MV-4-11 and MOLT-4 chromosomes. Additionally, the QD-telomeric oligonucleotide probe successfully detected the telomeres on the CGH metaphase slide. Due to the excellent photostability and high quantum yield of QDs, the QD-oligonucleotide probe has high fluorescence intensity when compared to the organic dye-oligonucleotide probe. Our QD-oligonucleotide probe, conjugation method of this QD probe, and hybridization protocol with the chromosomes can be a useful tool for chromosome painting and FISH. - Highlights: • We prepared a probe linked between QD and telomeric oligonucleotide with platinum-guanine bonding. • Telomeres were detected by our new telomere probes successfully in three different human metaphase chromosomes. • QDPt-DNA probe has high fluorescence intensity in comparison with organic dye-DNA probe.

  3. Method for replicating an array of nucleic acid probes

    DOEpatents

    Cantor, C.R.; Przetakiewicz, M.; Smith, C.L.; Sano, T.

    1998-08-18

    The invention relates to the replication of probe arrays and methods for replicating arrays of probes which are useful for the large scale manufacture of diagnostic aids used to screen biological samples for specific target sequences. Arrays created using PCR technology may comprise probes with 5{prime}- and/or 3{prime}-overhangs. 16 figs.

  4. Method for replicating an array of nucleic acid probes

    DOEpatents

    Cantor, Charles R.; Przetakiewicz, Marek; Smith, Cassandra L.; Sano, Takeshi

    1998-01-01

    The invention relates to the replication of probe arrays and methods for replicating arrays of probes which are useful for the large scale manufacture of diagnostic aids used to screen biological samples for specific target sequences. Arrays created using PCR technology may comprise probes with 5'- and/or 3'-overhangs.

  5. Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field.

    PubMed

    Kosionis, Spyridon G; Terzis, Andreas F; Sadeghi, Seyed M; Paspalakis, Emmanuel

    2013-01-30

    We study optical effects in a hybrid system composed of a semiconductor quantum dot and a spherical metal nanoparticle that interacts with a weak probe electromagnetic field. We use modified nonlinear density matrix equations for the description of the optical properties of the system and obtain a closed-form expression for the linear susceptibilities of the quantum dot, the metal nanoparticle, and the total system. We then investigate the dependence of the susceptibility on the interparticle distance as well as on the material parameters of the hybrid system. We find that the susceptibility of the quantum dot exhibits optical transparency for specific frequencies. In addition, we show that there is a range of frequencies of the applied field for which the susceptibility of the semiconductor quantum dot leads to gain. This suggests that in such a hybrid system quantum coherence can reverse the course of energy transfer, allowing flow of energy from the metallic nanoparticle to the quantum dot. We also explore the susceptibility of the metal nanoparticle and show that it is strongly influenced by the presence of the quantum dot.

  6. Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field

    NASA Astrophysics Data System (ADS)

    Kosionis, Spyridon G.; Terzis, Andreas F.; Sadeghi, Seyed M.; Paspalakis, Emmanuel

    2013-01-01

    We study optical effects in a hybrid system composed of a semiconductor quantum dot and a spherical metal nanoparticle that interacts with a weak probe electromagnetic field. We use modified nonlinear density matrix equations for the description of the optical properties of the system and obtain a closed-form expression for the linear susceptibilities of the quantum dot, the metal nanoparticle, and the total system. We then investigate the dependence of the susceptibility on the interparticle distance as well as on the material parameters of the hybrid system. We find that the susceptibility of the quantum dot exhibits optical transparency for specific frequencies. In addition, we show that there is a range of frequencies of the applied field for which the susceptibility of the semiconductor quantum dot leads to gain. This suggests that in such a hybrid system quantum coherence can reverse the course of energy transfer, allowing flow of energy from the metallic nanoparticle to the quantum dot. We also explore the susceptibility of the metal nanoparticle and show that it is strongly influenced by the presence of the quantum dot.

  7. Reactive Microcontact Printing of DNA Probes on (DMA-NAS-MAPS) Copolymer-Coated Substrates for Efficient Hybridization Platforms.

    PubMed

    Castagna, Rossella; Bertucci, Alessandro; Prasetyanto, Eko Adi; Monticelli, Marco; Conca, Dario Valter; Massetti, Matteo; Sharma, Parikshit Pratim; Damin, Francesco; Chiari, Marcella; De Cola, Luisa; Bertacco, Riccardo

    2016-04-05

    High-performing hybridization platforms fabricated by reactive microcontact printing of DNA probes are presented. Multishaped PDMS molds are used to covalently bind oligonucleotides over a functional copolymer (DMA-NAS-MAPS) surface. Printed structures with minimum width of about 1.5 μm, spaced by 10 μm, are demonstrated, with edge corrugation lower than 300 nm. The quantification of the immobilized surface probes via fluorescence imaging gives a remarkable concentration of 3.3 × 10(3) oligonucleotides/μm(2), almost totally active when used as probes in DNA-DNA hybridization assays. Indeed, fluorescence and atomic force microscopy show a 95% efficiency in target binding and uniform DNA hybridization over printed areas.

  8. Estimation of Bacterial Cell Numbers in Humic Acid-Rich Salt Marsh Sediments with Probes Directed to 16S Ribosomal DNA

    PubMed Central

    Edgcomb, Virginia P.; McDonald, John H.; Devereux, Richard; Smith, David W.

    1999-01-01

    The feasibility of using probes directed towards ribosomal DNAs (rDNAs) as a quantitative approach to estimating cell numbers was examined and applied to study the structure of a bacterial community in humic acid-rich salt marsh sediments. Hybridizations were performed with membrane-bound nucleic acids by using seven group-specific DNA oligonucleotide probes complementary to 16S rRNA coding regions. These included a general eubacterial probe and probes encompassing most members of the gram-negative, mesophilic sulfate-reducing bacteria (SRB). DNA was extracted from sediment samples, and contaminating materials were removed by a series of steps. Efficiency of DNA extraction was 48% based on the recovery of tritiated plasmid DNA added to samples prior to extraction. Reproducibility of the extraction procedure was demonstrated by hybridizations to replicate samples. Numbers of target cells in samples were estimated by comparing the amount of hybridization to extracted DNA obtained with each probe to that obtained with a standard curve of genomic DNA for reference strains included on the same membrane. In June, numbers of SRB detected with an SRB-specific probe ranged from 6.0 × 107 to 2.5 × 109 (average, 1.1 × 109 ± 5.2 × 108) cells g of sediment−1. In September, numbers of SRB detected ranged from 5.4 × 108 to 7.3 × 109 (average, 2.5 × 109 ± 1.5 × 109) cells g of sediment−1. The capability of using rDNA probes to estimate cell numbers by hybridization to DNA extracted from complex matrices permits initiation of detailed studies on community composition and changes in communities based on cell numbers in formerly intractable environments. PMID:10103245

  9. Nucleic acid hybridization-an alternative tool in diagnostic microbiology.

    PubMed

    Pettersson, U; Hyypiä, T

    1985-09-01

    The use of radioimmunoossays (RIAs) and enzyme-linked immunosorbent assays (ELISAs) has revolutionized diagnostic microbiology. Their high specificity and sensitivity make them versatile, they are simple to carry out either for direct detection of microorganisms in specimens or for serological diagnosis, and they can easily and reliably be standardized. Monoclonal antibodies have further improved these immunoassays. However, the development of simple and highly sensitive detection methods for nucleic acids has nevertheless promoted an interest also in diagnostic methods based on nucleic acid hybridization. Here Ulf Pettersson and Timo Hyypiä discuss methods which are likely to become a useful complement to the immunoassays in the near future.

  10. Sensitive determination of nucleic acids using organic nanoparticle fluorescence probes

    NASA Astrophysics Data System (ADS)

    Zhou, Yunyou; Bian, Guirong; Wang, Leyu; Dong, Ling; Wang, Lun; Kan, Jian

    2005-06-01

    This paper describes the preparation of organic nanoparticles by reprecipitation method under sonication and vigorous stirring. Transmission electron microscopy (TEM) was used to characterize the size and size distribution of the luminescent nanoparticles. Their average diameter was about 25 nm with a size variation of ±18%. The fluorescence decay lifetime of the nanoparticles also was determined on a self-equipped fluorospectrometer with laser light source. The lifetime (˜0.09 μs) of nanoparticles is about three times long as that of the monomer. The nanoparticles were in abundant of hydrophilic groups, which increased their miscibility in aqueous solution. These organic nanoparticles have high photochemical stability, excellent resistance to chemical degradation and photodegradation, and a good fluorescence quantum yield (25%). The fluorescence can be efficiently quenched by nucleic acids. Based on the fluorescence quenching of nanoparticles, a fluorescence quenching method was developed for determination of microamounts of nucleic acids by using the nanoparticles as a new fluorescent probe. Under optimal conditions, maximum fluorescence quenching is produced, with maximum excitation and emission wavelengths of 345 and 402 nm, respectively. Under optimal conditions, the calibration graphs are linear over the range 0.4-19.0 μg ml -1 for calf thymus DNA (ct-DNA) and 0.3-19.0 μg ml -1 for fish sperm DNA (fs-DNA). The corresponding detection limits are 0.25 μg ml -1 for ct-DNA and 0.17 μg ml -1 for fs-DNA. The relative standard deviation of six replicate measurements is 1.3-2.1%. The method is simple, rapid and sensitive with wide linear range. The recovery and relative standard deviation are very satisfactory.

  11. Multiple components in restriction enzyme digests of mammalian (insectivore), avian and reptilian genomic DNA hybridize with murine immunoglobulin VH probes.

    PubMed Central

    Litman, G W; Berger, L; Jahn, C L

    1982-01-01

    High molecular weight genomic DNAs isolated from an insectivore, Tupaia, and a representative reptilian, Caiman, and avian, Gallus, were digested with restriction endonucleases transferred to nitrocellulose and hybridized with nick-translated probes of murine VH genes. The derivations of the probes designated S107V (1) and mu 107V (2,3) have been described previously. Under conditions of reduced stringency, multiple hybridizing components were observed with Tupaia and Caiman; only mu mu 107V exhibited significant hybridization with the separated fragments of Gallus DNA. The nick-translated S107V probe was digested with Fnu4H1 and subinserts corresponding to the 5' and 3' regions both detected multiple hybridizing components in Tupaia and Caiman DNA. A 5' probe lacking the leader sequence identified the same components as the intact 5' probe, suggesting that VH coding regions distant as the reptilians may possess multiple genetic components which exhibit significant homology with murine immunoglobulin in VH regions. Images PMID:6285298

  12. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. II. Isothermal signal amplification in process of DNA analysis by minisequencing].

    PubMed

    Dmitrienko, E V; Khomiakova, E A; Pyshnaia; Bragin, A G; Vedernikov, V E; Pyshnyĭ, D V

    2010-01-01

    The isothermal amplification of reporter signal via limited probe extension (minisequencing) upon hybridization of nucleic acids has been studied. The intensity of reporter signal has been shown to increase due to enzymatic labeling of multiple probes upon consecutive hybridization with one DNA template both in homophase and heterophase assays using various kinds of detection signal: radioisotope label, fluorescent label, and enzyme-linked assay. The kinetic scheme of the process has been proposed and kinetic parameters for each step have been determined. The signal intensity has been shown to correlate with physicochemical characteristics of both complexes: probe/DNA and product/DNA. The maximum intensity has been observed at minimal difference between the thermodynamic stability of these complexes, provided the reaction temperature has been adjusted near their melting temperature values; rising or lowering the reaction temperature reduces the amount of reporting product. The signal intensity has been shown to decrease significantly upon hybridization with the DNA template containing single-nucleotide mismatches. Limited probe extension assay is useful not only for detection of DNA template but also for its quantitative characterization.

  13. Interfacial transduction of nucleic acid hybridization using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    PubMed

    Algar, W Russ; Krull, Ulrich J

    2009-01-06

    Fluorescence resonance energy transfer (FRET) using immobilized quantum dots (QDs) as energy donors was explored as a transduction method for the detection of nucleic acid hybridization at an interface. This research was motivated by the success of the QD-FRET-based transduction of nucleic acid hybridization in solution-phase assays. This new work represents a fundamental step toward the assembly of a biosensor, where immobilization of the selective chemistry on a surface is desired. After immobilizing QD-probe oligonucleotide conjugates on optical fibers, a demonstration of the retention of selectivity was achieved by the introduction of acceptor (Cy3)-labeled single-stranded target oligonucleotides. Hybridization generated the proximity required for FRET, and the resulting fluorescence spectra provided an analytical signal proportional to the amount of target. This research provides an important framework for the future development of nucleic acid biosensors based on QDs and FRET. The most important findings of this work are that (1) a QD-FRET solid-phase hybridization assay is viable and (2) a passivating layer of denatured bovine serum albumin alleviates nonspecific adsorption, ultimately resulting in (3) the potential for a reusable assay format and mismatch discrimination. In this, the first incarnation of a solid-phase QD-FRET hybridization assay, the limit of detection was found to be 5 nM, and the dynamic range was almost 2 orders of magnitude. Selective discrimination of the target was shown using a three-base-pairs mismatch from a fully complementary sequence. Despite a gradual loss of signal, reuse of the optical fibers over multiple cycles of hybridization and dehybridization was possible. Directions for further improvement of the analytical performance by optimizing the design of the QD-probe oligonucleotide interface are identified.

  14. Fluorescence in situ hybridization probes targeting members of the phylum Candidatus Saccharibacteria falsely target Eikelboom type 1851 filaments and other Chloroflexi members.

    PubMed

    Nittami, Tadashi; Speirs, Lachlan B M; Fukuda, Junji; Watanabe, Masatoshi; Seviour, Robert J

    2014-12-01

    The FISH probe TM7-305 is thought to target the filamentous Eikelboom morphotype 0041 as a member of the Candidatus ‘Saccharibacteria’ (formerly TM7) phylum. However, with activated sludge samples in both Japan and Australia, this probe hybridized consistently with filamentous bacteria fitting the description of the morphotype 1851, which also responded positively to the CHL1851 FISH probe designed to target Chloroflexi members of this morphotype. 16S rRNA clone libraries from samples containing type 1851 TM7-305-positive filaments yielded Chloroflexi clones with high sequence similarity to Kouleothrix aurantiaca. These contained a variant TM7-305 probe target site possessing weakly destabilizing mismatches insufficient to prevent probe hybridization. Furthermore, the TM7-905 FISH probe, designed to target members of the entire Candidatus ‘Saccharibacteria’ phylum, also hybridized with the filament morphotypes 0041/0675, which responded also to the phylum level Chloroflexi probes. Many Chloroflexi sequences have only a single base mismatch to the TM7-905 probe target sequence. When competitor probes for both the TM7-305 and TM7-905 Chloroflexi non-target sites were applied, no fluorescent signal was seen in any of the filamentous organisms also hybridizing with the aforementioned Chloroflexi probes. These data indicate that these competitor probes must be included in hybridizations when both the TM7-905 and TM7-305 FISH probes are applied, to minimize potential false positive FISH results.

  15. Peptide nucleic acid fluorescence in situ hybridization for identification of Listeria genus, Listeria monocytogenes and Listeria ivanovii.

    PubMed

    Zhang, Xiaofeng; Wu, Shan; Li, Ke; Shuai, Jiangbing; Dong, Qiang; Fang, Weihuan

    2012-07-02

    A fluorescent in situ hybridization (FISH) method in conjunction with fluorescin-labeled peptide nucleic acid (PNA) probes (PNA-FISH) for detection of Listeria species was developed. In silico analysis showed that three PNA probes Lis-16S-1, Lm-16S-2 and Liv-16S-5 were suitable for specific identification of Listeria genus, Listeria monocytogenes and Listeria ivanovii, respectively. These probes were experimentally verified by their reactivity against 19 strains of six Listeria species (excluding newly described species Listeria marthii and Listeria rocourtiae) and eight other bacterial species. The PNA-FISH method was optimized as 30 min of hybridization with 0.2% Triton X-100 in the solution and used to identify 85 Listeria strains from individual putative Listeria colonies on PALCAM agar plates streaked from selectively enriched cultures of 780 food or food-related samples. Of the 85 Listeria strains, thirty-seven were identified as L. monocytogenes with the probe Lm-16S-2 and two as L. ivanovii with the probe Liv-16S-5 which was in agreement with the results obtained by the API LISTERIA method. Thus, the PNA-FISH protocol has the potential for identification of pathogenic Listeria spp. from food or food-related samples.

  16. Electrostatic nucleic acid nanoassembly enables hybridization chain reaction in living cells for ultrasensitive mRNA imaging.

    PubMed

    Wu, Zhan; Liu, Gao-Qin; Yang, Xiao-Li; Jiang, Jian-Hui

    2015-06-03

    Efficient approaches for intracellular delivery of nucleic acid reagents to achieve sensitive detection and regulation of gene and protein expressions are essential for chemistry and biology. We develop a novel electrostatic DNA nanoassembly that, for the first time, realizes hybridization chain reaction (HCR), a target-initiated alternating hybridization reaction between two hairpin probes, for signal amplification in living cells. The DNA nanoassembly has a designed structure with a core gold nanoparticle, a cationic peptide interlayer, and an electrostatically assembled outer layer of fluorophore-labeled hairpin DNA probes. It is shown to have high efficiency for cellular delivery of DNA probes via a unique endocytosis-independent mechanism that confers a significant advantage of overcoming endosomal entrapment. Moreover, electrostatic assembly of DNA probes enables target-initialized release of the probes from the nanoassembly via HCR. This intracellular HCR offers efficient signal amplification and enables ultrasensitive fluorescence activation imaging of mRNA expression with a picomolar detection limit. The results imply that the developed nanoassembly may provide an invaluable platform in low-abundance biomarker discovery and regulation for cell biology and theranostics.

  17. Revealing Nucleic Acid Mutations Using Förster Resonance Energy Transfer-Based Probes

    PubMed Central

    Junager, Nina P. L.; Kongsted, Jacob; Astakhova, Kira

    2016-01-01

    Nucleic acid mutations are of tremendous importance in modern clinical work, biotechnology and in fundamental studies of nucleic acids. Therefore, rapid, cost-effective and reliable detection of mutations is an object of extensive research. Today, Förster resonance energy transfer (FRET) probes are among the most often used tools for the detection of nucleic acids and in particular, for the detection of mutations. However, multiple parameters must be taken into account in order to create efficient FRET probes that are sensitive to nucleic acid mutations. In this review; we focus on the design principles for such probes and available computational methods that allow for their rational design. Applications of advanced, rationally designed FRET probes range from new insights into cellular heterogeneity to gaining new knowledge of nucleic acid structures directly in living cells. PMID:27472344

  18. Bipolar lead-acid battery for hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Saakes, M.; Woortmeijer, R.; Schmal, D.

    Within the framework of the European project bipolar lead-acid power source (BILAPS), a new production route is being developed for the bipolar lead-acid battery. The performance targets are 500 W kg -1, 30 Wh kg -1 and 100 000 power-assist life cycles (PALCs). The operation voltage of the battery can be, according to the requirements, 12, 36 V or any other voltage. Tests with recently developed 4 and 12 V prototypes, each of 30 Ah capacity have demonstrated that the PALC can be operated using 10 C discharge and 9 C charge peaks. The tests show no overvoltage or undervoltage problems during three successive test periods of 16 h with 8 h rest in between. The temperature stabilizes during these tests at 40-45 °C using a thermal-management system. The bipolar lead acid battery is operated at an initial 50% state-of-charge. During the tests, the individual cell voltages display only very small differences. Tests are now in progress to improve further the battery-management system, which has been developed at the cell level, during the period no PALCs are run in order to improve the hybrid behaviour of the battery. The successful tests show the feasibility of operating the bipolar lead-acid battery in a hybrid mode. The costs of the system are estimated to be much lower than those for nickel-metal-hydride or Li-ion based high-power systems. An additional advantage of the lead-acid system is that recycling of lead-acid batteries is well established.

  19. Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer.

    PubMed

    Algar, W Russ; Krull, Ulrich J

    2010-01-01

    A multiplexed solid-phase assay for the detection of nucleic acid hybridization was developed on the basis of a single color of immobilized CdSe/ZnS quantum dot (QD) as a donor in fluorescence resonance energy transfer (FRET). This work demonstrated that two channels of detection did not necessitate two different QD donors. Two probe oligonucleotides were coimmobilized on optical fibers modified with QDs, and a sandwich assay was used to associate the acceptor dyes with interfacial hybridization events without target labeling. FRET-sensitized acceptor emission provided an analytical signal that was concentration dependent down to 10 nM. Changes in the ratio of coimmobilized probe oligonucleotides were found to yield linear changes in the relative amounts of acceptor emission. These changes were compared to previous studies that used mixed films of two QD donors for two detection channels. The analysis indicated that probe dilution effects were primarily driven by changes in acceptor number density and that QD dilution effects or changes in mean donor-acceptor distance were secondary. Hybridization kinetics were found to be consistent between different ratios of coimmobilized probes, suggesting that hybridization in this type of system occurred via the accepted model for solid-phase hybridization, where adsorption and then diffusion at the solid interface drove hybridization.

  20. Estimate of true incomplete exchanges using fluorescence in situ hybridization with telomere probes

    NASA Technical Reports Server (NTRS)

    Wu, H.; George, K.; Yang, T. C.

    1998-01-01

    PURPOSE: To study the frequency of true incomplete exchanges in radiation-induced chromosome aberrations. MATERIALS AND METHODS: Human lymphocytes were exposed to 2 Gy and 5 Gy of gamma-rays. Chromosome aberrations were studied using the fluorescence in situ hybridization (FISH) technique with whole chromosome-specific probes, together with human telomere probes. Chromosomes 2 and 4 were chosen in the present study. RESULTS: The percentage of incomplete exchanges was 27% when telomere signals were not considered. After excluding false incomplete exchanges identified by the telomere signals, the percentage of incomplete exchanges decreased to 11%. Since telomere signals appear on about 82% of the telomeres, the percentage of true incomplete exchanges should be even lower and was estimated to be 3%. This percentage was similar for chromosomes 2 and 4 and for doses of both 2 Gy and 5 Gy. CONCLUSIONS: The percentage of true incomplete exchanges is significantly lower in gamma-irradiated human lymphocytes than the frequencies reported in the literature.

  1. Photoacoustic guidance of diffusive optical tomography with a hybrid reflection geometry probe

    NASA Astrophysics Data System (ADS)

    Gamelin, John; Ardeshirpour, Yasaman; Aguirre, Andres; Takavoli, Behnoosh; Zhu, Quing

    2009-02-01

    We report experimental investigations of photoacoustic guidance of diffusive optical tomography for detection and characterization of optical contrast targets. The hybrid system combined an 8-source, 10-detector frequency domain DOT with a clinical reflection geometry probe. For the photoacoustic tomography (PAT) functionality, a high-energy 1×7 optical fiber delivery system illuminated a 2 cm central region for localization of absorptive targets. Two-dimensional PAT images along one central axis of the probe defined of regions of interest for a dual-zone mesh DOT imaging algorithm. PVC Plastisol phantom absorbers, 1 cm on a side, with absorption coefficients ranging from 0.075 to 0.23 cm-1 were imaged at depths up to 2.5 cm. Pairs of absorbers simulating a multi-lobed heterogeneous tumor were also investigated. Without PAT guidance, the absorber location was not clear and lower contrast targets in the twoabsorber configurations were not distinguishable. With PAT guidance, the two targets were well resolved and the reconstructed absorption coefficients improved to within 15% of the true values.

  2. Comparison of peroxidase-labeled DNA probes with radioactive RNA probes for detection of human papillomaviruses by in situ hybridization in paraffin sections

    SciTech Connect

    Park, J.S.; Kurman, R.J.; Kessis, T.D.; Shah, K.V. )

    1991-01-01

    A study comparing in situ hybridization using nonradioactive DNA probes directly conjugated with horseradish peroxidase (HRP), and {sup 35}S-labeled antisense RNA probes for human papillomavirus (HPV) types 6/11, 16, and 18 was performed on formalin-fixed, paraffin-embedded tissue from 34 lesions of the cervix and vulva. These lesions included exophytic condylomas and intraepithelial and invasive neoplasms. HPV 6/11 was detected in two of four condylomata acuminata by both in situ techniques. HPV 16 was detected in 13 of 30 cases of intraepithelial and invasive neoplasms by both methods. Discordance between the two methods occurred in two instances. The radiolabeled probe but not the HRP probe detected HPV 16 in one case of cervical intraepithelial neoplasia (CIN 3), whereas the converse occurred in one case of vulvar intraepithelial neoplasia (VIN 3). HPV 18 was not detected in any of the specimens by either method. This study demonstrates that nonradioactive HRP-labeled probes for the detection of specific HPV types are as sensitive as the more laborious and potentially hazardous radioactive probes.

  3. Enzyme-amplified electrochemical hybridization assay based on PNA, LNA and DNA probe-modified micro-magnetic beads.

    PubMed

    Laschi, Serena; Palchetti, Ilaria; Marrazza, Giovanna; Mascini, Marco

    2009-09-01

    In the present study, we investigated the properties of PNA and LNA capture probes in the development of an electrochemical hybridization assay. Streptavidin-coated paramagnetic micro-beads were used as a solid phase to immobilize biotinylated DNA, PNA and LNA capture probes, respectively. The target sequence was then recognized via hybridization with the capture probe. After labeling the biotinylated hybrid with a streptavidin-enzyme conjugate, the electrochemical detection of the enzymatic product was performed onto the surface of a disposable electrode. The assay was applied to the analytical detection of biotinylated DNA as well as RNA sequences. Detection limits, calculated considering the slope of the linear portion of the calibration curve in the range 0-2 nM were found to be 152, 118 and 91 pM, coupled with a reproducibility of the analysis equal to 5, 9 and 6%, calculated as RSD%, for DNA, PNA and LNA probes respectively, using the DNA target. In the case of the RNA target, the detection limits were found to be 51, 60 and 78 pM for DNA, PNA and LNA probes respectively.

  4. Peptide nucleic acid fluorescence in-situ hybridization for identification of Vibrio spp. in aquatic products and environments.

    PubMed

    Zhang, Xiaofeng; Li, Ke; Wu, Shan; Shuai, Jiangbing; Fang, Weihuan

    2015-08-03

    A peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) method was developed for specific detection of the Vibrio genus. In silico analysis by BLAST and ProbeCheck showed that the designed PNA probe targeting the 16S rRNAs was suitable for specific identification of Vibrio. Specificity and sensitivity of the probe Vib-16S-1 were experimentally verified by its reactivity against 18 strains of 9 Vibrio species and 14 non-Vibrio strains of 14 representative species. The PNA-FISH assay was able to identify 47 Vibrio positive samples from selectively enriched cultures of 510 samples of aquatic products and environments, comparable with the results obtained by biochemical identification and real-time PCR. We conclude that PNA-FISH can be an alternative method for rapid identification of Vibrio species in a broad spectrum of seafood or related samples.

  5. Quantum-dot-labeled DNA probes for fluorescence in situ hybridization (FISH) in the microorganism Escherichia coli.

    PubMed

    Wu, Sheng-Mei; Zhao, Xiang; Zhang, Zhi-Ling; Xie, Hai-Yan; Tian, Zhi-Quan; Peng, Jun; Lu, Zhe-Xue; Pang, Dai-Wen; Xie, Zhi-Xiong

    2006-05-12

    Semiconductor quantum dots (QDs) as a kind of nonisotopic biological labeling material have many unique fluorescent properties relative to conventional organic dyes and fluorescent proteins, such as composition- and size-dependent absorption and emission, a broad absorption spectrum, photostability, and single-dot sensitivity. These properties make them a promising stable and sensitive label, which can be used for long-term fluorescent tracking and subcellular location of genes and proteins. Here, a simple approach for the construction of QD-labeled DNA probes was developed by attaching thiol-ssDNA to QDs via a metal-thiol bond. The as-prepared QD-labeled DNA probes had high dispersivity, bioactivity, and specificity for hybridization. Based on such a kind of probe with a sequence complementary to multiple clone sites in plasmid pUC18, fluorescence in situ hybridization of the tiny bacterium Escherichia coli has been realized for the first time.

  6. Improved DNA hybridization parameters by Twisted Intercalating Nucleic Acid (TINA).

    PubMed

    Schneider, Uffe Vest

    2012-01-01

    This thesis establishes oligonucleotide design rules and applications of a novel group of DNA stabilizing molecules collectively called Twisted Intercalating Nucleic Acid - TINA. Three peer-reviewed publications form the basis for the thesis. One publication describes an improved and rapid method for determination of DNA melting points and two publications describe the effects of positioning TINA molecules in parallel triplex helix and antiparallel duplex helix forming DNA structures. The third publication establishes that TINA molecules containing oligonucleotides improve an antiparallel duplex hybridization based capture assay's analytical sensitivity compared to conventionel DNA oligonucleotides. Clinical microbiology is traditionally based on pathogenic microorganisms' culture and serological tests. The introduction of DNA target amplification methods like PCR has improved the analytical sensitivity and total turn around time involved in clinical diagnostics of infections. Due to the relatively weak hybridization between the two strands of double stranded DNA, a number of nucleic acid stabilizing molecules have been developed to improve the sensitivity of DNA based diagnostics through superior binding properties. A short introduction is given to Watson-Crick and Hoogsteen based DNA binding and the derived DNA structures. A number of other nucleic acid stabilizing molecules are described. The stabilizing effect of TINA molecules on different DNA structures is discussed and considered in relation to other nucleic acid stabilizing molecules and in relation to future use of TINA containing oligonucleotides in clinical diagnostics and therapy. In conclusion, design of TINA modified oligonucleotides for antiparallel duplex helixes and parallel triplex helixes follows simple purpose dependent rules. TINA molecules are well suited for improving multiplex PCR assays and can be used as part of novel technologies. Future research should test whether combinations of TINA

  7. A Method to Detect Differential Gene Expression in Cross-Species Hybridization Experiments at Gene and Probe Level

    PubMed Central

    Chen, Ying; Wu, Rebekah; Felton, James; Rocke, David M.; Chakicherla, Anu

    2010-01-01

    Motivation Whole genome microarrays are increasingly becoming the method of choice to study responses in model organisms to disease, stressors or other stimuli. However, whole genome sequences are available for only some model organisms, and there are still many species whose genome sequences are not yet available. Cross-species studies, where arrays developed for one species are used to study gene expression in a closely related species, have been used to address this gap, with some promising results. Current analytical methods have included filtration of some probes or genes that showed low hybridization activities. But consensus filtration schemes are still not available. Results A novel masking procedure is proposed based on currently available target species sequences to filter out probes and study a cross-species data set using this masking procedure and gene-set analysis. Gene-set analysis evaluates the association of some priori defined gene groups with a phenotype of interest. Two methods, Gene Set Enrichment Analysis (GSEA) and Test of Test Statistics (ToTS) were investigated. The results showed that masking procedure together with ToTS method worked well in our data set. The results from an alternative way to study cross-species hybridization experiments without masking are also presented. We hypothesize that the multi-probes structure of Affymetrix microarrays makes it possible to aggregate the effects of both well-hybridized and poorly-hybridized probes to study a group of genes. The principles of gene-set analysis were applied to the probe-level data instead of gene-level data. The results showed that ToTS can give valuable information and thus can be used as a powerful technique for analyzing cross-species hybridization experiments. Availability Software in the form of R code is available at http://anson.ucdavis.edu/~ychen/cross-species.html Supplementary Data Supplementary data are available at http://anson.ucdavis.edu/~ychen/cross-species.html PMID

  8. A Method to Detect Differential Gene expression in Cross-Species Hybridization Experiments at Gene and Probe Level

    PubMed Central

    Chen, Ying; Wu, Rebekah; Felton, James; Rocke, David M.; Chakicherla, Anu

    2010-01-01

    Motivation Whole genome microarrays are increasingly becoming the method of choice to study responses in model organisms to disease, stressors or other stimuli. However, whole genome sequences are available for only some model organisms, and there are still many species whose genome sequences are not yet available. Cross-species studies, where arrays developed for one species are used to study gene expression in a closely related species, have been used to address this gap, with some promising results. Current analytical methods have included filtration of some probes or genes that showed low hybridization activities. But consensus filtration schemes are still not available. Results A novel masking procedure is proposed based on currently available target species sequences to filter out probes and study a cross-species data set using this masking procedure and gene-set analysis. Gene-set analysis evaluates the association of some priori defined gene groups with a phenotype of interest. Two methods, Gene Set Enrichment Analysis (GSEA) and Test of Test Statistics (ToTS) were investigated. The results showed that masking procedure together with ToTS method worked well in our data set. The results from an alternative way to study cross-species hybridization experiments without masking are also presented. We hypothesize that the multi-probes structure of Affymetrix microarrays makes it possible to aggregate the effects of both well-hybridized and poorly-hybridized probes to study a group of genes. The principles of gene-set analysis were applied to the probe-level data instead of gene-level data. The results showed that ToTS can give valuable information and thus can be used as a powerful technique for analyzing cross-species hybridization experiments. Availability Software in the form of R code is available at http://anson.ucdavis.edu/~ychen/cross-species.html PMID:20798791

  9. Differential sensitivity of 16S rRNA targeted oligonucleotide probes used for fluorescence in situ hybridization is a result of ribosomal higher order structure.

    PubMed

    Frischer, M E; Floriani, P J; Nierzwicki-Bauer, S A

    1996-10-01

    The use of 16S rRNA targeted gene probes for the direct analysis of microbial communities has revolutionized the field of microbial ecology, yet a comprehensive approach for the design of such probes does not exist. The development of 16S rRNA targeted oligonucleotide probes for use with fluorescence in situ hybridization (FISH) procedures has been especially difficult as a result of the complex nature of the rRNA target molecule. In this study a systematic comparison of 16S rRNA targeted oligonucleotide gene probes was conducted to determine if target location influences the hybridization efficiency of oligonucleotide probes when used with in situ hybridization protocols for the detection of whole microbial cells. Five unique universal 12-mer oligonucleotide sequences, located at different regions of the 16S rRNA molecule, were identified by a computer-aided sequence analysis of over 1000 partial and complete 16S rRNA sequences. The complements of these oligomeric sequences were chemically synthesized for use as probes and end labeled with either [gamma-32P]ATP or the fluorescent molecule tetramethylrhodamine-5/-6. Hybridization sensitivity for each of the probes was determined by hybridization to heat-denatured RNA immobilized on blots or to formaldehyde fixed whole cells. All of the probes hybridized with equal efficiency to denatured RNA. However, the probes exhibited a wide range of sensitivity (from none to very strong) when hybridized with whole cells using a previously developed FISH procedure. Differential hybridization efficiencies against whole cells could not be attributed to cell wall type, since the relative probe efficiency was preserved when either Gram-negative or -positive cells were used. These studies represent one of the first attempts to systematically define criteria for 16S rRNA targeted probe design for use against whole cells and establish target site location as a critical parameter in probe design.

  10. Fluorescence probe for the convenient and sensitive detection of ascorbic acid

    PubMed Central

    Matsuoka, Yuta; Yamato, Mayumi; Yamada, Ken-ichi

    2016-01-01

    Ascorbic acid is an important antioxidant that plays an essential role in the biosynthesis of numerous bioactive substances. The detection of ascorbic acid has traditionally been achieved using high-performance liquid chromatography and absorption spectrophotometry assays. However, the development of fluorescence probes for this purpose is highly desired because they provide a much more convenient and highly sensitive technique for the detection of this material. OFF-ON-type fluorescent probes have been developed for the detection of non-fluorescent compounds. Photo-induced electron transfer and fluorescence resonance energy transfer are the two main fluorescence quenching mechanisms for the detection of ascorbic acid, and several fluorescence probes have been reported based on redox-responsive metals and quantum dots. Profluorescent nitroxide compounds have also been developed as non-metal organic fluorescence probes for ascorbic acid. These nitroxide systems have a stable unpaired electron and can therefore react with ascorbic acid and a strong fluorescence quencher. Furthermore, recent synthetic advances have allowed for the synthesis of α-substituted nitroxides with varying levels of reactivity towards ascorbic acid. In this review, we have discussed the design strategies used for the preparation of fluorescent probes for ascorbic acid, with particular emphasis on profluorescent nitroxides, which are unique radical-based redox-active fluorescent probes. PMID:26798193

  11. Artificial mismatch hybridization

    DOEpatents

    Guo, Zhen; Smith, Lloyd M.

    1998-01-01

    An improved nucleic acid hybridization process is provided which employs a modified oligonucleotide and improves the ability to discriminate a control nucleic acid target from a variant nucleic acid target containing a sequence variation. The modified probe contains at least one artificial mismatch relative to the control nucleic acid target in addition to any mismatch(es) arising from the sequence variation. The invention has direct and advantageous application to numerous existing hybridization methods, including, applications that employ, for example, the Polymerase Chain Reaction, allele-specific nucleic acid sequencing methods, and diagnostic hybridization methods.

  12. The interaction of amino acids with macrocyclic pH probes of pseudopeptidic nature.

    PubMed

    Izquierdo, M Angeles; Wadhavane, Prashant D; Vigara, Laura; Burguete, M Isabel; Galindo, Francisco; Luis, Santiago V

    2017-08-09

    The fluorescence quenching, by a series of amino acids, of pseudopeptidic compounds acting as probes for cellular acidity has been investigated. It has been found that amino acids containing electron-rich aromatic side chains like Trp or Tyr, as well as Met quench the emission of the probes mainly via a collisional mechanism, with Stern-Volmer constants in the 7-43 M(-1) range, while other amino acids such as His, Val or Phe did not cause deactivation of the fluorescence. Only a minor contribution of a static quenching due to the formation of ground-state complexes has been found for Trp and Tyr, with association constants in the 9-24 M(-1) range. For these ground-state complexes, a comparison between the macrocyclic probes and an open chain analogue reveals the existence of a moderate macrocyclic effect due to the preorganization of the probes in the more rigid structure.

  13. Application of bioinformatics in probe design enables detection of enteroviruses on different taxonomic levels by advanced in situ hybridization technology.

    PubMed

    Laiho, Jutta E; Oikarinen, Sami; Oikarinen, Maarit; Larsson, Pär G; Stone, Virginia M; Hober, Didier; Oberste, Steven; Flodström-Tullberg, Malin; Isola, Jorma; Hyöty, Heikki

    2015-08-01

    Enteroviral infections are common, affecting humans across all age groups. RT-PCR is widely used to detect these viruses in clinical samples. However, there is a need for sensitive and specific in situ detection methods for formalin-fixed tissues, allowing for the anatomical localization of the virus and identification of its serotype. The aim was to design novel enterovirus probes, assess the impact of probe design for the detection and optimize the new single molecule in situ hybridization technology for the detection of enteroviruses in formalin-fixed paraffin-embedded samples. Four enterovirus RNA-targeted oligonucleotide RNA probes - two probes for wide range enterovirus detection and two for serotype-targeted detection of Coxsackievirus B1 (CVB1) - were designed and validated for the commercially available QuantiGene ViewRNA in situ hybridization method. The probe specificities were tested using a panel of cell lines infected with different enterovirus serotypes and CVB infected mouse pancreata. The two widely reactive probe sets recognized 19 and 20 of the 20 enterovirus serotypes tested, as well as 27 and 31 of the 31 CVB1 strains tested. The two CVB1 specific probe sets detected 30 and 14 of the 31 CVB1 strains, with only minor cross-reactivity to other serotypes. Similar results were observed in stained tissues from CVB -infected mice. These novel in-house designed probe sets enable the detection of enteroviruses from formalin-fixed tissue samples. Optimization of probe sequences makes it possible to tailor the assay for the detection of enteroviruses on the serotype or species level. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Lysosomal-Targeted Two-Photon Fluorescent Probe to Sense Hypochlorous Acid in Live Cells.

    PubMed

    Zhang, Beibei; Yang, Xiaopeng; Zhang, Rui; Liu, Yao; Ren, Xueling; Xian, Ming; Ye, Yong; Zhao, Yufen

    2017-10-03

    A two-photon reversible fluorescent probe L1 was designed and synthesized. The fluorescence intensity of the probe solution was strong, while the fluorescence of the solution was obviously quenched and the color of the solution was changed after the addition of hypochlorous acid, indicating this is "naked-eye sensor" for the detection of HClO. The probe showed great selectivity for hypochlorous acid over other reactive oxygen species (ROS) and anions. Fluorescence titration experiments showed that the probe has a low detection limit of 0.674 μM. Because of a morpholine group introduced to the naphathalimide framework, probe L1 was successfully applied to detect intracellular HClO in lysosome.

  15. Preparation and characterization of zinc oxide nanoparticles and their sensor applications for electrochemical monitoring of nucleic acid hybridization.

    PubMed

    Yumak, Tugrul; Kuralay, Filiz; Muti, Mihrican; Sinag, Ali; Erdem, Arzum; Abaci, Serdar

    2011-09-01

    In this study, ZnO nanoparticles (ZNP) of approximately 30 nm in size were synthesized by the hydrothermal method and characterized by X-ray diffraction (XRD), Braun-Emmet-Teller (BET) N2 adsorption analysis and transmission electron microscopy (TEM). ZnO nanoparticles enriched with poly(vinylferrocenium) (PVF+) modified single-use graphite electrodes were then developed for the electrochemical monitoring of nucleic acid hybridization related to the Hepatitis B Virus (HBV). Firstly, the surfaces of polymer modified and polymer-ZnO nanoparticle modified single-use pencil graphite electrodes (PGEs) were characterized using scanning electron microscopy (SEM). The electrochemical behavior of these electrodes was also investigated using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Subsequently, the polymer-ZnO nanoparticle modified PGEs were evaluated for the electrochemical detection of DNA based on the changes at the guanine oxidation signals. Various modifications in DNA oligonucleotides and probe concentrations were examined in order to optimize the electrochemical signals that were generated by means of nucleic acid hybridization. After the optimization studies, the sequence-selective DNA hybridization was investigated in the case of a complementary amino linked probe (target), or noncomplementary (NC) sequences, or target and mismatch (MM) mixture in the ratio of (1:1).

  16. Evaluation of strains isolated by growth on naphthalene and biphenyl for hybridization of genes to dioxygenase probes and polychlorinated biphenyl-degrading ability.

    PubMed

    Pellizari, V H; Bezborodnikov, S; Quensen, J F; Tiedje, J M

    1996-06-01

    Approximately equal numbers of bacteria were isolated from primarily tropical soils by growth on biphenyl and naphthalene to compare their competence in polychlorinated biphenyl (PCB) degradation. The strains isolated by growth on biphenyl catalyzed more extensive PCB degradation than the strains isolated by growth on naphthalene, suggesting that naphthalene cocontamination may be only partially effective in stimulating the cometabolism of lower chlorinated PCBs. Probes were made from the bph, nah, and tod genes encoding the large iron iron sulfur protein of the dioxygenase complex and hybridized to 19 different strains. The hybridization patterns did not correlate well with the substrates of isolation, suggesting that there is considerable diversity in these genes in nature and that probe hybridization is not a reliable indication of catabolic capacity. The strains with the most extensive PCB degradation capacity did strongly hybridize to the bph probe, but a few strains that exhibited strong hybridization had poor PCB-degrading ability. Of the 19 strains studied, 5 hybridized to more than one probe and 2, including one strong PCB degrader, hybridized to all three probes. Southern blots showed that the bph and nah probes hybridized to separate bands, suggesting that multiple dioxygenases were present. Multiple dioxygenases may be an important feature of competitive decomposers in nature and hence may not be rare. Most of the isolates identified were members of the beta subgroup of the Proteobacteria, a few were gram positive, and none were true Pseudomonas species.

  17. Evaluation of strains isolated by growth on naphthalene and biphenyl for hybridization of genes to dioxygenase probes and polychlorinated biphenyl-degrading ability.

    PubMed Central

    Pellizari, V H; Bezborodnikov, S; Quensen, J F; Tiedje, J M

    1996-01-01

    Approximately equal numbers of bacteria were isolated from primarily tropical soils by growth on biphenyl and naphthalene to compare their competence in polychlorinated biphenyl (PCB) degradation. The strains isolated by growth on biphenyl catalyzed more extensive PCB degradation than the strains isolated by growth on naphthalene, suggesting that naphthalene cocontamination may be only partially effective in stimulating the cometabolism of lower chlorinated PCBs. Probes were made from the bph, nah, and tod genes encoding the large iron iron sulfur protein of the dioxygenase complex and hybridized to 19 different strains. The hybridization patterns did not correlate well with the substrates of isolation, suggesting that there is considerable diversity in these genes in nature and that probe hybridization is not a reliable indication of catabolic capacity. The strains with the most extensive PCB degradation capacity did strongly hybridize to the bph probe, but a few strains that exhibited strong hybridization had poor PCB-degrading ability. Of the 19 strains studied, 5 hybridized to more than one probe and 2, including one strong PCB degrader, hybridized to all three probes. Southern blots showed that the bph and nah probes hybridized to separate bands, suggesting that multiple dioxygenases were present. Multiple dioxygenases may be an important feature of competitive decomposers in nature and hence may not be rare. Most of the isolates identified were members of the beta subgroup of the Proteobacteria, a few were gram positive, and none were true Pseudomonas species. PMID:8787402

  18. Phthalic Acid Chemical Probes Synthesized for Protein-Protein Interaction Analysis

    PubMed Central

    Liang, Shih-Shin; Liao, Wei-Ting; Kuo, Chao-Jen; Chou, Chi-Hsien; Wu, Chin-Jen; Wang, Hui-Min

    2013-01-01

    Plasticizers are additives that are used to increase the flexibility of plastic during manufacturing. However, in injection molding processes, plasticizers cannot be generated with monomers because they can peel off from the plastics into the surrounding environment, water, or food, or become attached to skin. Among the various plasticizers that are used, 1,2-benzenedicarboxylic acid (phthalic acid) is a typical precursor to generate phthalates. In addition, phthalic acid is a metabolite of diethylhexyl phthalate (DEHP). According to Gene_Ontology gene/protein database, phthalates can cause genital diseases, cardiotoxicity, hepatotoxicity, nephrotoxicity, etc. In this study, a silanized linker (3-aminopropyl triethoxyslane, APTES) was deposited on silicon dioxides (SiO2) particles and phthalate chemical probes were manufactured from phthalic acid and APTES–SiO2. These probes could be used for detecting proteins that targeted phthalic acid and for protein-protein interactions. The phthalic acid chemical probes we produced were incubated with epithelioid cell lysates of normal rat kidney (NRK-52E cells) to detect the interactions between phthalic acid and NRK-52E extracted proteins. These chemical probes interacted with a number of chaperones such as protein disulfide-isomerase A6, heat shock proteins, and Serpin H1. Ingenuity Pathways Analysis (IPA) software showed that these chemical probes were a practical technique for protein-protein interaction analysis. PMID:23797655

  19. 16S rRNA in situ Hybridization Followed by Flow Cytometry for Rapid Identification of Acetic Acid Bacteria Involved in Submerged Industrial Vinegar Production

    PubMed Central

    Lipoglavšek, Luka; Avguštin, Gorazd

    2016-01-01

    Summary Acetic acid bacteria are involved in many biotechnological processes such as vitamin C, gluconic acid, miglitol or acetic acid production, and others. For a technologist trying to control the industrial process, the ability to follow the microbiological development of the process is thus of importance. During the past few years hybridization in a combination with flow cytometry has often been used for this purpose. Since vinegar is a liquid, it is an ideal matrix for flow cytometry analysis. In this work we have constructed a specific probe for highly acetic acid-resistant species of the acetic acid bacteria and a protocol for in situ hybridization, which in combination with flow cytometry enables direct monitoring of bacteria producing vinegar with >10% of acetic acid. The approach was successfully applied for monitoring microbiota during industrial vinegar production. PMID:27904400

  20. 16S rRNA in situ Hybridization Followed by Flow Cytometry for Rapid Identification of Acetic Acid Bacteria Involved in Submerged Industrial Vinegar Production.

    PubMed

    Trček, Janja; Lipoglavšek, Luka; Avguštin, Gorazd

    2016-03-01

    Acetic acid bacteria are involved in many biotechnological processes such as vitamin C, gluconic acid, miglitol or acetic acid production, and others. For a technologist trying to control the industrial process, the ability to follow the microbiological development of the process is thus of importance. During the past few years hybridization in a combination with flow cytometry has often been used for this purpose. Since vinegar is a liquid, it is an ideal matrix for flow cytometry analysis. In this work we have constructed a specific probe for highly acetic acid-resistant species of the acetic acid bacteria and a protocol for in situ hybridization, which in combination with flow cytometry enables direct monitoring of bacteria producing vinegar with >10% of acetic acid. The approach was successfully applied for monitoring microbiota during industrial vinegar production.

  1. Fluorescent probes for nucleic Acid visualization in fixed and live cells.

    PubMed

    Boutorine, Alexandre S; Novopashina, Darya S; Krasheninina, Olga A; Nozeret, Karine; Venyaminova, Alya G

    2013-12-11

    This review analyses the literature concerning non-fluorescent and fluorescent probes for nucleic acid imaging in fixed and living cells from the point of view of their suitability for imaging intracellular native RNA and DNA. Attention is mainly paid to fluorescent probes for fluorescence microscopy imaging. Requirements for the target-binding part and the fluorophore making up the probe are formulated. In the case of native double-stranded DNA, structure-specific and sequence-specific probes are discussed. Among the latest, three classes of dsDNA-targeting molecules are described: (i) sequence-specific peptides and proteins; (ii) triplex-forming oligonucleotides and (iii) polyamide oligo(N-methylpyrrole/N-methylimidazole) minor groove binders. Polyamides seem to be the most promising targeting agents for fluorescent probe design, however, some technical problems remain to be solved, such as the relatively low sequence specificity and the high background fluorescence inside the cells. Several examples of fluorescent probe applications for DNA imaging in fixed and living cells are cited. In the case of intracellular RNA, only modified oligonucleotides can provide such sequence-specific imaging. Several approaches for designing fluorescent probes are considered: linear fluorescent probes based on modified oligonucleotide analogs, molecular beacons, binary fluorescent probes and template-directed reactions with fluorescence probe formation, FRET donor-acceptor pairs, pyrene excimers, aptamers and others. The suitability of all these methods for living cell applications is discussed.

  2. Fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes to identify small phytoplankton by flow cytometry.

    PubMed Central

    Simon, N; LeBot, N; Marie, D; Partensky, F; Vaulot, D

    1995-01-01

    Because of their tiny size (0.2 to 2 microns), oceanic picophytoplanktonic cells (either cultured strains or natural communities) are difficult to identify, and some basic questions concerning their taxonomy, physiology, and ecology are still largely unanswered. The present study was designed to test the suitability of in situ hybridization with rRNA fluorescent probes detected by flow cytometry for the identification of small photosynthetic eukaryotes. Oligonucleotide probes targeted against regions of the 18S rRNAs of Chlorophyta lineage (CHLO probe) and of non-Chlorophyta (NCHLO probe) algal species were designed. The CHLO and NCHLO probes, which differed by a single nucleotide, allowed discrimination of chlorophyte from nonchlorophyte cultured strains. The sensitivity of each probe was dependent upon the size of the cells and upon their growth stage. The mean fluorescence was 8 to 80 times higher for specifically labeled than for nonspecifically labeled cells in exponential growth phase, but it decreased sharply in stationary phase. Such taxon-specific probes should increase the applicability of flow cytometry for the rapid identification of cultured pico- and nanoplanktonic strains, especially those that lack taxonomically useful morphological features. PMID:7618862

  3. Simulations of ordering and sequence reconstruction of random DNA clones hybridized with a small number of oligomeric probes

    SciTech Connect

    Labat, I.; Drmanac, R.

    1992-12-01

    The sequencing by hybridization (SBH) method has been developed for assaying millions of 0.5- to 2-kb-tong clones. This opens up an efficient way for defining the order of short clones and creating a physical map at 100-bp resolution. Moreover, complete sequences can be obtained using a modest number (about 3000) of probes if hybridization and gel sequence data from overlapped or similar sequences are used. In light of these possibilities, various heuristic algorithms have been developed and tested in simulation experiments. This approach can influence the interpretation of the intuitively obvious term, ``known sequence.``

  4. Probing nanoscale chemical segregation and surface properties of antifouling hybrid xerogel films.

    PubMed

    Destino, Joel F; Gatley, Caitlyn M; Craft, Andrew K; Detty, Michael R; Bright, Frank V

    2015-03-24

    Over the past decade there has been significant development in hybrid polymer coatings exhibiting tunable surface morphology, surface charge, and chemical segregation-all believed to be key properties in antifouling (AF) coating performance. While a large body of research exists on these materials, there have yet to be studies on all the aforementioned properties in a colocalized manner with nanoscale spatial resolution. Here, we report colocalized atomic force microscopy, scanning Kelvin probe microscopy, and confocal Raman microscopy on a model AF xerogel film composed of 1:9:9 (mol:mol:mol) 3-aminopropyltriethoxysilane (APTES), n-octyltriethoxysilane (C8), and tetraethoxysilane (TEOS) formed on Al2O3. This AF film is found to consist of three regions that are chemically and physically unique in 2D and 3D across multiple length scales: (i) a 1.5 μm thick base layer derived from all three precursors; (ii) 2-4 μm diameter mesa-like features that are enriched in free amine (from APTES), depleted in the other species and that extend 150-400 nm above the base layer; and (iii) 1-2 μm diameter subsurface inclusions within the base layer that are enriched in hydrogen-bonded amine (from APTES) and depleted in the other species.

  5. Detection of circovirus infection in pigeons by in situ hybridization using cloned DNA probes.

    PubMed

    Smyth, J A; Weston, J; Moffett, D A; Todd, D

    2001-11-01

    Degenerate primers were designed based on known sequence information for the circoviruses psittacine beak and feather disease virus and porcine circovirus and applied by polymerase chain reaction (PCR) to known virus-infected bursa of Fabricius (BF) from a pigeon. A 548-bp DNA fragment was amplified and shown to be specific to a novel circovirus, named pigeon circovirus (PiCV), and was used to produce sensitive and specific probes for detection of circovirus DNA by in situ hybridization (ISH). Using ISH on BF from 107 pigeons submitted for necropsy, infection was detected in 89%, compared with a histologic detection rate of 66%. Using the ISH technique, infected cells were also found in liver, kidney, trachea, lung, brain, crop, intestine, spleen, bone marrow, and heart of some birds. Large quantities of DNA were present in some of these tissues, and in the absence of BF, liver in particular is identified as a potentially useful organ to examine for presence of PiCV. This high prevalence of infection in diseased birds is noteworthy, emphasizing the need for studies to determine the precise role of this virus as a disease-producing agent.

  6. Evaluating a hybrid three-dimensional metrology system: merging data from optical and touch probe devices

    NASA Astrophysics Data System (ADS)

    Gerde, Janice R.; Christens-Barry, William A.

    2011-08-01

    In a project to meet requirements for CBP Laboratory analysis of footwear under the Harmonized Tariff Schedule of the United States (HTSUS), a hybrid metrology system comprising both optical and touch probe devices has been assembled. A unique requirement must be met: To identify the interface-typically obscured in samples of concern-of the "external surface area upper" (ESAU) and the sole without physically destroying the sample. The sample outer surface is determined by discrete point cloud coordinates obtained using laser scanner optical measurements. Measurements from the optically inaccessible insole region are obtained using a coordinate measuring machine (CMM). That surface similarly is defined by point cloud data. Mathematically, the individual CMM and scanner data sets are transformed into a single, common reference frame. Custom software then fits a polynomial surface to the insole data and extends it to intersect the mesh fitted to the outer surface point cloud. This line of intersection defines the required ESAU boundary, thus permitting further fractional area calculations to determine the percentage of materials present. With a draft method in place, and first-level method validation underway, we examine the transformation of the two dissimilar data sets into the single, common reference frame. We also will consider the six previously-identified potential error factors versus the method process. This paper reports our on-going work and discusses our findings to date.

  7. Discovery of copy number variants by multiplex amplifiable probe hybridization (MAPH) in candidate pigmentation genes.

    PubMed

    López, Saioa; García, Iker; Smith, Isabel; Sevilla, Arrate; Izagirre, Neskuts; de la Rúa, Concepción; Alonso, Santos

    2015-01-01

    Copy Number Variants (CNVs) contribute to a large fraction of genetic diversity and some of them have been reported to offer an evolutionary advantage. To identify CNVs in pigmentary loci that could contribute to human skin pigmentation diversity. This study assessed the existence of CNVs in every exon of candidate genes: TYR, TYRP1, DCT, MC1R and SLC24A5, using the Multiplex Amplifiable Probe Hybridization technique (MAPH). This study analysed a total of 99 DNA samples of unrelated individuals from different populations. Validation and further analysis in a larger Spanish sample were performed by RT-qPCR. Five CNVs were identified by MAPH: DCT exons 4 and 8, TYR exon 1 and SLC24A5 exons 1 and 4. Real-time quantitative PCR (RT-qPCR) confirmed the CNV in exon 1 of SLC24A5. This study further analysed the 5' promoter region of SLC24A5 and found another CNV in this region. However, no association was found between the CNV and the degree of pigmentation. Although the functional role of these structural variants in pigmentation should be the subject of future work, the results emphasize the need to consider all classes of variation (both SNPs and CNVs) when exploring the genetics of skin pigmentation.

  8. Use of Peptide Nucleic Acid-Fluorescence In Situ Hybridization for Definitive, Rapid Identification of Five Common Candida Species▿

    PubMed Central

    Reller, Megan E.; Mallonee, Amanda B.; Kwiatkowski, Nicole P.; Merz, William G.

    2007-01-01

    We investigated a 2.5-h peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH) assay with five Candida species-specific probes to identify Candida colonies and compared it to standard 2-h to 5-day phenotypic identification methods. Suspensions were made and slides were prepared and read for fluorescence per the manufacturer's instructions. Sensitivity was 99% (109/110), and specificity was 99% (129/130). PNA-FISH can rapidly identify those Candida species isolated most frequently. PMID:17804657

  9. DNA hybridization activity of single-stranded DNA-conjugated gold nanoparticles used as probes for DNA detection

    NASA Astrophysics Data System (ADS)

    Kira, Atsushi; Matsuo, Kosuke; Nakajima, Shin-ichiro

    2016-02-01

    Colloidal nanoparticles (NPs) have potential applications in bio-sensing technologies as labels or signal enhancers. In order to meet demands for a development of biomolecular assays by a quantitative understanding of single-molecule, it is necessary to regulate accuracy of the NPs probes modified with biomolecules to optimize the characteristics of NPs. However, to our knowledge, there is little information about the structural effect of conjugated biomolecules to the NPs. In this study, we investigated the contribution of a density of single-stranded DNA (ssDNA) conjugating gold NP to hybridization activity. Hybridization activity decreased in accordance with increases in the density of attached ssDNAs, likely due to electrostatic repulsion generated by negatively charged phosphate groups in the ssDNA backbone. These results highlight the importance of controlling the density of ssDNAs attached to the surface of NPs used as DNA detection probes.

  10. Photodegradation of lipopolysaccharides and the inhibition of macrophage activation by anthraquinone-boronic acid hybrids.

    PubMed

    Takahashi, Daisuke; Miura, Takuya; Toshima, Kazunobu

    2012-08-07

    Target-selective photodegradation of 3-deoxy-D-manno-2-octulopyranosonic acid (KDO) was achieved without additives and under neutral conditions using a designed anthraquinone-boronic acid hybrid and long wavelength UV light irradiation. The hybrid can photodegrade lipopolysaccharides (LPS) and inhibit macrophage activation induced by LPS.

  11. Diagnosis of bacterial vaginosis by a new multiplex peptide nucleic acid fluorescence in situ hybridization method

    PubMed Central

    Machado, António; Castro, Joana; Cereija, Tatiana; Almeida, Carina

    2015-01-01

    Bacterial vaginosis (BV) is one of most common vaginal infections. However, its diagnosis by classical methods reveals low specificity. Our goal was to evaluate the accuracy diagnosis of 150 vaginal samples with research gold standard methods and our Peptide Nucleic Acid (PNA) probes by Fluorescence in situ Hybridization (FISH) methodology. Also, we described the first PNA-FISH methodology for BV diagnosis, which provides results in approximately 3 h. The results showed a sensitivity of 84.6% (95% confidence interval (CI), from 64.3 to 95.0%) and a specificity of 97.6% (95% CI [92.6–99.4%]), demonstrating the higher specificity of the PNA-FISH method and showing false positive results in BV diagnosis commonly obtained by the classical methods. This methodology combines the specificity of PNA probes for Lactobacillus species and G. vaginalis visualization and the calculation of the microscopic field by Nugent score, allowing a trustful evaluation of the bacteria present in vaginal microflora and avoiding the occurrence of misleading diagnostics. Therefore, the PNA-FISH methodology represents a valuable alternative for BV diagnosis. PMID:25737820

  12. An atomic force microscopy study of DNA hairpin probes monolabelled with gold nanoparticle: Grafting and hybridization on oxide thin films

    NASA Astrophysics Data System (ADS)

    Lavalley, V.; Chaudouët, P.; Stambouli, V.

    2007-12-01

    First and original results are reported regarding the surface evolution of two kinds of oxide film after covalent grafting and hybridization of hairpin oligonucleotide probes. These hairpin probes were monolabelled with a 1.4 nm gold nanoparticle. One kind of oxide film was rough Sb doped SnO 2 oxide film and the other kind was smooth SiO 2 film. Same process of covalent grafting, involving a silanization step, was performed on both oxide surfaces. Atomic force microscopy (AFM) was used to study the evolution of each oxide surface after different steps of the process: functionalization, probe grafting and hybridization. In the case of rough SnO 2 films, a slight decrease of the roughness was observed after each step whereas in the case of smooth SiO 2 films, a maximum of roughness was obtained after probe grafting. Step height measurements of grafted probes could be performed on SiO 2 leading to an apparent thickness of around 3.7 ± 1.0 nm. After hybridization, on the granular surface of SnO 2, by coupling AFM with SEM FEG analyses, dispersed and well-resolved groups of gold nanoparticles linked to DNA duplexes could be observed. Their density varied from 6.6 ± 0.3 × 10 10 to 2.3 ± 0.3 × 10 11 dots cm -2. On the contrary, on smooth SiO 2 surface, the DNA duplexes behave like a dense carpet of globular structures with a density of 2.9 ± 0.5 × 10 11 globular structures cm -2.

  13. A novel acidic pH fluorescent probe based on a benzothiazole derivative.

    PubMed

    Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi

    2017-04-15

    A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H(+) in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.

  14. A novel acidic pH fluorescent probe based on a benzothiazole derivative

    NASA Astrophysics Data System (ADS)

    Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi

    2017-04-01

    A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.

  15. Detecting Microbial Nucleic Acids within Nematode Bodies: A Photo Essay

    USDA-ARS?s Scientific Manuscript database

    We developed a taxa-specific, fluorescence in situ hybridization (FISH) technique to localize microbial nucleic acids within nematode bodies. This technique involves hybridization of a nucleic acid probe to target microbial sequences. Hybridization is detected microscopically, as the probes have f...

  16. Probing linker design in citric acid-ciprofloxacin conjugates.

    PubMed

    Milner, Stephen J; Snelling, Anna M; Kerr, Kevin G; Abd-El-Aziz, Ahmad; Thomas, Gavin H; Hubbard, Roderick E; Routledge, Anne; Duhme-Klair, Anne-Kathrin

    2014-08-15

    A series of structurally related citric acid-ciprofloxacin conjugates was synthesised to investigate the influence of the linker between citric acid and ciprofloxacin on antibacterial activities. Minimum inhibitory concentrations (MICs) were determined against a panel of reference strains and clinical isolates of bacteria associated with infection in humans and correlated with the DNA gyrase inhibitory activity. The observed trend was rationalised by computational modelling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Efficient ratiometric fluorescence probe based on dual-emission quantum dots hybrid for on-site determination of copper ions.

    PubMed

    Yao, Jianlei; Zhang, Kui; Zhu, Houjuan; Ma, Fang; Sun, Mingtai; Yu, Huan; Sun, Jian; Wang, Suhua

    2013-07-02

    Of various chemosensory protocols, the color change observed by the naked eye is considered to be a conceivable and on-site way to indicate the presence of an analyte. We herein designed a ratiometric fluorescence probe by hybridizing dual-emission quantum dots (QDs) and demonstrated its efficiency for on-site visual determination of copper ions. The hybrid probe comprises two sizes of cadmium telluride QDs emitting red and green fluorescence, respectively, in which the red-emitting ones are embedded in silica nanoparticles and the green-emitting ones are covalently linked onto the surface. The fluorescence of the embedded QDs is insensitive to the analyte, whereas the green emissive QDs are functionalized to be selectively quenched by the analyte. Upon exposure to different amounts of copper ions, the variations of the dual emission intensity ratios display continuous color changes from green to red, which can be clearly observed by the naked eye. The limit of detection for copper is estimated to be 1.1 nM, much lower than the allowable level of copper (~20 μM) in drinking water set by U.S. Environmental Protection Agency. The probe is demonstrated for the determination of copper ions in lake water and mineral water samples, especially for visually monitoring copper residues on herb leaves. This prototype ratiometric probe is simple, fully self-contained, and thus potentially attractive for visual identification without the need for elaborate equipment.

  18. Non-Covalent Fluorescent Labeling of Hairpin DNA Probe Coupled with Hybridization Chain Reaction for Sensitive DNA Detection.

    PubMed

    Song, Luna; Zhang, Yonghua; Li, Junling; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2016-04-01

    An enzyme-free signal amplification-based assay for DNA detection was developed using fluorescent hairpin DNA probes coupled with hybridization chain reaction (HCR). The hairpin DNAs were designed to contain abasic sites in the stem moiety. Non-covalent labeling of the hairpin DNAs was achieved when a fluorescent ligand was bound to the abasic sites through hydrogen bonding with the orphan cytosine present on the complementary strand, accompanied by quench of ligand fluorescence. As a result, the resultant probes, the complex formed between the hairpin DNA and ligand, showed almost no fluorescence. Upon hybridization with target DNA, the probe underwent a dehybridization of the stem moiety containing an abasic site. The release of ligand from the abasic site to the solution resulted in an effective fluorescent enhancement, which can be used as a signal. Compared with a sensing system without HCR, a 20-fold increase in the sensitivity was achieved using the sensing system with HCR. The fluorescent intensity of the sensing system increased with the increase in target DNA concentration from 0.5 nM to 100 nM. A single mismatched target ss-DNA could be effectively discriminated from complementary target DNA. Genotyping of a G/C single-nucleotide polymorphism of polymerase chain reaction (PCR) products was successfully demonstrated with the sensing system. Therefore, integrating HCR strategy with non-covalent labeling of fluorescent hairpin DNA probes provides a sensitive and cost-effective DNA assay.

  19. Design and application of two oligonucleotide probes for the identification of Geodermatophilaceae strains using fluorescence in situ hybridization (FISH).

    PubMed

    Urzì, Clara; La Cono, Violetta; Stackebrandt, Erko

    2004-07-01

    Bacteria of the family of Geodermatophilaceae are actively involved in the decay processes [Urzì, C. and Realini, M. (1998) Int Biodeterior Biodegrad 42: 45-54; Urzì, C., Salamone, P., Schumann, P., and Stackebrandt, E. (2000) Int J Syst Evol Microbiol 50: 529-536] of stone monuments. Characterization of isolates includes phenotypic, chemotaxonomic and genetic analysis often requiring long-term procedures. The use of specific probes for members of Geodermatophilaceae family could be useful for the easy detection of those strains colonizing rock surfaces and involved in the biodeterioration. Two 16S rRNA-targeted oligonucleotide probes were designed for the specific detection of members of the family Geodermatophilaceae using fluorescence in situ hybridization (FISH); one probe specific for members of the two genera Geodermatophilus/Blastococcus and the second for members of the genus Modestobacter.

  20. Nucleic Acid-Peptide Complex Phase Controlled by DNA Hybridization

    NASA Astrophysics Data System (ADS)

    Vieregg, Jeffrey; Lueckheide, Michael; Leon, Lorraine; Marciel, Amanda; Tirrell, Matthew

    When polyanions and polycations are mixed, counterion release drives formation of polymer-rich complexes that can either be solid (precipitates) or liquid (coacervates) depending on the properties of the polyelectrolytes. These complexes are important in many fields, from encapsulation of industrial polymers to membrane-free segregation of biomolecules such as nucleic acids and proteins. Condensation of long double-stranded DNA has been studied for several decades, but comparatively little attention has been paid to the polyelectrolyte behavior of oligonucleotides. We report here studies of DNA oligonucleotides (10 - 88 nt) complexed with polylysine (10 - 100 aa). Unexpectedly, we find that the phase of the resulting complexes is controlled by the hybridization state of the nucleic acid, with double-stranded DNA forming precipitates and single-stranded DNA forming coacervates. Stability increases with polyelectrolyte length and decreases with solution salt concentration, with complexes of the longer double-stranded polymers undergoing precipitate/coacervate/soluble transitions as ionic strength is increased. Mixing coacervates formed by complementary single-stranded oligonucleotides results in precipitate formation, raising the possibility of stimulus-responsive material design.

  1. Structure and DNA Hybridization Properties of Mixed Nucleic Acid/Maleimide-ethylene glycol Monolayers

    PubMed Central

    Lee, Chi-Ying; Nguyen, Phuong-Cac T.; Grainger, David W.; Gamble, Lara J.; Castner, David G.

    2008-01-01

    The surface structure and DNA hybridization performance of thiolated single-strand DNA (HS-ssDNA) covalently attached to a maleimide-ethylene glycol disulfide (MEG) monolayer on gold have been investigated. Monolayer immobilization chemistry and surface coverage of reactive ssDNA probes were studied by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Orientation of the ssDNA probes was determined by near edge X-ray absorption fine structure (NEXAFS). Target DNA hybridization on the DNA-MEG probe surfaces was measured by surface plasmon resonance (SPR) to demonstrate the utility of these probe surfaces for detection of DNA targets from both purified target DNA samples and complex biological mixtures such as blood serum. Data from complementary techniques showed that immobilized ssDNA density is strongly dependent on the spotted bulk DNA concentration and buffer ionic strength. Variation of the immobilized ssDNA density had a profound influence on the DNA probe orientation at the surface and subsequent target hybridization efficiency. With increasing surface probe density, NEXAFS polarization dependence results (followed by monitoring the N 1s → π* transition) indicate that the immobilized ssDNA molecules reorient towards a more upright position on the MEG monolayer. SPR assays of DNA targets from buffer and serum showed that DNA hybridization efficiency increased with decreasing surface probe density. However, target detection in serum was better on the “high density” probe surface than on the “high efficiency” probe surface. The amount of target detected for both ssDNA surfaces were several orders of magnitude poorer in serum than in purified DNA samples due to non-specific serum protein adsorption onto the sensing surface. PMID:17492838

  2. Radical-generating coordination complexes as tools for rapid and effective fragmentation and fluorescent labeling of nucleic acids for microchip hybridization.

    SciTech Connect

    Kelly, J. J.; Chernov, B. K.; Tovstanovsky, I.; Mirzabekov, A. D.; Bavykin, S. G.; Biochip Technology Center; Northwestern Univ.; Engelhardt Inst. of Molecular Biology

    2002-12-15

    DNA microchip technology is a rapid, high-throughput method for nucleic acid hybridization reactions. This technology requires random fragmentation and fluorescent labeling of target nucleic acids prior to hybridization. Radical-generating coordination complexes, such as 1,10-phenanthroline-Cu(II) (OP-Cu) and Fe(II)-EDTA (Fe-EDTA), have been commonly used as sequence nonspecific 'chemical nucleases' to introduce single-strand breaks in nucleic acids. Here we describe a new method based on these radical-generating complexes for random fragmentation and labeling of both single- and double-stranded forms of RNA and DNA. Nucleic acids labeled with the OP-Cu and the Fe-EDTA protocols revealed high hybridization specificity in hybridization with DNA microchips containing oligonucleotide probes selected for identification of 16S rRNA sequences of the Bacillus group microorganisms.We also demonstrated cDNA- and cRNA-labeling and fragmentation with this method. Both the OP-Cu and Fe-EDTA fragmentation and labeling procedures are quick and inexpensive compared to other commonly used methods. A column-based version of the described method does not require centrifugation and therefore is promising for the automation of sample preparations in DNA microchip technology as well as in other nucleic acid hybridization studies.

  3. Acidity characterization of heterogeneous catalysts by solid-state NMR spectroscopy using probe molecules.

    PubMed

    Zheng, Anmin; Liu, Shang-Bin; Deng, Feng

    2013-01-01

    Characterization of the surface acidic properties of solid acid catalysts is a key issue in heterogeneous catalysis. Important acid features of solid acids, such as their type (Brønsted vs. Lewis acid), distribution and accessibility (internal vs. external sites), concentration (amount), and strength of acid sites are crucial factors dictating their reactivity and selectivity. This short review provides information on different solid-state NMR techniques used for acidity characterization of solid acid catalysts. In particular, different approaches using probe molecules containing a specific nucleus of interest, such as pyridine-d5, 2-(13)C-acetone, trimethylphosphine, and trimethylphosphine oxide, are compared. Incorporation of valuable information (such as the adsorption structure, deprotonation energy, and NMR parameters) from density functional theory (DFT) calculations can yield explicit correlations between the chemical shift of adsorbed probe molecules and the intrinsic acid strength of solid acids. Methods that combine experimental NMR data with DFT calculations can therefore provide both qualitative and quantitative information on acid sites.

  4. Rapid detection of sequence variation in Clostridium difficile genes using LATE-PCR with multiple mismatch-tolerant hybridization probes.

    PubMed

    Pierce, Kenneth E; Khan, Huma; Mistry, Rohit; Goldenberg, Simon D; French, Gary L; Wangh, Lawrence J

    2012-11-01

    A novel molecular assay for Clostridium difficile was developed using Linear-After-The-Exponential polymerase chain reaction (LATE-PCR). Single-stranded DNA products generated by LATE-PCR were detected and distinguished by hybridization to fluorescent mismatch-tolerant probes, as the temperature was lowered after amplification in 5(°)C intervals between 65°C and 25°C. Single-tube multiplex reactions for tcdA, tcdB, tcdC, and cdtB (binary toxin) sequences were initially optimized using synthetic targets and were subsequently done using genomic DNA; each target was detected and characterized by hybridization to one or more probes of a different fluorescent color. In the case of tcdC, three probes, each labeled with a Quasar fluorophore, hybridize to different locations with known mutations, including the deletion at nucleotide 117 in ribotype 027 strains and the premature stop codon mutation at nucleotide 184 in ribotype 078 strains, each of which is associated with hypervirulent infections. These and other tcdC mutations were distinguished from the reference sequence, as well as from each other by changes in the fluorescent contour generated from the combined Quasar-labeled probes. Specific variations in tcdA and tcdB were also identified in the multiplex assay, including those that identified strains lacking toxin A production. This single closed-tube assay generates substantially more information about virulent C. difficile than currently available commercial assays and could be further expanded to provide strain typing.

  5. Design and validation of an oligonucleotide probe for detection of protozoa from the order Trichomonadida using chromogenic in situ hybridization

    PubMed Central

    Mostegl, Meike Marissa; Richter, Barbara; Nedorost, Nora; Maderner, Anton; Dinhopl, Nora; Kulda, Jaroslav; Liebhart, Dieter; Hess, Michael; Weissenböck, Herbert

    2010-01-01

    Infections with protozoal parasites of the order Trichomonadida are often observed in veterinary medicine. Based on the trichomonad species involved these infections are either asymptomatic or can lead to sometimes serious disease. To further study protozoal agents of the order Trichomonadida the establishment of a method to detect trichomonads directly in the tissue, allowing parasite-lesion correlation, is necessary. Here we describe the design and evaluation of an oligonucleotide probe for chromogenic in situ hybridization, theoretically allowing detection of all hitherto known members of the order Trichomonadida. The probe was designed on a region of the 18S ribosomal RNA gene homologue for all representatives of the order Trichomonadida available in the GenBank. Functionality of the probe was proven using protozoal cultures containing different trichomonads (Monocercomonas colubrorum, Hypotrichomonas acosta, Pentatrichomonas hominis, Trichomitus batrachorum, Trichomonas gallinae, Tetratrichomonas gallinarum, Tritrichomonas foetus, and Tritrichomonas augusta). Furthermore, three different tissue sections containing either Trichomonas gallinae, Tritrichomonas foetus or Histomonas meleagridis were tested positive. Additionally, to rule out cross reactivity of the probe a large number of different pathogenic protozoal agents, fungi, bacteria and viruses were tested and gave negative results. The probe presented here can be considered an important tool for diagnosis of all to date described relevant protozoal parasites of the order Trichomonadida in tissue samples. PMID:20395049

  6. Experimental characterization of the lower hybrid wave field on the first pass using a magnetic probe array

    NASA Astrophysics Data System (ADS)

    Shinya, T.; Baek, S. G.; Wallace, G. M.; Parker, R. R.; Shiraiwa, S.; Takase, Y.

    2016-10-01

    Experimental characterization of the lower hybrid (LH) wave propagation from the launcher to the core plasma is important to validate an antenna spectrum model and to identify parasitic wave-edge plasma interactions occurring in front of the launcher. On Alcator C-Mod, the wave frequency spectrum and dominant parallel wavenumber are characterized with two probe arrays installed near the edge plasma. The first one is mounted on a radially movable structure that is about 108 deg toroidally away from the launcher. A phasing scan experiment at moderate density suggests a resonance-cone propagation of the launched slow LH wave with a finite spectral width. As plasma density is raised, the measured power decreases, correlated with the observed loss of efficiency. Recently, the second probe array with an increased number of probes has been installed on a limiter that is 54 deg. toroidally away from the launcher, which is expected to be dominantly sensitive to the wave-field directly leaving the launcher. An initial measurement shows that the probe array detects a coherent wave field. A full-wave model to evaluate the wave electric-field pattern in front of the probe array is under development. If available, further experimental and modeling results will be presented. Supported by USDoE Award(s) DE-FC02-99ER54512 and Japan/U.S. Cooperation in Fusion Research and Development.

  7. Electrostatic surface plasmon resonance: Direct electric field-induced hybridization and denaturation in monolayer nucleic acid films and label-free discrimination of base mismatches

    PubMed Central

    Heaton, Richard J.; Peterson, Alexander W.; Georgiadis, Rosina M.

    2001-01-01

    We demonstrate that in situ optical surface plasmon resonance spectroscopy can be used to monitor hybridization kinetics for unlabeled DNA in tethered monolayer nucleic acid films on gold in the presence of an applied electrostatic field. The dc field can enhance or retard hybridization and can also denature surface-immobilized DNA duplexes. Discrimination between matched and mismatched hybrids is achieved by simple adjustment of the electrode potential. Although the electric field at the interface is extremely large, the tethered single-stranded DNA thiol probes remain bound and can be reused for subsequent hybridization reactions without loss of efficiency. Only capacitive charging currents are drawn; redox reactions are avoided by maintaining the gold electrode potential within the ideally polarizable region. Because of potential-induced changes in the shape of the surface plasmon resonance curve, we account for the full curve rather than simply the shift in the resonance minimum. PMID:11259682

  8. Babesia gibsoni: detection in blood smears and formalin-fixed, paraffin-embedded tissues using deoxyribonucleic acid in situ hybridization analysis.

    PubMed

    Yamasaki, Masahiro; Kobayashi, Yusuke; Nakamura, Kensuke; Sasaki, Noboru; Murakami, Masahiro; Rajapakshage, Bandula Kumara Wickramasekara; Ohta, Hiroshi; Yamato, Osamu; Maede, Yoshimitsu; Takiguchi, Mitsuyoshi

    2011-01-01

    In this study, we attempted to detect Babesia gibsoni in blood smears and formalin-fixed, paraffin-embedded tissues obtained from B. gibsoni-infected dogs using in situ hybridization. Using a digoxigenin-conjugated deoxyribonucleic acid (DNA) probe, both intraerythrocytic and exoerythrocytic parasites in the culture could be specifically stained in blood smears fixed with 4% phosphate-buffered paraformaldehyde. This indicated that genomic DNA extracted from the parasites could be detected using in situ hybridization. Moreover, the parasite could be specifically stained in paraffin-embedded spleen, lymph node, and kidney sections using in situ hybridization. Infected erythrocytes in blood vessels in the spleen and kidney, hemosiderin-laden macrophages in the spleen, and phagocytized erythrocytes, which seemed to be infected with the parasites, in lymph nodes were also specifically stained. This suggests that in situ hybridization can be utilized to investigate both the life cycle of B. gibsoni and the pathological condition of canine babesiosis.

  9. Tethered phytic acid as a probe for measuring phytase activity.

    PubMed

    Berry, Duane F; Berry, David A

    2005-06-15

    A novel approach for measuring phytase activity is presented. We have developed a new chromophoric substrate analog of phytic acid, 5-O-[6-(benzoylamino)hexyl]-d-myo-inositol-1,2,3,4,6-pentakisphosphate that permits direct measurement of the phosphate ester bond-cleavage reaction using HPLC. This compound, along with its dephosphorylated T-phosphatidylinositol intermediates, are quantified using reversed phase chromatography with UV detection.

  10. Probing lipid peroxidation by using linoleic acid and benzophenone.

    PubMed

    Andreu, Inmaculada; Neshchadin, Dmytro; Rico, Enrique; Griesser, Markus; Samadi, Abdelouahid; Morera, Isabel M; Gescheidt, Georg; Miranda, Miguel A

    2011-08-29

    A thorough mechanistic study has been performed on the reaction between benzophenone (BZP) and a series of 1,4-dienes, including 1,4-cyclohexadiene (CHD), 1,4-dihydro-2-methylbenzoic acid (MBA), 1,4-dihydro-1,2-dimethylbenzoic acid (DMBA) and linoleic acid (LA). A combination of steady-state photolysis, laser flash photolysis (LFP), and photochemically induced dynamic nuclear polarization (photo-CIDNP) have been used. Irradiation of BZP and CHD led to a cross-coupled sensitizer-diene product, together with 6, 7, and 8. With MBA and DMBA as hydrogen donors, photoproducts arising from cross-coupling of sensitizer and diene radicals were found; compound 7 was also obtained, but 6 and o-toluic acid were only isolated in the irradiation of BZP with MBA. Triplet lifetimes were determined in the absence and in the presence of several diene concentrations. All three model compounds showed similar reactivity (k(q) ≈10(8)  M(-1)  s(-1)) towards triplet excited BZP. Partly reversible hydrogen abstraction of the allylic hydrogen atoms of CHD, MBA, and DMBA was also detected by photo-CIDNP on different timescales. Polarizations of the diamagnetic products were in full agreement with the results derived from LFP. Finally, LA also underwent partly reversible hydrogen abstraction during photoreaction with BZP. Subsequent hydrogen transfer between primary radicals led to conjugated derivatives of LA. The unpaired electron spin population in linoleyl radical (LA(.)) was predominantly found on H(1-5) protons. To date, LA-related radicals were only reported upon hydrogen transfer from highly substituted model compounds by steady-state EPR spectroscopy. Herein, we have experimentally established the formation of LA(.) and shown that it converts into two dominating conjugated isomers on the millisecond timescale. Such processes are at the basis of alterations of membrane structures caused by oxidative stress.

  11. Sets of RNA Repeated Tags and Hybridization-Sensitive Fluorescent Probes for Distinct Images of RNA in a Living Cell

    PubMed Central

    Kubota, Takeshi; Ikeda, Shuji; Yanagisawa, Hiroyuki; Yuki, Mizue; Okamoto, Akimitsu

    2010-01-01

    Background Imaging the behavior of RNA in a living cell is a powerful means for understanding RNA functions and acquiring spatiotemporal information in a single cell. For more distinct RNA imaging in a living cell, a more effective chemical method to fluorescently label RNA is now required. In addition, development of the technology labeling with different colors for different RNA would make it easier to analyze plural RNA strands expressing in a cell. Methodology/Principal Findings Tag technology for RNA imaging in a living cell has been developed based on the unique chemical functions of exciton-controlled hybridization-sensitive oligonucleotide (ECHO) probes. Repetitions of selected 18-nucleotide RNA tags were incorporated into the mRNA 3′-UTR. Pairs with complementary ECHO probes exhibited hybridization-sensitive fluorescence emission for the mRNA expressed in a living cell. The mRNA in a nucleus was detected clearly as fluorescent puncta, and the images of the expression of two mRNAs were obtained independently and simultaneously with two orthogonal tag–probe pairs. Conclusions/Significance A compact and repeated label has been developed for RNA imaging in a living cell, based on the photochemistry of ECHO probes. The pairs of an 18-nt RNA tag and the complementary ECHO probes are highly thermostable, sequence-specifically emissive, and orthogonal to each other. The nucleotide length necessary for one tag sequence is much shorter compared with conventional tag technologies, resulting in easy preparation of the tag sequences with a larger number of repeats for more distinct RNA imaging. PMID:20885944

  12. Construction and Use of a Nonradioactive DNA Hybridization Probe for Detection of Pseudomonas syringae pv. Tomato on Tomato Plants

    PubMed Central

    Cuppels, D. A.; Moore, R. A.; Morris, V. L.

    1990-01-01

    Pseudomonas syringae pv. tomato, the causal agent for bacterial speck of tomato, produces the phytotoxin coronatine. A 5.3-kilobase XhoI fragment from the chromosomal region controlling toxin production was cloned into the plasmid pGB2, and the resulting recombinant plasmid, pTPR1, was tested for its ability to serve as a diagnostic probe for P. syringae pv. tomato. In a survey of 75 plant-associated bacteria, pTPR1 hybridized exclusively to those strains that produced coronatine. The detection limit for this probe, which was labeled with the Chemiprobe nonradioactive reporter system, was approximately 4 × 103 CFU of lesion bacteria. During the 1989 growing season, a total of 258 leaf and fruit lesions from nine tomato fields were screened for P. syringae pv. tomato by using pTPR1 and the culture method of detection. The best agreement between the two methods, 90%, occurred early in the season with samples taken from relatively young (5-week-old) plants. Young plants also had a higher percentage of P. syringae pv. tomato-positive lesions. P. syringae pv. tomato was the only coronatine producer recovered from the nine tomato fields. All 244 P. syringae pv. tomato strains isolated during this study reacted strongly with the probe. The P. syringae pv. tomato population of healthy field tomato leaves was determined by a pTPR1 colony hybridization procedure. Every probe-positive colony that was isolated and characterized was identified as P. syringae pv. tomato. The pTPR1 probe should expedite disease diagnosis and facilitate epidemiological studies of this pathogen. It also should aid in screening transplant seedlings for bacterial speck infestation. Images PMID:16348215

  13. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    PubMed

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-01

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  14. Potential role of a hybrid intraoperative probe based on OCT and positron detection for ovarian cancer detection and characterization.

    PubMed

    Yang, Yi; Biswal, Nrusingh C; Wang, Tianheng; Kumavor, Patrick D; Karimeddini, Mozafareddin; Vento, John; Sanders, Melinda; Brewer, Molly; Zhu, Quing

    2011-07-01

    Ovarian cancer has the lowest survival rate of the gynecologic cancers because it is predominantly diagnosed in the late stages due to the lack of reliable symptoms and efficacious screening techniques. A novel hybrid intraoperative probe has been developed and evaluated for its potential role in detecting and characterizing ovarian tissue. The hybrid intraoperative dual-modality device consists of multiple scintillating fibers and an optical coherence tomography imaging probe for simultaneously mapping the local activities of (18)F-FDG uptake and imaging of local morphological changes of the ovary. Ten patients were recruited to the study and a total of 18 normal, abnormal and malignant ovaries were evaluated ex vivo using this device. Positron count rates of 7.5/8.8-fold higher were found between malignant and abnormal/normal ovaries. OCT imaging of malignant and abnormal ovaries revealed many detailed morphologic features that could be potentially valuable for evaluating local regions with high metabolic activities and detecting early malignant changes in the ovary. These initial results have demonstrated that our novel hybrid imager has great potential for ovarian cancer detection and characterization during minimally invasive endoscopic procedures.

  15. Optimization of a peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) method for the detection of bacteria and disclosure of a formamide effect.

    PubMed

    Santos, Rita S; Guimarães, Nuno; Madureira, Pedro; Azevedo, Nuno F

    2014-10-10

    Despite the fact that fluorescence in situ hybridization (FISH) is a well-established technique to identify microorganisms, there is a lack of understanding concerning the interaction of the different factors affecting the obtained fluorescence. In here, we used flow cytometry to study the influence of three essential factors in hybridization - temperature, time and formamide concentration - in an effort to optimize the performance of a Peptide Nucleic Acid (PNA) probe targeting bacteria (EUB338). The PNA-FISH optimization was performed with bacteria representing different families employing response surface methodology. Surprisingly, the optimum concentration of formamide varied according to the bacterium tested. While hybridization on the bacteria possessing the thickest peptidoglycan was more successful at nearly 50% (v/v) formamide, hybridization on all other microorganisms appeared to improve with much lower formamide concentrations. Gram staining and transmission electron microscopy allowed us to confirm that the overall effect of formamide concentration on the fluorescence intensity is a balance between a harmful effect on the bacterial cell envelope, affecting cellular integrity, and the beneficial denaturant effect in the hybridization process. We also conclude that microorganisms belonging to different families will require different hybridization parameters for the same FISH probe, meaning that an optimum universal PNA-FISH procedure is non-existent for these situations.

  16. Molecular imaging of biothiols and in vitro diagnostics based on an organic chromophore bearing a terbium hybrid probe.

    PubMed

    Zhou, Zhan; Wang, Qianming; Zhang, Cheng Cheng; Gao, Jinwei

    2016-04-25

    In this research, a novel terbium-based luminescent hybrid inorganic/organic probe was designed and synthesized. Mesoporous silica nanospheres dispersed in water were used as the appropriate host for the covalently linked lanthanide-containing organic structures. The lanthanide structure was linked to a sulfonate ester unit, which, in the presence of biothiols, was cleaved to result in terbium emission. The hybrid probe exhibited the capabilities of quantitative determination and detection limits for biothiols were presented (36.8 nM for Cys, 32.5 nM for GSH, and 34.7 nM for Hcy). Evaluation of luminescence changes in cell culture demonstrated that this smart probe is cell membrane permeable and selectively lights up in the presence of cysteine and glutathione in human embryonic kidney cells and human lung adenocarcinoma cells. This variation in the presence of biothiols can be controlled by the treatment with N-methylmaleimide. The narrow line-like bands and long-lived excited states of this terbium luminescent sensor allows the discrimination of scattering signals and interfering fluorescence derived from biological tissues.

  17. Intra-albumin migration of bound fatty acid probed by spin label ESR

    SciTech Connect

    Gurachevsky, Andrey . E-mail: a.gurachevsky@medinnovation.de; Shimanovitch, Ekaterina; Gurachevskaya, Tatjana; Muravsky, Vladimir

    2007-09-07

    Conventional ESR spectra of 16-doxyl-stearic acid bound to bovine and human serum albumin were recorded at different temperatures in order to investigate the status of spin-labeled fatty acid in the interior of the protein globule. A computer spectrum simulation of measured spectra, performed by non-linear least-squares fits, clearly showed two components corresponding to strongly and weakly immobilized fatty acid molecules. The two-component model was verified on spectra measured at different pH. Thermodynamic parameters of the spin probe exchange between two spin probe states were analyzed. It was concluded that at physiological conditions, fatty acid molecules permanently migrate in the globule interior between the specific binding sites and a space among albumin domains.

  18. Probing the Binding Site of Bile Acids in TGR5

    PubMed Central

    2013-01-01

    TGR5 is a G-protein-coupled receptor (GPCR) mediating cellular responses to bile acids (BAs). Although some efforts have been devoted to generate homology models of TGR5 and draw structure–activity relationships of BAs, none of these studies has hitherto described how BAs bind to TGR5. Here, we present an integrated computational, chemical, and biological approach that has been instrumental to determine the binding mode of BAs to TGR5. As a result, key residues have been identified that are involved in mediating the binding of BAs to the receptor. Collectively, these results provide new hints to design potent and selective TGR5 agonists. PMID:24900622

  19. Probing the Binding Site of Bile Acids in TGR5.

    PubMed

    Macchiarulo, Antonio; Gioiello, Antimo; Thomas, Charles; Pols, Thijs W H; Nuti, Roberto; Ferrari, Cristina; Giacchè, Nicola; De Franco, Francesca; Pruzanski, Mark; Auwerx, Johan; Schoonjans, Kristina; Pellicciari, Roberto

    2013-12-12

    TGR5 is a G-protein-coupled receptor (GPCR) mediating cellular responses to bile acids (BAs). Although some efforts have been devoted to generate homology models of TGR5 and draw structure-activity relationships of BAs, none of these studies has hitherto described how BAs bind to TGR5. Here, we present an integrated computational, chemical, and biological approach that has been instrumental to determine the binding mode of BAs to TGR5. As a result, key residues have been identified that are involved in mediating the binding of BAs to the receptor. Collectively, these results provide new hints to design potent and selective TGR5 agonists.

  20. Variability in coconut (Cocos nucifera L.) germplasm and hybrids for fatty acid profile of oil.

    PubMed

    Kumar, S Naresh

    2011-12-28

    Coconut oil, the main product of coconut fruit, is the richest source of glycerol and lauric acid and hence is called lauric oil. This paper reports the fatty acid profile of oil from 60 Talls, 14 Dwarfs, and 34 hybrids. These include collections from 13 countries covering a large coconut-growing area of the world, apart from the indigenous ones. Capillary gas chromatography analysis of oil indicated a wider variation for the fatty acid profile than earlier reported. Apart from this, for the first time other fatty acids such as behenic and lignoceric acids were detected. Oil from cultivars and hybrids of coconut has significantly differed, particularly for commercially important fatty acids such as lauric acid and unsaturated fatty acids. However, coconut oil seems to have a conserved fatty acid profile, mainly because of low unsaturated fatty acids, indicating the possibility of grouping cultivars on the basis of their fatty acid profiles. The cluster analysis based on fatty acid profile indicated grouping together of geographically and typically closely related cultivars. Cultivars with high concentrations of specific fatty acids can be of potential use for industrial exploitation, whereas those with high concentrations of short- and medium-chain fatty acids and unsaturated fatty acids are more suitable for human consumption. Cultivars and hybrids with high and low values for each of the fatty acids are also identified.

  1. Bioavailability of xenobiotics in unsaturated soils – implications for nucleic acid based stable isotope probing

    USDA-ARS?s Scientific Manuscript database

    The use of stable isotopes to label phylogenetically informative biomolecules (phospholipid fatty acids, DNA, or RNA), typically referred to as stable isotope probing (SIP) has the potential of providing definitive evidence that a detected population is active in a specific process, if that process ...

  2. Abscisic acid analogs as chemical probes for dissection of abscisic acid responses in Arabidopsis thaliana.

    PubMed

    Benson, Chantel L; Kepka, Michal; Wunschel, Christian; Rajagopalan, Nandhakishore; Nelson, Ken M; Christmann, Alexander; Abrams, Suzanne R; Grill, Erwin; Loewen, Michele C

    2015-05-01

    Abscisic acid (ABA) is a phytohormone known to mediate numerous plant developmental processes and responses to environmental stress. In Arabidopsis thaliana, ABA acts, through a genetically redundant family of ABA receptors entitled Regulatory Component of ABA Receptor (RCAR)/Pyrabactin Resistant 1 (PYR1)/Pyrabactin Resistant-Like (PYL) receptors comprised of thirteen homologues acting in concert with a seven-member set of phosphatases. The individual contributions of A. thaliana RCARs and their binding partners with respect to specific physiological functions are as yet poorly understood. Towards developing efficacious plant growth regulators selective for specific ABA functions and tools for elucidating ABA perception, a panel of ABA analogs altered specifically on positions around the ABA ring was assembled. These analogs have been used to probe thirteen RCARs and four type 2C protein phosphatases (PP2Cs) and were also screened against representative physiological assays in the model plant Arabidopsis. The 1'-O methyl ether of (S)-ABA was identified as selective in that, at physiologically relevant levels, it regulates stomatal aperture and improves drought tolerance, but does not inhibit germination or root growth. Analogs with the 7'- and 8'-methyl groups of the ABA ring replaced with bulkier groups generally retained the activity and stereoselectivity of (S)- and (R)-ABA, while alteration of the 9'-methyl group afforded an analog that substituted for ABA in inhibiting germination but neither root growth nor stomatal closure. Further in vitro testing indicated differences in binding of analogs to individual RCARs, as well as differences in the enzyme activity resulting from specific PP2Cs bound to RCAR-analog complexes. Ultimately, these findings highlight the potential of a broader chemical genetics approach for dissection of the complex network mediating ABA-perception, signaling and functionality within a given species and modifications in the future design

  3. Ultrasensitive flow injection chemiluminescence detection of DNA hybridization using signal DNA probe modified with Au and CuS nanoparticles.

    PubMed

    Zhang, Shusheng; Zhong, Hua; Ding, Caifeng

    2008-10-01

    A novel and sensitive flow injection chemiluminescence assay for sequence-specific DNA detection based on signal amplification with nanoparticles (NPs) is reported in the present work. The "sandwich-type" DNA biosensor was fabricated with the thiol-functionalized capture DNA first immobilized on an Au electrode and hybridized with one end of target DNA, the other end of which was recognized with a signal DNA probe labeled with CuS NPs and Au NPs on the 3'- and 5'-terminus, respectively. The hybridization events were monitored by the CL intensity of luminol-H2O2-Cu(2+) after the cupric ions were dissolved from the hybrids. We demonstrated that the incorporation of Au NPs in this sensor design significantly enhanced the sensitivity and the selectivity because a single Au NP can be loaded with hundreds of signal DNA probe strands, which were modified with CuS NPs. The ratios of Au NPs, signal DNA probes, and CuS NPs modified on the gold electrode were approximately 1/101/103. A preconcentration process of cupric ions performed by anodic stripping voltammetry technology further increased the sensor performance. As a result of these two combined effects, this DNA sensor could detect as low as femtomolar target DNA and exhibited excellent selectivity against two-base mismatched DNA. Under the optimum conditions, the CL intensity was increased with the increase of the concentration of target DNA in the range of 2.0 x 10(-14)-2.0 x 10(-12) M. A detection limit of 4.8 x 10(-15) M target DNA was achieved.

  4. Design, Synthesis and Microbiological Evaluation of Ampicillin Tetramic acid Hybrid Antibiotics

    PubMed Central

    Cherian, Philip T.; Deshpande, Aditi; Cheramie, Martin N.; Bruhn, David F.; Hurdle, Julian G.; Lee, Richard E.

    2016-01-01

    Exploiting iron-uptake pathways by conjugating β-lactam antibiotics with iron-chelators such as catechol and hydroxamic acid is a proven strategy to overcome permeability-related resistance in Gram-negative bacteria. Since naturally occurring iron chelating tetramic acids have not been previously examined for this purpose, an exploratory series of novel ampicillin-tetramic acid hybrids that structurally resemble ureidopenicillins was designed and synthesized. The new analogs were evaluated for the ability to chelate iron and their MIC activities determined against a representative panel of clinically significant bacterial pathogens. The tetramic acid β-lactam hybrids demonstrated a high affinity to iron in the order of 10−30 M3. The hybrids were less active against Gram-positive bacteria. However, against Gram-negative bacteria, their activity was species dependent with several hybrids displaying improved activity over ampicillin against wild-type Pseudomonas aeruginosa. The anti-Gram-negative activities of the hybrids improved in the presence of clavulanic acid revealing that the tetramic acid moiety did not provide added protection against β-lactamases. Additionally, the hybrids were found to be efflux pump substrates as their activities markedly improved against pump-inactivated strains. Unlike the catechol and hydroxamic acid siderophore β-lactam conjugates, the activities of the hybrids did not improve under iron-deficient conditions. These results suggest that the tetramic acid hybrids gain permeability via different membrane receptors, or they are out competed by native bacterial siderophores with stronger affinities for iron. This study provides a foundation for the further exploitation of the tetramic acid moiety to achieve novel β-lactam anti-Gram-negative agents, providing that efflux and β-lactamase mediated resistance is addressed. PMID:27189120

  5. Design, synthesis and microbiological evaluation of ampicillin-tetramic acid hybrid antibiotics.

    PubMed

    Cherian, Philip T; Deshpande, Aditi; Cheramie, Martin N; Bruhn, David F; Hurdle, Julian G; Lee, Richard E

    2017-01-01

    Exploiting iron-uptake pathways by conjugating β-lactam antibiotics with iron-chelators, such as catechol and hydroxamic acid is a proven strategy to overcome permeability-related resistance in Gram-negative bacteria. As naturally occurring iron-chelating tetramic acids have not been previously examined for this purpose, an exploratory series of novel ampicillin-tetramic acid hybrids that structurally resemble ureidopenicillins was designed and synthesized. The new analogs were evaluated for the ability to chelate iron and their MIC activities determined against a representative panel of clinically significant bacterial pathogens. The tetramic acid β-lactam hybrids demonstrated a high affinity to iron in the order of 10(-30) M(3). The hybrids were less active against Gram-positive bacteria. However, against Gram-negative bacteria, their activity was species dependent with several hybrids displaying improved activity over ampicillin against wild-type Pseudomonas aeruginosa. The anti-Gram-negative activities of the hybrids improved in the presence of clavulanic acid revealing that the tetramic acid moiety did not provide added protection against β-lactamases. In addition, the hybrids were found to be efflux pump substrates as their activities markedly improved against pump-inactivated strains. Unlike the catechol and hydroxamic acid siderophore β-lactam conjugates, the activities of the hybrids did not improve under iron-deficient conditions. These results suggest that the tetramic acid hybrids gain permeability via different membrane receptors, or they are outcompeted by native bacterial siderophores with stronger affinities for iron. This study provides a foundation for the further exploitation of the tetramic acid moiety to achieve novel β-lactam anti-Gram-negative agents, providing that efflux and β-lactamase mediated resistance is addressed.

  6. Detection of human cytomegalovirus by slot-blot hybridization assay employing oligo-primed /sup 32/P-labelled probe

    SciTech Connect

    Agha, S.A.; Coleman, J.C.; Selwyn, S.; Mahmound, L.A.; Abd-Elaal, A.M.; Archard, L.C.

    1988-12-01

    A /sup 32/P-labelled Hind III-0 DNA fragment (nine Kilobases; Kb) from human cytomegalovirus AD-169 (HCMV) was used in slot-blot hybridization assay for the detection of HCMV in clinical samples. The results obtained with DNA hybridization assay (DNA HA) were compared with virus isolation using conventional tube cell culture (CTC) and centrifugation vial culture (CVC), immunofluorescence (IF), and complement fixation test (CFT). Of 15 CTC-positive samples, 13 were positive with DNA HA (sensitivity 86.7%). Also, 14 additional samples were DNA HA-positive but CTC-negative. CVC and/or IF confirmed the diagnosis in nine of 14; the remaining five samples were from three patients who showed fourfold rising antibody titre by CFT. Although DNA HA using /sup 32/P-labelled probes is relatively cumbersome and expensive, it is a valuable test for quantitation of viral shedding in patients with HCMV infections who may benefit from antiviral therapy.

  7. Application of rRNA probes and fluorescence in situ hybridization for rapid detection of the toxic dinoflagellate Alexandrium minutum

    NASA Astrophysics Data System (ADS)

    Tang, Xianghai; Yu, Rencheng; Zhou, Mingjiang; Yu, Zhigang

    2012-03-01

    The dinoflagellate Alexandrium minutum is often associated with harmful algal blooms (HABs). This species consists of many strains that differ in their ability to produce toxins but have similar morphology, making identification difficult. In this study, species-specific rRNA probes were designed for whole-cell fluorescence in situ hybridization (FISH) to distinguish A. minutum from two phylogenetic clades. We acquired the complete SSU to LSU rDNA sequences (GenBank accession numbers JF906989-JF906999) of 11 Alexandrium strains and used these to design rRNA targeted oligonucleotide probes. Three ribotype-specific probes, M-GC-1, M-PC-2, and M-PC-3, were designed. The former is specific for the GC clade ("Global clade") of A. minutum, the majority of which have been found non-toxic, and the latter two are specific for the PSP (paralytic shellfish poisoning)-producing PC clade ("Pacific clade"). The specificity of these three probes was confirmed by FISH. All cells in observed fields of view were fluorescently labeled when probes and target species were incubated under optimized FISH conditions. However, the accessibility of rRNA molecules in ribosomes varied among the probe binding positions. Thus, there was variation in the distribution of positive signals in labeled cells within nucleolus and cytosol (M-GC-1, M-PC-3), or just nucleolus (M-PC-2). Our results provide a methodological basis for studying the biogeography and population dynamics of A. minutum, and providing an early warning of toxic HABs.

  8. Validation of break-apart and fusion MYC probes using a digital fluorescence in situ hybridization capture and imaging system

    PubMed Central

    Liew, Michael; Rowe, Leslie; Clement, Parker W.; Miles, Rodney R.; Salama, Mohamed E.

    2016-01-01

    Introduction: Detection of MYC translocations using fluorescence in situ hybridization (FISH) is important in the evaluation of lymphomas, in particular, Burkitt lymphoma and diffuse large B-cell lymphoma. Our aim was to validate a digital FISH capture and imaging system for the detection of MYC 8q24 translocations using LSI-MYC (a break-apart probe) and MYC 8;14 translocation using IGH-MYC (a fusion probe). Materials and Methods: LSI-MYC probe was evaluated using tissue sections from 35 patients. IGH-MYC probe was evaluated using tissue sections from forty patients. Sections were processed for FISH and analyzed using traditional methods. FISH slides were then analyzed using the GenASIs capture and analysis system. Results: Results for LSI-MYC had a high degree of correlation between traditional method of FISH analysis and digital FISH analysis. Results for IGH-MYC had a 100% concordance between traditional method of FISH analysis and digital FISH analysis. Conclusion: Annotated whole slide images of H and E and FISH sections can be digitally aligned, so that areas of tumor within a section can be matched and evaluated with a greater degree of accuracy. Images can be archived permanently, providing a means for examining the results retrospectively. Digital FISH imaging of the MYC translocations provides a better diagnostic tool compared to traditional methods for evaluating lymphomas. PMID:27217970

  9. Local density probing of atomic gas via cold Li-Ca+ inelastic collisions in an atom-ion hybrid system

    NASA Astrophysics Data System (ADS)

    Saito, Ryoichi; Haze, Shinsuke; Fujinaga, Munekazu; Kyuno, Kazuki; Mukaiyama, Takashi

    2015-05-01

    Ultracold atoms in a harmonic trap inevitably has an inhomogeneous density distribution, which makes an atomic gas an ensemble of atoms in different physical phases. Recent technical advances in the determination of local physical quantities in an atomic gas overcome this complexity and make it possible to directly compare experimental results with many-body theories of a homogeneous atomic gas. A laser-cooled ion can be used as a high-spatial resolution probe of physical quantities of an atomic gas. The spatial spread of an ion can be reduced to sub-microns, which is even small enough for the application of the local probe of atoms in optical lattices. In our experiment, we constructed Li and Ca+ ultracold hybrid system and observed inelastic collisions as a loss of ions. The inelastic collision is confirmed to be a charge-exchange process, whose rate depends linearly on the local atomic density. From the measurement of the rate of the charge-exchange, we can reproduce an atomic density profile. This is an important step toward a local probe of physical quantities of atoms with cold ions. In this presentation, we report on the observation of charge-exchange collisions between Li atom and Ca+ ions, and discuss the feasibility of the ions as a probe of the atoms.

  10. Paper-based solid-phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    PubMed

    Noor, M Omair; Shahmuradyan, Anna; Krull, Ulrich J

    2013-02-05

    A paper-based solid-phase assay is presented for transduction of nucleic acid hybridization using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) were FRET-paired with Cy3 acceptor. Hybridization of Cy3-labeled oligonucleotide targets provided the proximity required for FRET-sensitized emission from Cy3, which served as an analytical signal. The assay exhibited rapid transduction of nucleic acid hybridization within minutes. Without any amplification steps, the limit of detection of the assay was found to be 300 fmol with the upper limit of the dynamic range at 5 pmol. The implementation of glutathione-coated QDs for the development of nucleic acid hybridization assay integrated on a paper-based platform exhibited excellent resistance to nonspecific adsorption of oligonucleotides and showed no reduction in the performance of the assay in the presence of large quantities of noncomplementary DNA. The selectivity of nucleic acid hybridization was demonstrated by single-nucleotide polymorphism (SNP) detection at a contrast ratio of 19 to 1. The reuse of paper over multiple cycles of hybridization and dehybridization was possible, with less than 20% reduction in the performance of the assay in five cycles. This work provides an important framework for the development of paper-based solid-phase QD-FRET nucleic acid hybridization assays that make use of a ratiometric approach for detection and analysis.

  11. Synthesis of organic/inorganic hybrid gel with acid activated clay after γ-ray radiation.

    PubMed

    Kim, Donghyun; Lee, Hoik; Sohn, Daewon

    2014-08-01

    A hybrid gel was prepared from acid activated clay (AA clay) and acrylic acid by gamma ray irradiation. Irradiated inorganic particles which have peroxide groups act as initiator because it generates oxide radicals by increasing temperature. Inorganic nanoparticles which are rigid part in hybrid gel also contribute to increase the mechanical property as a crosslinker. We prepared two hybrid gels to compare the effect of acid activated treatment of clay; one is synthesized with raw clay particles and another is synthesized with AA clay particles. The composition and structure of AA clay particles and raw clay particles were confirmed by X-ray diffraction (XRD), X-ray fluorescence instrument and surface area analyzer. And chemical and physical property of hybrid gel with different ratios of acrylic acid and clay particle was tested by Raman spectroscope and universal testing machine (UTM). The synthesized hydrogel with 76% gel contents can elongated approximately 1000% of its original size.

  12. Catalytic performance of hybrid nanocatalyst for levulinic acid production from glucose

    NASA Astrophysics Data System (ADS)

    Ya'aini, Nazlina; Amin, Nor Aishah Saidina

    2012-11-01

    Levulinic acid is one of the potential and versatile biomass-derived chemicals. Product analysis via HPLC revealed that the heterogeneous dehydration of glucose over hybrid nanocatalyst exhibited better performance compared to single catalyst. Hybrid nanocatalyst containing H-Y zeolite and CrCl3 could substitute homogenous acid catalyst for attaining high levulinic acid yield. Different CrC3 and H-Y zeolite weight ratios of 1:1, 1:2 and 2:1 were prepared according to the wetness impregnation method. The hybrid catalyst with a 1:1 weight ratio performed better compared to others with the highest levulinic acid yield reported (93.5%) at 140 °C, 180 min reaction time, 0.1 g catalyst loading and 0.1 g glucose feed. Characterization results revealed that properties such as surface area, mesoporosity and acidic strength of the catalyst have significant effects on glucose dehydration for levulinic acid production.

  13. Trimethylamine as a probe molecule to differentiate acid sites in Y-FAU zeolite: FTIR study.

    PubMed

    Sarria, Francisca Romero; Blasin-Aubé, Vanessa; Saussey, Jacques; Marie, Olivier; Daturi, Marco

    2006-07-06

    In heterogeneous catalysis acidity has a very important influence on activity and selectivity: correct determination of acidic properties is a base to improve industrial processes. The aim of this work was to study trimethylamine (TMA) as a probe molecule able to distinguish between the different Brønsted acid sites in zeolitic frameworks. Our work mainly focused on faujasite-type zeolites because the HY zeolite is one of the most used acidic catalysts in industrial processes. In this paper, typical IR bands assigned to TMA-protonated species (formed in supercages) are detected in the HY zeolite. TMA interacting by hydrogen bonding with the acid sites located in the sodalite units is also observed. The wavenumbers of some typical IR bands assigned to TMA-protonated species appear to depend on the acidic strength, and a complementary study with ZSM-5 and X-FAU samples confirms this proposition.

  14. Measuring nanometer distances in nucleic acids using a sequence-independent nitroxide probe

    PubMed Central

    Qin, Peter Z; Haworth, Ian S; Cai, Qi; Kusnetzow, Ana K; Grant, Gian Paola G; Price, Eric A; Sowa, Glenna Z; Popova, Anna; Herreros, Bruno; He, Honghang

    2008-01-01

    This protocol describes the procedures for measuring nanometer distances in nucleic acids using a nitroxide probe that can be attached to any nucleotide within a given sequence. Two nitroxides are attached to phosphorothioates that are chemically substituted at specific sites of DNA or RNA. Inter-nitroxide distances are measured using a four-pulse double electron–electron resonance technique, and the measured distances are correlated to the parent structures using a Web-accessible computer program. Four to five days are needed for sample labeling, purification and distance measurement. The procedures described herein provide a method for probing global structures and studying conformational changes of nucleic acids and protein/nucleic acid complexes. PMID:17947978

  15. Sensitive electrochemical detection of telomerase activity using spherical nucleic acids gold nanoparticles triggered mimic-hybridization chain reaction enzyme-free dual signal amplification.

    PubMed

    Wang, Wen-Jing; Li, Jing-Jing; Rui, Kai; Gai, Pan-Pan; Zhang, Jian-Rong; Zhu, Jun-Jie

    2015-03-03

    We report an electrochemical sensor for telomerase activity detection based on spherical nucleic acids gold nanoparticles (SNAs AuNPs) triggered mimic-hybridization chain reaction (mimic-HCR) enzyme-free dual signal amplification. In the detection strategy, SNAs AuNPs and two hairpin probes were employed. SNAs AuNPs as the primary amplification element, not only hybridized with the telomeric repeats on the electrode to amplify signal but also initiated the subsequent secondary amplification, mimic-hybridization chain reaction of two hairpin probes. If the cells' extracts were positive for telomerase activity, SNAs AuNPs could be captured on the electrode. The carried initiators could trigger an alternative hybridization reaction of two hairpin probes that yielded nicked double helices. The signal was further amplified enzyme-free by numerous hexaammineruthenium(III) chloride ([Ru(NH3)6](3+), RuHex) inserting into double-helix DNA long chain by electrostatic interaction, each of which could generate an electrochemical signal at appropriate potential. With this method, a detection limit of down to 2 HeLa cells and a dynamic range of 10-10,000 cells were achieved. Telomerase activities of different cell lines were also successfully evaluated.

  16. Dominant microbial composition and its vertical distribution in saline meromictic Lake Kaiike (Japan) as revealed by quantitative oligonucleotide probe membrane hybridization.

    PubMed

    Koizumi, Yoshikazu; Kojima, Hisaya; Fukui, Manabu

    2004-08-01

    Vertical distributions of dominant bacterial populations in saline meromictic Lake Kaiike were investigated throughout the water column and sediment by quantitative oligonucleotide probe membrane hybridization. Three oligonucleotide probes specific for the small-subunit (SSU) rRNA of three groups of Chlorobiaceae were newly designed. In addition, three general domain (Bacteria, Archaea, and Eukarya)-specific probes, two delta-Proteobacteria-specific probes, a Chlorobiaceae-specific probe, and a Chloroflexi-specific probe were used after optimization of their washing conditions. The abundance of the sum of SSU rRNAs hybridizing with probes specific for three groups of Chlorobiaceae relative to total SSU rRNA peaked in the chemocline, accounting for up to 68%. The abundance of the delta-proteobacterial SSU rRNA relative to total SSU rRNA rapidly increased just below the chemocline up to 29% in anoxic water and peaked at the 2- to 3-cm sediment depth at ca. 34%. The abundance of SSU rRNAs hybridizing with the probe specific for the phylum Chloroflexi relative to total SSU rRNA was highest (31 to 54%) in the top of the sediment but then steeply declined with depth and became stable at 11 to 19%, indicating the robust coexistence of sulfate-reducing bacteria and Chloroflexi in the top of the sediment. Any SSU rRNA of Chloroflexi in the water column was under the detection limit. The summation of the signals of group-specific probes used in this study accounted for up to 89% of total SSU rRNA, suggesting that the DGGE-oligonucleotide probe hybridization approach, in contrast to conventional culture-dependent approaches, was very effective in covering dominant populations.

  17. Probing the structure of nucleic acids with Ni(II) complexes

    SciTech Connect

    Chen, Xiaoying.

    1992-01-01

    The structure of nucleic acids determines their biological function. Interest in the development of novel probes from structures of nucleic acid has led to the discovery of conformation-specific oxidation of guanine sites in DNA and RNA using Ni(II) complexes. The reaction is highly dependent upon the nature of Ni(II) complexes with the most important feature of a strong in-plane ligand field. The unique properties of Ni(II) complexes combining redox and coordination features provide sensitive probes for nucleic acid conformation. One of these nickel complexes, NiCR, has been shown to selectively promote cleavage of DNA at guanine sites held accessible through the formation of unusual secondary structures such as ends, mismatches, bulges and loops. An unique mechanism for the base and conformation-specific oxidation of DNA promoted by Ni(II) complexes is proposed, involving direct ligation of nickel to N-7 of guanine delivering a non-diffusible oxidizing species. NiCR has been proved to be a sensitive and predictable probe for the tertiary structure of RNAs. The specific sites of oxidation of tRNS[sup phe] promoted by NiCR correspond to the most accessible guanine residues determined by theoretic calculations. NiCR has also been successfully applied to probe the tertiary structure of self-splicing Tetrahymena pre-rRNA intron, and has provided important information about the folding of this intron, especially in the region of the catalytic core.

  18. Superior structure stability and selectivity of hairpin nucleic acid probes with an l-DNA stem

    PubMed Central

    Kim, Youngmi; Yang, Chaoyong James; Tan, Weihong

    2007-01-01

    Hairpin nucleic acid probes have been highly useful in many areas, especially for intracellular and in vitro nucleic acid detection. The success of these probes can be attributed to the ease with which their conformational change upon target binding can be coupled to a variety of signal transduction mechanisms. However, false-positive signals arise from the opening of the hairpin due mainly to thermal fluctuations and stem invasions. Stem invasions occur when the stem interacts with its complementary sequence and are especially problematic in complex biological samples. To address the problem of stem invasions in hairpin probes, we have created a modified molecular beacon that incorporates unnatural enantiomeric l-DNA in the stem and natural d-DNA or 2′-O-Me-modified RNA in the loop. l-DNA has the same physical characteristics as d-DNA except that l-DNA cannot form stable duplexes with d-DNA. Here we show that incorporating l-DNA into the stem region of a molecular beacon reduces intra- and intermolecular stem invasions, increases the melting temperature, improves selectivity to its target, and leads to enhanced bio-stability. Our results suggest that l-DNA is useful for designing functional nucleic acid probes especially for biological applications. PMID:17959649

  19. Ternary surface monolayers for ultrasensitive (zeptomole) amperometric detection of nucleic acid hybridization without signal amplification.

    PubMed

    Wu, Jie; Campuzano, Susana; Halford, Colin; Haake, David A; Wang, Joseph

    2010-11-01

    A ternary surface monolayer, consisting of coassembled thiolated capture probe, mercaptohexanol and dithiothreitol, is shown to offer dramatic improvements in the signal-to-noise characteristics of electrochemical DNA hybridization biosensors based on common self-assembled monolayers. Remarkably low detection limits down to 40 zmol (in 4 μL samples) as well as only 1 CFU Escherichia coli per sensor are thus obtained without any additional amplification step in connection to the commonly used horseradish peroxidase/3,3',5,5'-tetramethylbenzidine system. Such dramatic improvements in the detection limits (compared to those of common binary alkanethiol interfaces and to those of most electrochemical DNA sensing strategies without target or signal amplification) are attributed primarily to the remarkably higher resistance to nonspecific adsorption. This reflects the highly compact layer (with lower pinhole density) produced by the coupling of the cyclic- and linear-configuration "backfillers" that leads to a remarkably low background noise even in the presence of complex sample matrixes. A wide range of surface compositions have been investigated, and the ternary mixed monolayer has been systematically optimized. Detailed impedance spectroscopy and cyclic voltammetric studies shed useful insights into the surface coverage. The impressive sensitivity and high specificity of the simple developed methodology indicate great promise for a wide range of nucleic acid testing, including clinical diagnostics, biothreat detection, food safety, and forensic analysis.

  20. Lead-acid batteries in micro-hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Albers, Joern; Meissner, Eberhard; Shirazi, Sepehr

    More and more vehicles hit the European automotive market, which comprise some type of micro-hybrid functionality to improve fuel efficiency and reduce emissions. Most carmakers already offer at least one of their vehicles with an optional engine start/stop system, while some other models are sold with micro-hybrid functions implemented by default. But these car concepts show a wide variety in detail-the term "micro-hybrid" may mean a completely different functionality in one vehicle model compared to another. Accordingly, also the battery technologies are not the same. There is a wide variety of batteries from standard flooded and enhanced flooded to AGM which all are claimed to be "best choice" for micro-hybrid applications. A technical comparison of micro-hybrid cars available on the European market has been performed. Different classes of cars with different characteristics have been identified. Depending on the scope and characteristics of micro-hybrid functions, as well as on operational strategies implemented by the vehicle makers, the battery operating duties differ significantly between these classes of vehicles. Additional laboratory investigations have been carried out to develop an understanding of effects observed in batteries operated in micro-hybrid vehicles pursuing different strategies, to identify limitations for applications of different battery technologies.

  1. Formation of a hybrid plasmonic waveguide mode probed by dispersion measurement

    SciTech Connect

    Saito, H.; Kurata, H.

    2015-04-07

    Hybrid waveguides, i.e., dielectric waveguides combined with plasmonic waveguides, have great potential for concomitantly exhibiting subwavelength confinement and long range propagation, enabling a highly integrated photonic circuit. We report the characterization of hybrid waveguide modes excited in Si/SiO{sub 2}/Al films, by dispersion measurement using angle-resolved electron energy-loss spectroscopy. This experiment directly verifies the formation of the hybrid waveguide mode with a strongly localized electromagnetic field in a 6-nm-thick SiO{sub 2} layer. The results clearly describe the characteristic behavior of the hybrid waveguide mode, which depends on the effective index of the constituent dielectric waveguide and the surface plasmon-polariton modes.

  2. Toward a multiplexed solid-phase nucleic acid hybridization assay using quantum dots as donors in fluorescence resonance energy transfer.

    PubMed

    Algar, W Russ; Krull, Ulrich J

    2009-05-15

    Solid-phase assays using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET) have been developed for the selective detection of nucleic acids. QDs were immobilized on optical fibers and conjugated with probe oligonucleotides. Hybridization with acceptor labeled target oligonucleotides generated FRET-sensitized acceptor fluorescence that was used as the analytical signal. A sandwich assay was also introduced and avoided the need for target labeling. Green and red emitting CdSe/ZnS QDs were used as donors with Cy3 and Alexa Fluor 647 acceptors, respectively. Quantitative measurements were made via spectrofluorimetry or fluorescence microscopy. Detection limits as low as 1 nM were obtained, and the discrimination of single nucleotide polymorphisms (SNPs) with contrast ratios as high as 31:1 was possible. The assays retained their selectivity and at least 50% of their signal when tested in bovine serum and against a large background of noncomplementary genomic DNA. Mixed films of the two colors of QD and two probe oligonucleotide sequences were prepared for multiplexed solid-phase hybridization assays. It was possible to simultaneously detect two target sequences with retention of selectivity, including SNP discrimination. This research provides an important precedent and framework for the future development of QD-based bioassays and biosensors.

  3. A model of binding on DNA microarrays: understanding the combined effect of probe synthesis failure, cross-hybridization, DNA fragmentation and other experimental details of affymetrix arrays

    PubMed Central

    2012-01-01

    Background DNA microarrays are used both for research and for diagnostics. In research, Affymetrix arrays are commonly used for genome wide association studies, resequencing, and for gene expression analysis. These arrays provide large amounts of data. This data is analyzed using statistical methods that quite often discard a large portion of the information. Most of the information that is lost comes from probes that systematically fail across chips and from batch effects. The aim of this study was to develop a comprehensive model for hybridization that predicts probe intensities for Affymetrix arrays and that could provide a basis for improved microarray analysis and probe development. The first part of the model calculates probe binding affinities to all the possible targets in the hybridization solution using the Langmuir isotherm. In the second part of the model we integrate details that are specific to each experiment and contribute to the differences between hybridization in solution and on the microarray. These details include fragmentation, wash stringency, temperature, salt concentration, and scanner settings. Furthermore, the model fits probe synthesis efficiency and target concentration parameters directly to the data. All the parameters used in the model have a well-established physical origin. Results For the 302 chips that were analyzed the mean correlation between expected and observed probe intensities was 0.701 with a range of 0.88 to 0.55. All available chips were included in the analysis regardless of the data quality. Our results show that batch effects arise from differences in probe synthesis, scanner settings, wash strength, and target fragmentation. We also show that probe synthesis efficiencies for different nucleotides are not uniform. Conclusions To date this is the most complete model for binding on microarrays. This is the first model that includes both probe synthesis efficiency and hybridization kinetics/cross-hybridization. These

  4. Immobilization of CdSe/ZnS quantum dots on glass beads for the detection of nucleic acid hybridization using fluorescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Algar, W. Russ; Krull, Ulrich J.

    2011-03-01

    The photoluminescence (PL) properties of quantum dots (QD) are of significant interest in the development of new methods for bioanalysis. Multiplexed solid-phase nucleic acid hybridization assays that use immobilized QDs as donors in fluorescence resonance energy transfer (FRET) are one such example, and offer several unique advantages over other methods. In this work, new interfacial chemistry is described for the immobilization of red-emitting CdSe/ZnS QDs on glass beads for use in hybridization assays. The beads were chemically modified with a dithiolate surface ligand and the QDs immobilized via self-assembly. Further derivatization of the QDs with dithiolate-terminated probe oligonucleotides enabled a hybridization assay that could detect unlabeled target down to nanomolar levels with discrimination of single base-pair mismatches. The use of beads as an immobilization platform afforded shorter analysis times and superior reusability compared to previous studies using optical fibers. Hybridization between probe, target, and Alexa Fluor 647 (A647) labeled reporter oligonucleotides in a sandwich format generated a spectroscopic signal by introducing the proximity needed for FRET between the QDs and A647. The results indicate clear directions for the optimization of solid-phase hybridization assays, and are important for the future development of true multiplexed biosensors based on QDs and FRET.

  5. Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst.

    PubMed

    Ya'aini, Nazlina; Amin, Nor Aishah Saidina; Asmadi, Mohd

    2012-07-01

    Conversion of glucose, empty fruit bunch (efb) and kenaf to levulinic acid over a new hybrid catalyst has been investigated in this study. The characterization and catalytic performance results revealed that the physico-chemical properties of the new hybrid catalyst comprised of chromium chloride and HY zeolite increased the levulinic acid production from glucose compared to the parent catalysts. Optimization of the glucose conversion process using two level full factorial designs (2(3)) with two center points reported 55.2% of levulinic acid yield at 145.2 °C, 146.7 min and 12.0% of reaction temperature, reaction time and catalyst loading, respectively. Subsequently, the potential of efb and kenaf for producing levulinic acid at the optimum conditions was established after 53.2% and 66.1% of efficiencies were reported. The observation suggests that the hybrid catalyst has a potential to be used in biomass conversion to levulinic acid.

  6. Strategies for optimizing DNA hybridization on surfaces.

    PubMed

    Ravan, Hadi; Kashanian, Soheila; Sanadgol, Nima; Badoei-Dalfard, Arastoo; Karami, Zahra

    2014-01-01

    Specific and predictable hybridization of the polynucleotide sequences to their complementary counterparts plays a fundamental role in the rational design of new nucleic acid nanodevices. Generally, nucleic acid hybridization can be performed using two major strategies, namely hybridization of DNA or RNA targets to surface-tethered oligonucleotide probes (solid-phase hybridization) and hybridization of the target nucleic acids to randomly distributed probes in solution (solution-phase hybridization). Investigations into thermodynamic and kinetic parameters of these two strategies showed that hybridization on surfaces is less favorable than that of the same sequence in solution. Indeed, the efficiency of DNA hybridization on surfaces suffers from three constraints: (1) electrostatic repulsion between DNA strands on the surface, (2) steric hindrance between tethered DNA probes, and (3) nonspecific adsorption of the attached oligonucleotides to the solid surface. During recent years, several strategies have been developed to overcome the problems associated with DNA hybridization on surfaces. Optimizing the probe surface density, application of a linker between the solid surface and the DNA-recognizing sequence, optimizing the pH of DNA hybridization solutions, application of thiol reagents, and incorporation of a polyadenine block into the terminal end of the recognizing sequence are among the most important strategies for enhancing DNA hybridization on surfaces.

  7. Development of specific fluorescent oligonucleotide probes for in situ identification of wine lactic acid bacteria.

    PubMed

    Blasco, Lucía; Ferrer, Sergi; Pardo, Isabel

    2003-08-08

    A rapid method for the identification of lactic acid bacteria (LAB) from wine has been developed. This method is based on fluorescence in situ hybridisation (FISH), using fluorescent oligonucleotide probes, homologous to 16S rDNA of those species of LAB commonly found in wines. The protocol for the specific detection of these bacteria was established through the hybridisation of 36 reference strains. The specificity of the probes was evaluated by using pure cultures. Probes were used to identify species in different wines, making it evident that direct identification and quantification from natural samples without culturing is also possible. The results show that FISH is a promising technique for the rapid identification of LAB, allowing positive identification in a few hours (4-16 h).

  8. A fluorescent probe to detect thiol-containing amino acids in solid tumors.

    PubMed

    Ren, Wen Xiu; Han, Jiyou; Pradhan, Tuhin; Lim, Ja-Yun; Lee, Jae Hong; Lee, Jaehun; Kim, Jong-Hoon; Kim, Jong Seung

    2014-04-01

    Early detecting of cancer is critical to provide proper treatment and to improve survival of patients. Here, we reported a highly sensitive ratiometric (yellow emission (550 nm) to blue emission (496 nm)) fluorescent probe 1 developed for detection of thiol-containing amino acids. This probe successfully eliminates interference from background autofluorescence, and discriminates between human carcinoma and normal cells by detecting intracellular thiol levels in living cells (P < 0.05). Furthermore, the ability of the probe to identify growing tumors by measuring GSH in the tissues as well as in the fresh blood of tumor xenograft mice. Additionally, the ratio of the emission intensity at two different wavelengths can provide quantitative analysis of glutathione (GSH) in the living systems. It suggests that it represents a promising prognostic and diagnostic marker, with extensive and simple potential clinical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Ultramild protein-mediated click chemistry creates efficient oligonucleotide probes for targeting and detecting nucleic acids.

    PubMed

    Nåbo, Lina J; Madsen, Charlotte S; Jensen, Knud J; Kongsted, Jacob; Astakhova, Kira

    2015-05-26

    Functionalized synthetic oligonucleotides are finding growing applications in research, clinical studies, and therapy. However, it is not easy to prepare them in a biocompatible and highly efficient manner. We report a new strategy to synthesize oligonucleotides with promising nucleic acid targeting and detection properties. We focus in particular on the pH sensitivity of these new probes and their high target specificity. For the first time, human copper(I)-binding chaperon Cox17 was applied to effectively catalyze click labeling of oligonucleotides. This was performed under ultramild conditions with fluorophore, peptide, and carbohydrate azide derivatives. In thermal denaturation studies, the modified probes showed specific binding to complementary DNA and RNA targets. Finally, we demonstrated the pH sensitivity of the new rhodamine-based fluorescent probes in vitro and rationalize our results by electronic structure calculations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electron spin echo modulation studies of doxylstearic acid spin probes in frozen vesicles: Interaction of the spin probe with D sub 2 O and effects of cholesterol addition

    SciTech Connect

    Hiff, T.; Kevan, L. )

    1989-02-23

    Electron spin echo studies have been carried out for a series of x-doxylstearic acid (x = 5, 7, 10, 12 and 16) spin probes in frozen deuteriated aqueous solutions of phospholipid vesicles and cationic dioctadecyldimethylammonium chloride (DODAC) vesicles. Modulation effects due to interactions of the nitroxide group of the spin probes with D{sub 2}O give information about the conformations of the probes and the degree of hydration of the surfactant headgroups as well as about the degree of packing of the alkyl chain. We show that DODAC headgroups are more hydrated than choline headgroups and that the doxylstearic acid probes show a larger tendency for bending in DODAC vesicles than in phospholipid vesicles. Upon addition of cholesterol into phospholipid vesicles, the headgroups are separated and their degree of hydration increases.

  11. Variations of Bacterial Populations in Human Feces Measured by Fluorescent In Situ Hybridization with Group-Specific 16S rRNA-Targeted Oligonucleotide Probes

    PubMed Central

    Franks, Alison H.; Harmsen, Hermie J. M.; Raangs, Gerwin C.; Jansen, Gijsbert J.; Schut, Frits; Welling, Gjalt W.

    1998-01-01

    Six 16S rRNA-targeted oligonucleotide probes were designed, validated, and used to quantify predominant groups of anaerobic bacteria in human fecal samples. A set of two probes was specific for species of the Bacteroides fragilis group and the species Bacteroides distasonis. Two others were designed to detect species of the Clostridium histolyticum and the Clostridium lituseburense groups. Another probe was designed for the genera Streptococcus and Lactococcus, and the final probe was designed for the species of the Clostridium coccoides-Eubacterium rectale group. The temperature of dissociation of each of the probes was determined. The specificities of the probes for a collection of target and reference organisms were tested by dot blot hybridization and fluorescent in situ hybridization (FISH). The new probes were used in initial FISH experiments to enumerate human fecal bacteria. The combination of the two Bacteroides-specific probes detected a mean of 5.4 × 1010 cells per g (dry weight) of feces; the Clostridium coccoides-Eubacterium rectale group-specific probe detected a mean of 7.2 × 1010 cells per g (dry weight) of feces. The Clostridium histolyticum, Clostridium lituseburense, and Streptococcus-Lactococcus group-specific probes detected only numbers of cells ranging from 1 × 107 to 7 × 108 per g (dry weight) of feces. Three of the newly designed probes and three additional probes were used in further FISH experiments to study the fecal flora composition of nine volunteers over a period of 8 months. The combination of probes was able to detect at least two-thirds of the fecal flora. The normal biological variations within the fecal populations of the volunteers were determined and indicated that these variations should be considered when evaluating the effects of agents modulating the flora. PMID:9726880

  12. Cassava interspecific hybrids with increased protein content and improved amino acid profiles.

    PubMed

    Gomes, P T C; Nassar, N M A

    2013-04-12

    Cassava (Manihot esculenta) is a principal food for large populations of poor people in the tropics and subtropics. Its edible roots are poor in protein and lack several essential amino acids. Interspecific hybrids may acquire high protein characteristics from wild species. We analyzed 19 hybrids of M. esculenta with its wild relative, M. oligantha, for crude protein, amino acid profile, and total cyanide. Some hybrids produced roots with high protein content of up to 5.7%, while the common cultivar that we examined had just 2.3% crude protein. The essential amino acids alanine, phenylalanine, and valine were detected in the hybrids. The sulfur-containing amino acids cysteine and methionine were found at relatively high concentrations in the roots of 4 hybrids. The proportion of lysine in one hybrid was 20 times higher than in the common cultivar. The levels of total cyanide ranged from 19.73 to 172.56 mg/kg and most of the roots analyzed were classified as "non-toxic" and "low toxic". Furthermore, 2 progenies showed reasonable levels of cyanide, but higher protein content and amino acid profile more advantageous than the common cassava.

  13. Hybridization study of developmental plastid gene expression in mustard (Sinapsis alba L.) with cloned probes for most plastid DNA regions.

    PubMed

    Link, G

    1984-07-01

    An approach to assess the extent of developmental gene expression of various regions of plastid (pt)DNA in mustard (Sinapis alba L.) is described. It involves cloning of most ptDNA regions. The cloned regions then serve as hybridization probes to detect and assess the abundance of complementary RNA sequences represented in total plastid RNA. By comparison of the hybridization pattern observed with plastid RNA from either dark-grown or light-grown plants it was found that many ptDNA regions are constitutively expressed, while several 'inducible' regions account for much higher transcript levels in the chloroplast than in the etioplast stage. The reverse situation, i.e. 'repressed' regions which would account for higher transcript levels in the etioplast, was not observed. The hybridization results obtained with RNA from 'intermediatetype' plastids suggest that transient gene expression is a common feature during light-induced chloroplast development. The time-course of gene expression differs for various ptDNA regions.

  14. Docosahexaenoic acid conjugated near infrared flourescence probe for in vivo early tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Siwen; Cao, Jie; Qin, Jingyi; Zhang, Xin; Achilefu, Samuel; Qian, Zhiyu; Gu, Yueqing

    2013-02-01

    Docosahexaenoic acid(DHA) is an omega-3 C22 natural fatty acid with six cis double bonds and as a constituent of membranes used as a precursor for metabolic and biochemical path ways. In this manuscript,we describe the synthesis of near-infrared(NIR) flourescence ICG-Der-01 labeled DHA for in vitro and vivo tumor targeting.The structure of the probe was intensively characterized by UV and MS. The in vitro and vivo tumor targeting abilities of the DHA-based NIR probes were investigeted in MCF-7 cells and MCF-7 xenograft mice model differently by confocal microscopy and CCD camera. The cell cytotoxicity were tested in tumor cells MCF-7 .The results shows that the DHA-based NIR probes have high affinity with the tumor both in vitro and vivo.In addition ,we also found that the DHA-based NIR probes have the apparent cytotoxicity on MCF-7 cells .which demonstrated that DHA was conjugated with other antitumor drug could increase the abilities of antirumor efficacy .So DHA-ICG-Der-01 is a promising optical agent for diagnosis of tumors especially in their early stage.

  15. Open L-lactic acid fermentation of food refuse using thermophilic Bacillus coagulans and fluorescence in situ hybridization analysis of microflora.

    PubMed

    Sakai, Kenji; Ezaki, Yutaka

    2006-06-01

    In the production of commercially useful poly-L-lactic acid plastic from biomass wastes, a feasible fermentation process to produce optically active L-lactic acid would be required. Here, model kitchen refuse (MKR) was inoculated with Bacillus coagulans NBRC12583 under nonsterilized openculture conditions. At temperatures below 45 degrees C, a racemic mixture of D- and L-lactic acids was accumulated, whereas only L-lactic acid was selectively accumulated by incubation at 50-65 degrees C. At 45 degrees C, the results of fermentation could not be consistently reproduced. To analyze microflora in this type of mixed culture system, whole-cell fluorescence in situ hybridization (FISH) using 16S rRNA-targeted oligonucleotide probes for B. coagulans, Bcoa191, and LAC722(L), a group-specific probe for a wide range of mesophilic lactic acid bacteria was applied. The dominancy of mesophilic lactic acid bacteria at lower temperatures, and that of B. coagulans at higher temperatures were confirmed. By using a saccharified liquid of collected kitchen refuse, 86 g/l of L-lactic acid was accumulated under nonsterile conditions by a 5-d incubation at 55 degrees C, pH 6.5, with 53% carbon yield and 97% optical purity. To conclude, high temperature open lactic acid fermentation is a simple and promising method for producing high-grade L-lactic acid from biomass waste, and FISH analysis of such mixed-culture systems is helpful for monitoring the microflora in these cultures.

  16. Detection of Helicobacter Pylori Genome with an Optical Biosensor Based on Hybridization of Urease Gene with a Gold Nanoparticles-Labeled Probe

    NASA Astrophysics Data System (ADS)

    Shahrashoob, M.; Mohsenifar, A.; Tabatabaei, M.; Rahmani-Cherati, T.; Mobaraki, M.; Mota, A.; Shojaei, T. R.

    2016-05-01

    A novel optics-based nanobiosensor for sensitive determination of the Helicobacter pylori genome using a gold nanoparticles (AuNPs)-labeled probe is reported. Two specific thiol-modified capture and signal probes were designed based on a single-stranded complementary DNA (cDNA) region of the urease gene. The capture probe was immobilized on AuNPs, which were previously immobilized on an APTES-activated glass, and the signal probe was conjugated to different AuNPs as well. The presence of the cDNA in the reaction mixture led to the hybridization of the AuNPs-labeled capture probe and the signal probe with the cDNA, and consequently the optical density of the reaction mixture (AuNPs) was reduced proportionally to the cDNA concentration. The limit of detection was measured at 0.5 nM.

  17. Computationally Probing the Performance of Hybrid, Heterogeneous, and Homogeneous Iridium-Based Catalysts for Water Oxidation

    SciTech Connect

    García-Melchor, Max; Vilella, Laia; López, Núria; Vojvodic, Aleksandra

    2016-04-29

    An attractive strategy to improve the performance of water oxidation catalysts would be to anchor a homogeneous molecular catalyst on a heterogeneous solid surface to create a hybrid catalyst. The idea of this combined system is to take advantage of the individual properties of each of the two catalyst components. We use Density Functional Theory to determine the stability and activity of a model hybrid water oxidation catalyst consisting of a dimeric Ir complex attached on the IrO2(110) surface through two oxygen atoms. We find that homogeneous catalysts can be bound to its matrix oxide without losing significant activity. Hence, designing hybrid systems that benefit from both the high tunability of activity of homogeneous catalysts and the stability of heterogeneous systems seems feasible.

  18. Sensitive and high resolution in situ hybridization to human chromosomes using biotin labelled probes: assignment of the human thymocyte CD1 antigen genes to chromosome 1.

    PubMed Central

    Albertson, D G; Fishpool, R; Sherrington, P; Nacheva, E; Milstein, C

    1988-01-01

    A method for in situ hybridization originally developed for mapping genes in the nematode, Caenorhabditis elegans has been adapted for high resolution cytological mapping of genes in the human. The probe DNAs are labelled by incorporation of biotin dUTP and the site of hybridization detected by immunofluorescence. For the accurate assignment of the hybridization signal to chromosome bands, visualized by staining with Hoechst 33258, a heterologous ribosomal DNA probe is also included in the hybridization reaction. These rDNA signals are used as fiducial markers when aligning the two fluorescent images. We demonstrate the method by assignment of the human thymocyte CD1 antigen genes to human chromosome 1q22-23. Images PMID:3053166

  19. Pyrrolidinyl peptide nucleic acid homologues: effect of ring size on hybridization properties.

    PubMed

    Mansawat, Woraluk; Vilaivan, Chotima; Balázs, Árpád; Aitken, David J; Vilaivan, Tirayut

    2012-03-16

    The effect of ring size of four- to six-membered cyclic β-amino acid on the hybridization properties of pyrrolidinyl peptide nucleic acid with an alternating α/β peptide backbone is reported. The cyclobutane derivatives (acbcPNA) show the highest T(m) and excellent specificity with cDNA and RNA.

  20. Identification of human rotavirus serotype by hybridization to polymerase chain reaction-generated probes derived from a hyperdivergent region of the gene encoding outer capsid protein VP7

    SciTech Connect

    Flores, J.; Sears, J.; Schael, I.P.; White, L.; Garcia, D.; Lanata, C.; Kapikian, A.Z. )

    1990-08-01

    We have synthesized {sup 32}P-labeled hybridization probes from a hyperdivergent region (nucleotides 51 to 392) of the rotavirus gene encoding the VP7 glycoprotein by using the polymerase chain reaction method. Both RNA (after an initial reverse transcription step) and cloned cDNA from human rotavirus serotypes 1 through 4 could be used as templates to amplify this region. High-stringency hybridization of each of the four probes to rotavirus RNAs dotted on nylon membranes allowed the specific detection of corresponding sequences and thus permitted identification of the serotype of the strains dotted. The procedure was useful when applied to rotaviruses isolated from field studies.

  1. Localization of glucocorticoid receptor messenger ribonucleic acid in hippocampus of rat brain using in situ hybridization

    SciTech Connect

    Yang, G.; Matocha, M.F.; Rapoport, S.I.

    1988-08-01

    An in situ hybridization procedure was applied to quantify glucocorticoid receptor (GR) mRNAs in the hippocampus of rat brain. Hybridization was carried out using a radiolabeled antisense probe complementary to the rat liver GR gene. The specificity of the method was validated by showing: 1) a high cellular grain density in sections hybridized with an antisense but not a sense probe; 2) agreement between the experimental and theoretical temperature at which 50% of the hybrids melted, and 3) a high signal distribution of GR mRNA in the hippocampus, a region of brain known to preferentially concentrate steroid hormones. Within the hippocampus, however, subregional differences in hybridization densities were observed. Quantitative autoradiography indicated that the average neuronal silver grain number was highest in the pyramidal cell layers of CA2 and CA4 and lowest in those of CA1 and CA3. Also, there was a significant difference in the average grain number between all of the cell fields except for that between CA2 and CA4. These results show that contiguous but neuroanatomically distinct cell fields of the hippocampus express different levels of GR transcripts, and indicate that differential regulation of GR expression occurs in subpopulations of hippocampal neurons.

  2. Cativic acid-caffeic acid hybrid exerts cytotoxic effects and induces apoptotic death in human neuroblastoma cells.

    PubMed

    Alza, Natalia P; Murray, Ana P; Salvador, Gabriela A

    2017-09-05

    The development of hybrids from natural products is a promising strategy for drug discovery. In cancer therapy, there is a need to discover novel agents that can induce apoptosis in cancer cells. To contribute to this field of interest, we investigated the effect of a synthetic hybrid from cativic acid and caffeic acid (5) on viability, proliferation, and apoptosis in human neuroblastoma cells (IMR-32). Three hybrids were prepared via Mitsunobu esterification from 17-hydroxycativic acid (1) and natural phenols. Cell viability was analyzed by MTT assay. SYTOX green and LDH leakage were used to determine the cytotoxic effect. Caspase-3 activity, cell cycle phases, and proliferation were analyzed in order to characterize the biological effects of hybrid 5. The mitogen-activated protein kinase (MAPK) status was evaluated for elucidating the potential mechanisms involved in hybrid 5 effect. Hybrid 5 reduced the viability of IMR-32 cells in a time- and concentration-dependent manner (IC50 = 18.0 ± 1.3 μM) as a result of its antiproliferative effect through changes in the cell cycle distribution and induction of apoptosis associated with activation of caspase-3. Exposure to 5 triggered ERK1/2 activation and nuclear translocation. Hybrid 5 also promoted an increase in nuclear localization of the transcription factor c-Jun. Inhibition of ERK1/2 and JNK potentiated 5-induced inhibition of IMR-32 viability. Hybrid 5 displays cell growth inhibition by promoting cell cycle arrest and apoptosis, through ERK1/2 and JNK participation.

  3. Using photons to manipulate enzyme inhibition by an azobenzene-modified nucleic acid probe

    PubMed Central

    Kim, Youngmi; Phillips, Joseph A.; Liu, Haipeng; Kang, Huaizhi; Tan, Weihong

    2009-01-01

    The ability to inhibit an enzyme in a specific tissue with high spatial resolution combined with a readily available antidote should find many biomedical applications. We have accomplished this by taking advantage of the cis–trans photoisomerization of azobenzene molecules. Specifically, we positioned azobenzene moieties within the DNA sequence complementary to a 15-base-long thrombin aptamer and then linked the azobenzene-modified cDNA to the aptamer by a polyethylene glycol (PEG) linker to make a unimolecular conjugate. During the photoisomerization of azobenzene by visible light, the inhibition of thrombin is disabled because the probe hybridizes with the cDNA in the trans-azobenzene conformation so that the aptamer cannot bind its target thrombin. However, when UV light is applied, melting of the hairpin structure (duplex) is induced via trans-to-cis conversion, thereby changing conformation of the aptamer and making the aptamer free to bind to and inhibit its target thrombin. By using standard clotting assays, we measured the IC200 of various probe designs in both states and concluded the feasibility of using photon energy to temporally and spatially regulate these enzymatic reactions. Thus, we can report the development of DNA probes in the form of photon-controllable (thrombin) inhibitors, termed PCIs, and we expect that this approach will be highly beneficial in future biomedical and pharmaceutical applications. PMID:19359478

  4. Multiplex Peptide Nucleic Acid Fluorescence In Situ Hybridization (PNA-FISH) for Diagnosis of Bacterial Vaginosis.

    PubMed

    Machado, Antonio; Cerca, Nuno

    2017-01-01

    Fluorescence in situ hybridization (FISH) is a molecular method used to identify and quantify microorganisms in a wide range of samples. This technique combines the simplicity of microscopic observation and the specificity of DNA/rRNA hybridization, allowing detection of selected bacterial species and morphologic visualization. Here, we describe a quantitative molecular diagnosis of bacterial vaginosis, based on the classical Nugent score. Our probes are able to differentiate Lactobacillus spp. and Gardnerella vaginalis from the other undefined bacterial species considered in the Nugent score.

  5. Producing a trimethylpentanoic acid using hybrid polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2014-10-07

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing trimethylpentanoic acid. The present invention also provides for a host cell comprising the PKS and when cultured produces the trimethylpentanoic acid. The present invention also provides for a method of producing the trimethylpentanoic acid, comprising: providing a host cell of the present invention, and culturing said host cell in a suitable culture medium such that the trimethylpentanoic acid is produced, optionally isolating the trimethylpentanoic acid, and optionally, reducing the isolated trimethylpentanoic acid into a trimethylpentanol or an iso-octane.

  6. Unlocked nucleic acids with a pyrene-modified uracil: synthesis, hybridization studies, fluorescent properties and i-motif stability.

    PubMed

    Perlíková, Pavla; Karlsen, Kasper K; Pedersen, Erik B; Wengel, Jesper

    2014-01-03

    The synthesis of two new phosphoramidite building blocks for the incorporation of 5-(pyren-1-yl)uracilyl unlocked nucleic acid (UNA) monomers into oligonucleotides has been developed. Monomers containing a pyrene-modified nucleobase component were found to destabilize an i-motif structure at pH 5.2, both under molecular crowding and noncrowding conditions. The presence of the pyrene-modified UNA monomers in DNA strands led to decreases in the thermal stabilities of DNA*/DNA and DNA*/RNA duplexes, but these duplexes' thermal stabilities were better than those of duplexes containing unmodified UNA monomers. Pyrene-modified UNA monomers incorporated in bulges were able to stabilize DNA*/DNA duplexes due to intercalation of the pyrene moiety into the duplexes. Steady-state fluorescence emission studies of oligonucleotides containing pyrene-modified UNA monomers revealed decreases in fluorescence intensities upon hybridization to DNA or RNA. Efficient quenching of fluorescence of pyrene-modified UNA monomers was observed after formation of i-motif structures at pH 5.2. The stabilizing/destabilizing effect of pyrene-modified nucleic acids might be useful for designing antisense oligonucleotides and hybridization probes.

  7. A simple, rapid method of nucleic acid extraction without tissue homogenization for detecting viroids by hybridization and RT-PCR.

    PubMed

    Nakahara, K; Hataya, T; Uyeda, I

    1999-01-01

    A simple, rapid method of nucleic acid extraction on a microcentrifuge tube scale for detecting viroids is presented. Five distinct citrus viroids (CVds), chrysanthemum stunt viroid (CSVd), hop stunt viroid (HSVd), hop latent viroid (HLVd) and potato spindle tuber viroid (PSTVd) were detected in their natural host plants by hybridization using cRNA probes and reverse transcription-polymerase chain reaction (RT-PCR). Nucleic acids (NA) were liberated from tissues by incubation in a buffer containing potassium ethyl xanthogenate (PEX) without tissue homogenization, and then precipitated with ethanol (NA-PEX). All the viroids except CVd-IV could be detected clearly in NA-PEX by hybridization. HSVd, HLVd and PSTVd could also be detected in NA-PEX by RT-PCR. Although CVds and CSVd could not be detected in NA-PEX by RT-PCR, they were detected after further purification: differential precipitation with 2-butoxyethanol and HCl treatment followed by ethanol-precipitation. In addition, PCR in the presence of tetramethylammonium chloride specifically amplified the cDNA of all five distinct CVds under the same temperature and cycle conditions. Since all the viroids could be detected in NA liberated by PEX, the amount of NA extracted by the method described here is sufficient for detecting viroids, enabling the processing of a large number of samples.

  8. Nucleic acid hybridization with RNA immobilized on filter paper.

    NASA Technical Reports Server (NTRS)

    Saxinger, W. C.; Ponnamperuma, C.; Gillespie, D.

    1972-01-01

    RNA has been immobilized in a manner suitable for use in molecular hybridization experiments with dissolved RNA or DNA by a nonaqueous solid-phase reaction with carbonyldiimidazole and RNA 'dry coated' on cellulose or, preferably, on previously activated phosphocellulose filters. Immobilization of RNA does not appear to alter its chemical character or cause it to acquire affinity for unspecific RNA or DNA. The versatility and efficiency of this method make it potentially attractive for use in routine analytical or preparative hybridization experiments, among other applications.

  9. Nucleic acid hybridization with RNA immobilized on filter paper.

    NASA Technical Reports Server (NTRS)

    Saxinger, W. C.; Ponnamperuma, C.; Gillespie, D.

    1972-01-01

    RNA has been immobilized in a manner suitable for use in molecular hybridization experiments with dissolved RNA or DNA by a nonaqueous solid-phase reaction with carbonyldiimidazole and RNA 'dry coated' on cellulose or, preferably, on previously activated phosphocellulose filters. Immobilization of RNA does not appear to alter its chemical character or cause it to acquire affinity for unspecific RNA or DNA. The versatility and efficiency of this method make it potentially attractive for use in routine analytical or preparative hybridization experiments, among other applications.

  10. Site-specific incorporation of probes into RNA polymerase by unnatural-amino-acid mutagenesis and Staudinger-Bertozzi ligation

    PubMed Central

    Chakraborty, Anirban; Mazumder, Abhishek; Lin, Miaoxin; Hasemeyer, Adam; Xu, Qumiao; Wang, Dongye; Ebright, Yon W.; Ebright, Richard H.

    2015-01-01

    Summary A three-step procedure comprising (i) unnatural-amino-acid mutagenesis with 4-azido-phenylalanine, (ii) Staudinger-Bertozzi ligation with a probe-phosphine derivative, and (iii) in vitro reconstitution of RNA polymerase (RNAP) enables the efficient site-specific incorporation of a fluorescent probe, a spin label, a crosslinking agent, a cleaving agent, an affinity tag, or any other biochemical or biophysical probe, at any site of interest in RNAP. Straightforward extensions of the procedure enable the efficient site-specific incorporation of two or more different probes in two or more different subunits of RNAP. We present protocols for synthesis of probe-phosphine derivatives, preparation of RNAP subunits and the transcription initiation factor σ, unnatural amino acid mutagenesis of RNAP subunits and σ, Staudinger ligation with unnatural-amino-acid-containing RNAP subunits and σ, quantitation of labelling efficiency and labelling specificity, and reconstitution of RNAP. PMID:25665560

  11. Hybrid intracerebral probe with integrated bare LED chips for optogenetic studies.

    PubMed

    Ayub, Suleman; Gentet, Luc J; Fiáth, Richárd; Schwaerzle, Michael; Borel, Mélodie; David, François; Barthó, Péter; Ulbert, István; Paul, Oliver; Ruther, Patrick

    2017-09-01

    This article reports on the development, i.e., the design, fabrication, and validation of an implantable optical neural probes designed for in vivo experiments relying on optogenetics. The probes comprise an array of ten bare light-emitting diode (LED) chips emitting at a wavelength of 460 nm and integrated along a flexible polyimide-based substrate stiffened using a micromachined ladder-like silicon structure. The resulting mechanical stiffness of the slender, 250-μm-wide, 65-μm-thick, and 5- and 8-mm-long probe shank facilitates its implantation into neural tissue. The LEDs are encapsulated by a fluropolymer coating protecting the implant against the physiological conditions in the brain. The electrical interface to the external control unit is provided by 10-μm-thick, highly flexible polyimide cables making the probes suitable for both acute and chronic in vivo experiments. Optical and electrical properties of the probes are reported, as well as their in vivo validation in acute optogenetic studies in transgenic mice. The depth-dependent optical stimulation of both excitatory and inhibitory neurons is demonstrated by altering the brain activity in the cortex and the thalamus. Local network responses elicited by 20-ms-long light pulses of different optical power (20 μW and 1 mW), as well as local modulation of single unit neuronal activity to 1-s-long light pulses with low optical intensity (17 μW) are presented. The ability to modulate neural activity makes these devices suitable for a broad variety of optogenetic experiments.

  12. A peptide nucleic acid-functionalized carbon nitride nanosheet as a probe for in situ monitoring of intracellular microRNA.

    PubMed

    Liao, Xianjiu; Wang, Quanbo; Ju, Huangxian

    2015-06-21

    A novel probe for recognition of both cancer cells and intracellular microRNA (miRNA) is designed by functionalizing a carbon nitride nanosheet (f-CNNS) with a Cy5-labeled peptide nucleic acid (Cy5-PNA) and folate. The interaction between Cy5-PNA and CNNS quenches the fluorescence of Cy5, and the presence of folate endows the probe with good specificity to folate acceptor overexpressed cells. The probe can be specifically taken up by cancer cells with an incubation step. Upon the recognition of the PNA to complementary miRNA, the hybridization product is released from the CNNS surface, which leads to the fluorescence recovery and provides a specific method for sensing of miRNA. Thus, this probe can be used for cell-specific intracellular miRNA sensing with a confocal microscope. Using miRNA-18a as a target model, the dynamic changes of its expression level inside living cells can be monitored with the proposed method. This method possesses promising applications in the study of miRNA related bioprocesses and biomedicine.

  13. Design of an innovative lead-acid battery for electric and hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Baxa, M. S.; Weinlein, C. E.

    An innovative lead acid battery was designed specifically for use in a hybrid car. The battery has exceeded all of the minimum performance goals, and in many cases the optimistic target goals. The eV-1300, which features electrolyte circulation, has excellent energy density, power characteristics, efficiency, and cycle life. It is a good candidate battery for other hybrid vehicles and electric vehicles which require a relatively small cell size.

  14. Design and Synthesis of Novel Isoxazole Tethered Quinone-Amino Acid Hybrids

    PubMed Central

    Ravi Kumar, P.; Sambaiah, M.; Kandula, Venu; Payili, Nagaraju; Jaya Shree, A.; Yennam, Satyanarayana

    2014-01-01

    A new series of isoxazole tethered quinone-amino acid hybrids has been designed and synthesized involving 1,3-dipolar cycloaddition reaction followed by an oxidation reaction using cerium ammonium nitrate (CAN). Using this method, for the first time various isoxazole tethered quinone-phenyl alanine and quinone-alanine hybrids were synthesized from simple commercially available 4-bromobenzyl bromide, propargyl bromide, and 2,5-dimethoxybenzaldehyde in good yield. PMID:25709839

  15. Using NV centers to probe magnetization dynamics in normal metal/magnetic insulator hybrid system at the nanoscale

    NASA Astrophysics Data System (ADS)

    Zhang, Huiliang; Ku, Mark J. H.; Han, Minyong; Casola, Francesco; van der Sar, Toeno; Yacoby, Amir; Walsworth, Ronald L.

    2016-05-01

    Understanding magnetization dynamics induced by electric current is of great interest for both fundamental and practical reasons. Great endeavor has been dedicated to spin-orbit torques (SOT) in metallic structures, while quantitative study of analogous phenomena in magnetic insulators remains challenging where transport measurements are not feasible. Recently we have developed techniques using nitrogen vacancy (NV) centers in diamond to probe few-nanometre-scale correlated-electron magnetic excitations (i.e., spin waves). Here we demonstrate how this powerful tool can be implemented to study magnetization dynamics inside ferromagnetic insulator, Yttrium iron garnet (YIG) with spin injection from electrical current through normal metal (Platinum in our case). Particularly our work will focus on NV magnetic detection, imaging, and spectroscopy of coherent auto-oscillations in Pt/YIG microdisc. Magnetic fluctuations and local temperature measurements, both with nearby NV centers, will also be interesting topics relevant to SOT physics in Pt/YIG hybrid system.

  16. Analysis of messenger RNA expression by in situ hybridization using RNA probes synthesized via in vitro transcription

    PubMed Central

    Carter, Bradley S.; Fletcher, Jonathan S.; Thompson, Robert C.

    2010-01-01

    The analysis of the spatial patterning of mRNA expression is critically important for assigning functional and physiological significance to a given gene product. Given the tens of thousands of mRNAs in the mammalian genome, a full assessment of individual gene functions would ideally be overlaid upon knowledge of the specific cell types expressing each mRNA. In situ hybridization approaches represent a molecular biological/histological method that can reveal cellular patterns of mRNA expression. Here, we present detailed procedures for the detection of specific mRNAs using radioactive RNA probes in tissue sections followed by autoradiographic detection. These methods allow for the specific and sensitive detection of spatial patterns of mRNA expression, thereby linking mRNA expression with cell type and function. Radioactive detection methods also facilitate semi-quantitative analyses of changes in mRNA gene expression. PMID:20699122

  17. Non-disjunction in human sperm: results of fluorescence in situ hybridization studies using two and three probes.

    PubMed

    Williams, B J; Ballenger, C A; Malter, H E; Bishop, F; Tucker, M; Zwingman, T A; Hassold, T J

    1993-11-01

    Fluorescence in situ hybridization using two or three probes was utilized to estimate the incidence of diploidy, the incidence of disomy for the sex chromosomes and chromosomes 16 and 18, and the proportion of Y- and X-chromosome bearing sperm, in a series of normal males. Our results demonstrate the importance of using an approach capable of distinguishing disomy from diploidy, as most donors had levels of diploidy higher than the disomy levels of individual chromosomes. Our analyses suggest the existence of chromosome-specific mechanisms of paternal non-disjunction, as sex chromosome disomy was approximately 1.5 times as common as disomy 16, and over two times as common as disomy 18. In studies of gametic sex ratio, we found little evidence for marked deviation from an expected 1:1 ratio.

  18. Visual, base-specific detection of nucleic acid hybridization using polymerization-based amplification.

    PubMed

    Hansen, Ryan R; Johnson, Leah M; Bowman, Christopher N

    2009-03-15

    Polymerization-based signal amplification offers sensitive visualization of biotinylated biomolecules functionalized to glass microarrays in a manner suitable for point-of-care use. Here we report using this method for visual detection of multiplexed nucleic acid hybridizations from complex media and develop an application toward point mutation detection and single nucleotide polymorphism (SNP) typing. Primer extension reactions were employed to label selectively and universally all complementary surface DNA hybrids with photoinitiators, permitting simultaneous and dynamic photopolymerization from positive sites to 0.5-nM target concentrations. Dramatic improvements in signal ratios between complementary and mismatched hybrids enabled visual discrimination of single base differences in KRAS codon-12 biomarkers.

  19. Development and Application of Nucleic Acid Hybridization Techniques to Arbovirus Surveillance and Diagnosis.

    DTIC Science & Technology

    1987-02-27

    Department of Microbiology and Enviromental Health College of Veterinary Medicine and Biomedical Sciences Colorado State University Fort Collins, C) 80523...1983). Detection of viral genomes in cultured cells and paraffin-embedded tissue sections using biotin-labeled hybridization probes. Virology 126: 32-50...sequence of the M RIA of snowshoe hare burzavirus reveals the presenoe of internal hydrophoic domains in the viral glycoprotein. Virology 137: 227-240. 15

  20. Interactions of ibuprofen with hybrid lipid bilayers probed by complementary surface-enhanced vibrational spectroscopies

    PubMed Central

    Levin, Carly S.; Kundu, Janardan; Janesko, Benjamin G.; Scuseria, Gustavo E.; Raphael, Robert M.; Halas, Naomi J.

    2016-01-01

    The incorporation of small molecules into lipid bilayers is a process of biological importance and clinical relevance that can change the material properties of cell membranes and cause deleterious side effects for certain drugs. Here we report the direct observation, using surface enhanced Raman and IR spectroscopies (SERS, SEIRA), of the insertion of ibuprofen molecules into hybrid lipid bilayers. The alkanethiol-phospholipid hybrid bilayers were formed onto gold nanoshells by self-assembly, where the underlying nanoshell substrates provided the necessary enhancements for SERS and SEIRA. The spectroscopic data reveal specific interactions between ibuprofen and phospholipid moieties and indicate that the overall hydrophobicity of ibuprofen plays an important role in its intercalation in these membrane mimics. PMID:18942873

  1. Repeat sequence chromosome specific nucleic acid probes and methods of preparing and using

    DOEpatents

    Weier, H.U.G.; Gray, J.W.

    1995-06-27

    A primer directed DNA amplification method to isolate efficiently chromosome-specific repeated DNA wherein degenerate oligonucleotide primers are used is disclosed. The probes produced are a heterogeneous mixture that can be used with blocking DNA as a chromosome-specific staining reagent, and/or the elements of the mixture can be screened for high specificity, size and/or high degree of repetition among other parameters. The degenerate primers are sets of primers that vary in sequence but are substantially complementary to highly repeated nucleic acid sequences, preferably clustered within the template DNA, for example, pericentromeric alpha satellite repeat sequences. The template DNA is preferably chromosome-specific. Exemplary primers and probes are disclosed. The probes of this invention can be used to determine the number of chromosomes of a specific type in metaphase spreads, in germ line and/or somatic cell interphase nuclei, micronuclei and/or in tissue sections. Also provided is a method to select arbitrarily repeat sequence probes that can be screened for chromosome-specificity. 18 figs.

  2. Repeat sequence chromosome specific nucleic acid probes and methods of preparing and using

    DOEpatents

    Weier, Heinz-Ulrich G.; Gray, Joe W.

    1995-01-01

    A primer directed DNA amplification method to isolate efficiently chromosome-specific repeated DNA wherein degenerate oligonucleotide primers are used is disclosed. The probes produced are a heterogeneous mixture that can be used with blocking DNA as a chromosome-specific staining reagent, and/or the elements of the mixture can be screened for high specificity, size and/or high degree of repetition among other parameters. The degenerate primers are sets of primers that vary in sequence but are substantially complementary to highly repeated nucleic acid sequences, preferably clustered within the template DNA, for example, pericentromeric alpha satellite repeat sequences. The template DNA is preferably chromosome-specific. Exemplary primers ard probes are disclosed. The probes of this invention can be used to determine the number of chromosomes of a specific type in metaphase spreads, in germ line and/or somatic cell interphase nuclei, micronuclei and/or in tissue sections. Also provided is a method to select arbitrarily repeat sequence probes that can be screened for chromosome-specificity.

  3. A label-free fluorescent probe based on DNA-templated silver nanoclusters and exonuclease III-assisted recycling amplification detection of nucleic acid.

    PubMed

    Yang, Wen; Tian, Jianniao; Ma, Yefei; Wang, Lijun; Zhao, Yanchun; Zhao, Shulin

    2015-11-05

    A number of specific nucleic acids are closely related with many serious diseases, in the current research, a platform taking advantage of exonuclease III (Exo III) to realize double recycling amplification and label-free fluorescent DNA-templated silver nanoclusters (DNA-AgNCs) for detecting of nucleic acid had been developed. In this method, a molecular beacon (MB) with 3'-protruding termini and a single-stranded cytosine-rich (C-rich) probe were designed that coexist stably with Exo III. Once the target DNA appeared, portion of the MB could hybridize with target DNA and was digested by Exo III, which allowed the release of target DNA and a residual sequence. Subsequently, the residual sequence could trigger the Exo III to digest C-rich probe, and the DNA-AgNCs was not able to be synthesized because of the C-rich probe was destroyed; finally the fluorescent of solution was quenched. This assay enables to monitor human hemochromatosis gene (as a model) with high sensitivity, the detection limit is as low as 120 pM compared with other fluorescence DNA-AgNCs methods, this assay also exhibits superior specificity even against single base mismatch. The strategy is applied to detect human hemochromatosis gene in real human serum samples successfully. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Synthesis of hybrid hydrazino peptides: protected vs unprotected chiral α-hydrazino acids.

    PubMed

    Suć, Josipa; Jerić, Ivanka

    2015-01-01

    Peptidomimetics based on hydrazino derivatives of α-amino acids represent an important class of peptidic foldamers with promising biological activities, like protease inhibition and antimicrobial activity. However, the lack of straightforward method for the synthesis of optically pure hydrazino acids and efficient incorporation of hydrazino building blocks into peptide sequence hamper wider exploitation of hydrazino peptidomimetics. Here we described the utility of N (α)-benzyl protected and unprotected hydrazino derivatives of natural α-amino acids in synthesis of peptidomimetics. While incorporation of N (α)-benzyl-hydrazino acids into peptide chain and deprotection of benzyl moiety proceeded with difficulties, unprotected hydrazino acids allowed fast and simple construction of hybrid peptidomimetics.

  5. A new probe using hybrid virus-dye nanoparticles for near-infrared fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Wu, Changfeng; Barnhill, Hannah; Liang, Xiaoping; Wang, Qian; Jiang, Huabei

    2005-11-01

    A fluorescent probe based on bionanoparticle cowpea mosaic virus has been developed for near-infrared fluorescence tomography. A unique advantage of this probe is that over 30 dye molecules can be loaded onto each viral nanoparticle with an average diameter of 30 nm, making high local dye concentration (∼1.8 mM) possible without significant fluorescence quenching. This ability of high loading of local dye concentration would increase the signal-to-noise ratio considerably, thus sensitivity for detection. We demonstrate successful tomographic fluorescence imaging of a target containing the virus-dye nanoparticles embedded in a tissue-like phantom. Tomographic fluorescence data were obtained through a multi-channel frequency-domain system and the spatial maps of fluorescence quantum yield were recovered with a finite-element-based reconstruction algorithm.

  6. A Paper-Based Sandwich Format Hybridization Assay for Unlabeled Nucleic Acid Detection Using Upconversion Nanoparticles as Energy Donors in Luminescence Resonance Energy Transfer

    PubMed Central

    Zhou, Feng; Noor, M. Omair; Krull, Ulrich J.

    2015-01-01

    Bioassays based on cellulose paper substrates are gaining increasing popularity for the development of field portable and low-cost diagnostic applications. Herein, we report a paper-based nucleic acid hybridization assay using immobilized upconversion nanoparticles (UCNPs) as donors in luminescence resonance energy transfer (LRET). UCNPs with intense green emission served as donors with Cy3 dye as the acceptor. The avidin functionalized UCNPs were immobilized on cellulose paper and subsequently bioconjugated to biotinylated oligonucleotide probes. Introduction of unlabeled oligonucleotide targets resulted in a formation of probe-target duplexes. A subsequent hybridization of Cy3 labeled reporter with the remaining single stranded portion of target brought the Cy3 dye in close proximity to the UCNPs to trigger a LRET-sensitized emission from the acceptor dye. The hybridization assays provided a limit of detection (LOD) of 146.0 fmol and exhibited selectivity for one base pair mismatch discrimination. The assay was functional even in undiluted serum samples. This work embodies important progress in developing DNA hybridization assays on paper. Detection of unlabeled targets is achieved using UCNPs as LRET donors, with minimization of background signal from paper substrates owing to the implementation of low energy near-infrared (NIR) excitation. PMID:28347081

  7. The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism.

    PubMed

    Zhang, Qingzhu; Li, Yanqiang; Xu, Tao; Srivastava, Ashish Kumar; Wang, Dong; Zeng, Liang; Yang, Lan; He, Li; Zhang, Heng; Zheng, Zhimin; Yang, Dong-Lei; Zhao, Cheng; Dong, Juan; Gong, Zhizhong; Liu, Renyi; Zhu, Jian-Kang

    2016-01-01

    In plants, hybrid vigor is influenced by genetic and epigenetic mechanisms; however, the molecular pathways are poorly understood. We investigated the potential contributions of epigenetic regulators to heterosis in Arabidposis and found that the chromatin remodeler DECREASED DNA METHYLATION 1 (DDM1) affects early seedling growth heterosis in Col/C24 hybrids. ddm1 mutants showed impaired heterosis and increased expression of non-additively expressed genes related to salicylic acid metabolism. Interestingly, our data suggest that salicylic acid is a hormetic regulator of seedling growth heterosis, and that hybrid vigor arises from crosses that produce optimal salicylic acid levels. Although DNA methylation failed to correlate with differential non-additively expressed gene expression, we uncovered DDM1 as an epigenetic link between salicylic acid metabolism and heterosis, and propose that the endogenous salicylic acid levels of parental plants can be used to predict the heterotic outcome. Salicylic acid protects plants from pathogens and abiotic stress. Thus, our findings suggest that stress-induced hormesis, which has been associated with increased longevity in other organisms, may underlie specific hybrid vigor traits.

  8. The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism

    PubMed Central

    Zhang, Qingzhu; Li, Yanqiang; Xu, Tao; Srivastava, Ashish Kumar; Wang, Dong; Zeng, Liang; Yang, Lan; He, Li; Zhang, Heng; Zheng, Zhimin; Yang, Dong-Lei; Zhao, Cheng; Dong, Juan; Gong, Zhizhong; Liu, Renyi; Zhu, Jian-Kang

    2016-01-01

    In plants, hybrid vigor is influenced by genetic and epigenetic mechanisms; however, the molecular pathways are poorly understood. We investigated the potential contributions of epigenetic regulators to heterosis in Arabidposis and found that the chromatin remodeler DECREASED DNA METHYLATION 1 (DDM1) affects early seedling growth heterosis in Col/C24 hybrids. ddm1 mutants showed impaired heterosis and increased expression of non-additively expressed genes related to salicylic acid metabolism. Interestingly, our data suggest that salicylic acid is a hormetic regulator of seedling growth heterosis, and that hybrid vigor arises from crosses that produce optimal salicylic acid levels. Although DNA methylation failed to correlate with differential non-additively expressed gene expression, we uncovered DDM1 as an epigenetic link between salicylic acid metabolism and heterosis, and propose that the endogenous salicylic acid levels of parental plants can be used to predict the heterotic outcome. Salicylic acid protects plants from pathogens and abiotic stress. Thus, our findings suggest that stress-induced hormesis, which has been associated with increased longevity in other organisms, may underlie specific hybrid vigor traits. PMID:27551435

  9. Paper-based solid-phase multiplexed nucleic acid hybridization assay with tunable dynamic range using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    PubMed

    Noor, M Omair; Krull, Ulrich J

    2013-08-06

    A multiplexed solid-phase nucleic acid hybridization assay on a paper-based platform is presented using multicolor immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize two types of QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) and red-emitting QDs (rQDs) served as donors with Cy3 and Alexa Fluor 647 (A647) acceptors. The gQD/Cy3 FRET pair served as an internal standard, while the rQD/A647 FRET pair served as a detection channel, combining the control and analytical test zones in one physical location. Hybridization of dye-labeled oligonucleotide targets provided the proximity for FRET sensitized emission from the acceptor dyes, which served as an analytical signal. Hybridization assays in the multicolor format provided a limit of detection of 90 fmol and an upper limit of dynamic range of 3.5 pmol. The use of an array of detection zones was designed to provide improved analytical figures of merit compared to that which could be achieved on one type of array design in terms of relative concentration of multicolor QDs. The hybridization assays showed excellent resistance to nonspecific adsorption of oligonucleotides. Selectivity of the two-plex hybridization assay was demonstrated by single nucleotide polymorphism (SNP) detection at a contrast ratio of 50:1. Additionally, it is shown that the use of preformed QD-probe oligonucleotide conjugates and consideration of the relative number density of the two types of QD-probe conjugates in the two-color assay format is advantageous to maximize assay sensitivity and the upper limit of dynamic range.

  10. Efficacy of Nucleic Acid Probes for Detection of Poliovirus in Water Disinfected by Chlorine, Chlorine Dioxide, Ozone, and UV Radiation

    PubMed Central

    Moore, Norman J.; Margolin, Aaron B.

    1994-01-01

    MilliQ water was inoculated with poliovirus type 1 strain LSc-1 and was treated with disinfectants, including chlorine, chlorine dioxide, ozone, and UV light. No relationship between probes and plaque assays were seen, demonstrating that viral nucleic acids were not destroyed. These findings suggest that nucleic acid probes cannot distinguish between infectious and noninfectious viruses and cannot be used in the evaluation of treated waters. PMID:16349448

  11. Import of desired nucleic acid sequences using addressing motif of mitochondrial ribosomal 5S-rRNA for fluorescent in vivo hybridization of mitochondrial DNA and RNA.

    PubMed

    Zelenka, Jaroslav; Alán, Lukáš; Jabůrek, Martin; Ježek, Petr

    2014-04-01

    Based on the matrix-addressing sequence of mitochondrial ribosomal 5S-rRNA (termed MAM), which is naturally imported into mitochondria, we have constructed an import system for in vivo targeting of mitochondrial DNA (mtDNA) or mt-mRNA, in order to provide fluorescence hybridization of the desired sequences. Thus DNA oligonucleotides were constructed, containing the 5'-flanked T7 RNA polymerase promoter. After in vitro transcription and fluorescent labeling with Alexa Fluor(®) 488 or 647 dye, we obtained the fluorescent "L-ND5 probe" containing MAM and exemplar cargo, i.e., annealing sequence to a short portion of ND5 mRNA and to the light-strand mtDNA complementary to the heavy strand nd5 mt gene (5'-end 21 base pair sequence). For mitochondrial in vivo fluorescent hybridization, HepG2 cells were treated with dequalinium micelles, containing the fluorescent probes, bringing the probes proximally to the mitochondrial outer membrane and to the natural import system. A verification of import into the mitochondrial matrix of cultured HepG2 cells was provided by confocal microscopy colocalizations. Transfections using lipofectamine or probes without 5S-rRNA addressing MAM sequence or with MAM only were ineffective. Alternatively, the same DNA oligonucleotides with 5'-CACC overhang (substituting T7 promoter) were transcribed from the tetracycline-inducible pENTRH1/TO vector in human embryonic kidney T-REx®-293 cells, while mitochondrial matrix localization after import of the resulting unlabeled RNA was detected by PCR. The MAM-containing probe was then enriched by three-order of magnitude over the natural ND5 mRNA in the mitochondrial matrix. In conclusion, we present a proof-of-principle for mitochondrial in vivo hybridization and mitochondrial nucleic acid import.

  12. Nanofiltration, bipolar electrodialysis and reactive extraction hybrid system for separation of fumaric acid from fermentation broth.

    PubMed

    Prochaska, Krystyna; Staszak, Katarzyna; Woźniak-Budych, Marta Joanna; Regel-Rosocka, Magdalena; Adamczak, Michalina; Wiśniewski, Maciej; Staniewski, Jacek

    2014-09-01

    A novel approach based on a hybrid system allowing nanofiltration, bipolar electrodialysis and reactive extraction, was proposed to remove fumaric acid from fermentation broth left after bioconversion of glycerol. The fumaric salts can be concentrated in the nanofiltration process to a high yield (80-95% depending on pressure), fumaric acid can be selectively separated from other fermentation components, as well as sodium fumarate can be conversed into the acid form in bipolar electrodialysis process (stack consists of bipolar and anion-exchange membranes). Reactive extraction with quaternary ammonium chloride (Aliquat 336) or alkylphosphine oxides (Cyanex 923) solutions (yield between 60% and 98%) was applied as the final step for fumaric acid recovery from aqueous streams after the membrane techniques. The hybrid system permitting nanofiltration, bipolar electrodialysis and reactive extraction was found effective for recovery of fumaric acid from the fermentation broth.

  13. Specific identification of human papillomavirus type in cervical smears and paraffin sections by in situ hybridization with radioactive probes: a preliminary communication

    SciTech Connect

    Gupta, J.; Gendelman, H.E.; Naghashfar, Z.; Gupta, P.; Rosenshein, N.; Sawada, E.; Woodruff, J.D.; Shah, K.

    1985-01-01

    Cervical Papanicolaou smears and paraffin sections of biopsy specimens obtained from women attending dysplasia clinics were examined for viral DNA sequences by in situ hybridization technique using TVS-labeled cloned recombinant DNA probes of human papillomavirus (HPV) types 6, 11, and 16. These and one unrelated DNA probe complementary to measles virus RNA were labeled by nick translation using either one or two TVS-labeled nucleotides. Paraffin sections and cervical smears were collected on pretreated slides, hybridized with the probes under stringent or nonstringent conditions for 50 h, and autoradiographed. Additional cervical specimens from the same women were examined for the presence of genus-specific papillomavirus capsid antigen by the immunoperoxidase technique. Preliminary results may be summarized as follows. The infecting virus could be identified in smears as well as in sections. Viral DNA sequences were detected only when there were condylomatous cells in the specimen and in only a proportion of the condylomatous cells. Even under stringent conditions, some specimens reacted with both HPV-6 and HPV-11. In some instances, the cells did not hybridize with any of the three probes even when duplicate specimens contained frankly condylomatous, capsid antigen-positive cells. In situ hybridization of Papanicolaou smears or of tissue sections is a practical method for diagnosis and follow-up of specific papillomavirus infection using routinely collected material.

  14. Controlled Translocation of ds/ss hybrid DNA through Solid State Nanopores with Tuning Fork based Force sensing Probe tip (SSN-TFFSP)

    NASA Astrophysics Data System (ADS)

    Kaur, Harpreet; Hyun, Changbae; Huang, Tao; Walsh, Nathan; Nandivada, Santoshi; Rollings, Ryan; Xiao, Min; McNabb, David; Li, Jiali

    2014-03-01

    Using a newly constructed apparatus that integrates a Solid State Nanopore (SSN) and Tuning Fork based Force sensing Probe tip (SSN-TFFSP), we studied ds/ss hybrid single DNA molecules. The ds/ss hybrid DNA is a 48.6 kb double-stranded λ DNA ligated to a 1kb single-stranded DNA. The λ DNA end was ligated to a biotinlated Oligo for attaching the hybrid DNA to a probe tip. The SSN-TFFSP apparatus combines the measurement of ionic current through a solid-state nanopore with a DNA tethered probe tip that is position controlled and sensed by a tuning fork force sensor and a nanopositioning system. The SSN-TFFSP system monitors the process of DNA molecules being captured and trapped by a voltage-biased nanopore, and the process of pulling the trapped DNA out of the nanopore with a controlled speed of 100 μs/base (1nm/ms) or slower. Here we report on the 3 signals measured simultaneously from this apparatus: ionic current through a nanopore, tip position, and tip vibrational amplitude during the process of a ds/ss hybrid DNA tethered to a Probe tip being captured and released by a nanopore This work is supported by a NHGRI (R21HG004776) Grant.

  15. Probing the structural dynamics of proteins and nucleic acids with optical tweezers.

    PubMed

    Ritchie, Dustin B; Woodside, Michael T

    2015-10-01

    Conformational changes are an essential feature of most molecular processes in biology. Optical tweezers have emerged as a powerful tool for probing conformational dynamics at the single-molecule level because of their high resolution and sensitivity, opening new windows on phenomena ranging from folding and ligand binding to enzyme function, molecular machines, and protein aggregation. By measuring conformational changes induced in a molecule by forces applied by optical tweezers, new insight has been gained into the relationship between dynamics and function. We discuss recent advances from studies of how structure forms in proteins and RNA, including non-native structures, fluctuations in disordered proteins, and interactions with chaperones assisting native folding. We also review the development of assays probing the dynamics of complex protein-nucleic acid and protein-protein assemblies that reveal the dynamic interactions between biomolecular machines and their substrates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Locked Nucleic Acid Probes (LNA) for Enhanced Detection of Low-Level, Clinically Significant Mutations.

    PubMed

    Nafa, Khedoudja; Hameed, Meera; Arcila, Marie E

    2016-01-01

    The detection of clinically significant somatic mutations present at low level in a tissue sample represents a challenge in any laboratory. While several high sensitivity methods are described, the incorporation of these new techniques in a clinical lab may be difficult if the technology is not readily available or requires major changes in the workflow of the laboratory. Techniques that are robust and easily adapted to existing laboratory protocols are highly advantageous. In this chapter we describe the use of locked nucleic acid (LNA) probes to modify existing polymerase chain reaction (PCR)-based protocols which can then be sequenced by Sanger sequencing. LNA probes are used to enhance the sensitivity of Sanger sequencing to mutation frequencies below 1 %. The method is robust and is easily incorporated for assessment of any sample with low tumor content or low mutant allele burden.

  17. Interactions of hybrid gold-tannic acid nanoparticles with human serum albumin.

    PubMed

    Sekowski, Szymon; Tomaszewska, Emilia; Soliwoda, Katarzyna; Celichowski, Grzegorz; Grobelny, Jaroslaw

    2017-01-01

    Nanoparticles present a wide spectrum of chemical, biological, and physical properties which result in their usage in many branches of science. We present an investigation of the interaction between human serum albumin and hybrid gold-tannic acid nanoparticles synthesized via a chemical reduction method. The results obtained demonstrate that tannic acid can be a very effective reducing and stabilizing agent and allows monodisperse hybrid gold nanomaterial to be obtained. The synthesized hybrid gold-tannic acid nanoparticles strongly interact with human serum albumin by formation of protein-corona complexes. The strength of the interaction with albumin depends on the number of tannic acid molecules on the surface of the nanoparticles and the presence of citric acid. Nanoparticles of large size and rich in tannic acid react more strongly with the protein [K SV = (8.00 ± 0.2) × 10(5) M(-1)] compared with smaller ones [K SV = (6.83 ± 0.5) × 10(4) M(-1)] containing citric acid and low concentration of tannic acid.

  18. Arginine-responsive terbium luminescent hybrid sensors triggered by two crown ether carboxylic acids.

    PubMed

    Jiang, Lasheng; Tang, Ke; Ding, Xiaoping; Wang, Qianming; Zhou, Zhan; Xiao, Rui

    2013-12-01

    Crown ether carboxylic acids constitute main building blocks for the synthesis of terbium containing covalent cross-linked luminescent materials. Both the complexes and the hybrid nanomaterials could exhibit remarkable green emissions in pure water. More importantly, they were found to have a profound effect on the luminescence responses to arginine compared with glutamic acid, histidine, tryptophan, threonine, tyrosine and phenylalanine in aqueous environment. The present study provided the possibility of using a host-guest mechanism as a way of signal transduction based on lanthanide supramolecular hybrid materials. © 2013.

  19. Probing the structure and function of biopolymer-carbon nanotube hybrids with molecular dynamics

    NASA Astrophysics Data System (ADS)

    Johnson, Robert R.

    2009-12-01

    Nanoscience deals with the characterization and manipulation of matter on the atomic/molecular size scale in order to deepen our understanding of condensed matter and develop revolutionary technology. Meeting the demands of the rapidly advancing nanotechnological frontier requires novel, multifunctional nanoscale materials. Among the most promising nanomaterials to fulfill this need are biopolymer-carbon nanotube hybrids (Bio-CNT). Bio-CNT consists of a single-walled carbon nanotube (CNT) coated with a self-assembled layer of biopolymers such as DNA or protein. Experiments have demonstrated that these nanomaterials possess a wide range of technologically useful properties with applications in nanoelectronics, medicine, homeland security, environmental safety and microbiology. However, a fundamental understanding of the self-assembly mechanics, structure and energetics of Bio-CNT is lacking. The objective of this thesis is to address this deficiency through molecular dynamics (MD) simulation, which provides an atomic-scale window into the behavior of this unique nanomaterial. MD shows that Bio-CNT composed of single-stranded DNA (ssDNA) self-assembles via the formation of high affinity contacts between DNA bases and the CNT sidewall. Calculation of the base-CNT binding free energy by thermodynamic integration reveals that these contacts result from the attractive pi--pi stacking interaction. Binding affinities follow the trend G > A > T > C. MD reveals that long ssDNA sequences are driven into a helical wrapping about CNT with a sub-10 nm pitch by electrostatic and torsional interactions in the backbone. A large-scale replica exchange molecular dynamics simulation reveals that ssDNA-CNT hybrids are disordered. At room temperature, ssDNA can reside in several low-energy conformations that contain a sequence-specific arrangement of bases detached from CNT surface. MD demonstrates that protein-CNT hybrids composed of the Coxsackie-adenovirus receptor are biologically

  20. Probing photocurrent generation mechanisms in hybrid IR-senstive quantum dot/conjugated polymer solar cells

    NASA Astrophysics Data System (ADS)

    Strein, Elisabeth

    The work in this dissertation aims to improve the ability of hybrid polymer/quantum dot solar cells to harvest and utilize sunlight by contributing mechanistic insights into photocurrent generation. The mechanisms of charge transfer and energy transfer are explored spectroscopically in chapter three and both are found to contribute to photocurrent. Chapter four looks at excitation energy in excess of the bandgap and finds a rise in polaron yield which correlates with excess photon energy. Chapter two discusses details of the experimental techniques used to access the data discussed in the chapters that follow.

  1. Probing carrier dynamics in wide-bandgap semiconductor-metal nanoparticle hybrids (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ratchford, Daniel; Dunkelberger, Adam D.; Owrutsky, Jeff C.; Pehrsson, Pehr E.

    2016-09-01

    Transient absorption spectra were measured to demonstrate carrier injection in multi-layered stacks of Au nanoparticles sandwiched in between TiO2 atomic layer deposited (ALD) thin films. Similar structures were fabricated with ALD Al2O3 for control samples. Sub-percolation thin films of Au resulted in <20 nm particles with plasmon resonances at 650 nm ( 590 nm) in the TiO2 (Al2O3) samples. Two separate pump-probe experiments were preformed to monitor transient heating of the metal and carrier injection in the TiO2. In the first experiment, the metal nanoparticles were excited at 400 nm, and the metal electron dynamics were probed at wavelengths around the plasmon resonance. We measured a decay time of 1.7 ps in the TiO2-Au layered samples compared to 2.2 ps in the Al2O3-Au layered samples. The decay times are attributed to electron-phonon coupling. The faster decay in TiO2 may be the result of charge injection into the TiO2. In the second experiment, carriers were excited in the Au nanoparticles by pumping on the plasmon resonance, and the system was probed in the mid-IR to measure free carrier absorption in the TiO2. The TiO2-Au layered sample exhibited transient signals similar to the free carrier absorption signals following excitation of TiO2 films, however, no signal was observed on the Al2O3-Au layered sample. This provides clear evidence that the signal measured in the TiO2-Au layered sample was not from the Au nanoparticles alone but instead originated from charge injection from the Au into the TiO2.

  2. Oligodeoxynucleotide Probes for Detecting Intact Cells

    NASA Technical Reports Server (NTRS)

    Rosson, Reinhardt A.; Maurina-Brunker, Julie; Langley, Kim; Pynnonen, Christine M.

    2004-01-01

    A rapid, sensitive test using chemiluminescent oligodeoxynucleotide probes has been developed for detecting, identifying, and enumerating intact cells. The test is intended especially for use in detecting and enumerating bacteria and yeasts in potable water. As in related tests that have been developed recently for similar purposes, the oligodeoxynucleotide probes used in this test are typically targeted at either singlecopy deoxyribonucleic acid (DNA) genes (such as virulence genes) or the multiple copies (10,000 to 50,000 copies per cell) of 16S ribosomal ribonucleic acids (rRNAs). Some of those tests involve radioisotope or fluorescent labeling of the probes for reporting hybridization of probes to target nucleic acids. Others of those tests involve labeling with enzymes plus the use of chemiluminescent or chromogenic substrates to report hybridization via color or the emission of light, respectively. The present test is of the last-mentioned type. The chemiluminescence in the present test can be detected easily with relatively simple instrumentation. In developing the present test, the hybridization approach was chosen because hybridization techniques are very specific. Hybridization detects stable, inheritable genetic targets within microorganisms. These targets are not dependent on products of gene expression that can vary with growth conditions or physiological states of organisms in test samples. Therefore, unique probes can be designed to detect and identify specific genera or species of bacteria or yeast (in terms of rRNA target sequences) or can be designed to detect and identify virulence genes (genomic target sequences). Because of the inherent specificity of this system, there are few problems of cross-reactivity. Hybridization tests are rapid, but hybridization tests now available commercially lack sensitivity; typically, between 10(exp 6) and 10(exp 7) cells of the target organism are needed to ensure a reliable test. Consequently, the numbers of

  3. Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering at flame temperatures using a second-harmonic bandwidth-compressed probe.

    PubMed

    Kearney, Sean P; Scoglietti, Daniel J

    2013-03-15

    We demonstrate an approach for picosecond probe-beam generation that enables hybrid femtosecond/picosecond pure-rotational coherent anti-Stokes Raman scattering (CARS) measurements in flames. Sum-frequency generation of bandwidth-compressed picosecond radiation from femtosecond pumps with phase-conjugate chirps provides probe pulses with energies in excess of 1 mJ that are temporally locked to the femtosecond pump/Stokes preparation. This method overcomes previous limitations on hybrid femtosecond/picosecond rotational CARS techniques, which have relied upon less efficient bandwidth-reduction processes that have generally resulted in prohibitively low probe energy for flame measurements. We provide the details of the second-harmonic approach and demonstrate the technique in near-adiabatic hydrogen/air flames.

  4. Mesoporous cerium phosphonate nanostructured hybrid spheres as label-free Hg²⁺ fluorescent probes.

    PubMed

    Zhu, Yun-Pei; Ma, Tian-Yi; Ren, Tie-Zhen; Yuan, Zhong-Yong

    2014-09-24

    Porous phosphonate-based organic-inorganic hybrid materials have been shown to have novel and amazing physicochemical properties due to the integration of superiorities from both inorganic components and organic moieties. Herein, mesoporous cerium phosphonate nanostructured hybrid spheres are prepared with the assistance of cationic surfactant cetyltrimethylammonium bromide while using ethylene diamine tetra(methylene phosphonic acid) as the coupling molecule. The resulting hybrid is constructed from the cerium phosphonate nanoparticles, accompanied by high specific surface area of 455 m(2) g(-1). The uniform incorporation of rare-earth element cerium and organophosphonic functionalities endows mesoporous cerium phosphonate with excellent fluorescence properties for the development of an optical sensor for selective Hg(2+) detection on the basis of the fluorescence-quenching mechanism. The signal response of mesoporous cerium phosphonate against the Hg(2+) concentration is linear over the range from 0.05 to 1.5 μmol L(-1), giving a limit of detection of 16 nmol L(-1) (at a signal-to-noise ratio of 3). Most of the common physiologically relevant cations and anions did not interfere with the detection of Hg(2+). This label-free system provides a promising platform for further use in bioimaging and biomedical fields.

  5. A single pH fluorescent probe for biosensing and imaging of extreme acidity and extreme alkalinity.

    PubMed

    Chao, Jian-Bin; Wang, Hui-Juan; Zhang, Yong-Bin; Li, Zhi-Qing; Liu, Yu-Hong; Huo, Fang-Jun; Yin, Cai-Xia; Shi, Ya-Wei; Wang, Juan-Juan

    2017-07-04

    A simple tailor-made pH fluorescent probe 2-benzothiazole (N-ethylcarbazole-3-yl) hydrazone (Probe) is facilely synthesized by the condensation reaction of 2-hydrazinobenzothiazole with N-ethylcarbazole-3-formaldehyde, which is a useful fluorescent probe for monitoring extremely acidic and alkaline pH, quantitatively. The pH titrations indicate that Probe displays a remarkable emission enhancement with a pKa of 2.73 and responds linearly to minor pH fluctuations within the extremely acidic range of 2.21-3.30. Interestingly, Probe also exhibits strong pH-dependent characteristics with pKa 11.28 and linear response to extreme-alkalinity range of 10.41-12.43. In addition, Probe shows a large Stokes shift of 84 nm under extremely acidic and alkaline conditions, high selectivity, excellent sensitivity, good water-solubility and fine stability, all of which are favorable for intracellular pH imaging. The probe is further successfully applied to image extremely acidic and alkaline pH values fluctuations in E. coli cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Synthesis of high erucic acid rapeseed (Brassica napus L.) somatic hybrids with improved agronomic characters.

    PubMed

    Heath, D W; Earle, E D

    1995-11-01

    Novel Brassica napus somatic hybrids have been created through protoplast fusion of B. oleracea var. botrytis and B. rapa var. oleifera genotypes selected for high erucic acid (22:1) content in the seed oil. Fifty amphidiploids (aacc) and one putative hexaploid (aacccc) hybrid were recovered in one fusion experiment. Conversely, only one amphidiploid and numerous regenerates with higher DNA contents were produced in a similar fusion using a different B. rapa partner. Hybridity was confirmed by morphology, isozyme expression, flow cytometry, and DNA hybridization. Analysis of organellar DNA revealed a distinct bias toward the inheritance of chloroplasts from the B. rapa (aa) genome. All amphidiploids set self-pollinated seed. A erucic acid content as high as 57.4% was found in the seed oil of one regenerated plant. Fatty acid composition was stable in the R1 generation and was coupled with increased female fertility. Other novel agronomic characters in the hybrids recovered include large seed size, lodging resistance, and non-shattering seed pods.

  7. Development of a group-specific 16S rRNA-targeted probe set for the identification of Marinobacter by fluorescence in situ hybridization

    NASA Astrophysics Data System (ADS)

    McKay, Luke J.; Gutierrez, Tony; Teske, Andreas P.

    2016-07-01

    Members of the Marinobacter genus play an important role in hydrocarbon degradation in the ocean - a topic of special significance in light of the recent Deepwater Horizon oil spill of 2010. The Marinobacter group has thus far lacked a genus level phylogenetic probe that would allow in situ identification of representative members. Here, we developed two new 16S rRNA-targeted oligonucleotide probes (Mrb-0625-a and Mrb-0625-b) to enumerate Marinobacter species by fluorescence in situ hybridization (FISH). In silico analysis of this probe set demonstrated 80% coverage of the Marinobacter genus. A competitor probe was developed to block hybridization by Mrb-0625-a to six Halomonas species with which it shared a one base pair mismatch. The probe set was optimized using pure cultures, and then used in an enrichment experiment with a deep sea oil plume water sample collected from the Deepwater Horizon oil spill. Marinobacter cells rapidly increased as a significant fraction of total microbial abundance in all incubations of original contaminated seawater as well as those amended with n-hexadecane, suggesting this group may be among the first microbial responders to oil pollution in the marine environment. The new probe set will provide a reliable tool for quantifying Marinobacter in the marine environment, particularly at contaminated sites where these organisms can play an important role in the biodegradation of oil pollutants.

  8. A new method for ABO genotyping using fluorescence melting curve analysis based on peptide nucleic acid probes.

    PubMed

    Lee, Kyungmyung; Park, Hyun-Chul; An, Sanghyun; Ahn, Eu-Ree; Lee, Yang-Han; Kim, Mi-Jung; Lee, Eun-Jung; Park, Jae Sin; Jung, Jin Wook; Lim, Sikeun

    2015-09-01

    ABO genotyping has been routinely used to identify suspects or unknown remains in crime investigations. Probe-based fluorescence melting curve analysis (FMCA) is a powerful tool for mutation detection and is based on melting temperature shifts due to thermal denaturation. In the present study, we developed a new method for ABO genotyping using peptide nucleic acid (PNA) probe-based FMCA. This method allowed for the simultaneous detection of three single nucleotide polymorphism (SNP) sites in the ABO gene (nucleotide positions 261, 526, and 803) and the determination of 14 ABO genotypes (A/A, A/O01 or A/O02, A/O03, B/B, B/O01 or B/O02, B/O03, O01/O01 or O01/O02 or O02/O02, O01/O03 or O02/O03, O03/O03, A/B, cis-AB01/A, cis-AB01/B, cis-AB01/O01 or cis-AB01/O02, and cis-AB01/cis-AB01). Using this method, we analyzed 80 samples and successfully identified ABO genotypes (A/A [n=5], A/O01 or A/O02 [n=23], B/B [n=3], B/O01 or B/O02 [n=18], A/B [n=9], O01/O01 or O01/O02 or O02/O02 [n=20], cis-AB01/A [n=1], and cis-AB01/O01 or cis-AB01/O02 [n=1]). In addition, all steps in the method, including polymerase chain reaction, PNA probe hybridization, and FMCA, could be performed in one single closed tube in less than 3h. Since no processing or separation steps were required during analysis, this method was more convenient and rapid than traditional methods and reduced the risk of contamination. Thus, this method may be an effective and helpful tool in forensic investigations.

  9. Feasibility of transferring fluorescent in situ hybridization probes to an 18S rRNA gene phylochip and mapping of signal intensities.

    PubMed

    Metfies, Katja; Medlin, Linda K

    2008-05-01

    DNA microarray technology offers the possibility to analyze microbial communities without cultivation, thus benefiting biodiversity studies. We developed a DNA phylochip to assess phytoplankton diversity and transferred 18S rRNA probes from dot blot or fluorescent in situ hybridization (FISH) analyses to a microarray format. Similar studies with 16S rRNA probes have been done determined that in order to achieve a signal on the microarray, the 16S rRNA molecule had to be fragmented, or PCR amplicons had to be <150 bp in length to minimize the formation of a secondary structure in the molecule so that the probe could bind to the target site. We found different results with the 18S rRNA molecule. Four out of 12 FISH probes exhibited false-negative signals on the microarray; eight exhibited strong but variable signals using full-length 18S RNA molecules. A systematic investigation of the probe's accessibility to the 18S rRNA gene was made using Prymenisum parvum as the target. Fourteen additional probes identical to this target covered the regions not tested with existing FISH probes. Probes with a binding site in the first 900 bp of the gene generated positive signals. Six out of nine probes binding in the last 900 bp of the gene produced no signal. Our results suggest that although secondary structure affected probe binding, the effect is not the same for the 18S rRNA gene and the 16S rRNA gene. For the 16S rRNA gene, the secondary structure is stronger in the first half of the molecule, whereas in the 18S rRNA gene, the last half of the molecule is critical. Probe-binding sites within 18S rRNA gene molecules are important for the probe design for DNA phylochips because signal intensity appears to be correlated with the secondary structure at the binding site in this molecule. If probes are designed from the first half of the 18S rRNA molecule, then full-length 18S rRNA molecules can be used in the hybridization on the chip, avoiding the fragmentation and the

  10. Community Analysis of Biofilters Using Fluorescence In Situ Hybridization Including a New Probe for the Xanthomonas Branch of the Class Proteobacteria

    PubMed Central

    Friedrich, Udo; Naismith, Michèle M.; Altendorf, Karlheinz; Lipski, André

    1999-01-01

    Domain-, class-, and subclass-specific rRNA-targeted probes were applied to investigate the microbial communities of three industrial and three laboratory-scale biofilters. The set of probes also included a new probe (named XAN818) specific for the Xanthomonas branch of the class Proteobacteria; this probe is described in this study. The members of the Xanthomonas branch do not hybridize with previously developed rRNA-targeted oligonucleotide probes for the α-, β-, and γ-Proteobacteria. Bacteria of the Xanthomonas branch accounted for up to 4.5% of total direct counts obtained with 4′,6-diamidino-2-phenylindole. In biofilter samples, the relative abundance of these bacteria was similar to that of the γ-Proteobacteria. Actinobacteria (gram-positive bacteria with a high G+C DNA content) and α-Proteobacteria were the most dominant groups. Detection rates obtained with probe EUB338 varied between about 40 and 70%. For samples with high contents of gram-positive bacteria, these percentages were substantially improved when the calculations were corrected for the reduced permeability of gram-positive bacteria when formaldehyde was used as a fixative. The set of applied bacterial class- and subclass-specific probes yielded, on average, 58.5% (± a standard deviation of 23.0%) of the corrected eubacterial detection rates, thus indicating the necessity of additional probes for studies of biofilter communities. The Xanthomonas-specific probe presented here may serve as an efficient tool for identifying potential phytopathogens. In situ hybridization proved to be a practical tool for microbiological studies of biofiltration systems. PMID:10427047

  11. A strategy for dual inhibition of the proteasome and fatty acid synthase with belactosin C-orlistat hybrids.

    PubMed

    Zhu, Mingzhao; Harshbarger, Wayne D; Robles, Omar; Krysiak, Joanna; Hull, Kenneth G; Cho, Sung Wook; Richardson, Robyn D; Yang, Yanyan; Garcia, Andres; Spiegelman, Lindsey; Ramirez, Bianca; Wilson, Christopher T; Yau, Ju Anne; Moore, James T; Walker, Caitlen B; Sacchettini, James C; Liu, Wenshe R; Sieber, Stephan A; Smith, Jeffrey W; Romo, Daniel

    2017-06-01

    The proteasome, a validated cellular target for cancer, is central for maintaining cellular homeostasis, while fatty acid synthase (FAS), a novel target for numerous cancers, is responsible for palmitic acid biosynthesis. Perturbation of either enzymatic machine results in decreased proliferation and ultimately cellular apoptosis. Based on structural similarities, we hypothesized that hybrid molecules of belactosin C, a known proteasome inhibitor, and orlistat, a known inhibitor of the thioesterase domain of FAS, could inhibit both enzymes. Herein, we describe proof-of-principle studies leading to the design, synthesis and enzymatic activity of several novel, β-lactone-based, dual inhibitors of these two enzymes. Validation of dual enzyme targeting through activity-based proteome profiling with an alkyne probe modeled after the most potent inhibitor, and preliminary serum stability studies of selected derivatives are also described. These results provide proof of concept for dual targeting of the proteasome and fatty acid synthase-thioesterase (FAS-TE) enabling a new approach for the development of drug-candidates with potential to overcome resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Hall probe measurements of the poloidal magnetic field in Compact Toroidal Hybrid plasmas.

    PubMed

    Stevenson, B A; Knowlton, S F; Hartwell, G J; Hanson, J D; Maurer, D A

    2014-09-01

    A linear array of 16 Hall effect sensors has been developed to directly measure the poloidal magnetic field inside the boundary of a non-axisymmetric hybrid torsatron/tokamak plasma. The array consists of miniature gallium arsenide Hall sensor elements mounted 8 mm apart on a narrow, rotatable printed circuit board inserted into a re-entrant stainless steel tube sheathed in boron nitride. The sensors are calibrated on the bench and in situ to provide accurate local measurements of the magnetic field to aid in reconstructing the equilibrium plasma current density profiles in fully three-dimensional plasmas. Calibrations show that the sensor sensitivities agree with the nominal manufacturers specifications of 1.46 V/T. Poloidal fields measured with the Hall sensor array are found to be within 5% of poloidal fields modeled with a Biot-Savart code.

  13. Hall probe measurements of the poloidal magnetic field in Compact Toroidal Hybrid plasmas

    SciTech Connect

    Stevenson, B. A.; Knowlton, S. F.; Hartwell, G. J. Hanson, J. D.; Maurer, D. A.

    2014-09-15

    A linear array of 16 Hall effect sensors has been developed to directly measure the poloidal magnetic field inside the boundary of a non-axisymmetric hybrid torsatron/tokamak plasma. The array consists of miniature gallium arsenide Hall sensor elements mounted 8 mm apart on a narrow, rotatable printed circuit board inserted into a re-entrant stainless steel tube sheathed in boron nitride. The sensors are calibrated on the bench and in situ to provide accurate local measurements of the magnetic field to aid in reconstructing the equilibrium plasma current density profiles in fully three-dimensional plasmas. Calibrations show that the sensor sensitivities agree with the nominal manufacturers specifications of 1.46 V/T. Poloidal fields measured with the Hall sensor array are found to be within 5% of poloidal fields modeled with a Biot-Savart code.

  14. Probing the interactions between boronic acids and cis-diol-containing biomolecules by affinity capillary electrophoresis.

    PubMed

    Lü, Chenchen; Li, Hengye; Wang, Heye; Liu, Zhen

    2013-02-19

    The affinity of boronic acids to cis-diol-containing biomolecules has found wide applications in many fields, such as sensing, separation, drug delivery, and functional materials. A sound understanding of the binding interactions will greatly facilitate exquisite applications of this chemistry. Although a few analytical tools have been available for the characterization of the interactions, these techniques are associated with some apparent drawbacks, so they are only applicable to a limited range of boronic acids and cis-diol-containing biomolecules. Therefore, a widely applicable method is still greatly needed. In this work, an affinity capillary electrophoresis (ACE) method was established and validated to probe the interactions between boronic acids and cis-diol-containing biomolecules. The method was proven to be applicable to almost all types of cis-diol-containing biomolecules and boronic acids. Based on this method, a quantitative, comparative study on the interactions between 14 boronic acids that have important potentials for application with 5 typical monosaccharides of biological importance was carried out. The findings provided new insights into boronate affinity interactions, particularly the relationship between the binding strength with the molecular structures of the binding species. Besides, effects of pH and temperature on the binding strength were also investigated. This method exhibited several significant advantages, including (1) possibility of simultaneous study of multiple interactions, (2) low requirement on the purity of the binding species, (3) wide applicability, and (4) high accuracy and precision.

  15. Folic acid-conjugated europium complexes as luminescent probes for selective targeting of cancer cells.

    PubMed

    Quici, Silvio; Casoni, Alessandro; Foschi, Francesca; Armelao, Lidia; Bottaro, Gregorio; Seraglia, Roberta; Bolzati, Cristina; Salvarese, Nicola; Carpanese, Debora; Rosato, Antonio

    2015-02-26

    We report the synthesis of three optical probes (Eu(3+)⊂1, Eu(3+)⊂2, and Eu(3+)⊂3) having a luminescent Eu complex (signaling unit) bonded in different positions to folic acid (FA), the folate receptor (FR) targeting unit. The structures of the two regioisomers Eu(3+)⊂1 and Eu(3+)⊂2 were assigned by mass spectrometric experiments. The optical properties and stability of these probes were assessed in phosphate-buffered saline, cell culture medium, rat serum, and cellular lysate, and results indicated that they are chemically and photophysically stable. Cytotoxicity was studied with ovarian cancer cells having high (SKOV-3), intermediate (OVCAR-3), low (IGROV-1), or null (A2780) expression of FRs. The internalized probe, evaluated in SKOV-3, IGROV-1, and A2780 cells, was in the order Eu(3+)⊂2 > Eu(3+)⊂1 > Eu(3+)⊂3. No internalization was observed for A2780 cells. Such results, together with those obtained in competition experiments of FA versus Eu(3+)⊂2 and FA or Eu(3+)⊂2 versus (3)H-FA, indicate that internalization is receptor-mediated and that Eu(3+)⊂2 shows high selectivity and specificity for FR.

  16. Novel blue-light-emitting hybrid materials based on oligothiophene acids and ZnO

    NASA Astrophysics Data System (ADS)

    Jiu, Tonggang; Liu, Huibiao; Fu, Liming; He, Xiaorong; Wang, Ning; Li, Yuliang; Ai, Xicheng; Zhu, Daoben

    2004-11-01

    Novel blue-light-emitting materials based on ZnO and 2,2'-bithiophene-5,5'-dicarboxylic acid (DTDA), 4',3″-dipentyl-5,2': 5',2″: 5″,2‴-quaterthiophene-2,5‴-dicarboxylic acid (QTDA) have been prepared. The hybrid materials show that the PL λmax are at 450 and 425 nm for DTDA-ZnO and QTDA-ZnO, respectively.

  17. Translational and rotational diffusion of flexible PEG and rigid dendrimer probes in sodium caseinate dispersions and acid gels.

    PubMed

    Salami, Souad; Rondeau-Mouro, Corinne; Barhoum, Myriam; van Duynhoven, John; Mariette, François

    2014-09-01

    The dynamics of rigid dendrimer and flexible PEG probes in sodium caseinate dispersions and acid gels, including both translational diffusion and rotational diffusion, were studied by NMR. Above the onset of the close-packing limit (C ∼ 10 g/100 g H2 O), translational diffusion of the probe depended on its flexibility and on the fluctuations of the matrix chains. The PEG probe diffused more rapidly than the spherical dendrimer probe of corresponding hydrodynamic radius. The greater conformational flexibility of PEG facilitated its motion through the crowded casein matrix. Rotational diffusion was, however, substantially less hindered than the translational diffusion and depended on the local protein-probe friction which became high when the casein concentration increased. The coagulation of the matrix led to the formation of large voids, which resulted in an increase in the translational diffusion of the probes, whereas the rotational diffusion of the probes was retarded in the gel, which could be attributed to the immobilized environment surrounding the probe. Quantitative information from PFG-NMR and SEM micrographs have been combined for characterizing microstructural details in SC acid gels.

  18. Boronic Acid: A Bio-Inspired Strategy To Increase the Sensitivity and Selectivity of Fluorescent NADH Probe.

    PubMed

    Wang, Lu; Zhang, Jingye; Kim, Beomsue; Peng, Juanjuan; Berry, Stuart N; Ni, Yong; Su, Dongdong; Lee, Jungyeol; Yuan, Lin; Chang, Young-Tae

    2016-08-24

    Fluorescent probes have emerged as an essential tool in the molecular recognition events in biological systems; however, due to the complex structures of certain biomolecules, it remains a challenge to design small-molecule fluorescent probes with high sensitivity and selectivity. Inspired by the enzyme-catalyzed reaction between biomolecule and probe, we present a novel combination-reaction two-step sensing strategy to improve sensitivity and selectivity. Based on this strategy, we successfully prepared a turn-on fluorescent reduced nicotinamide adenine dinucleotide (NADH) probe, in which boronic acid was introduced to bind with NADH and subsequently accelerate the sensing process. This probe shows remarkably improved sensitivity (detection limit: 0.084 μM) and selectivity to NADH in the absence of any enzymes. In order to improve the practicality, the boronic acid was further modified to change the measurement conditions from alkalescent (pH 9.5) to physiological environment (pH 7.4). Utilizing these probes, we not only accurately quantified the NADH weight in a health care product but also evaluated intracellular NADH levels in live cell imaging. Thus, these bio-inspired fluorescent probes offer excellent tools for elucidating the roles of NADH in biological systems as well as a practical strategy to develop future sensitive and selective probes for complicated biomolecules.

  19. Selective local lysis and sampling of live cells for nucleic acid analysis using a microfluidic probe

    PubMed Central

    Kashyap, Aditya; Autebert, Julien; Delamarche, Emmanuel; Kaigala, Govind V.

    2016-01-01

    Heterogeneity is inherent to biology, thus it is imperative to realize methods capable of obtaining spatially-resolved genomic and transcriptomic profiles of heterogeneous biological samples. Here, we present a new method for local lysis of live adherent cells for nucleic acid analyses. This method addresses bottlenecks in current approaches, such as dilution of analytes, one-sample-one-test, and incompatibility to adherent cells. We make use of a scanning probe technology - a microfluidic probe - and implement hierarchical hydrodynamic flow confinement (hHFC) to localize multiple biochemicals on a biological substrate in a non-contact, non-destructive manner. hHFC enables rapid recovery of nucleic acids by coupling cell lysis and lysate collection. We locally lysed ~300 cells with chemical systems adapted for DNA or RNA and obtained lysates of ~70 cells/μL for DNA analysis and ~15 cells/μL for mRNA analysis. The lysates were introduced into PCR-based workflows for genomic and transcriptomic analysis. This strategy further enabled selective local lysis of subpopulations in a co-culture of MCF7 and MDA-MB-231 cells, validated by characteristic E-cadherin gene expression in individually extracted cell types. The developed strategy can be applied to study cell-cell, cell-matrix interactions locally, with implications in understanding growth, progression and drug response of a tumor. PMID:27411740

  20. Designed diblock hairpin probes for the nonenzymatic and label-free detection of nucleic acid.

    PubMed

    Wen, Junlin; Chen, Junhua; Zhuang, Li; Zhou, Shungui

    2016-05-15

    The detection of nucleic acid sequences is of great importance in a variety of fields. An ultrasensitive DNA sensing platform is constructed using elaborately designed diblock hairpin probes (DHPs) that are composed of hairpin and poly-adenine blocks. The introduction of an initiator DNA target triggers the catalytic assembly of probes DHP1, DHP2 and DHP3 to fabricate numerous poly-adenine-tailed branched DNA junctions, which significantly amplify the signal of the target-DNA-recognizing event without any enzyme. Coupled to a gold nanoparticle-based colorimetric assay, the amplified recognition signal can be quantitatively detected or visually read with the naked eye. The combination of the high-efficiency target-catalyzed DHP assembly and sensitive gold-based colorimetric assay offers an ultrasensitive detection of DNA with a detection limit of 0.1 pM and a dynamic range from 0.01 to 5 pM. The proposed sensing platform can discriminate even single-base mutations. Moreover, the sensing platform can be expanded to detect pollutant-degrading-bacteria-specific DNA sequences. The proposed sensing system should offer an alternative approach for the detection of nucleic acids in the fields of microbiology, biogeochemistry, and environmental sciences. Copyright © 2016. Published by Elsevier B.V.

  1. Synthesis and use of universal sequence probes in fluorogenic multi-strand hybridisation complexes for economical nucleic acid testing.

    PubMed

    French, David J; Richardson, James A; Howard, Rebecca L; Brown, Tom; Debenham, Paul G

    2015-08-01

    Analysis of nucleic acid amplification products has become the gold standard for applications such as pathogen detection and characterisation of single nucleotide polymorphisms and short tandem repeat sequences. The development of real-time PCR and melting curve analysis using fluorescent probes has simplified nucleic acid analyses. However, the cost of probe synthesis can be prohibitive when developing large panels of tests. We describe an economic two-stage method for probe synthesis, and a new method for nucleic acid sequence analysis which together considerably reduce costs. The analysis method utilises three-strand and four-strand hybridisation complexes for the detection and identification of nucleic acid target sequences by real-time PCR and fluorescence melting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Differentiation of Moraxella nonliquefaciens, M. lacunata, and M. bovis by using multilocus enzyme electrophoresis and hybridization with pilin-specific DNA probes.

    PubMed Central

    Tønjum, T; Caugant, D A; Bøvre, K

    1992-01-01

    Genetic relationships among strains of Moraxella nonliquefaciens, M. lacunata, and M. bovis were studied by using multilocus enzyme electrophoresis and DNA-DNA hybridization. The 74 isolates analyzed for electrophoretic variation at 12 enzyme loci were assigned to 59 multilocus genotypes. The multilocus genotypes were grouped in four major clusters, one representing strains of M. nonliquefaciens, two representing strains of M. lacunata, and one comprising strains of M. bovis and the single strain of M. equi analyzed. DNA-DNA hybridization with total genomic probes also revealed four major distinctive entities that corresponded to those identified by multilocus enzyme electrophoresis. The two distinct clusters recognized among the M. lacunata strains apparently corresponded to the species previously designated M. lacunata and M. liquefaciens. Distinction of the four entities was improved by hybridization with polymerase chain reaction products of nonconserved parts of pilin genes as DNA probes. With these polymerase chain reaction probes, new isolates of M. nonliquefaciens, M. lacunata, M. liquefaciens, and M. bovis can be identified easily by hybridization. PMID:1452691

  3. Exploring 12'-apo-beta-carotenoic-12'-acid as an ultrafast polarity probe for ionic liquids.

    PubMed

    Lohse, Peter W; Bürsing, Reinhard; Lenzer, Thomas; Oum, Kawon

    2008-03-13

    The ultrafast excited-state dynamics of the carbonyl-containing carotenoid 12'-apo-beta-carotenoic-12'-acid (12'CA) have been used for probing the microscopic environment in various ionic liquids (ILs). The following IL cations were investigated: 1,3-di-n-alkyl-imidazolium featuring different n-alkyl chain lengths and also additional methylation at the C2 position, triethylsulfonium, as well as two tetraalkylammonium ions. These were combined with different anions: [BF4]-, [PF6]-, ethyl sulfate ([EtOSO3]-), and bis(trifluoromethylsulfonyl)amide ([Tf2N]-). The probe molecule was excited via the S0 --> S2 transition at 425 or 430 nm, and the characteristic stimulated emission decay of the low-lying excited electronic S1/ICT (intramolecular charge transfer) state of 12'CA was monitored in the near IR (850 or 860 nm). Its lifetime tau1 is sensitive to the micropolarity-induced stabilization of S1/ICT relative to S0. The lifetime tau1 of the S1/ICT state varies only moderately in all ionic liquids studied here ( approximately 40-110 ps), which lies in the range between ethanol (109 ps) and methanol (49 ps). While organic solvents show an excellent correlation of tau1 with the solvent polarity function Deltaf = (epsilon - 1)/(epsilon + 2) - (n2 - 1)/(n2 + 2), where epsilon and n are the static dielectric constant and the refractive index of the solvent, respectively, this is not the case for ILs. This is due to dominant local electrostatic probe-cation interactions which cannot be easily quantified by macroscopic quantities. Methylation at the C2 position of 1,3-di-n-alkyl-imidazolium reduces the accessibility of the cation and therefore the electrostatic stabilization of the probe, resulting in an increase of tau1. A similar increase is observed upon extension of one of the n-alkyl chains from ethyl to n-decyl. Tetraalkylammonium ILs show an increased tau1 probably due to their more delocalized positive charge which cannot interact so favorably with the probe, in

  4. Method and apparatus for staining immobilized nucleic acids

    DOEpatents

    Ramsey, J. Michael; Foote, Robert S.; Jacobson, Stephen C.

    2000-01-01

    A method for staining immobilized nucleic acids includes the steps of affixing DNA probes to a solid substrate, moving target DNA material into proximity with the DNA probes, whereby the target DNA hybridized with specific ones of the DNA probes, and moving a fluorescent dye into proximity with the hybridized target DNA, whereby the fluorescent dye binds to the hybridized DNA to enable subsequent detection of fluorescence.

  5. Application of ELN cosmid probes using fluorescence in situ hybridization (FISH) towards a clinical diagnostic test for Williams syndrome

    SciTech Connect

    Lowery, M.; Brothman, L.; Leonard, C.

    1994-09-01

    Williams syndrome (WS) is characterized by mental deficiency, gregarious personalities, dysmorphic facies, supravalvular aortic stenosis (SVAS), and idiopathic infantile hypercalcemia. Expression of the phenotype is variable. Deletions including an elastin allele (ELN) are thought to be the basis of the connective tissue and vascular abnormalities in WS patients. Patients with WS are hemizygous for ELN, exhibiting a submicroscopic deletion at 7q11.23 detected by FISH. To substantiate the hemizygosity hypothesis and define molecular cytogenetics in patients with familial and sporadic WS, a series of 71 patients were evaluated. EBV-transformed lymphocytes from 48 selected patients were cultured and harvested according to cytogenetic protocol. Cosmids containing ELN were biotinylated and hybridized to metaphase cells by routine procedures. In addition, an alpha-satellite probe for chromosome 7 was included in hybridizations as an internal control. Thirty-one of these 48 patients (65%) showed a deletion in one ELN allele by FISH. Negative patients were shown to be non-affected family members or patients in the {open_quotes}uncertain{close_quotes} category (expressing some, but not all features characteristic of WS). The FISH data were consistent with molecular analyses of ELN deletions. Twenty-three additional patients were referred to confirm or rule out a diagnosis of WS. Nine patients (39%) showed a deletion of ELN by FISH. Correlations between phenotype and FISH results are in progress. These results suggest that a rapid, accurate diagnostic technique for WS using FISH can be implemented in the cytogenetics laboratory as a routine clinical service. Identification of the deletion in patients suspected of having WS will facilitate classification of these patients and improve clinical management.

  6. N-Terminal Fatty Acid Substitution Increases the Leishmanicidal Activity of CA(1-7)M(2-9), a Cecropin-Melittin Hybrid Peptide

    PubMed Central

    Chicharro, Cristina; Granata, Cesare; Lozano, Rosario; Andreu, David; Rivas, Luis

    2001-01-01

    In order to improve the leishmanicidal activity of the synthetic cecropin A-melittin hybrid peptide CA(1-7)M(2-9) (KWKLFKKIGAVLKVL-NH2), a systematic study of its acylation with saturated linear fatty acids was carried out. Acylation of the Nɛ-7 lysine residue led to a drastic decrease in leishmanicidal activity, whereas acylation at lysine 1, in either the α or the ɛ NH2 group, increased up to 3 times the activity of the peptide against promastigotes and increased up to 15 times the activity of the peptide against amastigotes. Leishmanicidal activity increased with the length of the fatty acid chain, reaching a maximum for the lauroyl analogue (12 carbons). According to the fast kinetics, dissipation of membrane potential, and parasite membrane permeability to the nucleic acid binding probe SYTOX green, the lethal mechanism was directly related to plasma membrane permeabilization. PMID:11502512

  7. Probing particle acceleration in lower hybrid turbulence via synthetic diagnostics produced by PIC simulations

    NASA Astrophysics Data System (ADS)

    Cruz, F.; Fonseca, R. A.; Silva, L. O.; Rigby, A.; Gregori, G.; Bamford, R. A.; Bingham, R.; Koenig, M.

    2016-10-01

    Efficient particle acceleration in astrophysical shocks can only be achieved in the presence of initial high energy particles. A candidate mechanism to provide an initial seed of energetic particles is lower hybrid turbulence (LHT). This type of turbulence is commonly excited in regions where space and astrophysical plasmas interact with large obstacles. Due to the nature of LH waves, energy can be resonantly transferred from ions (travelling perpendicular to the magnetic field) to electrons (travelling parallel to it) and the consequent motion of the latter in turbulent shock electromagnetic fields is believed to be responsible for the observed x-ray fluxes from non-thermal electrons produced in astrophysical shocks. Here we present PIC simulations of plasma flows colliding with magnetized obstacles showing the formation of a bow shock and the consequent development of LHT. The plasma and obstacle parameters are chosen in order to reproduce the results obtained in a recent experiment conducted at the LULI laser facility at Ecole Polytechnique (France) to study accelerated electrons via LHT. The wave and particle spectra are studied and used to produce synthetic diagnostics that show good qualitative agreement with experimental results. Work supported by the European Research Council (Accelerates ERC-2010-AdG 267841).

  8. A Yeast Two-Hybrid approach for probing protein-protein interactions at the centrosome

    PubMed Central

    Galletta, Brian J.; Rusan, Nasser M.

    2016-01-01

    As a large, non-membrane bound organelle, the centrosome must rely heavily on protein-protein interactions to assemble itself in the cytoplasm and perform its functions as a microtubule-organizing center. Therefore, to understand how this organelle is built and functions, one must understand the protein-protein interactions made by each centrosome protein. Unfortunately, the highly interconnected nature of the centrosome, combined with its predicted unstructured, coil-rich proteins, has made the use of many standard approaches to studying protein-protein interactions very challenging. The yeast-two hybrid (Y2H) system is well suited for studying the centrosome and is an important complement to other biochemical approaches. In this chapter we describe how to carry out a directed Y2H screen to identify the direct interactions between a given centrosome protein and a library of others. Specifically, we detail using a bioinformatics based approach (structure prediction programs) to subdivide proteins and screen for interactions using an array-based Y2H approach. We also describe how to use the interaction information garnered from this screen to generate mutations to disrupt specific interactions using mutagenic-PCR and a “reverse” Y2H screen. Finally, we discuss how information from such a screen can be integrated into existing models of centrosome assembly and how it can initiate and guide extensive in vitro and in vivo experimentation to test these models. PMID:26175443

  9. A new microcolumn-type microchip for examining the expression of chimeric fusion genes using a nucleic acid sandwich hybridization technique.

    PubMed

    Ohnishi, Michihiro; Sasaki, Naoyuki; Kishimoto, Takuya; Watanabe, Hidetoshi; Takagi, Masatoshi; Mizutani, Shuki; Kishii, Noriyuki; Yasuda, Akio

    2014-11-01

    We report a new type of microcolumn installed in a microchip. The architecture allows use of a nucleic acid sandwich hybridization technique to detect a messenger RNA (mRNA) chain as a target. Data are presented that demonstrate that the expression of a chimeric fusion gene can be detected. The microcolumn was filled with semi-transparent microbeads made of agarose gel that acted as carriers, allowing increased efficiency of the optical detection of fluorescence from the microcolumn. The hybrid between the target trapped on the microbeads and a probe DNA labeled with a fluorescent dye was detected by measuring the intensity of the fluorescence from the microcolumn directly. These results demonstrate an easy and simple method for determining the expression of chimeric fusion genes with no preamplification. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Complexation of malic acid with cadmium(II) probed by electrospray ionization mass spectrometry.

    PubMed

    Jaklová Dytrtová, Jana; Jakl, Michal; Schröder, Detlef

    2012-02-15

    Electrospray ionization was used as a technique for the characterization of the interactions between cadmium(II) ions and malic acid (1) in aqueous solution. Particular attention was paid to the nature of the species formed, which generally correspond to complexes of CdX(+) cations with neutral malic acid, where X either is the counterion of the metal salt used as a precursor (i.e. X=Cl, I) or corresponds to singly deprotonated malic acid. In pure water solutions, also highly coordinated complexes [Cd(1-H)(1)(2)](+) and [CdCl(1)(2)](+) were detected, whereas the most abundant complexes detected in a sample of soil solution were: [Cd(1-H)(1)](+) and [CdCl(1)](+). With respect to possible application in environmental analysis, the effects of (i) metal salts present in solution, (ii) modest mineralization, and (iii) the matrices of real soil solutions were probed. While the presence of other metals leads to additional complexes, the characteristic species containing both cadmium(II) and malic acid can still be detected with good sensitivity. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. [Fatty acids profile characterization of white maize hybrids grown in Venezuela].

    PubMed

    Alezones, Jesús; Avila, Manuel; Chassaigne, Alberto; Barrientos, Venancio

    2010-12-01

    In Venezuela, white corn is the most important crop regarding production, harvest area and consumption. One of its main by-products is corn oil, whose positive effect on health caused by the high content of unsaturated fatty acids has been widely recognized. In order to characterize the fatty acids profile of twelve white grained maize hybrids extensively grown in Venezuela, and the effect that divergent localities has on this profile, three semi commercial scale trials where established in Portuguesa, Yaracuy and Guárico states. Proportions of the main fatty acids in the raw oil of the different grain samples were determined using gas chromatography. Significant differences (p < 0,01) between hybrids were found for arachidic, palmitic, stearic, oleic, gadoleic and linoleic acids; non significant differences were found for linolenic acid. Significant differences between localities were found for all the fatty acids evaluated. High and significant correlations between fatty acids content were found; the most important relations were: linoleic-oleic (Rho = -0,98**), arachidic-palmitic (Rho = -0,61**), linoleic-stearic (Rho = -0,61**) and oleic-stearic (Rho = 0,58**). Corn produced in Venezuela presents lower levels of linoleic and higher levels of palmitic, stearic and oleic acids than the levels found in temperate corn. These differences involve significant changes in the nutritional properties of Venezuelan corn oil that should be considered in the development of new cultivars and industrial processes for oil production.

  12. Screening of Israeli Holstein-Friesian cattle for restriction fragment length polymorphisms using homologous and heterologous deoxyribonucleic acid probes.

    PubMed

    Hallerman, E M; Nave, A; Soller, M; Beckmann, J S

    1988-12-01

    Genomic DNA of Israeli Holstein-Friesian dairy cattle were screened with a battery of 17 cloned or subcloned DNA probes in an attempt to document restriction fragment length polymorphisms at a number of genetic loci. Restriction fragment length polymorphisms were observed at the chymosin, oxytocin-neurophysin I, lutropin beta, keratin III, keratin VI, keratin VII, prolactin, and dihydrofolate reductase loci. Use of certain genomic DNA fragments as probes produced hybridization patterns indicative of satellite DNA at the respective loci. Means for distinguishing hybridizations to coding sequences for unique genes from those to satellite DNA were developed. Results of this study are discussed in terms of strategy for the systematic development of large numbers of bovine genomic polymorphisms.

  13. Application of in situ hybridization probes for MLH-1 and MSH-2 in tissue microarrays of paraffin-embedded malignant melanomas: correlation with immunohistochemistry and tumor stage.

    PubMed

    Korabiowska, Monika; Cordon-Cardo, Carlos; Jaenckel, Fredericke; Stachura, Jerzy; Fischer, Gösta; Brinck, Ulrich

    2004-12-01

    Defects in DNA mismatch-repair genes MLH1 and MSH2 reported primarily in hereditary nonpolyposis colorectal carcinoma are present in many sporadic tumors, including malignant melanomas. The main aim of this study was to investigate the expression of these genes in malignant melanomas in relation to tumor stage. An experiment was performed on paraffin-embedded tissue microarrays of malignant melanomas applying in situ hybridization with probes produced by our research group and immunohistochemical techniques. In situ hybridization demonstrated MLH1 expression in 45 of 59 melanomas and MSH2 expression in 51 of 59 melanomas. Immunohistochemistry detected MLH1 expression in 46 of 59 melanomas and MSH2 expression in 50 of 59 melanomas. Down-regulation of expression of both DNA mismatch repair genes in malignant melanomas was observed. The findings obtained by in situ hybridization and immunohistochemistry correlated significantly. Our study demonstrates the suitability of in situ hybridization with MLH1 and MSH2 probes for paraffin-embedded tissue. Tissue microarrays can be used successfully in both in situ hybridization and immunohistochemistry to analyze the expression of DNA mismatch-repair genes.

  14. Molecular hybridization between rat liver deoxyribonucleic acid and complementary ribonucleic acid

    PubMed Central

    Melli, Marialuisa; Bishop, J. O.

    1970-01-01

    RNA (cRNA) was synthesized in vitro on a template of rat liver DNA and its hybridization with rat liver DNA was studied by using the nitrocellulose-filter method. Sonication of the DNA diminished its apparent capacity to hybridize with RNA by about 50%. This is not due to cross-linkage of DNA molecules, because it could be shown that less than 2% of the sonicated DNA was cross-linked. The effect is due instead to the small size of the sonicated DNA molecules. Below a single-stranded molecular weight of 5×105 the DNA showed a progressive loss of capacity to hybridize with decrease in molecular weight. Evidence is presented suggesting that the apparently diminished capacity of the DNA to hybridize is due to loss of hybridized DNA from the membrane filters. When cRNA at concentrations of up to 25μg/ml is annealed with sonicated total DNA, an apparent hybridization saturation value is found at which about 2.5% of the DNA is hybridized with RNA. Increasing the cRNA concentration tenfold brought about the hybridization of a second component of the DNA approximately equal in amount to the first. The renaturation of rat liver DNA was studied by measuring the fall in the extinction at 260nm and two different components of renaturation were observed within the reiterated fraction of DNA. By hybridizing cRNA with different fractions of rat DNA the two components of the hybridization curve are shown to correspond to the two components of the renaturation curve. The conclusion is drawn that at a cRNA concentration of 250μg/ml most of the reiterated fraction of rat liver DNA is hybridized after annealing for 16h under standard conditions (0.30m-sodium chloride–30mm-sodium citrate at 65°C). Even with such a high cRNA concentration little or no hybridization of the slowly renaturing DNA fraction occurs. It is suggested that the most highly reiterated DNA component is poorly transcribed in vitro. PMID:5493851

  15. Toward an on-chip multiplexed nucleic acid hybridization assay using immobilized quantum dot-oligonucleotide conjugates and fluorescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Tavares, Anthony J.; Noor, M. Omair; Algar, W. Russ; Vannoy, Charles H.; Chen, Lu; Krull, Ulrich J.

    2011-03-01

    Semiconductor quantum dots (QD) are a class of NP with photophysical properties that are ideally suited for optical multiplexing and use as donors in fluorescence resonance energy transfer (FRET). A new strategy is presented for the development of multiplexed DNA hybridization assays using immobilized QDs in a microfluidic system. Green- or red-emitting QDs were immobilized via self-assembly with a multidentate-thiol-derivatized glass slide, and subsequently conjugated with amine-terminated probe oligonucleotides using carbodiimide activation. Immobilized QD-probe conjugates were then passivated with adsorbed non-complementary oligonucleotides to achieve selectivity in microfluidic assays. Target nucleic acid sequences hybridized with QD-probe conjugates and were labeled with Cy3 or Alexa Fluor 647 as acceptor dyes for the QD donors, where FRET-sensitized dye emission provided a signal for the detection of picomolar quantities of target. The simultaneous immobilization of green- and red-emitting QDs at different ratios within a microfluidic channel was demonstrated as a step toward multiplexed assays.

  16. Peptide Nucleic Acid-Fluorescence In Situ Hybridization for Detection of Staphylococci From Endophthalmitis Isolates: A Proof-of-Concept Study.

    PubMed

    Patel, Nimesh; Miller, Darlene; Relhan, Nidhi; Flynn, Harry W

    2017-08-01

    Rapid identification of pathogens causing endophthalmitis may improve treatment outcomes through early administration of species-specific medication. The current study reports a new molecular application of peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH) with Staphylococcus-specific molecular PNA probes for the potential rapid detection of common pathogens causing endophthalmitis. An experimental study was designed to evaluate the proof of concept at the microbiology laboratory of the Bascom Palmer Eye Institute. Stored culture-positive staphylococci endophthalmitis isolates obtained from prior vitreous samples (n = 15), along with broth as negative controls (n = 5) were used. Inoculum was prepared to a final concentration of 1 × 105 colony-forming units/mL to ensure that the isolates were viable. Smears of samples were fixed and hybridized using QuickFISH protocol with probes for Staphylococcus. With PNA-FISH technique, Staphylococcus aureus was identified in 9 of 10 samples and coagulase-negative staphylococci were identified in 10 of 10 samples. Detection time was 20 minutes. This study serves a proof of concept using a new microbial detection system with FISH probes, and may have the potential for clinical use in the rapid and accurate identification of isolates from patients with endophthalmitis.

  17. A collagen-poly(lactic acid-co-ɛ-caprolactone) hybrid scaffold for bladder tissue regeneration.

    PubMed

    Engelhardt, Eva-Maria; Micol, Lionel A; Houis, Stephanie; Wurm, Florian M; Hilborn, Jöns; Hubbell, Jeffrey A; Frey, Peter

    2011-06-01

    Scaffold materials should favor cell attachment and proliferation, and provide designable 3D structures with appropriate mechanical strength. Collagen matrices have proven to be beneficial scaffolds for tissue regeneration. However, apart from small intestinal submucosa, they offer a limited mechanical strength even if crosslinking can enhance their mechanical properties. A more cell-friendly way to increase material strength is to combine synthetic polymer meshes with plastic compressed collagen gels. This work describes the potential of plastic compressed collagen-poly(lactic acid-co-ɛ-caprolactone) (PLAC) hybrids as scaffolds for bladder tissue regeneration. Human bladder smooth muscle and urothelial cells were cultured on and inside collagen-PLAC hybrids in vitro. Scaffolds were analyzed by electron microscopy, histology, immunohistochemistry, and AlamarBlue assay. Both cell types proliferated in and on the hybrid, forming dense cell layers on top after two weeks. Furthermore, hybrids were implanted subcutaneously in the backs of nude mice. Host cell infiltration, scaffold degradation, and the presence of the seeded bladder cells were analyzed. Hybrids showed a lower inflammatory reaction in vivo than PLAC meshes alone, and first signs of polymer degradation were visible at six months. Collagen-PLAC hybrids have potential for bladder tissue regeneration, as they show efficient cell seeding, proliferation, and good mechanical properties.

  18. Novel hybrid DHPM-fatty acids: synthesis and activity against glioma cell growth in vitro.

    PubMed

    Treptow, Tamara G M; Figueiró, Fabrício; Jandrey, Elisa H F; Battastini, Ana M O; Salbego, Christianne G; Hoppe, Juliana B; Taborda, Priscila S; Rosa, Sabrina B; Piovesan, Luciana A; Montes D'Oca, Caroline Da R; Russowsky, Dennis; Montes D'Oca, Marcelo G

    2015-05-05

    We described the first synthesis of fatty acid 3,4-dihydropyrimidinones (DHPM-fatty acids) using the Biginelli multicomponent reaction. Antiproliferative activity on two glioma cell lines (C6 rat and U-138-MG human) was also reported. The novel DHPM-fatty acids reduced glioma cell viability relative to temozolomide. Hybrid oxo-monastrol-palmitic acid was the most potent, reducing U-138-MG human cell viability by ca. 50% at 10 μM. In addition, the DHPM-fatty acids showed a large safety range to neural cells, represented by the organotypic hippocampal culture. These results suggest that the increased lipophilicity of DHPM-fatty acids offer a promising approach to overcoming resistance to chemotherapy and may play an important role in the development of new antitumor drugs. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. Hydroxyapatite-phosphonoformic acid hybrid compounds prepared by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Turki, Thouraya; Othmani, Masseoud; Bantignies, Jean-Louis; Bouzouita, Khaled

    2014-01-01

    Hydroxyapatites were prepared in the presence of different amounts of phosphonoformic acid (PFA) via the hydrothermal method. The obtained powders were characterized through chemical analysis, XRD, IR, 31P MAS-NMR, TEM, and TG-TDA. The XRD showed that the PFA did not affect the apatite composition. Indeed, only a reduction of the crystallite size was noted. After grafting of PFA, the IR spectroscopy revealed the appearance of new bands belonging to HPO42- and carboxylate groups of the apatite and organic moiety, respectively. Moreover, the 31P MAS-NMR spectra exhibited a peak with a low intensity assigned to the terminal phosphonate group of the organic moiety in addition to that of the apatite. Based on these results, a reaction mechanism involving the surface hydroxyl groups (tbnd Casbnd OH) of the apatite and the carboxyl group of the acid was proposed.

  20. A versatile solid support system for oligodeoxynucleotide probe-based hybridization assays.

    PubMed Central

    Van Ness, J; Kalbfleisch, S; Petrie, C R; Reed, M W; Tabone, J C; Vermeulen, N M

    1991-01-01

    A procedure for immobilization of well-defined quantities of oligodeoxyribonucleotides (ODNs) to a versatile nylon support is described. The solid support, a nylon-6/6 bead, is covalently coated with poly(ethyleneimine) to provide a reactive spacer-arm for attachment of ODNs. 5'-Aminohexyl-tailed ODNs are selectively activated using 2,4,6-trichloro-1,3,5-triazine (cyanuric chloride) and then covalently attached to the bead via the triazine moiety. The modified nylon support has a low level of binding of nonspecific nucleic acid and efficiently captures both RNA and DNA targets. PMID:2062652

  1. A universal colorimetry for nucleic acids and aptamer-specific ligands detection based on DNA hybridization amplification.

    PubMed

    Li, Shuang; Shang, Xinxin; Liu, Jia; Wang, Yujie; Guo, Yingshu; You, Jinmao

    2017-07-01

    We present a universal amplified-colorimetric for detecting nucleic acid targets or aptamer-specific ligand targets based on gold nanoparticle-DNA (GNP-DNA) hybridization chain reaction (HCR). The universal arrays consisted of capture probe and hairpin DNA-GNP. First, capture probe recognized target specificity and released the initiator sequence. Then dispersed hairpin DNA modified GNPs were cross-linked to form aggregates through HCR events triggered by initiator sequence. As the aggregates accumulate, a significant red-to purple color change can be easily visualized by the naked eye. We used miRNA target sequence (miRNA-203) and aptamer-specific ligand (ATP) as target molecules for this proof-of-concept experiment. Initiator sequence (DNA2) was released from the capture probe (MNP/DNA1/2 conjugates) under the strong competitiveness of miRNA-203. Hairpin DNA (H1 and H2) can be complementary with the help of initiator DNA2 to form GNP-H1/GNP-H2 aggregates. The absorption ratio (A620/A520) values of solutions were a sensitive function of miRNA-203 concentration covering from 1.0 × 10(-11) M to 9.0 × 10(-10) M, and as low as 1.0 × 10(-11) M could be detected. At the same time, the color changed from light wine red to purple and then to light blue have occurred in the solution. For ATP, initiator sequence (5'-end of DNA3) was released from the capture probe (DNA3) under the strong combination of aptamer-ATP. The present colorimetric for specific detection of ATP exhibited good sensitivity and 1.0 × 10(-8) M ATP could be detected. The proposed strategy also showed good performances for qualitative analysis and quantitative analysis of intracellular nucleic acids and aptamer-specific ligands. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Homoeologous chromosome pairing in the distant hybrid Alstroemeria aurea x A. inodora and the genome composition of its backcross derivatives determined by fluorescence in situ hybridization with species-specific probes.

    PubMed

    Kamstra, S A; Ramanna, M S; de Jeu, M J; Kuipers, A G; Jacobsen, E

    1999-01-01

    A distant hybrid between two diploid species (2n = 2x = 16), Alstroemeria aurea and A. inodora, was investigated for homoeologous chromosome pairing, crossability with A. inodora and chromosome transmission to its BC1 offspring. Fluorescence in situ hybridization (FISH) with two species-specific probes, A001-I (A. aurea specific) and D32-13 (A. inodora specific), was used to analyse chromosome pairing in the hybrid and the genome constitution of its BC1 progeny plants. High frequencies of associated chromosomes were observed in both genotypes of the F1 hybrid, A1P2-2 and A1P4. In the former, both univalents and bivalents were found at metaphase I, whereas the latter plant also showed tri- and quadrivalents. Based on the hybridization sites of DNA probes on the chromosomes of both parental species, it was established that hybrid A1P4 contains a reciprocal translocation between the short arm of chromosome 1 and the long arm of chromosome 8 of A. inodora. Despite regular homoeologous chromosome pairing in 30% of the pollen mother cells, both hybrids were highly sterile. They were backcrossed reciprocally with one of the parental species, A. inodora. Two days after pollination, embryo rescue was applied and, eventually, six BC1 progeny plants were obtained. Among these, two were aneuploids (2n = 2x + 1 = 17) and four were triploids (2n = 3x = 24). The aneuploid plants had originated when the interspecific hybrid was used as a female parent, indicating that n eggs were functional in the hybrid. In addition, 2n gametes were also functional in the hybrid, resulting in the four triploid BC1 plants. Of these four plants, three had received 2n pollen grains from the hybrid and one a 2n egg. Using FISH, homoeologous crossing over between the chromosomes of the two parental species in the hybrid was clearly detected in all BC1 plants. The relevance of these results for the process of introgression and the origin of n and 2n gametes are discussed.

  3. A two-photon fluorescent probe for ratiometric imaging of endogenous hypochlorous acid in live cells and tissues.

    PubMed

    Jun, Yong Woong; Sarkar, Sourav; Singha, Subhankar; Reo, Ye Jin; Kim, Hye Rim; Kim, Jong-Jin; Chang, Young-Tae; Ahn, Kyo Han

    2017-09-28

    A fluorescent probe that enables ratiometric imaging of endogenous hypochlorous acid (HOCl) in cells and tissues by two-photon microscopy is developed based on a red-emitting acetyl-benzocoumarin (AcBC) dye. An oxathiolane group in the probe reacts with HOCl to generate the AcBC dye, which involves a ratiometric fluorescence change only toward HOCl along with high sensitivity.

  4. Identification of Bacillus strains isolated from milk and cream with classical and nucleic acid hybridization methods.

    PubMed

    Tatzel, R; Ludwig, W; Schleifer, K H; Wallnöfer, P R

    1994-11-01

    A total of 529 bacterial strains have been isolated from milk and cream sampled at different sites in a dairy production plant under conditions selective for aerobic sporeforming bacteria. Identification with classical methods based on morphological, physiological and biochemical criteria showed Bacillus licheniformis to be the most frequently occurring Bacillus sp. The investigation also revealed 62 unidentified strains. Classical identification methods were time consuming (3-7 d), lacked specificity and--because of their dependence on phenotypic gene expression--sometimes produced ambiguous results. Consequently, a colony hybridization method developed for the identification of B. licheniformis strains and using nonradioactive labelled 23S rRNA targeted oligonucleotide probes was also used. Identification of B. licheniformis with both classical and hybridization methods revealed diverging identification results for 70 strains.

  5. A hybrid analog-digital phase-locked loop for frequency mode non-contact scanning probe microscopy.

    PubMed

    Mehta, M M; Chandrasekhar, V

    2014-01-01

    Non-contact scanning probe microscopy (SPM) has developed into a powerful technique to image many different properties of samples. The conventional method involves monitoring the amplitude, phase, or frequency of a cantilever oscillating at or near its resonant frequency as it is scanned across the surface of a sample. For high Q factor cantilevers, monitoring the resonant frequency is the preferred method in order to obtain reasonable scan times. This can be done by using a phase-locked-loop (PLL). PLLs can be obtained as commercial integrated circuits, but these do not have the frequency resolution required for SPM. To increase the resolution, all-digital PLLs requiring sophisticated digital signal processors or field programmable gate arrays have also been implemented. We describe here a hybrid analog/digital PLL where most of the components are implemented using discrete analog integrated circuits, but the frequency resolution is provided by a direct digital synthesis chip controlled by a simple peripheral interface controller (PIC) microcontroller. The PLL has excellent frequency resolution and noise, and can be controlled and read by a computer via a universal serial bus connection.

  6. A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids

    PubMed Central

    Yang, Litao; Liang, Wanqi; Jiang, Lingxi; Li, Wenquan; Cao, Wei; Wilson, Zoe A; Zhang, Dabing

    2008-01-01

    Background Real-time PCR techniques are being widely used for nucleic acids analysis, but one limitation of current frequently employed real-time PCR is the high cost of the labeled probe for each target molecule. Results We describe a real-time PCR technique employing attached universal duplex probes (AUDP), which has the advantage of generating fluorescence by probe hydrolysis and strand displacement over current real-time PCR methods. AUDP involves one set of universal duplex probes in which the 5' end of the fluorescent probe (FP) and a complementary quenching probe (QP) lie in close proximity so that fluorescence can be quenched. The PCR primer pair with attached universal template (UT) and the FP are identical to the UT sequence. We have shown that the AUDP technique can be used for detecting multiple target DNA sequences in both simplex and duplex real-time PCR assays for gene expression analysis, genotype identification, and genetically modified organism (GMO) quantification with comparable sensitivity, reproducibility, and repeatability with other real-time PCR methods. Conclusion The results from GMO quantification, gene expression analysis, genotype identification, and GMO quantification using AUDP real-time PCR assays indicate that the AUDP real-time PCR technique has been successfully applied in nucleic acids analysis, and the developed AUDP real-time PCR technique will offer an alternative way for nucleic acid analysis with high efficiency, reliability, and flexibility at low cost. PMID:18522756

  7. A Strategy for Dual Inhibition of the Proteasome and Fatty Acid Synthase with Belactosin C-Orlistat Hybrids

    PubMed Central

    Zhu, Mingzhao; Harshbarger, Wayne D.; Robles, Omar; Krysiak, Joanna; Hull, Kenneth G.; Cho, Sung Wook; Richardson, Robyn D.; Yang, Yanyan; Garcia, Andres; Spiegelman, Lindsey; Ramirez, Bianca; Wilson, Christopher T.; Yau, Ju Anne; Moore, James T.; Walker, Caitlen B.; Sacchettini, James C.; Liu, Wenshe; Sieber, Stephan A.; Smith, Jeffrey W.; Romo, Daniel

    2017-01-01

    The proteasome, a validated cellular target for cancer, is central for maintaining cellular homeostasis, while fatty acid synthase (FAS), a novel target for numerous cancers, is responsible for palmitic acid biosynthesis. Perturbation of either enzymatic machine results in decreased proliferation and ultimately cellular apoptosis. Based on structural similarities, we hypothesized that hybrid molecules of belactosin C, a known proteasome inhibitor, and orlistat, a known inhibitor of the thioesterase domain of FAS, could inhibit both enzymes. Herein, we describe proof-of-principle studies leading to the design, synthesis and enzymatic activity of several novel, β-lactone-based, dual inhibitors of these two enzymes. Validation of dual enzyme targeting through activity-based proteome profiling with an alkyne probe modeled after the most potent inhibitor, and preliminary serum stability studies of selected derivatives are also described. These results provide proof of concept for dual targeting of the proteasome and FAS-TE enabling a new approach for the development of drug-candidates with potential to overcome resistance. PMID:28236510

  8. Proteomic Stable Isotope Probing Reveals Taxonomically Distinct Patterns in Amino Acid Assimilation by Coastal Marine Bacterioplankton

    PubMed Central

    Bryson, Samuel; Li, Zhou; Pett-Ridge, Jennifer; Hettich, Robert L.; Mayali, Xavier; Pan, Chongle

    2016-01-01

    ABSTRACT Heterotrophic marine bacterioplankton are a critical component of the carbon cycle, processing nearly a quarter of annual primary production, yet defining how substrate utilization preferences and resource partitioning structure microbial communities remains a challenge. In this study, proteomic stable isotope probing (proteomic SIP) was used to characterize population-specific assimilation of dissolved free amino acids (DFAAs), a major source of dissolved organic carbon for bacterial secondary production in aquatic environments. Microcosms of seawater collected from Newport, Oregon, and Monterey Bay, California, were incubated with 1 µM 13C-labeled amino acids for 15 and 32 h. The taxonomic compositions of microcosm metaproteomes were highly similar to those of the sampled natural communities, with Rhodobacteriales, SAR11, and Flavobacteriales representing the dominant taxa. Analysis of 13C incorporation into protein biomass allowed for quantification of the isotopic enrichment of identified proteins and subsequent determination of differential amino acid assimilation patterns between specific bacterioplankton populations. Proteins associated with Rhodobacterales tended to have a significantly high frequency of 13C-enriched peptides, opposite the trend for Flavobacteriales and SAR11 proteins. Rhodobacterales proteins associated with amino acid transport and metabolism had an increased frequency of 13C-enriched spectra at time point 2. Alteromonadales proteins also had a significantly high frequency of 13C-enriched peptides, particularly within ribosomal proteins, demonstrating their rapid growth during incubations. Overall, proteomic SIP facilitated quantitative comparisons of DFAA assimilation by specific taxa, both between sympatric populations and between protein functional groups within discrete populations, allowing an unprecedented examination of population level metabolic responses to resource acquisition in complex microbial communities

  9. Proteomic Stable Isotope Probing Reveals Taxonomically Distinct Patterns in Amino Acid Assimilation by Coastal Marine Bacterioplankton.

    PubMed

    Bryson, Samuel; Li, Zhou; Pett-Ridge, Jennifer; Hettich, Robert L; Mayali, Xavier; Pan, Chongle; Mueller, Ryan S

    2016-01-01

    Heterotrophic marine bacterioplankton are a critical component of the carbon cycle, processing nearly a quarter of annual primary production, yet defining how substrate utilization preferences and resource partitioning structure microbial communities remains a challenge. In this study, proteomic stable isotope probing (proteomic SIP) was used to characterize population-specific assimilation of dissolved free amino acids (DFAAs), a major source of dissolved organic carbon for bacterial secondary production in aquatic environments. Microcosms of seawater collected from Newport, Oregon, and Monterey Bay, California, were incubated with 1 µM (13)C-labeled amino acids for 15 and 32 h. The taxonomic compositions of microcosm metaproteomes were highly similar to those of the sampled natural communities, with Rhodobacteriales, SAR11, and Flavobacteriales representing the dominant taxa. Analysis of (13)C incorporation into protein biomass allowed for quantification of the isotopic enrichment of identified proteins and subsequent determination of differential amino acid assimilation patterns between specific bacterioplankton populations. Proteins associated with Rhodobacterales tended to have a significantly high frequency of (13)C-enriched peptides, opposite the trend for Flavobacteriales and SAR11 proteins. Rhodobacterales proteins associated with amino acid transport and metabolism had an increased frequency of (13)C-enriched spectra at time point 2. Alteromonadales proteins also had a significantly high frequency of (13)C-enriched peptides, particularly within ribosomal proteins, demonstrating their rapid growth during incubations. Overall, proteomic SIP facilitated quantitative comparisons of DFAA assimilation by specific taxa, both between sympatric populations and between protein functional groups within discrete populations, allowing an unprecedented examination of population level metabolic responses to resource acquisition in complex microbial communities

  10. Real-time PCR Detection of Brucella Abortus: A Comparative Study of SYBR Green I, 5'-exonuclease, and Hybridization Probe Assays

    SciTech Connect

    Newby, Deborah Trishelle; Hadfield, Ted; Roberto, Francisco Figueroa

    2003-08-01

    Real-time PCR provides a means of detecting and quantifying DNA targets by monitoring PCR product accumulation during cycling as indicated by increased fluorescence. A number of different approaches can be used to generate the fluorescence signal. Three approaches—SYBR Green I (a double-stranded DNA intercalating dye), 5'-exonuclease (enzymatically released fluors), and hybridization probes (fluorescence resonance energy transfer)—were evaluated for use in a real-time PCR assay to detect Brucella abortus. The three assays utilized the same amplification primers to produce an identical amplicon. This amplicon spans a region of the B. abortus genome that includes portions of the alkB gene and the IS711 insertion element. All three assays were of comparable sensitivity, providing a linear assay over 7 orders of magnitude (from 7.5 ng down to 7.5 fg). However, the greatest specificity was achieved with the hybridization probe assay.

  11. Probing titanate nanowire surface acidity through methylene blue adsorption in colloidal suspension and on thin films.

    PubMed

    Horváth, Endre; Szilágyi, István; Forró, László; Magrez, Arnaud

    2014-02-15

    The interaction of the cationic dye methylene blue (MB) with titanate nanowires (TiONWs) was investigated in different pH environments using visible spectroscopy and electrophoresis on thin films as well as in aqueous suspension. The surface charge of the TiONWs depends on the pH and ionic strength leading to positive charge under acidic and negative under alkaline conditions. The TiONWs have the same adsorption capacity on films and in suspensions at neutral pH while under alkaline conditions they are able to adsorb significantly more MB in suspension due to their higher surface area. Detailed adsorption studies in water revealed that dye cations form monomers, dimers and larger aggregates of H-type (face-to-face) on the TiONW films. The results indicate that below pH = 4.0 the TiONWs' external surface consists of Brøntsted acid sites capable of protonating MB. It was suggested that reversible indicator role of MB molecule dimers probes the TiONW surface acidity (Brøntsted sites).

  12. A novel biocompatible hyaluronic acid-chitosan hybrid hydrogel for osteoarthrosis therapy.

    PubMed

    Kaderli, S; Boulocher, C; Pillet, E; Watrelot-Virieux, D; Rougemont, A L; Roger, T; Viguier, E; Gurny, R; Scapozza, L; Jordan, O

    2015-04-10

    A conventional therapy for the treatment of osteoarthrosis is intra-articular injection of hyaluronic acid, which requires repeated, frequent injections. To extend the viscosupplementation effect of hyaluronic acid, we propose to associate it with another biopolymer in the form of a hybrid hydrogel. Chitosan was chosen because of its structural similarity to synovial glycosaminoglycans, its anti-inflammatory effects and its ability to promote cartilage growth. To avoid polyelectrolyte aggregation and obtain transparent, homogeneous gels, chitosan was reacetylated to a 50% degree, and different salts and formulation buffers were investigated. The biocompatibility of the hybrid gels was tested in vitro on human arthrosic synoviocytes, and in vivo assessments were made 1 week after subcutaneous injection in rats and 1 month after intra-articular injection in rabbits. Hyaluronic acid-chitosan polyelectrolyte complexes were prevented by cationic complexation of the negative charges of hyaluronic acid. The different salts tested were found to alter the viscosity and thermal degradation of the gels. Good biocompatibility was observed in rats, although the calcium-containing formulation induced calcium deposits after 1 week. The sodium chloride formulation was further tested in rabbits and did not show acute clinical signs of pain or inflammation. Hybrid HA-Cs hydrogels may be a valuable alternative viscosupplementation agent. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Heteropoly Acid/Nitrogen Functionalized Onion-like Carbon Hybrid Catalyst for Ester Hydrolysis Reactions.

    PubMed

    Liu, Wei; Qi, Wei; Guo, Xiaoling; Su, Dangsheng

    2016-02-18

    A novel heteropoly acid (HPA)/nitrogen functionalized onion-like carbon (NOLC) hybrid catalyst was synthesized through supramolecular (electrostatic and hydrogen bond) interactions between the two components. The chemical structure and acid strength of the HPA/NOLC hybrid have been fully characterized by thermogravimetric analysis, IR spectroscopy, X-ray photoelectron spectroscopy, NH3 temperature-programmed desorption and acid-base titration measurements. The proposed method for the fabrication of the HPA/NOLC hybrid catalyst is a universal strategy for different types of HPAs to meet various requirements of acidic or redox catalysis. The hydrophobic environment of NOLC effectively prevents the deactivation of HPA in an aqueous system, and the combination of uniformly dispersed HPA clusters and the synergistic effect between NOLC and HPA significantly promotes its activity in ester hydrolysis reactions, which is higher than that of bare PWA as homogeneous catalyst. The kinetics of the hydrolysis reactions indicate that the aggregation status of the catalyst particles has great influence on the apparent activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Neutrophil chemotaxis and arachidonic acid metabolism are not linked: evidence from metal ion probe studies

    SciTech Connect

    Turner, S.R.; Turner, R.A.; Smith, D.M.; Johnson, J.A.

    1986-03-05

    Heavy metal ions can inhibit arachidonic acid (AA) metabolism protect against ionophore cytotoxicity (ibid) and inhibit neutrophil chemotaxis. In this study they used Au/sup 3 +/, Zn/sup 2 +/, Cr/sup 3 +/, Mn/sup 2 +/ and Cu/sup 2 +/ as probes of the interrelationships among AA metabolism, ionophore-mediated cytotoxicity, and chemotaxis. Phospholipid deacylation was measured in ionophore-treated cells prelabeled with /sup 3/H-AA. Eicosanoid release from ionophore-treated cells was monitored by radioimmunoassay. Cytoprotection was quantitated as ability to exclude trypan blue. Chemotaxis toward f-met-leu-phe was measured by leading front analysis. The results imply that metal ions attenuate ionophore cytotoxicity by blocking phospholipid deacylation and eicosanoid release. In contrast to previous reports, no correlation between AA metabolism and chemotaxis was demonstrated, suggesting that these 2 processes are not linked.

  15. Location and binding mechanism of an ESIPT probe 3-hydroxy-2-naphthoic acid in unsaturated fatty acid bound serum albumins.

    PubMed

    Ghorai, Shyamal Kr; Tripathy, Debi Ranjan; Dasgupta, Swagata; Ghosh, Sanjib

    2014-02-05

    The binding site and the binding mechanism of 3-hydroxy-2-naphthoic acid (3HNA) in oleic acid (OA) bound serum albumins (bovine serum albumin (BSA) and human serum albumin (HSA)) have been determined using steady state and time resolved emission of tryptophan residues (Trp) in proteins and the ESIPT emission of 3HNA. Time resolved anisotropy of the probe 3HNA and low temperature phosphorescence of Trp residues of BSA in OA bound BSA at 77K reveals a drastic change of the binding site of 3HNA in the ternary system compared to that in the free protein. 3HNA binds near Trp213 in the ternary system whereas 3HNA binds near Trp134 in the free protein. The structure of OA bound BSA generated using docking methodology exhibits U-bend configuration of all bound OA. The docked pose of 3HNA in the free protein and in OA bound albumins (ternary systems) and the concomitant perturbation of the structure of proteins around the binding region of 3HNA corroborate the enhanced ESIPT emission of 3HNA and the energy transfer efficiency from the donor Trp213 of BSA to 3HNA acceptor in 3HNA-OA-BSA system.

  16. Stereoselectivity of formation of monoterpene - Amino acids hybrid molecules in the reaction of monoterpene nitroso chlorides with α-amino acid derivatives.

    PubMed

    Marenin, K S; Gatilov, Yu V; Agafontsev, A M; Tkachev, A V

    2017-01-01

    Reaction of nitrosochlorides of natural monoterpene hydrocarbons (+)-3-carene and (-)-α-pinene with L-amino acids and their methyl esters results in stereoselective formation of terpene-amino acids hybrids, which belong to the series of α-substituted amino oximes. The reaction with an excess of racemic DL-amino acids and their derivatives induces partial resolution of the amino acid components and formation of the diastereomeric mixtures of the terpene-amino acids hybrids, with diastereomeric excess varying from 0 to 100%. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Microsatellite instability typing in serum and tissue of patients with colorectal cancer: comparing real time PCR with hybridization probe and high-performance liquid chromatography.

    PubMed

    Mokarram, P; Rismanchi, M; Alizadeh Naeeni, M; Mirab Samiee, S; Paryan, M; Alipour, A; Honardar, Z; Kavousipour, S; Naghibalhossaini, F; Mostafavi-Pour, Z; Monabati, A; Hosseni, S V; Shamsdin, S A

    2014-05-01

    Allelic variation of BAT-25 (a 25-repeat quasimonomorphic poly T) and BAT-26 (a 26-repeat quasimonomorphic polyA) loci as two mononucleotide microsatellite markers, were analyzed with high-performance liquid chromatography (HPLC) compared with Real-Time PCR using hybridization probes. BAT-26 and BAT-25 markers were used to determine an appropriate screening technique with high sensitivity and specificity to diagnose microsatellite instability (MSI) status in patients with colorectal cancer (CRC). One of the pathways in colorectal tumor genesis is microsatellite instability (MSI+). MSI is detected in about 15% of all CRCs; 3% are of these are associated with Lynch syndrome and the other 12% are caused by sporadic. Colorectal tumors with MSI have distinctive features compared with microsatellite stable tumors. Due to the high percentage of MSI+ CRC in Iran, screening of this type of CRC is imperative. Two markers were analyzed in tissues and sera of 44 normal volunteers and tumor and matched normal mucosal tissues as well as sera of 44 patients with sporadic CRC. The sensitivity and specificity of BAT-26 with real time PCR method (Hybridization probe) were 100% in comparison with sequencing method as the gold standard, while HPLC had a lower sensitivity and specificity. According to HPLC data, BAT-26 was more sensitive than BAT-25 in identifying MSI tumors. Therefore, MSI typing using the BAT-26 hybridization probe method compared to HPLC could be considered as an accurate method for diagnosing MSI in CRC tumors but not in serum circulating DNAs.

  18. Fluorescent Whole-Cell Hybridization with 16S rRNA-Targeted Oligonucleotide Probes To Identify Brucella spp. by Flow Cytometry

    PubMed Central

    Fernández-Lago, Luis; Vallejo, F. Javier; Trujillano, Ignacio; Vizcaíno, Nieves

    2000-01-01

    A whole-cell hybridization assay with fluorescent oligonucleotide probes derived from the 16S rRNA sequence of Brucella abortus in combination with flow cytometry has been developed. With the three fluorescent probes selected, a positive signal was observed with all the representative strains of the species and biovars of Brucella and with a total of nine different Brucella clinical isolates. Using the B9 probe in the hybridization assay, it was possible to discriminate between Brucella suis biovars 2, 3, 4, and 5 and almost all the other Brucella spp. On the basis of differences in fluorescence intensities, no discrimination was established between Brucella spp. and other phylogenetically related microorganisms. No positive fluorescence signals were detected with any of the bacteria showing serological cross-reactions with Brucella spp. and with a total of 17 clinical isolates not belonging to the genus Brucella. These results suggest that the 16S rRNA whole-cell hybridization technique could be a valuable diagnostic tool for the detection and identification of Brucella spp. PMID:10878084

  19. Progressive multifocal leukoencephalopathy. Diagnosis by in situ hybridization with a biotinylated JC virus DNA probe using an automated Histomatic Code-On slide stainer.

    PubMed

    Hulette, C M; Downey, B T; Burger, P C

    1991-08-01

    The accurate surgical pathological diagnosis of progressive multifocal leukoencephalopathy (PML) depends on the demonstration of pathognomonic histological features in cerebral biopsy tissue. The diagnosis may be difficult, however, if only small tissue fragments are submitted from the center of a demyelinating lesion. Previous studies by other authors have established that in situ hybridization with a biotinylated JC virus DNA probe can be a valuable diagnostic adjunct because it identifies the virally infected cells with great specificity and does not depend on the larger specimen, which may be necessary for a firm histological diagnosis. To confirm and extend these findings, we have used a commercially available biotinylated JC virus DNA probe to demonstrate the presence of viral DNA in formalin-fixed, paraffin-embedded tissues from four open biopsies, four needle biopsies, and two autopsies of patients with PML. With the goal of making this procedure applicable to the general surgical pathology laboratory, this method was adapted to the Histomatic Code-On slide stainer. The Histomatic is a programmable, robotic instrument with walk-away capability for hybridization histochemistry. Operation of this instrument requires the same expertise as execution of immunocytochemistry. With the advent of commercially available JC virus DNA probes and an automated system for hybridization histochemistry, this technology for diagnosis of PML may enter the routine diagnostic surgical pathology laboratory.

  20. Rapid quantification of drug resistance gene expression in Candida albicans by reverse transcriptase LightCycler PCR and fluorescent probe hybridization.

    PubMed

    Frade, Joao P; Warnock, David W; Arthington-Skaggs, Beth A

    2004-05-01

    We developed a rapid, sensitive, and reproducible assay to quantify Candida albicans ACT1, CDR1, CDR2, ERG11, and MDR1 mRNA using a two-step reverse transcription and LightCycler real-time PCR (RT-LightCycler PCR) method with sequence-specific hybridization probes. We compared RT-LightCycler PCR with Northern hybridization for quantitative analysis of gene expression in isolates with various fluconazole susceptibilities. Specificity of each LightCycler PCR was verified by LightCycler melting curve analysis and agarose gel electrophoresis of amplified products. Correlation of quantification results between RT-LightCycler PCR and Northern hybridization yielded correlation coefficients of > or = 0.91 for all genes except MDR1 (0.74). In this case, reduced correlation was due to the inability of Northern hybridization to accurately quantify the high MDR1 expression in a susceptible dose-dependent isolate which was shown by RT-LightCycler PCR to overexpress MDR1 >200-fold relative to the other isolates tested. In four isolates, low levels of CDR2 mRNA were detected by RT-LightCycler PCR but were undetectable by Northern hybridization. mRNA quantification by RT-LightCycler PCR correlates with Northern hybridization and offers additional advantages, including increased sensitivity and speed of analysis, along with lower RNA concentration requirements and an increased dynamic range of signal detection.

  1. An Activity-Based Probe for N-Acylethanolamine Acid Amidase

    PubMed Central

    Armirotti, Andrea; Summa, Maria; Bertozzi, Fabio; Garau, Gianpiero; Bandiera, Tiziano; Piomelli, Daniele

    2015-01-01

    N-Acylethanolamine acid amidase (NAAA) is a lysosomal cysteine hydrolase involved in the degradation of saturated and monounsaturated fatty acid ethanolamides (FAEs), a family of endogenous lipid signaling molecules that includes oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). Among the reported NAAA inhibitors, α–amino–β–lactone (3–aminooxetan–2–one) derivatives have been shown to prevent FAE hydrolysis in innate-immune and neural cells and to reduce reactions to inflammatory stimuli. Recently, we disclosed two potent and selective NAAA inhibitors, the compounds ARN077 (5-phenylpentyl N-[(2S,3R)-2-methyl-4-oxo-oxetan-3-yl]carbamate) and ARN726 (4-cyclohexylbutyl-N-[(S)-2-oxoazetidin-3-yl]carbamate). The former is active in vivo by topical administration in rodent models of hyperalgesia and allodynia, while the latter exerts systemic anti-inflammatory effects in mouse models of lung inflammation. In the present study, we designed and validated a derivative of ARN726 as the first activity-based protein profiling (ABPP) probe for the in vivo detection of NAAA. The newly synthesized molecule 1 is an effective in vitro and in vivo click-chemistry activity based probe (ABP), which is able to capture the catalytically active form of NAAA in Human Embryonic Kidney 293 (HEK293) cells overexpressing human NAAA as well as in rat lung tissue. Competitive ABPP with 1 confirmed that ARN726 and ARN077 inhibit NAAA in vitro and in vivo. Compound 1 is a useful new tool to identify activated NAAA both in vitro and in vivo, and to investigate the physiological and pathological roles of this enzyme. PMID:26102511

  2. Amperometric microsensor for direct probing of ascorbic acid in human gastric juice.

    PubMed

    Hutton, Emily A; Pauliukaitė, Rasa; Hocevar, Samo B; Ogorevc, Božidar; Smyth, Malcolm R

    2010-09-30

    This article reports on a novel microsensor for amperometric measurement of ascorbic acid (AA) under acidic conditions (pH 2) based on a carbon fiber microelectrode (CFME) modified with nickel oxide and ruthenium hexacyanoferrate (NiO-RuHCF). This sensing layer was deposited electrochemically in a two-step procedure involving an initial galvanostatic NiO deposition followed by a potentiodynamic RuHCF deposition from solutions containing the precursor salts. Several important parameters were examined to characterize and optimize the NiO-RuHCF sensing layer with respect to its current response to AA by using cyclic voltammetry, and scanning electron microscopy-energy dispersive X-ray spectroscopy methods. With the NiO-RuHCF coated CFME, the AA oxidation potential under acidic conditions was shifted to a less positive value for about 0.2 V (E(p) of ca. 0.23 V vs. Ag/AgCl) as compared to a bare CFME, which greatly improves the electrochemical selectivity. Using the hydrodynamic amperometry mode, the current vs. AA concentration in 0.01 M HCl, at a selected operating potential of 0.30 V, was found to be linear over a wide range of 10-1610 μM (n=22, r=0.999) with a calculated limit of detection of 1.0 μM. The measurement repeatability was satisfactory with a relative standard deviation (r.s.d.) ranging from 4% to 5% (n=6), depending on the AA concentration, and with a sensor-to-sensor reproducibility (r.s.d.) of 6.9% at 100 μM AA. The long-term reproducibility, using the same microsensor for 112 consecutive measurements of 20 μM AA over 11 h of periodic probing sets over 4 days, was 16.1% r.s.d., thus showing very good stability at low AA levels and suitability for use over a prolonged period of time. Moreover, using the proposed microsensor, additionally coated with a protective cellulose acetate membrane, the calibration plot obtained in the extremely complex matrix of real undiluted gastric juice was linear from 10 to 520 μM (n=14, r=0.998). These results

  3. Hierarchical assembly of viral nanotemplates with encoded microparticles via nucleic acid hybridization.

    PubMed

    Tan, Wui Siew; Lewis, Christina L; Horelik, Nicholas E; Pregibon, Daniel C; Doyle, Patrick S; Yi, Hyunmin

    2008-11-04

    We demonstrate hierarchical assembly of tobacco mosaic virus (TMV)-based nanotemplates with hydrogel-based encoded microparticles via nucleic acid hybridization. TMV nanotemplates possess a highly defined structure and a genetically engineered high density thiol functionality. The encoded microparticles are produced in a high throughput microfluidic device via stop-flow lithography (SFL) and consist of spatially discrete regions containing encoded identity information, an internal control, and capture DNAs. For the hybridization-based assembly, partially disassembled TMVs were programmed with linker DNAs that contain sequences complementary to both the virus 5' end and a selected capture DNA. Fluorescence microscopy, atomic force microscopy (AFM), and confocal microscopy results clearly indicate facile assembly of TMV nanotemplates onto microparticles with high spatial and sequence selectivity. We anticipate that our hybridization-based assembly strategy could be employed to create multifunctional viral-synthetic hybrid materials in a rapid and high-throughput manner. Additionally, we believe that these viral-synthetic hybrid microparticles may find broad applications in high capacity, multiplexed target sensing.

  4. Application of new in situ hybridization probes for Ku70 and Ku80 in tissue microarrays of paraffin-embedded malignant melanomas: correlation with immunohistochemical analysis.

    PubMed

    Korabiowska, Monika; Bauer, Hanne; Quentin, Tomas; Stachura, Jerzy; Cordon-Cardo, Carlos; Brinck, Ulrich

    2004-02-01

    Ku70 and Ku80 proteins are responsible for the repair of DNA double-strand breaks and function as a regulatory subunit of the DNA-dependent protein kinase. In this study we analyzed expression of both genes in malignant melanoma tissue arrays applying in situ hybridization probes produced by our research group and using immunohistochemical analysis. Expression of both genes was down-regulated as melanoma progressed. In situ hybridization demonstrated more Ku70- and Ku80-positive cells than immunohistochemical methods, but the correlation between the two methods was highly significant (P <0.01). We conclude that the in situ hybridization assay for the detection of Ku70 and Ku80 expression used in this study is also suitable for tissue microarray analysis of paraffin-embedded melanoma samples. The laboratory procedure is much more complicated than the immunohistochemical method, however.

  5. Colorimetric detection of Ehrlichia canis via nucleic acid hybridization in gold nano-colloids.

    PubMed

    Muangchuen, Ajima; Chaumpluk, Piyasak; Suriyasomboon, Annop; Ekgasit, Sanong

    2014-08-08

    Canine monocytic ehrlichiosis (CME) is a major thick-bone disease of dog caused by Ehrlichia canis. Detection of this causal agent outside the laboratory using conventional methods is not effective enough. Thus an assay for E. canis detection based on the p30 outer membrane protein gene was developed. It was based on the p30 gene amplification using loop-mediated isothermal DNA amplification (LAMP). The primer set specific to six areas within the target gene were designed and tested for their sensitivity and specificity. Detection of DNA signals was based on modulation of gold nanoparticles' surface properties and performing DNA/DNA hybridization using an oligonucleotide probe. Presence of target DNA affected the gold colloid nanoparticles in terms of particle aggregation with a plasmonic color change of the gold colloids from ruby red to purple, visible by the naked eye. All the assay steps were completed within 90 min including DNA extraction without relying on standard laboratory facilities. This method was very specific to target bacteria. Its sensitivity with probe hybridization was sufficient to detect 50 copies of target DNA. This method should provide an alternative choice for point of care control and management of the disease.

  6. Colorimetric Detection of Ehrlichia Canis via Nucleic Acid Hybridization in Gold Nano-Colloids

    PubMed Central

    Muangchuen, Ajima; Chaumpluk, Piyasak; Suriyasomboon, Annop; Ekgasit, Sanong

    2014-01-01

    Canine monocytic ehrlichiosis (CME) is a major thick-bone disease of dog caused by Ehrlichia canis. Detection of this causal agent outside the laboratory using conventional methods is not effective enough. Thus an assay for E. canis detection based on the p30 outer membrane protein gene was developed. It was based on the p30 gene amplification using loop-mediated isothermal DNA amplification (LAMP). The primer set specific to six areas within the target gene were designed and tested for their sensitivity and specificity. Detection of DNA signals was based on modulation of gold nanoparticles' surface properties and performing DNA/DNA hybridization using an oligonucleotide probe. Presence of target DNA affected the gold colloid nanoparticles in terms of particle aggregation with a plasmonic color change of the gold colloids from ruby red to purple, visible by the naked eye. All the assay steps were completed within 90 min including DNA extraction without relying on standard laboratory facilities. This method was very specific to target bacteria. Its sensitivity with probe hybridization was sufficient to detect 50 copies of target DNA. This method should provide an alternative choice for point of care control and management of the disease. PMID:25111239

  7. Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering temperature and concentration measurements using two different picosecond-duration probes.

    PubMed

    Kearney, Sean P; Scoglietti, Daniel J; Kliewer, Christopher J

    2013-05-20

    A hybrid fs/ps pure-rotational CARS scheme is characterized in furnace-heated air at temperatures from 290 to 800 K. Impulsive femtosecond excitation is used to prepare a rotational Raman coherence that is probed with a ps-duration beam generated from an initially broadband fs pulse that is bandwidth limited using air-spaced Fabry-Perot etalons. CARS spectra are generated using 1.5- and 7.0-ps duration probe beams with corresponding coarse and narrow spectral widths. The spectra are fitted using a simple phenomenological model for both shot-averaged and single-shot measurements of temperature and oxygen mole fraction. Our single-shot temperature measurements exhibit high levels of precision and accuracy when the spectrally coarse 1.5-ps probe beam is used, demonstrating that high spectral resolution is not required for thermometry. An initial assessment of concentration measurements in air is also provided, with best results obtained using the higher resolution 7.0-ps probe. This systematic assessment of the hybrid CARS technique demonstrates its utility for practical application in low-temperature gas-phase systems.

  8. Detection of Ralstonia solanacearum, Which Causes Brown Rot of Potato, by Fluorescent In Situ Hybridization with 23S rRNA-Targeted Probes

    PubMed Central

    Wullings, B. A.; Van Beuningen, A. R.; Janse, J. D.; Akkermans, A. D. L.

    1998-01-01

    During the past few years, Ralstonia (Pseudomonas) solanacearum race 3, biovar 2, was repeatedly found in potatoes in Western Europe. To detect this bacterium in potato tissue samples, we developed a method based on fluorescent in situ hybridization (FISH). The nearly complete genes encoding 23S rRNA of five R. solanacearum strains and one Ralstonia pickettii strain were PCR amplified, sequenced, and analyzed by sequence alignment. This resulted in the construction of an unrooted tree and supported previous conclusions based on 16S rRNA sequence comparison in which R. solanacearum strains are subdivided into two clusters. Based on the alignments, two specific probes, RSOLA and RSOLB, were designed for R. solanacearum and the closely related Ralstonia syzygii and blood disease bacterium. The specificity of the probes was demonstrated by dot blot hybridization with RNA extracted from 88 bacterial strains. Probe RSOLB was successfully applied in FISH detection with pure cultures and potato tissue samples, showing a strong fluorescent signal. Unexpectedly, probe RSOLA gave a less intense signal with target cells. Potato samples are currently screened by indirect immunofluorescence (IIF). By simultaneously applying IIF and the developed specific FISH, two independent targets for identification of R. solanacearum are combined, resulting in a rapid (1-day), accurate identification of the undesired pathogen. The significance of the method was validated by detecting the pathogen in soil and water samples and root tissue of the weed host Solanum dulcamara (bittersweet) in contaminated areas. PMID:9797321

  9. Wollastonite hybridizing stearic acid as thermal energy storage material

    NASA Astrophysics Data System (ADS)

    Xu, Dawei; Yang, Huaming

    2014-11-01

    This paper reported on the preparation of a novel stearic acid (SA)/wollastonite (W) composite as a form-stable phase change material (PCM) for thermal energy-storage (TES) by vacuum impregnation, and especially investigated the effect of the size grade of W on the thermal properties of the SA/W composite. Samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), laser particle-size analysis, and differential scanning calorimetry (DSC). Natural W (Wr) was classified into four size grades by wet screening. The results indicate that no chemical reaction took place between SA and W, and the SA load in the SA/W composite increased with an increase in the length/diameter (L/D) ratio of the W. The SA/W composite with a W L/D ratio of 22.5 exhibited latent heats of melting and freezing of 58.64 J/g and 56.95 J/g, respectively, which was higher than those of the composite incorporating natural W. We believe that the as-prepared form-stable PCM composite could provide a potential means of TES for the concentrated solar power.

  10. Communication: hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse.

    PubMed

    Stauffer, Hans U; Miller, Joseph D; Roy, Sukesh; Gord, James R; Meyer, Terrence R

    2012-03-21

    A narrowband, time-asymmetric probe pulse is introduced into the hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering (fs/ps RCARS) technique to provide accurate and precise single-shot, high-repetition-rate gas-phase thermometric measurements. This narrowband pulse-generated by inserting a Fabry-Pérot étalon into the probe-pulse beam path-enables frequency-domain detection of pure-rotational transitions. The unique time-asymmetric nature of this pulse, in turn, allows for detection of resonant Raman-active rotational transitions free of signal contamination by nonresonant four-wave-mixing processes while still allowing detection at short probe-pulse delays, where collisional dephasing processes are negligible. We demonstrate that this approach provides excellent single-shot thermometric accuracy (<1% error) and precision (~2.5%) in gas-phase environments. © 2012 American Institute of Physics

  11. The Use of Atomic Force Microscopy for 3D Analysis of Nucleic Acid Hybridization on Microarrays.

    PubMed

    Dubrovin, E V; Presnova, G V; Rubtsova, M Yu; Egorov, A M; Grigorenko, V G; Yaminsky, I V

    2015-01-01

    Oligonucleotide microarrays are considered today to be one of the most efficient methods of gene diagnostics. The capability of atomic force microscopy (AFM) to characterize the three-dimensional morphology of single molecules on a surface allows one to use it as an effective tool for the 3D analysis of a microarray for the detection of nucleic acids. The high resolution of AFM offers ways to decrease the detection threshold of target DNA and increase the signal-to-noise ratio. In this work, we suggest an approach to the evaluation of the results of hybridization of gold nanoparticle-labeled nucleic acids on silicon microarrays based on an AFM analysis of the surface both in air and in liquid which takes into account of their three-dimensional structure. We suggest a quantitative measure of the hybridization results which is based on the fraction of the surface area occupied by the nanoparticles.

  12. Synthesis of hollow hybrid hydroxyapatite microspheres based on chitosan-poly(acrylic acid) microparticles.

    PubMed

    Zhang, Haibin; Zhou, Kechao; Li, Zhiyou; Huang, Suping

    2009-06-01

    Core-template-free hybrid hydroxyapatite (HA) hollow microspheres based on a chitosan-poly acrylic acid (CS-PAA) complex were prepared. The amine groups on chitosan can interact with the carboxyl groups of poly(acrylic acid) to form hollow microspheres. The hollow HA microspheres of about 1.0 microm are obtained by heterogeneous nucleation of HA on CS-PAA hollow spheres. Gelatin (Gel), acting as a novel cross-link agent, is introduced to bind the spheres of CS-PAA and HA. The forming mechanism of hollow spheres and the influencing factors on the size of microspheres are investigated. In addition, the role of Gel is elucidated in the forming process of the hollow hybrid sphere.

  13. New fluorescent octadecapentaenoic acids as probes of lipid membranes and protein-lipid interactions.

    PubMed Central

    Mateo, C R; Souto, A A; Amat-Guerri, F; Acuña, A U

    1996-01-01

    The chemical and spectroscopic properties of the new fluorescent acids all(E)-8, 10, 12, 14, 16-octadecapentaenoic acid (t-COPA) and its (8Z)-isomer (c-COPA) have been characterized in solvents of different polarity, synthetic lipid bilayers, and lipid/protein systems. These compounds are reasonably photostable in solution, present an intense UV absorption band (epsilon(350 nm) approximately 10(5) M(-1) cm(-1)) strongly overlapped by tryptophan fluorescence and their emission, centered at 470 nm, is strongly polarized (r(O) = 0.385 +/- 0.005) and decays with a major component (85%) of lifetime 23 ns and a faster minor one of lifetime 2 ns (D,L-alpha-dimyristoylphosphatidylcholine (DMPC), 15 degrees C). Both COPA isomers incorporate readily into vesicles and membranes (K(p) approximately 10(6)) and align parallel to the lipids. t-COPA distributes homogeneously between gel and fluid lipid domains and the changes in polarization accurately reflect the lipid T(m) values. From the decay of the fluorescence anisotropy in spherical bilayers of DMPC and POPC it is shown that t-COPA also correctly reflects the lipid order parameters, determined by 2H NMR techniques. Resonance energy transfer from tryptophan to the bound pentaenoic acid in serum albumin in solution, and from the tryptophan residues of gramicidin in lipid bilayers also containing the pentaenoic acid, show that this probe is a useful acceptor of protein tryptophan excitation, with R(O) values of 30-34 A. Images FIGURE 10 PMID:8889194

  14. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.

    PubMed

    Noor, M Omair; Tavares, Anthony J; Krull, Ulrich J

    2013-07-25

    A microfluidic based solid-phase assay for the multiplexed detection of nucleic acid hybridization using quantum dot (QD) mediated fluorescence resonance energy transfer (FRET) is described herein. The glass surface of hybrid glass-polydimethylsiloxane (PDMS) microfluidic channels was chemically modified to assemble the biorecognition interface. Multiplexing was demonstrated using a detection system that was comprised of two colors of immobilized semi-conductor QDs and two different oligonucleotide probe sequences. Green-emitting and red-emitting QDs were paired with Cy3 and Alexa Fluor 647 (A647) labeled oligonucleotides, respectively. The QDs served as energy donors for the transduction of dye labeled oligonucleotide targets. The in-channel assembly of the biorecognition interface and the subsequent introduction of oligonucleotide targets was accomplished within minutes using a combination of electroosmotic flow and electrophoretic force. The concurrent quantification of femtomole quantities of two target sequences was possible by measuring the spatial coverage of FRET sensitized emission along the length of the channel. In previous reports, multiplexed QD-FRET hybridization assays that employed a ratiometric method for quantification had challenges associated with lower analytical sensitivity arising from both donor and acceptor dilution that resulted in reduced energy transfer pathways as compared to single-color hybridization assays. Herein, a spatial method for quantification that is based on in-channel QD-FRET profiles provided higher analytical sensitivity in the multiplexed assay format as compared to single-color hybridization assays. The selectivity of the multiplexed hybridization assays was demonstrated by discrimination between a fully-complementary sequence and a 3 base pair sequence at a contrast ratio of 8 to 1.

  15. Diagnostics based on nucleic acid sequence variant profiling: PCR, hybridization, and NGS approaches.

    PubMed

    Khodakov, Dmitriy; Wang, Chunyan; Zhang, David Yu

    2016-10-01

    Nucleic acid sequence variations have been implicated in many diseases, and reliable detection and quantitation of DNA/RNA biomarkers can inform effective therapeutic action, enabling precision medicine. Nucleic acid analysis technologies being translated into the clinic can broadly be classified into hybridization, PCR, and sequencing, as well as their combinations. Here we review the molecular mechanisms of popular commercial assays, and their progress in translation into in vitro diagnostics. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. A triterpene oleanolic acid conjugate with 3-hydroxyflavone derivative as a new membrane probe with two-color ratiometric response.

    PubMed

    Turkmen, Zeynep; Klymchenko, Andrey S; Oncul, Sule; Duportail, Guy; Topcu, Gulacti; Demchenko, Alexander P

    2005-07-29

    We report on the synthesis by coupling of a triterpenoid oleanolic acid with 4'-diethylamino-3-hydroxyflavone (FE) to produce an environment-sensitive biomembrane probe with two-band ratiometric response in fluorescence emission. The synthesized compound (probe FOT) was tested in a series of model solvents and demonstrated the response to solvent polarity and intermolecular hydrogen bonding very similar to that of parent probe FE. Meantime when incorporated into lipid bilayer membranes, it showed new features differing in response between lipids of different surface charges as well as between glycerophospholipids and sphingomyelin. We observed that in the conditions of coexistence of rafts and non-raft structures the probe is excluded from the rafts.

  17. A water-soluble rhodamine B-derived fluorescent probe for pH monitoring and imaging in acidic regions

    NASA Astrophysics Data System (ADS)

    Cui, Peng; Jiang, Xuekai; Sun, Junyong; Zhang, Qiang; Gao, Feng

    2017-06-01

    A structurally simple, water-soluble rhodamine-derivatived fluorescent probe, which is responsive to acidic pH, was conveniently synthesized via a one-step condensation reaction of rhodamine B hydrazide and 4-formybenzene-1,3-disulfonate. As a stable and highly sensitive pH sensor, the probe displays an approximately 50-fold fluorescence enhancement over the pH range of 7.16-4.89 as the structure of probe changes from spirocyclic (weak fluorescent) to ring-open (strong fluorescent) with decreasing pH. The synthesized fluorescent probe is applied to the detection of pH changes in vitro and in vivo bioimaging of immortalized gastric cancer cells, with satisfactory results.

  18. Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization-microautoradiography.

    PubMed

    Ginige, Maneesha P; Keller, Jürg; Blackall, Linda L

    2005-12-01

    The acetate-utilizing microbial consortium in a full-scale activated sludge process was investigated without prior enrichment using stable isotope probing (SIP). [13C]acetate was used in SIP to label the DNA of the denitrifiers. The [13C]DNA fraction that was extracted was subjected to a full-cycle rRNA analysis. The dominant 16S rRNA gene phylotypes in the 13C library were closely related to the bacterial families Comamonadaceae and Rhodocyclaceae in the class Betaproteobacteria. Seven oligonucleotide probes for use in fluorescent in situ hybridization (FISH) were designed to specifically target these clones. Application of these probes to the sludge of a continuously fed denitrifying sequencing batch reactor (CFDSBR) operated for 16 days revealed that there was a significant positive correlation between the CFDSBR denitrification rate and the relative abundance of all probe-targeted bacteria in the CFDSBR community. FISH-microautoradiography demonstrated that the DEN581 and DEN124 probe-targeted cells that dominated the CFDSBR were capable of taking up [14C]acetate under anoxic conditions. Initially, DEN444 and DEN1454 probe-targeted bacteria also dominated the CFDSBR biomass, but eventually DEN581 and DEN124 probe-targeted bacteria were the dominant bacterial groups. All probe-targeted bacteria assessed in this study were denitrifiers capable of utilizing acetate as a source of carbon. The rapid increase in the number of organisms positively correlated with the immediate increase in denitrification rates observed by plant operators when acetate is used as an external source of carbon to enhance denitrification. We suggest that the impact of bacteria on activated sludge subjected to intermittent acetate supplementation should be assessed prior to the widespread use of acetate in the wastewater industry to enhance denitrification.

  19. Determination of bismuth in pharmaceutical products using phosphoric acid as molecular probe by resonance light scattering.

    PubMed

    Yun, Yanru; Cui, Fengling; Geng, Shaoguang; Jin, Jianhua

    2012-01-01

    A novel method for the sensitive determination of bismuth(III) in pharmaceutical products using phosphoric acid as a molecular probe by resonance light scattering (RLS) is discussed. In 0.5 mol/L phosphoric acid (H3 PO4) medium, bismuth(III) reacted with PO4 (3-) to form an ion association compound, which resulted in the significant enhancement of RLS intensity and the appearance of the corresponding RLS spectral characteristics. The maximum scattering peak of the system existed at 364 nm. Under optimal conditions, there was linear relationship between the relative intensity of RLS and concentration of bismuth(III) in the range of 0.06-10.0 µg/mL for the system. A low detection limit for bismuth(III) of 3.22 ng/mL was achieved. The relative standard deviations (RSD) for the determination of 0.40 and 0.80 µg/mL bismuth(III) were 2.1% and 1.1%, respectively, for five determinations. Based on this fact, a simple, rapid, and sensitive method was developed for the determination of bismuth(III) at nanogram level by RLS technique with a common spectrofluorimeter. This analytical system was successfully applied to determine the trace amounts of bismuth(III) in pharmaceutical products, which was in good agreement with the results obtained by atomic absorption spectrometry (AAS).

  20. Final Report Nucleic Acid System - Hybrid PCR and Multiplex Assay Project Phase 2

    SciTech Connect

    Koopman, R P; Langlois, R G; Nasarabadi, S; Benett, W J; Colston, B W; Johnson, D C; Brown, S B; Stratton, P L; Milanovich, F P

    2002-04-17

    This report covers phase 2 (year 2) of the Nucleic Acid System--Hybrid PCR and Multiplex Assay project. The objective of the project is to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction) in a multiplex mode using flow cytometry. The Hybrid instrument consists of a flow-through PCR module capable of handling a multiplexed PCR assay, a hybridizing module capable of hybridizing multiplexed PCR amplicons and beads, and a flow cytometer module for bead-based identification, all controlled by a single computer. Multiplex immunoassay using bead-based Luminex flow cytometry is available, allowing rapid screening for many agents. PCR is highly specific and complements and verifies immunoassay. It can also be multiplexed and detection provided using the bead-based Luminex flow cytometer. This approach allows full access to the speed and 100-fold multiplex capability of flow cytometry for rapid screening as well as the accuracy and specificity of PCR. This project has two principal activities: (1) Design, build and test a prototype hybrid PCR/flow cytometer with the basic capabilities for rapid, broad spectrum detection and identification, and (2) Develop and evaluate multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products. This project requires not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This involves development and evaluation of multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products.

  1. Alginic acid-based macromolecular chemiluminescent probe for universal protein assay on a solid-phase membrane.

    PubMed

    Krawczyk, Tomasz; Kondo, Midori; Azam, Md Golam; Zhang, Huan; Shibata, Takayuki; Kai, Masaaki

    2010-11-01

    A novel chemiluminescent (CL) technique for the rapid determination of proteins on a membrane is described. The method utilizes an interaction between luminol-labeled alginic acid macromolecule and proteins. The synthesis of the macromolecular probe consists of the oxidation of alginic acid with NaIO(4), the introduction of luminol through imine formation as a CL tag, and the reduction of the conjugate with NaBH(4) to obtain the stable probe. The analytical protocol consists of adsorbing proteins on a poly(vinylidene difluoride) (PVDF) membrane, incubating the membrane for 30 min with the probe solution in the presence of boric acid and a surfactant, two short washing steps in order to remove an excess of the probe, and detection of CL intensity with hemin, tetra-n-propylammonium hydroxide and H(2)O(2). This proposed CL assay for proteins can be finished within 1 h, and indicates the detection limit of 15-250 ng of proteins on the membrane. The CL signals in the calibration curves for some proteins such as albumin show proportional intensities against the amounts of the proteins less than ca. 125 ng, though there is a logarithmic relationship between the CL signals and the protein amounts larger than ca. 125 ng. However, some other proteins indicate the proportional CL intensities against the increasing amounts in wider range up to 500 ng of the proteins. The synthesised alginic acid-based probe indicates specific selectivity towards proteins, and should be used as a CL probe for the universal detection of various proteins on a solid-phase membrane even in the presence of DNA and RNA.

  2. Multicolor fluorescence in situ hybridization with centromeric DNA probes as a new approach to distinguish chromosome breakage from aneuploidy in interphase cells and micronuclei

    SciTech Connect

    Eastmond, D.A.; Rupa, D.S.; Chen, H.W.; Hasegawa, L.

    1993-12-31

    Chromosomal abnormalities are believed to contribute significantly to human reproductive failure, carcinogenesis and other pathophysiological conditions. For example, approximately 15% of recognized pregnancies terminate in spontaneous abortion, and of these approximately 30% have been shown to be chromosomally abnormal. The contribution of chromosomal abnormalities to early embryonic and fetal death appears to decrease with gestational age, suggesting that as many as 67% of the aborted embryos in early embryonic deaths are chromosomally abnormal. Furthermore, clinically significant chromosomal abnormalities can also be found to be present in approximately 0.58 to 0.67% of live births. These figures indicate that within a given year, hundreds of thousands of chromosomally abnormal babies will be born throughout the world and additional millions of chromosomally abnormal embryos will have been spontaneously aborted. For the past several years, our research has focused on utilizing new molecular cytogenetic techniques to develop assays for detecting aneuploidy-inducing agents in mammalian cells. One approach that we have sucessfully employed involves the use of fluorescence in situ hybridization with chromosome-specific DNA probes to determine the number of copies of a representative chromosome present within the nucleus following chemical exposure. DNA sequences (probes) which hybridize to blocks of repetitive centromeric DNA on specific chromosomes have been developed for most of the human chromosomes. In situ hybridization with these probes results in the staining of a compact chromosomal region which can be easily detected in interphase nuclei. The presence of 3 (or more) hybridization domains in an interphase nucleus indicates the presence of three centromeric regions and has been presumed to indicate that three copies of the entire chromosome were present in the nucleus.

  3. Naturally occurring hybrids derived from γ-amino acids and sugars with potential tail to tail ether-bonds

    NASA Astrophysics Data System (ADS)

    Feng, Zi-Ming; Zhan, Zhi-Lai; Yang, Ya-Nan; Jiang, Jian-Shuang; Zhang, Pei-Cheng

    2016-05-01

    The basic substances of life include various amino acids and sugars. To search such molecules is the precondition to understand the essential nature. Here we reported four unprecedented hybrids of γ-amino acids and sugars from the roots of Ranunculus ternatus, which possess potential tail to tail ether-connected (6,6-ether-connected) modes in the sugar moiety. The structures of these hybrids were elucidated by extensive analyses of spectra and calculated electronic circular dichroism (ECD) method.

  4. Probe depth matters in dermal microdialysis sampling of benzoic acid after topical application: an ex vivo study in human skin.

    PubMed

    Holmgaard, R; Benfeldt, E; Bangsgaard, N; Sorensen, J A; Brosen, K; Nielsen, F; Nielsen, J B

    2012-01-01

    Microdialysis (MD) in the skin - dermal microdialysis (DMD) - is a unique technique for sampling of topically as well as systemically administered drugs at the site of action, e.g. sampling of dermatological drug concentrations in the dermis. Debate has concerned the existence of a correlation between the depth of the sampling device - the probe - in the dermis and the amount of drug sampled following topical drug administration. This study evaluates the relation between probe depth and drug sampling using dermal DMD sampling ex vivo in human skin. We used superficial (<1 mm), intermediate (1-2 mm) and deep (>2 mm) positioning of the linear MD probe in the dermis of human abdominal skin, followed by topical application of 4 mg/ml of benzoic acid (BA) in skin chambers overlying the probes. Dialysate was sampled every hour for 12 h and analysed for BA content by high-performance liquid chromatography. Probe depth was measured by 20-MHz ultrasound scanning. The area under the time-versus-concentration curve (AUC) describes the drug exposure in the tissue during the experiment and is a relevant parameter to compare for the 3 dermal probe depths investigated. The AUC(0-12) were: superficial probes: 3,335 ± 1,094 μg·h/ml (mean ± SD); intermediate probes: 2,178 ± 1,068 μg·h/ml, and deep probes: 1,159 ± 306 μg·h/ml. AUC(0-12) sampled by the superficial probes was significantly higher than that of samples from the intermediate and deeply positioned probes (p value <0.05). There was a significant inverse correlation between probe depth and AUC(0-12) sampled by the same probe (p value <0.001, r(2) value = 0.5). The mean extrapolated lag-times (±SD) for the superficial probes were 0.8 ± 0.1 h, for the intermediate probes 1.7 ± 0.5 h, and for the deep probes 2.7 ± 0.5 h, which were all significantly different from each other (p value <0.05). In conclusion, this paper demonstrates that there is an inverse relationship between the depth of the probe in the dermis

  5. Novel molecular beacon DNA probes for protein-nucleic acid interaction studies

    NASA Astrophysics Data System (ADS)

    Li, Jianwei J.; Perlette, John; Fang, Xiaohong; Kelley, Shannon; Tan, Weihong

    2000-03-01

    We report a novel approach to study protein-nucleic acid interactions by using molecular beacons (MBs). Molecular beacons are hairpin-shaped DNA oligonucleotide probes labeled with a fluorophore and a quencher, and can report the presence of target DNA/RNA sequences. MBs can also report the existence of single-stranded DNA binding proteins (SSB) through non-sequence specific binding. The interaction between SSB and MB has resulted in significant fluorescence restoration of the MB. The fluorescence enhancement brought by SSB and by complementary DNA is very comparable. The molar ratio of the binding between SSB and the molecular beacon is 1:1 with a binding constant of 2 X 107 M-1. Using the MB-SSB binding, we are able to determine SSB at 2 X 10-10 M with a conventional spectrometer. We have also applied MB DNA probes for the analysis of an enzyme lactic dehydrogenase (LDH), and for the investigation of its binding properties with ssDNA. The biding process between MB and different isoenzymes of LDH has been studied. We also show that there are significant differences in MB binding affinity to different proteins, which will enable selective binding studies of a variety of proteins. This new approach is potentially useful for protein-DNA/RNA interaction studies that require high sensitivity, speed and convenience. The results also open the possibility of using easily obtainable, custom designed, modified DNA molecules for studies of drug interactions and targeting. Our results demonstrate that MB can be effectively used for sensitive protein quantitation and for efficient protein-DNA interaction studies. MB has the signal transduction mechanism built within the molecule, and can thus be used for quick protein assay development and for real-time measurements.

  6. Localization of neuropeptide Y mRNA in neurons of human cerebral cortex by means of in situ hybridization with a complementary RNA probe

    SciTech Connect

    Terenghi, G.; Polak, J.M.; Hamid, Q.; O'Brien, E.; Denny, P.; Legon, S.; Dixon, J.; Minth, C.D.; Palay, S.L.; Yasargil, G.

    1987-10-01

    The distribution of mRNA encoding neuropeptide Y (NPY) in neurons of the normal human cerebral cortex in surgical biopsy specimens and postmortem brain was studied in situ hybridization techniques. A /sup 32/P-labeled complementary RNA (cRNA) probe was used on cryostat sections of 13 formaldehyde-fixed cortical biopsy specimens. Hybridization to NPY mRNA was found in all samples: after autoradiography, discrete deposits of silver granules were observed on neuronal cell bodies abundantly distributed in the deep layers of the cortex, particularly laminae IV and VI, and on smaller cell bodies in the white matter. The localization of the neurons hybridized for NPY mRNA was comparable to that of NPY-immunoreactive cells as shown in sections from the same tissue blocks immunostained by using NPY antibodies. The specificity of the in situ hybridization technique was confirmed by blot hybridization analysis of electrophoretically fractionated RNA. This study clearly demonstrated the consistent localization of NPY gene transcription and expression in normal human cortical neurons.

  7. Real-time nucleic acid sequence-based amplification (NASBA) using an adenine-induced quenching probe and an intercalator dye.

    PubMed

    Kouguchi, Y; Teramoto, M; Kuramoto, M

    2010-11-01

    We found that an adenine base caused fluorescence quenching of a fluorescein (FL)-labelled probe in DNA:RNA hybrid sequences, and applied this finding to a nucleic acid sequence-based amplification (NASBA) method. The present NASBA method employed a probe containing an FL-modified thymine at its 3' end and ethidium bromide (EtBr) on the basis of a combination of adenine-induced quenching and fluorescence resonance energy transfer (FRET) between the FL donor and EtBr acceptor. This NASBA was used to detect Shiga toxin (STX) stx-specific mRNA in STX-producing Escherichia coli, demonstrating rapid quantification of the target gene with high sensitivity. Although the inherent quenching effect of adenine was inferior to that of guanine, FRET between the FL and EtBr moieties enhanced the adenine-induced quenching, allowing rapid and sensitive real-time NASBA detection. This study gives a novel real-time diagnostic system based on NASBA for a sensitive mRNA (or viral RNA) detection. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  8. Design and validation of an oligonucleotide probe for the detection of protozoa from the order Trichomonadida using chromogenic in situ hybridization.

    PubMed

    Mostegl, Meike Marissa; Richter, Barbara; Nedorost, Nora; Maderner, Anton; Dinhopl, Nora; Kulda, Jaroslav; Liebhart, Dieter; Hess, Michael; Weissenböck, Herbert

    2010-07-15

    Infections with protozoal parasites of the order Trichomonadida are often observed in veterinary medicine. Based on the trichomonad species involved these infections are either asymptomatic or can lead to sometimes serious disease. To further study protozoal agents of the order Trichomonadida the establishment of a method to detect trichomonads directly in the tissue, allowing parasite-lesion correlation, is necessary. Here we describe the design and evaluation of an oligonucleotide probe for chromogenic in situ hybridization, theoretically allowing detection of all hitherto known members of the order Trichomonadida. The probe was designed on a region of the 18S ribosomal RNA gene homologue for all representatives of the order Trichomonadida available in the GenBank. Functionality of the probe was proven using protozoal cultures containing different trichomonads (Monocercomonas colubrorum, Hypotrichomonas acosta, Pentatrichomonas hominis, Trichomitus batrachorum, Trichomonas gallinae, Tetratrichomonas gallinarum, Tritrichomonas foetus, and Tritrichomonas augusta). Furthermore, three different tissue sections containing either T. gallinae, T. foetus or Histomonas meleagridis were tested positive. Additionally, to rule out cross-reactivity of the probe a large number of different pathogenic protozoal agents, fungi, bacteria and viruses were tested and gave negative results. The probe presented here can be considered an important tool for diagnosis of all to date described relevant protozoal parasites of the order Trichomonadida in tissue samples.

  9. Method for identifying and quantifying nucleic acid sequence aberrations

    DOEpatents

    Lucas, J.N.; Straume, T.; Bogen, K.T.

    1998-07-21

    A method is disclosed for detecting nucleic acid sequence aberrations by detecting nucleic acid sequences having both a first and a second nucleic acid sequence type, the presence of the first and second sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. The method uses a first hybridization probe which includes a nucleic acid sequence that is complementary to a first sequence type and a first complexing agent capable of attaching to a second complexing agent and a second hybridization probe which includes a nucleic acid sequence that selectively hybridizes to the second nucleic acid sequence type over the first sequence type and includes a detectable marker for detecting the second hybridization probe. 11 figs.

  10. Method for identifying and quantifying nucleic acid sequence aberrations

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    1998-01-01

    A method for detecting nucleic acid sequence aberrations by detecting nucleic acid sequences having both a first and a second nucleic acid sequence type, the presence of the first and second sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. The method uses a first hybridization probe which includes a nucleic acid sequence that is complementary to a first sequence type and a first complexing agent capable of attaching to a second complexing agent and a second hybridization probe which includes a nucleic acid sequence that selectively hybridizes to the second nucleic acid sequence type over the first sequence type and includes a detectable marker for detecting the second hybridization probe.

  11. Locked Nucleic Acid and Flow Cytometry-Fluorescence In Situ Hybridization for the Detection of Bacterial Small Noncoding RNAs

    PubMed Central

    Robertson, Kelly L.

    2012-01-01

    We describe the development and testing of a high-throughput method that enables the detection of small noncoding RNAs (ncRNAs) from single bacterial cells using locked nucleic acid probes (LNA) and flow cytometry-fluorescence in situ hybridization (flow-FISH). The LNA flow-FISH method and quantitative reverse transcription-PCR (qRT-PCR) were used to monitor the expression of three ncRNAs (6S, CsrB, and TPP-2) in Vibrio campbellii ATCC BAA-1116 cultures during lag phase, mid-log phase, and stationary phase. Both LNA flow-FISH and qRT-PCR revealed that CsrB and TPP-2 were highly expressed during lag phase but markedly reduced in mid-log phase and stationary phase, whereas 6S demonstrated no to little expression during lag phase but increased thereafter. Importantly, while LNA flow-FISH and qRT-PCR demonstrated similar overall expression trends, only LNA flow-FISH, which enabled the detection of ncRNAs in individual cells as opposed to the lysate-based ensemble measurements generated by qRT-PCR, was able to capture the cell-to-cell heterogeneity in ncRNA expression. As such, this study demonstrates a new method that simultaneously enables the in situ detection of ncRNAs and the determination of gene expression heterogeneity within an isogenic bacterial population. PMID:22057868

  12. Novel hybrid probe based on double recognition of aptamer-molecularly imprinted polymer grafted on upconversion nanoparticles for enrofloxacin sensing.

    PubMed

    Liu, Xiuying; Ren, Jing; Su, Lihong; Gao, Xue; Tang, Yiwei; Ma, Tao; Zhu, Lijie; Li, Jianrong

    2017-01-15

    A novel luminescent "double recognition" method for the detection of enrofloxacin (ENR) is developed to overcome some of the challenges faced by conventional molecularly imprinting. Biotinylated ENR aptamers immobilised on upconversion nanoparticles (UCNPs) surface are implemented to capture and concentrate ENR as the first imprinting recognition safeguard. After correct folding of the aptamer upon the existing targets, polymerization of methacrylic acid monomers around the ENR-aptamer complexes to interact with the residual functional groups of ENR by using molecularly imprinting techniques is the second imprinting recognition safeguard. The "double recognition" imprinting cavities are formed after removal of ENR, displaying recognition properties superior to that of aptamer or traditional molecularly imprinting alone. Another interest of this method is simultaneous molecular recognition and signal conversion by fabricating the "double recognition" receptor on to the surface of UCNPs to form a hybrid sensing system of apta-MIP/UCNPs. The proposed sensing method is applied to measure ENR in different fish samples. Good recoveries between 87.05% and 96.24%, and relative standard deviation (RSD) values in the range of 1.19-4.83% are obtained, with the limits of detection and quantification of 0.04 and 0.12ng/mL, respectively. It indicates that the sensing method is feasible for the quantification of target ENRs in real samples, and show great potential for wide-ranging application in bioassays. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Method of preparing and applying single stranded DNA probes to double stranded target DNAs in situ

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    1991-01-01

    A method is provided for producing single stranded non-self-complementary nucleic acid probes, and for treating target DNA for use therewith. Probe is constructed by treating DNA with a restriction enzyme and an exonuclease to form template/primers for a DNA polymerase. The digested strand is resynthesized in the presence of labeled nucleoside triphosphate precursor. Labeled single stranded fragments are separated from the resynthesized fragments to form the probe. Target DNA is treated with the same restriction enzyme used to construct the probe, and is treated with an exonuclease before application of the probe. The method significantly increases the efficiency and specificity of hybridization mixtures by increasing effective probe concentration by eliminating self-hybridization between both probe and target DNAs, and by reducing the amount of target DNA available for mismatched hybridizations.

  14. Method of preparing and applying single stranded DNA probes to double stranded target DNAs in situ

    DOEpatents

    Gray, J.W.; Pinkel, D.

    1991-07-02

    A method is provided for producing single stranded non-self-complementary nucleic acid probes, and for treating target DNA for use therewith. The probe is constructed by treating DNA with a restriction enzyme and an exonuclease to form template/primers for a DNA polymerase. The digested strand is resynthesized in the presence of labeled nucleoside triphosphate precursor. Labeled single stranded fragments are separated from the resynthesized fragments to form the probe. Target DNA is treated with the same restriction enzyme used to construct the probe, and is treated with an exonuclease before application of the probe. The method significantly increases the efficiency and specifici